
ICON/UXB '.:,
, ;'

Operating Systeftf",
Reference'
Manual

Volume 1A

ICON
INTERNATIONAL
P.O. Box 340
Oram. Utah 84059
(801) 225-6888

·r-\
"'--.j

OPERATING SYSTEM REFERENCE MANUAL

ICON/UXB

System
Commands

Volume 1A

© 1988 Icon International, Inc.
All rights reserved worldwide.

Copyright 0 1987 Icon International) Inc. All rights reserved. No part of this
manual shall be reproduced, stored in a retrieval system) or transmitted by any
means, electronic, mechanical, photocopying) recording, or otherwise, without
written permission from Icon International, Inc. While every precaution has
been taken in the preparation of this manual, Icon International assumes no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein.

Copyright 1979, 1980 Regents of the University of California. Permission to
copy these documents or any portion thereof as necessary for licensed use of the
software is granted to licensees of this software, provided this copyright notice
and statement of permission are included.

The document "Writing Tools - The STYLE and DICTION Programs" is
copyrighted 1979 by Bell Telephone Laboratories. Holders of a U~ /32V
software license are permitted to copy this document, or any portion of it) as
necessary for licensed use of the software, provided this copyright notice and
statement of permission are included.

The document "The Programming Language EFL" is copyrighted 1979 by Bell
Telephone Laboratories. EFL has been approved for general release, so that one
may copy it subject only to the restriction of giving proper acknowledgement to
Bell Telephone Laboratories.

This manual reflects system enhancements made at Berkeley and sponsored in
part by NSF Grants MCS-7807291) MCS-SOO5144, and MCS-74-07644-A04; DOE
Contract DE-AT03-76SFOOO34 and Project Agreement DE-AS03-79ERI0358; and
by Defense Advanced Research Projects Agency (000) ARPA Order No. 4031,
Monitored by Naval Electronics Systems Command under Contract No.
NOOO39-So. K-0649.

This manual was prepared by the Documentation Group of Icon International,
Inc., P.O. Box 340, Orem) UT 84057-0340. A form for reader's comments has
been provided at the back of this publication. comments are welcomed and may
be sent to the above address.

Revision B

Order Number 172-022-001 (Manual Assembly)
Order Number 171-070-001 (Pages Only)

Printed in the U.S.A.

IC is a registered trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.

Change Record Page

Manual Part No. 172-022-001

Date Revision Description Pages Affected

Jan. 1987 A Initial production release All

Nov. 1987 B Incorporate additions of Main cover page. titlepage. copyright page.
commands included in Table of Contents. Permuted Index.
Releases 2.16. 3.0. and 3.1 Introduction. addition of and changes to the
of the ICON/UXB Operating following manual pages: ci(1). co(1). ident(1).
System and separate Volume 1 rnerge(1). rcs(1). rcsdiff(1). rcsmerge(1).
into two separate binders rIog(1). tac(1). tftp(1c).andtmail(1)

'-- .. /

c TABLE OF CONTENTS

I. Permuted Index

Special Characters ••••••••••••••••••••••••••• xv
aardvark - apply a command to a set of arguments •••••••••••• xv
apply or remove an advisory lock on an open file - based on ex ••••••• xvi
basename - calendar ••••••••••••••••••••••••• xvii
calendar: reminder service - check nroft'/troft' files •••••••••••• xviii
check out RCS revisions - commands by keyword lookup •••••••••• xix
commands conditionally - conventional names for terminals ••••••••• xx
conversion - current working directory •••••••••••••••••• xxi
current working directory - description by its name •••••••••••• xxii
description file - display •••••••••••••••••••••••• xxiii
display call graph profile data - efficient way •••••••••••••• xxiv
eft: Extended Fortran Language - exec, exece, environ ••••••••••• xxv
exec, exit, export, login, read, readonly, set,! - fcntl: file control options xxvi
fcvt, gcvt: output conversion - file creation mask •••••••••••• xxvii
file creation mode mask - files for the manuals ••••••••••••• xxviii
files in reverse order - Fortran file ••••••••••••••••••• xxix
Fortran file into individual files - generate a dump •••••••••••• xxx
generate a fault - getw: get character or word from stream •••••••• XXXI

getwd: get current working directory pathname - host system ••••••• xxxii
host system - inet...network, inet...ntoe, ineLmakeaddr, inet.Jnaof ••••• xxxiii
inet...ntoa, ineLmakeaddr, inet.Jnaof, inet...netof - intro to system maintenance xxxiv
i-numbers - len: tell about character objects ••••••••••••••• xxxv
length - loc: return the address of an object •••••••••••••• xxxvi
localtime, gmtime, asctime, timezone: convert date - mag tape •••••• xxxvii
magnetic tape manipulating program - memory segment •••••••• xxxviii
memory statistics - msgs: system messages and junk mail program •••• xxxix
mt: magnetic tape manipulating program - nohup: run a command at low priority xl
nohup: run command immune to hangups - output conversion •••••••• xli
output conversion - plot: graphics filters ••••••••••••••••• xlii
plot: graphics interface - process •••••••••••••••••••• xliii
process - programs to implement shared strings ••••••••••••• xliv
protocol - ReS file ••••••••••••••••••••••••••• xlv
ReS file attributes - remote login server ••••••••••••••••• xlvi
remote magtape protocol module - reverse order ••••••••••••• xlvii
revisions - seekdir, rewinddir, closedir: directory opera.tions • • • • •• xlviii
seekdir, rewinddir, closedir: - setenv: set variable in environment •••••• xlix
seteuid, setruid, setgid, setegid, setrgid: set - signal mask • • • • • • •• I
signal messages - spellout: find spelling errors ••••••••••••••• Ii
spline: interpolate smooth curve - string operations. strcat,strncat,strcmp Iii
strings. xstr: - tables •••••••••••••••••••••••••• liii
tables for nroft' or troft' -text editor ••••••••••••••••••• liv
text editor - trekkie game •••••••••••••••••••••••• Iv
trewin, tskipf, tstate: rn tape I/O - (unlink) files or directories ••••••• lvi
unlink: remove a directory entry - variable in environment ••••••••• lvii
variables - without checking the disks •••••••••••••••••• lviii
word count - zone name rule file ••••••••••••••••••••• lix

ICON INTERNATIONAL v

D. Introduction

INTRODUCTION
SECTION FORMAT
HOW TO GET STARTED

.
Logging In
Logging Out

.

·
.

HOW TO COMMUNICATE THROUGH YOUR TERMINAL
HO\V TO RUN A PROGRAM - THE SHELLS
THE CURRENT DIRECTORY
PATH NAMES
WRITING AN ICON/UXB PROGRAM
TEXT PROCESSING

. . . .

STATUS INQUIRIES
SURPRISES

.
. · .

. . . ·
· . . .
· . . . · .

OTHER MANUALS AND BOOKS ON THE UNlApS OPERATING SYSTEM

. .

1
2
3
3
4
4
5
6
6
7
7
8
8
8

1. Commands and Application Programs

intro • • • •• introduction to commands

vi

adb
add bib
apply
apropos
ar

.
as
at

. . . .
awk
basename
bc
biJf

. . • . • • • . .. debugger
create or extend bibliographic database

apply a command to a set of arguments
locate commands by keyword lookup

archive and library maintainer M68020 assembler
execute commands at a later time

pattern scanning and processing language
• • • • • • • • • •• strip filename affixes

• • •• arbitrary-precision arithmetic language
be notified if mail arrives and who it is from

• • • • send or receive mail among users bin mail
cal
calendar
cat

. . . . • • • • print calendar

cb
cc
cd
checknr
chfn
chgrp
chmod
chsh
ci
clear
cmp
co
col
colcrt
.colrm
comm
compact

. . .

.

. . . .

• • • • reminder service
• • • • •• • • catenate and print

. . . . e program beautifier

.

• • • • • • • •• C compiler
change working directory

check nroff/troff files
change finger entry

change group • • • • • change mode
• • •• change default login shell

check in Res revisions
clear terminal screen . . . compare two files

check out RCS revisions
filter reverse line feeds

filter nroff output for CRT previewing
• • • • •• remove columns from a file

select or reject lines common to two sorted files
compress and uncompress files, and cat them

ICON INTERNATIONAL

/

c ..

(

compress
cp

Table 01 Contenta

• • • • • • • • • • • • • • • • • • • compress and expand data
. ". • • • • • • . • . • . • . • • •• copy

cpio • • • • • • • • copy file archives in and out
crypt • • • • • • • • • • • • • • • • • • •• encode/decode
csh ••••••••• a shell (command interpreter) with C-like syntax
ctags •••• • • • • • • • • • • • • • create a tags file
date ••• print and set the date
dbx • • • .. debugger
de desk calculator
dd •••• • • • • • • • •• convert and copy a file
deroff • • • • • remove nroft', troft', tbl and eqn constructs
df•....•••..••... disk free
diction
dift'
diff3
dis
dose
du
echo
ed
eft
eqn
error
ex
expand
explain
expr
eyacc
f77
false
file
find
finger
fmt
fold
fp

print wordy sentences; thesaurus for diction
differential file and directory comparator

• • •• 3--wa.y differential file comparison
an mc68020 disassembler

connect to proc/286 system
summarize disk usage

echo arguments
text editor

Extended Fortran Language
• • •• typeset mathematics

analyze and disperse compiler error messages
• • • • • • • • • • • • • •• text editor

• • • • •• expand tabs to spaces, and vice versa
explain, diction- print wordy sentences; thesaurus for diction

• • • • • • • • • •• evaluatt> arguments as an expression
modified yacc allowing much improved error recovery

• • • • • • • • • • • • • • Fortran 77 compiler
• • • • • • • • • • • • • • • • • . provide truth values

• • • • • • • • • • •• determine file type
find files

user information lookup program
• • •• simple text formatter

• • • • • • •• fold long lines for finite width output device
Functional Programming language compiler/interpreter

• • • • • • • • • • • • • • • prin t Fortran file fpr
fpu
from
fsplit
ftp

• • • • • • • • determine presence of the fioating point coprocessor
• • • • • • • • • • • • • • • •• who is my mail from?

• • • • split a multi-routine Fortran file into individual files
• • • • • • • • • • • • • •• file transfer program

• • • • • • • • • • • • • get core images of running processes
• • • • • • • • • • • • • • • • display call graph profile data

• • • • • • • • • • • • • • •• draw a graph
• • • • • • • • • •• search a file for a pattern

• • • • • show group memberships

gcore
gprof
graph
grep
groups
head
hostid

• • • • • • • • • • • • •• give first few lines

hostname
ident
indent

• • • • • • • • • • • • • •• set or print identifier of current host system
• • • • • • • • • • • • • •• set or print name of current host system

identify files
indent. and format C program source

.

ICON INTERNATIONAL vii

Table of Conten"

viii

install •••••••••••••••••••••••••••• install bin aries
iostat0....... report 1/0 statistics
ipcrm ••••••• 0 remove a message queue, semaphore set or shared memory id
ipcs ••••• • 0 •• report inter·process communication facilities status
join • • • • • • • • • • • • • • • • • • •• relational database operator
jove • • • • • • • • • • • • •• an interactive display-oriented text editor
joveJecover joveJecover - recover JOVE buffers after a system/editor crash
kermit •• kermit file transfer
kill • • • • • • • • • • • • • •• termina.te a process with extreme prejudice
last •••• • • • • • • • • • indicate last logins of users and teletypes
lastcomm •••••••••••• show last commands executed in reverse order
Id • • • • • • • • • . • • • • • • • • • •• link editor
learn • • • • • • • • • • • • computer aided instruction about UNIX
leave • • • • • • • • • • • remind you when you have to leave
lex • • • • • • • • • generator of lexical analysis programs
lint •••••••••••••••••••••••••• a C program verifier
lisp•. lisp interpreter
liszt •••••••••••••••••••••• compile a Franz Lisp program
In ••••••••••••••••••••••••••••••• make links
lock
login
look
lookbib
lorder
Ipq

. reserve a terminal
· • sign on

• •• find lines in a sorted list
build inverted index for a bibliography, find references in a bibliography

• • • • • • • •• find ordering relation for an object library
• • • • • • • • • • • • spool queue examination program

. • . • off line print Ipr
lprm
Is
Ixref
m4
mail
make
man
merge
mesg
mkdir
mkstr
more
msgs
mt

• • • • • • • • • • • •• remove jobs from the line printer spooling queue
• •• list contents of directory

• •• lisp cross reference program

mv
netstat

. • • . . •. macro processor
• •• send and receive mail

• • • • • • • • • • • • • • •• main tain program groups
• • •• find manual information by keywords; print out the manual

• • • • • • • •• three-way file merge
• • • • • ••• ~~Umd~ymessqes

. • make a directory
• • • • • • • • •• create an error message file by massa.ging C source

• • • • • • • • • • • • • • • • • • • •• file perusal filter for crt viewing
• • • • • • • • • • • • • • • •• system messages and junk mail program

• • • • • • • • • • • • • • • •• magnetic tape manipulating program
• • • • • • • • • • • • • • • • • • •• move or rename files
• •• show network status

newaliases • • • • • • • • • •• rebuild the data base for the mail aliases file
nice
nm
nroff
od

. . . • • • • • • • • • run a command at low priority (Bh only)
• • • • • • • • • • • • • • • • •• prin t name list

• • • • • • • • • • • • • • • •• text formatting
• • • • • • • • octal, decimal, hex, ascii dump

• • • • • print system pag~ size
• • • • • • • • • change login password

pagesize
passwd
pc • • • • • • • • • • • • • Pascal compiler
pdx pascal debugger

ICON INTERNATIONAL

" - .-/

()

. . . pi
pix
plot
pmerge
pr
print
printenv
prmail
prof
ps
pti
ptx
pwd
px
pxp
pxref
quota
ranlib
rat for
rep

. . . .
Table 0/ Content8

Pascal interpreter code translator
Pascal interpreter and executor

• • •• graphics filters
• • • • •• pascal file merger

• • • • • • •• prin t file
• • • • pr to the printer

print out the environment
print out mail in the post office

display profile data
• • • • • process status

• • • •• phototypesetter interpreter
• • • • • • •• permuted index

working directory name
Pascal interpreter

Pascal execution profiler
Pascal cross-reference program

display disc usage and limits
convert archives to random libraries

rational Fortran dialect
remote file copy

• • • • • • • • • •• change Res file attributes
• • • • compare ReS revisions

rCS
rcsdiff
rcsintro
rcsmerge
rdist

• • • • • • • • • • •• introduction to ReS commands

refer
reset
rev

• • • • • • • • • • • • •• merge ReS revisions
• • • • remote file distribution program

find and insert literature references in documents
reset the teletype bits to a sensible state

• • • • • • • •• • •• reverse lines of a file
print log messages and other information about ReS files rlog

rlogin
rm
rmail
rmdir
roffbib
rsh
ruptime
rwho

. •. remote login

sccstorcs
script
sed
sendbug
sfdate
sh
size
sleep
soelim
sort
sortbib
spell
spline
split

.

.
ICON INTERNATIONAL

• • •• remon' (unlink) files or directories
handle remote mail received via uucp

remove (unlink) directories or files
• • •• run off bibliographic database

• • • • • • •• remote shell
show host status of local machines
who's logged in on local machines

build ReS file from sees file
make typescript of terminal session

• • • •• stream editor
mail a system bug report to 4bsd-bugs

set the time/date of a file . .. command language
size of an object file

suspend execution for an interval
eliminate .so's from nroff input
• • •• sort or merge files

sort bibliographic database
find spelling errors

interpolate smooth curve
• • •• split a file into pieces

ix

Table 0/ Content.

x

strings
strip
struct
stty
style
su

• • • • • • • •• find the printable strings in a object, or other binary, file

.
sum
symorder
sysline
tabs

. .

• • • • • • • • remove symbols and relocation bits

. . . . • • • • • structure Fortran programs

. . . • • • • • set terminal options
analyze surface characteristics of a document

• • •• substitute user id temporarily
• • •• sum and count blocks in a file
• • • • • •• rearrange name list

display system status on status line of a terminal
• • • • • • • • • • • • • • •• set terminal tabs

tac
tail
talk
tar
tbl

. . . concatenate and print files in reverse order
• •• deliver the last part of a file

.

tc
tcopy
teachjove
tee
teJnet
test
tftp
time
tip
tk
tmail
touch
tr
trman
troll'
true
tset
tsort
tty
ul
unifdef
uniq
units
uptime
users
uucp
uuencode
uusend
uux
vers
vgrind
VI
vmstat
w

. .

. . .

. • • • • talk to another user
• • • • • • • • • •• tape archiver

format tables for nroll' or troll'
• • • • • • photoypesetter simulator

• • • • • copy a mag tape
TEACHJOVE - Jearn how to use the JOVE editor

• • • • • • • • • • •• pipe fitting
user interface to the TELl\"ET protocol

• • • • • • • • • condition command
• • • • • • •• trivial file transfer program

• • • • • • • • • • • • • •• time a command
• • • •• connect to a remote system

• • •• paginator for the Tektronix 4014
print out mail messages, most recent first

update date last modified of a file
• • • • •• • • • •• translate characters

translate version 6 manual macros to version 7 macros
text formatting and typesetting

• • • • • •• provide truth values . . . terminal dependent initialization
• • • • • topological sort

• • • • get terminal name
• • • • • • do underlining

• • • • • • • • • remove ifdef'ed lines
. report repeated lines in a file

. . . .' .

conversion program
• • •• show how long system has been up

•• compact list of us~rs who are on the system
• • • • • • • • • • • • • •• unix to unix copy
encode/decode a binary file for transmission via mail

• • • • • • • • • send a file to a remote host
• • • • • •• unix to unix command execution

• • • • • • • • • •• print version number of the ker~el
• • • • grind nice listings of programs

• • • • •• screen oriented (visual) display editor based on ex
report virtual memory statistics

. . .
wait
wall

. who is on and what they are doing
await completion of process

• • • • • • • • •• write to all users

ICON INTERNATIONAL

(//'

Td/e 0/ Oontent"

• • . . • • . . • • • • . • • . • . • . . . • • . . • word count wc
what
whatis

• • • •• show what versions of object modules were used to construct a file
• • • • • • • • • • • • • • • • • • •• describe what a command is

whereis • • • • • •• locate source, binary I and or manual for program
which locate a program file including aliases and paths (csh only)
who •••••••••••••••••••••••••• who is on the system
whoami ••••••••••••••••••••• print effective current user id
whodos • • • • display information about dose users
window
write
xsend
xstr
yace
yes

• •• window environment
• •• write to another user

. • . . • • . . •. secret mail
• • • • • • •• extract strings from C programs to implement shared strings

• • • • yet another compiler-compiler
• •• be repetitively affirmative

2. System Calls

intro
accept
access
acct
bind
brk
chdir
chmod
chown
chroot
close
connect
creat
dup

• • • • • • • •• introduction to system calls and error numbers
• • • • • • • • • • • • •• accept a connection on a socket

• • • • • • • • • • • • • • • • • •• determine accessibility of file
• •• turn accounting on or off
· • bind a name to a socket

• change data segment size
• • • • change current working directory
• • • • • • • • •• change mode of file

• • • • change owner and group of a file
• • • • • • • • • • • • • • • • • • • •• change root directory

· .. .
• • • • •• delete a descriptor
initiat.e a connection on a socket

• • • • • •• create anew fi Ie
• • • • duplicate a descriptor

execve • • • • execute a file
exit • • • • • • • • terminate a process
fcntI file control
flock • • • • • • • apply or remove an advisory lock on an open file
fork •••• • • • • • • • • • • • • • • • •• create a new process
fsync synchronize a file's in-core state with that on disk
getdtablesize ••••••••••••••••••••• get descriptor table size
getgid • • • • • • • • • • • • • • • • get group identity
getgroups •••••••••••••••••••••••• get group access list
gethostid •••• • • • • get/set unique identifier of current host
gethostname • • • • • • • • •• get/set name of current host
getitimer •••••••••••••••••••• get/set value of interval timer
getpagesize •••• • • • • • • • •• get system page size
getpeername ••••••••••• .. • • • • • •• get name of connected peer
getpgrp • • • • • • • • • • • • •• get process group
getpid • • • • • • • • • •• get process identification
getpriority •••••••• get/set program scheduling priority
getrlimit ••••••• control maximum system resource consumption
getrusage •••• • • • • • • •• get information about resource utilization
getsockname •••• • • • • • •• get socket name
getsockopt • • • • • • • • •• get and set options on sockets

ICON INTERNATIONAL xi

xii

gettimeofday get/set date and time
getuid ••• • • •• get user identity

control device ioctl
kill
kilIpg
link
listen
}seek
mkdir
mknod

.

. . . .
. . . .

·
• • • • send signal to a process

• • •• send signal to a process group
• • • • • • • make a hard link to a file

• • • • • • • • • • • listen for connections on a socket
.. • • • • • • • • • move read/write pointer

• • • • • • • • • •• make a directory file
• • • • • • • • • • • • • make a special file

• • • • mount or remove file system
• • • • • • • • • • message control operations
• • • • • • • • • • • • • • • • get message queue

mount
msgctl
msgget
msgop
open

• • • • • • • • • • .. • • • • • • • • • •• message operations
• • •• open a file for reading or writing, or create a new file

•• create an interprocess communication channel
• • • • • • • • • •• execution time profile
• • • • • • • •• process trace

• • • • • • • • • • ••• • •• manipulate disk quotas
• • • • • • • • • • • • • •• read: in pu t

• • • • • • • • • • • • • • • • • • read value of a symbolic link
• • • • • • • • • • reboot system or halt processor

• • • • receive a message from a socket
change the name of a file

• • •• remove a direct9ry file
synchronous i/o multiplexing
semaphore control operations

• • • • • • •• get set of semaphores

pjpe
profil
ptrace
quota
read
readlink
reboot
recv
rename
rmdir
select
semctl
semget
semop
send
setgroups
setpgrp
setquota
setregid
setreuid
shmctl
shmget
shmop
shut.down
sigblock

. semaphore operations
• • • • • • • •• send a message from a socket

• • • • • • • • •• set grou p access list
• • • • • •• set process grou p

enable/disable quotas on a file system

slgpause
sigsetmask
sigstack

· . . .

. . set real and effective group ID
set real and effective user ID's

shared memory control operations
• • • • • get shared memory segment

• • • • • • •• shared memory operations
• • •• shut down part of a full-duplex connection

. • • • • • . •• block signals
atomically release blocked signals and wait for interrupt

• • • • • • • • • • • •• set curren t signal mask
• • • • set and/or get signal stack context

sigvec
socket

• • • • • • • • • • • • • • • •• software signal facilities
• • • • • • • • • • • • • •• create an endpoint for communication

sock etp air • • • • • • • create a pair of connected sockets
stat ••••• • • • • • • • • •• get file status
swapon
symlink
sync
syscall

• • • • • • • • • • • • • • • • • • specify a swap directory
• • • • • • • • • • •• make symbolic link to a file

update super-block
indirect system call

ICON INTERNATIONAL

(~.

c

truncate
umask
unlink
utimes

Table 0/ Oonlen"

• • • • • • • • • • • • •• truncate a file to a specified length
• • • • • • • • • • • • • • • •• set file creation mode mask
• • • • • • • • • • • • • • • • • •• remove directory entry

. .. set file times
vfork ••••• • • •• spawn new process in a virtual memory efficient way
vhangup •••••••••••• virtually "hangup" the current control terminal
wait •••••••••••••••••••••• wait for process to terminate
write • .• write on a file

ICON INTERNATIONAL xiii

('-

SECTION I

ICONjUXB
OPERATING
SYSTEM
PERMUTED
INDEX

\
./

PERMUTED INDEX

Iib2648: lubrout.iD. ror t.he lIP
diD:

ItDdbug: mail a 81atem bug report to

abort: termiDat.e

abl: iDteger
rabl, 800r, ceil:

accept:

letgroups: get IrouP
iDitgroupI: iDitialize group

IttgroUP8: set group
ace.s: det.ermiDe
acCtls: determiDe

ac: login
.a, acctoD: s1stem

acct: executioD
pac: priDter/plotter

acct: turD

sa,
siD, cos, taD, lIlin,
signl: chaDge the

fortune: print a random, hopefully interestiDg,

adduser: procedure for
swapon: speciry

iDet..makeaddr, inetJDaof, iDet_Detor: IDternet
loc: return tbe
mailaddr: mail

battiestar: a tropical
80ck: apply or remove an

yes: be repetitively
blllename: strip filename

learD: computer

uDalilll: remove

which: locate a program Ble iDeluding
Dewaliases: rebuild tbe data base ror tbe mail

aliases:
'falloc:

malloc, rree, realloc, calloc,
malloc, rree, rtalloc, calloc, alloc:a: memo!,),

valloc: aliiDed memo!,),
eyacc; modiBed yace:

limit:
reDice:

else:
lex: leDerator or lexical

error:

ICON INTERNATIONAL

Ityle:
sigstack: set

worms:
rain:

bed: CODvert to
apply:

@: arithmetic OD shell Yariables.
2648 lraphica termiDal.
S.WI,J dilerential Ble compariaoD.
4bad-bup. • •••••••••
aardvark: yet &Dother exploratioD game.
abort: geDerate a rault. •••••••
abort: termiDate abrupt!1 with memory im .. e.
abruptl1 with memo!')' imaae.
abl: iDteaer abaute nlue.
ablOlute value. •••••••••••
abeolute 'falue, 800r, ceiliDg rUDctions.
ac: IoaiD acCOUDtiDg. •••••••
accept a coDDeetioD OD a lOcket.
accept: accept a CODDectioD OD a lOCket.
access: determiDe accessabilit1 or a file.
access: determiDe accessibility or 81e.
access lilt. •••••••
aee.a lilt. • •••••
aeceII list. ••••••
aceessability 01 a lie.
acc:essibilit1 or Ble.
ac:eountiDI· ••••••
accountinl· • • • • • •
accouDtiDg Ble. ••
&eCOUDtiDg inrormation.
accouDtiDg OD or 011.
acct: executioD accounting file.
acct: turD account.iDg on or 011.
accton: system accouDting. • •

... '

&cos, atan, ataD2: trigonometric runetioDs. •••••
action for a signal.
adage. ••••••••••••••••
adb: debugger. • ••••••••••••
add bib: create or extend bibliographic database.
adding new users. •••••••••••
additioDal device for paging aDd swapping.
address manipulatioD routines. /ineLntoa,
address or an object. •••••••• •••••
addressing description. •••••••
add user: procedure for adding new users.
adventure: an exploration game.
adventure game. •••••
advisory lock on an open 61e.
alirmative. ••••••••
a.frlXe8. •••••••••

aided instruction about UNIX.
alarm: execute a subroutine after a speciBed time.
alarm: scbedule signal alter specified time.
alias: sbell macros. •••••
aliases. •••••••••••
aliases: aliases Ble ror send mail.
aliases and paths (e,1I oDly).
ali ... file. •••••• • •
aIiaaes file for ItDdmail. ••••••
al'lCned memory allocator.
alloc:a.: memo!,), allocatOlJ.
allocator. • ••••••••
allocator. ••••••••
allowiDg much improved error recover1.
alter per'process resource limitations.
alt.er priority or running processes.
alternative comm&Dds. ••••••••
aDalysis programs. •••••••••••
lUIalyze aDd disperse compiler error messages.
lUIal1ze surface characteristica 01 a documeDt.
aDd/or let signal stack COD text. • • • • •
aDimate worms on a display terminal. •
aDima.ted raindrops display. •••••
antique media.. •••••••••••
apply a commaDd to a set or arguments.
apply: apply a command to a let of arguments.

cab(l)
lib2648(3X)
c1i1l3(1)
seDdbug(l)
aardvark(6)
abort(3)
abort(3F)
abort(3F)
aba(3)
abs(3)
800r(3M)
ac(8)
accept(2)
accept(2)
access(3F)
access(2)
letgroups(2)
,Ditgroups(3X)
setgrou ps(2)
access(3F)
access(2)
ac(8)
s&(8)
acet(S)
pac(8)
acct(2)
acct(S)
acct(2)
a&(8)
sin(3M)
signal(3F)
rortune(6)
adb(l)
addbib(l)
adduser(8)
swapon(8)
inet(3n)
loc(3F)
maila.ddr(1)
ad d user(8)
adventure(6)
ba.ttlestar(6)
floc:k(2)
yes(l)
basename(l)
learn(l)
alarm(3F)
alarm(3C)
cab(l)
esh(l)
aliases(S)
which(l)
Dewaliases(l)
aliases(S)
'falloc(3)
malloc(3)
malloc(3)
valloc(3)
eyacc(l)
cah(l)
renice(8)
cah(l)
lex(!)
errore!)
style(l)
silstack (2)
worms(6)
rain(6)
bcd(6)
apply(l)
apply{l)

xv

Perm. tel 1"lez

xvi

lock:

Dumber: CODyert
bc:

eraphies/ plot: OpeD pi, erase, label, liDe, cirele,
ar:

tar: tape
ar:

tar: tape
cpio: copy Ble

n.alib: conyert
&lob: llename expud

• hift.: muipulaU
"warp: nriable

apply: apply a commud k> a Itt or
echo: ecbo
echo: ecbo

letal:&, iargc: return commud line
expr: eYaluaU

traper: t.rap
be: arbitrary-preeilion

@:

bilf: be notified ir mail
expr: evaluat.e arguments

a1atta.ch: atta.ch serial lines
gmUme, asctime, timezone: convert date and time to

ascii: map or
od: oetaI, decimal, bex,

rdate: return date ud time iD an
ator, atoi, atoI: convert

ctime, localtime, gmtime,
lin, COl, tan,

as: M68020
Lout:

Ittbuf, setbulfer, setlinebur:
sbutdown: close down tbe system

at: execute commands

nice, nohup: run a command
.in, cos, tu, asin, a.cos,

sin, cos, tan, asin, acos, atu,

ator,
ator, atoi,

interrupt. ligpause:
a1attach:

res: cbange RCS file
bugftler: ftle bug reports in folders

rc: commud script tor
wait:

be: place job iD
wait: wait tor

bUDer: print Jarae

,ettytab: terminal eoaft,uration data
basts: hast name data

Detworks: Detwork Dame data
phoDes: remote hast phone Dumber data

priDtcap: printer capability data
protocols: prok>col Dame data

eervices: eervice name data
termcap: termiDai capability data

verindefs: veriDd's language defiDitioD data
Dwaliases: rebuild the data

ttytype: data
fetch, sk>re, delete, IImtey, Duttey: data

yi: screen oriented (visual) display edik>r

apply or remon u IIdYisorylock OD U open' lie.
apropol: Iocat.e commuds by keyword Iootup.
ar: archive uel library maiDtainer. • • •
1Il': archive (library) lie tormat. • • • • • • • • •
Arabic numerals k> En&lish. ••••••••
IIl'bitrary-preeilion arithmetic IaDguage.
lire, move, cont, point, liDemod, space, c1osepl:
archive ud library maintainer.
llrehive IIle tormat. •••••
archive (library) lie tormat.
archiv.,.. • ••••••••
archiy. iD gel out. • • • • •
llrehiy. k> rudom librlll'ies.
argumeDt lilt .
.... umeDt.Iist..
arlument Jist.
.... umeDts.
.... uments. • ••••
.... umeDts. • ••••
.... umeDts. • •••••
.... ument.s u u expreslion.
arit.hmetic errora. ••••••
arit.hmetic IaDlu .. e.
arithmetic on ebell Yariables. •••••
arit.hmetic: proyide drill in D umber facts.
arrives and who it. is from.
u u expression.
as: M68020 .. embler.
u net.work iDterfaces. •
ASCn. ctime, localtime,
ASCII cbaracter Itt.
ucii dump. • •••••••
ucii: map of ASCII character set.
ASCn string. ••••••••
ASCII k> numbers. ••••••
uctime, timezone: convert date and time k> ASCII.
asin, acos, at.u, atan2: trigonometric functioDs.
aaaembJer. • •••••••••
usembler and link editor output.
usert: program veriftcation.
usign bulering to a stream.
at a siven time. •••••
at a later time. ••••••
at: execute commands at a later time.
at iow priority (.11 on Iy). •••••
ataD, atan2: t.rigonometric tunctions.
ataD2: trigonometric functions. ••••
ator, ak>i, atol: eoavert ASCn k> numbers.
atoi, atol: convert ASCII to numbers.
ato!: convert ASCn to numbers. •
atomically release blocked signals and wait for
att.ach aerial lines as nttwork iDterraces.
attributes. •••••••••
au k>matieally . •••••••••••
auto-reboot and daemons. •••••••
a.wai~ completion of process. •••••••
a.wk: pattern ecanDiag and procesling language.
backpmmon: the game. ••• • • • • • • •
bactsrouad. ••••••••••••
background processes t.o complete.
buner on priDter. ••••••••
banner: print larae banner on printer.
base.
bue.
bast.
base.
base.
base.
but.
base.
base. ••••• • •••••
base tor t.hemail aliases ftle.
base or terminal t.ypes by port.
base lubrout.ines. dbminit,
baaed on ex. • •••••••

, ..

lIock(2)
apropas(l)
ar(l)
1Ir(5)
Dumber(6)
be(l)
plot(SX)
ar(I)
tar(5)
1Ir(5)
tar(l)
cpio(l)
ruJi b(I)

:~~J
Yarargs(S)
apply(l)
cah(l)
echo(l)
set.arg(3F)
Iltpr(l)
traper(aF)
be(l)
esh(l)
arit.hmetic(6)
bitr(l)
expr(l)
as(l)
alattacb(SC)
ctime(3)
aseii(7)
od(l)
asc:ii(7)
rda.te(3F)
atot(S)
ctime(3)
IinCSM)
as(l)
Lout(5)
usert(3X)
set.bur(SS)
shutdown(S)
at(l)
at(l)
nice(l)
ain(3M)
lin(3M)

=~:J
ator(3)
aigpause(2)
slattaeh(SC)
res(l)
busftler(S)
re(S)
wait(l)
a.wk(l)
backgammon(6)
csh(l)
cah(l}
banner(6)
buner(6)
aett.yta.b(5)
hosts(5)
networks(5)
p1lODes(5)
priDtcap(5)
prok>cols(5)
eervices(5)
termcap(5)
ygrindefs(5)
newaliases(l)
t.t.yt.ype(5)
dbm(3X)
vi(l)

ICON INTERNATIONAL

Permuted Indez

bueaame: atrip Ilename atrlXes. •••••
bat.t.lestar: a tropical adventure pme. •••
be: arbitrary-precision arithmetic laaguace.
bed: convert to aatique media. •••••••••

bcopy, bemp, blero, II: bit aad byte atriag operations.
operationl. bcopy, bcmp, bzero, la: bit aad byte string

cb: C procram beauU8.er. •••••••••••••••••
jO, jl, jn, yO, yl, yn: belael runctions. •••••••••••••••

belael runctionl: or two kinds ror integer orders.
ehaaging/ random, srandom, ini\atate, setstate: better random number generator; routines ror

be: place Job in background.
addbib: create or extend bibliographie databue. ••••••••••

rorbib: run of bibliographie databue. ••••••• ••
IOftbib: IOrt bibliographie database. •••••••••

index ror a bibliography, lad rererences in a bibliography. indxbib, Iookbib: build inverted
inubib, lookbib: build inverted index for a biblioaraphy, Ind rererences in a bibliography.

from. bill': be notified ir mail arriyes and who it is
comu.t:

iutall: inltall
whereis: locate lOurce,

find the printable atrings in a object, or other
uuencode,uudecode: encode/decode a

fread, rwrite: bull'ered
bind:

bcopy, bemp, bzero, Irs:
functions.

bit: aad, or, xor, not., rshil't., Ishil't.

sync: update the super
update: periodically update the super

sigblock:
sigpa.use: a.tomically releue

sum: sum a.nd count
boggle: pla.y tbe game or

login,!

ching: t.he
binstl: program to install

reboot: UNIX
mille: pla.y Mille

switcb: multi-way comma.nd
ah, for, cue, ir, while, I, "

J)il aerver. • •••••••••••
binaries. ••••••••• • •••
binI.!')', aad or manual ror pfOlram.
binI.!')', tue. strings: •••••••
binI.!')' lIe ror transmission via mail.
binI.!')' input/output. ••••••
bind a name to a socket.
bind: bind a. na.me to a socket.
binmail: send or receive mail among users. •
binstl: program to install bootloader on disk.
bit and byte string operations. ••••••
bit: and, or, xor, not. rshil't., Ishift bitwise
bitwise functions. ••• • • • • • • • • • •
bload: program to load standalone programs.
bloek. •••••••• • • • • • •
block. •• • • • • • • • • • • • • •
block signals. ••••••••••
blocked signals a.nd wait ror interrupt.
blocks in a 61e. ••••••••••
boUle. • ••••••••••••
boggie: play the game or boggle.
book or chaages and other cookies.
boot/oader on disk. •••••
bootstrapping procedures.
Bournes. •••••••••• ••
branch. •••••••••••••
break, continue, cd, eval, exec, exit, export, •• ••••
break: exit while/roreach loop.
breabw: exit from switch. • ••••

rg: bring job into roreground. •••••
brk, Ibrk: cbange dat.a segment size.
bulrered binary input/output. frea.d, rwrite:

stdio: Ita.nda.rd
setbur, setbulrer, setlinebur: assign

generate a. dump or the operating system's profile
joveJeeover - recover JOVE

aendbug: mail a. system
b ugfiler: flle

automatically.
rererenees in a biblioara.phy. inubib,lookbib:

aecatorcs:
aecatorca:

mknod:
ntohs: convert values between hOlt and network

bcopy, bcmp, bzero, II's: bit aad
swab: swap

bcopy, bcmp,
cc:

pree:
cb:

indent: indent aad rormat
. lint: a

utr: extract strings rrom
mbtr: create aa error measace tue by massaging

hypot,

ICON INTERNATIONAL

de: desk
cal: print

bull'ered input/output paeka.ge. ••• ••
bulrering to a stream. •••••••
bulrers. kgmon: •••••••••
bulrers after a lIystem/editor cruh.
bug report to 4bad-bugs.
bug reports in folders automatically.
bu,fller: flle bug reports in folders ••••
build iDYerted index ror a bibliography, flnd
build RCS file from SCCS lie.
build RCS lie from SCCS flle.
build special flle. ••••••
byte order. lltonl, htonl, ntohl,
byte IItring operations. •••
byt.es. •••••••••••
bzero, 11'5: bit aad byte string operations.
C compiler. • ••••
C precedence chart. •••••••••
C program beautifier. ••••• •••
C program lOurce. •••••••••
C program veriller. •••••••••
C programs to implement shared st.rings.
C source. •••••• • • • • • •
cabs: Euclidean distance.
cal: print calendar.
calculator .
calellda.r.

buename(l)
battlest.ar(6)
be(l)
bed(6)
bat-ring(3)
bstring(3)
eb(l)
j0(3M)
bessel(3F)
random(3)
esll(l)
addbib(l)
roB'bib(l)
sortbib(l)
Iootbib(l)
lookbib(l)
bi.(l)
comaat(8C)
inatall(l) .
whereis(l)
strings(l)
uuencode(IC)
fread(3S)
bind(2)
bind(2)
binmall(l)
binstl(8)
bstring(3)
bit(3F)
bit(3F)
bload(8)
IYnc(8)
update(8)
sigbJock(2)
sigpa.use(2)
sum(l)
boggIe(6)
boggle(6)
ching(6)
binstl(8)
reboot(8)
mille(6)
cah(l)
IIh(l)
cah(l)
cah(l)
cah(l)
brk(2)
rread(3S)
intro(3S)
setbur(3S)
kgmon(8)
joveJecover(l)
sendbug(l)
bugfiler(8)
bugfller(8)
lookbib(l)
sceatorca(1)
sccstorca(8)
mknod(8)
bYteclr'der(3n)
batring(3)
swab(3)
batring(3)
ee(l)
prec(7)
cb(l)
indent(l)
lintel)
utr(l)
mkstr(l)
bypot{3M)
cal(l)
de(l)
cal(l)

xvii

Perrntdcd l.de~

IJICIII: _direct syatem
tprGt: .pl&1

,et.uid, aet.lid: Jet user or poup D> II the
malice, free, rttIloe,

intro:lIltrodUet.ioD to syatem
CUllield, efacor.: tbe solitaire card same

Cl&D8e1d.
priateap:printer

termeap: termiDaI
eaaleld, ef'scores: t.he aoIitaire

cribb.,e: t.be
cd, wal, exec, exit., export, login,1 ab, for,

caLmaD: create the
uDcompact, ccat: compHlS aDd UDcompHlS lIes, aDd

default.:
caL:

compact, uncompact,

case, if, while, I, " break, coDtinue,
tabs, fioor,

tabl, 800r, ceil: absolute value, Goor,
eanlleld,

chdir:
brlt,lbrlt:

chdir:
chsh:

cd:
chdir:
ioiDit:
chfn:

charp:
puswd:
chmod:
cbmod:
chmod:
umaak:
chown:
CbOWD:

rca:
cbroot:
aigDal:

rename:
set:
cd:

chiDg: the book of
better raDdom Dumber geDerator; routiDes for

pipe: crea.te an interproeess commuDicatioD
unget.c: push

iaapace, ispuDct, ispriDt, iseDtrl, isaaeii:
eqncbar: Ipecial

,etc, r,ete: ,et. a
iDdex, rindex, IDblnk, leD: tell about.

,etc, getehar, t,ete, ,etw: ,et
pute, putehar, rpute, put.w: put

aaeU: map or ASCn
pute, rpute: write a

atyle: analyze lurrace
tr: translate

prec: C precedence
Inake, Inacore: displ&1

CIIeadar: reminder aerYice. ••
eaI1.. • ••••••••••
eaU graph prolle data. • ••
caller. • ••••••••••
CIIIce, alloea: memory allocator.
CIIIs Uld error Dumbers. ••••
.. fleJd. ••••••••••••••
CUlfteld, ef'seores: t.he aoliwre card lame
capabinty data baae.
capability data baae. • •••••••
ard ,ame CUlfteld. •••••••••
card ,ame eribb.,e. •••••••
cue, if, while, I, " break, conti Due,
cue: aelector in lwiteh. •••
eat: ce.ten&te Uld priat.
eat ales ror t.he 1Il&II"'.
eat them. compact. •
catchall clUle in Iwiteb.
catenate Uld print.. • • • • • • • • •
caL1Il&II: create the caL Illes for the maDuaI.
cb: C program b .. utiller. • •••••••
ee: C eompiler.. ••••••••••••••••
ecat: compr. Uld uacompress lies, Uld eat tbem.
cd: chUlle directory. •••••••••••
cd: chaDle workiDI directory. ••••••
cd, eval, exec,. exit, export, 10lin, re&d,1 Ifor,
ceil: absolute ?alue, 800r, ceilinl functions.
ceiling functions. ••••••••••
ef'scores: the solitaire card game canfield.
cbange current workins directory.
chaDge data seement size.
chanse default directory.
chanse default login sbell.
change directory. ••••
change directory. ••••
chaDge mIlo initialization.
chaDge linger eDtry. ••
cbange group.
change 100iD pusword.
change mode.
cbange mode of a IIle.
ehaDge mode of Ille. ••••• • • •
chaDge or display file creation mask.
ehaDat OWDer.. ••••••••••
chaDge owner and group of a IIle.
change RCS file attributes. •
cbange root directory. ••••
chaDge the e.ctiOD for a signal.
cbaDge t.he Dame of a file.
change value of shell variable.
change working directory.
cbaDges and other cookies. ••••• • • • • • •
changing generators. l&random, initstate, aetstat.e:
ehanoel.. ••••••••••••• • • • • • •
cbare.cter be.ck iDto input stream. • • • • • • • •
character clusilleation macros. lisdigit, isalnum,
character defiDitioDs for eqD. •
character from a logical unit.
character object.s. ••• • • •
chare.cter or word trom stream.
character or word on a stream.
chare.ct,er set. ••••••••
cbaracter to a tortraD IOCical unit. • ••••
characteristica of a document. •
charaeters. •••••• • • • •
cbart. ••••••••••••
ehue &aJIlt.. •••••••••••
cbdir: change current working directory.
chdir: chaDge detault directory.
chdir: change directory. •••

dcheck: IIle system directory consisteDcy check. • • • • • • •••••
icbeck: 81e system storace coDsistency check. •• • • • • • • • • •

rICk: IIle system consistency check and iDteractive repair.
ci: check iD RCS revisions.

checkDr: check nroft'/trolf Iiles.

calendar(l)
IYBeall(2)
IProt{l)
,etuid(3F)
malloc(3)
Intro(2)
CUlfield(6)
CUlfield(6)
print.cap(S)
termcap(5)
CUlleld(6)
erlbb.,e(6)
abel) :m
caLmaD(8)
compe.ct(1)
cab(l)
eat(l)
caLman(8)
eb(l)
ce(l)
compe.ct(1)
cah(l)
cd(l)
sb(l)
fioor(3M)
loor(3M)
canfleld(6)
cbdir(2)
brk(2)
cbdir(3F)
chsb(l)
cah(l)
cah(l)
ioiDit(3F)
chtD(l)
cbgrp(l)
puswd(l)
chmod(l)
cbmod(3F)
chmod(2)
esh{l)
cbown(8)
chown(2)
res(l)
chroot(2)
ligDaI(3F)
reDame(2)
esh(l)
cd(l)
cbing(6)
random(3)
pipe(2)
uDgetc(3S)
etype(3)
eqnchar(7)
,etc(3F)
index(3F)
getc(3S)
put.e(3S)
aacii(1)
putc(3F)
Ityle(l)
t.r(l)
pree(1)
nalte(6)
ehdir(2)
chdir(3F)
cab(l)
dcheck(8)
icbeck(8)
rsek(8)
ei(l)
cbecknr(l)

xviii ICON INTERNATIONAL

co:
eqD, _eqn,

quot.aeheck: lie syat.em q\lOU. conaistency
rutboot, rasthalt:reboot/halt the I1Item without

closepl:1 plot: open pi, erue, I&bel, line,
iapunct, iaprint, iacntrl, iaascii: chancter

def&ult: ea.tehall
deanlpd:

uucle&n: uucp Ipool directory

clri:
dear:

rerror, reor,
esh: a shell (command interpreter) with

cron:

shutdown:
rclose, mush:

opendir, readdir, telldir, seekdir, rewinddir,
opendir, readdir, teUdir, seekdir, rewinddir,

lyslOC, openlog,
circle, are, move, cont, point, Iinemod, space,

pi: Pascal interpreter

log. dmeag:

colrm: remove
Illes.

exec: overlay shell with specified
time: time

routines ror returning & strea.m to a remote
rexec: return strea.m to & remote

II1stem: issue & shell
system: execute a UNIX

test: condition
time: time a

nice, nohup: run a
switch: multi-way
uux: unix to unix

rehuh: recompute
unhash: diae&rd
huhsta.t: print

nohup: run
cah: &Ihell

wha.tia: describe wha.t &
rea.donly, set, Ihirt, Umes, tra.p, umuk, wait:

aetari, iaric: return
repeat: execute

rc:
onintr: proceas interrupts in

&pply: &pply &
iotO:

else: a1terna.t.ive
intro: introduction to

introduction to system mainten&Dce &nd oper&tion
rcsintro: introduction to RCS

&t: execute
I.propos: loca.te

ICON INTERNATIONAL

Permuted Iftdez

check out RCS reyisions.
cbeckeq: typeset ma.them&tica.
cbecker. • ••••••••
checking the disks.
chechr: check nroW ItroW Ilea.
chrn: cb&Bie IInier entry.
charP: chUie aroup.
ching: the book or cha.nges ud other cookies.
chmod: chuge mode.
chmod: chuge mode or & lie.
chmod: chuge mode or lie.
chown: chuie owner. • • • •
chewn: chuge owner ud irouP or a. lie.
chroet: chuie root direct.ory.
cbah: cha.nae der&ult Jocin Ihell.
eI: check in RCS r .. iaioos.
circle, arc, mon, conI., point, Iinemod, .pa.ce, •••
cluaillca.tion m&erOS. liediiit. iaalnum, iaspace,
clause iD switch. •••••••••••••
clea.a line printer daemon environment.
clea.nlpd: dea.n line printer daemon enyironment.
c:leaD-up. • •••••••
clear: cleu terminal screen.
el ... i-node. • •••••••
clear terminal screen.
clearerr, 81eno: stream st&tus inquiries.
C-Iike syntax. • • • • • • •
clock daemon. ••••••••••
close: delete & descriptor. •••••
close down the system at & given time.
close or lIush & stream.
closedir: directory operations.
closedir: directory operations. directory:
closeloc: control system log. •••••
closepl: ir&phies interrace. lerue, label, line,
elri: elear i-node. •••••• • • • • •
emp: compare two files.
co: check out RCS revisions.
cod e translator. ••••••
col: filter reverse line reeds.
coIcrt: IIlter nroW output ror CRT previewing.
collect system di8&nostie messages to rorm error
colrm: remove columns rrom a file. •••••
columns rrom a IIle. •••• • • • • • • • •
comm: select or reject linea common to two sorted
command. • •.••••••••••
comma.nd. • ••••••••••••
command. rcmd, rresvport, ruserok:
commud.
commud.
command.
command.
commud.
command at low priority (,II only).
command bra.nch.
command execution.
commud huh table.
commud huh table.
commud huhini statistics.
commud immune to hangups. •••
(commud interpreter) with C-Jike syntax.
command is. •••••••••••••••••
commud language. lexee, exit, export, login, read,
commud line arguments. •••••••••
commud repeatedly. •••••••••••
command script ror auto-reboot and daemons.
commud seripts. ••• • • •
commud to & set or arguments.
commud tr&nsrer.
commuds.
commuds.
commuds. intro:
comma.nds.
commuds lot a later time.
commuds by keyword lookup.

eo(l)
Iqn(l)
quota.cheek(8)
rutboot(8)
checknr(l)
chrn(l)
ehgrp(l)
ehini(6)
chmod(l)
chmod(3F)
chmod(2)
chown(8)
chown(2)
ehroot(2)
chah(l)
eI(l)
plot(3X)
ctype(3)
cah(l)
dea.nlpd(8)
dea.nlpd(8)
uuelea.n(8C)
dear(l)
clri(8)
clea.r(l)
rerror(3S)
cah(l)
cron(8)
close(2)
shutdown(8)
Iclose(3S)
directory(3)
direet.ory(3X)
syslog(3)
plot(3X)
clri(8)
cmp(l)
eo(l)
pill)
coI(l)
coIcrt(l)
dmesg(8)
coIrm(l)
coIrm(l)
comm(l)
cah(l)
cah(l)
remd(3X)
rexec(3X)
system(3)
system(3F)
test(l)
time(l)
niee(l)
cah(l)
uux(IC)
cah(l)
cah(l)
cah(l)
cah(l)
cah(l)
wha.tis(l)
sh(l)
aeta.rg(3F)
cah(l)
re(8)
cah(l)
&pply(l)
cah(l)
cah(l)
intro(l)
intro(8)
resintro(1)
at(l)
&propos(l)

xix

Perm.ted /"de%

xx

wJaile: repeat.
Jaatcomm: allow last

108m: read
eomm: select or reject lin.

socket: create aa endpoint. ror
pipe: create aD int.erproceu

ipes: report iDter.proceu
k1kd: remote 1IIeJ'

uera:
til •• aad cat them.

dll: dilerential lIe aDd dirtct.ory
radiI:

emp:
dil3: s.way dilerential ftJe

intro: introduet.ioD to
lint:
ce:C

m: Fortru 77
pc: Pucal

error: aaal,yR ud diaperae
yaee: yet aaother

rp: Funetional Proaramminl lanlulCe
wait: wait for baekarouDd proeesaea t.o

wait.: await
compress, uncompress, lcat:

compaet, uDcompaet, ecat:
data.
learn:

hUlman:

tae:
teat:

eDdiC: terminate
if:

wbile: repeat commands
lettytab: terminal

uxre:
irconfll:

tip, eu:
dose:

letpeername: let name of
lOeketpair: create a pair or

sbut.down: abut down part. or a tull·duplex
aecept: aeeept a

connect: init.iate a
listen: listen ror

debeek: flle system directory
ieheek: flle lIystem storace

rsek: flle system
quotaebeek: flle system quota

sbow ",hat versions or object modulea were used to
newrs:

mkproto:
derolr: remove nrolr, trol, tbl aad tqn

setrlimit: control maximum syst.em resource
vlimit: coDtrol maximum IYlt.em resource

lopenpl, erase. label, line. circle, arc, move,
11: list

liptaek: set and/or get signal Mek
Ih, for, eue, ir, while, I, ., break,

tenti: flle
ioetl:

iait: proeess
getrlimit, aet.rJimit:

vJimit:
msgetl: mesaace

aemetl: aemaphore
shmctl: shared memory

tcntl: flle
Ipe: line print.er

syslOl, openloc, eloselog:
vhugup: virtually "hUlluP" tbe current

term:

comDlUlda condit.ionally. •
oommudll executed ill reverse order.
commUldll rrom flle. .. •

. common to two sorted II ••
communication. • • • • ..
communication channel.
communication ts.eiliti. stat.UII.
oommunlcation server.
compact list. or users who are on the s,lIt.em.
compact, uncompaet, eeat: eomprea& ud uncompress
.. p .. ator. ••••• • ••••
compare RCS reviIIions. • • •
compare two II.. •
comparison. •••••• • • •
compat.ibility library lunctions.
compile a FrUlz Lisp Pl'OIP'am. .
compiler.
eompiler.
compiler.
eompiler error mesaac •.
eompil compiler.
compiler/interpreter.
eomplet.e. •
complet.ion of proeess.
compl'tllll ud expand data..

· .. · . .
· ..

compl'tllll and uncompress II., Uld eat them.
compress, un compress, leat: compress and expand
computer aided instruction about UNIX.
Comput.er version of the game hugman.
eomaat.: bUr Itner. •••••••••
concatenate aDd print Ilea in reverse order.
condition command.
conditional.
conditional statement.
conditionally.
conlguration data bue.
conlluration lie for kernel.
eonfllure network int.erraee parameters.
connect: initiate a connection on a socket.
connect to a remote syst.em.
connect to proc/286 system. •
connected peer. ..
connected sockets.
connection.
connection on a aoeket.
connection on a aoeket.
connections on a aoeket.
consistency cheek.
consistency check.
consistency cheek and interactive repair.
consistency checker.
construct a IIle. what:
construct a new flle system.
construct a prototype IIle syst.em.
constructs. ••••••
consumption. let.rlimit,
consumption. • • • • • •
cont, point., linemod, space, clOlepl: graphicsl
conten ... of directory.
COIItext..;:....
continue, cd, eval, exec, exit, export, login./
continue: eyele in loop. ••••• ..
control.
control device.
control initialization.
control maximum system resource consumption.
control maximum system resource consumption.
control operations.
control operations.
control operations.
control options.
control program.
control syst.em log.
control krminal.
conventional names ror krminals.

cah(l)
lut.comm(l)
cah(l)
comm(l)
aoeket(2)
pipe(2)
iPCS(l)
talkd(SC)
uaers(l)
compaet(l)
dil(l)
resdilf(l)
tmp(l)
diI3(l)
intro(3C)
Jiazt(l)
ee(1)
m(l)
pc(l)
error(l)
MI)
fp(l)
cah(l)
wait(l)
compress(l)
compaet(l)
compress(l)
learn(l)
bangman(6)
comsat(SC)
tae(l)
test(l)
cah(l)
cah(l)
esh(l)
,ettytab(S)
uxre(8)
ifconflg(SC)
connect(2)
tip(IC)
dosc(l)
getpeername(2)
aoeketpair(2)
Ihutdown(2)
aeeept(2)
connect(2)
listen(2)
deheek(S)
ieheck(S)
rsek(S)
quot.acheck(8)
what(l)
newfs{S)
mkproto(8)
derolr(l)
getrlimit.(2)
vlimit(3C)
plot(3X)
Is(l)
si&staek(2)
sh(l)
cah(l)
Icntl(2)
ioetl(2)
init(S)
getrlimit(2)
vlimit(3C)
maaetl(2)
aemetl(2)
shmetl(2)
rentl{S)
Ipe(8)
s,slog(3)
vhangup(2)
term(7)

ICON INTERNATIONAL

(j

('

leTt, rm, ant: output
Ioal, lIIort.: inteaer object

print.r, I'prinU', IpriUt.r: rormaU.ed out.puL
IC&Ilr, flC&llr, aaeanr: rormat.t.ed inpuL

units:
dd:

number:
ranlib:

.tor, .toi, atol:
ctime, loca1Ume, gmtime, uct.ime, Umuone:

bt.able:
bed:

btonl, btoUl, ntohl, uLoha:
cbing: t.be book or cbanges and otber

Cpu: determine presence or t.be loaUng poinL
cp:

rep: remot.e lie
uucp, uulOl: uuix to uuix

dd: convert. ud
t.eopy:

dQUOpyd:~S~OSlle
cpio:

rork: creaLe a
copy: Mndaloue

gcore: get
Cunctions. lin,

linh,
wc: word

lum: lum and

- recover JOVE bulers arter alystem/editor

cruh: wha.t. happens wben the system

rork:
creal.:

open: open a lIe Cor reading or writing, or
rork:

lOCket pair:
ct.ags:

lOCket:
mbtr:

pipe:
dosdisk: program 1.0

addbib:
catman:

umuk: change or display IIle
umuk: set file

cribba.ge: the card game

beret: lisp
pxreC: Pucal

colcrt: Illt.er nroll' output for
more, pace: lie perusal Illt.er Cor

I,nt.ax.

convert daLe and Ume to ASOD.
t.ime,

Up,
yhUIUP: virtually "hanlup" tbe

lethostid, acLhostid: leL/act unique identiler or
lethostname, acLhostname: let/set name or

bostnm: get name or
bostid: acL or print identiller or
hostname: let or print name or

jobs: print
sipetmuk: set

wboami: prinL efecLive
chdir: chuge

ICON INTERNATIONAL

connraion.
conversion.
conversion.
couyersion.
conyersion program.
convert. and copy a IIle.
CODnrt. Arabic numerals to English.
connrL archives to random libraries.
convert. ASOn to numbers .
convert. daLe and time to ASOD.
convert. NlO standard formal. host Lables.
CODyert. to anUque media. •••••• ••
conYert. values beLween bost and network byt.e order.
cookies.
coproceaaor.
copy.
copy.
copy.
copy a lie. • ••••
copy a mag Lape.
copy daemon.
cop, lie archives in ud out.
copy or t.hia proeeas.
copy program. • • • • •
copy: st.a.ndaloDe copy program.
core: formaL oC memory ima.ge file.
core imaces or running processes.
cos, t.a.n, uin, aeos, aLan, atan2: trigonometric
cosh, Lanb: byperbolic functions.
count. • ••••••
COUDt blocks in a file. ••••••
cp: copy_ ••••••••••
cpio: copy file arcbives in and out.
crash. joveoJecover •• • • • •
crash: whaL happens wbeD the system crashes.
crashes. •••••••• ••
creat: create a new file. • • • • •
creaLe a copy of this process.
creaLe a new IIle.
creaLe a Dew lie. ••••••
creat.e a Dew process.
creaLe a pair oC con n ccted sockets.
creat.e a Lags II Ie. •••••••
create an endpoint for communication.
creat.e an error messale IIle by massaciDg 0 source.
creat.e an interprocess communication cbannel.
creaLe and display information Cor ~S/DOS vdisks.
create or extend bibliographic databue.
create Lhe cat files for tbe manual.
creation mask.
creation mode mask. • ••••
cribbace. • • • • • •
cribbage: tbe card game cribbage.
cron: clock daemon. ••
cross reference program.
cross-reference program.
CRT previewiDg.
crt viewing. •••••
crypt.: eDcode/decode.
crypt., acttey, encrypt: DES eDcryption. ••
cah: alhell (command int.erpreter) witb C-Iike
ct ... : crcaLe a tacs IIle. •••••••••
ctime, localtime, gmtime, a.sctime, timezone:
ctime, It.ime, gmtime: return sYltem time.
cu: conDect to a remoLe Iyst.em.
currenL control t.erminal.
current bost.
current bost. •• •
current host.
current host system.
currenL host Iystem.
current job lisL.
current lilDal mask.
current. user id.
current working directory.

ecvt.(3)
IODg(3F)
printl'(3S)
1C&Il1'(3S)
units(l)
dd(l)
number(6)
ranlib(l)
a.to1'(3)
ct.ime(3)
btable(8)
bcd(6)
byt.eorder(3n)
clliDg(6)
fpu(l)
cp(l)
rcp(lO)
uucp(lO)
dd(l)
teopY(l)
doscopyd(8)
cpio(l)
fork(3F)
copy(8)
copy(8)
core(S)
gcore(l)
lin(3M)
siDh(3M)
we{l)
lum(l)
cp(l)
cpio(l)
joveoJecover(l)
crash(8V)
crasb(8V)
ereat(2)
fork(3F)
creat(2)
open(2)
fork(2)
aocketpair(2)
ctags(l)
aocket(2)
mbtr(l)
pipe(2)
dosdisk(8)
addbib(l)
ea.tman (8)
csb(l)
umask(2)
cribbage(6)
cribbage(6)
cron(8)
beref(l)
pxrel'(l)
co1crt(l)
more(l)
crypt(l)
erypt(3)
csh(l)
ctags(l)
ct.ime(3)
t.ime(3F)
tip(lO)
vbugup(2)
get.hostid(2)
let.hostname(2)
host.nm(3F)
hostid(l)
hostname(l)
csh(l)
liasetmask(2)
whoami(l)
cbdir(2)

xxi

Pcrmfded Jndez

xxii

letcwd: let patbDUlle or
_wd:let

motion.
curses: screen runctions witb "optimal"

spline: iDkrpo1a.te smooth
coDtiDue:

eroD: clock
dOlcopyd: MPS/DOS lie copy

dosprint: MPS/DOS spooler
Ipd: IiDe printer

routed: Detwork routiDg
clu.Dlpd: cleu line priDt.er

rc: commaDd script for auto-reboot. aDd
rt.pd:

t.elDetd:
tft.pd:

compress, lIncompr_, scat: compress aDd expaDd
eval: r.naluate Ihell

apror: diaplay call graph proBle
prof: display proBle

tt)'l: termiDal initialization
gettytab: terminal con lauration

hosta: bost Dame
Detworks: network Dame

pbones: remote bost phone number
printcap: printer capability

protocols: protocol name
services: service name

termcap: termiDaI capability
vgrinders: vgrind's language deBnition

Dewaliases: rebuild tbe
ttytype:

dbminit, fet.ch, store, delete, Bratkey, next.key:
brit, sbrk: change

Dull:
types: primitive system

addbib: create or ext.end bibliographic
rolfbib: run 011' bibliographic

IOrtbib: sort bibliographie
join: relation aI

date: print and set tbe
gettimeofday, settimeofday: get/set

time, rtime: get
fdate: return

loea.ltime, gmtime, asetime, timezone: convert
touch: update

ida~e, itime: retufn

Ble.. .PP dstrules:
data. base subroutines.

adb:
dbx:

pdx: pascal
od: octal,

chdir: chaDge
cbah: change

"grindefa: vgrind's language
mode.. Standalone mode:
eqnch..,: .pecial character

stty, gtty: set and get terminal atate
doee:

dbmini1., retch, store,
. t.ail:

mesg: permit or
taet: terminal

constructs.
crypt, setkey, encrypt.:

whatis:
mailaddr: mail addressing

getdiakbyname: get disk

current working directory. •••••••••
current workinl directory patbname.
CllJ'Ses: screen functions with "optimal" cursor
CUJ'IOI' memoD.
cune .•••
qcle in loop.
daemon.
daemon ••••
daemon .• 0 0 0

daemon. 0 0 ••

daemon •••••
daemon eDviroDment.
daemons. • ••••••••••••••
DARPA IDterDet File Trausfer Protocol server.
DARPA TELNET protocol server.
DARPA Trivial File Transfer Protoeol server.
cIat.a.
data.
data.
data.
clata. • •••.•
clata bue.
data bue.
clata bue.
data base.
data base.
dat.a base.
data base.
data bue.
data base. • ••••••••
data bue ror t.bemail aliases Ale.
data base or termiDaI types by port.
dat.a base subroutines.
dat.a segment. ai2e.
data sink.
data types.
database.
database.
database.
database operator.
date. • •••••
date and time.
date and time. • • • 0 •

date and time in an ASCII string.
date and time to ASCII. eUme,
date last modiAed of a Ale. •• •
date or time in numerical form.
date: print and set the date. • • •
Daylight savings time and time zone name rule
dbminit, fetch, store, delete, Arstkey. nextkey:
dbx: debugger. •••••••••••••••

. ..

de: desk calculator. •••• 0 0 • • • • • 0 • 0

deheck: file system direetory consistency check. 0....
dd: <:onnrt and copy a Ale.
debugger. ••• 0 0 •

debugger. • •• 0 •••

debugger. •• 0 ••••

decimal, hex, ueii dump. ••
deCault: catchall clause iD swit.ch. • 0 •• 0

deCault directory. • 0 • • • • 0

delault login ahell.0.
deBnition data base. 0......... 0
de80ition or this Sanyo/ICON machine operation
dellnitioDS for eqn. • 0 0 0 • • • • • • • •

(defunct). ••••••••••••••••
delete a deseriptor. • 0 • • • 0 • • • • • •

delete, Bratkey, Dextkey: data bue subroutines.
deliver the lut part of a lIle. •••• • • • • •
deD1 mesa .. es. ••••••••••••••••
dependent initialization. • 0 • • • •

derol: remove nroll', troll', tbl and eqn
DES eDcryption. ••••••
describe wbat a command is.
descript.ion. •••••• 0

description by its name. •••

get.ewd(3F)
getwd(3)
curaes(3X)
curaes(3X)
Ipline(lG)
csb(l)
eron(S)
doscopyd(8)
dosprint(8)
Ipd(8)
routed(8C)
eleanlpd(8)
rc(8)
ft,pd(SC)
t.elDetd(8C)
tltpd(SC)
compress(l)
cah(l)
apror(l)
proll)
ttYI(S)
gettftab(S)
bOlts(S)
Detworks(S)
phones(S)
printcal>(S)
protocols(o)
aervices{ 0)
termcap(o)
"grindefs(S)
newaliues(I)
ttyt.ype(S)
dbm(3X)
br.k(2)
nUll(4)
types(S)
addbib(l)
rolfbib(l)
IOrtbib(l)
join(l)
date(l)
gettimeorday(2)
time(3C)
fdate(3F)
ctime(3)
touch(l)
idate(3F)
date(l)
dstrules(S)
dbm(3X)
dbx(l)
dc(l)
debeek(8)
dd(l)
&db(l)
dbx(l)
pdx(l)
od(l)
csh(l)
chdir(3F)
cbah(l)
't'grindefs(o)
at.&ndalone(8)
eqnchar(7)
Itty(SC)
dose(!!)
dbm(3X)
tail(l)
mesg(l)
taet(l)
deroll'(l)
crypt(3)
whatis(l)
mailaddr(7)
getdisk(3X)

ICON INmRNATIONAL

/

remote: remot.e Jaoet
dole: deJ~ a

dup, clup2: duplicate a
letfatype, aettaent., eadfaent.: let. lie I)'Item

,et.dt.abl.ise: let
dc:

dosprinteJ'll:
1fttII:
.e_:

Ble:
coproceaor. fpu:

fold: fold long lines for lIDite widtb output
ioetl: control

awapon: speeiCy additional

lmin, lmax, Ir.e, dlmin, dllmax,
IImin, IImax, Ir.e, dllmin,

yalues. IImin, llmax, lrae,
dmess: collect system

print wordy sentences; tbesaurul for
diction- print wordy sentences; thesaurus Cor

diction. explain,
ror diction.

dill':
dl83: Soway

dir: Cormat oC
rm, rmdir: remove (unlink) Illes or

rmdir, rm: remove (unlink)
cd: cbanle working

cbdir: cbange c:urrent working
cbdir: change derault

cbroot: cbange root
cd: cbange

cbdir: cbange
getewd: get pathname or current working

Is: list contents or
mkdir: make a
scandir: sean a

swapon: speeiry a swap
uuclean: uuep spool

dill': differential file and
deheck: file system

unlink: remove
unlink: remove a

mkdir: make a
rmdir: remove a

mklost+round: make a Jost+round
pWd: working

rewinddir, closedir: directory operations.
readdir, telldir, seekdir, rewinddir, closedir:
readdir, telldir, seckdir, rewinddir, closedir:

getwd: get current working
popd: pop sbell

pushd: push sbell

die: an mcG8020
quota: diaplay

unbuh:
unset:

binstl: program to install bootloader on
synchronise a file's in-core state with tbat on

getdiakbyname: ,et
dUmt: standalone

df:
park: program to park the hard

quota: manipulate
du: summarize

dosdiaks: list or MPS /DOS virtual
reboot/ball. t.he system witbout. cbecking the

mount., umount: mount and
error: analyze and

rain: animated raindrops

ICON INTERNATIONAL

Permuted Index

deaeriptioD Ble. • • • • • • • • • • • • •
deacrip~or. •••••••••••••
deaeriptor. ••••••••••••••
cleacriptor file entry. /Cetrupee, gettsllle,
descriptor table size. ••••••••
desk calculator. •••••••••••••••
destinations ror spooled output from SLPT printen.
determine .e~i1ity or a IIle.
determine acceslibility oC IIle. ••••• •
determine lie type. ••••••••••
determine presence or tbe 1I0ating point •••••
device. • •••••••••
dtyiee.. • •••••••••
device for P&Bing and awapping.
elf: diek free. ••••••••
dirac, inmax: return extreme values. ••
dllmax, dirac, inmax: return extreme yalues.
dllmin, dllmax, dim, inmax: return extreme
diasnostic meuases to form error log.
diction.. dietion,explain: •••••••••••••••
dictioD. explain, ••••••••••••
dietiOD- print wordy sentences; tbesaurul for
diction,explain: print wordy sentences; thesaurus
dil: dill'erential lIe and directory comparator.
dill'3: Soway dilerential IIle comparison.
differential file and directory comparator.
differential IIle comparison.
dir: format oC directories.
directories.
directories.
directories or files.
directory.
directory.
directory.
directory.
directory.
directory.
directory.
directory.
directory.
directory.
directory.
directory clea.n-up.
directory comparator. ••••••
directory consistency cbeek.
directory entry.
directory entry.
directory file.
directory file.
directory ror rsek.
directory name.
directory: opendir, readdir, tendir, seekdir,
directory operations. opendir, •••••
directory operations. directory: opendir, • • •••
directory pathname.
directory sta.ek. •••••••••••
directory stack. •••••
dia: an me68020 disassembler.
diauaembler. • ••••••
diec Ullie and limits.
diacard command hash table.
discard sbell variables.
disk. ••••••••••
disk. rlyne: ••••••••••••••
diek description by its name.
diak rormatter.
diek free.
diek beads.
diak quotas.
disk UBage.
dieks. ••• ••
disks. Castboot, Casthalt:
dismount file system. • • • • •
diaperse compiler error messages. •••••••••••
display. •••••••••• ••

remote(6)
dose(:!}
dUp(:!}
,etr8ent(3X)
let.dtablesize(2}
dc(l}
doaprin ten(S}
.eceaa(SF}
.e_(2)
Ile(l}
tpu(l)
fold(l)
ioetl(2}
awapon(8}
dt(1)
IImin(SF)
Imin(SF)
IImin(3F)
dmesg(8}
dietion(l)
explain(l)
explain(l)
diction(l)
dil(l)
dill'3(l}
dil(l}
diffS(I}
dirlS)
dir(S)
rm(l)
rmdir(l}
cd(l}
cbdir(2)
cbdir(3F)
chroot(2}
cah(l)
cah(l)
letcwd(3F)
1s(1}
mkdir(l}
aeandir(3}
swapon(2}
uuclean(8C)
dill(l}
dcbeck(8}
unUnk(2)
uulink(3F)
mkdir(2)
rmdir(2)
mtlost+found(8}
pWd(J)
direetory(3X)
directory(3)
direetorY(3X}
getwd(3)
cab(l}
cah(l)
die(l)
dis(l)
quota(l}
esb(l)
cah(l}
binstl(8)
rsync(2)
Cetdisk(3X}
dtrmt(8)
dr(l)
park(8)
quota(2)
duel}
dOidisks(S)
rast.boot(8}
mount(8}
error(l}
rain(6)

xxiii

l'ernauted I~ez

xxiv

"rof:
aate, ... eon:

quota:
Yi: ICI'eeD oriut.ed (1'illIl1)

umuk: chaqe or
wJlodos:

dosdilk: prosnm to crea.t.e aad
prof':

.,.nne:
worms: aaima.t.e worms OR a

joYe: u ia~Ye
Janet, cab,: Euclideaa

rat: remote lie

Ityle: analyze surl'aee chuaeteriat.iea oIa
rel'er: Iud and insert literature refereuCC8 in

w: who is on aad what thel are
rosue: ExploriDg The Dungeons 01

whodos: displ., inrormation about.

for MPS /005 vdisb.

SLPT printers.
sbutdown: abut
sbutdown: close

rand,
grapb:

aritbmetic: provide
rule flle .. PP

etime,

dump: iocremental flle system
od: octal, decimal, b ex, a.scii

rdump: flle system
rrestore: restore a flle system

dumpfs:
dump, dumpda.tes: incremental

kgmon: generate a.
dump,

rogue: Exploring Tbe

dup,
dup, dup2:

ecbo:
ecbo:

pill&: send ICMP

end, et.ext,
ex,

Yipw:
edquota:
eel: text

ex, edit: text
jove: an intera.ctive display-oriented text

Id: link
sed: strea.m

TEACHJOVE • leU'n how to use the JOVE
vi: screen oriented (visual) display

a.out: lIIembler and link

whoami: print
setregid: set real and
aetreuid: set real and

1'rort: Spa.WD Dew process in a 1'irtual memory

apl&1 eI1l graph pro81e data.
displa.y eIIue game. ••••••••••
diaplay disc e ud limits.
ctiaPI&1 editor hued on ex. ••
display file creation mask. • ••
displa.y ioCormation about dosc users. •

. . . .

diapl&1 ioCormat.ion for MPS/DOS vdisks. • ••••
dia,l&1 profile data.. •••••••••••••
display .,.tem status OD atatus line or a. terminal.
diaplay terminal. ••••••
displ&1-orIeDt.ed text editor. ..
cliatuee. •••• ••••••
diatribution program. ••••••••
dUmt: studl10ne disk tormatter.
dmem, kmem: main memory. • •••••••
dm .. : collect qat.em diagnostic meaaaaes to form
doctor: iDteract witb a PB1ehoanalyst.
document.
ciocUJDeDta. •••••••••

doiDI· • • • • • • • • • • • •
Doom. • •••••••••••
dole: conRect t.oproc/286qatem.
cIoae usera. •••••• • • • • . . .

" .
cIoacopyd: MPSfDOS flle copy daemon. ••• ••
dosdisk: PI'OII'&DI to erea.t.e aad displa.y information
dosdisb: list or MPSfDOS virtua.l disks.
dOlprint: MPS/DOS spooler daemon. • ••••••
dOlprioters: destina.tions tor spooled output from
down put of a. full·duplex connection.
down the .ystem a.t a given time. ••
draod, irand: return rudom values.
dra.w a. graph. ••••••••••
drill in number fa.ets. •••••••
datrules: Daylight sa.vings time and time zone na.me
dtime: return elapsed execution time.
du: .ummarize disk usage.
dump. • •••••••
dump. • •••••••••
dump &.cross the network.
dump across the network. ••••••••
dump, dumpdates: incremental dump format.
dump flle aystem information. ••••••••••••
dump format. •••••••••••••
dump: incremental 81e system dump. • • • • • •
dump or t.he opera.ting system's profile bullers.
dumpda.tes: incremental dump format. •••••
dumprs: dump flle system informa.tion.
Dungeons or Doom. ••••••
dup, dup2: duplica.te a. descriptor.
dup2: duplica.te a descriptor.
duplica.te a. descriptor.
echo arguments.
echo arguments.
echo: echo arguments.
echo: ecbo arguments. ••••••• • ••
ECHO..REQUEST packets to network bosts. •••••
ecvt, revt, gcv .. : output conversion.
ed: text editor. ••••••••
edata.: lut locations in PI'Oll'a.m.
edit: text editor.
edit tbe pauword file.
edit user quota.s.
editor.
editor.
editor.
editor.
editor.
editor. • ••
editor bued on ex.
editor output. • •
edquota: edit user quotas.
electin current user id.
elective group ID.
elective user ID's. ••
eJlicient wa.y. •• • • •

IPror(l)
snKe(6)
quota(l)
Yi(l)
cab(l)
wbodos(l)
dosdisk(8)
prof(l)
s;raline(l)
worms(6)
jove(l)
hypot(3M)
rdist(l)
dtrmt.(8)
mem(4)
dmesg(8)
doctor(6)
style(l)
refer(l)
w(l)
rogue(6)
dosc(l}
whodos(l)
dOicopyd(S)
dosdisk(8)
dosdisks(5)
dosprint(8)
dosprinters(5)
abutdown(2)
abutdown(S)
rud(3F)
gra.pb(IG)
U'ithmetic(6)
datrules(S)
etime(3F)
duel)
dump(8)
odell
rdump(8C)
rrestore(8C)
dump(S)
dumpfs(8)
dump(S)
dump(S)
kgmon(8)
dump(S)
dumprs(8)
rogue(6)
dup(2)
dup(2)
dup(2)
csh(l)
echo(l)
csh(l)
eebo(l)
piog(8)
ecvt(3)
ed(l)
end(3)
ex(l)
YJpw(8)
edquota(8)
ed(l)
ex(l)
jove{l)
Id(l)
aed(l)
t.eaebjove(1)
Yi(l)
Lout(S)
edqueta(8)
wbOa.mi(l}
aet.regid(2)
setreuid(2)
vrork(2)

ICON INTERNATIONAL
)

arep,
etime, dtime: return

iDJque,re~ue: iDlert/remooYe
lOeIim:

aet.quota:
uueneede: rorm&t or .. n

crypt:
mail. uueneede,uudeeocie:

crypt, aet.key,
crypt, setkey, encrypt: DES

matekey: generAte

logout:

/gettapec, getfaBle, getratype, Htfaent,
ge!.grent, getgrgid, getgrn&lll, setgrent,

lethOlt.by&ddr, getbostbyn&llle, aetboatent,

getnetent, getnetby&ddr, getnetbyn .. me, letnetent,
lOCket: crea.te .. n

getprotobynumber, getprotobyn&llle, setprotoent,
getpwent, getpwuid, getpwn&lll, setpwent,
getservbyport, getservbyn .. me, setservent,

number: convert Arabic numerals to
xaend, xget,

nlist: get
cbfn: cb .. nge Bnger

setrsent, endfsent: get file system descriptor Ble
getgrnam, setgrent, endgrent: get group Ble

sethestent, endhOltent: get network host
getnetbynamf!, setnetent, endnetent: get network

setprotoent, endprotoent: get protocol
getpwnam, setpwent, endpwent: get password 61e·
getservbyname, setservent, endservent: get service

unlink: remove directory
unlink: remo\'e .. directory

execl, exeev, execle, exeelp, execvp, exec, exece,

eleanlpd: clean line printer daemon
setenv: set variable in

environ: user
printenv: print out the

window: window
gettnv: value ror
unsetenv: remove

getenv: get VlLlue or
eqneha.r: special character definitions ror

derolf: remove nro!, trolf, tbl and

linemod, space, closep): graphical plot: openpl,
messages.

dmesg: collect system diagnostic messages to form
mbtr: ere AD

error: .. D&IYIe ADd disperze compiler
perror, aYLerrliat, aYLBerr: system

perror, gerror, ierrno: get system
intro: introduction to system e&lIa ADd

eYACe: moodiBed YIICC allowing much improved
speU, spellin, spellout: Bnd spelling

trAper: trAp arithmetic
end,

bypot, ea.bs:
lif, while, a, ., break, continue, ed,

expr:
bistory: print bistory

screen oriented (visual) displa.y editor based on

Ipq: spool queue
execl. execv, exec)e, execlp, exeevp,

ICON INTERNATIONAL

l'err,nvted Indez

eft: Extended Fortran Language.
earep, fgrep: searcb .. Ble for .. pAttern.
el&psed execution time. • • •
element from .. queue. •••••••
elimin .. te .10'. rrom nrolr input.
else: alternative commands.
enable/dis .. ble quotas on .. 81e .ystem.
eneeded uueneede 81e. • ••••••
eDeode/ decode. ••••••••••••••
encode/deeode .. bina.ry flle for transmission via
encrypt: DES encryption. ••••••••
eaery pt.iOD. ••••••••••••••
tDerJpt,ion tey. •••••••••••••
end, et.ext, edAta: lut loe&tions in proaram.
ead ... ioD. • •••••••••••••
end: terminAte loop. ••••••••••
endfaent: get Ble .ystem deaeriptor Ble entry. ••••••
elldgrent: get group 81e entry. •••••••
endbOltent: get network host entry. getbostent,
eadif: termiD&te conditional.
eadnetent: get network entry. ••••••
endpoint for communication. • • • • • • •
endprotoent: get protocol entry. getprotoent,.
endpwent.: get password Ble entry.
endservent: get service entry. getservent,
endsw: termin .. te switeh.
Enalish. •••••••••• •••
enroll: secret mail.
entries from n .. me list. •••••
entry. •••••••• • • • •
entry. getfsent, getrsspee, getrsftle, getfstype,
entry. getgrent, getgrgid, •••••••••
entry. getbostent, getbostbyaddr, getbostbyname,
entry. getnetent, getnetbyaddr, •••••
entry. Igetprotobynumber, getprotobyname,
entry. getpwent, getpwuid, • • • • • • • • • •
entry. getservent, getservbyport,
entry. •••••••••
entry. •••••••••
environ: execute a 6le. • •
environ: user environment.
environment.
environment.
environment.
environment.
environment.
environmen t n&llle.
environment variables.
environment variables.
eqn. ••••• •••
eqn constructs. •••
eqn, neqn, eheckeq: typeset mathematics.
eqnchar: special character definitions for eqn.
erase, label, line, circle, are, move, conI., point,
error: a.n&lyze and disperse compiler error
error log. •••••••••••••
error message file by musaging C souree.
error messages.
error messages.
error messages.
error numbers. •••••
error recovery.
errors.
errors. • ••
etext, ed .. ta: last loeatioDB in program. • • • • •
etime, dUme: return el .. psed execution time.
Eudidea.n distance. •••••••••••
eval, exec, exit, export, login, rea.d, re&donly,1
eyal: ~evaluate shell data. • • • • •
evalu .. te arguments as an expression.
event list.
a vi: ••••••••••••
ex, edit: text editor. •• • • • •
exa.min .. tion proaram. • • • • •
exec, exeee, environ: execute a file.

t8(1)
,"p(l)
etime(SF)
iuque(3)
IOelim(l)
eah(l)
aet.quota(2)
uueneede(5)
erypt(l)
uueneede(IC)
erypt(3)
crypt(3)
matekey(8)
ead(3)
cab(l)
cab(l)
lettItDt(3X)
getgrent(3)
letbOitent(3D)
cah(l)
getneten t(3n)
aoctet(2)
getprotoent(3n)
getpwent(3)
getservent(3n)
cab(l)
number(6)
xaend(l)
nlist(3)
cbfn(l)
getfsent(3X)
get.grent(3)
letbostent(3n)
letnetent(3n)
letprotoent(3n)
getpwent(3)
getservent(3n)
unlink(2)
unlink(3F)
exeel(3)
environ(7)
eleanlpd(8)
cab(l)
environ(7)
printenv(l)
window(l)
getenv(3)
cab(l)
getenv(3F)
eqneba.r(7)
derolf(l)
eqn(l)
eqnebar(7)
plot(3X)
error(l)
dmesg(8)
mkstr(l)
error(l)
perror(3)
perror(3F)
intro(2)
eyace(l)
spell(l)
tr&per(3F)
ead(3)
etime(3F)
bypot(SM)
sb(l)
cab(l)
expr(l)
cab(l)
vi(l)
ex(l)
Ipq(l)
axecl(3)

xxv

Permtdell luez

xxvi

Iwhile, I, • ,Iwtat, COIl~Ue, ed, ..,aI,

exed, exeeY, execIe, exedp, elttCVp, exec,
environ: execut.e .. me.

execut.e a lie. exed, execv,
lIe. execI, exeev, execle,

sticky:
exede, exedp, exeeYp, exec, exece, environ:

exeeYe:
alarm:

.,..a.em:
repeat:

at:
luteomm: Ihow lut commandl

uwc unix to unix command
aeet.:

lleep: 1.lpend
lleep: .. Ipend
lleep: .. Ipend

monitor, monltartup, moncontrol: prepare
pxp: Pueal

rexecd: remote
etime, dtime: return elapsed

prolll:
pix: Pucal interpreter and

environ: execute aBle. execl,

exed, exeev, execle, exeelp,
link: make a link to an

tunets: tune up an
/ I, " break, continue, cd, eval, exec,

breaksw:

pending output.

break:
power, square root.

glob: Blename
compress, uncompress, zeal.: compreas and

expand, unexpand:
versa.

for diction.
diction. dietion,

aardvark: yet another
&dventure: an

rogue:
frexp, Idexp, modt: split into mantissa and

exp,log,loglO, pow, sqrt:
/ • , break, continue, ed, eval, exec, exit,

expr: evaluate arguments as an
re...comp, re_exee: regular

add bib: create or
eft:

atrings. xatr:
recovery.

ioinit: change
tdose, tread, twrit.e, trewin, tRipr, tatatt:

functions.
Bignal: simpliBed aott.ware signal

sigVle: aott.ware signal
ipca: report inter-proeeas communication

true,

cheeking the disks.
tbe disks. tastboot,

abort: generate a
trptpe, tpecnt: trap and repair Boating point

export,login,/ sh, tor, case, it, while, I,
exit, export, login,/ ah, tor, case, it, while,

exec, exit., export.,1o&in,.....d, readonly, set,/
exec: overlay shell wit.h IpeciBed command.
exece, environ: execut.e aBle. •••••••
execl, exeev, execle, exedp, exeevp, exec, exece,
execIe, exedp, execvp, exec, exece, environ:
execlp, execvp, exec, exece, environ: execute a
executable Bles witb persistent text. ••••
execute a lIe. CIted, Cltecy, ••••••••
execute .. flIe. •••••••••••••
_ut.e a lubroutine aI't.er a Ipeciled time.
execut.e a UNIX command. •• •
IXIC1Ite command repeatedJ.y.
execut.e commandl at a later time.
executed in rwerae order.
IXICutiOD. • •••••
execution accounting tUe.
execution for an interval.
execution tor aa interval.
execution ror interval.
execution prollle, •••••
CltlCution prollier. •••••
CltlCution lerYer.
execution time.
CltlCution time prolle.
executor. • ••••••••

. ..
execv, execle, execlp, exeevp, exec, exeee,
exeeYe: execute a lile. ••••••••
execvp, exec, exeee, environ: execute a 81e.
existing flit. •••••••••••••
existing Ble 5y1t.em. •••••••••••
exit, export, login, read, readonly, let, sbift,/
exit trom switcb.
exit: leave shell. ••••••••••••
_exit: terminate a proeeas. • •••••••
exit: t.erminate a proeesll after 8 ushing any
exit: terminate proeeas with statUI.
exit wbile/toreach loop. •••••••••
exp, log, 10110, pow, sqrt: exponential, logaritbm,
expand argument list.. ••••••••••
expand da~ ••••• • • • • • • • • • • • •
expand tabs to spaces, and vice versa. ••••••
expand. unexpand: expand tabs to spaces, and vice
explain, diction- print wordy sentenees; thesaurus
explain: print wordy sentences; tbesaurus tor
exploration game. •••••••
exploration game. ••••••••
Exploring The Dungeons ot Doom.
exponent. •••••••••••
exponential, Iogarit.hm, power, square root.

...

export, login, read. readonly. let., sbift, times.! •••••
expr: evaluate argument..s as an expression.
expression. •••••••••
expreasion bandler. •••••• •••••
extend bibliographic database.
Extended Fortraa Lanlu .. e.
extract strings trom C programs to implement sbared
eyace: modi8ed yace allowing much improved error
m: Fortran 77 compiler.
m 1/ 0 initialization.
m tape I/O. topen, ••••••••••
tabl, 800r, eeil: absolute value, 800r, ceiling
racilit.ies. • • • • • •
facilities. •••••••
tacilities ItatuS.
talle: provide t.rutb values. •••••
talae, true: provide trutb values. •••••
rastboot, rasthalt: reboot/halt t.be system without
rutbalt: reboot/halt tbe Iystem witbout checking
rault,. ••••••••••••••
rault.&. •••••••••••••
• , break, continue. cd. eVal' exec, exit,
I, ., break, continue, ed, eval, exee,

rdose, Blush: close or lIullh a stream.
feaU: liIe control.
tcntl: 81e control options.

sb(l)
cah(l)
exed(S)
execl(S)
execl(S)
execl{S)
lticky(8)
execl(S)
exeeYe(2)
alarm(SF)
.,..a.em(SF)
cah(l}
at(l}
luteomm(l)
uux(IC}
aect(5)
lleep(l)
lleep(SF)
lleep(S)
monitor(S)
pxp(l)
rexeed(8C)
etime(SF)
pr081(2)
pixel)
execl(S)
execve(2)
exeel(S)
link (SF)
tunets(8)
sh(l)
cab(l)
cab(l)
exit(2)
exit(S)
exit(SF)
cah(l)
exp(SM)
cah(l)
compreas(l)
expand(l)
expand(l)
explain(l)
diction(l)
aardvark(6)
advent.ure(6)
rogue(6)
trexp(S)
exp(SM)
sb(l)
expr(l)
expr(l)
regex(S)
addbib(l)
e8(1)
Xltr(l)
eyace(l)
mel)
ioinit(SF)
topen(SF)
Ioor(SM)
lignal(SC)
Iigvec(2)
ipcs(l}
true(l)
false(l)
tastboot(8}
fastboot(8)
abort(S)
t.rpfpe(SF}
sb(l)
sh(l}
tclose(3S)
rcntl(2)
tentJ(S)

ICON INTERNATIONAL

/

(-

Iopen, mopen,
terror,

iDqairies.
lubrout.in.. dbminit.,

head: &ive lrat
teloae,

ext.reme nlu.. lmin, Imu,
bcopy, bemp. blero,

let.c.
let.c,letcw,

leta,
grep, earep,

loea.te I. Pro&r&m lIe includinl ali &lid pl.t.hl
robot.a:

&eeeIS: determine acc:eaaibilit.y or
&eeeIS: determine aceeu&bUity or I.

acct: execut.ion &ccountini
chmod: c:lll.nle mode or

ehmod: ehuge mode or I.
ehown: ehuge owner ud group or I.

colrm: remove columna from a
core: format or memory image

creat: create I. new
BOurce: read commands from

ctags: cre&te I. t.ags
dd: convert. ud copy a

Daylight savings t.ime ud time lOne name rule
execlp, execvp, exec. exeee, environ: execute I.

exeeve: execute a
lock: a.pply or remove an advisory lock on an open

fpr: print Fort.ran
group: group

link: make a hard link to a
link: make a link to an existing

mkdir: ml.ke a directory
mknod: make I. special

mknod: build special
rebuild t.he dati. b ... e for t.hemail ali ... es

open a. file for reading or writing, or create I. new
p&&swd: p&&Sword

pr: print
rcs6le: format of RCS

remote: remote hoat. description
rename: change the nl.me of a

rename: rename a
rev: reverse lines of a

rmdir: remove a directory
aecstorcs: build RCS file from sees
Iccstorcs: build RCS file from secs

sfdate: let the time/date or a
aize: size of an object

the printable strings in a object, or other binary,
lum: lum ud count blocks in a

Iymlink: make symbolic link to a
tail: deliver the I ... t. part. or a

touch: update date last. modified or a
uniq: report. repeated lin. in a

aueneode: format of u encoded uueneode
vipw: edit. the p word

versions of object. modules were used to conltrUct. a
writ.e, writev: write on a

ditr: ditrerential
cpio: copy

rea: eh&llle RCS
bug6ler:

mbt.r: create u error meaaage
dilrS: 3-way diferential

tcntl:
fcntl:

rcp: remote
doaeopyd: MPS/DOS

um ... t: chuge or display

fc:vt. levt: output conversion. •••••••
tdate: return date and time in an ASCD string.
fdopen: open a Itre&m. •••••••••
t.or, c1earerr. Ileno: stre&m statUI inquiries.
terror, feof. clearerr. Ileno: Itre&m statUB
fetch, store. delete, Irst.key, nextkey: data bue
lew liDes. ••••••••••••• ••
81 UBh: c:l0It or I UB h I. Itre&m. ••••••
Irac. dlmin. dlmu, dirac, inmax: return
Is: bit. ud byte Itring operations.
tg: bring job into foreground. •••• ••
tgete: get a character from I. IOSical unit..
tletc, getw: get. character or word from It.ream.
tgets: get. a string from a Itream.
fgrep: search a file for I. pattern.
(etlonly). which:
&ght. of villainous robots.
lie.
lIe.
lie.
lIe.
lie.
Ble.
lie.
Ble.
file.
file.
lie.
Ble.
Ble.. .PP dst.rules:
Ble. exeel, exeev, execle,
Ble.
Ble.
Ble.
Ble.
Ble.
Ble.
IIle.
IIle.
lile.
Ble. newaliases:
Ble. open:
Ble.
Ble.
IIle.
tile.
tile.
Ble.
Ble.
Ble.
tile.
Ble.
tile.
tile.
tile. st.rings: Bnd
tile.
Ble.
lIe.
tile.
lie.
lie.
lie. • •••••
lIe. what: show what
lie. ••.•••• ••
lIe ud directory comparator.
Ble archives in and out.
lIe attributes.
Ble bug reports in folders automatically.
tile by m&&saging e BOurce.
tile comparison.
Ble control.
Ble control options.
tile copy.
tile copy daemon.
Ble creation mask.

Pennuted lfldez

ec:vt.(S)
tdl.te(SF)
topenC3S)
terror(SS)
ferror(SS)
dbm(SX)
head(l)
fcloae(3S)
Bmin(SF)
batring(S)
cah(l)
lete(3F)
gete(SS)
get.a(3S)
&rep(l)
which(l)
robots(6)
access(2)
aeeeas(SF)
acct.(5)
chmod(2)
chmod(3F)
ehown(2)
eolrm(l)
core(5)
create!!)
cab(l)
ct.ags(l)
dd(l)
dst.rules(5)
execl(S)
exeeve(2)
lock(2)
Cpr(l)
group(S)
link(2)
link(SF)
mkdir(2)
mknod(2)
mknod(8)
newaliases(I)
open(2)
p&&Swd(5)
pr(l)
resBle(5)
remote(5)
rename(2)
rename(SF)
rev(l)
rmdir(2)
secstorcs(I)
aeestorcs(8)
sCdate(l)
size(l)
arlngs(l)
lum(l)
symlink(2)
tail(l)
touch(l)
uniq(l)
uueneode(S)
vipw(8)
what(l)
write(2)
dltr(l)
cplo(l)
res(l)
bugller(8)
mtar(l)
dilr3(11 fent.I(2
tcnt-I(S
rep(lC)
doacopyd(8)
eah(l)

ICON INTERNATIONAL xxvii

Perm. ted lades

.1DUk:aet.

nlist: remote
aetlseaL, eadtaeDt: ,eI. 81e 1JS&em delcriptor

,el.lI'pd, ,.Dam, _tcreDt, eaclsreDt: ''''croup
,el.pwDam, aet.pweDt, eadpweat: ,et pulword

crep, tareP, rerep: .areh a
axre: COD8&uratiOD

opea: opeD a
aliues: ali ...

uueDeode,uudecode: ucode/deeode .. binary
ar: &rehiYe (library)

tar: t.ape arcbive
ICCItores: build ROS
seest.ores: bund ReS

which: Joeat.e a prosram
taplit: split a multi-routiDe FortnD

spUt: spUt a
merae: tbree-wl.1

pmerge: paseal
mktemp: make a uDique
Caeek, ft.eIl: repositioD a

more, page:
stat, lstat, t'stat: get
stat, Istat., tst.at: get

mkproto: coDstruct a prototype
mount., umount: mount or remove

mount, umount: mount and dismount
Dewfs: construct a Dew

rep quota: summarize quotas ror a
setquota: eDable/disabie quotas on a

tun eta: tUDe up an existing
repair. tsck:

getrsfile, gel.rstype, sel.rsent, endrsent: get
dcheek:

dump: incremental
rdump:

nestore: restore a
hier:

dumprs: dump
quot: summarize

quotacheck:
quotaon, quot.aoB: turn

restore: incremental
icheek:

mtab: mounted
rs, inode: format or

mUs: program to make UNIX
utime: set

utimes: let
uUlend: send a

truncate: truncate a
kermit: kermit

ft.p:
tn.p: t.rivial

rt.pd: DARPA mternet
t.n.pd: DARPA Trivial

lie: det.ermine
bueDame: Itrip

&lob:
terror, ta)r, e1earerr,

checknr: cheek DroB/troB
cmp: compare two

comm: select or reject UDes common to two aorted
Ind:lnd

split a multi-rout.ine Fortran Ille iDto iDdividuai
ident: ident.ify

Iockr: record IocklDg OD
matedev: make system Ipecial

mv: move or rename
print log messages and other inrormatioD about ROS

rmdir, rm: remove (unlink) directories or
sort.: sort or merge

compact, uncompact, ccat: compreas and uncompresa
eatman: create t.he cat

xxviii

lie creat.iOD mode muk. •••••••
lie: determine lie t.ype. ••••••••
lie distributiOD program. •••••••
8Ie entry. Ilettsspec. letrslle, letrst.ype,
lie eDtry. ,etgreDt, • • • • • • •
lie eDtry. ,et.pwent, gel.pwuid, ••••
lie for a patt.ern. ••••••••••
81e for kerDei. •••••••••••••
81e ror reading or writiDl, or create a new lie.
Ble ror aeudmail. •••••••••
Ble ror trausmissiou via mail. •••
lie rormat.
Ble format. • •••••••
file rrom soes lie. •••••
lie rrom SOOS lie. •••••••••
81e iDcludiDg ali ... aDd paths (cd only).
file iDto IDdividuai Illes.
lie illto pieces. ••
Ble merae. • •••
8le merger.
81e Bame.
8Ie OD a logical uDit. ••••
Ble perusal IUter tor crt. viewiDI.
lie status.
Ble status.
file Iystem. • ••••
file system.
file system.
file system.
file system.
file system.

...

file system. •••••••••••• ••
file system consistency cbeck and interactive
file system descriptor lie entry. /getrsspec,
lie system directory consistency check.
file system dump. ••• • • • • •••
file Iystem dump across tbe Detwork.
file system dump across tbe network.
file Iyst.em hierarchy. •••••••
lie system information. ••••••
file system ownership. ••••• •••
file system quota consistency checker.
file .ystem quotas on and 011'.
file system restore. ••••••••
file system st.orage consistency cheek.
Ble system table.
file system volume.
Iile systems.
file times.
Iile times.
file to a remote host.
file to a specified length.
file t.ransfer. •••••
file transfer program. •••••••
file transfer program. ••••
File Transfer Protocol server.
File Transfer Protocol serv,r.
lie t,1pe. ••••••• ••
BleD&me alrlXes. •••••••
lIename expand argument. list.
lIeno: stream It.atus inquiries.
lies. • ••••
81es.
files.
files.
files. fsplit:
Iiles. •••••
lies.
files.
files.
files. rlog:
files.
files.
lies, and eat tbem.
files ror the manual.

. . ~

umask(2)
tlle(l)
rdist.(I)
let.fsent(ax)
letgrent(3)
aetpwent(3)
grep(l)
uxre(8)
opeD(2)
aliases(o)
uueDeode(IO)
ar(o)
tar(o)
accstores(I)
scestores(8)
whieb(l)
t'split.(I)
.plit.(I)
merge(l)
pmerge(l)
mktemp(3)
fseek(SF)
more(l)
stat(2)
stat(3F)
mkproto(8)
mount(2)
mount(8)
Dewfa(8)
repquots(8)
setquot.a(2)
tuners(8)
fsck(8)
getfsent(3X)
dcheck(8)
dump(8)
rdump(8C)
rrestore(8C)
hier(7)
dumpfs(8)
quot(8)
quot.acbeck(8)
quot.aon(8)
restore(8)
icheck(8)
mtab(o)
ra(o)
mltra(8)
utime(3C)
utimes(2)
uusend(lC)
truncate(2)
termit(l)
Ctp(IC)
t.n.p(lO)
ft.pd(80)
t.n.pd(SC)
Ble(l)
bueDame(l)
cah(l)
ferror(3S)
checknr(l)
emp(l)
comm(l)
tlnd(l)
r.plit(l)
ideDt(I)
Iockf(30)
makedev(8)
myel)
rJog(l)
rmdir(l)
1OI't(1)
compact(l)
catman(8)

ICON INTERNATIONAL

---" ,

,/

tac: COII __ ate nd print
r.,De: .,DebroDize a

rm, rmclir: remoYe (unlink)
Kicky: executable

Fstab: Katic iDFormation aboot the
more, Pile: lie peruaal

colen:
col:

plot: SJ'&phiea
rerer:
Ind:

look:
mnual. mn:

ttYDl.Jlle, _tty, ttyllot:
ttJ'DI.JII, atty:

Iorder:
lookbib: build inverted index ror a bibliograpby,

.pell, .pellin, .pellout:
binary, lie. .t.rinp:

ehfn: cbnle

Fold: Fold long Iina for
t.mail: print out mail meuaaa, mOlt recent

head: give
dbminit, fetch, ltore, delete,

8sb: play "Go

nice, nobup: run a command at low priority
extreme valuea. Imin,
return extreme valuea.

Cpu: determine preaence or tbe
trprpe, Fpeent: trap and repair

trapov: trap and repair
lie.

Cunctions. fabs,
Cabs, loor, ceil: absolute value,

rclOle, musb: close or

lusb:
exit: terminate a process after

device.
rold:

bugliler: file bug reports in

Cg: bring job into

idate, itime: nturn date or time in numerical
dmesg: collect system diagnostic messages to

ar: arcbive (library) file
dump, dumpdat.ea: incremental dump

tar: tape archive lie
indent: indent nd

htable: convert NIC standard
&ettable: let. MC

uuencode:
dir:

f., inode:
core:

reaflle:
tbl:

scanf, fscanf, secanf:
prlnte, fprintf, apriDtr:

dUmt.: st.ndalone disk
tmt: simple text

nrotr: text
trotr, nrotr: text

rna: t.ext
me: maeroa for

r77:
ratror: ratioDal

fpr: print

ICON INTERNATIONAL

l'err,nuted Indcz

81. in reverse order. •••••••
lie'. in-core at.ate with tbat on disk.
II. or directoriea.
II. with persistent. text. •••••
lI·fatlma. •••••••••••
liter for crt viewing. •• • •
IIt.er nrotr output for CRT previewing.
liter revene line feeds. •••••••••••••
IJtera. •••••••••••••
Ind nd insert literature referenca in documents.
IDd II.. .••••.....•.•.•• ••
lad: IDd Jllea. ••••••••••••••••
And lin. in .. sorted list. •••••••••••
Ind maaual information by keywordsj print out the
lnd Dame oC • terminal. •••••••••
Ind Dame of a terminal port. ••••••
Ind orderin& relation for an object library.
lad mereDcea in a bibliOirapby. indxbib,
Ind .peIliD, errors. •••••••••••

. . . .
lad t.be printable .trlnp in a object, or other •••••
IDler ntry. • ••••••••••••
la,er: user information lootup proaram.
finite widtb output device. ••••••
flrat. •••••••••••••••
8rat rew liDes. ••••••••••••
flratkey, nextitty: data base subroutines.
Fish". ••••••••••••••
flsb: play "Go Fish". ••••••••
(,A only). •••••••••••••••
f1max, trrae, dlmin, dflmax, dft'rac, inmax: return
Imin, Imax, trrac, dOmin, dftmax. dft'rac. in max:
floatin, point coprocessor. •••••••••••
80atin, point Caults. ••••••••••••
floatin, point over Dow . ••••••••••••
ftock: apply or remove an advisory lock on an open
800r, ceil: absolute value, floor, ceiling
800r, ceiling functions. ••••••
flusb a stream. ••••••••••
8ush: Oush output to a logical unit.
flush output to a logical unit.
flushin, any pending output.
fmt: simple text formatter.
Cold: fold long lines for finite width output
fold long lines for finite width output device.
folders automatically. •••••••
fopen, freopen, fdopen: open a stream.
foreach: loop over list of names.
foreground. ••••••••• ••
fork: create a copy of this process.
rork: create a new process.
form. • ••••
Corm error log.
Cormat.
format.
format.
format C program source.
format bost tables.
format bost tables from a bost.
format of an encoded uuencode IIle.
format of directories.
format of file system volume.
format of memory image file. •
format of RCS file. •••••
format tables for nrotr or troft'.
formatted input conversion.
rormatted output conversion.
formatter. • ••••••
formatter. • ••••••
formattin,. ••••••
formattin, and tnesetUng.
formattin, macros.
formattin, papers.
Fortran 77 compiler.
Fortran dialect.
Fortran lie.

tae(l)
f.ync(2)
rm(l)
mcky(8)
f.tab(6)
more(l)
coIcrt(l)
col(l)
plot(IG)
refer(l)
Ind(l)
Ind(l)
Iook(l)
man(l)
ttJname(3)
ttynam(3F)
Iorder(l)
Iootbib(l)
.pell(l)
Arinp(l)
ebrn(l)
ID,er(l)
fold(l)
tmail(l)
head(l)
dbm(3X)
lah(6)
asb(6)
nice(l)
Imin(3F)
Imin(3F)
Cpu(l)
trpfpe(3F)
trapov(3F)
flock(2)
loor(3M)
f100r(3M)
fcIOle(3S)
8usb(3F)
lush(3F)
exit(3)
fmt(l)
Cold(l)
fold(l)
bugfiler(8)
ropen(3S)
cab(l)
cahel)
Cork(3F)
rork(2)
idate(3F)
dmesg(8)
ar(6)
dump(5)
tar(6)
indent(l)
htable(8)
pttable(8C)
uueneode(6)
cIir(5)
r5(6)
core(6)
rcsfile(5)
tbl(l)
scaar(3S)
printr(3S)
dkfmt(8)
rmt(l)
Drotr(l)
troft'(l)
ma(?)
me(7)
mel)
ratfor(l)
fpr(l)

xxix

xxx

fsplit:a,lit ... uItj.rout.ine
d:Exttaded

i.t.ro: iJltroduetioato
,.t.e, I'put.c: write a cltaract.er &0 a

Itruet: ",.eture
adage.

lo&in,/ ah, for, cue, if, whUe, " •
exit, fIXpOrt,/ ab, for, cue, if, whUe, •

compUer /iaterpreter.
vpfpe,

,rintt,
coproctlllOr.

put.e. p.t.ehar.
,ute.
puta.

lila: compile a

df: disk
malloe.
fopen.

expoDeDt.
from: who is my mail

ICI.IIf.
mklosHfound: mab a losHfound directory for

repair.

iDdividuallles.

ltat. Iatat.
atet, Istat,

on disk.
fleek,
fseek,
time,

shutdown: shut down part or a
p.mma: log gamma.

compiler/interpreter. rp:
bit: and, or, xor, not. rshift, Ishirt bitwise

fabs, lloor, ceil: absolute value, lloor, ceiling
intro: introduction to library

intro: introduction to compatibility library
intro: introduction to FORTRAN library

intro: introduction to ma.thematicallibrary
intro: introduction to network library

intro:introduction to miscellaneous library
jO, jl, jn, yO, yl, yn: bessel

COl, tan, asin, acos, atan, ata.n2: trigonometric
sinh, eosh, tanh: hyperbolic

bessel
curses: &creen

fread,
aardvark: yet anot.h .. explol'at.ion

adveDture: an exploration
backgalDmoD:the

battlestar: a tropical adnDture
hUDt: a multj.player multi-terminal

moDOP: MoDopoly
.Dake. SDlCOre: disp.., chase

trek: trekkie
worm: Play the growing worm

canlleld, cfacores: t.he solitaire card
cribbage: the card

hangmaD: Computer version or the
boggle: ,lay the

wump: the
lamma:1og

ecn, rcvt,
bulers. kgmon:

Fortran lie iJlto iDdivid.alllles.
Fortran Lanluage.
FORTRAN library functions.
rortraa Io&ical uDit. •••••••••••
Fortran 'J'OIl'&IIlII. •••••
lortune: priDt a random, hoperully iDteresting,
, break. coatiaue. ed, nal. etc, eit., cport.
, " break. eoatiaue, ed, eval. eec, •••••
I'p: FUDetiOllal Prosrammiog language •••
fpecat: trap and repair loatiag poiat raulta.
I'pr: priDt Fortran lie. • • • • .". • • • •
f'priDtf •• priotf: lormatted output conversion.
f,u: deWmlae preaeace or 'he loatiag poIat
I'put.e, putw: put. charaeter or word on a stream.
fput.e: write a character &0 a fortran Jocieal uDit.
I'puta: put. a atrial on a at.ream.
FraDs Lisp procrun. ••••••••••••••••
fread, twrite: bvlered biaary input/output.
t'ree. •••••••••••••••••
rree, reaIIoe. eaIIoe, alJoca: memory alJocator.
treoptD, fdopea: open a stream. ••••••• ".
Irtxp, ldep, modr: .plit. into maatisaa lAId • • • • •
from!. • •••••••••••••••
fa. iDode: tormat or file aystem volume. •••••
fscant. aacanr: formatted input conversion. • ••••••
rack. •••••••••••••••••
rsck: lIle ayatem consistency check and interactive
r_k' 1'te1J: reposition a lie on a logical unit.
fseek, 1'te1J, rewind: reposition a stream.
f.plit: aplit a multi-routiDe Fortraa IIle into
fstab: static inrormation about the lleayatems.
flta.t.: let lie atat.UI. •••••••••••
latat: get file atatus. •••••••••••
f.ync: sYnchronise a file's in-core state with t.hat
I'tell: reposition a lie OD a logical unit.
I'tell. rewind: reposition a stream.
fUme: let date and time. •••••
I\p: lie t.ransrer program. •••••
I\pd: DARPA lat.ernet File Transfer Protocol server.
full-duplex connection. • •••••
runction. ••••••••• •••
Functional Programming language
funetions.
functions.
runctions.
funetions.
functioas.
functioas.
runctions.
functions.
runctions.
functions. sin,
runct.ions. • •••••
functions: or two kinds ror integer orders.
functions with "optimal" CUflSOl' motion.
twrite: bulered binary input/output.
pme.
pme.
pme.
pme.
pme.
pme.
pme.
pme.
pme.
pme canleld.
pme cribbage.
pme hanlman.
pme or boggle. • • • • • •
pme or hunt-the-wumpll8.
gamma ruaction. •••••
pmma: log gamma runct.ion. •••••
gcore: cet core images of running processes.

.

gevt: output coaversion. •••••••••
lenerate a dump or the operating system's prolle

Isplit.{I)
d(l)
iDt.ro(SF)
put.c(3F)
muct(l)
fortune(6)
sb(l)
abel)
rp(l)
trprpe(SF)
(pr(l)
priDtl'(3S)
l'pu(l)
put.e(3S)
pute(SF)
puta(3S)
1iIzt.(1)
fread(3S)
df(1)
malloc(3)
ropea(3S)
Crep(3)
from(l)
Ia(S)
seanr(3S)
mklosHround(8)
rsck(8)
rseek(3F)
r_k(3S)
raplit(I)
r.tab(S)
atat(2)
atat(3F)
l.ync(2)
rseek(SF)
r_k(3S)
time(SC)
rtp(IC)
I\pd(SC)
ahutdown(2)
gamma(3M)
rp(l)
bit(SF)
loor(3M)
iDtro(3)
intro(SC)
iDtro(SF)
intr0(3M)
iDtr0(3n)
intr0(3X)
j0(3M)
sin(3M)
sinh(3M)
bessel(3F)
curses(3X)
freld(3S)
aardvark(6)
advent-ure(6)
baekcammon(6)
battlestar(6)
hUDt.(6)
moaop(6)
uue(6)
trek(6)
worm(6)
canleld(6)
cribbage(6)
hangman(6)
boggIe(6)
wump(6)
galDma(3M)'
pmma(3M)
lcore{l)
ecvt.(3)
qmon(8)

ICON INTERNATIONAL

/

c

Permuted l,.dez

abort: ,enerate a rault. ••••••
lIl&keke)': pnerate encryption key. ••••

Deheek: pnerate names rrom i-numbers.
rand, eraad: random number lenerator. • ••••••••

lex: ,enerator or lexical analysis programs.
/eraadom, initatate, setatate: better random number pnerator; routines ror changing generators. •

random number ,enerator; routines ror eh"Iing lenerators. /Random, initatate, setstate: better
perror, gerror, i.-rno: get system error messages.

,etarg, iarge: return command line arguments.
lete, rgetc: get a character from a. logical unit.

rrom stream. ,etc, getchar, rgetc, getw: get character or word
Itream. letc, ptehar, rgete, ,etw: ,et character or word from

let.cwd: let pathna.me or current working directory.
ptdiskbyname: get disk description by its name.
letdtablesize: get descriptor ta.ble size. •••

letgid, ,etegid: let aroup identity. ••••• ••
Itten: let Talue or environment variables.
ptenv: value ror environment name.

letuid, pteuid: get uzer identity. •••••• ••
setrsent, endrsent: ,et lie ,yltem descriptor / ,etrsent, ,etrupee, getralle, aetrstype, •••

l)'IItem descriptor lie entry. getrsent, ,etrupec, ,ettslle, ,ett,type, setrsent, endrsent.: get tile
endrsent: get lie system descriptor/ lettlent, leUupee, letl'ltlle, geUltype, setrsent,

descriptor Ilel ,etraent, gettupee, getratlle, getrltype, Mtrsent, endrsent: get lie system
letuid, ptgid: get user or ,roup JD or the caller.

,etgid"ttegid: ,et group identity.
,et group lie entry. ,etgrent, ,etgrgid, get.arnam, aetarent, end,rent:
lie entry. ,etarent, aetaraid, aet.arna.m, setgrent, endgrent: get group

aetarent, gqrgid, letarnam, letgrent., endgrent: get aroup tile entry.
get,roups: get aroup access list. •••••• ••

endhostent: get network host entry. ,ethostent, aethostbyaddr, a.thostbyname, sethostent,
host entry. gethostent, gethost.byaddr, gethostbyname, sethost.ent, endhostent: get network

sethostent, endhostent: get network host entry. ,.thOitent, gethOltbyaddr, gethost.byname.
current host. g.thostid, sethostid: get/set unique identifier or

host. ,.thostname, lethostname: get/set name or current
timer. ,etitimer, setitimer: get/set value or interval

get.1og: get uler's login name. • • • • • • • • • •
getlogin: get login name. •••••••••••

get network entry. getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent:
entry. getnetent, getnetbyaddr, ,etnetbyname, set·netent, endnetent: get network

endnetent: get network entry. getnetent, getnetbya.ddr, getnetbyname, setnetent,
getpagesize: get Iystem Pille size. •••••
getpaas: read a. paasword. ••••••••
,etpeername: get name or connected peer.
getp,rp: get process aroup. ••••• ••
getpid: get process id. • • • • • • • • •
getpid, getppid: get process identification.

getpid, getppid: get process identifica.tion.
scheduling priority. getpriority, setpriority: get/set program

protocol entry. getprotoent, getprotobynumber, getprotobyna.me, setprotoent, endprotoent: get
endprotoent: get protocol entry. getprotoent, getprotobynumber, getprotobyname, setprotoent,
setprotoent, endprotoent: get protocol entry. getprotoent, getprotobynumber, getprotobyname,

getpw: get name from uid. •••••••••••
get paasword file entry. getpwent, getpwuid, getpwnam, setpwent, endpwent:

entry. getpwent, getpwuid, getpwnam, setpwent, endpwent: get paasword file
paasword 61e entry. getpwent, getpwuid, getpwnam, setpwent, endpwent: get

resource consumption. getrlimit, setrlimit: control maximum system •••
utilization. getrusllle: get information about resource

pta, r,ets: get a string rrom a stream. •••••
entry. gets.-vent, getservbyport, ,ets..vbyname, setsenent, endsenent: get service

ends.-vent: get service entry. ,etsenent, ,ets.-vbyport, getsenbyname, setservent,
setaenent, endsenent: get lervice entry. ,ets.-vent, letaervbyport, getservbyname,

lettimeord&y, settimdday: get/set date and time. • ••••••
gethOltna.me, set.hOltname: get/set name or current host. .••••

getpriority, setpriority: get/set program Ichtduling priority.

ICON INTERNATIONAL

lethostid, lethostid: let/set unique identiller of current host.
letitimer, aetitimer: get/set value or intenal timer.

letsockoame: get socket name.
sockets. letsoekopt, setsockopt: get and set options on

getta.ble: get NlC format host tables rrom & host.
gettimeofday, settimeorday: get/set date and time.
,etty: set termin&1 mode. •••••••••••
gettytab: terminal conllguration data base.
getuid, geteuid: get user identity. ••••••••
letuid, getgid: get user or group ID or the caller.

,ete, leuhar, rgetc, getw: ,et character or word rrom stream.

abort(3)
makekey(8)
ncheek(8)
rand(3C)
Iex(l)
random(3)
random(3)
perror(3F)
,etarg(3F)
getC(3Fj
getc(3S
gete(3S
getewd 3F)
,etdisk(3X)
letdtablesize(2)
aet&id(2)
letenv(3F)
aetenv(3)
letuid(2)
getraent(3X)
,ettsent(3X)
getrsent(3X)
getrsent(3X)
letuid(3F)
getgid(2)
,etgrent(3)
letgrent(3)
letgrent(3)
,etgroups(2)
,ethostent(3n)
,etholten t(3n)
gethostent(3n)
aethostid(2)
getbostname(2)
,etitimer(2)
getlog(3F)
getlogin(3)
letnetent(3n)
getnetent(3n)
getnetent(3n)
getpagesize(2)
getpau(3)
getpeername(2)
letpgrp(2)
letpid(3F)
,etpid(2)
getpid(2)
getpriority(2)
getprotoent(3n)
letprotoent(3n)
getprotoent(3n)
getpw(3C)
getpwent(3)
getpwent(3)
getpwent(3)
getrlimit(2)
l etrusllle(2)
geta(3S)
gets.-vent(3n)
gets.-vent{3n)
letservent(3n)
lettimeorday(2)
gethostn&me(2)
letpriority(2)
lethostid(2)
getitimer(2)
get&oehame(2)
getaockopt(2)
gettable(8C)
gettimeofday(2)
getty(8)
lettytab(S)
getuid(2)
getuid(3F)
gete(3S)

xxxi

Permuted TRdez

xxxii

llead:
lIlutdown: doee don t.he .,.tem at a.

ASCU. etime, ioea1time,
time, ctime, Itime,

tlsh: pla.y
setjmp, Ionajmp: noo-loea!

,~ph: draw a.

&prot: displ., call
plot:

are, mon, eont, point, linemod, sp&ee, doeepl:
plot:

Iib2648: aubroutines tor the HP 2648

vgrind:
charp: eha.nge

getparp: let proeess
killpI: send aienal to a. proeess

setparp: set proeess
,et&roups: let

initaroups: Initialize
aetcrou pa: set

group:
ge"crgid, getlrnam, setgrent, endcrent: get

setregid: set real a.nd elective
setruid, setgid, .etegid, setraid: set user a.nd

getuid, letgid: let user or
letgid, let.eaid: let

groups: show
chown: eha.nge owner a.nd
make: maintain program

\

worm: Pla.y the
stty,
stop:

reboot: reboot system or

rmail:
re_eomp, re_exee: regula.r expression

ha.ngman: Computer version of the game

vha.ngup: virtually
nohup: run eomma.nd immune to

cruh: wha.t
pa.rk: progra.m to puk the

link: make a
rehuh: reeompute eommand

un hash: disea.rd eomma.nd
huhstat: print eomma.nd

lea.ve: remind you when you
pa.rk: prosra.m to park the hud disk

od: octa.I, deeimal,

hier: lIe syst.em
history: print

rortune: print a. ra.ndom,
aethostid: let/set unique identifier or current

gethostname, setbostna.me: let/set na.me or current
getta.ble: get. NlC forma.t boat ta.bles from a.

'hoatnm: get na.me or current
uusend: send a lie to a. remote

htonl, htons, ntohl, ntobs: convert values bet.ween
remote: remote

,ethostbyna.me, sethostent, endhoat.ent: get network
hosta:

phones: remote
ruptime: show

hostid: set or print ident.ifier or current

,etwd: let current working directory pat.bDa.me.
give Brat few lines. ••••••••••••••
civen time. ••••••••••••••• ••
Blob: Illena.me expa.nd &fIument list. • •
gmtime, a.seUme, timezone: eonvert da.te a.nd time to
gmtime: return syst,em time.
"Go Fish". • ••••••••••
IOto. • •••••••••••••••••••
,oto: eomma.nd tra.nsfer. •••••
&prof: disp}a.y ea.l1 craph profile da.ta..
~ph. •••••••
If&ph: d~w a pph. •••••••
pph pdle da.ta. •••••••••
If&phica liters. • • • • • • • • • • • •
&ra.phica interface. /era.se, label, line, circle.
pphica interfa.ee. ••••••••••
If&phica terminal. •••••.••••••
&reP, earep, r,rep: seuch a. file for a. pa.ttern.
&rind niee listings or prosra.ms. • • • • •
&rOup. • •••••
goup_ ••••••••••
group.
croup. • ••••
grou" &eeeas list.
group &eeeas list.
croup &eceas list.
group file. • •••••
grou" flit entry. getgrent,
croup: croup file. ••••
aroup 10. • ••••••
group lD. sltuid, seteuid,
group lD of the caller.
group identity. ••
group memberships.
group or a. file.
lI'0upa. •••••••••••
croups: show group memberships.
crowinl worm game. •••••••••
gtty: set a.nd get terminal state (defunct).
halt a job or proceas. •••••••
halt processor. ••••••••••
halt: stop the processor. •••••••
handle remote mail received via uuep.
handler. •••••••••••••
hangman. •••••••••••• • •
banlma.n: Computer version or the Ia.me ha.ngma.n.
"ha.ngup" the current control termina.!. ••••••
hangups. •••••••••• ••
ba.ppens when the system eruhes.
ha.rd disk hea.ds.
hard link to a file.
huh ta.ble.
huh ta.ble.
huhinl statistics. •••••
huhsta.t: print eomma.nd huhing statistics.
ha.ve to lea.ve. •••••••
heads. ••••••••
hex, a.seii dump.
hier: lie system hierarchy.
hierarchy. • ••••••
history event list. • • • •
history: print history event list.
hopefully interesting. ada.ge.
host. gethostid,
host.

• it -.

host. • •••••
bost.. •••••• •••••
boat. • ••••••
hoat. a.nd network byte order.
host description file. • •
host entry. lethostent, gethostbyaddr,
host na.me da.ta. bue.
hosi pbone number da.ta bue.
host ata.tus or local ma.chines.
host ,ystem. ••••••••

,etwd(3)
hea.d(l)
sbutdown(8)
esb(l)
etime(3)
time(3F)
ftsh(6)
aetjmp(3)
cab(l)
grof(l)
.....pb(lG)
If&pb(lG)
&prof(l)
plot(lG)
plot(3X)
plot(5)
lib2648(3X)
&repel)
vgrind(l)
chgrp(l)
,etplrp(2)
kiUPI(2)
setpcrp(2)
getgroups(2)
initgroups(3X)
setarou pst 2)
group(5)
letgrent(3)
&l"oup(5)
setregid(2)
aetuid(3)
,etuid(3F)
getgid(2)
groups(l)
cbown(2)
ma.ke(l)
groups(l)
worm(6)
.tty(SC)
esh(l)
reboot(2)
halt(S)
rmail(l)
regex(S)
hangman(6)
hangma.n(6)
vha.ngup(2)
cah(l)
cruh(8V)
pukeS)
liDk(2)
cah(l)
cah(l)
cah(l)
cah(l)
lea.ve(l)
pukeS)
odell
hier(7)
hier(7)
cah(l)
cah(l)
fortune(6)
,ethostid(2)
get.hostname(2)
lettable(8C)
hoatnm(SF)
uusend(lC)
byteorder(3n)
remote(o}
gethostent(3n)
hosta(5)
phones(5)
ruptime(IC)
hostid(l)

ICON INTERNATIONAL

(/

laaatname: set or priDt aame or curreDt
btable: convert. NrC dard Cormat

, .. table: let NrC Corm .. t
.,Yst.em.

pina: sed ICMP ECHO..REQUEST packet.a to network

uptime: show
TEACHJOVE - learn

llb2fU8: subrout.ines Cor the

baat and network b)'te order.
and network byte order. latonl.

wump: the g .. me or
sinh. cosh. tanh:

let.vg.

piDg: send
getpid: let proc.a

.. m ge queue. semaphore set. or ahared memory
setregid: set re'" and elective group

letgid. setegid. setrgid: set user and group
wboami: print elecUve current user

getuid. getgid: get user or ,roup
su: substitute user

Corm.

getpid. getppid: let proc-.
gethostid. setbostid: get/set unique

hostid: set or print
ident:

,etgid. getegid: get ,roup
getuid. geteuid: get user

setreuid: set re'" and elective user
perror. gerror.

bil: be noUlled
ev exec. exit. export. lo,in,/ ah. Cor. case.

uniCder: remove
.. bort: terminate abruptly with memory

core: Corml.t or memory
acore: let core
Dotiry: request

nohup: run command
implog:

implogd:
xstr: extract strings Crom C programs to

eyacc: modified yacc ... Iowing much
which: locate .. program Iile

Csync: aynchronize a Iile's
dump. dumpdu.:

dump:
r.tore:
indent:

tgetnum. taetllag. taetstr, tgoto, t.puts: termin'"
pt.x: permut.ed

bibliography. indxbib, lookbib: build inverted
objects.

at.rncl.t, attcmp, ItrDcmp, strcpy, st.rncpy. It.rlen.
last:

a,Ysc"'l:
rsplit: split a multi-rout.ine Fortran Iile int.o

bibliography. lind reCereaces in a bibliography.
inet..JnaoC, inet-Det.oC: lateraet address/

inet....a.ddr, inet.-network, ineLato&, ineLmakeaddr,
address/ inet..addr, inet-Detwork. iaet-Dtoa,

/inet.-Detwork, inet_ntoa, ineLmakeaddr, inetJaaor,
inet-DetoC: Internet address/ iaet..addr,

ICON INTERNATIONAL

Permuted Jndex

hOlt I1Bem. • •••••••••••••
bolt t.ables. ••••••••••••••
haat tables rrom a haat. •••••••••
haatid: let or print ideUIier oC current host
haatname: let or priat Dame or current host system.
hostam: aet name or curreat host.
hoets. ••••••••• ••
hosts: host name data base.
how long s,)'Stem has been up.
how to use the JOVE editor.
lIP 2fU8 araphica termin
bt.able: convert NlC standard Cormat host tables.
htonl, htons, ntohl. ntohs: convert v"'ues betwten
htons, atohl, ntohs: coavert v"'ues between bost
hunt: a multi-player multi-termin'" g .. me.
hunt-the-wumpus. •••••
hyperbolic Cunctions. •••••••
h,Ypot, cabs: Euclidean distance.
jargc: retura comm .. nd line arguments. • •••••
icheck: lie system storage coasisteaty check.
ICMP ECHO..REQUEST packets to network hosts.
ide •••••••••• ••
id; iperm: remove •••• •
ID. ••••••••••
JD. setuid, seteuid, setruid,
ide ••••••••••
10 or the caller.
id temporarily. •••••
idate. itime: return date or time in numerical
ident: identiry ftles. ••••••
ideatiScation. •••••••••
identiSer or current host.
identifier or current host system.
identify Sies. • ••
identity. • • • • • • • • • • • •
identity. • • • • • • • • • • •
m's. • ••••••••••••
ierrno: get system error messages.
if: condition'" stl.tement.
ir mail arrives and who it is rrom.
ir. while, I. '. break. continue. cd.
irconBg: conSgure network interrace parameters.
ifder'ed lines. •••••••• • • • • •
image. ••••••••••
image 6Je. • ••••••••
images of running processes.
immediate notiftcation. •••••
immune to hangups.
IMP log interpreter.
IMP logger process.
implement. shared st.rings.
implog: IMP log int.erpreter.
implogd: IMP logger process.
improved error recovery. ••
including "'iases and paths (c,II only l.
in-core stl.te with that on disk.
increment ... dump rormat.
iaerement ... Iile system dump.
iacremental Sle system restare.
indent and forml.t C program source.
indent: indent and rorml.t C program source.
iadependent operl.tion routines. tgetent, •
index. •• • • • • • • • • • • • • • • •
index ror a bibliogra.phy. find references in a
index. rindex, Inblnk. len: tell about character
index. rindex: string operations. strcat.
indicate last logins or users and teletypes.
indirect system c ... l. •• • • • • • • • • •
individu'" Iiles. • • • • • • • • • • • • •
iadxbib. look bib: build inverted index for a
inet..addr. inet_network, inet_ntoa. inet_makeaddr,
inetJnsof. inet_netor: Internet address/ •••••
ineLmueaddr. inet.Jnsor. inet_netor: Internet ••
inet_netor: Internet address manipUlation routines.
inet_network, inet_nto&, inet_makeaddr, inetJnaor,

haatname{l)
btable(8)
lettable{8C)
bcietid(l)
bost.name(l)
bostnm(SF)
piag(8)
hosts(o)
uptime(l)
teachjove(l}
llb2648(SX)
btable(8)
byteorder(Sn)
byteorder(Sn)
hunt(6)
wump(6)
sinh(SM)
h,Ypot(SM)
letara(SF)
icheck(8)
ping(8)
letpid(SF)
iperm(l)
setregid(2)
setuid(S)
wboami(l)
getuid(SF)
sU(l)
idate(SF)
ident(l)
letpid(2)
gethostid(2)
hostid(1)
ident{l)
getgid(2)
aetuid(2)
set.reuid(2)
perror(SF)
cah(l)
bill'(l)
sb(l)
irconSg(8C)
unirdef(l)
abort{SF)
core(o)
gcore(l)
cah(l)
cab(l)
imploa(SC)
implogd(8C)
xstr(l)
implog(8C)
implogd(8C)
eyacc(l)
whieb(l)
tsyne(2)
dump(o)
dump(8)
rest.ore(8)
iadent(l)
indent(l)
termcap(SX)
ptx(l)
lookbib(l)
index(SF)
strina(S)
lut(l)
syscall(2)
r.plit(l)
lookbib(l)
inet(Sn)
inet{3n)
inet{Sn)
~net{Sn)
Inet(3n)

xxxiii

Permuted luu

.. teraet. a4dr.a/ iaet..addr. iaet.-1Iet.worlt,
dllmp"': dum, lie ayatem

mt~: Multi-Lillt ,trUtioa
pac: prlal.er /pJd,ter &CCOllatiaa

whodas: .play
rice: prlat Joe m aDd other

aNllMle: &et.
nimee: aet

tstab: It.atie
maa: lind maDllai

doadist: progam to mate aad display
Biller: user

miscellaneous: miacellaneoua nellli

init: pl'OCtll control
joinlt: ch&Jl&e m I/O

taet: termiDai depeDdeDt
tt.)'II: termiDai

jDi~llpa:
coaDeet:

popeD, pclose:
,enerator; routin. for changing/ raadom, II'&IIdom,

ImiD, Imax, 'rac, dlmin, dllmax, dirac,
clrl: clear

fa,
read, ready: read

_lim: elimiDate .so's from nroll
scaDf, fseaDf, acaDf: formatted

uDgete: push eharact.er back into
fread, fwrit.e: buffered binary

stdio: standard bullered
ferror, feof, clearerr, IIleno: stream st.atus

refer: find and
luque, remque:

xxxiv

install:
binstl: program to

learn: computer aided
doctor:

jove: an
fset: file system consilt.ency check and

rortune: print a random, hopefully
cont, point, Iinemod, space, closepl: graphics

plot: graphics
tty: aeDerai terminal

ifconfia: coDfigure Detwork
telnet: user

slattach: att.ach serial lin. as network
sendmail: send mail over the

/inet_ntoa., iDet~ateaddr, inetJDaof, inet_netor:
Itpd:DARPA

spline:
imploa: IMP log

lisp: lisp
pti: phototypeeet.ter

px: Pascal
pix: Pascal
pi: Pascal

cah: a sheU (command
pipe: create an

ipes: report
atomically release blocked signals aDd wait for

onintr: proceas
intro:
intro:
iatro:
latro:
intro:
iDtro:
int.ro:

rcslntro:
intro:

«ID'lmands. intro:

iaet...Dtoa, iatt...makeaddr, fncUnd, inet-netot:
iatormat.iou. ••••••••
ial'ormatioD. •••••••••••
iDformation. ••••••••
iaformation about dose users.
iaformation about RCS Ill.. ••••
iaformation about raollrce utilizatioD.
iDformation about raource lltilizatiOD. •••••
information about the IIles)'lltems.
informatioD by keyworda; print out the maoual.
iarormation for MPS/DOS vdisks. • ••••
iarormatioa lookup procram.
iaformatioa paces. ••••••••
iait: proceas control iDitialization. ••
iai~IlPS: iDitia1ize group access list.
iait.ialiBtioD.
iait.ialiwloD.
iDltialiBtioD.
inltialiBtion dau..
iDltiaJize group access liat. •••
initiate a connection on a lOCket.
iait.iate I/O to/from a process. ••
iait.Aate. aet.Aate: bet.ter raodom number
inmax: return extreme values. • • •
i-aode. •••••••• •••••
inode: format of file system volume. •••••••
input. •••• • •
input. ••• ••
input coDversioD.
iDput stream.
input/output. ••••
iDput/output package.
inquiries. • •••••
iDsert literature referenc. iD doeumeDta.
insert/remove element from a queue.
iuque, remque: insert/remove element rrom a queue.
install binaries. • • • • • •
iDst.all boatloader on disk.
inst.all: iut.all binaries.
iDstruction about UNIX.
int.eract. with a psycboanalyst.
iDteractive display-oriented text editor. ••• ••
iDteractive repair. ••••••••
iDteresting, ada.ce. •••••••••••
iDterface. /erase, label, line, circle, arc, move,
iDterCace. ••••••• ••••
interrace. •••••••••• ••
int.erface parameters. •••••••••••••
interface to the TELNET protocol.
iDt.erraces. ••••••••••••
internet. ••••••••••••
Internet addreas manipulation routines.
Internet File Transfer Protocol aerver.
interpolate smooth curve.
interpreter.
interpreter. ••••••••••
iaterpreter. •••••
Interpreter. •••••
interpreter aDd executor.
interpreter eode traoslator.
interpreter) with C-Iikt syntax.
Interproeeas communicatioD channel.
iat.er-process communicat.ion facilit.ies stat.ua.
interrupt. .pause: ••••••••••
iDterrupta iD command scripts. ••••••••••••
int.roduction to commanda. •••••••••••••
introduction to compatibility library fUDctioDs.
int.roductioD to FORTRAN library funct.iona.
iatroduction to library funetions. ••••••
IntroductioD to matbematical library functions.
int.roduction to miscellaDcous library functions.
iDtroduction to network library functions.
introduction to RCS commands. • ••••••
introduction to aystem call, and error numbers.
IDt.roduction to system maiDtenance aDd operation

inet(3n)
dumprs(8)
mttys(5)
pac(8)
whodos(l)
r1oe(l)
getruaage(2)
vtimes(SC)
rstab(5)
maD(l)
dosdisk(8)
bger(l)
intro(7)
iait.(8)
iait.groups(3X)
iait.(8)
ioinit(3F)
tset(l)
t.t.ya(5)
iaitgroups(3X)
coDnect(2)
popeD(3)
raadom(S)
IImln(SF)
clri(8)
fs(5)
read(2)
soelim(l)
scanl'(3S)
uDgetc(3S)
rread(3S)
intro(3S)
ferror(3S)
refer(l)
insque(3)
Insque(3)
install(l)
blnstl(8)
iDstall(l)
learn(l)
doctor(6)
jove(l)
fsck(8)
fortune(6)
plot.(3X)
plot(S)
tty(4)
ircoDfig(8C)
telnet(IC)
slattach(8C)
seDdmail(8)
iDet(3n)
I\pd(8C)
spIiDe(IG)
implog(8C)
lisp(l)
pti(l)
pX(I)
pixel)
pi(l)
cah(l)
pipe(2)
ipcs(l)
.pause(2)
cah(l)
iDtro(l)
intro(3C)
iDtro(3F)
intro(S)
intro(3M)
intro(3X)
intro(3n)
rcsintro(l)
intro(2)
intro(8)

ICON INTERNATIONAL

/

Dcbeek: IfDerate umes from
ill .. biblio&rapby. iDdxbib,lookbib: build

t.read, twrite, trewiD, tat!p', &eLate: m tape
ioinit.: eltanle m

8Meet:'1Deb~Dou,
ioIt.&t: report.

popeD, pe1oae: iDltiAte

abared memory id.
It&tua.

rand, dl'lJl d,
isuc:ii:/ illJpbt., ilupper, iIIower, ildleit,

iIIpace, ilPUDct, ilprint, ileDtrl, isaaeil:/
illJnum, il&pace, ilpunet, ilpriDt, ileDtrl,

ttlDam,
ttynt.me,

(lldigit, i&alnum, il&pace, ilPUDet, ilprint,
ilentrl, isaacii:/ i&&Ipba., ilupper, iIlower,
ilprint, ileDtrl, inseil:/ ilalpba., ilupper,

/illower, ildigit, i&&Inum, il&paee, ilpunet,
/ilupper, iIlower, ildieit, ilalnum, iapace,
ilalpba., ilupper, iuower, ildigit, i&&Inum,

aystem:
ilpunet., i&print, ilcntrl, isaacii:/ i&aJpba,

idate,

jO,
jO, jl,

be: place
Ce: brine

joba: print current
atop: ball. a

kill: kill
Iprm: remove

jovvecover - recover
TEACH JOVE - learn how to use the

system/ editor crash.
msgs: system messaces and

kermit:

une: confieuration file for
vers: print version number of the

makekey: eenerate encryption
apropos: loeate commands by

man: find manual information by
prollie buft'ers.

kill:

bessel funMns: or two
dmem,

linemod, space, c1osepl:/ plot: opeDpl, erue,
awk: patwn seanniDS and proeeuine

be: wbitrary-preeiaioD withmetie
e8: ExteDded Fortran

let, Ihift, timflll, trap, umuk, wait: command
Cp: FUDetional Proarammine

Ycrindefs: "IViDd's
order.

frexp,

TEACHJOVE­
leave: remind you when 10U bave to

ICON INTERNATIONAL

exit:
index, rindex, Inblnk,

i-Dumbera. •••••••••••••••• •••
iDVerted index for a biblioga.phy, fiDd referenees
I/O. topen, teloae, ••
I/O initialization. •••
i/o multiplexine.
I/O ltat.ilties.
I/O to/from a process.
ioeU: control device. •••••
aDit: chanee f77 I/O initialization.
ioatat.: report I/O statistics.
ipcrm: remove a messace queue, semaphore set or
ipca: report. iDter-process commuDieation facilities
il'lJld: return random values. ••••••••
iIalnum, il&pace, ilpunct, ilprint, !scntrl,
ilalpba, ilupper, illower, iidieit, isalnum,
iaucii: ebvaeter clUlilleation macros. /ildicit,
iaatty: 8Dd Dame or a terminal port.
ilatty, tt7s1ot: 8nd Dame of a terminal.
iaeDtrl, isaaeii: cbaracter c1U1ifieation macros.
iadigit, iIalnum, iupace, ilpunet, isprint,
iIIower, ildieit, iaa\num, iupace, ilpunct, •
.print, ileDtrl, ilaseii: character eluaifieation/
.punet, ilprint, ilentrl, iaaseil: character/
iupace, .punct, ilprint, ilcntrl, llaseii:/
iuue a ahell command. •••••••••
ilupper, !slower, ildicit, !salnum, isspace,
itime: return date or time in numerical form.
jO, j1, jD, yO, 11, 1n: bessel functions.
jl, jn, yO, 11, 1n: bessel functions.
jD, yO, y1, yn: bessel functions.
job in backeround.
job into Coreeround.
job l!st. •••••
job or proeess.
jobs and processes.
jobs from the Une printer spooline queue. •••••••
jobs: print current job lilt. •••••
join: relational database operator.
jove: an interactive display-oriented text editor.
JOVE buft'ers after a system/editor crash.
JOVE editor. •••••••••••••
jovvecover - recover JOVE buft'ers al'ter a ••••••
junk mail program. •••••
kermit IIle transfer.
kermit: kermit file transfer.
kernel.
kernel. •••••••• ••
key. • ••••••••
keyword lookup.
keywords; print out the manual.
kgmon: eenerate a dump or the operating system's
kill jobs and processes.
kill: kill jobs and processes. •••••••••
kill: send a signal t.o s process. ••••••••
kill: send signal to a process. ••••••••
kill: terminate a process with extreme prejudice.
killpS: send sienal to a process croup.
kinds Cor iDteeer orders. •••••••
kmem: maiD memory. • • • • • • • • • •
label, Une, eirele, arc, move, cont, point,
"',u&&e. • ••••••••••••
laaau .. e. ••••.•••••••••
I.a.ncuaae. •••••••••••••
lansuace. /exit, export.,login, read, readonly,
laneulI&e compiler/interpreter. ••••••
laneu",e dellnition data bue. •••••••
lastcomm: show last commands executed in reverse
Id: link editor. ••••••••••••••
ldexp, modf: split into mantissa and exponent.
learn: eomputer aided instruetion about UNIX.
learn how to use the JOVE editor.
leave. •••••••••••••••••
leave: remind you when you have to leave. •••••••
leave abelL •••••• • • • • • • • • •
len: tell about character objects.

nebeek(8)
lookbib(l)
topen(3F)
ioinit{3F)
select(2)
iostat(l)
popen(3)
iocU(2)
ioinit(3F)
iostat(l)
ipcrm(l)
ipcs(l)
I'IJId(3F)
c:t.ype(3)
c:t.lpe(3)
etype(3)
t.tYDam(3F)
ttYDt.me(3)
c:t.ype(3)
etype(3)
etype(3)
c:t.ype(3)
c:t.ype(3)
etype(3)
system(3)
ctype(3)
idate(3F)
j0(3M)
j0(3M)
j0(3M)
cah(l)
cah(l)
cah(l)
cah(l)
cah(I)
Iprm(l)
cah(l)
join(l)
jove(l)
joveJeeover(l)
teac:hjove(I)
jov vecover(1)
map(l)
ktrmit(l)
kermit(l)
uxrc(8)
nrs(l)
makekey(8)
apropos(l)
man(l)
kemon(8)
cah(l)
eah(l)
kill(3F)
kill(2)
kill(l)
killpe(2)
bessel(3F)
mem(4)
plot(3X)
aWk(l)
bc(l)
e8(1)
ah(l)
fp(l)
Yarindefs(5)
lastcomm(l)
Id(l)
rrexp(3)
learn(l)
teachjove(I)
leave{l)
leave{l)
cah(l)
index(3F)

xxxv

xxxvi

nDcat.e: trUDcU.e .. II. to a apeciled

let: ,ueraklt' or
termiJlll.

raDlib: conert. arcbiy. to raadom
lorder: &ad orderiq rel»ioD tor aa object

v: archiYe
iatro: iatrochletioa to

iaw: iatroduction to compatibility
iatro: iDtreduction to FORTRAN

iaw: iatrodueUoD to mahematieal
latro: intreductioD to aetwork

iatro: iatroduetioD to mileeUaDeous
v: archlYe aDd

limit: liter p proe. reeouree
uDlimit: remoYe raovee

quota: display dlae ud
,etv" larae: ..-ura commud

• p&ee, cloaepl:1 plot: opeDpl, , label,
col: liter ,"ern

ayaline: display IJ'Item atat1lJ OD &tat.UI
Ipr: 01

Ipc:
Ipd:

cleaDIpd: clean
Iprm: remove jobs from tbe

lerue, la.bel, liDe. circle. arc. moYe. CODt, point.
bead: live lrat few

uDirdef: remove ifdered
alattacb: attach serial
comm: select or reject.

told: told lon,
uDiq: report repeated

look: And
rev: reverae

readlink: read value of a symbolic
Id:

Lout: Ulembler and

link: male a hard
aymlink: make symbolic

link: make a
In: make

lxref:
lisp:

liszt: compile a Fruz
&lob: Al.name expa.nd argument

history: print history event
jobs: print eurrent job

shin: manipulate a.rgument
,etaroups: get ,roup access

iDitgroupa: IniUllize group access
look: Bad Iins in a lOI1.ed

Dlist: let. enms I'rodl Dame
Dm: priat Dame

_groups: let croup access
aymorder: rearraale aa.me

Tararp: nriable Vlument.
Is:

dOidists:
foreach: loop oYer

users: compact
IiBten:

"ariad: &rind Diee

refer: And and insert

illdex, riadex,
bloa.d: prosraul t.o

leaat-h. • •••••••••••••••
let: ,eaerator or lexiell aallyais pfOll'&llll.
IexieaI analysis proara.ms. ••••••••
6b2648: aubrout.iD. tor tbe lIP !648 araphics
librari.. • •••••
library. •••••
(library) 81e rorma.t..
library functions.
library functions.
library rUDctions.
library rUDctions.
library tunctions.
library functions.
library mUDtaiDer.
limit.: alter per-proeas reeource limitations.
limitations.
limitiations. •••
limit.s.
line umeDt.s .
line. circle, vc. mon. CODt. point., IiDemod,
line reeds.
line or .. terminal.
liDe print.. • ••••••••
line printer coDtrol Prosr&m.
line priDter dumon.
line priDter dumon environment.
liDe printer spooling queue.
linemod, space. closepl: ar&phics interra.ce.
lines. •••••••••
liDes. •••••• ••••••••
lines u network interfac •.
lines common to two sorted Ales.
lin. for 8nite width output deviee.
lines in a. IIle.
lines in a. sorted lilt.
lines or a. tile.
link. • ••••
link editor.
link ediwr output.
link: ma.ke a. hud lint to a. 81e.
link: ma.ke a. lint w a.n existing file.
link to a. file. •••••
link to a tile. •••••
link to aD existing IIle.
links. ••••• •••
lint: a. C proaram veriller.
lisp cross refereDce progra.m.
lisp interpreter.
lisp: lisp interpreter.
Lisp proeram.
list.
list.
list.
list..
list.
list.
list.
list.
rllt.
liat. • ••••
list.
list. •
IiBt content.s or directory.
list or MPS /DOS virtual disks.
list or names. ••••••••
list of Ultfl who are on the system.
listen for connections on a. socket.
listen: listen for connections on a. socket.
listinp or proara.ms. •••••••
liszt: compile a. Franz Lisp program.
literature rererences in documents.
ID: make links. ••••••••••
Inhlnk, len: tell a.bout eharacter objeets.
loa.d standalone programs. •••••
loc: return tbe address of a.n object.

· ..

· . . .

· ..
. .

truDcate(2)
1ex(1)
lex(l)
lib2648(3X)
ranlib(l)
lorder(l)
ar(S)
intro(S)
iDtro(3C)

inSSF) illt 3M)
ia 3n)
iat ax)
ar(l)
caIl(l)

=m quot&{l)
pt.a.ra(SF)
plot(3X)
coI(l)
.yaline(l)
Ipr(l)
Ipc(8)
Ipd(8)
clea.nlpd(8)
Iprm(l)
plot.(3X)
bead(l)
unifder(l)
ala.t.ta.ch(8C)
comm{l)
fold(l)
uniq(l)
100k(l)
rev(l)
rea.dlink(2)
Id(l)
LOUt(O)
Iink(2)
link(3F)
link(2)
.ymlink(2)
link(SF)
1D(1)
lint(l)
beret(l)
lisp(l)
lisp(l)
liszt(l)
csh(l)
csh(l)
csb(l)
csh(l)
,etgroups(2)
iDiteroups(3X)
Iook(l)
Dlist(3)
nm(1)
setaroups(2)
aymorder(l)
nrarp(3)
Is{l}
doadisks(5)
esb(l)
1IJera(1)
listen(2)
listen(2)
v&rind(l)
liszt(l)
rerer(l)
In(l)
index(SF)
bloa.d(8)
loc{3F)

ICON INTERNATIONAL

. .. ~ ,

aad time &0 ASeD. etime,
(_08Iy). which:

apropos:
whereis:

eDd, etex.t, edat.a: last
8ock: apply or remove aa advisory

lockr: record
collect IYltem diICDoetic mt8llCes t.o form error

Iyllog, opeD los, closelOS: control Iystem
pmma:

imp\os:IMP
power, Iquare root. exp,

rlog: print
Iyllog:

eqUIft root. exp, log,
exp, log, loglO, pow, eqrt: exponential,

rwho: who's
implogd: IMP

lulh: 8ush output &0 a
tseek, ftell: reposition a lie on a

getc, fgetc: get a character trom a
p ute, tputc: writ.e a character 1.0 a fortran

rlogin: remote
ac:

getlos: get user's
,etlogi n: get

login:
passwd: change

/break, continue, cd, eval, exec, exit., export,
utmp, wtmp:

rlogind: remote
chah: change derault

lut: iDdicate last

letjmp,

lind rererences in a bibliography. indxbib,
apropos: locate commands by keyword

finger: user intormation
break: exit while/toreach

continue: cycle in
eDd: terminat.e

fortach:
library.

mklost+round: make a

queue.

bit: and, or, xor, Dot, rshift,
• t&t,
ltat,

time, etime,

as:
Standalone mode: definition of this Sanyo/ICON

ruptime: show hoet status or loea1
rwho: who'l logged in on local

m4:
alias: shell

ilprint, ilcDtrl, iaasc:ii: character classification
me: text formatting

translate version 6 maau&! macros to version 7
me:

man:
trmaa: tranllate ",rsion 6 muu&!

teopy: copy a

ICON INTERNATIONAL

Permute4 In4ez

loc:altime, ,mtime, asctime, timuone: convert date
locate a Pl'Olram file including ali_ aad paths
locate commaads by keyword lookup. • •••••
\ocate source, binary, and or maaual for Pl'Olram.
locations iD program. • • • • •
loc:k on an open file.
Jock: reserve a terminal.
lock(: record locking on files.
locking on files.
loa. dmesg:
loa· •••••••
loa gamma function.
lOS interpreter.
loe, loglO, pow, eqrt: exponential, logarithm,
loe mt8llCes aad other inrormation about. RCS lies.
loa .ystems messages. •••••••••••••
loalO, pow, .qrt: exponential, logarithm, power,
loearit.hm, power, square root.
loc&ed iD on local machines.
loc&er process.
Joaical unit.
logical unit.
loaical uDit.
lOIica1 unit.
login.
loein accounting.
1000n: login new user.
login name.
login name.
login new user.
login password.
login, read, readonly, set, shift, times, trap,/
loein records.
login server.
1000n ISbell. •• • •••
login: sign on.
logins or users and teletYPI!I5.
logout: end sl!I5sion. •••••
longjmp: non-local got.o.
look: find linl!l5 in a sorted list.
lookbib: build inverted index tor a bibliosraphy,
lookup.
lookup program.
loop.
loop. • ••••
loop. • ••••
loop over list or names.
lorder: find ordering rel&tion tor an object
loet+found direct.ory for fsck. • • • • • •
Ipc: line printer control program.
lpd: line printer daemon.
Ipq: spool queue examination program.
Ipr: 011' line print. ••••••••• • • • • • •
lprm: remove jobs trom the line printer spooling
Is: lilt contents or directory. • • • • • •
!seek: move read Iwrite pointer.
lahift bitwise tunctions.
latat, t.tat: get file stat.us .
latat, fstat: get file status.
!time, ,mLime: return system time.
lxreC: lisp cross reterence program.
mt: macro procl!l5SOr.
M68020 aeeembler.
machine operation mode ..
maehinl!l5.
machines.
maero processor.
macros. • • • • • • • • • • ••
m&eros. lisdigit, isalnum, isspace, ispunct,
macros. • •••••••••
macros. t.rman: ••••••
macros ror formatting papers.
macros to typeset manual.
macros 1.0 version 1 macros.
mag tape. • ••••••

eLime(3)
which(l)
apropos(l)
whereis(l)
end(3)
8ock(2)
loc:k(l)
Joc:tI'(3C)
loctl'(3C)
dmesg(8)
lJlS\og(3)
pmma(3M)
implog(8C)
exp(3M)
rlog(l)
.ysIog(8)
exp(3M)
exp(3M)
rwho(lC)
implogd(8C)
luah(3F)
fseek(3F)
getc(3F)
putc(3F)
rlogin(lC)
ae(8)
cah(l)
getlog(3F)
getlogin(3)
cah(l)
passwd(l)
sh(l)
utmp(fo)
rlogind(8C)
ehsh(l)
login(l)
last(l)
cah(l)
aetjmp(3)
Iook(l)
lookbib(l)
apropos(l)
flnger(l)

cah(11 cah(1
cab(l
eah(1
Iorder(l)
mklost+found(8)
Ipc(8)
Ipd(8)
lpq(l)
Ipr(l)
lprm(l)
1a(1)
laeek(2)
bit(3F)
ltat(2)
atat(3F)
t.ime(3F)
lxret(l)
m4(1)
aa(1)
staadalone(8)
ruptime(lC)
rwbo(lC)
mt(l)
cab(l)
etype(3)
me(7)
trman(l)
me(7}
man (7)
trmaa(l)
tcopy(l}

xxxvii

Permuted Intle:r

mt.:
I'mt.: remote

mail: MIl4 .. 4 Nftin
• code/decode a hin.". lie tor t.raaamilllioa via

DeIld, xaet. enroU: eeeret
aendhug:

mailaddr:
newa.liaaes: rebuild the data hue tor the

binmail: lend or reeeive
hill: be notilled ir
trom: who is my
prmail: print out

tmail: print out
lend mail: send

map: lyatem mlllasea IUId junk
rmail: handle remote

dmem, kmem:
make:

ar: archive IUId library
intro: introduction k) qatem

mkdir:
mkdir:

link:
link:

mklost+Cound:
mknod:

mktemp:
In:

Iymlink:
makedev:

ac:ript:
mUs: program to

allocator.
tbe mao ual.

Ihirt:
quota:

route: manually
mt: ml&netic tape

inetJnaor, inet..netor: Ioternet address
rrexp, Idexp, modr: split into

c:atman: create tbe ca.t Ilea ror tbe
lind manual information by keywords; print out tbe

man: macros to typeset
whereis: locate source, binary, a.nd or

manual. man: lind
trman: translate version 6

route:
umask: cbange or display Ble creation

sigsetmask: set current signal
umask: set IIle creation mode

mtstr: create a.n error m e lie by
intro: introduction to

eqn, ntqn, cbeckeq: tlPeset
letrlimit, aetrlimit: cootrol

ylimit: control

xxxviii

dis: an

bed: convert to antique
groups: sbow IrouP
dmem, kmem: main

malloc, Cree, realloc, c:aIloc, aIloca:
nlloc: aligned
shm«:tl: shared

dork: spawn new process in a virtual
remove a m e queue, semaphore aet or abared

abort: terminate abruptly with
eore: rormat or
shmop: shared

ahmget: get sbared

maanetic tape manipulating proanm.
maat.a.pe protoc:ol module. ••
mail. • ••••••••
mail. uuencode,uudecode:
mail. • ••••••••
mail a qstem bug report to .bad-buIS.
mail &ddresaing description.
mail aliases lie. ••••••
mail amonl usera. ••••••
mail arrives and wbo it is trom.
mail from!. • •••••••
mail ill the post olfice.
mail m ea, most recent IIrst.
mail over the internet.
mail program. • ••••
mail reetived via uucp. • ••.•
mail: send a.nd recein mail.
mail&ddr: mail addreaaing description.
main memory. •••••
maintain program groups. ••••••
maintainer. .' •••••••••••
maintenlUlce a.nd operation comma.nds.
I1I&ke a directory. ••• •
make a directory ale.
make a bard link to .. IIle.
I1I&ke .. link to .. n existing ale.
I1I&ke .. lost+Cound directory Cor rsck.
make a special IIle.
make .. unique Ble name.
I1I&ke links. •••••
I1I&ke: maintain program groups.
I1I&ke symbolic Iiok to aBle.
make system special Illes.
I1I&ke typescript or t.erminalaession.
I1I&ke UNIX IIle systems. •••••
I1I&kedev: make system Ipecialliles.
makekey: generate encryption key.
malloc, free, realloc. c:alloc, alloca: memory
man: lind manual inrormation by keywords; print out
I1I&n: macros to typeset manuai.
manipUlate argument list.
I1I&nipulate disk quotas.
ma.nipulate the routing tablea.
manipulating program. ••
manipulation routines. finet_ntoa, inet..makeaddr,
mantissa and exponent.
manual.
manual. man:
manual.
manual for program.
manual information by keywords; print out tbe
manual macros to version 7 macros.
manually manipUlate tbe routing tables.
mask.
mask. • •••••
mask. • •••••
m&IIIIacing C source.
mathematic:allibrary runctions.
I1I&thematica. •••••••
maximum qlt.em resource consumption.
maximum qatem resource consumption.
mc68020 disassembler.
me: macros ror formatting p .. pers.
media.
membersbips.
memory.
memory allocator.
memory allocator.
memory control operations.
memory elficient way.
memory id. ipcrm:
memory image. ••
memory imase file.
memory operations.
memory segment.

....

mt(l}
rmt(8C}
mall(l}
uuencode(IC)
Xltnd(l)
sendbug(l)
mailaddr(7)
newaliases(l)
hinmail(l)
bill(l)
trom(l)
prmail(l)
tmail(l)
Mndmail(8)
msp(l)
rmail(l)
mail(l)
mail&ddr(7)
mem(.)
make(l)
1I'(1)
intro(8)
mkdir(I)
mkdir(2)
link(2)
link(3F)
mklost+Cound(8)
mknod(2)
mktemp(3)
10(1)
make(I)
eymliok(2)
I1I&kedev (8)
script(l)
mUs(8)
I1I&kedev(8)
makekey(8)
I1I&l1oc(3)
man(l)
m .. n(7)
cab(l)
quota(2)
route(8C)
mt(l)
ioet(3n)
Crexp(3)
catman(8)
man(l)
I1I&n(7)
wbereis(l)
man(l)
trman(l)
route(8C)
cab(l)
sipetmask(2)
om&llk(2)
mbtr(l)
intro(3M)
eqn(l)
aet.rlimit(2)
v1imit(3C) :m
bed(6)
aroups(l)
mem(4)
malloc(3)
yalloc(3)
ahmctl(2)
vCork(2)
ipcrm(l)
abort{3F)
core(S)
sbmop(2)
sbmget(2)

ICON INTERNATIONAL

Yat&t: report Yinual
meree: ~ree-way lie

1OI't: tort or
raamerae:

pm"le: pueal lie

lDIIetI:
mbtr: create an error

ftC\'. reevfrom. recvlDIl: receive a
Hnd. sendto. sendlDll: send a

IIIIIOP:
lIIIIIet: let

ipcrm: remOTe a
error: analyze and disp .. se compiler error

meag: permit or deny
perror. IYlL.errlist. I)'l.-IIerr: 8f1tem error

perror. gerror. ierrno: get 8f1tem error
plignal. ays..IigJiat: 8ystem lilnal

11810&: log systems
map: IYltem

rlog: print log
tmail: print out mail

dmeag: collect Iystem diagnostic
mille: play

intro: introduction to
pages.

miscellaneous:

BOurce.

chmod: change
getty: set terminal

definition of this Sanyo/ICON machine operation
operation mode.. Standalone

umask: set file creation
chmod: change
cbmod: change

rrexp. Idexp.
touch: update date last

recovery. eyacc:
rmt: remote magtape protocol

what: show what versions of object
monitor. monstartup.

profile.

monop:
monitor.

tmail: printout mail m es.
eurses: screen functions with "optimal" cursor

mount. umount:
mount.. umount:

mtab:
plot: op.pl. trait. label. line. eircle. are.

mv:
IHek:

doscopyd:
doaprint:

program to create and display informat.ion for
dosdisb: list or

ICON INTERNATIONAL

Permuted Indez

memorYltatistics.
merge.
merle lies. • ••••
merle RCS revisions. ••
merge: three-way Jlle merge.
mtraer. • •••••••••
meag: permit or deny mesaages.
mesalle control operations.
messlle Jlle by massaging C BOurce.
messlle hom a lOCket.
malle from a lOCket. • •••••
mesalle operations. ••••••••
lDlllaae queue. ••••••••••
mess .. e queue. semaphore set or shared memory id.
ma .. es.
IlMUlies.
Dlalles.
~lIe&· ••••••••••
meaaaaes. • •••••
m_aces. • ••••••
mtlliles and junk mail program.
maalles and other information about RCS 61es.
malles. most recent first. • • • • • • • • •
IIItIIlles to rorm error log.
Mille Bournes. •••••
mille: play Mille Bournes.
miscellaneous library functions.
miscellaneous: miscellaneous useful information
miscellaneous useful information pages. •••••
mkdir: make a directory. •••••••••
mltdir: make a directory Ble. ••••••••
mkfa: program to make UNIX 61e systems.
mklost+found: make a lost+found directory for rsek.
mknod: build special Ble. •••• .• • • • • ••
mltnod: make a special file. ••••••••••
mit proto: construct a prototype file sfltem.
mbtr: create an error message file by massaging C
mktemp: make a unique file name. •
mode. ••••• • • • • • • • • • • e .•

mode. •••••••••••••••••
mode.. Standalone mode: ••••••••
mode: definition of this Sanyo/ICON machine •• •••
mode mask. • •••••••••••••
mode or a fiJe. ••••••••••••
mode or tile. • •••••••••••
modf: split into mantissa and exponent.
modified or a file. ••••••••••••••••••
modiBed yacc allowing much imprOVed error
module. ••••••••••• ••
modules were used to construct a Ille.
moncontrol: prepare execution proBle.
monitor. monstartup, moncontrol: prepare execution
monop: t.lonopoly game. •••••••••••
Monopoly game. ••••••••••••••••
monstartup. moncont.rol: prepare execution pro6le.
more. page: Ole- perussl Biter ror crt viewing.
IIIOIt recent flrst. •••••••••
IIlOtion. •••••••••••••••••
mount and dismount 61e system. •••••
mount or remove 61e system. • • • • • ••
mount. umount: mount and dismount file system.
mount. umount: mount or remove IIle system.
mounted Ble system table. ••••••••••••••
move. cont. point. Iinemod. space, closepl:/
move or rename 61es.
move read/write point.er.
MPS/DOS file copy daemon.
MPS/DOS spooler daemon.
MPS/DOS vdisks. dosdisk: •••••
MPS/DOS virtual disks.
ma: text formatting macra&.
maletl: message control operations.
mauet: get message queue.
maloP: messqe operations.
map: system messages and junk mail program.

.mstat(l)
merae(l)
1OI't(1)
l'CIIIIerle(1)
merge(l)
pmerle(l)
meag(l)
magctl(2)
mtstr(l)
recv(2)
Hnd(2)
magop(2)
maUet(2)
ipcrm(l)
error(l)
mesa(l)
perror(3)
perror(3F)
paignal(3)
I)'sI01(8)
map(l)
rlog(l)
t.mail(l)
dmesg(8)
milJe(6)
mille(6)
intro(3X)
intro(7)
intro(7)
mkdir(l)
mkdir(2)
mtrs(8)
mklost.+round(8)
mltnod(8)
mknod(2)
mltproto(8)
mtstr(l)
mktemp(3)
chmod(l)
getty(S)
Itandalone(8)
standalone(8)
umask(2)
chmod(3F)
chmod(2)
frexp(3)
touch(l)
eyaec(l)
rmt(8C)
what(l)
monitor(3)
monitor(3)
monop(6)
monop(6)
monitor(3)
more(l)
tmail(l)
curses(3X)
mount(8)
mount(2)
mount(8)
mount(2)
mtab(5)
plot(3X)
mV(I)
1He1t(2)
dOlCOpyd(S)
dospnnt(8)
doadislt(8)
dosdists(S)
ms(7)
malctl(2)
mauet(2)
magop(2)
map(l)

xxxix

Permtlfed Indez

mt: macnetic ~pe manipulating progra,m. •••••
mtab: mount.ed lit syst.tm ~bk.
mtt.ys: Mult.i.Link partition information.

e;raee: modUled 18« aIIowinc much improved mor rtcOYeI')'.
mtt.ys: Mult.i-Unk partition inrormation.

hnt: a mult.i·player multj..terminal game.
meet: I1nciaroDoUl i/o· multiplexing. ••••••••

t.pU .. : split a mult.i·routiDe Fortran IIle into individual Bles.
hunt: a muJti.pt.yer multi-terminal game.

mt.ch: mult.i-wa,y command brancb.

from: who is
get.diskbyname: get. disk description by it.a

lettn.,: .,alue ror environment
gttlog: let user's login

getlogin: get. login
let&oekname: get aoctet

mktemp: make a unique lUe
pWd: working directory

t.\;y: get terminal
hOi"': hOlt

networts: network
protocols: protocol

lItI'Yices: lItI'Yice
getpw: get

nlist: get entries rrom
nm: print

symorder: rearrange
rename: changt the

ttyname, isatty, ttyslot: Bnd
ttynam, isatty: lind

getpeername: get
gethostname, sethostname: get/set

hostnm: get
hostname: set or print

.PP dstrules: Daylight savings time and time zone
bind: bind a

foreach: loop over list ot
term: conventional

ncheck: generate

eqn,

my: mon or rename Bles.
my mail rrom?
name.
name.
name.
name.
name.
name.
name.
name.
name data base.
name data base.

. . .

name data base. ••••••
name data base.
name from uid.
name list. • •••••
name list.
name list.
name or a. Ble.
name or a terminal.
name ot a. terminal port.
name or connected peer.
name or current host.
name of current host.
name or current host system.
name rule file ..
name to a socket. •
na.mes. • ••••
names for terminals.
names rrom i-numbers.
nebeck: generate names from i-numbers.
neqn, cbeckeq: typeset mathematics.
netsta.t: show network st .. tus.
network. ••••••••••
network. • •••••••••
network byte order. htonl, htons,

...

rdump: IIle system dump across the
rrestore: restore a file system dump IItross the
ntohl, ntohs: convert values between host and

getnetbyname, &etDetent, endnetent: get
gethostbyname, 5ethostent, endbostent: get

ping: &end ICMP ECHO..REQUEST packets to
irconfig: conllgure

alattach: attacb serial lines as
intro: introduction to

networks:
routed:

ne ... tat: ahow

network entry. ,etnftent, getnetbyaddr,
network host entry. gethosteDt, gethostbya.ddr,
network hosts. •••••••

ereat: ereate a
open a. IIle for reading or writing, or create a.

newCa: construct a.
rork: create a
¥tork: apawn

login: login
adduaer: procedure ror adding

aliases IIle.

dbminit, retch, store, delete, Brstkey,
gettable: get

hiable: connrt
'rgrind:grind

(•• only).

only). nice,

network interface parameters.
network interfaces.
network library functions.
network name data base.
network routing daemon.
network status.
networks: network n .. me dua base.
Dew lie. • •••..••••
new lIe. open:
new lie ayst.em.
Dew proct8l. ••••••••••••
new process in a. virtual memory elicient way.
Dew user. ••••••••••••• ••
Dew ulers. •••••••••• •••••
newaJiases: rebuild the dua. base tor the mail
newfs: construct a new lUe system.
nmkey: dat .. base subroutines.
NlC rormat bost tables rrom .. host.
NlC standard rorma. .. host ~bles. ••
nice listings or progra.ms. •••••
nice, nohup: run a. comma.nd at low priority
nice: run low priority process.
nice: set program priority.
nliat: get entries from name list.
nm: print name list.
nobup: run a command a.t low priority (811

mt(l)
mta.b(5)
mttya(5)
ey&Cc(l)
mttys(S)
hunt(6)
mect(2)
raplit(l)
hunt(6)

cah(ll
mv(l
from I)
aetdisk(3X)
aet.env(S)
getlog(SF)
letlogin(S)
letaockname(2)
mkt.emp(3)
pWd(l)
ttY(I)
hosts(5)
networks(5)
protocols(S)
ae"icea(5)
getpw(3C)
nllst(S)
nmll)
symorder(1)
rena.me(2)
ttyname(3)
ttynam(3F)
getpeername(2)
,ethostname(2)
hostnm(SF)
hostname(l)
dstrules(5)
bind(2)
cab(l)
t.erm(7)
ncheck(8)
ncheck(8)
eqn(l)
netstat(l}
rdump(8C)
rrestore(8C)
byteorder(Sn)
getnetent(3n)
,etbostent(3n)
ping(8)
ifconfig(8C)
slattach(8C)
intro(Sn)
networks(5)
routedl8C)
netstat(l)
networ b(5)
creat(2)
open(!!)
aewra(8)
rort(2)
.rork(2)
cah(l)
addueer(8)
newaliases(l)
newra(8)
dbm(ax)
,ettable(8C)
ht.able(8)
vgrind(l)
niee(l)
cah(l)
nice(SC)
nlist(3)
nm(l)
nice(l)

xl ICON INTERNATIONAL

_jmp, Ioa&imp:
bit.: and, or, xor,

aotity: req •• immediate
bll: be

_lim: elimiaate .80'1 from
t.bl: format tables for

coIcrt.: liter

t.rol,
derotr: remove
ehecknr: ebeclt

Detworlt byte order. htonl, htoDa,
order. htonl, htoDS, atohl,

phoDes: remote host. phone
arit.hmetic: provide drill in

rand, arand: raDdom
raDdom, IrUidom, Inlt.lt.&te, aet.ltate: better rUidom

nrs: priDt version
atof, atoi, atol: convert ASCD to

IDtro: Introduction to Iystem calla aDd error
number: convert Arabic

idate, Itime: return date or time in
loc: return tbe address of an

long, ahort: integer
aize: aize or an

lorder: Bnd orderiD, relation for an
what: show what versions or

strinp: Bnd the printable strinp in a
index, rind ex, lnblnlt, len: tell about character

od:

prmail: print out mail in the post

nohup: run a command at low priority (811
program flle including aliases and paths (CIA

flle. open:
ropen, rreopen, rdopen:

8oek: apply or remove an advisory loclt on an
a new flle.

closedir: directory operations.
closedir: directory operationa. directory:

syslog,
conI., point, Iinemod, space, closepl:/ plot:

kamon: generate a dump or the
int.ro: introduction to system maintenance and
mode: definition or this Sanyo/ICON machine

t.getstr, tgoto, tputs: terminal independent
bcopy, bcmp, bzero, Ifs: bit and byte string

f.elldir, seeltdir, rewinddir, closedir: directory
telldir, seeltdir, rewinddir, elosedir: directory

magct.l: messqe control
magop: meaaage

semctl: semaphore control
semop: semaphore

shmctl: shared memory control
Ihmop: shared memory

arcpy, strncpy, strIen, Index, rindex: string
join: relational database

curses: screen functions with
rentl: Ble control

stty: set terminal
letsockopt, setsockopt: get Uld set

atobs: convert values between bOlt and aetworlt byte
laateomm: show last commaads executed in reverse

tac: concatenate and print files in reverse
lorder: ftnd

bessel functions: or two kinds for integer
vi: Icreen

a.out: assembler Uld Iinlt editor
terminate a proeess .ner Bushing Uly pending

eevt, fevt, gevt:

ICON INTERNATIONAL

Pf:rmutf:d l"dez

DObup: run command immune to bangups.
DOD-Jocall°to. •••••••••••••
aot, rshirt, labirt bitwise ranetions.
DOt.i8catioD. ••••••••••• •••
aotilled if mail arrives Ind who it 1& from.
aotiry: request immediate notillcation.
.rol iDput. • •••••••••
.roff or wi.
arolf output ror CRT pr",iewing. • • •
arolf: text rormatting. • • • • • • • •
nrotr: text. formatting and typesetting.
arotr, trol, tbl and eqn constructs. •
Drotr/t.rol Illes. • • • • • • • • • •
Dtohl, ntoha: convert values between host and
DtabS: convert values between host and networlt byte
DUO: data IiDk. •••• • • • • • • • • •
Dumber: coavert Arabic Dumerala to Englisb.
Dumber data. bue. •••••••••••
Dumber t&eta. •••••••••••••
Bumber laerator. ••••••••••••
Dumber ,enerator; rou~ines for cbUigiag ,enerators.
number or ~be kernel.
Dumbers.
Dumbers.
Dumerala to English.
Dumerical form.
object.
object convenion.
object Ille.
objec~ library. ••••••••••
object modules were used to construct a Ille.
objec~, or other binary, IIle.
objects. ••••••••••• ••
octal, decimal, bex, ascii dump. •••• ••
od: oet.al, decimal, hex, ascii dump.
otliet. •••••••••••••••••
onintr: process interrupts in comma.nd scripts.
only). njce, •••••••••••••••
only). which: locate a. •••••••••••
open a Ille for reading or writing, or create a new
open a stream. ••••••••••••••••
open flle. •••••••••••••••••
open: open a IIle for reading or writing, or erea.te
opendir, readdir, telldir, seekdir, rewinddir,
opendir, readdir, telldir, seekdir, rewinddir,
openlog, closelog: control system log.
open pi, erase, Ia.bel, line, eirele, are, move,
operat.ing system '5 prollie bulrers. •••••
operation commands. ••••••••••
operation mode.. Standalone •••••
operation routines. tgetent, tgetnum, tget.llag, •••••
operations. ••••••••••••
operations. opendir, readdir,
operations. directory: opendir, readdir,
operations. •••••
operat.ions.
operations.
operations.
operations.
operations.
operations. streat, strneat, strcmp, strnemp,
operator. ••••••
"optimal" cursor motion.
options. • ••••••
options. • ••••••
OptioDS on sockets.
order. htonl, btons, ntohl,
order. •• • • • • • • •
order. ••••••• ••
ordering relation ror an object. library.
orders. •••••••••••••
oriented (visual) display editor based on ex.
output.
output. exit:
output conversion.

cah(l}
aetjmp(3}
bit(3F)
cah(l)
bil(l)
cab(l)
_Iim(l)
t.bl(l)
coIert(l)
aroll(l)
t.roff(l}
derol(l)
chechr(l)
byteorder(Sn)
byteorder(Sn)
DUll(4)
number(6)
pbones(li)
arit.hmetic(6)
rud(SC)
rudom(S)
vera(l)
atol'(S)
iDtro(2)
number(6)
Idate(SF)
Joc(SF)
long(3F)
aize(l)
Jorder(l)
what(l)
strinp(1)
index(3F)
od(l)
od(l)
prmail(l)
esb(l)
niee(l)
whicb(l)
open(2)
fopen(SS)
6oek(2)
open(2)
directory(S)
directory(SX)
syalog(S)
plot(3X)
kamon(8)
intro(8)
standalone(8)
termeap(SX)
bat.ring(S)
directory(S)
directory (3X)
msgc:tl(2)
msgop(2)
semctl(2}
semop(2)
shmc:tl(2)
shmop(2)
string(S}
join(l)
eurses(SX)
rcnU(S)
sttY(l)
get.locltopt(2)
byteorder(Sn)
laateomm(l)
t.ac(l)
lorder(l}
beaSel(3F)
vi(l)
a.out(S)
exit(3)
eevt(3)

xli

xlii

prlatl. fpriatl, apriaU: formatted
told: told IoJaI Ii .. tor Illite widt.h

eoIcrt: liter Droll'
d08priDten: d4ltiaatiou tor spooled

1_:luh
toreach: loop

... dmail: ... d IIlIiI
t.rapM: tAp aad repair toatiq poiDt

ute:
dlowa: eha.n,e
elaOWD: eha.n&e

(luot: summarise lle l,JIItem

,lac: Had tOMP ECHO..,REQUEST
more,

WlleaiJe: set l,JIItem
pacaiH: prin~ l,JIItem

miaceJlaaeou: miaeeUaaeous useful iaFormatioa

t.k:
swa.poa: speeif.J additioaal deYice For

aocketpair: create a
me: maeroa For formatt.iDg

itcon8g: coaflaure aetwort iDterFa.ee

park: proaram to
mtt)'S: Multi-Link

pc:
pxref:

pdx:
pxp:

pmerse:
px:
pix:
pi:

,etpass: read a
paaawd: change Iolin

puswd:
vipw: edit tbe

letpwuid, getpwDam, Ittpwent, eDdpwent: get
getwd: get current working directory

getcwd: get
whieh: locate a program file includinl aliases and

grep, earep, farep: Itarch a IIle for a
awt:

popen,

getpcername: get name or connected
exit: terminate a process after flusbing any

mesg:
ptx:

limit: alter

1IltIII&es.
Iticky: executable II .. wit.b

more, pace: lie
,bODes: remote holt

,ti:
tc:

hosts.

tee:

bg:
Isb:

mille:
bogie:
worm:

out.put conversion. •••••
output. device. • • • • •
out.,ut. for CRT previewing.
output from SlPT ,rinters.
output to a logical unit.
over lilt of names. •••••
over t.be internet. •••••
overlow.. • •••••••••.••
overJa.y sbell witb specilled commaad.
""Btf.. ••••••••••• ••
owaer aad group or a IIle. •••••
owaerahip. • •••••••••••••
pac: ,riater/,Iotter accounting iaformation.

...

pactet.a to network bOlta. ••••• • • • • •
,ace: lie peruaal IUter for crt viewing.
paae me. • ...••.•.
Pile lilt. • ••••••••• ,.....
pacaiH: print l)'Stem ,ace lize. •••••
,acinator for tbe Tektronix 401 •.
Plliq and Iwappinl· ••••
,air of COllllected lOCk etl. ••••
papers. • •••••••
para.metera. •••••• • •
park: program to park the bard disk beads.
park tbe hard disk heads.
partition information. • •••
Pascal compiler. ••••••
Pa.seaI cross-reference program.
pa.seal debugger.
Pasea1 execution profiler.
pascal IIle merger.
Pascal interpreter. •
Pascal interpreter and executor.
Pa.seaI interpreter code translator.
paaawd: change login pusword.
puswd: pusword file.
pUlword.
pusword. • ••••••
password IIle. • • • • • •
pUlword file. • •••
pUlword IIle entry. getpwent, ••••••
path name. ••••••• •••
pathname or current working directory.
paths (c,1I only). ••••••••••••
pattern. •••••••••••••••
pattern scanning and processing language.
pause: stop until signal. ••••••
pc: Pascal compiler. •• • • • • ••
pclose: initiate I/O to/rrom a process.
pdx: pascal debugger.
peer. ••••••••
pending output.
permit or deny messages.
permuted index.
per- process resource limitations. ••
perror, aerror, ierrno: let system error messaces.
perror, Iy&..errlist, IYl-llerr: system error ••
penisteDt. text. ••••••••••••••
peruaal lliter for crt viewing. •••••••••
pbone number data. base. •••••••••
phonea: remote host pbone number data base.
phototypesetter interpreter. ••••••••
photoypeaetter simulator. •••••••••
pi: Pucal interpret.er code translator. • • •
,inl: Mnd IOMP ECHO..REQUEST packets to network •
pipe: create an illterproeess communication cbannel.
pi,e Jltting. ••••••••••
pix: Pucal interpreter and executor.
place job in ba.ekaround. • • • • •
play "Go Fish". •••••• • • • • •
play Mille Bournes. •••••
play the game or boggle. •••
Play t.he growing worm game.
plot: lraphic:s liters.

printf{3S)
fold(l)
coIcrt(l)
dosprillters(6)
lush(3F)
eah(l)
Mndmai\(8)
tApov(3F)
cab(l)
dlown(8)
cbown(2)
quot(8)
,ac(8)
piDa(8)
more(l)
ptpacesize(2)
pacesiu{l)
iDt.ro(7)
PlCaise(l)
t.Jt(I)
lWa,oll(S)
eoetet.pair(2)
me(7)
iteoullg(8C)
parkeS)
part(8)
mt.t1s(6)
pc(l)
'Pxrer(l)
pdx(l)
pxp(l)
pmerge(l)
,x(l)
pixel)
pill)

PUSWd(l}
puswd(5
,etpus(3
puswd(l)
pUlwd(li)
vipw(8)
,et,went(3)
getwd(3)
getcwd(3F)
whicb(l)
&rep(l)
aWk(l)
pauI8(30)
pc(l)
popen(3)
pdx(l)
letpeername(2)
exit(3)
mesg(l)
ptx(l)
eah(l)
perror(3F)
perror(3)
sticty(S)
more(l)
phones(5)
,honea(6)
,tiel)

~~~~ 
ping(8) 
pipe(2) 
tee(l) 
pix(l) 
eah(l) 
Isb(6) 
mille(6) 
bogIe(6) 
worm(6) 
plot(lG) 

ICON INTERNATIONAL 



(-. 
moYer cont, point., linemod.lPace, cIOMpl:/ 

Cpu: determine ,l'tStIIce fA t.he lIoat.ing 
trprpe, (peent: trap ud repair loat.ing 

/ trUe, label, line, circle, arc, moYe, cont, 
trapov: trap ud repair loating 

lleek: move read/write 
. popd: 

t.tlnam, iaatt.y: Ind name oC a t.erminal 
t.tltlpe: data base oC terminal tlPes by 

prmail: print. out mail in t.he 
root. exp, lOS, log10, 

exp, log, loglO, pow, Iqrt: exponential, logarit.bm, 
Dame rule Ble.. • 

print: 

prec: C 
monitor, monst.artup, DIOncontro1: 

rpu: determine 
colert: Biter Droll output Cor CRT 

types: 
eat: catenate and 

Ipr: 011' line 
Cortune: 

date: 
cal: 

hashstat: 
jobs: 

wboami: 
pr: 

tac: concatenate and 
rpr: 

history: 
bostid: set or 

ba.nner: 
Bles. rlog: 

nm: 
b08tname: 8et or 

prmail: 
t.mail: 

printenv: 
man: find ma.nual information by keywords; 

pstat: 
paaesize: 

vers: 
dietion,explain: 

explain, diction­
file. strings: find the 

banner: print large banner on 
print: pr to the 

printc&p: 
Ipc: line 
Ipd: line 

cleanlpd: deu line 
Iprm: remove jobs from the line 

pac: 
deatinat.ioDs tor spooled output rrom SLPT 

conversion. 
letpriorit.l: let/set program scheduling 

nice: set program 
Dice, nobup: run a commud a.t low 

renice: alter 
nice: run low 

dose: con neet to 
adduser: 

reboot: UNIX bootstrapping 
nice: run low priority 

ICON INTERNATIONAL 

Permuted lradez 

plot: lraphica interrace. ••••••• 
plot: openpl, erase, label, line, circle, arc, 
pmerge: pascal IIle merler. •••••• 
point coproeesaor. ••••••••• 
point, raults. •••••••••••• 
point, linemod, space, elOlepl: grapbica interrace. 
point overBow. ••••••• 
pointer. •••••••••••••••••••••• 
pop shell directory stack. ••••••• • 
popd: pop shell directory Itack. ••••• 
popen, pclOM: initiate I/O to/from a process. 
port.. ••••••••••••••• •• 
port. ••••••••••••••• •• 
poet otice. •••••• • • • • • • • •• 
pow, Iqrt.: exponential, logarithm, power, square 
power, aqaare root. •••••••••••••• 
PP dstrules: Daylight ... vinll time and t.ime zone 
pr: print lie. ••••• 
pr to t.he printer. •••• 
pree: C precedence chart. 
precedence chart. 
prepare execution profile. •• 
presence of the loating point coproceuor. 
previewing. •••••••• 
primitive system data types. •••••• 
print.. ••••••••••••••••• 
print. ••••••••••••••••• 
print a random, hopefully interesting, adaae. 
print and let the date. •••••• 
print calendar. •••••••••• 
print command huhing st&tisties. 
print current job list. 
print. ell'ective current user id. 
print file. ••••••• 
print files in reverse order. •• 
print Fortran Ille. ••••• 
print history event list. 
print identiller or current host system. 
print large banner on printer. 
print log messages and other information about ReS 
print. name list. ••••••••••••• 
print name of current host system. ••••• 
print out mail in the POll. oll'ice. ••••• 
print out mail messaaes, most recent Brst. 
print out the environment. 
print out the manual. •• 
print: pr to the printer. 
print syst.em facts. 
print system page size. 
print version number oC the kernel. 
print wordy sentences; thesaurus for diction. 
print wordy sentences; thesaurus for diction. 
printable strings in a object, or other binary, 
printesp: printer capability data. bue. 
printenv: print out the environment. 
printer. •••••••• •• 
printer. • ••••••••• 
printer capability data base. 
printer control program. ••• 
printer daemon. •••••• 
printer daemon environment. 
printer spooling queue. • • • 
printer/plotter accounting information. 
printers. dosprinters: ••• ~ • • • • • 
printf, fprintf, Iprintf: Cormatted output 
priority. get.priority, •• 
priority. •••••••• •• 
priority (fA only). ••• • • • 
priority or running processes. 
priority process. •••••• 

. . " . 
prmail: print out mail in the post office. 
proc/'JB6 system. • ••••• 
procedure for adding new users. 
procedures. 
process. • ••••••••• 

plot(5) 
plot(3X) 
pmerge(l) 
,pu(l) 
trpfpe(3F) 
plot{3X) 
trapov(3F) 
lseek(2) 
esb(l) 
esh(l) 
popen(3) 
t.tynam(3F) 
ttytype(5) 
prmail{l) 
exp{3M) 
exp(3M) 
datrules(5) 
pr{l) 
print{l) 
pree(7) 
pree(7) 
monitor(3) 
rpu(l) 
coIcrt(l) 
types(5) 
cat(l) 
Ipr(l) 
Cortune(6) 
date(l) 
calCl) 
cah(l) 
cah(l) 
wboami(l) 
pr{I) 
t.ac(I) 
rpr(I) 
csh(l) 
hOltid{l) 
banner(6) 
rlog(l) 
nm(l) 
bOltname(l) 
prmail(l) 
t.mail(l) 
printenv(I) 
man(l) 
print(l) 
pBt.a.t(8) 
paaesize(l) 
vers(l) 
dietion(l) 
explain(l) 
strings(l) 
printesp( 5) 
printenv(l) 
banner(6) 
print(l) 
printesp(5) 
Ipc(8) 
Ipd(8) 
cle&nlpd{8 ) 
Iprm(l) 
pac(8) 
dOlprinters(5) 
printl'(3S) 
letpriority(2) 
nice(3C) 
nic:e(l) 
renice(8) 
esb{l) 
prmail(l) 
dose(l) 
adduser(8) 
reboot(8) 
cab(l) 

xliii 



Pemuded Indez 

xliv 

Slop: laatt a job or 
.... t: &ermiaak a 
fork: enate a aew 

tort: creat.e a cop;, or UiI 
implosd: IMP Iouer 
kill: MIld aicaal to a 

WI: eelld a .. aat to a 
popea, pclose: blit.iat.e I/O to/from a 

wait: await comple&ioll or 
mt.: &ermiaate a 

ieit: 
,et-PIl'P: ,et 

killp&: eead lienat to a 
·Plrp: .. t 
ptpid:pt 

letpid,~pid:~ 
.fort: tspWJl aew 

oalDtr: 
pa: 

timea: get 
wait, wait3: wait. for 

wait: wait for a 
pt.raee: 

till:t.ermiDat.ea 
exit: termillat.e 

kill: kill joba and 
gcore: get eon im",ea or run Ding 

reniee: alter priority or run Ding 
wait: wait for backll'ound 
awk: pat.tern sCaDoing and 

halt: atop tbe 
11K: macro 

reboot: reboot s;,stem or halt 

monitor, mODltartup, mODcootrol: prepare execution 
proftl: executioD time 

kgmon: generate a dump or tbe operating syatem's 
gprof: display elil grapb 

prof': display 
pxp: Puelli execution 
copy: staDdaione copy 

end, etext, edat&: last locations in 
ftnger: user information lookup 

ft.p: ftle transfer 
lint: compile a Franz Lisp 

Ipe: line printer control 
Ipq: spool queue examination 

lxrer: lisp eroaa reference 
mags: system meaaages and junk mall 

mt: magnetic tape ma.nipulat.ing 
pxret: PascaJ cl'088-reference 

rdist: remo\.e ftle diskibution 
tn.,: trivjaJ lit traDsfer 

unita: conversioD 
wberels: locate source, binary, and or lII&Dual for 

cb:C 
only). which: 10eaU a 

make: lIlIiatain 
aice: Itt 

letpriority, aetpriori\y: get/eet. 
indeDt: iadent and format C 
MPS/DOS vdisks.. dosdisk: 

binBtI: 
bloact. 
mkfs: 
park: 

uaert: 
liat: a C 

fp: FunetioDal 
bload: PfOll'am to load standaloDe 

lex: leDerator of lexieli analysis 
struct: structure FortraD 

vgriDd: griDd Diee listiDp or 
Dtr: extract. striDg. from C 

proceaa. 
proce88. 
,roeiIa. •••• 
preeeas. 
proce88. 
proeeaa. 
proceaa. 
proceaa. 
proc ... 
proceaa after Bushing any pendiDg output. 
....... Vol initialization. 
proceaa group. 
proceaa group. 
proceaa group. 
proctD id. 
proceaa jdeatilQl.ioD. 
proce88 ia a. Tirtual memOl'1 diCient way. 
proceaa illternlpta in command scripta. 
procaa atatUl. 
proctII times. 
proeeaa to t.erminate. 
proceaa to terminate. 
proceaa trace. • • • • • 
proceaa witb extreme prejudice. 
proceaa with status. 
proceaaes. 
proceaaes. 
proceaacs. 

. . . . 
proceaaes to complete. 
proceaaing langu",e. 
proceaaor. 
processor. 
processor. 
pror: display prollie data. 
prolll: execution time prolile. 
proftle. • •••••• 
prollie. 
protUe buffers. 
,rolne data. 
profile data. 
proftler. 
proeram. 
progr.am. 
procram. 
procram. 
program. 
program. 
program. 
program. 
program. 
program. 
program. 
program. 
program. 
program. 
Pl'Oll'am. 

. .. 

J1'OSr&I'D beautifier. • • • • • 
prccram Ille iacluding aliases and patbs (ella 
procra.m lI'oups. •••••• 
program priority. ••• • • • • • • • • • 
Pl'OII'am scheduling priority. 
procram source. ••••• 
program to creat.e and displa.y information for 
program to iDltall bootloader on disk. 
procram to load atandalOlle programs. 
Pl'Oll'am to make UNIX ftle systems. 
Pl'OII'am to park tbe bard dislt beads. 
prccram l'erification. ••••••• 
program l'erifi~r. ••••••••• 
PfOII'ammiDg language compiler linterpreter. 
procrams. 
programs. 
programs. 
programs. 
prccrams to impitment shared st.rings. 

. ... 
. . . . . . 
.. 

cab(l) 
exit(2) 
fork(2) 
lork(3F) 
implogd(8C) 
kill(2) 
WI(3F) 
popen(3) 
waitt!) 

:::~:/ 
getpgrp(2) 
killpg(2) 
.plI'p(2) 
get,id(3F) 
letpid(2) 
dork(2) 
csh(l) 
pa(l) 
times(3C) 
wait(2) 
wait(3F) 
ptraee(2) 
kill(l) 
exit.(3F) 
cab(l) 
lcore(!) 
reniee(S) 
cab(l) 
awk(l) 
balt.(S) 
m4(1) 
reboot(2) 
prol'(l) 
proBI(2) 
moDitor(3) 
prolll(2) 
kamoD(S) 
gprot(l) 
prol'(l) 
pxp(l) 
copy(S) 
end(3) 
fiDler(l) 
ftp(IC) 
liszt(l} 
Ipc(S) 
Ipq(l) 
Ixref(l) 
map(I) 
mt(l) 
pxref(l) 
rdist(I) 
tft.p(lC) 
unita(I) 
whereia(l) 
eb(l) 
which(l) 
make(l) 
niee(3C) 
letpriority(2) 
iDdent(l) 
cbdiBk(S) 
biDStJ(S) 
bloa.d(8) 
mkra(8) 
,ark(S) 
assert(3X) 
IiDt(l) 
'p(l) 
bload(8) 
1ex(1) 
,trllet(l) 
l'griDd(l) 
xstr(l) 

ICON INTERNATIONAL 

\ 
) 

./ 



teJDet: 1IHI' laterrace to 'he TELNET 
letprotobynBlPe, IetprotoeDt, eadprotoent: let 

rmt,: remote maaLape 
protocols: 

ftpd: DARPA Interaet. File Tra.a5l'er 
'einet.d: DARPA TELNET 

If\pd: DARPA Trivial File Trusfer 
trpt.: t.raasliterate 

mkproto: coDstruct D 
arithmetic: 
false, true: 
true, false: 

doctor: iDteract with a 

uDgetc: 
pushd: 

puu, fpuu: 
pute, putchar, fpute, putw: 

unit. 
on a stream. 

stream. putc, 

putc, putchar, fputc, 

insqul!, remque: insert/remove element from a 
Iprm: remove jobs from the line printer spooling 

maget: get message 
Ipq: spool 

iperm: remove a message 
qsort: 
qsort: 

quotacheck: IIle system 

quotaon, 
011. 

edquota: edit user 
quota: manipulate disk 

rep quota: summarize 
setquota: enable/disable 

quotaon, quotaoll: turn Ille system 

rain: aaimated 

fortuDe: print a. 
r&nUb: convert &rchives to 

rud, srand: 
ra.ndom, Ifaadom, iDiutate, seuta.te: beUer 

number ,eDerator; routines for chDging/ 
raad, dr&nd, irand: return 

ratfor: 

stream to a remote command. 

ICON INTERNATIONAL 

resiDtro: introduction to 
rcallle: format of 

Permuted Indez 

protocol. •••••••••••••••• •• teIDet.(IC) 
letprotoent(3D) 
rmt(8C) 
protocols( 5) 
ftpd(8C) 
telnetd(8C) 
If\pd(SC) 
trpt(8C) 
protocols(5 ) 
mltproto(8) 
aritbmetic(6) 
false(l) 

protocol entry. aetprotoeDt, getprotobYDumber, 
protocol module. 
protocol nBlPe data. base. 
Protocol server. 
protocol server. 
Protocol Berver. 
protocol trace. 
protocolll: protocol name data. base. 
prototype IIle system. 
provide drill iD numt,er facts. 
provide trutb values. 
provide truth values. 
pi: process statuB. ••••• 
plicna.l, sys~gJist: system signal messa&es. 
pstat: print system facts. 
psycbOl.nalyst. ••••••• 
pti: phototypesetter interpret.er. 
ptrace: process trace. 
ptx: permuted index. • • • 
pUlh eb&racter back into input strea.m. 
pusb shell directory staclt. ••••• 
pusbd: pusb Ihell directory stack. • • 
put a. It-ring on a. strea.m. ••••• 
put cha.ra.eter or word on a. stream. 
putc, fputc: write a chara.cter to a fortran logical 
putc, putebar, fput,e, putw: put character or word 
putch&r, fputc, putw: put character or word on a 
puts, fputl: put a string on a. stream. 
putw: put character or word on a strea.m. 
pwd: working directory na.me. 
px: Pascal in terpreter. • • • • • • • 
pxp: Pascal execution prollier. 
pxref: Pascal cross-reference program. 
qsort: quick sort. 
qsort: quicker sort. 
queue. • • • • • 
queue. ••••• 
queue. • •••• 

true(l) 
p8(1) 
p8ignal(3) 
pltat(8) 
doctor(6) 
pti(l) 
ptrace(2) 
ptx(l) 
ungete(3S) 
cab(l) 

'. cah(l) 
put.a(3S) 
puu(3S) 
putc(3F) 
putc(3S) 
putc(3S) 
puu(3S) 
putc(3S) 
pWd(l) 
pxCI) 
pxp(l) 
pxref(l) 
qsort(SF) 
qsort(3) 
insque(3) 
lprm(l) 

queue examination program. • • • • • • • • • 
maget(2) 
Ipq(l) 
ipcrm(l) queue, semapbore set, or shared memory id. 

quick sort. •••••••••••• 
quieker sort. ••••••••••• 
quiz: test your knowledge. ••••• 
quot: summarize file system ownersbip. 
quota consisteney checker. ••• •• 
quota: display disc uS8&e and limitl. 
quota: manipulate disk quotas. • 
quotacheck: file system quota consisteDcy cbeclter. 
quotaoll: turn file system quotas on and 011. 
quo~aon. quotaoll: turn file system quotas on and 
quotas. • •••••• 
quotas. • •••••• 
quotas for a file system. 
quotas on a file system. 
quotas on aad '011. 
rain: a.nimated raindrops display. 
raindrops display. ••••••••• 
raad, drand, iraad: return random values. 
raad, sraad: random number generator. 
raadom, hoperully interesting, adage. 
random libraries. •••••••••••• 
rudom Dumber generator. •••••••••• 
rudom Dumber generator; routines for cb ... ging/ 
raadom, srandom, initlta.te, se~state: better random 
r&Ddom values. • • • • • • • • • • • • • 
raalib: convert &rcbives to random libraries. 
rufor: rational Fortran dialect. ••••• 
rational Fortraa dialect. ••••••••• 
rc: command acript. for auto-reboot aad daemons. 
rcmd, rresvport, ruserok: routines for returning a 
rcp: remote Ille copy. 
res: cbange RCS file attributes. 
RCS commands. 
ReS file. • •••••••• 

qaort(3F) 
qaort(3) 
quiz(6) 
quotl8) 
quotacheck(8) 
quota(l) 
quota(2) 
quotaebeclt(8 ) 
quotaon(8) 
quotaon(8) 
edquota(8) 
quota(2) 
repquota(8) 
letquota(2) 
quotaon(S) 
rain(6) 
rsiD(6) 
raad(3F) 
raad(3C) 
rortune(6) 
raaJib(l) 
rand (3C) 
raadom(3) 
raadom(3) 
rud(3F) 
raalib(l) 
ratror(l) 
ratror(l) 
re(S) 
remd(3X) 
rep(lC) 
rcs{l) 
rcsintro{l) 
rcafile(S) 

xlv 



Pcrrm"" 1.4c% 

xlvi 

rea: elwl&e 
IeCItorca: huild 
eecstorea:bt&ild 

print 10& meuaaea ud other iRformat.ioa &boat 
. ei: cheet ill 

eo: cheet out 
readil: compare 
ream .... e:m .... e 

ptp .. : 
8Owce: 

read, ready: 
leontinue, ed, eval, exec, exit, export, ioIin, 

readUnk: 
directory operations. opendir, 

direc:tol')' operations. directory: opeadir, 
open: opea a lie for 

eommudl /cd, .val, exec, exit, export, login, read, 
read, 

laeek: move 
setrecid: set 
setreuid: let 
malloc, free, 

Iymorder: 

reboot: 

rutboot, fast halt.: 
newaliases: 

recv, reevfrom, reevmsg: 
mail: lend and 

bin mail: lend or 
rmail: bandle remote mail 

tmail: print out mail m_ages, most 

rehash: 
loekr: 

utmp, wtmp: Joain 
jove...recover -

eyace: modified yaec allowing much improved error 
lOCket. 

reev, 
recv, recvrrom, 

.val: 
re..comp, 

documents. 
beref: lisp cross 

build inverted index for a bibliocrapby, find 
refer: And and ialert literature 

re..eDmp, re,..exec: 

eomm: .eleet or 
lorder: lad orderin, 

pa: 
liepause: atomically 

strip: remove I1mbola and 
leave: 

calendar: 
ruaerok: routines for returning a Itream to a 

rexec: return Itream to a 
rexeed: 

rep: 
rdist: 

uUlend: lend a file to a 
remote: 
phones: 
rlocin: 

rloaind: 

RCS lie attributes. •• 
RCS lie from SCCS file. 
RCS lie from SCCS file. ••••• 
RCS lies. rloa: 
RCS reviaious. 
RCS revilloas. •••••• 
RCS reviaioas. 
RCS revlaioas. ••••••• 
rcadil: compare RCS revisions. •••••• 
realle: format of RCS 81e. •••••• 
reaintro: iatroduetion to RCS commaada. 
l'CIIDel'Ie: meree RCS reviaioDl. ••••• 
rdiat: remote lie dist.ribution program. •• 
rdump: lie aystem dump across t.he network. 
read a paaaword. ............ . 
read commaada from lie. •••••••• 
read iDput. • ................... .. 
read, readonly, set, shift, times, trap, umuk,/ 
read, reach: read input. ••••••••• 
read yalue of a I1mbolic link. •••••• 
readdir. Wldir, leekdir, rewinddir, cloaedir: 
readdir. \elldir, ieekdir, rewinddir, cloaedir: 
readia, or writing, or create a new file. ••••• 
readliak: read value of .. Iymbolic link. •• 
readonly. set, Ihift. times, tr .. p, umuk, wait: 
ready: read input. 
read/write pointer. ••••••••• 
real ud elective group ID. •••••• 
real ud elective user ID's. ••••• 
realloc, ealloc, alloca: memory allocator. 
rearrug. name list. •• • • • • • • • 
reboot: reboot system or halt processor. 
reboot system or halt processor. 
reboot: UNIX bootstrapping proeedures. ••••• 
reboot/halt the system without checking the disks. 
rebuild t.be data bue for tbemail aliases file. 
receive a message rrom a socket. 
recei ve mail. ••••• 
receive mail among users. 
received via uucp. • • • • • • 
recent first. ••••• • • • • • • 
re..comp, re..exec: regular expression hudler. 
recompute command buh table. ••••• 
record locking oa files. ••••••••• 
reeords. ••••••••••••••••••• 
recover JOVE buffers ..rter a system/editor cruh. 
recovery. •••••••••••••••• •• 
reev, recvrrom, reevmsg: reeein a message from a 
recvrrom, reevmsg: receive a message (rom a socket.. 
reevmsg: receive a message (rom a socket. 
re-evaluate shell data. ••••••••• 
re..exec: regular expression bandler. 
refer: lind and insert literature references in 
reference program. ••••••••••• 
references in a bibliograpby. indxbib,lookbib: 
references in documents. ••••••• 
reaular expression bandler. •• • ••• 
reht.l!h: recompute command buh table. 
reject linea common to two sorted files. 
relation ror u object library. 
relational databue operator. ••••• 
rel .... blocked signals aad wait (or int.errupt. 
reloc .. tion bits. •••••••••• 
remind you when you have to leave. 
reminder service. •••••••• 
remote command. rcmd, rre8vport, 
remote command. • ••••• 
remote execution server. • ••• 
remote lIe copy. ••••••• 
remote Ble distribution proaram. 
remote host. ••••••••• 
remote host description file. • • 
remot.e host. phone number data bue. 
remote login. •• • • • • • 
remote Joain server. ••••••••• 

rce{l) 
ICCItorce{l) 
aeestores( 8) 
rloc(l) 
ci(l) 
eo(l) 
readitJ(l) 
resmerse{ 1) 
readitJ(l) 
realle(o) 
reaiatro(l) 
reamerge(l) 
rdist(l) 
rdump(8C) 
.etpus(3) 
cab(l) 
read(2) 
0(1) 
read(2) 
readlink(2) 
directory(3 ) 
directory(3X) 
open(2) 
readlink(2) 
sb(l) 
read(2) 
lseek(2) 
aet.regid( 2) 
setreuid(2) 
malloc(3) 
lymorder(l) 
reboot(2) 
reboot(2) 
reboot(8) 
fastboot(8) 
newaliues{l) 
reev(2) 
mail(l) 
binmail(l) 
rmail(l) 
tmail(l) 
reaex(3) 
cab(l) 
loekl'(3C) 
ut.mp(o) 
jove..reeover(l) 
eyace(l) 
recv(2) 
recv(2) 
recv(2) 
cah(l) 
regex(3) 
refer(l) 
beret(l) 
lookbib(l) 
refer(l) 
recex(3) 
eah(1) 
comm(l) 
lorder(l) 
joia(l) 
liepause(2) 
strip(l) 
leave(l) 
calendar(l) 

:l:i/ 
rexeed{8C) 
rep{lC) 
rdist(l} 
uusend{lC) 
remote(o) 
phones(o) 
rlogin(lC) 
riolind(8C) 

ICON INTERNATIONAL 

'\ 

J 



(~. 

rmt: 
rmail: bandle 

nb: 
nbd: 

tip, eu: eonnect. to a 
talkd: 

unlink: 
rmdir: 

memOl7 id. ipcrm: 
unaliu: 

lock: apply or 
c:oIrm: 

unlink: 
unletenv: 

mount, umount.: mount or 
unitdet: 

Iprm: 
derolF: 

unlimit: 
strip: 

rmdir, rm: 
rm, rmdir: 

inlQue, 
rename: 

mv: move or 

tsck: file system consistency check and interactive 
trptpe, tpeent.: trap and 

trapov: trap and 
while: 

uniq: report 
repeat: execute command 

yes: be 
status. ipes: 

iostat: 
uniq: 

send bug: mail a system bug 
vmstat: 

bugfiler: file bug 
tseek, nell: 

tseek, nell, rewind: 

notiry: 
lock: 

remote magtape protocol module. •• 
remote mail received via uuep. 
remote: remote lIost description file. 
nlnOte abell. ••••••••••• 
remote sbell stl'ver. •••••••• 
reDlDk 81ltem. ••••••••• 
remote user communication server. 
remove a directory entry. •••••• 
remove a directory file. •••••• 
remove a message queue, lemapbore let or abared 
relDOye aliases. ••••••••••• 
remove an advisory lock on an open file. 
remove eolumna trom a 81e. 
remove directory entry. 
remove environment variables. 
remove 81e IYltem. ••••• 
remove irdet'ed lines. 
remove joba trom t.be line printer Ipoolin8 queue. 
remove nrolF, trolF, tbl and eqn constructs. 
remove resource Iimitiations. 
remove Iymbols and relocation bits. • • • • 
remove (unlink) directories or flies. 
remove (unlink) files or directories. 
remque: insert/remove element trom a queue. 
rename a lile. •••••••••• 
rename: change the name ot a file. 
rename 81es. •••••••••••••• 
rename: rename a IIle. •••••• 
renice: alter priority or running proee&les. 
repair. ••••••••••• 
repair Boating point taults. 
repair floating point overllow. 
repeat commands conditionally. 
repeat: execute command repeatedly. 
repeated lines in a ftle. 
repeatedly. ••••••••••• 
repetitively alfirmative. •••••• 
report inter-process communication tacilities 
report 1/0 sta.tisties. 
report repeated lines in a ftle. 
report to 4bsd-bugs. 
report virtual memory statisties. 
reports in tolders automatically. 
reposition a file on a logical unit. 
reposition a stream. •• • • • • 
r.pquota: summarize quotas tor a file system. 
request immediate notification. •••••• 
reserve a terminal. ••••••••••• 
reset: reset the teletype bits to a sensible state. 

Permuted lndez 

rmt{8C) 
rmail(l) 
remote(5) 
nb(IC) 
nbd{8C) 
tip(IC) 
taltd(8C) 
unlink(3F) 
rmdir(2) 
iperm(l) 
csb{l) 
Bock (2) 
c:oIrm(l) 
unlink(2) 
csb(l) 
mount(2) 
unirdet(l) 
Iprm(l) 
derolF(l) 
csb(l} 
strip(l) 
rmdir(l} 
rm{l} 
inaque(3) 
rename(3F) 
rename(2) 
mV(I) 
rename(3F) 
renice(8) 
fack(8) 
trptpe(3F) 
tra.pov( 3F) 
cah(l) 
csb(l) 
uniq(l) 
csh(l) 

reset: 
getrlimit, setrlimit: control maximum system 

vii mit: control maximum system 
limit: alter per- process 

unlimit: remove 
getrusage: get inrormation about 

vtimes: get. inrormation about 
restore: increment.aI file sYltem 

rrestore: 

reset the teletype bits to a sensible state. • •••• 

yes(l) 
ipca(l) 
iostat(l) 
uniq(l) 
&endbug(l) 
vmsta.t(l) 
buglller(8) 
taeek(3F) 
fseek(3S) 
repquota(8) 
cah(l) 
lock(l) 
reset.{l) 
reset(l) 
,etrlimit(:!) 
vlimit(3C) 
cab(l) 

luspend: suspend asbell, 
8etarg, iar8e: 

tdate: 
idate, it.ime: 

etime, dUme: 
flmin, flmax, 'rae, dflmin, dflmax, dlFrac, in max: 

rand, drand, irand: 
rexee: 

Ume, etime, Itime, 8mtime: 
loc: 

rcmd, rresvport, ruserok: routines ror 

resource consumption. 
resource consumpt.ion. 
resource limitations. 
resource limitiations. 
resource utilization. 
resource utilization. 
restore. • •••• 
restore a file system dump across the network. 
restore: incremental file .ystem restore. 
resumin8 its superior. •••••••••• 
return command line arguments. 
return date and time in an ASCII string. 
return date or time in numerical rorm. 
return elapsed execution time. 
return extreme values. •••••• 
return random values. •••••• 
return It.rea.m to a. remote command. 
return system time. •••••••• 
return the address or an object. 
returning a stream to a remote command. 
rev: reverse lines or a IIle. 

eol: filter reverse line reeds. • 
rev: reverse lines ot a. file. 

lastcomm: sbow luI. commands executed in reverse order. 
t.ac: concat.enate and print files in reverse order. 

ICON INTERNATIONAL 

cah(l) 
getrusaae(2) 
vtimes(3C) 
restore(8) 
rrestore( 8C) 
restore(8) 
cab(l) 
getarg(3F) 
fdate(3F) 
idate(3F) 
etime(3F) 
flmin(3F) 
rand(3F) 
rexee{3X) 
time(3F) 
1oc(3F) 
remd(3X) 
rev('I.} 
col(l} 
revel) 
lastcomm(l) 
tae(l) 

xlvii 



Perm.'ed l.i.ez 

xlviii 

ei: cMck itt ReS 
.eo: daeek out RCS 

hid!': eomp.,. RCS 
1'eIIIIerp: lIltI'&e RCS 

fleek, W, 
opeadir, rtaddir, WkIir, .. kdir, 

director)': opeadir, rtaddir, WIIdir, aeekdir, 

ittdex, 
at.remp, atracmp, strepl, lloraCPI, itrIea,lRdex, 

about RCS II .. 

t'lDdir, 

rat, 

robots: I,ht of villainOUI 

pow, .qrt: exponential, loprithm, power, aqUIn 
chroot: chance 

ineLDltof: Internet addr .. manipulation 
tgoto, tputs: terminal independent operation 

Iet.tate: better random number leDerator; 
command. remd, rresvpor!., ruserok: 

routed: network 
route: manually manipulate the 

Detwork. 
to a remote command. remd, 

bi!.: and, or, xor, not, 
dstrules: Daylight savings time and time zone name 

nice, nohup: 
Dohup: 

Dice: 
rofbib: 

,core: let core lmaces or 
renice: alter priority of 

remote command. rcmd, rresvport, 

Standalone mode: deloition or t.hia 
.PP datrules: Daylight 

brk, 
ICUdir: 

awk: pMtern 
aec:stores: build RCS lie hom 
aec:stores: build RCS lie from 

alarm: 
cetpriority, aetpriority: let/set procram 

elear:eleartermiaal 
curses: 
ex. "i: 

rc: command 

oaiatr: process interrupts in command 
&reP, eareP, rcrep: 

Xlend,xcet,earoU: 

opendir, readdir, telldir, 

Iftiaionl. 
leYiIioas. 
leY_lIS. 
miIio.... • • • • 
rewind: l'epOIitioJl a Itream. 

. ..... 
rewiDddir, eIoeedir: directory operatioas. 
rewiaddir, eIoeedir: directory operations. 
nxee: return .t.ream to a remote c:ommand. 
rexecd: remote execution server. • ••••• 
riadex, lablak, lea: tell about character objects. 
riadex: atriA& operations. .treat, straeat, 
riot: prillt los me&l&&es and other inrormation 
rIosia: remote JoajD. • ••••••••• 
rJoajlld: remok Joajn server. ••••••• 
rat: remon (uaJink) direet.ories or 81es. 
rat, nadir: remove (unlink) 8les or directories. 
rmail: handle remok mail received via uucp. 
rmdir: remove .. directory 81e. • ••••• 
rmdir: relDOVe(uDlink) 81. or directories. •• 
nndir, rm: remove (unlink) directories or 81es. 
rmt: remote mactape protocol module. 
robotI. •••••••••••••• •• 
robots: bht of villainous robots. ••••• 
rofbib: run of bib!iosraphic database. 
que: Explorinl The Dunleons of Doom. 
root. exp, Ioc, IOSlO. •••••••••• 
root direetory. •••••••••••• 
route: manually manipulate the routing tables. 
routed: Bet-work rouUnl daemon. •••••• 
roUtiB •. /iBet..ntoa. inet..makeaddr, inet..JnlOf, 
rout.in •. tgttent, tgetnum, tget811, tget.str, 
routines for cbaneinl generators. /init.state, 
rout.inll ror returning a stream to a remote 
routiDI daemon. •••••••••••• 
routing tables.. ••••••••••••• 
rrestore: ratore a 81e system dump &cross the •• 
rresvport, ruserok: routines ror returning a stream 
rsh: remote sb ell. •••••• 
rsbd: remote shell server. •••••• 
rshirt, IsbiJ't bitwise functions. 
rule file... .PP •••••••••••••••• 
run a command at low priority (,A only). 
run command immune to hangups. 
run low priority process. 
run olr bibliocraphie database. 
funninl proc .. es. ••••• 
running processes. ••••• • • • • 
ruptime: show host status of local machines. 
ruserok: routines ror returning a stream to a 
rwho: who's lOlled in on local machinll. 
rwhod: system status server. ••••••• 
sa., accton: system accounting. •••••• 
Sanyo/ICON machine operation mode .. 
savings time and t.ime zone name rule 8Ie .. 
sbrk: chanle data selment lize. ••••• 
ICUl a. directory. •••••••••••• 
ICUdir: lean a directory. ••••••• 
ICUlr, rscanr, Meanr: rormatted input conversion. 
.cannin, and proc .. inllanguage. 
sees ft.le. • •••••••••••• 
sees flle. •••••••••••••• 
sccatares: build RCS Ille rrom SCCS lie. 
aecstores: build RCS ftle rrom SCCS 81e. 
lehedule signal arter specifted time. 
lehedulinl priority. ••••••••• 
screeD. ••••••••••••• ••• 
lereen runctions wit.h "optimal" cursor motion. 
screen oriented (visuaJ) display editor based on 
leript for auto-reboot and daemons. 
script: make typescript of terminal Illsion. 
scripts. ••••••••• 
search a ftle for a pattern. ••••••• 
Iteret mail. •••••••••••••• 
sed: stream editor. • • • • • • • • 
seekdlr, rewinddlr, closedir: directory operations. 

... 

ci(l) 
00(1) 
rcaditr(l) 
resmerge(l) 
fseek(3S) 
directory(S) 
director)'(3X) 
rexee(3X) 
rexeed(8C) 
index(3F) 
strine(3) 
rloc(l) 
rJoajB(lC) 
rJoaind(SC) 
rmdir(l) 
nn(l) 
nnail(l) 
nndir(:!) 
nn(l) . 
rmdir(l) 
rmt(8C) 
robots(6) 
robots(6) 
rotrbib(l) 
roeue(6) 
Bp{SM) 
ehroot,(2) 
route(8C) 
routed(8C) 
iBet(Sn) 
termeap(3X) 
random(3) 
rcmd(3X) 
routed(8C) 
route(8C) 
rrestore(8C) 
remd(SX) 
rsh(lC) 
rshd(8C) 
bit(3F) 
dstrules( 5) 
oiee(J) 
cah(l) 
cah(l) 
rolrbib(l) 
,core(l) 
renice(8) 
ruptime(lC) 
remd(3X) 
rwho(lC) 
rwhod(8C) 
8&(8) 
atandalone(8) 
dstrules( 5) 
brk(2) 
sea.ndir(3 ) 
ICUdir(3) 
1CUl1'(3S) 
aWk(l) 
seestorcs( 1 ) 
leestares{ 8) 
aec:starcs( 1 ) 
aec:storcs{8 ) 
alarm(3C) 
&etpriority(2) 
elear(l) 
curses(ax) 
Yi(l) 
rc(8) 
seript(l) 
cah(l) 
crep(l) 
Dend(l) 
sed{l) 
directory(3 ) 

ICON INTERNATIONAL 

/ 

\. 
/ 



( 

directory: opeadir, naddir, telldir, 
Ihqet.: ,et.1iaared memory 

brk, Ibrk: chaace data 
comm: 

cue: 
semct): 
semop: 

ipcrm: remove a message queue, 
semeet: get set 01' 

uUlend: 
seod, leDdto, send mag: 

kUl: 
mail: 
piDg: 

send mail: 
binmail: 

lOCket. 
kill: 

killpg: 

aliaaea: aliaaea lIIe for 

lend, seDdto, 
lend, 

reaet: reset the teletype bits to a 
diction,explain: print wordy 

explain, diction- print wordy 
aJattach: attach 

cornaat: biff 
ftpd: DARPA Internet File Transfer Protocol 

rexecd: remote execution 
rlogind: remote login 

rshd: remote shell 
rwhod: system status 

talkd: remote uler communication 
telnetd: DARPA TELNET protocol 

tftpd: DARPA Trivial File Transfer Protocol 

logout: end 
script: make typescript or terminal 

aacii: map of ASCD character 
stty, gtty: 

sigstack: 

sigsetmuk: 
umuk: 
uti me: 

utimes: 
setgroups: 

apply: apply a. comma.nd to a. 
semget: get 

getsockopt, aetsoekopt: get and 
bostid: 

bostname: 
il>crm: remove a message queue, semapbore 

setp8l'P: 
Dice: 

Iet.regid: 
setreuid: 

eval, exec, exit, eccport, 1000n, read, readonly, 
letty: 
stty: 
t.aba: 

date: print. and 
sfdate: 

setuid, seteuid, set.ruid, setgid, set.egid, setrgid: 
setenv: 

a stream. 
stream. setbuf, 

setuid, seteuid, setruid, setgid, 

ICON INTERNATIONAL 

Pennuted Indez 

aeekdir, rewinddir, closedir: direetory operations. 
HlmeDt. • ••••••••••••••• 
seamen t aize. •••••••• • • • • • • • 
Mleet. or reject linea commoo to t.wo IOrted 61es. 
select.: synchronous i/o mult.iplexing. 
selector in switch. ••••• 
semapbore control operations. 
semaphore opera.tions. 
semaphore let or sbared memory id. 
Hmaphores. • •••••••••• 
semctl: semapbore cont.rol operations. 
seqet: let. set. 01' semapbores. 
semop: semapbore operations. 
send a lIe to a remote host. 
send a message (rom a socket. 
send a signal to a process. 
lend and receive mail. 
send ICMP ECHO..REQUEST packets to network bosts. 
send mail over the internet. ••••••• 
seod or receive mail among users. • •••• 
seod, lend to, seDdmsg: lend a messaae from a 
send sigaa! to a process. ••••••••• 
send lianal to a process group. ••••••• ••••• 
seDdbul: mail a SYltem bUI report to 4bsd-bugs. 
leodmail. ••••••••••••• 
sendmail: send mail over tbe internet. ••••• 
send mag: send a mess .. e (rom a. socket. 
send to, sendmlg: send a message from a socket.. 
sensible sta.te. ••••••• 
sentences; tbesaurus for diction. 
sentences; thesaurus for diction. 
serial lines u network interfaces. ••• ••• 
server. 
server. 
server. 
server. 
server. 
server. 
server. 
server. 
server. 
services: service na.me data base. 
session. 
aeaaion. •••••••••• 
let. • • . • • • • • • • 
let. and get terminal state (defunct). 
set and/or get sianal stack context. 
let: cba.nge value of shell variable. 
let current signal mask. 
aet file crea.tion mode muk. 
set file times. 
set 51e times. 
set group access list. 
set of arguments. 
set of sema.phores. • • • • • • • • • 
set options on socket.s. • • • • • • • • • 
set or print identifier of current host system. 
set or print name of current host. system. 
set. or Ibared memory id. 
iet process grou p. ••••• 
set prosram priority. 
set real and elective group ID. 
set real and elective U8er ID's. 
set, sbift, times, trap, umask, wait: command/ lcd, 
set terminal mode. 
set terminal options. 
set. terminal tabs. • 
set the date. • • 
set tbe t.ime/date of a file. 
set U8er and group ID. 
set variable in environment. 
sef..buf, letbuffer, setlinebuf: assign buffering to 
aetbulrer, set.linebur: assign buffering to a 
setegid, letrgid: set user &nd group ID. 
setenv: set variable in environment. 

directory(3X) 
8hmget.(2) 
brk(2) 
comm(l) 
select(2) 
cab(l) 
semctl(2) 
lemop(2) 
ipcrm(l) 
lemeet(2) 
semetl(2) 
semeet(2) 
semop(2) 
llusend(lC) 
send(2) 
kill(3F) 
mail(l) 
pin,(8) 
sendmail(8) 
binmail(l) 
send(2) 
kiU(2) 
killpg(2) 
sendbug(l) 
aliues(5) 
lendmail(8) 
Stnd(2) 
send(2) 
reset(l) 
diction(l) 
a:plain( 1) 
II&ttach(8C) 
comsat(8C) 
ftpd(SC) 
rexecd(8C) 
rlocind(8C) 
rsbd(8C) 
rwbod(8C) 
talkd(8C) 
telnetd(8C) 
tftpd(SC) 
services( 5) 
cab(l) 
Icriptel) 
ucii(7) 
Itty(3C) 
sigstack(2) 
cab(l) 
ligset.muk(2) 
umask(2) 
utime(3C) 
utimes(2} 
setgrou ps( 2) 
apply(l) 
semget,(2) 
getsoekopt( 2) 
hostid(l) 
hostna.me(l) 
iperm(l) 
setp8l'p(2) 
Dice(3C) 
setregid(2) 
set.reuid(2) 
Ib(l) 
letty(8) 
att,(I) 
tabs(l) 
date{l) 
sfdate(l) 
setuid(3) 
cah(l) 
setbuf(3S) 
set.but(3S) 
setuid(3) 
cab(l) 

xlix 



Pennded luez 

user ud goap ID ..... uid. 
entry. letrseDt, 1eU'IIPec, 1 ..... 1 .. leU'atype, 

aetuid, nteuid. setruid. 
ptgrent, letaraid, letarnam. 

&ethoatent,gethoatb1addr, pboatbYDame, 
bOlt. getboatid. 

letboatname, 
getitimer, 

crypt, 
. .. tbur, setbufrer, 

letaetent,getnetbyaddr, &etnetbyname, 

letpriority, 
getprotoent, getprotobynumber, &etprot.obyname, 

&et.pweDt, getpwuid, getpwnam, 

aetuid, aeteuid, setruid, .. tgid, aete&id, 
consumptioD. &etrlimit, 

grou\, m. setuid, seteuid, 
getse"eDt, getse"byport, &etservb1Dame, 

getaoekopt, 
ror changiDg/ random, &random, initsta.te, 

gettimeofday, 
set user aDd group !D. 

continue, cd, eval, lXee, exit, export, login,/ 
shmetl: 

iperm: remove a messlI&e queue, aemaphore set or 
shmop: 

sbmcet: get 
xst,r: extract strings rrom C programs to Implement 

ehsb: cbuge derault login 
exit: leave 

rsb: remote 
system: issue a 

csb: a 
eval: re-evaluate 

popd: pop 
pushd: pusb 

alias: 
suspeDd:suspend a 

rsbd: remote 
set: ehuge value or 

@: aritbmetic on 
unset: discard 

exec: overlay 

/exec. exit. export. login. read. readonly, set. 

long, 
croups: 

ruptime: 
uptime: 

Iuteomm: 
netsta.t: 
uusnap: 

eonstruct a 81e. wbat: 
shutdown: 

connection. 

login: 
pause: atop unt.i1 

signal: change tbe action ror a 
alarm: scbedule 

signal: simpli8ed IOl't.ware 
aigvee: lOft.ware 

si&setmuk: set current 

set.euid, aetruid. setgid, set.egid, aetrgid: set 
aeU'seDt. endtstDt: get lie ayatem descriptor lie 
setgid, aetegid, setrgid: set user and group ID. 
aetgrent. endgreDt: get group lile eDtry. 
aetgroll pa: set grou p ACcess list. ••• • • • • 
sethOltent, endhoatent: get Detwork hoat eDtry. 
set,hOltid: get/set unique identifier of curreDt 
sethoatDame: get/aet name of current hoat. 
aet.itimer: get/set value or inte"al timer. 
aetjmp, Iongjmp: Don-loca1goto. ••••• 
aetkeY. eDcrypt:DES encryption. 
IeWDebut: lllign buleriDg to a stream • 
aetnetent. endDetent,: set Detwork eDtry. 
aetpgrp: set proc:ess group. •••••• ••• 
aetpriority: set/set program ac:heduling priorit1. 
aetprotoeat, eadprot.oent: let protocol eDtry. • 
aetpwent, endpweDt: get p&Sllword 8le eDtry. 
eetquota: enable/disable quotas 011 a lie system. 
setregid: set real and elective group m. 
aetreuid: set real and efrective user ID's. 
setrgid: set user .and group m. 
aetrlimlt.: control maximum system resource 
Ittruid,eetgid, .. tegid, setrgid: set user and 
aetserYent, endservent: get service entry. •• 
setsoc:kopt: get and set, options on sockets. • 
setst.ate: bett.er random number generator; routines 
set.t1meorday: get/set. date and time. 
setuid, seteuid, aetruid, setgid, setegid, aetrgid: 
afdate: aet the time/date or a file. •• 
sh. ror, case, ir, while, I, ., break, 
ahared memory control operations. 
ahared memory id. 
ahared memory operations. 
shared memory segment. 
shared strings. 
ahell. • •••• 
shell. • •••• 
shell. • •••• 
ahell command. ......"...... 
shell (eomm&nd interpreter) with C-liIte syntax. 
sbell dat&. • ••• 
shell directory stack. 
abell directory stack. 
sbell macros. •••• 
shell, resuming its superior. 
sbell ae"er. 
sbell variable. 
ahell vari&bles. 
shell variables. 
shell witb specified command. 

... 

shirt: manipulate argument list. • •••• 
shirt, times, trap, umask, wait: command language. 
shmct.l: ahared memory control operationa. 
shmget: get sbared memory segment. 
shmop: sbared memory operations. 
short: integer object conversion. 
show group memberships. • •••• 
show host atatus or local machines. 
show how longl1stem bas been up. • • • • 
show lilt commands executed in reverse order. 
show network status. ••••••••••••• 
show snapahot or the WCP system. ••••• 
show what versions or object modules were used to 
shut down part or a rull-duplex connection. 
shutdown: close down t.he system at a given time. 
shutdown: abut down part or a ruU-duplex 
sigblock: block signals. 
sign on. 
signal. ••••••• 
signal. """""" 
signal a.ft.er specified time. 
signal: change the a.ction for a signal. 
signal racilities. 
signal facilities. 
signal mask. 

setuid(3) 
getraent(3X) 
aetuid(S) 
cetgrent(3) 
..tgroups(2) 
gethoatent(3n) 
gethoat.id(2) 
&ethoatname(2} 
get.itimer(2} 
aetjmp(3) 
erypt(3) 
aetbur(3S) 
cetnetent(3n} 
aetpgrp(2) 
letpriority(2) 
getprotoent(3n) 
&etpweDt(S) 
eetquota(2) 
aetregid( 2) 
setreuid(2) 
aetuid(3) 
letrlimit(2) 
setuid(3) 
setservent(3n) 
letsockopt(2) 
rudom(3) 
gettimeorday(2) 
setuid(3) 
afdate(l) 
sh{l) 
shmctl(2) 
iperm(l) 
shmop(2) 
shmcet(2) 
Xltr(l) 
cbah(l) 
csh(l) 
rsh{IC) 
aystem(S) 

CSh(ll csh(l 
csh(l 
\lIh(1 
\lIh(l) 
csh(l} 
rshd(SC) 
cah(l) 
csh(l) 
cah(l) 
csh(l) 
cah(l} 
sh(l) 
ahmctl(2) 
shmcet(2) 
shmop(2) 
long(3F) 
aroups(l) 
ruptime(IC) 
uptime(l} 
Jastcomm(l) 
netsta.t( I} 
lJuanap(SC) 
what(l) 
shutdown(2) 
shutdown(S) 
Ihutdown{2} 
sigbloc;k(2} 
login{l) 
pauae{3C) 
aignal{SF) 
alarm(3C) 
signal(SF) 
aigna1(SC) 
sigvec(2) 
sigsetmask(2) 

ICON INTERNATIONAL 

/ 

" \ 
) 



psipaJ, a.JU&list: ayst.em 

Iiptack: Itt ud/or let 
till: aend 

till: Hnd a 
tillPI: send 

lieblock: block 
liepauae: atomically releue blocked 

wait. for interrupt. 

qnal: 
t.c: pbotoypeset.ter 

t.riaonometric functions. 

null: data 
brk, abrk: cbuge data aeament 

getdt.ablesize: get descriptor table 
getpacesize: get syst.em paae 
pacesize: print syst.em pace 

aize: 

interfaces. 

dosprintera: destinations Cor spooled out.put. trom 
spline: interpolate 

uusnap: show 
snake, 

accept: accept a connection on a 
bind: bind a name to a 

connect: initiate a connection on a 
listen: listen tor connections on a 

recv, recvrrom, recvmsg: receive a message rrom a 
lend, sendto, sendmsg: send a message trom a 

getsoctname: get 

getsockopt, setsockopt: get and set options on 
socketpair: create a pair or connected 

signal: simplified 
sigvec: 

can&eld, crscores: the 
qsort: quicker 

qsort: quick 
taort: topological 

sortbib: 
sort: 

comm: aelect or reject lines common to two 
look: Bud Hnes in a 

aoelim: eliminate 
soelim: eliminate . 

indent: indent and Cormat C program 
mkstr: create an error message &le by maualing C 

wbereis: locate 

line, cirde, are, move, CODt, pciDt, linemod, 
expud, uDexpand: expand tabs to 

way. vtork: 
exec: overlay ahell with 

truDcate: truncate a &Ie to a 
alarm: schedule signal after 

alarm: execute a subroutine after a 
IwapOD: 
awapon: 

ICON INTERNATIONAL 

spell, 
apell, spellin, spellout: find 

spell, spellin, 

JDe~vted lndez 

lienal messages. •••••••••• •• 
lienal: simplilled software qnal tacilities. 
silnal atack context. 
qnal to a process. 
qnal to a process. 
signal to a process group. 
lianals. ••• •••• 
signals and wait tor interrupt. 
sigpause: atomically release blocked signals and 
liaaetmask: set. current signal mask. 
siptack: set. ud/or get. signal stack CODt.ext. 
sigvec: software qnal tacilities. 
simplilled software sisnal tacilities. 
limulator. •••••••••• 
sin, cas, tan, asin, &COl, atan, at.an2: 
sinh, cosh, t.anh: byperbolic runctions. 
sink. 
size. 
size. 
size. 
size. 
size or an object. IIle. 
size: size or an object lilt. 
slattach: attach serial lines as network 

. . . . 
sleep: suspend execution tor an interval. ••••• 
sleep: suspend execution tor an interval. 
sleep: suspend execution tor interval. 
SLPT printers. •••••••••••••••• 
Imooth curve. •••••••••• 
sDake, snscore: display chase game. 
snapshot ot the WCP ,ystem. 
snscore: display chase same. 
socket. 
socket. 
socket. 
socket. 
socket. 
socket. 
socket: create an endpoint ror communication. ••• •• 
socket name. •• • • • • • • • • • • • • 
socketpair: create a pair or connected sockets. 
aoekets. •••••••••••••• 
sockets. ••••••••••••• 
_lim: eliminate .so's rrom nroff input. 
sortware signal racilities. 
software signal racilities. 
solitaire card game canfield. 
sort. 
sort. 
sort. ••••••••• 
sort bibliographic dlLtabase. 
IOrt or mergt files. 
sort: sort or merge Illes. 
sortbib: sort bibliographic database. 
sorted files. ...... 
sorted list. •••••• 
.IO'S trom Drolr input. 
so's Crom Drolr input. 
8Ource. • •••••• 
lOuree. ••••• •• 
source, binary, and or manual ror program. 
source: read commands trom IIle. ••••• 
space, closepl: graphics interface. /ffrase, label, 
spaces, and yice versa. ••••••••••• 
spawn new process in a yirtual memory etrieient 
specilled command. 
specilled length. 
Ipecilled time. 
specified time. 
Ipeciry a swap directory. 
specify additional deyiee ror paging and swapping. 
spell, spellin, spellout: lind spelling errors. 
spellin, .pellout: lind spelling errors. 
spelling errors. ••••••• 
spellout: &nd spelling errors. 

psignal(3) 
aignal(3C) 
siptact(2) 
till(2) 
kil1(3F) 
tillpg(2) 
sigblock(2) 
qpauae(2) 
ligpause( 2) 
liaaetmask(2) 
liaatack( 2) 
qyec(2) 
qnal(3C) 
t.e(l) 
lin(3M) 
linh(3M) 
nUll(4) 
brk(2) 
Setdtablesize(2) 
letpagesize(2) 
pacesize(l) 
'!Ze(l) 
..ze(l) 
slattach(8C) 
sleep(l) 
aleep(3F) 
aleep(3) 
dosprinters(S) 
spline(IG) 
.DUe(6) 
uUlnap(8C) 
IDue(6) 
accept(2) 
bind(2) 
coDDect(2) 
Iisten(2) 
reev(2) 
send(2) 
soctet(2) 
getsockname(2) 
socketpair(2) 
getsockopt(2) 
aoctetpair(2) 
soelim(l) 
signal(3C) 
sigvec(2) 
culleld(6) 
qsort(3) 
qsort(3F) 
taort(l) 
sortbib(l) 
sort(l) 
sort(l) 
sorthib(l) 
comm(l) 
loot(l) 
soelim(l) 
_lim(l) 
indent(l) 
mkstr{l) 
wbereis(l) 
csh(l) 
plot(3X) 
expand(l) 
"rort(2) 
cah(l) 

. truDcate(2) 
llarm(3C) 
a1arm(3F) 
awapon(2) 
swapon(8) 
apell(l) 
.pell(l) 
.pell(l) 
spell(l) 

li 



Permtlled lrulez 

Iii 

'plit: 
Ilea. taplit: 

Irexp, Ifkoxp, modr: 

lIUclea.o: uuep 
Ipq: 

dosprint.era: dest.iaat.iona for 
dosprint: MPS/DOS 

.prm: remove jobs from t.he Ii .. printer 
printt, I'printt, 

exp,loc,locl0. pow, 
10&10, pow, aqrt.: exponential,locaritbm, power, 

rand, 
aenerator; routinea for eh&a&inl/ rau.dom, 

IC&Ilf, rlC&llr, 

popd: pop ahell directory 
puabd: puab ahell directory 

aipt.aek: aet a.nd/or aet lianill 
copy: 

dkFmt: 
ma.ehine operation mode .. 

bJoad: progam to loa.d 
sWio: 

htable: convert NIC 

reset: reaet the teletype bits to a lenaible 
stty, Itty: let and let terminal 

rsyne: synchronize a 61e's in-core 
it: conditional 

tsta.b: 
huh stat: print command huhing 

iostat: report I/O 
vmstat: report virtual memory 

exit: terminate proeeas with 
ipcs: report inter-proeeas communication raeilities 

netstat: show network 
Pa: process 

at&t, Istat, r.tat: get 61e 
at&t, iatat, fstat: let 61e 

terror, reor, elearerr, 8/eno: stream 
a),sline: display system status on 

ruptime: show host 
.ysline: display syatem 

rwhod: system 

halt: 
pause: 

ieheck: 61e system 
lubroutinea. dbminit, retc:h, 

atr/en, index, rindex: Itring operationl. 
rindex: string operations. atreat, strnca.t, 

opera.tions. &treat, strnea.t, It.remp, at.rnernp, 
fclose, lDush: close or 8ush a 

fopen, freopen, fdopen: open a 
rleek, (tell, rewind: reposition a 

letc:har, 'Iete, letw: aet ebaraet.er or word from 
aets, tlets: get a strinl from a 

put.ehar, rpute, putw: put cbaraeter or word on a 
puts, rputs: put. a string on a. 

letbuler, aet.linebur: usian bulerinl to a 
unlete: pusb charaet.er back into input 

sed: 
ferror, teor, clearerr. 8leno: 

remd, rre8Yport, ruserok: routinea tor ret.urninl a. 
rexec:: return 

rdat.e: return daLe and time in an ASCII 
lets, rlets: let a. 

puts, I'puts: put a 
beopy, bernp, bzero, Is: bit and byte 

strnernp, strep)', strnep1,lt.rlen, index, rindex: 

spline: int.erpolate smooth curve. • ••••••• 
aplit .. IDe into pieces. ••••••••••• 
split .. mult.i-routine Fortran tile into individual •••• 
spUt into mantissa and exponent. 
.plit: Iplit a ftle into pieces. 
,pool directory clean-up. ••• • • • 
spool queue examination procram. 
,pooled output from SLPT prinLers. 
spooler daemon.. ••••••••••••••• 
,poolina queue. •••••••••• 
,prilltt: rormatted output conversion. 
aqrt: exponential, locaritbm, power, square root. 
aquare root.. exp, 101, •••••••• ••• 
Rand: rau.dom number ,enerator. • •••••• 
Ir&ndom, illitstate, aetsta.te: better ralldom number 
uca.nr: tormatLed input conversion. 
atab: symbol .. able t.ypes. 
at.act. ••••••••• 
at.aek. ••••••••• 
at.aek context. ••••• 
standalone copy program. • ••••• 
standalone disk formatter. ••••••••• 
St.andaJone mode: definition of this Sanyo/ICON 
standalone procrams. •••••••• 
st.andard butrered input/output paeklie. 
standard format host tables. 
stat, Ist.a.t. fstat: get file status. 
Itat, btat.. rsta.t: get file status. 
state. ••••••••••• 
Itate (derunc:t). • • • • • •• 
state with tha.t on disk. 
statement. • •••••••• 
static inrormation about the filesystems. 
statistics. 
statistics. 
statistics. 
status. 
ItatU$. 
status. 
status. 
status. 
Itatus. • •.•• 
ltatus inquiries. 
status Une or a. termina.l. 
Itatus or local ma.ehines. 
status on statuI line or a terminal. 
Itatus server. •••••••.•• • • • • • • 
Itdio: st.andard buffered input./output pack lie. 
ltieky: executable files with persistent text. 
stop: halt a. job or process. 
ltop the processor. ••••••••• 
stop until signal. •••••••••• 
storage consistency check. •••••• 
store, delete, firstkey, nextkey: data. bue 
streat,ltrnea.t. stremp,ltrnemp. Itrepy, atrnepy, 
Itremp. strncmp, Itrc:py, Itrncpy. atrlen, index, 
atrepy,ltrnepy, strlen, index. rindex: string 
stream. 
st.rea.m. 
stream. 
.tream. aete, ••••••• 
stream. 
Itream. putc, 
.tream. 
stream. setbur, • • • • 
stream. • •••• 
stream editor. 
atrea.m ata.tus inquiries. 
stream to a remoLe comma.nd. 
stream to a remote command. 
string_ ••••••• • • • • • 
string from a stream. 
Itring on .. stream. 
atrinl operations. 
Itring operations. strcat, strneat, IItrcmp, 

spUne(IG) 
split.{l) 
tsplit.{J) 
frexp(3) 
aplit.{l) 
uuelean(8C) 
Ipq(l) 
dosprint.erl(S) 
dosprint(S) 
Iprm(l) 
printf(3S) 
exp(3M) 
exp(3M) 
rau.d(3C) 
random(3) 
1C&Ilf(3S) 
at.ab(5) 
cah(l) 
cah(l) 
sipt.aek( 2) 
copy(8) 
dkfmt(8) 
MndaJone(8 ) 
bloa.d(S) 
iDtro(3S) 
btable(S) 
stat(2} 
stat(3F) 
reaet(l) 
'tty(3C) 
rsyne(2) 
csb(l) 
rltab(S) 
csh(l) 
iostat( 1) . 
vmstat(l) 
exit(3F) 
ipcs(l) 
netstat(l) 
pa(l) 
stat(2) 
sta.t(3F) 
rerror(3S) 
sysline(l) 
ruptime(lC) 
sysJine(l} 
rwbod(SC) 
intro(3S) 
Itic:ky(S) 
csh(l) 
balt(S) 
pauae(3C) 
Icheck(S) 
dbm(3X) 
striog(3) 
' trinl(3) 
.triq(3) 
rclose(3S) 
topeo(3S) 
rseek(3S) 
Cetc(3S) 
lets(3S) 
putc(3S) 
pllts(3S) 
setbuf(3S) 
ulIcetc(3S) 
sed(l) 
rerror(3S) 
remd{3X) 
rexee(3X) 
rdate(3F) 
aets(3S) 
puts(3S) 
bstring(3) 
atring(3) 

ICON INTERNATIONAL 

/ 

" '\ 

/ 



Permtlled Indu: 

utrad. .trill" from C prosrams &0 implflnent shared atrin... utr: •••••••••••••• 
~er binary, IIle. .trings: lind the printable .trin" in. objeet, or 

strings. utr: utracL .trings rrom C programs to implement oared 
.trin,,: and t.he prinu-ble strings in a object, or other binary, IIle. 

bueDame: Itrip Illename airlXes. •••••••••• 
Itrip: remove Iymbols and relocation bits. 

Itrcat, It-rneat, atremp, Itrncmp, Itrepy, .trnepy, .trlen, index, rindex: atring operationa. 
indu, rindex: Itring operations. streaL, strncat, strcmp, strncmp, strcpy, Itrncpy, strlen, 

Itring operations. st.reat, strDcat, stremp, strncmp, strcpy, strncpy, strlen, index, rind ex: 
.treat, Itrncat, stremp, atrncmp, Itrcpy, Itrncpy, strlen, index, rindex: string operations. 

struet: .trueture Fortran programs. ••••• 
struct: Itructure Fortran programs. •••••••• 

.tty, atty: Itt and let terminal state (defunct). 
Itty: Itt terminal optionl. •••••• 

document. Ityle: analYH .urrace characteristica of a 
.u: .ubatitute user id temporarily. 

alarm: uecute a .ubroutine af'ter a speeilled time. 
retch, store, delete, IIrstkey, nmltey: data bue lubroutines. dbminit, 

lib2648: lubroutines ror the HP 2648 gra.phies terminal. 
IU: .ubst.it.ute uler id temporarily. • • • • • 

lum: lum and count blocks in a IIle. 
.um: lum and count blocks in a Ille. 

du: lummarize disk uI"e. •••••• 
quat.: summariH IIle sYltem ownership. • 

repquota: lummarize quotas for a IIle system. 
sync: update the luper block. 

update: periodically update the super block. ••• •• 
sync: updat.e super-block. 

suspend: suspend a. shell, resuming its superior. • • • • • • 
atyle: analyze aurra.ce characteristics of a. document. •••••• 

auspend: suspend a shell, resuming its superior. 
sleep: suspend execution for an interval. 
lleep: suspend execution for an interval. 
aleep: suspend execution for interval. 

suspend: suspend a shell, resuming its superior. 
swab: swap bytes. • • • • • •• 

swab: swap bytes. •••••••••• 
swa.pon: specify a swap directory. • • • • • • • • • 

swapon: specify a swap directory. 
swapping. swapon: specify additional device for p"ing and 

swapon: specify additional device for paging and swapping. 
breaksw: exit from switch. 

cue: selector in switch. 
default: catchall clause in switch. 

endsw: terminate switch. 
switch: multi-way command branch. 

stab: symbol table types. ••• •• 
readlink: read value or a symbolic link. ••••• •• 

symlink: make symbolic link to a 61e. 
strip: remove symbols and relocation bits. 

symlink: make symbolic link to a file. 
symorder: rearrange name list. 
sync: update super-block. ••• •• 
sync: update the super block. 

disk. fsync: synchronize a Ille's in-core stat.e with that on 
select: synchronous i/o multiplexing. •••• •• 

esh: a sbell (command interpreter) with C-lilte syntax. •••••••••••••••• 
ayscaJl: indirect Iystem call. ••••••• 

perror, aYLenlist, SYLnerr: Iystem error messages. 
terminal. sysline: display system status on status line of a 

syslog: log systems messages. •••• • • • 
.yslog, open log, elOlelog: controlsYlt.em log. 

perror, sYLerrliat, sYLDerr: system error messages. 
psignal, lyLSig\ist: system signal messages. 

jovtJteOver - recover JOVE bulfers att.er a system/editor crub. 
mkrs: program to make UNIX lIle systems. • • • • • • • 

syslog: log systems mess"es. 
kgmon: lenerate a dump or the operating ayltem's proftle bulfers. 

rehub: recomput.e command hash table. 
anhasb: discard eommand huh table. 

mtab: mountedllie system table. 
aet.dtableaize: aet descriptor table size. 

stab: symbol table types. 
htable: convert MC standard format hoat tables. 

rout.e: manually manipUlate the routing tables. 

ICON I1\lTERNATIONAL 

xat.r(l) 
atrin,,(l) 
utr(l) 
Itrings(l) 
buename(l) 
Itrip(l) 
Itring(3) 
string(3) 
Mng(3) 
string(3) 
struet(l) 
Itruct(l) 
.t.ty(3C) 
Itty(l) 
Ityle(l) 
sU(l) 
a1arm(3F) 
dbm(3X) 
lib26t8(3X) 
IU(l) 
lum(l) 
lum(1) 
duel) 
quot(8) 
repquota(8) 
syne(8) 
update(8) 
lyne(2) 
esh(l) 
Ityle(l) 
cah(l) 
sleep(l) 
sleep(3F) 
sleep(3) 
cab(l) 
Iwab(3) 
swab(3) 
swapon(2) 
Iwapon(2) 
swapon(8) 
swapon(8) 
cab(l) 
cab(l) 
cab(l) 
cab{l) 
eIh(l) 
stab(S) 
readlink(2) 
lymlink(2) 
strip(l) 
symlink(2) 
symorder(l) 
lync(2) 
sync(8) 
fsync(2) 
select(2) 
cab(l) 
I)'aeall( 2) 
perror(3) 
lyaline(l) 
.yalog(8) 
l7IIog(3) 
perror(3) 
paigna1(3) 
jove..recover(l) 
mkfs(8) 
l7IIog(8) 
kgmon(8) 
cah(l) 
eIh(l) 
mt.ab(5) 
getdtab\esize(2) 
ltab(S) 
btable(8) 
route(8C) 

liii 



Perm. ted lrulez 

liv 

Ud:f'ormat 
cet.table: aet NJe format bOlt 

Ubs: set. .. minal 

expud, lIJIexpaDd: expand 
doI&S: crWe a 

t.alk: 

tuact.iona. ,ba, COl, 

sinh, COIb, 
kopy: copy a mac 

tar: 
tar: 

t.cIOI5e, tread, twrite, trewin, wtipf, tatate: m 
mI.: macnetic 

derol: remove nrol, trol, 

tape I/O. topen, 

n: P8linator for t.he 
reset: reset. the 

11$1.: indicate 11$1. 10lln& of users and 
index, rindex, Inblnk, len: 

operations. opendir, rea.ddlr, 
operations. directory: opendir, readdir, 

telnet: user interra.ee to the 
telnetd: DARPA 

su: substitute user id 

Iib2648: subroutines for tbe HP !!648 grapbics 
lock: reserve a 

syaline: display system status on status line or a 
ttyname, isatty, ttyslot: find name or a 

vhangup: virtually "hanlup" the current control 
worms: animate worms on a display 

termcap: 
cettytab: 

taet: 
t.getent, tletnum, tgetBag. tgetstr, tloto. tputa: 

ttys: 
tty: leneral 

letty: set 
tt)': let 

Itty: set 
ttynam, isatty: find name or a 

clear: clear 
leript: make LIPesenpt or 

att.y, &tty: set and let 
tabs: let 

tt.ytype: data bue or 
term: conveational names for 

wait, waitS: wait for procae to 
wait: wait. for a procaa to 

..exit: 
output. exit: 

kill: 
abort: 
endif: 

ead: 
exit: 

endsw: 

quiz: 
sticky: executable Illes witb persistent 

ed: 

tables for nroI or troll. 
tables from • bOlt. 
t.aba. • ••••••• 
tab,: set terminal tabs. ••• 
tabs to 'Paces, and viet vena. 
\lei lIe. • • • • • • • • •• 
tail: deliver tbe luI. part of a 61e. 
talk: talk to anotber user. ••••• 
talk to another user. ••••••• 

. . . . . . . 
. .. . 

talkd: remote aser communication server. • •••••• 
&an. Min. I.CDI, atan. a.tan2: triconometric 
&anb: byperbolic fanctions. 
tape. • •••••••••• 
tape archive lie format. ••• 
tape archiver. ••••••• 
tape I/O. topen, •••••• 
tape manipalatiq prosram. 
t.ar: tape archive IIle format. 
t.ar: tape archiver. 
t.bJ and eqn constructs. • • • • 
tbl: format t.ables for nrol or trol. 
te: pboto.vpesetter simulator. • •••••• 
tclcae, tread. t.write, t.rewin. wkipr. tatate: m 
teoP)': eopy a mac f.ape. • •••••••••• 
TEACHJOVE· learn how to ale the JOVE editor. 
tee: pipe fittinl. •••••• 
Tektronix 4014. •••••• 
teletype bits to a lensible stat.e. 
teletypes. ••••••• •• 
tell about charaeter objects. ••••••• 
telldir, seekdir. rewinddir. closedir: directory 
telldir, seekdir. rewinddir, closedir: directory' 
TELNET protocol. ••••••••••• 
TELNET protocol server. • ••••••• 
telnet.: user interr.ce to t.he TELNET protocol. 
telnet.d: DARPA TELNET protocol server. 
temporarily. •••••••••••• 
term: conventional names for terminlLis. 
termeap: terminlLi capability data bue. 
terminlLi. 
termin.1. 
terminlLi. 
terminal. 
terminlLi. 
terminal. 
terminal capability data base. 
terminal configuration data bue. ••• •• 
terminal dependent initialization. •• 
terminal independent operation routines. 
terminal initilLiization d.ta. ••••••• 
terminlLi in terrace. • • • • • 
terminal mode. •• 
terminlLi name. •• 
terminal options. 
terminal port. 
terminal ac:reen. 
terminal seasion. •••• 
terminal state (derunct). 
terminlLi tabs. 
terminal typea by I>ort. 
terminals. 
terminate. • ••••• 
terminate. • ••••• 
t,erminate a process. •••••••••• 
terminate a proeess aft.er lIushing .ny pending 
terminate a proeess with extreme prejudice. 
terminate abruptly with memory image. 
terminate eonditionlLi. •••• 
termina.te loop. • • • • • • • 
terminate process with st.atus. 
terminate switch. ••• 
test: condition command. 
test your howledge. 
text. 
text editor. 

... 

tbl(l) 
cettable(8C) 
tabl{l) 
ta.b&(l) 
expand(l) 
ctqs(l) 
tail(l) 
talk(l) 
talk(l) 
talkd(8C) 
tin(3M) 
tinh(3M) 
kopy(l) :m 
topen(3F) 

mt(l} 
t.ar(5 
t.ar(l 
4erol(1) 
tblCl) 
tc(l) 
topen(3F) 
teopY(l) 
teaehjove( 1 ) 
tee(l) 
tk(l) 
reset(l) 
lut(l) 
index(3F) 
direetory(3 ) 
direetory(3X) 
telnet(lC) 
telnetd(8C) 
telnet(IC) 
teJnetd(8C) 
IU(I) 
term(7) 
termc.p(5) 
lib2648(3X) 
Ioek(l) 
s)'sline(l) 
ttyname(3) 
vhangup(2) 
worms(6) 
termcap(5) 
gettytab(5) 
tset(l) 
termcap(3X) 
ttys(5) 
tty(") 
getty(8) 
tty(l) 
attY(l) 
ttynam(3F) 
clear(l) 
script(l) 
.tty(3O) 
tabl{l) 
ttytype(5) 
term(7) 
wait(2) 
wait(3F) 
exit(2) 
exit(3) 
till(l) 
abort(3F) 
cah(l) 
cab(l) 
exit(3F) 
cah(l) 
test(I) 
quiz(6) 
stick)'(8) 
ed(l) 

ICON INTERNATIONAL 



ex. edit: 
jon: &II iDteract.in display-oriented 

tmt: aimple 
Droll: 

troll', nroll: 
rna: 

terminal indepeDdent operation routines. 
iDdependent operation routines. taet.ent, taetnum, 

independent. operation routiDes. taet,ent, 
operation rout.ines. taetent., tgetnum, tcet.B .. , 

routines. tgttent., taetnum, taet8 .. , taetst.r, 
diction,explain: print wordy Itnteneelj 

explain, diction- print wordy sentencesj 
merge: 

alarm: schedule signal aI'ter specified 
alarm: execute a lubroutiDe aI'ter a Ipecifled 

at: execute commaDds at a later 
et.ime, dtime: return elapled execution 

,ettimeorday, settimeorday: get/set date aDd 
shut.down: clOie down the sYltem at .. aiveD 

time, rume: get date aDd 
time, ctime, Itime, ,mtime: return Iystem 

time: 
PP dstrules: Daylight savings 

time: 

rdate: return date and 
idate, itime: return date or 

profll: execution 

gmUme, asctime, timezone: convert date and 
PP dstrules: Dayligbt savings time and 

aCdate: set tbe 
getitimer, setitimer: get/set value or intenal 

times: get process 
uti me: set file 

utimes: set file 

exit, export, login, read, reAdonly, set, sbirt, 
ctime, Iocaltime, gmtime, asctime, 

popen, pclOle: initiate I/O 
tstate: 177 tape I/O. 

tsort: 

tgetent, tgetnum. t.getflag, tgetstr. tgoto, 

ptrace: process 
trpt: transliterate protocol 

8Oto: command 
kermit: kermit file 

ttp: file 
tnp: trivial Ble 

n.pd: DARPA Internet File 
tftpd: DARPA Trivial File 

tr: 
macrOi. trman: 

pi: Plical interpreter code 
trpt: 

uuencode,uudeeode: encode/decode a binary file for 
lrprpe, rpecnt: 

trapov: 
traper: 

export, login, reAd, reAdonly, set, sbirt, times, 

I/O. topen, tclOle, 

trek: 

ICON INTERNATIONAL 

Permuted Indez 

text editor. 
text editor. 
text Cormatter. 
text tormatting. 
text formatting and typeaeUing. ••••• 
text CormAtting macrOi. 
tnp: trivial file trausCer program. 
tftpd: DARPA Trivial File Trsnsrer Protocol sener. 
tsetent. t.getnum, ",etBaa, tgetstr, taoto, tputs: 
taet.B .. , taetst.r, tgoto, tputs: terminal •••••• 
tset.num, taetBaa, tgetstr, taoto, t.puts: terminal 
tcetstr, tgoto, tputs: terminal independent •• 
tgoto, t.puts: terminal iDdependent operation 
thesaurus for dict.ion. ••••• 
tbesaurus Cor diction. 
tbree-way file merge. 
time. 
time. 
time. 
t.ime. 
time. 
time. 
time. . . . . 
time. • ••• 
time a commaDd. 
time aDd time ZODe name rule file .. 
time command. •••••••• 
time, cLime, ltime, gmtime: return system time. 
time, Ctime: get date and time. 
t.ime in aD ASCII string. 
time in numerical form. 
time proftle. •••••••••• 
time: time a command. 
time: time command. • ••••• 
time to ASCII. etime, localtime, 
time zone name rule file.. ••••• 
time/date of a file. 
timer. 
times. 
times. 
times. 
times: get process times. •••••• • • • 
times, trap, umuk. wait: command language. /exec, 
timezone: convert date aDd time to ASCII. • 
t.ip, cu: connect to a remote system. • • • • 
tit: paginator ror the Tektronix 4014. 
t.mail: print out mail messages, most recent first. 
to/from a process. ••••••••••• 
topen, telose, tread, twrite, trewin, tskipr, 
topological sort. •••••••••••• 
toucb: update date last modified of a file. 
tput.s: terminal independent operation routines. 
t.r: translate characters. 
trace. 
trace. 
transfer. 
t.ransfer. 
tranarer program. 
transrer program. 
Transfer Protocol lener. 
Tranlfer Protocol server. 
t.ranslate cbaracters. 
t.rauslate version 6 manual macros to version 7 
translator. • ••••••••••• 
t.rusliterate protocol trace. 
transmission via mail. •••• • • • • 
t.rap and repair Boating point faults. 
trap and repair Boating point overflow. 
trap aritbmetic errors. ••••••• 
trap, umask, wait: command language. /exec, exit, 
traper: trap arithmetie errors. ••••••• 
t.rapov: trap aDd repair Boating point overflow. 
I.read, twrite, trewin. tskipr, tstate: m tape 
trek: trekkie game. 
trek kie lame. ••••••••••••• 

ex(l) 
jove(l) 
fmt(l) 
Drol(l) 
troll{l) 
ms(7) 
tftp(IC) 
tftpd(SC) 
t.ermeap(3X) 
termeap(3X) 
t.ermeap(3X) 
termeap(3X) 
termeap(3X) 
diction(l) 
explain(l) 
merge(l) 
alarm(3C) 
alarm(SF) 
at(l) 
et.ime(3F) 
lettimeofday(2) 
abutdown(8) 
time(3C) 
time(SF) 
time(l) 
datrules( 5) 
cab(l) 
time(SF) 
time(3C) 
rdate(3F) 
idate(3F) 
profll(2) 
time(l) 
cab(l) 
ctime(3) 
datrules(5) 
aCdate(l) 
getit.imer( 2) 
times(3C) 
utime(3C) 
utimes(2) 
times(3C) 
ab(l) 
ctime(3) 
tip(IC) 
tk(l) 
t.mail(l) 
,open(3) 
topen(3F) 
tsort{l) 
touch(l) 
termcap(3X) 
tr(l) 
ptrace(2) 
t.rpt(8C) 
ca~(l) 
ktrmit(l) 
ftp(IC) 
tftp(IC) 
n.pd(SC) 
t,ftpd(SC) 
tr(l) 
trman(l) 
pill) 
trpt(8C) 
uuencode(lC) 
trprpe(3F) 
tra,ov(SF) 
traper(3F) 
ab(l) 
traper(SF) 
tra,ov(SF) 
topen(3F} 
trek(6} 
trek(6) 

Iv 



Permuted Indez 

top., ~ tread, twrite, trewin, takipr, tatate: m tape I/O. 
.aD, COl, u, uiD, tWIOII, u.a, a.t.an2: . qonometric: funct.ions. • ••••• 

tftp: trivial IIle transfer procram. 
lft,pd: DARPA Trivial File Transfer Protocol Be"er. 

7 macros. trman: translate version 6 manual macros to version 
tbl: rormat. tab1. ror Droll' or troll. ••••••••••••••••• 

derol: remoTt DroI, 
battiest.: a 

faulta. 

false, 
truncate: 

raise, true: provide 
true, ralae: provide 

topen, telose, tread, twrite, trewin, 

topen, tclose, tread, twrite, trewin, takipr, 

Uyna.me, iaatty, 

tuneCs: 

topen, telose, tread, 
lie: determine IIle 

ltab: 8ymbol table 
types: primit.ive 8Y8tem data 

ttytype: data. base or terminal 

acript: ma.ke 
man: macros to 

eqn, neqn, ehtekeq: 
troll, nroll: text rormatting a.nd 

letpw: let name rrom 

Ioain, read, readonly, set,shin., times, trap, 
mount, 
mount, 

cat t.hem. compact, 
compact, uncompaet, ecat: compress and 

compress, 
ul: do 

expand, 

mktemp: make a 
lethost.id, aethoatid: let/set. 

Bush: Bush output to a Joaic:t.l 
rseek, n.ell: reposition a IIle on a Joaical 

letc, rletc: let a character rrom a loIica! 
pute, rpute: write a character to a rortran loIiea! 

learn: computer aided i .. truction about 
reboot: 

l1st.em: execute a 
uux: unix to 

uucp, uulog: unix to 
mtta: proaram to make 

uux: 
uucp, uulo,: 

rmdir, rm: remove 
rm, rmdir: remove 

troll', nroll: text tormatting and t1P~tting. 
troll, tbl and eqn constructs. ••••••••••••• 
tropic:t.l adventure. game. ••••••••• 
trprpe, rptent: t.rap and repair Boating point 
trpt: transliterate protocol trace. 
true, raise: provide truth valu.. •••••• 
true: provide trut.h values. •••••••• 
truncate a IIIe to a IptciBed length. 
truncate: truncate a IIle to a Ipecilled length. 
tru.th values. ........;... 
trut.h valUtl. • •••••••••• 
Wet: terminal dependent initialization. 
tskipr, tatat.e: m tape I/O. 
taort.: topological sort. • • • • 
tat.ate: (77 tape I/O. 
tty: lenn terminal interrace. 
Uy: get terminal Dame. 
Uynam, i ... tty: Bnd name of a terminal port.. 
ttyname, ilatt.y, ttY810t: lind na.me or a. terminal. 
ttYI: terminal initialization da.t.a. ••••• 
tt.yalot.: lind name or a terminal. • ••••• 
tt.ytype: data base or terminal t.ypes by port. • ••••• 
t.une up an existing Ble system. •••••• 
tuners: tune up a.n existing file system. 
twrite, t.rewin, tskipr, tstate: m tape I/O. 
type. • •••• 
~lPes. ............." 
types. •••••••••••••• 
t.ypes by port. •••••••••• 
types: primitive system data types. 
t.ypescript or terminal session. 
t.ypeset. manual. 
typeset mathema.tics. 
t.ypeset.ting. ••••• 
uid. •• • • • • • • • • • • ••• 
ul: do underlining. 
umask: cbange or display IIle creation mask. 
umask: set IIle creation mode mask. • •••••• 
umask, wait: command language. /exec, exit, export, 
umount: mount and dismount IIle system. 
umount: mount or remove file system. •••• • • • 
uDalias: remove aliases. ••••••••••••• 
uncompa.ct, eea.t: compress and uncompress Illes, and 
uncompress Illes, and eat them. ••••••••• 
uncompress, zea.t: compress and expa.nd da.ta. • •••• 
underlining. ••••••••••••••••• 
unexpand: expand tabs to spa.ees, and vice versa. 
unlete: push charact.er back int.o input stream. 
unhash: discard command hasb table. 
unirder: remove itdered lines. 
uniq: report repeated lines in a IIle. 
uRique file name. ••••••••••••• 
unique identiller or current host. ••• 
unit. 
unit.. 
unit. 
unit. 
unita: conversion proaram. 
UNIX:. • ••••••••• 
UNIX: bootstrappinl procedures. 
UNIX: command. 
unix command execution. 
unix copy. • ••••• 
UNIX IIle syatems. 
unix to unix command execution. 
unix to unix copy. •••••••• 
unlimit: remove resource limitiations. 
(unlink) directories or Illes. 
(unlink) files or directories. 

.... 

topen(3F) 
ain(3M) 
tftp(lC) 
tftpd(SC) 
trman(l) 
tbl(l) 
trotr{l) 
derol(l) 
battJestar(6) 
trpfpe(3F) 
trpt(8C) 
true{l) 
false{l) 
truncate{ 2) 
trlIncate(2) 
false{l) 
true{l) 
taet(l) 
topen(3F) 
&aort(l) 
topen(3F) 
Uy(4) 
ttY(l) 
ttyna.m(SF) 
t.tyname(3) 
t.tys(S) 
uyname(3) 
ttytype(S) 
tuneta(8) 
t.unef.(S) 
topen(3F) 
IIle(l) 
stab(S) 
t.ypes(S) 
ttytype(S) 
t.ypes(S) 
script(l) 
man(7) 
eqn(l) 
trotr{l) 
letpw(3C) 
ul(l) 
cab(l} 
umask(2} 
8b(l) 
mount(8) 
mount(:!) 
cahel) 
compact(l) 
compact.(l) 
compress(l) 
ul(l) 
expand(l) 
ungete(3S) 
cab(l) 
unirdel(l) 
uniq(l) 
mktemp(3) 
lethOltid(:!) 
ftulh{3F) 
faeek(3F) 
,etc(3F) 
putc(3F) 
units(l) 
learn (1) 
reboot.(8) 
lJIt.em(3F) 
uux(IC) 
uucp(lC) 
mkrs(8) 
uux(lC) 
uucp(lC) 
cah(l) 
rmdir(l) 
rm(l) 

lvi ICON INTERNATIONAL 

./ 



upt.ime: show how long s1ltem hu been 
~unetl: t.une 

toucb: 

I)'nc: 
I)'nc: 

update: periodically 

du: lummarize disk 
quot.&: displa), disc 

TEACHJOVE - learn how to 
what: Ihow what nnions of object modules were 

miseeUueous: miseellueous 
Io&in: lOIin Dew 

talk: ~alk to uother 
writ.e: write to aDother 

leteuid, set.ruid, letgid, aetegid, set.reid: let. 
talkd: remote 

eDYiron: 
wboami: print. elective current 

IU: lubat.it.ute 
getuid, geteuid: get 

setreuid: let. real ~d elrective 
IIDger: 
telnet: 

getuid, getgid: get 
edquot.a: edit 

add user: procedure for adding new 
binmail: send or reeeivemail among 

wall: write to all 
whod06: displa.y informa.tion about. dose 

lut.: indiea.te last logins or 
getlog: get 

users: compa.et list or 
getrusage: get inrorma.tion a.bout resource 

vtimes: get information about resource 

rmail: ba.ndle remote mail received via 
uuclean: 

uusna.p: Ihow snapshot or the 

trusmiasion via mail. uuencode, 
uueneode: format of an encoded 

transmission via mail. 
uucp, 

abs: integer absolute 
fabs, Boor, ceil: absolute 

getenv: 
readlink: read 

,et.env: ,et 
,mUmer, set.it.imer: get/set 

set: chuge 
false, t.rue: provide truth 

dBmin, d8I1Wt, dfra.e, inmax: return extreme 
rud, drand, irud: return rudom 

true, ralae: provide truth 
htonl, btons, ntohl, nt.obs: convert 

ICON INTERNATIONAL 

set: change value of shell 
varargs: 

setenv: set 

Permuted lndes 

unlink: remove a directory entry. 
unlink: remon directory entry. 
unset: discard shell variables. ••• 
unset.env: remove enviroDment variables. 
up. •••••••••• ••••• 
up aD existing file s),lt.em. _ _ • _ • • 
update date last modified of a file. 
upda.te: periodically update the super block. 
update super-block. 
update t.be super block. ••••••••• 
update tbe IU per block. ••••••••• 
uptime: sbow how long I),stem haa beeD up. 
"ace. . ...... . 
USllle ud limits. 
use tbe JOVE editor. 
used to coDstruct a file. 
useful inrormatioD pages. 
user. 
user. • ••••••• 
user. • ••••••• 
user and aroup ID. setuid, 
user communication server. 
user environment. 
uer id. • •••• 
user id tempora.rily. 
user identity. 
user lO's. 
user information lookup program. 
user iDt.erfa.ce to the TELNET protocol. 
user or group 10 of the caller. 
user quotas. ••••• 
users. 
users. 
users. ••• •• 
ulers. 
users and teletypes. 
users: compact list or users who are on the system. 
uler's login name. ••••• 
users who are on the system. 
utilization. 
utilization. ••••• 
uti me: set file times. 
utimes: set file times. 
utmp, wtmp: login records. ••••••• 
uuelean: u ucp spool directory c1ea.n-up. 
uucp. ••••••••••• 
uucp spool directory dean-up. 
UUCP system. ••••••• 
uuep, uulog: unix to unix copy. 
uudecode: encode/decode a binary file for 
uueneode file. ••••••••••• 
uueneode: rormat of an encoded uueneade 61e. • 
uuencode,uudecode: encode/decode a binary llie for 
uulog: unix to unix copy. • •••••••• 
uusend: send a 61e to a remote host. 
uUlnap: sbow ina.psbot or the Ut.TCP IYltem. 
UUX: unix to unix eomma.nd execution. 
uxrc: configuration file for kernel. 
yalloc: aliened memory allocator. 
value. •••••••••• 
value, 800r, eeiling runctions. 
yalue ror environment name. 
yalue or a s),mbolic link. • • • 
Yalue or environment variables. 
Yalue or interval timer. 
yalue or shell varia.ble. 
values. ••••• •• 
values. llmin, ftmax, Irra.e, 
values. •••••••• ••.• • 
values. •••.•••• • • • • • • 
values between host and network byte order. 
varargs: variable argument list. • ••••• 
variable. •••••• • • • ••• 
variable a.rgument list. 
variable in environment. 

unlint(3F) 
unlink(2) 
cab(l) 
cab(l) 
uptime(l) 
tunets(8) 
touch(l) 
update(8) 
IYDc(2) 
l)'nc(8) 
updat.e(8) 
uptime(l) 
duel) 
quot.a(l} 
t.eaehjove(l} 
what(l} 
int.ro(7) 
esb(l} 
talk(l) 
writ.e(l} 
setuid(S) 
talkd(8C) 
enYiron(7) 
whoami{l) 
lu(l) 
getuid(2) 
setreuid(2) 
IInger(l) 
telnet(IC) 
getuid(SF) 
edquots(8 ) 
adduser(8) 
binmail(l) 
wall(l) 
wbodos(l) 
lut(l) 
Ulers(l) 
getlog(SF) 
uaers(l) 
getrusage(2) 
vtimes(3C) 
uUme(3C) 
utimes(2) 
utmp(o} 
uuelean(8C) 
rmail{l} 
uuelean{8C) 
uusnap(SC) 
uuep(IC) 
uuencode(lC) 
uuencode(o) 
uuencode(S) 
uuencode(lC) 
uuep(IC) 
uusend(IC) 
uusnap(8C) 
uux(IC) 
uxrc(8) 
yalloc(3) 
aba.(3) 
1l00r(SM) 
getenv(3) 
readIiDk(2) 
&et.en v( SF) 
getitimer(2) 
cab(l) 
falae{l) 
Bmin(SF) 
rand(SF) 
true{l) 
byt.eorder(3n) 
varargs(S} 
cab(l) 
yarargs(S) 
esb(l) 

Ivii 



Perm. ted J.tlez 

Iviii 

0: ui~metic oa shell 
1laaet.: cliaelrd shell 

• a~ay:~eeaydvDDMDt 
ptAav: let v .... or'DVdvDDMDt 

too create ud diapla,r iarormatioa tor MPS/DOS 
8IIItR: proaram 

lia~ a C pfOll'&lll 

expud, un expand: expud lab. t.o &paeea, aDd "ice 
trUlU: traDaIate 

trmu: traaslate VeraioD fJ muual mactaI t.o 
"era: print 

hUllJlu: Computer 
lie. wllat.: show what 

elicient way. 

"giadets: 
terminal. 

on ex. 
encode/ decode a binary 81e tor trl.lllmission 

rmul: hudle remote mul received 
exp&lld, unexpud: expand tabs to SPacell, and 

more, P&le: 81t perusal 81ter tor crt 
robots: Aght oil 

dosdiska: list or MPS /DOS 
"fork: apa.wn new process in a 

ymatat: report 
yhangup: 

vi: screen oriented 
consumption. 

ta, inode: format of 81e aystem 

read, readonly, set, shif'i, times, trap, umask, 
wut: 
wait: 

sigpause: atomically release blocked signals and 
wut, wut3: 

wait, 

what: show what versions or object modules 
whatis: describe 

crash: 
used to construct a 81e. 

w: who is on and 
construct a 81e. wbat: sbow 

crash: what happens 
leave: remind )'OU 

program. 
paths (ClloDly). 

exec, exit, IItport, 10000n,1 Ib, tor, cue, if, 

break: exit 
usera: compact list. ot usera 

from: 
w: 

who: 
bil: be noti8td it DlUI arrives and 

rwho: 
told: told long lines for Anite 

window: 

fastboot, fasthalt: reboot/halt the system 

yariables. 
"wbles. 
"wbJes. 

. . . 
"ariab". • ••••• 
"diaks. dosdisk: program 

.' .. 
"trilcation. ••••••• 
yeriltr. .......... . 
vera: print version Dumber or tbe kernel. 
YeraL ................... .. 
"enion 6 muual ma.eros to version 1 ma.eros. 
"miOD 7 macros. ............. . 
version Dumber ot tbe kernel. •••••• 
VenloD or tbe pme hangman. • ••••• 
YII'Iiou of objeet modules were Uled to conltruet a 
dor1: spawn new pl'OCt8l in a virtual memory 
vtrind: triDd Dice IiatiDgI or programs. ••••• 
"trindefl: "griDd'l langulle de8nition data base. 
"trind'. l&IIgulle de8nition data base. ••••• 
"hUIUP: "irtually "hangup" tbe current control 
vi: screen oriented ("isual) display editor based 
Yia mu!. uueneode,uudecode: 
"ia uuep. 
yjee yersa.. .............. . 
".winl_ ...... ....... .. 
Yillainoua robots. •••••• 
"jpw: edit the password 81e. •••••• 
virtual disks. ••••••••••••• 
virtual memory effieient way. 
"irtual memory statistics. 
virtually "bangup" the current control terminal. 
(visual) display editor based on ex. 
"limit: control maximum system resource 
vmatat: report "irtual memory statistics. 
volume. ••••••••••••• ••• 
vtimes: get information about resource utilization. 
w: who is on &lid what tbey are doing. ••••• 
wait: await completion or process. ••••••• 
wut: commllnd language. lexec. exit, export, login, 
wait for a process to terminate. ••••• 
wait tor background processes to complete. 
wait lor interrupt. •••••••• ••• 
wait for process to terminate. •••••• 
wait: wait lor a process to terminate. 
wait: wut ror background processes to complete. 
wait, wait3: wait for process to terminate. 
wait3: wait lor process to terminate. 
wall: write to all users. 
we: word count. ••••••••• 
were uaed to construct a file. •••• 
what a command is. ••••••• 
wbat ha.ppens when the system crashes. 
what: show what versions of object modules were 
what they are doing. •••••••••• 
wbat versions or object modules were used to 
whatis: describe wbat a command is. 
when the system crashes. •••••••• 
when you baYe to leave. ••••••••• 
whereia: locate source, binary, and or manual for 
which: locate a program 81e including aliases and 
whUe, I, ., break, continue, ed, eval, 
while: repeat commands conditionally. 
whUe/roreach loop. •••••••• 
wbo are OD the system. ••••••• 
who ia tny mail from!. •••••• 
who is on and what they are doing. 
who is OD the system. ••••••• 
who it is from. •••••••• •• 
who: who is on the system. 
whoami: print elfective current user id. ••••• 
whodos: display inCormation about dosc users. 
wbo's logged in on loea.l ma.ehines. 
width output device. 
window environment .. 
window: window environment.. 
without checking the disks. 

. .. 

cab(l) 
cah(l) 
cah(l) 
letenY(3F) 
dosdisk(8) 
assert(3X) 
lintel) 
vera(l) 
expand(l) 
trm&ll(l) 
trman(l) 
vera{l) 
banllJlan(6) 
what(l} 
dork(2) 
"srind(l) 
vsriDdels(o) 
Ysrindtra( 0) 
"hangu p( 2) 
vi(l) 
.ueDcode(lC) 
rmul(l) 
expud(l) 
more(l) 
robots(6) 
"ipw(8) 
dosdiaks(5) 
"fork(2) 
ymatat(l) 
"bangup(2) 
"i(l) 
"limit(3C) 
ymata.t(l) 
fs(5) 
vtimes(3C) 
well 
waite!) 
sh(l) 
wait(SF) 
eah(l) 
sigpause(2) 
wait(2) 
wut(3F) 
cab(l) 
waite:!) 
wait(2) 
wall(l) 
wc(l) 
what(l) 
whatis(!) 
crash(SV) 
what(!) 
well 
what(l) 
wbatis(l) 
erash(8V) 
lean(l) 
whereia(l) 
which(l) 
IJa(1) 
cah(l) 
cab(l) 
uen(l) 
from(l) 
11'(1) 
who(l) 
bil(l) 
wbo(l) 
whoami{l) 
whodos(l) 
rwho(lC} 
fold(l) 
window{l) 
WiDdow(l) 
fast.boot(S) 

ICON INTERNATIONAL 



('-

we: 
,et.e, ,etchar, r,etc, Iet.W: let. character or 

pute, putebar, fputc, putw: put character or 
diction,explain: print 

explain, diction- print 
ed: change 

ehdir: chu,e current 
let.ewd: get. patbname or current. 

pwd: 
Iet.wd: let current 

worm: PI.., tbe ,rowing 

worms: animate 
pute, fpute: 

write, writev: 
wall: 

write: 

write, 
open: open a Ble for reading or 

utmp, 

xstnd, 
bit.: and, or, 

abared atrings. 
jO, jl, jn, 

jO, jl, jn, yO, 
eyace: modified 

jO, j1, jn, yO, y1, 
compress, uncompress, 

.PP dstrules: Dayligbt savings time and time 

ICON INTERNATIONAL 

Perm. ted ladez 

word eoUDt. • •••••••••• 
word rrom st.ream. •••••••• 
word on a stream. •••••••• 
wordy ICntences; tbesaurus for diction. ••••• 
wordy lentenees; t.hesaurus for diction. 
workilll directory. 
working directory. •••••• 
workilll directory. ••••• 
working direetory name. •• • • • • • • • 
working directory path name. 
'Worm pme. • •••••• 
worm: Play the growing worm lame. 
worms: animate worms on a display t.erminal. 
worms on a display terminal. •••••• 
write a character to a fortran logieal unit. 
write on a 8le. ••••••• • • • • • • 
writ.e to all ulen. ••••• 
write to anotber user. ••• 
write: write to another uler. 
write, writev: write on a file. 
writev: write on a file. • • • 
writing. or ereate a new file. 
wtmp: losin records. 
wump: t.be game or hunt-tbe-wumpul. • ••••• 
xgct., enroll: secret mail. •••••• 
xor, not, nhirt, Ishirt bitwise runctions. ••• •• 
xscnd, xget, enroll: seeret mail. 
xstr: extract strings rrom C programs to implement 
yO, yl, yn: bessel runctions. ••••• •• 
yl, yn: bessel runetions. •••••• ••• 
yace allowing mueh improved error recovery. 
yaee: yet another compiler-compiler. 
yes: be repetitively affirma.tive. 
,n: bessel functions. ••••••••• ••••• 
zea.t: compress a.nd expand da.ta. ••• •• 
zone name rule file.. •• • • • • 

we(l) 
lete(3S) 
pute(3S) 
diet.ion(l) 
expwn(l) 
cd(l) 
ehdir(2) 
getewd(SF) 
pWd(l) 
let.wd(3) 
worm(8) 
worm(6) 
worms(6) 
worma(8) 
puu(3F) 
writ.e(2) 
wall(l) 
writ.e(l) 
writ.e(l) 
write(2) 
writ.e(2) 
open(2) 
ut.mp(5) 
wump(6) 
xsend(l) 
bit(3F) 
xsend(l) 
xstr(l) 
jO(SM) 
j0(3M) 
eyacc(l) 
yaee(l) 
yes(l) 
j0(3M) 
compress(l) 
dstrules(5 ) 

lix 



r 



(-

ICONjUXB 
OPERATING 
SYSTEM 
INTRODUCTION 
TO VOLUME 1 





INTRODUCTION TO VOLUME 1 

INTRODUCTION 

This volume gives descriptions of the publicly available Ceatures oC the ICON/UXB 
operating system, as extended to provide a virtual memory environment and other 
enhancements. It does not attempt to provide perspective or tutorial inCormation upon 
the ICON/UXB operating system, its Cacilities, or its implementation. Various docu­
ments on those topics are contained in Volumes 2 and 3, Supplementary Documentation. 
In particular, Cor an overview see The UNIX- Time-Sharing System by Ritchie and 
Thompson; for a tutorial see UNJxe Jor Beginner8 by Kernighan. 

Within the area it surveys, this volume attempts to be timely, complete and concise. 
Where the latter two objectives conflict, the obvious is often left unsaid in favor of 
brevity. It is intended that each program be described as it is, not as it should be. 
Inevitably, this means that various sections will soon be out of date. As changes are 
made, updates will be Corthcoming. 

This volume is divided into eight sections: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Commands 
System Calls 
Subroutines 
Special Files 
File Formats and Conventions 
Games 
Miscellaneous 
Maintenance Commands and Procedures 

Commands are programs intended to be invoked directly by the user, in contradistinc­
tion to subroutines, which are intended to be called by the user's programs. Commands 
generally reside in directory Ibin (Cor bin ary programs). Some programs also reside in 
I usrl bin, or in I usrl ucb, to save space in Ibin. These directories are searched 
automatically by the command interpreters. 

System Calls are entries into the ICON/UXB supervisor. The system call interface is 
identical to a C language procedure call; the equivalent C procedures are described in 
Section 2. 

An assortment of Subroutines is available; they are described in section 3. The pri­
mary libraries in which they are kept are described in the introduction to section 3, 
intro(3). The functions are described in terms of C, but most will work with Fortran as 
well. 

UNIX is a registered trademark of AT&T. 

ICON INTERNATIONAL 1 



The Special Fi1ee section discusses the characteristics of each system 'file' that actu­
ally refers to an I/O device. The names in this section refer to the ICON 
MultiMicro/MainFrame Architecture device names for the hardware, instead of the 
names of the special files themselves. 

The File Formate and Convention. section documents the structure of particular 
kinds of files; for example, the form of the output of the loader and assembler is given. 
Excluded are files used by only one command, for example the assembler's intermediate 
files. 

Games have been relegated to section 6 to keep them from contaminating the more 
staid information of section 1. 

Section 7 is a Miscellaneous collection of information necessary to writing in various 
specialized languages: character codes, macro packages ror typesetting, etc. 

The Maintenance section discusses commands and procedures not intended for use by 
the ordinary user. The commands and files described in Section 8 are almost all kept in 
the directory / etc. 

SECTION FORMAT 

Each section in the ICON/UXB Reference Manual consists of a number of independent 
entries of one or more pages each. The name of the entry is in the upper corners of its 
pages, together with the section number, and sometimes a letter characteristic of a sub­
category, e.g. graphics is IG, and the math library is 3M. Entries within each section 
are alphabetized. The page numbers of each entry start at 1; it is infeasible to number 
consecutively the pages of a document like this that is republished in many variant 
forms and is constantly being changed, updated, or obsoleted. 

All entries are based on a common format, not all of whose subsections will always 
appear. 

The NAME subsection lists the exact names of the commands and subroutines covered 
under the entry and gives a very short description of their purpose. 

The SYNOPSIS summarizes the use of the program being described. A few conventions 
are used, particularly in the Commands subsection:-

2 

• Boldface words are considered literals, and are typed just as they appear. 
• Square brackets [ ] around an argument indicate that the argument is 

optional. When an argument is given as 'name', it always refers to a file 
name. 

• Ellipses ' ... ' are used to show that the previous argument-prototype may be 
repeated. 

• A final convention is used by the commands themselves. An argument begin­
ning with a minus sign ( - ) is often taken to mean some sort of option­
specifying argument even if it appears in a position where a file name could 
appear. Therefore, it is unwise to have files whose names begin with '-'. 

ICON INTERNATIONAL 

'\ 
) 

) 



(, 
The DESCRIPTION subsection discusses in detail the subject at hand. 

The FILES subsection gives the names of files which are built into the progra.m. 

A SEE ALSO subsection gives pointers to related information. 

A DIAGNOSTICS subsection discusses the diagnostic indications which may be pro­
duced. Messages which are intended to be self-explanatory are not listed. 

The BUGS subsection gives known bugs and sometimes deficiencies. Occasionally also 
the suggested fix is described. 

At the beginning of the volume is a table of contents, organized by section and alpha-' 
betically within each section. There is also a permuted index derived from the table of 
contents. Within each index entry, the title of the writeup to which it refers is followed 
by the appropriate section number in parentheses. This fact is important because there 
is considerable name duplication among the sections, arising principally from commands 
which exist only to exercise a particular system call. 

HOW TO GET STARTED 

This section sketches the basic information you need to get started on the ICON /UXB 
operating system; how to log in and log out, how to communicate through your termi­
nal, and how to run a program. See UNIX- lor Beginners in Volume 2 for a more com­
plete introduction to the system. 

( Logging In 

You must call ICON/UXB from an appropriate terminal. Almost any ASCII terminal 
capable of full duplex operation and generating the entire character set can be used. 
You must also have a valid user name, which may be obtained, together with necessary 
telephone numbers, from the system administration. Mter a data connection is esta­
blished, the login procedure depends on what kind of terminal you are using and local 
system conventions. The following examples are typical. 

SOD-baud terminals: Such terminals include the GE Terminet 300, and most display 
terminals run with popular modems. These terminals generally have a speed switch 
which should be set at '300' (or '30' for 30 characters per second) and a half/full duplex 
switch which should be set at full-duplex. (This switch will often have to be changed 
since many other systems require half-duplex). When a connection is established, the 
system types login: you type your user name, followed by the 'return' key. If you have 
a password, the system asks for it and turns off the printer on the terminal so the pass­
word will not appear. Mter you have logged in, the 'return', 'new line', or 'linefeed' 
keys will give exactly the same results. 

1£00- and lSD-baud terminal8: If there is a half/full duplex switch, set it at full-duplex. 
When you have established a data connection, the system types out a few garbage char­
acters (the login: message at the wrong speed). Depress the 'break' (or 'interrupt') key; 
this is a speed-independent signal to the ICON/UXB operating system that a different 
speed terminal is in use. The system then will type login: this time at another speed. 
Continue depressing the break key until login: appears in clear, then respond with your 
user name. From the TTY 37 terminal, and any other which has the 'newline' function 

ICON INTERNATIONAL 3 



(combined carriage return and linefeed), terminate eaeh line you type with the 'new 
line' key, otherwise use the 'return' key. 

Hard-wired terminals. Hard-'Wired terminals 'WJ1lal1y begin at the right speed, up to 
9600 baud; otherwise the preceding instructions apply. 

For all these terminals, it is important that you type your na~e in lower-case if possi­
ble; if you type upper-case letters, ICON/UXB will assume that your terminal cannot 
generate lower-case letters anel will tl'auJaie all 8ubseq1lftt upper-case letters to lower 
case. 

The evidence that you have successfully logged in is that a shell program will type a 
prompt (either a '$' or a '%' depending on the shell program activated) to you. (The 
shells are described below under How to Run a Program - the Shells.) 

For more information, consult f8et(1), and 8tty(1), which tell how to adjust terminal 
behavior, gettll(8), which discusses the login sequence in more detail, and ttll(4),' which 
discusses terminal I/O. 

Logging Out 

Logging out is a process where the active shell is terminated and all files accessed by 
the logged in user are saved to the system hard disk. This process maintains the 
integrity and security of the ICON/UXB file system. 

There are three ways to log out of the ICON/UXB operating system: 

• By typing an end-of-text indicator (EOT character, control-d, shown as d) 
to the shell. The shell will terminate and the login: message will appear 
again. 

• You can type logout, if you are using the C shell. The shell will terminate 
and return the login: prompt. (If you have several shells active, youmust 
enter the exit command to terminate the active shell until the actual login 
shell is reached.) 

• You can login directly as yO'UTSelf or another user by entering the login com­
mand. (See login (1).) 

If you are communicating over a phone line, and worse comes to worse, you can simply 
hang up the phone; but beware - some machines may lack the necessary hardware to 
detect that the phone has been hung up. Ask your system administrator if this is a 
problem on your machine. (NOTE: Turning of your terminal, however, does not log 
you oft' the system. You must still uee the eoDtrol-d key sequence, or enter logout, or 
login to terminate the login shell.) 

BOW TO COMMUNICATE THROUGH YOUR TERMINAL 

When you type characters, a gnome deep in the system gathers your characters and 
saves them in a secret place. The characters will not be given to a program until you 
type a return (or newline), as described above in Logging In. 

ICON/UXB terminal I/O is full-duplex. It has full read-ahead, which means that you 
can type at any time, even while a program is typing at you. Of course, if you type 

4 ICON INTERNATIONAL 

) 

) 



during output, the printed output will have the input characters interspersed. How­
ever, whatever you type will be saved up and interpreted in correct sequence. There is 
a limit to the amount of read-ahead, but it is generous and not likely to be exceeded 
unless the system is in trouble. When the read-ahead limit is exceeded, the system 
throws away all the saved characters (or beeps, if your prompt was a %). 

The character '@' in typed input kills all the preceding characters in the line, so typing 
mistakes can be repaired on a single line. Also, the character '#' erases the last char­
acter typed. (Most users prefer to use a backspace rather than '#', and many prefer 
control-U instead of '@'; uet(l) or 8tty(l) can be used to arrange this.) Successive uses 
of '#' erase characters back to, but not beyond, the beginning of the line. '@' and '#' 
can be transmitted to a program by preceding them with c\,. (So, to erase '\', you need 
two '#'s). 

The 'break' or 'interrupt' key causes an interrupt 8ignal, as does the ASCII 'delete' (or 
'rubout') character, which is not passed to programs. This signal generally causes 
whatever program you are running to terminate. It is typically used to stop a long 
printout that you don't want. However, programs can arrange either to ignore this sig­
nal altogether, or to be notified when it happens (instead of being terminated). The edi­
tor, for example, catches interrupts and stops what it is doing, instead of terminating, 
so that an interrupt can be used to halt an editor printout without losing the file being 
edited. Many users change this interrupt character to be AC (control-C) using stty(l). 

It is also possible to suspend output temporarily using AS (control-s) and later resume 
output with AQ. In a newer terminal driver, it is possible to cause output to be thrown 
away without interrupting the program by typing AO; see tty(4). 

The quit signal is generated by typing the ASCII FS character. (FS appears many places 
on different terminals, most commonly as control-\ or control-I.) It not only causes a 
running program to terminate but also generates a file with the core image of the ter­
minated process. Quit is useful for debugging. 

Besides adapting to the speed of the terminal, ICON/UXB tries to be intelligent about 
whether you have a terminal with the newline function or whether it must be simulated 
with carriage-return and line-feed. In the latter case, all input carriage returns are 
turned to newline characters (the standard line delimiter) and both a carriage return 
and a line feed are echoed to the terminal. If you get into the wrong mode, the reset(l) 
command will rescue you. 

Tab characters are used freely in ICON/UXB source programs. If your terminal does 
not have the tab function, you can arrange to have them turned into spaces during out­
put, and echoed as spaces during input. The system assumes that tabs are set every 
eight columns. Again, the uet(l} or 8tty(l} command will set or reset this mode. 
T8et(l} can be used to set the tab stops automatically when necessary. 

HOW TO RUN A PROGRAM - THE SHELLS 

When you have succeSsfully logged in, a program called a Shell is listening to your ter­
minal. The shell reads typed-in lines, splits them up into a command name and argu­
ments, and executes the command. A command is simply an executable program. The 
shell looks in several system directories to find the command. You can also place com­
mands in your own directory and have the shell find them there. There is nothing 

ICON INTERNATIONAL 5 



special about system·provided commands except that they are kept in a directory 
where the shell can find them. 

The command name is always the first word on an input line; it and its arguments are 
separated from one another by spaces. 

When a program terminates, the shell will ordinarily regain control and type a prompt 
at you to indicate that it is ready for another command. 

The shells have many other capabilities, which are described in detail in sections sh(l) 
and csh(l). If the shell prompts you with '$" then it is an instance of sh(l) the stan­
dard Bell· Labs provided shell. If it prompts with '%' then it is an instance of csh(l), a 
shell written at U.C. Berkeley. The shells are different for all but the most simple ter· 
minal usage. Most users at Berkeley choose cBh(l} because of the history mechanism 
and the alias feature, which greatly enhance its power when used interactively. The 
Berkeley csh also supports the job-control facilities. Refer to csh(l) or the Introduction 
to the C Shell in Volume 2 for details. 

You can change from one shell to the other by using the chsh (1) command, which takes 
effect at your next login. 

THE CURRENT DmECTORY 

ICON/UXB has a file system arranged in a hierarchy of directories. When the system 
administrator gave you a user name, he also created a directory for you (ordinarily 
with the same name as your user name). When you log in, any file name you type is by 
default in this directory. Since you are the owner of this directory, you have full per­
mission to read, write, alter, or destroy its contents. Permissions to have your will with 
other directories and files will have been granted or denied to you by their owners. As 
a matter of observed fact, few ICON/UXB users protect their files from perusal by 
other users. 

To change the current directory (but not the set of permissions you were endowed with 
at login) use cd(l). 

PATH NAMES 

To refer to files not in the current directory, you must use a path name. Full path 
names begin with c/', the name of the root directory of the whole file system. After the 
slash comes the name of each directory containing the next sub-directory (followed by a 
'I') until finally the file name is reached. For example, / usr /lem/ jilex refers to the file 
jilex in the directory lemi lem is itself a subdirectory of usri usr springs directly from 
the root directory J. 
If your current directory has subdirectories, the path names of files therein begin with 
the name of the subdirectory with no prefixed c/,. 

A path name may be used anywhere a file name is required. 

Important commands which modify the contents of files are cp{l), mtl(l), and rm{l), 
which respectively copy, move (i.e. rename) and remove files. To find out the status of 
files or directories, use 18(1). See mkdir{l) for making directories and rmdir (in rm{l)) 
for destroying them. 

6 ICON INTERNATIONAL 



{ 

For a fuller discussion of the file system, see The UNIX- Time-Sharing System, by Ken 
Thompson and Dennis Ritchie in Volume 2. It may also be useful to glance through 
Section 2 of this manual, which discusses system calls, even if you don't intend to deal 
with the system a.t that level. 

WRITING AN ICON/UXB PROGRAM 

To enter the text of a source program into an ICON/UXBfile, use the editor ex(I) or 
its display editing alia.s vi(I). (The old sta.ndard editor ed{I) is also available.) The 
principal languages in ICON/UXB are provided by the C compiler ce(I), the Fortran 
compiler /77{I), the Pa.scal compiler pc(I), a.nd interpreter pi(I) and pr(I), and the Lisp 
system li8p{I). User contributed sortwa.re in the la.test relea.se of the system supports 
APL, the Functional Programming language, a.nd Icon. Refer to opl(I), /p(I),. and 
icon(I), respectively for more information about each. After the program text has been 
entered through the editor and written on a file, you can give the file to the appropriate 
language processor a.s an argument. The output of the language processor will be left 
on a file in the current directory named 'a..out'. (If the output is precious, use mv to 
move it to a less exposed name soon.) 

When you have finally gone through this entire process without provoking any diagnos­
tics, the resulting program can be run by giving its name to the shell in response to the 
shell ('$' or '%') prompt. 

Your programs can receive arguments from the command line just as system programs 
do. Refer to the execve(2} command. 

TEXT PROCESSING 

Almost all text is entered through the editor eX(I) or its display-oriented counterpart vi 
(1). The commands most often used to write text on a terminal are: cat, pr, more and 
nroff, all described in section 1. 

The cat command simply dumps ASCII text on the terminal, with no processing at all. 
The pr command paginates the text, supplies headings, and has a facility for multi­
column output. 

nroff is an elaborate text formatting program. Used naked, it requires careful 
forethought, but for ordinary documents it ha.s been tamed; see me(7) and ms(7). 

troff prepares documents for a Graphics Systems phototypesetter or a Versatec Plotter; 
it is very similar to nroff, and often works from exactly the same source text. It was 
used to produce this manual. 

script(I) lets you keep a record of your session in a file, which can then, be printed, 
mailed, etc. It provides the advantages of a. hard-copy terminal even when using a 
display terminal. 

more(I) is useful for preventing the output of a command from zipping off the top of 
your screen. It is also well suited to perusing files. 

ICON INTERNATIONAL 7 



STATUS INQumIES 

Various commands exist to provide you with useful information. w(l) prints a list of 
users presently logged in, and what they are doing. date(l) prints the current time and 
date. 18(1) will list the files in your directory or give summary information about par­
ticular files. 

SURPRISES 

Certain commands provide inter-user communication. Even if you do not plan to use 
them, it would be well to learn something about them, because someone else may aim 
them at you. 

To communicate with another user currently logged in, write(l} is used; mail(l) will 
leave a message whose presence will be announced to another user when he next logs in. 
The write-ups in the manual also suggest how to respond to the two commands if you 
are a target. 

If you use csh(l) the key "z (control-Z) will cause jobs to stop. If this happens before 
you learn about it, you can simply continue by entering fa (for foreground) to bring the 
job back. 

When you log in, a message-of-the-day may greet you before the first prompt. Be 
patient, especially if the message is long. Your shell prompt will eventually appear nad 
you can go to work. 

OTHER MANUALS AND BOOKS ON THE UNlXI) OPERATING SYSTEM 

To assist you in learning more about the UNIX operating system, the following is a 
recommended list of some excellent books and manuals for novice users of the UNIX­
operating system. These are also invaluable resources and referE'nces for experienced 
UNIX· operating system users. 

8 

• UNIX Primer Plus, Waite, Martin, and Prata, 
Howard W. Sams, 1983 

• Understanding UNIX, A Oonceptual Guide, Groff and Weinberg, 
Que Corp., 1983 

• Exploring the UNIX System, Kochan and Wood, 
Hayden Book, 1983 

• A User Guide to the UNIX System, Thomas and Yates, 
Osborne/McGraw-Hill, 1985 

• UNIX Programmer's Manual, Volumes 1 and 2, Bell Labs, AT&T, 
Holt, Rinehart and Winston, 1983 

• Introducing the UNIX System, McGilton and Morgan, 
McGraw-Hill, 1983 

• Starting With UNIX, Brown, 
Addison-Wesley, 1984 

• The UNIX Programming Environment, Kernighan and Pike, 
Prentice-Hall, 1984 

ICON INTERNATIO~AL 

/ 

/ 



(" 

SECTION 1 

ICON/UXB 
OPERATING 
SYSTEM 
COMMANDS 
& APPLICATION 
PROGRAMS 





( 

INTRO( 1) USER COM:MANDS INTRO( 1) 

NAME 
intro - introduction to commands 

DESCRIPTION 
This section describes publicly accessible commands in alphabetic order. Certain distinctions 
of purpose are made in the headings: 

(1) Commands of general utility. 

(IC) Commands for communication with other systems. 

(IG) Commands used primarily for graphics and computer-aided design. 

N.B.: Commands related to system maintenance used to appear in section 1 manual pages and 
were distinguished by (1M) at the top of the page. These manual pages now appear in section 
8. 

SEE ALSO 
Section (6) for computer games. 

How to get started, in the Introduction. 

DIAGNOSTICS 
Upon termination each command returns two bytes of status, one supplied by the system giv­
ing the cause for termination, and (in the case of 'normal' termination) one supplied by the 
program, see wait and exit(2). The former byte is 0 for normal termination, the latter is cus­
tomarily 0 for successful execution, nonzero to indicate troubles such as erroneous parameters, 
bad or inaccessible data, or other inability to cope with the task at hand. It is called vari­
ously 'exit code', 'exit status' or 'return code', and is described only where special convent.ions 
are involved. 

ICON INTERNATIONAL 1 



ADB(l) USER COMMANDS ADB( 1) 

NAME 
adb - debugger 

SYNOPSIS 
adb how] [ -k ] [-d J [ -Idir ] [objfil ! corfil ] J 

DESCRIPTION 
Adb is a general purpose debugging program. It may be used to examine files and to provide 
a controlled environment for the execution of UNIX programs.' . 

Objfil is normally an executable program file, preferably containing a symbol table; if not then 
the symbolic features of adb cannot be used although the file can still be examined. The 
default for objfil is a.out. Oorfil is assumed to be a core image file produced after executing 
objfil; the default for corfil is core. 

Requests to adb are read from the standard input and responses are to the standard output. 
If the -w flag is present then both objfil and corfil are created if necessary and opened for 
reading and writing so that files can be modified using adb. 

The -k option allows adb to examine the running UNIX kernel. This option, on the ICON 
machines, selects the main~side division of UNIX, for disk-side operation, see the -d option. If 
this option is selected, objfil must be the directory (with an appended 'I') where the running 
kernel resides, and corfil must be present and set to / dev/ kmem. 

The -d option allows adb to examine the running disk cache processor's instruction/data 
space. If this option is selected, objfil must be the directory (with an appended 'I') where the 
disk cache kernel resides, and corfil must be present and set to / dev/ dmem. 

The -I option specifies a directory where files to be read with $< or $< < (see below) will be /' -\ 
sought; the default is /usr/lib/ adb. .~ / 

Adb ignores QUIT; INTERRUPT causes return to the next adb command. 

In' general requests to adb are of the form 

[ address J [, count J [command J [; 1 
If address is present then dot is set to address. Initially dot is set to O. For most commands 
count specifies how many times the command will be executed. The default count is 1. 
Address and count are expressions. 

The interpretation of an address depends on the context it is used in. If a subprocess is being 
debugged then addresses are interpreted in the usual way in the address space of the subpro­
cess. If the operating system is being debugged, using the special file / dev/ kmem to interac-

. tive examine and/or modify memory, the maps are set to map the kernel addresses which 
start at Ox40000000. see ADDRESSES. 

EXPRESSIONS 

+ 

.. 
integer 

The value of dot. 

The value of dot incremented by the current increment. 

The value of dot decremented by the current increment . 

The last address typed. 

A number. The prefixes 00 and 00 ("zero oh") force interpretation in octal radix; the 
prefixes Ot and OT force interpretation in decimal radix; the prefixes Ox and OX force 
interpretation in hexadecimal radix. Thus 0020 = 0t16 = OxlO = sixteen. If no 
prefix appears, then the default radix is used; see the $d command. The default radix 

ICON INTERNATIONAL 1 

/ 



( 

ADB( 1) USER COMMANDS ADB(I) 

is initially hexadecimal. The hexadecimal digits are 0123456789abcdefABCDEF with 
the obvious values. Note that a hexadecimal number whose most significant digit 
would otherwise be an alphabetic character must have a Ox (or OX) prefix (or a lead­
ing zero if the default radix is hexadecimal). 

integer .fraction 
A 32 bit floating point number. 

, cccc' The ASCII value of up to 4 characters. \ may be used to escape a '. 

< name 
The value of name, which is either a variable name or a register name. Adb main­
tains a number of variables (see VARIABLEs) named by single letters or digits. If name 
is a register name then the value of the register is obtained from the system header in 
corfU. The register names are those printed by the Sr command. 

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not start­
ing with a digit. The backslash character \ may be used to escape other charact.ers. 
The value of the symbol is taken from the symbol table in objfil. An initial _ will be 
prepended to symbol if needed. 

_ symbol 
In C, the 'true name' of an external symbol begins with _. It may be necessary to 
utter this name to distinguish it from internal or hidden variables of a program. 

(exp ) Th e v alu e of th e expression exp. 

Mona.dic opera.tors 

*exp 

@exp 

-exp 

exp 

#exp 

The contents of the location addressed by exp in corfil. 

The contents of the location addressed by exp in objfil. 

Integer negation. 

Bitwise complement. 

Logical negation. 

Dyadic operators are left associative and are less binding than monadic operators. 

el+e2 Integer addition. 

e1-e2 

el*e2 

el%e2 

el&e2 

el1e2 

el#e2 

In teger subtraction. 

Integer multiplication. 

In teger division. 

Bitwise conjunction. 

Bitwise disjunction. 

El rounded up to the next mUltiple of e2. 

COMMANDS 

2 

Most commands consist of a verb followed by a modifier or list of modifiers. The following 
verbs are available. (The commands '1' and 'I' may be followed by '*'; see ADDRESSES. for 
further details.) 

1f Locations starting at address in objfil are printed according to the format f. dot is 
incremented by the sum of the increments for each format letter (q.v.). 

If Locations starting at address in corfil are printed according to the format f and dot is 
incremented as for '1'. 

ICON INTERNATIOK-\L 



ADB(l) USER COMMANDS ADB( 1) 

f The value of oddrt:88 itself is printed in the styles indicated by the format f. (For i 
format '1' is printed for the parts of the instruction that reference subsequent words.) 

A format consists of one or more characters that specify a style of printing. Each format 
character may be preceded by a decimal integer that is a repeat count for the format charac­
ter. While stepping through a format dot is incremented by the amount given for each format 
letter. If no format is given then the last format is used. The format letters available are as 
follows. 

o 2 
04 
q 2 
Q4 
d 2 
D4 
x 2 
X4 
u 2 
U4 
f 4 
F8 
b 1 
c 1 
C 1 

s n 
S n 

Y4 
i n 

a 0 

/ 
? 

Print 2 bytes in octal. All octal numbers output by adb are preceded by O. 
Print 4 bytes in octal. 
Print in signed octal. 
Print long signed octal. 
Print in decimal. 
Print long decimal. 
Print 2 bytes in hexadecimal. 
Print 4 bytes in hexadecimal. 
Print as an unsigned decimal number. 
Print long unsigned decimal. 
Print the 32 bit value as a floating point number. 
Print double floating point. 
Print the addressed byte in octal. 
Print the addressed character. 
Print the addressed character using the standard escape convention where con­
trol characters are printed as AX and the delete character is printed as A? 
Print the addressed characters until a zero character is reached. 
Print a string using the A X escape convention (see C above). n is the length of 
the string including its zero terminator. 
Print 4 bytes in date format (see ctime(3)). 
Print as machine instructions. n is the number of bytes occupied by the 
instruction. This style of printing causes variables 1 and 2 to be set to the 
offset parts of the source and destination respectively. 
Print the value of dot in symbolic form. Symbols are checked to ensure that 
they have an appropriate type as indicated below. 

local or global data symbol 
local or global text symbol 

- local or global absolute symbol 

P 4 

t 0 

r 0 
n 0 
" ... " 0 

+ 

newline 

Print the addressed value in symbolic form using the same rules for symbol 
lookup as a. 
When preceded by an integer tabs to the next appropriate tab stop. For exam­
ple, 8t moves to the next 8-space tab stop. 
Print a space. 
Print a newline. 
Print the enclosed string. 
Dot is decremented by the current increment. Nothing is printed. 
Dot is incremented by 1. Nothing is printed. 
Dot is decremented by 1. Nothing is printed. 

Repeat the previous command with a count of 1. 

I!' III value mask 
Words starting at dot are masked with mask and compared with value until a match is 
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match 

ICON INTERNATIONAL 3 



(\ 

( 

ADB( 1) USER COw..1ANDS ADB( 1) 

4 

is found then dot is unchanged; otherwise dot is set to the matched location. If ma.«l- is 
omitted then -1 is used. 

[r Ilw value ... 
Write the 2-byte value into the addressed location. If the command is W, write 4 
bytes. Odd addresses are not allowed when writing to the subprocess address space. 

[r 11m bl el Jl[r II 

>name 

New values for (bl, el, Jl) are recorded. If less than three expressions are given then 
the remaining map parameters are left unchanged. If the I?' or 'I' is followed by '*' 
then the second segment (b£, e£ ,j£) of the mapping is changed. If the list is t.er­
minated by'?' or 'I' then the file (objfil or corfil respectively) is used for su bsequ en t 
requests. (So that, for example, '1m?' will cause 'I' to refer to objfil.) see ADDRESSES. 

Dot is assigned to the variable or register named. 

A shell (lbin/sh) is called to read the rest of the line following 'I'. 
$modifier 

Miscellaneous commands. The available modifiers are: 

<I Read commands from the file f. If this command is executed in a file, further 
commands in the file are not seen. If I is omitted, the current input stream is 
terminated. If a count is given, and is zero, the command will be ignored. The 
value of the count will be placed in variable 9 before the first command in I is 
executed. 

< <I Similar to < except it can be used in a file of commands without causing the 
file to be closed. Variable 9 is saved during the execution of this command, 
and restored when it completes. There is a (small) finite limit to the number of 
< < files that can be open at once. 

> I Append output to the file I, which is created if it does not exist. If I is omit­
ted, output is returned to the terminal. 

r Print process id, the signal which caused stoppage or termination, as well as 
the registers as $r. This is the default if modifier is omitted. 

r Print the general registers and the instruction addressed by pc. Dot is set to 
pc. 

F If there is an MC68881 floating point coprocessor, print the value in each regis-
ter, in double format. 

b ·Print all breakpoints and their associated counts and commands. 
D Delete all breakpoints and their associated counts and commands. 
c C stack backtrace. If address is given then it is taken as the address of the 

current frame instead of the contents of the frame-pointer register. If C is 
used then the names and (32 bit) values of all automatic and static variables 
are printed for each active function. (broken on the VAX). If count is given 
then only the first count frames are printed. 

d Set the default radix to address and report the new value. Note that address is 
interpreted in the (old) current radix. Thus "1O$d" never changes the default 
radix. To make decimal the default radix, use "Otl0$d". 

e The names and values of external variables are printed. 
w Set the page width for output to address (default 80). 
s Set the limit for symbol matches to address (default 255). 
o All integers input are regarded.as octal. 
q Exit from adb. 
v Print all non zero variables in octal. 
m Print the address map. 

ICON INTERNATIONAL 



ADB(l) 

p 

USER COMMANDS ADB(l) 

(Kernel debugging) Change the current kernel memory mapping to map the 
designated user structure to the address given by the symbol _u. The address 
argument is the address of the user's user page table entries (on the VAX). 

:modifier 

VARIABLES 

Manage a subprocess. Available modifiers are: 

be Set breakpoint at address. The breakpoint is executed eount-l times before 
causing a stop. Each time the breakpoint is encountered the command c is 
executed. If this command is omitted or sets dot to zero then the breakpoint 
causes a stop. 

d Delete breakpoint at address. 

r Run objfil as a subprocess. If address is given explicitly then the program is 
entered at this point; otherwise the program is entered at its standard entry 
point. count specifies how many breakpoints are to be ignored before stopping. 
Arguments to the subprocess may be supplied on the same line as the com­
mand. An argument starting with < or > causes the standard input or out­
put to be established for the command. 

cs The subprocess is continued with signal s, see sigvec(2). If address is given 
then the subprocess .is continued at this address. If no signal is specified then 
the signal that caused the subprocess to stop is 'sent. Breakpoint skipping is 
the same as for r. 

S8 As for c except that the subprocess is single stepped count times. If there is no 
current subprocess then objfil is run as a subprocess as for r. In this case no 
signal can be sent; the remainder of the line is treated as arguments to the sub­
process. 

n Stops at the next address after the present one. If the next instruction is any 
kind of jsr, a breakpoint is set at the instruction after it, and the process is 
continued, otherwise a single step is taken. Jmp's and bcc's are followed. 

u Looks at the current call frame for the return address, sets a breakpoint at 
that address, then continues the process, thus popping you back up the call 
tree. Because it looks at the current call frame, if the up command is used 
before the link instruction is executed, you will be popped up two call levels. 

k The current subprocess, if any, is terminated. 

Adb provides a number of variables. Named variables are set initially by adb but are not used 
subsequently. Numbered variables are reserved for communication as follows. 

o The last value printed. 
1 The last offset part of an instruction source. 
2 The previous value of variable 1. 
9 The count on the last $< or $< < command. 

On entry the following are set from the system header in the corfil. If corfil does not appear 
to be a core file then these values are set from objfil. 

b The base address of the data segment. 
d The data segment size. 
e The entry point. 
m The 'magic' number (0407, 0410 or 0413). 

ICON INTERNATIONAL 5 



( 

ADB( 1) USER COMMANDS ADB( 1) 

s 
t 

The stack segment size. 
The text segment size. 

ADDRESSES 

FILES 

The address in a file associated with a written address is determined by a mapping associated 
with that file. Each mapping is represented by two triples (b1, e1, 11) and (M, ef, If) and the 
file address corresponding to a written address is calculated as follows. 

b1 <address < e1 => file address=address+11-b1, otherwise, 

bf<address< ef => file address=address+/f-bf, 

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I 
and D space) the two segments for a file may overlap. If a r or / is followed by an * then 
only the second triple is used. 

The initial setting of both mappings is suitable for normal a.out· and core files. If either file 
is not of the kind expected then, for that file, b1 is set to 0, e1 is set to the maximum file size 
and 11 is set to 0; in this way the whole file can be examined with no address translation. 

a.out 
core 

SEE ALSO 
cc(l), dbx(1), ptra.ce(2), a.out(5), core(5) 

DIAGNOSTICS 
'Adb' when there is no current command or format. Comments about inaccessible files, s~rn­
tax errors, abnormal termination of commands, etc. Exit status is 0, unless last command 
failed or returned nonzero status. 

NOTES 

6 

The only commands that make any sense in kernel mode are those for displaying and chang­
ing data. Printing backtrace and registers, setting and displaying breakpoints, and process 
manipulations do not work. Data and instruction space are not really differentiated. On the 
main side, because addresses under Ox40000000 are in user space, and nothing can be 
guaranteed about their contents, from moment to moment, Ox40000000 is the lowest address 
readable in /dev /kmem. This is a property of /dev /kmem, not adb. Obviously only those for 
whom /dev /kmem has write permission turned on may change anything in the running ker­
nel. 

In most cases it is difficult to change floating point variables. If the integer equivalents (what­
ever the radix is) for the floating point number is known, they may be written with the /w 
command. 

A variant syntax is used to simplify writing to the floating point registers on the floating 
point coproceSsor. Rather than: 

value>regn 

as is used to write data and address registers, the following syntax is used (fvalue = floating 
point format): 

>fpn fvalue 

ICON INTERNATIOK\L 



ADB(l) USER COMMANDS ADB(l) 

BUGS 

Setuid and setgid programs do not run correctly under adb because ptrace inhibits the setuid 
and setgid mechanism. This is to enhance system security. 

Since no shell is invoked to interpret the arguments of the :r command, the customary wild­
card and variable expansions cannot occur. 

Because of the manner in which the current C compiler pushes parameters on the stack, there 
is no way to differentiate between subroutines with one parameter, and those with· none. 
Thus we always assume one parameter. 

ICON INTERNATIONAL 7 

/ 
! 



( 

C! 
/ 

ADDB1B(l) USER COMMANDS ADDBIB( 1) 

NAME 
addbib - create or extend bibliographic database 

SYNOPSIS 
addbib [-p promptfile] [-a 1 database 

DESCRIPTION 
When this program starts up, a.nswering "y" to the initial "Instructions?" prompt yields 
directions; typing "n" or RETURN skips them. Addbib then prompts for various bibliographic 
fields, reads responses from the terminal, and sends output records to a database. A null 
response (just RETURN) means to leave out that field. A minus sign (-) means to go back to 
the previous field. A trailing backslash allows a. field to be continued on the next line. The 
repeating "Continue?" prompt allows the user either to resume by typing "y" or RETURN, to 
quit the current session by typing "n" or "q", or to edit the database with any system editor 
(vi, ex, edit, ed). 

The -a option suppresses prompting for an abstract; asking for an abstract is the default. 
Abstracts are ended with a CTRL-d. The -p option causes addbib to use a new prompting 
skeleton, defined in promptfile. This file should contain prompt strings, a tab, and the key­
letters to be written to the database. 

The most common key-letters and their meanings are given below. Addbib insulates you from 
these key-letters, since it gives you prompts in English, but if you edit the bibliography file 
later on, you will need to know this information. 

%A 
%B 
%C 
%D 
%E 
%F 
%G 
%H 
%1 
%J 
%K 
%L 
%M 
%N 
%0 
%P 
%Q 
%R 
%S 
%T 
%V 
%X 
%Y,Z 

Author's name 
Book containing article referenced 
City (place of publication) 
Date of publication 
Editor of book containing article referenced 
Footnote number or label (supplied by refer) 
Government order number 
Header commentary, printed before reference 
Issuer (publisher) 
Journal containing article 
Keywords to use in locating reference 
Label field used by -k option of refer 
Bell Labs Memorandum (undefined) 
Number within volume 
Other commentary, printed at end of reference 
Page number(s) 
Corporate or Foreign Author (unreversed) 
Report, paper, or thesis (unpublished) 
Series title 
Title of article or book 
Volume number 
Abstract - used by roffbib, not by refer 
ignored by refer 

Except for 'A', each field should be given just once. Only relevant fields should be supplied. 

ICON INTERNATIONAL 1 



ADDBIB(1 ) 

An example is: 

o/oA 
%T 
%1 
%0 
%D 
%0 

FILES 
promptfile 

SEE ALSO 

USER CO:M:MANDS 

Bill Tuthill 
Refer - A Bibliography System 
Computing Services 
Berkeley 
1982 
UNX 4.3.5. 

optional file to define prompting 

refer(l), sortbib{l), roftbib(1), indxbib{l}, lookbib{l} 

AUTHORS 
Al Stangenberger, Bill Tuthill 

2 

ADDBIB(1 ) 

ICON INTERNATIONAL 



( 

( 

APPLY ( 1) USER COMMANDS APPLY ( 1) 

NAME 
apply - apply a command to a set of arguments 

SYNOPSIS 
apply ! -ac 1 ! -n 1 command args ... 

DESCRIPTION 
Apply runs the named command on each argument arg in turn. Normally arguments are 
chosen singly; the optional number n specifies the number of arguments to be passed to com­
mand. If n is zero, command is run without arguments once for each argo Character sequences 
of the form %d in command, where d is a digit from 1 to 9, are replaced by the d'th following 
unused argo If any such sequences occur, n is ignored, and the number of arguments passed to 
command is the maximum value of d in command. The character '%' may be changed by the 
-a option. 

Examples: 
apply echo * 

is similar to Is{I); 
apply -2 cmp al bl a2 b2 ... 

compares the 'a' files to the 'b' files; 
apply -0 who 1 2 3 4 5 

runs who(l) 5 times; and 
apply 1n %1 /usr/joe' * 

links all files in the curren t directory to the directory /usr /joe. 

SEE ALSO 
sh(1) 

AUTHOR 

BUGS 

Rob Pike 

Shell metacharacters in command may have bizarre effects; it is best to enclose complicated 
commands in single quotes ' '. 

There is no way to pass a literal '%2' if '%' is the argument expansion character. 

ICON INTERNATIONAL 1 



APROPOS(l) USER COMMANDS APROPOS ( 1) 

NAME 
apropos - locate commands by keyword lookup 

SYNOPSIS 
apropos keyword ... 

DESCRlPTION 
Apropo8 shows which manual sections contain instances of any of the given keywords in their 
title. Each word is considered separately and case of letters is ignored. \Vords which are part 
of other words are considered thus looking for compile will hit all instances of 'compiler' also. 
Try 

apropos password 

and 

apropos editor 

If the line starts 'name(section) .. .' you can do 'man section name' to get the documentation 
for it. Try 'apropos format' and then 'man 3s printf' to get t.he manual on the subroutine 
print/. 

Apropo8 is actually just the -k option to the man{l) command. 

Fll..ES 
lusr /lib/whatis 

SEE ALSO 
man(l), whatis(l}, catman(8) 

AUTHOR 
William Joy 

ICON INTERNATIONAL 

data base 

1 

o 



( 

AR(1 ) USER COM11ANDS AR( 1) 

NAME 
ar - archi,re and library maintainer 

SYNOPSIS 
ar key [ posname 1 afile name ... 

DESCRIPTION 
Ar maintains groups of files combined into a single archive file. Its main use is to create and 
update library files as used by the loader. It can be used, tbough, for any similar purpose. 
N.B: This version of ar uses a ASCII-format archive which is portable among the various 
machines running UNIX. Programs for dealing with older formats are available: see arcv(8). 

Key is one character from the set drqtpmx, optionally concatenated with one or more of 
vuaibclo. Afile is the archive file. The names are constituent files in the archive file. The 
meanings of the key characters are: 

d Delete the named files from the archive file. 

r 

q 

t 

Replace the named files in the archive file. If the optional character u is used with r, 
then only those files with 'last-modified' dates later than the archive files are replact-d. 
If an optional positioning character from the set abi is used, then the poslIame argu­
ment must be present and specifies that new files are to be placed after (a) or before 
(b or i) posname. Otherwise new files are placed at the end. 

Quickly append the named files to the end of the archive file. Optional positioning 
characters are invalid. The command does not check whether the added members are 
already in the archive. Useful only to avoid quadratic behavior when creating a large 
archive piece-by-piece. 

Print a table of contents of the archive file. If no names are given, all files in the 
archive are tabled. If names are giYen, only those files are tabled. 

p Print the named files in the archiye. 

m Move the named files to the end of the archive. If a positioning character is prest-nt, 
then the posname argument must be present and, as in r, specifies where the files are 
to be moved. 

x Extract the named files. If no names are given, all files in the archive aTe extracted. 
III neither case does x alter the archi"e file. Normally the 'last-modified' dat.e of each 
extract.ed file is the date when it. is extracted. However, if 0 is used, the 'last-modified' 
date is reset to the date recorded in the archive. 

v Verbose. Under the verbose opt,ion, ar gives a file-by-file description of the making of 
a new archive file from the old archive and the constituent files. When used with t, it 
gives a long listing of all information about the files. When used with p, it precedes 
each file with a name. 

c Create. Normally ar will create afile when it needs to. The create option suppresses 
the normal message that is produced when afile is created. 

1 Local. Normally ar places its temporary files in the directory /tmp. This option 
causes them to be placed in the local directory. 

FILES 
/tmp/v* temporaries 

ICON INTERNATIONAL 1 



AR(l) USER COMMANDS AR(l) 

SEE ALSO 

BUGS 

2 

lorder{l), Id{l}, ranlib(l}, ar(5) , arcv(8) 

If the same file is mentioned twice in an argument list, it may be put in the archive twice. 
The 'last-modified' date of a file will not be altered by the 0 option if the user is not t,he 
owner of the extracted file, or the super-user. 

ICON INTERNATIONAL 

c 

\ 
\j 



( 

( 

AS(l) USER COMMANDS 

NAME 
as - M68020 assembler 

SYNOPSIS 
as [ -0 objfile 1 ! name ... 1 

DESCRIPTION 
As assembles the named files. 

The output of the assembly is left on the file objfile; if that is omitted, name.o is used. 

FILES 
/tmp/as* 
a.out 

SEE ALSO 

default temporary files 
default resultant object file 

ld(l), nm(l), adb(l), dbx(l), a.out,(5) 
Auxiliary documentation Assembler Referen.ce :Manual. 

ICON INTERNATIONAL 

AS(l) 

1 



AT(l) USER CO:MMANDS AT(l) 

NAME 
at - execute commands at a later time 

SYNOPSIS 
at time [ day ] [ file 1 

DESCRIPTION 

FILES 

At squirrels away a copy of the named file (standard input default) to be used as input to 
8h(1) (or csh(l) if you normally use it) at a specified later time. A cd command to the current 
directory is inserted at the beginning, followed by assignments to all environment variables 
(excepting the variable TERM, which is useless in this context.) \Vhen the script is run, it uses 
the user and group ID of the creator of the copy file. . 

The time is 1 to 4 digits, with an optional following 'A', 'P', 'N' or 'M' for AM, PM, noon or 
midnight. One and two digit numbers are taken to be hours, three and four "digits to be 
hours and minutes. If no letters follow the digits, a 24 hour clock time is understood. 

The optional day is either (1) a month name followed by a day number, or (2) a day of the 
week; if the word 'week' follows invocation is moved seven days further off. Names of months 
and days may be recognizably truncated. Examples of legitimate commands are 

at Sam jan 24 
at 1530 fr week 

At programs are executed by periodic execution of the command /usr/lib/atrun from cron(8). 
The granularity of at depends upon how often atrun is executed. 

Standard output or error output is lost unless redirected. 

/usr /lib / atrun 

in /usr/spool/at: 
yy.ddd.hhhh.* 
lasttimedone 
past 

executor (run by cron(8)). 

activity for year yy, day dd, hour hhhh. 
last hhhh 
activities in progress 

SEE ALSO 
calendar(I), pwd(I), sleep(l), cron(8) 

DIAGNOSTICS 

BUGS 

Complains about various syntax errors and times out of range. 

Due to the granularity of the execution of /u8r/Jib/atrun, there may be bugs in scheduling 
things almost exactly 24 hours into the future. 

ICON INTERNATIONAL 1 

o 



AWK(l) USER COMMANDS A\\TK( 1) 

NAME 
awk - pattern scanning and processing language 

SYNOPSIS 
awk [ -Fe J [ prog J [ file J ... 

DES CRlP TION 
Awk scans each input file for lines that match any of a set of patterns specified in prog. With 
each pattern in prog there can be an associated action that will be performed when a line of a 
file matches the pattern. The set of patterns may appear literally as prog, or in a file specified 
as -f file. 

Files are read in order; if there are no files, the standard input is read. The file name '-' 
means the standard input. Each line is matched against the pattern portion of every 
pattern-action statement; the associated action is performed for each matched pattern. 

An input line is made up of fields separated by white space. (This default can be changed by 
using FS, vide infra.) The fields are denoted $1, $2, ... ; $0 refers to the entire line. 

A pattern-action statement has the form 

pattern { action} 

A missing { action} means print the line; a missing pattern always matches. 

An action is a sequence of statements. A statement can be one of the following: 

if ( conditional) statement [ else statement J 
while ( conditional) statement 
for ( expression; conditional; expression) statement 
br('ak 
continue 
{ [ statement 1 ... } 
variable = expression 
print [ expression-list 1 [ >expression 1 
printf format [ , expression-list 1 [ >expression 1 
next # skip remaining patterns on this input line 
exit # skip the rest of the input 

Statements are terminated by semicolons, newlines or right braces. An empty expression-list 
stands for the whole line. Expressions take on string or numeric values as appropriate, and 
are built using the operators +, -, *, I, %, and concatenation (indicated by a blank). The C 
operators ++, -, +=, -=, *=, 1=, and %= are also availahle in expressions. Va.riables 
may be scala.rs, array elements (denoted xli]) or fields. Variables are initialized to the null 
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of 
associative memory. String constants are quoted " ...... 

The print statement prints its arguments on the standard output (or on a file if > file is 
present), separated by the current output field separator, and terminated by the output 
record separator. The printfstatement formats its expression list according to the format (see 
printf(3S)). 

The built-in function length returns the length of its argument taken as a string, or of the 
whole line if no argument. There are also built-in functions exp, log, sqrt, and into The last 
truncates its argument to an integer. substr{s, m, n} returns the n-character substring of s 
that begins at position m. The function sprintf(fmt, expr, expr, .. .) formats the expressions 
according to the printf(3S) format given by fmt and returns the resulting string. 

ICON INTERNATIONAL 1 



AWK(l) USER COMM.Al\lJ)S AWK(l) 

Patterns are arbitrary Boolean combinations (!, IL &&, and parentheses) of regular expressions 
and relational expressions. Regular expressions must be surrounded by slashes and are as in (~ 
egrep. Isolated regular expressions in a pattern apply to the entire line. Regular expressions 0 
may also occur in relational expressions. 

A pattern may consist of two patterns separated by a comma; in this case, the action is per­
formed for all lines between an occurrence of the first pattern and the next occurrence of the 
seco~d. 

A relational expression is one of the following: 

expression matchop regular-expression 
expression relop expression 

where a relop is any of the six relational operators in C, and a matchop is either - (for con­
tains) or !- (for does not contain). A conditional is an arithmetic expression, a relational 
expression, or a Boolean combination of these. 

The special patterns BEGIN and END may be used to capture control before the first input 
line is read and after the last. BEGIN must be the first pattern, END the last. 
A single character c may be used to separate the fields by starting the program with 

BEGIN { FS = "c" } 

or by using the -F c option. 

Other variable names with special meanings include NF, the number of fields in the current 
record; NR, the ordinal number of the current record; FILENAME, the name of the current 
input file; OFS, the output field separator (default blank); ORS, the output record separator 
(default newline); and OFMT, the output format for numbers (default "%.6g"). 

EXAMPLES 
Print Jines longer than 72 characters: 

length> 72 

Print first t~\'O fields in opposite order: 

{ print $2, $1 } 

Add up first column, print sum and a\'erage: 

{s += $1 } 
El\1) {print "sum is", s, " average is", s/NR } 

Print fields in reverse order: 

{ for (i = NF; i > 0; -i) print $i } 

Print all lines between start/stop pairs: 

/start/, /stop/ 
Print all lines whose first field is different from previous one: 

$1 != prev { print; prey = $1 } 

SEE ALSO 

2 

lex(1), sed(1) 
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk - a pattern scanning and processing 
language 

ICON INTERNATIONAL 

/ ' , \ 



(! 

( 

AWK( 1) USER COMMANDS AWK(l) 

BUGS 
There are no explicit conversions between numbers and s'trings. To force an expression to be 
treated as a number add 0 to it; to force it to be treated as a string concatenate '"' to it. 

ICON INTERNATIONAL 3 



BASENAME ( 1 ) USER COMMAl\lDS BASENAME ( 1 ) 

NAME 
basename - strip filename affixes 

SYNOPSIS 
basename string [ suffix 1 

DESCRIPTION 
Basename deletes any prefix ending in '/' and the 8uffix, if present in string, from string, and 
prints the result on the standard output. It is normally used inside substitution marks' , in 
shell procedures. . 

This shell procedure invoked with the argument /usr/src/bin/cat.c compiles the named file 
and moves the output to cat in the current directory: 

SEE ALSO 
sh(l) 

cc $1 
mv a.out 'basename $1 .c' 

ICON INTERNATIONAL 1 

\ ./ 



( 

BC( 1) USER COJ\1MANDS BC( 1) 

NAME 
bc - arbitrary-precision arithmetic language 

SYNOPSIS 
be [ -e 1 [ -1 1 [ file ... 1 

DESCRIPTION 
Be is an interactive processor for a language which resembles C but provides unlimited preci­
sion arithmetic. It takes input from any files given, then reads the standard input. The-l 
argument stands for the name of an arbitrary precision math library. The syntax for be pro­
grams is as follows; L means letter a-z, E means expression, S means statement. 

Comments 

Names 

are enclosed in /. and ./. 

simple variables: L 
array elements: L [ E 1 
The words 'ibase', 'obase', and 'scale' 

Other operands 
arbitrarily long numbers with optional sign and decimal point. 
(E) 
sqrt ( E ) 
length ( E ) number of significant decimal digits 
scale ( E ) number of digits right of decimal point 
L(E, ... ,E) 

Operators 
+ _ • / % A (% is remainder; A is power) 
++ - (prefix and postfix; apply to names) 
== <= >= != < > 
= += -= .= /= %= -

Statements 
E 
{S ; ... ; S } 
if(E)S 
while ( E ) S 
for ( E j E ; E ) S 
null statement 
break 
quit 

Function definitions 
define L ( L , ... , L ) { 

auto L, ... , L 
Sj '" S 

} 
return ( E ) 

Functions in -1 math library 
s(x) sme 
c(x) cosine 
e(x) exponential 
l(x) log 

ICON INTERNATIONAL 1 



BC(l) USER COMMANDS BC( 1) 

FILES 

a(x) arctangent 
j(n,x) Bessel function 

All function arguments are passed by value. 

The value of a statement that is an expression is printed unless the main operator is an 
assignment. Either semicolons or newlines may separate statements. Assignment to scale 
influences the number of digits to be retained on arithmetic operations in the manner of de(l). 
Assignments to ibase or abase set the input and output number radix respectively. 

The same letter may be used as an array, a function, and a simple variable simultaneously. 
All variables are global to the program. 'Auto' variables are pushed down during function 
calls. When using arrays as function arguments or defining them as automatic variables 
empty square brackets must follow the array name. 

For example 

scale = 20 
define e(x){ 

} 

auto a, b, c, i, s 
a=1 
b=l 
s= 1 
for{i=l; 1==1; i++){ 

} 

a= a*x 
b = b*i 
c = alb 
if(c == 0) return(s) 
s = s+c 

defines a function to compute an approximate value of the exponential function and 

for{i=l; i<=lO; i++) e(i) 

prints approximate values of the exponential function of the first ten integers. 

Be is actually a preprocessor for dc(l), which it invokes automat.ically, unless the -c (compile 
only) option is present. In this case the de input is sent to the standard output instead. 

lusr/lib/lib.b mathematical library 
dC(l) desk calculator proper 

SEE ALSO 
dc(l) 
L. L. Cherry and R. Morris, BO - An arbitrary precision desk-calculator language 

BUGS 
No &&, I L or ! operators. 
For statement must have all three E's. 
Quit is interpreted when read, not when executed. 

2 ICON INTERNATIONAL 

o 

I~-~ 

~i 



( 

BIFF (1) USER COMMANDS BIFF (1) 

NAME 
biff - be notified if mail arrives and who it is from 

SYNOPSIS 
biff [yn 1 

DESCRIPTION 
Biffinforms the system whether you want to be notified when mail arrives during the current 
terminal session. The command 

biff y 

enables notification; the command 

biffn 

disables it. When mail notification is enabled, the header and first few lines of the message 
will be printed on your screen whenever mail arrives. A "biff y" command is often included in 
the file .login or .profile to be executed at each login. 

Biff operates asynchronously. For synchronous notification use the MAIL variable of sh{l) or 
the mail variable of csh(l). 

SEE ALSO 
csh(l), sh{I), mail{l), comsat(8C) 

ICON INTERNATIONAL 1 



BINMAIL(l) USER COMMANDS 

NAME 
binmail- send or receive mail among users 

SYNOPSIS 
/bin/mall ( + ] [ -i ] [ person] ... 
/bin/mall [ + ] [ -i ] -f file 

DESCRIPTION 

BINMAIL( 1) 

Note: This is the old version 7 UNIX system mail program. The default mail command is 
described in Mail(l), and its binary is in the directory /usr/ucb. 

mail with no argument prints a user's mail, message-by-message, in last-in, first-out order; the 
optional argument + displays the mail messages in first-in, first-out order. For each message, 
it reads a line from the standard input to direct disposition of the message. 
newline 

Go on to next message. 
d Delete message and go on to the next. 
p Print message again. 

Go back to previous message. 

s [file J ... 
Save the message in the named files ('mbox' default). 

w [file J ... 
Save the message, without a header, in the named files ('mbox' default). 

m [person J ... 
Mail the message to the named persons (yourself is default). 

EOT (control-D) 
Put unexamined mail back in the mailbox and stop. 

q Same as EOT. 
!command 

Escape to the Shell to do command. 

* Print a command summary. 
An interrupt normally terminates the mail command; the mail file is unchanged. The 
optional argument -i tells mail to continue after interrupts. 

When persons are named, mail takes the standard input up to an end-of-file (or a line with 
just '. ') and adds it to each person '$ 'mail' file. The message is preceded by the sender's name 
and a postmark. Lines that look like postmarks are prepended with '>'. A person is usually 
a user name recognized by login(l). To denote a recipient on a remote system, prefix person 
by the system name and exclamation mark (see uucp(lC)). 

The -f option causes the named file, for example, 'mbox', to be printed as if it were the mail 
file. 

When a user logs in he is informed of the presence of mail. 

ICON INTERNATIONAL 1 

o 



( 

( 

(\ 

B~(l) USER COMMANDS BI~(l) 

FILES 
/etc/paBSwd 
/usr/spool/mail/* 
mbox 
/tmp/ma* 
/usr/spool/mail/*.lock 
dead.letter 

to identify sender and locate persons 
incoming mail for user * 
saved mail 
temp file 
lock for mail directory 
unmailable text 

SEE ALSO 

BUGS 

2 

Mail(l), write(l), uucp(lC), uux(lC), xsend(l), sendmail(8) 

Race conditions sometimes result in a failure to remove a lock file. 

Normally anybody can read your mail, unless it is sent by %8end(l). An installation can over­
come this by making mail a set-user-id command that owns the mail directory. 

ICON INTERNATIONAL 



CAL ( 1) USER COMMANDS CAL ( 1) 

NAME 
cal- print calendar 

SYNOPSIS 
cal! month 1 year 

DESCRIPTION 
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for 
that month is printed. Year can be between 1 and 9999. The month is a number between 1 
and 12. The calendar produced is that for England and her coionies. 

BUGS 

Try September 1752. 

The year is always considered to start in January even though this is historically naive. 
Beware that 'cal 78' refers to the early Christian era, not the 20th century. 

ICON INTERNATIONAL 1 



CALENDAR ( 1 ) USER COMMANDS CALENDAR ( 1 ) 

( ' \ NAME 
calendar - reminder service 

( 

c 

SYNOPSIS 
calendar [ - 1 

DESCRIPTION 

FILES 

Calendar consults the file 'calendar' in the current directory and prints out lines that contain 
today's or tomorrow's date anywhere in the line. Most reasonable month-day dates such as 
'Dec. 7,' 'december 7,' '12/7,' etc., are recognized, but not '7 December' or '7/12'. If you give 
the month as U." with a date, i.e. U. 1 ", that day in any month will do. On weekE'nds 
'tomorrow' extends through Monday. 

When an argument is present, calendar does its job for every user who has a file 'calendar' in 
his login directory and sends him any positive results by mail{1). Normally this is done daily 
in the wee hours under control of cron(8). 

The file 'calendar' is first run through the "e" preprocessor, I lib! cpp, to include any ot her 
calendar files specified with the usual "#include" syntax. Included calendars will usually be 
shared by all users, maintained and documented by the local administration. 

calendar 
lusr/lib/calendar to figure out today's and tomorrow's dates 
letc/passwd 
Itmp/cal. 
/Iib / cpp, egrep, sed, mail as su bprocesses 

SEE ALSO 
at(l), cron{8}, mail{l} 

BUGS 
Calendar's extended idea of 'tomorrow' doesn't account for holidays. 

ICON INTERNATIONAL 1 



CAT (1) USER COMMANDS CAT ( 1) 

NAME 
cat - catenate and print 

SYNOPSIS 
cat ! -u J ! -n J ! -s ] [ -v ] file ... 

DESCRIPTION 
Cat reads each file in sequence and displays it on the standaTd .output. Thus 

cat file 

displays the file on the standard output, and 

cat filel file2 >file3 

concatenates the first two files and places the result on the third. 

If no input file is given, or if the argument '-' is encountered, cat reads from the standard 
input file. Output is buffered in 1024-byte blocks unless the standard output is a terminal. in 
which case it is line buffered. The -u option makes the output completely unbuffered. 

The -n option displays the output lines preceded by lines numbers, numbered sequentially 
from 1. Specifying the -b option with the -n option omits the line numbers from blank lines. 

The -8 option crushes out multiple adjacent empty lines so that the output is displayed single 
spaced. 

The -v option displays non-printing characters so that they are visible. Control characters 
print like AX for control-x; the delete character (octal 0177) prints as A? Non-ascii charact.ers 
(with the high bit set) are printed as M- (for meta) followed by the character of the low 7 
bits. A -e option may be given with the -v option, which displays a '$' character at the end 
of each line. Specifying the -t option wit.h the -v option displays tab characters as AI. 

SEE ALSO 
cp(I), eX(l), more(l), pr(l), tail(l) 

BUGS 
Beware of 'cat a b >a' and 'cat a b >b', which destroy the input files before reading them. 

ICON INTERNATIONAL 1 

\j 



CB( 1) USER COMJ\.1ANDS CB( 1) 

( 1 NAMEcb _ C program beautifier 

( 

SYNOPSIS 
cb 

DESCRlPTION 
Cb places a copy of the C program from the standard input on the standard output with 
spacing and indentation that displays the structure of the program. 

ICON INTERNATIONAL 1 



CC(l ) USER COMMANDS CC( 1) 

NAME 
cc - C compiler 

SYNOPSIS 
cc ( option ] ... file ... 

DESCRIPTION 
Cc is the UNIX C compiler. Cc accepts several types of arguments: 
Arguments whose names end with '.c' are taken to be C source programs; they are compiled, 
and each object program is left on the file whose name is that of the source with' .0' substi­
tuted for '.c'. The '.0' file is normally deleted, however, if a single C program is compiled and 
loaded all at one go. 

In the same way, arguments whose names end with • .s' are taken to be assembly· source pro­
grams and are assembled, producing a '.0' file. 
The following options are interpreted by ce. See Id(l) for load-time options. 
-c Suppress the loading phase of the compilation, and force an object file to be pro­

duced even if only one program is compiled. 

-f Compiles floating point operations to use the MC68881 floating point coprocessor. 

-g 

Also switches to versions of libc.a and /usr/lib/libm.a that use the floating point 
chip. Setting the environment variable FP to m68881 has the same effect as speci­
fying this flag. Code generated with this option will cause an '111egal instruction" 
trap when executed on machines that do not have the floating point coprocessor chip 
installed. 

Have the compiler produce additional symbol table information for dbx(l}. Also pass 
the -lg flag to Id(l}. 

-w Suppress warning diagnostics. 
-p Arrange for the compiler to produce code which counts the number of times each 

routine is called. If loading takes place, replace the standard startup routine by one 
which automatically calls monitor(3} at the start and arranges to write out a 
mon.out file at normal termination of execution of the object program. An execution· 
profile can then be generated by use of prof(l). 

-pg Causes the compiler to produce counting code in the manner of -p, but invokes a 
run-time recording mechanism that keeps more extensive statistics and produces a 
gmon.out file at normal termination. Also, a profiling library is searched, in lieu of 
the standard C library. An execution profile can then be generated by use of 
gprof(l}. 

-0 Invoke an object-code improver. 

-R Passed on to as, making initialized variables shared and read-only. 
-s Compile the named C programs, and leave the assembler-language output on 

corresponding files suffixed '.s'. 
-E Run only the macro preprocessor on the named C programs, and send the result to 

the standard output. 

-0 prevent. the macro preprocessor from eliding comments. 

-* Debug flag. Prints the phases (including arguments) of the compiler that would be 
executed if this flag was not present. 

ICON INTERNATIONAL 1 

c 



( 

( 

C: 

CC(1 ) USER COMMANDS CC(1 ) 

FILES 

-0 output 
Name the final output file output. If this option is used the file 'a.out' will be left 
undisturbed. 

-Dn4me=df! 
-Dncune Define the name to the preprocessor, as if by '#define'. If no definition is given, the 

name is defined as ttltt. 

-Uname Remove any initial definition of name. 

-Idir '#include' files whose names do not begin with 'I' are always sought first in the 
directory of the file argument, then in directories named in -I options, then in direc­
tories on a standard list. 

Other arguments are taken to be either loader option arguments, or C-compatible object pro­
grams, typically produced by an earlier cc run, or perhaps libraries of C-compatible routines. 
These programs, together with the results of any compilations specified, are loaded (in the 
order given) to produce an executable program with name a.out. 

file.c input file 
file.o object file 
a.out loaded output 
Itmp/ctm? temporary 
llib I cpp preprocessor 
Ilib/cO pass 1 of the compiler 
Ilib I c1 pass 2.of the compiler 
Ilib/c2 optional optimizer 
llib/crtO.o runtime startoff 
llib/mcrtO.o startoff for profiling· 
lusr/lib/gcrtO.o startoff for gprof-profiling 
Ilib/libc.a standard library, see intro(3) 
/usr/lib/libc_p.a profiling library, see intro(3) 
lusr/incIude standard directory for '#incIude' files 
mon.out file produced for analysis by prof(l) 
gmon.out file produced for analysis by gprof(l) 

SEE ALSO 
B. 'V. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978 
B. \\T. Kernighan, Programming in C-a tutorial 
D. M. Ritchie, C Reference Afanual 
monitor(3), prof(l), gprof(l), adb(l), Id(l), dbx(l), as(l) 

DIAGNOSTICS 

2 

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages 
may be produced by the assembler or loader. 

ICON INTERNATIONAL 



CD (1) USER COMMANDS CD (1) 

NAME 
cd - change working directory 

SYNOPSIS 
cd directory 

DESCRIPTION 
Directory becomes the new working directory. The process must have execute (search) permis­
sion in directory. 
Because a new process is created to execute each command, cd would be ineffective if it were 
written as a normal command. It is therefore recognized and executed by the shells. In csh(l) 
you may specify a list of directories in which directory is to be sought as a subdirectory if it is 
not a subdirectory of the current directory; see the description of the cdpath variable in csh(l). 

SEE ALSO 
csh(l), sh(l), pwd(l), chdir(2} 

ICON INTERNATIONAL 1 



CHECKI\1R ( 1 ) USER COMMANDS CHECKNR(l) 

NAME 
checknr - check nroff/troff files 

SYNOPSIS 
ehecknr [ -8 1 [ -f 1 [ -a.xl.yl.x2.y2 ..... xn.yn 1 [ -c.xl.x2.x3 .... xn 1 [file ... 

DESCRIPTION 
Checknr checks a list of nro1f(l) or tro1f(l) input files for certain kinds of errors involving 
mismatched opening and closing delimiters and unknown commands. If no files are specified, 
checrnr checks the standard input. Delimeters checked are: 

(1) Font changes using \fx ... \fP. 
(2) Size changes using \sx ... \sO. 

(3) Macros that come in open '" close forms, for example, the .TS and .TE macros which 
must always come in pairs. 

Checknr knows about the ms(7) and me(7) macro packages. 

Additional pairs of macros can be added to the list using the -a option. This must be fol­
lowed by groups of six characters, each group defining a pair of macros. The six characters 
are a period, the first macro name, another period, and the second macro name. For example, 
to define a pair .BS and .ES, use -a.BS.ES 

The -c option defines commands which would otherwise be complained about as undefined. 

The -f option requests checknr to ignore \f font changes. 

The -8 option requests checknr to ignore \s size changes. 

Checkllr is intended to be used on documents that are prepared with checknr in mind, much 
the same as lint. It expects a certain document writing style for \f and \s commands, in t.hat 
each Vx must be terminated with VP and each \sx must be terminated with \sO. \Vhile it 
will work to directly go into the next font or explicitly specify the original font or point size, 
and many existing documents actually do this, such a practice will produce complaints from 
checknr. Since it is probably better to use the \fP and \sO forms anyway, you should think of 
this as a contribution to your document preparation style. 

SEE ALSO 
nroff(l), troff(l), checkeq(l), ms(7), me(7) 

DIAGNOSTICS 
Complaints about unmatched delimiters. 
Complaints about unrecognized commands. 
Various complaints about the syntax of commands. 

AUTHOR 
Mark Horton 

BUGS 
There is no way to define a 1 character macro name using -a. 
Does not correctly recognize certain reasonable constructs, such as conditionals. 

ICON INTERNATIONAL 1 



CHFN( 1) USER COMMANDS CHFN( 1) 

NAME 
chfn - change finger entry 

SYNOPSIS 
chfn [loginnamej 

DESCRIPTION 

Fll..ES 

ChIn is used to change information about users. This information is used by the finger pro­
gram, among others. It consists of the user's "real life" name, office room number, office phone 
number, and home phone number. ChIn prompts the user for each field. Included in the 
prompt is a default value, which is enclosed between brackets. The default value is accept.ed 
simply by typing <return>. To enter a blank field, type the word 'none'. Bel,ow is a sample 
run: 

Name [Bifr Studsworth ll): 
Room number (Exs: 597E or 1970) D: 521E 
Office Phone (Ex: 1632) U: 1863 
Home Phone (Ex: 987532) [5771546]: none 

ChIn allows phone numbers to be entered with or without hyphens. Because finger only 
knows about VCB extensions, chIn will insist upon a four digit number (after the hyphens are 
removed) for office phone numbers. Also, room numbers must be in Evans or Cory; again, 
this is because of finger. 

It is a good idea to run finger after running chIn to make sure everything is the way you want 
it. 

The optional argument loginname is used to change another person's finger information. 
This can only be done by the super-user. 

/etc/passwd, /etc/ptmp 

SEE ALSO 

BUGS 

finger(l), passwd(5) 

The encoding of the office and extension information is installation dependent. 

For historical reasons, the user's name, etc are stored in the passwd file. This is a bad place 
to store the information. Rumors are that a data base is being developed to store this infor­
mation, but don't hold your breath. 

Because two users may try to write the passwd file at once, a synchronization method was 
developed. On rare occasions, a message that the password file is "busy" will be printed. In 
this case, chIn sleeps for a while and then tries to write to the passwd file again. 

ICON INTERNATIONAL 1 



(\ 

c 

CHGRP (1) USER COMMANDS CHGRP (1) 

NAME 
chgrp - change group 

SYNOPSIS 
chgrp [ -f 1 group file ... 

DESCRIPTION 
Chgrp changes the group-ID of the files to group. The group may be either a decimal GID or 
a group name found in the group-ID file. 

The user invoking chgrp must belong to the specified group and be the owner of the file, or be 
the super-user. 

No errors are reported when the -f (force) option is given. 

FILES 
fetcfgroup 

SEE ALSO 
chown(2), passwd(5), group(5) 

ICON INTERNATIONAL 1 



CHMOD(l) USER COMMANDS CHl\10D (1) 

NAME 
chmod - change mode 

SYNOPSIS 
chmod mode file ... 

DESCRIPTION 
The mode of each named file is changed according to mode, which may be absolute or sym­
bolic. An absolute mode is an octal number constructed from the OR of the following modt's: 

4000 set user ID on execution 
2000 set group ID on execution 
1000 sticky bit, see chmod(2) 
0400 read by owner 
0200 write by owner 
0100 execute (search in directory) by owner 
OOiO read, write, execute (search) by group 
OOOi read, write, execute (search) by others 

A symbolic mode has the form: 

[who] op permission top permission] ... 

The who part is a combination of the letters u (for user's permissions), g (group) and 0 

(other). The letter a stands for all, or ugo. If who is omitted, the default is a but the setting 
of the file creation mask (see umask(2)) is taken into account. 

Op can be + to add permission to the file's mode, - to take away permiss£on and = to assign 
permission absolutely (all other bits will be reset). /'" 

Permission is any combination of the letters r (read), w (write), x (execute), s (set ownt'r or "-j 
group id) and t (save text - sticky). Letters u, g or 0 indicate that permission is to be taken 
from the current mode. Omitting permission is only useful with = to take away all permis-
sions. 

EXAMPLES 
The first example denies write permission to others, the second makes a file executable: 

chmod o-w file 
chmod +x file 

Multiple symbolic modes separated by commas may be given. Operations are performed in 
the order specified. The letter s is only useful with u or g. 

Only the owner of a file (or the super-user) may change its mode. 

NOTE 
Currently all programs behave as if the sticky bit were set. But in the future this may have 
some functionality. 

SEE ALSO 
Is(I), chmod(2), stat(2), umask(2), chown(8) 

ICON INTERNATIONAL 1 



( 

( 

CHSH(l) USER COMMA1\1J)S CHSH(1 ) 

NAME 
chsh - change default login shell 

SYNOPSIS 
ehsh name [ shell] 

DESCRIPTION 
Chsh is a command similar to passwd{l) except that it is used to change the login shell field of 
the password file rather than the password entry. If no shell is specified then the shell reverts 
to the default login shell /bin/sh. Otherwise only /bin/csh, /bin/oldcsh, or /usr/new/csh can 
be specified as the shell unless you are the super-user. 

An example use of this command would be 

chsh bill /bin/csh 

SEE ALSO 
csh{l), passwd(l), passwd(5) 

ICON INTERNATIONAL 1 



CI( 1) USER COMMANDS CI(I) 

NAME 
ci - check in RCS revisions 

SYNOPSIS 
ci [ options ] file ... 

DESCRIPTION 
Oi stores new revisions into RCS files. Each file name ending in ',v' is taken to be an Res 
file, all others are assumed to be working files containing new revisions. Oi deposits the con­
tents of each working file into the corresponding ReS file. 
Pairs of ReS files and working files may be specified in 3 ways (see also the example section 
of co (1». 
1) Both the ReS file and the working file are given. The ReS file name is of the form 
pathl/workjile,v and the working file name is of the form path£/workjile, where patM/ and 
pathf/ are (possibly different or empty) paths and workfile is a file name. 

2) Only the RCS file is given. Then the working file is assumed to be in the current directory 
and its name is derived from the name of the RCS file by removing pathl/ and the suffix ',v'. 

3) Only the working file is given. Then the name of the ReS file is derived from the name of 
the working file by removing pathf/ and appending the suffix ',v'. 

IC the RCS file is omitted or specified without a path, then ci looks for the RCS file first in 
the directory ./RCS and then in the current directory. 

For ei to work, the caller's login must be on the access list, except if the access list is t'mpty 
or the caller is the superuser or the owner of the file. To append a new revision to an exist­
ing branch, the tip revision on that branch must be locked by the caller. Otherwise, only a 
new branch can be created. This restriction is not enforced for the owner of the file. unless 
locking is set to strict (see res (1». A lock held by someone else may be broken with the res 
command. 

Normally, ci checks whether the revision to be deposited is different from the preceding one. 
If it is not different, ci either aborts the deposit (if -q is given) or asks whether to abort (if-q 
is omitted). A deposit can be forced with the -f option. 

For each revision deposited, ei prompts for a log message. The log message should summar­
ize the change and must be terminated with a line containing a single '.' or a control-D. If 
several files are checked in, ci asks whether to reuse the previous log message. If t.he std. 
input is not a terminal, ci suppresses the prompt and uses the same log message for an files. 
See also -m. 
The number of the deposited revision can be given by any of the options -r, -f, -k, -I, -u, or 
-q (see -r). 

If the RCS file does not exist, ci creates it and deposits the contents of the working file as 
the initial revision (default number: 1.1). The access list is initialized to empty. Instead of 
the log message, ci requests descriptive text (see -t below). 

-r{rev] assigns the revision number rev to the checked-in revision, releases the 
corresponding lock, and deletes the working file. This is also the default. 

It rev is omitted, ci derives the new revision number from the caller's last lock. If 
the caller has locked the tip revision of a branch, the new revision is appended to 
that branch. The new revision number is obtained by incrementing the tip revi­
sion number. If the caller locked a. non-tip revision, a new branch is sta.rted at 

ICON INTERNATIONAL 1 

/ 

\ 
\. 



() 

( 

c 

CI(l) 

-f[rev] 

-k[rev] 

-I [rev] 

-u[rev] 

-q[rev] 

-mmsg 

-nname 

-Nname 

-estate 

-t[txtfile] 

USER CO:MMANDS eI(!) 

that revision by incrementing the highest branch number at that revision. The 
default initial branch and level numbers are 1. If the caller holds no lock, but he 
is the owner of the file and locking is not set to 8trict, then the revision is 
appended to the trunk. 

If rev indicates a revision number, it must be higher than the latest one on the 
branch to which rev belongs, or must start a new branch. 

If rev indicates a branch instead of a revision, the new revision is appended to 
that branch. The level number is obtained by incrementing the tip revision 
number of that branch. If rev indicates a non-existing branch, that branch is 
created with the initial revision numbered rev.l. 

Exception: On the trunk, revisions can be appended to the end, but not inserted. 

forces a deposit; the new revision is deposited even it is not different from the 
preceding one. 

searches the working file for keyword values to determine its revision number, 
creation date, author, and state (see co (1», and assigns these values to the depo­
sited revision, rather than computing them locally. A revision number given by a 
command option overrides the number in the working file. This option is useful 
for software distribution. A revision that is sent to several sites should be 
checked in with the -k option at these sites to preserve its original number, date, 
author, and state. 

works like -r, except it performs an additional co -I for the deposited revision. 
Thus, the deposited revision is immediately checked out again and locked. This 
is useful for saving a revision although one wants to continue editing it after the 
checkin. 

works like -1, except that the deposited revision is not locked. This is useful if 
one wants to process (e.g., compile) the revision immediately after checkin. 

quiet mode; diagnostic output is not printed. A revision that is not different from 
the preceding one is not deposited, unless ·f is given. 

uses the string msg as the log message for all revisions checked in. 

assigns the symbolic name name to the number of the checked-in reVISion. Ci 
prints an error message if name is already assigned to another number. 

same as -n, except that it overrides a previous assignment of name. 

sets the state of the checked-in revision to the identifier Btate. The default 1S 

Exp. 

writes descriptive text into the ReS file (deletes the existing text). If t:rffiie is 
omitted, ci prompts the user for text supplied from the std. input, terminated 
with a line containing a single '.' or control-D. Otherwise, the descriptive t.ext is 
copied from the file txtfile. During initialization, descriptive text is requested 
even if -t is not given. The prompt is suppressed if std. input is not a terminal. 

DIAGNOSTICS 

2 

For each revision, ci prints the ReS file, the working file, and the number of both the depo­
sited and the preceding revision. The exit status always refers to the last file checked in, 
and is 0 if the operation was successful, 1 otherwise. 

ICON INTERNATIONAL 



CI( 1) USER COMMANDS CI(I) 

F1LE MODES ~l 
An RCS file created by ci inherits the read a.nd execute permissions from the working file. If 

F1LES 

the RCS file exists already, ci preserves its read and execute permissions. Ci always turns off 
all write permissions of ReS files. 

The caller of the command must have read/write permission for the directories cont.aining 
the RCS file and the working file, and read permission for the RCS file itself. A number of 
temporary files are created. A semaphore file is created in the'directory containing the RCS 
file. Ci always creates a new RCS file and unlinks the old one. This strategy makes links to 
RCS files useless. 

IDENTIFICATION 
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907. 
Revision Number: 3.1; Release Date: 83/04/04. 
Copyright C 1982 by Walter F. Tichy. 

SEE ALSO 

BUGS 

co (1), ident(I), res (1), resdiff (1), resintro (1), resmerge (1), rlog (1), rcsfile (5), sccstorcs (8). 
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in 
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept. 
1982. 

ICON INTERNATIONAL 3 



CLEAR(l) USER COMMANDS CLEAR ( 1) 

( '\ NAME 
J clear - clear terminal screen 

( 

(-

SYNOPSIS 
clear 

DESCRIPTION 
Clear clears your screen if this is possible. It looks in the environment for the terminal t~'pe 
and then in / etc/termcap to figure out how to clear the screen. 

FILES 
/etc/termcap terminal capability data base 

ICON INTERNATIONAL 1 



CMP (1) USER COM:MANDS CMP( 1) 

NAME 
cmp - compare two files 

SYNOPSIS 
cmp [ -1 ] { -s ] filel file2 

DESCRIPTION 
The two files are compared. (If filel is '-', the standard input is used.) Under default options, 
cmp makes no comment if the' files are the same; if they differ, it announces the byte and line 
number at which the difference occurred. If one file is an initial subsequence of the other, t.hat 
fact is noted. 

Options: 

-I Print the byte number (decimal) and the differing bytes (octal) for each differenre. 

-8 Print nothing for differing files; return codes only. 

SEE ALSO 
diff(l), comm(l) 

DIAGNOSTICS 
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or miss­
ing argument. 

ICON INTERNATIONAL 1 



CO(I) USER COMMANDS CO(l) 

(·)NAME 

( 

co - check out Res revisions 

SYNOPSIS 
co [ options] file ... 

DESCRIPTION 
Co retrieves revisions from ReS files. Each file name ending in ',v' is taken to be an ReS 
file. All other files are assumed to be working files. Co retrieves a revision from each ReS 
file and stores it into the corresponding working file. 

Pairs of ReS files and working files may be specified in 3 ways (see also the example section). 

1) Both the ReS file and the working file are given. The ReS file name is of the form 
path1/workjile,v and the working file name is of the form pathf/workjile, where path1/ and 
pathf/ are (possibly different or empty) paths and workjile is a file name. 

2) Only the ReS file is given. Then the working file is created in the current directory and 
its name is derived from the name of the ReS file by removing path1/ and the suffix' ,y'. 

3) Only the working file is given. Then the name of the Res file is derived from the name of 
the working file by removing pathf/ and appending the suffix ',v'. 

If the ReS file is omitted or specified without a path, then co looks for the ReS file first in 
the directory ./Res and then in the current directory. 

Revisions of an ReS file may be checked out locked or unlocked. Locking a revision prevents 
overlapping updates. A revision checked out for reading or processing (e.g., compiling) need 
not be locked. A revision checked out for editing and later checkin must normally be locked. 
Locking a revision currently locked by another user fails. (A lock may be broken with the rcs 
(1) command.) Co with locking requires the caller to be on the access list of the Res file, 
unless he is the owner of the file or the superuser, or the access list is empty. Co without 
locking is not subject to accesslist restrictions. 

A revision is selected by number, checkin date/time, author, or state. If none of these 
options are specified, the latest revision on the trunk is retrieved. When the options are 
applied in combination, the latest revision that satisfies a.ll of them is retrieved. The options 
for date/time, author, and state retrieve a revision on the selected branch. The st'lected 
branch is either derived from the revision number (if given), or is the highest branch on the 
trunk. A revision number may be attached to one of the options -I, -p, -q, or -r. 

A co command applied to an ReS file with no revisions creates a zero-length file. Co always 
performs keyword substitution (see below). 

-1 [re1J] locks the checked out revision for the caller. If omitted, the checked out revi­
sion is not locked. See option -r for handling of the revision number re1J. 

-p[re1J] 

--q[re1J] 

-ddate 

prints the retrieved revision on the std. output rather than storing it in the 
working file. This option is useful when co is part of a pipe. 

quiet mode; diagnostics are not printed. 

retrieves the latest revision on the selected branch whose checkin date/time is 
less than or equal to date. The date and time may be given in free format and 
are converted to local time. Examples of formats for date: 

tf-April-198f, 17:tO-CDT, 
t:ts AM, Dec. t9, 1989, 
Tue-PDT, 1981, ./pm Jul tl (free format), 

. ICON INTERNATIONAL 1 



CO(l) USER CO:MMANDS CO(l) 

Fri, April 16 15:51:15 EST 1981 (output of ctime). 

Most fields in the date and time may be defaulted. Co determines the defaults 
in the order year, month, day, hour, minute, and second {most to least 
significant}. At least one of these fields must be provided. For omitted fields that 
are of higher significance than the highest provided field, the current values are 
assumed. For all other omitted fields, the lowest possible values are assumed. 
For example, the date "20, 10:30" defaults to 10:30:00 of the 20th of the C'urrent 
month and current year. The date/time must be quoted if it contains spaces. 

-r[rev] retrieves the latest revision whose number is less than or equal to rev. If rev 
indicates a branch rather than a revision, the lat.est revision on that branch is 
retrieved. Rev is composed of one or more numeric or symbolic fields separated 
by'.'. The numeric equivalent of a symbolic field is specified with the -n option 
of the commands ci and rC8. 

-fJ8tate retrieves the latest revision on the selected branch whose state is set to state. 

-w[login] retrieves the latest revision on the selected branch which was checked in by the 
user with login name login. If the argument login is omitted, the caller's login is 
assumed. 

-jjoinlist generates a new revision which is the join of the revisions on joinlist. Jo;nlist is 
a comma-separated list of pairs of the form revt:revS, where revt and revS are 
(symbolic or numeric) revision numbers. For .the initial such pair, revl denotes 
the revision selected by the options -1, ... , -w. For all other pairs, rev1 denotes 
the revision generated by the previous pair. (Thus, the output of one join 
becomes the input to the next.) 

For each pair, co joins revisions revl and revS with respect to revt. This means 
that all changes that transform revt into revl are applied to a copy of revS. 
This is particularly useful if revl and revS are the ends of two branches that 
have revt as a common ancestor. If revl < revt < revS on the same branch, 
joining generates a new revision which is like revS, but with all changes that 
lead from revl to revt undone. If changes from revt to revl overlap with 
changes from revt to revS, co prints a warning and includes the overlapping sec­
tions, delimited by the lines < < < < < < < revl, == and 
»»»> revS. 

For the initial pair, rev! may be omitted. The default is the common ancestor. 
If any of the arguments indicate branches, the latest revisions on those branches 
are assumed. If the option -1 is present, the initial revl is locked. 

KEYWORD SUBSTITUTION 

2 

Strings of the form SkeywordS and Skeyword: ... S embedded in the text are replact"d with 
strings of the form Skeyword: value S, where keyword and value are pairs listed below. Key­
words may be embedded in literal strings or comments to identify a revision. 

Initially, the user enters strings of the form SkeywordS. On checkout, co replaces these 
strings with strings of the form Skeyword: value S. If a revision containing strings of the 
latter form is checked back in, the value fields will be replaced during the next checkout. 
Thus, the keyword values are automatically updated on checkout. 

ICON INTERNATIONAL 



( 

CO(1 ) USER COMMANDS CO(I) 

Keywords and their corresponding values: 

SAuthorS The login name of the user who checked in the revision. 300. ClassS 

SDateS 

SHeaderS 

SLockerS 

$LogS 

$RevisionS 
$SourceS 

$StateS 

The date and time the revision was checked in. 

A standard header containing the RCS file name, the revision numbE.'f, the 
date, the author, and the state. 

The login name of the user who locked the revision (empty if not locked). 

The log message supplied during checkin, preceded by a header containing the 
RCS file name, the revision number, the author, and the date. Existing log 
messages are NOT replaced. Instead, the new log message is insertE.'d after 
SLog: .. . S. This is useful for accumulating a complete change log in a source 
file. 

The revision number assigned to the revision. 

The full pathname of the RCS file. 
The state assigned to the revision with rcs -s or ci -s. 

DIAGNOSTICS 
The Res file name, the working file name, and the revision number retrieved are written to 
the diagnostic output. The exit status always refers to the last file checked out, and is 0 if 
the operation was successful, 1 otherwise. 

EXAMPLES 
Suppose the current directory contains a subdirectory 'RCS' with an RCS file 'io.e,v'. Then 
all of the following commands retrieve the latest revision from 'RCS/io.c,v' and store it into 
'io.c'. 

eo io.c; co RCS/io.e,v; co io.c,v; 
co io.c RCS/io.c,v; co io.c 10.C,V; 

co RCS/io.c,v io.c; co io.c,v io.c; 

Fn.EMODES 

Fn.ES 

The working file inherits the read and execute permissions from the RCS file. In addition, the 
owner write permission is turned on, unless the file is checked out unlocked and locking is set 
to strict (see rcs (1 ». 
If a file with the name of the working file exists already and has write permission, co aborts 
the checkout if -q is given, or asks whether to abort if -q is not given. If the existing working 
file is not writable, it is deleted before the checkout. 

The caller of the command must have write permission in the working directory, read per­
mission for the RCS file, and either read permission (for reading) or read/write permission 
(for locking) in the directory which contains the RCS file. 

A number of temporary files are created. A semaphore file is created in the directory of the 
RCS file to prevent simultaneous update. 

( -' IDENTIFICATION 
, Aut~~r: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907. 

- RevlSlon Number: 3.1 ; Release Date: 83/04/04. 

ICON INTERNATIONAL 3 



CO(I ) USER COMMANDS CO(I) 

Copyright C 1982 by Walter F. Tichy. 

SEE ALSO 
ci (1), ident(I), res (I), rcsdiff (1), rcsintro (1), rcsmerge (1), rlog (1), rcsfile (5), sccstorcs (8). 
Wa.lter F. Tichy, "Design, Implementation, a.nd Evaluation or a Revision Control System," in 
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept. 
1982. 

LIMITATIONS 

BUGS 

4 

The option -d gets confused in some circumstances, and accepts no date before 1970. There 
is no way to suppress the expansion of keywords, except by writing them differently. In nroff 
and troff, this is done by embedding the null-character '\&' into the keyword. 

The option -j does not work for files that contain lines with a single '.'. 

ICON INTERNATIONAL 



( 

C·, 

COL ( 1) USER COMMANDS COL ( 1) 

NAME 
col - filter reverse line feeds 

SYNOPSIS 
col [-bfx J 

DESCRIPTION 
Col reads the standard input and writes the standard output. It performs the line overlays 
implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds 
(ESC-9 and ESC-8). Col is particularly useful for filtering multicolumn output made with the 
'.rt' command of nroffand output resulting from use of the tbl(l) preprocessor. 

Although col accepts half line motions in its input, it normally does not emit them on output. 
Instead, text that would appear between lines is moved to the next lower full line boundary. 
This treatment can be suppressed by the -f (fine) option; in this case the output from col 
may contain forward half line feeds (ESC-9), but will still never contain either kind of reverse 
line motion. 

If the -b option is given, col assumes that the output device in use is not capable of back­
spacing. In this case, if several characters are to appear in the same place, only the last. one 
read will be taken. 

The control characters SO (ASCII code 0Ii), and SI (016) are assumed to start and end text 
in an alternate character set. The character set (primary or alternate) associated with each 
printing character read is remembered; on output, SO and SI characters are generated where 
necessary to maintain the correct treatment of each character. 

Col normally converts white space to tabs to shorten printing time. If the -x option is given, 
this conversion is suppressed. 

All control characters are removed from the input except space, backspace, tab, return, new­
line, ESC (033) followed by one of 7, 8, 9, SI, SO, and VT (013). This last character is an 
alternate form of full reverse line feed, for compatibility with some other hardware conven­
tions. All other non-printing characters are ignored. 

SEE ALSO 
troff(I), tbl(l) 

BUGS 
Can't back up more than 128 lines. 
No more than 800 characters, including backspaces, on a line. 

ICON INTERNATIONAL 1 



COLCRT(l) USER COMMANDS COLCRT(l) 

NAME 
colcrt - filter nroff output for CRT previewing 

SYNOPSIS 
colert [ - 1 [ -2 ] [ file ... 1 

DESCRIPTION 
Colcrt provides virtual half-line and reverse line feed sequences for terminals without such 
capability, and on which overstriking is destructive. Half-line characters and underlining 
(changed to dashing '-') are placed on new lines in between the normal output lines. 

The optional - suppresses all underlining. It is especially useful for previewing allboxed tables 
from tbl(l). 

The option -2 causes all half-lines to be printed, effectively double spacing the output. Nor­
mally, a minimal space output format is used which will suppress empty lines. The program 
never suppresses two consecutive empty lines, however. The -2 option is useful for sending 
output to the line printer when the output contains superscripts and subscripts which would 
otherwise be invisible. 

A typical use of colcrt would be 

tbl exum2.n I nroff -ms I colcrt - I more 

SEE ALSO 
nroffjtroff(l), col(l), more(l), ul(l) 

AUTHOR 
\Villiam' Joy 

BUGS 
Should fold underlines onto blanks even with the '-' option so that a true underline charact.er 
would show; if we did this, however, colcrt wouldn't get rid of cu'd underlining completely. 

Can't ba.ck up more than 102 lines. 

General overstriking is lost; as a special case' I' overstruck with '-' or underline becomes '+'. 
Lines are trimmed to 132 characters. 

Some provision should be made for processing superscripts and subscripts in documents which 
are already double-spaced. 

ICON INTERNATIONAL 1 



COLRM(l) USER COMMANDS COLRM( 1) 

( ... \ NAME 
) colrm - remove columns from a file 

SYNOPSIS 
colrm [ startcol [ endcol II 

DESCRIPTION 
Golrm removes selected columns from a file. Input is taken from standard input. Output is 
sent to standard output. 

If called with one parameter the columns of each line will be removed starting with the 
specified column. If called with two parameters the columns from the first column to the last 
column will be removed. 

Column numbering starts with column 1. 

SEE ALSO 
expand(l) 

AUTHOR 
Jeff Schriebman 

ICON INTERNATIONAL 1 



COMM( 1) USER CO:MMANDS COMM( 1) 

NAME 
comm - select or reject lines common to two sorted files 

SYNOPSIS 
comm I - [ 123 J J filei file2 

DESCRIPTION 
Comm reads filel and filef, which should be ordered in ASCII collating sequence, and pro­
duces a three column output: lines only in filelj lines only in filef; and lines in both files. The 
filename '-' means the standard input. 

Flags I, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only 
the lines common to the two files; comm -23 prints only lines in the first file but not in t.he 
second; comm -123 is a no-op. 

SEE ALSO 
cmp(l}, diff(I}, uniq(I} 

ICON INTERNATIONAL 1 

~, 
I \ 

\...J 



COMPACT(l) USER COMMANDS COMPACT ( 1) 

( .) NAME 
compact, uncompact, ccat - compress and uncompress files, and cat them 

( 

SYNOPSIS 
compact [ name ... 1 
UDcompact [ name ... 
ccat [ file ... 1 

DESCRIPTION 
Compact compresses the named files using an adaptive Huffman code. If no file names are 
given, the standard input is compacted to the standard output. Compact operates as an on­
line algorithm. Each time a byte is read, it is encoded immediately according to the current 
prefix code. This code is an optimal Huffman code for the set of frequencies seen so far. It. is 
unnecessary to prepend a decoding tree to the compressed file since the encoder and the 
decoder start in the same state and stay synchronized. Furthermore, compact and uncompact 
can operate as filters. In particular, 

... I compact 1 uncompact I··. 

operates as a (very slow) no-op. 

When an argument file is given, it is compact.ed and the reSUlting file is placed in file. C; file is 
unlinked. The first two bytes of the compacted file code the fact that the file is compacted. 
This code is used to prohibit recompaction. 

The amount of compression to be expected depends on the type of file being compressed. 
Typical values of compression are: Text (38%), Pascal Source (43%), C Source (36%) and 
Binary (19%). These values are the percentages of file bytes reduced. 

Uncompact restores the original file from a file compressed by compact. If no file names are 
given, the standard input is uncompacted to the standard output. 

Ccat cats the original file from a file compressed by compact, without uncompressing the file. 

RESTRICTION 
The last segment of the filename must contain fewer than thirteen characters to allow space 
for the appended '.C'. 

FILES 
*.C 

SEE ALSO 

compacted file created by compact, removed by uncompact 

Gallager, Robert G., 'Variations on a Theme of Huffman', I.E.E.lt. Transactiolls on Informa­
tion Theory, vol. IT-24, no. 6, November 1978, pp. 668 - 674. 

AUTHOR 
Colin L. Mc Master 

ICON INTERNATIONAL 1 



COMPRESS ( 1 ) USER COMMANDS 

NAME 
compress, uncompress, zcat - compress and expand data 

SYNOPSIS 
compress [ -1] [ -v ] ( -c ] [ -b bits 1 ! name ... 1 
uncompress [ -1 1 [ -v ] ! -c 1 ! name ... ] 
scat [ name ... ] 

DESCRIPTION 

COMPRESS ( 1 ) 

Compress reduces the size of the named files using adaptive Lempel-Ziv coding. Whenever 
possible, each file is replaced by one with the extension .Z, while keeping the same ownership 
modes, access and modification times. If no files are specified, the standard input. is 
compressed to the standard output. Compressed files can be restored to their original form 
using tmCOmpre88 or zcat. . 

The -f option will force compression of name, even if it does not actually shrink or the 
corresponding name.Z file already exists. Except when run in the background under / bini sh, 
if -f is not given the user is prompted as to whether an existing name.Z file should be 
overwritten. 

The -c ("cat") option makes compress/uflcompress write to the standard output; no files are 
changed. The nondestructive behavior of zcat is identical to that of uncompress -c. 

Compress uses the modified Lempel-Ziv algorithm popularized in "A Technique for High Per­
formance Data Compression", Terry A. Welch, IEEE Computer, vol. 17, no. 6 (June 1984), pp. 
8-19. Common substrings in the file are first replaced by 9-bit codes 257 and up. When code 
512 is reached, the algorithm switches to 10-bit codes and continues to use more bits until the 
limit specified by the -b flag is reached (default 16). Bits must be between 9 and 16. The 
default can be changed in the source to allow compress to be run on a smaller machine. \ j 

After the bits limit is attained, compress periodically checks the compression ratio. If it is 
increasing, compress continues to use the existing code dictionary. However, if the compres-
sion ratio decreases, compress discards the table of substrings and rebuilds it from scratch. 
This allows the algorithm to adapt to the next "block" of the file. 

Note that the -b flag is omitted for uncompress, since the bits parameter specified during 
compression is encoded within the output, along with a magic number to ensure that neit.her 
decompression of random data nor recompression of compressed dat.a is attempted. 

The amount of compression obtained depends on the size of the input, the number of bUs per 
code, and the distribution of common substrings. Typically, text such as source code or 
English is reduced by 50-60%. Compression is generally much better than that achieved by 
Huffman coding (as used in pack), or adaptive Huffman coding (compact), and takes less time 
to compute. 

The -v option causes the printing of the percentage reduction of each file. 

H an error occurs, exit status is 1, e1se if the last file was not compressed because it became 
larger, the status is 2; else the status is O. 

DIAGNOSTICS 
Usage: compress [-fvc1 [-b maxbitsllfile ... l 

Invalid options were specified on the command line. 
Missing maxbits 

Maxbits must follow -b. 

ICON INTERNATIONAL 1 



( 

C: 

COMPRESS ( 1 ) USER COl\1MANDS COMPRESS ( 1 ) 

BUGS 

2 

file: not in compressed format 
The file specified to uncompress has not been compressed. 

file: compressed with xx bits, can only handle 1IY bits 
File was compressed by a program that could deal with more bits than the 
compress code on this machine. Recompress the file with smaller bits. 

file: already has .Z suffix -- no change 
The file is assumed to be already compressed. Rename the file and t.ry 
agam. 

file: filename too long to tack on .Z 
The file cannot be compressed because its name is longer than 12 charac­
ters. Rename and try again. This message does not occur on BSD systems. 

file already exists; do you wish to overwrite (y or n)1 
Respond "y" if you want the output file to be replaced; "n" if not. 

uncompress: corrupt input 
A SIGSEGV violation was detected which usually means that the input file 
is corrupted. 

Compression: xx.xx% 
Percentage of the input saved by compression. (Relevant only for -v.) 

- not a regular file: unchanged 
When the input file is not a regular file, (e.g. a directory), it is left unal­
tered. 

-- has xx other links: unchanged 

-- file unchanged 

The input file has links; it is left unchanged. See In(l) for more informa­
tion. 

No savings is achieved by compression. The input remains virgin. 

Although compressed files are compatible between machines with large memory, -b12 should 
be used for file transfer to architectures wit.h a small process data space (64KB or less, as exhi­
bited by the DEC PDP series, the Intel 80286, etc.) 
compress should be more flexible about the existence of the' .Z' suffix. 

ICON INTERNATIONAL 



CP(l) USER COMMANDS CP (1) 

NAME 
cp - copy 

SYNOPSIS 
ep [ -i ] [ -r ] [ -t ] filel file2 

ep [ -i 1 [ -r J [ -t 1 file ... directory 

DESCRIPTION 
Filel is copied onto Jilef. The mode and owner of filet are preserved if it already existed; the 
mode of the source file is used otherwise. 

In the second form, one or more Jiles are copied into the directory with their original file­
names. 

Cp refuses to copy a file onto itself. 

If the -i option is specified, cp will prompt the user with the name of the file whenever the 
copy will cause an old file to be overwritten. An answer of 'y' will cause cp to cont.inue. Any 
other answer will prevent it from overwriting the file. 

If the -r option is specified and any of the source files are directories, cp copies each subtree 
rooted at that name; in this case the destination must be a directory. Otherwise, if the -r 
flag is not specified, directories will not be copied. 

If the -t option is specified, the time stamp on the destination file will be set to the t.ime 
stamp of the source file. 

SEE ALSO 
cat(l), pr(l), mV(l) 

ICON INTERNATIONAL 1 

I 
j 



( 

c· 

ePIO (1) USER COMMANDS CPIO (1) 

NMffi 
cpio - copy file archives in and out 

SYNOPSIS 
cpio -0 [ acBv 1 
cpio -i [ BcdmrtuvfsSb6 1 [patterns 1 
cpio -p [ adlmruv 1 directory 

DESCRIPTION 
Cpio -0 (copy out) reads the standard input to get a list of path names and copies those files 
onto the standard output together with path name and status information. 

Cpio -i (copy in) reads the standard input (which is assumed to be the product of a previous 
Cpio -0 command), to get a list of files selected by zero or more patterns as defined in the 
name-generating notation of sh{l) or csh{I). In patterns, the meta-characters ?, *, and [ ... J 
match the slash U) character. The default for patterns is * (select all files). 

Cpio -p (pass) copies out and in in a single operation. Destination pa.thnames are inter­
preted relative to the named directory. 

OPTIONS 
a 

B 

d 

c 

r 

t 

u 

v 

1 

m 

f 

s 

S 

b 

6 

EXAMPLES 

Reset the access times of input files after they have been copied. 

Input/output is to be blocked at 5120 bytes to the record. This does not apply to the 
pass option. This option is only meaningful with data directed to or from /dev /rmtr 
Directories should be created as needed. 

\\'rite header information in ASCII character form for portability. 

Interactively rename files. If the user types a null line, the file is skipped. 

Print a Table of contents of the input. No files are created. 

Copy unconditionally. Normally, an older file will not replace a newer file wit.h the 
same name. 

Verbose option. A list of filenames is displayed. When' used with the t option, the 
table of contents looks like the output of an Is -1 command (see /s(I)). 

\\-henever possible, link files rather than copying them. Usable only with the -p 
option. 

Retain previous file modification time. This option is ineffective on directories that are 
being copied. 

Copy in all files execpt those in patterns. 

Swap bytes. User only with the -i option. 

Swap halfwords. Use only with the -i option. 

Swap both bytes and halfwords. Use only with the -i option. 

Process an old (version 6 UNIX system) file. This is only useful with -i (copy in). 

To copy the contents of a directory into an archive: 

% Is I cpio -0 > /dev/mtO 

ICON INTERNATIONAL 1 



CPIO (1) USER COMMANDS CPIO (1) 

To duplicate the olddir directory hierarchy in the newdir directory: 
% ed olddir 
% find • -print I epio -pdl newdir 

Some forms of cpio tapes from other sites have the bytes swapped in the file. The s option 
doesn't help since it only swaps the data bytes and not the header. To overcome this prob­
lem, use dd with the eonv=swab option to swap all pairs of bytes (including the header), 
then pipe the output of dd through cpio with the s option to swap the data bytes back again: 

% dd if-whatever the file is eonv=swab I epio -is 

SEE ALSO 

BUGS 

2 

u(l), find(l), cpio(5) 

Pathnames are restricted to 128 characters. If there are too many unique linked files, cpio 
runs out of memory to keep track of them and linking information is lost thereafter. Only 
the super-user can copy special files. 

ICON INTERNATIONAL 



( \ 

( 

( 

CRYPT ( 1) USER COMMANDS CRYPT ( 1) 

NAME 
crypt - encode/decode 

SYNOPSIS 
crypt [ password J 

DESCRIPTION 

FILES 

Crypt reads from the standard input and writes on the standard output. The password is a 
key that selects a particular transformation. If no password is given, crypt demands a key 
from the terminal and turns off printing while the key is being typed in. Crypt encrypts and 
decrypts with the same key: 

crypt key <clear >cypher 
crypt key <cypher I pr 

will print the clear. 

Files encrypted by crypt are compatible with those treated by the editor ed in encryption 
mode. 

The security of encrypted files depends on three factors: the fundamental method must be 
hard to solve; direct search of the key space must be infeasible; 'sneak paths' by which keys or 
cleartext can become visible must be minimized. 

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but 
with a 256-element rotor. Methods of attack on such machines are known, but not widely; 
moreover the amount of work required is likely to be large. 

The transformation of a key into the internal settings of the machine is deliberately designed 
to be expensive, i.e. to take a substantial fraction of a second to compute. Howeyer, if keys 
are restricted to (say) three lower-case letters, then encrypted files can be read by expending 
only a substantial fraction of five minutes of machine time. 

Since the key is an argument to the crypt command, it is potentially visible to users executing 
ps(l) or a derivative. To minimize this possibility, crypt takes care to destroy any record of 
the key immediately upon entry. No doubt the choice of keys and key security are the most 
vulnerable aspect of crypt. 

/dev /tty for typed key 

SEE ALSO 

BUGS 

ed(l), makekey(8) 

There is no warranty of merchantability nor any warranty of fitness for a particular purpose 
nor any other warranty, either express or implied, as to the accuracy of the enclosed materials 
or as to their suitability for any particular purpose. Accordingly, Bell Telephone Laboratories 
assumes no responsibility for their use by the recipient. Further, Bell Laboratories assumes 
no obligation to furnish any assistance of any kind whatsoever, or to furnish any additional 
information or documentation. 

ICON INTERNATIONAL 1 



CSH( 1) USER COMMANDS CSH( 1) 

NAME 
csh - a shell (command interpreter) with C-like syntax 

SYNOPSIS 
cab [ -cetinstvVxX J ( arg ... 

DESCRIPTION 
Osh is a first implementation of a command language interpreter incorporating a history 
mechanism (see History Substitutions) job control facilities {see Jobs) and a C-like syntax. 
So as to be able to use its job control facilities, users of eM must (and automatically) use t.he 
new tty driver fully described in tty(4). This new tty driver allows generation of interrupt 
characters from the keyboard to tell jobs to stop . .see 8tty(1} for details on setting options in 
the new tty driver. 

An instance of csh begins by executing commands from the file '.cshrc' in the home directory 
of the invoker. If this is a login shell then it also executes commands from the file '.login' 
there. It is typical for users on crt's to put the command "stty crt" in their .login file, and to 
also invoke tset(l) there. 

In the normal case, the shell will then begin reading commands from the terminal, prompting 
with '% '. Processing of arguments and the use of the shell to process files containing com­
mand scripts will be described later. 

The shell then repeatedly performs the following actions: a line of command input is read and 
broken into words. This sequence of words is placed on the command history list and then 
parsed. Finally each command in the current line is executed. 

When a login shell terminates it executes commands from the file' .logout' in the users home 
directory. 

Lexical Structure 

The shell splits input lines into words at blanks and tabs with the following exceptions. The 
characters '&' 'I' Ii' '<' I>' '(' I)' form separate words. If doubled in '&&', 'II', '< <' or 
I»~' these pairs form single words. These parser metacharacters may be made part of other 
words, or prevented their special meaning, by preceding them with '\'. A newline preceded by 
a '\' is equivalent to a blank. 

In addition strings enclosed in matched pairs of quotations, "', ,., or '''', form parts of a word; 
metacharacters in these strings, including blanks and tabs, do not form separate words. 
These quotations have semantics to be described subsequently. Within pairs of ", or ,,,, cll ar­
acters a newline preceded by a '\' gives a true newJine character. 

When the shell's input is not a terminal, the character 1#' introduces a comment which con­
tinues to the end of the input line. It is prevented this special meaning when preceded by '\' 
and in quotations using "', I", and ''''. 

Commands 

A simple command is a. sequence of words, the first of which specifies the command to be t'xe­
cuted. A simple command or a sequence of simple commands separated by It characters 
forms a pipeline. The output of each command in a pipeline is connected to the input of the 
next. Sequences of pipelines may be separated by Ii', and are then executed sequentially. A 
sequence of pipelines may be executed without immediately waiting for it to terminate by fol­
lowing it with an '&'. 
Any of the above may be placed in '(' I)' to form a simple command (which may be a com­
ponent of a pipeline, etc.) It is also possible to separate pipelines with 'I r or '&&' indicating. 

ICON INTERNATIONAL 1 

~ 
I , 
'~ 



(-

CSH (1) USER COMMANDS CSH (1 ) 

2 

as in the C language, that the second is to be executed only if the first fails or succeeds respe('­
tively. (See Ezprusions.) 
Jobs 
The shell associates a job with each pipeline. It keeps a table of current jobs, printed by the 
jobs command, and assigns them small integer numbers. When a job is started asynchro­
nously with '&', the shell prints a line which looks like: 

!1] 1234 

indicating that the jobs which was started asynchronously was job number 1 and had one 
(top-level) process, whose process id was 1234. 

If you are running a job and wish to do something else you may hit the key "z (control-Z) 
which sends a STOP signal to the current job. The shell will then normally indicate that. the 
job has been 'Stopped', and print another prompt. You can then manipulate the stat.e of this 
job, putting it in the background with the bg command, or run some other commands and 
then eventually bring the job back into the foreground with the foreground command /g. A 
"'z takes effect immediately and is like an interrupt in that pending output and unread input 
are discarded when it is typed. There is another special key "'Y which does not generate a 
STOP signal until a program attempts to read(2) it. This can usefully be typed ahead when 
you have prepared some commands for a job which you wish to stop after it has read them. 

A job being run in the background will stop if it tries to read from the terminal. Background 
jobs are normally allowed to produce output, but this can be disabled by giving the command 
"stty tostop". If you set this tty option, then background jobs will stop when they t.ry t.o 
produce output like they do when they try to read input. 

There are several ways to refer to jobs in the shell. The character '%' introduces a job name. 
If you wish to refer to job number I, you can name it as '%1'. Just naming a job brings it to 
the foreground; thus '%1' is a synonym for 'fg %1', bringing job 1 back into the foreground. 
Similarly saying '%1 &' resumes job 1 in the background. Jobs can also be named by prefixE's 
of the string typed in to start them, if these prefixes are unambiguous, thus '%ex' would nor­
mally restart a suspended eX(I} job, if there were only one suspended job whose name began 
with the string 'ex'. It is also possible to say '%?string' which specifies a job whose text COI1-

tains string, if there is only one such job. 

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs, 
the current job is marked with a '+' and the previous job with a '-'. The abbreviation '%+' 
refers to the current job and '0/0-' refers to the previous job. For close analogy with the syn­
tax of the history mechanism (described below), '%%' is also a synonym for the current job. 

Status Reporting 

This shell learns immediately whenever a process changes state. It normally informs you 
whenever a job becomes blocked so that no further progress is possible, but only just before it 
prints a prompt. This is done so that it does not otherwise disturb your work. If, howeyer, 
you set the shell variable notify, the shell will notify you immediately of changes of status in 
background jobs. There is also a shell command notify which marks a single process so th at 
its status changes will be immediately reported. By default notify marks the current process; 
simply say 'notify' after starting a background job to mark it. 

When you try to leave the shell while jobs are stopped, you will be warned that 'You have 
stopped jobs.' You may use the jobs command to see what they are. If you do this or 
immediately try to exit again, the shell will not warn you a second time, and the suspended 
jobs will be terminated. 

ICON INTERNATION.\L 



CSH(l) USER COMMANDS CSH( 1) 

Substitutions 
We now describe the various transformations. the shell performs on the input in the order in 
which they occur. 

History Substitutions 
History substitutions place words from previous command input as portions of new com­
mands, making it easy to repeat commands, repeat arguments of a previous command in the 
current command, or fix spelling mistakes in the previous command with little typing and a 
high degree of confidence. History substitutions begin with the character 'I' and may begin 
anywhere in the input stream (with the proviso that they do not nest.) This'!' may be pre­
ceded by an '\' to prevent its special meaning; for convenience, a 'I' is passed unchanged when 
it is followed by a blank, tab, newline, '=' or '('. (History substitutions also occur when an 
input line begins with It'. This special abbreviation will be described later.) Any input line 
which contains history substitution is echoed on the terminal before it is executed as it could 
have been typed without history substitution. 

Commands input from the terminal which consist of one or more words are saved on the his­
tory list. The history substitutions reintroduce sequences of words from these saved com­
mands into the input stream. The size of which is controlled by the history variable; the pre­
vious command is always retained, regardless of its value. Commands are numbered sequen­
tially from 1. 

For definiteness, consider the following output from the history command: 

9 write michael 
10 ex write.c 
11 cat oldwrite.c 
12 diff *,vrite.c 

The commands are shown with their event numbers. It is not usually necessa.ry t,o use event 
numbers, but the current event number can be made part of the prompt by placing an 'I' in 
the prompt string. 

With the current event 13 we can refer to previous events by event number '111', relatively as 
in '!-2' (referring to the same event), by a prefix of a command word as in ltd' for event 12 or 
'!wri' for event 9, or by a string contained in a word in the command as in '!?mic?' also refer­
ring to event 9. These forms, without further modification, simply reintroduce the words of 
the specified events, each separated by a single blank. As a special case 'II' refers t.o the previ­
ous command; thus '!I' alone is essentially a redo, 

To select words from an event we can follow the event. specification by a I:' and a designator 
for the desired words. The words of a input line are numbered from 0, the first (usually com­
mand) word being 0, the second word (first argument) being I, etc. The basic word designa­
tors are: 

o first (command) word 
n n'th argument 
1 first argument, i.e. 'I' 
$ last argument 
% word matched by (immediately preceding) 

18? search 
%-y range of words 
-y abbreviates 'O-y' 
* abbreviates 't-$', or nothing if only 1 word 

in event 
%* abbreviates ':1:-$' 
%- like ':u' but omitting word '$' 

ICON INTERNATIONAL 3 

/~ 
! 
\ / 



() 

( 

c 

OSH( 1) USER CO:MMANDS OSH( 1) 

4 

The I:' separating the event specification from the word designator can be omitted if the argu­
ment selector begins with a 't', '$', '*' '-' or '%'. After the optional word designator can be 
placed a sequence of modifiers, each preceded by a I:'. The following modifit'rs are dt'fined: 

h Remove a trailing pathname component, 

r 

e 
sfllr f 
t 

& 
g 

p 

q 

x 

leaving the head. 
Remove a trailing '.xxx' component, 
leaving the root name. 
Remove all but the extension '.xxx' part. 
Substitute /for r 
Remove all leading pathname components, 
leaving the tail. 
Repeat the previous substitution. 
Apply the change globally, prefixing the 
above, e.g. 'g&'. 
Print the new command but do not 
execute it. 
Quote the substituted words, preventing 
further su bstitutions. 
Like q, but break into words at blanks, 
tabs and newlines. 

Unless preceded by a 'g' the modification is applied only to the first modifiable word. \Vith 
substitutions, it is an error for no word to be applicable. 

The left hand side of substitutions are not regular expressions in the sense of the editors, but 
rather strings. Any character may be used as the delimiter in place of 'I'; a '\' quotes the del­
imiter into the I and r strings. The character '&' in the right hand side is replaced by the text 
from the left. A '\' quotes '&' also. A null I uses the previous string either from a lor from a 
contextual scan string 8 in '!?8?'. The trailing delimiter in the substitution may be omitted if 
a newline follows immediat.ely as may the trailing "?' in a contextual scan. 

A history reference may be given without an event specification, e.g. '!$'. In this case the 
reference is to the previous command unless a previous history reference occurred on the same 
line in which case this form repeats the previous reference. Thus '!?foo?t !$' gives the first and 
last arguments from the command matching '?foo?'. 

A special abbreviation of a history reference occurs when the first non-blank character of an 
input line is a 't'o This is equivalent to '!:s1' providing a convenient shorthand for substitu­
tions on the text of the previous line. Thus 'tlhtlib' fixes the spelling of 'lib' in the previous 
command. Finally, a history substitution may be surrounded with '{' and I}' if necessary to 
insulate it from the characters which follow. Thus, after 'Is -Id -paul' we might do '!{l}a' to 
do 'Is -ld -paula', while '!la' would look for a command starting 'Ia'. 
Quotations with ' and .. 

The quotation of strings by ,,, and '''' can be used to prevent all or some of the remaining 
substitutions. Strings enclosed in ", are prevented any further interpretation. Strings 
enclosed in '''' may be expanded as described below. 

In both cases the resulting text becomes (all or part of) a single word; only in one special case 
(see Command Substitition below) does a '''' quoted string yield parts of more than one word; 
,,, quoted strings never do. 

ICON INTERNATIONAL 



· CSH(l) USER COMMANDS CSH( 1) 

Alias Substitution /'~~ 

The shell maintains a list of aliases which can be established, displayed and modified by the ~ 
alias and unalias commands. After a command line is scanned, it is parsed into distinct com-
mands and the first word of each command, left-to-right, is checked to see if it has an alias. 
It it does, then the text which is the alias for that command is reread with the history 
mechanism available as though that command were the previous input line. The resulting 
words replace the command and argument list. It no reference is made to the history list, 
then the argument list is left unchanged. 
Thus if the alias for 'Is' is 'Is -I' the command 'Is lusr' would map to 'Is -I lusr', the argu­
ment list here being undisturbed. Similarly if the alias for 'lookup' was 'grep 't letc/passwd' 
then 'lookup bill' would map to 'grep bill letc/passwd'. 
If an alias is found, the word transformation of the input text is performed and the aliasing 
process begins again on the reformed input line. Looping is prevented if the first word of the 
new text is the same as the old by flagging it to prevent further aliasing. Other loops are 
detected and cause an error. 
Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can 'alias 
print 'pr \!* Ilpr" to make a command which pr's its arguments to the line printer. 
Variable Substitution 
The shell maintains a set of variables, each of which has as value a list of zero or more words. 
Some of these variables are set by the shell or referred to by it. For instance, the argv vari­
able is an image of the shell's argument list, and words of this variable's value are referred to 
in special ways. 

The values of variables may be displayed and changed by using the set and unset commands. 
or the variables referred to by the shell a number are toggles; the shell does not care what 
their value is, only whether they are set or not. For instance, the verbose variable is a toggle 
which causes command input to be echoed. The setting of this variable results from the -v 
command line option. 

Other operations treat variables numerically. The '@' command permits numeric calculations 
to be performed and the result assigned to a variable. Variable values are, however, always 
represent.ed as (zero or more) strings. For the purposes of numeric operations, the null string 
is considered to be zero, and the second and subsequent words of multiword values are 
ignored. 

After the input line is aliased and parsed, and before each command is executed, variable sub­
stitution is performed keyed by '$' characters. This expansion can be prevented by preceding 
the '$' wit.h a '\' except within ''''s where it always occurs, and within' "s where it never 
occurs. Strings quoted by'" are interpreted later (see Command substitution below) so '$' 
substitution does not occur there until later, if at all. A '$' is passed unchanged if followed by 
a blank, tab, or end-of-line. 

Input/output redirections are recognized before variable expansion, and are variable expanded. 
separately. Otherwise, the command name and entire argument list are expanded together. It 
is thus possible for the first (command) word to this point to generate more than one word, 
the first of which becomes the command name, and the rest of which become arguments. 
Unless enclosed in '"' or given the ':q' modifier the results of variable substitution may eventu­
ally be command and filename substituted. Within ,II, a variable whose value consists of mul­
tiple words expands to a (portion of) a single word, with the words of the variables value 
separated by blanks. \\Then the ':q' modifier is applied to a substitution the variable will 
expand to multiple words wit.b each word separated by a blank and quoted to prevent later 
command or filename substitution. 

ICON INTERNATIONAL 5 

c 



( ) 

( 

CSH( 1) USER COMMA.l\11)S CSH (1) 

6 

The following metasequences a.re provided for introducing variable values into the shell input. 
Except as noted, it is an error to reference a variable which is not set. 

$name 
${name} 

Are replaced by the words of the value of variable name, each separated by a blank. 
Braces insulate name from following characters which would otherwise be part of it. 
Shell variables have names consisting of up to 20 letters and digits starting with a letter. 
The underscore character is considered a letter. 
If name is not a shell variable, but is set in the environment, then that value is returned 
(but: modifiers and the other forms given below are not available in this case). 

$name[selectorj 
${ name [selector j} 

Ma~· be used to select only some of the words from the value of name. The selector is 
subjected to '$' substitution and may consist of a singlt' number or two numbers 
separated by a '-'. The first word of a variables value is numbered '1'. If the first 
number of a range is omitted it defaults to '1'. If the last member of a rangt' is omitted 
it defaults to '$#name'. The selector '*' select.s all words. It. is not an error for a range 
to be empty if the second argument is omitted or in range. 

$#name 
${#name} 

$0 

Gives the numbt'r of words in the variable. This is useful for later use in a '[st'lectorj'. 

Substitutes the name of the file from which command input is being read. An error 
occurs if the name is not known. 

$number 
${number} 

Equivalent to '$argv[numberJ'. 

Equivalent to '$argvl*j'. 

The modifiers ':h', ':t', ':r', ':q' and ':x' may be applied to the substitutions above as may 
':gh', ':gt' and ':gr'. If braces '{' '}' appear in the command form then the modifiers must 
appear within the braces. The current implementation allows only one I:' modifier on 
each '$' expansion. 

The following substitutions may not be modified with ':' modifiers. 

$?name 
${?name} 

$?O 

$$ 

Substitutes the string '1' if name is set, '0' if it is not. 

Substitutes '1' if the current input filename is known, '0' if it is not. 

Substitute the (decima.l) process number of the (parent) shell. 

Substitutes a line from the standard input, with no further interpretation thereafter. It 
can be used to read from the keyboard in a shell script. 

ICON INTERNATIONAL 



CSH(l) USER COMMANDS CSH( 1) 

Command and Filename Substitution 
The remaining substitutions, comma.nd a.nd filename substitution, are applied selectively to 
the arguments of builtin comma.nds. This means that portions of expressions which are not 
evaluated are not subjected to these expansions. For comma.nds which are not internal to the 
shell, the comma.nd name is substituted separately from the argument list. This occurs very 
late, after input-output redirection is performed, a.nd in a child of the main shell. 
Command Substitution 
Command substitution is indicated by a command enclosed in I"~. The output from such a 
command is normally broken into separate words at blanks, tabs a.nd newlines, with null 
words being discarded, this text then replacing the origin a] string. Within ell's, only newlines 
force new words; blanks and tabs are preserved. -

In any case, the single final newline does not force a new word. Note that it is thus possible 
for a command substitution to yield only part of a word, even if the command outputs a com­
plete line. 

Filename Substitution 
If a word contains any of the characters '*', '1', 'I' or 'f or begins with the character '-', then 
that word is a candidate for filename substitution, also known as 'globbing'. This word is 
then regarded as a pattern, and replaced with an alphabetically sorted list of file names which 
match the pattern. In a list ot words specifying filename substitution it is an error for no pat­
tern to match an existing file name, but it is not required for each pattern to match. Only 
the metacharacters '*', '1' and 'I' imply pattern matching, the characters ,-, and 'f being 
more akin to abbreviations. 

In matching filenames, the character '.' at the beginning of a filename or immediately follow­
ing a 'I', as well as the character 'I' must be matched explicitly. The character '*' matches 
any string of characters, including the null string. The character '1' matches any single char­
acter. The sequence '[ ... ]' matches anyone of the characters enclosed. Within 'I ... ]', a pair of 
characters separated by '-' matches any character lexically between the two. 
The character ,-, at the beginning of a filename is used to refer to home directories. Standing 
alone, i.e. ,-, it expands to the invokers home directory as reflected in the value of the vari­
able home. When followed by a name consisting of letters, digits and ,_, characters the shell 
searches for a user with that name a.nd substitutes their home directory; thus '-ken' might 
expand to 'jusr/ken' and '-kenjchmach' to 'jusr/ken/chmach'. If the character ,-, is fol­
lowed by a character other than a letter or '/' or appears not at the beginning of a word, it is 
left undisturbed. 

The metanotation 'a{b,c,d}e' is a shorthand for 'a~e ace ade'. Left to right order is preserved, 
with results of matches being sorted separately at a low level to preserve this order. This con­
struct may be nested. Thus '-source/sl/{oldls,ls}.c' expands to '/usr/sourcejsl/oldls.c 
/usr/source/sl/ls.c' whether or not these files exist without any chance of error if the home 
directory for 'source' is '/usr/source'. Similarly ' .. /{memo,*box}' might expand to ' . .jmemo 
.. /box .. /mbox'. (Note that 'memo' was not sorted with the results of matching '*box'.) As a 
special case '{', I}' and '0' are passed undisturbed. 

Input/Output 
The standard input and standard output of a command may be redirected with the following 
syntax: 

< name 
Open file name (which is first variable, command and filename expanded) as the stan­
dard input. 

ICON INTERNATIONAL 7 



( 

( 

CSH( 1) USER COMMANDS CSH( 1) 

8 

« word 
Read the shell input up to a line which is identical to word. Word is not subjected to 
variable, filename or command substitution, and each input line is compared to word 
before any substitutions are done on this input line. Unless a quoting '\', '''', ,,, or "1 

appears in word variable and command substitution is performed on the intervening 
lines, allowing '\' to quote '$', '\' and I"~. Commands which are substituted have all 
blanks, tabs, and newlines preserved, except for the final newline which is dropped. The 
resultant text is placed in an anonymous temporary file which is given to the command 
as standard input. 

> name 
>! name 
>& name 
>&! name 

The file name is used as standard output. If the file does not exist then it is created; if 
the file exists, its is truncated, its previous contents being lost. 
If the variable noclobber is set, then the file must not exist or be a character special file 
(e.g. a terminal or '/dev Inull') or an error results. This helps prevent accidental des­
truction of files. In this case the I!' forms can be used and suppress this check. 

The forms involving '&' route the diagnostic output into the specified file as well as the 
standard output. Name is expanded in the same way as '<' input filenames are. 

» name 
»& name 
»! name 
»&! name 

Uses file name as standard outpu t like '>' bu t places output at the end of the file. If 
the variable noclobber is set, then it is an error for the file not to exist. unless one of the 
'I' forms is given. Otherwise similar to I>'. 

A command receives the environment in which the shell was invoked as modified by the 
input-output parameters and the presence of the command in a pipeline. Thus, unlike some 
previous shells, commands run from a file of shell commands have no access to the text of the 
commands by default; rather they receive the original standard input of the shell. The' < <' 
mechanism should be used to present inline data. This permits shell command scripts to 
function as components of pipelines and allows the shell to block read its input. Note that 
the default standard input for a command run detached is not modified t.o be the empty file 
'/dev InuU'; rather the standard input remains as the original standard input of the shell. If 
this is a terminal and if the process attempts to read from the terminal, t.hen the process will 
block and the user will be notified (see Jobs above.) 

Diagnostic output may be directed through a pipe with the standard out.put. Simply use the 
form '1&' rather than just 'I'. . 
Expressions 

A number of the builtin commands (to be described subsequently) take expressions, in which 
the operators are similar to those of C, with the same precedence. These expressions appear 
in the @, uit, if, and while commands. The following operators are availa.ble: 

II && I t & == != =- !- <= >= < > « » + - * I % ! -
( ) 
Here the precedence increases to the right, '==' '!=' '=-' and '!-', '<=' '>=' '<' and 
I>', '«' and I»~', '+' and '-', '*' 'I' and '%' being, in groups, at the same level. The 
'==' '!=' '= -, and '!-' operators compare their arguments as strings; all others operat.e on 
numbers. The operators '=-' and '!-' are like '!=' and '==' except that the right hand side 

ICON INTERNATIONAL 



eSH(l) USER eOM:MANDS eSH( l) 

is a pattern (containing, e.g. '*'s, '?'s and instances of '[ ... ]') against which the left hand (~--\ 
operand is matched. This reduces the need for use of the switch statement in shell scripts ~ .. 
when all that is really needed is pattern matching. 

Strings which begin with '0' are considered octal numbers. Null or missing arguments are 
considered '0'. The result of all expressions are strings, which represent decimal numbers. It 
is important to note that no two components of an expression can appear in the same word; 
except when adjacent to components of expressions which are syntactically significant to the 
parser ('&' 'I' '<' I>' '(' I)') they should be surrounded by spaces. 
Also available in expressions as primitive operands are command executions enclosed in '{' and 
I}' and file enquiries of the form '-I name' where I is one of: 

r read access 
w write access 
x execu te access 
e existence 
0 ownership 
z zero SIze 
f plain file 
d directory 

The specified name is command and filename expanded and then tested to see if it has the 
specified relationship to the real user. If the file does not exist or is inaccessible then all 
enquiries return false, i.e. '0'. Command executions succeed, returning true, i.e. '1', if the 
command exits with status 0, otherwise they fail, returning false, i.e. '0'. If more detailed 
status information is required then the command should be executed outside of an expression 
and the variable status examined. 

Control Flow 
The shell contains a number of commands which can be used to regulate the flow of control in 
command files (shell scripts) and (in limited but useful ways) from terminal input. These 
commands all operate by forcing the shell to reread or skip in its input and, due to the imple­
mentation, restrict the placement of some of the commands. 

The foreach, switch, and while statements, as well as the if-then-else form of the if statement 
require that the major keywords appear in a single simple command on an input line as 
shown below. 

If the shell's input is not seekable, the shell buffers up input whenever a loop is being rea.d 
and performs seeks in this internal buffer to accomplish t.he rereading implied by the loop. 
(To the extent that tbis allows, backward goto's will succeed on non-seek able inputs.) 

Built-In Commands 

Builtin commands are executed within the shell. If a builtin command occurs as any com­
ponent of a pipeline except the last then it is executed in a subshell. 

alias 
alias name 
alias name word list 

aUoe 

The first form prints all aliases. The second form prints the alias for name. The final 
form assigns the specified wordlist as the alias of name; wordlisf is command and 
filena.me substituted. Name is not allowed to be alias or una/ias. 

Shows the amount of dynamic core in use, broken down into used and free core, and 
address of the last location in the beap. With an argument shows each used and free 
block on the internal dynamic memory chain indicating its address, size, and whether it ;E~' 

~.j 

ICON INTERNATIONAL 9 



( 

CSH( 1) USER COMMANDS CSH( 1) 

10 

bg 

is used or free. This is a debugging command and may not work in production versions 
of the shell; it requires a modified version of the system memory allocator. 

bg %job ... 
Puts the current or specified jobs into the background, continuing them if they were 
stopped. 

break 
Causes execution to resume after the end of the nearest enclosing foreach or while. The 
remaining commands on the current line are executed. Multi-level breaks arE.> thus possi­
ble by writing them all on one line. 

breaksw 
Causes a break from a Bwitch, resuming after the endsw. 

case label: 
A label in a switch statement as discussed bE.>low. 

cd 
cd name 
chdir 
chdir name 

Change the shells working directory to directory name. If no argument is given then 
change to the home directory of the user. 
If name is not found as a subdirectory of the current directory (and does not begin with 
'I', '.j' or ' .. 1'), then each component of the variable cdpath is checked to see if it has a 
subdirectory name. Finally, if all else fails but name is a shell variable whose value 
begins with 'I', then this is tried to see if it is a directory. 

continue 
Cont.inue execution of the nearest enclosing while or foreach. The rest of thE.> commands 
on the current line are executed. 

default: 

dirs 

Labels the default case in a switch statement. The default should come after all case 
labels. 

Prints the directory stack; the top of the stack is at the left, the first directory in the 
stack being thE.> current directory. 

echo word list 
echo -n word list 

The specified words are written to the shells standard output, separated by spaces, and 
terminated with a newline unless the -n option is specified. 

else 
end 
endif 
endsw 

See the description of the foreach, if, switch, and while statements below. 

eval arg ... 
(As in sh(l).) The arguments are read as input to the shell and the resulting 
command(s) executed in the context of the current shell. This is usually used to execute 
commands generated as the result of command or variable substitution, since parsing 
occurs before these substitutions. See tset(l} for an example of using eval. 

ICON INTERNATIONAL 



CSH( 1) USER COMMANDS CSH( 1) 

exec command 
The specified command is executed in place of the current shell. 

exit 
exit(expr) 

The shell exits either with the value of the status variable (first form) or with the value 
of the specified upr (second form). 

fg 
fg %job ... 

Brings the current or specified jobs into the foreground, continuing them if they were 
stopped. 

foreach name (word list) 

end 
The variable name is successively set to each member of wordlist and the sequence of 
commands between this command and the matching end are executed. (Both foreach 
and end must appear alone on separate lines.) 
The builtin command continue may be used to continue the loop prc.>maturely and the 
builtin command break to terminate it prematurely. When this command is read from 
the terminal, the loop is read up once prompting with '1' before any statements in the 
loop are executed. If you make a mistake typing in a loop at the terminal you can rub 
it out. 

glob wordlist 
Like echo but. no 'V escapes are recognized and words are delimited by null characters in 
the output. Useful for programs which wish to use the shell to filename expand a list of 
words. 

goto word 
The specified word is filename and command expanded t.o yield a string of the form 
'label'. The shell rewinds its input as much as possible and searches for a line of the 
form 'label:' possibly preceded by blanks or tabs. Execution continues after t.he specified 
line. 

hashstat 
Print a statistics line indicating how effective the internal hash table has b£'en at locat­
ing commands (and avoiding exec's). An exec is attempted for each component of the 
path where the hash function indicates a possible hit, and in each component which does 
not begin with a 'I'. 

history 
history n 
history -r n 
history -h n 

Displays the history event list; if n is given only the n most recent events are printed. 
The -r option reverses the order of printout to be most recent first rather than oldest 
first. The -h option causes the history list to be printed without leading numbers. 
This is used to produce files suitable for sourceing using the -h option to source. 

if (expr) command 
If the specified expression evaluates true, then the single command with arguments is 
executed. Variable substitution on command happens early, at t.he same time it does for 
the rest of the if command. Command must be a simpl£' command, not a pipeline, a 
command list, or a parenthesized command list. Input/output redirection occurs even if 
expr is false, when command is not executed (this is a bug). 

ICON INTERNATIONAL 11 

/ " 



( 

CSH( 1) USER CO:M1.1A1\lJ)S CSH( 1) 

12 

if (expr) then 

else if (expr2) then 

else 

endif 
If the specified expr is true then the commands to the first else are executed; else if expr2 
is true then the commands to the second else are executed, etc. Any number of else-i! 
pairs are possible; only one end;! is needed. The else part is likewise optional. (The 
words else and endi! must appear a.t the beginning of input lines; the i! must appear 
alone on its input line or after an else.} 

jobs 
jobs -1 

Lists the active jobs; given the -1 options lists process id's in addition to the normal 
information. 

kill %job 
kill -sig %job ... 
kill pid 
kill-sig pid ... 
kill-I 

limit 

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or 
processes. Signals are either given by number or by names (as given in 
I usrl includel signal.h, stripped of the prefix "SIC"). The signal names are listed by "kill 
-I". There is no default, saying just 'kill' does not. send a signal to the current job. If 
the signal being sent is TERM (terminate) or HUP (ha,ngup), then the job or process will 
be sent a CONT (continue) signal as well. 

limit resource 
limit resource maximum-use 

Limits the consumption by the current process and each process it creates to not indivi­
dually exceed maximum-use on the specified resource. If no maximum-use is given, then 
the current limit is printed; if no resource is given, then all limitations are given. 

Resources controllable currently include cputime (the maximum number of cpu-seconds 
to be used by each process), jilesize (the la,rgest single file which can be created), datasize 
(the maximum growth of the data+stack region via sbrk(2) beyond the end of the pro­
gram text), stacksize (the maximum size of the automatical1y-extended stack region), and 
coredumpsize (the size of the largest core dump that will be created). 

The maximum-use may be given as a (floating point or integer) number followed by a 
scale factor. For all limits other than cputime the default scale is 'k' or 'kilobytes' (1024 
bytes); a scale factor of em' or 'megabytes' may also be used. For cputime the default 
scaling is 'seconds', while em' for minutes or 'h' for hours, or a time of the form 'mm:ss' 
giving minutes and seconds may be used. 
For both resource names and scale factors, unambiguous prefixes of the names suffice. 

login 
Terminate a login shell, replacing it with an instance of /bin/login. This is one way to 
log off, included for compatibility with sh(l). 

logout 
Terminate a login shell. Especially useful if ignoreeo! is set. 

ICON INTERKATIONAL 



CSH(l) USER CO~ftv1ANDS CSH( 1) 

,/~'" nice 
nice +number ~) 
nice command 
nice +number command 

The first form sets the nice for this shell to 4. The second form sets the nice to the 
given number. The final two forms run command at priority 4 and number respectively. 
The super-user may specify negative niceness by using 'nice -number ... '. Command is 
always executed in a sub-shell, and the restrictions place on commands in simple if 
statements apply. . 

nohup 
nohup command 

The first form can be used in shell scripts to cause hangups to be ignored for the 
remainder of the script. The second form causes the specified command to be run with 
hangups ignored. All processes detached with '&' are effectively nohup'ed. 

notify 
notify %job ... 

Causes the shell to notify the user asynchronously when the status of the current or 
specified jobs changes; normally notification is presented before a prompt. This is 
automatic if the shell variable notify is set. 

onintr 
onintr -
onintr label 

Control the action of the shell on interrupts. The first form restores the default action 
of the shell on interrupts which is to terminate shell scripts or to return to the terminal 
command input level. The second form 'onintr -' causes all interrupts to be ignored. 
The final form causes the shell to execute a 'goto label' when an interrupt is received or 
a child process terminates because it was interrupted. 

In any case, if the shell is running detached and interrupts are being ignored, all forms 
of onintr have no meaning and interrupts continue to be ignored by the shell and all 
invoked commands. 

popd 
popd +n 

Pops the directory stack, returning to the new top directory. With a argument '+n' dis­
cards the nth entry in the stack. The elements of the directory stack are numbered 
from 0 starting at the top. 

pushd 
pushd name 
pushd +n 

With no arguments, pU8hd exchanges the top two elements of the directory stack. Given 
a name argument, pU8hd changes to the new directory (ala cd) and pushes the old 
current working directory (as in C8W) onto the directory stack. With a numeric argu­
ment, rotates the nth argument of the directory stack around to be the top element and 
changes to it. The members of the directory stack are numbered from the top starting 
at o. 

rehash 
Causes the internal hash table of the contents of the directories in the path variable to 
be recomputed. This is needed if new commands are added t.o directories in the path 
while you are logged in. This should only be necessary if you add commands to one of 
your own directories, or if a systems programmer changes the contents of one of the sys-
tem directories. -\ 

.~. 

ICON INTERNATIONAL 13 



( 

( 

(~ 

CSH( 1) USER COM:MAl\'DS CSH( 1) 

14 

repeat count command 

set 

The specified command which is subject to the same restrictions as the command in the 
one line .Jstatement above, is executed count times. I/O redirections occur exactly once, 
even if count is O. 

set name 
set name=word 
set name[index}=word 
set name=(wordlist) 

The first form of the command shows the value of all shell variables. Variables which 
have other than a single word as value print as a parenthesized word list. The second 
form sets name to the null string. The third form sets name to the single word. The 
fourth form sets the indez'th component of name to word; this component must already 
exist. The final form sets name to the list of words in wordlist. In all cases the value is 
command and filename expanded. 

These arguments may be repeated to set multiple values in a single set command. Note 
however, that variable expansion happens for all arguments before any setting occurs. 

setenv name value 

shift 

Sets the value of environment variable name to be value, a single string. The most com­
monly used environment variable USER, TERM, and PATH are automatically imported 
to and exported from the csh variables user, term, and path; there is no need· to use 
setenv for these. 

shift variable 
The members of argv are shifted to the left, discarding argt'!lj. It is an error for argv not 
to be set or to have less than one word as value. The second form performs the same 
function on the specified variable. 

source name 
source -h name 

stop 

The shell reads commands from name. Source commands may be nested; if they are 
nested too deeply the shell may run out of file descriptors. An error in a source at any 
level terminates all nested source commands. Normally input during source commands 
is not placed on the history list; the -h option causes the commands to be placed in the 
history list without being executed. 

stop %job ... 
Stops the current or specified job which is executing in the background. 

suspend 
Causes the shell to stop in its tracks, much as if it had been sent a stop signal with AZ. 
This is most often used to stop shells started by sU(l). 

switch (string) 
case strl: 

breaksw 

default: 

ICON INTERKATIONAL 



CSH(l) USER CO:MMANDS CSH( 1) 

breaksw (-~\ 
endsw ~ 

Each case label is successively matched, against the specified string which is first com-
mand and filename expanded. The file metacharacters '*', '?' and 'I ... J' may be used in 
the case labels, which are variable expanded. If none of the labels match before a 
'default' label is found, then the execution begins after the default label. Each case label 
and the default label must appear at the beginning of a line. The command breaksw 
causes execution to continue after the endsw. Otherwise control may fall through case 
labels and default labels as in C. If no label matches and there is no default, execution 
continues after the endsw. . 

time 
time command 

With no argument, a summary of time used by this shell and its chi1dren is printed. If 
arguments are given the specified simple command is timed and a time summary as 
described under the time variable is printed. If necessary, an extra shell is created to 
print the time statistic when the command completes. 

umask 
umask value 

The file creation mask is displayed (first form) or set to the specified value (second 
form). The mask is given in octal. Common values for the mask are 002 giving all 
access to the group and read and execute access to others or 022 giving all access except 
no write access for users in the group or others. 

unalias pattern 
All aliases whose names match the specified pattern are discarded. Thus all aliases are 
removed by 'unalias *'. It is not an error for nothing to be unaliased. 

unhash 
Use of the internal hash table to speed location of executed programs is disabled. 

unlimit resource 
unlimit 

Removes the limitation on resource. If no resource is specified, then all resource limita­
tions are removed. 

unset pattern 
All variables whose names match the specified pattern are removed. Thus all variables 
are removed by 'unset *'; this has noticeably distasteful side-effects. It is not an error 
for nothing to be unset. 

unsetenv pattern 

wait 

Removes all variables whose name match the specified pattern from the environment. 
See also the setent) command above and printenv{l). 

All background jobs are waited for. It the shell is interactive, then an interrupt can dis­
rupt the wait, at which time the shell prints names and job numbers of all jobs known 
to be outstanding. 

while (expr) 

end 
'While the specified expression evaluates non-zero, the commands between the while and 
the matching end are evaluated. Break and continue may be used to terminate or con-
tinue the loop prematurely. (The while and end must appear alone on their input lines.) 1["\ 

,,~ 

ICON INTERNATIONAL 15 



( 

( 

CSH( 1) USER COMMANDS CSH( 1) 

16 

%job 

Prompting occurs here the first time through the loop as for the foreach statement if the 
input is a terminal. 

Brings the specified job into the foreground. 

%job &. 
Continues the specified job in the background. 

@ 
@ name = expr 
@ name[index] = expr 

The first form prints the values of all the shell variables. The second form sets the 
specified name to the value of expr. If the expression contains '<', '>', '&' or 'I' then at 
least this part of the expression must be placed within '(' ')'. The third form assigns the 
value of expr to the index'th argument of name. Both name and its index'th component 
must already exist. 

The operators '*=', '+=', etc are available as in C. The space separating the name 
from the assignment operator is optional. Spaces are, how(>ver, mandatory in separating 
components of expr which would otherwise be single words. 

Special postfix c++' and '--' operators increment and decrement name respectively, i.e. 
'@ i++'. 

Pre-Defined and Environment Variables 

The following variables have special meaning to the shell. Of these, argt', cwd, home, path, 
prompt, shell and status are always set by the shell. Except for cwd and status this setting 
occurs only at initialization; these variables will not then be modified unless this is done expli­
citly by the user. 

This shell copies the environment variable USER into the variable user, TERM into term, and 
HOME into home, and copies these back into the environment whenever the normal shell vari­
ables are reset. The environment variable PATH is likewise handled; it is not necessary to 
worry about its setting other than in the file .cshrc as inferior csh processes will import the 
definition of path from the environment, and re-export it if you then change it. 

argv Set to the arguments to the shell, it is from this variable that positional 
parameters are substituted, i.e. '$1' is replaced by '$argv[lJ', etc. 

cdpath 

cwd 

echo 

histchars 

history 

Gives a list of alternate directories searched to find subdirectories in chdir 
commands. 

The full pathname of the current directory. 

Set when the -x command line option is given. Causes each command and 
its arguments to be echoed just before it is ex(>cuted. For non-builtin com­
mands all expansions occur before echoing. Builtin commands are echoed 
before command and filename substitution, since these substitutions are then 
done selectively. 

Can be given a string value to change the characters used in history substi­
tution. The first character of its value is used as the history substitution 
character, replacing the default character!. The second character of its value 
replaces the character t in quick substitutions. 

Can be given a numeric value to control the size of the history list. Any 
command which has been referenced in this many events will not be dis­
carded. Too large values of history may run the shell out. of memory. The 
last executed command is always saved on the history list. 

ICON INTERNATIONAL 



CSH( 1) 

home 

ignoreeof 

mail 

noclobber 

noglob 

nonomatch 

notify 

path 

prompt ' 

savehist 

shell 

USER COMMANDS CSH( 1) 

The home directory of the invoker, initialized from the environment. The 
filename expansion of ,-, refers to this variable. 

If set the shell ignores end-of-file from input devices which are terminals. 
This prevents shells from accidentally being killed by control-D's. 

The files where the shell checks for mail. This is done after each command 
completion which will result in a prompt, if a specified interval has elapsed. 
The shell says 'You have new mail.' if the file exists with an access time not 
greater than its modify time. 

If the first word of the value of mail is numeric it specifies a different mail 
checking interval, in seconds, than the default, which is 10 minutes. 

If multiple mail files are specified, then the shell says 'New mail in name' 
when there is mail in the file name. 

As described in the section on Input/output, restrictions are placed on output 
redirection to insure that files are not accidentally destroyed, and that' > >' 
redirections refer to existing files. 

If set, filename expansion is inhibited. This is most useful in shell scripts 
which are not dealing with filenames, or after a list of filenames has been 
obtained and further expansions are not desirable. 

If set, it is not an error for a filename expansion to not match any existing 
files; rather the primitive pattern is returned. It is still an error for the 
primitive pattern to be malformed, i.e. 'echo [' still gives an error. 

If set, the shell notifies asynchronously of job completions. The default is to 
rather present job completions just before printing a prompt. 

Each word of the path variable specifies a directory in which commands are 
to be sought for execution. A null word specifies the current directory. If 
there is no path variable then only full path names will execute. The usual 
search path is '.', '/bin' and '/usr/bin', but this may vary from system to 
system. For the super-user the default search path is '/etc', '/bin' and 
'/usr/bin'. A shell which is given neither the -c nor the -t option will nor­
mally hash the contents of the directories in the path variable after reading 
.cshrc, and each time the path variable is reset. If new commands are added 
to these directories while the shell is active, it may be necessary to give the 
rehash or the commands may not be found. 

The string which is printed before each command is read from an interactive 
terminal input. If a 'I' appears in the string it will be replaced by the 
current event number unless a preceding '\' is given. Default is '% " or '# ' 
for the super-user. 

is given a numeric value to control the number of entries of the history list 
that are saved in - /.history when the user logs out. Any command which 
has been referenced in this many events will be saved. During start up the 
shell sources - /.history into the history list enabling history to be saved 
across logins. Too large values of savehist will slow down the shell during 
start up. 

The file in which the shell resides. This is used in forking shells to interpret 
files which have execute bits set, but which are not executable by the system. 
(See the description of Non-builtin Command Execution below.) Initialized to 
the· (system-dependent) home of the shell. 

ICON INTERNATIONAL 17 



( 

CSH( 1) USER COlvlMANDS CSH( 1) 

18 

status The status returned by the last command. If it terminated abnormally, then 
0200 is added to the status. Builtin commands which fail return exit status 
'1', all other builtin commands set status '0'. 

time Controls automatic timing of commands. If set, then any command which 
takes more than this many cpu seconds will cause a line giving user, system, 
and real times and a utilization percentage which is the ratio of user plus 
system times to real time to be printed when it terminates. 

verbose Set by the -v command line option, causes the words of each command to 
be printed after history substitution. 

Non-Built-In Command Execution 
When a command to be executed is found to not be a builtin command the shell attempts to 
execute the command via execve(2). Each word in the variable path names a directory from 
which the shell will attempt to execute the command. If it is given neither a -c nor a -t 
option, the shell will hash the names in these directories into an internal table so that it will 
only try an exec in a directory if there is a possibility that the command resides there. This 
greatly speeds command location when a large number of directories are present in the search 
path. If this mechanism has been turned off (via unhash), or if the shell was given a -c or -t 
argument, and in any case for each directory component of path which does not begin with a 
'j', the shell concatenates with the given command name to form a path name of a file which 
it then attempts to execute. 

Parenthesized commands are always executed in a subshell. Thus '(cd; pwd) ; pwd' prints 
the home directory; leaving you where you were (printing this after the home directory), while 
'cd; pwd' leaves you in the home directory. Parenthesized commands are most often used to 
prevent chdir from affecting the current shell. 

If the file has execute permissions but is not an executable binary to the system, then it is 
assumed to be a file containing shell commands and a new shell is spawned to read it. 

If there is an alias for shell then the words of the alias will be prepended to the argument list 
to form the shell command. The first word of the alias should be the full path name of the 
shell (e.g. '$shell'). Note that this is a special, late occurring, case of alias substitution, and 
only allows words to be prepended to the argument list without modification. 

Argument List Processing 

If argument 0 to the shell is '-' then this is a login shell. The flag arguments are interpreted 
as follows: 

-c Commands are read from the (single) following argument which must be present. Any 
remaining arguments are placed in argv. 

-e The shell exits if any invoked command terminates abnormally or yields a non-zero exit 
status. 

-f The shell will start faster, because it will neither search for nor execute commands from 
the file '.cshrc' in the invokers home directory. 

-i The shell is interactive and prompts for its top-level input, even if it appears to not be a 
terminal. Shells are interactive without this option if their inputs and outputs are ter­
minals. 

-n Commands are parsed, but not executed. This aids in syntactic checking of shell scripts. 

-8 Command input is taken from the standard input. 

-t A single line of input is read and executed. A 'V may be used to escape the newline at 
the end of this line and continue onto another line. 

ICON INTERNATIONAL 



CSH(l) USER C011MANDS CSH( 1) 

-v Causes the verbose variable to be set, with the effect that command input is echoed after r"> 
history substitution. ~j 

-x Causes the echo variable to be set, so that commands are echoed immediately before exe-
cution. 

-V Causes the verbose variable to be set even before' .cshrc' is executed. 

-X Is to -x as -V is to -v. 
After processing of flag arguments if arguments remain but none of the -c, -i, -8, or -t 
options was given the first argument is taken as the name of a file of commands to be exe­
cuted. The shell opens this file, and saves its name for possible resubstitution by '$0'. Since 
many systems use either the standard version 6 or version 7 shells whose shell scripts are not 
compatible with this shell, the shell will execute such a 'standard' shell if the first character of 
a script is not a '#', i.e. if the script does not start with a comment. Remaining arguments 
initialize the variable argv. 
Signal Handling 

The shell normally ignores quit signals. Jobs running detached (either by '&' or the bg or % ... 
& commands) are immune to signals generated from the keyboard, including hangups. Other 
signals have the values which the shell inherited from its parent. The shells handling of inter­
rupts and terminate signals in shell scripts can be controlled by onintr. Login shells catch the 
terminate signal; otherwise this signal is passed on to children from the state in the shell's 
parent. In no case are interrupts allowed when a login shell is reading the file '.logout'. 

AUTHOR 

FILES 

William Joy. Job control and directory stack features first implemented by J.E. Kulp of 
!.I.A.S.A, Laxenburg, Austria, with different syntax than that used now. ;".-

- /.cshrc 
- /.login 
- /.logout 
/bin/sh 

/tmp/sh* 
/etc/passwd 

Read at beginning of execution by each shell. 
Read by login shell, after' .cshrc' at login. 
Read by login shell, at logout. 
Standard shell, for shell scripts not starting 
with a '#'. 
Temporary file for '«'. 
Source of home directories for ,- name'. 

LIMITATIONS 
Words can be no longer than 1024 characters. The system limits argument lists to 10240 
characters. The number of arguments to a command which involves filename expansion is 
limited to 1/6'th the number of characters allowed in an argument list. Command substit.u­
tions may substitute no more characters than are allowed in an argument list. To det.ect 
looping, the shell restricts the number of alias substitutions on a single line to 20. 

SEE ALSO 
sh(1), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), umask(2), setrlimit(2), wait(2), 
tty(4), a.out(5), environ(7), 'An introduction to the C shell' 

ICON INTERNATIONAL 19 



CSH(I) USER COM:MANDS CSH( I) 

BUGS 

20 

When a command is restarted from a stop, the shell prints the directory it started in if this is 
different from the current directory; this can be misleading (i.e. wrong) as the job may have 
changed directories internally. 

Shell builtin functions are not stoppable/restartable. Command sequences of the form 'a ; b ; 
c' are also not handled gracefully when stopping is attempted. If you suspend 'b', the shell 
will then immediately execute 'c'. This is especially noticeable if this expansion results from 
an alias. It suffices to place the sequence of commands in O's to force it to a subshell, i.e. '( a ; 
b ; c)'. 
Control over tty output after processes are started is primitive; perhaps this will inspire some­
one to work on a good virtual terminal interface. In a virtual terminal interface much more 
interesting things could be done with output control. 

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures 
should be provided rather than aliases. 

Commands within loops, prompted for by '1', are not placed in the history list. Control struc­
ture should be parsed rather than being recognized as built-in commands. This would allow 
control commands to be placed anywhere, to be combined with 'I', and to be used with '&' 
and I;' metasyntax. 

It should be possible to use the I:' modifiers on the output of command substitutions. All and 
more than one I:' modifier should be allowed on '$' substitutions. 

Symbolic links fool the shell. In particular, d2'rs and 'cd .. ' don't work properly once you've 
crossed through a symbolic link. 

ICON INTERNATIOK\L 



CTAGS( 1) USER COMMANDS CTAGS( 1) 

NAME 
ctags - create a tags file 

SYNOPSIS 
etags [ -BFatuwvx '] name ... 

DESCRIPTION 
Ctags makes a tags file for ez(l) from the specified 0, Pascal and Fortran sources. A tags file 
gives the locations of specified objects (in this case functions and typedefs) in a group of files. 
Each line of the tags file contains the object name, the file in which it is defined, and an 
address specification for the object definition. Functions are searched with a pattern, typedefs 
with a line number. Specifiers are given in separate fields on the line, separated by blanks or 
tabs. Using the tags file, ex can quickly find these objects definitions. 

If the -x flag is given, ctags produces a list of object names, the line number and file name on 
which each is defined, as well as the text of that line and prints this on the standard output. 
This is a simple index which can be printed out as an off-line readable function index. 

If the -v flag is given, an index of the form expected by vgrind(l) is produced on the standard 
output. This listing contains the function name, file name, and page number (assuming 64 
line pages). Since the output will be sorted into lexicographic order, it may be desired to run 
the output through 80rt -f. Sample use: 

ctags -v files I sort -f > index 
vgrind -x index 

Files whose name ends in .c or .h are assumed to be 0 source files and are searched for 0 rou­
tine and macro definitions. Others are first examined to see if they contain any Pascal or For­
tran routine definitions; if not, they are processed again looking for C definit.ions. 
Other options are: 

-F use forward searching patterns (f ... j) (default). 

-B use backward searching patterns (1...1). 
-a append to tags file. 

-t create tags for typedefs. 

-w suppressing warning diagnostics. 

-u causing the specified files to be updated in tags, that is, all references to them are 

FILES 

deleted, and the new values are appended to the file. (Beware: this option is imple­
mented in a way which is rather slow; it is usually faster to simply rebuild the tags file.) 

The tag main is treated specially in C programs. The tag formed is created by prepending M 
to the name of the file, with a trailing .c removed, if a.ny, and leading pathname components 
also removed. This makes use of ctags practical in directories with more than one program. 

tags output tags file 

SEE ALSO 
eX(l), vi(l) 

AUTHOR 
Ken Arnold; FORTRAN added by Jim Kleckner; Bill Joy added Pascal and -x, replacing 
cxref; C typedefs added by Ed Pelegri-Llopart. 

ICON INTERNATIONAL 1 



( 

CTAGS( 1) USER COM:M.ANDS CTAGS( 1) 

BUGS 

2 

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done 
is a very simpleminded way. No attempt is made to deal with block structure; if you have 
two Pascal procedures in different blocks with the same name you lose. 

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack. 

Does not know about #ifdefs. 

Should know about Pascal types. Relies on the input being well formed to detect typedefs. 
Use of -tx shows only the last line of typedefs. 

ICON INTERNATIONAL 



· DATE(l) USER COMMANDS DATE(l) 

NAME 
date - prin t and set the date 

SYNOPSIS 
date [-z zone1 [-d dst1 [ -u 1 [yymmddhhmm [ .ss 1 J 

DESCRIPTION 

FILES 

If no arguments are given, the current date and time are printed. If a date is specified, the 
current date is set. The -z flag is used to set your local timezone. Timezone is specified in 
minutes west of Greenwich, England. Thus eastern timezone would be specifed -z 900 and 
pacific time would be specified -z .. 80 . The -d flag is used to set the type of daylight savings 
correction to be applied if any. No correction would be specified -d 0 and standard USA style 
correction would be specified -d 1 . The -fA flag is used to display the date in GMT (universal) 
time. This flag may also be used to set GMT time. yy is the last two digits of the year; the 
first mm is the month number; dd is the day number in the month; hh is the hour number (24 
hour system); the second mm is the minute number; .ss is optional and is the seconds. For 
example: 

date 10080045 

sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current 
values being the defaults. The system operates in GMT. Date takes care of the conversion to 
and from local standard and daylight time. 

/usr/adm/wtmp to record time-setting 
/etc/rc.local to set default timezone and dst flag at boot time 

SEE ALSO 
utmp(5) 

DIAGNOSTICS 
'Failed to set date: Not owner' if you try to change the date but are not the super-user. 

ICON INTERNATIONAL 1 



( 

( 

DBX( 1) USER COMMANDS DBX( 1) 

NAME 
dbx - debugger 

SYNOPSIS 
dbx [ -r ] [ -i ] [ -I dir] [ objJile I coredump JJ 

DESCRIPTION 
Dbz is a tool for source level debugging and execution of programs under UNIX. The objfile is 
an object file produced bya compiler with the appropriate flag (usually "-g") specified to pr<r 
duce symbol information in the object file. Currently, cc(l) and f77(1) produce the appropri­
ate source information and it is expected that in the future the Pascal compiler will also be 
able to generate source level information. The machine level facilities of dbz can be used on 
any program. 

If no objfile is specified, dbz looks for a file named "a.out" in the current directory. The 
object file contains a symbol table which includes the name of the all the source files 
translated by the compiler to create it. These files are available for perusal while using t.he 
debugger. 

If a file named "core" exists in the current directory or a coredump file is specified, dbz can be 
used to examine the state of the program when it faulted. 

If the file ".dbxinit" exists in the current directory then the debugger commands in it are exe­
cuted. Dbz also checks for a ".dbxinit" in the user's home directory if there isn't one in t.he 
curren t directory. 

The command line options and their meanings are: 

-r Execute objfile immediately. If it terminates successfully dbz exits. Otherwise the rea­
son for termination will be reported and the user offered the option of entering the 
debugger or letting the program fault. Dbz will read from "/dev /tty" when -r is 
specified and standard input is not a terminal. 

-i Force dbz to act as though standard input is a terminal. 

-I dir Add dir to the list of directories that are searched when looking for a source file. Nor­
mally dbz looks for source files in the current directory and in the directory where 
objfile is located. The directory search path can also be set. with the use command. 

Unless -r is specified, dbz just prompts and waits for a command. 

Execution and Tracing Commands 

run largs] 1< filename] I> filename] 
Start executing objfile, passing args as command line arguments; < or > can be used 
to redirect input or output in the usual manner. If objfile has been written since the 
last time the symbolic information was read in, db will read in the new information. 

trace lin procedure/function] [if condition] 
trace source-line-number (if condition] 
trace procedure/function in procedure/function] [if condition] 
trace ezpression at source-line-number lif condition] 

ICON INTERNATIONAL 

,~~~~··· ____ ~--.'o_-- ___ _ 

1 



DBX{ 1) USER COMMANDS DBX( 1) 

2 

trace variable {in procedure/function] [ir condition] 
Have tracing information printed when the program is executed. A number is associ­
ated with the command that is used to turn the tracing otT (see the delete command). 

The first argument describes what is to be traced. If it is a 8ource-line-number, then 
the line is printed immediately prior to being executed. Source line numbers in a file 
other than the current one must be preceded by the name of the file in quotes and a 
colon, e.g. "mumble.p":17. 

If the argument is a procedure or function name then every time it is called, informa.­
tion is printed telling what routine called it, from what source line it was called, and 
what parameters were passed to it. In addition, its return is noted, and if it's a func­
tion then the value it is returning is also printed. 

If the argument is an ezprusion with an at clause then the value of the expression is 
printed whenever the identified source line is reached. 

If the argument is a variable then the name and value of the variable is printed when­
ever it changes. Execution is substantially slower during this form of tracing. 

If no argument is specified then all source lines are printed before they are executed. 
Execution is substantially slower during this form of tracing. 

The clause "in procedure/function" restricts tracing information to be printed only 
while executing inside the given procedure or function. 

Condition is a boolean expression and is evaluated prior to printing the tracing infor-
mation; if it is false then the information is not printed. ~j 

stop if condition 
stop at source-line-number [if condition] 
stop in procedure/function [if condition] 
stop variable [if condition] 

Stop execution when the given line is reached, procedure or function called, variable 
changed, or condition true. 

status [> filename] 
Print out the currently active trace and stop commands. 

delete command-number 
The trace or stop corresponding to the given number is removed. The numbers associ­
ated with traces and stops are printed by the status command. 

catch number 
ignore number 

Start or stop trapping signal number before it is sent to the program. This is useful 
when a program being debugged handles signals such as interrupts. Initially all signals 
are trapped except SIGCONT, SIGCHILD, SIGALRM and SIGKILL. 

cont Continue execution from where it stopped. Execution cannot be continued if t.he 
process has "finished", that is, called the standard procedure "exit". Dbx does not 
allow the process to exit, thereby letting the user to examine the program state. 

step Execute one source line. 

ICON INTERNATIONAL 



c' 

DBX{l) USER COMMANDS DBX( 1) 

next Execute up to the next source line. The difference between this and step is that if the 
line contains a call to a procedure or function the step command will stop at the 
beginning of that block, while the next command will not. 

Displaying and Naming Data 

print expression I, expression ... J 
Print out the values of the expressions. Array expressions are always subscripted by 
brackets ("I]"). Variables having the same identifier as one in the current block may 
be referenced as "block-name. variable". The field reference operator (".") can be used 
with pointers as well as records, making the C operator "->" unnecessary (although it 
is supported). The construct typename(expression) can be used to print the expression 
out in the format of the named type. 

whatis name 
Print the declaration of the given name, which may be qualified with block names as 
above. 

which identifier 
Print the full qualification of the given identifer, I.e. the outer blocks that the 
identifier is associated with. 

whereis identifier 
Print the full qualification of all the symbols whose name matches the given identifier. 
The order. in which the symbols are printed is not meaningful. 

assign t·ariable = expression 
set variable = expression 

Assign the value of the expression to the variable. 

call procedure{parameters} 
Execute the object code associated with the named procedure or function. Currently. 
calls to a procedure with a variable number of arguments are not possible. Also, 
string parameters are not passed properly for C. 

where Print out a list of the active procedures and function. 

dump [> filename] 
Print the names and values of all active variables. 

Accessing Source Files 

edit !.filename] 
edit procedure/function-name 

Invoke an editor on filename or the current source file if none is specified. If a pro­
cedure or function name is specified, the editor is invoked on the file that contains it. 
\lIlbich editor is invoked by default depends on the installation. The default can be 
overridden by setting the environment variable EDITOR to the name of the desired 
editor. 

file !.filename] 
Change the current source file name to filename. If none is specified then the currE'nt 
source file name is printed. 

ICON INTERNATIONAL 3 



DBX( I} USER COMMANDS DBX( 1) 

4 

runc [procedure/ function)~~" 
Change the current Cunction. If Done is specified then print the current function. \,-_~) 
Changing the current Cunction implicitly changes the current source file to the one 
that contains the function; it also changes the current scope used for name resolution. 

nat [source-line-number [, Bource-line-number)] 
nat procedure/function 

List the lines in the current source file from the first line number to the second 
inclusive. If no lines are specified, the next 10 lines are listed. If the name oC a pro­
cedure or Cunction is given lines n-k to n+k are listed where n is the first statement in 
the procedure or Cunction and k is small. 

use directory-list 
Set the list of directories to be searched when looking Cor source files. 

Machine Level Commands 

traeei [address] [if condj 
traeei [variable] [at address] [if COtldj 

stopi laddress] [if cond] 
stopi at] [address] [if condj 

Turn on tracing or set a stop using a machine instruction address. 
stepi 

nexti Single step as in step or next, but do a single instruction rather than source line. 

address ,address! [mode] 
[address] / [count] [mode] 

Print the contents of memory starting at the first address and continuing up to the 
second address or until count items are printed. If no address is specified, the address 
following the one printed most recently is used. The mode specifies how memory is to 
be printed; if it is omitted the previous mode specified is used. The initial mode is 
"X". The following modes are supported: 

i print the machine instruction 
d print a short word in decimal 
D print a long word in decimal 
o prin t a short word in octal 
o print a long word in octal 
x print a short word in hexadecimal 
X prin t a long word in hexadecimal 
b print a byte in octal 
c print a byte as a character 
8 print a string of characters terminated by a nun byte 
r print a single precision real number 
g print a double precision real number 

Symbolic addresses are specified by preceding the name with an "&". Registers are denoted 
by, u$dN" where N is the number of a data register, and "SaN" where N is the number of an 
address register. Addresses may be expressions made up of other addresst>S and the operat.ors 
"+", "-", and indirection (unary "*"). 

ICON INTERNATIONAL 



( 

(' 

DBX( 1) USER COMMAl\Tf)S DBX( 1) 

Fn.ES 

Miscellaneous Commands 

sh command-line 
Pass the command line to the shell for execution. The SHELL environment variable 
determines which shell is used. 

alias neu,-command-name old-command-name 
Respond to new-command-name as though it were old-command-name. 

help Print out a synopsis of db% commands. 

gripe Invoke a mail program to send a message to the person in charge of db%. 

source filename 
Read db% commands from the given filename. Especially useful when the filename l1as 
been created by redirecting a status command from an earlier debugging session. 

quit Exit db%. 

a.out 
.dbxinit 

object file 
initial commands 

SEE ALSO 
cC(I), £17(1), pc(l) 

COMMENTS 
Non-local gotos can cause some trace/stops to be missed. Most of the command names are 
too long. The alias facility helps, but is really quite weak. A csh-like history capability would 
improve the situation. But then, who wants to duplicate the c-shell in a debugger? 

Db% suffers from the same "multiple include" malady as does sdb. If you have a program ('on­
sisting of anum ber of object files and each is built from source files that include header files, 
the symbolic information for the header files is replicated in each object file. Since about one 
debugger start-up is done for each link, having the linker (ld) re-organize the symbol informa­
tion won't save much time, though it would reduce some of the disk space used. The problem 
is an artifact of the unrestricted semantics of #include's in C; for example an include file ('an 
contain static declarations that are separate entities for each file in which thE.'y are included. 

ICON INTERNATIONAL 5 



DC(I) USER COM:MANDS DC(I) 

NAME 
dc - desk calculator 

SYNOPSIS 
de [ file] 

DESCRlPTION 
De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal in tegE'rs , 
but one may specify an input base, output base, and a number of fractional digits to be main­
tained. The overall structure of de is a stacking (reverse Polish) calculator. If an argument is 
given, input is taken from that file until its end, then from the standard input. The following 
constructions are recognized: 

number 
The value of the number is pushed on the stack. A number is an unbroken string of 
the digits 0-9. It may be preceded by an underscore _ to input a negative number. 
Numbers may contain decimal points. 

+_/*%A 
The top two values on the stack are added (+), subtracted (-), multiplied (*), divided 
U), remaindered (%), or exponentiated C). The two entries are popped off the stark; 
the result is pushed on the stack in their place. Any fractional part of an exponent is 
ignored. 

8X The top of the stack is popped and stored into a register named x, where x may be any 
character. If the 8 is capitalized, x is treated as a stack and the value is pushed on it. 

Ix The value in register x is pushed on the stack. The register x is not altered. All regis­
ters start with zero value. If the I is capitalized, register x is treated as a stack and its 
top value is popped onto the main stack. 

d The top value on the stack is duplicated. 

p The top value on the stack is printed. The top value remains unchanged. P interprets 
the top of the stack as an ascii string, removes it, and prints it. 

f All values on the stack and in registers are printed. 

q exits the program. If executing a string, the recursion level is popped by two. If q is 
capitalized, the top value on the stack is popped and the string execution level is 
popped by that value. 

x treats the top element of the stack as a character string and executes it as a string of 
dc commands. 

X replaces the number on the top of the stack with its scale factor. 

[ ••• ] puts the bracketed ascii string onto the top of the stack. 

<x >x -x 

v 

e 

i 

The top two elements of the stack are popped and compared. Register x is executed if 
they obey the stated relation. 

replaces the top element on the stack by its square root. Any existing fractional part 
of the argument is taken into account, but otherwise the scale factor is ignored. 

interprets the rest of the line as a UNIX command. 

All values on the stack are popped. , 
The top value on the stack is popped and used as the number radix for further input. 
I pushes the input base on the top of the stack. 

ICON INTERNATIONAL 1 



( 

DC(I) USER COMMANDS DC( 1) 

o 

o 
k 

The top value on the stack is popped and used as the number radix for further output. 

pushes the output base on the top of the stack. 
the top of the stack is popped, and that value is used as a non-negative scale factor: 
the a.ppropriate number of places are printed on output, and maintained during multi-
plication, division, and exponentiation. The interaction of scale factor, input base, and 
output base will be reasonable if all are changed together. 

z The stack level is pushed onto the stack. 

z replaces the number on the top of the stack with its length. 

r A line of input is taken from the input source (usually the terminal) and executed. 

; : are used by be for array operations. 

An example which prints the first ten values of n! is 

[la.l +dsa*plalO> y]sy 
Osal 
lyx 

SEE ALSO 
bc(1), which is a preprocessor for de providing infix notation and a C-like syntax which imple­
ments functions and reasonable control structures for programs. 

DIAGNOSTICS 

2 

'x is unimplemented' where x is an octal number. 
'stack empty' for not enough elements on the stack to do what was asked. 
'Out of space' when the free list is exhausted (too many digits). 
'Out. of headers' for too many numbers being kept around. 
'Out of pushdown' for too many items on the stack. 
'Nesting Depth' for too many levels of nested execution. 

ICON INTERNATIONAL 



DD (1) USER COMJ\.1ANDS DD( 1) 

NAME 
dd - convert and copy a file 

SYNOPSIS 
dd !option=value] ... 

DESCRIPTION 
Dd copies the specified input file to the specified output with possible conversions. The stan­
dard input and output are used by default. The input and output block size may be specified 
to take advantage of raw physical I/O. 

option values 
if= input file name; standard input is default 
of= output file name; standard output is default 
ibs=n input block size n bytes (default 512) 
obs=n output block size (default 512) 
bs=n set both input and output block size, superseding ibs and obs; also, if no 

conversion is specified, it is particularly efficient since no copy need be donE' 
cbs=n conversion buffer size 
skip=n skip n input records before starting copy 
files=n copy n input files before terminating (makes sense only where input is a 

magtape or similar device). 
seek=n seek n records from beginning of output file before copying 
count=n copy only n input records 
conv=ascii convert EBCDIC to ASCII (~\ 

ebcdic convert ASCII to EBCDIC 
ibm slightly different map of ASCII to EBCDIC 
block convert variable length records to fixed length 
un block convert fixed length records to variable length 
lease map alphabetics to lower case 
ucase map alphabetics to upper case 
swab swap every pair of bytes 
noerror do not stop processing on an error 
sync pad every input record to ibs 
... , ... several comma-separated conversions 

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w 
to specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separatE'd 
by x to indicate a product. 

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the first two 
cases, cbs characters are placed into the conversion buffer, any specified character mapping is 
done, trailing blanks trimmed and new-line added before sending the line to the output. In 
the latter three cases, characters are read into the conversion buffer, and blanks added to 
make up an output record of size cbs. 

After completion, dd reports the number of whole and partial input and output blocks. 

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record 
into the ASCII file x: 

dd if=/dev /rmtO of=x ibs=800 cbs=80 \ 
con v=ascii,lcase 

ICON INTERNATIONAL 1 



( 

DD(! ) USER COMMANDS DD (1) 

Note the use of raw magtape. Dd is especially suited to I/O on the raw physical devices 
because it allows reading and writing in arbitrary record sizes. 

SEE ALSO 
cp(I), tr(l) 

DIAGNOSTICS 

BUGS 

2 

f+p records in(out): numbers of full and partial records read(written) 

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the 
CACM Nov, 1968. The 'ibm' conversion, while less blessed as a standard, corresponds better 
to certain IBM print train conventions. There is no universal solution. 
One must specify "conv=noerror,sync" when copying raw disks with bad sectors to insure dd 
stays synchronized. 

ICON INTERNATIOl\'.\L 



DEROFF(l) USER COMMANDS DEROFF( 1) 

NAME 
deroff - remove nroff, troff, tbl and eqn constructs 

SYNOPSIS 
deroff [ -w 1 file ... 

DESCRIPTION 
DeroJJ reads each ,file in sequence and removes all nroJJ and troJJ command lines, backslash 
constructions, macro definitions, eqn constructs (between' .EQ' and '.EN' lines or between del­
imiters), and table descriptions and writes the remainder on the standard output. DeroJJfol­
lows chains ·of included files ('.so' and '.nx' commands); if a file has already been included. a 
'.so' is ignored and a '.nx' terminates execution. If no input file is given, deroJJreads from the 
standard input file. 

If the -w flag is given, the output is a word list, one 'word' (string of letters, digits, and apos­
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters 
ignored. Otherwise, the output follows the original, with the deletions mentioned above. 

SEE ALSO 

BUGS 

troff(l), eqn(l), tbl(l) 

DeroJJ is not a complete troJJ interpreter, so it can be confused by subtle constructs. Most 
errors result in too much rather than too little output. 

ICON INTERNATIONAL 1 



( ;-

( 

(' 

DF(l) USER COM:MANDS DF( 1) 

NAME 
df - disk free 

SYNOPSIS 
de I -i I I filesystem ... I I file ... I 

DESCRIPTION 
DJ prints out the amount of free disk space available on the specified filesystem, e.g. 
"/dev /scOa", or on the filesystem in which the specified file, e.g. "$HOME", is contained. If 
no file system is specified, the free space on all of the normally mounted file systems is 
printed. The reported numbers are in kilobytes. 

Other options are: 

-i Report also the number of inodes which are used. 

FILES 
/etc/fstab 

SEE ALSO 

list of normally mounted filesystems 

fstab(5), quot(8) 

ICON INTERNATIONAL 1 



DICTION ( 1) USER COMMANDS DICTION ( 1) 

NAME 
diction,explain - print wordy sentencesj thesaurus for diction 

SYNOPSIS 
diction [ -ml I [ -mm I [ -n I [ -t pfile I file ... 
explain 

DESCRIPTION 
Diction finds all sentences in a document that contain phrases from a data base of bad or 
wordy diction. Each phrase is bracketed with []. Because diction runs deroff before looking 
a.t the text, formatting header files should be included as part of the input. The default 
macro package -ms may be overridden with the ftag -mm. The ftag -ml which causes deroff 
to skip lists, should be used if the document contains many lists of non-sentences. The user 
may supply her/his own pattern file to be used in a.ddition to the default file with -f pfile. If 
the ftag -n is also supplied the default file will be suppressed. 

Explain is an interactive thesaurus for the phrases found by diction. 

SEE ALSO 
deroff(l) 

BUGS 
Use of non-standard formatting macros may cause incorrect sentence breaks. In particular, 
diction doesn't grok -me. 

ICON INTERNATIONAL 1 



DIFF (1) USER COMMANDS DIFF (1) 

( -, NAME 
diff - differential file and directory compara:tor 

SYNOPSIS 
diff -1 J ! -r J ! -8 J [ -cefh J ! -b J dirl dir2 
diff -cefh] [ -b J filel file2 
diff -Dstring J [ -b J filel file2 

DESCRIPTION 
If both arguments are directories, diff sorts the contents of the directories by name, and then 
runs the regular file diff algorithm (described below) on text files which are different. Binary 
files which differ, common subdirectories, and files which appear in only one directory are 
listed. Options when comparing directories are: 

-1 long output format; each text file diff is piped through pr(l) to paginate it, other 
differences are remembered and summarized after all text file differences are reported. 

-r causes application of diffrecursively to common subdirectories encountered. 

-8 causes diff to report files which are the same, which are otherwise not mentioned. 

-Sname 
starts a directory diffin the middle beginning with file name. 

When run on regular files, and when comparing text files which differ during directory com­
parison, diiJ tells what lines must be changed in the files to bring them into agreement. 
Except in rare circumstances, diff finds a smallest sufficient set of file differences. If neither 
filel nor file!! is a directory, then either may be given as '-', in which case the standard input 
is used. If file1 is a directory, then a file in that directory whose file-name is the same as the 
file-name of file!! is used (and vice versa). 

There are several options for output format; the default output format cont.ains lines of these 
forms: 

nl a nS,n4 
n1,n!! d nS 
nl,n2 c nS, n4 

These lines resemble ed commands to convert filel into file!!. The numbers after the letters 
pertain to file!!. In fact., by exchanging 'a' for 'd' and reading backward one may ascertain 
equally how to convert file!! into file1. As in ed} ident.ical pairs where nl = n!! or nS = n4 
are abbreviated as a single number. 

Following each of these lines corne all the lines that are affected in the first file flagged by '<', 
then all the lines that are affected in the second file flagged by'>'. 

Except for -b, which may be given with any of the others, the following options are mutually 
exclusive: 

-e producing a script of a, c and d commands for the editor ed, which will recreate 
file!! from filel. In connection with -e, the following shell program may help main­
tain multiple versions of a file. Only an ancestral file ($1) and a chain of version­
to-version ed scripts ($2,$3, ... ) made by diff need be on hand. A 'latest version' 
appears on the standard output. 

(shift; cat $*; echo 'l,$p') Jed - $1 

Extra commands are added to the output when comparing directories with -e, so 
that the result is a sh{l) script for converting text files which are common to the 
two directories from their state in dir 1 to their state in dirt!. 

ICON INTERNATIONAL 1 



DIFF (1) USER COMMANDS DIFF (1) 

Fn..ES 

-f produces a script similar to that of -e, not useful with ed, and in the opposite 
order. 

-c produces a diff with lines of context. The default is to present 3 lines of contt>xt 
and may be changed, e.g to 10, by -clO. With -c the output format is modifit>d 
slightly: the output beginning with identification of the files involved and their crea­
tion dates and then each change is separated by a line with a dozen *'s. The lint'S 
removed from filel are marked with '-'; those added to jilef are marked '+'. Lines 
which are changed from one file to the other are marked in both files with'!'. 

-h does a fast, half-hearted job. It works only when ~hanged stretches are short and 
well separated, but does work on files of unlimited length. 

-Dstring 
causes diffto create a merged version of fUel and jilef on the standard output, wit.h 
C preprocessor controls included so that a compilation of the result without 
defining string is equivalent to compiling jilel, while defining string will yield jilef. 

-b causes trailing blanks (spaces and tabs) to be ignored, and other strings of blanks to 
compare equal. 

/tmp/d????? 
/usr/lib/diffh for -h 
/bin/pr 

SEE ALSO 
cmp(l), cc(I), comm(l), ed(l), diff3(I) 

DIAGNOSTICS 

BUGS 

2 

Exit status is 0 for no differences, 1 for some, 2 for trouble. 

Editing scripts produced under the -e or -f option are naive about creating lines consisting of 
a single '.'. 

\\Then comparing directories with the -b option specified, diff first compares the files ala C71lP, 
and then decides to run the diff algorithm if they are not equal. This may cause a small 
amount of spurious output if the files then turn out to be identical because t.he only 
differences are insignificant blank string differences. 

ICON INTERNATIONAL 



DIFF3( 1) USER COMMANDS DIFF3 (1) 

NAME 
diff3 - 3-way differential file comparison 

SYNOPSIS 
diff3 [ -ex3 1 filel file2 file3 

DESCRIPTION 
Di.ffS compares three versions of a file, and publishes disagreeing ranges of text flagged with 
these codes: 

--------
====1 

====2 

====3 

all three files differ 

file1 is different 

jile2 is different 

fileS is different 

The type of change suffered in converting a given range of a given file to some other is indi­
cated in one of these ways: 

f: n1 a Text is to be appended after line number n1 in file J, where J = 1, 2, or 3. 

f: n1 , n2 c Text is to be changed in the range line n1 to line n2. If n1 = n2, the range 
may be abbreviated to n1. 

The original contents of the range follows immediately after a c indication. When the con­
tents of two files are identical, the contents of the lower-numbered file is suppressed. 

Under the -e option, di.ffS publishes a script for the editor ed that will incorporate into file1 
all changes between file2 and fileS, i.e. the changes that normally would be flagged ==== 
and ====3. Option -x (-3) produces a script to incorporate only changes flagged 
==== (====3). The following command will apply the resulting script to 'filel'. 

(cat script; echo '1 ,$p') I ed - filel 

FILES 
/tmp/d3????? 
Jusr/lib/diff3 

SEE ALSO 
diff(1 ) 

BUGS 
Text lines that consist of a single'.' will defeat -e. 

ICON INTERNATIONAL 1 



DIS (1) USER COMJ\.1ANDS DIS (1) 

NAME 
dis - an mc68020 disassembler 

SYNOPSIS 
dis file ... 

DESCRIPTION 
The dis command produces an assembly language listing of each of its object file arguments. 
The listing includes assembly statements and the hexadecimal objects that produced those 
statements. 

SEE ALSO 
as(l), cC(l), ld(l). 

ICON INTERNATIONAL 1 



( 

( 

C---·, 
--

Dose (1) USER eOMMANDS Dose (1) 

NAME 
dosc - connect to proc/286 system 

SYNOPSIS 
dose [partition 1 

DESCRIPTION 

FILES 

Dose is used to connect to one of the Multi-Link partitions. The optional partition parameter 
may be specified to access a specific partition. If no partition is specified, the command will 
attempt to· find an available partition and connect to it. If the terminal type is dtlfOO or 
pcshad, the terminal will be switched to make-break mode. Multi-Link must be configured 
properly to correspond to the terminal currently in use. 

The total number of active partitions is set in the file /etc/mttys. If /etc/mttys does not 
exist dose will attempt to access up to 8 partitions. If dose is unable to access a partition, a 
message is printed and an exit status of 10 (decimal) is returned. A shell script could be 
implemented to wait for a partition to become available. 

There are two commands that are responded to by the dose program: exit and suspend. For 
non-PC-compatible terminals, exit is signaled with A\, and suspend with A]. For PC­
compatible terminals, exit is CONTROL-ALT-\, and suspend is CONTROL-ALT-]. Exit 
disconnects and relinquishes the partition. Subsequent uses of the dose command will re-use 
the partition and the Multi-Link session will be as it was when the exit was done. Suspend, 
on the other hand, disconnects but does not relinquish the partition. After other activities, 
the Multi-Link session can be resumed by using the fg command of csh(l). No other dose 
users can access the partition until an exit command is given. 

Make sure when entering the multiple key sequences that the CONTROL and ALT keys are 
fully down before the \ or I is pressed. Failing to do this can result in spurious characters 
being sent to the Multi-link session. 

If the screen gets overwritten with system messages it can be re-painted by issuing ALT-r 
(from PC-compatible terminals) or ESC-b (from normal terminals). 

/usr /spool/uucp/LCK..mtty, /dev /mtty, /etc/mttys 

SEE ALSO 
csh(l) (for fg command), whodos(l) 

NOTE 
If a dose process is terminated other than by exit, it will leave a lock file in /usr/spool/uucp. 
This file must be deleted before the partition can be re-used. 

leON INTERNATIONAL 1 



DU(I) USER CO:MMANDS DU(I) 

NAME 
du - summarize disk usage 

SYNOPSIS 
du [ -8 ] [ -a ] [name ... ] 

DESCRIPTION 
Du gives the number of kilobytes contained in all files and, recursively, directories within each 
specified directory or file name. If name is missing, C.' is used. 

The argument -8 causes only the grand total to be given. The argument -a causes an entry 
to be generated for each file. Absence of either causes an entry to be generated for each direc­
tory only. 

A file which has two links to it is only counted once. 

SEE ALSO 
df(l), quot(8) 

BUGS 
Non-directories given as arguments (not under -a option) are not listed. 
If there are too many distinct linked files, du counts the excess files multiply. 

ICON INTERNATIONAL 1 



(~) 

( 

ECHO(l) USER COMMANDS ECHO(l) 

NAME 
'echo - echo arguments 

SYNOPSIS 
echo [ -n J [ arg J ... 

DESCRIPTION 
Echo writes its arguments separated by blanks and terminated by a newline on the standard 
output. If the flag -n is used, no newline is added to the output. 

Echo is useful for producing diagnostics in shell programs and for writing constant data on 
pipes. To send diagnostics to the standard error file, do 'echo ... 1> &2'. 

ICON INTERNATIONAL 1 



ED (1) USER COMMANDS ED (1) 

NAME 
ed - text editor 

SYNOPSIS 
ed [ - ] [ -x ] I name] 

DESCRIPTION 
Ed is the standard text editor. 

If a name argument is given, ed simulates an e command (se~ below) on the named file; that 
is to say, the file is read into ed's buffer so that it can be edited. If -x is present, an x com­
mand is simulated first to handle an encrypted file. The optional - suppresses the printing of 
explanatory output and should be used when the standard input is an edit.or script. 

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the 
file until a w (write) command is given. The copy of the text being edited resides in a tem­
porary file called the buffer. 

Commands to ed have a simple and regular structure: zero or more addresses followed by a 
single character command, possibly followed by parameters to the command. These addresses 
specify one or more lines in the buffer. Missing addresses are supplied by default. 

In general, only one command may appear on a line. Certain commands allow the addition of 
text to the buffer. While ed is accepting text, it is said to be in a"nput mode. In this mode, no 
commands are recognized; all input is merely collected. Input mode is left by typing a period 
'.' alone at the beginning of a line. 

Ed supports a limited form of regular expression notation. A regular expression specifies a set 
of strings of characters. A member of this set of strings is said to be matched by the regular 
expression. In the following specification for regular expressions the word 'character' means 
any character but newline. 

1. Any character except a special character matches itself. Special characters are the reg-
ular expression delimiter plus \ [. and sometimes ~ * $. 

2. A • matches any character. 

3. A \ followed by any character except a digit or ( ) matches that character. 

4. A nonempty string s bracketed [s 1 (or [~s]) mat.ches any character in (or not in) s. In 
s, \ has no special meaning, and 1 may only appear as the first letter. A substring a-b, 
with a and b in ascending ASCII order, stands for the inclusive range of ASCII charac­
ters. 

5. A regular expression of form 1-4 followed by * matches a sequence of 0 or more 
matches of the regular expression. 

6. A regular expression, x, of form 1-8, bracketed \( x \) matches what x matches. 

7. A \ followed by a digit n matches a copy of the string that the bracketed regular 
expression beginning with the nth \( matched. 

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y 
matches a match for x followed by a match for y, with the x match being as long as 
possible while still permitting a y match. . 

9. A regular expression of form 1-8 preceded by ~ (or followed by $), is constrained to 
matches that begin at the left (or end at the right) end of a line. 

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in 
a line. 

ICON INTERNATIONAL 1 



ED (1) USER COMMANDS ED( 1) 

2 

11. An empty regular expression stands for a copy of the last regular expression encoun­
tered. 

Regular expressions are used in addresses to specify lines and in one command (see s below) to 
specify a portion of a line which is to be replaced. If it is desired to use one of the regular 
expression metacharacters as an ordinary character, that character may be preceded by '\'. 
This also applies to the character bounding the regular expression (often 'I') and to '\' itself. 

To understand addressing in ed it is necessary to know that at any time there is a current 
line. Generally speaking, the current line is the last line affected by a command; however, the 
exact effect on the current line is discussed under the description of the command. Addresses 
are constructed as follows. 

1. The character '.' addresses the current line. 

2. The character 1$' addresses the last line of the buffer. 

3. A decimal number n addresses the n-th line of the buffer. 

4. "x' addresses the line marked with the name x, which must be a lower-case letter. 
Lines are marked with the k command described below. 

5. A regular expression enclosed in slashes 1/' addresses the line found by searching for­
ward from the current line and stopping at the first line containing a string that 
matches the regular expression. If necessary the search wraps around to the beginning 
of the buffer. 

6. A regular expression enclosed in queries I?' addresses the line found by searching back­
ward from the current line and stopping at the first line containing a string that 
matches the regular expression. If necessary the search wraps around to the end of the 
buffer. 

7. An address followed by a plus sign 1+' or a minus sign '-' followed by a decimal 
number specifies that address plus (resp. minus) the indicated number of lines. The 
plus sign may be omitted. 

8. If an address begins with '+' or '-' the addition or subtraction is taken with respect to 
the current line; e.g. '-5' is understood to mean' .-5'. 

9. If an address ends with '+' or '-', then 1 is added (resp. subtracted). As a conseqUE'nce 
of this rule and rule 8, the address '-' refers to the line bE'fore the current line. More­
over, trailing '+' and '-' characters have cumulative effect, so '-' refers to the currt>nt 
line less 2. 

10. To maintain compatibility with earlier versions of the editor, the character ,~, in 
addresses is equivalent to '-'. 

Commands may require zero, one, or two addresses. Commands which require no addresses 
regard the presence of an address as an error. Commands which accept one or two addresst>s 
assume default addresses when insufficient are given. If more addresses are given than such a 
command requires, the last one or two (depending on what is accepted) are used. 

Addresses are separated from each other typically by a comma I,'. They may also be 
separated by a semicolon 'j'. In this case the current line'.' is set to the previous address 
before the next address is interpreted. This feature can be used to determine the starting line 
for forward and backward searches ('/', '?'). The second address of any two-address sequence 
must correspond to a line following the line corresponding to the first address. The special 
form '%' is an abbreviation for the address pair '1,$'. 

In the following list of ed commands, the default addresses are shown in parentheses. The 
parentheses are not part of the address, but are used to show that the given addresses are the 
default. 

ICON INTERNATIONAL 



ED(l) USER COMMANDS ED (1) 

As mentioned, it is generally illegal for more than one command to appear on a line. How- (~. 
ever, most commands may be sufftxed by 'p' or by '1', in which ease the current line is either 0' 
printed or listed respectively in the way discussed below. Commands may also be suffixed by 
In', meaning the output of the command is to be line numbered. These suffixes may be com-
bined in any order. 

( • ) a 
<text> 

The append command reads the given text and appends it after the addressed line. '.' is 
left on the last line input, if there were any, otherwise at the addressed line. Address '0' 
is legal for this command; text is placed at the beginning of the buffer. 

(., .)c 
<text> 

The change command deletes the addressed lines, then accepts input text which replaces 
these lines. '.' is left at the last line input; if there were none, it is left at the line 
preceding the deleted lines. 

(., .) d 
The delete command deletes the addressed lines from the buffer. The line originally 
after the last line deleted becomes the current line; if the lines deleted were originally at 
the end, the new last line becomes the current line. 

e filename 
The edit command causes the entire contents of the buffer to be deleted, and then the 
named file to be read in. '.' is set to the last line of the buffer. The number of charac­
ters read is typed. 'filename' is remembered for possible use as a default file name in a 
subsequent r or UI command. If 'filename' is missing, the remembered name is used. 

E filename 
This command is the same as e, except that no diagnostic results when no w has been 
given since the last buffer alteration. 

f filename 
The filename command prints the currently remembered file name. If 'filename' is given, 
the currently remembered file name is changed to 'filename'. 

(1,$) g/regular expression/command list 

{.)i 

In the global command, the first step is to mark every line which matches the given reg­
ular expression. Then for every such line, the given command list is executed with '.' 
initially set to that line. A single command or the first of multiple commands appears 
on the same line with the global command. All lines of a multi-line list except the last 
line must be ended with '\'. A, i, and c commands and associated input are permit.ted; 
the'.' terminating input mode may be omitted if it would be on the last line of the com­
mand list. The commands 9 and tJ are not permitted in the command list. 

<text> 

This command inserts the given text before the addressed line. '.' is left at the last line 
input, or, if there were none, at the line before the addressed line. This command differs 
from the a command only in the placement of the text. 

(., .+1) j 
This command joins the addressed lines into a single line; intermediate newlines simply 
disappear. '.' is left at the resulting line. 

ICON INTERNATIONAL 3 



( 

( 

ED( 1) USER COMMANDS ED (1) 

4 

( • ) kx 
The mark command marks the addressed line with name x, which must be a lower-case 
letter. The address form " r then addresses this line. 

(., .)1 
The list command prints the addressed lines in an unambiguous way: non-graphic char­
acters are printed in two-digit octal, and long lines are folded. The I command may be 
placed on the same line after any non-i/o command. 

( ., .) ma 
The move command repositions the addressed lines after the line addressed by a. The 
last of the moved lines becomes the current line. 

(., .)n 
The number command·· prints the addressed lines with line numbers and a tab at the 
left. 

(., .)p 
The print command prints the addressed lines. '.' is left at the last line printed. The p 
command may be placed on the same line after any non-i/o command. 

(., .)P 
This command is a synonym for p. 

q The quit command causes ed to exit. No automatic write of a file is done. 

Q This command is the same as q, except that no diagnostic results when no w has been 
given since the last buffer alteration. 

($) r filename 
The read command reads in the given file after the addressed line. If no file namE' is 
given, the remembered file name, if any, is used (see e and f commands). The file name 
is remembered if there was no remembered file name already. Address '0' is legal for r 
and causes the file to be read at the beginning of the buffer. If the read is successful, the 
number of characters read is typed. '.' is left at the last line read in from the file. 

( ., .) s/regular expression/replacement/ or, 
( ., .) s/regular expression/replacement/g 

The substitute command searches each addressed line for an occurrence of the specified 
regular expression. On each line in which a match is found, all mat.ched strings are 
replaced by the replacement specified, if the global replacement indicator 'g' appears 
after the command. If the global indicator does not appear, only the first occurrence of 
the matched string is replaced. It is an error for the substitution to fail on all addressed 
lines. Any punctuation character may be used instead of 'I' to delimit the regular 
expression and the replacement. '.' is left at the last line substituted. 

An ampersand '&' appearing in the replacement is replaced by the string matching the 
regular expression. The special meaning of '&' in this context may be suppressed by 
preceding it by '\'. The characters '\n' where n is a digit, are replaced by the t.ext 
matched by the n-th regular subexpression enclosed between '\(' and '\)'. When nested, 
parenthesized subexpressions are present, n is determined by counting occurrences of '\(' 
starting from the left. 

Lines may be split by substituting new-line characters into them. The new-line in the 
replacement string must be escaped by preceding it by'\'. 

One or two trailing delimiters may be omitted, implying the 'p' suffix. The special form 
IS' followed by no delimiters repeats the most recent substitute command on the 
addressed lines. The's' may be followed by the letters r (use the most recent regular 
expression for the left hand side, instead of the most recent left hand side of a substitute 

ICON INTERNATIONAL 



ED( 1) USER COMMANDS ED( 1) 

command), p (complement the setting of the p suffix from the previous substitution), or 
g (complement the setting of the 9 suffix). These letters may be combined in any order. 

(., .)ta 
This command acts just like the m command, except that a copy of the addressed lines 
is placed after address a (which may be 0). '.' is left on the last line of the copy. 

(., .)u 
The undo command restores the buffer to it's state before the most recent buffer modify­
ing command. The current line is also restored. Buffer modifying commands are a, c. d, 
g, i, k, and tJ. For purposes of undo, 9 and tJ are considered to be a single buffer modify­
ing command. Undo is its own inverse. 

When ed runs out of memory (at about 8000 lines on any 16 bit mini-computer such as 
the PDP-H) This full undo is not possible, and u can only undo the effect of the most 
recent substitute on the current line. This restricted undo also applies to editor scripts 
when ed is invoked with the - option. 

(1, $) v /regular expression/command list 
This command is the same as the global command 9 except that the command list is 
executed 9 with '.' init.ially set to every line except those matching the regular expression. 

(1, $) w filename 
The write command writes the addressed lines onto the given file. If the file does not 
exist, it is created. The file name is remembered if there was no remembered file name 
already. If no file name is given, the remembered file name, if any, is used (see e and f 
commands). '.' is unchanged. If the command is successful, the number of characters 
written is printed. 

(1, $) W filename 
This command is the same as w, except that the addressed lines are appended to the file. 

(1, $) wq filename 
This command is the same as w except that afterwards a q command is done, exiting the 
editor after the file is written. 

x A key string is demanded from the standard input. Later r, e and w commands will 
encrypt and decrypt the text with this key by the algorithm of crypt(l). An explicitly 
empty key turns off encryption. (. +1) zor, 

(.+1)zn 

($)= 

This command scrolls through the buffer starting at the addressed line. 22 (or n. if 
given) lines are printed. The last line printed becomes the current line. The value 11 is 
sticky, in that it becomes the default for future z commands. 

The line number of the addressed line is typed. '.' is unchanged by this command. 

!<shell command> 
The remainder of the line after the 'I' is sent to 811(1) to be interpreted as a command. 
'.' is unchanged. 

(.+1, .+1) <newline> 
An address alone on a line causes the addressed line to be printed. A blank line alonE' is 
equivalent to '.+lp'j it is useful for stepping through text. If two addresses are present 
with no intervening semicolon, ed prints the range of lines. If they are separated by a 
semicolon, the second line is printed. 

If an interrupt signal (ASCII DEL) is sent, ed prints '?interrupted' and returns to its com­
mand level. 

ICON INTERNATIONAL 5 



( 

(~\ 

ED (1) USER COMMANDS ED (1) 

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char­
acters per file name, and, on mini computers, 128K characters in the temporary file. The limit 
on the number of lines depends on the amount of core: each line takes 2 words. 

\\Then reading a file, ed discards ASCII NUL characters and all characters after the last new­
line. It refuses to read files containing non-ASCII characters. 

FILES 
/tmp/e* 
edhup: work is saved here if terminal hangs up 

SEE ALSO 
B. W. Kernighan, A Tutorial Introduction to the ED Text Editor 
B. W. Kernighan, Advanced editing on UNIX 
ex(l), sed(l), crypt(l) 

DIAGNOSTICS 

BUGS 

6 

'?name' for inaccessible file; '?self-explanatory message' for other errors. 

To protect against throwing away valuable work, a q or e command is considered to be in 
error, unless a w has occurred since the last buffer change. A second q or e will be obeyed 
regardless. . 

The I command mishandles DEL. 
The undo command causes marks to be lost on affected lines. 
The x command, -x option, and special treatment of hangups only work on UNIX. 

ICON INTERNATIONAL 



EFL(l) USER CO:MMANDS EFL( 1) 

NAME 
efl - Extended Fortran Language 

SYNOPSIS 
. eft [ option ... ] [ filename ... ] 

DESCRIPTION 
Eft compiles a program written in the EFL language into clean Fortran. Eft provides the 
same control flow constructs as does ratfor(I), which are essent~ally identical to those in C: 

statement grouping with braces; 
decision-making with if, if-else, and switch-case; while, for, Fortran do, repeat, and 
repeat ... until loops; multi-level break and next. In addition, EFL has C-like data 
structures, and more uniform and convenient input/output syntax, generic functions. 
EFL also provides some syntactic sugar to make programs easier to read and write: 

free form input: 
multiple statements/line; automatic continuation statement label names (not just 
numbers), 

comments: 
# this is a comment 

translation of relationals: 
>, >=, etc., become .GT., .GE., etc. 

return (expression) 
returns expression to caller from function 

define: define name replacement 

include: 
include filename 

The Eft command option -w suppresses warning messages. The option -C causes comments 
to be copied through to the Fortran output (default); -# prevents comments from being 
copied through. If a command argument contains an embedded equal sign, that argument. is 
treated as if it had appeared in an option statement at the beginning of t.he program. Eft is 
best used with J77( 1). 

SEE ALSO 
f77(1), ratfor(1). 
S. I. Feldman, The Programming Language EFL, Bell Labs Computing Science Technical 

. Report #78. 

ICON INTERNATIONAL 1 



() 

EQN( 1) USER COMMANDS 

NAME 
eqn, neqn, checkeq - typeset mathematics 

SYNOPSIS 
eqn [ -dxy J [ -pn J [ -sn J [ -fn J [ file J ... 
checkeq [ file J ... 

DESCRlPTION 

EQN( 1) 

Eqn is a troff(l) preprocessor for typesetting mathematics on a Graphic Systems photo­
typesetter, neqn on terminals. Usage is almost always 

eqn file ... I troff 
neqn file ... I nroff 

If no files are specified, these programs reads from the standard input. A line beginning with 
'.EQ' marks the start of an equation; the end of an equation is marked by a line beginning 
with '.EN'. Neither of these lines is altered, so they may be defined in macro packages to get 
centering, numbering, etc. It is also possible to set two characters as 'delimiters'; subsequent 
text between delimiters is also treated as eqn input. Delimiters may be set to characters x and 
y with the command-line argument -dxy or (more commonly) with 'delim xy' between .EQ 
and .EN. The left and right delimiters may be identical. Delimiters are turned off by 'delim 
off'. All text that is neither between delimiters nor between .EQ and .EN is passed through 
untouched. 

The program checkeq reports missing or unbalanced delimiters and .EQj.EN pairs. 

Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes, tildes or 
circumflexes. Braces {} are used for grouping; generally speaking, anywhere a single character 
like x could appear, a complicated construction enclosed in braces may be used instead. Tilde 
- represents a full space in the output, circumflex A half as much. 

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes 
Xj, a sub i sup 2 produces al, and e sup {x sup 2 + y sup 2} gives e~2+y2. 

Fractions are made with over: a over b yields :. 

sqrt makes square roots: lover sqrt {ax sup 2 +bx+c} results in 7J====;~1==== __ =­
Vax2+bx+c 

" The keywords from and to introduce lower and upper limits on arbitrary things: lim ~Xj is 
,,-00 0 

made with l£m from {n-> inf} sum from 0 to n x ""Sub i. 

Left and right brackets, braces, etc., of the right height are made with left and right: left! x 

sup 2 + Y sup 2 over alpha right J -=- 1 produces [x2+ ~21 = 1. The right clause is optional. 

Legal characters after left and right are braces, brackets, bars, c and f for ceiling and floor, 
and "" for nothing at all (useful for a right-side-only bracket). 

Vertical piles of things are made with pile, lpile, cpile, and rpile: pile {a above b above c} 
a 

produces b. There can be an arbitrary number of elements in a pile. lpile left-justifies, pile 
c 

and cpile center, with different vertical spacing, and rpile right justifies. 

ICON INTERNATIONAL 1 



EQN(I) USER COMMANDS EQN(l) 

Matrices are made with matrix: matrix { lcol { x 8ub i above 11 8ub e} ccol { 1 above e} } pro­
Zs 1 

duces 2' In addition, there is rcol for a right-justified column. '2 
Diacritical marks are made with dot, dotdot, hat, tilde, bar, vee, dyad, and under: x dot 
= 1ft) bar is z=!(t), 11 dotdot bar - = - n under is y = A, and x vee - = - 11 dyad is z = V. 
Sizes and font can be changed with size n or size ±n, roman, italic, bold, and font n. Size 
and fonts can be changed globally in a document by gsize nand gront n, or by the 
command-line arguments -an and -fn. 

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this 
may be changed by the command-line argument -pn. 

Successive display arguments can be lined up. Place mark before the desired lineup point in 
the first equation; place lineup at the place that is to line up vertically in subsequent equa­
tions. 

Shorthands may be defined or existing keywords redefined with define: define th£ng % 
replacement % defines a new token called thing which will be replaced by replacement when­
ever it appears thereafter. The % may be any character that does not occur in replacement. 

Keywords like 8um (:E) int (j) in! (00) and shorthands like >= (~) -> (-), and != (;IE) are 
recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA. 
Mathematical words like sin, cos, log are made Roman automatically. Troff(l) four-character 
escapes like \(bs (0) can be used anywhere. Strings enclosed in double quotes " ... " are passed 
through untouched; this permits keywords to be entered as text, and can be used to communi­
cate with troff when all else fails. 

SEE ALSO 

BUGS 

2 

troff(l), tbl(l), ms(7), eqnchar(7) 
B. W. Kernighan and 1. L. Cherry, Typesetting Mathematics-User's Guide 
J. F. Ossanna, NROFF/TROFF User's Manual 

To embolden digits, parens, etc., it is necessary to quote them, as in 'bold "12.3"'. 

ICON INTERNATIONAL 



ERROR(I) USER COMMANDS ERROR ( 1) 

(). NAMEerror _ analyze and disperse compiler error messages 

c 

c 

SYNOPSIS 
error [ -D ] [ -8 ] [ -q ] [ -v ] [ -t sufrlXlist ] ! -I ignorefile ] [ name] 

DESCRIPTION 
Error analyzes and optionally disperses the diagnostic error messages produced by a number 
of compilers and language processors to the source file and line where the errors occurred. It 
can replace the painful, traditional methods of scribbling abbreviations of errors on paper, and 
permits error messages and source code to be viewed simultaneously without machinations of 
multiple windows in a screen editor. 

Error looks at the error messages, either from the specified file name or from the standard 
input, and attempts to determine which language processor produced each error message, 
determines the source file and line number to which the error message refers, determines if the 
error message is to be ignored or not, and inserts the (possibly slightly modified) error message 
into the source file as a comment on the line preceding to which the line the error message 
refers. Error messages which can't be categorized by language processor or content are not 
inserted into any file, but are sent to the standard output. Error touches source files only 
after all input has been read. By specifying the -q query option, the user is asked to confirm 
any potentially dangerous (such as touching a file) or verbose action. Otherwise error 
proceeds on its merry business. If the -t touch option and associated suffix list is given, error 
will restrict itself to touch only those files with suffices in the suffix list. Error also can be 
asked (by specifying -v) to invoke vi{l) on the files in which error messages were insert.ed; 
this obviates the need to remember the names of the files with errors. 

Error is intended to be run with its standard input connected via a pipe to the error messa.ge 
source. Some language processors put error messages on their standard error file; others put 
their messages on the standard output. Hence, both error sources should be piped together 
into error. For example, when using the csh syntax, 

ma.ke -s lint 1& error -q -v 

will analyze all the error messages produced by whatever programs make runs when making 
lint. 

Error knows about the error messages produced by: make, cc, cpp, ceom, as, ld, lint, pi. pc 
and /77. Error knows a standard format for error messages produced by the language proces­
sors, so is sensitive to changes in these formats. For all languages except Pascal, error mes­
sages are restricted to be on one line. Some error messages refer to more than one line in 
more than one files; error will duplicate the error message and insert it at all of the places 
referenced. 

Error will do one of six things with error messages. 

synchronize 

discard 

Some language processors produce short errors describing which file it is process­
ing. E"or uses these to determine the file name for languages that don't include 
the file name in each error message. These synchronization messages are consumed 
entirely by error. 

Error messages from lint that refer to one of the two lint libraries, /usr/lib/llib-lc 
and /usr/lib/llib-port are discarded, to prevent accidently touching these libraries. 
Again, these error messages are consumed entirely by error. 

ICON INTERNATIONAL 1 



ERROR(l) USER COMMANDS ERROR ( l) 

2 

nullilg Error messages from lint can be nullified if they refer to a specific function, which 
is known to generate diagnostics which are not interesting. Nullified error mes­
sages are not inserted into the source file, but are written to the standard output. 
The names of functions to ignore are taken from either the file named .errorrr in 
the users's home directory, or from the file named by the -I option. If the file 
does not exist, no error messages are nullified. If the file does exist, there must be 
one function name per line. 

not file 8pecific 

file specific 

Error messages that can't be intuited are grouped together, and written to the 
standard output before any files are touched. They will not be inserted into any 
source file. 

Error message that refer to a specific file, but to no specific line, are written to the 
standard output when that file is touched. 

true errors Error messages that can be intuited are candidates for insertion into the file to 
which they refer. 

Only true error messages are candidates for inserting into the file they refer to. Other error 
messages are consumed entirely by error or are written to the standard output. Error inserts 
the error messages into the source file on the line preceding the line the language processor 
found in error. Each error message is turned into a one line comment for the language, and is 
internally flagged with the string "#=##" at the beginning of the error, and "%%%" at t.he 
end of the error. This makes pattern searching for errors easier with an editor, and allows t.he 
messages to be easily removed. In addition, each error message contains the source line 
number for the line the message refers to. A reasonably formatted source program can be 
recompiled with the error messages still in it, without having the error messages themselves 
cause future errors. For poorly formatted source programs in free format languages, such as 
C or Pascal, it is possible to insert a comment into another comment, which can wreak havoc 
with a future compilation. To avoid this, programs with comments and source on the same 
line should be formatted so that language statements appear before comments. 
Options available with error are: 
-D Do not touch any files; all error messages are sent to the standard output. 
-q The user is queried whether s/he wants to touch the file. A "y" or "n" to the question 

is necessary to continue. Absence of the -q option implies that all referenced files 
(except those referring to discarded error messages) are to be touched. 

-v After all files have been touched, overlay the visual editor vi with it set up to edit all 
files touched, and positioned in the first touched file at the first error. If vi can't be 
found, try ez or ed from standard places. 

-t Take the following argument as a SUfflX list. Files whose suffixes do not appear in the 
suffix list are not touched. The suffix list is dot separated, and "*" wildcards work. 
Thus the suffix list: 

".c.y .foo*.h" 

allows error to touch files ending with ".c", ".y", ".foo*" and ".y". 
-a Print out 8tatistics regarding the error categorization. Not too useful. 

Error catches interrupt and terminate signals, and if in the insertion phase, will orderly ter­
minate what it is doing. 

ICON INTERNATIONAL 



() 

(j 

ERROR(l) USER COMMANDS ERROR(l) 

AUTHOR 

FILES 

BUGS 

Robert Henry 

- /.errorrc 
/dev/tty 

function names to ignore for lint error messages 
user's teletype 

Opens the teletype directly to do user querying. 

Source files with links make a new copy of the file with only one link to it. 

Changing a language processor's format of error messages may cause error to not understand 
the error message. 

Error, since it is purely mechanical, will not filter out subsequent errors caused by 'floodgat­
ing' initiated by one syntactically trivial error. Humans are still much better at discarding 
these related errors. 

Pascal error messages belong after the lines affected (error puts them before). The alignment 
of the' I' marking the point of error is also disturbed by error. 

Error was designed for work on CRT's at reasonably high speed. It is less pleasant on slow 
speed terminals, and has never been used on hardcopy terminals. 

ICON INTERNATIONAL 3 



EX(l) USER COMMANDS EX(l) 

NAME 
ex, edit - text editor 

SYNOPSIS 
ex [ - I [ -v I [ -t tag J [ -r I [ +command 1 I -11 name ... 
edit [ ex options I . 

DESCRIPTION 
Ex is the root of a family of editors: edit, ex and vi. Ex is a superset of ed, with the most not­
able extension being a display editing facility. Display based editing is the focus of vi. 
If you have not used ed, or are a casual user, you will find that the editor edit is convenient 
for you. It avoids some of the complexities of ex used mostly by systems programmers a.nd 
persons very familiar with ed. 

If you have a CRT terminal, you may wish to use a display based editor; in this case see vi(l), 
which is a command which focuses on the display editing portion of ex. 

DOCUMENTATION 

FILES 

The document Edit: A tutorial provides a comprehensive introduction to edit assuming no pre­
vious knowledge of computers or the UNIX system. 

The Ex Reference Manual - Version 9.5 is a comprehensive and complete manual for the com­
mand mode features of ex, but you cannot learn to use the editor by reading it. For an intro­
duction to more advanced forms of editing using the command mode of ex see the editing 
documents written by Brian Kernighan for the editor ed; the material in the introductory and 
advanced documents works also with ex. 

An Introduction to Display Editing with Vi introduces the display editor vi and provides refer­
ence material on vi. All of these documents can be found in volume 2c of the Programmer's 
Manual. In addition, the Vi Quick Reference card summarizes the commands of vi in a useful, 
functional way, and is useful with the Introduction. 

jusr jlib j ex? ?strings 
jusr jlib j ex? .?recover 
jusr jlibjex??preserve 
jetcjtermcap 
- j.exrc 

error messa.ges 
recover command 
preserve command 
describes capabilities of terminals 
editor startup file 

. jtmpjExnnnnn 
jtmpjRxnnnnn 
jusr /preserve 

editor temporary 
named buffer temporary 

preservation directory 

SEE ALSO 
awk(l), ed(l), grep(l), sed(l), grep(l), vi(l), termcap(5), environ(7) 

AUTHOR 
Original1y written by William Joy 
Mark Horton has maintained the editor since version 2.7, adding macros, support for many 
unusual terminals, and other features such as word abbreviation mode. 

ICON INTERNATIONAL 1 

o 

! 
\. 



( 

( 

o 

EX( 1) USER COMMANDS EX( 1) 

BUGS 

2 

The undo command causes all marks to be lost on lines changed and then restored if the 
marked lines were changed. 

Undo never clears the buffer modified condition. 

The z command prints a number of logical rather than physical lines. More than a screen full 
of output may result if long lines are present. 

File input/output errors don't print a name if the command line '-' option is used. 

There is no easy way to do a single scan ignoring case. 

The editor does not warn if text is placed in named buffers and not used before exiting the 
editor. 

Null characters are discarded in input files, and cannot appear in resultant files. 

ICON INTERNATIONAL 



EXPAND(l) USER COMMANDS 

NAME 
expand, unexpand - expand tabs to spaces, and vice versa 

SYNOPSIS 
expand [ -tabstop J [ -tabl,tab2, ... ,tabn ] [ file ... 
unexpand I -a 1 I file ... ] 

DESCRIPTION 

EXPAND(l) 

Expand processes the named files or the standard input writing the standard output with tabs 
changed into blanks. Backspace characters are preserved into the output and decrement the 
column count for tab calculations. Expand is useful for pre-processing character files (before 
sorting, looking at specific columns, etc.) that contain tabs. 

If a single tabstop argument is given then tabs are set tabstop spaces apart instead of the 
default 8. If multiple tabstops are given then the tabs are set at those specific columns. 

Unexpand puts tabs back into the data from the standard input or the named files and writ.es 
the result on the standard output. By default only leading blanks and tabs are reconverted to 
maximal strings of tabs. If the -a option is given, then tabs are inserted whenever they 
would compress the resultant file by replacing two or more characters. 

ICON INTERNATIONAL 1 



(- ) 

( 

EXPLAIN(l) USER COMMANDS EXPLAIN ( 1) 

NAME 
explain, diction- print wordy sentences; thesaurus for diction 

SYNOPSIS 
diction [ -ml ] [ -mm ] [ -n ] [-f pfile ] file ... 
explain 

DESCRIPTION 
Diction finds all sentences in a document that contain phrases from a data base of bad or 
wordy diction. Each phrase is bracketed with []. Because diction runs deroff before looking 
at the text, formatting header files should be included as part of the input. The default 
macro package -ms may be overridden with the flag -mm. The flag -ml which causes deroff 
to skip lists, should be used if the document contains many lists of non-sentences. The user 
may supply her/his own pattern file to be used in addition to the default file with -f pfile. If 
the flag -n is also supplied the default file will be suppressed. 

Explain is an interactive thesaurus for the phrases found by diction. 

SEE ALSO 
deroff(l) 

BUGS 
Use of non-standard formatting macros may cause incorrect sentence breaks. In particular, 
diction doesn't grok -me. 

ICON INTERNATIONAL 1 



EXPR( 1) USER COMMANDS EXPR( 1) 

NAME 
expr - evaluate arguments as an expression 

SYNOPSIS 
expr arg ••• 

DESCRIPTION 
The arguments are taken as an expression. After evaluation, the result is written on the stan­
dard output. Each token of the expression is a separate argument. 

The operators and keywords are listed below. The list is in order of increasing precedence, 
with equal precedence operators grouped. 

txpr 1 expr 
yields the first expr if it is neither null nor '0', otherwise yields the second expr. 

expr & expr 
yields the first expr if neither expr is null or '0', otherwise yields '0'. 

expr relop expr 
where relop is one of < <= = != >= >, yields '1' if the indicated comparison is 
true, '0' if false. The comparison is numeric if both expr are integers, otherwise lexico­
graphic. 

expr + expr 
expr - ex})r 

addition or subtraction of the arguments. 

ex})r * expr 
expr / expr 
expr % expr 

multiplication, division, or remainder of the arguments. 

expr : expr 
The matching operator compares the string first argument with the regular expression 
second argument; regular expression syntax is the same as that of ed(l). The \( ••• \) 
pattern symbols can be used to select a portion of the first argument. Otherwise, the 
matching operator yields the number of characters matched ('0' on failure). 

( expr ) 
parentheses for grouping. 

Examples: 

To add 1 to the Shell variable a: 

a='expr $a + l' 
To find the filename part (least significant part) of the pathname stored in variable a, which 
mayor may not contain 'I': 

expr $a: '.*1\( .*\)' , I' $a 

Note the quoted Shell metacharacters. 

SEE ALSO 
sh(I), test(l) 

ICON INTERNATIONAL 1 



EXPR(I) USER COMMANDS EXPR( 1) 

DIAGNOSTICS 
Expr returns the following exit codes: 

o if the expression is neither null nor '0', 
1 if the expression is null or '0', 
2 for invalid expressions. 

2 ICON INTERNATIONAL 



EYACC(l) USER COMMANDS EYACC( 1) 

NAME 
eyacc - modified yacc allowing much improved error recovery 

SYNOPSIS 
eyacc [ -v ] [ grammar ] 

DESCRIPTION 
ElIQCC is an old version of lIacc(I), which produces tables used by the Pascal system and its 
error recovery routines. ElIacc fully enumerates test actions in. its parser when an error token 
is in the look-ahead set. This prevents the parser from making undesirable reductions when 
an error occurs before the error is detected. The table format is different in eyacc than it was 
in the old yacc, as minor changes had been made for efficiency reasons. 

SEE ALSO 
yacc(l) 
"Practical LR Error Recovery" by Susan L. Graham, Charles B. Haley and W. N. Joy; SIG­
PLAN Conference on Compiler Construction, August 1979. 

AUTHOR 
S. C. Johnson 

ElIacc modifications by Charles Haley and William Joy. 

BUGS 
Pc and its error recovery routines should be made into a library of routines for the new yacc. 

ICON INTERNATIONAL 1 



( 

F77 (1) USER COMMANDS F77 (1) 

NAME 
f77 - Fortran 77 compiler 

SYNOPSIS 
177 [option] ... file ... 

DESCRIPTION 
F77 is the UNIX Fortran 77 compiler. It accepts several types of arguments: 

Arguments whose names end with '.f' are taken to be Fortran 77 source programs; they are 
compiled, and each object program is left on the file in the current directory whose name is 
that of the source with '.0' substituted for '.f'. 
Arguments whose names end with '.F' are also taken to be Fortran 77 source programs; these 
are first processed by the C preprocessor before being compiled by 177. 
Arguments whose names end with' .r' or '.e' are taken to be Ratfor or EFL source programs 
respectively; these are first transformed by the appropriate preprocessor, then compiled by 
£17. 
Arguments whose names end with' .c' or '.s' are taken to be C or assembly source programs 
and are compiled or assembled, producing a '.0' file. 

The following options have the same meaning as in cc(l). See ld(l) for load-time options. 

-c Suppress loading and produce '.0' files for each source file. 

-g Have the compiler produce additional symbol table information for dbx(l). Also pass 
the -lg flag to ld(1). 

-0 output 
Name the final output file output instead of 'a.out'. 

-p Prepare object files for profiling, see pro/(l). 

-pg Causes the compiler to produce counting code in the manner of -p, but invokes a 
run-time recording mechanism that keeps more extensive statistics and produces a 
gmon.out file at normal termination. An execution profile can then be generated by use 
of gpro/(l). 

-f Compiles floating point operations to use the MC68881 floating point coprocessor. 
Also switches to versions of libc.a, libm.a, libF77.a, and libI77.a that use the floating 
point chip. Setting the environment variable FP to m68881 has the same effect as 
specifying this flag. Code generated with this option will cause an '111egal instruction ft 
trap on machines without the floating poin.t coprocessor. 

-w Suppress all warning messages. If the option is '-w66', only Fortran 66 compatibility 
warnings are suppressed. 

-Dname=del 
-Dname 

Define the name to the C preprocessor, as if by '#define'. If no definition is given, the 
name is defined as "1ft. (' .F' suffix files only). 

-Idir '#include' files whose names do not begin with 'I' are always sought first in the direc­
tory of the file argument, then in directories named in -I options, then in directories 
on a standard list. (' .F' suffix files only). 

-0 

-S 
Invoke an object-code optimizer. 

Compile the named programs, and leave the assembler-language output on correspond­
ing files suffixed '.s'. (No '.0' is created.). 

ICON INTERNATIONAL 1 

-------------_ .. ----"- .-~-.~ ~~-~-~-~----



F77 (I) USER COM:MANDS F77 (1) 

The following options are peculiar to /77. 

-12 On machines which support short integers, make the default integer constants and 
variables short. (-14 is the standard value of this option). All logical quantities will be 
short. 

-m Apply the M4 preprocessor to each '.r' file before transforming it with the Ratfor or 
EFL preprocessor. 

-onetl'ip 
Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops 
are not performed at all if the upper limit is smaller than the lower limit.) 

-u Make the default type of a variable 'undefined' rather than using the default Fortran 
rules. 

-v Print the version number of the compiler, and the name of each pass as it executes. 
-0 Compile code to check that subscripts are within declared array bounds. 

-F Apply the C, EFL, or Ratfor preprocessors to relevant files, put the result in the file 
with the suffix changed to '.f', but do not compile. 

-Ex Use the string x as an EFL option in processing' .e' files. 
-Rx Use the string x as a Ratfor option in processing' .r' files. 

-N[qxscn]nnn 
Make static tables in the compiler bigger. The compiler will complain if it overflows its 
tables and suggest you apply one or more of these flags. These flags have the following 
meanings: 

q Maximum number of equivalenced variables. Default is 150. 

x Maximum number of external names (common block names, subroutine and 
function names). Default is 200. 

s Maximum number of statement numbers. Default is 401. 
c Maximum depth of nesting for control statements (e.g. DO loops). Default is 

20. 

n Maximum number of identifiers. Default is 1009. 

-U Do not convert upper case letters to lower case. The defa.ult is to convert Fortran pro-
gra.ms to lower case except within character string constants. 

Other arguments are taken to be either loader option arguments, or F77-compatible object 
programs, typically produced by an earlier run, or perhaps libraries of F7i-compatible rou­
tines. These programs, together with the results of any compilations specified, are loaded (in 
the order given) to produce an executable program with name 'a.out'. 

FILES 

2 

file. [fFresc] 
file.o 
a.out 
lusr Ilib If77passl 
llib/fl 
llib/c2 
llib/cpp 
lusr /lib/libF77.a 
/usr /lib/libI77.a 
lusr Ilib/libU77.a 

input file 
object file 
loaded output 
compiler 
pass 2 
optional optimizer 
C preprocessor 
intrinsic function library 
Fortran I/O library 
UNIX interface library 

ICON INTERNATIONAL 



( 

( 

c· 

F77 (1) USER COMMANDS F77 (1) 

/usr /lib /libF77 _p.a 
/usr /lib/libI77 _p.a 
/usr /lib/libU77 _p.a 
/lib /libc.a 
mon.out 
gmon.out 

profiling intrinsic function library 
profiling Fortran I/0 library 
profiling UNIX interface library 
C library, see section 3 
file produced for analysis by prof(l). 
file produced for analysis by gprof(l). 

SEE ALSO 
S. I. Feldman, P. J. Weinberger, A Portable Fortran 77 Compiler 
D. L. Wasley, Introduction to the /77 I/O Library 
prof(l), gprof(l), cc(l), ld(l), efl(l), ratfor(l) 

DIAGNOSTICS 

BUGS 

The diagnostics produced by /77 itself are intended to be self-explanatory. Occasional mes­
sages may be produced by the loader. 

This compiler is still somewhat experimental. The optimizer occasionally makes mistakes: it 
should be avoided when debugging if apparently incorrect results are obtained. Because of an 
assembler error, complaints about long branches may occur with very large source files; such 
errors can be avoided by splitting the sources in to smaller sections. If necessary, the old ver­
sion of /77 can be resurrected from /usr/sre/old. 

ICON INTERNATIONAL 3 



FALSE(l) USER COMMANDS 

NAME 
false, true - provide truth values 

SYNOPSIS 
true 
false 

DESCRIPTION 

FALSE ( 1) 

True and false are usually used in a Bourne shell script. They test for the appropriate status 
"true" or "false" before running (or failing to run) a list of commands. 

EXAMPLE 

SEE ALSO 

while false 
do 

command list 
done 

csh(l), sh(l), true(l) 

DIAGNOSTICS 
False has exit status nonzero. 

ICON INTERNATIONAL 1 



( 

( 

FILE (1) USER COMMANDS FILE (1) 

NAME 
file - determine file type 

SYNOPSIS 
file file ... 

DESCRIPTION 
File performs a series of tests on each argument in an attempt to classify it. If an argumpnt 
appears to be ascii) file examines the first 512 bytes and tries to guess its language. 

BUGS 
It often makes mistakes. In particular it often suggests that command files are C programs. 

Does not recognize Pascal or LISP. 

ICON INTERNATIONAL 1 



FIND (1) USER COM:MANDS FIND (1) 

NAME 
find - find files 

SYNOPSIS 
find pathname-list expression 

DESCRlPTION 
Find recursively descends the directory hierarchy for each pathname in the pathname-list (i.e., 
one or more pathnames) seeking files that match a booleall expression written in the primaries 
given below. In the descriptions, the argument n is used as a decimal integer where +n means 
more than n, -n means less than nand n means exactly n. 

-name filename 
- True if the filename argument matches the current file name. Normal Shell argu-

ment syntax may be used if escaped (watch out for '[', '1' and '*'). 
-perm onum 

True if the file permission flags exactly match the octal number onum (see 
chmod{l)). If onum is prefixed by a minus sign, more flag bits (017777, see stat(2)) 
become significant and the flags are compared: (ftags&onum}==onum. 

-type c True if the type of the file is c, where c is b, c, d, for 1 for block special file, char­
acter special file, directory, plain file, or symbolic link. 

-links n True if the file has n links. 

-user uname 
True if the file belongs to the user tmame (login name or numeric user ID). 

-group gname 
True if the file belongs to group gname (group name or numeric group ID). 

-size n True if the file is n blocks long (512 bytes per block). 

-inum n True if the file has inode number n. 

-atime n True if the file has been accessed in n days. 

-mtime n True if the file has been modified in n days. 

-exec command 
True if the executed command returns a zero value as exit status. The end of the 
command must be punctuated by an escaped semicolon. A command argument 'n' is replaced by the current pathname. 

-ok command 
Like -exec except that the generated command is written on the standard output, 
then the standard input is read and the command executed only upon response y. 

-print Always truej causes the current pathname to be printed. 

-newer file 
True if the current file has been modified more recently than the argument file. 

The primaries may be combined using the following operators (in order of decreasing pre-
cedence): -

I) A parenthesized group of primaries and operators (parentheses are special to the Shell 
and must be escaped). 

2) The negation of a primary ('!' is the unary not operator). 

ICON INTERNATIONAL 1 

-~ ----- ----- ------ ------~~ -~~~~-



( 

FIND (1) USER COMMANDS FIND (1) 

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri­
maries). 

4) Alternation of primaries ('-0' is the or operator). 

EXAMPLE 
To remove all files named 'a.out' or '*.0' that have not been accessed for a week: 

find / \( -name a.out -0 -name '*.0' \) -atime +7 -exec rm {} \; 

FILES 
/etc/passwd 
/etc/group 

SEE ALSO 
sh(l), test(l), fs(5) 

BUGS 
The syntax is painful. 

2 ICON INTERNATION.-\L 



FINGER (1 ) USER COMMANDS FINGER ( 1) 

NAME 
finger - user information lookup program 

SYNOPSIS 
finger [ options 1 name ... 

DESCRlPTION 

Fn..ES 

By default finger lists the login name, full name, terminal name and write status (as a '*' 
before the terminal name if write permission is denied), idle time, login time, and office loca­
tion and phone number (if they are known) for each current UNIX user. (Idle time is minutes 
if it is a single integer, hours and minutes if a ':' is present, or days and hours if a 'd' is 
present.) 

A longer format also exists and is used by finger whenever a list of peoples names is given. 
(Account names as well as first and last names of users are accepted.) This format is multi­
line, and includes all the information described above as well as the user's home directory and 
login shell, any plan which the person has placed in the file .plan in their home directory, and 
the project on which they are working from the file .project also in the home directory. 

Finger options include: 

-m :Match arguments only on user name. 

-1 Force long output format. 

-p Suppress printing of the .plan files 

-8 Force short output format. 

/etc/utmp 
/etc/passwd 
/ usr / adm /lastlog 
- j.plan 
- j.project 

who file 
for users names, offices, ... 
last login times 
plans 
projects 

SEE ALSO 
w(l), who(l) 

AUTHOR 

BUGS 

Earl T. Gohen 

Only the first line of the .project file is printed. 

The encoding of the gcos field is UCB dependent - it knows that an office '19iMC' is '19iM 
Cory Hall', and that '529BE' is '529B Evans Hall'. 

A user information data base is in the works and will radically alter the way the information 
that finger uses is stored. Finger will require extensive modification when this is implementE'd. 

ICON INTERNATIONAL 1 

c 



( 

( 

FOLD (1) USER COM:MANDS FOLD (1) 

NAME 
fold - fold long lines for finite width output device 

SYNOPSIS 
fold [ -width J [ file ... 

DESCRIPTION 
Fold is a filter which will fold the contents of the specified files, or the standard input if no 
files are specified, breaking the lines to have maximum width width. The default for width is 
80. Width should be a multiple of 8 if tabs are present, or the tabs should be expanded using 
expand(l) before coming to fold. 

SEE ALSO 
expand(l) 

BUGS 
If underlining is present it may be messed up by folding. 

ICON INTERNATIONAL 1 



FP (1) USER COMMANDS FP( 1) 

NAME 
fp - Functional Programming language compiler/interpreter 

SYNOPSIS 
fp 

DESCRIPTION 
Fp is an interpreter/compiler that implements the applicative language proposed by John 
Backus. It is written in FRANZ LISP. 

In a functional programming language intent is expressed in a mathematical style devoid of 
assignment statements and variables. Functions compute by value only; there are no side­
effects since the result of a computation depends solely on the inputs. 

Fp "programs" consist of functional expressions - primitive and user-defined fp functions com­
bined by functional forms. These forms take functional arguments and return functional 
results. For example, the composition operator '@' takes two functional arguments and 
returns a function which represents their composition. 

There exists a single operation in fp - application. This operation causes the system to evalu­
ate the indicated function using the single argument as input (all functions are monadic). 

GETTING STARTED 

Fn..ES 

Fp invokes the system. Fp compiles functions into lisp(l) source code; lisp(l) interprets this 
code (the user may compile this code using the liszt (1) compiler to gain a factor of 10 in per­
formance). Control D exits back to the shell. Break terminates any computation in progress 
and resets any open file units. }help provides a short summary of all user commands. 

/usr/ucb/lisp the FRANZ LISP int~rpreter 
/usr /ucb/liszt the liszt compiler 
/usr/doc/fp the User's Guide 

SEE ALSO 

BUGS 

lisp( 1), liszt( 1). 

The Berkeley FP user's manual, available on-line. The language is described in tIle August 
1978 issue of CACM (Turing award lecture by John Backus). 

If a non-terminating function is applied as the result of loading a file, then control is returned 
to the user immediately, everything after that position in the file is ignored. 

FP incorrectly marks the location of a syntax error on large, multi-line function definitions or 
applications. 

AUTHOR 
Scott B. Baden 

ICON INTERNATIONAL 1 



( 

( 

FPR( 1) 

NAME 
fpr - print Fortran file 

SYNOPSIS 
fpr 

DESCRlPTION 

USER COMMANDS FPR( 1) 

Fpr is a filter that transforms files formatted according to Fortran's carriage control conven­
tions into files formatted according to UNIX line printer conventions. 

Fpr copies its input onto its output, replacing the carriage control characters with characters 
that will produce the intended effects when printed using lpr(l). The first character of each 
line determines the vertical spacing as follows: 

Character Vertical Soace Before Printinl!: 
Blank One line 

0 Two lines 
1 To first line of next page 
+ No advance 

A blank line is treated as if its first character is a blank. A blank that appears as a carriage 
control character is deleted. A zero is changed to a newline. A one is changed to a form feed. 
The effects of a "+" are simulated using backspaces. 

EXAMPLES 
a.out I fpr Ilpr 

fpr < f77.output Ilpr 

AUTHOR 
Robert P. Corbett 

BUGS 
Results are undefined for input lines longer than liO characters. 

ICON INTERNATIONAL 1 



FPU( 1) USER COMMANDS 

NAME 
fpu - determine presence of the floating point coprocessor 

SYNOPSIS 
fpu [-8] 

DESCRlPTION 

FPU( 1) 

Fpu prints whether or not the MC68881 floating point coprocessor (unit) is installed. The-8 
(silent) flag suppresses printing (except for error messages). It is used for checking error status 
(in shell scripts for example). 

EXAMPLE 
The the following is a shell script that demonstrates the use of the -s flag: 

#! /bin/csh -f 
fpu -s 
if ($status) then 

echo No FPU installed. 
else 

echo FPU installed. 
endif 

ICON INTERNATIONAL 1 

c 



( 

c· 

FROM(l) USER COMMANDS FROM ( 1) 

NAME 
from - who is my mail from? 

SYNOPSIS 
from [ -8 sender l [ user l 

DESCRIPTION 
From prints out the mail header lines in your mailbox file to show you who your mail is from. 
If user is specified, then user's mailbox is examined instead of your own. If the -s option is 
given, then only headers for mail sent by sender are printed. 

FU,ES 
/usr /spool/mail/* 

SEE ALSO 
biff( 1), mail{ 1), prmail(l) 

ICON INTERNATIONAL 1 



FSPLIT( 1) USER COMMANDS FSPLIT (1) 

NAME 
fsplit - split a multi-routine Fortran file into individual files 

SYNOPSIS 
'split [ -e efile] ... [ file] 

DESCRIPTION 
Fsplit takes as input either a file or standard input containing Fortran source code. It 
attempts to split the input into separate routine files of the form name./, where name is the 
name of the program unit (e.g. function, subroutine, block data or program). The name for 
unnamed block data subprograms has the form blkdtaNNN/ where NNN is three digits and a 
file of this name does not already exist. For unnamed main programs the name has the form 
mainNNNf If there is an error in classifying a program unit, or if name.f already exists, the 
program unit will be put in a file of the form zzzNNN/ where zzzNNN/ does not already 
exist. 

Normally each subprogram unit is split into a separate file. When the -e option is used, only 
the specified subprogram units are split into separate files. E.g.: 

fsplit -e readit -e doit prog.f 
will split readit and doit into separate files. 

DIAGNOSTICS 
If names specified via the -e option are not found, a diagnostic is written to standard error. 

AUTHOR 

BUGS 

Asa Romberger and Jerry Berkman 

Fsplit assumes the subprogram name is on the first non comment line of the subprogram unit. 
Nonstandard source formats may confuse /split. 

It is hard to use -e for unnamed main programs and block data subprograms since you must 
predict the created file name. 

ICON INTERNATIONAL 1 

C) 

\ 

'" 



( 

FTP(IC) USER COMMANDS FTP(IC) 

NAME 
ftp - file transfer program 

SYNOPSIS 
ftp [ -v 1 [ -d 1 [ -i 1 [-D 1 [-g 1 [host 1 

DESCRIPTION 
Ftp is the user interface to the ARPANET standard File Transfer Protocol. The program 
allows a user to transfer files to and from a remote network site. 

The client host with which ftp is to communicate may be specified on the command line. If 
this is done, ftp will immediately attempt to establish a connection to an FTP server on that 
host; otherwise, ftp will enter its command interpreter and await instructions from the user. 
When ftp is awaiting commands from the user the prompt "ftp>" is provided the user. The 
following commands are recognized by ftp: 

! Invoke a shell on the local machine. 

append local-file [ remote-file 1 
Append a local file to a file on the remote machine. If remote-file is left unspecified, 
the local file name is used in naming the remote file. File transfer uses the current set­
tings for type, format, mode, and structure. 

ascii Set the file transfer type to network ASCII. This is the default type. 

bell Arrange that a bell be sounded after each file transfer command is completed. 

binary 
Set the file transfer type to support binary image transfer. 

bye Terminate the FTP session with the remote server and exit ftp. 

cd remote-directory 
Change the working directory on the remote machine to remote-directory. 

close Terminate the FTP session with the remote server, and return to the command int.er­
preter. 

delete remote-file 
Delete the file remote-file on the remote machine. 

debug [ debug-value 1 
Toggle debugging mode. If an optional debug-value is specified it is used to set the 
debugging level. When debugging is on, ftp prints each command sent to the remote 
machine, preceded by the string "_- >". 

dir [ remote-directory 1 [ local-file 1 
Print a listing of the directory contents in the directory, remote-directory, and, option­
ally, placing the output in local-file. If no directory is specified, the current work ing 
directory on the remote machine is used. If no local file is specified, output comes to 
the terminal. 

form format 
Set the file transfer form to format. The default format is "file". 

get remote-file [ local-file] 
Retrieve the remote-file and store it on the local machine. If the local file name is not 
specified, it is given the same name it has on the remote machine. The current set­
tings for type, form, mode, and structure are used while transferring the file. 

ICON INTERNATIONAL I 



FTP(1C) USER COMMANDS FTP(10) 

2 

hash Toggle hash-sign ("#") printing for ea.ch data block transferred. The size of a data ~. 
block is 1024 bytes. G 

glob Toggle file name globbing. With file name glob bing enabled, ea.ch local file or path­
name is processed for csh(l) meta.chara.cters. These chara.cters include "*?lr n". 
Remote files specified in mutliple item commands, e.g. mput, are globbed by the 
remote server. With globbing disabled all files and pathnames are treated literally. 

help I command] 
Print an informative message about the meaning of command. If no argument IS 

given, Itp prints a list of the known commands. 
led [ directory ] 

Change the working directory on the local machine. If no directory is specified, the 
user's home directory is used. 

Is I remote-directory] [ local-file] 
Print .an abbreviated listing of the contents of a directory on the remote machine. If 
remote-directory is left unspecified, the current working directory is used. If no local 
file is specified, the output is sent to the terminal. 

mdelete remote-files 
Delete the specified files on the remote ma.chine. If glob bing is enabled, the 
specification of remote files will first be expanded using Is. 

mdir remote-files local-file 
Obtain a directory listing of multiple files on the remote machine and place the result 
in local-file. 

mget remote-files 
Retrieve the specified files from the remote machine and pla.ce them in the current 
local directory. If globbing is enabled, the specification of remote files will first be 
expanding using Is. 

mkdir directory-name 
Make a directory on the remote machine. 

mls remote-files local-file 
Obtain an abbreviated listing of multiple files on the remote machine and place the 
result in local-file. 

mode [ mode-name 1 
Set the file transfer mode to mode-name. The default mode is "stream" mode. 

mput local-files 
Transfer multiple local files from the current local directory to the current working 
directory on the remote ma.chine. 

open host [ port] 
Establish a connection to the specified host FTP server. An optional port number may 
be supplied, in which case, Itp will attempt to contact an FTP server at that port. If 
the auto-login option is on (default), Itp will also attempt to automatically log the user 
in to the FTP server (see below). 

prompt 
Toggle intera.ctive prompting. Intera.ctive prompting occurs during mUltiple file 
transfers to allow the user to selectively retrieve or store files. If prompting is turned 
oft' (default), any mget or mput will transfer all files. 

ICON INTERNATIONAL 

.. ~~-.. ----

C·· ~ .. 
_./ 



(-\ 

( 

("'-

FTP(IC) USER COMMANDS FTP(IC) 

put local-file [ remote-file] 
Store a local file on the remote machine. If remote-file is left unspecified, the local file 
name is used in naming the remote file. File transfer uses the current settings for type, 
format, mode, and structure. 

pwd Print the name of the current working directory on the remote machine. 

quit A synonym for bye. 

quote arg1 argf ... 
The arguments specified are sent, verbatim, to the remote FTP server. A single FTP 
reply code is expected in return. 

recv remote-file [local-file 1 
A synonym for get. 

remotehelp [ command-name J 
Request help from the remote FTP server. If a command-name is specified it is sup­
plied to the server as well. 

rename [/rom 1 [ to J 
Rename the file Irom on the remote machine, to the file to. 

rmdir directory-name 
Delete a directory on the remote machine. 

send local-file [ remote-file J 
A synonym for put. 

sendport 
Toggle the use of PORT commands. By default, Itp will attempt to use a PORT com­
mand when establishing a connection for each data transfer. If the PORT command 
fails, Itp will use the default data port. When the use of PORT commands is disabled, 
no attempt will be made to use PORT commands for each data transfer. This is use­
ful for certain FTP implementations which do ignore PORT commands but, 
incorrectly, indicate they've been accepted. 

status Show the current status of Itp. 

struct [ struct-name J 
Set the file transfer structure to struct-name. By default "stream" structure is used. 

tenex Set the file transfer type to that needed to talk to TEl\TEX machines. 

trace Toggle packet tracing. 

type [ type-name 1 
Set the file transfer type to type-name. If no type is specified, the current type is 
printed. The default type is network ASCII. 

user user-name [ password] [ account J 
Identify yourself to the remote FTP server. If the password is not specified and the 
server requires it, Itp will prompt the user for it (after disabling local echo). If an 
account field is not specified, and the FTP server requires it, the user will be prompted 
for it. Unless Itp is invoked with "auto-login" disabled, this process is done automati­
cally on initial connection to the FTP server. 

verbose 
Toggle verbose mode. In verbose mode, all responses from the FTP server are 
displayed to the user. In addition, if verbose is on, when a file transfer completes, 
statistics regarding the efficiency of the transfer are reported. By default, verbose is 
on. 

ICON INTERNATIONAL 3 



FTP(10) USER COMMANDS FTP(IC) 

r [command] 
A synonym for help. 

Command arguments which have embedded spaces may be quoted with quote (tt) marks. 

F~E NAMING CONVENTIONS 
Files specified as arguments to Itp commands are processed according to the following rules. 
1) 
2) 

If the file name "-" is specified, the atdin (for reading) or atdout (for writing) is used. 
If the first character of the file name is CIt', the remainder of the argument is inter­
preted as a shell command. Ftp then forks a shell, using popen(3) with the argument 
supplied, and reads (writes) from the stdout (stdin). If the shell command includes 
spaces, the argument must be quoted; e.g. ""lIs -It"". A particularly useful example of 
this mechanism is: "dir ~ore". 

3) Failing the above checks, if "globbing" is enabled, local file names are expanded 
according to the rules used in the csh(I); c.f. the glob command. 

F~E TRANSFER PARAMETERS 
The FTP specification specifies many parameters which may affect a file transfer. The type 
may be one of "ascii", "image" (binary), "ebcdic", and "local byte size" (for PDP-IO's and 
PDP-20's mostly). Ftp supports the ascii and image types of file transfer. 
Ftp supports only the default values for the remaining file transfer parameters: mode, lorm, 
and struct. 

OPTIONS 

BUGS 

4 

Options may be specified at the command line, or to the command interpreter. 

The -v (verbose on) option forces Itp to show all responses from the remote server, as well as 
report on data transfer statistics. 
The -n option restrains Itp from attempting "auto-login" upon initial connection. If auto­
login is enabled, Itp will check the .netrc file in the user's home directory for an entry describ­
ing an account on the remote machine. If no entry exists, Itp will use the login name on the 
local machine as the user identity on the remote machine, and prompt for a password and, 
optionally, an account with which to login. 

The -i option turns off interactive prompting during mutliple file transfers. 

The -d option enables debugging. 

The -g option disables file name glob bing. 

Many FTP server implementation do not support the experimental operations such as print 
working directory. Aborting a file transfer does not work right; if one attempts this the local 
Itp will likely have to be killed by hand. 

ICON INTERNATIONAL 



( 

GCORE( 1) USER COMMANDS GCORE( 1) 

NAME 
gcore - get core images of running processes 

SYNOPSIS 
gcore process-id ... 

DESCRIPTION 
Gcore creates a core image of each specified process, suitable for use with adb(l) or dbx(l). 

FILES 

BUGS 

core. <process-id > core images 

Paging activity that occurs while gcore is running may cause the program to become confused. 
For best results, the desired processes should be stopped. 

ICON INTERNATIONAL 1 



GPROF(l) USER COMMANDS GPROF(l) 

NAME 
gprof - display call graph profile data 

SYNOPSIS 
cprof [ options J ( a.out [ gmon.out ... ] ] 

DESCRIPTION 
gpro/ produces an execution profile of C, Pascal, or Fortran77 programs. The effect of called 
routines is incorporated in the profile of each caller. The profile data is taken from the call 
graph profile file (gmon.out default) which is created by programs which are compiled with the 
-PC option of ee, pc, and /77. That option also links in versions of the library routines which 
are compiled for profiling. The symbol table in the named object file (a.out default) is read 
and correlated with the call graph profile file. If more than one profile file is specified, the 
gpro/ output shows the sum of the profile information in the given profile files. 

First, a flat profile is given, similar to that provided by prof(l). This listing gives the total 
execution times and call counts for each of the functions in the program, sorted by decreasing 
time. 

Next, these times are propagated along the edges of the call graph. Cycles are discovered, and 
calls into a cycle are made to share the time of the cycle. A second listing shows the functions 
sorted according to the time they represent including the time of their call graph descendents. 
Below each function entry is shown its (direct) call graph children, and how their times are 
propagated to this function. A similar display above the function shows how this function's 
time and the time of its descendents is propagated to its (direct) call graph parents. 

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members of 
the cycle and their contributions to the time and call counts of the cycle. 
The following options are available: 

-& suppresses the printing of statically declared functions. If this option is given, all 
relevant information about the static function (e.g., time samples, calls to other func­
tions, calls from other functions) belongs to the function loaded just before the static 
function in the a.out file. 

-b supresses the printing of a description of each field in the profile. 

-c the static call graph of the program is discovered by a heuristic which examines the 
text space of the object file. Static-only parents or children are indicated with call 
counts of o. 

-e name 
suppresses the printing of the graph profile entry for routine name and all its descen­
dants (unless they have other ancestors that aren't suppressed). More than one -e 
option may be given. Only one name may be given with each -e option. 

-E name 
suppresses the printing of the graph profile entry for routine name (and its descen­
dants) as -e, above, and also excludes the time spent in name (and its descendants) 
from the total and percentage time computations. (For example, -E meount -E 
mcleanup is the default.) 

-f name 
prints the graph profile entry of only the specified routine name and its descendants. 
More than one -f option may be given. Only one name may be given with each -f 
option. 

ICON INTERNATIONAL 1 



( 

(: 

GPROF(l) USER COM:MANDS GPROF( 1) 

FILES 

-F name 
prints the graph profile entry of only the routine name and its descendants (as -f, 
above) and also uses only the times of the printed routines in total time and percen­
tage computations. More than one -F option may be given. Only one name may be 
given with each -F option. The -F option overrides the -E option. 

-8 a profile file gmon.sum is produced which represents the sum of the profile information 
in all the specified profile files. This summary profile file may be given to subsequent 
executions of gprof (probably also with a -8) to accumulate profile data across several 
runs of an a. out file. 

-z displays routines which have zero usage (as indicated by call counts and accumulat,ed 
time). This is useful in conjunction with the -c option for discovering which routines 
were never called. 

a.out 
gmon.out 
gmon.sum 

the namelist and text space. 
dynamic call graph and profile. 
summarized dynamic call graph and profile. 

SEE ALSO 

BUGS 

2 

monitor(3), profil(2), cc(I), prof(l) 
"gprof: A Call Graph Execution Profiler", by Graham, S.L., Kessler, P.B., McKusick, M.K.; 
Proceedings of the SIGPLAN '82 Symposium on Compiler Construction, SIGPLAN Notices, 
Vol. 17, No.6, pp. 120-126, June 1982. 

Beware of quantization errors. The granularity of the sampling is shown, but remains statist-. 
ical at best. We assume that the time for each execution of a function can be expressed by 
the total time for the function divided by the number of times the function is called. Thus 
the time propagated along the call graph arcs to parents of that function is directly propor­
tional to the number of times that arc is traversed. 

Parents which are not themselves profiled will have the time of their profiled children pro­
pagated to them, but they will appear to be spontaneously invoked in the call graph listing, 
and will not have their time propagated further. Similarly, signal catchers, even though 
profiled, will appear to be spontaneous (although for more obscure reasons). Any profiled 
children of signal catchers should have their times propagated properly, unless the signal 
catcher was invoked during the execution of the profiling routine, in which case all is lost. 

The profiled program must call exit(2) or return normally for the profiling information to be 
saved in the gmon.out file. 

ICON INTERNATIONAL 



GRAPH ( IG) USER COMMANDS GRAPH(lG) 

NAME 
graph - draw a graph 

SYNOPSIS 
graph [ option J ... 

DESCRIPTION 
Graph with no options takes pairs of numbers from the standard input as abscissas and ordi­
nates of a graph. Successive points are connected by straight lines. The graph is encoded on 
the standard output for display by the plot{lG) filters. 

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a 
label beginning on the point. Labels may be surrounded with quotes " ... ", in which case they 
may be empty or contain blanks and numbers; labels never contain newlines. 

The following options are recognized, each as a separate argument. 

-a Supply abscissas automatically (they are, missing from the input); spacing is given by 
the next argument (default 1). A second optional argument is the starting point for 
automatic abscissas (default 0 or lower limit given by -x). 

-b Break (disconnect) the graph after each label in the input. 

-e Character string given by next argument is default label for each point. 

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default). 

-1 Next argument is label for graph. 

-m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected 
(default). Some devices give distinguishable line styles for other small integers. 

-8 Save screen, don't erase before plotting. 

-x [1] 

-y [1 J 

If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x 
limits. Third argument, if present, is grid spacing on x axis. Normally these quanti­
ties are determined automatically. 

Similarly for y. 

-h l'\ext argument is fraction of space for height. 

-w Similarly for width. 

-r Next argument is fraction of space to move right before plotting. 

-u Similarly to move up before plotting. 

-t Transpose horizontal and vertical axes. (Option -x now applies to the vertical axis.) 

A legend indicating grid range is produced with a grid unless the -8 option is present. 

If a specified lower limit exceeds the upper limit, the axis is reversed. 

SEE ALSO 

BUGS 

spline(l G), plot(l G) 

Graph stores all points internally and drops those for which there isn't room. 
Segments that run out of bounds are dropped, not windowed. 
Logarithmic axes may not be reversed. 

ICON INTERNATIONAL 1 

o 



() 

( 

(". 

GREP(I) USER COMMANDS GREP(I) 

NAME 
grep, egrep, fgrep - search a file for a pattern 

SYNOPSIS 
grep [ option ] ... expression [file 1 ... 
egrep [ option 1 ... [expression J [ file J ... 

(grep [ option J... [strings] [ file J 

DESCRIPTION 
Commands of the grep family search the input files (standard input default) for lines match­
ing a pattern. Normally, each line found is copied to the standard output. Grep patterns are 
limited regular expressions in the style of u(l); it uses a compact nondeterministic algorithm. 
Egrep patterns are full regular expressions; it uses a fast deterministic algorithm that some­
times needs exponential space. Fgrep patterns are fixed strings; it is fast and compact. The 
following options are recognized. 

-v All lines but those matching are printed. 

-x (Exact) only lines matched in their entirety are printed (fgrep only). 

-c 

-1 
-n 
-b 

-i 

-8 

Only a count of matching lines is printed. 

The names of files with matching lines are listed (once) separated by newlines. 

Each line is preceded by its relative line number in the file. 

Each line is preceded by the block number on which it was found. This is sometimes 
useful in locating disk block numbers by context. 

The case of letters is ignored in making comparisons - that is, upper and lower case 
are considered identical. This applies to grep and fgrep only. 

Silent mode. Nothing is printed (except error messages). This is useful for checking 
the error status. 

-w The expression is searched for as a word (as if surrounded by '\<' and '\>', see 
eX(l).} (grep only) 

-e expression 
Same as a simple expression argument, but useful when the expression begins with a-. 

-f file The regular expression (egrep) or string list (fgrep) is taken from the file. 

In all cases the file name is shown if there is more than one input file. Care should be taken 
when using the characters $ * [ A I ( ) and \ in the expression as they are also meaningful to 
the Shell. It is safest to enclose the entire expression argument in single quotes ' '. 

Fgrep searches for lines that contain one of the (newline-separated) strings. 
Egrep accepts extended regular expressions. In the following description 'character' excludes 
newline: 

A \ followed by a single character other than newline matches that character. 

The character A matches the beginning of a line. 

The character $ matches the end of a line. 

A • (period) matches any character. 

A single character not otherwise endowed with special meaning matches that charac-
ter. . 

ICON INTERNATIONAL 1 



GREP(l} USER CO:MMANDS GREP(l) 

A string enclosed in brackets [] matches any single character from the string. Ranges ;-\ 
of ASCII character codes may be abbreviated as in 'a-zO-9'. A J may occur only as ~_,) 
the first character of the string. A literal- must be placed where it can't be mistaken 
as a range indicator. 

A regular expression followed by an * (asterisk) matches a sequence of 0 or more 
matches of the regular expression. A regular expression followed by a + (plus) 
matches a sequence of 1 or more matches of the regular expression. A regular expres­
sion followed by a? (question mark) matches a sequence of 0 or 1 matches of the regu­
lar expression. 

Two regular expressions concatenated match a match of the first followed by a match 
of the second. 
Two regular expressions separated by lor newline match either a match for the first or 
a match for the second. 
A regular expression enclosed in parentheses matches a match for the regular expres­
sion. 

The order of precedence of operators at the same parenthesis level is [1 then *+1 then concate­
nation then I and newline. 
Ideally there should be only one grep, but we don't know a single algorithm that spans a wide 
enough range of space-time tradeoft's. 

SEE ALSO 
eX(l), sed(l), sh(l) 

DIAGNOSTICS 
Exit status is 0 jf any matches are found, 1 if none, 2 for syntax errors or inaccessible files. 

BUGS 
Lines are limited to 256 characters; longer lines are truncated. 

2 ICON INTERNATIONAL 



( 

c 

GROUPS (1 ) USER COMMANDS GROUPS ( 1) 

NAME 
groups - show group memberships 

SYNOPSIS 
groups [user] 

DESCRIPTION 
The groups command shows the groups to which you or the optionally specified user belong. 
Each user belongs to a group specified in the password file / etc/ passwd and possibly to other 
groups as specified in the file / etc/group. If you do not own a file but belong to the group 
which it is owned by then you are granted group access to the file. 

When a new file is created it is given the group of the containing directory. 

SEE ALSO 
setgroups(2) 

FIT..ES 
/etc/passwd, /etc/group 

BUGS 
More groups should be allowed. 

ICON INTERNATIONAL 1 



HEAD(l) USER COMMANDS HEAD(l) 

NAME 
head - give first few lines 

SYNOPSIS 
head [ -count] [ file ... 

DESCRIPTION 
This filter gives the first count lines of each of the specified files, or of the standard input. If 
count is omitted it defaults to 10. 

SEE ALSO 
tail(l) 

ICON INTERNATIONAL 1 

---- ~,-~-~-----~, 

, 

/' ' 



( 

HOSTID (1) USER COMMANDS HOSTID (1) 

NAME 
hostid - set or print identifier of current host system 

SYNOPSIS 
hostid [ identifier 1 

DESCRIPTION 
The hostid command prints the identifier of the current host in hexadecimal. This numeric 
value is expected to be unique across all hosts and is normally set to t.he host's Internet 
address. The super-user can set the hostid by giving a hexadecimal argument; this is usually 
done in the startup script /etc/rc.local. 

SEE ALSO 
gethostid(2), sethostid(2) 

ICON INTERNATIONAL 1 



HOSTNAME ( 1 ) USER COM:MANDS HOSTNAME ( 1 ) 

NAME 
hostname - set or print name of current host system 

SYNOPSIS 
hostname [nameofhost] 

DESCRIPTION 
The hostname command prints the name of the current host, as given before the "login" 
prOl1lpt. The super-user can set the hostname by giving an argument; this is usually don£' in 
the startup script /etc/rc.local. 

SEE ALSO 
gethostname{2}, sethostname(2) 

ICON INTERNATIONAL 1 

',-" / 



IDENT(! ) USER COMMANDS IDENT(! ) 

/ NAME 

( 

(": 

ident - identify files 

SYNOPSIS 
ident file ... 

DESCRIPTION 
Ident searches the named files for all occurrences of the pattern $keyword: ... $, where keyword 
is one of 

Author 
Date 
Header 
Locker 
Log 
Revision 
Source 
State 

These patterns are normally inserted automatically by the RCS command co (1), but can 
also be inserted manually. 

Ident works on text files as well as object files. For example, if the C program in file f.c con­
tains 

char rcsid[] = "$Header: Header information $"; 

and f.c is compiled into f.o, then the cOIPmand 

ident f.c f.o 

will print 

f.c: 
$Header: Header information $ 

f.o: 
$Header: Header information $ 

IDENTIFICATION 
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907. 
Revision Number: 3.0; Release Date: 82/12/04. 
Copyright c 1982 by Walter F. Tichy. 

SEE ALSO 
ci (I), co (I), rcs (I), rcsdift'(I), resintro (I), resmerge (I), rlog (I), resfile (5). 
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control Syst~m," in 
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept. 
1982. 

ICON INTERNATIONAL ! 



IDENT(!) USER COlvfMANDS IDENT(! ) 

BUGS 

\.~ .. 

~--....\ 

2 ICON INTERNATIONAL ~-j 



() 

INDENT(l) USER COMMANDS INDENT ( 1) 

NAME 
indent - indent and format C program source 

SYNOPSIS 
indent input [ output] [flags] 

DESCRIPTION 
Indent is intended primarily as a C program formatter. Specifically, indent will: 

• indent code lines 

• align comments 
• insert spaces around operators where necessary 

• break up declaration lists as in "int a,b,c;". 

Indent will not break up long statements to make them fit within the maximum line length, 
but it will flag lines that are too long. Lines will be broken so that each statement starts a 
new line, and braces will appear alone on a line. (See the -br option to inhibit this.) Also, an 
attempt is made to line up identifiers in declarations. 

The flags which can be specified follow. They may appear before or after the file names. If t,he 
output file is omitted, the formatted file will be written back into input and a "backup" copy 
of input will be written in the current directory. If input is named "/blah/blah/file", the 
backup file will be named ".Bfile". If output is specified, indent checks to make sure it is 
different from input. 

The following flags may be used to control the formatting style imposed by indent. 

-Innn Maximum length of an output line. The default is 75. 

-ennn The column in which comments will start. The default is 33. 

-ednnn The column in which comments on declarations will start. The default is for these 
comments to start in the same column as other comments. 

-innn The number of spaces for one indentation level. The default is 4. 

-dj,-ndj -dj will cause declarations to be left justified. -ndj will cause them to be indent.ed 
the same as code. The default is -ndj. 

-v,-nv -v turns on "verbose" mode, -nv turns it off. When in verbose mode, indent 
will report when it splits one line of input into two or more lines of output, and it 
will give some size statistics at completion. The default is -nv. 

-be,-nbe If -be is specified, then a newline will be forced after each comma in a declaration. 
-nbc will turn off this option. The default is -be. 

-dnnn This option controls the placement of comments which are not to the right of 
code. Specifying -d2 means that such comments will be placed two indentation 
levels to the left of code. The default -dO lines up these comments with the code. 
See the section on comment indentation below. 

-br,-bi Specifying -bI will cause complex statements to be lined up like this: 
if ( ... ) 
{ 

code 
} 

ICON INTERNATIONAL 1 



INDENT (1 ) USER COMMANDS INDENT ( 1) 

2 

Specifying -br (the default) will make them look like this: 
if( ... ) { 

code 
} 

You may set up your own "profile" of defaults to indent by creating the file" .indent. pro" in 
your login directory and including whatever switches you like. If indent is run and a profile 
file exists, then it is read to set up the program's defaults. Switches on the command line, 
though, will always override profile switches. The profile file must be a single line of not more 
than 127 characters. The switches should be separated on the line by spaces or tabs. 

Multi-line expressions 
Indent will not break up complicated expressions that extend over multiple lines, but it will 
usually correctly indent such expressions which have already been broken up. Such an exprt'5-
sion might end up looking like this: 

x= 
( 

); 

Comments 

(Arbitrary parenthesized expression) 
+ 
( 

) 

(P aren thesized expression) 

* (Paren thesized expression) 

Indent recognizes four kinds of comments. They are: straight text, "box" comments, UNIX-
style comments, and comments that should be passed through unchanged. The action taken \, 
with these various types are as follows: 
ItBox" comments. Indent assumes that any comment with a dash immediately after the start 
of comment (i.e. "/*-") is a comment surrounded by a box of stars. Each line of such a ('om­
ment will be left unchanged, except that the first non-blank character of each successive line 
will be lined up with the beginning slash of the first line. Box comments will be indent.ed (see 
below). 

"Unix-style" comments. This is the type of section header which is used extensively in the 
UNIX system source. If the start of comment ("/*") appears on a lint' by itself, indt'nt 
assumes that it is a UNIX-style comment. These will be treated similarly to box comments, 
except the first non-blank character on each line will be lined up with the '*' of the "/*". 
Unchanged comments. Any comment which starts in column 1 will be left completely 
unchanged. This is intended primarily for documentation header pagE'S. The check for 
unchanged comments is made before the check for UNIX-style comments. 

Straight text. All other comments are treated as straight text. Indent will fit as many words 
(separated by blanks, tabs, or newlines) on a line as possible. Straight text comments will be 
indented. 

Comment indentation 
Box, UNIX-style, and straight text comments may be indented. If a comment is on a line 
with code it will be started in the "comment column", which is set by the -cnnn command 
line parameter. Otherwise, the comment will be started at nnn indentation levels less than 
where code is currently being placed, where nnn is specified by the -dnnn command line 

ICON INTERNATIONAL 



( -) 
/ -

(-

INDENT ( 1) USER COMMANDS INDENT ( 1) 

parameter. (Indented comments will never be placed in column 1.) If the code on a line 
extends past the comment column, the comment will be moved to the next line. 

DIAGNOSTICS 

FILES 

BUGS 

Diagnostic error messages, mostly to tell that a text line has been broken or is too long for the 
output line. 

.inden t. pro profile file 

Does not know how to format "long" declarations. 

ICON INTERNATIONAL 3 



INSTALL ( 1) USER COMMANDS INSTALL ( 1) 

NAME 
install - install binaries 

SYNOPSIS 
install [ -c ] [ -m mode] [ -0 owner] [ -g group] [ -s ] binary destination 

DESCRIPTION 
Binary is moved (or copied if -c is specified) to destination. If destination already exists, it is 
removed before binary is moved. If the destination is a directory then binary is moved into 
the destination directory with its original file-name. 

The mode for Destination is set to 755; the -m mode option may be used to specify a different 
mode. 

Destination is changed to owner root; the -0 owner option may be used to specify a different 
owner. 

Destination is changed to group staff; the -g group option may be used to specify a different 
group. 

If the -8 option is specified the binary is stripped after being installed. 

Install refuses to move a file onto itself. 

SEE ALSO 
chgrp(l), chmod(l), cp(l), mV(l), strip(l), chown(8) 

ICON INTERNATIONAL 1 

(~. ' 
, ..J 



( ) 

( 

lOS TAT (1 ) USER COMMANDS IOSTAT (1) 

NAME 
iostat - report I/0 statistics 

SYNOPSIS 
iostat [ interval [ count J J 

DESCRIPTION 

FILES 

/ostat iteratively reports the number of characters read and written to terminals, and, for each 
disk, the number of seeks transfers per second, kilobytes transfered per st'cond,and the mil­
liseconds per average seek. It also gives the percentage of time the systt'm has spent in user 
mode, in user mode running low priority (niced) processes, in system mode, and idling. 

To compute this information, for each disk, seeks and data transfer complt'tions and number 
of words transferred are counted; for terminals collectively, the number of input and output 
characters are counted. Also, each sixtieth of a second, the state of each disk is examined and 
a tally is made if the disk is active. From these numbers and given the transfer rates of the 
devices it is possible to determine average seek times for each device. 

The optional interval argument causes iostat to report once each interval seconds. The first 
report is for all time since a reboot and each subsequent report is for the last interval only. 

The optional count argument restricts the number of reports. 

/dev /kmem 
/vmunix 

SEE ALSO 
vmstat{l) 

ICON INTERNATIONAL 1 



IPCRM( 1) USER COM:MANDS IPCRM( 1) 

NAME 
ipcrm - remove a message queue, semaphore set or shared memory id 

SYNOPSIS 
ipcrm [ options 1 

DESCRIPTION 
[perm will remove one or more specified messages, semaphore or shared memory identifiers. 
The identifiers are specified by the following options: 

-q msqid removes the message queue identifier msqid from the system and destroys the 
message queue and data structure associated with it. 

-m shmid removes the shared memory identifier shmid from the system. The shared 
memory segment and data structure associated with it are destroyed after the 
last detach. 

-8 semid removes the semaphore identifier semid from the system and destroys the set of 
semaphores and data structure associated with it. 

-Q msgkey removes the message queue identifier, created with key msgkey, from the system 
and destroys the message queue and data structure associated with it. 

-M shmkey removes the shared memory identifier, created with key shm~~ey, from the sys­
tem. The shared memory segment and data structure associated with it are des­
troyed after the last detach. 

-8 semkey removes the semaphore identifier, created with key semkey, from the system and 
destroys the set of semaphores and data structure associated with it. 

The details of the removes are described in msgct~2), shmctl(2), and semctl(2). The identifiers 
and keys may be found by using ipcs(l). \" 

SEE ALSO 
ipcs(l). 
msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmctl(2), shmget(2), shmop(2) 

ICON INTERNATIONAL 1 



IPCS (1) USER COMMAl\1J)S IPCS (1) 

( NAME 
) ipcs - report inter-process communication facilities status 

SYNOPSIS 
ipC8 I options J 

DESCRIPTION 
[pes prints certain information about active inter-process communication facilities. \Vithout 
options, information is printed in short format for message qu~ues, shared memory, and sema­
phores that are currently active in the system. Otherwise, the information that is displaYE'd is 
controlled by the following options: 

-q Print information about active message queues. 
-m Print information about active shared memory segments. 
-s Print information about active semaphores. 

If any of the options -q, -m, or -8 are specified, information about only those indicat.ed will 
be printed. If none of these three are specified, information about all three will be printed. 

-h Print biggest allowable size information. (Maximum number of bytes in messages on 
queue for message queues, size of segments for shared memory, and number of sema­
phores in each set for semaphores.) See below for meaning of columns in a list.ing. 

-c Print creator's login name and group name. See below. 
-0 Print information on outstanding usage. (Number of messages on queue and total 

number of bytes in messages on queue for message queues and number of processes 
attached to shared memory segments.) 

-p Print process number information. (Process ID of last process to send a message and 
process ID of last process to receive a message on message queues and process ID of 
creating process and process ID of last process to attach or detach on shared memory 
segments) See below. 

-t Print time information. (Time of the last control operat.ion that changed the access 
permissions for all facilities. Time of last. msgsnd and last msgrctl on message qUE'ues, 
last shmat and last shmdt on shared memory, last semop(2) on semaphores.) See 
below. 

-a Use all print options. (This is a shorthand notation for -h, -c, -0, -p, and -t.) 
-C corefile 

Use the file corefile in place of / dey /kmem. 
-N namelist 

The argument will be taken as the name of an alternate name/ist (/unix is the 
default). 

The column headings and the meaning of the columns in an ipcs listing are given below; t.he 
letters in parentheses indicate the options that cause the corresponding heading to appear; all 
means that the heading always appears. Note that these options only determine what infor-

mation is provided for each facility; they do not determine which facilities will be listed. 

T (all) Type of the facility: 
q message queue; 
m shared memory segment; 
8 semaphore. 

ID (all) The identifier for the facility entry. 

ICON INTERNATIONAL 1 



IPCS (1) USER COMMANDS IPCS (1) 

2 

KEY 

MODE 

OWNER 
GROUP 

(all) The key used as an argument to msgget, semget, or shmget to create the 
facility entry. (Note: The key of a shared memory segment is changed to 
IPC...PRIVATE when the segment has been removed until all processes 
attached to the segment detach it.) 

(all) The facility access modes and flags: The mode consists of 11 characters that 
are interpreted as follows: 

(all) 
(all) 

The first two characters are: 
R if a process is waiting on a msgrcv; 
S if a process is waiting on a msgsnd; 
D if the associated shared memory segment has been removed. It 

will disappear when the last process attached to the segmt'nt 
detaches it; 

C if the associated shared memory segment is t.o be cleared when 
the first attach is executed; 
if the corresponding special flag is not set. 

The next 9 characters are interpreted as three sets of three bits each. The 
first set refers to the owner's permissions; the next to permissions of others 
in the user-group of the facilit.y entry; and t.he last to all others. Within 
each set, the first character indicates permission to read, the second charac­
ter indicates permission to write or alter the facility en try, and the last 
character is currently unused. 
The permissions are indicated as follows: 

r if read permission is granted; 
w if write permission is granted; 
a if alter permission is granted; 

if the indicated permission is not granted. 
The login name of the owner of the facility entry. 

CREATOR (a,c) 
The group name of the group of the owner of the facility entry. 
The login name of the creator of the facility entry. 

CGROUP (a,c) 
CBYTES (a,o) 

QNUM (a,o) 

QBYTES (a,b) 

LSPID (a,p) 
LRPID (a,p) 

STIME (a,t) 
RTIME (a,t) 
CTIME (a,t) 
NATTCR (a,o) 

SEGSZ (a,b) 
CPID (a,p) 
LPID (a,p) 

ATIME (a,t) 

DTIME (a,t) 

NSEMS (a,b) 

The group name of the group of the creator of the facility entry. 
The number of bytes in messages currently outstanding on the associated 
message queue. 
The number of messages currently outstanding on the associated message 
queue. 
The maximum number of bytes allowed in messages outstanding on the 
associated message queue. 
The process ID of the last process to send a messa.ge to tht' associated qut'ut'. 
The process ID of the last process to receive a message from the associatt'd 
queue. 
The time the last message was sent to the associated queue. 
The time the last message was received from the associated queue. 
The time when the associated entry was created or changt'd. 
The number of processes attached to the associated shared memory seg­
ment. 
The size of the associated shared memory segment. 
The process ID of the creator of the shared memory entry. 
The process ID of the last process to attach or detach the shared memory 
segment. 
The time the last attach was completed to the associatt'd shared memory 
segment. 
The time the last detach was complt'ted on the associatt'd shared memory 
segment. 
The number of .semaphores in the set associated with the st'maphore entry. r" 

~.j 

ICON INTERNATIONAL 

- ---~ .. ---



( '". '\ 
,: . 

IPCS (1) USER COMMANDS IPCS (1) 

OTIME (a,t) The time the last semaphore operation was completed on the set associated 

FILES 

with the semaphore entry. 

/vmunix system namelist 
/dev /kmem memory 
/etc/passwd user names 
jete/group group names 

SEE ALSO 

BUGS 

msgop(2), semop(2), shmop(2) 

Things ean change while ipcs is running; the picture it gives is only a close approximation to 
reality. 

ICON INTERNATIONAL 3 



JOIN ( 1) USER COMMANDS JOIN ( 1) 

NAME 
join - relational database operator 

SYNOPSIS 
join [ options] filel file2 

DESCRIPTION 
Join fQrms, on the standard output, a join of the two relations specified by the lines of filet 
and file£. If filet is '_', the standard input is used. 

File1 and fi/e£ must be sorted in increasing ASCII collating sequence on the fields on which 
they are to be joined, normally the first in each line. 

There is one line in the output for each pair of lines in filet and file£ that have identical join 
fields. The output line normally consists of the common field, then the rt'st of the line from 
filet, then the rest of the line from file£. 

Fields are normally separated by blank, tab or newline. In this case, multiple separators 
count as one, and leading separators are discarded. 

These options are recognized: 

-an In addition to the normal output, produce a line for each unpairable line in file n, 
where n is 1 or 2. 

-e s Replace empty output fields by string s. 

-j n m Join on the mth field of file n. If n is missing, use the mth field in each file. 

-0 list Each output line comprises the fields specified in list, each element. of which has the 
form n.m, where n is a file number and m is a field number. ,/ 

-tc Use character c as a separa,tor (tab character). Every appearance of c in a line is 
significant. 

SEE ALSO 

BUGS 

sort(l), comm(l), aWk(l) 

With default field separation, the collating sequence is that of sort -b; with -t, the sequence is 
that of a plain sort. 

The conventions of join, sort, comm, uniq, look and awk(l) are wildly incongruous. 

ICON INTERNATIONAL 1 



(-

JOVE(l) USER COMMANDS 

NAME 
jove - an interactive display-oriented text editor 

SYNOPSIS 
jove [-d directory] [-w] [-t tag] [+n file] [-p file] [files] 
jove -r 

DESCRIPTION 

JOVE ( 1) 

JOVE is Jonathan's Own Version of Emacs. It is based on the original EMACS editor 
written at MIT by Richard Stallman. Although JOVE is meant to be compatible with 
EMACS, there are some major differences between the two editors and you shouldn't rely on 
their behaving identically. 

JOVE works on any reasonable display terminal that is described in the termcap file (see 
TERMCAP(5) for more details). When you start up JOVE, it checks to see whether you have 
your TERM environment variable set. On most systems that will automatically be set up for 
you, but if it's not JOVE will ask you what kind of terminal you are using. To avoid having 
to type this every time you run JOVE you can set your TERM environment variable yourself. 
How you do this depends on which shell you are running. If you are running the C Shell, as 
most of you are, you type 

% setenv TERM type 

and with the Bourne Shell, you type 

$ TERM= type; export TERM 

where type is the name of the kind of terminal you are using (e.g., vt100). If neither of these 
works get somebody to help you. 

INVOKING JOVE 
If you run JOVE with no arguments you will be placed in an empty buffer, called Main. 
Otherwise, any arguments you supply are considered file names and each is "given" its own 
buffer. Only the first file is actually read in--reading other files is deferred until you actually 
try to use the buffers they are attached to. This is for efficiency's sake: most of the time, 
when you run JOVE on a big list of files, you end up editing only a few of them. 

The names of all of the files specified on the command line are saved in a buffer, called 
Minibuf. The mini-buffer is a special JOVE buffer that is used when JOVE is prompting for 
some input to many commands (for example, when JOVE is prompting for a file name). 
When you are being prompted for a file name, you can type C-N (that's Control-N) and C-P 
to cycle through the list of files that were specified on the command line. The file name will 
be inserted where you are typing and then you can edit it as if you typed it in yourself. 

JOVE recognizes the following switches: 

-d The following argument is taken to be the name of the current directory. This is for 
systems that don't have a version of C shell that automatically maintains the CWD 
environment variable. If -d is not specified on a system without a modified C shell, 
JOVE will have to figure out the current directory itself, and that can be VERY slow. 

+n Reads the file, designated by the following argument, and positions point at the n'th 
line instead of the (default) 1 'st line. This can be specified more than once but it 
doesn't make sense to use it twice on the same file; in that. case the second one wins. 

ICON INTERNATIONAL 1 



JOVE(l) USER COMMANDS JOVE ( 1) 

-p Parses the error messages in the file designated by the following argument. The error 
messages are assumed to be in a format similar to the C compile-f, LINT, or GREP 
output. 

-t Runs the find-tag command on the following argument (see ctags(l». 

-w Divides the window in two. When this happens, either the same file is displayed in 
both windows, or the second file in the list is read in and displayed in its window. 

As a special case, invoking JOVE with the -r option runs JOVE-RECOVER. Use this when 
the system crashes, or JOVE crashes, or you accidently get logged out while in JOVE. If 
there are any buffers to be recovered, this will find them. Read the documentation for 
JOVEJtECOVER. 

GETTING HELP 
Once in JOVE, there are several commands available to get help. To execute any JOVE 
command, you type "<ESC> X command-name" followed by <Return>. To get a list of 
all the JOVE commands you type "<ESC> X" followed by "1". The describe-bindings 
command can be used to get a list containing each key, and its associated command (that is, 
the command that gets executed when you type that key). If you want to save the list of 
bindings, you can set the jove variable send-typeout-to-buffer to ON (using the set command), 
and then execute the describe-bindings command. This will create a buffE'f and put in it the 
bindings list it normally would have printed on the screen. Then you can save that buffer to 
a file and print it to use as a quick reference card. (See VARIABLES below.) 

Once you know the name of a command, you can find out what it does with the describe­
command command, which you can invoke quickly by typing ''ESC 1". ThE' apropos command 
will give you a list of all the command with a specific string in their namE'S. For example, if 
you want to know the names of all the commands that are concerned with windows, you can 
run "apropos" with the keyword window. 

If you're not familar with the EMACS command set, it would be worth your while to use run 
TEACHJOVE. Do do that, just type "teachjove" to your shell and you will be placed in 
JOVE in a file which contains directions. I highly recommend this for beginners; you may 
save yourself a lot of time and headaches. 

KEY BINDINGS and VARIABLES 
You can alter the key bindings in JOVE to fit your personal tastes. That. is, you can change 
what a key does every time you strike it. For example, by default the C-N key is bound to 
the command next-line and so when you type it you move down a line. If you want to change 
a binding or add a new one, you use the bind-to-key command. The syntax is "bind-to-key 
<command> key". 

You can also change the way JOVE behaves in little ways by changing the value of some 
variables with the 8et command. The syntax is "set <variable> value", where value is a 
number or a string, or "on" or "off", depending on the context. For example, if you want 
JOVE to make backup files, you set the "make-backup-files" variable to "on". To see the 
value of a variable, use the "print <variable>" command. 

INITIALIZATION 

2 

JOVE automatically reads commands from an initialization file in your HOME directory, 
called ".joverc". In this file you can place commands that you would normally type in JOVE. 
If you like to rearrange the key bindings and set some variable-s every time you get into 
JOVE, you should put them in your initialization file. Here are a few lines from mine: 

set match-regular-expressions on 

ICON INTERNATIONAL 



( ) 

( 

JOVE(l) USER COMMANDS JOVE ( 1) 

auto-execute-command auto-fill /tmp/Re\~*<irft 
bind-to-key i-search-forward A\ 
bind-to-key i-search-reverse AR 
bind-to-key find-tag-at-point A [AT 
bind-to-key scroll-down AC 
bind-to-key grow-window "Xg 
bind-to-key shrink-window AXs 

(Note that the Control Characters can be either two character sequences (e.g. A and e 
together as "'C) or the actual control character. If you want to use an ... by itself you must 
BackSlash it (e.g., bind-to-key grow-window "'X\'" binds grow-window to ""'X"'''). 

SOME MINOR DETAILS 

FILES 

You should type C-\ instead of C-S in many instances. For example, the way to search for a 
string is documented as being "C-S" but in reality you should type "C-\". This is because C-S 
is the XOFF character (what gets sent when you type the NO SCROLL key), and clearly that 
won't work. The XON character is "C-Q" (what gets sent when you type NO SCROLL again) 
which is documen ted as the way to do a quoted-insert. The alternate key for this is "e-' " 
(typed as "C-'" on vt100's and its look-alikes). If you want to enable e-s and e-Q and you 
know what you are doing, you can put the line: 

set allow- AS-and- AQ on 
in your initialization file. 
If your terminal has a metakey, JOVE will use it if you turn on the "meta-key" variable. 
JOVE will automatically turn on "meta-key" if the METAKEY environmE'nt variable exists. 
This is useful for if you have different terminals (e.g., one at home and on£' at work) and one 
has a metakey and the other doesn't. 

/usr/new/lib/jovef.joverc - system wide initialization file 
- /.joverc - personal initialization file 
/tmp - where temporary files are stored 
/usr/new/lib/jove/teach-jove - the interactive tutorial 
/usr/new/lib/jove/portsrv - for running shells in windows (pdpll only) 

SEE ALSO 
jove..recover(l) - to recover buffers after a 

system/editor crash 
ed(l) - for a description of regular expressions 
teachjove(l) - for an interactive JOVE tutorial. 

DIAGNOSTICS 

BUGS 

JOVE diagnostics are meant to be self-explanatory, but you are advised to :seek help whenever 
you are confused. You can easily lose a lot of work if you don't know EXACTLY what you 
are doing. 

Lines can't be more than 1024 characters long. 

Searches can't cross line boundaries. 

ICON INTERNATIONAL 3 



JOVE(! ) USER COMMANDS JOVE(! ) 

AUTHOR 
Jonathan Payne 

4 ICON INTERNATIONAL 



JOVE...RECOVER ( 1 ) USER COMMANDS JOVE....RECOVER ( 1 ) 

( '--I NAME 
) 

joveJecover - recover JOVE buffers aft.er a system/editor crash 

SYNOPSIS 
joveJecover [-syscrash J [-d directory J jove -r 

DESCRIPTION 
JOVE-RECOVER lets you recover your work in the JOVE editor in the event of a system or 
JOVE crash. It is designed to put invoked through JOVE with the "-r" switeh. 
JOVE..RECOVER looks for JOVE buffers that are left around and are owned by you. (You 
cannot recover other peoples' buffers, obviously.) When the system is rebooted after a crash. 
you type "jove -r" after you've logged in. If there were no buffers that were modified at the 
time of the crash or there were but JOVE..RECOVER can't get its hands on them, you will 
be informed with the messa,ge, There is nothing here for you. Otherwise, JOVE..RECOVEH 
prints the date and time of the version of the buffers it has, and then waits for you type a 
command. 

To get a list of the buffers JOVE..RECOVER knows about, use the list command~ This will 
list all the buffers and the files and the number of lines associated with them. Next to ('adl 
buffer is a number. When you want to recover a buffer, use the get command. The syntax is 
get buffer filename where buffer is either the buffer's name or the number at the beginning of 
the line. If you don't type the buffer name or the filename, JOVE..RECOVER will prompt 
you for them. 

If there are a lot of buffers and you want to recover all of them, use the recover command. 
This will recover each buffer to the name of the buffer with ".#" prepended to the name (so 
that the original isn't over-written). It asks for each file and if yoU want to restore that 
buffer to that name you type "yes". If you want to recover the file but to a different name. 
just type that name in. If you type "no" JOVE..REOOVER will skip that file and go on to 
the next one. 

If you want to look at a buffer before deciding to recover it, use the print command. The syn­
tax for this is print buffer where buffer again is either its name or the number. You can type 
AO if you want to abort printing the file to the terminal, and JOVE..RECOVER will respond 
with an appropriate message. 

When you're done and have all the buffers you want, type the quit command to leave. You 
will then be asked whether it's okay to delete the tmp files. Most of the time that's okay and 
you should type "yes". When you say that, JOVE removes all traces of those buffers and ~'ou 
won't be able to look at them again. (If you recovered some buffers they will still be around, 
so don't worry.) So, if you're not sure whether you've gotten all the buffers, you should 
answer "no" so that you'll be able to run JOVE..RECOVER again at a later time (presumably 
after you've figured out which ones you want to save). 

If you type "'0 at any time other than when you're printing a file to the terminal, 
JOVE..RECOVER will exit without a word. If you do this but wish you hadn't, just t~'pe 
"jove -r" to the shell again, and you will be put back with no loss. 

A SAMPLE SESSION 
% jove-r 
Found 2 buffers (last updated: Sun Apr 14 14:13:38 1985). 
(Type '1' for options): list 
1) buffer recover. 1 "/u/staff/jpay Idoc/recover.l" (120 lines) 
2) buffer recover.c "/u/staff/jpay /jove/recover.c" (635 lines) 

ICON INTERNATIONAL 1 



JOVE..RECOVER ( 1 ) USER COMMANDS JOVE..RECOVER ( 1 ) 

FaES 

(Type '1' for options): get recover.l recover.save 
"recover.save" 53 lines, 1821 characters. 
(Type '1' for options): quit 
Should I delete the tmp files? yes 
% 
Here I "got" the buffer recover. 1 and restored it to the temporary file recover. save. It's gen­
erally a good idea to recover buffers to temporary files and then compare them to the original 
or at least look them over before putting them back in their real name. This is just in east' 
you were restoring what you thought you were restoring. 

/tmp - where temporary files are stored. 

SEE ALSO 
JOVE(l) - for this to make any sense to you. 

DIAGNOSTICS 
JOVE-RECOVER diagnostics are meant to be self-explanatory. 

BUGS 
It works well enough ... 

AUTHOR 
Jonathan Payne 

2 ICON INTERNATION.\.L 

~ ... 
( '\ 

.~./ 

.~ 



( 

( 

KERMIT(l) USER COMMANDS KERMIT(l) 

NAME 
kermit - kermit file transfer 

SYNOPSIS 
kermit [ option ... J [file ... J 

DES CRlP TION 
Kermit is a public domain file transfer program that allows files to be moved betwE'en 
machines of many different operating systems and architectures. This man page describes ver­
sion 4C of the program. 

Arguments are optional. If Kermit is executed without arguments', it will enter command 
mode. Otherwise, kermit will read the arguments off the command line and interpret them. 

The following notation is used in command descriptions: 

In A Unix file specification, possibly containing either of the "wildcard" characters '.' or 
'1' ('.' matches all character strings, '1' matches any single character). 

In1 A Unix file specification which may not contain '*' or '1'. 

rln A remote file specification in the remote system's own syntax, which may denot.e a 
single file or a group of files. 

rln1 A remote file specification which should denote only a single file. 

n A decimal number between 0 and 94. 

c A decimal number between 0 and 127 representing the value of an ASCII character. 

cc A decimal number between 0 and 31, or else exactly 127, representing the value of an 
ASCII control character. 

[ ] Any field in square braces is optional. 

{x,y,z} Alternatives are listed in curly braces. 

/(ermit command line options may specify either actions or settings. If /(ermit is invoked 
with a command line that specifies no actions, then it will issue a prompt and begin interac­
tive dialog. Action options specify either protocol transactions or terminal connection. 

CO:MMAND LINE OPTIONS 
-sin Send the specified file or files. If In contains wildcard (meta) characters, the Unix 

shell expands it into a list. If In is '-' then Kermit sends from standard input, which 
must come from a file: 

kermit -s - < foo. bar 

or a parallel process: 

Is -1 I kermit -s -

You cannot use this mechanism to send terminal typein. If you want to send a file 
whose name is "-" you can precede it with a path name, as in 

kermit -s ./-

-r Receive a file or files. Wait passively for files to arrive. 

ICON INTERNATIONAL 1 



KERMIT(l) USER COM:MANDS KERMIT(l) 

2 

-k Receive (passively) a file or files, sending them to standard output. This option can 
be used in several ways: 

kermit -k 
Displays the incoming files on your screen; to be used only 10 "local mode" (see 
below). 

kermit -k > fnl 
Sends the incoming file or files to the named file, /nl. If more than one file arrives, all 
are concatenated together into the single file Inl. 

kermit -k I command 
Pipes the incoming data (single or multiple files) to the indicated command, as in 

kermit -k I sort> sorted.stuff 
-a 1,11 If you have specified a file transfer option, you may specify an alternate name for a 

single file with the -a option. For example, 

kermit -s foo -a bar 
sends the file roo telling the receiver that its name is bar. If more than one file 
arrives or is sent, only the first file is affected by the -a option: 

kermit -ra baz 
stores the first incoming file under the name baz. 

-x Begin server operation. May be used in either local or remote mode. 

Before proceeding, a few words about remote and local operation are necessary. Kermit is 
"local" if it is running on a PC or workstation that you are using directly, or if it is running 
on a multiuser system and transferring files over an external communication line - not your 
job's controlling terminal or console. Kermit is remote if it is running on a multiuser system 
and transferring files over its own controlling terminal's communication line, connected to 
your PC or workstation. 
If you are running Kermit on a PC, it is in local mode by default, with the "back port" desig­
nated for file transfer and terminal connection. If you are running Kermit on a multiuser 
(timesharing) system, it is in remote mode unless you explicitly point it at an external line for 
file transfer or terminal connection. The following command sets Kermit's "mode": 
-1 dev Line - Specify a terminal line to use for file transfer and terminal connection, as in 

kermit -1 /dev /ttyi5 
\\Then an external line is being used, you might also need some additional options for succ(>ss­
ful communication with the remote system: 
-b n Baud - Specify the baud rate for the line given in the -1 option, as in 

kermit -I /dev /ttyi5 -b 9600 
This option should always be included with the -1 option, since the speed of an exter­
nalline is not necessarily what you expect. 

-p x Parity - e, 0, m, I, n (even, odd, mark, space, or none). If parity is other than none, 
then the 8th-bit prefixing mechanism will be used for transferring 8-bit binary data, 
provided the opposite Kermit agrees. The default parity is none. 

-t Specifies half duplex, line turnaround with XON as the handshake character. 

ICON INTERNATIONAL 

~---- -~~- ~~----- ----

I~·. 
'~j 



KERMIT(l) USER COMMANDS KERMIT (1 ) 

The following commands may be used only with a Kermit which is local - either by default 
or else because the -I option has been specified. 

-g rln Actively request a remote server to send the named file or files; rln is a file 
specification in the remote host's own syntax. If In happens to contain any spedal 
shell characters, like '*', these must be quoted, as in 

kermit -g x\*.\? 
-f Send a 'finish' command to a remote server. 

-c Establish a terminal connection over the specified or default communication line, 
beCore any protocol transaction takes place. Get back to the local system by typing 
the escape character (normally Control-Backslash) followed by the letter 'c'. 

-n Like -c, but after a protocol transaction takes place; -c and -n may both be used in 
the same command. The use of -n and -c is illustrated below. 

On a timesharing system, the -I and -b options will also have to be included with the -r, -k, 
or -8 options if the other Kermit is on a remote system. 

IC kermit is in local mode, the screen (stdout) is continously updated to show the progress oC 
the file transer. A dot is printed Cor every Cour data packets, other packets are shown by t.ype 
(e.g. 'S' Cor Send-Init), 'T' is printed when there's a timeout, and '%' Cor each retransmission. 
In addition, you may type (to stdin) certain "interrupt" commands during file transfer: 

Control-F: Interrupt the current File, and go on to the next (if any). 

Control-B: Interrupt the entire Batch of files, terminate the transaction. 

Control-R: Resend the current packet 

Control-A: Display a status report for the current transaction. 

These interrupt characters differ from the ones used in other Kermit implementations to avoid 
conflict with Unix shell interrupt characters. With System III and System V implementations 
of Unix, interrupt commands must be preceeded by the escape character (e.g. control-\)o 

Several other command-line options are provided: 

-i Specifies that files should be sent or received exactly "as is" with no conversions. 
This option is necessary for transmitting binary files. It may also be used to sligh tly 
boost efficiency in Unix-to-Unix transfers of text files by eliminating CRLF /newline 
conversion. 

-w Write-Protect - Avoid filename collisions for incoming files. 

-q Quiet - Suppress screen update during file transfer, Cor instance to allow a file 
transfer to proceed in the background. 

-d. Debug - Record debugging inCormation in the file debug.log in the current direc­
tory. Use this option if you believe the program is misbehaving, and show the 
resulting log to your local Kermit maintainer. 

-h Help - Display a brief synopsis of the command line options. 

The command line may contain no more than one protocol action option. 

INTERACTIVE OPERATION 
Kermit's interactive command prompt is "C-Kermit> fl. In response to this prompt, you may 
type any valid command. Kermit executes the command and then prompts you for another 
command. The process continues until you instruct the program to terminate. 

ICON INTERNATIONAL 3 



KERMIT(l) USER COM1v.lANDS KERMIT(l) 

4 

Commands begin with a keyword, normally an English verb, such as "send". You may omit 
trailing characters from any keyword, so long as you specify sufficient characters to distin­
guish it from any other keyword valid in that field. Certain commonly-used keywords (such 
as "send", "receive", "connect") have special non-unique abbreviations ("s" for "send", "r" for 
"receive", ftc" for "connect"). 

Certain characters have special functions in interactive commands: 
f Question mark, typed at any point in a command, will produce a message explaining 

what is possible or expected at that point. Depending on the context, the message 
may be a brief phrase, a menu of keywords, or a list of files. 

ESC (The Escape or Altmode key) - Request completion of the current keyword or 
filename, or insertion of a default value. The result will be a beep if the request.ed 
operation fails. 

DEL (The Delete or Rubout key) - Delete the previous character from the command. 
You may also use BS (Backspace, Control-H) for this function. 

AW (Control-W) - Erase the rightmost word from the command line. 
AU (Control-U) - Erase the entire command. 
AR (Control-R) - Redisplay the current command. 
SP (Space) - Delimits fields (keywords, filenames, numbers) within a command. HT 

(Horizontal Tab) may also be used for this purpose. 
CR (Carriage Return) - Enters the command for execution. LF (Linefeed) or FF 

(formfeed) may also be used for this purpose. 
\ (Backslash) - Enter any of the above characters into the command, literally. To 

enter a backslash, type two backslashes in a row (\ \). A single backslash immpdi­
ately preceding a carriage return allows you to continue the command on the next 
line. 

You may type the editing characters (DEL, "W, etc) repeatedly, to delete all the way back to 
the prompt. No action will be performed until the command is entered by typing carriage 
return, linefeed, or formfeed. If you make any mistakes, you will receive an informative error 
message and a new prompt - make liberal use of '?' and ESC to feel your way through t.he 
commands. One important command is "help" - you should use it the first time you run 
Kermit. 

Interactive Kermit accepts commands from files as well as from the keyboard. When you 
enter interactive mode, Kermit looks for the file .kermrc in your home or current direct.ory 
(first it looks in the home directory, then in the current one) and executes any commands it 
finds there. These commands must be in interactive format, not Unix command-line format. 
A "take" command is also provided for use at any time during an interactive session. Com­
mand files may be nested to any reasonable depth. 

Here is a brief list of Kermit interactive commands: 

bye 

close 

connect 

cwd 

Execute a Unix shell command. 

Terminate and log out a remote Kermit server. 

Close a log file. 

Establish a terminal connection to a remote system. 

Change Working Directory. 

ICON INTERNATIONAL 

~~~------- -----------------


(

KERMIT(l) USER COMMANDS KERMIT (1)

dial Dial a telephone number.

directory Display a directory listing.

echo

exit

finish

get

help

. log

quit

. receive

remote

script

send

server

set

show

space

statistics

Display arguments literally.

Exit from the program, closing any open logs.

Instruct a remote Kermit server to exit, but not log out.

Get files from a remote Kermit server.

Display a help message for a given command.

Open a log file - debugging, packet, session, transaction .

Same as 'exit'.

Passively wait for files to arrive .

Issue file management commands to a remote Kermit server.

Execute a login script with a remote system.

Send files.

Begin server operation.

Set various parameters.

Display values of 'set' parameters.

Display current disk space usage.

Display statistics about most recent transaction.

take Execute commands from a file.

The 'set' parameters are:

block-check Level of packet error detection.

delay

duplex

escape-character

file

flow-control

handshake

line

modem-dialer

parity

prompt

receive

send

ICON INTERNATIONAL

How long to wait before sending first packet.

Specify which side echoes during 'connect'.

Character to prefix "escape commands" during 'connect'.

Set various file parameters.

Communication line full-duplex flow control.

Communication line half-duplex turnaround character.

Communication line device name.

Type of modem-dialer on communication line.

Communication line character parity.

Change the Kermit program's prompt.

Set various parameters for inbound packets.

Set various parameters for outbound packets.

5

KERMIT (1) USER COMMANDS KERMIT(l)

speed Communication line speed.

The 'remote' commands a.re:

cwd Change remote working directory.

delete Delete remote files.

directory Displa.y a listing of remote file names.

help Request help from a remote server.

host Issue a command to the remote host in its own command language.

space Display current disk space usage on remote system.

type Display a remote file on your screen.

who Display who's logged in, or get information about a user.

FILES
$HOME/.kermrc Kermit initialization commands
.f.kermrc more Kermit initialization commands

SEE ALSO
cu(IC), uucp(IC)
Frank da Cruz and Bill Catchings, Kermit User's Guide, Columbia University, 6th Edition

DIAGNOSTICS

BUGS

The diagnostics produced by Kermit itself are intended to be self-explanatory.

See recent issues of the Info-Kermit digest (on ARPANET or Usenet), or the file ckuker.bwr,
for a list of bugs.

COPYRIGHT

6

Copyright (C) 1985, Trustess of Columbia University in the City of New York. Permission is
granted to any individual or institution to use, copy, or redistribute this (Kermit) software so
long as it is not sold for profit, provided this copyright notice is retained.

ICON INTERNATIONAL

(

('

KILL(l) USER CO:MMANDS ~L(l)

NAME
kill - terminate a process with extreme prejudice

SYNOPSIS
kill [-sig 1 processid ...
kill-l

DESCRIPTION
Kill sends the TERM (terminate, 15) signal to the specified processes. If a signal name or
number preceded by '-' is given as first argument, that signal is sent instead of terminate (see
sigvec(2)). The signal names are listed by 'kill -1', and are as given in /usr/include/signal.h,
stripped of the common SIG prefix.

The terminate signal will kill processes that do not catch the signal; 'kill -9 .. .' is a sure kill,
as the KILL (9) signal cannot be caught. By convention, if process number 0 is specified, all
members in the process group (i.e. processes resulting from the current login) are signaled (but
beware: this works only if you use sh{l); not if you use csh(l).) The killed processes must
belong to the current user unless he is the super-user.

The process number of an asynchronous process started with '&' is reported by the shell.
Process numbers can also be found by using Kill is a built-in to csh(l); it allows job specifiers
"% ... " so process id's are not as often used as kill arguments. See csh(l) for details.

SEE ALSO

BUGS

csh(l), ps(l), kill(2), sigvec(2)

An option to kill process groups ala killpg(2) should be provided; a replacement for "kill 0" for
csh(l) users should be provided.

ICON INTERNATIONAL 1

LAST (1) USER COMMANDS LAST (1)

NAME
last - indicate last login! of users and teletypes

SYNOPSIS
last [-N J [name ...] [tty... J

DESCRIPTION
Last will look back in the wtmp file which records alliogins and logouts for information about
a user, a teletype or any group of users and teletypes. Arguments specify names of users or
teletypes of interest. Names of teletypes may be given fully or abbreviated. For example 'last
0' is the same as 'last ttyO'. If multiple arguments are given, the information which applies to
any of the arguments is printed. For example 'last root console' would list all of "root's" ses­
sions as well as all sessions on the console terminal. Last will print the sessions of the
specified users and teletypes, most recent first, indicating the times at which the session
began, the duration of the session, and the teletype which the session took place on. If the
session is still continuing or was cut short by a reboot, last so indicates.

The pseudo-user reboot logs in at reboots of the system, thus

last reboot

will give an indication of mean time between reboot.

Last with no arguments prints a record of all logins and logouts, in reverse order. The-N
option limits the report to N lines.

If last is interrupted, it indicates how far the search has progressed in wimp. If interrupted
with a quit signal (generated by a control~ \) last indicates how far the search has progressed
so far, and the search continues.

Fn.,ES
lusr/adm/wtmp
lusr I adm/sh u tdownlog

SEE ALSO
wtmp(5), ac(8), lastcomm(l}

AUTHOR
Howard Katseff

ICON INTERNATIONAL

login data base
which records shutdowns and reasons for same

1

(

(

LASTCOMM(l) USER COMMANDS LASTCOMM (1)

NAME
lastcomm - show last commands executed in reverse order

SYNOPSIS
lastcomm [command name] ... [user name] ... [terminal name] ...

DESCRIPTION
Lostcomm gives information on previously executed commands. \Vith no arguments,
lastcomm prints information about all the commands recorded during the current accounting
file's lifetime. If called with arguments, only accounting entries with a matching command
name, user name, or terminal name are printed. So, for example,

lastcomm a.out root ttydO
would produce a listing of all the executions of commands named a.out by user root on t.he
terminal ttydO.

For each process entry, the following are printed.
The name of the user who ran the process.
Flags, as accumulated by the accounting facilities in the system.
The command name under which the process was called.
The amount of cpu time used by the process (in seconds).
The time the process exited.

The flags are encoded as follows: "S" indicates the command was executed by the super-user,
"F" indicates the command ran after a fork, but without a following exec, "D" indicates the
command terminated with the generation of a core file, and "X" indicates the command was
terminated with the signal SIGTERM.

SEE ALSO
last(l), sigvec(2), acct(5), core(5)

ICON INTERNATIONAL 1

LO(l) USER COMMANDS LD(l)

NAME
Id - link editor

SYNOPSIS
Id [option] ... file ...

DESCRWTION
Ld combines several object programs into one, resolves external references, and searches
libraries. In the simplest case several object files are given, and Id combines them, producing
an object module which can be either executed or become the input for a further Id run. (In
the latter ease, the -r option must be given to preserve the relocation bits.) The output of Id
is left on a.out. This file is made executable only if no errors occurred during the load.
The argument routines are concatenated in the order specified. The entry point of the output
is the beginning of the first routine (unless the -e option is specified).
If any argument is a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. If a
routine from a library references another routine in the library, and the library has not been
processed by ranlib(I), the referenced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries may be important. The first member of
a library should be a file named '_SYMDEF', which is understood to be a dictionary for the
library as produced by ranlib{I); the dictionary is searched iteratively to satisfy as many refer­
ences as possible.
The symbols '_etext', 'Jdata' and '_end' ('etext', 'edata' and 'end' in C) are reserved, and if
referred to, are set to the first location above the program, the first location above initialized
data, and the first location above all data respectively. It is erroneous to define these sym­
bols.
Ld understands several options. Except for -I, they should appear before the file names.

-A This option specifies incremental loading, i.e. linking is to be done in a manner so
that the resulting object may be read into an already executing program. The next
argument is the name of a file whose symbol table will be taken as a basis on which to
define additional symbols. Only newly linked material will be entered into the text
and data portions of a.out, but the new symbol table will reflect every symbol defined
before and after the incremental load. This argument must appear before any other
object file in the argument list. The -T option may be used as well, and will be taken
to mean that the newly linked segment will commence at the corresponding address
(which must be a multiple of 1024). The default value is the old value of _end.

-D Take the next argument as a hexadecimal number and pad the data segment with zero
bytes to the indicated length.

-d Force definition of common storage even if the -r flag is present.
-e The following argument is taken to be the name of the entry point of the loaded pro-

gram; location 0 is the default.

-Ix This option is an abbreviation for the library name '/lib/libx.a', where x is a string. If
that does not exist, Id tries '/usr /lib/libx.a' A library is searched when its name is
encountered, so the placement of a -1 is significant.

-M produce a primitive load map, listing the names of the files which will be loaded.

-N Do not make the text portion read only or sharable. (Use "magic number" 0407.)

ICON INTERNATIONAL 1

(

('

LD (1) USER COMMANDS LD (1)

Fn.ES

-D Arrange (by giving the output file a 0410 "magic number") that when the output filf' is
executed, the text portion will be read-only and shared among all users executing the
file. This involves moving the data areas up to the first possible 1024 byte boundary
following the end of the text.

-0 The name argument after -0 is used as the name of the Id output file, instead of
a.out.

-r Generate relocation bits in the output file so that it can be the subject of another Id
run. This flag also prevents final definitions from being given to common symbols,
and suppresses the 'undefined symbol' diagnostics.

-8 'Strip' the output by removing all symbols except locals and globals.

-8 'Strip' the output, that is, remove the symbol table and relocation bits to save space
(but impair the usefulness of the debuggers). This information can also be removed by
strip(l).

-T The next argument is a hexadecimal number which sets the text segment origin. The
default origin is O.

-t ("trace") Print the name of each file as it is processed.

-u Take the following argument as a symbol and enter it as undefined in the symbol
table. This is useful for loading wholly from a library, since initially the symbol table
is empty and an unresolved reference is needed to force the loading of the first routine.

-U Suppress ''Undefined symbol" messages.

-X Save local symbols except for those whose names begin with 'V. This option is used
by ee(l) to discard internally-generated labels while retaining symbols local to rou­
tines.

-x Do not preserve local (non-.globl) symbols in the output symbol table; only enter
external symbols. This option saves some space in the output file.

-ysym Indicate each file in which sym appears, its type and whether the file defines or refer­
ences it. Many such options may be given to trace many symbols. (It is usually neces­
sary to begin sym with an '_', as external C, FORTRAN and Pascal variables begin
with underscores.)

-z Arrange for the process to be loaded on demand from the resulting executable file (·tI3
format) rather than preloaded. This is the default. Results in a 1024 byte header on
the output file followed by a text and data segment each of which have size a multiple
of 1024 bytes (being padded out with nulls in the file if necessary). With this format
the first few BSS segment symbols may actually appear (from the output of size(l)) to
live in the data segment; this to avoid wasting the space resulting from data segment
size roundup.

llib Ilib*.a
lusr Ilib/lib*.a
lusr /local/lib llib*.a
a.out

libraries
more libraries
still more libraries
output file

SEE ALSO
as(l), ar(I), cc(I), ranlib(l)

2 ICON INTERNATIONAL

------~---

(

LD (1) USER COMMANDS LD (1)

BUGS
There is no way to force data to be page aligned. Ld pads images which are to be demand
loaded from the file system to the next page boundary to avoid a bug in the system.

ICON INTERNATIONAL 3

LEARN (1) USER CO:MMANDS LEARN(l)

NAME
learn - computer aided instruction about UNIX

SYNOPSIS
learn [-directory 1 [subject [lesson J J

DES CRlP TION

Fll..ES

Learn gives Computer Aided Instruction courses and practice in the use of UNIX, the C Shell,
and the Berkeley text editors. To get started simply type learn. The program will ask ques­
tions to find out what you want to do. Some questions may be bypassed by naming a sub­
iect, and more yet by naming a lesson. You may enter the lesson as a number that learn
gave you in a previous session. If you do not know the lesson number, you may enter the les­
Bon as a word, and learn will look for the first lesson containing it. If the lesson is '-', learn
prompts for each lesson; this is useful for debugging.

The subject's presently handled are

files
editor
VI

morefiles
macros
eqn
C

There are a few special commands. The command 'bye' terminates a learn session and 'where'
tells you of your progress, with 'where m' telling you more. The command 'again' re-displays
the text of the lesson and 'again lesson' lets you review lesson."

The -directory option allows one to exercise a script in a nonstandard place.

/usr/lib/learn subtree for all dependent directories and files
/usr/tmp/pl* playpen directories

SEE ALSO
csh{l), eX{l)

BUGS
The main strength of learn, that it asks the student to use the real UNIX, also makes possible
baffling mistakes. It is helpful, especially for non programmers, to have a UNIX initiate near
at hand during the first sessions.

Occasionally lessons are incorrect, sometimes because the local version of a ('ommand operates
in a non-standard way. Such lessons may be skipped with the 'skip' command, but it takes
some sophistication to recognize the situation.

To find a lesson given as a word, learn does a simple fgrep{l) through the lessons. It is
unclear whether this sort of subject indexing is better than none.

Spawning a new shell is required for each of many user and internal functions.

ICON INTERNATIONAL 1

LEAVE(l) USER COMMANDS LEAVE (1)

NAME
leave - remind you when you have to leave

SYNOPSIS
leave [hhmm 1

DESCRIPTION
Leave waits until the specified time, then reminds you that you have to leave. You are rem­
inded 5 minutes and 1 minute before the actual time, at the time, and every minute
thereafter. When you log off, leave exits just before it would have printed the next message.

The time of day is in the form hhmm where hh is a time in hours (on a 12 or 24 hour clock).
All times are converted to a 12 hour clock, and assumed to be in the next 12 hours.

If no argument is given, leave prompts with "When do you have to leave?". A reply of newline
causes leave to exit, otherwise the reply is assumed to be a time. This form is suitable for
inclusion in a .login or .profile.

Leave ignores interrupts, quits, and terminates. To get rid of it you should either log off or
use "kill -9" giving its process id.

SEE ALSO
calendar{l)

AUTHOR
Mark Horton

("- ICON INTERNATIONAL 1

LEX(I) USER COM:MANDS LEX (1)

NAME
lex - generator of lexical analysis programs

SYNOPSIS
lex [-tvfn J [file] , ..

DESCRIPTION
Lez generates programs to be used in simple lexical analyis of text. The input files (standard
input default) contain regular expressions to be searched for, and actions written in C to be
executed when expressions are found.

A C source program, 'lex.yy.c' is generated, to be compiled thus:

cc lex.yy.c -11

This program, when run, copies unrecognized portions of the input to the output, and exe­
cutes the associated C action for each regular expression that is recognized.

The options have the following meanings.

-t Place the result on the standard output instead of in file "lex.yy.c".

-v Print a one-line summary of statistics of the generated analyzer.

-n Opposite of -v; -n is default.
-f "Faster" compilation: don't bother to pack the resulting tables; limited to small pro-

grams.

EXAMPLE
lex lexcommands

would draw lex instructions from the file lexcommands, and place the output. in lex.yy.c
%%
A-Z]putchar(yytext[O]+ 'a'-'A ');

J
+$
+putchar(' '};

is an example of a lex program that would be put into a lex command file. This program con­
verts upper case to lower, removes blanks at the end of lines, and replaces multiple blanks by
single blanks.

SEE ALSO
yacc{l), sed(l)
M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator

ICON INTERNATIONAL 1

LINT(I) USER COMMANDS LINT(I)

NAME
lin t - a C program verifier

SYNOPSIS
lint [-abchnpuvx J file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs, or non­
portable, or wasteful. It also checks the type usage of the program more strictly than the
compilers. Among the things which are currently found are unreachable statements, loops not
entered at the top, automatic variables declared and not used, and logical expressions whose
value is constant. Moreover, the usage of functions is checked to find functions which return
values in some places and not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

By default, it is assumed that all the files are to be loaded together; they are checked for
mutual compatibility. Function definitions for certain libraries are available to lint; these
libraries are referred to by a conventional name, such as '-1m', in the style of Id(I). Argu­
ments ending in .In are also treated as library files. To create lint libraries, use the -C
option:

lint -Cfoo files ...

where files are the C sources of library foo. The result is a file llib-lfoo.ln in the correct library
format suitable for linting programs using foo.

Any number of the options in the following list may be used. The -D, -U, and -I options of
ce(l) are also recognized as separate arguments.

p Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce
waste.

b Report break statements that cannot be reached. (This is not the default because,
unfortunately, most lex and many yace outputs produce dozens of such comments.)

v Suppress complaints about unused arguments in functions.

x Report variables referred to by extern declarations, but never used.

a Report assignments of long values to int variables.

c Complain about casts which have questionable portability.

u Do not complain about functions and variables used and not defined, or defined and
not used (this is suitable for running lint on a subset of files out of a larger program).

n Do not check compatibility against the standard library.

z Do not complain about structures that are never defined (e.g. using a structure
pointer without knowing its contents.).

Exit(2} and other functions which do not return are not understood; this causes various lies.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.

ICON INTERNATIONAL 1

LINT(l) USER COMMANDS LINT(l)

I*V ARARGSn*1
suppresses the usual checking for variable numbers of arguments in the following func­
tion declaration. The data types of the first n arguments are checked; a missing n is
taken to be O.

I*NOSTRICT*I
shuts off strict type checking in the next expression.

I*ARGSUSED*I
turns on the -v option for the next function.

I*LINTLIBRARY *1
at the beginning of a file shuts off complaints about unused functions in this file.

AUTHOR
S.C. Johnson. Lint library construction implemented by Edward Wang.

Fn,ES
lusr /lib/lint/lint[12]
lusr/lib/lint/llib-lc.ln
lusr llib/lint/llib-Ic
lusr/lib/lint/llib-port.ln
I usr Iii b /lin t /lli b-port
llib-l*.ln

SEE ALSO
cc(l)

programs
declarations for standard functions
human readable version of above
declarations for portable functions
human readable ...
library created with -0

S. C. Johnson, Lint, a C Program Checker

BUGS
There are some things you just ca.n't get lint to shut up about.

2 ICON INTERNATIONAL

LISP (1) USER COMMANDS LISP (1)

NAME
lisp - lisp interpreter

SYNOPSIS
lisp

DESCRIPTION
Lisp is a lisp interpreter for a dialect which closely resembles MIT's MACLISP. This lisp,
known as FRANZ LISP, features an I/O facility which allows the user to change the input and
output syntax, add macro characters, and maintain compatibility with upper-case only lisp
systems; infinite precision integer arithmetic, and an error facility which allows the user to
trap system errors in many different ways. Interpreted functions may be mixed with code
compiled by liszt{l) and both may be debugged using the "Joseph Lister" trace package. A
lisp containing compiled and interpreted code may be dumped into a file for later use.

There are too many functions to list here; one should refer to the manuals listed below.

AUTHORS

FILES

An early version was written by Jeff Levinsky, Mike Curry, and John Breedlove. Kt'it.h
Sklower wrote and is maintaining the current version, with the assistance of John Foderaro.
The garbage collector was implemented by Bill Rowan.

/ usr /li b /lisp / trace.l
jusr jlib jlisp /toplevel.l

Joseph Lister trace package
top level read-eval-print loop

SEE ALSO

BUGS

liszt(I), lxref(l)
'FRANZ LISP Manual, Version l' by John K. Foderaro
l"iACLISP Man ual

The error system is in a state of flux and not all error messages are as informative as they
could be.

ICON INTERNATIONAL 1

LISZT (1) USER COMMANDS LISZT (1)

NAME
liszt - compile a Franz Lisp program

SYNOPSIS
liszt [-mpqruwxCQST 1 [-e form] [-0 objfile 1 [name 1

DESCRIPTION
Liszt takes a file whose names ends in '.1' and compiles the FRANZ LISP code there leaving an
object program on the file whose name is that of the source with '.0' substituted for '.I'.
The following options are interpreted by liszt.

-e Evaluate the given form before compilation begins.

-m Compile a MACLISP file, by changing the readtable to conform to }.l<\CLISP syntax and
including a macro-defined compatibility package.

-0 Put the object code in the specified file, rather than the default' .0' file.

-p places profiling code at the beginning of each non·local function. If the lisp system is
also created with profiling in it, this allows function calling frequency to be determined
(see prof(l).}

-q Only print warning and error messages. Compilation statistics and notes on correct
but unusual constructs will not be printed.

-r place bootstrap code at the beginning of the object file, which when the object file is
executed will cause a lisp system to be invoked and the object file fasl'ed in.

-u Compile a UCI-lispfile, by changing the read table to conform to VCI-Lisp syntax and
including a macro-defined compatibility package.

-w
-x

-C

Suppress warning diagnostics.

Create a lisp cross reference file with the same name as the source file but with '.x'
appended. The program lxref{l) reads this file and creates a human readable cross
reference listing.

put comments in the assembler output of the compiler. Useful for debugging the com·
piler.

-Q Print compilation statistics and warn of strange constructs. This is the default.

FILES

-S Compile the named program and leave the assembler.language output on the
corresponding file suffixed '.5'. This will also prevent the assembler language file from
being assembled.

-T send the assembler output to standard output.

If no source file is specified, then the compiler will run interactively. You will find yourself
talking to the lisp(l) top-level command interpreter. You can compile a file by using the
function liszt (an nlambda) with the same arguments as you use on the command line. For
example to compile 'foo', a MACLISP file, you would use:

(liszt -m foo)

Note that liszt supplies the ".1" extension for you.

jusr /lib/lisp /machacks.l
/usr /lib /Iisp /syscaU.l
jusr /lib/lisp /ucifnc.l

MACLISP compatibility package
macro definitions of Unix system calls
UCI Lisp compatibility package

ICON INTERNATIONAL 1

LISZT (1) USER COMMANDS LISZT (1)

(: AUTHOR
John Foderaro

SEE ALSO
lisp(l), lxref(l)

(

2 ICON INTERNA TION.-\L

LN(1)

NAME
In - make links

SYNOPSIS
In [-8] namel [name2]
In name ... directory

DESCRIPTION

USER CO:MMANDS LN(1)

A link is a directory entry referring to a file; the same file (together with its size, all its protec­
tion information, etc.) may have several links to it. There are two kinds of links: hard links
and symbolic links.

By default In makes hard links. A hard link to a file is indistinguishable from the original
directory entry; any changes to a file are effective independent of the name used to reference
the file. Hard links may not span file systems and may not refer to directories.

The -8 option causes In to create symbolic links. A symbolic link contains the name of the
file to which it is linked. The referenced file is used when an open(2) operation is performed
on the link. A stat(2} on a symbolic link will return the linked-to file; an Istat(2) must be
done to obtain information about the link. The readlink(2) call may be used to read the con­
tents of a symbolic link. Symbolic links may span file systems and may refer to directories.

Given one or two arguments, In creates a link to an existing file name1. If name2 is given, the
link has that name; name2 may also be a directory in which to place the link; otherwise it is
placed in the current directory. If only the directory is specified, the link will be made to the
last component of namel.

Given more than two arguments, In makes links to all the named files in the named directory.
The links made will have the same name as the files being linked to.

SEE ALSO
rm(l), cp(l), mV(I), link(2), readlink(2), stat(2), symlink(2)

ICON INTERNATIONAL 1

(

LOCK (1)

NAME
lock - reserve a terminal

SYNOPSIS
lock

DESCRIPTION

USER COMMANDS LOCK (1)

Lock requests a password from the user, then prints ''LOCKED'' on the terminal and refuses
to relinquish the terminal until the password is repeated. If the user forgets the password, he
has no other recourse but to login elsewhere and kill the lock process.

AUTHOR
Kurt Shoens

BUGS
Should timeout after 15 minutes.

ICON INTERNATIONAL 1

LOGIN(l) USER COMMANDS LOGIN (1)

NAME
login - sign on

SYNOPSIS
login I username]

DESCRIPTION

FILES

The login command is used when a user initially signs on, or it may be used at any time to
change from one user to another. The latter case is the one summarized above and described
here. See "How to Get Started" for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a pass­
word. Echoing is turned off (if possible) during the typing of the password, so it will not
appear on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the exist.ence
of mail, and the message of the day is printed, as is the time he last logged in (unless he has a
".hushlogin" file in his home directory - this is mostly used to make life easier for non-human
users, such as uucp).

Login initializes the user and group IDs and the working directory, then executes a command
interpreter (usually sh(I)) according to specifications found in a password file. Argument 0 of
the command interpreter is "-sh", or more generally the name of the command interpreter
with a leading dash ("-") prepended.

Login also initializes the environment environ(7) with information specifying home directory,
command interpreter, terminal type (if available) and user name.

If the file /etc/nologin exists login prints its contents on the user's terminal and exits. This is
used by shutdown(S} to stop users logging in when the system is about to go down.

Login is recognized by sh(I} and csh(I) and executed directly (without forking).

/etc/utmp
/usr/adm/wtmp
/usr/spool/mail/*
/etc/motd
/etc/passwd
/etc/nologin
.hushlogin
/ etc / securet ty

accounting
accounting
mail
message-of-the-day
password file
stops logins
makes login quieter
lists ttys that root may log in on

SEE ALSO
init(S), getty(8), mail(I), passwd(I), passwd(5), environ(7), shutdown(S)

DIAGNOSTICS
"Login incorrect," if the name or the password is bad.
"No Shell", "cannot open password file", "no directory": consult a programming counselor.

BUGS
An undocumented option, -r is used by the remote login server, rlogind(8C) to force login to
enter into an initial connection protocol. .

ICON INTERNATIONAL 1

---- --------- -------- --

J/ -"'"

LOOK (1) USER COMMANDS LOOK (1)

('- \ NAME
look - find lines in a sorted list

SYNOPSIS
look [-df 1 string [file 1

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

The options d and f affect comparisons as in sortCI):

d 'Dictionary' order: only letters, digits, tabs and blanks participate in comparisons.

f Fold. Upper case letters compare equal to lower case.

If no file is specified, /usr/dict/words is assumed with collating sequence -df.

FILES
/usr/diet/words

SEE ALSO
sort{l), grep{l)

ICON INTERNATIONAL 1

LOOKBIB(l) USER COMMANDS LOOKBIB(1)

NAME
indxbib, look bib - build inverted index for a bibliography, find references in a bibliography

SYNOPSIS
indxbib database
lookbib database

DESCRlPTION

FILES

Indxbib makes an inverted index to the named databases (or files) for use by lookbib(l) and
refer(I). These files contain bibliographic references (or other 'kinds of information) separated
by blank lines.

A bibliographic reference is a set of lines, constituting fields of bibliographic information.
Each field starts on a line beginning with a "%", followed by a key-letter, then a blank, and
finally the contents of the field, which may continue until the next line starting with "%".
Indxbib is a shell script that calls jusr jlib jrefer jmkey and jusr jlib jrefer jinv. The first. pro­
gram, mkey, truncates words to 6 characters, and maps upper case to lowf'r case. It also dis­
cards words shorter than 3 characters, words among the 100 most common English words,
and numbers (dates) < 1900 or > 2000. These parameters can be changf'd; see page 4 of the
Refer document by Mike Lesk. The second program, inv, creates an entry file (.ia), a posting
file (.ib), and a tag file (.ic), all in the working directory.

Lookbib uses an inverted index made by indxbib to find sets of bibliographic references. It
reads keywords typed after the ">" prompt on the terminal, and retrieVffi records containing
all these keywords. If nothing matches, nothing is returned except another" >" prompt.

It is possible to search multiple databases, as long as they have a common index made by
indxbib. In that case, only the first argument given to indxbib is specified to lookbib. /

If lookbib does not find the index files (the .i[abc] files), it looks for a reference file with the \. /
same name as the argument, without the suffixes. It creates a file with a '.ig' suffix, suitable
for use with fgrep. It then uses this fgrep file to find references. This method is simpler to use,
but the .ig file is slower to use than the .i[abc] files, and does not allow the use of muIt.iple
reference files.

x.ia, x.ib, x.ic, where x is the first argument, or if these are not present, then x.ig, x

SEE ALSO

BUGS

refer(I), addbib(I), sortbib(I), roffbib(I), lookbib(l)

Probably all dates should be indexed, since many disciplines refer to literature written in the
1800s or earlier.

ICON INTERNATIONAL 1

(--)

(

LORDER(l) USER CO:MMANDS LORDER(l)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION

Fll..ES

The input is one or more object or library archive (see ar(l)) files. The standard output is a
list of pairs of object file names, meaning that the first file of the pair refers to external
identifiers defined in the second. The output may be processed by tsort(l) to find an ordering
of a library suitable for one-pass access by Id(l).

This brash one-liner intends to build a new library from existing '.0' files.

ar cr library 'lorder *.0 I tsort'

The need for lorder may be vitiated by use of ranlib(l), which converts an ordered archive
into a randomly accessed library.

*symref, *Symdef
nm(l), sed(l), sort(l), join(l)

SEE ALSO
tsort(l), ld(l), ar(l), ranlib(l)

BUGS
The names of object files, in and out of libraries, must end with' .0'; nonsense results other-
wise.

ICON INTERNATIONAL 1

LPQ(1) USER COMMANDS LPQ(1)

NAME
lpq - spool queue examination program

SYNOPSIS
Ipq [+[n] J [·1] [-Pprinter } [job # ... J [user ... J

DESCRIPTION
Ipq examines the spooling area used by lpd(8) for printing files on the line printer, and reports
the status of the specified jobs or all jobs associated with a user. Ipq invoked without any
arguments reports on a.ny jobs currently in the queue. A -P flag may be used to specify a
particular printer, otherwise the default line printer is used (or the value of the PRINTER
variable in the environment). If a + argument is supplied, Ipq displays the spool queue until
it empties. Supplying a number immediately after the + sign indicates that Ipq should sleep
n seconds in between scans of the queue. All other arguments supplied art> interpreted as ust>r
names or job numbers to filter out only those jobs of interest.

For each job submitted (i.e. invocation of lpr(l)) lpq reports the user's name, current rank in
the queue, the names of files comprising the job, the job identifier (a number which may be
supplied to lprm(l) for removing a. specific job), and the total size in bytt>s. The -1 option
causes information about each of the files comprising the job to be printed. Normally, only as
much information as will fit on one line is displayed. Job ordering is dependent on the algo­
rithm used to scan the spooling directory and is supposed to be FIFO (First in First Out).
File names comprising a job may be unavailable (when lpr(l) is used as a sink in a pipeline) in
which case the file is indicated as "(standard input)".

If lpq warns that there is no daemon present (i.e. due to some malfunction), the /pc(8) com·
mand can be used to restart the printer daemon. (

Fn.ES
/etc/termcap

/ etc / prin tcap
/usr/spool/*

/usr/spool/*/cf*
/usr /spool/*/lock

for manipulating the screen for
repeated display
to determine printer characteristics
the spooling directory, as determined
from prin tcap
control files specifying jobs
the lock file to obtain the currently
active job

SEE ALSO

BUGS

Ipr(l), Iprm(l), Ipc(8), Ipd(8)

Due to the dynamic nature of the information in the spooling directory lpq may report unreli·
ably. Output formatting is sensitive to the line length of the terminal; this can results in
widely spaced columns.

DIAGNOSTICS
Unable to open various files. The lock file being malformed. Garbage filt>s when tht>re is no­
daemon active, but files in the spooling directory.

ICON INTERNATIONAL 1

\

(-

(

LPR(1) USER COMMANDS LPR(1)

NAME
lpr - off line print

SYNOPSIS
Ipr [-Pprinter 1 [-#num 1 [-c class] [-J job 1
! -T title 1 ! -I! numcoJs 11 [-1234/ont 1 [-wnum 1
[-pltndgvcfrmhs 1 [name ... 1

DESCRIPTION
Lpr uses a spooling daemon to print the named files when facilities become available. If no
names appear, the standard input is assumed. The -P option may be used to force output. to
a. specific printer. Normally, the default printer is used (site dependent), or the value of t.he
environment variable PRINTER is used.

The following single letter options are used to notify the line printer spooler that the files are
not standard text files. The spooling daemon will use the a.ppropriate filters to print the data
accordingly.

-p Use pr(l) to format the files (equivalent to print).

-1 Use a filter which allows control characters to be printed and suppresses page breaks.

-t The files are assumed to contain data from troff(l) (cat phototypesetter commands).

-n The files are assumed to contain data from ditroff(device independent troff).

-d The files are assumed to contain data from tex(l) (DVI format from Stanford).

-g The files are assumed to contain standard plot data as produced by the pJot(3X) rou-
tines (see also plot(lG) for the filters used by the printer spooler).

-v The files are assumed to contain a raster image for devices like the Benson Varian.

-c The files are assumed to contain data produced by ci/plot(l).

-f Use a filter which interprets the first character of each line as a standard FORTRAN
carriage control character.

The remaining single letter options have the following meaning.

-r Remove the file upon completion of spooling or upon completion of printing (with the -8

opt.ion).

-m Send mail upon completion.

-h Suppress the printing of the burst page.

-8 Use symbolic links. Usually files are copied to the spool directory.

The -C option takes the following argument as a job classification for use on the burst page.
For example,

lpr -C EECS foo.c

causes the system name (the name returned by hostname(l}) to be replaced on the burst page
by EECS, and the file foo.c to be printed.

The -J option takes the following argument as the job name to print on the burst page.
Normally, the first file's name is used. .

The -T option uses the next argument as the title used by pr(l) instead of the file name.

ICON INTERNATIONAL 1

LPR(1) USER COMlv1ANDS LPR(1)

To get multiple copies of output, use the -#num option, where num is the number of copies /--"
desired of each file named. For example, ~J

FILES

lpr -#3 foo.c bar.c more.c

would result in 3 copies of the file foo.c, followed by 3 copies of the file bar.c, etc. On the
other hand,

cat foo.c bar.c more.c Ilpr-#3

will give three copies of the concatenation of the files.

The -i option causes the output to be indented. If the next argument is numeric, it is used as
the number of blanks to be printed before each line; otherwise, 8 characters are printed.

The -w option takes the immediately following number to be the page width for pro

The -B option will use 8ymlink(2) to link data files rather than trying to copy them so large
files can be printed. This means the files should not be modified or removed until they have
been prin ted.

The option -1234 Specifies a font to be mounted on font position i. The daemon will con­
struct a .railmag file referencing /usr/lib/vJont/name.8ize.

/etc/passwd
/etc/printcap
/usr/lib/lpd*
/usr/spool/*
/usr/spool/*/ch
jusr /spooJj*/df*
jusrjspool/*/tf*

personal identification
printer capabilities data base
line printer daemons
directories used for spooling
daemon control files
data files specified in "cr' files
temporary copies of "cf" files

SEE ALSO
lpq(l), lprm(l), pr(l), symlink(2), printcap(5), Ipc(8), Ipd(8), cleanlpd(8)

DIAGNOSTICS

BUGS

2

If you try to spool too large a file, it will be truncated. Lpr will object to printing binary files.
If a user other than root prints a file and spooling is disabled, /pr will print a message saying
so and will not put jobs in the queue. If a connection to /pd on the local machine cannot be
made, Ipr will say that the daemon cannot be started. Diagnostics may be printed in the
daemon's log file regarding missing spool files by Ipd. If /pd is not configured properly or has
become out of sync with it's lock files, cleanlpd(8) may be used to restart Ipd in a new
environment.

Fonts for troff and lex reside on the host with the printer. It is currently not possible to use
local font libraries.

ICON INTERNATION.\L

......... -.-.--~ .. _---..... _ .. -.- _._._---

\

LPRM(1) USER COMMANDS LPRM(l)

(-) NAME
lprm - remove jobs from the line printer spooling queue

SYNOPSIS
Iprm [-Pprinter] [-] [job # ...] [user .. ,]

DESCRlPTION
Lprm will remove a job, or jobs, from a printer's spool queue. Since the spooling directory is
protected from users, using lprm is normally the only method by which a user may remove a
job.

Lprm without any arguments will delete the currently active job if it is owned by the user
who invoked lprm.

If the - flag is specified, lprm will remove all jobs which a user owns. If the super-user
employs this flag, the spool queue will be emptied entirely. The owner is determined by the
user's login name and host name on the machine where the lpr command was invoked.

Specifying a user's name, or list of user names, will cause lprm to attempt t.o remove any jobs
queued belonging to that user (or users). This form of invoking lprm is useful only to the
super-user.

A user may dequeue an individual job by specifying its job number. This number may be
obtained from the /pq(l) program, e.g.

% lpq-I

1st: ken
(standard input)

% Iprm 13

[job #013ucbarpa]
100 bytes

Lprm will announce the names of any files it removes and is silent if there are no jobs in the
queue which match the request list.

Lprm will kill off an active daemon, if necessary, before removing any spooling files. If a dae­
mon is killed, a new one is automatically restarted upon completion of file removals.

The -P option may be usd to specify the queue associated with a specific printer (otherwise
the default printer, or the value of the PRINTER variable in the environment is used).

Fn..ES
/etc/printcap
/ usr / spoolj *

printer characteristics file
spooling directories

/ usr / spool / * flock

SEE ALSO
Ipr(I), Ipq(I), Ipd(8)

DIAGNOSTICS

lock file used to obtain the pid of the
current daemon and the job number of
the currently active job

"Permission denied" if the user tries to remove files other than his own.

BUGS
Since there are race conditions possible in the update of the lock file, the currently active job
may be incorrectly identified.

ICON INTERNATIONAL 1

LS(l) USER COMMANDS LS(l)

NAME
Is - list con ten ts of directory

SYNOPSIS
Is [-aedfgilqrstulACLFR I name ...

DESCRIPTION
For each directory argument, Is lists tIM! contents of the directory; for each file argument, Is
repeats its name and any other information requested. By def~ult, the output is sorted alpha­
betically. When no argument is given, the current directory is listed. When several argu­
ments are given, the arguments are first sorted appropriately, but file arguments are processed
before directories and their contents.
There are a large number of options:

-1 List in long format, giving mode, number of links, owner, size in bytes, and tim£' of
last modification for each file. (See below.) If the file is a special file the size field will
instead contain the major and minor device numbers. If the file is a symbolic link the
pathname of the linked-to file is printed preceded by "->".

-g Include the group ownership of the file in a long output.
-t Sort by time modified (latest first) instead of by name.

-a List all entries; in the absence of this option, entries whose names begin with a period
(.) are not listed.

-8 Give size in kilobytes of each file.

-d If argument is a directory, list only its name; often used with -I to get the status of a
directory.

-L If argument is a symbolic link, list the file or directory the link references rather than
the link itself.

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.
-u Use time of last access instead of last modification for sorting (with the -t option)

and/or printing (with the -1 option).

-e Use time of file creation for sorting or printing.

-i For each file, print the i-number in the first column of the report.
-f Force each argument to be interpreted 118 a directory and list the name found in each

slot. This option turns off -1, -t, -8, and -r, and turns on -a; the order is the order
in which entries appear in the directory.

-F cause directories to be marked with a trailing '/', sockets with a trailing '=', symbolic
links with a trailing '@', and executable files with a trailing '*'.

-R recursively list subdirectories encountered.
-1 Corce one entry per line output format; this is the deCault when output is not to a ter-

minal.
-C force multi-column output; this is the default when output is to a terminal.

-q force printing of non-graphic characters in file names as the character I?'; this is t,he
default when output is to a terminal.

ICON INTERNATIONAL 1

-~----~ ~--- -- -- - -

LS(I) USER COl\1MANDS LS(I)

(\ The mode printed under the -1 option contains 11 characters which are interpreted as follows:
.) the first character is

(
Fll..ES

BUGS

2

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
1 if the entry is a symbolic link;
• if the entry is a socket, or

if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions; the next to permissions to others in the same user-group; and the last. to
all others. Within each set the three characters indicate permission respectively to read, to
write, or to execute the file as a program. For a directory, 'execute' permission is interpreted
to mean permission to search the directory. The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as 8 if the file has the set-group-id bit set;
likewise the user-execute permission character is given as 8 if the file has the set-user-id bit
set.

The last character of the mode (normally 'x' or '-') is t if the 1000 bit of the mode is on. See
chmod(l) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect
blocks is printed.

/etc/passwd to get user id's for 'Is -I'.
fete/group to get group id's for 'Is -g'.

Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as "Is -s" is much
different than "Is -s Ilpr". On the other hand, not doing this setting would make old shell
scripts which used Is almost certain losers.

ICON INTERNATIONAL

LXREF(l) USER COMN.1ANDS LXREF(1)

NAME
lxref - lisp cross reference program

SYNOPSIS
Ixref [-N J xref-file ... [-a source-file ... J

DESCRIPTION
Lxre/ reads cross reference file(s) written by the lisp compiler liszt and prints a cross reference
listing on the standard output. Liszt will create a cross reference file during compilation when
it is given the -x switch. Cross reference files usually end in '.x' and consequently l:rre/ will
append a '.x' to the file names given if necessary. The first option to l:Ere/is a decimal integer,
N, which sets the ignorelevel. If a function is called more than ignoreiet·ei times, the cross
reference listing will just print the number of calls instead of listing each one of them. The
default for ignorelevel is 50.

The -a option causes lxre/ to put limited cross reference information in the sources named.
l:Ere/ will scan the source and when it comes across a definition of a function (that is a line
beginning with '(de/, it will preceed that line with a list of the functions which call this func­
tion, written as a comment preceeded by'; .. '. All existing lines beginning with '; .. 'will be
removed from the file. If the source file contains a line beginning ';.-' then this will disable
this annotation process from this point on until a ';.+' is seen (however, lines beginning with
'; .. ' will continue to be deleted). After the annoation is done, the original file ,/00.1' is
renamed to " '#,/00.1" and the new file with annotation is named ,/00./'

AUTHOR
John Foderaro

SEE ALSO
lisp(1), liszt(1)

ICON INTERNATIONAL 1

--- ------------

()

(

M4(1) USER COMMAl\1J)S M4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 [files 1

DESCRIPTION
Af,/ is a macro processor intended as a front end for Ratfor, C, and other languages. Each of
the argument files is processed in order; if there are no arguments, or if an argument is '-', the
standard input is read. The processed text is written on the standard output.

Macro calls have the form

name(argl,arg2, ... , argo)

The '(' must immediately follow the name of the macro. If a defined macro name is not fol­
lowed by a '(', it is deemed to have no arguments. Leading unquoted blanks, tabs, and neow­
lines are ignored while collecting arguments. Potential macro names consist of alphabetic
letters, digits, and underscore '_', where the first character is not a digit.

Left and right single quotes (' 1 are used to quote strings. The value of a quoted string is the
string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching
right parenthesis. Macro evaluation proceeds normally during the collection of the arguments,
and any commas or right parentheses which happen to turn up within the value of a nest.ed
call are as effective as those in the original input text. After argument collection, the value of
the macro is pushed back onto the input stream and rescanned.

M,/ makes available the following built-in macros. They may be redefined, but once this is
done the original meaning is lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the first
argument. Each occurrence of $n in the replacement text, where n is a digit, is
replaced by the n-th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string.

undefine removes the definition of the macro named in its argument.

ifdef If the first argument is defined, the value is the second argument, otherwise t.he
third. If there is no third argument, the value is null. The word unix is
predefined on UNIX versions of m4.

changequote

divert

Change quote characters to the first and second arguments. Changequote without
arguments restores the original values (i.e., ' ').

M,/ maintains 10 output streams, numbered 0-9. The final output is the concate­
nation of the streams in numerical order; initially stream 0 is the current stream.
The divert macro changes the current output stream to its (digit-string) argument.
Output diverted to a stream other than 0 through 9 is discarded.

undivert causes immediate output of text from diversions named as arguments, or all
diversions if no argument. Text may be undiverted into another diversion.
Undiverting discards the diverted text.

divnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next newline.

ICON INTERNATIONAL 1

M4(1)

ifelse

USER COMMANDS M4(1)

has three or more arguments. If the first argument is the same string as the
second, then the value is the third argument. If not, and if there are more than
four arguments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise,
the value is either the fourth string, or, if it is not present, null.

iner returns the value of its argument incremented by 1. The value of the argument is
calculated by interpreting an initial digit-string as a decimal Dumber.

eval evaluates its argument as an ,arithmetic expression, using 32-bit arithmetic.
Operators include +, -, *, I, %, " (exponentiation); relationals; parentheses.

len returns the number of characters in its argument.
index returns the position in its first argument where the second argument begins (zero

origin), or -1 if the second argument does not occur.
substr returns a substring of its first argument. The second argument is a zero origin

number selecting the first character; the third argument indicates the length of t.he
substring. A missing third argument is taken to be large enough to extend to the
end of the first string.

translit transliterates the characters in its first argument from the set given by the second
argument to the set given by the third. No abbreviations are permitted.

include returns the contents of the file named in the argument.

sinelude is identical to include, except that it says nothing if the file is inaccessible.
aysemd executes the UNIX command given in the first argument. No value is returned.
maketemp

fills in a string of XXXXX in its argument with the current process id.

errprint prints its argument on the diagnostic output file. i'

dumpdef prints current names and definitions, for the named items, or for all if no argu- ',,-_/
ments are given.

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The M.f Macro Processor

c
2 ICON INTERNATIONAL

(

C"

MAIL(l) USER CO:M1\-lI\NDS

NAME
mail - send and receive mail

SYNOPSIS
mail -v
mail -v
mail -v

-i -D [-B subject I [user ...
-i -D -f [name I
-i -D -u user

-INTRODUCTION

MAIL(l)

Mail is a intelligent mail processing system, which has a command syntax reminiscent of ed
with lines replaced by messages.

The -v flag puts mail into verbose mode; the details of delivery are displayed on the users ter­
minal. The -i flag causes tty interrupt signals to be ignored. This is particularly useful when
using mail on noisy phone lines. The -D flag inhibits the reading of /usr/lib/Mail.rc.

Sending mail. To send a message to one or more other people, mail can be invoked with argu­
ments which are the names of people to send to. You are then expected to type in your mes­
sage, followed by an EOT (control-D) at the beginning of a line. A subject may be specified on
the command line by using the -8 flag. (Only the first argument after the -s flag is used as a
subject; be careful to quote subjects containing spaces.) The section below, labeled Replying to
or originating mail, describes some features of mail available to help you compose your lett,er.

Reading mail. In normal usage mail is given no arguments and checks your mail out of the
post office, then prints out a one line header of each message there. The current message is
initially the first message (numbered 1) and can be printed using the print command (which
can be abbreviated pl. You can move among the messages much as you move between lines
in ed, with the commands '+' and '-' moving backwards and forwards, and simple numbers.

Disposing of mail. After examining a message you can delete (d) the message or reply (r) to
it. Deletion causes the mail program to forget about the message. This is not irreversible; the
message can be uDdeleted (u) by giving its number, or the mail session can be aborted by
giving t.he exit (x) command. Deleted messages will, however, usually disappear never to be
seen again.

Specifying messages. Commands such as print and delete can be given a list of message
numbers as arguments to apply to a number of messages at once. Thus "delete 1 2)) deletes
messages 1 and 2, while "delete 1-5)) deletes messages 1 through 5. The special name "*))
addresses all messages, and "$)) addresses the last message; thus the command top which
prints the first few lines of a message could be used in "top *" to print the first few lines of all
messages.

Replying to or originating mail. You can use the reply command to set up a response to a
message, sending it back to the person who it was from. Text you then type in, up to an
end-of-filp, defines the contents of the message. While you are composing a message, mail
treats lines beginning wit.h the character ,-, specially. For instance, typing w m" (alone on a
line) will place a copy of the current message into the response right shifting it by a tabstop.
Other escapes will set up subject fields, add and delete recipients to the message and allow
you to escape to an editor to revise the message or to a shell to run some commands. (These
options are given in the summary below.)

Ending a mail proce88ing session. You can end a mail session with the quit (q) command.
Messages which have been examined go to your mbox file unless they have been deleted in
which case they are discarded. Unexamined messages go back to the post office. The-f
option causes mail to read in the contents of your mbox (or the specified file) for processing;
when you quit, mail writes undeleted messages back to this file. The -u flag is a short way

ICON INTERNATIONAL 1

MAU.(1) USER COMMANDS MAlI., (1)

of doing "ma.i1 -f /usr/spool/mail/user". r--""
Personal and 8Jl8temwide diBtribution liBts. It is also possible to create a personal distribution 0
lists so that, for instance, you can send mail to "cohorts" and have it go to a group of people.
Such lists can be defined by placing a line like

alias cohorts bill ozalp jkf mark kridle@ucbcory
in the file .mailrc in your home directory. The current list of such aliases can be displayed
with the alias (a) command in mail. System wide distribution lists can be created by editing
/usr/lib/aliases, see aliasu(S) and sendmail(8); these are kept in a different syntax. In mail
you send, personal aliases will be expanded in mail sent to ot~ers so that they will be abl€' to
reply to the recipients. System wide aliases are n.ot expanded when the mail is sent, but any
reply returned to the machine will have the system wide alias expanded as all mail goes
through sendmail.

Network mail (ARPA, UUCP, Bermet) See mailaddr{7} for a description of network
addresses.
Mail has a number of options which can be set in the .maUre file to alter its behavior; thus
"set askcc" enables the "askee" feature. (These options are summarized below.)

SUMMARY

2

(Adapted from the 'Mail Reference Manua)')
Each command is typed on a line by itself, and may take arguments following the command
word. The command need not be typed in its entirety - the first command which matches
the typed prefix is used. For commands which take message lists as arguments, if no message
list is given, then the next message forward which satisfies the command's requirements is
used. If there are no messages forward of the current message, the search proceeds back­
wards, and if there are no good messages at all, mail types "No applicable messages" and
aborts the command. \.. /

Goes to the previous message and prints it out. If given a numeric argument n,
goes to the n-th previous message and prints it.

r Prints a brief summary of commands.
Executes the UNIX shell command which follows.

Print (P) Like print but also prints out ignored header fields. See also print and
ignore.

Reply (R) Reply to originator. Does not reply to other recipients of the original mes­
sage.

Type (T) Identical to the Print command.

alias (a) With no arguments, prints out all currently-defined aliases. With one argu­
ment, prints out that alias. With more than one argument, creates an new or
changes an on old alias.

alternates (alt) The alternates command is useful if you have accounts on several
machines. It can be used to inform mail that the listed addresses are really you.
When you reply to messages, mail will not send a copy of the message to any of
the addresses listed on the alternates list. If the alternates command is given
with no argument, the current set of alternate names is displayed. .

c:hdir (c:) Changes the user's working directory to that specified, if given. If no direc­
tory is given, then changes to the user's login directory.

ICON INTERNATIONAL

c

(-)

(

MA.IL(1)

copy

delete

dp

edit

exit

file
folders

folder

from

headers

help

hold

ignore

mail

mbox

next

preserve

print

quit

USER COMMANDS MAIL(l)

(co) The copy command does the same thing that save does, except that. it
does not mark the messages it is used on for deletion when you quit.

(d) Takes a list of messages as argument and marks them all as deleted.
Deleted messages will not be saved in mbox, nor will they be available for most
other commands.

(also dt) Deletes the current message and prints the next message. If there is no
next message, mail says "at EOF."

(e) Takes a list of messages and points the text editor at each one in turn. On
return from the editor, the message is read back in.

(ex or x) Effects an immediate return to the Shell without modifying the user's
system mailbox, his mbox file, or his edit file in -f.

(fi) The same as folder.

List the names of the folders in your folder directory.

(fo) The folder command switches to a new mail file or folder. With no argu­
ments, it tells you which file you are currently reading. If you give it an argu­
ment, it will write out changes (such as deletions) you have made in the current
file and read in the new file. Some special conventions are recognized for the
name. # means the previous file, % means your system mailbox, %user means
user's system mailbox, & means your - /mbox file, and +folder means a file in
your folder directory.

(f) Takes a list of messages and prints their message headers.

(h) Lists the current range of headers, which is an 18 message group. If a "+"
argument is given, then the next 18 message group is printed, and if a "-" argu­
ment is given, the previous 18 message group is printed.

A synonym for?

(ho, also preserve) Takes a message list and marks each message therein t.o be
saved in the user's system mailbox instead of in mbox. Does not override the
delete command.

Add the list of header fields named to the ignored list. Header fields in the
ignore list are not printed on your terminal when you print a message. This
command is very handy for suppression of certain machine-generated header
fields. The Type aud Print commands can be used to print a message in its
entirety, including ignored fields. If ignore is executed with no arguments. it
lists the current set of ignored fields.

(m) Takes as argument login names and distribution group names and sends
mail to those people.

Indicate that a list of messages be sent to mbox in your home directory when
you quit. This is the default action for messages if you do not have the hold
option set.

(n like + or OR) Goes to the next message in sequence and types it. With an
argument list, types the next matching message.

(pre) A synonym for hold.

(p) Takes a message list and types out each message on the user's terminal.

(q) Terminates the session, saving all undeleted, unsaved messages in the user's
mbox file in his login directory, preserving all messages marked with hold or
preserve or never, referenced in his system mailbox, and removing all other

ICON INTERNATIONAL 3

MAIL(l) USER COMMANDS MAIL(l)

4

reply

respond

Rve

set

shell
size

source

top

type

unalias

undelete

unset

visual
write

xit

messa.ges from his system mailbox. If new mail has arrived during the session,
the message "You have new mail" is given. If given while editing a mailbox file
with the -t flag, then the edit file is rewritten. A return to the Shell is effected,
unless the rewrite of edit file fails, in which case the user can escape with the
exit command.

(r) Takes a message list and sends mail to the sender and all recipients of t.he
specified message. The default message must not be deleted.

A synonym for reply.

(s) Takes a message list and a filename and appends each message in turn to the
end of the file. The filename in quotes, followed by the line count and character
count is echoed on the user's terminal.

(se) With no arguments, prints all variable values. Otherwise, sets option.
Arguments are of the form "option=value" or "option."

(sh) Invokes an interactive version of the shell.
Takes a message list and prints out the size in characters of each message.

(so) The source command reads mail commands from a file.

Takes a message list and prints the top few lines of each. The number of lines
printed is controlled by the variable toplines and defaults to five.

(t) A synonym for print.

Takes a list of names defined by alias commands and discards the remembered
groups of users. The group names no longer have any significance.

(u) Takes a message list and marks each one as not being deleted.

Takes a list of option names and discards their remembered values; the inverse
of set.

(v) Takes a message list and invokes the display editor on each message.
(w) A synonym for save.

(x) A synonym for exit.

z Afail presents message headers in windowfuls as described under the headers
command. You can move mail's attention forward to the next window with the
z command. Also, you can move to the previous window by using Z-.

Here is a summary of the tilde escapes, which are used when composing messages to perform
special functions. Tilde escapes are only recognized at the beginning of lines. The name
"tilde escape" is somewhat of a misnomer since the actual escape character can be set by t.he
option eseape.

- !command Execute the indicated shell command, then return tQ the message.

e name... Add the given names to the list of carbon copy recipients.

- d Read the file "dead.letter" from your home directory into the message.

e Invoke the text editor on the message collected so far. After the editing session
is finished, you may continue appending text to the message.

-t messages Read the named messages into the message being sent. If no messages are
specified, read in the current message.

-h Edit the message header fields by typing each one in turn and allowing the user
to append text to the end or modify the field by using the current terminal erase
and kill characters.

ICON INTERNATIONAL

(

MAIL (1) USER COMMANDS MAlL(!)

-m messages Read the named messages into the message being sent, shifted right one tab. If
no messages are specified, read the current message.

p Print out the message collected so far, prefaced by the message header fields.

q Abort the message being sent, copying the message to "dead.letter" in your
home directory if save is set.

- r filename Read the na.med file into the message.

-s string Cause the named string to become the current subject field.

-t name ... Add the given names to the direct recipient list.

-v Invoke an alternate editor (defined by the VISUAL option) on the message col-
lected so far. Usually, the alterna.te editor will be a screen editor. After you
quit the editor, you may resume appending text to the end of your message.

- w filename Write the message onto the named file.

- Icommand Pipe the message through the command as a filter. If the command gives no
output or terminates abnormally, retain the original text of the message. The
command fmt(l) is often used as command to rejustify the message.

- - string Insert the string of text in the message prefaced by a single -. If you have
changed the escape character, then you should double that character in order to
send it.

Options are controlled via the set and unset commands. Options may be either binary. in
which case it is only significant to see whether they are set or not, or string, in which case t,he
actual value is of interest. The binary options include the following:

append Causes messages saved in mbox to be appended to the end rather than
prepended. (This is set in /usr/lib/Mail.rc on version 7 systems.)

ask

askcc

autoprint

debug

dot

hold

ignore

ignoreeof

metoo

Causes mail to prompt you for the subject of each message you send. If you
respond with simply a newline, no subject field will be sent.

Causes you to be prompted for additional carbon copy recipients at the t'nd
of each message. Responding with a newline indicates your satisfaction with
the current list.

Causes the delete command to behave like dp - thus, after deleting a mes­
sage, the next one will be typed automatically.

Setting the binary option debug is the same as specifying -d on the com­
mand line and causes mail to output all sorts of information useful for
debugging mail.

The binary option dot causes mail to interpret a period alone on a line as the
terminator of a message you are sending.

This option is used to hold messages in the system mailbox by default.

Causes interrupt signals from your terminal to be ignored and echoed as
@'s.
An option related to dot is ignoreeof which makes mail refuse to accept a
control-d as the end of a message. 19noreeof also applies to mail command
mode.

Usually, when a group is expanded that contains the sender, the sender is
removed from the expansion. Setting this option causes the sender to be
included in the group.

ICON INTERNATIONAL 5

MAJL(I) USER COM:MANDS MAlL (1)

FILES

nosave

quiet

verbose

Normally, when you abort a message with two RUBOUT, mail copies the par­
tial letter to the file "dead.letter" in your home directory. Setting the binary
option nOS4ve prevents this.

Suppresses the printing of the version when first invoked.

Setting the option verbose is the same as using the -v flag on the command
line. When mail runs in verbose mode, the actual delivery of messages is
displayed on he users terminal.

The following options have string values:

EDITOR Pathname of the text editor to use in the edit command and - e escape. If
not defined, then a default editor is used.

SHELL

VISUAL

crt

escape

folder

record

toplines

Pathname of the shell to use in the! command and the -! escape. A default
shell is used if this option is not defined.
Pathname of the text editor to use in the visual command and - v escape.

The valued option crt is used as a threshold to determine how long a mes­
sage must be before more is used to read it.

If defined, the first character of this option gives the character to use in the
place of - to denote escapes.

The name of the directory to use for storing folders of messages. If this name
begins with a 'I', mail considers it to be an absolute pathname; otherwise,
the folder directory is found relative to your home directory.

If defined, gives the path name of the file used to record all outgoing mail. If
not defined, then outgoing mail is not so saved.

If defined, gives the number of lines of a message to be printed out with the
top command; normally, the first five lines are printed.

lusr Ispool/mail/*
- Imbox

post office
your old mail

- I·mailrc
Itmp/R#
lusr llib/Mail.help*
lusr Ilib /Mail.rc
Message*

file giving initial mail commands
temporary for editor escape
help files
system initialization file
temporary for editing messages

SEE ALSO

BUGS

binmail{l), fmt(l), newaliases{l), aliases(5),
mailaddr(7), sendmail(8)
'The Mail Reference Manual'

There are many flags that are not documented here. Most are not useful to the general user.
Usually, mail is just a link to A/ail, which can be confusing.

AUTHOR
Kurt Shoens

6 ICON INTERNATIOl\'.-\L

r"\
:,,--.J

/

(

(

('

MAKE (1) USER COMMANDS MAKE(l)

NAME
make - maintain program groups

SYNOPSIS
make [-f makefile 1 I option] ... file ••.

DESCRIPTION
Make executes commands in make file to update one or more target names. Name is typically
a program. If no -f option is present, 'makefile' and 'Ma.ke.file' are tried in order. If makefile
is '-', the standard input is tahn. More than one -I option may appear
Make updates a target if it depends on prerequisite files that have been modified since the tar­
get was last modified, or if the target does not exist.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is
a blank-separated list of targets, then a colon, then a list of prerequisite files. Text following
a semicolon, and all following lines that begin with a tab, are shell commands to be executed
to update the target. If a name appears on the left of more than one 'colon' line, then it
depends on all of the names on the right of the colon on those lines, but only one command
sequence may be specified for it. If a name appears on a line with a dou ble colon :: then the
command sequence following that line is performed only if the name is out of date with
respect to the names to the right of the double colon, and is not affected by other double
colon lines on which that name may appear.

Two special forms of a name are recognized. A name like a(b) means the file named b stored
in the archive named a. A .name like a((b)) means the file stored in archive a containing the
entry point b.

Sharp and newline surround com mtmts.

The following makefile says that 'pgm' depends on two files 'a.o' and 'b.o', and that they in
turn depend on '.c' files and a common file 'inel'.

pgm: a.o b.o
cc a.o b.o -1m -0 pgm

a.o: inel a.c
cc -c a.c

b.o: inel b.c
cc -c b.c

!llakefile entries of the form

string! = string2

are macro definitions. Subsequent appearances of $(stringl) or ${stringl} are replaced by
string2. If string1 is a single character, the parentheses or braces are optional.

lI-fake infers prerequisites for files for which makefile gives no construction commands. For
example, a '.c' file may be inferred as prerequisite for a '.0' file and be compiled to produce the
'.0' file. Thus the preceding example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -1m -0 pgm

a.o b.o: inel

Prerequisites are inferred according to selected suffixes listed as the 'prerequisites' for the spe­
cial name '.SUFFIXES'; multipJe lists accumulate; an empty list clears what came before.

ICON INTERNATIONAL 1

MAKE (1) USER COMMANDS MAKE(!)

Order is significantj the first possible name for which both a. file a.nd a rule a.s described in the r\
next paragra.ph exist is inferred. The default list is 0

.SUFFIXES: .out .0 .c .e .r .f .y .1 .s .p
The rule to create a file with suft'ix 8e that depends on a similarly na.med file with suffix 81 is
specified a.s an entry for the 'target' 81,e. In such an entry, the special macro S. stands for
the target name with SUffIX deleted, $@ for the full target name, $< for the complete list. of
prerequisites, and $? for the list of prerequisites that are out of date. For example, a rule for
making optimized '.0' files from '.c' files is

.c.o: ; cc -c -0 -0 $@ $*.c

Certain macros are used by the default inference rules to communicate optional arguments to
any resulting compilations. In particular, 'CFLAGS' is used for ee(l) options, 'FFLAGS' for
177(1) options, 'PFLAGS' for pe(l) options, and 'LFLAGS' and 'YFLAGS' for lex and yace(l)
options. In addition, the macro 'MFLAGS' is filled in with the initial command line options
supplied to make. This simplifies maintaining a hierarchy of makefiles a.s one may then
invoke make on makefiles in subdirectories and pass along useful options such a.s -k.
Command lines are executed one at a time, each by its own shell. A line is printed when it is
executed unless the special target' .sILENT' is in makefile, or the first character of the com­
mand is '@'.
Commands returning nonzero status (see intro(l» cause make to terminate unless the special
target '.IGNORE' is in make file or the command begins with <tab> <hyphen>.

Interrupt and quit cause the target to be deleted unless the target is a directory or depends on
the special name '.PRECIOUS'.

Other options:

-i

-k
Equivalent to the special entry '.IGNORE:'.

When a command returns nonzero status, abandon work on the current entry, but
continue on branches that do not depend on the current entry.

-n Trace and print, but do not execute the commands needed to update the targets.

-t Touch, i.e. update the modified date of targets, without executing any commands.

-r Equivalent to an initial special entry '.SUFFIXES:' with no list.

-8 Equivalent to the special entry '.SILEl\TT:'.

FILES
makefile, Makefile

SEE ALSO

BUGS

2

sh(l), touch(l), 177(1), pc(l)
S. I. Feldman Make - A Program lor Maintaining Oomputer Programs

Some commands return nonzero status inappropriately. Use -i to overcome the difficulty.
Commands that are directly executed by the shell, notably cd(l), are ineffectual across nt>w­
lines in make.

ICON INTERNATIONAL

~-- ---~--~------

(

MAN(l) USER COMMANDS MAN (1)

NAME
man - find manual information by keywords; print out the manual

SYNOPSIS
man -k keyword ...
man -f file ...
man [- 1 [-t 1 [section 1 title ...

DESCRIPTION
Man is a program which gives information from the programmers manual. It can be asked for
one line descriptions of commands specified by name, or for all commands whose description
contains any of a set of keywords. It can also provide on-line access to the sections of the
printed manual.

When given the option -k and a set of keywords, man prints out a one line synopsis of each
manual sections whose listing in th.e table of contents contains that keyword.

When given the option -f and a list of file names, man attempts to locate manual sections
related to those files, printing out the table of contents lines for those sections.

When neither -k nor -f is specified, man formats a specified set of manual pages. If a section
specifier is given man looks in the that section of the manual for the given titles. Section is an
Arabic section number (3 for instance). The number may followed by a single letter classifier
(Ig for instance) indicating a graphics program in section 1. If section is omitted, man
searches all sections of the manual, giving preference to commands over subroutines in system
libraries, and printing the first section it finds, if any.

If the standard output is a teletype, or if the flag - is given, man pipes its output through
cat{l) with the option -8 to crush out useless blank lines, uI(l) to create proper underlines for
different terminals, and through more{l) to stop after each page on the screen. Hit a spacE' to
continue, a control-D to scroll 11 more lines when the output stops.

The -t flag causes man to arrange for the specified section to be troff'ed to a suitable raster
output device; see vtroff(l}.

Fll..ES
/usr/man/man?/*
/usr/man/cat?/*

SEE ALSO

BUGS

more(l), ul(l}, whereis{l), catman(8)

The manual is supposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

ICON INTERNATIONAL 1

MERGE(l) USER COMMANDS MERGE (l)

NAME
merge - three-way file merge

SYNOPSIS
merge [~p] file! file2 file3

DESCRIPTION
Merge incorporates all changes that lead from filet to fileS into file1. The result goes to std.
output if -p is present, into filet otherwise. Merge is useful for combining separate changes to
an original. Suppose filet is the original, and both filet and fileS are modifications of filet.
Then merge combines both changes.
An overlap occurs if both filel and fileS have changes in a common segment of lines. Merge
prints how many overlaps occurred, and includes both alternatives in the result. The alterna­
tives are delimited as follows:

«««< file!
lines in filel
=======
lines in file3
»»»> file3

If there are overlaps, the user should edit the result and delete one of the alternatives.

IDENTIFICATION
Author: \Valter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0 ; Release Date: 82/11/25 .
Copyright C 1982 by Walter F. Tichy.

SEE ALSO
diff3 (1), diff (I), rcsmerge (1), co (1).

ICON INTERNATIONAL 1

/

(

:MESG(1) USER COMMANDS MESG(1)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n 1 [y 1

DESCRIPTION
Mesg with argument n forbids messages via write and talk{l} by revoking non-user write per­
mission on the user's terminal. Mesg with argument y reinstates permission. All by itsE'lf,
mesg reports the current state without changing it.

Fll.ES
/dev/tty*

SEE ALSO
write{l), talk{l)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

ICON INTERNATIONAL 1

MKDffi(l) USER COM}.1ANl)S MKDIR(1)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirna~e ...

DESCRIPTION
Mkdir creates specified directories in mode 777. Standard entries, co', for the directory itself,
and ' .. ' for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rmdir{l)

ICON INTERNATIONAL 1

(

MKSTR(l) USER C01v1MANDS MKSTR(1)

n

NAME
mkstr - create an error message file by massaging C source

SYNOPSIS
mkstr [- 1 messagefile prefix file ...

DESCRIPTION
Mkstr is used to create files of error messages. Its use can make programs with large numbers
of error diagnostics much smaller, and reduce system overhead in running the program as the
error messages do not have to be constantly swapped in and out.

Mkstr will process each of the specified files, placing a massaged version of the input file in a
file whose name consists of the specified prefix and the origina.l name. A typical usage of
mkstr would be

mkstr pistrings xx *.c

This command would cause all the error messages from the C source files in the current direc­
tory to be placed in the file pistrings and processed copies of the source for these files to be
placed in files whose names are prefixed with xx.

To process the error messages in the source to the message file mkstr keys on the string
'error('" in the input stream. Each time it occurs, the C string starting at the I'"~ is placed in
the message file followed by a null character and a new-line character; the null character ter­
minates the message so it can be easily used when retrieved, the new-line character makes it
possible to sensibly cat the error message file to see its contents. The massaged copy of the
input file then contains a lseek pointer into the file which can be used to retrieve the message,
I.e.:

char efilname[] = "jusr jlibjpLstrings";
int efil = -1;

error(aI, a2, a3, a4)
{

oops:

}

char buf[256];

if (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {

perror(efilname};
exit(I);

} }
if (lseek(efil, (long) aI, 0) II read(efil, buf, 256} <= O}

goto oops;
printf(buf, a2, &3, a4);

The optional - causes the error messages to be placed at the end of the specified message file
for recompiling part of a large mkstr ed program.

ICON INTERNATIONAL 1

MKSTR(I) USER COMMANDS MKSTR(1)

SEE ALSO
lseek(2), xstr(l) G

AUTHORS
William Joy and Charles Haley

j

2 ICON INTERNATIONAL

(

(

MORE (1) USER COMMANDS MORE (1)

NAME
more, page - file perusal filter for crt viewing

SYNOPSIS
more [-edftsu 1 [-n 1 [+linenumber 1 [+ / pattern 1 [name ...
page more options

DESCRIPTION
More is a filter which allows examination of a continuous text one screenful at a time on a
soft-copy terminal. It normally pauses after each screenful, printing --More-- at the bottom of
the screen. If the user then types a carriage return, one more line is displayed. If the user
hits a space, another screenful is displayed. Other possibilities are enumerated later.

The command line options are:

-n An integer which is the size (in lines) of the window which more will use instead of the
default.

-c A.fore will draw each page by beginning at the top of the screen and erasing each line
just before it draws on it. This avoids scrolling the screen, making it easier to read
while more is writing. This option will be ignored if the terminal does not have the
ability to clear to the end of a line.

-d Afore will prompt the user with the message ''Hit space to continue, Rubout to abort"
at the end of each screenful. This is useful if more is being used as a filter in some set­
ting, such as a class, where many users may be unsophisticated.

-f This causes more to count logical, rather than screen lines. That is, long lines are not
folded. This option is recommended if nroff output is being piped through ui, since
the latter may generate escape sequences. These escape sequences contain characters
which would ordinarily occupy screen positions, but which do not print when they are
sent to the terminal as part of an escape sequence. Thus more may think that lines
are longer than they actually are, and fold lines erroneously.

-1 Do not treat AL (form feed) specially. If this option is not given, more will pause after
any line that contains a AL, as if the end of a screenful had been reached. Also, if a
file begins with a form feed, the screen will be cleared before the file is printed.

-8 Squeeze multiple blank lines from the output, producing only one blank line. Espe­
cially helpful when viewing nroff output, this option maximizes the useful information
present on the screen.

-u Normally, more will handle underlining such as produced by nroff in a manner
appropriate to .the particular terminal: if the terminal can perform underlining or has
a stand-out mode, more will output appropriate escape sequences to enable underlining
or stand-out mode for underlined information in the source file. The -u option
suppresses this processing.

+linenumber
Start up at linenumber.

+/pattern
Start up two lines before the line containing the regular expression pattern.

If the program is invoked as page, then the screen is cleared before each screenful is printed
(but only if a full screenful is being printed), and k - 1 rather than k - 2 lines are printed in
each screenful, where k is the number of lines the terminal can display.

ICON INTERNATIONAL 1

MORE (1) USER CO:MMANDS MORE(l)

2

More looks in the file /etc/termcap to determine terminal characteristics, and to determine the (~
default window size. On a terminal capable of displaying 24 lines, the default window siz~ is ' "'-./ 22 lines.

More looks in the environment variable MORE to pre-set any flags desired. For example. if
you prefer to view files using the -c mode of operation, the csh command setenv MORE -c or
the sh command sequence MORE='-c' ,. export MORE would cause all invocations of more,
including invocations by programs such as man and msgs , to use this mode. Normally, the
user will place the command sequence which sets up the MORE environment variable in the
.cshrc or .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed along with
the -More-- prompt. This gives the fraction of the file (in characters, not lines) that has been
read so far.

Other sequences which may be typed when more pauses, and their effects, are as follows (i is
an optional integer argument, defaulting to I) : .
i <space>

display i more lines, (or another screenful if no argument is given)

"'0 display 11 more lines (a "scroll"). If i is given, then the scroll size is set to i.
d same as "'0 (control-D)

• z same as typing a space except that i, if present, becomes the new window size.

I s skip i lines and print a screenfu} of lines

if skip i screenfuls and print a screenful of lines

q or Q Exit from more.

Display the current line number.

v Start up the editor vi at the current line.

h Help command; give a description of all the more commands.

i /expr search for the i-th occurrence of the regular expression expr. If there are less than i
occurrences of expr, and the input is a file (rather than a pipe), then the position in
the file remains unchanged. Otherwise, a screenful is displayed, starting two lines
before the place where the expression was found. The user's erase and kill characters
may be used to edit the regular expression. Erasing back past the first column cane'els
the search command.

in search for the i-th occurrence of the last regular expression entered.

(single quote) Go to the point from which the last search started. If no search has
been performed in the current file, this command goes back to the beginning of the
file.

!command
invoke a shell with command. The characters '%' and I!' in "command" are repla<'ed
with the current file name and the previous shell command respectively. If there is no
current file name, '%' is not expanded. The sequences "\%" and "\!" are replaced by
"%" and "!" respectively.

i:n skip to the i-th next file given in the command line (skips to last file if n doesn't make
sense)

ICON INTERNATIONAL

_.- _.- ----- .~~-

(I

(

MORE (1) USER CO:M:MANDS MORE(l)

.:p skip to the i-th previous file given in the command line. If this command is given in
the middle of printing out a file, then more goes back to the beginning of the file. If i
doesn't make sense, more skips back to the first file. If more is not reading from a file,
the bell is rung and nothing else happens.

:f display the current file name and line number.
:qor :Q

exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to type a carriage return. Up
to the time when the command character itself is given, the user may hit the line kill charac­
ter to cancel the numerical argument being formed. In addition, the user may hit the erase
character to redisplay the -More--(xx%) message.

At any time when output is being sent to the terminal, the user can hit the quit key (nor­
mally control-\). More will stop sending output, and will display the usual --More-- prompt.
The user may then enter one of the above commands in the normal manner. Unfortunately,
some output is lost when this is done, due to the fact that any characters waiting in the
terminal's output queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can be continuous.
What you type will thus not show on your terminal, except for the I and! commands.

If the standard output is not a teletype, then more acts just like cat, except that a header is
printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n I more -s

AUTHOR
Eric Shienbrood, minor revisions by John Foderaro and Geoffrey Peck

FILES
letc/termcap
lusr Ilib Imore.help

SEE ALSO

Terminal data base
Help file

csh(l), man(l), msgs(l), script(l), shell, environ(7)

ICON INTERNATIONAL 3

MSGS(1) USER CO:MMANDS ~1SGS (1)

NAME
msgs - system messages and junk mail program

SYNOPSIS
mags [-fhlpq][number] I-number]

DESCRIPTION
Msgs is used to read system messages. These messages are sent by mailing to the login 'msgs'
and should be short pieces of information which are suitable to be read once by most users of
the ,system.

Msgs is normally invoked each time you login, by placing it in the file .login (.profile if you use
/bin/sh). It will then prompt you with the source and subject of each new message. If there
is no subject line, the first few non-blank lines of the message will be displayed. If thert' is
more to the message, you will be told how long it is and asked whether you wish to see the
rest of the message. The possible responses are:

y type the rest of the message
RETURN

synonym for y.
n skip this message and go on to the next message.

redisplay the last message.

q drops you out of msgs; the next time you run the program it will pick up where you
left off.

8 append the current message to the file "Messages" in the current directory; 's-' will
save the previously displayed message. A's' or's-' may be followed by a space and a
filename to receive the message replacing the default "Messages".

m or 'm-' causes a copy of the specified message to be placed in a temporary mailbox
and mail{l) to be invoked on that mailbox. Both 'm' and's' accept a numeric argu­
ment in place of the '-'.

AIsgs keeps track of the next message you will see by a number in the file .msgsrc in your
home directory. In the directory /usr/msgs it keeps a set of files whose names are the (sequen­
tial) numbers of the messages they represent. The file /usr/msgs/bounds shows the low and
high number of the messages in the directory 50 that msgs can quickly determine if there are
no messages for you. If the contents of bounds is incorrect it can be fixed by removing it;
msgs will make a new bounds file the next time it is run.
Options to msgs include:

-f which causes it not to say "No new messages.". This is useful in your .login file since
this is often the case here.

-q Queries whether there are messages, printing "There are new messages." if there are.
The command "msgs -q" is often used in login scripts.

-h causes msgs to print the first part of messages only.

-I option causes only locally originated messages to be reported.

num A message number can be given on the command line, causing msgs to start at the
specified message rather than at the next messagl' indicated by your .msgsrc file.

ICON INTERNATIONAL 1

(

MSGS(l) USER COMMANDS

Thus

msgs -h 1

prints the first part of all messages.

-number

MSGS(1)

will cause mags to start number messages back from the one indicated by your .magsrc
file, useful for reviews of recent messages.

-p causes long messages to be piped through more{l).

Within msga you can also go to any specific message by typing its number when mags requests
input as to what to do.

Fn..ES
/usr/msgs/*
- j.msgsrc

AUTHORS
William Joy
David Wasley

SEE ALSO
mail{l), more{l)

2

database
number of next message to be presented

ICON INTERNATIONAL

MT(l) USER COMMANDS MT(l)

NAME
mt - magnetic tape manipulating program

SYNOPSIS
mt [-f tapename 1 command [count 1

DESCRIPTION
Mt is used to give commands to the cassette tape drive. If a tape name is not specified, the
environment variable TAPE is used; if TAPE does not exist, mt uses the device /dev/rrtO.
By default mt performs the requested operation once. OperatIons may be performed multiple
times by specifying count.

The available commands are listed below. Only as many characters as are required to
uniquely identify a command need be specified.

eof, weof
Write count end-of-file marks at the current position on the tape. Note that is
currently necessary to write end-or-file marks to separate multiple files on the same
tape.

fsf Forward space count files.

Forward space count records. fsr
fseof Forward space to end of tape. End of tape is defined as the last position writt.en on

tape. Note that it is necessary to issue this command (instead of fsf) to add data to
a tape.

rewind
Re",,'ind the tape (Count is ignored.)

status Print status information about the tape unit.

Mt returns a 0 exit status when the operation(s) were successful, 1 if the command was
unrecognized, and 2 if an operation failed.

FILES
/dev/rch

SEE ALSO

Cassette tape interface

mtio(4), dd(l), ioctl(2), environ(7)

ICON INTERNATIONAL 1

/, , '

'",- /

(

MY(l) USER COM1\1ANDS MY(l)

NAME
mv - move or rename files

SYNOPSIS
mv I -i J [-f J I - J filel file2

mv I -i J I -f J I - J file ... directory

DESCRIPTION
Mv moves (changes the name of) filel to file~.

If file~ already exists, it is removed before filel is moved. If file~ has a mode which forbids
writing, mv prints the mode (see chmod(2)) and reads the standard input to obtain a line; if
the line begins with y, the move takes place; if not, mvexits.

In the second form, one or more files (plain files or directories) are moved to the directory with
their original file-names.

Mv refuses to move a file onto itself.

Options;

-i stands for interactive mode. Whenever a move is to supercede an existing file, the user
is prompted by the name of the file followed by a question mark. If he answers with a
line starting with 'y', the move continues. Any other reply prevents the move from
occurring.

-f stands for force. This option overrides any mode restrictions or the -i switch.

means interpret all the following arguments to mv as file names. This allows file
names starting with minus.

SEE ALSO
cp(l), In(l}

BUGS
If filel and file!! lie on different file systems, mv must copy the file and delete the original. In
this case the owner name becomes that of the copying process and any linking relationship
with other files is lost.

ICON INTERNATIONAL 1

NETS TAT (1) USER COM:MANDS NETSTAT(l)

NAME
netstat - show network status

SYNOPSIS
netstat [-Aahimnrs] [-p protocol] [-a] [interval] [system] [core]

DESCRIPTION
The netstat command symbolically displays the contents of various network· related data
structures. The options have the following meaning:

-A show the address of any associated protocol control blocks; used for debugging

-a show the state of all sockets; normally sockets used by server processes are not shown

-h show the state of the IMP host table

-i show the state of interfaces which have been aut~configured (interfaces statically
configured into a system, but not located at boot time are not shown)

-m show statistics recorded by the memory management routines (the network manages a
"private share" of memory)

-n show network addresses as numbers (normally netsfat interprets addresses and
attempts to display them symbolically)

-p proio
show the state of sockets utilizing protocol proto; the protocol is specified symbolically,
and may be any protocol listed in the file / etc/protocols.

-8 show per· protocol statistics

-r show the routing tables

The arguments, system and core allow substitutes for the defaults "/vmunix" and
"/dev /kmem".

If an interval is specified, netstat will continuously display the information regarding packet
traffic on the configured network interfaces, pausing interval seconds before refreshing the
screen.

There are a number of display formats, depending on the information presented. The default
display, for active sockets, shows the local and remote addresses, send and receive queue sizes
(in bytes), protocol, and, optionally, the internal state of the protocol.

Address formats are of the form "host.port" or "network .port" if a socket's address specifi('s a
network but no specific host address. When known the host and network addresses are
displayed symbolically according to the data bases /etc/hosts and fete/networks, respectively.
If a symbolic name for an address is unknown, or if the -n option is specified, the address is
printed in the Internet "dot format"; refer to inet(3N) for mor.e information regarding this
format. Unspecified, or "wildcard", addresses and ports appear as "*".
The interface display provides a table of cumulative statistics regarding packets transferred,
errors, and collisions. The network address (currently Internet specific) of the interface and
the maximum transmission unit ("mtu") are also displayed.
The routing table display indicates the available routes and their status. Each route consists
of a destination host or network and a gateway to use in forwarding packets. The flags field
shows the state of the route ("U" if "up"), and whether the route is to a gateway ("G").
Direct routes are created for each interface attached to the local host. The refcnt field gives
the current number of active uses of the route. Connection oriented protocols normally hold
on to a single route for the duration of a connection while connectionless protocols obtain a

ICON INTERNATIONAL 1

(

NETS TAT (1) USER COMMANDS NETSTAT(l)

route then discard it. The use field provides a count of the number of packets sent using that
route. The interface entry indicates the network interface utilized for the route.

When netstat is invoked with an interval argument, it displays a running count of statistics
related to network interfaces. This display consists of a column summarizing information for
all interfaces, and a column for the interface with the most traffic since the system was last
rebooted. The first line of each screen of information contains a summary since the system
was last rebooted. Subsequent lines of output show values accumulated over the preceding
interval.

SEE ALSO
iostat(l), vmstat(l), hosts(5), networks(5), protocols(5), services(5), trpt(8C)

BUGS
The notion of errors is ill-defined. Collisions mean something else for the IMP.

2 ICON INTERNATIONAL

NEW ALIASES (1) USER COMMANDS

NAME
newaliases - rebuild the data base for the mail aliases file

SYNOPSIS
newaliases

DESCRIPTION

NEW ALIASES (1)

Newaliases rebuilds the random access data base for the mail aliasesfile/usr/lib/aliases.It
must be run each time / usr/ lib/ aliases is changed in order for the change to take effect.

SEE ALSO
aliases(5), sendmail(8}

BUGS

ICON INTERNATIONAL 1

(" ,_ /1.

(

("

NICE (1) USER COMMANDS NICE (1)

NAME
nice, nohup - run a command at low priority (sh only)

SYNOPSIS
nice [-number J command [arguments J

nohup command [arguments J

DESCRIPTION

Fn..ES

Nice executes command with low scheduling priority. If the number argument is present, t.he
priority is incremented (higher numbers mean lower priorities) by that amount up to a limit
of 20. The default number is 10.

The super-user may run commands with priority higher than normal by using a negative
priority, e.g. '-10'.

Nohup executes command immune to hangup and terminate signals from t.he controlling ter­
minal. The priority is incremented by 5. Nohup should be invoked from the shell with '&' in
order to prevent it from responding to interrupts by or stealing the input from the next per­
son who logs in on the same terminal. The syntax of nice is also different.

nohup.out standard output and standard error file under nohup

SEE ALSO
csh(I), setpriority(2), renice(8)

DIAGNOSTICS

BUGS

Nice returns the exit status of the subject command.

Nice and nohup are particular to sh(I). If you use csh(I), then commands executed wit.h "&"
are automatically immune to hangup signals while in the background. There is a builtin com­
mand nohup which provides immunity from terminate, but it does not redirect output to
nohup.out.

Nice is built into csh(l) with a slightly different syntax than described here. The form "nice
+10" nices to positive nice, and "nice -10" can be used by the super-user to give a process
more of the processor.

ICON INTERNATIONAL 1

NM(l) USER CO:M:MANDS NM(l)

NAME
nm - print name list

SYNOPSIS
nm [-gnopru 1 [file ... 1

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argu­
ment is an archive, a listing for each object file in the archivf(l will be produced. If no file is
given, the symbols in "a.out" are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the letters u
(undefined), A (absolute), T (text segment symbol), D (data segment symbol), B (bss segment
symbol), c (common symbol), r file name, or - for sdb symbol table entries (see -a below). If
the symbol is local (non-external) the type letter is in lower case. The output is sorted alpha­
betically.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

SEE ALSO
ar(l), ar(5), a.out(5), stab(5)

ICON INTERNATIONAL 1

o
\ '

~

,/

--------------- --- -" ------ ~-
--~- --------~- - --~-~;------;:..-----:;;--==---:-----~

FMT(l) USER COMMANDS FMT(l)

(") NAME
""" fmt - simple text formatter

SYNOPSIS
tmt [-width] [name ...

DESCRIPTION
Fmt is a simple text formatter which reads the concatenation of input files (or standard input
if none are given) and produces on standard output .. version of its input with lines as clOSt' to
72 characters long as possible. The spacing ,at the beginning of the input lines is preserved in
the output, as are blank lines and interword spacing. A width can be spt'cified to change the
default of 72 characters. "

Fmt is meant to format mail messages prior to sending, but may also be useful for other sim­
ple tasks. For instance, within visual mode of the ez editor (e.g. vi) the command

!}fmt .
will reformat a paragraph, evening the lines.

SEE ALSO
nrofl"(l}, mail(l}

AUTHOR

BUGS

Kurt Shoens

The program was designed to be simple and fast - for more complex operations, the standard
text processors are likely to be more appropriate.

ICON INTERNATIONAL 1

(- \

(

NROFF(l) USER COMMANDS NROFF(1)

NAME
nroff - text formatting

SYNOPSIS
nroft" [option 1 ... [file 1 ...

DESCRIPTION
Nroff formats text in the named files for typewriter-like devices. See also troff(l)' The full
capabilities of nroff are described in the Nroff/ Troff User's Marwal.

If no file argument is present, the standard input is read. An argument consisting of a single
minus (-) is taken to be a file name corresponding to the standard input.

The options, which may appear in any order so long as they appear before the files, are:

-0 list Print only pages whose page numbers appear in the comma-separated list of
numbers and ranges. A range N-M means pages N through M; an initial' -N means
from the beginning to page N; and a final N- means from N to the end.

-nN Number first generated page N.

-sN Stop every N pages. Nroff will halt prior to every N pages (default N 1) to allow
paper loading or changing, and will resume upon receipt of a newline.

-mname Prepend the macro file /usr/lib/tmae/tmae.name to the input files.

-raN Set register a (one-character) to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

-Tname Prepare output for specified terminal. Known names are 37 for the (default) Tele-
type Corporation Model 37 terminal, tn300 for the GE TermiNet 300 (or any termi­
nal without half-line capability), 300S for the DASI-300S, 300 for the DASI-300, and
450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-h Use output tabs during horizontal spacing to speed output and reduce output char-
acter count. Tab settings are assumed to be every 8 nominal character widths.

FILES
/tmp/tM
/usr /lib/tmac/tmac.*
/usr /lib/term/ *

SEE ALSO

temporary file
standard macro files
terminal driving tables for nroff

J. F. Ossanna, Nroff/Troffuser's manual
B. W. Kernighan, A TROFF Tutorial
troff(I), eqn(I), tbl(I), ms(7), me(7), man(7), col(l}

ICON INTERNATIONAL 1

OD(l) USER COMMANDS OD(1)

NAME
od - octal, decimal, hex, ascii dump

SYNOPSIS
od [-format] [file] [l+loffset[.J[bJ [label]]

DESCRIPTION
Od displays file, or it's standard input, in one or more dump formats as selected by the first
argument. If the first argument is missing, -0 is the default. Dumping continues until end­
of-file.

The meanings of the format argument characters are:

a Interpret bytes as characters and display them with their ACSII namf's. If the p charac­
ter is given also, then bytes with even parity are underlined. The P character causes
bytes with odd parity to be underlined. Otherwise the parity bit is ignored. .

b Interpret bytes as unsigned octal.
c Interpret bytes as ASCII characters. Certain non-graphic characters appear as C

escapes: null=\O, backspace=\b, formfeed=\f, newline=\n, ret.urn=\r, tab=\t; oth('rs
appear as 3-digit octal numbers. Bytes with the parity bit set are displayed in octal.

d Interpret (short) words as unsigned decimal.

f

h
i

1

o

Interpret long words as floating point.

Interpret (short) words as unsigned hexadecimal.

Interpret (short) words as signed decimal.

Interpret long words as signed decimal.

Interpret (short) words as unsigned octal.

s[nJ Look for strings of ascii graphic characters, terminated with a null byte. N specifies the
minimum length string to be recognized. By default, the minimum length is 3 charac­
ters.

v Show all data. By default, display lines that are identical to the last line shown are not
output, but are indicated with an "*" in column 1.

w[nJ Specifies the number of input bytes to be interpreted and displayed on each out.put. line.
If w is not specified, 16 bytes are read for each display line. If n is not sp('cified, it
defaults to 32.

x Interpret (short) words as hexadecimal.

An upper case format character implies the long or double precision form of the object.

The offset argument specifies the byte offset into the file where dumping is to commence. By
default this argument is interpreted in octal. A different radix can be specified; If "." is
appended to the argument, then offset is interpreted in decimal. If offset begins with "x" or
"Ox", it is interpreted in hexadecimal. If "b" ("B") is appended, the offset is interpreted as a
block count, where a block is 512 (I024) bytes. If the file argument is omitt.ed, an offset argu­
ment must be preceded by "+".

The radix of the displayed address will be the same as the radix of the offset, if specified; oth­
erwise it will be octal.

Label will be interpreted as a pseudo-address for the first byte displayed. It will be shown in
"0" following the file offset. It is intended to be used with core images to indicate the real
memory address. The syntax for label is identical to that for offset.

ICON INTERNATIONAL 1

\ . , /

f-"
('~ \

~ .. ~

(.)

(

(,

OD(1) USER COMMANDS OD (1)

SEE ALSO
adb(l)

BUGS

2

A file name argument can't start with "+". A hexadecimal offset can't be a block count.
Only one file name argument can be given.

It is an historical botch to require specification of object, radix, and sign representation in a
single character argument.

ICON I~TERNATIONAL

P AGESIZE (1) USER COM:MANDS

NAME
pagesize - print system page size

SYNOPSIS
pageaize

DESCRIPTION

P AGE SI ZE (1)

Pagesize prints the size of a page of memory in bytes, as returned by getpagesize(2). This pro­
gram is useful in constructing portable shell scripts.

SEE ALSO
getpagesize(2)

ICON INTERNATIONAL 1

(\
"'-j

(

PASSWD(l) USER COMMANDS PASSWD(l)

NAME
passwd - change login password

SYNOPSIS
p&88wd [name 1

DESCRIPTION
This command changes (or installs) a password associated with the user name (your own
name by default).

The program prompts for the old password and then for the new one. The caller must supply
both. The new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet
and at least six characters long if monocase. These rules are relaxed if you are insistf'nt
enough. '

Only the owner of the name or the super-user may change a password; the owner must prove
he knows the old password.

Fll..ES
/etc/passwd

SEE ALSO

BUGS

login(I), passwd(5), crypt(3)
Robert Morris and Ken Thompson, UNIX password security

The password file information should be kept in a different data structure allowing indexed
access; dbm(3X) would probably be suitable.

ICON INTERNATIONAL 1

PC(1) USER COMMANDS PC(1)

NAME
pc - Pascal compiler

SYNOPSIS
pc (option 1 [-i name ... 1 name ...

DESCRIPTION
Pc is a Pascal compiler. If given an a.rgument file ending with .p, it will compile the file and
load it into an executable file called, by default, a.out.

A program may be separated into more than one .p file. Pc will compile a number of argu­
ment .p files into object files (with the extension .0 in place of .p). Object files may then be
loaded into an executable a.out file. Exactly one object file must supply a program state­
ment to successfully create an executable a.out file. The rest of the files must consist only of
declarations which logically nest within the program. References to objects shared between
separately compiled files are allowed if the objects are declared in included header files, whose
names must end with .h. Header files may only be included at the outermost level, and thus
declare only globally available objects. To allow functions and procedures to be declared,
an external directive has been added, whose use is similar to the forward directive but res­
tricted to appear only in .h files. Function and procedure bodies may not appear in .h
files. A binding phase of the compiler checks that declarations are used consistently, to
enforce the type checking rules of Pascal.
Object files created by other language processors may be loaded together with object files
created by pc. The functions and procedures they define must have been declared in .h
files included by all the .p files which call those routines. Calling conventions are as in C,
with var parameters passed by address.
See the Berkeley Pascal User's Manual for details. ',,- __ j

The following options have the same meaning as in cc(1) and /77(1}. See ld(1} for load-time
options.

-c Suppress loading and produce '.0' file{s) from source file{s).
-g Have the compiler produce additional symbol table information for dbx{1}.

-w Suppress warning messages.
-p Prepare object files for profiling, see proJ(1}.

-0 Invoke an object-code improver.

-5 Compile the named program, and leave the assembler-language output on the
corresponding file suffixed '.s'. (No '.0' is created.).

-0 output
Name the final output file output instead of a.out.

The following options are peculiar to pc.

-0 Compile code to perform runtime checks, verify assert calls, and initialize all variables
to zero as in pi.

-b Block buffer the file output.

-i Produce a listing for the specified procedures, functions and include files.
-1 Make a program listing during translation.
-8 Accept standard Pascal only; non-standard constructs cause warning diagnostics.

\
l

ICON INTERNATIONAL 1

(-)

(

PC(1) USER COMMANDS PC(1)

FILES

-t directory
Use the given directory for compiler temporary files.

-z Allow execution profiling with pzp by generating statement counters, and arranging for
the creation of the profile data file pmon.out when the resulting object is executed.

Other arguments are taken to be loader option arguments, perhaps libraries of pc compatible
routines. Certain Hags can also be controlled in comments within the program as described in
the Berkeley Pascal User's Manual.

file.p
/usr/lib/pcO
/lib/fl
/usr/lib/pc2
/lib/c2
/usr/lib/pc3
/usr/lib/pc2.>tstrings
jusr /libjhow_pc
/usr /lib /libpc.a
/usr/lib/libm.a
/lib /libc.a

pascal source files
compiler
code generator
runtime integrator (inline expander)
peephole optimizer
separate compilation consistency checker
text of the error messages
basic usage explanation
intrinsic functions and I/O library
math library
standard library, see intro(3)

SEE ALSO
Berkeley Pascal User's Manual
pi(l), pxp(l), pxref(l), sdb(l)

DIAGNOSTICS
For a basic explanation do

pc

See pi(l). for an explanation of the error message format. Internal errors cause messages con­
taining the word SNARK.

AUTHORS

BUGS

2

Charles B. Haley, William N. Joy, and Ken Thompson
Retargetted to the second pass of the portable C compiler by Peter Kessler
Runtime library and inline optimizer by M. Kirk McKusick
Separate compilation consistency checking by Louise Madrid

The keyword packed is recognized but has no effect.

The binder is not as strict as described here, with regard to the rules about external declara­
tions only in '.h' files and including'.h' files only at the outermost level. It will be madE' to
perform these checks in its next incarnation, so users are warned not to be sloppy.

The -z flag doesn't work for separately compiled files.

Because the -s option is usurped by the compiler, it is not possible to pass the strip option to
the loader. Thus programs which are to be stripped, must be run through strip(l) after they
are compiled.

ICON INTERNATIONAL

PDX(1) USER COM:MANDS PDX(1)

NAME
pdx - pascal debugger

SYNOPSIS
pdx [-rJ [objfileJ

DESCRIPTION
Pdz is a tool for source level debugging and execution of Pascal programs. The objfile is an
object file produced by the Pascal translator p(l). If no objfile is specified, pdx looks for a file
named "obj" in the current directory. The object file contains a symbol table which includes
the name of the all the source files translated by pi to create it. These files are available for
perusal while using the debugger.

If the file ".pdxinit" exists in the current directory, then the debugger commands in it are exe-
cuted. .

The -r option causes the objfile to be executed immediately; if it terminates successfully pdx
exits. Otherwise it reports the reason for termination and offers the user the option of enter­
ing the debugger or simply letting px continue with a traceback. If -r is not specified, pdx
just prompts and waits for a command.

The commands are:

run [args] [< filename] [> filename]
Start executing objfile, passing args as command line arguments; < or > can be used
to redirect input or output in the usual manner.

trace lin procedure/function] [if condition]
trace source-line-number lif condition]
trace procedure/function in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedure/function] [if condition]

Have tracing information printed when the program is executed. A number is associ­
ated with the command that is used to turn the tracing off (see the delete command).

The first argument describes what is to be traced. If it is a source-line-number, then
the line is printed immediately prior to being executed. Source line numbers in a file
other than the current one must be preceded by the name of the file and a colon, e.g.
"mumble.p:17".

If the argument is a procedure or function name then every time it is called, informa­
tion is printed telling what routine called it, from what source line it was called, and
what parameters were passed to it. In addition, its return is noted, and if it's a func­
tion then the value it is returning is also printed.

If the argument is an expression with an at clause then the value of the expression is
printed whenever the identified source line is reached.

If the argument is a variable then the name and value of the variable is printed
whenever it changes. Execution is substantially slower during this form of tracing.

If no argument is specified then all source lines are printed before they are execut.ed.
Execution is substantially slower during this form of tracing.

ICON INTERNATIONAL 1

(~'\
I

~/

)

(

PDX(1) USER COMMANDS PDX(1)

2

The clause "in procedure! Junction)) restricts tracing information to be printed only
while executing inside the given procedure or function.

Condition is a Pascal boolean expression and is evaluated prior to printing the tr8.('ing
information; if it is false then the information is not printed.

There is no restriction on the amount of information that can be traced.

stop if condition
stop at source-line-number [if condition]
stop in procedure! Junction [if condition]
stop variable [if condition]

Stop execution when the given line is reached, procedure or function called, variable
changed, or condition true.

delete command-number
The trace or stop corresponding to the given number is removed. The numbers associ­
ated with traces and stops are printed by the status command.

status [> filename]
Print out the currently active trace and stop commands.

cont Continue execution from where it stopped. This can only be done when the program
was stopped by an int.errupt or through use of the stop command.

step Execute one source line.

next Execute up to the next source line. The difference between this and step is that if the
line contains a call to a procedure or function the step command will stop at the
beginning of that block, while the next command will not.

print expression [, expression ... J
Print out the values of the Pascal expressions. Variables declared in an outer block
but having the same identifier as one in the current block may be referenced as
"block-name. variable".

whatis identifier
Print the declaration of the given identifier.

which identifier
Print the full qualification of the given identifer, i.e. the outer blocks that the
identifier is associated with.

assign variable expression
Assign the value of the expression to the v~riable.

call procedure{parameters)
Execute the object code associated with the named procedure or function.

help Print out a synopsis of pdx commands.

gripe Invokes a mail program to send a message to the person in charge of pdx.
where Print out a list of the active procedures and functions and the respective source line

where they are called.

source filename
Read pdx commands from the given filename. Especially useful when the filename bas
been created by redirecting a status command from an earlier debugging session.

dump [> filename]
Print the names and values of all active data.

ICON INTERNATIONAL

PDX(l) USER CO:Mlv.lANDS PDX(1)

FILES

list [source-line-number [, 8Ource-line-number]] ~
list procedure/function _J

List the lines in the current source file from the first line number to the second
inclusive. As in the editor "$" can be used to refer to the last line. If no lines are
specified, the entire file is listed. If the name of a procedure or function is given lines
n-k to n+k are listed where n is the first statement in the procedure or function and k
is small.

file lfilename]
Change the current source file name to filename. If none is specified then the current
source file name is printed.

edit !filename]
edit procedure! function-name

Invoke an editor on filename or the current source file if none is specified. If a pro­
cedure or function name is specified, the editor is invoked on the file that contains it.
Which editor is invoked by default depends on the installation. The default can be
overridden by setting the environment variable EDITOR to the name of the desired
editor.

pi Recompile the program and read in the new symbol table information.
sh command-line

Pass the command line to the shell for execution. The SHELL environment variable
determines which shell is used.

alias new-command-name old-command-name
This command makes pdx respond to new-command-name the way it used to respond
to old-command-name.

quit Exit pdx.

The following commands deal with the program at the px instruction level rather than source
level. They are not intended for general use.

traeei laddress] [it cond]
traeei t.ariable} [at address] [if cond]
stopi laddress] [it cond]
stopi at] [address] [if cond]

Turn on tracing or set a stop using a px machine instruction addresses.

xi address [, address}
Print the instructions starting at· the first address. Instructions up to the second
address are printed.

xd address [, address]
Print in octal the specified data location(s).

obj
.pdxinit

Pascal object file
Pdx initialization file

ICON INTERN.ATIONAL 3

PDX(1) USER COMMANDS PDX(1)

(" \ SEE ALSO
" /. pi(l), pX(l)

BUGS

(

4

An Introduction to Pdx

Ph does not understand sets, and provides no information about files.

The whatis command doesn't quite work for variant records.

Bad things will happen if a procedure invoked with the call command does a non-local goto.

The commands step and next should be a.ble to take a count that specifies how many lines to
execute.

There should be commands atepi a.nd nexti that correspond to step and next but work at
the instruction level.

There should be a way to get an address associated with a line number, procedure or function,
and variable.

Most of the command names are too long.

The alias facility is quite weak.

A csh-like history capability would improve the situation.

ICON INTERNATIONAL

PI(l) USER COMMANDS PI(l)

NAME
pi - Pascal interpreter code translator

SYNOPSIS
pi I option 1 I -i name '" 1 name.p

DESCRIPTION
Pi translates the program in the file name.p leaving interpreter code in the file obj in the
current directory. The interpreter code can be executed using px. Pix performs the functions
of pi and px for 'load and go' Pascal. .

The following flags are interpreted by pi; the associated options can also be controlled in com­
ments within the program as described in the Berkeley Pascal User's Manual.

-b Block buffer the file output.

-i Enable the listing for any specified procedures and functions and while processing any
specified include files.

-1 Make a program listing during translation.

-n Begin each listed include file on a new page with a banner line.

-p Suppress the post-mortem control flow backtrace if an error occurs; suppress statement
limit counting.

-s Accept standard Pascal only; non-standard constructs cause warning diagnostics.

-t Suppress runtime tests of subrange variables and treat assert statements as comments.

-u Card image mode; only the first 72 characters of input lines are used.

-w Suppress warning diagnostics. \ /

-z Allow execution profiling with pxp by generating statement counters, and arranging for
the creation of the profile data file pmon.out when the resulting object is executed.

FILES
file.p
file.i
/usr /lib/pi2.~trings
/usr/lib/how_pi*
obj

SEE ALSO

input file
include file(s)
text of the error messages
basic usage explanation
interpreter code output

Berkeley Pascal User's Manual
pix(l), px(l), pxp(l), pxref{l)

DIAGNOSTICS
For a basic explanation do

pi

In the diagnostic output of the translator, lines containing syntax errors are listed with a flag
indicating the point of error. Diagnostic messages indicate the action which the recovery
mechanism took in order to be able to continue parsing. Some diagnostics indicate only that
the input is 'malformed.' This occurs if the recovery can find no simple correction to make the
input syntactically valid.

ICON INTERNATIONAL 1

(I

PI (I) USER COMlv1ANDS PI{l)

Semantic error diagnostics indicate a line in the source text near the point of error. Some
errors evoke more than one diagnostic to help pinpoint the error; the follow-up messages begin
with an ellipsis ' ... '.

The first character of each error message indicates its class:

E Fatal error; no code will be generated.
e Non-fatal error.
w Warning - a potential problem.
s Non-standard Pascal construct warning.

If a severe error occurs which inhibits further processing, the translator will give a diagnostic
and then 'QUIT'.

AUTHORS

BUGS

2

Charles B. Haley, William N. Joy, and Ken Thompson
Ported to VAX-ll by Peter Kessler

The keyword packed is recognized but has no effect.

For clarity, semantic errors should be flagged at an appropriate place in the source text, and
multiple instances of the 'same' semantic error should be summarized at the end of a pro-
cedure or function rather than evoking many diagnostics. .

When include files are present, diagnostics relating to the last procedure in one file may
appear after the beginning of the listing of the next.

ICON INTERNATIONAL

PIX (1) USER COMMANDS PIX (1)

NAME
pix - Pascal interpreter and executor

SYNOPSIS
pix [-blnpstuwz] [-i name...] name.p [argument ... 1

DESCRIPTION
Pix is a 'load and go' version of Pascal which combines the functions of the interpreter code
translator pi and the executor px. It uses pi to translate the program in the file name.p and,
if there were no fatal errors during translation, causes the resulting interpreter code to be exe­
cuted by px with the specified arguments. A temporary file is used for the object code; the file
obj is neither created nor destroyed.

FD...ES
/usr/ucb/pi
/usr/ucb/px
/tmp/pix*
/usr/lib/how_pix

SEE ALSO

Pascal translator
Pascal executor
temporary
basic explanation

Berkeley Pascal User's Manual
pi(l), px(l)

DIAGNOSTICS
For a basic explanation do

pix

AUTHORS
Susan L. Graham and William N. Joy

ICON INTERNATIONAL 1

/' " (

/,-",\

"--j'

PLOT(lG) USER COMMANDS PLOT (1G)

(\ NAME
. plot - graphics filters

:(

("

SYNOPSIS
plot I - Tterminal I raster J J

DESCRIPTION

FILES

These commands read plotting instructions (see plot(5)) from the standard input, and in gen­
eral produce plotting instructions suitable for a particular terminal on the standard output.

If no terminal type is specified, the environment parameter $TERM (see environ(7)) is used.
Known terminals are:

4014 Tektronix 4014 storage scope.

450 DASI Hyterm 450 terminal (Diablo mechanism).

300 DASI 300 or GSI terminal (Diablo mechanism).

300S DASI 300S terminal (Diablo mechanism).

ver Versatec D1200A printer-plotter. This version of plot places a scan-converted image in
'/usr/tmp/raster' and sends the result directly to the plotter device rather than to the
standard output. The optional argument causes a previously scan-converted file raster
to be sent to the plotter.

/usr/bin/tek
/usr /bin/t450
/usr/bin/t300
lusr /bin/t300s
/usr Ibin/vplot
lusr Itmp Iraster

SEE ALSO
plot(3X), plot(5)

BUGS
There is no lockout protection for lusr/tmp/raster.

ICON INTERNATIONAL 1

PMERGE(l) USER COM:MANDS PMERGE(1)

NAME
pmerge - pascal file merger

SYNOPSIS
pmerge name.p ...

DESCRIPTION
Pmerge assembles the named Pascal files into a single standard Pascal program. The resulting
program is listed on the standard output. It is intended to be used to merge a collection of
separately compiled modules so that they can be run through pi , or exported to other sites.

Fn..ES
/usr/tmp/MG*

SEE ALSO
pc(l), pi(l),

default temporary files

Auxiliary documentation Berkeley Pascal User's Manual.

AUTHOR
M. Kirk McKusick

BUGS
Very minimal error checking is done, so incorrect programs will produce unpredictable results.
Block comments should be placed after the keyword to which they refer or they are likely to
end up in bizarre places.

ICON INTERNATIONAL 1

/

(

(

PR(l) USER COMMANDS PR(1)

NAME
pr - print file

SYNOPSIS
pr [option 1 ... [file 1 ...

DESCRIPTION

FILES

Pr produces a printed listing of one or more files. The output is separated into pages headed
by a date, the name of the file or a specified header, and the page number. If there are no file
arguments, pr prints its standard input.

Options apply to all following files but may be reset between files:

-n Produce n-column output.

+n Begin printing with page n.

-b Take the next argument as a page header.

-wn For purposes of multi-column output, take the width of the page to be n characters
instead of the default 72.

-f Use formfeeds instead of newlines to separate pages. A formfeed is assumed to use up
two blank lines at the top of a page. (Thus this option does not affect the effect.ive
page length.)

-In Take the length of the page to be n lines instead of the default 66.

-t Do not print the 5-line header or the 5-line trailer normally supplied for each page.

-se Separate columns by the single character c instead of by the appropriate amount of
white space. A missing e is taken to be a tab.

-m Print all files simultaneously, each in one column,

Inter-terminal messages via write{l) are forbidden during apr.

jdev jtty? to suspend messages.

SEE ALSO
cat{l}

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

ICON INTERNATIONAL 1

PRINT(l) USER COMMANDS PRINT (1)

NAME
print - pr to the printer

SYNOPSIS
print file ...

DESCRIPTION
Print pr's a copy of each named file on the printer. It is a one line shell script:

Ipr -p $*

SEE ALSO
Ipr(l), pr(l)

ICON INTERNATIONAL 1

PRINTENV (1) USER COMMANDS PRINTENV (1)

(.. \ NAMEprintenv - print out the environment

(

SYNOPSIS
printenv [name 1

DESCRlPTION
Printenv prints out the values of the variables in the environment. If a name is specified, only
its value is printed.

If a name is specified and it is not defined in the environment, printenv returns exit status 1,
else it returns status o.

SEE ALSO
sh(I), environ(7), csh{l}

ICON INTERNATIONAL 1

PRMAll..{l) USER COMMANDS PRMAIL(1)

NAME
prmail - print out mail in the post office-.

SYNOPSIS
prmail [user ... J

DESCRIPTION
Prmail prints the mail which waits for you, or the specified user, in the post office. The mail
is not disturbed.

FILES
lusr /spool/mail/* post office

SEE ALSO
bifT(l), mail(l), from(l), binmail(l)

ICON INTERNATIONAL 1

." ./

PROF (1) USER COMMANDS PROF(l)

(\ NAME

,(

('

, " .. -' ~

prof - display profile data

SYNOPSIS
prof [-a] [-1 J [-n J [-z J [-8] [-v [-low [-high J 1 J [a.out [mon.out ... J J

DESCRIPTION

FILES

Prof interprets the file produced by the monitor subroutine. Under default modes, the symbol
table in the named object file (a. out default) is read and correlated with the profile file
(mon.out default). For each external symbol, the percentage of time spent executing between
that symbol and the next is printed (in decreasing order), together with the number of times
that routine was called and the number of milliseconds per call. If more than one profile file is
specified, the output represents the sum of the profiles.

In order for the number of calls to a routine to be tallied, the -p option of ee, /77 Qr pc must
have been given when the file containing the routine was compiled. This option also arranges
for the profile file to be produced automatically.

Options are:

-a all symbols are reported rather than just external symbols.

-1

-n
-8

-v

-z

the output is sorted by symbol value.

the output is sorted by number of calls

a summary profile file is produced in mon.sum. This is really only useful when more
than one profile file is specified.

all printing is suppressed and a graphic version of the profile is produced on the stan­
dard output for display by the plot(l) filters. When plotting, the numbers low and
high, by default 0 and 100, may be given to cause a selected percentage of the profile
to be plotted with accordingly higher resolution.

routines which have zero usage (as indicated by call counts and accumulated time) are
nevertheless printed in the output.

mon.out for profile
a.out for namelist
mon.sum for summary profile

SEE ALSO
monitor(3), profil(2), cc(I), plot(IG)

BUGS
Beware of qu an tization errors.

Is confused by /77 which puts the entry points at the bottom of subroutint's and functions.

ICON INTERNATIONAL 1

PS{l) USER CO~1MANDS PS(l)

NAME
ps - process status

SYNOPSIS
pa ! aeegklstuvwx# 1

DESCRIPTION
Ps prints information about processes. Normally, only your processes are candidates to be
printed by ps; specifying a causes other users processes to be candidates to be printed; specify­
ing x includes processes without control terminals in the candidate pool.

All output formats include, for each process, the process id PID, control terminal of the pro­
cess TT, cpu time used by the process TIME (this includes both user and system time), the
state STAT of the process, and an indication of the COMMAND which is running. The state
is given by a sequence of four letters, e.g. "RWNA". The first letter indicates the runnability
of the process: R for runnable processes, T for stopped processes, P for processes in page wait,
D for those in disk (or other short term) waits, S for those sleeping for less than about 20
seconds, and I for idle (sleeping longer than about 20 seconds) processes. The second letter
indicates whether a process is swapped out, showing W if it is, or a blank if it is loaded (in­
core); a process which has specified a soft limit on memory requirements and which is exceed­
ing that limit shows >; such a process is (necessarily) not swapped. The third letter indicates
whether a process is running with altered CPU scheduling priority (nice); if the process prior­
ity is reduced, an N is shown, if the process priority has been artificially raised then a '<' is
shown; processes running without special treatment have just a blank. The final letter is not
used in this version.

Here are the. options: ,/

a asks for information about all processes with terminals (ordinarily only one's own
processes are displayed).

e prints the command name, as stored internally in the system for purposes of accounting,
rather than the command arguments, which are kept in the process' address space. This
is more reliable, if less informative, since the process is free to destroy the latter informa­
tion.

e Asks for the environment to be printed as well as the arguments to the command.

g Asks for all processes. Without this option, ps only prints "interesting" processes.
Processes are deemed to be uninteresting if they are process group leaders. This nor­
mally eliminates top-level command interpreters and processes waiting for users to login
on free terminals.

k causes the file / vrncore is used in place of / dev/ kmem and / dev/ memo This is used for
postmortem system debugging.

1 asks for a long listing, with fields PPID, CP, PRI, NI, ADDR, SIZE, RSS and '~lCHAN
as described below.

s Adds the size SSIZ of the kernel stack of each process (for use by system maintainers) to
the basic output format.

tx restricts output to processes whose controlling tty is x (which should be specified as
printed by ps, e.g. t9 for tty3, teo for console, tdO for tty dO, t? for processes with no
tty, t for processes at the current tty, etc). This option must be the last one given.

u A user oriented output is produced. This includes fields USER, %CPU, NICE, SIZE,
and RSS as described below.

ICON INTERNATIONAL 1

PS(l)

(

2

USER COMMANDS PS(l)

v A version of the output containing virtual memory statistics is output. This includes
fields RE, SL, P AGEIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU and %MEM, described
below.

w Use a wide output format (132 columns rather than 80); if repeated, e.g. ww, use arbi­
trarily wide output. This information is used to decide how much of long commands to
print.

x asks even about processes with no terminal.

A process number may be given, (indicated here by #), in which case the output is res-
tricted to that process. This option must also be last.

A second argument is taken to be the file containing the system's namelist. Otherwise,
/vmunix is used. A third argument tells ps where to look for core if the k option is given,
instead of /vmcore. If a fourth argument is given, it is taken to be the name of a swap direc­
tory to use instead of the default.

Fields which are not common to all output formats:
USER name of the owner of the process
%CPU cpu utilization of the process; this is a decaying average over up to a minute of

previous (real) time. Since the time base over which this is computed varies (since
processes may be very young) it is possible for the sum of all %CPU fields to
exceed 100%.
(or NI) process scheduling increment (see setpriority(2))
virtual size of the process (in 1024 byte units)

NICE
SIZE
RSS
LIM

real memory (resident set) size of the process (in 1024 byte units)
soft limit on memory used, specified via a call to setrlimit(2); if no limit has been
specified then shown as xx

TSIZ
TRS
%MEM
RE

size of text (shared program) image
size of resident (real memory) set of text
percentage of real memory used by this process.
residency time of the process (seconds in core)
sleep time of the process (seconds blocked) SL

PAGEIN ~umber of disk i/o's resulting from references by the process to pages not loaded

UID
PPID
CP

In core.
numerical user-id of process owner
numerical id of parent of process
short-term cpu utilization factor (used in scheduling)

PRI
ADDR
\\'CHAN

process priority (non-positive when in non-interruptible wait)
swap address of the process
event on which process is waiting (an address in the system).

F flags associated with process as in < sys/ proc.h >:

SLOAD
SSYS
SLOCK
STRC
SVVTED
SULOCK
SOMASK
S\VEXIT
SVFORK
SOWEUPC
SLOGIN

0000001 in core
0000002 swapper or pager process
0000004 process being swapped out
0000008 process is being traced
0000010 another tracing flag
0000020 user settable lock in core
0000040 restore old mask after signal
0000080 working on exiting
0000100 process resulted from vforkO
0000200 owe process an addupcO at next ast
0000400 login process (legit child of init)

ICON INTERNA TJONAL

PS(l)

FILES

SSUPER
STHRASH
STWIN
SDELTA
SDELLOCK
SINTR
SSEL

USER COMMANDS

0000800 process has supervisor state
0001000 is a thrasher
0002000 is a twin process
0004000 has delta segments
0008000 locked while mucking with segments
0010000 is an interactive process
0400000 selecting; wakeup/waiting danger

PS(l)

A process that has exited and has a parent, but has not yet been waited for by the parent is
marked <defunct>; a process which is blocked trying to exit is marked <exiting>; Ps
makes an educated guess as to the file name and arguments given when the process was
created by examining memory or the swap area. The method is inherently somewhat unreli­
able and in any event a process is entitled to destroy this information, so the names cannot be
counted on too much.

/vmunix
/dev/kmem
/dev/swap
/vmcore
/dev

system namelist
kernel memory
swap directory
core file
searched to find tty names

SEE ALSO
kill(l}, w(l}

BUGS
Things can change while ps is running; the picture it gives is only a close approximation to
reality.

ICON INTERNATIONAL 3

.", /

(}

(

PTI (1) USER COMMANDS PTI (1)

NAME
pti - phototypesetter interpreter

SYNOPSIS
pti [file .. , 1

DESCRIPTION
Pti shows the commands in a stream from the standard output of troff(l} using troff's -t
option, interpreting them as they would act on the typesetter. Horizontal motions shows as
counts in internal units and are marked with '<' and I>' iIidicating left and right motion.
Vertical space is called lead and is also indicated.

SEE ALSO
troff{l}

BUGS
Too cryptic for normal users, who should use "troff -a ... ".

ICON INTERNATIONAL 1

PTX(l) USER CO:MMANDS PTX(1)

NAME
ptx - permuted index

SYNOPSIS
ptx [option 1 .,. [input [output] 1

DESCRIPTION

FILES

BUGS

Ptx generates a permuted index to file input on file output (standard input and output
default). It has three phases: the first does the permutation, generating one line for each key­
word in an input line. The keyword is rotated to the front. The permuted file is then sorted.
Finally, the sorted lines are rotated so the keyword comes at the middle of the page. Ptx pro­
duces output in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx may be an nroff or troff(l) macro for user-defined formatting. The before keyword
and keyword and after fields incorporate as much of the line as will fit around the keyword
when it is printed at the middle of the page. Tail and head, at least one of which is an empty
string "", are wrapped-around pieces small enough to fit in the unused space at the opposite
end of the line. When original text must be discarded, (/' marks the spot.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter; the default line length is 100 characters.

-w n Use the next argument, n, as the width of the output line. The default line length is
72 characters.

-g n Use the next argument, n, as the number of characters to allow for each gap among
the four parts of the line as "finally printed. The default gap is 3 characters.

-0 only
Use as keywords only the words given in the only file.

-i ignore
Do not use as keywords any words given in the ignore file. If the -i and -0 options
are missing, use / usr/ lib/ eign as the ignore file.

-b break
Use the characters in the break file to separate words. In any case, tab, newline, and
space characters are always used as break characters.

-r Take any leading non blank characters of each input line to be a reference identifier (as
to a page or chapter) separate from the text of the line. Attach that. identifier as a 5th
field on each output line.

The index for this manual was generated using ptx.

/usr /bin/sort
/ usr /li b / eign

Line length counts do not account for overstriking or proportional spacing.

ICON INTERNATIONAL 1

(

PWD(l)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION

USER COMMANDS

Pwd prints the pathname of the working (current) directory.

SEE ALSO
cd(l), csh(l), getwd(3)

BUGS

PWD (1)

In csh(l) the command dirs is always fa.ster (although it can give a different answer in the rare
ca.se that the current directory or a containing directory wa.s moved after the shell descended
into it).

ICON INTERNATION.AL 1

PX(l) USER COMMANDS PX(l)

NAME
px - Pascal interpreter

SYNOPSIS
pX [obj [argument ... J J

DESCRIPTION

Fll..ES

Px interprets the abstract machine code generated by pi. The first argument is the file to be
interpreted, and defaults to obi j remaining arguments are available to the Pascal program
using the built-ins argv and arge. Px is also invoked by pix when running 'load and go'.

If the program terminates abnormally an error message and a control flow back trace are
printed. The number of statements executed and total execution time art' printed after nor­
mal termination. The p option of pi suppresses all of this except the message indicating the
cause of abnormal termination.

obj
pmon.out

default object file
profile data file

SEE ALSO
Berkeley Pascal User's Manual
pi(l), pix{l)

DIAGNOSTICS
Most run-time error messages are self-explanatory. Some of the more unusual ones are:

Reference to an inactive file
A file other than input or output was used before a call to reset or rev'rite.

Statement count limit exceeded
The limit of 500,000 executed statements (which prevents exct'Ssin' looping or rt'('ur­
sian) has been exceeded.

Bad data found on integer read
Bad data found on real read

Usually, non-numeric input was found for a number. For reals, Pascal requires digits
before and after the decimal point so that numbers like '.1' or '21.' evoke the second
diagnostic.

panic: Some message
Indicates a internal inconsistency detected in px probably due to a Pascal system bug.

AUTHORS

BUGS

Charles B. Haley, William Joy, and Ken Thompson
V AX-ll version by Kirk McKusick

Post-mortem traceback is not limited; infinite recursion leads to almost infinite traceback.

ICON INTERNATIONAL 1

(

(~"':

,-

PXP (1) USER COMMANDS PXP (1)

NAME
pxp - Pascal execution profiler

SYNOPSIS
pxp l-acdefjnstuw_II-23456789 II-z I name ... II name.p

DESCRlPTION

F~ES

Pxp can be used to obtain execution profiles of Pascal programs or as a pretty-printer. To
produce an execution profile all that is necessary is to translate the program specifying the z
option to pi or pix, to execute the program, aJid to then issue the command

pxp -z name.p

A reformatted listing is output if none of the c, t, or z options are specified; thus

pxp old.p > new.p

places a pretty-printed version of the program in 'old.p' in the file 'new.p'.

The use of the following options of pxp is discussed in sections 2.6, 5.4, 5.5 and 5.10 of the
Berkeley Pascal User's !l1anual.

-a

-c

-d
-e

-f

-j

-n

-8

-t

-u
-w
-z

Print the bodies of all procedures and functions in the profile; even those which were
never executed.

Extract profile data from the file core.

Include declaration parts in a profile.

Eliminate include directives when reformatting a file; the include is replaced by the
reformatted contents of the specified file.

Fully parenthesize expressions.

Left justify all procedures and functions.

Eject a new page as each file is included; in profiles, print a blank line at the top of the
page.

Strip comments from the input text.

Print a table summarizing procedure and function call counts.

Card image mode; only the first 72 characters of input lines are used.

Suppress warning diagnostics.

Generate an execution profile. If no name s, are given the profile is of the ent.ire pro­
gram. If a list of names is given, then only any specified procedures or functions
and the contents of any specified include files will appear in the profile.

Underline keywords.

-d \\~ith d a digit, 2 < d < 9, causes pxp to use d spaces as the basic indenting unit.. The
default is 4.

name.p
name.i
pmon.out

input file
include file{s)

profile data
core
/usr/lib/how_pxp

profile data source with -c
information on basic usage

ICON INTERNATIONAL 1

PXP (1)

SEE ALSO
Berkeley Pascal User's Manual
pi(l), px(l)

DIAGNOSTICS
For a basic explanation do

pxp

USER COMMANDS PXP (1)

Error diagnostics include 'No profile data in file' with the c option if the z option was not
enabled to pi; 'Not a Pascal system core file' if the core is not from a pz execution; 'Program
and count data do not correspond' if the program was changed after ('ompilation, before
profiling; or if the wrong program is specified.

AUTHOR
William Joy

BUGS
Does not place multiple statements per line.

2 ICON INTERNATIOK-\L

/~ (.

1"--,,, !

(

PXREF(l) USER COMMANDS PXREF(1)

NAME
pxref - Pascal cross-reference program

SYNOPSIS
pxref [- J name

DESCRIPTION
Pxref makes a line numbered listing and a. cross-reference of identifier usage for the program
in name. The optional '-' argument suppresses the listing. The keywords goto and la.bel are
treated as identifiers for the purpose of the cross-reference. Include dir('ctives are not pro­
cessed, but cause the placement of an entry indexed by '#include' in the cross-reference.

SEE ALSO
Berkeley Pascal User's Manual

AUTHOR
Niklaus Wirth

BUGS
Identifiers are trimmed to 10 characters.

ICON INTERNATIONAL 1

QUOTA(l) USER COMMANDS QUOTA(l)

NAME
quota - display disc usage and limits

SYNOPSIS
quota [-qv] I user]

DESCRIPTION
Quota displays users' disc usage and limits. Only the super-user may use the optional user
argument to view the limits of users other than himself.

The -q flag prints a more terse message, containing only information on file systems wh£'re
usage is over quota.

If a -v flag is supplied, quota will also display user's quotas on file systems where no storag£' is
a.lloca.ted.

Quota reports only on file systems which have disc quotas. If quota exits with Ii non-zero
status, one or more file systems are over quota.

SEE ALSO
quota(2), quotaon(8)

ICON INTERNATIONAL 1

(-,

(

RANLffi(l) USER COMMAl\1J)S RANLIB(1)

NAME
ranlib - convert archives to random libraries

SYNOPSIS
ran lib archive ...

DESCRIPTION
Ranlib converts each archive to a form which the loader can load more rapidly. Ranlib does
this by adding a table of contents called _.SYMDEF to the beginning of the archive. R01l1ib
uses ar{l) to reconstruct the archive, so that sufficient temporary file spac(> must be available
in the file system which contains the current directory.

SEE ALSO

BUGS

ld{l), ar{l), lorder{l)

Because generation of a library by ar and randomization of the library by rani£b are separate
processes, phase errors are possible. The loader, ld, warns when the modification date of a
library is more recent than the creation date of its dictionary; but this m(>ans that you get
the warning even if you only copy the library.

ICON INTERNATIONAL 1

RATFOR(l) USER CO:MMANDS RATFOR(1)

NAME
ratfor - rational Fortran dialect

SYNOPSIS
ratfor [option ... I [filename ... I

DESCRIPTION
Rat/or converts a rational dialect of Fortran into ordinary irrational Fortran. Rat/or provides
control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement}

decision-makin g:
if (condition) statement [else statement J
switch (integer value) {

case integer: statement

}
[default: J statement

loops: while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition) 1
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return (expression)
returns expression to caller from function

define: define name replacement

include:
include filename

Rat/or is best used with /77(1).

SEE ALSO
f77(1)
B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

ICON INTERNATIONAL 1

(

(

RCP(lC) USER COMMANDS RCP(lC)

NAME
rcp - remote file copy

SYNOPSIS
rep file! file2
rep [-r J file ... directory

DESCRIPTION
Rcp copies files between machines. Each file or directory argument is either a remote file name
of the form "rhost:path", or a local file name (containing no I:' characters, or a 'I' before any
':'5.)
If the -r is specified and any of the source files are directories, rep copies each subtree root ed
at that name; in this case the destination must be a directory.

If path is not a full path name, it is interpreted relative to your login directory on' rhost. A
path on a remote host may be quoted (using \, ", or 1 so that the metacharacters are inter­
preted remotely.

Rcp does not prompt for passwords; your current local user name must exist on rhost and
allow remote command execution via rsh(lC).

Rcp handles third party copies, where neither source nor target files are on the current
machine. Hostnames may also take the form "rhost.rname" to use rnarne rather than the
current user name on the remote host.

SEE ALSO

BUGS

ftp(lC), rsh(lC), rlogin(IC)

Doesn't detect all cases where the target of a copy might be a file in cases where only a direc­
tory should be legal.
Is confused by any output generated by commands in a .login, .profile, or .cshrc file on the
remote host.

ICON INTERNATIONAL 1

RCS (1) USER COMMANDS RCS(1)

NAME
res - change RCS file attributes

SYNOPSIS
res [options I file ...

DESCRIPTION
Rcs creates new RCS files or changes attributes of existing ones. An RCS file contains multi­
ple revisions of text, an access list, a change log, descriptive text, and some control att.ributes.
For rC8 to work, the caller's login name must be on the access list, except if' the access list is
empty, the caller is the owner of the file or the superuser, or the -i option is present.

Files ending in ',v' are RCS files, all others are working files. Ir a working file is given, rC8 tries
to find the corresponding RCS file first in directory ./RCS and then in the current directory,
as explained in co (1). .

-i creates and initializes a new RCS file, but does not. deposit any revision. If the
RCS file has no path prefix, res tries to place it first into the subdirectory ./RCS,
and then into the current directory. If the ReS file already exists, an error mes­
sage is printed.

-alogins

-Aoldfile

-e[logins]

-cst ring

-l[rev]

-u[rev]

-L

appends the login names appearing in the comma-separated list logins to the
access list of the ReS file.
appends the access list of oldfile to the access list of the ReS file.

erases the login names appearing in the comma-separated list logins from the
access list of the ReS file. If logins is omitted, the entire access list is eras€'d.
sets the comment leader to string. The comment leader is printed before every log
message line generated by the keyword Log during checkout (see co). This is
useful for programming languages without multi-line comments. During res -i or
initial ci, the comment leader is guessed from the suffix of the working fil€'.

locks the revision with number rev. If a branch is given, the latest revision on
that branch is locked. If rev is omitted, the latest revision on the trunk is locked.
Locking prevents overlapping changes. A lock is removed with ci or rcs -u (see
below).
unlocks the revision with number rev. If a branch is given, the latest revision on
that branch is unlocked. If rev is omitted, the latest lock held by the caller is
removed. Normally, only the locker of a revision may unlock it. Somebody else
unlocking a revision breaks the lock. This causes a mail message to be sent to the
original locker. The message contains a commentary solicited from the breaker.
The commentary is terminated with a line containing a single '.' or control-D.

sets locking to strict. Strict locking means that the owner of an RCS file is not
exempt from locking for checkin. This option should be used for files that are
shared.

-u sets locking to non-strict. Non-strict locking means that the owner of a file need
not lock a revision for checkin. This option should NOT be used for files that are
shared. The default (-L or -U) is determined by your system administrator.

-nname[:reu]
associates the symbolic name name with the branch or revision rev. Rcs prints an
error message if' name is already associated with another number. If ret' is omit-
ted, the symbolic name is deleted. I",

~~

ICON INTERNATIONAL 1

(·.1

RCS (1) USER COMMANDS RCS (1)

-Nname[:rev]
same as -n, except that it overrides a previous assignment of name.

-orange deletes ("outdatesj the revisions given by range. A range consisting of a single
revision number means that revision. A range consisting of a branch number
means the latest revision on that branch. A range of the form revl-rev~ means
revisions revl to rev~ on the same branch, -rev means from the beginning of the
branch containing rev up to and including rev, and rev- means from revision rev
to the end of the branch containing rev. None of the outdated revisions may
have branches or locks.

-q quiet mode; diagnostics are not printed.

-8state[:rev] sets the state attribute of the revision rev to state. If rev is omitted, the latest
revision on the trunk is assumed; If rev is a branch number, the latest revision on
that branch is assumed. Any identifier is acceptable for state. A useful set of
states is Exp (for experimental), Stab (for stable), and Rei (for released). By
default, ci sets the state of a revision to Exp.

-t[txtfile] writes descriptive text into the RCS file (deletes the existing text). If txt file is
omitted, rcs prompts the user for text supplied from the std. input, terminated
with a line containing a single '.' or control-D. Otherwise, the descriptive text is
copied from the file tnfile. If the -i option is present, descriptive text is requested
even if -t is not given. The prompt is suppressed if the std. input is not a termi­
nal.

DIAGNOSTICS

Fn.ES

The RCS file name and the revisions outdated are written to the diagnostic output. The exit
status always refers to the last RCS file operated upon, and is 0 if the operation was success­
ful, 1 otherwise.

The caller of the command must have read/write permission for the directory containing the
RCS file and read permission for the RCS file itself. Rcs creates a semaphore file in the same
directory as the RCS file to prevent simultaneous update. For changes, rcs always creates a
new file. On successful completion, rcs deletes the old one and renames the new one. This
strategy makes links to RCS files useless.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.1 ; Release Date: 83/04/04 .
Copyright C 1982 by Walter F. Tichy.

SEE ALSO

BUGS

co (1), ci (1), ident(l), rcsdiff (1), rcsintro (1), rcsmerge (1), rlog (1), resfile (5), sccstorcs (8).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

ICON INTERNATIONAL

RCSDIFF(1) USER CO:MMANDS RCSDIFF(l)

NAME
rcsdiff - compare RCS revisions

SYNOPSIS
rcadiff [-biwt] [-cerhn] [-rrevl] [-rreve J file ...

DESCRlPTION
Rcsdiff runs diff (1) to compare two revisions of each RCS file given. A file name ending in
',v' is an RCS file name, otherwise a working file name. Rcsdiff derives the working file name
from the RCS file name and vice versa, as explained in co (1). Pairs consisting of both an RCS
and a working file name may also be specified.

All options except -I' have the same effect as described in diJT(I}.
If both revl and reve are omitted, rcsdiff compares the latest revision on the trunk with the
contents of the correspondi,ng working file. This is useful for determining what you changed
since the last checkin.
If revl is given, but reve is omitted, rcsdiff compares revision revl of the RCS file with the
contents of the corresponding working file.
If both revl and reve are given, rcsdiff compares revisions revl and reve of the RCS file.

Both revl and reve may be given numerically or symbolically.

EXAMPLES
The command

rcsdiff f.c

runs diff on the latest trunk revision of Res file f.c,v and the contents of working file f.c.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 1.2 ; Release Date: 86/05/19 .
Copyright c 1982 by Walter F. Tichy.

SEE ALSO

BUGS

ci (1), co (1), diff (1), ident (1), res (1), resintro (1), resmerge (1), rlog (1), rcsfile (5).
Walter F. Tichy, ''Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

ICON INTERNATIONAL 1

/

RCSINTRO (1) USER COM:MANDS RCSINTRO (1)

(
"'I NAME

rcsintro - introduction to RCS commands

(

DESCRIPTION
The Revision Control System (ReS) manages multiple revisions of text files. RCS automates
the storing, retrieval, logging, identification, and merging of revisions. ReS is useful for text
that is revised frequently, for example programs, documentation, graphics, papers, form
letters, etc.

The basic user interface is extremely simple. The novice only needs to learn two commands: ci
and co. Oi, short for "checkin", deposits the contents of a text file into an archival file called
an ReS file. An RCS file contains all revisions of a particular text file. 00, short for
"checkout", retrieves revisions from an ReS file.

SEE ALSO
ci(I), co(I), ident(I), merge(I), rcs(l), rcsdiff(I), rcsmerge(I), rlog(I), rcsfile(5).
Walter F. Tichy, "An Introduction to the Revision Control System", Programmer Supplemen­
tary Documents, Volume I (PSI), #13

ICON INTERNATIONAL 1

RCSMERGE (1) USER COMMANDS RCSMERGE (1)

NAME
rcsmerge - merge RCS revisions

SYNOPSIS
rcamerge -rrevl [-rreve] [-p] file

DESCRIPTION
Rcsmerge incorporates the changes between revl and reve of an ReS file into the correspond­
ing working file. If -p is given, the result is printed on the std. output, otherwise the result
overwrites the working file.
A file name ending in ',v' is an ReS file name, otherwise a working file name. Merge derives
the working file name from the ReS file name and vice versa, as explained in co (1). A pair
consisting of both an ReS and a working file name may a.Jso be specified.
Revl may not be omitted. If reve is omitted, the latest revision on the trunk is- assumed.
Both revl and reve may be given numerically or symbolically.
Rcsmerge prints a warning if there are overlaps, and delimits the overlapping regions as
e~plained in co -j. The command is useful for incorporating changes into a checked-out revi­
SIon.

EXAMPLES
Suppose you have released revision 2.8 of f.c. Assume furthermore that you just completed
revision 3.4, when you receive updates to release 2.8 from someone else. To combine the
updates to 2.8 and your changes between 2.8 and 3.4, put the updates to 2.8 into file f.c and
execu te (" "",

rcsmerge -p -r2.8 -r3,4 f.c >f.merged.c

Then examine f.merged.c. Alternatively, if you want to save the updates to 2.8 in the ROS
file, check them in as revision 2.8.1.1 and execute co -j:

ci -r2.8.1.1 f.c
co -r3,4 -j2.8:2.8.1.1 f.c

As another example, the following command undoes the changes between revision 2.4 and 2.8
in your currently checked out revision in f.c.

rcsmerge -r2.8 -r2,4 f.c

Note the order of the arguments, and .that f.c will be overwritten.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 3.0 ; Release Date: 83/01/15 .
Copyright c 1982 by Walter F. Tichy.

SEE ALSO
ci (1), co (1), merge (1), ident (1), res (1), resditr (1), r10g (1), resfile (5).
Walter F. Tichy, ''Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

ICON INTERNATIONAL 1

r"\
~,

RCSMERGE (1) USER COMMANDS RCSMERGE (1)

(,I BUGS
Rcsmerge does not work for files that contain lines with a single '.~.

(

(.
2 ICON INTERNATIONAL

RDIST(l) USER CO:MMANDS RDIST (1)

NAME
rdist - remote file distribution program

SYNOPSIS
rdist [-nqbRhivwy] [-f distfile] [-d var=value] [-m host] [name ...]
rdist [-nqbRhivwy] -c name ... [login@Jhost[:dest]

DESCRIPTION
Rdist is a program to maintain identical copies of files over multiple hosts. It preserves the
owner, group, mode, and mtime of files if possible and can update programs that are execut­
ing. Rdist reads commands from distfile to direct the upda.ting of files and/or directories. If
distjile is '-', the standard input is used. If no -f option is present, the program looks first for
'distfile', then 'Distfile' to use as the input. If no names are specified on the command line,
rdist will update all of the files and directories listed in distfile. Otherwise, the argument is
taken to be the name of a file to be updated or the label of a command to execute. If label
and file names conflict, it is assumed to be a label. These may be used together to update
specific files using specific commands.

The -c option forces rdist to interpret the remaining arguments as a small distfile. The
equivalent distfile is as follows.

(name ...) -> [login@jhost
install I dest] ;

Other options:
-d Define var to have value. The -d option is used to define or override variable

definitions in the distfile. Value can be the empty string, one name, or a list of names
surrounded by parentheses and separated by tabs and/or spaces.

-m Limit which machines are to be updated. Multiple -m arguments can be given to limit
updates to a subset of the hosts listed the distfile.

-n Print the commands without executing them. This option is useful for debugging
distfile.

-q Quiet mode. Files that are being modified are normally 'printed on standard output.
The -q option suppresses this.

-R Remove extraneous files. If a directory is being updated, any files that exist on the
remote host that do not exist in the master directory are removed. This is useful for
maintaining truly identical copies of directories.

-h Follow symbolic links. Copy the file that the link points to rather than the link itself.
-i Ignore unresolved links. Rdist will normally try to maintain the link structure of files

being transferred and warn the user if all the links cannot be found.

-v Verify that the files are up to date on all the hosts. Any files that are out of date will
be displayed but no files will be changed nor any mail sent.

-w Whole mode. The whole file name is appended to the destination directory name. Nor­
mally, only the last component of a name is used when renaming files. This will
preserve the directory structure of the files being copied instead of flattening the direc­
tory structure. For example, renaming a list of files such as (dirl/fl dir2/f2) to dir3
would create files dir3/dirl/fl and dir3/dir2/f2 instead of dir3/fl and dir3/f2.

ICON INTERNATIONAL 1

o

(~

(/

RDIST(1) USER COMMANDS RDIST(1)

2

-y Younger mode. Files are normally updated if their mtime and size (see stat(2))
disagree. The -y option causes rdist not to update files that are younger than the mas­
ter copy. This can be used to prevent newer copies on other hosts from bE'ing
replaced. A warning message is printed for files which are newer than the master
copy.

-b Binary comparison. Perform a binary comparison and update files if they differ rather
than comparing dates and sizes.

Distfile contains a sequence of entries that specify the files to be copied, the destination hosts,
and what operations to perform to do the updating. Each entry has one of the following for­
mats.

<variable name> '=' <name list>

(label: 1 <source list> '->' <destination list> <command list>
label: <source list> I::' <time...stamp file> <command list>

The first format is used for defining variables. The second format is used for distributing files
to other hosts. The third format is used for making lists of files that have been changed since
some given date. The source list specifies a list of files and/or directories on the local host
which are to be used as the master copy for distribution. The destination list is the list of
hosts to which these files are to be copied. Each file in the source list is added to a list of
changes if the file is out of date on the host which is being updated (second format.) or thl' file
is newer than the time stamp file (third format).

Labels are optional. They are used to identify a command for partial updat.es.

Newlines, tabs, and blanks are only used as separators and are otherwise ignored. CommE'nts
begin with '#' and end with a newline. .

Variables to be expanded begin with '$' followed by one character or a name enclosed in curly
braces (see the examples at the end).
The source and destination lists have the following format:

<name>
or

'(' <zero or more names separated by white-space> ')'

The shell meta-characters 'I', 'J', '{', I}', '*" and I?' are recognized and expanded (on the local
host only) in the same way as csh(l). They can be escaped with a backslash. The ,-, charac­
ter is also expanded in the same way as csh but is expanded separately on the local and desti­
nation hosts. \Vhen the -w option is used with a file name that begins with '-', everything
except the home directory is appended to the destination name. File names which do not
begin with '/' or ,-, use the destination user's home directory as the root directory for the rest
of the file name.

The command list consists of zero or more commands of the following format.

'install' <options> opt_dest-name I;'
'notify' <name list>';'
'except' <name list>';'
'excepLpat' <pattern list>';'
'special' <name list>string I;'

ICON INTERNATIOl'\.\L

RDIST{l) USER COMMANDS RDIST(1)

The install command is. used to copy out of date files and/or directories. Each source file is
copied to each host in the destination list. Directories are recursively copied in the same way.
OpCdesCname is an optional parameter to rename files. If no install command appears in the
command list or the destination name is not specified, the source file name is used. Direc­
tories in the path name will be created if they do not exist on the remote host. To help
prevent disasters, a non-empty directory on a target host will never be replaced with a regular
file or a symbolic link. However, under the '-R' option a non-empty directory will be removed
if the corresponding filename is completely absent on the master host. The options are '-R',
'-h', '-i', '-v', '-w', '-y', and '-b' and have the same semantics as options on the command
line except they only apply to the files in the source list. The login name used on the destina­
tion host is the same as the local host unless the destination name is of the format
"login@host".
The notify command is used to mail the list of files updated (and any errors that may have
occurred) to the listed names. If no '@' appears in the name, the destination host is
appended to the name (e.g., namel@host, name2@host, ...). .
The except command is used to update all of the files in the source list except for the files
listed in name list. This is usually used to copy everything in a directory except certain filt'S.
The excepCpat command is like the except command except that pattern list is a list of regular
expressions (see ed{l) for details). If one of the patterns matches some string within a file
name, that file will be ignored. Note that since '\' is a quote character, it must be doubled to
become part of the regular expression. Variables are expanded in pattern list but not shell file
pattern matching characters. To include a '$', it must be escaped with '\'.
The special command is used to specify sh(l} commands that are to be executed on the remote
host after the file in name list is updated or installed. If the name list is omitted then the
shell commands will be executed for every file updated or installed. The shell variable 'FILE'
is set to the current filename before executing the commands in string. String starts and ends
with ,ot, and can cross multiple lin-es in distjiJe. Multiple commands to the shell should be
separated by';'. Commands are executed in the user's home directory on the host being
updated. The special command can be used to rebuild private databases, etc. after a pro­
gram has been updated.

The following is a small example.

HOSTS = (matisse root@arpa)

FILES = (/bin /lib /usr/bin /usr/games
/usr/include/{*.h,{stand,sys,vax*,pascal,machine}/*.h}
/usr /lib /usr /man/man? /usr /ucb /usr /localjrdist)

EXLIB = (Mail.rc aliases aliases.dir aliases.pag crontab dshrc
sendmail.cf sendmaiUc sendmail.hf sendmail.st uucp vfont)

${FILES} -> ${HOSTS}
install-R ;

srcs:

except /usr/lib/${EXLIB} ;
except /usr/games/lib ;
special /usr/lib/sendmail "/usr/lib/sendmail-bz" ;

/usr/src/bin -> arpa
except_pat (\\.0\$ /SCCS\$) ;

ICON INTERNATIONAL 3

(

RDIST(l) USER COMMANDS RDIST(1)

FILES

IMAGEN = (ips dviimp catdvi)

imagen:
/usr /local/${IMAGEN} - > arpa

install /usr/local/lib ;
notify ralph ;

${FILES} :: stamp.cory
notify root@cory ;

distfile
/tmp/rdist*

input command file
temporary file for update lists

SEE ALSO
sh(I), csh(I), stat(2)

DIAGNOSTICS

BUGS

4

A complaint about mismatch of rdist version numbers may really st.em from some problem
with starting your shell, e.g., you are in too many groups.

Source files must reside on the local host where rdist is executed.

There is no easy way to have a special command executed after all files in a directory have
been updated.

Variable expansion only works for name lists; there should be a general macro facility.

Rdist aborts on files which have a negative mtime (before Jan 1, 1970).

There should be a 'force' option to allow replacement of non-empty directories by regular files
or symlinks. A means of updating file modes and owners of otherwise identical files is also
needed.

ICON INTERNATIONAL

REFER(l) USER COMMANDS REFER(!)

NAME
refer - find and insert literature references in documents

SYNOPSIS
refer [-a] [-b) [-c] [-e) [-fn] [-kz 1 [-lm,n ll-n 1 [-p bib} l-akeys}I-BI.m }'I
-p J [-S 1 [file ... 1

DESCRIPTION
Refer is a preprocessor for nroJ! or tr06(1) that finds and formats references for footnotes or
endnotes. It is also the base for a series of programs designed to index, search, sort, and print
stand-alone bibliographies, or other data entered in the appropriate form.

Given an incomplete citation with sufficiently precise keywords, refer will search a biblio­
graphic database for references containing these keywords anywhere in the title, author, jour­
nal, etc. The input file (or standard input) is copied to standard output, excep~ for lines
between .[and .l delimiters, which are assumed to contain keywords, and are replaced by
information from the bibliographic database. The user may also search different databases,
override particular fields, or add new fields. The reference data, from whatever source, are
assigned to a set of troJ! strings. Macro packages such as ms(7) print the finished reference
text from these strings. By default references are flagged by footnote numbers.

The following options are available:

-ar Reverse the first n author names (Jones, J. A. instead of J. A. Jones). If n is omitted
all author names are reversed.

-b Bare mode: do not put any flags in text (neither numbers nor labels).

-ckeys
Capitalize (with CAPS SMALL CAPS) the fields whose key-letters are in keys.

-e Instead of leaving the references where encountered, accumulate them until a sequence
of the form

.[
$LIST$
.J

is encountered, and then write out all references collected so far. Collapse references to
same source.

-fn Set the footnote number to n instead of the default of 1 (one). With labels rather than
numbers, this flag is a no-op.

-kz Instead of numbering references, use labels as specified in a reference data line begin­
ning %z; by default z is L.

-lm,n Instead of numbering references, use labels made from the senior author's last name
and the year of publication. Only the first m letters of the last name and the last n
digits of the date are used. If either m or n is omitted the entire name or date respec­
tively is used.

-n Do not search the default file /usr/dict/papers/Ind. If there is a REFER environment
variable, the specified file will be searched instead of the default file; in this case the -D

flag has no effect.

-p bib
Take the next argument bib as a file of references to be searched. The default filp is
searched last.

ICON INTERNATIONAL 1

(

(

REFER (1) USER COMMANDS REFER (1)

_keys
Sort references by fields whose key-letters are in the keys string; permute reference
numbers in text accordingly. Implies -e. The key-letters in keys may be followed by a
number to indicate how many such fields are used, with + taken as a very large
number. The default is AD which sorts on the senior author and then date; to sort,
for example, on all authors a.nd then title use -sA+T.

-Bl. m Bibliography mode. Ta.ke a file composed of records separated by blank lines, and turn
them into troff input. Label I will be turned into the macro .m with I defaulting to
%X and .m defaulting to .AP (annotation paragraph).

-p Place punctuation marks .,:;1! after the reference signal, rather than before. (Periods
and commas used to be done with strings.)

-8 Produce references in the Natural or Social Science format.

To use your own references, put them in the format described below. They can be searched
more rapidly by running indzbib(l) on them before using refer; failure to index r~sults in a
linear search. When refer is used with the eqn, neqn or tbl preprocessors refer should be first,
to minimize the volume of data passed through pipes.

The refer preprocessor and associated programs expect input from a file of references com­
posed of records separated by blank lines. A record is a set of lines (fields), each containing
one kind of information. Fields start on a line beginning with a "%", followed by a key­
letter, then a blank, and finally the contents of the field, and continue until the next line
starting with "%". The output ordering and formatting of fields is controlled by the macros
specified for nroff/troff(for footnotes and endnotes) or roffbib (for stand-alone bibliographies).
For a list of the most common key-letters and their corresponding fields, see addbib(1). An
example of a refer entry is given below.

EXAMPLE
%A
%T
%B
%V
%1
%C
%D

M. E. Lesk
Some Applications of Inverted Indexes on the UNIX System
UNIX Programmer's Manual
2b
Bell Laboratories
Murray Hill, NJ
1978

FILES
/usr/dict/papers directory of default publication lists
/usr/lib/refer directory of companion programs

SEE ALSO
addbib(l), sortbib(1), roftbib(1), indxbib(1), lookbib{l)

AUTHOR

BUGS

2

Mike Lesk

Blank spaces at the end of lines in bibliography fields will cause the records to sort and
reverse incorrectly." . Sorting large numbers of references causes a core dump.

ICON INTERNATIONAL

RESET (1) USER COMMANDS

NAME
reset - reset the teletype bits to a sensible state

SYNOPSIS
reset

DESCRIPTION

RESET (1)

Reset sets the terminal to cooked mode, turns off cbreak and raw modes, turns on nl, and
restores special characters that are undefined to their default values.

This is most useful· after a program dies leaving a terminal in a funny state; you have to t~'pe
"<LF>reset<LF>" to get it to work then to the shell, as <CR> often doesn't work; oft·en
none of this will echo.

It is a good idea to follow reset with tset(l)

SEE ALSO

BUGS

stty(l), tset(l)

'Doesn't set tabs properly; it can't intuit personal choices for interrupt and line kill characters,
so it leaves these set to the local system standards.

ICON INTERNATIONAL 1

f'\· , '

.~'

./

(

()

REV (1) USER COMMANDS REV (1)

NAME
rev - reverse lines of a file

SYNOPSIS
rev [file) ...

DESCRIPTION
Rev copies the named files to the standard output, reversing the order of characters in every
line. If no file is specified, the standard input is copied.

ICON INTERNATIONAL 1

RLOGIN(lC) USER COMMANDS RLOGIN(IC)

NAME
rlogin - remote login

SYNOPSIS
rlogin rhost [-e c 1 [-1 username 1
rhost [-ec 1 [-1 username]

DESCRIPTION
Rlogin connects your terminal on the current local host system lhost to the remote host sys­
tem rhost.

Each host has a file / etc/ hosts. equiv which contains a list of rhost's wit h which it sh ares
account names. (The host names must be the standard names as described in rsh(lC).) When
you rlogin as the same user on an equivalent host, you don't need to giyE' a password. Each
user may also have a private equivalence list in a file .rhosts in his login directory .. Each line
in this file should contain a rhost and a username separated by a space, giving additional rases
where logins without passwords are to be permitted. If the originating user is not equivalent
to the remote user, then a login and password will be prompted for on the remote machine as
in login(l). To avoid some security problems, the .rhosts file must be owned by either the
remote user or root and may not be a symbolic link.

Your remote terminal type is the same as your local terminal type (as given in your environ­
ment TERM variable). All echoing takes place at the remote site, so that (except for delays)
the rlogin is transparent. Flow control via AS and AQ and flushing of input and output on
interrupts are handled properly. A line of the form u-." disconnects from the remote host,
where "-,, is the escape character. A different escape character may be specified by the -e
option. There is no space separating this option flag and the argument character.

SEE ALSO
rsh(lC)

Fll..ES
/ usr /hosts / * for rhost version of the command

BUGS
More terminal characteristics should be propagated.

ICON INTERNATIONAL 1

.~./

o

(-

(

RM(l) USER COMMANDS RM(l)

NAME
rm, rmdir - remove (unlink) files or directories

SYNOPSIS
rm [-f I [-r] [-i] [- I file ...

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are
printed and a line is read from the standard input. If that line begins with 'y' the fi)t' is
deleted, otherwise the file remains. No questions are asked and no errors are reportt'd when
the -f (force) option is given.

If a designated file is a directory, an error comment is printed unless the optional argument -r
has been used. In that case, rm recursively deletes the entire cont.ents of the specifit'd din'c­
tory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file, and, under -r,
whether to examine each directory.

The null option - indicates that all the arguments following it are to be treated as fiIt' names.
This allows the specification of file names starting with a minus.

Rmdir removes entries for the named directories, which must be empt.y.

SEE ALSO
rm(I), unlink(2), rmdir{2}

ICON INTERNATIONAL 1

RMAlL(1) USER COM:MANDS RMAJL(1)

NAME
rmail - handle remote mail received via uucp

SYNOPSIS
rmail user ...

DESCRIPTION
Rmail interprets incoming mail received via uucp(lC), collapsing "From" lines in the form
generated by binmail(l) into a single line of the form "return-path!sender", and passing the
processed mail on to sendmail(8).

Rmail is explicitly designed for use with uucp and sendmail.

SEE ALSO
binmail(l), uucp(lC), sendmail(8)

BUGS
Rmail should not reside in Ibin.

ICON INTERNATIONAL 1

o

(

(

RMDffi(1) USER COMMANDS RMDffi(1)

NAME
rmdir, rm - remove (unlink) directories or files

SYNOPSIS
rmdir dir ...

rm [-f J [-r J [-i J [- J file ...
DESCRIPTION

Rmdir removes entries for the named directories, which must be empty.

Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are
printed and a line is read from the standard input. If that line begins with 'y' the file is
deleted, otherwise the file remains. No questions are asked and no errors are reported when
the -f (force) option is given.

If a designated file is a directory, an error comment is printed unless the optional argument -r
has been used. In that case, rm recursively deletes the entire contents of the specified direc­
tory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file, and, under -r,
whether to examine each directory.

The null option - indicates that all the arguments following it are to be treated as file names.
This allows the specification of file names starting with a minus.

SEE ALSO
rm(l), unlink(2), rmdir(2)

ICON INTERNATIONAL 1

ROFFBIB(l) USER COMMANDS ROFFBIB(1)

NAME
roffbib - run off bibliographic database

SYNOPSIS
roftbib [-e] [-h] [-D] I -0] [-r] [-s] [- Tterm 1 [-x] [-m mac 1 [-v 1 [-Q 1 [file
...]

DESCRIPTION
Roffbib prints out all records in a bibliographic database, in bibliography format rather than
as footnotes or endnotes. Generally it is used in conjunction with sortbib:

sortbib database I rofl'bib

Rolfbib accepts most of the options understood by nroff(1), most importantly the -T flag to
specify terminal type.

If abstracts or comments are entered following the o/oX field key, rolfbib will format them into
paragraphs for an annotated bibliography. Several %X fields may be given if several annota­
tion paragraphs are desired. The -x flag will suppress the printing of these abstracts.

A user-defined set of macros may be specified after the -m option. There should be a space
between the -m and the macro filename. This set of macros will replace the ones defined in
/usr/lib/tmac/tmac.bib. The -V flag will send output to the Versatec; the -Q flag will
queue output for the phototypesetter.

Four command-line registers control formatting style of the bibliography, much like the
number registers of ms(7). The command-line argument -rN1 will number the references
starting at one (1). The flag -rV2 will double space the bibliography, while -rV1 will double

('\
I ,
~.

space references but single space annotation paragraphs. The line length can be changed from /
the default 6.5 inches to 6 inches with the -rL6i argument, and the page offset can be set \ j

from the default of 0 to one inch by specifying -rOli (capital 0, not zero). Note: with the
-V and -Q flags the default page offset is already one inch.

FILES
/usr/lib/tmac/tmac.bib file of macros used by nroff/troff

SEE ALSO
refer(l), addbib(1), sortbib(l), indxbib(l), lookbib(l)

AUTHORS
Greg Shenaut, Bill Tuthill

BUGS
Users have to rewrite macros to create customized formats.

ICON INTERNATIONAL 1

(

(

RSH(IC) USER COMMANDS RSH(lC)

NAME
rsh - remote shell

SYNOPSIS
reh host [-1 username J [-D J command
host [-1 username 1 [-D 1 command

DESCRIPTION

FILES

Rsh connects to the specified host, and executes the specified command. Rsh copies its stan­
dard input to the remote command, the standard output of the remote command to its stan­
dard output, and the standard error of the remote command to its standard error. Int.errupt,
quit and terminate signals are propagated to the remote command; rsh normally terminates
when the remote command does.

The remote username used is the same as your local username, unless you specify a different
remote name with the -1 option. This remote name must be equivalent (in the sense of
rlogin(IC)) to the originating account; no provision is made for specifying a password with a
command.

If you omit. command, then instead of executing a single command, you will be logged in on
the remote host using rlogin(IC).

Shell metacharacters which are not quoted are interpreted on local machine, while quoted
metacharacters are interpreted on the remote machine. Thus the command

rsh ot.herhost cat remotefile > > localfile

appends the remote file remotefile to the localfile localfile, while

rsh otherhost cat remotefile "> >" otherremotefile

appends remotefile to otherremotefile.

Host names are given in the file /etc/hosts. Each host has one standard name (the first. name
given in the file), which is rather long and unambiguous, and optionally one or more nick­
names. The host names for local machines are also commands in the directory /usr/hosts: if
you put this directory in your search path then the rsh can be omitted.

fete/hosts
/usr/hosts/*

SEE ALSO
rlogin(IC)

BUGS
If you are using csh(l) and put a rsh(IC) in the background without redirecting its input
away from the terminal, it will block even if no reads are posted by the remote command. If
no input is desired you should redirect the input of rsh to /dev /null using the -D option.
You cannot run an interactive command (like rogue(6) or vi(l)); use rlogin(lC).

Stop signals stop the local rsh process only; this is arguably wrong, but currently hard to fix
for reasons too complicated to explain here.

ICON INTERNATIONAL 1

RUPTIME (Ie) USER COM:MANDS RUPTIME (1 C)

NAME
ruptime - show host sta.tus of local machines

SYNOPSIS
ruptime I -a] I -1] I -t] I -u]

DESCRIPTION
Ruptime gives a. status line like uptime for each machine on the local network; these are
formed from packets broadcast by each host on the network once a minute.

Fll..ES

Machines for which no status report has been received for 5 minutes are shown as being down.

Users idle an hour or more are not counted unless the -a flag is given.
Normally, the listing is sorted by host name. The -1 , -t , and -u flags specify sorting by
load average, uptime, and number of users, respectively.

jusr jspooljrwhojwhod.* data files

SEE ALSO
rwho(lC)

ICON INTERNATIONAL 1

o

RWHO(lC) USER COMMANDS RWHO(lC)

NAME
rwho - who's logged in on local machines

SYNOPSIS
rwho [-a 1

DESCRIPTION

Fn..ES

The rwho command produces output similar to who, but for all machines on the local net­
work. If no report has been received from a machine for 5 minutes then rwho assumes the
machine is down, and does not report users last known to be logged into that machine.

If a users hasn't typed to the system for a minute or more, then rwho reports this idle time.
If a user hasn't typed to the system for an hour or more, then the user will be omittt'd from
the output of rwho unless the -a flag is given.

/usr /spool/rwho/whod.* information about other machines

SEE ALSO
ruptime(lC), rwhod(8C)

BUGS
This is unwieldy when the number of machines on the local net is large.

ICON INTERNATIONAL 1

SCCSTORCS (8) MAINTENANCE COMMANDS SCCSTORCS (8)

NAME
sccstorcs - build RCS file from SCCS file

SYNOPSIS
Keatorea [-t] [-v] s.fiJe ...

DESCRIPTION

Fn..ES

Sccstorcs builds an RCS file from each SCCS file argument. The deltas and comments for
each delta are preserved and installed into the new RCS file in order. Also preserved are the
user access list and descriptive text, if any, from the secs file.
The following Bags are meaningful:
-t Trace only. Prints detailed information about the SCCS file and lists the commands

that would be executed to produce the RCS file. No commands are actually executed
and no RCS file is made.

-v Verbose. Prints each command that is run while it is building the RCS file.

For each s.somefile, Sccstorcs writes the files somefile and somefile,v which should not already
exist. Sccstorcs will abort, rather than overwrite those files if they do exist.

SEE ALSO
ci (1), co (1), res (I).
Walter F. Tichy, ''Design, Implementation, and Evaluation of a Revision Control Syst.em," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982. .

DIAGNOSTICS

BUGS

All diagnostics are written to stderr. Non-zero exit status on error.

Sccstorcs does not preserve all SCCS options specified in the secs file. Most notably, it does
not preserve removed deltas, MR numbers, and cutoff points.

AUTHOR
Ken Greer

Copyright c 1983 by Kenneth L. Greer

ICON INTERNATIONAL 1

... ------.- .. --~ .. --.-------~----.---- -.~ ------

<:)

(

(
r" ..

I

SCRIPT (1) USER COMMANDS SCRIPT (1)

NAME
script - make typescript of terminal session

SYNOPSIS
script [-& J [file J

DESCRIPTION

BUGS

Script makes a typescript of everything printed on your terminal. The typescript is written to
file, or appended to file if the -& option is given. It can be sent to the line printer later with
lpr. If no file name is given, the typescript is saved in the file typescript.

The script ends when the forked shell exits.

This program is useful when using a crt and a hard-copy record of the dialog is desired, as for
a student handing in a program that was developed on a crt when hard-copy terminals arE' in
short supply.

Script places everything in the log file. This is not what the naive user expects.

ICON INTERNATIONAL 1

SED(l) USER COMMANDS SED(l)

NAME
sed - stream editor

SYNOPSIS
sed [-D] [-e script J [-f sfile J [file J '"

DESCRIPTION
Sed copies the named files (standard input default) to the standard output, edited according
to a script of commands. The -f option causes the script to be taken from file sfile; these
options accumulate. If there is just one -e option and no -fs, the flag -e may be omittt'd.
The -D option suppresses the default output.

A script consists of editing commands, one per line, of the following form:

[address [, address]] function [arguments]
In normal operation sed cyclically copies a line of input into a pattern space (unleSs thert' is
something left after a 'D' command), applies in sequence all commands whose addresses st'lect
that pattern space, and at the end of the script copies the pattern space to the standard out­
put (except under -D) and deletes the pattern space.
An address is either a decimal number that counts input lines cumulatively across files, a '$'
that addresses the last line of input, or a context address, '/regular expression/', in the style
of ed(l) modified thus:

The escape sequence '\n' matches a newline embedded in the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address. ,/-~'

A command line with two addresses selects the inclusive range from the first pattern space '" j

that matches the first address through the next pattern space that matches the second. (If
the second address is a number less than or equal to the line number first selected, only one
line is selected.) Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the negat.ion
function I!' (below).

In the following list of functions the maximum number of permissible addresses for each func­
tion is indicated in parentheses.

An argument denoted text consists of one or more lines, all but the last of which end with '\'
to hide the newline. Backslashes in text are treated like backslashes in the replacement string
of an's' command, and may be used to protect initial blanks and tabs against the stripping
that is done on every script line.
An argument denoted rjile or wjile must terminate the command line and must be prect'ded
by exactly one blank. Each wjile is created before processing begins. There can be at most 10
distinct uifile arguments.

(1) a\
text

Append. Place text on the output before reading the next input line.

(2) b label
Branch to the I:' command bearing the label. If label is empty, branch to the end of
the script.

ICON INTERNATIONAL 1

(

SED(l) USER COMMANDS SED(l)

2

(2) c\
text

Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address
range, place text on the output. Start the next cycle.

(2) d Delete the pattern space. Start the next cycle.

(2) D Delete the initial segment of the pattern space through the first newline. Start the
next cycle.

(2) g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2) H Append the contents of the pattern space to the hold space.

(l)i\
text

Insert. Place text on the standard output.
(2) n Copy the pattern space to the standard output. Replace the pattern space with t.he

next line of input.

(2) N Append the next line of input to the pattern space with an embedded newline. (The
current line number changes.)

(2) p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first newline to the standard
output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile
Read the contents of rfile. Place them on the output before reading the next input
line.

(2) 5/ regular expression/ replacement/flags
Substitute the replacement string for instances of the regular expression in the pattern
space. Any character may be used instead of 'I'. For a fuller description see ed(l).
Flags is zero or more of

g Global. Substitute for all nonoverlapping instances of the regular expression
rather than just the first one.

p Print the pattern space if a replacement was made.

\'\' wfile
Write. Append the pattern space to wfile if a replacement was made.

(2) t label
Test. Branch to the ':' command bearing the label if any substitutions have been
made since the most recent reading of an input line or execution of a 't'. If label is
empty, branch to the end of the script.

(2) w wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y / string1/ string2/
Transform. Replace all occurrences of characters in string! with the corresponding
character in string2. The lengths of string! and string2 must be equal.

ICON INTERNATION.\L

SED (1) USER COMMANDS SED (1)

(2)! function (-",
Don't. Apply the function (or group, if function is 'f) only to lines not selected by the ~,j
addressees).

(0): label
This command does nothingj it bears a label for 'b' and It' commands to branch to.

(1) = Place the current line number on the standard output as a line.
(2) { Execute the following commands through a matching I}' only when the pattern space

is selected.
(0) An empty command is ignored.

SEE ALSO
edell, grep(l), awk(l), lex(l)

ICON INTERNATIONAL 3

(

SENDBUG(1) USER COMMANDS SENDBUG(l)

NAME
sendbug - mail a system bug report to 4bsd-bugs

SYNOPSIS
aendbug [address]

DESCRIPTION

FILES

Bug reports sent to '4bsd-bugs@BERKELEY' are intercepted by a program which expects
bug reports to conform to a standard format. Sendbug is a shell script to help the user com­
pose and mail bug reports in the correct format. Sendbug works by invoking vi(l) on a tem­
porary copy of the bug report format outline. The user must fill in the appropriate fields and
exit vi. Sendbug then mails the completed report to '4bsd-bugs@BERKELEY' or the address
specified on the command line.

lusr lucb Ibugformat contains the bug report outline

SEE ALSO
vi(l), sendmail(8)

ICON INTERNATIONAL 1

SFDATE(l) USER COMMANDS SFDATE(I)

NAME
sfdate - set the time/date of a file

SYNOPSIS
.fdate yymmddhhmm [.ss] file '"

DESCRIPTION
The "accessed" and "updated" times for the specified files are set to the specified date. yy is
the last two digits of the year; the first mm is the month number; dd is the day number in the
month; hh is the hour number (24 hour system); the second mm is the minute number; .88 is
optional and is the seconds. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The year, month and. day may be omitted, t~e current
values being the defaults.

EXAMPLE
To set all the files in the directory hierarchy "dir" to midnight on April 1st, 1986:

find dir -exec sfdate 8604010000 {} \;

ICON INTERNATIONAL 1

---- -------~-----~-~--~---

(

f

SH(l) USER COMMANDS SH(1)

NAME
sh, for, case, if, while, :, " break, continue, cd, eval, exec, exit, export, login, read, readonly,
set, shift, times, trap, umask, wait - command language

SYNOPSIS
sh [-ceiknrstuvx] [arg J ...

DESCRIPTION
Sh is a command programming language that executes commands read from a terminal or a
file. See invocation for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or
a space). The first word specifies the name of the command to be executed. Except as
specified below the remaining words are passed as arguments to the invoked command. The
command name is passed as argument 0 (see execve(2)). The value of a simple-command is it.s
exit status if it terminates normally or 200+status if it terminates abnormally (see sigvec(2)
for a list of status values).

A pz"peline is a sequence of one or more commands separated by I. The standard output of
each command but the last is connected by a pipe(2) to the standard input of the next com­
mand. Each command is run as a separate process; the shell waits for the last command t.o
terminate.

A list is a sequence of one or more pipelines separated by;, &, && or II and optionally t.er­
minated by ; or &. ; and & have equal precedence which is lower than that of && and II,
&& and II also have equal precedence. A semicolon causes sequential execution; an amper­
sand causes the preceding pipeline to be executed without waiting for it to finish. The symbol
&& (I D causes the list following to be executed only if the preceding pipeline returns a zero
(non zero) value. Newlines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. The value returned by a
command is that of the last simple-command executed in the command.

for name! in word ...] do list done
Each time a for command is executed name is set to the next word in the for word
list If in word ... is omitted, in "$@" is assumed. Execution ends when there arE' no
more words in the list.

case word in[pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that matches word.
The form of the patterns is the same as that used for file name generation.

if list then list [elif list then list] ... [else list 1 fi
The list following if is executed and if it returns zero the list following then is E'xe­
cuted. Otherwise, the list following elif is executed and if its value is zero the list fol­
lowing then is executed. Failing that the else list is executed.

while list [do list] done
A while command repeatedly executes the while list and if its value is zero execut.es
the do list; otherwise the loop terminates. The value returned by a while command is
that of the last executed command in the do list. until may be used in place of while
to negate the loop termination test.

(list) Execute list in a subshell.

{ list} list is simply executed.

ICON INTERNATIONAL 1

SH(l) USER COMMANDS SH(l)

The following words are only recognized as the first word of a command and when not
quoted.

if then else elif ft case in esac for while until do done { }

Command substitution.
The standard output from a command enclosed in a pair of back quotes (' ') may be uSe'd as
pa.rt or all of a word; trailing newlines are removed.

Parameter substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be
~igned values by set. Variables may be set by writing

name=value [name=value J ...

$ {parameter}
A parameter is a sequence of letters, digits or underscores (a name), a digit, or any of
the characters * @ # r - $!. The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name. If parameter is a digit, it is a posi­
tional parameter. If parameter is * or @ then all the positional parameters, starting
with $I, a.re substituted separated by spaces. So is set from argument zero when the
shell is invoked.

$ {parameter -word}
If parameter is set, substitute its value; otherwise substitute word.

$ {parameter = word}
If parameter is not set, set it to word; the value of the parameter is then substitutE'd.
Positional parameters may not be assigned to in this way.

$ {parameter? word}
If parameter is set, substitute its value; otherwise, print word and exit from the shell. " /

2

If word is omitted, a standard message is printed.

$ {parameter +word}
If parameter is set, substitute word; otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string. (So that,
for example, echo ${d- 'pwd '} will only execute pwd if d is unset.)

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.
Options supplied to the shell on invocation or by set.

r The value returned by the last executed command in decimal.
$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used but not set by the shell.

HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see execution).
MAIL If this variable is set to the name of a mail file, the shell informs the user of the

arrival of mail in the specified file.
PSI Primary prompt string, by default '$ '.
PS2 Secondary prompt string, by default '> '.
IFS Internal field separators, normally space, ta.b, and newline.

Blank interpreta.tion.
After parameter and command substitution, any results of substitution are' scanned for intE'r­
nal field separator characters (those found in SIFS) and split into distinrt arguments whE're

ICON INTERNATIONAL

C .. \
J

(

(

SH(l) USER COMMANDS SH(1)

such characters are found. Explicit null arguments ("" or ") are retained. Implicit null argu­
ments (those resulting from parameters that have no valUes) are removed.

File name generation.
Following substitution, each command word is scanned for the characters *, ! and [. If one of
these characters appears, the word is regarded as a pattern. The word is replaced with alpha­
betically sorted file names that match the pattern. If no file name is found that matches the
pattern, the word is left unchanged. The character. at the start of a file name or immedi­
ately following a /, and the character /, must be matched explicitly.

* Matches any string, including the null string.
! Matches any single character.
[•••] Matches anyone of the characters enclosed. A palr of characters separated by -

matches any character lexically between the pair.

Quoting.
The following characters have a special meaning to the shell and cause termination 'of a word
unless quoted.

; &:. () I < > newline space tab

A character may be quoted by preceding it with a \. \newline is ignored. All characters
enclosed between a pair of quote marks (' '), except a single quote, are quoted. Inside double
quotes (" to) parameter and command substitution occurs and \ quotes the characters \ ' .. and
$.

"$*" is equivalent to "SI $2 ••• " whereas
"$@" is equivalent to "$I" "$2" ••••

Prompting.
When used interactively, the shell prompts with the value of PSI before reading a command.
If at any time a newline is typed and further input is needed to complete a command, the
secondary prompt (SPS2) is issued.

Input output.
Before a command is executed its input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simple-command or may
precede or follow a command and are not passed on to the invoked command. Substitution
occurs before word or digit is used.

< word

> word

Use file word as standard input (file descriptor 0).

Use file word as standard output (file descriptor 1). If the file does not exist, it IS

created; otherwise it is truncated to zero length.

» word
Use file word as standard output. If the file exists, output is appended (by seeking to
the end); otherwise the file is created.

« word
The shell input is read up to a line the same as word, or end of file. The resulting
document becomes the standard input. If any character of word is quoted, no
interpretation is placed upon the characters of the document; otherwise, parameter
and command substitution occurs, \newline is ignored, and \ is used to quote the
characters \ $, and the first character of word.

< & digit
The standard input is duplicated from file descriptor digit; see dup(2). Similarly for
the standard output using> .

ICON INTERNATIONAL 3

SH(l) USER COM:M.ANDS SH(1)

4

< &- The standard input is closed. Similarly for the standard output using> . (.

If one of the above is preceded by a digit, the file descriptor created is that specified by the ""-.-
digit (instead of the default 0 or 1). For example,

... 2>&1

creates file descriptor 2 to be a duplicate of file descriptor l.

If a command is followed by &:. then the default standard input for the command is the
empty file (/dev /null). Otherwise, the environment for the execution of a command contains
the file descriptors of the invoking shell as modified by input output specifications.

Environment.
The environment is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list; see e:.r:ecve(2) and environ(7). The shell interacts with
the environment in several ways. On invocation, the shell scans the environment and creat·es
a parameter for each name found, giving it the corresponding value. Executed c;ommands
inherit the same environment. If the user modifies the values of these parameters or creates
new ones, none of these affects the environment unless the export command is used to bind
the shell's parameter to the environment. The environment seen by any executed command is
thus composed of any unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all of which must be~noted in export commands.
The environment for any simple-command may be augmented by prefixing it with one or more
assignments to parameters. Thus these two lines are equivalent

TERM=450 cmd args
(export TERM; TERM=450; cmd args)

If the -k flag is set, all keyword arguments are placed in the environment, even if the occur
after the command name. The following prints 'a=b c' and 'c':
echo a=b c
set -k
echo a=b c
Signals.
The INTERRUPT and QUIT signals for an invoked command are ignored if the command is
followed by &:.j otherwise signals have the values inherited by the shell from its parent. (But
see also trap.)

Execution.
Each time a command is executed the above substitutions are carried out. Except for the
'special commands' listed below a new process is created and an attempt is made to ex('('ute
the command via an execve(2).

The shell parameter SPATH defines the search path for the directory containing the command.
Each alternative directory name is separated by a colon (:). The default path is
:/bin:/usr/bin. If the command name contains a I, the search path is not used. Otherwise,
each directory in the path is searched for an executable file. If the file has execute permission
but is not an a.out file, it is assumed to be a file containing shell commands. A subshell (i.e.,
a. separate process) is spawned to read it. A parenthesized command is also executed in a sub­
shell.

Special commands.
The following commands are executed in the shell process and except where specified no input
output redirection is permitted for such commands.

No effect; the command does nothing .
• file Read and execute commands from file and return. The search path SPATH is used to

find the directory containing file.

ICON INTERNATIONAL

/

(

(

SH(l) USER COMMANDS SH(1)

break [nJ
Exit from the enclosing for or while loop, if any. If n is specified, break n levels.

continue [n J
Resume the next iteration of the enclosing for or while loop. If n is specified, resume
at the n-th enclosing loop.

cd [argJ
Change the current directory to argo The shell parameter SHOME is the default argo

eval [arg ... J .
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this shell without
creating a new process. Input output arguments may appear and if no other argu­
ments are given cause the shell input output to be modified.

exit [n] .
Causes a non interactive shell to exit with the exit status specified by n. If.n is omit­
ted, the exit status is that of the last command executed. (An end of file will also exit
from the shell.)

export [name ... J
The given names are marked for automatic export to the environment of
subsequently-executed commands. If no arguments are given, a list of exportable
names is printed.

login [arg ... 1
Equivalent to 'exec login arg ... '.

read name ...
One line is read from the standard input; successive words of the input are assigned to
the variables name in order, with leftover words to the last variable. The return ('ode
is 0 unless the end-of-file is encountered.

readonly [name ... J
The given names are marked readonly and the values of the these names may not be
changed by subsequent assignment. If no arguments are given, a list of all readonly
names is printed.

set [-eknptuvx [arg ... J J
-e If non interactive, exit immediately if a command fails.
-k All keyword arguments are placed in the environment for a ('ommand, not just

those that precede the command name.
-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Turn oft' the -x and -v options.

These flags can also be used upon invocation of the shell. The current set of flags may
be found in $-.
Remaining arguments are positional parameters and are assigned, in order, to SI, $2,
etc. If no arguments are given, the values of all names are printed.

shift The positional parameters from S2... are renamed S1...

times Print the accumulated user and system times for processes run from the shell.

trap [arg J [n J ...
Arg is a command to be read and executed when the shell receives signal(s) n. (Note
that arg is scanned once when the trap is set and once when the trap is taken.) Trap
commands are executed in order of signal number. If arg is absent, all trap{s) n are

ICON INTERNATIONAL 5

SH(l) USER CO:MMANDS SH(1)

reset to their original values. If arg is the null string, this signal is ignored by the shell
and by invoked commands. If n is 0, the command arg is executed on exit from the
shell, otherwise upon receipt of signal n as numbered in sigvec(2). Trap with no argu­
ments prints a list of commands associated with each signal number.

umask [nnn J
The user file creation mask is set to the octa.l value nnn (see umask(2)). If nnn is omit­
ted, the current value of the mask is printed.

wait [nJ
Wait for the specified process and report its termination status. If n is not given, all
currently active child processes are waited for. The return code from this command is
that of the process waited for.

Invocation.
If the first character of argument zero is -, commands are read from SHOME/. profile, if such
a file exists. Commands are then read as described below. The following flags are interpreted
by the shell when it is invoked.
-c string If the -c flag is present, commands are read from string.
-8 If the -8 flag is present or if no arguments "main then commands are read from

the standard input. Shell output is written to file descriptor 2.
-i If the -i flag is present or if the shell input and output are attached to a terminal

(as told by gtty) then this shell is interactive. In this case the terminat.e signal
SIGTERM (see sigvec(2)) is ignored (so that 'kill 0' does not kill an int.eractive
shell) and the interrupt signal SIGINT is caught and ignored (so that wait is
interruptible). In all cases SIGQUIT is ignored by the shell.

The remaining flags and arguments are described under the set command.

FILES
$HOMEj.profile
/tmp/sh*
/dev /null

SEE ALSO
csh(l), test(l), execve(2}, environ(7}

DIAGNOSTICS

BUGS

6

Errors detected by the shell, such as syntax errors cause the shell to return a non zero exit
status. If the shell is being used non interactively then execution of the shell file is aban­
doned. Otherwise, the shell returns the exit status of the last command executed (see also
exit).

If < < is used to provide standard input to an asynchronous process invoked by &, the shell
gets mixed up about naming the input document. A garbage file jtmp/sh* is created, and the
shell complains about not being able to find the file by another name.

ICON INTERNATIONAL

---- --- -~--- --- ------------- -~-------

(

(~

SIZE (1) USER COMMANDS SIZE (1)

NAME
size - size of an object file

SYNOPSIS
size [object ... 1

DESCRIPTION
Size prints the (decimal) number of bytes required by the text, data, and bss portions, and
their sum in hex and decimal, of each object-file argument. If no file is specified, a.out is
used.

SEE ALSO
a.out(5)

ICON INTERNATIONAL 1

SLEEP (1) USER COMMANDS

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP (1)

Sleep suspends execution for time seconds. It is used to execute a command after a certain
amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
setitimer(2), alarm(3C), sleep(3)

BUGS
Time must be less than 2,147,483,647 seconds.

ICON INTERNATIONAL 1

(~
\ i
,~

/

(

SOELIM(l) USER COMMANDS SOELIM(1)

NAME
soelim - eliminate .so's from nrofi' input

SYNOPSIS
soelim [file ...

DESCRIPTION
Soelim reads the specified files or the standard input and performs the textual inclusion
implied by the nroff directives of the form

.so somefile

when they appear at the beginning of input lines. This is useful since programs such as tbl do
not normally do this; it allows the placement of individual tables in separate files to be run as
a part of a large documen t.

An argument consisting of a single minus (-) is taken to be a file name corresponding to the
standard input.

Note that inclusion can be suppressed by using'" instead of '.', i.e.

'so /usr/lib/tmac.s

A sample usage of Boelim would be

soelim exum?n I tbl I nrofl' -ms I col Ilpr

SEE ALSO
colcrt(1), more(1)

AUTHOR
William Joy

BUGS
The format of the source commands must involve no strangeness - exactly one blank must
precede and no blanks follow the file name.

ICON INTERNATIONAL 1

SORT(l) USER CO!\.1MANDS SORT (1)

NAME
sort - sort or merge files

SYNOPSIS
sort [-mubdfinrtx] [+pos1 [-post]] .. , [-0 name] [-T directory] [name] ...

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the standard output.
The name '-' means the standard input. If no input files are named, the standard input is
sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine
collating sequence. The ordering is affected globally by the following options, one or more of
which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d 'Dictionary' order: only letters, digits and blanks are significant in comparisons.
r Fold upper case letters onto lower case.

i Ignore characters outside the ASCII range 040-0176 in nonnumeric comparisons.

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or
more digits with optional decimal point, is sorted by arithmetic value. Optionn implies
option b.

r Reverse the sense of comparisons.

tx 'Tab character' separating fields is x.

The notation +pos1 -posfJ restricts a sort key to a field beginning at pos1 and ending just
before posfJ. Post and posfJ each have the form m.n, optionally followed by one or more of
the flags bdfinr, where m tells a number of fields to skip from the beginning of the line and n
tells a number of characters to skip further. If any flags are present they override all the glo­
bal ordering options for this key. If the b option is in effect n is counted from the first non­
blank in the field; b is attached independently to posfJ. A missing .n means .0; a missing
-posfJ means the end of the line. Under the -tx option, fields are strings separated by X; oth­
erwise fields are nonempty non blank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare
equal. Lines that otherwise compare equal are ordered with all bytes sjgnificant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no output unless
the file is out of sort.

m Merge only, the input files are already sorted.

o The next argument is the name of an output file to use instead of the standard output.
This file may be the same as one of the inputs.

T The next argument is the name of a directory in which temporary files should be made.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do
not participate in this comparison.

ICON INTERNATIONAL 1

;L .. --

SORT (1) USER COMMANDS SORT (1)

EXAMPLES

Fll..ES

Print in alphabetical order all the unique spellings in a list of words.
from uncapitalized.

sort -u +Of +0 list

Capitalized words differ

Print the password file (passwd(5)) sorted by user id number (the 3rd colon-separated field).

sort -t: +2n /etc/passwd
Print the first instance of each month in an already sorted file of (month day) entries. The
options -um with just one input file make the choice of a unique representative from a set of
equal lines predictable.

sort -um +0 -1 dates

/usr/tmp/stm*, /tmp/* first and second tries for temporary files

SEE ALSO
uniq(l), comm(l), revel), join(l)

DIAGNOSTICS

BUGS

2

Comments and exits with nonzero status for various trouble conditions and for disorder
discovered under option -c.

Very long lines are silently truncated.

ICON INTERNATIONAL

SORTBffi(l) USER CO:M:M.A.NDS SORTBIB(1)

NAME
sortbib - sort bibliographic da.ta.base

SYNOPSIS
aortbib [__ KEYS J data.base

DESCRIPTION
Sortbib sorts files of records conta.ining refer key-letters by user-specified keys. Records may
be sepa.ra.ted by blank lines, or by .[a.nd .J delimiters, but the two styles ma.y not be mixed
together. This program reads through each database and pulls out key fields, which are sorted
separately. The sorted key fields contain the file pointer, byte offst't, and length of
corresponding records. These records are delivered using disk seeks and reads, so 80rtbib may
not be used in a pipeline to read standard input.

By default, 80rtbib alphabetizes by the first %A and the %0 fields, which contain ,the senior
author and date. The -8 option is used to specify new KEYS. For instance, -sATO will sort
by author, title, and date, while -sA+O will sort by all authors, and date. Sort keys past the
fourth are not meaningful. No more than 16 databases may be sorted together at one time.
Records longer than 4096 characters will be truncated.

Sortbib sorts on the last word on the %A line, which is assumed to be the author's last name.
A word in the final position, such as "jr." or "ed.", will be ignored if tht' name beforehand
ends with a comma. Authors with two-word last names or unusual constructions can be
sorted correctly by using the nroff convention "\0" in place of a blank. A %Q field is con­
sidered to be the same as %A, except sorting begins with the first, not the last, word. Sortbib
sorts on the last word of the %0 line, usually the year. It also ignores leading articles (like
"A" or "The") when sorting by titles in the %T or %J fields; it will ignore articles of any
modern European language. If a sort-significant field is absent from a record, sort bib places
that record before other records containing that field.

SEE ALSO
refer(1), addbib{l), roffbib(1), indxbib(1), look bib{l)

AUTHORS
Greg Shenaut, Bill Tuthill

BUGS
Records with missing author fields should probably be sorted by title.

ICON INTERNATIONAL 1

~.- .. '''~'--' ---.------~-~---.-------------

(

(

(

'0",

\

SPELL (1) USER COMMANDS SPELL (1)

NAME
spell, spellin, spellout - find spelling errors

SYNOPSIS
spell [-v J ! -b J ! -x J [-d hlist I [-8 hstop J [-h spellhist J [file J ...

spellin [list J

8pellout ! -d J list

DESCRIPTION

FILES

Spell collects words from the named documents, and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes or
suffixes) from words in the spelling list are printed on the standard output. If no files are
named, words are collected from the standard input.

Spell ignores most troff, tbl and eqn(l) constructions.

Under the -v option, all words not literally in the spelling list are printed, and plausible
derivations from spelling list words are indicated.

Under the -b option, British spelling is checked. Besides preferring centre, colour, speciality,
travelled, etc., this option insists upon -ise in words like standardise, Fowler and the OED to
the contrary notwithstanding.

Under the -x option, every plausible stem is printed with '=' for each word.

The spelling list is based on many sources. While it is more haphazard than an ordinary dic­
tionary, it is also more effective with proper names and popular technical words. Coverage of
the specialized vocabularies of biology, medicine and chemistry is light.

The auxiliary files used for the spelling list, stop list, and history file may be specified by
arguments following the -d, -8, and -h options. The default files are indicated below.
Copies of all output may be accumulated in the history file. The stop list filters out misspel­
lings (e.g. thier=thy-y+ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell. Both expect a set of words, one per
line, from the standard input. Spellin combines the words from the standard input and the
preexisting list file and places a new list on the standard output. If no list file is specified, the
new list is created from scratch. Spellout looks up each word from the standard input and
prints on the standard output those that are missing from (or present on, with option -d) the
hashed list file. For example, to verify that hookey is not on the default spelling list, add it to
your own private list, and then use it with spell,

echo hookey Ispellout /usr/dict/hlista -
echo hookey spellin /usr/dict/hlista > myhlist
spell -d myhlist huckfinn

/ usr / diet /hlist [ab I
jusr/dict/hstop
jdev /null
jtmp /spell.$$*
jusr /lib/spell

hashed spelling lists, American & British, default for -d
hashed stop list, default for -8

history file, default for -h
tern porary fi les

ICON INTERNATIONAL 1

SPELL (1) USER COMMANDS SPELL (1)

SEE ALSO

BUGS

2

derofl'(l), sort(l), tee(l), sed(l)

The spelling list's coverage is uneven; new installations will probably wish to monitor the out­
put for several months to gather local additions.
British spelling was done by an American.

ICON INTERNATIONAL

..", j

(

SPLINE (lG) USER COMMANDS SPLINE (lG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [option] ...

DESCRIPTION
Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function.
It produces a similar set, which is approximately equally spaced and includes the input set, on
the standard output. The cubic spline output (R. W. Hamming, Numerical Methods for
Scientists and Engineers, 2nd ed., 349ff) has two continuous derivatives, and sufficiently many
points to look smooth when plotted, for example by graph(lG).

The following options are recognized, each as a separate argument.

-a Supply abscissas automatically (they are missing from the input); spacing is given by
the next argument, or is assumed to be 1 if next argument is not a number.

-k The constant k used in the boundary value computation

_II _ J...J I
'0 - "JlI'

.JI = k.1I
Jln . Jln-I

is set by the next argument. By default k = o.
-n Space output points so that approxi~tely n intervals occur between the lower and

upper x limits. (Default n = 100.)

-p Make output periodic, i.e. match derivatives at ends. First and last input values should
normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits are calcu­
lated from the data. Automatic abcissas start at lower limit (default 0).

SEE ALSO
graph(lG), plot(lG)

DIAGNOSTICS

BUGS

When data is not strictly monotone in x, spline reproduces the input without interpolating
extra points.

A limit of 1000 input points is enforced silently.

ICON INTERNATIONAL 1

SPLIT (1) USER COM:MANl)S SPLIT (1)

NAME
split - split a file into pieces

SYNOPSIS
split [-n] [file [name] J

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a Se't of
output files. The name of the first output file is name with aa appended, and so on lexico­
graphically. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is used.

ICON INTERNATIONAL 1

STRIP (1) USER COM:MANDS STRIP (1)

(-) NAMEstriP _ remove symbols and relocation bits

(

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the
assembler and loader. This is useful to save space after a program has been debugged.

The effect of strip is the same as use of the -s option of Id.

Fll..ES
/tmp/stm? temporary file

SEE ALSO
ld(l)

ICON INTERNATIONAL 1

STRINGS (1) USER COMMANDS STRINGS (1)

NAME
strings - find the printable strings in a object, or other binary, file

SYNOPSIS
strings [-] [-0] [-number] file ...

DESCRIPTION
Strings looks for ascii strings in a binary file. A string is any sequence of 4 or more printing
characters ending with a newline or a null. Unless the - flag is given, strings only looks in the
initialized data space of object files. If the -0 flag is given, then each string is preceded by it.s
offset in the file (in octal). If the -number flag is given then number is USE'd as the minimum
string length rather than 4.

Stn'ngs is useful for identifying random object files and many other things.

SEE ALSO
od(l)

BUGS
The algorithm for identifying strings is extremely primitive

ICON INTERNATIONAL

-------~-------------- -~----- -------

1

(

STRUCT(l) USER COMl\1ANDS STRUCT(1)

NAME
struct - structure Fortran programs

SYNOPSIS
struct [option 1 ... file

DESCRIPTION

Fll..ES

Struct translates the Fortran program specified by file (standard input default) into a RaHor
program. Wherever possible, Ratfor control constructs replace the original Fortran. State­
ment numbers appear only where still necessary. Cosmetic changes are made, including
changing Hollerith strings into quoted strings and relational operators into symbols (.e.g.
".GT." into to> It). The output is appropriately indented.

The following options may occur in any order.

-8 Input is accepted in standard format, i.e. comments are specified by a c, .0, or * in
column 1, and continuation lines are specified by a nonzero, nonblank character in
column 6. Normally input is in the form accepted by f77{1}

-i Do not turn computed goto statements into switches. (Ratfor does not turn switches
back into computed goto statements.)

-& Turn sequences of else ifs into a non-Ratfor switch of the form

switch
{ case predl: code

case pred2: code
case pred3: code
default: code

}
The case predicates are tested in order; the code appropriate to only one case is exe­
cuted. This generalized form of switch statement does not occur in Ratfor.

-b Generate goto's instead of multilevel break statements.

-n Generate goto's instead of multilevel next statements.

-tn Make the nonzero integer n the lowest valued label in the output program (default 10).

-cn Increment successive labels in the output program by the nonzero integer n (default 1).

-en If n is 0 (default), place code within a loop only if it can lead to an iteration of the
loop. If n is nonzero, admit a small code segments to a loop if otherwise the loop
would have exits to several places including the segment, and the segment can be
reached only from the loop. 'Small' is close to, but not equal to, the number of state­
ments in the code segment. Values of n under 10 are suggested.

/tmp/struch
/usr /lib/struct/*

SEE ALSO
f77(1)

ICON INTERNATIONAL 1

STRUCT(l) USER COMMANDS STRUCT(1)

BUGS

2

Struct knows Fortran 66 syntax, but not full Fortran 77.
If an input Fortran program contains identifiers which are reserved words in Ratfor, the
structured version of the program will not be a valid Ratfor program.
The labels generated cannot go above 32767.
If you get a goto without a target, try -e •

ICON INTERNATION.-\L

\.

STTY(l) USER COMMANDS STTY(1)

(. .~ NAMEstty _ set terminal options

(

SYNOPSIS
stty [option ... J

DESCRIPTION
Stty sets certain I/O options on the current output terminal, placing its output on the diag­
nostic output. With no argument, it reports the speed of the terminal and the settings of the
options which are different from their defaults. With the argument "all", all normally used
option settings are reported. With the argument "everything", everything stty knows about
is printed. The option strings are selected from the following set:

even
-even
odd
-odd

allow even parity input
disallow even parity input
allow odd parity input
disallow odd parity input

raw raw mode input {no input processing (erase, kill, interrupt, ...); parity bit passed
back)
negate raw mode
same as '-raw'

-raw
cooked
cbreak make each character available to read(2) as received; no erase and kill processing,

but all other processing (interrupt, suspend, ...) is performed
-cbreak make characters available to read only when newline is received
-nl allow carriage return for new-line, and output CR-LF for carriage return or ne'W-

nl
line
accept only new-line to end lines
echo back every character typed
do not echo characters
map upper case to lower case
do not map case

eeho
-eeho
lease
-lease
tandem enable flow control, so that the system sends out the stop character when its inter­

nal queue is in danger of overflowing on input, and sends the start character when
it is ready to accept further input

-tandem disable flow control
hh enable hardware handshaking, so that the system handshakes with RTSjCTS

hardware protocol
-hh disable hardware handshaking
-tabs replace tabs by spaces when printing
tabs preserve tabs
ek . set erase and kill characters to # and @
For the following commands which take a character argument c, you may also specify c as the
"u" or "undef", to set the value to be undefined. A value of "~x", a 2 character sequenct', is
also interpreted as a control character, with "~?" representing delete.

erase c set erase character to c (default '#', but often reset to ~H.)
kill c set kill character to c (default '@', but often reset to AU.)
intr c set interrupt character to c (default DEL or ~? (delete), but often reset to AC.)
quit c set quit character to c (default control \.)
start c set start character to c (default control Q.)
stop c set stop character to c (default control S.)
eof c set end of file character to c (default control D.)

ICON INTERNATIONAL 1

STTY(l) USER COMMANDS STTY(1)

2

brk c set break character to c (default undefined.) This character is an extra wahup
causing character.

erO er I er2 er3
select style of delay for carriage return (see ioctl(2»

nlO nil n12 nl3
select style of delay for linefeed

tabO tabl tab2 tab3

flO ft1
bsO bsl

tty33
tty37
vt05
dee

select style of delay for tab
select style of delay for form feed
select style of delay for backspace

set aU modes suitable for the Teletype Corporation Model 33 terminal.
set all modes suitable for the Teletype Corpora.tion Model 37 terminal.
set all modes suitable for Digital Equipment Corp. VT05 terminal
set all modes suitable for Digital Equipment Corp. operating systems users; (erase,
kill, and interrupt characters to A?, "U, and AC, decctlq and "newcrt".)

tn300 set all modes suitable for a General Electric TermiNet 300
ti700 set all modes suitable for Texas Instruments 700 series terminal
tek set all modes suitable for Tektronix 4014 terminal
o hang up phone line immediately
5075 110 134 150200300600 1200 1800240048009600 exta extb rs422

Set terminal baud rate to the number given, if possible.

A teletype driver which supports the job control processing of csh(l) and more functionality
than t.he basic driver is fully described in tty(4). The following options apply only to it.

new Use new driver (switching flushes typeahead).
ert Set options for a CRT (crtbs, ctlecho and, if >= 1200 baud, crterase and crtkilJ.)
ertbs Echo backspaces on erase characters.
prterase For printing terminal echo erased characters backwards within "\" and "/".
erterase Wipe ou t erased ch aracters with "backspace-space-backspace."
-erterase Leave erased characters visible; just backspace.
ertkill \\Tipe out. input on like kill ala crterase.
-ertkill Just echo line kill character and a newline on line kill.
etlecho Echo control characters as ""x" (and delete as ""?".) Print two backspaces follow­

ing the EOT character (control D).
-etlecho Control characters echo as themselves; in cooked mode EOT (control-D) is not

echoed.

decctlq After output is suspended (normally by AS), only a start character (normally 'Q)
will restart it. This is compatible with DEC's vendor supplied systems.

-decetlq

tostop
-tostop
tilde
-tilde
Busho
-Busho
pendin

-pend in
intrup

After output is suspended, any character typed will restart it; the start character
will restart output without providing any input. (This is the default.)
Background jobs stop if they attempt terminal output.
Output from background jobs to the terminal is allowed.
Convert "-,, to "'" on output (for Hazeltine terminals).
Leave poor "-,, alone.
Output is being discarded usually because user hit control 0 (internal state bit).
Output is not being discarded.
Input is pending after a switch from cbreak to cooked and will be re-input when a
read becomes pending or more input arrives (internal state bit).
Input is not pending.
Send a signal (SIGTINT) to the terminal control process group whenever an input
record (line in cooked mode, character in cbreak or raw mode) is available for

ICON INTERNATION.\L

(\

(

STTY(I) USER COMlvlANDS

reading.
-intrup Don't send input available interrupts.
mdmbuf Start/stop output on carrier transitions (not implemented).
-mdmbuf

litout
-litout
Dohang
-nohang
etxack

Return error if write attempted after carrier drops.
Send output characters without any processing.
Do normal output processing, inserting delays, etc.
Don't send hangup signal if carrier drops.
Send hangup signal to control process group when carrier drops.
Diablo style etx/ack handshaking (not implemented).

STTY(I}

The following special characters are applicable only to the new teletype driver and are not
normally changed.

susp c
dsusp c
rprnt c
flush c
werase c
mext c

SEE ALSO

set suspend process character to c (default control Z).
set delayed suspend process character to c (default control Y).
set reprint line character to c (default control R).
set flush output character to c (default control 0).
set word erase character to c (defa.ult control W).
set literal next character to c (default control V).

ioctl(2), tabs(l), tset(l), tty(4)

ICON INTERNATIONAL 3

STYLE (1) USER CO:MMANDS STYLE (1)

NAME
style - analyze surface characteristics of a document

SYNOPSIS
style [-ml] [-mm] [-a] [-e] [-1 num] [-r num] I-p J [-P J file .,.

DESCRIPTION
Style analyzes the surface characteristics of the writing style of a document. It reports on rea­
dability, sentence length and structure, word length and usage, verb type, and sentence
openers. Because style runs deroff before looking at the text, formatting header files should be
included as part of the input. The default macro package -IDS may be overridden with the
flag -mm. The flag -mI, which causes deroff to skip lists, should be used if the documf'nt
contains many lists of non-sentences. The other options are used to locate sentences with cer­
tain characteristics.

-a print all sentences with their length and readability index.

-e print all sentences that begin with an expletive.

-p print all sentences that contain a passive verb.

-Inum print all sentences longer than num.

-rnum print all sentences whose readability index is greater than num.

-P print parts of speech of the words in the document.

SEE ALSO
deroff(l), diction(l}

BUGS
Use of non-standard formatting macros may cause incorrect sentence breaks.

ICON INTERNATIONAL 1

(

SUP) USER COMMANDS SUP)

NAME
su - substitute user id temporarily

SYNOPSIS
au [userid J

DESCRIPTION
Su demands the password of the specified userid, and if it is given, changes to that userid and
invokes the Shell sh(l) without changing the current directory. The user environment is
unchanged except for HOME and SHELL, which are taken from the password file for the user
being substituted (see environ(7)). The new user ID stays in force until the Shell exits.

If no userid is specified, 'root' is assumed. To remind the super-user of his responsibilities, the
Shell substitutes '#' for its usual prompt.

SEE ALSO
sh(l)

BUGS
Local administrative rules cause restrictions to be placed on who can su to 'root', even with
the root password. These rules vary from site to site.

ICON INTERNATIONAL 1

SUM(l) USER COMMANDS

NAME
sum - sum and count blocks in a file

SYNOPSIS
sum file

DESCRIPTION

SUM (1)

Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of
blocks in the file. It is typically used to look for bad spots, or to validate a file communicated
over some transmission line.

SEE ALSO
wc(l}

DIAGNOSTICS
'Read error' is indistinguishable from end of file on most devices; check the block count.

ICON INTERNATIONAL 1

().

(

SYMORDER (1) USER COMMANDS SYMORDER (1)

NAME
symorder - rearrange name list

SYNOPSIS
symorder orderlist symbolfile

DESCRIPTION
Orderlist is a file containing symbols to be found in symbolfile, 1 symbol per line.

Symbolfile is updated in place to put the requested symbols first in the symbol table, in the
order specified. This is done by swapping the old symbols in the required spots with the new
ones. If all of the order symbols are not found, an error is generated.

This program was specifically designed to cut down on the overhead of getting symbols from
/vmunix.

SEE ALSO
nlist(3)

ICON INTERNATIONAL 1

SYSLINE(l) USER COMMANDS SYSLlNE(1)

NAME
sysline - display system status on status line of a terminai

SYNOPSIS
ayaline [-bcdehDllmpqrsj] [-H remote] [+N J

DESCRIPTION
Sysline runs in the background and periodically displays system status information on the
status line of the terminal. Not all terminals contain a status line. Those that do include the
h19, concept 108, Ann Arbor Ambassador, vt100, Televideo 925/950 and Freedom 100. If no
flags are given, Bysline displays the time of day, the current load average, the change in load
average in the last 5 minutes, the number of users (followed by a 'u'), the number of runnable
process, the number of suspended processes, and the users who have logged on and off since
the last status report. Finally, if new mail has arrived, a summary of it is printed .. If there is
unread mail in your mailbox, an asterisk will appear aiter the display of the number of users.
The display is normally in reverse video (if your terminal supports this in the status line) and
is right justified to reduce distraction. Every fifth display is done in normal video to give the
screen a chance to rest.

If you have a file named .who in your home directory, then the contents of that file is printed
first. One common use of this feature is to alias chdir, pushd, and popd to place the current
directory stack in - j.who aiter it changes the new directory.

The following flags may be given on the command line.

-b Beep once every half hour and twice every hour, just like those obnoxious
watches you keep hearing.

-c
-d
-D

Clear the status line for 5 seconds before each redisplay.

Debug mode -- print status line data in human readable format

Print out the current day/date before the time.
-e Print out only the information. Do not print out the control commands ne('es­

sary to put the information on the bottom line. This option is useful for put-
ting the output of sysline onto the mode line of an emacs window.

-H remote Print the load average on the remote host remote. If the host is down, or is not
sending out rwhod packets, then the down time is printed instead.

-h Print out the host machine's name after the time.

-1 Don't print the names of people who log in and out.

-m Don't check for mail.
-p Don't report the number of process which are runnable and suspended.

-I' Don't display in reverse video.

+N Update the status line every N seconds. The default is 60 seconds.

-q Don't print out diagnostic messages if something goes wrong when starting up.
-i Print out the process id of the sysline process onto standard output upon

startup. With this information you can send the alarm signal to the 8ysline pro­
cess to cause it to update immediately. sysline writes to the standard error. so
you can redirect the standard output into a file to catch the process id.

ICON INTERNATIONAL 1

c

(

(

SYSLINE(l) USER COMMANDS SYSLINE (1)

FILES

-8 Print "short" form of line by left-justifying iff escapes are not allowed in t.he
status line. Some terminals (the Televideos and Freedom 100 for example) do
not allow cursor movement (or other "intelligent" operations) in the status line.
For these terminals, sysline normally uses blanks to cause right-justification.
Th.is flag will disable the adding of the blanks.

-j Force the sysline output to be left justified even on terminals capable of cursor
movement on the status line.

If you have a file .syslinelock in your home directory, then sysline will not update its statist.ics
and write on your screen, it will just go to sleep for a minute. This is useful if you want to
momentarily disable sysline. Note that it may take a few seconds from the time the lock file is
created until you are guaranteed that 8ysline will not write on the screen.

/etc/utmp
/dev/kmem
/usr/spool/rwho/whod.*
${HOME}/.who
${HOME}/.syslinelock

names of people who are logged in
contains process table
who/uptime information for remote hosts
information to print on bottom line
when it exists, sysline will not print

AUTHORS

BUGS

2

John Foderaro
Tom Ferrin converted it to use termcap.
Mark Horton added term info capability.

If you interrupt the display then you may find your cursor missing or stuck on the status
line. The best thing to do is reset the terminal.
If there is too much for one line, the excess is thrown away.

ICON INTERNATIONAL

TABS(I) USER COMMANDS TABS(l)

NAME
tabs - set terminal tabs

SYNOPSIS
ta.bs [-D] [terminal J

DESCRIPTION
Tabs sets the tabs on a variety of terminals. Various terminal names given in term(7) are
recognized; the default is, however, suitable for most 300 baud terminals. If the -D flag is
present then the left margin is not indented as is normal.

SEE ALSO
sttY(l), term(7)

BUGS
It's much better to use tset(l}.

ICON INTERNATIONAL 1

i··"·

/~\.

~.j

(,;'

TAC(l) USER COMMANDS TAC(l)

NAME
tac - concatenate and print files in reverse order

SYNOPSIS
tac [-string) [+string) [file ...)

DESCRIPTION
Tac reads each file in sequence and writes it on the standard output, reversed by the file seg­
ments delimited by Btring. -Btring specifies segments bounded on the left by string, while
+string specifies right-bounded segments. The default is +\n (print lines in reverse order). If
no input file is given, or if the argument '-' is encountered, tac reads from the standard input.
Note that in this case tac stores the entire standard input in a temporary file before it outputs
anything, so for large input it is slow.

EXAMPLES
tac '-\
From ' /usr /spool/mail/$USER

prints out one's mail messages, most recent first.

tac file
prints the file in reverse, line by line.

tac /usr/adm/messages I egrep 'hp.*hard'
prints out the hard errors on MASSBUS disk drives, most recent first.

SEE ALSO
(cat(l), rev(l), tail(l), tmail(l}

BUGS
Tac doesn't handle multiple argument files exactly right, and it is unclear in which order they
should be processed.

If invoked as 'tac < file', tac uses a temp file but it doesn't have to.

ICON INTERNATIONAL 1

TAIL(l) USER COMMANDS TAIL (1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [±number[lbcllfr]] [file 1

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no filE' is
named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the end of the
input. Number is counted in units of lines, blocks or characters, according to the appended
option I, b or c. When no units are specified, counting is by lines.

Specifying r causes tail to print lines from the end of the file in reverse order. The default for
r is to print the entire file this way. Specifying f causes tail to not quit at end of file, but
rather wait and try to read repeatedly in hopes that the file will grow.

SEE ALSO
dd(l)

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length.

Various kinds of anomalous behavior may happen with character special files.

ICON INTERNATIONAL 1

(-

TALK(l) USER COMMANDS TALK (1)

NAME
talk - talk to another user

SYNOPSIS
talk person [ttyname 1

DESCRIPTION
Talk is a visual communication program which copies lines from your terminal to that of
another user.

If you wish to talk to someone on you own machine, then person is just the person's login
name. If you wish to talk to a user on another host, then person is of the form :

host!user or
host. user or
host.·user or
user@host

though host@user is perhaps preferred.

If you want to talk to a user who is logged in more than once, the ttyname argument may be
used to indicate the appropriate terminal name.

When first called, it sends the message

Message from TalkDaemon@his_machine ...
talk: connection requested by your_name@your_machine.
talk: respond with: talk your.Jlame@your_machine

to the user you wish to talk to. At this point, the recipient of the message should reply by
typing

talk your.Jlame@your_machine

It doesn't matter from which machine the recipient replies, as long as his login-name is the
same. Once communication is established, the two parties may type simultaneously, with
their output appearing in separate windows. Typing control L will cause the screen to be
reprinted, while your erase, kill, and word kill characters will work in talk as normal. To exit,
just type your interrupt character; talk then moves the cursor to the bottom of the screen and
restores the terminal.

Permission to talk may be denied or granted by use of the mesg command. At the outset
talking is allowed. Certain commands, in particular nroff and pr(l) disallow messages in
order to prevent messy output.

FILES
/etc/hosts
/etc/utmp

SEE ALSO

to find the recipient's machine
to find the recipient's tty

mesg{l), who{l), mail(l), write{l)

ICON INTERNATIONAL 1

TAR(l) USER COMMANDS TAR (1)

NAME
tar - tape archiver

SYNOPSIS
tar I key] I name ...]

DESCRIPTION
Tar saves and restores multiple files on a single file (usually a magnetic ta.pe, but it can be
any file). Tar's actions are controlled by the key argument. The key is a string of characters
containing at most one function letter and possibly one or more function modifiers. Other
arguments to tar are file or directory names specifying which files to dump or restore. In all
cases, appearance of a directory name refers to the files and (recursively) subdirectories of that
directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function implies this.

x The named files are extracted from the tape. If the named file matches a direct.ory
whose contents had been written onto the tape, this directory is (recursin'ly)
extracted. The owner, modification time, and mode are restored (if possible). If no
file argument is given, the entire content of the tape is extracted. Note that if multi­
ple entries specifying the same file are on the tape, the last one overwrites all earlier.

t The names of the specified files are listed each time they occur on the tape. If no file
argument is given, all of the names on the tape are listed.

u The named files are added to the tape if either they are not already there or have
been modified since last put on the tape.

c Create a new tape; writing begins on the beginning of the tape instead of after the
last file. This command implies r.

o On output, tar normally places information specifying owner and modes of direc­
tories in the archive. Former versions of tar, when encountering this information
will give error message of the form

"<name> /: cannot create".
This option will suppress the directory information.

p This option says to restore files to their original modes, ignoring the present
umask(2). Setuid and sticky information will also be restored to the super-user.

The following characters may be used in addition to the letter which selects the funct.ion
desired.

0, •.. , 9

v

w

r

This modifier selects an alternate drive on which the tape is mounted. The default
is drive 0 at 1600 bpi, which is normally /dev /rmt8.

Normally tar does its work silently. The v (verbose) option make tar type the
name of each file it treats preceded by the function letter. ~rith the t function,
the verbose option gives more information about the tape entries than just their
names.
Tar prints the action to be taken followed by file name, then wait for user
confirmation. If a word beginning with 'y' is given, the action is done. Any other
input means don't do it.

Tar uses the next argument as the name of the archive instead of /dev /rmt? If
the name of the file is '-', tar writes to standard output or reads from standard
input, whichever is appropriate. Thus, tar can be used as the head or tail of a filter

ICON INTERNATIONAL 1

(~
\ J

'''-0- /

TAR (1) USER COMMANDS TAR (1)

FILES

b

chain. Tar can also be used to move hierarchies with the command
cd fromdirj tar cf - . I (cd todirj tar xf -)

Tar uses the next argument as the blocking factor for tape records. The default is
20 (the maximum). This option should only be used with raw magnetic tape
archives (See f above). The block size is determined automatically when reading
tapes (key letters 'x' and It').

I tells tar to complain if it cannot resolve all of the links to the files dumped. If this
is not specified, no error messages are printed.

m tells tar not to restore the modification times. The modification time will be the
time of extraction.

h Force tar to follow symbolic links as if they were normal files or directories. Nor­
mally, tar does not follow symbolic links.

B Forces input and output blocking to 20 blocks per record. This option was added
so that tar can work across a communications channel where the blocking may not
be maintained.

If a file name is preceded by -C, then tar will perform a chdir(2) to that file name. This
allows multiple directories not related by a close common parent to be archived using short
relative path names. For example, to archive files from jusr/include and from /etc, one might
use

tar c -C /usr include -C / etc

Previous restrictions dealing with tar's inability to properly handle blocked archives have been
lifted.

/dev /rmt?
/tmp/taT*

DIAGNOSTICS

BUGS

2

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The current limit on file name length is 100 characters.
There is no way to selectively follow symbolic links.

ICON INTERNATIONAL

TBL(1) USER CO:MMANDS TBL(1)

NAME
tb! - format tables for nroH' or troH'

SYNOPSIS
tbl I files J ...

DESCRIPTION
Tbl is a preprocessor for formatting tables for nroff or troff(1). The input files are copied to
the standard output, except for lines between and are reformatted. Details are given in the
tbl(1) reference manual. ,

EXAMPLE
As an example, letting \t represent a tab (which should be typed as a genuine tab) the input

yields

.TS
css
ccs
c c c
Inn.
Household Population
Town \tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\t3087\t3.74
Bernardsville \t2018\t3.30
Bound Brook \t3425\t3.04
Branchburg\t1644\t3,49
Bridgewater\t7897\t3.81
Far Hills\t240\t3.19
.TE

Household Population
Town Households .

Bedminster
Bernards Twp.
Bern ardsv ille
Bound Brook
Branchburg
Bridgewater
Far Hills

Number Size
789 3.26

3087 3.74
2018 3.30
3425 3.04
1644 3,49
7897 3.81

240 3.19

If no arguments are given, tbl reads the standard input, so it may be used as a filter. 'When
tbl is used with eqn or neqn the tbl command should be first, to minimize the volume of data
passed through pipes.

SEE ALSO
trofT(l), eqn(1)
M. E. Lesk, TBL.

ICON INTERNATIONAL 1

;1"""
i
\~'

(

TC(l) USER COMMANDS TC(l)

NAME
tc - photoypesetter simulator

SYNOPSIS
tc [-t] [-sN] [-pL] [fil~]

DESCRIPTION
Tc interprets its input (standard input default) as device codes for a Graphic Systems photo­
typesetter (cat). The standard output of tc is intended for a Tektronix 401.5 (a 4014 terminal
with ASCII and APL character sets). The sixteen typesetter sizes are mapped into the 4014's
four sizes; the entire TROFF character set is drawn using the 4014's character generator,
using overstruck combinations where necessary. Typical usage:

troff -t file I tc

At the end of each page tc waits for a newline (empty line) from the keyboard before continu­
ing on to the next page. In this wait state, the command e will suppress the screen erase
before the next page; sN will cause the next N pages to be skipped; and !line will send line to
the shell.

The command line options are:

-t Don't wait between pages; for directing output into a file.

-aN Skip the first N pages.

-pL Set page length to L. L may include the scale factors p (points), i (inches), c (centime-
ters), and P (picas); default is picas.

I -I Wi Multiply the default aspect ratio, 1.5, of a displayed page by 1/ w.

SEE ALSO

BUGS

troff(l), plot(IG)

Font distinctions are lost.
te's character set is limited to ASCII in just one size.
The aspect ratio option is unbelievable.

ICON INTERNATIONAL 1

TCOPY(l) USER COMMANDS TCOPY(1)

NAME
tcopy - copy a mag tape

SYNOPSIS
tcopy erc [dest 1

DESCRIPTION
Tcopy is designed to copy magnetic tapes. The only assumption made about the tape is that
there are two tape marks at the end. Tcopy with only a source tape specifi~d will print infor­
mation about the sizes of records and tape files. If a destination is specifi~d, then, a copy will
be made of the source tape. The blocking on the destination tape will b~ identical to that
used on the source tape. Copying a tape will yield the same output as if just printing the
~es. .

SEE ALSO
mtio(4)

ICON INTERNATIONAL 1

',"" /

(

(

TEACHJOVE (1) USER COMMANDS

NAME
TEACHJOVE - learn how to use the JOVE editor

SYNOPSIS
tea.chjove

DESCRIPTION

TEACH JOVE (1)

TEACHJOVE is a simple program that calls up the JOVE editor on a special file that is an
interactive tutorial for the JOVE editor. Once in JOVE all you do is follow the instructions
and by doing so you will learn all about JOVE!

Fll..ES
/usr/new /lib/jove/teach-jove - THE special file.

SEE ALSO
JOVE(l) - to learn about JOVE in general.

AUTHOR
Jonathan Payne

ICON INTERNATIONAL 1

TEE(J) USER COMMANDS TEE(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i] [-a] I file J ...

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the files.
Option -i ignores interrupts; option -a causes the output to be appended to the files rather
than overwriting them. '

ICON INTERNATIONAL 1

/

(

TELNET(lC) USER COMMANDS TELNET(lC)

1 NAME
telnet - user interface to the TELNET protocol

SYNOPSIS
telnet [host [port 11

DESCRIPTION

BUGS

Telnet is used to communicate with another host using the TELNET protocol. If telnet is
invoked without arguments, it enters command mode, indicated by its prompt ("telnet> ").
In this mode, it accepts and executes the commands listed below. If it is invoked with argu­
ments, it performs an open command (see below) with those arguments.

Once a connection has been opened, telnet enters input mode. In this mode, text typed is sent
to the remote host. To issue telnet commands when in input mode, precede them with the
telnet "escape character" (initially "A["). When in command mode, the normal terminal edit­
ing conventions are available.

The following commands are available. Only enough of each command to uniquely identify it
need be typed.

open host [port 1
Open a connection to the named host. If the no port number is specified, te/net will
attempt to contact a TELNET server at the default port. The host specification may
be either a host name (see hosts(5)) or an Internet address specified in the "dot nota­
tion".

close Close a TEL NET session and return to command mode.

quit Close any open TELNET session and exit telnet.

z Suspend telnet. This command only works when the user is using the csh{l).

escape [escape-char 1
Set the telnet "escape character". Control characters may be specified as "A" followed
by a single letter; e.g. "control-X" is "AX".

status Show the current status of ielnet. This includes the peer one is connected to, as well
as the state of debugging.

options

crmod

Toggle viewing of TELNET options processing. When options viewing is enabled, all
TELNET option negotiations will be displayed. Options sent by ielnet are displa~'ed
as "SENT", while options received from the TELNET server are displayed as
"RCVD".

Toggle carriage return mode. When this mode is enabled any carriage return charac­
ters received from the remote host will be mapped into a carriage return and a line
feed. This mode does not affect those characters typed by the user, only those
received. This mode is not very useful, but is required for some hosts that like to ask
the user to do local echoing.

r [command J
Get help. With no arguments, telnet prints a help summary. If a command is
specified, telnet will print the help information available about the command only.

This implementation is very simple because rlogin(lC) is the standard mechanism used to
communicate locally with hosts.

ICON INTERNATIONAL 1

TEST(l)

NAME
test - condition command

SYNOPSIS
test expr

DESCRIPTION

USER COMMANDS TEST (1)

test evaluates the expression upr, and if its va.lue is true then returns zero exit status; other­
wise, a non zero exit status is returned. test returns a non zero exit if there are no arguments.

The following primitives are used to construct ezpr.

-r file true if the file exists and is readable.

-w file true if the file exists and is writable.

-f file true if the file exists and is not a directory.

-d file true if the file exists exists and is a directory.

-8 file true if the file exists and has a size greater than zero.

-t [fildes J
true if the open file whose file descriptor number is filde8 (1 by dt'fault) is associated
with a terminal device.

-z 51

-D s1

s1 = s2

true if the length of string 81 is zero.

true if the length of the string 81 is nonzero.

true if the strings sl and s2 are equal.

s1 != s2 true if the strings 81 and s2 are not equal.

s1 true if 81 is not the null string.

n1 -eq n2
true if the integers nl and n2 are algebraically equal. Any of tht' comparisons -De,
-gt, -ge, -It, or -Ie may be used in place of -eq.

These primaries may be combined with the following operators:

! unary negation operator

-a binary and operator

-0 binary or operator

(expr)
parentheses for grouping.

-a has higher precedence than -0. Notice that all the operators and flags are separate argu­
ments to test. Notice also that parentheses are meaningful to the-Shell and must be escapt'd.

SEE ALSO
sh(l), find(1)

ICON INTERNATIONAL 1

/ -,

\ -. ~

r-'
~j'

(

TFTP(IC) USER COMMANDS TFTP(Ie)

NAME
tftp - trivial file transfer program

SYNOPSIS
tttp [host 1

DESCRIPTION
Tftp is the user interface to the Internet TFTP (Trivial File Tra.nsfer Protocol), which allows
users to transfer files to and from a remote machine. The remote host may be specified on the
command line, in which case tftp uses host as the default host for future transfers (see the
connect comn;tand below).

COMMANDS
Once tftp is running, it issues the prompt tttp> and recognizes the following commands:

connect host-name [port 1
Set the host (and optionally port) for transfers. Note that the TFTP protocol, unlike
the FTP protocol, does not maintain connections betweeen transfers; thus, the connect
command does not actually create a connection, but mereoly remembers what host is to
be used for transfers. You do not have to use the connect command; the remote host
can be specified as part of the get or put commands.

mode transfer-mode
Set the mode for transfers; transfer-mode may be one of ascii or binary. The default is
ascu.

put file
put localfile remotefile
put fUel filef ... fileN remote-directory

Put a file or set of files to the specified remote file or directory. The destination can be
in one of two forms: a filename on the remote host, if the host has already been
specified, or a string of the form host:filename to specify both a host and filename at
the same time. If the latter form is used, the hostname specified becomes the default
for future transfers. If the remote-directory form is used, the remote host is assumed
to be a UNIX machine.

get filename
get remotename localname
get fild filef ... fileN

Get a file or set of files from the specified sources. Source can be in one of two forms:
a filename on the remote host, if the host has already been specified, or a string of the
form host:filename to specify both a host and filename at the same time. If the latter
form is used, the last hostname specified becomes the default for future transfers.

quit Exit tftp. An end of file also exits.

verbose
Toggle verbose mode.

trace Toggle packet tracing.

status Show current status.

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
(-' Set the total transmission timeout, in seconds.

ICON INTERNATIONAL 1

TFTP(tC) USER COM:MA.NDS TFTP(lC)

BUGS

2

ascii Shorthand for "mode ascii"

binary
Shorthand for "mode binary"

r I command-name ...]
Print help information.

Because there is no user-login or validation within the TFTP protocol, the remote site will
probably have some sort or file-access restrictions in place. The exact methods are specific to
each site and therefore difficult to document here.

ICON INTERNATIONAL

--~~------- ---------~---- .

/

(-).

TIME (1) USER COMMANDS TIME (1)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION

BUGS

The given command is executed; after it is complete, time prints the elapst'd time during the
command, the time spent in the system, and the time spent in execution of the command.
Times are reported in seconds.

The times are printed on the diagnostic output stream.

Time is built in to csh(l), using a different output format.

Elapsed time is accurate to the second, while the CPU times are measured to the lOOth
second. Thus the sum of the CPU times can be up to a second larger than the elapsed time.

Time is a built-in command to csh(l), with a much different syntax. This command is avail­
able as "/bin/time" to csh users.

ICON INTERNATIONAL 1

TIP(lC) USER COMMANDS TIP (IC)

NAME
tip, cu - connect to a remote system

SYNOPSIS
tiP! -v] ! -speed! system-name
tip -v] -speed phone-number
eu phone-number -t] [-s speed 1 [

DESCRlPTION

-& aCll 1 [-1 line J [-# J

Tip and Cll establish a full-duplex connection to another machine, giving the appearance of
being logged in directly on the remote cpu. It goes without saying that you must have a login
on the machine (or equivalent) to which you wish to connect. The preferrE'd interface is tip.
The ell interface is included for those people attached to the "call UNIX" command of version
7. This manual page describes only tip.
Typed characters are normally transmitted directly to the remote machine (which does the
echoing as well). A tilde ('-') appearing as the first character of a line is an escape signal; the
following are recognized:

-"'D -. Drop the connection and exit (you may still be logged in on the remote machine).

- e [name] Change directory to name (no argument implies change to your home directory).

- ! Escape to a shell (exiting the shell will return you to tip).

> Copy file from local to remote. Tip prompts for the name of a local file to
transmit.

< Copy file from remote to local. Tip prompts first for the name of the file to be
sent, then for a command to be executed on the remote machine.

-p from [to J
Send a file to a remote UNIX host. The put command causes the remote UI\TJX
system to run the command string "cat> 'to"', while tip sends it the "from" file.
If the "to" file isn't specified the "from" file name is used. This command is actu­
ally a UNIX specific version of the ,,- >" command.

- t from [to] .
Take a file from a remote UNIX host. As in the put command the "to" file
defaults to the "from" file name if it isn't specified. The remote host executes the
command string "cat 'from';echo ... A" to send the file to tip.

-I Pipe the output from a remote command to a local UNIX process. The command
string sent to the local UNIX system is processed by the shell.

-# Send a BREAK to the remote system. For systems which don't support the neces­
sary ioetl call the break is simulated by a sequence of line speed changes and DEL
characters.

8 Set a variable (see the discussion below).

-"'Z Stop tip (only avaiJable with job control).

-r Get a summary of the tilde escapes

Tip uses the file /etc/remote to find how to reach a particular system and to find out how it
should operate while talking to the system; refer to remote(5) for a full description. Each sys­
tem has a default baud rate with which to establish a connection. If this va.lue is not suitable,
the baud rate to be used may be specified on the command line, e.g. "tip -300 mds".

ICON INTERNATIONAL 1

/.

TIP (IC) USER COMMANDS TIP (IC)

2

When tip establishes a connection it sends out a connection message to the remote system; the
default value, if any, is defined in /etc/remote.
When tip prompts for an argument (e.g. during setup of a file transfer) the line typed may be
edited with the standard erase and kill characters. A null line in response t.o a prompt, or an
interrupt, will abort the dialogue and return you to the remote machine.

Tip guards against multiple users connecting to a remote system by opening modems and ter­
minallines with exclusive access, and by honoring the locking protocol used by uucp(lC).

During file transfers tip provides a running count of the number of lines transferred. When
using the - > and - < commands, the "eofread" and "eofwrite" variables are used to re('og­
nize end-of-file when reading, and specify end-of-file when writing (see below). File transfers
normally depend on tandem mode for flow control. If the remote system does not support
tandem mode, "echocheck" may be set to indicate tip should synchronize with the remote sys­
tem on the echo of each transmitted character.

When tip must dial a phone number to connect to a system it will print various messages
indicating its actions. Tip supports the DEC DN-ll and Racal-Vadic 831 auto-calI-units; the
DEC DF02 and DF03, Ventel 212+, Racal-Vadic 3451, and Bizcomp 1031 and 1032 integral
call unit/modems.

VARIABLES

Tip maintains a set of variables which control its operation. Some of these variable are read­
only to normal users (root is allowed to change anything of interest). Variables may be
displayed and set through the "s" escape. The syntax for variables is patterned after tl;(l)
and Mail(l). Supplying "all" as an argument to the set command displays all variables read­
able by the user. Alternatively, the user may request display of a particular variable by
attaching a I?' to the end. For example "escape?" displays the current escape character.

Variables are numeric, string, character, or boolean values. Boolean variables are set merely
by specifying their name; they may be reset by prepending a 'I' to the name. Other variable
types are set by concatenating an '=' and the value. The entire assignment must not have
any blanks in it. A single set command may be used to interrogate as well as set a number of
variables. Variables may be initialized at run time by placing set commands (without t.he
cc- s" prefix in a file .tiprc in one's home directory). The -v option causes tip to display the
sets as they are made. Certain common variables have abbreviations. The following is a list
of common variables, their abbreviations, and their default values.

beautify
(bool) Discard unprintable characters when a session is being scripted; abbreviat.ed be.

baudrate
(num) The baud rate at which the connection was established; abbreviated ba.

dialtimeout
(num) When dialing a phone number, the time (in seconds) to wait for a connection to
be established; abbreviated dial.

echocheck
(bool) Synchronize with the remote host during file transfer by waiting for the echo of
the last character transmitted; default is off.

eofread
(str) The set of characters which signify and end-of-tranmission during a - < file
transfer command; abbreviated eofr.

eofwrite
(str) The string sent to indicate end-of-transmission during a - > file transfer com­
mand; abbreviated eofw.

ICON INTERNATIONAL

TIP (IC)

eol

escape

USER CO:M:MANDS TIP (IC)

(str) The set of characters which indicate an end-of-line. Tip will recognize escape
characters only after an end-of-line.

(char) The command prefix (escape) character; abbreviated es; default value is '-'.
exceptions

force

(str) The set of characters which should not be discarded due to the beautification
switch; abbreviated ex; default value is "\t\n \f\b".

(char) The character used to force literal data transmission; abbreviated fo; default
value is ,AP'.

framesize

host

(l1um) The amount of data (in bytes) to buffer between file system writes when receiv­
ing files; abbreviated fr.

(str) The name of the host to which you are connected; abbreviated ho.

prompt

raise

(char) The character which indicates and end-of-line on the remote host; abbreviated
prj default value is '\n'. This value is used to synchronize during data transfers. The
count of lines transferred during a file transfer command is based on recipt of this
character.

(bool) Upper case mapping mode; abbreviated raj default value is off. When this
mode is enabled, all lower case letters will be mapped to upper case by tip for
transmission to the remote machine.

raisechar " /

record

script

(char) The input character used to toggle upper case mapping mode; abbreviated rc;
default value is 'AA'.

(str) The name of the file in which a session script is recorded; abbreviated rec; default
value is "tip.record".

(bool) Session scripting mode; abbreviated sCi default is off. When script is true, tip
will record everything transmitted by the remote machine in the script record file
specified in record. If the beautify switch is on, only printable ASCII characters will be
included in the script file (those characters betwee 040 and 0177). The variable excep­
tions is used to indicate characters which are an exception to the normal beautification
rules.

tabexpand
(bool) Expand tabs to spaces during file transfers; abbreviated tab; default value is
false. Each tab is expanded to 8 spaces.

verbose
(bool) Verbose mode; abbreviated verb; default is true. When verbose mode is enabled,
tip prints messages while dialing, shows the current number of lines transferred during
a file transfer operations, and more.

SHELL
(str) The name of the shell to use for the -, command; default value is "/bin/sh", or
taken from the environment.

ICON INTERNATIONAL 3

('

(

TIP (IC) USER COMMANDS TIP(IC)

HOME
(str) The home directory to use for the - e command; default value is taken from the
environment.

FIT..ES
fete/remote
fete/phones
${REMOTE}
${PHONES}
- /.tipre
/usr /spool/uuep /LCK..*

DIAGNOSTICS

global system descriptions
global phone number data base
private system descriptions
private phone numbers
initialization file.
lock file to avoid conflicts with uucp

Diagnostics are, hopefully, self explanatory.

SEE ALSO
remote(5), phones(5}

BUGS
The full set of variables is undocumented and should, probably, be pared down.

4 ICONINTERNATION.:\L

TK(l) USER COMMANDS TK(l)

NAME
tk - paginator for the Tektronix 4014

SYNOPSIS
tk [-t] [-N] [-pL] [file]

DESCRIPTION
The output of tk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines to fit on
the screen, divides the screen into N columns, and contributes an eight spac(' page offset in the
(default) single-column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. Teletype Model 37 half- and reverse-line sequences are interpr('tt"d and plott.ed. At
the end of each page tk waits for a newline (empty line) from the keyboard before continuing
on to the next page. In this wait state, the command !command will s('nd the command to
the shell.

The command line options are:

-t Don't wait between pages; for directing output into a file.

-N Divide the screen into N columns and wait after the last column.
-pL Set page length to L lines.

SEE ALSO
. pre!)

ICON INTERNATIONAL 1

(

(

(

TMAIL(1) USER COMMANDS TMAIL(1)

NAME
tmail- print out mail messages, most recent first

SYNOPSIS
tmail [username] [mboxfile 1

DESCRlPTION
Tmail prints mail messages in reverse order (most recent first). If no argument is given, tmail
looks in your system maildrop (j u8r/spool/maii/$ USER). An argument which is a valid user­
name causes tmail to look in that person's maildrop; otherwise the argument should be the
name of a "mailbox" file.

SEE .ALSO
tac(l), cat(l).

BUGS
Should handle multiple arguments.

ICON INTERNATIONAL 1

TOUCH(I) USER COMMANDS TOUCH(l)

NAME
touch - update date last modified of a file

SYNOPSIS
touch [-c] [-f] file ...

DESCRIPTION
Touch attempts to set the modified date of each file. If a file exists, this is done by reading a
character from the file and writing it back. If a file does not exist, an attempt will be mad(' to
create it unless the -e option is specified. The -f option will attempt to force the touch in
spite of read and write permissions on a file.

SEE ALSO
utimes(2)

ICON INTERNATIONAL 1

TR(I) USER COMMANDS TR(1)

NAME
tr - translate characters

SYNOPSIS
tr [-cds 1 [string1 [string2 11

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selt>('ted
characters. Input characters found in stringl are mapped into the corresponding characters of
string£. When string£ is short it is padded to the length of stringl by duplicating its last
character. Any combination of the options -cds may be used: -c complt>ments the set, of
characters in stringl with respect to the universe of characters whose ASCII codes are 01
through 0377 octal; -d deletes all input characters in stringlj -8 squeezes all strings of
repeated output characters that are in string£ to single characters.

In either string the notation a-b means a range of characters from a to b in increasing ASCII
order. The character '\' followed by 1, 2 or 3 octal digits stands for the charactt>r whose
ASCII code is given by those digits. A '\' followed by any other chara('tt>r stands for that
character.

The following example creates a list of all the words in 'file 1 ' one per line in 'file2', wht>re a
word is taken to be a maximal string of alphabetics. The second string is quoted to protect
'\' from the Shell. 012 is the ASCII code for newline.

tr -cs A-Za-z ,\012' <filel >file2

SEE ALSO
ed(I), ascii(7), expand(I)

BUGS
Won't handle ASCII NUL in stringl or string2; always deletes NUL from input.

ICON INTERNATIONAL 1

TRMAN(l) USER COMMANDS

NAME
trman - translate version 6 manual macros to version 7 macros

SYNOPSIS
trman [file

DESCRIPTION

TRMAN(l)

Trman reads the input file, which should be nrofl'/trofl' input and attempts to translate the
version 6 manual sections therein to version 7 format. It is largely successful, but seems to
have trouble with indented paragraphs and complicated font control. You should expect to
have to fix up long sections by hand somewhat.

SEE ALSO
man(7}

BUGS

ICON INTERNATIONAL 1

~~~--------.. ---~ 



( 

TROFF( 1) USER COMMANDS TROFF( 1) 

NAME 
trofi', nrofi' - text formatting and typesetting 

SYNOPSIS 
troff [ option 1 ... [file 1 .. , 
nrofT [ option 1 ... [file 1 ... 

DESCRIPTION 

FILES 

Troff formats text in the named files for printing on a Graphic Systems C/A/T photo­
typesetter; nroff is used for for typewriter-like devices. Their capabilities are described in the 
Nroff/ Troff user's manual. 

If no file argument is present, the standard input is read. An argument consisting of a single 
minus (-) is taken to be a file name corresponding to the standard input. The options, which 
may appear in any order so long as they appear before the files, are: 

-0 list Print only pages whose page numbers appear in the comma-separated list of 
numbers and ranges. A range N-M means pages N through M; an initial -JV means 
from the beginning to page N; and a final N- means from N-to the end. 

-nN Number first generated page N. 
-sN Stop every N pages. Nroff will halt prior to every N pages (default N=l) to allow 

paper loading or changing, and will resume upon receipt of a newline. Troff will 
stop the phototypesetter every N pages, produce a trailer to allow changing 
cassettes, and resume when the typesetter's start button is pressed. 

-mname Prepend the macro file /usr/lib/tmae/tmae.name to the input files. 

-raN Set register a (one-character) to N. 
-i Read standard input after the input files are exhausted. 

-q Invoke the simultaneous input-output mode of the rd request. 

Troff only 

-t Direct output to the standard output instead of the phot.otypesetter. 

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run. 

-w \Vait until phototypesetter is available, if currently busy. 

-b Report whether the phototypesetter is busy or ayailable. 1\'0 text processing is done. 

-a Send a printable ASCII approximation of the results to the standard output. 

-pN Print all characters in point size N while retaining all prescribed spacings and 
motions, to reduce phototypesetter elapsed time. 

-Ffontdir 
The directory fontdir contains the font width tables /usr/lib/fonts. This option can 
be used to produce output for devices besides the phototypesetter. 

If the file /usr/adm/tracct is writable, troff keeps phototypesetter accounting records there. 
The integrity of that file may be secured by making troffa 'set user-id' program. 

/tmp/ta* temporary file 
/usr/lib/tmac/tmac.* standard macro files 

ICON INTERNATIONAL 1 



TROFF( 1) USER COMMANDS 

/usr/lib/term/* 
/usr/lib/font/* 
/dev/cat 
/ usr / adm / tracct 

terminal driving tables for nroff 
font width tables for troff 
phototypesetter 
accounting statistics for /dev /cat 

SEE ALSO 

2 

J. F. Ossanna, Nroff/Troffuser's manual 
B. W. Kernighan, A TROFF Tutorial 
eqn(l), tbl(l), ms(7), me(7), man(7), col(l) 

---------------- ------- -------- ~--- ----

TROFF( 1) 

/ 

ICON INTERNATIONAL 



(\ 

(~. 

TRUE ( 1) USER COMMANDS 

NAME 
true, false - provide truth values 

SYNOPSIS 
true 
false 

DESCRIPTION 

TRUE ( 1) 

True and false are usually used in a Bourne shell script. They' test for the appropriate status 
"true" or "false" before running (or failing to run) a list of commands. 

EXAMPLE 

SEE ALSO 

while true 
do 

command list 
done 

csh(l), sh(l), false(l) 

DIAGNOSTICS 
True has exit status zero. 

ICON INTERNATIONAL 1 



TSET(l) USER COMMANDS TSET( 1) 

NAME 
tset - terminal dependent initialization 

SYNOPSIS 
teet [ options 1 [ -m [identJ[test baudrate]:type J ... [ type 1 

reset ... 

DESCRIPTION 
Tset sets up your terminal when you first log in to a UNIX system. It does terminal depen­
dent processing such as setting erase and kill characters, setting or resetting delays, sending 
any sequences needed to properly initialized the terminal, and the like. It first determines the 
type of terminal involved, and then does necessary initializations and mode settings. The type 
of terminal attached to each UNIX port is specified in the /etc/ttytype database. Type names 
for terminals may be found in the termcap(5) database. If a port is not wired permanently to 
a specific terminal (not hardwired) it will be given an appropriate generic identifier such as 
dialup. 

In the case where no arguments are specified, tset simply reads the terminal type out of the 
environment variable TERM and re-initializes the terminal. The rest of this manual concerns 
itself with mode and environment initialization, typically done once at login, and options used 
at initialization time to determine the terminal type and set up terminal modes. 

When used in a startup script (.profile for sh( t) users or .login for csh(1 ) users) it is desirable 
to give information about the type of terminal you will usually use on ports which are not 
hardwired. These ports are iden tified in / etc/ ttytype as dia.lup or plugboard or arpanet, etc. 
To specify what terminal type you usually use on these ports, the -m (map) option flag is fol­
lowed by the appropriate port type identifier, an optional baud rate specification, and the ter­
minal type. (The effect is to "map" from some conditions to a terminal type, that is, to tell 
tset "If I'm on this kind of port, guess that I'm on that kind of terminal".) If more than one 
mapping is specified, the first applicable mapping prevails. A missing port type identifier 
matches all identifiers. Any of the alternate generic names given in term cap may be used for 
the identifier. 

A baudra.te is specified as with stty(t) , and is compared with the speed of the diagnostic out­
put (which should be the control terminal). The baud rate test may be any combination of: 
>, @, <, and !; @ means "at" and! inverts the sense of the test. To avoid problems with 
metacharacters, it is best to place the entire argument to -m within"'" characters; users of 
csh(l) must also put a "\" before any"!" used here. 

Thus 

tset -m 'dialup>300:adm3a' -m dialup:dw2 -m 'plugboard:?adm3a' 

causes the terminal type to be set to an adm9a if the port in use is a dialup at a speed greater 
than 300 baud; to a dwf if the port is (otherwise) a dialup (i.e. at 300 baud or less). (NOTE: 
the examples given here appear to take up more than one line, for text processing reasons. 
When you type in real tset commands, you must enter them entirely on one line.) If the type 
finally determined by tset begins with a question mark, the user is asked if s/he really wants 
that type. A null response means to use that type; otherwise, another type can be entered 
which will be used instead. Thus, in the above case, the user will be queried on a plugboard 
port as to whether they are actually using an adm9a. 

If no mapping applies and a final type option, not preceded by a -m, is given on the com­
mand line then that type is used; otherwise the identifier found in the / etcl ttytype database 
will be taken to be the terminal type. This should always be the case for hardwired ports. 

ICON INTERNATIONAL 1 



(' 

TSET(l) USER COMMANDS TSET(1 ) 

2 

It is usually desirable to return the terminal type, as finally determined by tset, and informa­
tion about the terminal's capabilities to a shell's environment. This can be done using the -
option; using the Bourne shell, sh(I}: 

export TERM; TERM='tset - options .. : 

or using the C shell, csh(I}: 

setenv TERM 'tset - options ... ' 

With csh it is convenient to make an alias in your .cshrc: 

alias tset 'setenv TERM 'tset - \!*" 
Either of these aliases allow the command 

tset 2621 
to be invoked at any time from your login csh. Note to Bourne Shell users: It is not pos­
sible to get this aliasing effect with a shell script, because shell scripts cannot. set the environ­
ment of their parent. (If a process could set its parent's environment, none of this nonsense 
would be necessary in the first place.) 

These commands cause tset to place the name of your terminal in the variable TERM in the 
environment; see environ(7}. 

Once the terminal type is known, tset engages in terminal driver mode setting. This normally 
involves sending an initialization sequence to the terminal, setting the single charact.er erase 
(and optionally the line-kill (full line erase)) characters, and setting special character delays. 
Tab and newline expansion are turned off during transmission of the terminal initializat.ion 
sequence. 

On terminals that can backspace but not overstrike (such as a CRT), and when the erase char­
acter is the default erase character ('#' on standard systems), the erase character is changed 
to BACKSPACE (Control-H). 

The options are: 

-ec set the erase character t.o be the named character c on all terminals, the default being 
the backspace character on the terminal, usually AH. The character c can either be 
typed directly, or entered using the hat notation used here. 

-kc is similar to -e but for the line kill character rather than the erase character; c 
defaults to AX (for purely historical reasons). The kill characters is left alone if -k is 
not specified. The hat notation can also be used for this option. 

The name of the terminal finally decided upon is output on the standard output. This 
is intended to be captured by the shell and placed in the environment variable TERM. 

-n On systems with the Berkeley 4BSD tty driver, specifies that the new tty driver modes 
should be initialized for this terminal. For a CRT, the CRTERASE and CRTKILL 
modes are set only if the baud rate is 1200 or greater. See tty(4) for more detail. 

-I suppresses transmitting terminal initialization strings. 

-Q suppresses printing the "Erase set to" and "Kill set to" messages. 

If teet is invoked as reset, it will set cooked and echo modes, turn oft' cbreak and raw modes, 
turn on newline translation, and restore special characters to a sensible state before any termi­
nal dependent processing is done. Any special character that is found to be NULL or "-I" is 
reset to its default value. 

This is most useful after a program dies leaving a terminal in a funny stat.e. You may have to 
type "<LF>reset<LF>" to get it to work since <CR> may not work in this state. Oft-en none 
of this will echo. 

ICON I~TERNATJONAL 



TSET(I) USER COMMANDS TSET( 1) 

EXAMPLES 
These examples all assume the Bourne shell and use the - option. If you use csh, use one of 
the variations described above. Note that a typical use of taet ina .profile or .login will aiso 
use the -e and -k options, and often the -n or -Q options as well. These options have not 
been included here to keep the examples small. (NOTE: some of the examples given here 
appear to take up more than one line, for text processing reasons. When you type in real tset 
commands, you must enter them entirely on one line.) 

At the moment, you are on a 2621. This is suitable for typing by hand but not for a .profile, 
unless you are always on a 2621. 

export TERM; TERM= 'tset - 2621 ' 

You have an h19 at home which you dial up on, but your office terminal is hardwired and 
known in /etc/ttytype. 

export TERM; TERM='tset - -m dialup:h19' 

You have a switch which connects everything to everything, making it nea.rly impossible t.o 
key on what port you are coming in on. You use a vt100 in your office at 9600 baud, and dial 
up to switch ports at 1200 baud from home on a 2621. Sometimes you use someone elses ter­
minal at work, so you want it to ask you to make sure what terminal type you have at high 
speeds, but at 1200 baud you are always on a 2621. Note the placement of the question 
mark, and the quotes to protect the greater than and question mark from interpretation by 
the shell. 

export TERM; TERM='tset - -m 'switch > 12oo:?ytloo' -m 'switch<=1200:262l' 

All of the above entries will fall back on the terminal type specified in / etr/ttytype if none of 
the conditions hold. The following entry is appropriate if you always dial up, always at. the 
same baud rate, on many different kinds of terminals. Your most common terminal is an 
adm3a. It always asks you what kind of terminal you are on, defaulting to adm3a. 

FILES 

export TERM; TERM= 'tset - ?adm3a' 

If the file / etc/ttytype is not properly installed and you want to key entirely on the baud rate, 
the following can be used: 

export TERM; TERM='tset - -m '>1200:vtlOO' 2621' 

Here is a fancy example to illustrate the power of tset and to hopelessly confuse anyone who 
has made it this far. You dial up at 1200 baud or less on a conceptlOO, sometimes oyer 
switch ports and sometimes over regular dialups. You use various terminals at speeds higher 
than 1200 over switch ports, most often the terminal in your office, which is a vt100. How­
ever, sometimes you log in from the university you used to go to, over the ARPANET; in this 
case you are on an ALTO emulating a dm2500. You also often log in on various hardwired 
ports, such as the console, all of which are properly entered in /etc/ttytype. You want your 
erase character set to control H, your kill character set to control V, and don't want tsef to 
print the "Erase set to Backspace, Kill set to Control V" message. 

export TERM; TERM='tset -e -k"'V -Q - -m 'switch <=1200:conceptlOO' -m 
'switch:?vtl00' -m dialup:conceptlOO -m arpanet:dm25OO' 

/etc/ttytype port name to terminal type mapping database 
/etc/termcap terminal capability database 

ICON INTERNATIONAL 3 



( 

( 

TSET (1) USER COMMANDS TSET (1) 

SEE ALSO 
csh(l), sh(l), stty(l), ttytype(5), termcap(5}, environ(7} 

AUTHORS 

BUGS 

4 

Eric Allman 
David Wasley 
Mark Horton 

The tset command is one of the first commands a user must master when getting started on a 
UNIX system. Unfortunately, it is one of the most complex, largely because of the extra effort 
the user must go through to get the environment of the login shell set. Something needs to be 
done to make all this simpler, either the login(l) program should do this stuff, or a default 
shell alias should be made, or a way to set the environment of the parent should exist. 

ICON lNTERNATIONAL 



TSORT( 1) USER COMlv1ANDS TSORT( 1) 

NAME 
tsort - topological sort 

SYNOPSIS 
tsort [ file I 

DESCRIPTION 
Tsort produces on the standard output a totally ordered list of items consistent with a partial 
ordering of items mentioned in the input file. IT no file is specified, tht> standard input is 
understood. 

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different 
items indicate ordering. Pairs of identical items indicate presence, but not ordering. 

SEE ALSO 
lorder{l) 

DIAGNOSTICS 
Odd data: there is an odd number of fields in the input file. 

BUGS 
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive 
file. 

ICON INTERNATIONAL 1 



( 

( 

(~, 

TTY{1 ) 

NAME 
tty - get terminal name 

SYNOPSIS 
tty [-s J 

DESCRIPTION 

USER COMMANDS TTY ( 1) 

Tty prints the pathname of the user's terminal unless the -s (silent) is given. In either case, 
the exit value is zero if the standard input is a terminal and one if it is not. 

DIAGNOSTICS 
'not a tty' if the standard input file is not a terminal. 

ICON INTERNATIONAL 1 



UL(I) USER COMMANDS UL( 1) 

NAME 
ul - do underlining 

SYNOPSIS 
ul [ -i ] [ -t terminal] [ name ... 

DESCRIPTION 
VI reads the named files (or standard input if none are given) and translates occurrences of 
underscores to the sequence which indicates underlining for the terminal in use, as specified by 
the environment variable TERM. The -t option overrides .the terminal kind specified in the 
environment. The file / etc/termcap is read to determine the appropriate sequences for under­
lining. If the terminal is incapable of underlining, but is capable of a standout mode then 
that is used instead. If the terminal can overstrike, or handles underlining automatkally. ul 
degenerates to cat(!}. If the terminal cannot underline, underlining is ignored. 

The -i option causes ul to indicate underlining onto by a separate line containing appropriate 
dashes '-'; this is useful when you want to look at the underlining which is present in an nroff 
output stream on a crt-terminal. 

SEE ALSO 
man(I), nroft'(I}, colcrt{l) 

AUTHOR 

BUGS 

Mark Horton wrote ul. The -i option was originally a option of the editor eX(I), then an iul 
command. 

Nroff usually outputs a series of backspaces and underlines intermixed with the text to indi­
cate underlining. No attempt is made to optimize the backward motion. 

ICON INTERNATIONAL 1 



( 

( 

UNIFDEF( 1) USER COMl\.1ANDS UNIFDEF( 1) 

NAME 
unifdef - remove ifdef'ed lines 

SYNOPSIS 
unifdef [ -t -l-c -Dsym -Usym -idsym -iusym 1 ... [file 1 

DESCRIPTION 
Unifdef is useful for removing ifdef'ed lines from a file while otherwise lea,·ing the file alone. 
Unifdef is like a stripped-down C preprocessor: it is smart enough to dt'al with the nested 
ifdefs, comments, single and double quotes of C syntax so that it can do its job, but it doe~n't 
do any including or interpretation of macros. Neither does it strip out comments, though it 
recognizes and ignores them. You specify which symbols you want defined -Dsym or 
undefined -Usym and the lines inside those ifdefs will be copied to the out.put or removed as 
appropriate. The ifdef, ifndef, else, and endif lines associated with sym will also .be removed. 
Ifdefs involving symbols you don't specify are untouched and copied out along with their 
associated ifdef, else, and endif lines. If an ifdef X occurs nestt'd inside another ifdef X, then 
the inside ifdef is treated as if it were an unrecognized symbol. If the same symbol appears in 
more than one argument, only the first occurrence is significant. 

The -1 option causes unifdef to replace removed lines with blank lines instead of deleting 
them. 

If you use ifdefs to delimit non-C lines, such as comments or code which is under construction, 
then you must tell untJdef which symbols are used for that purpose so that it won't try to 
parse for quotes and comments in those ifdef'ed lines. You specify that you want the lines 
inside certain ifdefs to be ignored but copied out with -idsym and -iusym similar to -Dsym 
and -Usym above. 

If you want to use unifdef for plain text (not C code), use the -t option. This makes url//def 
refrain from attempting to recognize comments and single and double quotes. 

Um/def copies its output to stdout and will take its input from stdin if no file argument is 
given. If the -c argument is specified, then the operation of umfdef is complemented, i.e. the 
lines that would have been removed or blanked are retained and vice versa. 

SEE ALSO 
diff{l) 

DIAGNOSTICS 
Premature EOF, inappropriate else or endif. 

Exit status is 0 if output is exact copy of input, 1 if not, 2 if trouble. 

BUGS 
Does not know how to deal with cpp consructs such as 

#if defined(X) II defined(Y) 

AUTHOR 
Dave Yost 

ICON INTERNATIONAL 1 



UNIQ(l) USER COMMANDS UNIQ( 1) 

NAME 
uniq - report repeated lines in a file 

SYNOPSIS 
uniq [ -udc I +n ] [ -n ] ] I input [ output] 1 

DESCRIPTION 
Uniq reads the input file comparing adjacent lines. In the normal case, the second and 
succeeding copies of repeated lines are removed; the remainder is written on the output file. 
Note that repeated lines must be adjacent in order to be found; see 8ort(1). If the -u flag is 
used, just the lines that are not repeated in the original file are output. The -d option 
specifies that one copy of just the repeated lines is to be written. The normal mode output is 
the union of the -u and -d mode outputs. 

The -c option supersedes -u and -d and generates an output report in default style but with 
each line preceded by a. count of the number of times it occurred. 

The n arguments specify skipping an initial portion of each line in the comparison: 

-n The first n fields together with any blanks before each are ignored. A field is defined 
as a string of non-space, non-tab characters separated by tabs and spaces from its 
neighbors. 

+n The first n characters are ignored. Fields are skipped before characters. 

SEE ALSO 
sort(l), comm(l) 

ICON INTERNATIONAL 1 

--- - - --- --------------------



( 

c: 

UNITS(l) USER COMMANDS UNITS (1) 

, NAME 
units - conversion program 

SYNOPSIS 
units 

DESCRIPTION 

Fll..ES 

BUGS 

Units converts quantities expressed in various standard scales to their equivalents In other 
scales. It works interactively in this fashion: 

You have: inch 
You want: em 

* £.54000e+OO 
/9.99701e-Ol 

A quantity is specified as a multiplicative combination of units optionally preceded by a 
numeric multiplier. Powers are indicated by suffixed positive integers, division by the usual 
sign: 

You have: 15 pounds force/in2 
You want: atm 

* 1. O£06ge+OO 
/ 9. 79790e-Ol 

Units only does multiplicative scale changes. Thus it can convert Kelvin t.o Rankine, but. not 
Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recog­
nized, together with a generous leavening of exotica and a few constants of nature including: 

pI 
C 

e 
g 
force 
mole 
water 
au 

ratio of circumference to diameter 
speed of ligh t 
ch arge on an electron 
acceleration of gravity 
same as g 
Avogadro's number 
pressure head per unit height of water 
astronomical unit 

'Pound' is a unit of mass. Compound names are run together, e.g. 'light year'. British units 
that differ from their US counterparts are prefixed thus: 'brgallon'. CurrE'ncy is denoted 'bel­
giumfranc', 'britainpound', ... 

For a complete list of units, 'cat /usr/lib/units'. 

jusr jlib junits 

Don't base your financial plans on the currency conversions. 

ICON INTERNATIONAL 1 



UPTIME (1 ) USER COMMANDS 

NAME 
uptime - show how long system has been up 

SYNOPSIS 
uptime 

DESCRIPTION 

UPTIME ( 1) 

Uptime prints the current time, the length of time the system has been up, and the average 
number of jobs in the run queue over the last 1, 5 and 15 minutes. It is, essentially, the first 
line of a w{l} command. 

FILES 
/vmunix 

SEE ALSO 
w{l} 

system name list 

ICON INTERNATIONAL 1 



USERS(I) USER COMMANDS USERS (1) 

NAME 
users - compact list of users who are on the system 

SYNOPSIS 
users 

DESCRlPTION 
Users lists the login names of the users currently on the system in a compact, one-line format. 

FILES 
/etc/utmp 

SEE ALSO 
who(l) 

ICON INTERNATIONAL 1 



UUCP{lC) USER COM:MANDS UUCP(lC) 

NAME 
uucp, uulog - unix to unix copy 

SYNOPSIS 
uucp [ option 1 ... source-file ... destination-file 
uulog [ option 1 .. . 

DESCRIPTION 

FILES 

Uucp copies files named by the source-file arguments to the destination-file argument. A file 
name may be a path name on your machine, or may have the form 

system-name!pathname 

where 'system-name' is taken from a list of system names which uucp knows about. Shell 
metacharacters ?*[] appearing in the pathname part will be expanded on the appropriate sys­
tem. 
Pathnames may be one of 

(1) 

(2) 

(3) 

a full pathname; 

a pathname preceded by - user; where user is a userid on the specified system and is 
replaced by that user's login directory; 

anything else is prefixed by the current directory. 
If the result is an erroneous pathname for the remote system the copy will fail. If the 
destination-file is a directory, the last part of the source-file name is used. 

Uucp preserves execute permissions across the transmission and gives 0666 read and write per-
missions (see chmod(2)). ( 

The following options are interpreted by uucp. \ ./ 

-d Make all necessary directories for the file copy. 

-c Use the source file when copying out rather than copying the file to the spool direc-
tory. 

-m Send mail to the requester when the copy is complete. 

Uulog maintains a summary log of uucp and uux{lC) transact.ions in the file 
'jusrjspooljuucpjLOGFILE' by gathering information from partial log files named 
'jusrjspooljuucpjLOG.*.?'. It removes the partial log files. 

The options cause uulog to print logging information: 

-8SYS Print information about work involving system sys. 

-uuser Print information about work done for the specified user. 

jusr jspooljuucp - spool directory 
jusrjlibjuucpj* - other data and program files 

SEE ALSO 
uux(IC), mai1{l) 
D. A. Nowitz, Uucp Implementation Description 

ICON INTERNATIONAL 1 



(-, 

( 

UUCP(lC) USER COMMANDS UUCP( IC) 

WARNING 

BUGS 

2 

The domain of remotely accessible files can (and for obvious security reasons, usually should) 
be severely restricted. You will very likely not be able to fetch files by pathname; ask a 
responsible person on the remote system to send them to you. For the same reasons you will 
probably not be able to send files to arbitrary pathnames. 

All files received by uucp will be owned by uucp. 
The -m option will only work sending files or receiving a single file. (Receiving multiple files 
specified by special shell characters ?*[] will not activate the -m option.) 

ICON IKTERNATIOK.-\L 



UUENCODE ( 1 C ) USER COMMANDS UUENCODE ( 1 C) 

NAME 
uuencode,uudecode - encode/decode a binary file for transmission via mail 

SYNOPSIS 
uueneode [ source 1 remotedest I mail sysl!sys2!..!decode 
uudeeode [ file] 

DESCRIPTION 
Uuencode and uudecode are used to send a binary file via uucp (or other) mail. This combina­
tion can be used over indirect mail links even when uusend(lC) is not available. 

Uuencode takes the named source file (default standard input) and produces an encoded ver­
sion on the standard output. The encoding uses only printing ASCII characters, and includes 
the mode of the file and the remotedest for recreation on the remote system. 

Uudecode reads an encoded file, strips off any leading and trailing lines adMd by mailers, and 
recreates the original file with the specified mode and name. 

The intent is that all mail to the user "decodel' should be filtered through the uudecode pro­
gram. This way the file is created automatically without human intervention. This is possi­
ble on the uucp network by either using sendmail or by making rmail be a link to Mail 
instead of mail. In each easel an alias must be created in a master file to get the automatic 
invocation of uudecode. 

If these facilities are not available, the file can be sent to a user on the remote machine who 
can uudecode it manually. 

The encode file has an ordinary text form and can be edited by any text editor to change the 
mode or remote name. 

SEE ALSO 
uuencode(5), uusend(lC), uucp(lC), uux(lC), mail(l) 

AUTHOR 

BUGS 

Mark Horton 

The file is expanded by 35% (3 bytes become 4 plus control information) causing it to take 
longer to transmit. 

The user on the remote system who is invoking uudecode (often uucp) must have write per­
mission on the specified file. 

ICON INTERNATIONAL 1 



UUSEND(lC) USER COMl\1ANDS UUSEND(lC) 

(.! NAME 
uusend - send a file to a remote host 

SYNOPSIS 
uusend [ -m mode 1 sourcefile sysl!sys2!'.!remotefile 

DESCRIPTION 
Uusend sends a file to a given location on a remote system. The system need not be directly 
connected to the local system, but a chain of uucp(lC) links needs to connect the two sys-
tems. . 

If the -m option is specified, the mode of the file on the remote end will he taken from the 
octal number given. Otherwise, the mode of the input file will be used. 

The sourcefile can be "-", meaning to use the standard input. Both of these options are pri­
marily intended for internal use of uusend. 

The remotefile can include the - use rid syntax. 

DIAGNOSTICS 
If anything goes wrong any further away than the first system down the line, you will never 
hear about it. 

SEE ALSO 
uux(lC), uucp(lC), uuencode(l) 

AUTHOR 

BUGS 

Mark Horton 

This command shouldn't exist, since uucp should handle it. 

All systems along the line must have the uusend command available and allow remote execu­
tion of it. 

Some uucp systems have a bug where binary files cannot be the input to a uux command. If 
this bug exists in any system along the line, the file will show up severly munged. 

ICON INTERNATIONAL 1 



UUX(lC) USER CO:M:MA.NDS UUX(lC) 

NAME 
uux - unix to unix command execution 

SYNOPSIS 
uux [ - 1 command-string 

DESCRIPTION 
UUX will gather 0 or more files from various systems, execute a command on a specified system 
and send standard output to a file on a specified system. 

The command-string is made up of one or more arguments that look like a shell command 
line, except that the command and file names may be prefixed by syst.em-nameL A null 
system-name is interpreted as the local system. 
File names may be one of 

(1) a full pathname; 

(2) a pathname preceded by - XXXi where xxx is a userid on the specified system and is 
replaced by that user's login directorYi 

(3) anything else is prefixed by the current directory. 

The '-' option will cause the standard input to the uux command to be the standard input to 
the command-string. 

For example, the command 

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fi.diff" 
will get the fl files from the usg and pwba machines, execute a dilJ command and put the 
results in fl.diff in the local directory. 

Any special shell characters such as < >; I should be quoted either by quoting the en tire 
command-string, or quoting the special characters as individual arguments. 

Fll..ES 
/usr/spool/uucp 
/usr/lib/uucp/* 

spool directory 
other data and programs 

SEE ALSO 
uucp(1C) 
D. A. Nowitz, Uucp Implementation Description 

WARNING 

BUGS 

An installation may, and for security reasons generally will, limit the list of commands execut­
able on behalf of an incoming request from uux. Typically, a restricted site will permit little 
other than the receipt of mail via uux. 

Only the first command of a shell pipeline may have a system-name!. All other commands are 
executed on the system of the first command. 
The use of the shell metacharacter * will probably not do what you want it to do. 
The shell tokens < < and> > are not implemented. 
There is no notification of denial of execution on the remote machine. 

ICON INTERNATIONAL 1 

--~~~------~-- --- ----

/ 



( .. ~ 

( 

VERS(! ) USER COMMANDS VERS( 1) 

NAME 
vers - print version number of the kernel 

SYNOPSIS 
vers [-v] 

DESCRIPTION . 
Vers prints the version number of the currently running UNIX kernel. It prints the same 
message that is seen at boot time. The -v (verbose) flag is used to determine the actual path­
name of the kernel. 

ICON INTERNATIONAL 1 



VGRIND{l) USER COMMANDS VGRIND (I) 

NAME 
vgrind - grind nice listings of programs 

SYNOPSIS 
vgrind [ -I ] [ - ] [ -t J [ -n J [-x J [ - W J [ -en ] [ .... h header J [ -d file J [ -llanguage J 
name ... 

DESCRIPTION 

FILES 

Vgrind formats the program sources which are arguments in a nice style using troff(l) Com­
ments are placed in italics, keywords in bold face, and the name of the current function is 
listed down the margin of each page as it is encountered. 

Vgrind runs in two basic modes, filter mode or regular mode. In filter mode vgrind acts as a 
filter in a manner similar to tbl(l}. The standard input is passed directly to the standard out­
put except for lines bracketed by the troff-like macros: 

.vS - starts processing 

.vE - ends processing 
These lines are formatted as described above. The output from this filter can be passed to 
trofffor output. There need be no particular ordering with eqn(l) or tbl(l). 

In regular mode vgrind accepts input files, processes them, and passes them to troff(l} for out­
put. 

In both modes vgrind passes any lines beginning with a decimal point without conversion. 

The options are: 

-f forces filter mode 

forces input to be taken from standard input (default if -f is specified) 

-t similar to the same option in troff causing formatted text to go to the standard output 

-n forces no keyword bolding 

-x outputs the index file in a "pretty" format. The index file itself is produced when('ver 
vgrind is run with a file called index in the current directory. The index of function 
definitions can then be run off by giving vgrind the -x option and the file index as 
argument. 

-W forces output to the (wide) Versatec printer rather than the (narrow) Varian 

-8 specifies a point size to use on output (exactly the same as the argument of a .ps) 

-h specifies a particular header to put on every output page (default is the file name) 

-d specifies an alternate language definitions file (default is lusr/lib/vgrindefs) 

-I specifies the language to use. Currently known are PASCAL (-Ip), MODEL (-lm),C 
(-Ie or the default), CSH (-Iesh), SHELL (-Ish), RATFOR (-Ir), and ICON (-11). 

index 
lusr Ilib/tmac/tmac. vgrind 
lusr llib/vfontedpr 
lusr Ilib Iv grin defs 

file where source for index is created 
macro package 
preprocessor 
language descriptions 

ICON INTERNATIONAL 1 



VGRIND{l) USER COMMANDS VGRIND(l) 

AUTHOR 
Dave Presotto & William Joy 

SEE ALSO 

BUGS 

2 

vlp{l), vtroff{l), vgrindefs(5) 

Vfontedpr assumes that a certain programming style is followed: 

For C - function names can be preceded on a line only by spaces, tabs, or an asterisk. The 
parenthesized arguments must also be on the same line. 

For PASCAL - function names need to appear on the same line as the keywords funCtion or 
procedure. 

For MODEL - function names need to appear on the same line as the keywords is beginproc. 

If these conventions are not followed, the indexing and marginal function name comment 
mechanisms will fail. 

More generally, arbitrary formatting styles for programs mostly look bad. The use of spaces 
to align source code fails miserably; if you plan to vgrind your program you should use tabs. 
This is somewhat inevitable since the font used by vgrind is variable width. 

The mechanism of ctags in recognizing functions should be used here. 

ICON INTERNATIONAL 



VI(I) USER COMMANDS VI( I) 

NAME 
vi - screen oriented (visual) display editor based on ex 

SYNOPSIS 
vi ! -t tag] ! -r 1 [ +command] I -1] I -wn ] name ... 

DES CRlP TION 

Fll..ES 

Vi (visual) is a display oriented text editor based on eZ(l). Ez and vi run the same code; it. is 
possible to get to the command mode of u from within vi and vice-versa. 

The Vi Quick Reference card and the Introduction to Display Editing u}ifh Vi provide full 
details on using vi. 

See eZ(l). 

SEE ALSO 
ex (1), edit (1), "Vi Quick Reference" card, "An Introduction to Display Editing with Vi". 

AUTHOR 
William Joy 

BUGS 

Mark Horton added macros to visual mode and is maintaining version 3 

Software tabs using ~T work only immediately after the autoindent. 

Left and right shifts on intelligent terminals don't make use of insert and delete character 
operations in the terminal. 

The wrapmargin option can be fooled since it looks at out.put columns when blanks are t.yped. 
If a long word passes through the margin and ont.o the next line without a break, then the 
line won't be broken. 

Insert/delete within a line can be slow if tabs are present on intelligent terminals, since the 
terminals need help in doing this correctly. 

Saving text on deletes in the named buffers is somewhat inefficient.. 

The source command does not work when execut.ed as :source; there is no way to use the 
:append, :change, and :insert commands, since it is not possible to give more than one line 
of input to a : escape. To use these on a :global you must Q to ex command mode, execute 
them, and then reenter the screen editor with vi or open. 

ICON INTERNATIONAL 1 

---~----- ----------~--~-----



( .. \ 

VMSTAT( 1) USER COMMANDS VMS TAT ( 1) 

NAME 
vmstat - report virtual memory statistics 

SYNOPSIS 
vmstat [ -fs 1 I in terval I coun t 11 

DESCRIPTION 
Vmstat delves into the system and normally reports certain statistics kept about process, vir­
tual memory, disk, trap and cpu activity. If given a -f argument, it instead reports on the 
number of forks and vforks since system startup and the number of pages of virtual memory 
involved in each kind of fork. If given a -s argument, it instead prints the contents of the 
sum structure, giving the total number of several kinds of paging related events which have 
occurred since boot. 

If none of these options are given, vmstat will report in the first line a summary of the virtual 
memory activity since the system has been booted. If interval is specified, then successive lines 
are summaries over the last interval seconds. "vmstat 5" will print what the system is doing 
every five seconds; this is a good choice of printing interval since this is how often some of the 
statistics are sampled in the system; others vary every second, running the output for a while 
will make it apparent which are recomputed every second. If a count is given, the statist ics 
are repeated count times. The format fields are: 

Procs: information about numbers of processes in various states. 

r in run queue 
b blocked for resources (i/o, paging, etc.) 
w runnable or short sleeper « 20 secs) but swapped 

:Memory: information about the usage of virtual and real memory. Virtual pages are ('on­
sidered active if they belong to processes which are running or have run in the last 20 seconds. 
A "page" here is 1024 bytes. 

avm 
fre 

active virtual pages 
size of the free list 

Page: information about page faults and paging activity. These are averaged each five 
seconds, and given in units per second. 

re page reclaims (simulating reference bits) 
pi pages paged in 
po pages paged ou t 
fr pages freed per second 
de anticipated short term memory shortfall 
sr pages scanned by clock algorithm, per-second 

up/hp/rk: Disk operations per second (this field is system dependent). Typically paging will 
be split across several of the available drives. The number under each of these is the unit 
number. 

Faults: tra.p/interrupt rate averages per second over last 5 seconds. 

in (non clock) device interrupts per second 
sy system calls per second 
cs cpu context switch rate (switches/sec) 

ICON INTERNATIONAL 1 





(/ 

(
~. 

'" . 

VMSTAT( 1) USER COl\.1MANDS 

FILES 

Cpu: breakdown of percentage usage of CPU time 

us 
sy 
id 

user time for normal and low priority processes 
system time 
cpu idle 

/dev /kmem, /vmunix 

SEE ALSO . 

VMS TAT ( 1) 

The sections starting with "Interpreting system activity" in InstaUing and Operating 4.ebsd. 

AUTHORS 

BUGS 

2 

William Joy and Ozalp Babaoglu 

There should be a screen oriented program which combines tnnstat and ps(l) in real time as 
well as reporting on other system activity. 

ICON INTERNATIOK-\L 



W(l) USER CO:M:MANDS W(l) 

NAME 
w - who is on and what they are doing 

SYNOPSIS 
w I -h ] I -s ] I user J 

DESCRIPTION 

Fll..ES 

W prints a summary of the current activity on the system, including what each user is doing. 
The heading line shows the current time of day, how long the system has been up, the 
number of users logged into the system, and the load averages. The load average numbers 
give the number of jobs in the run queue averaged over 1, 5 and 15 minutes. 
The fields output are: the users login name, the name of the tty the ust'r is on, tht' timE' of 
day the user logged on, the number of minutes since the user last typed anything, the CPU 
time used by all processes and their children on that terminal, the CPU time used by the 
currently active processes, the name and arguments of the current process. 

The -h Hag suppresses the heading. The -8 Hag asks for a short form of output. In the 
short form, the tty is abbreviated, the login time and cpu times are left off, as are the argu­
ments to commands. -1 gives the long output, which is the default. 

If a user name is included, the output will be restricted to that user. 

/etc/utmp 
/dev/kmem 
/dev/drum 

SEE ALSO 
who(I), finger(I), pS(l) 

AUTHOR 

BUGS 

Mark Horton 

The notion of the "current process" is muddy. The current algorithm is "the highest num­
bered process on the terminal that is not ignoring interrupts, or, if there is none, the highest 
numbered process on the terminal". This fails, for example, in critical st'ctions of programs 
like the shell and editor, or when faulty programs running in the background fork and fail to 
ignore interrupts. (In cases where no process can be found, w prints "-".) 
The CPU time is only an estimate, in particular, if someone leavt's a background process run­
ning after logging out, the person currently on that terminal is "charged" with the time. 

Background processes are not shown, even though they account for much of the load on the 
system. 

Sometimes processes, typically those in the background, are printed with null or garbaged 
arguments. In these cases, the name of the command is printed in parentheses. 

W does not know about the new conventions for detection of background jobs. It will some­
times find a background job instead of the right one. 

ICON INTERNATIONAL 1 

- -~- ~--~-- ~ ~--



( 

WAlT(I) USER COMMANDS 

NAME 
wait - await completion of process 

SYNOPSIS 
wait 

DESCRIPTION 

WAIT ( 1) 

Wait until all processes started with &. have completed, and report on abnormal terminations. 

Because the wait(2) system call must be executed in the parent process, the Shell itself exe­
cutes wait, without creating a new process. 

SEE ALSO 
sh{l) 

BUGS 
Not all the processes of a 3- or more-stage pipeline are children of the Shell, and th us ran't be 
waited for. (This bug does not apply to csh(l).) 

ICON INTERNATIONAL 1 



WALL(l) 

NAME 
wall- write to all users 

SYNOPSIS 
wall 

DESCRIPTION 

USER COMMANDS WALL ( 1) 

Wall reads its standard input until an end-or-file. It then sends this mes..c;age, preceded by 
'Broadcast Message ... ', to all logged in users. 

FILES 

The sender should be super-user to override any protections the users may have invoked. 

/dev/tty? 
/etc/utmp 

SEE ALSO 
mesg(l), write(l} 

DIAGNOSTICS 
'Cannot send to .. .' when the open on a user's tty file fails. 

ICON INTERNATIONAL 1 



( 

( / 

WC(l) USER COMMANDS WC(l) 

NAME 
wc - word count 

SYNOPSIS 
we [ -lwe J [name ... J 

DESCRIPTION 
We counts lines, words and characters in the named files, or in the standard input if no name 
appears. A word is a maximal string of characters delimited by spaces, tabs or newlines. 

If an argument beginning with one of "lwc" is present, the specified counts (lines, words. or 
characters) are selected by the letters I, w, or c. The default is -Iwc. 

(~ ICON INTERNATIONAL 1 



WHAT(l) USER COMMANDS WHAT(l) 

NAME 
what - show what versions of object modules were used to construct a file 

SYNOPSIS 
what name ... 

DESCRlPTION 
What reads each file and searches for sequences of the form "@(#)" as inserted by the source 
code control system. It then prints the remainder of the string after this marker, up to a null 
character, newline, double quote, or ">" character. 

BUGS 
As sees is not licensed with UNIXj32V, this is a rewrite of the what command which is part 
of sees, and may not behave exactly the same as that command does. 

ICON INTERNATIONAL 1 

/-', 
:~, 



( .. 

WHATIS(l) USER CO:M:MANDS WHATIS( 1) 

NAME 
whatis - describe what a command is 

SYNOPSIS 
whatis command ... 

DESCRIPTION 
Whatis looks up a given command and gives the header line from the manual section. You 
can then run the man{l) command to get more information~ If the line starts 'name(sect.ion) 
... ' you can do 'man section name' to get the documentation for it. Try 'whatis ed' and then 
you should do 'man 1 ed' to get the manual. 

Whatis is actually just the -f option to the man(l} command. 

Fn..ES 
/usr /lib/whatis 

SEE ALSO 
man(l), catman(8) 

AUTHOR 
William Joy 

• 

ICON INTERNATIONAL 

Data base 

1 



WHEREIS(l) USERCO~S WHEREIS(l) 

NAME 
whereis - locate source, binary, and or manual for program 

SYNOPSIS 
whereis I -sbm J I -u J I -SBM dir ... -f J name ... 

DESCRIPTION 
Whereis locates source/binary and manuals sections for specified files. The supplied names are 
first stripped of leading pathname components and any (single) trailing extension of the form 
".ext", e.g. ".c". Prefixes of "s." resulting from use of source code control are also dealt with. 
Whereis then attempts to locate the desired program in a list of standard places. If any of the 
-b, -8 or -m flags are given then whereis searches only for binaries, sources or manual sec­
tions respectively (or any two thereof). The -u flag may be used to search for unusual 
entries. A file is said to be unusual if it does not have one entry of each requested type. Thus 
"whereis -m -u *" asks for those files in the current directory which have no documentation. 

Finally, the -B -M and -S flags may be used to change or otherwise limit the places where 
whereis searches. The -f file flags is used to terminate the last such directory list and signal 
the start of file names. 

EXAMPLE 

Fll..ES 

The following finds all the files in /usr/bin which are not documented In /usr/man/manl 
with source in /usr/src/cmd: 

cd /usr/ucb 
whereis -u -M /usr/man/manl -S /usr/src/cmd -f * 

/usr/src/* 
/usr/{doc,man}/* 
/lib, / etc, /usr / {lib,bin, ucb,old,new ,local} 

AUTHOR 
\Villiam Joy 

BUGS 
Since the program uses chdir(2) to run faster, pathnames given with the -M -8 and -B must 
be full; i.e. they must begin with a"/". 

ICON INTERNATIONAL 1 

c 



(-----

) 

\ 

WHICH(l) USER COMMANDS WHICH ( 1) 

NAME 
which - locate a program file including aliases and paths (csh only) 

SYNOPSIS 
which [ name 1 ... 

DESCRIPTION 
Which takes a list of names and looks for the files which would be executed had these names 
been given as commands. Each argument is expanded if it is aliased, and searched for along 
the user's path. Both aliases and path are taken from the user's .cshrc file. 

FILES 
- /.cshrc source of aliases and path values 

DIAGNOSTICS 

BUGS 

A diagnostic is given for names which are aliased to more than a single word, or if an execut· 
able file with the argument name was not found in the path. 

Must be executed by a csh, since only csh's know about aliases. 

ICON INTERNATIONAL 1 



WHO(l) USER COMMANDS WHO ( 1) 

NAME 
who - who is on the system 

SYNOPSIS 
who [ who-file 1 [ am I J 

DESCRIPTION 
Who, without an argument, lists the login name, terminal name, and login time for each 
current UNIX user. 

Without an argument, who examines the I etclutmp file to obtain its information. If a filt' is 
given, that file is examined. Typically the given file will be lusr/adm/wtmp, which contains a 
record of all the logins since it was created. Then who lists logins, logouts, and crashes since 
the creation of the wtmp file. Each login is listed with user name,. terminal name (with 
'/dev I' suppressed), and date and time. When an argument is given, logouts produce a simi­
lar line without a user name. Reboots produce a line with 'x' in the place of the device name, 
and a fossil time indicative of when the system went down. 

With two arguments, as in 'who am l' (and also 'who are you'), who tells who you are logged 
in as. 

FILES 
letc/utmp 

SEE ALSO 
getuid(2), utmp(5) 

ICON INTERNATIONAL 1 

\ 

( .. ~.' ./ 



( 

WHOAMI(l) USER COMMANDS 

NAME 
whoami - print effective current user id 

SYNOPSIS 
whoami 

DESCRIPTION 

WHOAMI(l) 

Whoami prints who you are. It works even if you are su'd, while 'who am i' does not sincf' it 
uses /etc/utmp. 

Fll...ES 
/etc/passwd Name data base 

SEE ALSO 
who (1) 

ICON INTERNATIONAL 1 



WHODOS(l) USERCO~S 

NAME 
whodos - display information about dose users 

SYNOPSIS 
whodos 

DESCRIPTION 

WHODOS( 1) 

Whodos is used to display information about dosc partition usage. Jt displays the Multi-link 
partition number, the dosc process PID, the tty line of the dose user, the time the procf'SS 
started, and the user name for each available partition. The file jetcjmttys tells the total 
number of available partitions. 

FILES 
jusr jspooljuucp jLCK .. mtty, j etcjmttys 

SEE ALSO 
dosc(l) 

NOTE 
If a dose process is terminated other than by exiting, it may leave a lock file in 
jusr jspooljuucp. This file must be deleted before the partition can be reused. If you suspect 
this has happened, verify that the PID for each partition reported as active by whodos is 
listed as an active process by ps(l). If the PID does not exist, you may safely remove the lock 
file to allow the partition to be reused. 

ICON INTERNATIONAL 1 



( 

( / 

WINDOW(l) USER COMMANDS WINDOW(l) 

NAME 
window - window environment 

SYNOPSIS 
window [ -t 1 [ -f 1 [ -d 1 [ -e escape-char 1 [ -c command 1 

DESCRIPTION 
Window implements a window environment on ASCII terminals. 

A window is a rectangular portion of the physical terminal screen associated with a set of 
processes. Its size and position can be changed by the user a.t any time. Processes communi­
cate with their window in the same way they normally interact with a terminal--through their 
standard input, output, and diagnostic file descriptors. The window program handles the 
details of redirecting input an output to and from the windows. At anyone time, only one 
window can receive input from the keyboard, but all windows can simultaneously send output 
to the display. 

Windows can overlap and are framed as necessary. Each window is named by one of the 
digits "1" to "9". This one character identifier, as well as a user definable label string, are 
displayed with the window on the top edge of its frame. A window can be designated t.o be in 
the foreground, in which case it will always be on top of all normal, non-foreground windows, 
and can be covered only by other foreground windows. A window need not be complet.ely 
within the edges of the terminal screen. Thus a large window (possibly larger than the screen) 
may be positioned to show only a portion of its full size. 

Each window has a cursor and a set of control functions. Most intelligent terminal operations 
such as line and character deletion and insertion are supported. Display modes such as under­
lining and reverse video are available if they are supported by the terminal. In addition, simi­
lar to terminals with multiple pages of memory, each window has a text buffer which can have 
more lines than the window itself. 

OPTIONS 
When window starts up, the commands (see long commands below) contained in the file .win­
dowrc in the user's home directory are executed. If it does not exist, two equal sized windows 
spanning the terminal screen are created by default. 

The command line options are 

-t Turn on terse mode (see terse command below). 

-f Fast. Don't perform any startup action. 
-

-d Ignore .windowrc and create the two default windows instead. 

-e escape-char 
Set the escape character to escape-char. Escape-char can be a single character, or in 
the form ~Xwhere Xis any character, meaning control-X 

-c command 
Execute the string command as a long command (see below) before doing anything 
else. 

PROCESSENVTRONMENT 
With each newly created window, a shell program is spawned with its process environment 
tailored to that window. Its standard input, output, and diagnostic file descriptors are bound 
to one end of either a pseudo-terminal (pty (4)) or a UNIX domain socket (socketpair (4)). If a 
pseudo-terminal is used, then its special characters and modes (see stty (1)) are copied from 

ICON INTERNATIONAL 1 



WINDOW(l) USER COMMANDS WINDOW(l) 

the physical terminal. A termcap (5) entry tailored to this window is created and passed as 
environment (environ (5» variable TERMOAP. The termcap entry contains the window's size 
and characteristics as well as informa.tion from the physical terminal, such as the existenee of 
underline, reverse video, and other display modes, and the codes produced by the terminal's 
function keys, if any. In addition, the window size attributes of the pseudo-terminal are set 
to reflect the size of this window, and updated whenever it is changed by the user. In particu­
lar, the editor vi (1) uses this information to redraw its display. 

OPERATION 
During normal execution, window can be in one of two sta~es: conversation mode and com­
mand mode. In conversation mode, the terminal's real cursor is placed at the cursor position 
of a particular window--called the current window--and input from the keyboard is sent to the 
process in that window. The current window is always on top of all other windows, except 
those in foreground. In a.ddition, it is set apart by highlighting its identifier and label in 
reverse video. 

Typing window's escape character (normally "P) in conversation mode switches it into com­
mand mode. In command mode, the top line of the terminal screen becomes the command 
prompt window, and window interprets input from the keyboard as commands to manipulate 
windows. 

There are two types of commands: short commands are usually one or two key strokes; long 
commands are strings either typed by the user in the command window (see the ":" command 
below), or read from a file (see source below). 

SHORT COM:MANDS 

2 

Below, # represents one of the digits "I" to "9" corresponding to the windows 1 to 9. "X 
means control-X, where X is any character. In particular,." A is control-A. Escape 1S the 
escape key, or A [. 

# 
%# 

escape 

Select window # as the current window and return to conversation mode. 
Select window # but stay in command mode. 

Select the previous window and return to conversation mode. This is useful for tog­
gling between two windows. 

Return to conversation mode. 

"P Return to conversation mode and write "P to the current window. Thus, typing two 
"P's in conversation mode sends one to the current window. If the window escape is 
changed to some other character, that character takes the place of "P here. 

r List a short summary of commands. 

"L Redraw the screen. 

q Exit window. Oonfirmation is requested. 

"z Suspend window. 

w Oreate a new window. The user is prompted for the positions of the upper left and 
lower right corners of the window. The cursor is placed on the screen and the keys 
"h", "j", "k", and "1" move the cursor left, down, up, and right, respectively. The 
keys "H", "J", "K", and "L" move the cursor to the respective limits of the screen. 
Typing a number before the movement keys repeats the movement that number of 
times. Return enters the cursor position as the upper left corner of the windo\v. The 
lower right corner is entered in the same manner. During this proeess, the plaeement 

ICON INTERNATION.\L 

----- -----~-- --.-~-~ ... -~~~~-



(-) 

WINDOW(l) USER COMMANDS WINDOW(l) 

of the new window is indicated by a rectangular box drawn on the screen, correspond­
ing to where the new window will be framed. Typing escape at any point cancels this 
command. 

This window becomes the current window, and is given the first available ID. The 
default buffer size is used (see nline command below). 

Only fully visible windows can be created this way. 

c# Close window #. The process in the window is sent the hangup signal (see kill (1)). 
Csh (1) should handle this signal correctly and cause no problems. 

m# Move window # to another location. A box in the shape of the window is drawn on 
the screen to indicate the new position of the window, and the same keys as those for 
the w command are used to position the box. The window can be moved partially 
off-screen. 

M# 

8# 

S# 
~y 

AE 
~u 

~D 

~B 

~F 

h 

j 

k 

I 
~S 

~Q 

Move window # to its previous position. 
Change the size of window #. The user is prompted to enter the new lower right 
corner of the window. A box is drawn to indicate the new window size. The same 
keys used in wand m are used to enter the position. 

Change window # to its previous size. 

Scroll the current window up by one line. 

Scroll the current window down by one line. 

Scroll the current window up by half the window size. 

Scroll the current window down by half the window size. 

Scroll the current window up by the full window size. 

Scroll the current window down by the full window size. 

Move the cursor of the current window left by one column. 

:Move the cursor of the current window down by one line. 

Move the cursor of the current window up by one line. 

Move the cursor of the current window right by one column. 

Stop output in the current window. 

Start output in the current window. 

Enter a line to be executed as long commands. Normal line editing characters (erase 
character, erase word, erase line) are supported. 

LONG COMMANDS 
Long commands are a sequence of statements parsed much like a programming language, with 
a syntax similar to that of C. Numeric and string expressions and variables are supported, as 
well as conditional statements. 

There are two data types: string and number. A string is a sequence of letters or digits begin­
ning with a letter. "_" and "." are considered letters. Alternately, non-alphanumeric charac­
ters can be included in strings by quoting them in U"" or escaping them with "\". In addi­
tion, the U\" sequences of C are supported, both inside and outside quotes (e.g., U\n" is a new 
line, "\r" a carriage return). For example, these are legal strings: abcde01234, "&#$ A *& #" , 
ab "$#"cd, ab \$\#Cd, "/usr /ucb /window". 

ICON INTERNATIONAL 3 



WINDOW(l) USER COMMANDS WINDOW(l) 

A number is an integer value in one of three forms: a decimal number, an octal number pre­
ceded by "0", or a hexadecimal number preceded by "Ox" or "OX". The natural machine 
integer size is used (i.e., the signed integer type of the C compiler). As in C, a non-zero 
number represents a boolean true. 

The character "=1#' begins a comment which terminates at the end of the line. 

A statement is either a conditional or an expression. Expression statements are terminated 
with a new line or ";". To continue an expression on the next line, terminate the first line 
with "\n. 

CONDITIONAL STATEMENT 
Window has a single control structure: the fully bracketed if statement in the form 

if <expr> then 
< statem en t > 

elsif < exp r > th en 
< statem en t > 

else 
<statement> 

endif 
The else and elsi! parts are optional, and the latter can be repeated any number of times. 
<Expr> must be numeric. 

EXPRESSIONS 

4 

Expressions in window are similar to those in the C language, with most C operators sup­
ported on numeric operands. In addition, some are overloaded to operate on strings. 

When an expression is used as a statement, its value is discarded after evaluation. Therefore, 
only expressions with side effects (assignments and function calls) are useful as statements. 

Single valued (no arrays) variables are supported, of both numeric and string values. Some 
variables are predefined. They are listed below. 

The operators in order of increasing precedence: 

<exprl> = <expr2> 
Assignment. The variable of name < exprl> , which must be string valued, is assigned 
the result of <expr2>. Returns the value of <expr2>. 

<exprl> r <expr2> : <expr3> 
Returns the value of <expr2> if <exprl> evaluates true (non-zero numeric value); 
returns the value of <exprS> otherwise. Only one of <expr2> and <exprS> is 
evaluated. <Exprl> must be numeric. 

<exprl> II <expr2> 
Logical or. Numeric values only. Short circuit evaluation 15 supported (i.e., if 
< exprl> evaluates true, then < expr2> is not evaluated). 

<exprl> &:.& <expr2> 
Logical and with short circuit evaluation. Numeric values only. 

<exprl> I <expr2> 
Bitwise or. Numeric values only. 

<exprl> A <expr2> 
Bitwise exclusive or. Numeric values only. 

ICON INTERNATIONAL 



(" 

WINDOW(l) USER COMMANDS WIl\1DOW ( 1 ) 

<exprl> &:. <expr2> 
Bitwise and. Numeric values only. 

<exprl> ==== <expr2>, <exprl> !== <expr2> 
Comparison (equal and not equal, respectively). The boolean result (either 1 or 0) of 
the comparison is returned. The operands can be numeric or string valued. One 
string operand forces the other to be converted to a string in necessary. 

<exprl> < <expr2>, <exprl> > <expr2>, 
Less than, greater than, less than or equal to, greater than or equal to. Both numeric 
and string val~es, with automatic conversion as above. 

<exprl> « <expr2>, <exprl> » <expr2> 
If both operands are numbers, <uprl> is bit shifted left (or right) by <expr2> bits. 
If <exprl> is a string, then its first (or last) <expr2> characters are ret.urns (if 
<expr2> is also a string, then its length is used in place of its value). 

<exprl> + <expr2>, <exprl> - <expr2> 
Addition and subtraction on numbers. For "+", if one argument is a string, then the 
other is converted to a string, and the result is the concatenation of the two strings. 

<exprl> * <expr2>, <exprl> / <expr2>, 
Multiplication, division, modulo. Numbers only. 

-<expr>, - <expr>, !<expr>, $<expr>, $!<expr> 
The first three are unary minus, bitwise complement and logical complement on 
numbers only. The operator, "$", takes <expr> and returns the value of the variable 
of that name. If < expr> is numeric with value n and it appears within an alias 
macro (see below), then it refers to the nth argument of the alias invocation. "$?" 
tests for the existence of the variable < expr>, and returns 1 if it exists or 0 otherwise. 

<expr>( < arglist > ) 
Function call. <Expr> must be a string that is the unique prefix of the name of a 
builtin window function or the full name of a user defined alias macro. In the case of a 
builtin function, < arglist> can be in one of two forms: 

<exprl>, <expr2>, ... 
argnamel = <exprl>, argname2 = <expr2>, ... 

The two forms can in fact be intermixed, but the result is unpredictable. Most argu­
ments can be omitted; default values will be supplied for them. The argnames can be 
unique prefixes of the the argument names. The commas separating arguments are 
used only to disambiguate, and can usually be omitted. 

Only the first argument form is valid for user defined aliases. Aliases are defined using 
the alias builtin function (see below). Arguments are accessed via a variant of the 
variable mechanism (see "$" operator above). 

Most functions return value, but some are used for side effect only and so must be 
used as statements. When a function or an alias is used as a statement, the 
parenthesis surrounding the argument list may be omitted. Aliases return no value. 

BUll..TIN FUNCTIONS 
The arguments are listed by name in their natural order. Optional arguments are in square 
brackets ("[ ]"). Arguments that have no names are in angle brackets ("< > "). 

alias([ <string>], [<string-list>]) 
If no argument is given, all currently defined alias macros are listed. Otherwise, 
< string> is defined as an alias, with expansion < string-list> . Th e previous 

ICON INTERNATIONAL 5 



WINDOW(l) USER C011MANDS WINDOW(l) 

6 

definition of <string>, if any, is returned. Default for <string-list> is no change. (~'< 

elose( <window-list> ) \, __ J 

Close the windows specified in < window-list>. If < window-list> is the word all, 
than all windows are closed. No value is returned. 

cursormodea([modes]) 
Set the window cursor to modes. Modes is the bitwise or of the mode bits defined as 
the variables f7Lttl (underline), f7Lretl (reverse video), f7Lblk (blinking), and f7Lgrp 
(graphics, terminal dependent). Return value is the previous modes. Default is no 
change. For example, cursor($mJevl$m_blk) sets the window cursors to blinking 
reverse video. 

eeho([window], [<string-list>]) 
Write the list of strings, <string-list>, to window, separated by spaces and ter­
minated with a. new line. The strings are only displayed in the window, the processes 
in the window are not involved (see write below). No value is returned. Default is the 
current window. 

escapee [escapec]) 
Set the escape character to escape-char. Returns the old escape character as a one 
character string. Default is no change. Escapec can be a string of a single character, 
or in the form" X, meaning control-X. 

foreground([window], [flag» 
Move window in or out of foreground. Flag can be one of on, off, yes, no, true, or false, 
with obvious meanings, or it can be a numeric expression, in which case a non-zero 
value is true. Returns the old foreground flag as a number. Default for window is t.he 
current window, default for flag is no change. 

label([window], ~abel]) 
Set the label of window to label. Returns the old label as a string. Default for window 
is the current window, default for label is no change. To turn off a label, set it to an 
empty string ( .... ). 

listO No arguments. List the identifiers and labels of all windows. No value is returned. 

nline([nline]) 
Set the default buffer size to nline. Initially, it is 48 lines. Returns the old default 
buffer size. Default is no change. Using a very large buffer can slow the program 
down considerably. 

select( [window]) 
Make window the current window. The previous current window is returned. Default 
is no change. 

sheller <string-list>]) 
Set the default window shell program to <string-list>. Returns the first string in the 
old shell setting. Default is no change. Initially, the default shell is taken from the 
environment variable SHELL. 

source(filename) 
Read and execute the long commands in filename. Returns -1 if the file cannot be 
read, 0 otherwise. 

terse ( [flag)) 
Set terse mode to flag. In terse mode, the command window stays hidden even in 
command mode, and errors are reported by sounding the terminal's bell. Flag ('an 
take on the same values as in foreground above. Returns the old terse flag. Default is 
no change. 

ICON INTERNATIONAL 

/ -

.~-



(J 

WINDOW(l) USER COMMANDS 'WINDO'Vl( 1) 

unalias( alias) 
Undefine alias. Returns -1 if alias does not exist, 0 otherwise. 

unset(variable) 
Undefine variable. Returns -1 if variable does not exist, 0 otherwise. 

variablesO 
No arguments. List all variables. No value is returned. 

window([row], [column], [nrow], [ncol], [nline], [frame], 
[pty], [mapnl], [shell]) 
Open a window with upper left corner at row, column and size nrow, ncol. If nline is 
specified, then that many lines are allocated for the text buffer. Otherwise, the default 
buffer size is used. Default values for row, column, nrow, and neol are, respectively, 
the upper, left-most, lower, or right-most extremes of the screen. Frame, pty, and 
mapnl are flag values interpreted in the same way as the argument to foreground (see 
above); they mean, respectively, put a frame around this window (default true), allo­
cate pseudo-terminal for this window rather than socketpair (default true), and map 
new line characters in this window to carriage return and line feed (default t.rue if 
socketpair is used, false otherwise). Shell is a list of strings that will be used as the 
shell program to place in the window (default is the program specified by shell, see 
below). The created window's identifier is returned as a number. 

write([window], [<string-list>]) 
Send the list of strings, <string-list>, to window, separated by spaces but not ter­
minated with a new line. The strings are actually given to the window as input. No 
value is returned. Default is the current window. 

PREDEFINED V ARlABLES 
These variables are for information only. Redefining them does not affect the internal opera­
tion of window. 

baud The baud rate as a number between 50 and 38400. 

modes 
The display modes (reverse video, underline, blinking, graphics) supported by the phy­
sical terminal. The value of modes is the bitwise or of some of the one bit values, 
m_blk, ~grp, m_rev, and m_ul (see below). These values are useful in setting the win­
dow cursors' modes (see cursormodes above). 

IILblk 
The blinking mode bit. 

IILgrp 
The graphics mode bit (not very useful). 

m_rev 
The reverse video mode bit. 

IILul The underline mode bit. 

ncol The number of columns on the physical screen. 

nrow The number of rows on the physical screen. 

term The terminal type. The standard name, found m the second name field of the 
terminal's TERMCAP entry, is used. 

ICON INTERNATIONAL 7 



WINDOW(l) 

FILES 
- f.windowrc 
/dev /[ptJty[pq]? 

DIAGNOSTICS 
Should be self explanatory. 

8 

USER COMMANDS 

startup command file. 
pseudo-terminal devices. 

WINDOW(l) 

ICON INTERNATION:\L 



(~ 

( ) 

WRITE (1 ) USER COMMANDS WRITE ( 1) 

NAME 
write - write to another user 

SYNOPSIS 
write user [ ttyname 1 

DESCRIPTION 
Write copies lines from your terminal to that of another user. When first called, it sends the 
message 

Message from yoursystem!yourname yourttyname ... 

The recipient of the message should write back at this point. Communication continues until 
an end of file is read from the terminal or an interrupt is sent. At that point write writes 
'EOT' on the other terminal and exits. 

If you want to write to a user who is logged in more than once, the ttyname argument may be 
used to indicate the appropriate terminal name. 

Permission to write may be denied or granted by use of the mesg command. At the outset 
writing is allowed. Certain commands, in particular nroff and pr(l) disallow messages in 
order to prevent messy output. 

If the character 'I' is found at the beginning of a line, write calls the shell to execute the rest 
of the line as a command. 

The following protocol is suggested for using write: when you first write to. another user, wait 
for him to write back before starting to send. Each party should end each message with a 
distinctive signal-(o) for 'over' is conventional-that the other may reply. (00) for 'over 
and out' is suggested when conversation is about to be terminated. 

FILES 
/etc/utmp 
/bin/sh 

SEE ALSO 

to find user 
to execute 'I' 

mesg(l), who(l}, mail(l} 

ICON INTERNATIONAL 1 



XSEND(l) USER COMN.lA.NDS XSEND( 1) 

NAME 
xsend, xget, enroll - secret mail 

SYNOPSIS 
xaend person 
xget 
enroll 

DESCRIPTION 

FILES 

These commands implement a secure communication channei; it is like mail(1), but no one 
can read the messages except the intended recipient. The method embodies a public-key cryp­
tosystem using knapsacks. 

To receive messages, use enroll; it asks you for a password that you must subsequently quote 
in order to receive secret mail. 

To receive secret mail, use xget. It asks for your password, then gives you the messages. 

To send secret mail, use xsend in the same manner as the ordinary mail command. (Howewr, 
it will accept only one target). A message announcing the receipt of secret mail is also sent by 
ordinary mail. 

jusr jspool/secretmail/*.key: keys 
jusr/spooljsecretmail/*.[0-9J: messages 

SEE ALSO 
mail (1) 

BUGS 
It should be integrated with ordinary mail. The announcement of secret mail makes traffic 
analysis possible. 

ICON INTERNATIONAL 1 



_~~ ___ ~.~ ______ L~ _____ ~ _______ . __ ~ ____ .... 

( 

XSTR(l) USER COMMANDS XSTR( 1) 

NAME 
xstr - extract strings from C programs to implement shared strings 

SYNOPSIS 
xstr [ -c ] [ - ] [ file ] 

DESCRIPTION 

Fn.ES 

Xstr maintains a file strings into which strings in component parts of a large program are 
hashed. These strings are replaced with references to this common area. This serves to imple­
ment shared constant strings, most useful if they are also read-only. 

The command 

xstr -c name 

will extract the strings from the C source in name, replacing string references by expressions 
of the form (&xstr[numberJ) for some number. An appropriate declaration of xsfr is 
prepended to the file. The resulting C text is placed in the file x.c, to then be compiled. The 
strings from this file are placed in the strings data base if they are not there already. 
Repeated strings and strings which are suffices of existing strings do not cause changes to the 
data base. 

After all components of a large program have been compiled a file xs.c declaring the common 
xstr space can be created by a command of the form 

xstr 

This xs.c file should then be compiled and loaded with the rest of the program. If possible, 
the array can be made read-only (shared) saving space and swap overhead. 

Xstr can also be used on a single file. A command 

xstr name 

creates files x.c and xs.c as before, without using or affecting any strings file in the same direc­
tory. 

It may be useful to run xstr after the C preprocessor if any macro definitions yield strings or if 
there is conditional code which contains strings which may not, in fact, be needed. Xstr reads 
from its standard input when the argument '-' is given. An appropriate command sequence 
for running xstr after the C preprocessor is: 

cc -E name.c I xstr -c -
cc -c x.c 
mv x.o name.o 

Xsir does not touch the file strings unless new items are added, thus make can avoid remaking 
xs.o unless truly necessary. 

strings 
x.c 
xs.c 
/tmp/xs* 

Data base of strings 
~assaged C source 
C source for definition of array 'xstr' 
Temp file when 'xstr name' doesn't touch strings 

SEE ALSO 
mkstr(l) 

ICON INTERNATIONAL 1 



XSTR( 1) 

AUTHOR 
William Joy 

BUGS 

USER COMMANDS XSTR (1) 

If a string is a suffix of another string in the data base, but the shorter string is seen first by 
:utr both strings will be placed in the data base, when just placing the longer one there will 
do. 

2 ICON U,TERNATIONAL 



YACC(I) USERCO~S YACC(l) 

NAME 
yacc - yet another compiler-compiler 

SYNOPSIS 
yacc [ -vd 1 grammar 

DESCRIPTION 

Fn...ES 

Yacc converts a context-free grammar into a set of tables for a simple automaton which exe­
cutes an LR(l) parsing algorithm. The grammar may be ambiguous; specified precedence 
rules are used to break ambiguities. 

The output file, y.tab.c, must be compiled by the C compiler to produce a program yypar.'le. 
This program must be loaded with the lexical analyzer program, yylex, as well as main and 
yyerror, an error handling routine. These routines must be supplied by the user; Lex(l) is 
useful for creating lexical analyzers usable by yacc. 

If the -v flag is given, the file y.output is prepared, which contains a description of the parsing 
tables and a report on conflicts generated by ambiguities in the grammar. 

If the -d flag is used, the file y.tab.h is generated with the define statements that associate the 
yacc-assigned 'token codes' with the user-declared 'token names'. This allows source files 
other than y. tab. c to access the token codes. 

y.output 
y.tab.c 
y.tab.h defines for token names 
yacc.tmp, yacc.acts temporary files 
/usr/lib/yaccpar parser prototype for C programs 

SEE ALSO 
lex(l) 
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 19i4. 
YACC - Yet Another Compiler Compiler by S. C. Johnson. 

DIAGNOSTICS 

BUGS 

The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a 
more detailed report is found in the y.output file. Similarly, if some rules are not reachable 
from the start symbol, this is also reported. 

Because file names are fixed, at most one yacc process can be active in a given directory at a 
time. 

ICON INTERNATIONAL 1 



YES (1) USER COMMANDS YES (1 ) 

NAME 
yes - be repetitively affirmative 

SYNOPSIS 
yes [ expletive] 

DESCRIPTION 
Yes repeatedly outputs "y", or if expletive is given, that is output repeatedly. Termination is 
by rubout. 

ICON INTERNATIONAL 1 

(\ 
\ ) 
'---



SECTION 2 

ICON/UXB 
OPERATING 
SYSTEM 
CALLS 

c 

( 

C: 



if 

V 



c 

INTRO(2 ) SYSTEM CALLS INTRO( 2) 

NAME 
intro - introduction to system calls and error numbers 

SYNOPSIS 
#include <errno.h> 

DESCRIPTION 
This section describes all of the system calls. Most of these calls have one or more error 
returns. An error condition is indicated by an otherwise impossible return value. This is 
almost always -1; the individual descriptions specify the details. 

As with normal arguments, all return codes and values from functions are of type integer 
unless otherwise noted. An error number is also made available in the external variable errno, 
which is not cleared on successful calls. Thus errno should be tested only after an error has 
occurred. . 

The following is a complete list of the errors and their names as given in < errno.h >. 
o "Error 0 

Unused. 

1 EPERM Not owner 
Typically this error indicates an attempt to modify a file in some way forbidden except 
to its owner or super-user. It is also returned for attempts by ordinary users to do 
things allowed only to the super-user. 

2 ENOENT No such file or directory 
This error occurs when a file name is specified and the file should exist but doesn't, or 
when one of the directories in a path name does not exist. 

3 ESRCH No such process 
The process whose number was given to kill and ptrace does not exist, or is already 
dead. 

4 EINTR Interrupted system call 
An asynchronous signal (such as interrupt or quit), which the user has elected to 
catch, occurred during a system call. If execution is resumed after processing the sig­
nal, it will appear as if the interrupted system call returned this error condition. 

5 EIO I/O error 
Some physical I/O error occurred during a read or write. This error may in some cases 
occur on a call follo~ing the one to which it actually applies. 

6 ENXIO No such device or address 
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of 
the device. It may also occur when, for example, an illegal tape drive unit number is 
selected or a disk pack is not loaded on a drive. 

7 E2BIG Arg list too long 
An argument list longer than 10240 bytes is presented to execve. 

8 ENOEXEC Exec format error 
A request is made to execute a file which, although it has the appropriate permissions, 
does not start with a valid magic number, see a.out(5). 

9 EBADF Bad file number 
Either a file descriptor refers to no open file, or a read (resp. write) request is made to 
a file which is open only for writing (resp. reading). 

ICON INTERNATIONAL 1 

(' 

c 





C\ 

(\ 

INTRO(2 ) SYSTEM CALLS INTRO(2 ) 

26 

27 

28 

29 

ETXTBSY Text file busy I' '~' 
An attempt to execute a pure-procedure program which is currently open for writing '-_ 
(or reading!). Also an attempt to open for writing a pure-procedure program that is 
being executed. 

EFBIG File too large 
The size of a file exceeded the maximum (about 109 bytes). 

ENOSPC No space left on device 
During a write to an ordinary file, there is no free space left on the device. 

ESPIPE Illegal seek 
An lseek was issued to a pipe. This error may also be issued for other non-seek able 
devices. 

30 EROFS Read-only file system 
An attempt to modify a file or directory was made on a device mounted read-only. 

31 EMLINK Too many links 
An attempt to make more than 32767 hard links to a file. 

32 EPIPE Broken pipe 
A write on a pipe or socket for which there is no process to read the data. This condi­
tion normally generates a signal; the error is returned if the signal is ignored. 

33 EDaM Math argument 
The argument of a function in the math package (3M) is out of the domain of the 
function. 

34 ERANGE Result too large 
The value of a function in the math package (3M) is unrepresentable within machine 
precision. 

35 EWOULDBLOCK Operation would block 
An operation which would cause a process to block was attempted on a object in non­
blocking mode (see ioctl (2)). 

36 EINPROGRESS Operation now in progress 
An operation which takes a long time to complete (such as a connect (2)) was 
attempted on a non-blocking object (see ioctl (2)). 

37 EALREADY Operation already in progress 
An operation was attempted on a non-blocking object which already had an operat.ion 
lD progress. 

38 ENOTSOCK Socket operation on non-socket 
Self-explanatory. 

39 EDESTADDRREQ Destination address required 
A required address was omitted from an operation on a so~ket. 

40 EMSGSIZE Message too long 
A message sent on a socket was larger than the internal message buffer. 

41 EPROTOTYPE Protocol wrong type for socket 
A protocol was specified which does not support the semantics of the socket type 
requested. For example you cannot use the ARPA Internet UDP protocol with type 
SOCK-STREAM. 

c c 
ICON INTERNATIONAL 3 



\ ) 
~ 

( 
~j 

INTRO(2 ) SYSTEM CALLS INTRO(2) 

10 ECHILD No children 
Wait and the process has no living or unwaited-for children. 

11 EAGAIN No more processes 
In a fork, the system's process table is full or the user is not allowed to create any 
more processes. 

12 ENOMEM Not enough core 
During an ezecve or break, a program asks for more core or swap space than the sys­
tem is able to supply. A lack of swap space is normally a temporary condition, how­
ever a lack of core is not a temporary condition; the maximum size of the text, data, 
and stack segments is a system parameter. 

13 EACCES Permission denied 
An attempt was made to access a file in a way forbidden by the prot.ection system. 

14 EFAULT Bad address 
The system encountered a hardware fault in attempting to access the arguments of a 
system call. 

15 ENOTBLK Block device required 
A plain file was mentioned where a block device was required, e.g. in mount. 

16 EBUSY Mount device busy 
An attempt to mount a device that was already mounted or an attempt was made to 
dismount a device on which there is an active file directory. (open file, current direc­
tory, mounted·on file, active text segment). 

17 EEXIST File exists 
An existing file was mentioned in an inappropriate context, e.g. link. 

18 Ex'l)EV Cross-device link 
A hard link to a file on another device was attempted. 

19 ENODEV No such device 
An attempt was made to apply an inappropriate system call to a device; e.g. read a 
write-only device. 

20 ENOTDIR Not a directory 
A non-directory was specified where a directory is required, for example in a path 
name or as an argument to chdir. 

21 EISDIR Is a directory 
An attempt to write on a directory. 

22 EINV AL Invalid argument 
Some invalid argument: dismounting a non·mounted device, mentioning an unknown 
signal in signal, reading or writing a file for which seek has generated a negative 
pointer. Also set by math functions, see intro(3). 

23 ENFILE File table overflow 
The system's table of open files is full, and temporarily no more opens can be accepted. 

24 ·EMFILE Too many open files 
Customary configuration limit is 20 per process. 

25 ENOTTY Not a typewriter 
The file mentioned in an ioctl is not a terminal or one of the other devices to which 
these calls apply. 

2 ICON INTERNATIONAL 



(:' 

INTRO(2) SYSTEM CALLS INTRO(2) 

59 unused 

60 ETIMEDOUT Connection timed out 
A connect request failed because the connected party did not properly respond after a 
period of time. (The timeout period is dependent on the communication protocol.) 

61 ECONNREFUSED Connection refused 
No connection could be made because the target machine actively refused it. This 
usually results from trying to connect to a service which is inactive on the foreign 
host. 

62 ELOOP Too many levels of symbolic links 
A path name lookup involved more than 8 symbolic links. 

63 ENAMETOOLONG File name too long 
A component of a path name exceeded 255 characters, or an entire path name 
exceeded 1023 characters. 

64 EHOSTDOWN Host is down 
A socket operation failed because the destination host was down. 

65 EHOSTUNREACH Host is unreachable 
A socket operation was attempted to an unreachable host. 

66 ENOTEMPTY Directory not empty 

69 
70 

71 

72 

73 

74 

A directory with entries other than "." and H •• " was supplied to a remove directory or 
rename call. 

EDQUOT Disc quota exceeded 

ENOTREG (used internally) 
ECTNRDY Cassette tape not ready 

ENOMSG No message of desired type 

EIDR.\1 Identifier removed 

EDEADLK Deadlock condition if locked 

DEFINITIONS 
Process ID 

Each active process in the system is uniquely identified by a positive integer called a 
process ID. The range of this ID is from 0 to {PROCj.1A.X}. 

Parent process ID 
A new process is created by a currently active process; see /ork(2). The parent process 
ID of a process is the process ID of its creator. 

Process Group ID 
Each active process is a member of a process group that is identified by a positive 
integer called the process group ID. This is the process ID of the group leader. This 
grouping permits the signalling of related processes (see killpg(2)) and the job control 
mechanisms of csh(l). 

Tty Group ID 
Each active process can be a member of a terminal group that is identified by a positive 
integer called the tty group ID. This grouping is used to arbitrate between multiple 
jobs contending for the same terminal; see csh(I), and tty(4). 

ICON INTERNATIONAL 5 

c 



INTRO(2 ) SYSTEM CALLS INTRO(2) 

4 

42 ENOPROTOOPT Bad protocol option 
A bad option was specified in a getsockopt(2) or setsockopt(2) call. 

43 EPROTONOSUPPORT Protocol not supported 
The protocol has not been configured into the system or no implementation for it 
exists. 

44 ESOCKTNOSUPPORT Socket type not supported 
The support for the socket type has not been configured into the system or no imple­
mentation for it exists. 

45 EOPNOTSUPP Operation not supported on socket 
For example, trying to accept a connection on a datagram socket. 

46 EPFNOSUPPORT Protocol family not supported 
The protocol family has not been configured into the system or no implementation for 
it exists. 

47 EAFNOSUPPORT Address family not supported by protocol family 
An address incompatible with the requested protocol was used. For example, you 
shouldn't necessarily expect to be able to use PUP Internet addresses with ARPA 
In ternet protocols. 

48 EADDRINUSE Address already in use 
Only one usage of each address is normally permitted. 

49 EADDRNOTAVAIL Can't assign requested address 
Normally results from an attempt to create a socket with an address not on this 
machine. 

50 ENETDOWN Network is down 
A socket operation encountered a dead network. 

51 El\l£TUNREACH Network is unreachable 
A socket operation was attempted to an unreachable network. 

52 ENETRESET Network dropped connection on reset 
The host you were connected to crashed and rebooted. 

53 ECONNABORTED Software caused connection abort 
A connection abort was caused internal to your host machine. 

54 ECONNRESET Connection reset by peer 
A connection was forcibly closed by a peer. This normally results from the peer exe­
cuting a shutdown (2) call. 

55 ENOBUFS No buffer space available 
An operation on a socket or pipe was not performed because the system lacked 
sufficient buffer space. 

56 EISCONN Socket is already connected 
A connect request was made on an already connected socket; or, a sendto or sendmsg 
request on a connected socket specified a destination other than tht' connected party. 

57 ENOTCONN Socket is not connected 
An request to send or receive data was disallowed because the sockE't is not connected. 

58 ESHUTDOWN Can't send after socket shutdown 
A request to send data was disallowed because the socket had already been shut down 
with a previous shutdown(2) call. 

ICON INTERNATIONAL 

r 



c 

C··· 
.. 

INTRO(2 ) SYSTEM CALLS INTRO(2 ) 

Root Directory and Current Working Directory 
Each process has associated with it a concept of a root directory and a current working 
directory for the purpose of resolving path name searches. A process's root directory 
need not be the root directory of the root file system. 

File Access Permissions 
Every file in the file system has a set of access permissions. These permissions are used 
in determining whether a process may perform a requested operation on the file (such as 
opening a file for writing). Access permissions are established at the time a file is 
created. They may be changed at some later time through the chmod(2) call. 

File access is broken down according to whether a file may be: read, written, or exe­
cuted. Directory files use the execute permission to control if the directory may be 
searched. 

File access permissions are interpreted by the system as they apply to three different 
classes of users: the owner of the file, those users in the file's group, anyone else. Every 
file has an independent set of access permissions for each of these classes. When an 
access check is made, the system decides if permission should be granted by checking the 
access information applicable to the caller. 

Read, write, and execute/search permissions on a file are granted to a process if: 

The process's effective user ID is that of the super-user. 

The process's effective user ID matches the user ID of the owner of the file and the 
owner permissions allow the access. 

The process's effective user ID does not match the user ID of the owner of the file, and 
either the process's effective group ID matches the group ID of the file, or -the group ID 
of the file is in the process's group access list, and the group permissions allow the 
access. 

Neither the effective user ID nor effective group ID and group access list of the process 
match the corresponding user ID and group ID of the file, but the permissions for "other 
users" allow access. 

Otherwise, permission is denied. 

Sockets and Address Families 

SEE ALSO 

A socket is an endpoint for communication between processes. Each socket has queues 
for sending and receiving data. 

Sockets are typed according to their communications properties. These properties 
include whether messages sent and received at a socket require the name of the partner, 
whether communication is reliable, the format used in naming message recipients, etc. 

Each instance of the system supports some collection of socket types; consult socket(2) 
for more information about the types available and their properties. 

Each instance of the system supports some number of sets of communications protocols. 
Each protocol set supports addresses of a certain format. An Address Family is the set 
of addresses for a specific group of protocols. Each socket has an address chosen from 
the address family in which the socket was created. 

intro{3}, perror(3) 

ICON INTERNATIONAL 7 

( 



------ _._---

INTRO (2) SYSTEM CALLS INTRO(2) 

6 

Real User ID and Real Group ID 
Each user on the system is identified by a positive integer termed the real user ID. 

Each user is also a member of one or more groups. One of these groups is distinguished 
from others and used in implementing accounting facilities. The positive integer 
corresponding to this distinguished group is termed the real group ID. 

All processes have a real user ID and real group ID. These are initialized from the 
equivalent attributes of the process which created it. 

Effective User Id, Effective Group Id, and Access Groups 
Access to system resources is governed by three values:. the effective user ID, the effective 
group ID, and the group access list. 

The effective user ID and eft'ective group ID are initially the process's real user ID and 
real group ID respectively. Either may be modified through execution of a set-user-ID or 
set-group-ID file (possibly by one its ancestors); see execve(2). 

The group access list is an additional set of group ID's used only in determining resource 
accessibility. Access checks are performed as described below in "File Access Permis­
sions". 

Super-user 
A process is recognized as a super-user process and is granted special privileges if its 
effective user ID is O. 

Special Processes 
The processes with a process ID's of 0, 1, and 2 are special. Process 0 is the scheduler. 
Process 1 is the initialization process init, and is the ancestor of every other process in 
the system. It is used to control the process structure. 

Descriptor 
An integer assigned by the system when a file is referenced by open(2), dup(2), or pipe(2) 
or a socket is referenced by socket(2) or socketpair(2) which uniquely identifies an access 
path to that file or socket from a given process or any of its children. 

File Name 
Names consisting of up to {FILENAMEJ..1AX} characters may be used to name an ordi­
nary file, special file, or directory. 

These characters may be selected from the set of all ASCII character excluding 0 (nUll) 
and the ASCII code for / (slash). (The parity bit, bit 8, must. be 0.) 

Note that it is generally unwise to use *, 1, [ or 1 as part of file names because of the spe­
cial meaning attached to these characters by the shell. 

Path Name 
A path name is a null-terminated character string starting with an optional slash U), 
followed by zero or more directory names separated by slashes, optionally followed by a 
file name. The total length of a path name must be less than {PATHNAME..MAX} 
characters. 

If a path name begins with a slash, the path search begins at the root directory. Other­
wise, the search begins from the current working directory. A slash by itself names the 
root directory. A null pathname refers to the current directory. 

Directory 
A directory is a special type of file which contains entries which are references to other 
files. Directory entries are called links. By convention, a directory contains at least two 
links, . and .. , referred to as dot and dot-dot respectively. Dot refers to the directory 

r 

itself and dot-dot refers to its parent directory. V 

ICON INTERNATIONAL 



c 

~ .. 

ACCEPT(2) SYSTEM CALLS 

NAME 
accept - accept a connection on a socket 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 
ns = accept(s, addr, addrlen) 
int ns, s; 
struct sockaddr *&ddr; 
int *addrlen; 

DESCRIPTION 

ACCEPT (2) 

The argument s is a socket which has been created with socket(2), bound to an address with 
bind(2), and is listening for connections after a listen (2). Accept extracts the first connection 
on the queue of pending connections, creates a new socket with the same properties of sand 
allocates a new file descriptor, ns, for the socket. If no pending connections are present on the 
queue, and the socket is not marked as non-blocking, accept blocks the caller until a connec­
tion is present. If the socket is marked non-blocking and no pending connections are present 
on the queue, accept returns an error as described below. The accept.ed socket, ns, may not. 
be used to accept more connections. The original socket s remains open. 

The argument addr is a result parameter which is filled in with the address of the connecting 
entity, as known to the communications layer. The exact format of the addr paramet.er is 
determined by the domain in which the communication is occurring. The addrlen is a value­
result parameter; it should initially contain the amount of space pointed to by addr; on return 
it will contain the actual length (in bytes) of the address returned. This call is used with 
connection-based socket types, currently with SOCICSTREAM. 

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read. 

RETURN VALUE 
The call returns -Ion error. If it succeeds it returns a non-negative integer which IS a 
descriptor for the accepted socket. 

ERRORS 
The accept will fail if: 

[EBADFj 

IENOTSOCKj 

[EOPNOTSUPPj 

[EFAULTJ 

IEWOULDBLOCKj 

SEE ALSO 

The descriptor is invalid. 

The descriptor references a file, not a socket. 

The referenced socket is not of type SOCICSTREAM:. 

The addr parameter is not in a writable pa:rt of the user address space. 

The socket is marked non-blocking and no connections are present. to 
be accepted. 

bind(2), connect(2), listen(2), select(2), socket(2) 

ICON INTERNATIONAL 1 

(. 

c 



rr-~" 

I'--j 

\ , 



c 

ACCESS (2) SYSTEM CALLS ACCESS(2) 

NAME 
access - determine accessibility of file 

SYNOPSIS 
#include <sys/file.h> 

#define ~OK 4 1* test for read permission *1 
#define W _OK 2 1 * test for write permission *1 
#define x..OK 1 1* test for~ecute (search) permission *1 
#define F_OK 0 1* test for presence of file *1 
accessible = access(path, mode) 
int accessible; 
char *path; 
int mode; 

DESCRlPTION 
Access checks the given file path for accessibility according to mode, which is an inclusive or of 
the bits R_OK, W_OK and X_OK. Specifying mode as F _OK (i.e. 0) tests whether the direc­
tories leading to the file can be searched and the file exists. 

The real user ID and the group access list (including the real group ID) are used in verifying 
permission, so this call is useful to set-UID programs. 

Notice that only access bits are checked. A directory may be indicated as writable by access, 
but an attempt to open it for writing will fail (although files may be created there); a file may 
look executable, but execve will fail unless it is in proper format. 

RETURN VALUE 
If path cannot be found or if any of the desired access modes would not be granted, then a-I 
value is returned; otherwise a 0 value is returned. 

ERRORS 
Access to the file is denied if one or more of the following are true: 

[ENOTDIR] A component of the path prefix is not a directory. 

[ENOENT] The argument path name was too long. 

[ENOENT] Read, write, or execute (search) permission is requested for a null path name 

[EPERM] 

[ELOOP] 

IEROFS] 

[ETXTBSY] 

[EACCES] 

IEFAULT] 

or the named file does not exist. 

The argument contains a byte WIth the high-order bit set. 

Too many symbolic links were encountered in translating the pathname. 

Write access is requested for a file on a read-only file system. 

Write access is requ·ested for a pure procedure (shared text) file that is being 
executed. 

Permission bits of the file mode do not permit the requested access; or search 
permission is denied on a component of the path prefix. The owner of a file 
has permission checked with respect to the "owner" read, write, and execute 
mode bits, members of the file's group other than the owner have permission 
checked with respect to the "group" mode bits, and all others have permis­
sions checked with respect to the "other" mode bits. 

Path points outside the process's allocated address space. 

ICON INTERNATIONAL 1 



ACCESS (2) SYSTEM CALLS ACCESS(2) 

SEE ALSO 
chmod(2), stat(2) 

/ 

2 " ICON INTERNATIONAL 



ACCT(2) 

NAME 
acct - turn accounting on or off 

SYNOPSIS 
acct(file) 
char *file; 

DESCRIPTION 

SYSTEM CALLS ACCT(2) 

The system is prepared to write a record in an accounting file for each process as it ter­
minates. This call, with a null-terminated string naming an existing file as argument, turns 
on accounting; records for each terminating process are appended to file. An argument. of 0 
causes accounting to be turned off. 

The accounting file format is given in acct(5). 

This call is permitted only to the super-user. 

NOTES 
Accounting is automatically disabled when the file system the accounting file resides on runs 
out of space; it is enabled when space once again becomes available. 

RETURN VALUE 
On error -1 is returned. The file must exist and the call may be exercised only by the super­
user. It is erroneous to try to turn on accounting when it is already on. 

ERRORS 
, Acct will fail if one of the following is true: 

[EPERMj The caller is not the super-user. 

[EPERMj The pathname contains a character with the high-order bit set. 

[ENOTDIRj A component of the path prefix is not a directory. 

[ENOENTj The named file does not exist. 

[EISDIRj The named file is a directory. 

[EROFSj The named file resides on a read-only file syst.em. 

[EFAULTj File points outside the process's allocated address space. 

[ELOOPj Too many symbolic links were encountered in translating the pathname. 

[EACCESj The file is a character or block special file. 

SEE ALSO 
acct(5), sa(8) 

BUGS 
No accounting is produced for programs running when a crash occurs. In particular nonter­
minating programs are never accounted for. 

ICON INTERNATIONAL 1 



BIND (2) SYSTEM CALLS BIND (2) 

NAME 
bind - bind a name to a socket 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 
bind(s, name, namelen) 
int s; 
struct sockaddr *Dame; 
int namelen; 

DESCRIPTION 
Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists 
in a name space (address family) but has no name assigned. Bind requests the name, be 
assigned to the socket. 

NOTES 
Binding a name in the UNIX domain creates a socket in the file system which must be deleted 
by the caller when it is no longer needed (using unlink(2)}. The file created is a side-effect of 
the current implementation, and will not be created in future versions of the UNIX ipc 
domain. 

The rules used in name binding vary between communication domains. Consult the manual 
entries in section 4 for detailed information. 

RETURN VALUE 
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which 
is further specified in the global errno. 

ERRORS 
The bind call will fail if: 

[EBADF] S is not a valid descriptor. 

[ENOTSOCK] S is not a socket. 
[EADDRNOTAVAIL] The specified address is not available from the local machine. 

[EADDRlNUSE] The specified address is already in use. 

[EINV AL] The socket is already bound to an address. 

[EACCESS] The requested address is protected, and the current user has inadequate 
permission to access it. 

[EFAULTJ The name parameter is not in a valid part of the user address space. 

SEE ALSO 
connect(2), listen(2), socket(~), getsockname(2) 

ICON INTERNATIONAL 1 

/ 



( 

( 

BRK(2) SYSTEM CALLS BRK(2) 

NAME 
brk, sbrk - change data segment size 

SYNOPSIS 
caddr_t brk(addr) 
caddr _t addr; 

caddr_t sbrk(iner) 
int iner; 

DESCRIPTION 
Brk sets the system's idea of the lowest data segment location not used by the program (called 
the break) to addr (rounded up to the next multiple of the system's page siz~). Locations 
greater than addr and below the stack pointer are not in the address space and will thus cause 
a memory violation if accessed. 

In the alternate function sbrk, incr more bytes are added to the program's data space and a 
pointer to the start of the new area is returned. 

When a program begins execution via execve the break is set at the highest location defined by 
the program and data storage areas. Ordinarily, therefore, only programs with growing data 
areas need to use sbrk. 

The getrlimit(2) system call may be used to determine the maximum permissible size of the 
data segment; it will not be possible to set the break beyond the rlim_max value returned 
from a call to getriimit, e.g. "etext + rlp-+rlim_max." (See end(3) for the definition of etext.) 

RETURN VALUE 
Zero is returned if the brk could be set; -1 if the program requests more memory than the sys­
tem limit. Sbrk returns -1 if the break could not be set. 

ERRORS 
Sbrk will fail and no additional memory will be allocated if one of the following are true: 

[ENOMEMJ The limit, as set by setrlimit(2), was exceeded. 

[ENOMEMj The maximum possible size of a data segment (compiled into the system) 
was exceeded. 

[ENOMEMj Insufficient space existed in the swap area to support the expansion. 

SEE ALSO 
execve(2), getrlimit(2), malloc(3), end(3) 

BUGS . 
Setting the break may fail due to a temporary lack of swap spare. It is not possible to distin­
guish this from a failure caused by exceeding the maximum size of the dat.a segment without 
consulting getrlimit. 

ICON INTERNATIONAL 1 



CHDIR(2 ) SYSTEM CALLS CHDffi(2) 

NAME 
chdir - change current working directory 

SYNOPSIS 
chdir(path) 
char *path; 

DESCRIPTION 
Path is the pathname of a directory. Ohdir causes this directory to become the current work­
ing directory, the starting point for path names not beginning with "/". 

In order for a directory to become the current directory, a process must haye execute (search) 
access to the directory. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

ERRORS 
Chdir will fail and the current working directory will be unchanged if one or more of the fol­
lowing are true: 

[ENOTDIR] 
[ENOENTJ 
[ENOENT] 
[EPERM] 
[EACCES] 
[EFAULT] 
[ELOOP] 

SEE ALSO 
chroot(2) 

A component of the pathname is not a directory. 

The named directory does not exist. 

The argument path name was too long. 

The argument contains a byte with the high-order bit set. 

Search permission is denied for any component of the path name. 

Path points outside the process's allocated address space. 

Too many symbolic links were encountered in translating the pathname. 

ICON INTERNATIONAL 1 

I" 
i "-... 



( 

(-

( '"" 

" " 

CHMOD(2) 

NAME 
chmod - change mode of file 

SYNOPSIS 
chmod(path, mode) 
char *path; 
int mode; 
rchmod(rd, mode} 
int rd, mode; 

DESCRIPTION 

SYSTEM CALLS CHMOD (2) 

The file whose name is given by path or referenced by the descriptor fd has its mode changed 
to mode. Modes are constructed by or'ing together some combination of the following: 

04000 set user ID on execution 
02000 set grou p ID on execu tion 
01000 save text image after execution 
00400 read by owner 
00200 write by owner 
00100 execute (search on directory) by owner 
00070 read, write, execute (search) by group 
00007 read, write, execute (search) by others 

If an executable file is set up for sharing (this is the default) then mode 1000 prevents the sys­
tem from abandoning the swap-space image of the program-text portion of the file when its 
last user terminates. Ability to set this bit is restricted to the super-user. 

Only the owner of a file (or the super-user) may change the mode. 

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits. This 
makes the system somewhat more secure by protecting set-user-id (set-group-id) files from 
remaining set-user-id (set-group-id) if they are modified, at the expense of a degree of compati­
bility. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
ermo is set to indicate the error. 

ERRORS 
Chmod will fail and the file mode will be unchanged if: 

[EPERMj The argument contains a byte with 'the high-order bit set. 

[ENOTDIR] A component of the path prefix is not a directory. 

[ENOENT] The path name was too long. 

[ENOENT] The named file does not exist. 

[EACCES] Search permission is denied on a component of the path prefix. 

[EPERMj The effective user ID does not match the owner of the file and the effective 

[EROFSj 

[EFAULTj 

[ELOOPj 

user ID is not the super-user. 

The named file resides on a read-only file system. 

Path points outside the process's allocated address space. 

Too many symbqlic links were encountered in translating the pathname. 

ICON INTERNATIONAL 1 



CHMOD(2) SYSTEM CALLS CHMOD(2) 

Fchmod will fail if: 

[EBADFJ The descriptor is not valid. 
[EINV AL] Fd refers to a socket, not to a file. 

IEROFS] The file resides on a read-only file system. 

SEE ALSO 
open(2), chown{2} 

2 ICON INTERNATIONAL 



( 

( "-
) 

CHOWN(2) SYSTEM CALLS 

NAME 
chown - change owner and group of a file 

SYNOPSIS 
chown(path, owner, group) 
char *path; 
int owner, group; 
fchown(fd, owner, group) 
int fd, owner, group; 

DESCRIPTION 

CHOWN(2) 

The file which is named by path or referenced by fd has its owner and group changed as 
specified. Only the super-user may execute this call, because if users were able to give files 
away, they could defeat the file-space accounting procedures. 

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent 
accidental creation of set-user-id and set-group-id programs owned by the super-user. 

Fchown is particularly useful when used in conjunction with the file locking primitives (see 
flock(2)). 

Only one of the owner and group id's may be set by specifying the other as -1. 

RETURN VALUE 
Zero is returned if the operation was successful; -1 is returned if an error occurs, with a more 
specific error code being placed in the global variable ermo. 

ERRORS 
Chown will fail and the file will be unchanged if: 

[EINV AL] The argument path does not refer to a file. 

[ENOTDIRj A component of the path prefix is not a directory. 

[ENOENTj The argument pathname is too long. 

[EPERMj The argument contains a byte with the high-order bit set. 

[ENOENTj The named file does not exist. 

[EACCES] Search permission is denied on a component of the path prefix. 

[EPERM] The effective user ID does not match the owner of the file and the effective 
user ID is not the super-user. 

[EROFS] The named file resides on a read-only file system. 

[EFAULTJ Path points outside the process's allocated address space. 

[ELOOPj Too many symbolic links were encountered in translating the pathname. 

Fchown will fail if: 

[EBADF] Fd does not refer to a valid descriptor. 

[EINV ALl Fd refers to a socket, not a file. 

SEE ALSO 
chmod(2), ftock{2} 

ICON INTERNATIONAL 1 



CHROOT(2) SYSTEM CALLS CHROOT(2) 

NAME 
chroot - change root directory 

SYNOPSIS 
chroot( dirname) 
char *<lirname; 

DESCRIPTION 
Dirname is the address of the pathname of a directory, terminated by a null byte. Chroot 
causes this directory to become the root directory, the starting point for path names begin­
ning with "/". 
In order for a directory to become the root directory a process must have execute (search) 
access to the directory. 

This call is restricted to the super-user. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Other" ise, a value of -1 is returned and 
errno is set to indicate an error. 

ERRORS 
Chroot will fail and the root directory will be unchanged if one or more of the following are 
true: 

[ENOTDIR] 
[ENOENT] 
[EPERM] 
IENOENT] 
[EACCESJ 
[EFAULTJ 
[ELOOP] 

SEE ALSO 
chdir(2) 

A component of the path name is not a directory. 

The path name was too long. 

The argument contains a byte with the high-order bit set. 

The named directory does not exist. 

Search permission is denied for any component of the path name. 

Path points outside the process's allocated address space. 

Too many symbolic links were encountered in translating the pathname. 

ICON INTERNATIONAL 1 



(\ 

(j 

( 

CLOSE (2) 

NAME 
close - delete a descriptor 

SYNOPSIS 
close(d) 
int d; 

DESCRIPTION 

SYSTEM CALLS CLOSE (2) 

The close call deletes a descriptor from the per-process object reference table. If this is the 
last reference to the underlying object, then it will be deactivated. For example, on t.he last 
close of a file the current seek pointer associated with the file is lost; on the last close of a 
8ocket(2) associated naming information and queued data are discarded; on the last close of a 
file holding an advisory lock the lock is released; see further ftock(2). 

A close of all of a process's descriptors is automatic on exit, but since there is a limit on the 
number of active descriptors per process, close is necessary for programs which deal with 
many descriptors. 

When a process forks (see fork(2)), all descriptors for the new child process reference the same 
objects as they did in the parent before the fork. If a new process is then to be run using 
execve(2), the process would normally inherit these descriptors. Most of the descriptors can be 
rearranged with dup2(2) or deleted with close before the execve is attempted, but if some of 
these descriptors will still be needed if the execve fails, it is necessary to arrange for them to 
be closed if the execve succeeds. For this reason, the call "fcntl(d, F _SETFD, 1)" is provided 
which arranges that a descriptor will be closed after a successful execve; the call "fcntl(d, 
F _SETFD, 0)" restores the default, which is to not close the descriptor. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
the global integer variable errno is set to indicate the error. 

ERRORS 
Close will fail if: 

[EBADF] D is not an active descriptor. 

SEE ALSO 
accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execye(2), fcntl(2) 

ICON INTERNATIONAL 1 



CONNECT(2) SYSTEM CALLS CONNECT (2) 

NAME 
connect - initiate a connection on a socket 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/socket.h> 
connect(s, name, namelen} 
int S; 
struct sockaddr *Dame; 
int namelen; 

DESCRIPTION 
The parameter s is a socket. If it is of type SOCKJ)GRAM, then this call permanently 
specifies the peer to which datagrams are to be sent; if it is of type SOCK-STREAM, then 
this call attempts to make a connection to another socket. The other socket is specified by 
name which is an address in the communications space of the socket. Ea.ch communications 
space in terprets the name parameter in its own way. 

RETURN VALUE 
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned. and a 
more specific error code is stored in errno. 

ERRORS 
The call fails if: 

[EBADFj S is not a valid descriptor. 

[ENOTSOCKj S is a descriptor for a file, not a socket. 

[EADDRNOTAVAILj The specified address is not available on this machine. 

[EAFNOSUPPORTj Addresses in the specified address family cannot be used with this 

[EISCONN] 

[ETlMEDOUT] 

[ECONNREFUSED] 

[ENETUNREACHj 

[EADDRINUSE] 

[EFAULT] 

IEWOULDBLOCK] 

SEE ALSO 

socket. 

The socket is already connected. 

Connection establishment timed out without establishing a connection. 

The attempt to connect was forcefully rejected. 

The network isn't reachable from this host. 

The address is already in use. 

The name parameter specifies an area outside the process address 
space. 

The socket is non-blocking and the and the connection cannot be com­
pleted immediately. It is possible to select(2) the socket while it. is con­
necting by selecting it for writing. 

accept(2), select(2}, socket{2}, getsockname{2} 

ICON INTERNATIONAL 1 

r 
~. / 



(' 

CREAT(2) SYSTEM CALLS CREAT(2) 

NAME 
creat - create a new file 

SYNOPSIS 
creat(name, mode) 
char *Dame; 

DESCRIPTION 
This interrace is obsoleted by open(2). 

Creat creates a new file or prepares to rewrite an existing file called name, given as the 
address of a null-terminated string. If the file did not exist, it is given mode mode, as 
modified by the process's mode mask (see umask(2». Also see chmod(2) for the const.ruction 
of the mode argument. 

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 lengt.h. 

The file is also opened for writing, and its file descriptor is returned. 

NOTES 
The mode given is arbitrary; it need not allow writing. This feature has been used in the past 
by programs to construct a simple exclusive locking mechanism. It is replaced by the 
O.-EXCL open mode, or flock(2) facilitity. 

RETURN VALUE 
The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative 
descriptor which only permits writing. 

ERRORS 
Creat will fail and the file will not be created or truncated if one of the following occur: 

[EPERM] The argument contains a byte with the high-order bit set. 

[ENOTDIR] A component of the path prefix is not a directory. 

[EACCES] A needed directory does not have search permission. 

[EACCES] The file does not exist and the directory in which it is t.o be created is not 
writable. 

The file exists, but it is unwritable. 

The file is a directory. 

There are already too many files open. 

The named file resides on a read-only file system. 

[EACCESj 

[EISDIR] 

[EMFILE] 

[EROFS] 

[ENXIO] The file is a character special or block special file, and the associated device 
does not exist. 

[ETXTBSY) The file is a pure procedure (shared text) file that is being executed. 

[EFAULT] Name points outside the process's allocated address space. 

[ELOOP) Too many symbolic links were encountered in translating t.he pathname. 

[EOPNOTSUPP] 
The file was a socket (not currently implemented). 

SEE ALSO 
open(2), write(2), c}ose(2), chmod(2), umask(2) 

ICON INTERNATIONAL 1 



DUP(2) SYSTEM CALLS 

NAME 
dup, dup2 - duplicate a descriptor 

SYNOPSIS 
newd = dup(oldd) 
int newd, oldd; 
dup2(oldd, newd) 
int oldd, newd; 

DESCRIPTION 

DUP(2) 

Dup duplicates an existing object descriptor. The argument oldd is a small non-negative 
integer index in the per-process descriptor table. The value must be less t.han the size of the 
table, which is returned by getdtablesize(2). The new descriptor newd returned by the call is 
the lowest numbered descriptor which is not currently in use by the process. 

The object referenced by the descriptor does not distinguish between references using oldd and 
newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2), 
write(2) and Iseek(2) calls all move a single pointer into the file. If a separate pointer into the 
file is desired, a different object reference to the file must be obtained by issuing an additional 
open(2) call. 

In the second form of the call, the value of newd desired is specified. If this descriptor is 
already in use, the descriptor is first deallocated as if a close(2) call had been done first. 

RETURN VALUE 
The value -1 is returned if an error occurs in either call. The external variable errno indicates 
the cause of the error. 

ERRORS 
Dup and dup2 fail if: 

[EBADF] Oldd or newd is not a valid active descriptor 

[E:MFILEJ Too many descriptors are active. 

SEE ALSO 
accept(2), open(2), close(2), pipe(2), socket(2), socketpair(2), getdt.ablesize(2) 

ICON INTERNATIONAL 1 



( 

(' 

EXECVE(2) 

NAME 
execve - execute a file 

SYNOPSIS 
exeeve( name, argv, envp) 
char *!lame, *8.rgvD, :tenvpD; 

DESCRIPTION 

SYSTEM CALLS EXECVE(2) 

Execve transforms the calling process into a new process. The new process is construett'd from 
an ordinary file called the new process file. This file is either an executablt' object file, or a file 
of data for an interpreter. An executable object file consists of an identifying header, followed 
by pages of data representing the initial program (text) and initialized data pages. Additional 
pages may be specified by the header to be initialize with zero data. See a.out(5). 

An interpreter file begins with a line of the form "#! interpreter"; When an interprett'r file is 
execve'd, the system execve's the specified interpreter, giving it the name of the originally 
exec'd file as an argument, shifting over the rest of the original arguments. 

There can be no return from a successful execve because the calling core image is lost. This is 
the mechanism whereby different process images become active. 

The argument argv is an array of character pointers to null-terminated character strings. 
These strings constitute the argument list to be made available to the new process. By con­
vention, at least one argument must be present in this array, and the first element of this 
array should be the name of the executed program (i.e. the last component of name). 

The argument envp is also an array of character pointers to null-terminated strings. These 
strings pass information to the new process which are not directly arguments to the com­
mand, see environ(7). 

Descriptors open in the calling process remain open in the new process, except for those for 
which the close-on-exec flag is set; see close(2). Descriptors which remain open are unaffected 
by execve. 

Ignored signals remain ignored across an execve, but signals that are caught are reset to their 
default values. The signal stack is reset to be undefined; see sigvec(2) for more information. 

Each process has real user and group IDs and a effective user and group IDs. The real ID 
identifies the person using the system; the effective ID determines his access privileges. Execve 
changes the effective user and group ID to the owner of the executed file if the file has the 
"set-user-ID" or "set-group-ID" modes. The real user ID is not affected. 

The new process also inherits the following attributes from the calling process: 

process ID see getpid(2) 
parent process ID see getppid(2) 
process group ID see getpgrp (2) 
access groups see getgroups (2) 
working directory see chdir(2) 
root directory see chroot (2) 
control terminal see tty(4) 
resource usages see getrusage(2) 
interval timers see getitimer(2) 
resource limits see getrlimit(2) 
file mode mask see umask(2) 
signal mask see sigvec(2) 

ICON INTERNATIONAL 1 



EXECVE(2) SYSTEM CALLS EXECVE(2) 

When the executed program begins, it is called as follows: 

main( argc, argv, envp) 
int argc; 
char **argv, *~nvp; 

where argc is the number of elements in argv (the "arg count") and argv is the array of char· 
acter pointers to the arguments themselves. 

Envp is a pointer to an array of strings that constitute the environment of the process. A 
pointer to this array is also stored in the global variable "environ". Each string consists of a 
name, an "=", and a null-terminated value. The array of pointers is terminated by a null 
pointer. The shell sh(l) passes a.n environment entry for each global shell variable defined 
when the program is called. See environ(7) for some conventionally used names. 

RETURN VALUE 
If execve returns to the calling process an error has occurred; the return value wiil be -I and 
the global variable ermo will contain an error code. 

ERRORS 
Execve will fail and return to the calling process if one or more of the following are tru(': 

[ENOENT] One or more components of the new process file's path name do not ('xist. 

[ENOTDIR] A component of the new process file is not a directory. 

!EACCES] Search permission is denied for a directory listed in th(' new proc('ss file's 
path prefix. 

[EACCES] 

[EACCES] 

!ENOEXEC] 

!ETXTBSYj 

[ENOMEMj 

[E2BIG] 

[EFAULTj 

!EFAULT] 

The new process file is not an ordinary file. 

The new process file mode denies execute permission. 

The new process file has the appropriate access permission, but has an 
invalid magic number in its header. 

The new process file is a pure procedure (shared text) file that is currently 
open for writing or reading by some process. 

The new process requires more virtual memory than is allowed by the 
imposed maximum (getrlimit(2)). 

The number of bytes in the new process's argument list is larger than the 
system·imposed limit of {ARG..MAX} bytes. 

The new process file is not as long as indicated by the size values in its 
header. 

Path, argv, or envp point to an illegal address. 

CAVEATS 
If a program is setuid to a non·super-user, but is executed when the real uid is "root", then 
the program has the powers of a super-user as well. 

SEE ALSO 
exit(2), fork(2), execl(3), environ(7) 

2 ICON INTERNATIONAL 



( 

() 

EXIT(2) 

NAME 
_exit - terminate a process 

SYNOPSIS 
_exit( status) 
int status; 

DESCRIPTION 

SYSTEM CALLS 

_exit terminates a process with the following consequences: 

All of the descriptors open in the calling process are closed. 

EXIT (2) 

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD 
signal, then it is notified of the calling process's termination and the low-order eight bits of 
status are made available to it; see wait(2). 

The parent process ID of all of the calling process's existing child processes are also set to 1. 
This means that the initialization process (see intro(2» inherits each of these processes as well. 
Most C programs call the library routine exit(3) which performs cleanup actions in the stan­
dard i/o library before calling _exit. 

RETURN VALUE 
This call never returns. 

SEE ALSO 
fork(2), wait(2), exit(3) 

ICON INTERNATIONAL 1 



FCNTL(2) SYSTEM CALLS FCNTL(2) 

NAME 
fcntl - file control 

SYNOPSIS 
#include <Ccntl.h> 
res = Ccntl(fd, emd, arg) 
int res; 
int Cd, cmd, argj 

DESCRIPTION 
Fcntl provides for control over descriptors. The argument /d is a descriptor to be operated on 
by cmd as follows: 

F .J)UPFD Return a new descriptor as follows: 

F_GETFD 

F-.sETFD 

F_GETFL 

F-.sETFL 

F_GETOWN 

F-.sETOWN 

F_GETLK 

F-.8ETLK 

Lowest numbered available descriptor greater than or. equal to argo 
Same object references as the original descriptor. 

New descriptor shares the same file pointer if the object was a file. 

Same access mode (read, write or read/write). 

Same file status flags (i.e., both file descriptors share thE' same file status 
flags). 

The close-on-exec flag associated with the new file descriptor is set to remain 
open across execv(2) system calls. 

Get the close-on-exec flag associated with the file descriptor /d. If the low­
order bit is 0, the file will remain open across exec, otherwise the file will be 
closed upon execution of exec. 

Set the close-on-exec flag associated with /d to the low order bit of arg (0 or 
1 as above). 

Get descriptor status flags, as described below. 

Set descriptor status flags. Only certain flags can be set; st'e /cntl(5). 

Get the process ID or process group currently receiving SIGIO and SIGURG 
signals; process groups are returned as negative values. 

Set the process or process group to receive SIGIO and SIGURG signals; pre­
cess groups are specified by supplying arg as negat.ive, otht'rwise arg is int.er-
preted as a process ID. 

Get the first lock which blocks the lock description given by the variable of 
type struct flock pointed to by argo The information retrieved overwrites the 
information passed to /cntl in the flock structure. If no lock is found that 
would prevent this lock from being created, then the stru('ture is passed back 
unchanged except for the lock type which will be set to F _UNLCK. 
Set or clear a file segment lock according to the variable of type struet flock 
pointed to by arg [see /cntl (5)J. The cmd F -.8ETLK is ust'd to establish read 
(F -RDLCK) and write (F _ WRLCK) locks, as well as remove either type of 
lock (F _UNLCK). If a read or write lock cannot be set. /entl will return 
immediately with an error value of -1. 

ICON INTERNATIONAL 1 

-~ - ---~ -- ----- - --~-- ---

/ 



(: 

( 

FCNTL(2) SYSTEM CALLS FCNTL(2) 

F -.SETLKW This emd is the same as F -.SETLK except that if a read or write lock is 
blocked by other locks, the process will sleep until the segment is free to be 
locked. 

The flags for the F _GETFL and F -.SETFL flags are as follows: 

FNDELA Y Non-blocking I/O; if no data is available to a read call, or if a write opera­
tion would block, the call returns -1 with the error EWOULDBLOCK. 

FAPPEND 

FASYNC 

Force each write to append at the end of file; corresponds to the O-APPEND 
flag of open(2). 

Enable the SIGIO signal to be sent to the process group when I/O is possi­
ble, e.g. upon availability of data to be read. 

A read lock prevents any process from write locking the protected area. More than one read 
lock may exist for a given segment of a file at a given time. The file desrriptor on which a 
read lock is being placed must have been opened with read access. 
A write lock prevents any process from read locking or write locking the protected area. Only 
one write lock may exist for a given segment of a file at a given time. Th(' file descriptor on 
which a write lock is being placed must have been opened with write access. 

The structure flock describes the type (Ltype), starting offset (Lwhen('e), relative offset 
(Lstart), size (Uen), and process id (Lpid) of the segment of the file to be affected. The pro­
cess id field is only used with the F _GETLK cmd to return the value for a block in lock. 
Locks may start and extend beyond the current end of a file, but may not he negative relative 
to the beginning of the file. A lock may be set to always extend to the t'nd of file by setting 
Lien to zero (0). If such a lock also has Lstart set to zero (0), the wholt> file will be locked. 
Changing or unlocking a segment from the middle of a larger locked segment leaves two 
smaller segments for either end. Locking a segment that is already locked by the calling pro­
cess causes the old lock type to be removed and the new lock type to take affect. All locks 
associated with a file for a given process are removed when a file descriptor for that file is 
closed by that process or the process holding that file descriptor terminates. Locks are not 
inherited by a child process in a fork (£) system call. 

RETURN VALUE 
Upon successful completion, the value returned depends on cmd as follows: 

FJ)UPFD 
F_GETFD 
F_GETFL 
F_GETLK 
F_GETOWN 
F-.SETFD 
F_SETFL 
F-.SETLK 
F-.SETLKW 

A new file descriptor. 
Value of flag (only the low-order bit is defined). 
Value of flags. 
Value other that -1. 
Value of file descriptor owner. 
Value other than -1. 
Value other than -1. 
Value other than -1. 
Value other than -1. 

Otherwise, a value of -1 is returned and ermo is set to indicate the error. 

ERRORS 

2 

Fentl will fail if one or more of the following are true: 

[EBADFJ Fildes is not a valid open file descriptor. 

[EMFILEJ Cmd is F J)UPFD and the maximum allowed number of file descriptors are 
currently open. 

ICON INTERNATIONAL 



FCNTL(2) SYSTEM CALLS FCNTL(2 ) 

IEINVAL] 

[EINVALJ 

[EACCESS] 

[EMFILE] 

[ENOSPC] 

[EDEADLK] 

Cmd is F J)UPFD and arg is negative or greater the maximum allowable 
number (see getdtoble8ize(2». 

Cmd is F_GETLK, F~ETLK, or SETLKW and org or the data it points to 
is not valid. 

Omd is F ~ETLK, the type of lock ( Ltllpe ) is a read (F -RDLCK) or write 
(F _ WRLCK) lock and the segment of a file to be locked is already write 
locked by another process or the type is a write lock and the segmen t of a' 
file to be locked is already read or write locked by another process. 

Omd is F ~ETLK or F ~ETLKW, the type of lock is a read or write lock 
and there are no more file locking headers available (too many files have seg­
ments locked). 

Omd is F_SETLK or F~ETLKW, the type of lock is a read or write lock 
and there are no more file locking headers available (too many files have seg­
ments locked) or there are no more record locks available (too many file seg­
ments locked). 

Omd is F ~ETLK, when the lock is blocked by some lock from another pro­
cess and sleeping (waiting) for that lock to become free, this causes a 
deadlock situation. 

SEE ALSO 

BUGS 

close(2), execve(2), getdtablesize(2), open(2), sigvec(2), fcntl(5) 

The asynchronous I/O facilities of FNDELA Y and F ASYNC are currently available only for 
tty operations. No SIGIO signal is sent upon draining of output sufficiently for non-blocking 
writes to occur. 

ICON INTERNATIONAL 3 

',- -' 



(I 

c 

FLOCK(2) SYSTEM CALLS 

NAME 
Bock - apply or remove an advisory lock on an open file 

SYNOPSIS 
:finclude <aya/&le.h> 
:#de&ne LOCLSH 1 
:#de&ne LOCILEX 2 
.¥deflne LOCILNB" 
#deflne LOCILUN 8 
Bock(rd, operation) 
bat rd, operation; 

DESCItWTlON 

l" .hared lock */ 
/* excluaive lock */ 
/* don't block when locking */ 
/* unlock */ 

FLOCK(2) 

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A 
lock is applied by specifying an operation parameter which is the inclusive or of LOCILSH or 
WCK..EX and, possibly, LOCILNB. To unlock an existing lock operation should be 
LOCILUN. 
Advisory locks allow cooperating processes to perform consistent operations on files, but do 
not guarantee consistency (i.e. processes may still access files without using advisory locks pos­
sibly resulting in inconsistencies). 
The locking mechanism allows two types of locks: shared locks and exclusive locks. At IIny 
time multiple shared locks may be applied to a file, but at no time are multiple exclusive. or 
both shared and exclusive, locks allowed simultaneously on a file. 

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the 
appropriate lock type; this results in the previous lock being released and the new lock applied 
(possibly after other processes have gained and released the lock). 

Requesting a lock on an object which is already locked normally causes the caller to blocked 
until the lock may be acquired. If LOCILNB is included in operation, then this will not hap­
pen; instead the call will fail and the error EWOULDBLOCK will be returned. 

NOTES 
Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or 
fork(2) do not result in multiple instances of a lock, but rather multiple references to a single 
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, t,he 
parent will lose its lock. 

Processes blocked awaiting a lock may be awakened by signals. 

RETURN VALUE 
Zero is returned if the operation was successful; on an error a -1 is returned and an error code 
is left in the global location errno. 

ERRORS 
The flock call fails if: 

[EWOULDBLOCK] 
[EBADF] 
[EINVAL] 

ICON INTERNATIONAL 

The file is locked and the LOCILNB option was specified. 

The argument fd is an invalid descriptor. 

The argument fd refers to an object other than a file. 

1 



FLOCK(2) SYSTEM CALLS FLOCK(2) 

SEE ALSO 
open(2), close(2), dup(2), execve(2), fork{2} 

2 ICON INTERNATIOK\L 



(-

( 

FORK(2) SYSTEM CALLS FORK(2) 

NAME 
fork - create a new process 

SYNOPSIS 
pid = forkO 
int pid; 

DESCRIPTION 
Fork causes creation of a new process. The new process (child process) is an exact copy of the 
calling process except for the following: 

The child process has a unique process ID. 

The child process has a different parent process ID (i.e., the process ID of the parent 
process). 

The child process has its own copy of the parent's descriptors. These descriptors refer­
ence the same underlying objects, so that, for instance, file pointers in file objects are 
shared between the child and the parent, so that a lseek(2) on a descriptor in the child 
process can affect a subsequent read or write by the parent. This descriptor copying is 
also used by the shell to establish standard input and output for newly created processes 
as well as to set up pipes. 

The child processes resource utilizations are set to 0; see setrlimit(2). 

RETURN VALUE 
Upon successful completion, fork returns a value of 0 to the child process and returns the pro­
cess ID of the child process to the parent process. Otherwise, a value of -1 is returned to the 
parent process, no child process is created, and the global variable errno is set to indicate the 
error. 

ERRORS 
Fork will fail and no child process will be created if one or more of the following are true: 

[EAGAIN'] The system-imposed limit {PROCJv1AX} on the total number of processes 
under execution would be exceeded. 

[EAGAINJ The system-imposed limit {KIDJ,1AX} on the total number of processes 
under execution by a single user would be exceeded. 

SEE ALSO 
execve(2), wait(2) 

ICON INTERNATIONAL 1 





(-

( 

( " 

,'.' 

FSYNC(2) SYSTEM CALLS 

NAME 
fsync - synchronize a file's in-core state with that on disk 

SYNOPSIS 
fsyne(fd) 
int fd; 

DESCRIPTION 

FSYNC(2) 

Fsyne causes all modified data and attributes of fd to be moved to a permanent storage dev­
ice. This normally results in all in-core modified copies of buffers for the associated file to be 
written to a disk. 

Fayne should be used by programs which require a file to be in a known state; for exampk in 
building a simple transaction facility. 

RETURN VALUE 
A 0 value is returned on success. A -1 value indicates an error. 

ERRORS 
The fsync fails if: 

[EBADF] Fd is not a valid descriptor. 

[EIl\TV ALl Fd refers to a socket, not to a file. 

SEE ALSO 
sync(2), sync(8), update(8) 

BUGS 
The current implementation of this call is expensive for large files. 

ICON INTERNATIONAL 1 



GETDTABLESlZE (2 ) SYSTEM CALLS 

NAME 
getdtablesize - get descriptor table size 

SYNOPSIS 
nds = getdtablesizeO 
int nds; 

DESCRIPTION 

GETDTABLESIZE ( 2 ) 

Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots. 
The entries in the descriptor table are numbered with small integers starting at o. The caU 
getdtablesize returns the size of this table. 

SEE ALSO 
close(2), dup(2), open(2) 

ICON INTERNATIONAL 1 

I'.r- -", 



GETGID(2) SYSTEM CALLS 

NAME 
getgid, getegid - get group identity 

SYNOPSIS 
gid = getgidO 
int gid; 

egid = getegid() 
int egid; 

DESCRIPTION 

GETGID (2) 

Getgid returns the real group ID of the current process, getegid the effective group ID. 

The real group ID is specified at login time. 

The effective group ID is more transient, and determines additional access permission during 
execution of a "set-group-ID" process, and it is for such processes t.hat getgid is most useful. 

SEE ALSO 
getuid(2), setregid(2), setgid(3) 

ICON INTERNATIONAL 1 



GETGROUPS ( 2 ) 

NAME 
getgroups - get group access list 

SYNOPSIS 
#include <sys/param.h> 
getgroups{ngroups, gidset) 
int *ngroups, *lidset; 

DESCRIPTION 

SYSTEM CALLS GETGROUPS ( 2 ) 

Getgroups gets the current group access list of the user process and stores it in the array gid­
set. The parameter ngroups indicates the number of entries which may be placed in gidset 
and is modified on return to indicate the actual number of groups returned. No more than 
NGRPS, as defined in <sys/param.h>, will ever be returned. 

RETURN VALUE 
A value of 0 indicates that the call succeeded, and that the number of elE:'ments of gidset ::Ind 
the set itself were returned. A value of -1 indicates that an error occurred, and the error ('ode 
is stored in the global variable errno. 

ERRORS 
The possible errors for getgroup are: 

!EFAULT] The arguments ngroups or gidset specify invalid addresses. 

SEE ALSO 
setgroups(2), initgroups(3) 

ICON INTERNATIONAL 1 



GETHOSTID ( 2 ) SYSTEM CALLS GETHOSTID ( 2 ) 

NAME 
( gethostid, sethostid - get/set unique identifier of current host 

( 

SYNOPSIS 
hostid = gethostidO 
int hostid; 

aethostid(hostid) 
int hostid; 

DESCRIPTION 
Sethostid establishes a 32-bit identifier for the current processor which is intended to be 
unique among all UNIX systems in existence. This is normally a DARPA Internet address for 
the local machine. This call is allowed only to the super-user and is normally performed at 
boot time. 

Gethostid returns the 32-bit identifier for the current processor. 

SEE ALSO 
hostid{l), gethostname(2) 

BUGS 
32 bits for the identifier is too small. 

ICON INTERNATIONAL 1 



GETHOSTNAME (2 ) SYSTEM CALLS 

NAME 
gethostname, sethostname - get/set name of current host 

SYNOPSIS 
gethostname(name, namelen) 
char *Dame; 
int namelen; 
sethostname(name, namelen) 
char *Dame; 
int namelen; 

DESCRIPTION 

GETHOSTNAME ( 2) 

Gethostname returns the standard host name for the current processor, as previously set by 
Bethostname. The parameter namelen specifies the size of the name array. The returned name 
is null-terminated unless insufficient space is provided. 

Sethostname sets the name of the host machine to be name, which has length name/en. This 
call is restricted to the super-user and is normally used only when the system is bootstrapp(·d. 

RETURN VALUE 
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and 
an error code is placed int the global location errno. 

ERRORS 
The following errors may be returned by these calls: 

[EFAULT] The name or namelen parameter gave an invalid address. 

[EPERMj The caller was not the super-user. 

SEE ALSO 
gethostid(2) 

BUGS 
Host names are limited to 255 characters. 

ICON INTERNATIONAL 1 



(" 

( 

GETITJl\1ER ( 2 ) SYSTEM CALLS 

NAME 
getitimer, setitimer - get/set value of interval timer 

SYNOPSIS 
#include <sys/time.h> 
#defineIT~~AL 0 
#defineIT~R-VERTUAL 
#define IT~R-PROF 2 

getitimer(which, value) 
int which; 
struct itimerval *Value; 

setitimer(which, value, ovalue) 
int which; 
struct itimerval *Value, *Ovalue; 

DESCRIPTION 

/* real time intervals */ 
1 /* virtual time intervals */ 
/ * user and system virtual time */ 

GETITIMER ( 2 ) 

The system provides each process with three interval timers, defined in < sys/ time.h >. The 
getitimer call returns the current value for the timer specified in w/U"ch, while the setitimer ("all 
sets the value of a timer (optionally returning the previous value of the timer). 

A timer value is defined by the itimerval structure: 

struct itimerval { 
struct timeval iLinterval; j* timer interval */ 

}; 
struct timeval iLvalue; j* current value */ 

If iLvalue is non-zero, it indicates the time to the next timer expiration. If iLinterval is non­
zero, it specifies a value to be used in reloading iCvalue when the timer expires. Setting 
iLvalue to 0 disables a timer. Setting iLinterval to 0 causes a timer to be disabled after its 
next expiration (assuming iLvalue is non-zero). 

Time values smaller than the resolution of the system clock are rounded up to this resolution. 

The ITThfER_REAL timer decrements in real time. A SIGALRM signal is delivered when this 
timer expires. 

The ITThfER_ VIRTUAL timer decrements in process virtual time. It runs only when the pro­
cess is executing. A SIGVTALRM signal is delivered when it expires. 

The ITTh1ERYROF timer decrements both in process virtual time and when the system is 
running on behalf of the process. It is designed to be used by interpreters in statistically 
profiling the execution of interpreted programs. Each time the ITIMERYROF timer expires, 
the SIGPROF signal is delivered. Because this signal may interrupt in-progress system calls, 
programs using this timer must be prepared to restart interrupted system calls. 

NOTES 
Three macros for manipulating time values are defined in <sys/time.h·>. Timerclear st'ts a 
time value to zero, timerisset tests if a time value is non-zero, and timercmp compares two 
time values (beware that >= and <= do not work with this macro). 

ICON INTERNATIONAL 1 



GETITIMER ( 2 ) SYSTEM CALLS GETITIMER ( 2 ) 

RETURN VALUE 
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and a 
more precise error code is placed in the global variable errno. 

ERRORS 
The possible errors are: 

[EFAULT] The value structure specified a bad address. 

[EINV AL] A value structure specified a time was too large to be handled. 

SEE ALSO 
sigvec(2), gettimeoCday(2} 

2 ICON INTERNATIONAL 

/ -



( 

GETP AGESIZE ( 2 ) 

NAME 
getpagesize - get system page size 

SYNOPSIS 
pagesize = getpagesizeO 
int pagesize; 

DESCRIPTION 

SYSTEM CALLS GETP AGESIZE ( 2 ) 

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of 
many of the memory management calls. 

The page size is a system page size and may not be the same as the underlying hardware p<lge 
size. 

SEE ALSO 
sbrk(2), pagesize(l) 

ICON INTERNATIONAL 1 



GETPEERNAME (2 ) SYSTEM CALLS 

NAME 
getpeername - get name of connected peer 

SYNOPSIS 
getpeername(s, name, namelen) 
int s; 
struct sockaddr *J1ame; 
int *namelen; 

DESCRIPTION 

GETPEERNAME (2 ) 

Getpeername returns the name of the peer connected to socket 8. The namelen paramE-t.er 
should be initialized to indicate the amount of space pointed to by name. On return it ('on­
tains the actual size of the name returned (in bytes). 

DIAGNOSTICS 
A 0 is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

[EBADF] 

[ENOTSOCK] 

[ENOTCONN] 

[ENOBUFS] 

[EFAULTj 

The argument s is not a valid descriptor. 

The argument s is a file, not a socket. 

The socket is not connected. 

Insufficient resources were available in the system to perform the opE-ration. 

The name parameter points to memory not in a valid part of the prOCE-SS 
address space. 

SEE ALSO 

BUGS 

bind(2), socket(2}, getsockname(2) 

Names bound to sockets in the UNIX domain are inaccessible; getpeername returns a UfO 
length name. 

ICON INTERNATIONAL 1 



( 

GETPGRP(2) 

NAME 
getpgrp - get process group 

SYNOPSIS 
pgrp = getpgrp(pid) 
int prgpj 
int pidj 

DESCRIPTION 

--------~-----

SYSTEM CALLS GETPGRP(2) 

The process group of the specified process is returned by getpgrp. If pid is zero, then the ('all 
applies to the current process. 

Process groups are used for distribution of signals, and by terminals to arbitrate requests for 
their input: processes which have the same process group as the terminal are foreground and 
may read, while others will block with a signal if they attempt to read. 

This call is thus used by programs such as csh{l) to create process groups in implementing job 
control. The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to get/set the 
process group of the control terminal. 

SEE ALSO 
setpgrp(2), getuid(2), tty(4) 

ICON INTERNATIONAL 1 



GETPID(2) SYSTEM CALLS 

NAME 
getpid, getppid - get process identification 

SYNOPSIS 
pid == getpidO 
long pid; 

ppid == getppidO 
long ppid; 

DESCRIPTION 

GETPID (2) 

Getpid returns the process ID of the current process. Most often it is used with the host 
identifier gethostid(2) to generate uniquely-named temporary files. 

Getppid returns the process ID of the parent of the current process. 

SEE ALSO 
gethostid(2) 

ICON INTERNATIONAL 1 



(' 

GETPRIORITY ( 2 ) SYSTEM CALLS GETPRIORITY ( 2 ) 

NAME 
getpriority, setpriority - get/set program scheduling priority 

SYNOPSIS 
#include <8ys/resource.h> 
#define PRIO-PROCESS 0 
#define PRIO-PGRP 
#define PRIO_USER 
prio = getpriority(which, who) 
int prio, which, who; 
setpriority(which, who, prio) 
int which, who, prio; 

DESCRIPTION 

/* process */ 
1 /* process group */ 
2 /* user id */ 

The scheduling priority of the process, process group, or user, as indicated by which and who 
is obtained with the getpriority call and set with the setpriority call. Which is onE' of 
PRIOYROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a 
process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user 
ID for PRIO_USER). Prio is a value in the range -20 to 20. The default priority is 0; lower 
priorities cause more favorable scheduling. 

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the 
specified processes. The setpriority call sets the priorities of all of the specified processes to 1 he 
specified value. Only the super-user may lower priorities. 

RETURN VALUE 
Since getpriority can legitimately return the value -1, it is necessary to clear the external yari­
able errno prior to the call, then check it afterward to determine if a -1 is an error or a legiti­
mate value. The setpriority call returns 0 if there is no error, or -1 if there is. 

ERRORS 
Getpriority and setpriority may return one of the following errors: 

[ESRCHI No process( es) were located using the which and who values specified. 

[EIl\~ ALI Which was not one of PRIOYROCESS, PRIOYGRP, or PRIO_USER. 

In addition to the errors indicated above, setpriority may fail with one of the following errors 
returned: 

[EACCESj 

[EACCESj 

SEE ALSO 

A process was located, but neither its effective nor real user ID matched the 
effective user ID of the caller. 

A non super-user attempted to change a process priority to a negative valuE'. 

nice(I), fork(2), renice(8) 

ICON INTERNATIONAL 1 



GETRLIMIT ( 2 ) SYSTEM CALLS GETRLIMIT ( 2 ) 

NAME 
getrlimit, setrlimit - control maximum system resource consumption 

SYNOPSIS 
#include <sys/time.h> 
#include <sys/resource.h> 
getrlimit(resource, rIp) 
int resource; 
struct rlimit *rIp; 
setrlimit(resource, rIp) 
int resource; 
struct rlimit *rIp; 

DESCRIPTION 
Limits on the consumption of system resources by the current process and each process it 
creates may be obtained with the getrlimit call, and set with the setrlimit call. 

The resource parameter is one of the following: 

RLIMIT_CPU the maximum amount of cpu time (in milliseconds) to be used by el'tch 
process. 

RLIMIT_FSIZE the largest size, in bytes, of any single file which may be created. 

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this defines 
how far a program may extend its break with the sbrk(2) system call. 

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this defines 
how far a program's stack segment may be extended, either automatically 
by the system, or explicitly by a user with the sbrk(2) system call. 

RLIMIT_CORE the largest size, in bytes, of a core file which may be created. 

RLIMIT_RSS the maximum size, in bytes, a process's resident set size may grow t,o. 
This imposes a limit on the amount of physical memory to be given to a 
process; if memory is tight, the system will prefer to take memory from 
processes which are exceeding their declared resident set size. 

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a 
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed 
to continue execution until it reaches the hard limit (or modifies its resource limit). The rlimit 
structure is used to specify the hard and soft limits on a resource, 

struct rlimit { 
int rlim_cur; 
int rlim_max; 

}; 

/* current (soft) limit */ 
/* hard limit */ 

Only the super-user may raise the maximum limits. Other users may only alter rlim_cur 
within the range from 0 to rlim..max or (irreversibly) lower rlim_max. 

An "infinite" value for a limit is defined as RLIMIT_INFINITY (Ox7fffffff). 

Because this information is stored in the per-process information, this system call must be exe­
cuted directly by the shell if it is to affect all future processes created by the shell; limit is 
thus a built-in command to csh(l). 

ICON INTERNATIONAL 1 

/ ." 



( 

{ 

GETRLIMIT ( 2 ) SYSTEM CALLS GETRLIMIT ( 2 ) 

The system refuses to extend the data or stack space when the limits would be exceeded in 
the normal way: a break call fails if the data space limit is reached, or the process is killed 
when the stack limit is reached (since the stack cannot be extended, there is no way to send a 
signal!). 

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to 
be generated, this normally terminates the process, but may be caught. When the soft cpu 
time limit is exceeded, a signal SIGXCPU is sent to the offending process. 

RETURN VALUE 
A 0 return value indicates that the call succeeded, changing or returning the resource Ii III it. 
A return value of -1 indicates that an error occurred, and an error code is stored in the global 
location errno. 

ERRORS 
The possible errors are: 

[EFAULTj The address specified for rip is invalid. 

[EPERMj The limit specified to setrlimit would have 
raised the maximum limit value, and the caller is not the super-user. 

SEE ALSO 
csh(I), quota(2) 

BUGS 
There should be limit and unlimit commands in sh(l) as well as in csh. 

2 ICON INTERNATJOl\'.·\L 



GETRUSAGE(2) SYSTEM CALLS 

NAME 
getrusage - get information about resource utilization 

SYNOPSIS 
#include <eys/time.h> 
#include <sys/resource.h> 
#define RUSAGE_SELF 0 

1 * calling process *1 
#define RUSAGE-CHILDREN -1 

1 * terminated child processes *1 
getrusage(who, rusage) 
int who; 
struct rusage qusage; 

DESCRIPTION 

GETRUSAGE ( 2 ) 

Getrusage returns information describing the resources utilized by the current process, or all 
its terminated child processes. The who parameter is one of RUSAGE_SELF and 
RUSAGE_CHILDREN. If rusage is non-zero, the buffer it points to will be filled in with the 
following structure: 

struct rusage { 

}; 

struct timeval ru_utime; 
struct timeval rUJtime; 
int rU-IDaxrss; 
in t rujxrss; 
int ru-.idrss; 
int ru~rss; 
int ru_minflt; 
int ru_majflt; 
int ru_nswap; 
int ru_inblock; 
int ru_oublock; 
int ru_msgsnd; 
in t rU-IDsgrcv; 
int rU-Dsignals; 
int 
int 

ru_nvcsw; 
rU_nIVCSW; 

/* user time used */ 
/* system time used */ 

/* integral shared memory size */ 
/* integral unshared data size */ 
/* integral unshared stack size */ 
/* page reclaims */ 
/* page faults */ 
/* swaps */ 
/* block input operations */ 
/* block output operations */ 
/* messages sent */ 
/* messages received */ 
/* signals received */ 
/* voluntary context switches */ 
/* involuntary context switches */ 

The fields are interpreted as follows: 

ru_utime 

rUJtime 

rU-IDaxrss 
rujxrss 

ru-.idrss 

the total amount of time spent executing in user mode. 

the total amount of time spent in the system executing on behalf of the 
process(es). 

the maximum resident set size utilized (in kilobytes). 

an "integral" value indicating the amount of memory used which was also 
shared among other processes. This value is expressed in units of kilobytes * 
seconds-of-execution and is calculated by summing the number of shared 
memory pages in use each time the internal system clock ticks and then 
averaging over 1 second intervals. 

an integral value of the amount of unshared memory residing in the data 

ICON INTERNATIONAL 1 



(-

( 

GETRUSAGE ( 2 ) SYSTEM CALLS GETRUSAGE ( 2 ) 

rUJsrss 

rUJIlinflt 

rUJIlajflt 

rUJlswap 

rUJnblock 

ru_outblock 

rUJIlsgsnd 

rUJIlsgrcv 

ru_nsignals 

rUJlVCSW 

segment of a process (expressed in units of kilobytes * seconds-of-execution). 

an integral value of the amount of unshared memory residing in the stack 
segment of a process (expressed in units of kilobytes * seconds-of-execution). 

the number of page faults serviced without any i/o activity; here i/o activity 
is avoided by "reclaiming" a page frame from the list of pages awaiting real­
location. 

the number of page faults serviced which required i/o activity. 

the number of times a process was "swapped" out of main memory. 

the number of times the file system had to perform input. 

the number of times the file system had to perform output. 

the number of ipc messages sent. 

the number of ipc messages received. 

the number of signals delivered. 

the number of times a context switch resulted due to a process voluntarily 
giving up the processor before its time slice was completed (usually to await 
availability of a resource). 

the number of times a context switch resulted due to a higher priority pro­
cess becoming runnable or because the current process exceeded its time slice. 

NOTES 
The numbers ru_inblock and rtLoutblock account only for real i/o; data supplied by the cache­
ing mechanism is charged only to the first process to read or write the data. 

SEE ALSO 
gettimeofday(2), wait(2} 

BUGS 
There is no way to obtain information about a child process which has not yet terminated. 

2 ICON INTERNATIONAL 



GETSOCKNAME(2) SYSTEM CALLS 

NAME 
getsockname - get socket name 

SYNOPSIS 
getsockname(s, name, namelen) 
int Sj 

struct sockaddr *Dame; 
int *Damelen; 

DESCRIPTION 

GETSOCKNAME ( 2 ) 

Getsockname returns the current name for the specified socket. The namelen parameter 
should be initialized to indicate the amount of space pointed to by name. On return it con­
tains the actual size of the name returned (in bytes). 

DIAGNOSTICS 
A 0 is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

[EBADFj 
[ENOTSOCKj 

[ENOBUFSJ 

[EFAULT] 

The argument s is not a valid descriptor. 
The argument s is a file, not a socket. 

Insufficient resources were available in the system to perform the operation. 

The name parameter points to memory not in a valid part of the process 
address space. 

SEE ALSO 

BUGS 

bind{2}, socket{2} 

Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero 
length name. 

ICON INTERNATIONAL 1 

/ 
I 

~/ 



( 

( 

GETSOCKOPT (2 ) SYSTEM CALLS 

NAME 
getsockopt, setsockopt - get and set options on sockets 

SYNOPSIS 
#include <aya/types.h> 
#include <ays/socket.h> 
getsockopt{a, level, optname, optval, optlen) 
int a, level, optname; 
char lIOptval; 
int *Optlen; 

setsockopt{s, level, optname, optval, optlen) 
int a, level, optname; 
char lIOptval; 
int optlen; 

DESCRIPTION 

GETSOCKOPT ( 2 ) 

Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at 
multiple protocol levels; they are always present at the uppermost "socket" level. 

When manipulating socket options the level at which the option resides and the name of the 
option must be specified. To manipulate options at the "socket" level, level is specified as 
SOL_SOCKET. To manipulate options at any other level the protocol number of the 
appropriate protocol controlling the option is supplied. For example, to indicate an option is 
to be interpreted by the TCP protocol, level should be set to the protocol number of TCP; see 
getprotoent(3N). 

The parameters optval and opt/en are used to access option values for setsockopt. For get­
sockopt they identify a buffer in which the value for the requested option(s) are to be returnf'd. 
For getsockopt, optlen is a value-result parameter, initially containing the size of the buffer 
pointed to by optval, and modified on return to indicate the actual size of the value return('d. 
If no option value is to be supplied or returned, optval may be supplied as o. 
Optname and any specified options are passed uninterpreted to the appropriate protocol 
module for interpretation. The include file <sys/socket.h> contains definitions for "socket" 
level options; see socket(2). Options at other protocol levels vary in format and name, con::;ult 
the appropriate entries in (4P). 

RETURN VALUE 
A 0 is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

[EBADFj 

[ENOTSOCKj 

[ENOPROTOOPTj 

[EFAULTj 

SEE ALSO 

The argument s is not a valid descriptor. 

The argumen t s is a file, not a socket. 

The option is unknown. 

The options are not in a valid part of the process address space. 

socket(2), getprotoent(3N) 

ICON INTERNATIONAL 1 



GETTIMEOFDAY (2 ) SYSTEM CALLS GETTIMEOFDAY ( 2 ) 

NAME 
gettimeofday, settimeofday - get/set date and time 

SYNOPSIS 
#include <sys/time.h> 
gettimeofday(tp, tzp) 
struct timeval .-tp; 
struct timezone .-tzPj 
aettimeofday(tp, tzp) 
struct timeval .-tp; 
struct timezone .-tzp; 

DESCRIPTION 
Gettimeofday returns the system's notion of the current Greenwich time and the current time 
zone. Time returned is expressed relative in seconds and microseconds since midnight January 
1, 1970. 

The structures pointed to by tp and tzp are defined in <sys/time.h> as: 

struct timeval { 

}; 

u_Iong tVJec; 
/* seconds since Jan. 1, 1970 */ 

long tv_usee; 
/* and microseconds */ 

struct timezone { 

}; 

int tz_minuteswest; 

int 
/* of Greenwich */ 
tz_dsttime; 
/* type of dst correction to apply */ 

The timezone structure indicates the local time zone (measured in minutes of time westward 
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies 
locally during the appropriate part of the year. 

Only the super-user may set the time of day. 

RETURN 
A 0 return value indicates that the call succeeded. A -1 return value indicates an error 
occurred, and in this case an error code is stored into the global variable errno. 

ERRORS 
The following error codes may be set in errno: 

[EFAULTj An argument address referenced invalid memory. 

[EPERMj A user other than the super-user attempted to set the time. 

SEE ALSO 
date{l), ctime(3) 

ICON INTERNATIONAL 1 

c/ 



( 

( 

GETTIMEOFDAY ( 2 ) SYSTEM CALLS GETTIMEOFDAY (2) 

BUGS 

2 

Time is never correct enough to believe the microsecond values. There should a mechanism 
by which, at least, local clusters of systems might synchronize their clocks to millisecond 
granularity. 

ICON INTERNATIOK\L 



GETUID(2) 

NAME 
getuid, geteuid - get user identity 

SYNOPSIS 
uid = getuidO 
int uid; 

euid = geteuidO 
int euid; 

DESCRIPTION 

SYSTEM CALLS GETUID(2) 

Getuid returns the real user ID of the current process, geteuid the effective user ID. 

The real user ID identifies the person who is logged in. The effective user ID gives the proC'f'SS 
additional permissions during execution of "set-user-ID" mode processes, which use getuid to 
determine the real-user-id of the process which invoked them. 

SEE ALSO 
getgid(2), setreuid(2) 

ICON INTERNATIONAL 1 



(I 

(; 

IOCTL( 2) 

NAME 
ioctl - control device 

SYNOPSIS 
#include <sys/ioctl.h> 
·ioctl(d, request, argp) 
int d, request; 
char *&rgp; 

DESCRIPTION 

SYSTEM CALLS IOCTL(2) 

Ioctl performs a variety of functions on open descriptors. In particular, many operating 
characteristics of character special files (e.g. terminals) may be oontrolled with ioctl requests. 
The writeups of various devices in section 4 discuss how ioctl applies to them. 

An ioctl request has encoded in it whether the argument is an "in" parameter or "out" 
parameter, and the size of the argument argp in bytes. Macros and defines used in specifying 
an ioctl request are located in the file < sys/ ioctl.h> . 

RETURN VALUE 
If an error has occurred, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
Ioctl will fail if one or more of the following are true: 

[EBADF] D is not a valid descriptor. 

[ENOTTY] D is not associated with a character special device. 

[ENOTTY] The specified request does not apply to the kind of object which the descrip­
tor d references. 

[EINY AL] Request or argp is not valid. 

SEE ALSO 
execve(2), fcntl(2), mt(4), tty(4), intro(4N) 

ICON INTERNATIONAL 1 



KJLL(2) 

NAME 
kill - send signal to a process 

SYNOPSIS 
kill(pid, sig) 
int pid, sig; 

DESCRIPTION 

SYSTEM CALLS KILL ( 2) 

Kill sends the signal sig to a process, specified by the process number pid. Sig may be onf' of 
the signals specified in sigvec(2), or it may be 0, in which case error checking is performed but 
no signal is actually sent. This can be used to check the validity of pid. ' 
The sending and receiving processes must have the same effective user ID, otherwise this call is 
restricted to the super-user. A single exception is the signal SIGCONT which may alwaY8 be 
sent to any child or grandchild of the current process. 

If the process number is 0, the signal is sent to all other processes in the sender's process 
group; this is a variant of kiUpg(2). 
If the process number is -1, and the user is the super-user, the signal is broadcast universally 
except to system processes and the process sending the signal. 

Processes may send signals to themselves. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

(\ 
\ , 
'--:7 

ERRORS"-~ 
Kill will fail and no signal will be sent if any of the following occur: 

[EIl\TVALj Sig is not a valid signal number. 

[ESRCH] No process can be found corresponding to that specified by pid. 

[EPERM] The sending process is not the super-user and its effective user id does not 
match the effective user-id of the receiving process. 

SEE ALSO 
getpid(2), getpgrp(2), killpg(2), sigvec(2) 

ICON INTERNATIONAL 1 

------~--~~--- - ~- --- - -~-------------~---,--------~--~--~---



( 

KILLPG(2 ) SYSTEM CALLS 

NAME 
killpg - send signal to a process group 

SYNOPSIS 
killpg(pgrp, sig) 
int pgrp, sig; 

DESCRIPTION 

KILLPG(2) 

Killpg sends the signal 8ig to the process group pgrp . . See sigvec(2) for a list of signals. 

The sending process and members of the process group must have the same effective user ID, 
otherwise this call is restricted to the super-user. As a single special case the continue signal 
SIGCONT may be sent to any process which is a descendant of the current process. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
the global variable errno is set to indicate the error. 

ERRORS 
Killpg will fail and no signal will be sent if any of the following occur: 

[EINV ALJ Sig is not a valid signal number. 

[ESRCHj No process can be found corresponding to that specified by pid. 

[EPERMj The sending process is not the super-user and one or more of the target 
processes has an effective user ID different from that of the sending process. 

SEE ALSO 
kill(2), getpgrp(2), sigvec(2) 

ICON INTERNATIONAL 1 



LINK(2) 

NAME 
link - make a hard link to a file 

SYNOPSIS 
link(namel, name2) 
char *!la.mel, *!la.me2; 

DESCRIPTION 

SYSTEM CALLS 

A hard link to namel is created; the link has the name name2. Namel must exist. 

LINK { 2) 

With hard links, both namel and name2 must be in the same file system. Unless the caller is 
the super-user, namel must not be a directory. Both the old and the new link share equal 
access and rights to the underlying object. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and 
ermo is set to indicate the error. 

ERRORS 
Link will fail and no link will be created if one or more of the following are true: 

[EPERM] Either pathname contains a byte with the high-order bit set. 

[ENOENT] Either pathname was too long. 

[ENOTDIR] A component of either path prefix is not a directory. 

[ENOENT] A component of either path prefix does not exist. 
[EACCES] A component of either path prefix denies search permission. 

[ENOENT] The file named by name1 does not exist. 

[EEXIST] The link named by name!: does exist. 

[EPERMj The file named by namel is a directory and the effective user ID is not 

[EXDEV] 

[EACCES] 

[EROFS] 

[EFAULTJ 

[ELOOP] 

SEE ALSO 

super-user. 

The link named by name2 and the file named by name1 are on different file 
systems. 

The requested link requires writing in a directory with a mode that denies 
write permission. 

The requested link requires writing in a directory on a read-only file system. 

One of the pathnames specified is outside the process's allocated address 
space. 

Too many symbolic links were encountered in translating the pathname. 

symlink(2), unlink(2) 

ICON INTERNATIONAL 1 



( 

( 

LISTEN(2) SYSTEM CALLS 

NAME 
listen - listen for connections on a socket 

SYNOPSIS 
listen(s, backlog) 
int s, backlog; 

DESCRIPTION 

LISTEN(2) 

To accept connections, a socket is first created with socket(2), a backlog for incoming connec­
tions is specified with listen(2) and then the connections are accepted with accept(2). The 
listen call applies only to sockets of type SOCILSTREAM or SOCILPKTSTREAM. 

The backlog parameter defines the maximum length the queue of pending connections may 
grow to. If a connection request arrives with the queue full the client will receive an error 
with an indication of ECONNREFUSED. 

RETURN VALUE 
A 0 return value indicates success; -1 indicates an error. 

ERRORS 
The call fails if: 

[EBADF] 

[ENOTSOCKJ 

IEOPNOTSUPPJ 

SEE ALSO 

The argument s is not a valid descriptor. 

The argument s is not a socket. 

The socket is not of a type that supports the operation listen. 

accept(2), connect(2), socket(2) 

BUGS 
The backlog is currently limited (silently) to 5. 

ICON INTERNATIONAL 1 



LSEEK(2) SYSTEM CALLS LSEEK( 2) 

NAME 
!seek - move read/write pointer 

SYNOPSIS 
#define L-BET 0 /* set the seek pointer */ 
#define LJNCRI /* increment the seek pointer */ 
#define L..xTND 2/* extend the file size */ 
pos = Jseek(d, offset, whence) 
int pos; 
int d, offset, whence; 

DESCRlPTION 
The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the file 
pointer of d as follows: 

If whence is UET, the pointer is set to offset bytes. 

If whence is LJNCR, the pointer is set to its current location plus offset. 

If whence is LJTND, the pointer is set to the size of the file plus offset. 

Upon successful completion, the resulting pointer location as measured in bytes from begin­
ning of the file is returned. Some devices are incapable of seeking. The value of the pointer 
associated with such a device is undefined. 

NOTES 
Seeking far beyond the end of a file, then writing, creates a gap or "hole", which occupies no 
physical space and reads as zeros. 

RETURN VALUE 
Upon successful completion, a non-negative integer, the current file pointer value, is ret.urned. 
Otherwise, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
Lseek will fail and the file pointer will remain unchanged if: 

[EBADFJ Fildes is not an open file descriptor. 

[ESPIPEl Fildes is associated with a pipe or a socket. 

[EINV ALl Whence is not a proper value. 

[EINV AL] The resulting file pointer would be negative. 

SEE ALSO 
dup(2), open(2) 

BUGS 
This document's use of whence is incorrect English, but maintained for historical reasons. 

ICON INTERNATIONAL 1 

----------------

( 

',-/' 

t 
I . 
"'--/ 



( 

( 

MKDIR(2 ) 

NAME 
mkdir - make a directory file 

SYNOPSIS 
mkdir(path, mode) 
char *path; 
int mode; 

DESCRIPTION 

SYSTEM CALLS MKDIR(2) 

Mkdir creates a new directory file with name path. The mode of the new file is initialized from 
mode. (The protection part of the mode is modified by the process's mode mask; see 
umask(2)). 

The directory's owner ID is set to the process's effective user ID. The directory's group ID is 
set to that of the parent directory in which it is created. 

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits 
set in the process's file mode creation mask are cleared. See umask(2). 

RETURN VALUE 
A 0 return value indicates success. A -1 return value indicates an error, and an error code is 
stored in errno. 

ERRORS 
Mkd£r will fail and no directory will be created if: 

[EPERMj The process's effective user ID is not super-user. 

[EPERMj The path argument contains a byte with the high-order bit set. 

[ENOTDIRj A component of the path prefix is not a directory. 

[ENOENTj A component of the path prefix does not exist. 

[EROFSj The named file resides on a read-only file system. 

[EEXISTj The named file exists. 

[EFAULTj Path points outside the process's allocated address space. 

[ELOOPj Too many symbolic links were encountered in translating the pathname. 

[EIO] An I/O error occured while writing to the file system. 

SEE ALSO 
chmod(2), stat(2), umask(2) 

ICON INTERNATIONAL 1 



MKNOD(2) SYSTEM CALLS MKNOD(2) 

NAME 
mknod - make a special file 

SYNOPSIS 
mknod(path, mode, dey) 
char *path; 
int mode, dey; 

DESCRIPTION 
Mknod creates a new file whose name is path. The mode of the new file (including special file 
bits) is initialized from mode. (The protection part of the mode is modified by the process's 
mode mask; see umask(2)). The first block pointer of the i-node is initialized from dev and is 
used to specify which device the special file refers to. 

rr mode indicates a block or character special file, dev is a configuration dependent 
specification of a character or block I/O device. rr mode does not indicate a block special or 
character special device, dev is ignored. 

Mknod may be invoked only by the super-user. 

RETURN VALUE 
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and 
ermo is set to indicate the error. 

ERRORS 
Mknod will fail and the file mode will be unchanged if: 

[EPERM] The process's effective user ID is not super-user. 

[EPERMj The pathname contains a character with the high-order bit. set. 

[ENOTDIR] A component of the path prefix is not a directory. 

[ENOENTJ A component of the path prefix does not exist. 

[EROFS] The named file resides on a read-only file system. 

[EEXISTj The named file exists. 

[EFAULTj Path points outside the process's allocated address space. 

[ELOOP] Too many symbolic links were encountered in translating the pathname. 

SEE ALSO 
chmod(2), stat(2), umask(2) 

ICON INTERNATIONAL 1 

-----------------



( 

( 

MOUNT(2) SYSTEM CALLS MOUNT (2) 

NAME 
mount, umount - mount or remove file system 

SYNOPSIS 
mount(special, name, rwflag) 
char "Special, *namej 
int rwflag; 

umount( special) 
char "Special; 

DESCRIPTION 
Mount announces to the system that a removable file system has been mounted on the blo('k­
structured special file special; from now on, references to file name will refer to the root file on 
the newly mounted file system. Special and name are pointers to null-terminated strings con­
taining the appropriate path names. 

Name must exist already. Name must be a directory. Its old contents are inaccessible ", .. hile 
the file system is mounted. 

The rwftag argument determines whether the file system can be written on; if it is 0 writing is 
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file sys­
tems must be mounted read-only or errors will occur when access times are updated, whether 
or not any explicit write is attempted. 

Umount announces to the system that the special file is no longer to contain a removable file 
system. The associated file reverts to its ordinary interpretation. 

RETURN VALUE 
Mount returns 0 if the action occurred, -1 if special is inaccessible or not an appropriate file. if 
name does not exist, if special is already mounted, if name is in use, or if there are already too 
many file systems mounted. 

Umount returns 0 if the action occurred; -1 if if the special file is inaccessible or does not haye 
a mounted file system, or if there are active files in the mounted file system. 

ERRORS 
~Mount will fail when one of the following occurs: 

[NODEVj The caller is not the super-user. 

[NODEVj 

[ENOTBLKj 

[ENXIOj 

[EPERMj 

[ENOTDIRj 

[EROFSj 

[EBUSYj 

[EBUSY] 

[EBUSY] 

Special does not exist. 

Special is not a block device. 

The major device number of special is out of range (this indicates no deyjre 
driver exists for the associated hardware). 

The pathname contains a character with the high-order bit set. 

A component of the path prefix in name is not a directory. 

Name resides on a read-only file system. 

Name is not a directory, or another process currently holds a reference to it. 

No space remains in the mount table. 

The super block for the file system had 
range block size. 

a bad magic number or an out of 

ICON INTERNATIONAL 1 



~~~~~~~~~~~~~~~~~~~~--- .. --------

MOUNT(2) SYSTEM CALLS MOUNT (2)

[EBUSY]

[EBUSY]

Not enough memory was ava.ila.ble to read the cylinder group information for
the file system.

An i/o error oceurred while reading the super block or cylinder group infor­
mation.

Umount may fail with one of the rollowing errors:

[NODEV] The caller is Dot the super-user.

[NODEV] Special does not exist.

[ENOTBLK] Special is not a block device.

[ENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

[EINVAL]

[EBUSY]

The requested device is not in the mount table.

A process is holding a reference to a file located on the file system.

SEE ALSO
mount(8), umount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

2 ICON INTERNATIONAL

(

(

MSGCTL(2) SYSTEM CALLS MSGCTL(2)

NAME
msgctl- message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION
Msgctl provides a variety of message control operations as specified by cmd. The following
cmds are available:

IPC.-RMID

Place the current value of each member of the data structure associated with
msqid into the structure pointed to by buf. The contents of this structure
are defined in intro(2). {READ}

Set the value of the following members of the data structure associated with
msqid to the corresponding value found in the structure pointed to by buf:

ms~perm.uid
ms~perm.gid
ms~perm.mode /* only low 9 bits */
ms~qbytes

This cmd can only be executed by a process that has an effective user ID
equal to either that of super user or to the value of msg_perm.uid in the
data structure associated with msqid. Only super user can raise the value of
m8~qbyte8.

Remove the message queue identifier specified by msqid from the system and
destroy the message queue and data structure associated with it. This cmd
can only be executed by a process that has an effective user ID equal to either
that of super user or to the value of msg_perm.uid in the data structure
associated with msqid.

Msgctl will fail if one or more of the following are true:

[EINVAL] Msqid is not a valid message queue identifier.

[EINVAL] Cmd is not a valid command.

[EACCESj Cmd is equal to IPC..8TAT and {READ} operation permission is denied to the
calling process (see intro(2)).

[EPERM]

[EPERM]

[EFAULT]

Cmd is equal to IPC.-RMID or IPC_SET. The effective user ID of the calling
process is not equal to that of super user and it is not equal to the value of
ms,-perm.uid in the data structure associated with msqid.

Cmd is equal to IPC_SET, an attempt is being made to increase to the value
of msg_qbytes, and the effective user ID of the calling process is not equal to
that of super user.

Buf points to an illegal address.

ICON INTERNATIONAL 1

,
MSGCTL(2) SYSTEM CALLS MSGCTL(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
intro(2), msgget(2), msgop(2).

2 ICON INTERNATION'.·\L

MSGGET(2) SYSTEM CALLS MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <ays/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure (see intro(2)) <'Ire
created for key if one of the following are true:

10 Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with it, and (msgflg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue identifier is initial­
ized as follows:

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of
msgflg·

Msg_qnum, msgJspid, msg_Irpid, msgJltime, and msg_rtime are set equal to O.

Msg_dime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

Msgget will fail if one or more of the following 'are true:

[EACCES] A message queue identifier exists for key, but operation permISSIon (see
intro(2)) as specified by the low-order 9 bits of msgftg would not be granted.

[ENOENT]

[ENOSPC]

[EEXISTj

RETURN VALUE

A message queue identifier does not exist for key and (msgflg & IPC_CREAT)
is "false".

A message queue identifier is to be created but the system-imposed limit on
the maximum number of allowed message queue identifiers system wide
would be exceeded.

A message queue identifier exists for key but ((msgJlg & IPC_CREAT) & (
msgJlg & IPC-EXCL)) is "true".

Upon successful completion, a non-negative integer, namely a message queue identifier, IS

returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgctl(2), msgop(2).

ICON INTERNATIONAL 1

MSGOP (2) SYSTEM CALLS MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#include <sys/typea.h>
#include <sys/ipc.h>
#include <sys/mag.h>
int msgsnd (maqid, msgp, magsz, magflg)
int msqid;
struct magbuf *Il18gp;
int msgsl, magflg;

int msgrcv (msqid, msgp, magsz, magtyp, magHg)
int msqid;
struct magbuf *Il18gp;
int msgsz;
long msgtyp;
int msgHg;

DESCRlPTION
Msgsnd is used to send a message to the queue associated with the message queue identifier
specified by msqid. {WRITE} Msgp points to a structure containing the message. This struc­
ture is composed of the following members:

long mtype; /* message type */
char mtext[]; /* message text */

Mtype is a positive integer that can be used by the receiving process for message selection (see
msgrcv below). Mtext is any text of length msgsz bytes. Afsgsz can range from 0 to a systf'm­
imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes (see intro(2)).

The total number of messages on all queues system-wide is equal to the system­
imposed limit.

These actions are as follows:

If (msgftg & IPC~OWAlT) is "true", the message will not be sent and the calling pro­
cess will return immediately.

If (msgflg & IPC~OWAlT) is "false", the calling process will suspend execution until
one of the following occurs:

The condition responsible for the suspension no longer exists, in which case
the message is sent.

Msqid is removed from the system (see msgctJ(2)). When this occurs, erma is
set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this case t.he
message is not sent and the calling process resumes execution in the manner
prescribed in signal(2)).

Msgsnd will fail and no message will be sent if one OJ' more of the following are true:

IEINVALJ Msqid is not a valid message queue identifier.>

\EACCESJ Operation permission is denied to the calling process (see intro(2)).

ICON INTERNATIONAL 1

(

(

(~.

MSGOP(2) SYSTEM CALLS MSGOP(2)

2

(EINVAL]

(EAGAIN]

(EINVAL]

(EFAULT]

Mtype is less than 1.

The message cannot be sent for one of the reasons cited above and (msgffg &
IPC_NOWAlT) is "true".

Msgsz is less than zero or greater than the system-imposed limit.

Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid (see intro (2».

Msg_qnum is incremented by 1.

MsgJspid is set equal to the process ID of the calling process.

MsgJtime is set equal to the current time.

Msgrcv reads a message from the queue associated with the message queue identifier spedfjed
by msqid and places it in the structure pointed to by msgp. {READ} This structure is com­
posed of the following members:

long mtype; /* message type */
char mtext[]; /* message text */

Mtype is the received message's type as specified by the sending process. Aftext is the text of
the message. Msgsz specifies the size in bytes of mtext. The received message is truncated to
msgsz bytes if it is larger than msgsz and (msgftg & MSG_NOERROR) is "true". The trun­
cated part of the message is lost and no indication of the truncation is given to the calling
process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or equal
to the absolute value of msgtyp is received.

Msgftg specifies the action to be taken if a message of the desired type is not on the qUE-ue.
These are as follows:

If (msgflg & IPC~OWAlT) is "true", the calling process will return immediately with
a return value of -1 and errno set to ENOMSG.

If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend execution ulltil
one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this case a mes­
sage is not received and the calling process resumes execution in the manner
prescribed in signal(2)).

Msgrcv will fail and no message will be received if one or more of the following are true:

[EINVALJ

IEACCES]

IEINVAL]

[E2BIG]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

Msgsz is less than 0.

Mtext is greater than msgsz and (msgflg & MSG_NOERROR) is "false".

ICON INTERNATIOl'\AL

MSGOP(2) SYSTEM CALLS MSGOP(2)

(ENOMSGj The queue does not contain a message of the desired type and (msgtyp &
IPCJlOWAlT) is "true".

(EFAULTj Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid (see intro (2)).

Ms~qnum is decremented by 1.

MsgJrpid is set equal to the process ID of the calling process.

MsgJ"time is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned to the ('aI­
ling process and errno is set to EINTR. If they return due to removal of msqid from the sys­
tem, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of O.

Msgrcv returns a value equal to the number of bytes actually placed into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

ICON INTERNATIONAL 3

(j

OPEN(2) SYSTE~1 CALLS

NAME
open - open a file for reading or writing, or create a new file

SYNOPSIS
#include <sys/ftle.h>
open(path, flags, mode)
char *path;
int flags, mode;

DESCRIPTION

OPEN(2)

Open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if
it does not already exist (by specifying the O_CREAT flag), in which case the file is created
with mode mode as described in chmod(2) and modified by the process' umask value (see
umask(2)).
Path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by or'ing the following values

OJtDONL Y open for reading only
0_ WRONL Y open for writing only
OJtDWR open for reading and writing
O-.NDELA Y do not block on open
O..APPEND append on each write
O_CREAT create file if it does not exist
O_TRUNC truncate size to 0
O-EXCL error if create and file exists

Opening a file with O..APPEND set causes each write on the file to be appended to the end.
If O_TRUNC is specified and the file exists, the file is truncated to zero length. If O-EXCL is
set with O_CREAT, then if the file already exists, the open returns an error. This can be
used to implement a simple exclusive access locking mechanism. If the O_NDELA Y flag is
specified and the open call would result in the process being blocked for some reason (e.g.
waiting for carrier on a dialup line), the open returns immediately. The first time the process
attempts to perform i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The
file pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system caBs; see close(2).

No process may have more than {OPEN-MAX} file descriptors open simultaneously.

ERRORS
The named file is opened unless one or more of the fol1owing are true:

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] O_CREAT is not set and the named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCESj The required permissions (for reading and/or writing) are denied for the
named flag.

[EISDIRj The named file is a directory, and the arguments specify it is to be opened
for writing.

ICON INTERNATIONAL 1

OPEN(2)

[EROFSj

[EMFILEJ
[ENXIOj

[ETXTBSYj

[EFAULTj

[ELOOP]

[EEXISTj

[ENXIO]

[EOPNOTSUPPj

SEE ALSO

SYSTEM CALLS OPEN(2)

The named file resides on a read-only file system, and the file is to be
modified.

{OPEN...MAX} file descriptors are currently open.

The named file is a character special or block special file, and the device asso-
ciated with this special file does not exist. .

The file is a pure procedure (shared text) file that is being executed and the
open call requests write access.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

O-EXCL was specified and the file exists.

The O..NDELAY flag is given, and the file is a communications device on
which their is no carrier present.

An attempt was made to open a socket (not currently implemented).

chmod(2), close(2), dup(2), Iseek(2), read(2), write(2), umask(2)

2 ICON INTERNATIOI\.-\L

/
I

(
~j

(--

(

PIPE (2) SYSTEM CALLS PIPE (2)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned
can be used in read and write operations. When the pipe is written using the descriptor
fildes[l] up to 4096 bytes of data are buffered before the writing process is suspended. A read
using the descriptor fildes[O] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (creatt'd
by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2} call and, in fact, are implemented as such in
the system.

A signal is generated if a write on a pipe with only one end is attempted.

RETURN VALUE
The function value zero is returned if the pipe was created; -I if an error occurred.

ERRORS
The pipe call will fail if:

[EMFILE] Too many descriptors are active.

[EFAULT] The fildes buffer is in an invalid area of the process's address space.

SEE ALSO
sh(I), read(2), write(2), fork(2), socketpair(2)

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock
will occur.

ICON INTERNATIONAL 1

---~~-~----~-- ---------------~

PROFIL(2) SYSTEM CALLS

NAME
profil - execution time profile

SYNOPSIS
profil(buff, bufsiz, offset, scale)
ehar *buff;
int bufsiz, offset, seale;

DESCRIPTION

PROFJL(2)

Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user's program counter (pc) is examined each clock tick (20 milliseconds); offset is subtracted
from it, and the result multiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point Craction with binary point at the left:
Oxl0000 gives a 1-1 mapping oC pc's to words in buff; Ox8000 maps each pair of instruction
words together. Ox2 maps all instructions onto the beginning of buff (producing a non­
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of
O. Profiling is turned off when an execve is executed, but remains on in child and parent both
after a fork. Profiling is turned off if an update in buff would cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof{I), setitimer(2), monitor(3)

ICON INTERNATIONAL 1

(

PTRACE(2) SYSTEM CALLS

NAME
ptrace - process trace

SYNOPSIS
#include <aignal.h>
ptrace(request, pid, addr, data)
int request, pid, *&ddr, data;

DESCRIPTION

PTRACE(2)

Ptrace provides a means by which a parent process may control the execution of a child pro­
cess, and examine and change its core image. Its primary use is for the implementation of
breakpoint debugging. There are four arguments whose interpretation depends on a request
argument. Generally, pid is the process ID of the traced process, which must be a child (no
more distant descendant) of the tracing process. A process being traced behaves normally
until it encounters some signal whether internally generated like "illegal instruction" or exter­
nally generated like "interrupt". See sigvec(2) for the list. Then the traced process enter~ a
stopped state and its parent is notified via wait(2). When the child is in the stopped state. its
core image can be examined and modified using ptrace. If desired, another ptrace request ('an
then cause the child either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

o This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if
the parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-H), request 1 indicates I space, 2 D space. Addr
must be even. The child must be stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr is returned. Addr
must be even and less than 512. This space contains the registers and other information
about the process; its layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process's address space corresponding to
addr, which must be even. No useful value is returned. If I and 0 space are separated,
request 4 indicates I space, 5 D space. Attempts to write in pure procedure fail if another
process is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few locations
can be written in this way: the general registers, the floating point status and registE'rs,
and certain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution continues at
location addr as if it had incurred that signal. Normally the signal number will be either
o to indicate that the signal that caused the stop should be ignored, or that value fete-hE'd
out of the process's image indicating which signal caused the stop. If addr is (int *)1 then
execution continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. (On ICON systems the trace-bit is set and just one instruction is executE'd.)
This is part of the mechanism for implementing breakpoints.

ICON INTERNATIONAL 1

PTRACE(2) SYSTEM CALLS PTRACE(2)

As indicated, these calls (except for request 0) ca.n be used only when the subject process has
stopped. The wait call is used to determine when a process stops; in such a case the "termi­
nation" status returned by wait has the value 0177 to indicate stoppage rather than genuine
termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subse­
quent ezecve(2} calls .. If a. traced process calls ezecve, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

On an ICON system, "word" also means a 32-bit integer, but the "even" restriction does not
apply.

RETURN VALUE
A 0 value is returned if the call succeeds. If the call fa.ils then a -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
[EINVAL] The request code is invalid.

[EINVAL]
[EINVAL]
[EFAULT]
[EPERM]

The specified process does not exist.
The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

SEE ALSO

BUGS

2

wait(2), sigvec(2), adb(l)

Ptrace is unique and arcane; it should be replaced with a special file which can be opened and
read and written. The control functions could then be implemented with ioctl(2) calls on this
file. This would be simpler to understand and have much higher performance.

The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use
"illegal instruction" signals at a very high rate) could be efficiently debugged.

The error indication, -1, is a legitimate function value; errno, see intro(2}, can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

ICON INTERNATIONAL

(

QUOTA(2) SYSTEM CALLS QUOTA(2)

NAME
quota - manipulate disk quotas

SYNOPSIS
#include <sys/quota.h>
quota(emd, uid, arg, addr)
int emd, uid, arg;
eaddr _t addr;

DESCRIPTION
The quota call manipulates disk quotas for file systems which have had quotas enabled with
setquota(2). The cmd parameter indicates a command to be applied to the user ID uid. Arg is
a command specific argument and addr is the address of an optional, command specific, dat.a
structure which is copied in or out of the system. The interpretation of arg and addr is given
with each command below.

~SETDLIM
Set disc quota limits and current usage for the user with ID uid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dqblk structure
(defined in < sys/ quota.h ». This call is restricted to the super-user.

~GETDLIM
Get disc quota limits and current usage for the user with ID uid. The remammg
parameters are as for Q-SETDLIM.

Q-SETDUSE
Set disc usage limits for the user with ID uid. Arg is a major-minor device indicating
a particular file system. Addr is a pointer to a struct dqusage structure (defined m
<sys/quota.h». This call is restricted to the super-user.

Q-SYNC
Update the on-disc copy of quota usages. The uid, arg, and addr parameters are
ignored.

Q-SETUID
Change the calling process's quota limits to those of the user with ID uid. The arg
and addr parameters are ignored. This call is restricted to the super-user.

~SETWARN
Alter the disc usage warning limits for the user with ID uid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dqwarn struc­
ture (defined in <sys/quota.h». This call is restricted to the super-user.

~OWARN
Warn the user with user ID uid about excessive disc usage.· This call causes the syst.em
to check its current disc usage information and print a message on the terminal of t.he
caller for each file system on which the user is over quota. If the arg parameter is
specified as NODEV, all file systems which have disc quotas will be checked. Other­
wise, arg indicates a specific major-minor device to be checked. This call is restricted
to the super-user.

RETURN VALUE
A successful call returns 0 and, possibly, more information specific to the cmd performed;
when an error occurs, the value -1 is returned and ermo is set to indicate the reason.

ICON INTERNATIONAL 1

QUOTA(2) SYSTEM CALLS QUOTA(2)

ERRORS
A quota call will fail when one of the following occurs:

[EINV ALl Omd is invalid.
[ESRCHl No disc quota is found for the indicated user.

(EPERM] The call is priviledged and the caller was not the super-user.

[EINV AL] The arg parameter is being interpreted as a major-minor device and it indi­
cates an unmounted file system.

{EF AULT] An invalid addr is supplied; the associated structure could not be copied in or
out of the kernel.

[EUSERSl The quota table is full.
\

SEE ALSO

BUGS

2

setquota(2), quotaon(8), quotacheck(8)

There should be someway to integrate this call with the resource limit interface provided by
setrlimit(2) and getrlimit(2).

The Australian spelling of disk is used throughout the quota facilities in honor of the imple­
mentors.

ICON INTERNATIONAL

<.

(

READ(2)

NAME
read, readv - read input

SYNOPSIS
cc = read{d, bur, nbytes)
int cc, d;
char *bur;
int nbytes;

#include <ays/types.h>
#include <sys/uio.h>
cc = readv{d, iov, iovcnt)
int cc, d;
Btruct iovec *iov;
int iovcnt;

DESCRIPTION

SYSTEM CALLS READ (2)

Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buf. Readv performs the same action, but scatters the input data into
the iovcnt buffers specified by the members of the iovec array: iov[Ol, iov[l]' ... , iov[iovcnt-l].

For readv, the iovec structure is defined as

struct iovec {
cad d r_t iov _base;
int iov-1en;

};
Each iovec entry specifies the base address and length of an area in memory where data
should be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated
with d, see Iseek(2}. Upon return from read, the pointer is incremented by the number of
bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of
the pointer associated with such a object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and
placed in the buffer. The system guarantees to read the number of bytes requested if the
descriptor references a file which has that many bytes left before the end-of-file, but in no
other cases.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and
the global variable errno is set to indicate the error.

ERRORS
Read and readv will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT] BuJpoints outside the allocated address space.

ICON INTERNATIONAL 1

READ (2) SYSTEM CALLS READ (2)

[EINTRl A read from a slow device was interrupted before any data arrived by the
delivery of a signal. '

In addition, readv may return one of the following errors:
[EINV ALl Iovcnt was less than or equal to 0, or greater than 16.
[EINV ALl One of the iov_len values in the iovarray was negative.
IEINV ALl The sum of the iov_/en values in the iovarray overflowed a 32-bit integer.

SEE ALSO
dup(2), open(2), pipe(2), socket(2), socketpair(2)

2 ICON l1'\TERNATIONAL

(

(

READLINK (2) SYSTEM CALLS READLINK (2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
cc = readlink(path, bur, bursiz)
int cc;
char *path, *buf;
int bursiz;

DESCRIPTION
Readlink places the contents of the symbolic link name in the buffer btl/which has size btl/siz.
The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error
occurs, placing the error code in the global variable errno.

ERRORS
Readlink will fail and the file mode will be unchanged if:

[EPERM] The path argument contained a byte with the high-order bit set.
[ENOENT] The pathname was too long.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[E!'.'XIO] The named file is not a symbolic link.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective

[EINVAL]

[EFAULT]
[ELOOP]

SEE ALSO

user ID is not the super-user.

The named file is not a symbolic link.

Btl/ extends outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

stat(2), Istat(2), symlink(2)

ICON INTERNATIONAL 1

REBOOT (2) SYSTEM CALLS REBOOT (2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include <8ys/reboot.h>
reboot(howto)
int howto;

DESCRIPTION
Reboot reboots the system, and is invoked automatically in the event of unrecoverable syst.em
failures. Howto is a mask of options passed to the bootstrap program. The system call inter·
face permits only RBJIALT or RB-AUTOBOOT to be passed to the reboot program. When
none of these options (e.g. RB-AUTOBOOT) is given, the system is rebooted from file
"vmunix" in the root file system of unit 0 of a disk chosen in a processor specific way.

The bits of howto are:

RBJlALT
the processor is simply halted; no reboot takes place. RBJlALT should be used with
caution. This switch is not available from the system call interface.

RB-AUTOBOOT
All media are synced, and the machine reboots. At reboot time you are offered the
option to continue with a normal reboot, or to interact with the system loader(8).

Only the super·user may reboot a machine.

RETURN VALUES
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in
the global variable errno. .

ERRORS
[EPERMl

SEE ALSO

The caller is not the super·user.

crash(8), halt(8), init(8), reboot(8)

ICON INTERNATIONAL 1

-r--
(

~_/

(.

(

RECV(2) SYSTEM CALLS

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
cc = recv(s, buf, len, flags)
int cc, s;
char *buf;
int len, flags;

cc = recvfrom(s, bur, len, flags, from, fromlen)
int cc, s;
char *buf;
int len, flags;
struct sockaddr drom;
int ~romlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msgD;
int flags;

DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a socket.

RECV(2)

The recv call may be used only on a connected socket (see connect(2)), while rectjrom and
recvmsg may be used to receive data. on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in
cc. If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from; see socket(2).

If no messages are available at the socket, the receive call waits for a message to arrive, unless
the socket is nonblocking (see ioctl(2)) in which case a cc of -1 is returned with the external
variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.

The flags argument to a send call is formed by or'ing one or more of the values,

#define MSGYEEK Ox1 /* peek at incoming message */
#define MSG_OOB Ox2 /* process out-of-b.and data */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parame­
ters. This structure has the following form, as defined in <sys/ socket.h> :

struct msghdr {
caddr_t mSgJlame; /* optional address */
int mSgJlamelen; /* size of address */
struct iov *IDs~iov; /* scatter/gather array */
int ms~ovlen; /* # elements in ms~iov */
cad d r_t ms~accrights; /* access rights sent/received */
int ms~accrightslen;

};

ICON INTERNATIONAL 1

RECV(2) SYSTEM CALLS RECV(2)

Here m8g.,.name and m8g.,.namelen specify the destination address if the socket is unconnected; ('\
m8g.,.name may be given as a null pointer if no names are desired or required. The msg.,.iov \ ___/
and m8g.,.iovlen describe the scatter gather loca.tions, as described in read(2). Access rights to
be sent along with the message are specified in msg.,.accrights, which has length
msg.,.accrightslen.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fa.il if:

[EBADFj
[ENOTSOCKj
[EWOULDBLOCKj

[EINTR]

[EFAULTj

SEE ALSO

The argument 8 is an invalid descriptor.

The argument 8 is not a socket.

The socket is marked non-blocking and the receive operation would
block.
The receive was interrupted by delivery of a signal before any data was
available for the receive.

The data was specified to be received into a non-existent or protected
part of the process address space.

read(2), send(2), socket(2)

2 ICON INTERNATIONAL

(

C'

RENAME (2) SYSTEM CALLS RENAME (2)

NAME
rename - change the name of a file

SYNOPSIS
rename(from, to)
char *"rom, ~o;

DESCRIPTION
Rename causes the link named from to be renamed as to. If to exists, then it is first remoyed.
Both from and to must be of the same type (that is, both directories or both non-directories),
a.nd must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in
the middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is present. This loop takes the
form of an entry in directory "a", say "a/foo", being a hard link to directory "b", and an
entry in directory "b", say "b/bar", being a hard link to directory "a". When such a loop
exists and two separate processes attempt to perform "rename a/foo b/bar" and "rename
b/bar a/foo", respectively, the system may deadlock attempting to lock both directories for
modification. Hard links to directories should be replaced by symbolic links by the system
administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise rename returns -1 and the global
variable errno indicates the reason for the failure.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the following are
true:

[ENOTDIR]

[ENOENT]

[EACCES]
[ENOENT]

[EPERM]

[EXDEV]

[EACCES]

[EROFS]
[EFAULT]

[EINVALJ

SEE ALSO
open(2)

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by from does not exist.

The file named by from is a directory and the effective user ID is not super­
user.

The link named by to and the file named by from are on different logical
devices (file systems). Note that this error code will not be returned if the
implementation permits cross-device links.

The requested link requires writing in a directory with a mode that denies
write permission.
The requested link requires writing in a directory on a read-only file system.

Path points outside the process's allocated address space.

From is a parent directory of to.

ICON INTERNATIONAL 1

RMDffi(2) SYSTEM CALLS RMDffi(2)

NAME
rmdir - remove a directory file

SYNOPSIS
rmdir(path)
char *path;

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than "." and " .. ".

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a -1 is returned and an error code is stored
in the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY] The named directory contains files other than "." and " .. " in it.
[EPERM] The pathname contains a character with the high-order bit set.

[ENOENT] The pathname was too long.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.
[EACCESj A component of the path prefix denies search permission.

[EACCESj Write permission is denied on the directory containing the link to be
removed.

[EBUSYj

[EROFSj

[EFAULTj

[ELOOPj

SEE ALSO

The directory to be removed is the mount point for a mounted file system.

The directory entry to be removed resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

mkdir(2), unlink(2)

ICON INTERNATIONAL 1

(

(

SELECT(2) SYSTEM CALLS SELECT(2)

NAME
select - synchronous i/o multiplexing

SYNOPSIS
#include <sys/time.h>
nfound = select(nfds, readfds, writefds, execptfds, timeout)
int nfound, nfds, *readfds, *Writefds, ~ecptfds;
struct timeval ~imeout;

DESCRIPTION
Select examines the i/o descriptors specified by the bit masks read/ds, write/ds, and execpf/ds
to see if they are ready for reading, writing, or have an exceptional condition pending, respec­
tively. File descriptor / is represented by the bit "1 < <f" in the mask. N/ds descipt.ors are
checked, i.e. the bits from 0 through n/ds-1 in the masks are examined. Select returns, in
place, a mask of those descriptors which are ready. The total number of ready descriptors is
returned in n/ound.

If timeout is a non-zero pointer, it specifies a maximum interval t.o wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero valued timeval structure.

Any of read/ds, write/ds, and execpt/ds may be given as 0 if no descriptors are of interest.

RETURN VALUE
Select returns t.he number of descriptors which are contained in the bit masks, or -1 if an
error occurred. If the time limit expires then select ret.urns o.

ERRORS
An error return from select indicates:

[EBADFj One of the bit masks specified an invalid descriptor.

[EINTR] An signal was delivered before any of the selected for events occurred or the
time limit expired.

SEE ALSO

BUGS

accept(2), connect(2), read(2), write(2), recv(2), send(2)

The descriptor masks are always modified on return, even if the call returns as the result of
the timeout.

ICON INTERNATIONAL 1

SEMCTL(2) SYSTEM CALLS SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#inelude <sys/typea.h>
#include <ays/ipe.h>
#inelude <ays/aem.h>
int semetl (aemid, aemnum, emd, arg)
int aemid, emdi
int semnumi
union semun {

int val;
atruet semid_ds *bufi
ushort *&rraYi

} argi

DESCRlPTION
Semet! provides a variety of semaphore control operations as specified by emd.

The following emds are executed with respect to the semaphore specified by semid and sem­
num:

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

Return the value of semval (see intro{2}). {READ}

Set the value of semval to arg.val. {ALTER} When this cmd is success­
fully executed, the semadj value corresponding to the specified sema­
phore in all processes is cleared.

Return the value of sempid. {READ}

Return the value of semncnt. {READ}

Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of s('maphores.

GETALL Place semvals into array pointed to by arg.array. {READ}

SETALL Set semvals according to the array pointed to by arg.array. {ALTER}
When this cmd is successfully executed the semadj values corresponding
to each specified semaphore in all processes are cleared.

The following cmds are also available:

IPC_STAT Place the current value of each member of the data structure associated
with semid into the structure pointed to by arg.buf. The contents of
this structure are defined in intro(2). {READ}

IPC~ET

ICON INTERNATIONAL

Set the value of the following members of the data structure associated
with semid to the corresponding value found in the structure pointed to
by arg.buf:
se~perm.uid
se~perm.gid
se~perm.mode /* only low 9 bits */
This cmd can only be executed by a process that has an effective user ID
equal to either that of super-user or to the value of sem_perm.uid in
the data structure associated with semid.

1

(

(

SEMCTL(2) SYSTEM CALLS SEMCTL(2)

IPC..RMID Remove the semaphore identifier specified by semid from the system
and destroy the set of semaphores and data structure associated with it.
This cmd can only be executed by a process that has an effective user ID
equal to either that of super-user or to the value of BeIILperm.uid in
the data structure associated with semid.

Semetl will fail if one or more of the following are true:

[EINVAL] Semid is not a valid semaphore identifier.

[EINV AL] Semnum is less than zero or greater than aeDLDBeDlS.

[EINVAL] Cmd is not a valid command.

[EACCES] Operation permission is denied to the calling process (see intro(2)).

[ERANGE] Cmd is SETVAL or SETALL and the value to which semval is to be
set is greater than the system imposed maximum.

IEPERM] Cmd is equal to IPC.-RMlD or IPC.-SET and the effective user ID of the
calling process is not equal to that of super-user and it is not equal to
the value of aeIILperm.uid in the data structure associated with
semid.

[EFAULT] Arg.bufpoints to an illegal address.

RETURN VALUE
Upon successful completion, the value returned depends on emd as follows:

GETV AL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), semget(2), semop(2).

2 ICON INTERNATIONAL

SEMGET(2)

NAME
semget - get set of sema.phores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

SYSTEM CALLS

int semget (key, nsems, semBg)
key_t key;
int nsems, semBg;

DESCRIPTION
Semget returns the semaphore identifier associated with key.

SEMGET(2)

A semaphore identifier and associated data structure and set containing nsems semaphores
(see intro{2)} are created for key if one of the following are true:

Key is equal to IPCYRIVATE,

Key does not already have a. semaphore identifier associated with it, and (semftg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore identifier is initialized as
follows:

SeIILperm.cuid, seIILperm.uid, sem_perm.cgid, and sem_perm.gid are set equal
to the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of seIILperm.mode are set equal to the low-order 9 bits of ,/
semftg·

SeID-nsems is set equal to the value of nsems.

SeIILotime is set equal to 0 and seIILctime is set equal to the current time.

Semget will fail if one or more of the following are true:

[EINVAL] Nsems is either less than or equal to zero or greater than the system-imposed
limit.

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPC]

[ENOSPC]

[EEXIST]

A semaphore identifier exists for key, but operation permission (see intro(2))
as specified by the low-order 9 bits of semftg would not be granted.

A semaphore identifier exists for key, but the number of semaphores in the
set associated with it is less than _nsems and nsems is not equal to zero.

A semaphore identifier does not exist for key and (semftg & IPC_CREAT) is
"false" .

A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphore identifiers system wide would be
exceeded.
A semaphore identifier is to be created but the system-imposed limit on the
maximum number of allowed semaphores system wide would be exceeded.

A semaphore identifier exists for key but ((semftg & IPC_CREAT) and (semftg
& IPC-EXCL)) is "true".

ICON INTERNATIONAL 1

f\
I

"-

(

(

SEMGET(2) SYSTEM CALLS SEMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore identifier, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), semctl(2), semop(2).

2 ICON INTERNATIONAL

SEMOP(2) SYSTEM CALLS SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <ays/sem.h>
int semop (semid, sops, nBopB)
int Bemid;
Btruct sembuf *lI8OPB;
int nsops;

DESCRIPTION
Semop is used to automatically perform an array of semaphore operations on the set of sema­
phores associated with the semaphore identifier specified by semid. Sops is a pointer to the
array of semaphore-operation structures. Nsops is the number of such structures in the array.
The contents of each structure includes the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sefTLOp is performed on the corresponding semaphore
specified by semid and sefTLnum.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will occur: {ALTER}

If semval (see intro(2)) is greater than or equal to the absolute valu(' of
sefTLOp, the absolute value of sem_op is subtracted from semval. Also, if
(sem-flg & SE~UNDO) is "true", the absolute value of sem_op is added to
the calling process's semadj value (see exit(2)) for the specified semaphore.

If semval is less than the absolute value of sem_op and (sem-flg &
IPC..NOWAIT) is "true", semop will return immediately.

If semval is less than the absolute value of sem_op and (sern-flg &
IPC..NOWAIT) is "false", semop will increment the semncnt associated with
the specified semaphore and suspend execution of the calling process until one
of the following conditions occur.

Semval becomes greater than or equal to the absolute value of sern_op.
When this occurs, the value of semncnt associated with the specified sema­
phore is decremented, the absolute value of sefTLOp is subtracted from SE-m­

val and, if (sem-flg & SE~UNDO) is "true", the absolute value of sem_op
is added to the calling process's semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from
the system (see semctl(2)). When this occurs, errno is set equal to EIDRM,
and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs,
the value of semncnt associated with the specified semaphore is decre­
mented, and the calling process resumes execution in the manner prescribed
in signal(2).

ICON INTERNATIONAL 1

(
~/

(

SEMOP(2) SYSTEM CALLS SEMOP(2)

If serrLOp is a positive integer, the value of serrLOp is added to semval and. if
(sem..Jlg &, SEM-UNDO) is "true", the value of sem--op is subtracted from the calling
process's semadj value for the specified semaphore. {ALTER}

If serrLOp is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem-flg &, IPC_NOWAIT) is "true", semop
will return immediately.

If semval is not equal to zero and (sem-flg & IPC~OWAIT) is "false", semop
will increment the semzcnt associated with the specified semaphore and
suspend execution of the calling process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt associated with
the specified semaphore is decremented.
The semid for which the calling process is awaiting action is removed from
the system. When this occurs, errno is set equal to EIDRM, and a value of
-1 is returned.

The calling process receives a signal that is to be caught. When this occurs,
the value of semzcnt associated with the specified semaphore is decre­
mented, and the calling process resumes execution in the manner prescribed
in signal(2).

Semop will fail if one or more of the following are true for any of the semaphore operations
specified by sops:

[EINVAL]

[EFBIG]

[E2BIG]

[EACCES]

[EAGAIN]

[ENOSPC]

[EINVAL]

IERANGE]
[ERANGE]

[EFAULT]

Semid is not a valid semaphore identifier.

Sem_num is less than zero or greater than or equal to the number of sema­
phores in the set associated with semid.

Nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process (see intro(2)).

The operation would result in suspension of the calling process but (sem..Jlg
& IPC~OWAIT) is "true".

The limit on the number of individual processes requesting an SEM-UNDO
would be exceeded.

The number of individual semaphores for which the calling process requests a
SEM-UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.

An operation would cause a semadj value to overflow the system-imposed
limit.

Sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in the array
pointed to by sops is set equal to the process ID of the calling process.

RETURN VALUE

2

If semop returns due to the receipt of a signal, a value of -1 is returned to the caJ1ing process
and errno is set to EINTR. If it returns due to the removal of a semid from the system. a
value of -1 is returned and errno is set to EIDRM.

ICON INTERNATIONAL

SEMOP(2) SYSTEM CALLS SEMOP(2)

Upon successful completion, the value of semval at the time of the call for the last operation
in the array pointed to by sops is returned. Otherwise, a value of -1 is returned and errf'l() is
set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

ICON INTERNATIONAL 3 c'

(

(

('

SEND (2) SYSTEM CALLS

NAME
send, send to, sendmsg - send a.message from 11. socket

SYNOPSIS
#include <sys/types.h>
#include <sya/socket.h>
cc = send(s, mag, len, fUags)
int cc, s;
char *DlBg;
int len, flags;

cc = sendto(s, mag, len, flags, 1.0, to1en)
int cc, s;
char *DlBg;
int len, flags;
struct sockaddr #'0;
int tolen;
cc = sendmsg(s, msg, flags)
int cc, s;
struct msghdr magD;
int flags;

DESCRIPTION

SEND (2)

Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be
used only when the socket is in a connected state, while sendto and sendmsg may be used at
any time.

The address of the target is given by to with tolen specifying its size. ThE.' length of the mes­
sage is given by len. If the message is too long to pass atomically through the underlying pro­
tocol, then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values or -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then
send normally blocks, unless the socket has been placed in non-blocking i/o mode. The
select(2} call may be used to determine when it is possible to send more data.

The flags parameter may be set to SOF_OOB to send "out-or-band" data on sockets which
support this notion (e.g. SOCILSTREAM).

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of chaxacters sent, or -1 if an error occurred.

ERRORS
[EBADFJ

[ENOTSOCK]

[EFAULT]

ICON INTERNATIONAL

An invalid descriptor was specifit><l.

The argument 8 is not a socket.

An invalid user space address was specified for a parameter.

1

SEND(2)

[EMSGSIZE]

SYSTEM CALLS SEND (2)

The socket requires that message be sent atomically, and the size of the
message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would
block.

SEE ALSO
recv(2}, socket{2}

2 ICON INTERNATIONAL

(~
I

\ /
"-,/

,/ ,

(

(

SETGROUPS (2) SYSTEM CALLS SETGROUPS (2)

NAME
setgroups - set group access list

SYNOPSIS
#include <sys/param.h>
setgroups(ngroups, gidset)
int ngroups, *gidset;

DESCRIPTION
Setgroups sets the group access list of the current user process according to the array gidset.
The parameter ngroups indicates the number of entries in the array and must be no more
than NGRPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

RETURN VALUE
A 0 value is returned on success, -1 on error, with a error code stored in errno.

ERRORS
The setgroups call will fail if:

[EPERM] The caller is not the super-user.

[EF AULT] The address specified for gidset is ou tside the process address space.

SEE ALSO
getgroups(2), initgroups(3X)

ICON INTERNATIONAL 1

SETPGRP(2)

NAME
setpgrp - set process group

SYNOPSIS
setpgrp(pid, pgrp)
int pid, pgrp;

DESCRIPTION

SYSTEM CALLS SETPGRP(2)

Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero,
then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.

RETURN VALUE
Setpgrp returns when the operation was successful. If the request failed, -1 is returned and
the global variable errno indicates the reason.

ERRORS
Setpgrp will fail and the process group will not be altered if one of the following occur:

[ESRCH] The requested process does not exist.

[EPERM] The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.

SEE ALSO
getpgrp(2)

ICON INTERNATIONAL 1

(\
\)
~

(

SETQUOTA(2) SYSTEM CALLS SETQUOTA (2)

NAME
setquota - enable/disable quotas on a file system

SYNOPSIS
setquota(speeial, file)
char ... pecial, .tile;

DESCRIPTION
Disc quotas are enabled or disabled with the setquota call. Special indicates a block special
device on which a mounted file system exists. If file is nonzero, it specifies a file in that file
system from which to take the quotas. If file is 0, then quotas are disabled on the file syst.E'm.
The quota file must exist; it is normally created with the checkquota(8) program.

Only the super-user may turn quotas on or off.

SEE ALSO
quota(2), quotacheck(8), quotaon(8}

RETURN VALUE
A 0 return value indicates a successful call. A value of -1 is returned when an error occurs
and errno is set to indicate the reason for failure.

ERRORS
Setquota will fail when one of the following occurs:

INODEV] The caller is not the super-user.

INODEV] Special does not exist.

[ENOTBLKj Special is not a block device.

IENXIOj The major device number of special is out of range (this indicates no deyice

BUGS

[EPERMj

IENOTDIRj

IEROFSj
[EACCESj

[EACCESj

driver exists for the associated hardware).

The pathname contains a character with the high-order bit set.

A component of the path prefix in file is not a directory.

File resides on a read-only file system.

File resides on a file system different from special.

File is not a plain file.

The error codes are in a state of disarray; too many errors appear 'to the caller as one value.

ICON INTERNATIONAL 1

SETREGID (2) SYSTEM CALLS

NAME
setregid - set real and effective group ID

SYNOPSIS
setregid(rgid, egid)
int rgid, egid;

DESCRIPTION

SETREGID (2)

The real and effective group 1D's of the current process are set to the arguments. Only the
super-user may change the real group ID of a process. Unpriviledged users may change the
effective group ID to the real group ID, but to no other.

Supplying a value of -1 for either the real or effective group ID forces the system to substitute
the current ID in place of the -1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM]

SEE ALSO

The current process is not the super-user and a change other than changing
the effective group-id to the real group-id was specified.

getgid(2), setreuid(2), setgid(3)

ICON INTERNATIONAL 1

(

(

SETREUID(2) SYSTEM CALLS

NAME
setreuid - set real and effective user ID's

SYNOPSIS
setreuid(ruid, euid)
int ruid, euid;

DESCRIPTION

SETREUID (2)

The real and effective user ID's of the current process are set according to the arguments. If
ruid or euid is -1, the current uid is filled in by the system. Only the super-user may modify
the real uid of a process. Users other than the super-user may change the effective uid of a
process only to the real uid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERMj

SEE ALSO

The current process is not the super-user and a change other than changing
the effective user-id to the real user-id was specified.

getuid(2), setregid(2), setuid(3)

ICON INTERNATIONAL 1

SHMCTL(2) SYSTEM CALLS SHMCTL(2)

NAME
shmctl- shared memory control operations

SYNOPSIS
;!Jinelude <sys/types.b >
;!Jinclude <sys/ipe.h>
;!Jinelude <sys/shm.h>
int shmetl (shmid, emd, but)
int shmid, emd;
struet shmid_ds *bur;

DESCRIPTION
Shmctl provides a variety of shared memory control operations as specified by cmd. The fol­
lowing cmds are available:

IPC.J;TAT Place the current value of each member of the data sf ructure associated
with shmid into the structure pointed to by buf. Tht" contents of this
structure are defined in [EINVALJ intro(2). {READ}

IPC.J;ET Set the value of the following members of the data structure associated
with shmid to the corresponding value found in the structure pointed to
by buf:
shm_perm.uid
shm_perm.gid
shID-perm.mode /* only low 9 bits */
This cmd can only be executed by a process that has an effective user ID
equal to either that of super user or to the value of shm-perm.uid in
the data structure associated with shmid.'-_

IPC-RMIJ) Remove the shared memory identifier specified by shmid from the system
and destroy the shared memory segment and data st.ructure associated
with it. This cmd can only be executed by a process that has an effective
user ID equal to either that of super user or to the value of
shm-perm.uid in the data structure associated with shmid.

SI:lM.J.OCK Lock the shared memory segment specified by shmid in memory. This
cmd can only be executed by a process that has an effective usr ID equal
to super user.

SlIM-UNLOCK
Unlock the shared memory segment specified by shmid. This cmd can
only be executed by a process that has an effective usr ID equal to super
user.

Shmctl will fail if one or more of the following are true:

Shmid is not a valid shared memory identifier. [EINVALJ

Cmd is not a valid command. IEINVALJ

Cmd is equal to IPC.J;TAT and {READ} operation permission is drnied to the calling
process (see intro(2)). IEACCESJ

Cmd is equal to IPC-RMID or IPC.J;ET and the effective user ID of the calling process is
not equal to that of sU'per user a.nd it is not equal to the value of shm-perm.uid in
the data structure associated with shmid. [EPERMJ

ICON INTERNATIONAL 1

r
~/

(

('

SETQUOTA (2) SYSTEM CALLS SETQUOTA (2)

NAME
setquota - enable/disable quotas on a file system

SYNOPSIS
setquota(special, file)
char *Special, ~le;

DESCRIPTION
Disc quotas are enabled or disabled with the setquota call. Special indicates a block special
device on which a mounted file system exists. If file is nonzero, it specifies a file in that. file
system from which to take the quotas. If file is 0, then quotas are disabled on the file system.
The quota file must exist; it is normally created with the checkquota(8) program.

Only the super-user may turn quotas on or off.

SEE ALSO
quota(2}, quotacheck{8}, quotaon(8}

RETURN VALUE
A 0 return value indicates a successful call. A value of -1 is returned when an error occurs
and errno is set to indicate the reason for failure.

ERRORS
Setquota will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODE V] Special does not exist.

[ENOTBLKj Special is not a block device.

[ENXIOj The major device number of special is out of range (this indicates no device

BUGS

[EPERMj

[ENOTDIR]

[EROFS]

[EACCES]

[EACCESj

driver exists for the associated hardware).

The pathname contains a character with the high-order bit set.

A component of the path prefix in file is not a directory.

File resides on a read-only file system.

File resides on a file system different from special.

File is not a plain file.

The error codes are in a state of disarray; too many errors appear to the caller as one value.

ICON INTERNATIONAL 1

SETREGID (2) SYSTEM CALLS

NAME
setregid - set real and effective group ID

SYNOPSIS
eetregid(rgid, egid)
int rgid, egid;

DESCRIPTION

SETREGID (2)

The real and effective group ID's of the current process are set to the arguments. Only the
super·user may change the real group ID of a process. Unpriviledged users may change the
effective group ID to the real group ID, but to no other.

Supplying a value of -1 for either the real or effective group ID forces the system to substitute
the current ID in place of the -1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERMj The current process is not the super· user and a change other than changing

the effective group·id to the real group-id was specified.

SEE ALSO
getgid(2), setreuid(2), setgid(3)

ICON INTERNATIONAL 1

- --------- -----

(

(~

SETREUID(2) SYSTEM CALLS

NAME
setreuid - set real and effective user ID's

SYNOPSIS
aetreuid(ruid, euid)
int ruid, euidj

DESCRIPTION

SETREUID (2)

The real and effective user ID's of the current process are set according to the arguments. If
ruid or euid is -1, the current uid is filled in by the system. Only the super-user may modify
the real uid of a process. Users other than the super-user may change the effective uid of a
process only to the real uid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errna is set to indicate the error.

ERRORS
[EPERMJ

SEE ALSO

The current process is not the super-user and a change other than changing
the effective user-id to the real user-id was specified.

getuid(2), setregid(2), setuid(3)

ICON INTERNATIONAL 1

SHMCTL(2} SYSTEM CAlLS SHMCTL(2}

NAME
shmctl- shared memory control operations

SYNOPSIS
#include <sys/typea.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmctl (shmid, cmd, bur)
int shmid, cmd;
struct shmicLds *buf;

DESCRIPTION
Shmctl provides a variety of shared memory control operations as specifit'd by cmd. The fol­
lowing cmds are available:

IPC..8TAT Place the current value of each member of the data structure associated
with shmid into the structure pointed to by buf. ThE.' contents of this
structure are defined in [EINVAL] intro(2). {READ}

IPC..8ET Set the value of the following members of the data structure associated
with shmid to the corresponding value found in the structure pointed to
by buf:
shm_perm.uid
shID-perm.gid
shm_perm.mode /* only low 9 bits */
This cmd can only be executed by a process that has an effective user ID
equal to either that of super user or to the value of shm-perm.uid in
the data structure associated with shmid.

IPC-RMII) Remove the shared memory identifier specified by shmid from the system
and destroy the shared memory segment and data structure associated
with it. This cmd can only be executed by a process that has an effective
user ID equal to either that of super user or to the value of
shm-perm.uid in the data structure associated with shmid.

SInLLOCK Lock the shared memory segment specified by shmid in memory. This
cmd can only be executed by a process that has an E.'ffective usr ID equal
to super user.

SllM-UNLOCK
Unlock the shared memory segment specified by shmid. This cmd can
only be executed by a process that has an effective usr ID equal to super
user.

Shmctl will fail if one or more of the following are true:

Shmid is not a valid shared memory identifier. [EINVAL]

Cmd is not a valid command. [EINVAL]

Cmd is equal to IPC..8TAT and {READ} operation permission is denied to the calling
process (see intro(2)). !EACCES]

Cmd is equal to IPC-RMII) or IPC..8ET and the effective user ID of the calling process is
not equal to that of super user and it is not equal to the value of shm-perm.uid in
the data structure associated with shmid. [EPERM]

ICON INTERNATIONAL 1

SHMCTL(2) SYSTEM CALLS SHMCTL(2)

Cmd is equal to SHM...LOCK. or S1IM-UNLOCK and the elective user lD of the calling
process is not equal to that of super user. IEPERM]

Cmd is equal to S1IM-UNLOCK. and the shared-memory segment spt'cified by shmid is
not locked in memory. [EINVALJ Bufpoints to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
shmget(2), shmop(2).

2 ICON I~TERNATIONAL

SHMGET(2} SYSTEM CALLS SHMGET(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of size
size bytes (see intro(2)) are created for key if one of the following are true:

Key is equal to IPC.J>RIVATE.

Key does not already have a shared memory identifier associated with it, and (shmflg
& IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory identifier is initial­
ized as follows:

Shm_perm.cuid, sh~perm.uid, shm_perm.cgid, and shm_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equal to the low-order 9 bits of ./ ...
shmftg. ShDlJegsz is set equal to the value of size. \~

Shm_Ipid, shm_nattch, shm~time, and sh~dtime are set equal to O.

Shm_ctime is set equal to the current time.

Shmget will fail if one or more of the following are true:

[EII'Ii"VAL] Size is less than the system-imposed minimum or greater than the systf'm­
imposed maximum.

[EACCES] A shared memory identifier exists for key but operation permission (see
intro(2)) as specified by the low-order 9 bits of shmflg would not be grantf'd.

[EINVAL]

[ENOENT]

{ENOSPC]

[ENOMEMj

{EEXISTj

A shared memory identifier exists for key but the size of the segment associ­
ated with it is less than size and size is not equal to zero.

A shared memory identifier does not exist for key and (shmflg & IPC_CREAT)
is "false".

A shared memory identifier is to be created but the system-imposed limit on
the maximum number of allowed shared memory identifiers system wide
would be exceeded.

A shared memory identifier and associated shared memory segment are to be
created but the amount of available physical memory is not sufficient to fill
the request.

A shared memory identifier exists for key but ((shmflg & IPC_CREAT) and (
shmflg & IPC-EXCL)) is "true".

ICON INTERNATIONAL 1

(

SHMGET(2) SYSTEM CALLS SHMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), shmctl(2), shmop(2).

2 ICON INTERNATIOK·\L

SHMOP(2) SYSTEM CALLS SHMOP(2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>

, #include <sys/ipc.h>
#include <sys/shm.h>
char -.hmat (shmid, shmaddr, shmftg)
int shmid;
char -.hmaddr
int shmftg;

int shmdt (shmaddr)
char -.hmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated with the shared memory identifier
specified by shmid to the data segment of the calling process. The segment is attached at the
address specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as
selected by the system.

If shmaddr is not equal to zero and (shmftg & SHM..RND) is "true", the segment IS
attached at the address given by (shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmftg & SHM..RND) is "false", the segment IS
attached at the address given by shmaddr.

The segment is attached for reading if (shmftg & SHM.RDONL Y) is "true" {READ}, otherwise
it is attached for reading and writing {READ/WRITE}.

Shmat will fail and not attach the shared memory segment if one or more of the following are
true:

[EINVAL]

IEACCES]

[ENOMEM]

IEINVAL]

IEINVAL]

IEMFlLE]

IEINVAL]

[EINVAL]

RETURN VALUES

Shmid is not a valid shared memory identifier.

Operation permission is denied to the calling process (see intro(2)).

The available data space is not large enough to accommodate the shared
memory segment.

Shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr modulus
SHMLBA)) is an illegal address.

Shmaddr is not equal to zero, (shmflg & SHM..RND) is "false", and the value
of shmaddr is an illegal address.

The number of shared memory segments attached to the calling pro('E'SS
would exceed the system-imposed limit.

Shmdt detaches from the calling process's data segment the shared memory
segment located at the address specified by shmaddr.
Shmdt will fail and not detach the shared memory segment if shmaddr is not
the data segment start address of a shared memory segment.

Upon successful completion, the return value is as follows:

ICON INTERNATIONAL 1

/'

(

SHMOP(2) SYSTEM CALLS SHMOP(2)

Shmat returns the data segment start address of the attached shared memory segment.

Shmdt returns a value of o.
Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
exec(2), exit(2}, fork(2}, intro{2}, shmctl(2}, shmget(2).

2 ICON INTERNATIONAL

SHUTDOWN (2) SYSTEM CALLS

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
ahutdown(s, how)
int s, how;

DESCRIPTION

SHUTDOWN (2)

The shutdown call causes all or part of a full-duplex conneciion on the socket associated with s
to be shut down. If how is 0, then further receives will be disallowed. If how is I, then
further sends will be disallowed. If how is 2, then further sends and receives will be disal­
lowed.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2), socket{2}

ICON INTERNATIONAL 1

,
''--

c

(.

(

SIGBLOCK (2)

NAME
sigblock - block signals

SYNOPSIS
sigblock(mask);
int mask;

DESCRIPTION

SYSTEM CALLS SIGBLOCK(2)

Sigblock causes the signals specified in mask to be added to the set of signals currently bt·ing
blocked from delivery. Signal i is blocked if the i-th bit in mask is a 1.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silen t ly
imposed by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2),

ICON INTERNATIONAL 1

SIGPAUSE (2) SYSTEM CALLS

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
aigpause(sigmask)
int aigmask;

DESCRIPTION

SIGP AUSE (2)

Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on
return the set of masked signals is restored. Sigmask is usually 0 to indicate that no signals
are now to be blocked. Sigpause always terminates by being interrupted, ret.urning EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables
modified on the occurance of the signal are examined to determine that there is no work to be
done, and the process pauses awaiting work by using 8igpause with the mask returned by sig­
block.

SEE ALSO
sigblock(2), sigvec(2)

ICON INTERNATIONAL 1

c

(

SIGSETMASK (2) SYSTEM CALLS

NAME
sigsetmask - set current signal mask

SYNOPSIS
sigsetmask(mask);
int mask;

DESCRIPTION

SIGSETMASK (2)

Sig8etma8k sets the current signal mask (those signals which are blocked from delivery). Sig­
nal i is blocked if the i-th bit in ma8k is a 1.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigblock(2), sigpause(2)

ICON INTERNATIONAL 1

SIGSTACK (2) SYSTEM CALLS

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include <signal.h>
struct sigstack {

caddr_t "..BP;

};
int .. _onstack;

sigstack(ss,oss);
struct sigstack *88, *Oss;

DESCRIPTION

SIGSTACK (2)

Sigstack allows users to define an alternate stack on which signals are to be processed. If s."I is
non-zero, it specifies a signal stack on which to deliver signals and tells the system if the pro­
cess is currently executing on that stack. When a signal's action indicates its handler should
execute on the signal stack (specified with a sigvec(2) call), the system checks to see if the pro­
cess is currently executing on that stack. If the process is not currently executing on the sig­
nal stack, the system arranges a switch to the signal stack for the duration of the signal
handler's execution. If 088 is non-zero, the current signal stack state is returned.

NOTES
Signal stacks are not "grown" automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Sig8tack will fail and the signal stack context will remain unchanged if one of the following
occurs.

[EFAULTJ

SEE ALSO

Either S8 or 088 points to memory which is not a valid part of the process
address space.

sigvec(2), setjmp(3)

ICON INTERNATIONAL 1

c

(

SIGVEC(2)

NAME
sigvec - software signal facilities

SYNOPSIS
#include <signal.h>
struct sigvec {

int (*8vJlandler)0;
int sv-.mask;
int 8v_onstack;

};
8igvec(sig, vec, ovec)
int 8ig;
struct sigvec *Vec, *ovec;

DESCRIPTION

SYSTEM CALLS SIGVEC (2)

The system defines a set of signals that may be delivered to a process. Signal delivery resem­
bles the occurence of a hardware interrupt: the signal is bl.ocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify a handler to
which a signal is delivered, or specify that a signal is to be blocked or ignored. A process may
also specify that a default action is to be taken by the system when a signal occurs. N"or­
mally, signal handlers execute on the current stack of the process. This may be changed, on a
per-handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their
invocation blocked, but other signals may yet occur. A global signal mask defines the set of
signals currently blocked from delivery to a process. The signal mask for a process is initilized
from that of its parent (normally Q). It may be changed with a sigblock(2) or sigsetmask(2)
call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it is delivered to the
process. When a signal is delivered, the current state of the process is saved, a new signal
mask is calculated (as described below), and the signal handler is invoked. The call to the
handler is arranged so that if the signal handling routine returns normally the process will
resume execution in the context from before the signal's delivery. If the process wishes to
resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the
process' signal handler (or until a sigblock or sigsetmask call is made). This mask is formed by
taking the current signal mask, adding the signal to be delivered, and or'ing in the signal
mask associated with the handler to be invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine
and mask to be used when delivering the specified signal. Further, if sv_onstack is 1, the sys­
tem will deliver the signal to the process on a signal stack, specified with sigstack(2). If over is
non-zero, the previous handling information for the signal is returned to the user.

The following is a list of all signals with names as in the include file < signal. h >:
SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction
SIGTRAP 5* trace trap

ICON INTERNATIONAL 1

SIGVEC (2) SYSTEM CAlLS SIGVEC(2)

SIGIOT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19- continue after stop (cannot be blocked)
SIGCHLD 20- child status has changed
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23- i/o is possible on a descriptor (see Jcnt(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))
The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigveccall is made, or an
execve(2) is performed. The default action for a signal may be reinstated by setting
Bv_handler to SIG.J)FLj this default is termination (with a core image for starred signals) /
except for signals marked with - or t. Signals marked with - are discarded if the action is '
SIG.J)FL; signals marked with t cause the process to stop. If Bv_handler is SIG.JGN the sig- "'--
nal is subsequently ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, causing the call to terminate prema­
turely, the call is automatically restarted. In particular this can occur during a read or
write(2) on a slow device (such as a terminal; but not a file) and during a wait(2).

After a Jork(2) or vfork(2) the child inherits all signals, the signal mask, and the signal stack.

Execve(2) resets all caught signals to default action; ignored signals remain ignored; the signal
mask remains the same; the signal stack state is reset.

NOTES
The mask specified in vee is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This is
done silently by the system.

RETURN VALUE
A 0 value indicated that the call succeeded. A -1 return value indicates an error occured and
errno is set to indicated the reason.

ERRORS

2

Sigvee will fail and no new signal handler will be installed if one of the following occurs:

[EFAULTj Either vee or ovee points to memory which is not a valid part of the process
address space.

[EINVALJ Sig is not a valid signal number.

ICON INTERNATIONAL

(

(

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

[EINVALJ

[EINVALJ

An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.

An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO

BUGS

kiH(I), ptra.ce(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2) sigsta.ck(2), sigvec(Z),
setjmp(3), tty(4)

This manual page is confusing.

ICON INTERNATIONAL 3

SOCKET (2) SYSTEM CALLS

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
s == socket(af, type, protocol)
int s, af, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

SOCKET (2)

The af parameter specifies an address format with which addresses specified in later operations
using the socket should be interpreted. These formats are defined in the include file
<sys/socket.h>. The currently understood formats are

AF _UNIX (UNIX path names),
AF JNET (ARPA Internet addresses),
AF ..PUP (Xerox PUP-J Internet addresses)
AF JMPLINK (IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics of communication. - Currently
defined types are:

SOCK-STREAM
SOCK-DGRAM
SOCICRAW
SOCK-SEQPACKET
SOCICRDM

A SOCK-STREAM type provides sequenced, reliable, two-way connection based byte streams
with an out-of-band data transmission mechanism. A SOCILI?GRAM socket supports
datagrams (connectionless, unreliable messages of a fixed (typically small) maximum length).
SOCILRA W sockets provide access to internal network interfaces. The types SOCICRA W,
which is available only to the super-user, and SOCICSEQP ACKET and SOCICRDM, which
are planned, but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type using a given address format. However. it
is possible that many protocols may exist in which case a particular protocol must be specified
in this manner. The protocol number to use is particular to the "communication domain" in
which communication is to take place; see services(3N) and protocols(3N).
Sockets of type SOCK..STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A connec­
tion to another socket is created with a connect(2} call. Once connected, data may be
transferred using read{2} and write(2} calls or some variant of the send(2) and recv(2) calls.
When a session has been completed a close(2) may be performed. Out-of-band data may also
be transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCICSTREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, then the connection is considered
broken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific
code in the global variable errno. The protocols optionally keep sockets "warm" by forcing
transmissions roughly every minute in the absence of other activity. An error is then

ICON INTERNATIONAL 1

(

(

c'

SOCKET (2) SYSTEM CALLS SOCKET(2)

indicated if no response can be elicited on an otherwise idle connection for a extended period
(e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this causes
naive processes, which do not handle the signal, to exit.

SOCI(J)GRAM and SOCK.JtAW sockets allow sending of datagrams to correspondt'nts
named in send(2) calls. It is also possible to receive datagrams at such a socket with recv(2}.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options are defined in
the file <sys/socket.h> and explained below. Setsockopt and getsockopt(2) are used to set and
get options, respectively.

SOJ)EBUG

SO-REUSEADDR
SOJ(EEPALIVE
SOJ)ONTROUTE

turn on recording of
debugging information
allow local address reuse
keep connections alive
do no apply routing on
outgoing messages

SO_LINGER linger on close if data present
SO_DONTLINGER do not linger on close

SO_DEBUG enables debugging in the underlying protocol modules. SO-REUSEADDR indi­
cates the rules used in validating addresses supplied in a bind(2) call should allow reust' of
local addresses. SOJ{EEP ALIVE enables the periodic transmission of messages on a con­
nected socket. Should the connected party fail to respond to these messages, the connt'ction is
considered broken and processes using the socket are notified via a SIGPIPE signal.
SOJ)ONTROUTE indicates that outgoing messages should bypass the standard routing facil­
ities. Instead, messages are directed to the appropriate network interface according to t,he
network portion of the destination address. SO-LINGER and SOJ)ONTLINGER control the
actions taken when unsent messags are queued on socket and a close(2) is performed. If the
socket promises reliable delivery of data and SO-LINGER is set, the system will block the
process on the close attempt until it is able to transmit the data or until it decides it is unable
to deliver the information (a timeout period, termed the linger interval, is specified in tht' set­
sockopt call when SO-LINGER is requested). If SOJ)O~'TLINGER is specified and a close is
issued, the system will process the close in a manner which allows the process to continuf' as
quickly as possible.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS

2

The socket call fails if:

[EAF NOS UP PORTJ The specified address family is not supported in this version of the sys­
tem.

[ESOCKTNOSUPPORTJ
The specified socket type is not supported in this address family.

[EPROTONOSUPPORTJ
The specified protocol is not supported.

The per-process descriptor table is full. [EMFILE]

[ENOBUFSj No buffer space is available. The socket cannot be created.

ICON INTERNATION.-\L

SOCKET (2) SYSTEM CALLS SOCKET (2)

SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recY(2),
select(2), send(2), shutdown(2), socketpair(2}
"A 4.2BSD Interprocess Communication Primer".

BUGS
The use of keepalives is a questionable feature for this layer.

ICON INTERNATIONAL 3

('"

SOCKETP AIR (2) SYSTEM CALLS SOCKETP AIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/80cket.h>
socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The 80cketpair call creates an unnamed pair of connected sockets in the specified domain d, of
the specified type, and using the optionally specified protocol. The descriptors used in
referencing the new sockets are returned in sv[O] and sV[I]. The two sockets are indistinguish­
able.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

{EMFILE] Too many descriptors are in use by this process.

[EAFNOSUPPORTj The specified address family is not supported on this machine.

(EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

IEOPNOSUPPORTj The specified protocol does not support creation of socket pairs.

[EF AULTj The address av does not specify a valid part of the process address
space.

SEE ALSO
read(2), write(2), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

ICON INTERNATIONAL 1

STAT(2)

NAME
stat, lstat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
stat(path, bur)
char *path;
struct stat *bur;
lstat(path, bur)
char *path;
atruct stat *bur;
rstat{rd, buf)
int fd;
struct stat *buf;

DESCRIPTION

SYSTEM CALLS STAT(2)

Stat obtains information about the file path. Read, write or execute permission of the named
file is not required, but all directories listed in the path name leading to the file must be
reachable.

Lstat is like stat except in the case where the named file is a symbolic link, in which case lstat
returns information about the link, while stat returns information about the file the link refer­
ences.

Fstat obtains the same information about an open file referenced by the argument descriptor,
such as would be obtained by an open call.

Buf is a pointer to a stat structure into which information is placed concerning the file. The
contents of the structure pointed to by buf

struct stat {
dev_t sLdevi/* device inode resides on */
ino_t st-ino;/* this inode's number */
u-.Short sLmode;!* protection */
short st-Dlink;!* number or hard links to the file */
short sLuid;/* user-id of owner */
short sLgid;/* group-id of owner */
dev_t sLrdev;/* the device type, for inode that is device */
ofLt st-.Sizej/* total size of file */
time_t sLatimej/* file last access time */
in t sLspare 1;
time_t stJIltime;/* file last modify time */
in t st-.Spare2j
time_t sLctime;/* file last status cha.nge time */
intsLspare3;
long st_blksize;/* optimal blocksize for file system i/o ops */
long st_blocks;/* actual number of blocks allocated */
long st-.Spare4[2];
};

ICON INTERNATIONAL 1

---- - ---------- ----

(

('

STAT(2) SYSTEM CALLS STAT(2)

sLatime

st-IDtime

sLctime

Time when file data was last read or modified. Changed by the following sys­
tem calIs: mknod(2), utimes(2), read(2), and write(2). For reasons of efficiency,
sLatime is not set when a directory is searched, although this would be more
logical.

Time when data was last modified. It is not set by changes of owner, group,
link count, or mode. Changed by the following system calls: mknod(2),
utimes(2), write(2).

Time when file status was last changed. It is set both both by writing and
changing the i-node. Changed by the following system calIs: chmod(2) chown(2),
link(2), mknod(2), unlink(2), utimes(2), write(2).

The status information word sLmode has bits:
#define SJFMT 0170000 /* type of file */
#define SJFDIR 0040000 /* directory */
#define SJFCHR 0020000 /* character special */
#define SJFBLK 0060000 /* block special */
#define SJFREG 0100000 /* regular */
#define S_IFLNK 0120000 /* symbolic link */
#define S_IFSOCK 0140000 /* socket */
#define SJSUID 0004000 /* set user id on execution */
#define SJSGID 0002000 /* set group id on execution */
#define SJSVTX 0001000 /* save swapped text even after use */
#define SJREAD 0000400 /* read permission, owner */
#define S_IWRITE 0000200 /* write permission, owner */
#define SJEXEC 0000100 /* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).

When Id is associated with a pipe, Istat reports an ordinary file with an i-node number, res­
tricted permissions, and a not necessarily meaningful length.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

ERRORS
Stat and Istat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EPERMJ The pathname contains a character with the high-order bit set.

[ENOENT] The pathname was too long.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EFAULTJ Bu/or name points to an invalid address.

Fstal will fail if one or both of the following are true:

[EBADFJ Fildes is not a valid open file descriptor.

[EFAULTJ Bu/points to an invalid address.
[ELOOP] Too many symbolic links were encountered in translating t.he pathname.

2 ICON INTERNATIONAL

STAT(2) SYSTEM CALLS STAT(2)

CAVEAT (~
The fields in the stat structure currently marked sLspare1, sLsparet, and sLspare9 are \:..~/
present in preparation for inodetime stamps expanding to 64 bits. This, however, can break
certain programs which depend on the time stamps being contiguous (in calls to utimes(2)).

SEE ALSO
chmod(2), chown(2), utimes{2}

BUGS
Applying /stat to a socket returns a zero'd buffer.
The list of calls which modify the various fields should be carefully checked with reality .

..
ICON INTERNATIONAL 3

(..

SWAPON(2)

NAME
swapon - specify a swap directory

SYNOPSIS
8wapon(directory)
char *<lirectory;

DESCRIPTION

SYSTEM CALLS SWAPON(2)

Swapon makes the directory directory available to the system for allocation for paging and
swapping.

SEE ALSO
swapon(8)

ICON INTERNATIONAL 1

SYMLINK(2) SYSTEM CALLS

NAME
symlink - make symbolic link to a file

SYNOPSIS
8ymlink(namel, name2)
char *!lamel, *!lame2;

DES CRJP TION

SYMLINK(2)

A symbolic link name2 is created to namel (name2 is the name of the file created, name1 is
the string used in creating the symbolic link). Either name may be an arbitrary path name;
the files need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in ermo and a -I value is returned.

ERRORS
The symbolic link is made unless on or more of the following are true:

[EPERMj Either namel or name2 contains a character with the high-order bit set.

[ENOENTj One of the pathnames specified was too long.

[ENOTDIRj A component of the name2 prefix is not a directory.

[EEXISTj Name2 already exists.

[EACCES] A component of the name2 path prefix denies search permission.

[EROFS] The file name2 would reside on a read-only file system.

[EFAULT] Name10r name2 points outside the process's allocated address space.

[ELOOP] Too may symbolic links were encountered in translating the pathname.

SEE ALSO
link(2), In(I), unlink(2)

ICON INTERNATIONAL 1

(

('

SYNC(2)

NAME
sync - update super-block

SYNOPSIS
syncO

DESCRIPTION

SYSTEM CALLS SYNC (2)

Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block I/O.

Sync should be used by programs which examine a file system, for example Jsck, dj, etc. Sync
is mandatory before a boot.

SEE ALSO
fsync(2), sync(8), update(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

ICON INTERNATIONAL 1

SYSCALL(2) SYSTEM CALLS SYSCALL(2)

NAME
syscall - indirect system call

SYNOPSIS
syseall(number, arg, ...)

DESCRIPTION
S1l8call performs the system call whose assembly language interface has the specified number,
register arguments dO and d1 and further arguments argo

The dO value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, s1/scall returns -1 and sets the external variable errno (see intro(2)).

BUGS
There is no way to simulate system calls such as pipe(2), which return values in register dl.

ICON INTERNATIONAL 1

TRUNCATE (2) SYSTEM CALLS TRUNCATE (2)

NAME
truncate - truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char *path;
int length;
fr,runcate(fd, length)
int Cd, length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most. iellgth
bytes in size. If the file previously was larger than this size, the extra data is lost. With
ftruncate, the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global
variable errno specifies the error.

ERRORS
Truncate succeeds unless:

[EPERM] The pathname contains a character with the high-order bit set.

[ENOENT] The pathname was too long.

[ENOTDIR] A component of the path prefix of path is not a directory.

[ENOENT] The named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EISDIRJ The named file is a directory.

[EROFS] The named file resides on a read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EF AULT] Name points outside the process's allocated address space.

Ftruncate succeeds unless:

[EBADF]

[EINVAL]

The fd is not a valid descriptor.

The fd references a socket, not a file.

SEE ALSO
open(2)

BUGS
Partial blocks discarded as the result of truncation are not zero filled; this can result in holes
in files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

ICON INTERNATIONAL 1

UMASK(2) SYSTEM CALLS

NAME
umask - set file creation mode'mask

SYNOPSIS
oumask = umask(numask}
int oumask, numask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to numask and returns the previous valu(' of
the mask. The low-order 9 bits of numask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2)). This clearing allows each user to restrict
the default access to his files.

The value is initially 022 (write access for owner only). The mask is inherited by child
processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2)

ICON INTERNATIONAL 1

(

c

("

UNLINK (2) SYSTEM CALLS UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink(path)
char *path;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link to
the file, and no process has the file open, then all resources associated with the file a,re
reclaimed. If, however, the file was open in a.ny process, the actua.l resource reclamation is
delayed until it is closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
The unlink succeeds unless:

[EPERMj

[ENOENT]

[ENOTDIR]

[ENOENTj

[EACCES]

[EACCESj

[EPERM]

[EBUSY]

[EROFSJ
[EFAULTj

[ELOOP]

SEE ALSO

The path contains a character with the high-order bit set.

The path name is too long.

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to be
removed.

The named file is a directory and the effective user ID of the process is not
the super-user.

The entry to be unlinked is the mount point for a mounted file system.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

close(2), link(2), rmdir(2)

ICON INTERNATIONAL 1

UTIMES(2) SYSTEM CALLS UTIMES(2)

NAME
utimes - set file times

SYNOPSIS
#include <8ys/time.h>
utimes(ftle, tvp)
char .tile;
struct timeval ~vp[2];

DESCRlPTION
The utimes call uses the "accessed" and "updated" times in that order from the tvp vector to
set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The "inode-changed" time of the
file is set to the current time.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returnt'd and
errno is set to indicate the error.

ERRORS
Utime will fail if one or more of the following are true:

[EPERMj The pathname contained a character with the high-order bit set.

[ENOENT] The pathname was too long.

[ENOENT] The named file does not exist.

[ENOTDIRj A component of the path prefix is not a directory.

[EACCESj A component of the path prefix denies search permission.

[EPERMj The process is not super-user and not the owner of the file.

[EACCESj The effective user ID is not super-user and not the owner of the file and
times is NULL and write access is denied.

[EROFSj The file system containing the file is mounted read-only.

[EFAULTj Tvp points outside the process's allocated address space.

[ELOOPj Too many symbolic links were encountered in translating the pathname.

SEE ALSO
stat{2}

ICON INTERNATIONAL 1

c~

(

"'-/

c

(/

(~

VFORK(2) SYSTEM CALLS VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pid = vtorkO
int pid;

DESCRIPTION
VJork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur­
pose of Jork{2} would have been to create a new system context for an exeeve. VJork diffe-rs
from Jork in that the child borrows the parent's memory and thread of control until a call to
execve(2) or an exit (either by a call to exit(2) or abnormally.) The parent process is
suspended while the child is using its resources.

VJork returns 0 in the child's context and (later) the pid of the child in the parent's context.

VJork can normally be used just like fork. It does not work, however, to return while running
in the childs context from the procedure which called vfork since the eventual return from
vJork would then return to a no longer existent stack frame. Be careful, also, to call _exit
rather than exit if you can't execve, since exit will flush and close standard I/O channels, and
thereby mess up the parent processes standard I/O data structures. (Even with fork it is
wrong to call exit since buffered data would then be flushed twice.)

SEE ALSO
fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemente-d.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes which are children in the middle of a vfork
are never sent SIGTTOU or SIGTTIN signals; rather, output or ioetls are allowed and input
attempts result in an end-of-file indication.

ICON INTERNATIONAL 1

VHANGUP(2) SYSTEM CALLS

NAME
vhangup - virtually "hangup" the current control terminal

SYNOPSIS
vhangupO

DESCRIPTION

VHANGUP(2)

Vhangup is used by the initialization process init(8) (among others) to arrange that users are
given "clean'" terminals at login, by revoking access of the previous users' processes to the
terminal. To effect this, vhangup searches the system tables for references to the control ter­
minal of the invoking process, revoking access permissions on each instance of the terminal
which it finds. Further attempts to access the terminal by the affected processes will yield i/o
errors (EBADF). Finally, a hangup signal (SIGHUP) is sent to the process group of the con­
trol terminal.

SEE ALSO
init (8)

BUGS
Access to the control terminal via / dey /tty is still possible.

This call should be replaced by an automatic mechanism which takes place on process exit.

ICON INTERNATIONAL 1

/

\"---

(-.

(

(---

-'

WAIT (2) SYSTEM CALLS

NAME
wait, wait3 - wait for process to terminate

SYNOPSIS
#include <sys/wait.h>
pid = wait(status)
int pid;
union wait ... tatus;

pid = wait(O)
int pid;

#include <sys/time.h>
#include <sys/resource.h>
pid = wait3(status, options, rusage)
int pid;
union wait "'Status;
int options;
struct rusage *I"usage;

DESCRIPTION

WAIT (2)

Wait causes its caller to delay until a signal is received or one of its child processes terminates.
If any child has died since the last wait, return is immediate, returning the process id and exit
status of one of the terminated children. If there are no children, return is immediate with
the value -1 returned.

On return from a successful wait call, status is nonzero, and the high byte of status ('ontains
the low byte of the argument to exit supplied by the child process; the low byte of status ('on­
tains the termination status of the process. A more precise definition of the status word is
given in <sys/wait.h>.

WaitS provides an alternate interface for programs which must not block when collecting the
status of child processes. The status parameter is defined as above. The options parameter is
used to indicate the call should not block if there are no processes which wish to report status
(WNOHANG), and/or that only children of the current process which are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should have their status reported
(WUNTRACED). If rusage is non-zero, a summary of the resources used by the terminat.ed
process and all its children is returned (this information is currently not available for stopped
processes) .

When the WNOHANG option is specified and no processes wish to report status, tJ.laitS
returns a pid of O. The WNOHANG and WUNTRACED options may be combined by or'ing
the two values.

NOTES
See sigvec(2} for a list of termination statuses (signals); 0 status indicates normal termination.
A special status (0177) is returned for a stopped process which has not terminated and can be
restarted; see ptrace(2). If the 0200 bit of the termination status is set, a core image of the
process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (pro­
cess ID = 1) inherits the children.

ICON INTERNATIONAL 1

WAIT(2) SYSTEM cALLs WAIT(2)

Wait and waitS are automatically restarted when a process receives a signal while awaiting
termination of a child process.

RETURN VALUE
If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and ermo is set to indi­
cate the error.
WaitS returns -1 if there are no children not previously waited for; 0 is returned if
WNOHANG is specified and there are no stopped or exited children.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The ca.lling process has no existing unwaited-for child processes.

[EFAULT] The status or rusage arguments point to a.n illegal address.

SEE ALSO
exit(2)

2 ICON INTERNATION .. \L

(... \
j ;/

~

(
.~j

(

(.

WRITE(2)

NAME
write, writev - write on a file

SYNOPSIS
write(d, bur, nbytes)
int d;
char *bur;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>
writev(d, iov, ioveclen)
int d;
struct iovec *iov;
int ioveclen;

DESCRlPTION

SYSTEM CALLS WRITE (2)

Write attempts to write nbytes of data to the object referenced by the descriptor d from the
buffer pointed to by buf. Writev performs the same action, but gathers the output dat.a from
the iovlen buffers specified by the members of the iovec array: iov[O], iov[lJ, ('tc.

On objects capable of seeking, the write starts at a position given by the pointer associated
with d, see Iseek(2). Upon return from write, the pointer is incremented by the number of
bytes actually written.

Objects that are not capable of se~king always write from the current position. The value of
the pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who "captures" a writable set-user-id file
owned by the super-user.

RETURN VALUE
Upon successful completion the number of bytes actually writen is returned. Otherwise a -1
is returned and errno is set to indicate the error.

ERRORS
Write will fail and the file pointer will remain unchanged if one or more of the following are
true:

[EBADF]

[EPIPE]

[EPIPE]

[EFBIG]

[EFAULT]

SEE ALSO

D is not a valid descriptor open for writing.

An attempt is made to write to a pipe that is not open for reading by any
process.

An attempt is made to write to a socket of type SOCICSTREAM which is
not connected to a peer socket.

An attempt was made to write a file that exceeds the process's file size limit
or the maximum file size.

Part of iovor data to be written to the file points outside the process's allo­
cated address space.

lseek(2), open(2), pipe(2)

ICON INTERNATIONAL 1

COMMENTS

c\ ICON/UXB REFERENCE MANUAL Volume lA PIN 172-022-001

Your comments and suggestions are appreciated and will help us to provide you with the very best
in system and application documentation. Send your comlMnts to the address at the bottom of this
page. Users who respond will be entitled to free updates oCthis manual for one year.

1. How would you rate this manual for COMPLETENESS? (Please Circle)
Excellent Poor

5 ------------- 4 -------------- 3 ---------- 2 ---:----------- 1 ------------- 0

2. Is there any inCormation that you feel should be included or removed?

3. How would you rate this manual for ACCURACY? (Please Circle)
Excellen t Poor

5 ------------- 4 -------------- 3 ------------- 2 -------------- 1 ------------- 0

4. Indicate the page number and nature of any error(s) found in this manual.

(."
j 5. How would you rate this manual for USABILITY? (Please Circle)

('

.'

6.

7.

Excellent' Poor
5 ------------- 4 -------------- 3 ------------- 2 -------------- 1 ------------- 0

Describe any format or packaging problems you have experienced with this manual and/or
binder.

Do you have any general comments or suggestions regarding this publication or future
publications?

Your Name ___ __
Company ___ _

Address ___________________ Phone (-),..-----

City & State Zip Code ----...,..--
Job Function __ _

Type of Equipment Installed: ___________________ -----

Icon Interna.tiona.l, Inc. A MEMBER OF THE SANYO GROUP P.O. Box 340 Orem, UT 84057-0340

\

,172-022-001

