
("')

0
:z
"'Tl
m
::c
m
:z
("')
m
0
:z
-c
> ::c
> . r-
r
m
r-

PROCEEDINGS
OF THE

1976 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING

PROCEEDINGS
OF THE

1976 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING

PHILIP H. ENSLOW JR.
Editor

Papers presented on
August 24-27, 1976

Co-Sponsored by

Department of Electrical and Computer Engineering
WAYNE STATE UNIVERSITY

Detroit, Michigan

and the
25 YEARS OF SERVICE

IEEE Computer Society

In Cooperation with the

8
Association for Computing Machinery

Copyright © 1976
~ The Institute of Electrical and W Electronics Engineers, Inc.

345 East 47th St., NY, NY 10017

Additional copies are available from:
IEEE Computer Society

5855 Naples Plaza, Suite 301
Long Beach, CA 90808

or

IEEE Service Center
445 Hoes Lane

Piscataway, NJ 08854

Manufactured in the U.S.A.

ii

P R E F A C E

This series of conferences on parallel processing has matured into a truly

international event, and I am extremely pleased to have been associated with the

1976 meeting. What started as a very small meeting on a special aspect of paral

lel processing in 1972 has expanded into a major meeting covering every facet of

the subject with contributions from all over the world. The series continues

under the general chairmanship of Professor Yse-yun Feng, and I was honored to

be able to share some of the work of organizing the 1976 International Conference

on Parallel Processing. this year the meeting had the formal support of both the

IEEE Computer Society and the Association for Computing Machinery. This support

is gratefully acknowledged, especially that of the Computer Society which is

handling the ·production and distribution of these Proceedings and that of SIGARCH

for assistance in organizing a session.

All of the papers submitted to this conference were formally reviewed, and

I would like to sincerely thank the 59 individuals who served as referees for the

more than 80 papers submitted. The efforts of these workers, who are identified

at the end of these Proceedings, were essential in organizing a quality meeting.

The workload was heavier this year than ever before, but I believe that you will

agree with me that they did an outstanding job. I would also like to call your

attention to a new feature of this year's meeting and acknowledge the outstanding

efforts of the winners of the awards for the Best Presentation and the Best Paper.

These individuals, identified on the nex·t page, were selected by the best jury

possible, the attendees at the conference.

It has been my pleasure to work on this conference, and I look forward with

high anticipation to the 1977 meeting.

iii

Philip H. ~nslow, Jr.

Program Chairman

SPECIAL
AWARDS

1976
INTERNATIONAL

CONFERENCE
ON

PARALLEL PROCESSING

Best Presentation
Professor David S. Wise

Indiana University

"The Impact of Applicative Programming on Multiprocessing"
by Daniel P. Friedman and David S. Wise.

Best Paper
Professor Jerome Rothstein

Ohio State University

"On the Ultimate Limitations of Parallel Processing"

v

TABLE 0 F CONTENTS

KEYNOTE ADDRESS
Parallel Processing: Commercial Needs, Trends, and Perspectives

Dr. Rob~rt R. Johnson
Burroughs Corporation

SESSION 1 APPLICATIONS: IMAGE PROCESSING
Chairperson: Professor J. Rothstein

Highly Parallel Digitized Geometric Transformations Without Matrix Multiplication

Page

C. F. R. Weiman 1

Enhancement of Computing Power In Multiprocessor Systems For Processing of Digitized
Pictures

K. Vorgrimler 11

Application Of Distributed Processing To The Production Of Digital Terrain D.ata
Dennis E. Moellman and Robert A. Meyer 18

Application Of A Parallel Processing Computer In LACIE
Sherwin Ruben, John Lyon, Rudolf Faiss and Matthew Quinn 24

High-Resolution Image Processing On A Parallel Computer System
W. W. Gaertner, M. P. Patel, S. S. Reddi, C. T. Retter and I. M. Singh 33

An Implementation Of The Hadamard Transform On The Staran Associative Array Processor
Annette J. Krygiel 34

SESSION 2: OPERATING SYSTEMS
Chairperson: Lieutenant Colonel F. J. Hilbing

On The Formal Definition Of Processes
Pamela Zave

Hierarchical Monitors
A. M. Lister and P. J. Sayer

Garbage Collection With Multiple Processes: An Exercise In Parallelism
Leslie Lamport

Hierarchial Properties of Concurrency
G. S. Tjaden

SESSION 3: SYSTEM ARCHITECTURE AND ORGANIZATION I
Chairperson: M. Kesselman

The Flip Network In Staran
Kenneth E. Batcher

Construction Of A Versatile Data Manipulator For Parallel/Associative Processors
W. W. Gaertner, M. P. Patel, c. T. R~tter and I. M. Singh

vii

35

43

50

55

65

72

TABLE OF CONTENTS (CONT'D)

SESSION 4: SCHEDULING
Chairperson: Dr. C. P. Hsieh

Fast Algorithms For Bounding The Performance Of Multiprocessor Systems
Chao-Chih Yang

Two Models Of Task Overlap Within Jobs Of Multiprocessing Multiprogramming
Sfstems

Mamoru Maekawa and Donold L. Boyd

Optimal Scheduling Of Vector Computations In A Reconfigurable Shared
Resource Array Processing System

Alexander Thomasian and Algirdas Avizienis

SESSION 5: SYSTEM PERFORMANCE I
Chairperson: Joe McKay

A Model For A Shared Resource Multiprocessor
Lawrence S. Cheung and Frederic J. Mowle

Performance Analysis Of A Data-Flow Processor
David P. Misunas

An Analytic Approach To Performance Analysis For A Class Of Data Flow
Processors

Susan C. Meyer

On The Evaluation Of Array Computers
R. Hemmersbach and D. Schutt

SESSION 6: RELIABILITY
Chairperson: Captain R. A. Johnson

Error Detection And Recovery In A Data-Flow Computer
David P. Misunas

Reliability Aspects Of The Illiac IV Computer
Iftikhar A. Baqai and Tomas Lang

Computer Architectures For Advanced Air Traffic Control Applications
Andres Zellweger

SESSION 7: APPLICATIONS
Chairperson: Dr. W. W. Gaertner

Distributed Processing For Signal Processor Using The Building Block
Signal Processor

Frank P. Hiner III

Associative-Parallel Applications to Radar Signal Processing
K. L. Schaffer

A Receiver For PCM Coded Digitone And MF Signals Using Associative
Processing

Eugene S. Y. Shew and Jack M. Cotton

viii

Page

73

83

92

93

100

106

116

117

123

132

140

145

154

TABLE OF CONTENTS (CONT'D,)

Radar Data Processing on the Alap
Hubert H. Love

Architecture and Simulation of an Associative Processor Integrated
Circuit

Jackylene Hood, Maitang Mark, and Jack Cotton

Application of Pepe to Real-Time Digital Filtering
D. B. Kimsey, L. E. Hand, and H. T. Nagle, Jr.

SESSION 8: STARAN AND RELATED TOPICS
Chairperson: Oscar Reimann

High Level Language for Associative and Parallel Computation with
Sta ran

R. G. Lange

Analysis of the Awacs Passive Tracking Algorithms on the Radcap
Sta ran

Robert Katz

Automatic Track Initiation Using the Radcap Staran
Edward C. Stanke, II

Concept for a Computer Architecture Research Facility
A. Klayton

A Content-Addressed Memory Designed for Data Base Applications
George A. Anderson and Richard Y. Kain

SESSION 9: PERFORMANCE II
Chairperson: Dr. L. Lamport

Time and Parallel Processor Bounds for Linear Recurrence Systems with
Constant Coefficients

S. C. Chen

On the Ultimate Limitations of Parallel Processing
Jerome Rothstein

SESSION 10: MULTIPLE-MICROPROCESSORS
Chairperson: David Freedman

An Efficient Multiprocessor Architecture
Vincent

Design Considerations in Multi-Minicomputer Performance
Tadaaki Bandoh and Yukio Kawamoto

A Modular Vector Processing Unit
S. R. Ahuja and J. R. Jump

A Shared Memory Technique for Different Microp~ocessors
Ronald L. Krutz and Bob Reynouard

ix

Page

161

168

169

170

177

187

189

191

196

206

213

219

220

221

TABLE OF CONTENTS (CONT'D,)

SESSION 11: FUNDAMENTAL THEORY
Chairperson: Professor H. M. Yamada

Parallel Recognition of Patterns: Insights from Formal Language
Theory

Michael Moshell and Jerome Rothstein

Some Computational and System Theoretic Properties of Regular
Processor Networks

Renato M. Ermann and William I. Grosky

A Proof Method for Cyclic Programs
Nissim Francez and Amir Pnueli

On Determinacy and Equivalence of Parallel Program Schemata
Manila! Daya

SESSION 12: LANGUAGE ISSUES
Chairperson: Professor Roy Zingg

Coordination of Parallel Processes in PL/l
Howard S. Modell, Ronnie G. Ward and Ted M. Sparr

On the Time Required to Parse an Arithmetic Expression for
Parallel Processing

Ross A. Towle and Richard P. Brent

Lau System Software: A High Level Data Driven Language for
Parallel Programming

O. Gelly, et.al

A High Level Language Oriented Multiprocessor
Mario F. de La Guardia and James A. Field

The Impact of Applicative Programming on Multiprocessing
Daniel P. Friedman and David S. Wise

SESSION 13: SYSTEM ARCHITECTURE AND ORGANIZATION II
Chairperson: John Cornell

Single Instruction Stream-Multiple Data Stream Machine
Interconnection Network Design

Howard Jay Siegel

Effectiveness of Some Processor/Memory Interconnections
K. Y. Wen and D. H. Lawrie

Lau System Architecture: A Parallel Data-Driven Processor Based
on Single Assignment

A. Plas, et.al.

Upper Bounds on the Performance of Some Processor-Memory
Interconnections

•· C. Pearce and J. c. Majithia

x

Pa.ge

230

235

246

254

255

256

263

273

283

29 3

303

TABLE OF CONTENTS (CONT'D,)

SESSION 14: SCHEDULING II
Chairperson: Professor David Kuck

Operating System Modelled as a Conglomerate of Interdependent
Activities

T. Fend and C. P. Hsieh

A Scheme for the Parallel Execution of Sequential Programs
C. V. Ramamoorthy and W. H. Leung

On Further Applications of the Hu Algorithm to Scheduling
Problems

Edgar Nett

xi

Page

304

312

317

. I

HIGHLY PARALLEL DIGITIZED GEOMETRIC TRANSFORMATIONS(a)
WITHOUT MATRIX MULTIPLICATION

earl F. R. Weiman
Mathematical and Computing Sciences Dept.

Cld Dominion University
P.O. Box 6173

Norfolk, Virginia 23508

Abstract -- A new, computationally simple,
highly parallel method for performing linear geo
metric transformations on digitized pictures is
presented. Matrix multiplication is avoided by
using a weighting scheme. Grid digitization is
fundamental to the computation rather than being
an undesirable source of error as in conventional
methods. Microprocessor implementation based on
vector parallelism suggests the possibility of
real time animation of grey-scale pictures.
Applications are not restricted to computer
graphics and image processing, however, but are
general to any system in which coordinates and
linearity are involved, e.g., the numerical solu
tion of PDE's. The transformation method is
based on an interpretation of Rothstein's straight
line code as an operator for digitized linear
interpolation rather than as the description of a
geometric figure.

I. Introduction

This paper describes a new, computationally
simple and highly parallel method for performing
affine transformations on digitized pictures and
similar grid-based systems. Geometrically,
affine transformations map parallelograms into
parallelograms and are involved in linear axis
scaling, shearing, and rotation. In picture pro
cessing, these transformations are useful in
achieving picture registration for comparison,
recognition, or mosaicing with other pictures; in
computer graphics successive transformations
yield animation. Ordinarily, an affine transfor
mation is applied by multiplying all point
coordinate tuples by a constant matrix. In trans
forming grey-scale pictures the original and
transformed digitization grids generate 2-D moire
patterns of holes which must be filled by smooth
ing, thereby destroying information [l]. In the
method presented here, matrices are not used and
no operations more complex than addition of
integers are needed. Grid digitization of the
picture is fundamentally involved in the computa
tion rather than being an undesirable source of
error. The method is most suitable for parallel
implementation on vector processors; real-time
animation of arbitrarily rich gray-level pictures
is straightforward using present technology,

(a)Research partly supported under ONR grant
N00014-75-C-0571. Computation partly supported
by ERDA under contract E (11-1) - 3077. Both at
Courant Institute, New York University while
author was Associate Research Scientist in
Computer Science Department.

1

Applications are not restricted to computer
graphics and image processing but general to any
system in which coordinates and linearity are
involved, for example in the numerical solution
of partial differential equations. The method is
based on an interpretation of Rothstein's digi
tized straight line code [2] as a rule or opera
tor for digitized linear interpolation rather
than as representing a geometric entity.

II. Rothstein's Code for Digitized
Straight Lines

Rothstein's code is a binary sequence, each
of whose digits corresponds to the nearest
neighbor configuration of a grid cell crossed by
a straight line; 0 corresponds to a cell whose
neighbors on opposite sides are crossed by the
line and 1 to a cell whose neighbors are crossed
on adjacent sides (see figure 1). In the latter
case the next cell is ignored, avoiding redun
dancy and yielding one code digit per grid column
(grid row for slopes whose absolute values exceed
unity). For a line of slope p/q where 0 < p-< q
are integers with no common factors, the code-has
period q with p l's per period. The digit
sequence can be simply generated without solving
the equation of the straight line at intersections
with grid parallels by viewing the line between
(O,O) and {q,p) as divided into pq equal segments
and noticing that a digit occurs once for each
interval of p such segments (i.e., the distance
between two successive grid verticals). That
digit is 1 if the interval in question also
happens to contain the termination of an interval
of q such segments (i.e., the line crosses a grid
horizontal); otherwise, the digit is o. This can
be expressed in hardware (figure 2a) by synchro
nizing to the same clock, two cyclic binary shift
registers of lengths p and q·respectively, detect
ing end-around shifts of a single bit in each to
determine code digits. A faster method using
more hardware consists of successively adding p
to a modulo q counter and detecting values less
than p to generate code l's (figure 2b). The
latter can also be expressed as a generating
function:

f .., e21Ii(p/q)n

The nth code digit is 1 for Arg(f) < 21I(p/q) and
0 otherwise.

III. Digitized Affine Transformations

A. Axis Scaling. The geometry of figure 1
shows that the code comprises the most homogeneous

possible distribution of p 1' s among q digits.
This suggests scaling the x-axis of a gray-scale
picture by a ratio of q to p by distributing the
p columns of the original pictu~e among q of the
transformed picture using the same homogeneous
distribution. This is a digitized approximation
to the affine transformation

(qo/p
0
1)= (x,y) (x·q/p,y) ,

subject to the constraint that the picture grid
cannot change. Shrinking the picture along the
x-axis (replace q/p with p/q above) similarly
corresponds to selecting p columns from q of the
original picture according to the same homogeneous
distribution. Figure 3 illustrates this technique
with the corresponding code written above or below
appropriate columns; the number within each cell
represents a gray level. Unfortunately, in the
case of expansion, empty "seams" are introduced
and in contraction, columns are deleted, Such
artifacts could be reduced by spatial smoothing,
an undesirable solution not only because informa
tion is lost but also because gap geometry may
"moire" with picture features. This strong
dependence on the relative positions of the grid
and picture violates intuitions about picture
invariance under translation,

Looking again at figure 2, note that chang
ing the relative phases of the shift registers
permutes the resulting code digits cyclically but
does not change the average density of code l's
nor the homogeneity of their distribution. ·· Thus,
starting the code at any position other than when
both registers are at the zero position yields a
column selection rule equally as good in terms of
homogeneity. Averaging the gray-levels
resulting from all cyclic permutations of the
column selectioii""Code therefore averages gap posi
tions over all columns,eliminating discontinui
ties. No parts of the picture are selectively
altered because all cells are represented. Figure
4 illustrates this averaging process for a ratio
of 4/3.

Though the averaging process just described
satisfies informational intuitions, it must be
proven geometrically correct. That is, the
resulting grey-scale picture must be the same as
would have resulted from optically scaling the
original picture and then redigitizing. The
proof requires some results from the geometry of
numbers beyond the scope of this paper but c0vered
in detail in [3]. The outline of the proof fol- ·
lows. Stretching a picture in the continuous
(non-digitized) case by the factor q/p can be
viewed as a perspectivity through a point at
infinity which projects p consecutive originally
unit width columns of the original picture onto q
consecutive unit width columns of the transformed
picture; the code for p/q is a description of
where column boundaries fall in the image, Each
of the p original columns spreads into several of
the q columns; the relative contribution of each
original column to each new column is proportional
to the relative area of the stretched image of the

2

former ~ccupying · the new column in question. Now
consider figure l as a cross-section of the
columns in the obvious sense. Relative area .. in
the preceding sentence becomes relative length
under this interpretation. These lengths could
be measured by stepping al,ong the q-cells .l/p
units at a time counting steps and observing when
the image o~ a p-cell boundary is crossed. Since
step lengths are equal, each unit d:tstance' is
equivalent to a count. of p; ·lf this stepping pro
ceeds from each of the p..,cell boundary images, q
steps are both necessary and suff:l.cient to count
the lengths. But this yields l>recisely t~e same
result as translating a· lfoe'ofslope p/q verti"
cally by one grid cell and noting the number of ·
times a 1 appears in each column. Since l's
change position only when the line crosses lattice
points, and betWeen such la~tice points the code
must be identical to the original, the result of
translation must be a sequence of cyclic shifts
in the code. That this sequence consists· pre
cisely of all possible shifts is also proved in
[3].

Visual corroboration of the averaging process
is illustrated in figure Sa, A mathematically
defined teat pattern was stretched horizontally
using the code averaging alg_orithm just .described.
The stretch ratio is approximately the ratio of
row to coluun spacing on the printer and was cho
sen to correct this distortion caused by errone
ously assuming equal spacing, NOte that edges in
the figure appear to have slopes ±1 but a de
tailed examination reveals a boundary path related
to the straight line code, Figure 6 was derived
from a digitized photograph of a cat. Line code
stretching algorithms applied horizontally and
vertically yielded figure 7, illustrating ... the
smoothness of the process even in delicately
shaded retions,

B. Shearing Transformations. Combinations
of horizontal and vertical stretching map rectan
gles into rectangles without altering the direc
tion of edges, Shearing transformations, charac-·
terized by matrices of the form

"' .

:) (horizontal) and { :
o)T

(vertical)
1

map rectangles into parallelogra11111, altering the
direction of one set of parallel edges. They are
of interest here not only because they can be
easily carried out using an averaging method simi
lar to that just described for axis scaling, but
also because appropriate combinations of shearing
and scaling yield the entire group of affine
transformations.

Using the same reasoning as for scaling, the
code for p/q can be regarded as a rule for shear
ing the grid upward by sliding a colUllll and those
to its right upward one unit whenever a code digit
1 appears under a colUlll\, Just as in scaling, the
jagged steps are removed by averaging over all
possible cyclic shifts in the code position.
For horizontal shearing, the word "column" should
be replaced by ''row", and "under" by "next to"
FigureSb illustrates the application of. a shearing,. ··

I

I-

transformation effected by digitized averaging,
The transformations just described which

average gray levels according to rules derived
from the straight line code are henceforth
referred to as digitized affine transformations
(DATs) to distinguish them from the ordinary con
tinuous affine transformations (t'lA.Ts). The way
DATs were presented, the computation involves
moving columns of the original picture to several
different positions in the grid of its transformed
image. This computation can be rearranged by re
garding each column of the image picture as having
contributions from several columns of the origi
nal. The weight of each contribution is simply
the fraction of the time the code digit 1, corres
ponding to a column in the original, spends in the
column of the image when the code is cyclically
permuted. This weighting scheme resembles a
digitized version of a filtering or smoothing con
volution• An important difference is that here
the weighting coefficients are slightly different
for each column in a period of code. Howeve.r,
they need only be calculated once for the entire
picture by counting code l's in columns through
out one cyclic permutation of the code. Viewing
the computation as a weighting scheme or "pseudo-·
convolution" has important consequences for paral
lel implementation as will be discussed in the
overview. The code has excellent approximation
properties related to continued fractions [2],
[3] which permit the use of shorter periods than
might be expected to yield accurate results. In
particular, accuracy to l/q ~ of a grid unit is
achieved by codes of period q. Shears and
stretches by irrational amounts may thus be
approximated to any desired accuracy,

C. Rotation Through Arbitrary Angles.
Rotation of a digitized picture through an arbi
trary angle is computationally complex using con
ventional matrix multiplication methods [l]. It
is nevertheless important for several reasons.
At least one direction which is invariant under
each DAT described above must be parallel to a
grid axis. Shearing and stretching in an arbi
trary direction cannot be accomplished by apply
ing such transformations. However, if composition
with an arbitrary rotation were possible, this
directional constraint would be relaxed. Then,
choice of coordinate directions is arbitrary, a
necessary property of any general geometric system
[4]. In picture processing applications, rotation
is vital to picture registration; in computer
graphics it is important for non-trivial anima
tion. Fortunately, arbitrary rotation in the con
tinuous case can be decomposed into shearing and
scaling CAT's with the same special orientations
as the DAT's presented above. Replacing these
CAT's with the corresponding DAT's yields arbi
trary rotation of digitized pictures using DAT's
only. The accuracy of the result is as good as
that of the shearing and scaling DAT's. Details
follow.

Consider a unit square with one corner at the
origin and a side in the fourth· quadrant making an
internal angle -0 with the x-axis. (Refer to
figure 8 a) • Applying the shear

3

yields a parallelogram with one pair of sides
parallel to the x-axis (figure 8 b), Next apply
ing

(_'.,nec • .e :)

yields a rectangle with pairs of sides parallel to
x and y axes (figure 8 c) • Applying the scaling
transformations

(0
1 0)

cose
and

then yields a unit square (figure 8 d). Clearly
the result is a rotation by 0 degrees since the
product of the transformations is

(
cose

-sin0

sin0)

cos0

The digitized versions of these transforma
tions can be applied by using the codes corres
ponding to the non-integer quantities in the
matrices above, approximated to any desired accur
acy. At first sight, this approximation appears
to involve several trigonometric calculations, but
if an angle is specified by giving the direction
(q,p) of the 1:1..ne making tha.t angle with the x
axis, no trigonometric calculations are necessary.
The tangent is p/q and the code can be generated
directly using the schemes illustrated in figures
2 a and b. The sine and cosine can be derived from
pythagorean relationships with /p 2 + q 2 • Taking
reciprocals requires no calculation; one simply
interchanges stretching and shrinking. Though
these calculations are more complex than addition,
they involve small integers and need only be per
formed once, i.e., to generate four codes, regard
less of the number of cells in the grid.

IV. Overview of Geometric and Complexity
Considerations in.a Parallel

Computation Schema

Geometrically, DAT's appear to be a valid
alternative to matrix multiplication for applying
linear transformations. In sequential implementa
tions such as those which generated the illustra
tions just presented, however, each matrix opera
tion is replaced by several additions, somewhat
offsetting the possible advantage of algorithm
simpl:l.city by increasing computation time. The
following vector oriented parallel computation
schema exploits DAT characteristics to permit
speedups by several orders of magnitude. 'Dle
design depends on the fact that all DAT's are
characterized by the summation of grey values from
cells in a restricted neighborhood which is

oriented in the same direction (either horizontal
or vertical) for all cells on the grid, Thus,
computations for cells which are neighbors per
pendicular to this direction can be carried out
simultaneously without interaction. Consider the
example the stretching process illustrated in
figure 4. Sunnnation neighborhoods are horizon
tally oriented; e.g., the grey value of any cell
in column three in the new picture is the average
of values from columns three and two (the latter
twice) in the original picture. This same weight
ing rule could be applied to all cells in that
column in a single step. The design thus calls
for a vector of identical accumulators, each vec
tor component representing a cell in the column of
the new picture. Computational capabilities
required include addressing a small number of
neighboring vectors and adding them up (preserving
vector component independence). As the vector of
accumulators looks at successive columns, neigh
borhood shape (weighting rule) changes according
to the straight line code for the stretching
ratio. For example, in figure 4 column four of
the new picture receives contributions only from
column three of the original picture.

A reasonably high resolution picture consist
ing of 1000 x 1000 pixels would require a pro
cessing vector of length 1000. Factors vitally
important to practical LSI implementation are
identical structure and weighting rules for each
vector component (redundancy) and complete avoid
ance of thousand-fold construction of either
multiplication hardware or interconnection between
components [5], The thousand-fold speedup
afforded by vector organization could reduce
computation time from a half-minute per frame
(i,e., thirty microseconds, per pixel) to thirty
milliseconds, well within the range of real-time
animation of arbitrarily rich grey-scale pictures
consisting of a million pixels. Such speeds are
inconceivable with current computer graphics
techniques which matrix multiply coordinate lists.
Similar transformation speeds are essential (and
achievable) for real-time robot visual perception.
The weighted averaging capabilities of this design
can also be used to implement smoothing, edge
detection and enhancement, and other conventional
local picture processing operations at high speed,

A variety of potential applications ftlr
broader than computer graphics and image process
ing are possible because DAT's are the basis of a
new kind of computational geometry which converges
to affine Euclidean geometry. This digitized
geometry is well matched to the discrete nature of
digital computation and should be useful in many
areas of applied mathematics. For example, in the
numerical solution of partial differential equa
tions by relaxation on uniform grids, linear
changes of coordinates can be rapidly effected
without redefining the grid. This might be useful
when boundary geometry or wave propagation direc
tions are approximated by straight line paths mak
ing arbitrary angles with grid parallels. Many
promising theoretical areas of investigation are
suggested as well. These include extension to
digitized projective geometry, curvilinear coordi
nates, higher dimensional spaces, and many other
areas traditionally described in terms of

4

continuity. There are some fundamental differ
ences between the continuous approach and the
digitized approach presented here. One example is
the use of lines (digitized) rather than points as
the fundamental objects manipulated by computa
tion. Though duality between these elements is
well known [4] applications conventionally involve
point manipulation. With DAT's,the line codes
correspond to scan paths in arbitrary directions
whose discontinuities resulting from digitization
are smoothed by averaging (pseudo-convolution).
The quantized geometry of the grid yields an
"uncertainty principle" which corresponds to the
inability to localize points in any neighborhood
smaller than a grid cell, an inherent constant of
the system. While this would be intolerable in
continuous geometry, it simplifies the computa
tions of our "transformational" geometry using
DAT's.

Acknowledgements

Professor Rothstein embodied elements of
geometry, number theory, approximation theory,
information theory, ergodic theory, and theory of
formal languages in a clear notation in the design
of the straight line code. The DAT application
presented here is one of many possible applica
tions. I am deeply indebted to him for the code
and exploration of related worlds during and after
my Ph.D. dissertation research under him.

I am also indebted to Bernard Shunfenthal who
as a student of mine at New York University con
verted my conjectures about DAT's into computer
programs for generating and transforming grey
scale overprint pictures. These not only visually
confirmed the feasibility of the method but gave
me a great deal of intellectual and aesthetic
satisfaction. Some of the products of his work
are shown in the figures illustrating transforma
tions of test patterns. The cat is an overprint
version of a digitized picture of Sam Harbison's
cat "Schopenhauer". The deck was provided to me
by Leonard Vanek, formerly associated with the
Princeton picture processing group but now at
The Courant Institute. The blow-up of the eye was
executed by Hartsell Teagle at Old Dominion
University.

References

[l] E. G. Johnston and A. Rosenfeld, "Geometri
cal Operations on Digitized Pictures" in
B. Lipkin and A. Rosenfeld (eds.), Picture
Processing and Psychopictorics, Academic
Press, New York, (1970), pp. 217-240.

[2] J. Rothstein and C. F. R. Weiman, "Parallel
and Sequential Specification of a Context
Sensitive Language for Straight Lines on
Grids", Computer Graphics and Image
Processing, Vol. 5, (March, 1976), pp. 106-
124.

[3] C. F. R. Weiman and J, Rothstein, Pattern
Recognition by Retina-Like Devices, Computer
and Information Science Dept., Ohio State
University, OSU-CISRC-TR-72-8,

(AD 214 665/2), (1972), 154 pp.

[4] A. Tuller, A Modern Introduction to Geome
tries, van Nostrand, New York, 1967, 2D1pp.

[5] B. R. Bergerson, "The Viability of Multi
microprocessor Systems", Computer, (IEEE
Computer Society), Vol. 9, (January, 1976),
pp. 26-30.

[6]

[7]

C. F. R. Weiman and J. Rothstein, "Poly
automaton Design for Recognizing Certain L
System Languages by Parallel Computation",
in Proceedings of 1975 Sagamore Computer
Conference on Parallel Processing, Syra
cuse University and IEEE Computer Society
(1975), pp. 168-170.

E. Artzy, J. A. Hinds, and H. J. Saal, "A
Fast Division Technique for Constant Divi
sors", Comm. of the ACM, Vol. 19, (February
1976), pp. 98-101.

0 0 1 0 1

Figure 1: Rothstein's Code for Slope 2/5.

Signal for
"Digit = l"

~ Digit Ttigget

a) Synchronized Cyclic Shift Registers

p=2 ~
3 ~---'-

4

b) Modulo q Counter

Figure 2: Code Generating Hardware

5

5=q=O(mod q)

I
i

a) Original Picture

~(0 1 1 1) 0

I
--... ---t-·

i
aJ a

~ .12112
..i

l : i 12 --t---.--+-
-l---i--L- _12

-i-J~'---~ 12
\ 4 12 12

4 !·

12

12

8 8 12 --
4 12 12

4

...._____::, (0 1 1 1)0 1 1

b) Shrunk Version c) Stretched Version

Figure 3: Digitized.Stretching and Shrinking

I '

•~+---+--->---·· 1--+----12
12

pl
1--

8 8 12

12 4 12 ··-.....,__ -
4 !

0111011

i 112
···-+---+-+-+-----""-' --

1 !12
--! -4-1--+-~=+--

8 ·12

4 2 12T
---+--1-1-+--+--+- ---- 6 6
4 I 6 6

2 6 6 8 6
I 112 ···- ---f--i-

'12

2 s 9 9 3

3 1 .. -a- 8 12
-

4 12 12
···~·

4
1 1 01 1 "T \J'

Fipre 4: Picture Stretching by Averaging
I 12

¢2 ··-
8 8 12

+--· 4 12 12 -- -
4
1011101

6

•••• .' l' : \, , .. ', .. ·••·
•i~.i'. :···· .··. '.. ·:~· .•.. :::a:. _· · .. ~. ,,. ·· :·;··--·· •, • •.. : - .[... ' .•. ,, ··.' ,

.,,,, •• ~ • • ' • • • • ! ., ••• ,,,ii· .

... . ••• , lr

... ,.,,.. < . ••;t .• ' ' ·~~
.. .. · '; .

'·
' ;,

' Ill -
,•; '111

······-·· "' •.. ·· •••••••••. ' . .ii
•• ' ' ' •• lr .•. ·..••• ' ,,
..... ······lr

Figure Sa: Illustration of Digitized Stretching

r.~~~~u•~••Bamna1ao~aoe1s9a
o~~R0~aam~~~~fi2ms8Q~o~auga
ld~A1&1ma~~a~o;aoacl~Ma~iaa
~~noa~~~~0~~~~o~ac~~~c~eoa
~e~a~OIDOQ~aaa~~6~filD~AISd~
~omaea~~o~aanamnnDngmG~a~~
~~~a;1~••~an1161~nau~s~Q~~ 
a~~~~5~'~0~J~~RA~~Bl~!D9an 
.~sm~uq1a~~n01~DMe~~aa~~hlQ 
~ne1Q~n11nmn~J~~~n~~ume~'o 
!rn& r:1 !JJ!'lrHHH.! :HJ t10tl ;.Jn'.• j) Ji'il ~l ~: ;J~ 
~~@n~8u1ae~~Doauuoaj1•Joa1 
~IBdJ~d1001~auan00mro~~~j~ 
~a~~aaaw1u11~amat1u1QmU•oa 
~"~~n~~~Q~Dl90ij~•~nM~O~~Qft 

:I( 

OHi 
=1111111 

011111111 
:lfllHllHll 

OlllllHHDHI 
=Wlllllllllllllll 

0110111111011111811 
:WlllllllldllOllllBlll 

01a1111eeana11n1111aa111 
MlllllllllllllllOftdlllllll 
lllUSGllllAllDllDAISIDDlll 
11umn1111an11mtlt31N111111 
aa11aa111a1no1111111111a11 
111Dli19DQBlllBll919DG8&11 
118DdOUll!BBlllOaillll9010 
llUIS881Di081D8iDllDllM• 
80US310811UilDll"DiAO 
O~Uftl§ll8i9191DIBH= 
Ud~1um~1111111ao 
IHHt'llHIHl3DM= 
HlilHHHIO 
IH!llHillif• 
111HHO 
QtUf :s 
0 

Figure Sb: Illustration of Digitized Shearing 

7 



Figure 6: Digitized Cat 

8 



~.~.~~~.~.~~~·i·~-~llX~•Ww~•~wW~MMMWWt••~···~···•www1w1tM0•• ···~0~•···········~··••P0llWWMWllW~~MWWllWllllllWllllNlllWW 
1111-~MM•••••••••••1•11•~a111wwwww~µww•~••••••••MltMw•w••~0••••1•Se~a•w•••••••••M••••~P••W•~~•••M~w•~WWWMM•••••••1w1••1Ww 
ill~8•1¥1•www•A¥1111•~w•~•••4W~w11wwwwt8w~wwww~1~11MWMWW•w0••1• 1a0~e~•w111e11••~••••~0•1wwww11•~weewwww•1•111111ww1~11ww 
ilt•••••wwww~w~·••awwww•~WM~~M~MM~MM~W~~ww~•·-·····••W~WWWM•••····~~81WWl•""'''w~···~PMl81l~WW~··········•ww1111•W~l¥W•WW 
i,.~.~8~WWWW•~·········~~W~M~~MMMM~MH~M~~~~•iA••·····~··•WM••·····~M••~~··""'··~"·••SP~•Q11~ww~·······••llW~•••••MMllWN•• 
~8~WWWW~WWWAAl•K••~~·•w~www~MMWMM~~0~0~M~W~W&A•A••••~W•IWM••·····~M8iWWlll-lllW:,••·•~M-tWW~~WWWW¥1Jlfll•W~w•••••WNW~~w•• 
~·~-~WWWWMWW~~-~·••ew~ww~a~WWWW~MMWW~MM~~~~wwe•e•t-Q¥fll~M0••· •• ~w11•••••w-w1w~n···~MllWWWWW~www1•~···~Wll*WWWWWll81l~W 
~ ••• ~.~W~Mwwwa~MMM••••ww•~••WM~HHHMMMH~MM~MWWA••••••AAAQW~~3••·a·~~MllMllMWIMMWM~5S0MMMMllllM~WllMAIM11111111lWWllMM•i•• 
~.;,1,•wwMWWW~···~·~·-w~•·••WM~~~0~APe~~~~~wwe111•••wwwww~~0·····~M&••••W•l•MIWM~~~~ww~~··8IM~WIA8W~llJll~WllW•W~~a~w~•· 
~.~.~··w~www~,~-·~1111~~WWWMMMM~~~~0~e~0~~0WW8WW88•8WWMU00••·····~~wtMMlll•~·'~MM~~~····~~WW9Mt~~Mw•1••8'~~-·~l~Wll~W~~w 
IMMIM•t•~w•~A~~•AAAM••••~WWWMM~MMHHMMM~M~~W~A•M•~•••••MAtMMH0S••••SSMANIMWIWlliWM~MM~eeaew~wwea9MMM~IMllll~W8M11••11e~~MM 
11••··~~w~e~··~a•·~~--·~-WW~WMWWWWWWW~~w~·········~wwwwww•AWMA0•••••MW~·······••wwww~··,·~~WW8iWMMWWlill~WWW~''llllllW~MM 
111111e•e~8-~WWA8~811¥1~~-·w~w~ww~ww•••••WNIRM"RIWl••••MMWMllW1~~000MWlll118~Mll•~@w~•···~8•1A9WM~Wwwwwwt•~wwwt81t•w~wwww 
~····*•e••A~WWAA~A•*•••~AMA•~•·8Qa~M•W••···········~····••MMW••~~~~M~~M•••••••••w•&illlJJlllM8WMHHMM~WWi8~MMMi1$81W~w~HM 
;11111www~A~www~1~••~¥-~ij~~~aqea~~~·••••R•llM•~~•1111MMl111•11111we•w~••wwww1111i••~f11i1ww~~•&~~~000Mwwww~MM~~w~~~wwwwMM 
1i111~e~e•e•1•111•1~t11•••1111181•ww11ww111R1$wM~wwa••••••M••••••••~~111111•wwe•~•&1111w-11•~11ew~M~MMMw~w~0~0wwwww11wwMM 
llllllMWMWMWJlllllJ11¥11•Wllll1111WWlllWl•B•&~H••HW~MWRllllRl•MllllllllllJ89W~~·~·~MlllMWIBNWIMIW~WWMMMMWWM~HH~WW~W88~MHH 
il111•1•1~11x11••••~~11w~www~w~ww~••-l••11w1w~•1 •~WA~~MHllW~WAIW•llRIW~••~wwwwwww~filJJJW~lw1w1&•~w1e~~MMww~w~MWW~WWt&MM00 
lffiit•l ¥ 1l11¥lililllI¥1 ~ftA~Jll WV I Wiii i • tUIWlllW I¥ 111 lllHW .-1 ~"'~••• M,1HtllilW 111 MGlll JI Mii I Miil IR" 1111111 i wt.-WWM"1M ~'lo' MltJ IN #IWl"l!lfil •V: loll WW M~M Wioi'W WW iliW W\&: WWWW WtHll00 
~·~········••••M•M•~aa•M•MIJ9AW~~M~··•iM•~~0~···~~-··············•·w•~•1•MM~IMMH"H~~-•WMllMIMM•8fil~WM~MWMM~WWWWWiWWMM0000 
~.~,~8A1¥1••··~·~A~8•ttw~~··~WMM~AAMl••••ww~~~··•M@••~M-~R············~··•llllWM~··~0w~•••••Ml¥8989W~~WWM~WWWWW~IWWMM0~0~ 
~············••ww~~~WWA~~MWM~•·••••8~1WR1WM•••••~8MIWHllllllllllllllllllllJ@•IK8AWA•••••MWM~•w•x•e~~ww~wwww~www~W~WWMM~00M 
••RMlll•M~M·-··~w~~~HMH~0HH~~~S•••1sMWMMllWH•••••M9MllHl••••••••••••••••M•~tM~8-M~Sl1••0H•••••••eewwwwwwwwwwwwwwwwwMMHHM~ 
~·~··••@•·~~A~aw~~A~~0P~00M00~··· 0~1w"vw~·····~w•••············••M•••t•~w8M8IWW~· ,r••llllWiJ8WWWWWWW~WWWWW~WWW~WhMMWW 
~···~··~···~•ww~ww~~~-p~~0UMM~~··1~···~•w•~·····~0••················•wWWWWWW88IRIW1 JIW8WW~••ewwww~MM~WWWWW~MWWWWWM~WW 
~··w•••••••e•~w~~M~00S~~~00~H0~••11••~·••••s•••S00•••··············,·~W~MWWW,lllWM•• ··M~•••1•e~e·~~MMWWWWWWMMwW~WWMMWW 
~·········~~www~~~~0~0~0~0•0~~A••1,,,~M-NIW~•·•~A~•~·············•a,•wWMMWWW8Wllll•1 0011••••888WWWWWWWW~WMMWWWWWWWWW 
fll1111Wlll1¥8WWWWW~M~M~~WW,,.00•••• ·····~··•M••••0MW~IJllWlllllllll~~W000~MMW8~1•••~· 00t111@BWWWW~w~••ww~Wl'IW~~~w~wwww 
1i11111•• ¥Mtfllfl811t8WWMM'ofM~MWW~H0S••• • , I w811w1ws., •SHMtlRMWlllllllMl'f\1'~0S00~M8111111M• S018MM&twwwwwwwilMM'..iwwwwwww WWW MM 
lJ 111t1• • • •' A•888 ... w WWloilWWW\liWWW MA0••• 0"' •• , ... ,w. • • lil0~8••••••• •• 11wwei0 0•0"'!>1 w ••••• II W• •0WWIJ888 w ~ w W~WWWWMMio/W l'IW\tf WWW WWW MM 
11111r1111•~~-¥1••,•8WWW~WWWAW~W0••••• •0MIMW8"'•••••M~••~•ll~M~~·s•••00911"1111H~M· ••WWft••~WM~WWM~WWMMMM~~MMWWWWWMM 
lil111JI10fMllt4A WI I 16t11At11a8A8thflj •f'I M~Hl-'a:s I I I •WM 101 llllW HS••SS etHW M '-'HH 0~S•SS 0H88 II IMlll Ill M1"· • ••••\II \Ii •hl&MMHHM WMM WWMM "'MMf.I M MW WWWW HH 
~11111¥4~8~~~·¥••~·8~9¥1¥11•~*-~www~e·· ••MWl111•~·············••0~MW~~·······•RIW• ,, •• ~WWWWM000MW~W~WWMMMMMWWWWWWW00 
11•••·~~wwe••······~4•4••••····~··•1e•~M0A0••1t•0M8WMIMllWWM~MM~88llM•••••111111111l8••11••MM0~000~~300eWM000000MMM~W~M0• 
IVllM*l~fil~&~ll~W••~~~t4•~1111••Mllllllil~M~~S•••mS0SSW~WW~MMWW88MMlllMMlllMMMIMNM~Jl"•*••SSMM00000~0~0H~H00SSSS~HHHMHHS• 
1i11e .. eteAta' ¥8•'tia't~ t•a•tf 1I¥1111111111•1<11111111"1I., •• ¥1>.'M't'• ••• ••910p.!1'1Witl¥ 1¥1 I lllWllW W000MIW !Ill ••• 0• 00WM0 0Cil 091~0000MM000••a• •0000~0•• 
••wwww~WWW\ll w ~WW ww•ew WW WA8l.f I I WiOI illillW 111101101j(101ill¥Illl1 &Ii. 0"'1&'!• I• w111a1•000PW\'iW MG!l000~00N"0~0000•~a•••=•===·· 
~WWMM~~www~w~~~~•aaea~MMll~Ml11¥¥1•¥•~W1¥WM¥¥¥¥¥~•&8WM••••1•· l•MWtM•¥~M~HHliWMHHH000HAP~H~0SS•~c&a•~==···· 
PMWWHMHMWWWW~W~MMWil8¥••i•••e8~8¥ll¥ll•W~M~~WWWM~llMMXl@~WM••1• 1•0~W•••~tww~••wM~M~000M0000e0sa•s=c••••····· 
~00••••0~0~~p.!M~MM~W~ti~&8t88¥l¥11¥¥•MW~WWil.WJ~~¥¥¥~M~llll81WMf~a•• ••••0~W·~~•M•Klit898W~WM~0000••••••••••••c•••• 
~09SSS5S~0~MH~~~~M~Wae~.~i~9~M~~-~··•ii¥i1¥¥W,~W¥1~~~,1~¥lA81W~HHSS11,,•-·•••S~H~&•IWW¥111M9P8~MMHH0005••··············· 
JN00~~00•~000~MWWwwwww~••wwwa~•·R•~811¥1¥1lJ¥~~WWW~MW¥¥¥1¥¥A481li.W~~M••••······~0~~WilW~lllll8•WW~M0~riP0••••·············· 
™0ft0000a~0~a~Mw~wwwwwwww••~PA$a8•i1111••~1i1ww~w•~ww1•»M1•11•1•ewM~re•••••••~00Mwwa11•w~1~••M000~A00••• •• ·•••••• 1••• 
fH0~000~HHHHH~MWWWWi~atww9et•••Wij~MMWlllMJJlllll111¥lWMll411Jlll~•wwMM0S••SS•0HH~•8••••••M•&wH~00000S•••··•1•1•lll&, ••••• 
™0~~0~~MMMMM~WW~WW~l-~WWW~i8¥1¥~•,~e~····~~IX¥¥¥111~48¥¥1lW~XIVMli8WWMM000~•0M~~······•lti~M0000000••1,,,,,111• •11111•• 
NW~0000~MM~~MMMMMWWW•J~AW~ww•111111i•••w~~~·••¥111•w•~····~1•1•1•••~w~~WWMMWW81811W~•·••w~00•••······•••t111111 •• ,11 I• 
~~~M~HHMHffijMMM~M~WWWMMNM•~MM~i8MM11••••••1•11111•1~8~M~•••W•••~MWIW8i~WWWMMWIMNMJJM~ll88M~Sa•··············1t11,,,11 •• 
~~WWWM~M~00~~WWWWWWW~81¥~W~0AMW8AIJl1111¥11fllllllllllWWIWWWfl¥8tll88WW~WWWWlllll•W~llW~~0•••••*•*••• 1111111'' ••
~·~WWWWWWWMM~WWW~••811t"48~W~~~M~WWWW~WWW,41¥~•&•••@•••¥WWllllllWWW89WWWWlllMl•e•111~eww00aa••······ 1• ,,,,,,,1111••••
™·~-~.~~WWM~MW~4VM•MWl~l¥1¥1WMHHHM~~M~~WWi8*91•aW~8t••1¥1lll¥1MM~84MM818111MMllM••tt8tWWM0SSSS••••*t1•• lf,,,,11s•s••••
™·~·~·~wwwwwww~~·••11¥WWWW¥l8WM0~0•0~~~www~ew~~W~M~W•••••11¥1•lJ¥8•11111111e•1•••••~WWWWM00000•C••••••• ,,,,,,11••·····
INWWWW••••~wwww••••••MWMWW••w1e~ww000~~MW~WW~~M~~~0~~wa•1i•w~ww111tt4¥1ll1118t•ll~~ee0MWW~00000c••••••••••11,,1• , •••••••
IM~~WW•~·~·~a~.~~111iwwww11~NllMt,~MM~~~$~i88~~MMKMM~AM•11•••••••••M111••••M9198MW~0~HM~MH000SS••············-s1,a·······
~MM~Wwwe••···~·····~·~··•••NMM•~~wwww~we~e•tWW~MMW•9•1•M••l8WW~~&t¥¥1~18~t881WW8~0~rMW000000••••••••••••1 ••••••••••••
~0~MMW~w~e11111111ww1111111111w@•1•••~~~w~~~w~•••1-•ww•e1t1eewk88llllllltee••~M00·~~M~00M00A•000000••••••••••••••••s••00
~08HHMMWWiMN•IVMllllllM••••M•t•81149~MMWW~~-~w•eww11•1M~··~·••8••••••••t8tte•w~00s00HH0~M00~S~H00SS••••••••••=••S•SSSS0H
~0~e0M~ww~••••••111111~1~•~••~www~ww~M~ww~~&www~•e11~e11~ew~w8JMWMM•111e•etww~MA00~00000M0~000~0~••••0~•••••••••00000~aM
M000~0A0P~Mwwe•e••••~8WWWW~W~WWM~~MM~MM~~wwwwew~•8A8~811-l•••~~WWll8A~WWWW~MMM~0A000A0~0000000M0~00a0000000000000~Mwwwww
~HHHHH00~MMWW8A9•&••••wwwww•WM••~·~•·HHHHM••····-··~···············•••ww•MHHHH0000000SSSS000HHHH•HHH~HMHHMMMMMMMHW8illll
IWMMMMM000MMWWWWWWW•9AIWWWWWWWMMHMMMMM000000HMWWWllllllllllMWlll118189WWMM~00000000000••••000MHMHWWWWWWWWWWWWWWWWllllllll

Figure 7: Digitally Magnified Cat's Eye

9

l
)

,

)

)

)

l

)

l

)

l

)

)

)

a) b)

! _ - ---- l.t,
Q. E. D.

c) d)

Fi&UTe 8: Decomposition of Rotation into Axis-Parallel Shearing·and
Scaling

10

ENHANCEMENT OF COMPUTING POWER
IN MULTIPROCESSOR SYSTEMS

FOR PROCESSING OF DIGITIZED PICTURES

K. Vorgrimler
Forschungsgesellschaft fur Angewandte Naturwissenschaften e.V. (FGAN)

Forschungsinstitut fur Informationsverarbeitung und Mustererkennung (FIM)
7500 Karlsruhe 1, Breslauerstr. 48

w. Germany

Abstract -- There is an increasing trend to solve
picture-processing tasks on computers. The compu
tation of local homogeneous window operations
(convolution) tends to be impractical when a con
ventional computer is used because of the resul
ting time requirements. A structurally programmab
le multiprocessor is able to solve these tasks in
one to two orders of magnitude faster. The prin
ciple of operation of the system and the individu
al processor are presented.

Introduction

Pictures serve as the primary information in a
great variety of fields of interest for scientific
research. Examples are the area of both bio- and/
or human medicine with Qellular analysis or evalua
tion of X-ray-pictures. Another important field of
application of picture processing techniques is
connected with various satellite programs, where
weather forecast, surveillance of industrial emis
sion or vegetation etc. are the aims of picture
interpretation.

Usually picture processing is dividable into five
functionally different steps:

- picture scanning and digitizing
- picture preprocessing
- feature extraction
- feature analysis
- classification.

One major problem in this processing chain is the
almost unrealistic computing time or necessary
computing power in the domain of picture prepro
cessing. Using a conventional uni-processor to
perform these tasks results in computing times of
a few minutes to several hours depending on the
algorithm and picture size.

With a special multiprocessor configuration actual
ly being constructed at FIM, the implementation of
many preprocessing algorithms proves to be faster
by one to two orders of magnitude compared with
the use of a conventional computer for the same
task.

LOcal picture processing

Generally there are two mathematical techniques
available for the implementation of picture pre
processing principles like spatial filtering. In a
computer a picture is usually represented by a two
dimensiohal point-matrix of grey-levels. One tech
nique - convolution - is applied directly in this
grey-level-domain whereas the second technique is

11

applied in the. so-called frequency-domain. This
domain is obtained after the application of an in
tegral transform e.g. Fouriertransform to both.the
grey-level picture and the respective filter. The
philosophy of this technique is that relatively
complex operations like correlation in the frequen
cy domain can be obtained by simple matrix multi
plications. This technique has attained a practi
cable aspect after the presentation of the Fast
Fourier Transform algorithm by Cooley and Tukey.

In local picture processing a special application
dependent evaluation matrix is applied to a pictu
re area of corresponding size (fig. 1).

evaluation matri~

'
o~

picture matrix

'
~ ~-

{valuation
area

fig. 1: LOcal picture processing

Fourier techniques are used in such cases where
the evaluation matrix covers a great picture area
or the entire picture. But in contrast to the ad
vantages of this technique there are mainly two
grave limitations:

- In addition to the fast matrix multiplication
three time-consuming transformations are ne
cessary: picture transformation, filter trans
formation and the transformation of the pro
duct back to the original domain.

- Due to the linearity of the transform the use
is restricted to linear operations whereas in
many picture preprocessing applic~tions non
linear logical operations or thresholding are
highly efficient.

In the grey-level domain most operations are so
called_ window operations. These simple local ope
rations have the following properties:

- The window (evaluation area) implies a relati
ve small neighbourhood e.g. a square picture-

submatrix of 3x3 up to llxll picture el~ment~

- Window operations are position-invariant 'or
homogeneous which means that the evaluation
function remains unchanged when the window is
shifted point by point over the entire pictu
re.

As a simple example an algorithm known as "stroke
difference" is presented which leads to a- "deriva
tive" of a given picture B. With the submatrix-no-·
tation in fig. 2 the stroke dif~erence is given by

where

.llB
pqx

llB =.!.[llB +llB J
pq 2 pqx P'Lff

(1)

llBP~ = ti Cb;,,,1,-1+bo,-1 +bl ,-1>-Cb_l,1 +bo, l+bl, 1 >I

As depicted in fig. 2 the result is related to a
position within the resulting-matrix which corre
sponds to the position of the central element of
the window in the original picture-matrix. The
edge-elements in the resulting-matrix in fig. 3b
are supposed to be filled with zeros.

p

q IF: b -1,-1 b0,-1 b1 ,-1

b-1,0 bo,o b1 ,O

b -1, 1 fbo, 1 b1 ,1

fig. 2: Notation within a 3x3 window

.
a) originals (B) b) derivatives (llB)

fig. 3: Stroke-difference applied on picture B

12

Fig. 3a shows an aereal photo and fig. 3b the re
sult after the evaluation of the stroke-difference
algorithm. The resulting values of the stroke dif
ference are displayed as grey levels.

Cascading of window operations

To exploit a given analytical expression with re
gard to the degree of its inherent parallelism
the simplest way is to depict the corresponding
computing graph. For the simple expression given
in (1) this is shown in fig. 4.

b-1,-1

b-1,0

b-1, 1

"' "'
(l) (l)
!:;' c,

"' "' +> +>
b1, 1 "' "'

N M ...
(l) (l) (l)
O> t"· o·,

"' "' "' +> +> +>

"' "' "'

fig. 4: Cascading of stroke difference

The evident parallelism in a computing graph usu
ally is not exploited in practice. The user of a
conventional computer streches the parallelism in
to a task suitable for a one-at-a-time hardware.
Assuming for simplicity that each of the operati
ons within the circles in fig. 4 require one time
unit of occupation in an uni-processor-equipment,
a space-time diagram results as depicted in fig. ~

VP amount of

result
available

1 ~-,...., --. ~"'T"'"'r.".'f t

fig. 5: Space-time diagram for one processor

On the other hand the minimum processing-time

is obtained when the problem-inherent parallelism
could be covered by an appropriate hardware multi
plicity (fig. 6).

t

fig. 6: Complete coverage of parallelism

Note that the coverage in the sense of fig. 6 re
quires to redefine the conception of parallelism.
In array computers a number of processors with
identical properties work on a set of multiple
data. In the complementary pipeline computer a
single data stream is submitted to a sequence of
operations within the processors forming the pipe
line. In this case the processors work simultane
ously on the single data stream where data coexist
within the pipeline at a different processing sta
te. By this way a kind of pseudo-parallel process
ing - better simultaneous processing - takes placa
When data are available on the respective data
buses (fig. 4) processors 1 to 4 can start simul
taneously with the addition of their input-data.
In the space-time diagram (fig. 6) this fact is
represented by the occupance of 4 units in the
first time-interval. When the addition is complet
ed these processors can transmit their results to
the units 5,6,7 and 8 respectively etc. Note that
the final result is available after a "filling
time" of 6 time-units corresponding to the 6 sta
ges in the cascade.

The next input data can be offered to the system
after the first time interval when the four "pseu
do-processors" represented by dotted circles
(fig. 4) are inserted. These processors are simple
buffer-registers capable of holding the data du
ring one time interval to avoid conflicts. Note
that without the buffers their respective input
data could not be changed until stage 2 would have
completed the operation. Now the first processors
can start operating on the second data-set when
the following stages are still working on the
first etc. This results in the same effect as in
linear pipelines, namely that results are available
in the same rate as input data are supplied.

The configuration shown in fig. 4 could be reali
zed and fix-wired for the given algorithm. Be
yond that provisions must be made to control the

13

data flow and the synchronisation of the different
processing units. Under the aspect of flexibility
this solution would be a grave restriction and
would lead to an immense number of special circuit
ry. Although this method cannot be excluded for a
set of frequently used operations, a more flexible
system requires a programmable structure. This
means that the individual processor-properties and
their mutual interconnection must be controllable
by a program.

The Flexible Multi-Pipeline-Processor-System (FMP~

The system consists of a set of (max. 64) origi
nally isolated processors and a set of data connec
tions (B ... B). Four of these processors are
shown inofig. 7~ 1 At the output each processor is
associated to a single of these data paths as in
dicated by dotted lines.

IBB I
IBA '
IB ' I l i I

fig. 7: 4-Processor-System (non-programmed)

Additionally two data buses (IBA, IBB) are avail
able. The buses IB and SB are common to all pro
cessors. IB serves to transmit the instructions
to the individual processors, SB retransmits se
lectable internal processor status. The buses Cal!I

uniquely be used to transport information im the
directions indicated by arrows.

To establish a desired configuration the proces
sors are sequentially programed via IB and the
transferred instructions are stored ·.within each
processor. Each processor is realized as a three
address machine, this means that one single in
struction contains two operand-source addresses
and one operand destination address in addition to
the operation code. Each processor has two inde
pendent input-control-units (IUA, IUB) affected by
the destination parts of the instruction code.
Each of these units is capable of establishing a
connection to one of the existing data buses (e.g.
64) at a time. As the two input-units are indepen
dent, they can fetch two operands from two dif f e-

, rent.·buses,.<simultaneously. The output is control
lable .·by an' output~mode-control code which allows
results' tor:be transfered directly via the corres
porlditmg bus or to be served in a processor-inter
na1,·reqister~stack for further use.

After' the proper programming a configuration shown
in fig. 8 can be "switched" together. rt should be
remarked that the interconnections shown are not

necessarily everlasting and consisting simultane
ously. The data are buffered at the end of the
sending equipment (processor) and the transfer on
ly takes place "ltlherf"the receiving unit (processor)
requests data exactly on the respective bus.

IUA IU

3

fig. 8: Processor interconnection after
appropriate programming

Note that the buses IBA, IBB, SB and IB are omit
ted for simplicity. The interconnection shown
could be used to implement the last three stages
in the cascade in fig. 4 when the input-data are
submitted via B4 and B5 •

It should be pointed out that the two additional
data buses IBA, IBB are organized as selector bu
ses. This was made as a -concession to the preli
minary use of the system and will be explained la-
ter. ·

Basic building blocks of each processor

Each of the processors within the multiprocessor
system includes the subunits shown in fig. 7. Two
input-units (IUA, IUB) control the transfer of da
ta into the attached register stacks (RSA, RSB) or
directly into the arithmetic logic-unit (ALU) re
spectively. The output (OUT) uriit controls the
transport 0£ intermediate results via ari output
data-bus. output data can be selected directly
from the ALU or from a register-stack (RSC). Each
processor has a bipolar instruction memory (IM) ca
pable of holding up to 256 instructions. Attached
to this memory is a decode and control unit
(DECC) and an instruction-input unit (IIU) which
control the loading of instructions into the me
mory via the instruction-bus (IB). A status-bus
(SB) with a corresponding control unit (STU) ser
ves to transmit some selectable internal cond:itions
and is used for tests and processing control. It
should be pointed out, that all connections for
data or instructions from or to the processors en
vironment are physically existent. The buses IBA,
IBB, IB, SB are organized as selector-buses. This
means that all processors within the system are
connected in parallel to these buses and a trans
fer over them must be established logically. The
data buses (B0 -B63 ,IBA,IBB) at the inputs are data
paths of the system-internal multi-bus-system.
They are organized to handle the input or output
of one single word from or to the environment, de
pending on the respective input- or output-instruc
tion.

14

As the use is mainly restricted to picture process
ing tasks, the word-length is adapted to those re
quirements. All data buses are 8 bit wide with a
set of supplementary control lines. The word-len<;t.h
of a single instruction is 32 bits subd_ivided in
4 bytes. The first byte controls the function of
the ALU, whereas the next three bytes are the add
resses of the selected input and output data sour
ces respectively.

The technology used is standard and low Power
Schottky-TT~ requiring a total of 200 packages per
one processor.

OUT

fig. 9: Building blocks of processor n

Principle of operation

To explain the asynchroneous and data-controlled
principle of operation a simplified evaluation-net
representation of a single processor will be used
as depicted in fig. 8. Note that this representa
tion here is used only as an informed descriptive
method. Fbr details the reader is referred to { 1) •

The actions within a processor can be described by
a· set of transitions (depicted as horizontal lines).
Connected to these transitions there are a set of
locations (circles) and resolution locations (he
xagons).

Both data inputs of the processor are depicted as
N-way-input-switches. The resolution locations rA
and r hold the address of the data path to be
selec~ed. The transition fires i~ the selected in-

put location (data bus) contains a valid data and
location (bA, b8) is empty. After the transition,
data are removea from the corresponding input lo~
cations and placed on the output locations (bA,b8).
De}:>ending on the values of the resolution locati
ons rA1 and rA and the contents of the associated
locations, the tiring of the transitions a 1 and a 2
may be activated and hence the filling of bAl ana/
or bA2 •

These locations are the inputs for the processing
transitions a carrying out the data alteration
placed in bc.PTransition a controls the way of
the result either to locattons internal to the
processor (bIC) or to its environment (B). It
should be no~ed that in the formal abstrRction
of the processors activity given in fig. 8 one
single instruction of the processor contains in
formation concerning the following:

- value of rA, r 8 , rAl' rA2, re

- content of bIA' bIB

- transition procedure of transition a
p

Depending on this information (instruction) the
processors activity is either controlled by the con
tent of the peripheral locations B -B63 ,IBA,IBB or
the inner locations b A' bI • Note~ that the in
struction is completea afte~ the firing of transi
tion ac and a new instruction is fetched.

By this pipelining.of transitions the processed
activity is triggerable by the presence of valid
data at the peripheral locations. At the input si
de the activity is interrupted until the firing
conditions of a .a are fulfilled (content of se
lected locationt. Rt the output side the activity
stops when the data at Bn has not been removed.

fig. 10: E-net representation of a single
processor n

15

By this way the programs within the distributed
processors contain not only their individual pro
cessing properties (a) but also the sources and
destinatiori of data. ~n addition to that no su
perior timing control mechanism must be provided
to synchronize the active processors since data
flow itself acts as start-stop-signal for the in
dividual unit. Furthermore no internal clock is
needed because each instruction consists of a
chain of transitions with their individual firing
conditions and time requirements and the new in
struction is only initiated after the firing of ac!

To compute a given window operation the user has
to subdivide the entire task into a cascade as de
picted in fig.4 with the notational understanding
that there are a limited number of processors avail
able. As a single.·processor is capable of holding
up to 256 instructions this limitation is not gra
ve. As in a linear pipeline the traversal time of
a single task is mainly determined by the "slow
est" pipeline segment. This fact also holds true
in a "mixed" configuration, because due to the da
ta dependent control no critical races can occur.
The structure adapts itself to the slowest seg
ment. Therefor~ as a general rul~ the task should
be divided in a number of subtasks, each as small
as possible (small number of instructions). As
pipelining and parallel processing is combinable
there is a high degree of freedom to handle the
trade-off between the length of the subprograms
and the° number of processors to be used. Once the
structure is fixed the user transforms it to the
adequate processor configuration by programming
each of the processors. The programs are delivered
to the processors via the instruction bus (IB) in
fig. 7. After the programming phase the structure
is fixed and additionally a mechanism must be pro
vided to deliver the input data to the conf igura
tion as well as to transfer the results back to
the picture storage.

Realized system configuration

Fig. 9 shows the preliminary location of the FMPP
as a peripheral equipment of a PDP 11/45 minicom
puter.

In addition to the FMPP, 3 supporting modules are
necessary. The input-output-interface (I/O Int.)

.delivers the programs to the submits and to the
single processors within the FMPP via the instruc
tion bus (IB) during the programming phase. After
programming the properties of the system are fixed
and processing is taking place according to the
data-rate of picture-data transferred to and back
from the system. The output-interface handles the
transfer of the results back to the PDP's memory
which acts as a buff er for the picture data nor
mally stored on disks. The I/0-interface also ser
ves to transfer selected status information from
the processors back to the host computer.

In this mode of operation two difficulties arise:

- picture data can only be transferred serially
via the UNIBUS so that the multiple stream of
input data for the FMPP is not available di-

fig. 11: Part of picture processing system

rectly;

as the window is shifted point bypo~nt over
the picture, each pixel belongs to n diffe
rent locations of the window, n being the 'di
mension of the used submatrix. T~is would re
quire to transport roughly (nxW) pixels (N=
dimension of picture) to the peripheral equip
ment;

A multiport semiconductor-memory actually being
constructed at FIN' is- expected to be operational
in late 1977. In. order to get familiarized with
the s.ystem the decisiJon, was made to put it to work
preLLmliinarily in the env;i'ronment shown in fig. 9
by addfilng a third module? •. The programmable input
buffer (PIB) spreads, the single data stream. It
essentially consists•o£ ai.set of interconnectable
(program contllol'led~ shift registers. Each regi
ster row has; ac capacitw to store 1024 pixels.

INPUT

fig. 12: Operation principle of the PIB

16

Each row consists of static shift registers reali
zed in MOS-technology and a supplement of 16 regi
sters in TTL-technology. These "tail"-registers
are random accessable. In fig. 12 the interconnec
tion of 3 rows is shown. This interconnection is
chosen when an operation requires a 3x3 window.
Instead of shifting the window over the picture,
within the PIB the operation is inverted by shif
ting picture data below the fixed window. While t:he
data input-rate is relatively slow due t:o the
access time of the mass-storage (disk) the output
data (window) can be transferred to the FMPP at
high speed. This is done via the two previously
mentioned selector-buses IBA, IBB according to a
delivering-program stored within the PIB. The two
buses have their own program-memory and transfer
control units so that they can operate simultane
ously. With the use of the PIB it is only necessa
ry to transport picture data once to the peripher~l
equipment. When the shift registers within PIB
are filled with 3 picture-rows (fig. 12) the ope
ration can begin. The first result must be trans
ported back via the output-interface, then a new
input pixel activates the computation of the next
result etc.

The transport of a picture with the size of 1024x
1024 to and back from the peripheral system re
quires roughly 10 seconds. This time results when
the specifications of all the building blocks in
fig. 11 are taken into consideration. The realized
system is configurated so that all the window ope
rations presently used or having been developpedat
FIM [2~[3} can run in this time, when applied on a
picture of the size mentioned. This fact corres
ponds to a speed increase by a factor of 7 up to
300 when it is compared with the run times for the
computation of the same algorithms on a CDC 3300
computer. The speed increase depends on the amount
of parallelism of the given algorithm and the num
ber of picture elements required within the sub
matrix for its computation. Note that some non
linear operations like the stroke difference (1)
do not use all pixels within the window.

Conclusion

Hardware parallelism and pipelining are combinable
to cover a maximum of parallelism inherent to a
given algorithm. Due to the data controlled mode
of operation the desired structure can be estab
lished by programming t:he individual processors
without the need of a special equipment to control
the mutual data interconnections. The data flow
in a cascade is unidirectional, so that the control
units are relatively simple justifying the addi
tional implementations of these units in each of
the processors.

By adequate programming the FMPP can serve to over
come one of major problems in picture preproces
sing, namely the unrealistic processing times ne
cessary when conventional computers are used. From
the user's point of view a great disadvantage is
the fact, that for the moment almost all software
support is missing, so that the programming is
rather cumbersome. The future work will overcome
this problem by developing software basing on a

simple assembler at the single processors level.
It should finally be noted that the software sup
port must be provided by a general purpose host
computer. Presently 3 processors have been reali
zed. The system with a preliminary number of 16 in
dividual processors is expected to be operational
in early 1977.

(1) G.J. Nutt

REFERENCES

"The formulation and applica
tion of evaluation nets"

comput.Sci.Group, Univ. Washing
ton, Seattle, TR 72-07-02 1972

[2] F. Holdermann "Processing of Gray Scale
H. Kazmierczak Pictures"

Computer Graphics and Image
Processing, Vol 1, No 1, 1972

[3] K. Vorgrimler "Zur Leistungssteigerung von
Mehrprozessorsystemen fur die
Verarbeitung digitaler Bild
information"

Dissertation Fak. Elektrotech
nik, Univ. Karlsruhe, 1976
(being printed presently)

17

APPLICATION OF DISTRIBUTED PROCESSING *
TO THE PRODUCTION OF DIGITAL TERRAIN DATA

Dennis E. Moellman
Defense Mapping Agency

Washington, D. C.

Abstract -- A distributed computer network is
described which forms an integrated system for
the production of digital terrain data from
stereo aerial photography. This system includes
on-line processing of data collected by high-speed
digitizing instruments, man-machine interactive
editing capability, and a centralized processor
for managing inter-processor data transfers. This
paper analyzes the system requirements in terms of
specific architectural features which must be
provided. We describe the use of a SIMSCRIPT
simulation to test the feasibility of the basic
design concept. Simulation results were also used
in determining design parameters such as the
number of processors,. memory size, and expected
throughput rates. Significant characteristics of
the system such as modularity and reliability are
discussed.
I. INTRODUCTION

In a recent paper [l] concerned with compu
ter interconnection structures, Anderson and
Jensen discuss the lack of published material
describing the basis for design of these systems
or making a comparative evaluation. This paper
takes a step toward filling that need by pre
senting the design of a distributed computer
network together with an analysis of the system
requirements which led to this specific design.
our goal is not to describe the implementation
details, but rather to provide the reader with
a view of the design process and an understand
ing of the relationship between system require
ments and the network architecture.

The distributed computer network {DCN) has
been designed to solve a real-time system
integration and data processing problem encoun
tered in the production of digital terrain
information by the Defense Mapping Agency (DMA) •
In a mapping sense, an aerial photograph repre
sents a state-of-the-art high-density storage
medium for storing terrain information. Two
such photographs appropriately exposed comprise
a stereomodel of the earth's surface from which
three-dimensional terrain data can be extracted.
The most efficient means for extracting such
data is to digitize the analog information
contained within each photograph so that the
photographic density (gray shade) of each
picture element (pixel) is represented by an
integer. Sophisticated correlation algorithms
coupled with perspective geometry calculations
are employed to determine the three-dimensional
relationship of a specific point to a reference
datum. A collection of such points covering a

This work was supported by the Defense Mapping
Agency Aerospace Center through Rome Air Develop
ment Center and the Post Doctoral Program.

18

Robert A. Meyer
Department of Electrical
and Computer Engineering

Clarkson College of Technology
Potsdam, New York

particular area form a product called a digital
terrain data base.

In order to meet an ever increasing demand
for digital terrain data bases, OMA has sought
to increase their productivity by utilizing
digitizing instruments which operate automa
tically with little or no manual intervention.
These newer digitizers are capable of operating
between 10 and 40 times faster than the pre
viously used manual instruments. The immediate
problem resulting from such a change is the
inability of the existing off-line, batch
computer system to meet the increased processing
load. The problem is further complicated by t:he
additional requirements for manually prepared
initiallization data and limited manual editing
capability.

A block diagram of the DCN is shown in
Figure l. This system was proposed by the group
at Clarkson College and has been accepted for
implementation by DMA. At the present time
detailed software specifications for the system
are being written at Clarkson. The final design
resulted from the contributions of several people
at Clarkson, DMA and the Rome Air Development
Center (RADC). In the remaining sections of this
paper, we descr~be the operating environment,
analyze the system requirements, and discuss the
important characteristics of the design including
the application of system modeling and simulation
techniques to predict expected performance.

II. BACKGROUND

Digital terrain data bases are rapidly re
placing conventional line maps. This is partic
ularly true because advancements in computer
technology have influenced navigational systems
so that the application of digital terrain data
is more economical and practical. Digital terrain
data can now provide radar images for flight
simulation and navigation by real time on-board
correlation as well as terrain profiles between
two points for flight planning and conventional
contour maps [2].

Recognizing that present equipment could not
effectively satisfy the increasing demand for
digital terrain data, OMA contracted with Bendix
Research Laboratories for the development, under
the direction of RADC, of a new digitizin~ device,
the Automatic Compilation Equipment (ACE). The
prototype instrument consists of a conventional
manual unit retrofitted with a laser scanner and
a digital correlator consisting of two micro
programmable minicomputers. Based on new
concepts in scanning and digitizing, the ACE is
able to scan and digitize each pixel of a stereo

pair of photographs, perform automatic digital
correlation (image matching), and compute 58
terrain elevation profiles simultaneously. The
collection rate is 250,000 points in approxi
mately 10 minutes at a density of 6500 points/
square inch (2).

In order to achieve these rates an ACE must
operate in an automatic mode which produces raw
data.in the form of irregularly spaced terrain
profiles in a local coordinate system. The raw
data must then be transformed to global geographic
coordinates and interpolated to a uniform grid of
elevation values.

Two difficulties with completely automatic
digitizing are the inability of the machine to
exactly track terrain peaks and valleys and the
loss of correlation in adverse areas of the
photograph. These problems could be solved by
relying on partial manual operationi however,
this would seriously degrade the overall ef f i
ciency of the ACE. An alternative formulated by
DMA is the use of currently available, manual
digitizing instruments to produce additional data
for each stereopair of photographs. This addi
tional data includes peaks and valleys, "fill-in"
areas not digitized by an ACE due to poor correla
tion, and also certain information used by an ACE
operator to reduce the setup time prior to ACE
operation. Several of these manual digitizing

instruments have been linked together with a host
minicomputer to form the pooled minicomp~ter
system (3).

The ACE's and pooled minicomputer system may
therefore be viewed as sources of raw input data
which must be processed and edited in order to be
acceptable to the user. The rate at which large
volumes of data are being collected clearly in
dicates that off-line data transfers (such as
magnetic tapes) and processing must be replaced
with an integrated on-line system.

III. SYSTEM REQUIREMENTS

The operating environment described in the
previous section provides a basis for determining
the computational requirements of the proposed
system. These requirements may be divided into
five major functional tasks:

1) data collection
2) processing
3) editing
4) file management
5) job control.

Each of these tasks places specific demands on
the system and thereby influences the overall
architectural configuration. In this section,
we analyze these requirements in terms of a
general processing system and show how the DCN
meets these demands.

Data collection consists of accepting input
data from two distinct categories of sources:
real time and non-real time. Real time input is

19

received from each of two ACE's at the rate of
1600 words/second (16-bit words) per ACE. These
transfers occur as 192-word blocks which must be
received every 120 milliseconds. Failure of the
collecting processor to perform the transfer
within the stated time period results in loss of
data.

The second category of input data is pro
duced by the pooled minicomputer system. This
system contains sufficient local storage that a
data transfer may be def erred until the
collecting processor requests it. It should,
therefore, be possible to use a single processor
to receive input from all collection devices.
This processor is called the input processor in
the DCN (see Figure 1). During periods when one
or both ACE's are not actively operating, the
input processor requests the current backlog of
input data from the pooled minicomputer system.

The processing task includes two basic
operations which must be performed on the data.
As described in Section II, the ACE output
consists of terrain data samples giving a loca
tion and elevation, (x,y,z), in the local co
ordinate system of the stereophotographs. The
first operation required is a coordinate trans
formation which maps the triple (x,y,z) into a
geographic coordinate system. The transforma
tion requires 22 multiplications and 20 additions
using 32-bit floating point arithmetic and
approximately 13 additional load and store
instructions. Since the transformation is
applied to every input data sample from an ACE,
the system must be capable of executing about
3200 floating point instructions for each 192-
word block of 58 samples. In practice the
system processing capability must be somewhat
higher to allow for the overhead associated
with the I/O operations. Of course, the
transformation could be done in non-real time.
However, in the next paragraph we present
compelling reasons for providing sufficient
speed to perform the transformation in real
time.

The second operation to be performed is
interpolation. Unlike coordinate transformation,
the interpolation function requires all of the
input samples in a neighborhood of the output
point. Therefore, the data should be sorted
prior to interpolation so that points within a
neighborhood may be easily located. Since a
pair of stereophotographs produces approximately
5.0xl06 words of data, a conventional batch
sorting procedure could be very costly. The
solution we have proposed sorts the data into
tractable geographic regions as it is being

collected. Thus, the primary data structure for
interim storage allows one to access a particular
region of any geographic point within the domain
of the stereophotography. Since the sort is per
formed on the basis of the geographic coordinates
of a sample, it is necessary to execute the co
ordinate transformation as the data is collected
and before the interim storage structure is built.

'Jtle interpolation algorithm requires
approximately 16N floating point operations per
output point, where N is the number of input
samples in the neighborhood of the output point.
In a typical situation a pair of stereophotographs
will cover 7.5xlo5 output points with N = 8. The
expected maximum operating rate of an ACE is one
stereopair per hour giving a computational
requirement for interpolation of 2.7xl04 floating
point operations· per second for e~ch ACE.

To summarize the processing load on the
system we find that each ACE demands the execu
tion of 5.4xl04 floating point operations per
second. These calculations do not include time
required for sorting or I/O. In order to support
at least two ACE's (and perhaps three in the
future) with a reasonable safety margin in the
timing, we partitioned the processing task in a
natural way into two parallel operations, co
ordinate transformation and interpolation. As
described previously coordinate transformation
should be performed in real time as the data is
collected and sorted; this operation is done by
the input processor. A second processing capabil
ity is provided for interpolation. The interpola
tion processor could be either a single processor
with an average floating point instruction time
of less than 10 µsec. or two processors with
appropriately slower hardware. The primary
decision criterion is cost.

Editing of the input data is required after
collection to check validity and to identify
areas which require manual fill-in. Editing is
also required after interpolation to insure
overall consistency. Given the volume of data
which must be examined it is necessary to auto
mate as much of the editing task as possible.
As data is collected it can be separated into
two groups, good quality and poor quality. This
separation is made on the basis of a correlation
coefficient associated with each input sample and
can be performed automatically. Additional

editing requires manual intervention and is
performed with a man-machine interactive graphics
facility consisting of several minicomputer con
trolled CRT displays. To service this facility
requires data format conversions and selected
subfile retrieval and update operations. These
are performed in the DCN by the edit processor.

The most complex problem to be solved is
data storage and management. A single typical
file will consist of approximately 5.xl06 words.
At any time, we expect about fifteen files to
be active thus requiring 7.5xl0 7 words of readily
accessible storage. Read/write requests may be
generated by the collection, editing and inter
polation tasks. Since these are concurrent
operations, a means for coordinating simultaneous
requests must be provided. A single file proces
sor provides this capability in the DCN. Active
files are stored on two 42M word disks with
magnetic tape backup.

A second aspect of the data management
problem concerns the organization of individual

20

files. Although the choice of data structure has
not directly influenced the hardware features of
the network architecture, it has been a consid
eration in the design of the software message
handling system. Briefly, each file is composed
of a two-level hierarchy of subfiles. The first
level partitions the data by collection source
and the second level by geographic region. Since
a subfile is of variable length to allow for data
addition or deletion, a convenient data structure
is a linked list. Each item in the list is a
block of 128 words corresponding to one disk
sector. The bulk of messages between processors
is data for either file storage or retrieval, and
therefore a message consists of a variable
number of 128-word blocks.

Job control is a system level task designed
to meet not only the processing requirements of
the operating environment, but also the needs of
the computational system itself. For the DCN we
have a collection of nearly autonomous processors,
each performing a specific task. The goal of job
control is to insure that a set of input data is
processed according to a prescribed procedure and
that efficient use of system resources is made.
Since the file processor is the only centralized
processor with access to all data, the job control
task is executed in the file processor.

IV. SYSTEM CHARACTERISTICS

Within the context of [l], the DCN is a
hybrid network. It most closely resembles the
"star" architecture which is defined as a set of
processors, indirectly connected through a
centralized routing mechanism using dedicated
message paths in a star shaped arrangement. In
the DCN the central switch is a processor itself,
and thus we have both direct and indirect
processor-processor interconnection. However,
from the job processing viewpoint, the file
processor is transparent and serves only to direct
the data flow. The analysis of system character
istics we give in this section will demonstrate
the similarity of the DCN to a "star" architecture
in terms of advantages and disadvantages.

Perhaps the most commonly used term in
describing distributed computer systems is modu
larity. Except for the file processor, the DCN is
clearly modular; that is, the addition of another
processor requires only another link into the file
processor. If the system grows to the point that
the file processor is overloaded in terms of
computational power or I/O ports, then the system
architecture can be preserved only by replacement
of the file processor with a higher performance
machine. Therefore, an important consideration in
the design of the DCN was to allow for future ex
pansion in determining the performance specif ica
tions of the file processor.

A second characteristic which is closely
related to the hardware modularity described above
is software modularity. If a new processing step
is added, the only change required is the modifi
cation of a job flow table in the file processor.

The new step may be implemented on any of the
processors with sufficient computational power
available.

Flexibility refers to the ability of a
system to meet changing demands placed on it by
the operating environment. Clearly this is
similar to the concept of modularity, but we
restrict the notion of flexibility to short term
adaptation as opposed to long term system
growth. A key feature of the DCN which contri
butes to its flexibility is the homogeneity of
the processors. The only difference among the
processors are memory size and I/O configuration.
Thus, it is possible to reallocate certain opera
tions among the processors as a means of relieving
temporary bottlenecks in the overall job flow.

The concept of flexibility is also important
in responding to a failure within the system.
The critical element is clearly the file processor
since loss of this element blocks access to the
data base. This is essentially the price one must
pay for a centralized access to the data base.
When a failure occurs which can be corrected
within a few hours, each processor continues to
operate until interaction with the network is
required and then it waits for restoration of
service. In the event of longer term failures,
the file processor can be physically replaced
with another one of the processors. This is a
form of graceful degradation since it would
require suspension, or at least substantial
reduction, of the tasks previously performed
by the replacement processor. Thus, the
flexibility of the DCN contributes to total
system reliability.

In analyzing the overall characteristics of
the DCN one should examine the cost/performance
ratio as compared with alternatives. A detailed
comparison of this sort is beyond the scope of
this paper, but we will summarize an analysis
presented in the hardware specification prepared
for DMA.

Three major alternatives were considered:
1) a single large scale general purpose processor
operating in a real time foreground/batch back
ground mode; 2) a dual processor network with a
shared data base using dual port disks; 3) a
four processor network interconnected with a set
of switches such that any single processor fail
ure can be tolerated.

In comparison to the DCN, the first alter
native is considerably more expensive, less
modular, and less reliable. Although a single
processor may offer the opportunity for greater
flexibility, this would probably be achieved at a
higher cost for more complex software.

The second alternative does not have the re
stricted modularity and reliability associated
with the file processor in the DCN. In this case
the major difficulty is data management with a
decentralized control for accessing the data base.
Lack of coordination among disk I/O requests
poses problems with respect to data integrity,

21

file maintenance (e.g. garbage collection), and
insuring the efficient flow of data from one job

step to the next. We estimate this alternative
costs approximately the same as the DCN and pro
vides a lower overall performance.

The reliability of the third alternative
would appear to be significantly greater than
for the DCN. A careful analysis reveals that
while the critical element is no longer the file
processor, the processor interconnection switches
are now critical. Thus, in this case, system
reliability depends on a set of hardware
switches which are probably not off-the-shelf
items as compared with a single processor in the
DCN. We believe the DCN is a better choice.
Modularity and flexibility are better for the
third alternative but at a greater hardware cost
and system complexity.

V. SYSTEM SIMULATION

In designing a large, complex computer
system such as the DCN it is important to verify
the feasibility of the basic design concept.
Given this particular design, one must then esti
mate the necessary processor specifications such
as memory size, instruction execution time, and
interrupt response time. A useful tool for
solving these problems is simulation. Our
approach to system simulation and the kind of
information it can provide are described in this
section.

A discrete event simulation language,
SIMSCRIPT II.5, was used to simulate the DCN.
The DCN is modeled as a set of tasks to be
performed by the processors where each instance
of a specific task is an event. Events may be
scheduled externally by the user or internally
by the system. A set of task queues is provided
in each processor to hold pending requests for
processor service. For example, the file
processor maintains a queue for disk I/O requests.
When the processor wishes to access the disk, it
places a request in the disk queue and schedules
an I/O taks. If the disk is unavailable, the
request remains in the queue. When the current
disk operation is scheduled to end, the next
request in the queue is serviced. The level of
detail included in the simulation provides for
modeling the disk in terms of rotational speed
and head movement from cylinder to cylinder.

The statistics gathered during a simulated
operating period for each queue are:

l) number of requests waiting, average and
maximum;

2) total length of requests, in words,
average and maximum;

3) waiting time per request, average and
maximum;

4) total number of requests serviced.

Additional statistics onthe disk search/read/Write
times are also maintained. Feasibility of the
design concept is verified by observing that the
system operates with an acceptable throughput
based .on reasonable estimates. of processor speed.
The statistics for queue lengths are indicative

' of the required memory size in·each processor.
Changing estimated processing time allows one to
determine lower bOunds on processor speed.

Simulation is also a useful tool for per
forming a sensitivity analysis on the system.
Since many of the· processing times used in the
model are only estimates, the sensitivity of the
system to these quantities should be determined.
Recalling the dis.cussion of system modularity,
the critical element for sensitivity analysis is
the file processor. The results of our studies
indicate.that the file processor as specified is
fairly insensitive to other perturbations in the
network.

22

VI. .CONCLUSIONS

We have described the design.of a distributed
computer network dedicated to soiving a specific
real time production problem. The.network may be
viewed as a "star" architectilre of ho:moqeaeGuS
processors including a central processor for
message routing. The design is based an the con
cept of functional partition of the necessary
computational tasks and fixed· assignments of these
tasks to individual processors. We have tried to
emphasize the total systems approach .taken in
solving this problem.

REFERENCES

l. G. A. Anderson and E. D. Jensen, "Computer
Interconnection Structures: Taxonomy,
Characteristics, and Examples," ACM computing
Surveys {December, 1975), pp. 197-213.

2. G. M. Elphingstone, "Photogrammetric Collec
tion Techniques for Digital Terrain Data,"
1976 ASP Spring Convention, Washington, D.C.

3. R. D. Olsen, "Analytical Stereoplotters in.a
Distributive Computer Network. {Pooled Mini
computer Systems)," 1975 ASP Fall COnventiOll,
Phoenix, Arizona •.

N
w

ACE

ACE

Input
Processor

Magnetic
Tape

Pooled
Minicomputer

System

File Processor

Edit
Processor

•••
Edit Stations

DISTRIBUTED COMPUTER NETWORK

Fig. 1.

2-42 Megaword
Disks

Interpolation
Processor

APPLICATION OF A PARALLEL PROCESSING COMPUTER IN LACIE

Sherwin Ruben
Goodyear Aerospace Corporation

Akron, Ohio

John Lyon
NASA Johnson Space Center

Houston, Texas

Abstract - The application of a programmable
parallel processing computer to the reduction of
remotely sensed multispectral data from a satel
lite is discussed. Significant performance advan
tages are shown when compared to a previously
employed serial computer in a production environ
ment. Additionally, parallelism of the device al
lows ready exploration of novel approaches to im
age processing. The programmability permits
diverse exploitation of a large data base and rapid
computational capabilities in research applications.

Introduction

The Large Area Crop Inventory Experiment
(LACIE) is a joint investigation by NASA, USDA,
and NOAA to determine the usefulness of computer
analyzed remotely sensed data in crop forecasting
on a global scale. A sampling of LANDSAT im
agery selected as representative wheat-growing
regions, NOAA-supplied meteorological data, and
ground truth history are combined to make predic
tions on crop yield. The Johnson Space Center
(JSC) role in LACIE includes implementing a Clas
sification and Mensuration Subsystem (CAMS),
which performs traditional pattern recognition
processing on the LANDSAT imagery. The CAMS
is an extension of a previously developed JSC soft
ware/hardware system, the Earth Resources In~
teractive Processing System (ERIPS), Ref. l and
2, of somewhat more general applicability. The
CAMS is tailored to the production problem pre
sented by LACIE requirements to classify large
numbers of fundamentally similar regions in the
same manner. In short, LACIE (and CAMS) rep
resent an essential change from R&D to a near
production environment.

The purpose of this paper is first to describe
ERIPS briefly; second, to discuss why the system
was changed to include a parallel processor; third,
to describe the processor selected; and fourth,
to show a few results.

Since 1972, the ERIPS has been resident on
one of five IBM 360/75 computers in the real-time
computer complex in the Mission Control Center.
Contention for this processing resource with
manned space flight support functions has histori
cally been a constraint to ERIPS use rs. Predic -
tions at LACIE conception indicated that some 40
to 60 hours a day of central processor availability

Rudolf Faiss
Goodyear Aerospace Corporation

Akron, Ohio

Matthew Quinn
NASA Johnson Space Center

Houston, Texas

would be needed for maximum project loads, which
was clearly incompatible with ground support shut
tle program development to be performed within
the complex. Alternative processing techniques
and/or equipment were sought under the additional
constraint of schedule and consequent desirability
of retaining the ERIPS software and equipment
structure to the maximum practicai extent. Un
certainties in the final nature of the LACIE prob
lem presented the possibility of additional compu
tationally bound routines, further constraining
legitimate solutions by precluding consideration
of hardwired equipment already in use in some
facilities for treatment of ERIPS-like algorithms.
It became necessary to consider acquisition of a
fully programmable computer system having par
allel or pipelined processing capabilities that
would provide an increase in throughput while re
ducing the bur9ens on the 360/75' s.

Management of the LACIE data base, consist
ing of some 4. 2 billion bytes of disk storage, and
the complex software needed to interface between
the user and application software, as well as de
velopment continuity and schedule, demanded re
tention of the 360/75 as the ERIPS/LACIE super
visor. Furthermore, the existing ERIPS system
is used as the heart of an expanding LACIE data
handler. The system configuration dictated under
the above requirements is shown in Figure 1. The
parallel processor selected was the Goodyear
Aerospace STARAN, a hereinafter referred to
generally as the "SPP" (special purpose proces
sor). The remainder of the paper briefly de
scribes the SPP, the pattern recognition algo
rithms implemented thereon, and results and
conclusions to date regarding the operational
system.

STARAN Computer Description

The SPP STARAN system (Ref. 3 through 6)
is based on a computer organization in which many
identical operations are executed simultaneously;
that is, it is a" single instruction stream, multiple
data stream" processor. For example, in the
SPP an "add" operation can be executed simul
taneously for 512 pairs of numbers. The parallel
execution of an operation for many data pairs is
made possible by employing many processing ele
ments (512).

aTrademark, Goodyear Aerospace Corporation, Akron, Ohio 44315.

24

ST ARAN CHANNEL 11 IBM IBM
INTER-

I f---
ASSOCIATIVE FACE 2914 360/75
ARRAY PROCESSOR UNIT CHANNEL 21 SWITCH 1--
(S-500) 1 UNIT h

I IBM H_
DISKS

360/75

I t----1 (4.2 x 109

I LfBM H BYTES)

360/75

I
I IBM

t--
SPP I HOST 360/75

I IBM

360/75
I----'

.. Figure 1. NASA JSC Facility

A top-cut diagram of the SPP main frame is
shown in Figure 2. It consists of a conventionally
addressed control memory for program storage
and data buffering, a control logic unit for se
quencing and decoding instructions from control
memory, and two associative array modules.

The high processing and throughput speeds
that the SPP achieved resulted from the unique
capabilities of the associative array (Figure 3),
Each SPP array contains 256 simple processing
elements. All processing elements (PE's) per
form the same operation at the same time, but
each processing element acts on independent data.
Thus, in each SPP array, 256 independent data
streams can be processed simultaneously. For
the two array SPP system, 512 independent data
streams can be processed. Only two of a possible
32 arrays were needed to achieve the required
processing rates demanded for LACIE; process
ing power growth capability of 16 to 1 is possible.

Array memory us.ed to support the PE' s is
comprised of 256 words having 256 bits. Multiple
access paths betwe.en the PE' s and the bit memory
locations provide ready access to 256 different bit
patterns in the array. Two access 11 stencils" are
shown in Figure 3.

To further enhance the data routing capability
of an array module, an alignment, or permutation,
network in the machine provides a flexible inter
connection between processing elements.

The multiple processing elements, the multi
dimensional access memory, and the permutation
network give the SPP the flexibility to be useful
for a wide set of problems.

LACIE Algorithm Execution

Algorithm Description

NASA is using the SPP in the LACIE program
for pattern recognition functions. The SPP per
forms such processing tasks as statistics, itera-

25

CONTROL
MEMORY

ASSOCIATIVE
PROCESSOR
ARRAY 0

ARRAY1

Figure 2. SPP Top-Cut Architecture Diagram

TO/FROM CONTROL

256PE"S
256 WORDS X 256 BITS PE.R ARRAY

Figure 3. SPP Associative Array

tive .clustering, adaptive clustering, maximum
likelihood classification, and mixture density clas
sification.

The algorithms are all well suited to the SPP
architectu.re because they have an inherent paral
lelism resulting from a given computation being
performed on all picture elements (pixels) man
image. Since computation associated with each
pixel is the same for a given algorithm, it can be
implemented in a single -instruction stream. The
LACIE algorithms. thus fit the single instruction,
multiple -data stream concept that is part of the
SPP architecture.

Statistics .Calculations. The statistics calc-u
lation algorithm develops statistical data that
characterizes a group of measurement vectors
that have been assembled, The statistical data
developed for the measurement.vectors of the
group include vector component mean and co
variance values.

Iterative Clustering. The iterative clustt;lrin_g
algorithm provides a means both for assigning
measurement vectors to clusters and for evolving
the statistical description of the reference clu.sters.
The algorithm determines the "distance" of each
measurement vector (of a set of such vectors)
from the mean vector of eacll cluster and assigns
each measurement vector to the "nearest11 cluster.
The statistics of all measurement vectors assigned
to a particular class are determined and are used
to modify the original clusters and cluster statis
tics. When the tasks described above are accom
plished, the algorithm is considered to have under
gone one npass. 11 Usually, several passes are
executed before the iterative clustering process
is terminated.

Adaptive Clustering. Like the iterative
clustering algorithm, the adaptive clustering al
gorithm provides a means of grouping similar
measurement v_ectors {similarity is determined
by closeness in an N-space). Unlike the former
algorithm, no a priori knowledge is required to
"prime11 the algorithm. · ·

Maximum-Likelihood Classification. The ob
jective of the classification tasks is the. final as
signment of a measurement vector to a -defined
class. The processing function'& described pre
viously are designed to obtain, refine, and nor
malize i~put class statistical measures and to
create new classes as necessary for reference
input to the clas.sifiers.

The maximum likelihood classification algo
rithm involves essentially the calculation of the
function representing the probability that a given
vector belongs to a Class and the .determination of
the most likely class among those defined for the
vector.

Mixture Density Classification. The mixture
density classifica·tion algorithm is similar to the
maximum likelihood algorithm. The distinction is
a derivative of the class statistics definition made
in each case. 'The maximum likelihood classifica.-

26

tion algorithm utilizes a. set of class .statistics
(mean and covariances) obtained for the population
of the class as a whole; the mixture density func
tion is formulated to treat a clas.s as a union of in•
dependent .subclasses, each of which is described
as a population having a co:m.plete set of {sub-.) class
statistics. This representation tends, under care
ful preprocessing and definition of subclasses, to
separate a population consistiag of a multimodal
distribution into several unimodal distributions a.nd
to improve the performance of the classification
algorithm.

'SPP Resource Utilization

SPP-to-Host Connection. As shown in Fig
ure 4, a number of different paths exist for m.ov
ing data into and out of the SPP. From a user's
standpoint, the prima'l'y dif-feTence between the
paths is the rate at which data may be moved.
The entry path into the SPP via the SPP' s sequen
tial controller provides an I/O rate on the order
of one megabyte per second. The fastest entry
path into STARAN is the PIO (parallel input/out
put) path, which can support data rates on the
order of 80 megabytes/second/array. Midrange
rate paths into STARAN that are available a:re a
DMA (direct memory access) path and a BIO (buf
fered input/output) channel. Both paths support
trans.fer· rates on the order of two megabytes/
second.

For the LACIE program, the BIO path to the
SPP was chosen for moving data to and from the
SPP; that is, the BIO chann4:ll was connected to
one of five 3.60/75's via a custom-built interface
unit. The BIO entry path was chosen because it
could meet LACIE data transfer rate require
ments of about lOOK to ZOOK bytes/second from
the host. Also, peak rates as :great as 0. S to
1. 0 megabyte/second could be supported by the
channel.

In practice, when one of the five pattern rec
ognition pro.cessing tasks is requested t-0 be per
formed, input vector data is moved to the host
output buffer region. The interface passes this
data to a corresponding receiving buffer on the
SPP side that is defined by -the SPP application
program. The movement of data between the SPP
and the connected host is invisible to the SPP ap
plication programmer, and application tasks are
able to be executed concurrently with I/O oper
ations.

Application Program Executive. Although the
STARAN is a stand-alone computer system, the
SPP acts a11 a slave to the host in the LACIE.. Ap
plication program processing can only be initiated
from the host side of the interface.linit. The SPP,
upon completing a task, waits for the next task re
quest from a connected host. The request occurs
in the form of a data block sent by the host to the
SPP. The SPP applications executive program
passes out of a wait loop when the transfer is com
plete, interprets this block, checks for errors,
and then initiates the transfer of the requested
task application program from SPP disk to con
trol memory.

BULK CORE
MEMORY

32X32K

SWITCH

11\.!TERFACE

32

32

COMMON
REGISTER

32

32

OMA

OTHER
ARRAY

tlN)

256

SOURCE
SELECTOR

PERMUTATION
NETWORK

SINK
SELECTOR

R
E
G
I
s
T
E

<oun

R
E
G
I
s
T
E
R

ST ARAN
ARRAY

MDAMEMORV
(256X 256 BITS)

256
256

X, V, AND M REGISTERS ARi THE PROCESSING ELEMENTS

Figure 4. SPP Primary Data Paths

Input Vector Data Transfer. The SPP's con
trol memory (CM) is set up to receive blocks of
1024 input vectors. The data is·stored on a com
ponent ("channel") basis; thus, the memory re
quired for a particular component of each of the
1024 vectors is 256 32-bit words since each com
ponent is specified to be represented by an un
signed 8-bit positive number. To support the
processing strategy that evolved for LACIE, it
is necessary to move this data into the SPP arrays
in the configuration shown in Figure 5. In this
configuration (used for all five application tasks),
one input measurement vector is assigned to· one
SPP array word location.

The common register is repeatedly loaded
from CM and stored into the 256-bit-long "X"
processing element (PE) register until the X reg
ister is full. When full, the 256-bit X register
is dumped into its own array in 265 nanoseconds
using the 8-word X 8-bit array access mode (one
of 256 access modes). The cycle is repeated until
a particular component field is loaded and until
all component fields are loaded.

Data Ordering. When using the 8 word X 8 bit
array access mode to store to the array from CM,
the order of the 512 vectors loaded is scrambled.
For all LACIE tasks that do not require the com
putation of statistics for a vector set, such
scrambling has no impact because processing
steps are performed on a per pixel basis. Thus,
all processing steps for a given vector involve

27

only field locations in the one word assigned to
it. Ultimately, the output vector data produced
as a result of processing (e.g., the classification
index for the vector when a classification task is
called) is located in the word associated with the
vector. As a result, data transfer to control
memory uses the inverse steps used in the data
transfer from control memory. Writes become
reads, reads become writes, etc. The same 8-
word X 8-bit array access stencil is used for both
directions of data movement.

The statistics task requires an ordered data
base. When this task is executed, the goal is to
achieve the statistical characteristics of the set
of vectors that are found within known geographi
cal boundaries (test fields). This data is always
sent to the SPP as a contiguous set. No set labels
are shipped with the data, and so order and a vec
tor count for each set are used to distinguish vec
tors of one set from those of another set. After
the statistical quantities associated with the indi
vidual vectors are produced, they must be summed
over the set. The across-vector summing proce
dure requires that data for the vectors of a set lie
in contiguous words within the arrays.

Ordering of 512 8-bit items requires less
than 8 microseconds. Such rapid ordering execu
tion times are possible because of the flexible
routing capability of the routing network associ
ated with each array and the high bandwidth path
to the array memories.

I,.. ARRAY FIELD DIRECTION

~1-j--2~3--1
o~~~ ~~~..,....~~--.~~~

2

3

4

5

6

~{
252

253

254

VECTOR COMPONENT
DIRECTION--__,-

x
w
c zz -o
a: -
0 I-
I- (.J
(.J w
w~
>C

256 BITS

255 ~---~ ~~--''--~~~~~~~~~~~
i-s BITS+s BITS-ts BITS-j f-s BITS I• 96 BITS •I
1-4------ VECTOR DATA (MAXI --------o-WORKING FIELD SPACE--1

Figure 5. Measurement Vector Layout in STARAN Array

LACIE Word-Oriented Arithmetic Operations
(Conventional). During the execution of a LACIE
task, measurement vector data loaded into the
SPP array fields may be subjected to one or more
of the following assembly language supported ar -
ray arithmetic operations: (1) field-to-field add,
subtract, or multiply; (2) field-to-common add,
subtract, or multiply; and (3) field absolute value.

Initially, the 8-bit-wide vector component
data is unsigned; the STARAN assembly language
(APPLE) does not support unsigned operations.
Thus, all component data were biased down by 128.
Then the value of each component lies .in the inter
val from -128 to +127, inclusive, a number range
that is accommodated using an 8-bit field that in
cludes a sign bit slice. It was particularly simple
to offset the data since it only required that the
most significant bit of each field be complemented.
At the expense of 125 nanoseconds, each lead bit
slice of a component field is complemented as it
is loaded into the X register of the processing reg
ister group and restored into the same bit slice of
the arrays (at the expense of 265 nanoseconds).
Thus, biasing operations expend about 8 nanosec
onds/vector component.

For the statistics task (or for statistics-type
processing performed inside various variations of
the iterative clustering task), covariance values
need to be computed. The first step performed to
determine the covariance vali.;+es for a set of vec
tors is to find all cross products of the components
of each vector. These multiplies are performed

28

during task execution using standard STARAN ar
ray field*field multiply routines; answers are
placed into a 16-bit scratch field to await addi
tional across-word processing. To get a compo
nent field times a component field cross product,
an 8 bit X 8 bit field multiply is executed. Such
an operation expends about 50 microseconds (or
about 100 nanoseconds/component pair).

It should be noted that the SPP uses no multi
ply hardware. Multiply times are dependent on a
software program. It can be shown that field*field
computation times are directly proportional to the
product of the number of bits in the multiplier and
multiplicand. It is clear that, to achieve highest
multiply execution rates within the SPP, field
lengths must be minimized. Since the APPLE
assembly language was designed to accommodate
arbitrary field lengths and arbitrary field starting
locations, it provides convenient means to exploit
any reduction in field length that can be justified
by physical problem constraints.

A particularly straightforward example for
such exploitation occurs in the "assign measure
ment-vector-to-cluster" phase of the clustering
tasks. The "distance" of each measurement vec-

tor, (xi•. x~, -----, x~)· from a cluster center

(as defined by a cluster mean vector, (µ~, µ~, ---,

µnc), is determined according to the distance, d ,
c,p

definition:

d c,p

N

14= 1 l(xf - µ~)I

where p is the pixel index, c is the cluster index,
i is the vector component index, and N is the di
mension of the vector space. Each component

value x~ is defined as an 8-bit signed integer.
l

The following describes how the distance

computation is achieved. The µ~ statistics are
l

received from the host as single precision float-

ing point numbers. Within the SPP, the µ~values
l

are converted to fixed point (23 bits), biased, sign

changed, and then stored as (-µ~) within the SPP

high-speed data buffer segment of control memory.
The operations described are accomplished as part
of the initialization operations for the clustering
task. Distance measurements for all of the 512
20-component measurement vectors are calcu
lated in one millisecond.

Since 30, 000 arithmetic operations (adds, ab
solute values) are performed when finding vector
to-cluster distance, the time to execute one "aver-

age" operation is about 35 nanoseconds. Ifµ~ were
l

reduced to 13 bits, this execution time would be
nearly halved.

Word-Oriented Arithmetic Operations (Spe
cial). A constant concern that existed in the SPP
software design phase of the LACIE program was
related to array-memory resource management.
Since the SPP has 256 bits/word and since provi
sion must be made to hold a maximum of 20 vec
tor components inside the array, only 96 bits of
field space remained to accommodate various
scratch storage and processing storage fields.
The price of ignoring the array storage constraints
would have been costly from the standpoint of pro
gram execution time since data that could not be
stored within the arrays would have been required
to be swapped back and forth between control
memory and array memory via the common reg
ister funnel.

A two-pronged strategy was pursued in the
effort to hold down field space requirements for
classification tasks.

First, the classification algorithm was ex
amined to see whether constraints could be im
posed on the size of the numbers encountered in
generating the maximum likelihood pixel-to-class
assignment confidence number. The original con
fidence number for a pixel, p, tested against a
class, c, namely; h was described by

p,c

c-1
where r is the 'inverse covaricl:nce matrix for

29

class c, Uc is the class c mean vector, xP is the
measurement vector associated with pixel p, and

Kc is an a priori established biasing constant.

In .investigating the constraints on the range
c-1

of values of the elements of r , it was observed
that the inverse covariance matrix could be ex
pressed as a product of a lower triangular matrix

c-1 . c' c
and its transpose. r = L L , and so the ex-
pression for h could be expressed in terms of

p, c p c c p
the inner product of the vector R ' = L (X -

Uc); that is, as
I

hp,c =Kc+ 1/2 [Lc (Xp - Uc)l lLc (Xp - Uc)J

The theoretical importance of this formulation is
the fact that it can be proven that the components

of RP' c have a variance of 1 when a pixel is indeed
a member of the class c. The very necessary con
dition for managing array field sizes within the
SPP - a constraint on the maximum number size -
was present.

The form for RP' c was massaged further to
put it in the form

The leftmost product in RP' c above is both pixel
and class dependent and so will change for each
pixel; the rightmost product is strictly class data
dependent, and the components of this vector need
be generated only once for each vector, independ
ent of the number of pixels that need to be classi
fied.

The importance of this form, when using the
SPP's architecture, cannot be overemphasized for
it suggests a different processing order from that
suggested by the earlier form. The earlier form

suggests performing the (XpUc) subtraction first
and the matrix/vector multiplication second. In
the LACIE classification programs, the class
mean vector components were defined as 8-bit

signed integers with 15 fractional bits; the xP
components are 8-bit signed integers. The dif
ference vector would require 24 bits. Thus, if
the L matrix elements are described by 24-bit
signed fractional bits (after normalizing so that
the largest element of L is set to lie in the inter
val of O. 5 to less than 1), then the L times differ
ence vector multiply operation requires N(N + 1)/2
24-bit*24-bit common-times-field multiply oper
ations (where N is the dimension of the vector).

The latter form suggests performing the ma
trix measurement vector multiply operation first

and then subtracting the L cUc vector. Such an
order of processing r~quires N(N + 1)/2 multiplies,
as before, but the multiply operations are 8-bit*
24-bit common-times-field multiplies. The latter
multiplies will be executed nearly three times
faster than the former multiplies. Furthermore,

the latter product conserves field space much
better than the former procedure, since a much
shorter product field {32-bits) is pro.tluee4.

Despite the use of constraints fo Elinim.iee
field widths, the 96-bit-wide availab• field space
proved to be too small to contain all the fieldi;; re
quired by APPLE to perform the algorithm. Thus,
the strategy of writing special subroutines to re
duce field space was employed. In particular, a

special routine was written to produce the }h ele

ment of L exp; namely, the sum

N c p
~ f . . x .•
j4 1 1' J J

h Ii • th .th .th l l . w ere t . . is e i row J co unm e ement of
c 1' J th

L and x. is the j row element of the vector xP.
J

The routine adds the product directly to the accu
mulation field and so by-passed the need for a
product field space allocation. ·

A second special routine was written to con

serve field space when squaring the Rc' P element.
Rounding was introduced within the squaring oper-

ation so that the square field, and RP' c element
field .could both overlay the accumulate .field pre -
viously discussed. A side benefit of the squaring
routine is that it executes about twice as fast as
an equivalent field*field multiply operation even
when no rounding operations are required.

The dual str.ategy for managing field space in
the maximum likelihood classification·program
was successful; no control memory was required
to hold intermediate results when executing this
task. For the mixture density task, it was not
possible to preserve enough field space for large
dimensioned vectors and so the .control memory
had to be substituted for array memory when vec
tor dimensions became sufficiently large. Never
theless, the array field management procedure
reduced .the need to access control memory.

Across-Word Arithmetic Operations. Arith
metic operations discussed (whether conventional
or special) were all performed within·words. Only
the X, Y, and M PE register bits associated with
a word were involved in executing such operations.
Yet, when performing statistics processing tasks,
it is clearly evident that statistical entities must
be added across words. Thus, to get the sum of
first components of a set of.vectors within the a-r
ray, all items within an interval of a field column
must be added together. To support such req.uire
ments, a special vertical add routine was devel
oped. To use the routine, an auxiliary bit slice
that marks the end of a vertical group of entities
must be available. The routine adds all items be
tween end marks and places the sum in a field { spe -
cified by the calling sequence to the routine) adja"'
cent to the end marks of a logical group. The ·
routine makes extensive un of the shift capability
of the STARAN routing network; because of it, the

30

routine can typically add vertical groups totalling
256 16-bit itllms (one group per array). grouped
arbitrarily, in about 100 microseconds.

Results

General Commentary

The LACIE performance advantages of the SPP
over the previous 360/75 are functionally dependent
upon: { 1) algorithm organization (the ability to ex
ploit parallelism); (2) number of data channels;
(3) number of signatures (classes/clusters);
(4) number of pixels (vectors) per quantum of sys•
tem workload {job); (5) SPP setup time (formatting
of vector transfers to and from the SPP); and
(6) data base retrieval rates.

The effects of these drivers are mutually de
pendent and difficult in many cases to distinguish.
The sampling of results provided below will be gen
erally treated in terms of these driving functions,
with only a few specific comments in order, as
they relate to computational idiosyncracies of the
individual algorithms. Some preliminary remarks:

First, in general, a LACIE image consists of
22, 932 data vectors or up to four such sets of vec
tors. The number of channels (dimensionability)
ranges between 1 and 20, although in practice the
.pattern recognition processes in the production
system ar--e executed normally on 4, 8, 12, or 16
channels. A maximum of 60 signatures for clas
sification may be defined; practically, this value
remains ordinarily between 10 and 30. Other sys
tem delimiters, as described under "LACIE Algo
rithm Execution," a.re generally exploited oper
ationally across their entire range. Extensive
testing of the SPP software in the production en
vironment confirmed both logical and performance
timing behavior of the system throughout the range
of software specifications.

Second, the historical driver of the 360/75-
based LACIE/ERIPS performance was the CPU.
In the SPP configuration, principal limitations on
throughput are, in practice, the retrieval func
tions from the imagery. storage medium, the IBM
2314 disks. Only on jobs of significant complexity,
specifically classification exercises on 12 channels
or greater with discrimination of more than 20
classes, does the system perform in an SPP CPU
bound .state. Development of an imagery data re
trieval technique (Ref. 7) has ensured optimal ex•
ploitation of the disks for the peculiarities of the
LACIE application, but the disks generaily remain
the system driver. Direct access to the imagery
on the ITEL 7330 data base would permit signifi
cant throughput improvements for most LACIE
jobs; such implementation may be made at a later
date, a-s necessary, but current performance (al
though suboptimal because of l/O) satisfies exist
ing resource constraints.

Third, as discussed previously, SPP arith-
metic is field-length dependent in performance .
cha-racteristics. The LACIE applications speci
fications dictated effective equivalence with 360/15

•·

floating-ppint arithmetic results for purposes of
continuity; this stringent requirement on the SPP,
which was achieved, is not statistically justified
on the basis of measurement vector variance, and
legitimate results of processing can be obtained
via shorter fields than employed with significant
performance advantage.

Fourth, in a comparison of pre- and post
SPP timing, the control base was modified to
some extent in software that could have affected
360/75 applications performance; that is, certain
360/75 system software routines were optimized
at the time of SPP implementation. These changes
could, to some extent, be reflected in the timing
figures given below for pre -SPP algorithms, but
the figures shown display pre-SPP results without
such system changes. Further, the adaptive clus
tering algorithm was extensively and theoretically
modified when incorporated into the SPP; the ob
jective was to m.a.Ximize the benefits of parallelism
and to utilize spatial as well as spectral data char
acteristics. The result has been a technique of
improved convergence and stability, but no direct
(timing) performance comparisons can be made
with pre-SPP results.

Statistics

Statistical processing ordinarily occurs fairly
rapidly in the LACIE system and was included in
the SPP development for consistency with the no
tion that all pattern recognition processors of a
pixel-dependent type would be $PP-resident. Also,
the STATS routine is invoked in the body of ITCLUS;
SPP implementation reduced organizational com
plexities. LACIE characteristics, however, in
clude occasional and numerous small (< ZO pixel)
fields on which processing must be performed;
SPP performance is severely compromised via
system overhead on such jobs. Occasionally, SPP
STATS is slightly slower even than the 360/75
STATS, but has never been less than 90 percent
of 360 rates (on tasks of four to five seconds). On
larger fields and on large channel set jobs, the
SPP performance advantage reaches about 3 to 1,
but 360/75 execution would not be deleterious to
the system because the process rarely requires
more than ZO seconds on the 360 in the most com
plex LACIE cases.

Clustering

An adaptive/iterative clustering exercise was
defined for a benchmark as follows: 500 X ZOO

(1 o5) vectors, 16 channels, to be distinguished into
10 clusters in an artificial data set. Results: non
SPP required 35. 1 minutes, SPP required 37 sec
onds, a performance gain of 57 to 1.

Figure 6 shows typical LACIE results for
ZZ, 932 vectors, under various channel set sizes
and (implicity) discriminated clusters.· Perform
ance gains are less than for the benchmark, re
flecting system overhead penalties for smaller
data sets, but demonstrating the I/O constraints
driving the SPP on complex applications and sig
nificant performance improvements (up to 15 to l)
normally experienced.

31

Classification

A classification benchmark was defined as fol
lows: MAXL.ll<:, 4 channels, 10 classes, 2340 X
3240 vectors (7. 58 million pixels). Results: pre
SPP, 105 minutes; SPP, 8. 15 minutes, a perform
ance gain of 13 to 1.

Figure 7 shows MIXDEN results on LACIE
images of ZZ, 932 vectors under various channel
set sizes and ZO defined signatures. As in clus
tering, system overhead diminishes performance
factors on smaller segments of data, although the
trends are clearly I/O driven. MAXLIK, organi
zationally essentially identical to MIXDEN, pro
duces timings approximately ZO percent less for
both.SPP and non-SPP.

I

NUMBER OF CHANNE.LS ------..

Figure 6. herative Clustering Timings

180 168

160

I
140

120

100

'\.
3110175 STANO.ALONE

~ 80

z
0 60 u ...
!! 40 29 ...
:E
j: 2Cl 24 26

' 8 12 18 2Q
NlilM8ER OF CHANNELS

Figure 7. MIXDEN Timings

Conclusions

The SPP has satisfied and exceeded perform
ance specifications originally defined. The sys -
tem performance can be significantly improved,
when necessary, by modifications in the host data
retrieval technology without impact to the SPP
software or addition of arrays. Within the LACIE
context, the most tangible improvements have been
in processes (clustering, classification) that were
previously prohibitively expensive .. users of host
resources. Due to host 1/0 constraints, the sta
tistics function on the SPP, as anticipated, offered
relatively little improvement except in exotic test
cases involving large data sets.

Additionally, the SPP affords users of earth
resources remote sensing technology access to
computationally feasible spatial/spectral data
analysis techniques (e.g., adaptive clustering)
that have heretofore been clumsy or burdensome
on serial devices. Extensions and modifications
to this methodology are in progress, for investi
gative and possible production purposes.

As anticipated prior to the SPF procurement,
additional requirements, both modifying existing
algorithms and proposing entirely new analytic
techniques, are currently in development in LACIE
as SPF functions. These schemata, including "it
erative" classifiers and several varieties of tem
poral change classifiers, previously have been
possible only on limited amounts of data due to
serial device limitations. Access to the large
LACIE data base and the performance improve
ments of the SPF are permitting extensive study
of these techniques prior to production system
inclusion.

In summary, the LACIE environment, includ
ing high throughput requirements in a quasi
production system and a requirements flux in a
technologically and theoretically developing dis
cipline, has demonstrated the cost-effectiveness
and utility of a programmable SPF. We believe

32

that this utility will continue for several years,
and particularly that this essentially research
oriented system will offer highly beneficial guide
lines toward the development of true production
systems, for agricultural and other purposes,
employing multispectral scanning data.

References

I. NASA/JSC, ERIPS Requirements, Change 6,
Document JSC-10152 (SISO-TR-5l4), Nov.
1975.

2. IBM Federal Systems Division, Houston,
Texas, Large Area Crop Inventory Experi~
ment (LACIE) User's Guide, Revision 6,
27 Feb. 1976.

3. K. E. Batcher, "The Flip Network in
STARAN, 11 1976 International Conference
on Parallel Processing, Aug. 1976.

4. K. E. Batcher, "The Multi-Dimensional
Access Memory in STARAN, 11 1975 Saga
more Computer Conference on Parallel
Processing, p. 167.

5. L. A. Gambino and R. L. Boulis, "STARAN
Complex - Pefense Mapping Agency, U.S.
Army Engineer Topographic Laboratories, 11

1975 Sagamore Computer Conference on Par
allel Processing, pp. 132-141.

6. E .. W. Davis, "STARAN Parallel Processor
System Software," 1974 National Computer
Conference, AFIPS Proceedings, Vol. 43,
pp. 17-22.

7. A. E. Pape and D. L. Truitt, "The Earth
Resources Interactive Processing System
(ERIPS) Image Data Access Method (!DAM),"
Symposium on Machine Proc.essing of Re
motely Sensed Data, 29 June, 1976. Purdue
University, West Lafayette, Ind,

HIGH-RESOLUTION IMAGE PROCESSING ON A
PARALLEL COMPUTER SYSTEM (a)

W. W. Gaertner, M. P. Patel, S. S. Reddi, C. T. Retter and I. M. Singh
W. W. Gaertner Research, Inc.

205 Saddle Hill Road
Stamford, Connecticut 06903

SUMMARY

A simple frequency-domain filter
operation on a 1024 x 1024 pixel image
requires approximately 80 million real
floating-point multiplications. Image
processing at rates of approximately
1 frame/second is therefore beyond the
reach of any sequential computer. Taking
advantage of the high degree of paral
lelism inherent in all image-processing
algorithms, a parallel computer architec
ture, the G-471, has been developed (see
W. W. Gaertner, "Architecture for a
Highly Reliable Parallel Computer Sys
tem", Proc. 1975 Sagamore Computer Con
ference on Parallel Processing, p. 125)
which consists of an array of floating
point hardware-enhanced microprocessors
and a large multiported common memory
under the control of a sequential com
puter. A typical configuration as shown
in Figure 1 achieves 100 MIPS and con
tains 16 Mbytes of 500 ns memory. This
paper analyses the parallelism in such
image-processing algorithms as two
dimensional Fourier transforms, table
look-up filters, low-pass, high-pass

and band-pass filters, homomorphic
filters, constrained least-squares
filters, Wiener minimum mean-square
error filters, parametric Wiener filters
etc., and presents the equations which
determine the number of additions,
multiplications, divisions, log and
exp operations to be performed, as
well as the amount of high-speed
memory required to hold interim re
sults during processing.

It is shown that a large memory
bandwidth between the processing
element array and the mass memory is
as important to the throughput as the
processing power of the processing
elements themselves.

Finally, the relationship be-
tween throughput and hardware costs is
derived, leading to the conclusion that,
in image processing, a computer of pro
per architecture can have a performance/
cost ratio 2 orders of magnitude higher
than that of a large sequential com
puter.

CONTROL-COMPUTER COMPLEX CRT CONSOLEJ DISKS
f sEQUENTIAL AND PR INTER

CONTROL COMPUTER PLOTTER TAPES

Figure 1

1 I
_l

PROCESSING-ELEMENT ARRAY DATA-ROUTltlG ARRAY MASS-STORAGE SYSTEM

i
r-l_PROCESSING ELEMENT FAULT TOLERANT

SEGMENTED
[LOCAL STORAGE PARALLEL ACCESS

~PROCESSING ELEMENT J MASS-STORAGE DISK
!lCONTROLLER TAPE

LLOCAL STORAGE J MASS-STORAGE REAL-
UP T0~20 KBYTES

DISK
TIME l_ CONTROLLER TAPE
1/0

lJ MASS-STORAGE LINES DISK
4 M~S IL CONTROLLER TAPE

PROCESSING ELEMENT

LLOCAL STORAGE lJ MASS-S TORAGEJ--illill
IL CONTROLLER TAPE

TRANSFER RATE

r-
16 IMBYTES/SEC/CHANNEL

]
CENTRAL WORKING STORAGE 1

REAL-TIME}-
I/O '[MEMORY ~ 64-BIT PARALLEL ACCESS PER BANK [MEMOR~ i
CHANNELS BANK 1 BANK 2 16 MBYTES DIRECTLY ADDRESSABLE BANK N

Block Diagram of the G-471 Parallel/Associative Computer System lw.w. GAERTNER)
RESEARCH INC.

(a) This work was sponsored by DARPA and RADC.

33

AN IMPLEMENTATION OF THE HADAMARD TRANSFORM
ON THE STARAN ASSOCIATIVE ARRAY PROCESSOR

Annette J. Krygiel
Defense Mapping Agency

Aerospace Center
St. Louis, MO 63n8

Summary

The Hadamard Transform, if performed in a·
straightforward manner, requires N2 additions/·
subtractions for the one-dimensional case, where
N equals the nUlilber of data' points. A number of
authors [l, 2 • 3, · 4} have provided computational
algorithms for a fast Hadamard Transf'orm (FHT),
requiring N log2 N additions/subtractions. These
algorithms have been implemented on a variety of
sequential processors. The implementations vary
in certain characteristics.

However,
(1) Their basic approach is analogous· to

the method of the Cooley-Tukey fast Fotlrier
transform (FFT), typified by the FFT butterfly,
with. replacement of the m'ultiplication t'actors by
the :!:,l's of the Hadamard matrices.

(2) Even though the algorithms di:f'fer in
speed, they are all 0 (N log2 N}.

A decimation.in frequency Hadamard butterfly
can be ·described as:

Xm+1 (p)

Zm+l (q)

Xm (p) + ~ (q)

Xm (p) - ~ (q)

where X = input signal vector of N points
m = iteration level

p, q index the pairing of data so that the
geparat-ion of points is N/2m.
There are N/2 butterflies for each level and
log~ levels giving 0 (N log2 N) operations.

Using a similar algorithmic approach but em
ploying a parallel processor operating on N data
points simultaneously, a reduction in computa
tion time on the order of N should be achieved,
i.e., 0 (N log2 N) + 0 (log2 N).

An FHT was implemented on a standalone four
array STARAN at the DMA/ETL Facility [5]. The
algorithm is a one-dimensional decilllll.tion-in
frequency FHT subroutine operating on a maximum
of 1024 16 bit data points·; the original vector
and int'ermediate results are destroyed. In all
cases, N processing elements are used. The
arithmetic is fixed integer.

Data is moved into the arrays; then, for each
iteration, every point has its copoint on the
butterfly positioned alongside. This is done
using a columnwise rotation when N/2m ~2560
otherwise t)lrough the appropriate array to array
movement of data. The required data fields are
complemented, .and then addition (or subtraction)
of the pair transpires. While the objective

34

would be to complete each iteration in one arith
metic operation, s~v:eral sources of overhead·
exist:

~ proper pairing of the data points includ
ing setup for inter-array movement for the
512 and 1024 point cases.

- complementing half the data fields to
avoid a two operation penalty - N/2 addi
tions followed by N/2 subtractions·- so
that a single parallel addition on N data
·points is suffic.ient. ·

~ testing N for appropriate actions commei;i
surate with the foregoing.

Exec~tion times attained for the FHT on
STARAN using Page Memory and the High ;Speed Data
Buffer are: · · · ·

N Arrays Time*
6ii 1 286µs

256 l 380µs
512 .2 459µs

1024 4 538llS
*Times do not reflect set-up f'or moving data to
the arrays or mask generation for complementing.

Placing the FHT subroutine in Bulk Core degrades
speed by.: 2.5x. NO:rmalizingby N after two
calls of the subroutine requires 10-12ll8.

Results are impressive; an order N reduction is
not achieved primarily due to the slow bit serial
nature ot' STARAN arithmetic. The 1024 STARAN FHT
is projected at a 70X improvement over a FOR'l'RAN
FHT [3} implemented by the author on UNIVAC 1108.

Referenc.es

[l] William K; Pratt, Julius Kane, Harry C.
·Andrews, ';Hadamard Transform Image Coding",
Proceedings IEEE, Vol. 57 1 (Jan 69},pp 58-68.

[2} L. J. Ulman, "Computation of the }ladamard
Transform and the ~Transform in Ordered
Form", IEEE Transactions on Computers,
(Apr 70), pp 359-360. · · ·. ·

[3] ViJay K. Agarwal, .,A Nev Approach to the Fast
Hadamard Transf'orm Algorithm"•· IEEE Computer
Group Repositorxt R-70-2olJ3, (1970).

[4] M. Kunt, "On Computation of the Ha4amard
Transt'orm and the R Transform in OZ.dered
Form", IEEE Transactions on Computers, (Nov
75). pp 1120-1121.

[5] L. A. Gambino, R.L. Boulis, "Defense Mapping
Agency /USAETL STAR.AN Complex", Sagamore Com
puter Conference Proceedinga 1 (Aug 75 }, pp
132-141. . .

ON THE FORMAL DEFINITION OF PROCESSES

Pamela Zave
Computer Science Department

University of Maryland
College Park, Maryland

20742

·Abstract -- The only model of logically con
current, asynchronously interacting processes
which has had real impact on . the design and J.m
plementa tion of processes is that of programs in
execution which communicate through shared vari
ables. It is shown that this model cannot be
formalized successfully for general purposes.
An alternative model based on message communica
tion, whlch can be formalized successfully, is
proposed. A comparison of the two models with
respect to mutual exclusion of concurrent pro
cesses sharing a data base is used to argue that
the message model is as intuitive as the shared
variable model, but richer in the computational
structures offered to the designer.

Introduction

The existence and importance of processes as
the fundamental dynamic units. of computation have
been recognized for some time. It is now common
for textbooks to discuss logically concurrent,
mutually asynchronous processes and their inter
actions •.

It is clear that the only conceptual model
of interacting processes which has had real im
pact on their design and implementation is that
of programs in execution which communicate through
shared variables. It has led to the definition of
powerful programming language primitives such as
semaphores ([l}), conditional critical regions
([2]), and monitors ([3]). The purpose of these
primitives is to help the programmer use shared
variables correctly and conveniently, within the
confines of certain common structures.

This paper will argue that a "universal" (in
a sense to be defined shortly) formal model of a
process is needed, and that conceatration on
shared variables has been an obstacle to develop.
ment of a useful one. In the remainder of this
section the characteristics and flaws of shared
variable communication will be examined, while
the third presents an alternative model based on
message transmission. In the fourth section the
two models are compared with respect to mutual
exclusion of concurrent processes sharing a data
base.

A universal formal process model is one which
can serve as a paradigm in the sense of [4] , a
conceptual frame.work in which problems are formu
lated and solutions are communicated. The partial
recursive function is a paradigm for the study of
computability and the program :i.s a paradigm for
the design of algorithms, but the introduction of
concurrency and time-dependence has made both
unsuitable as paradigms for dynamic computation.

35

To be less grandiose, a universal formal
process model would be a design tool. It would
provide a "language" in which to express ideas
precisely at any level of abstraction with un
necessary constraints on lower levels considered
harmful. Once a design was formulated, it would
be subject to algorithmic analysis, formal proof
techniques, optimizing transformations, and other
results of theoretical research.

Ft:om these uses for the formal model, the
criteria of naturalness, usefulness, and gener
ality can be derived. The model should be appli
cable to familiar situations without undue
contortions, it should exhibit properties which
facilitate formal manipulations, and it should
include the largest possible class of digital
phenomena (without sacrificing naturalness and
usefulness).

There is certainly no scarcity of formal
models of parallel computation ([5], [6], and
[7] are good entry points into the extensive
literature). These have not been developed in
the direction of paradigms, however; rather,
the role of a paradigm would be to make the re
lationships among them, and between them and
practical programming, clear.Ca)

For example, a Petri net is a good model
for studying properties such as correct synch
ronization and freedom from deadlock. It is
possible to represent relevant characteristics
of a process design as a Petri net and then
verify that it has these properties. But Petri
nets will never have much influence on the design
of processes because (1) a Petri net repre-
sents only a small subset of the properties of
a process, and (2) a Petri net is too far removed
from the control and data structures of programs,
and the allocation of physical processors to them,
to guide the designer in constructing a process
whose model is a Petri net.

As mentioned before, only the programs-with
shared-variables model has had such influence,
and if it could be formalized succes~fully for
general theoretical purposes, that formalization

(a) .
Actually, many of the relationships among them
have been clarified in [7]. It is the rela
tionship between formal models and practical
programming that is paorly understood.

would be a strong candidate for paradir· .Un
fortunately, any formalization of it(b is incon
sistent with even the loosest interpretations
of naturalness, usefulness, and generality.
Therefore, the search for a process model which
is a conceptual aid to the designer, has univer
sal or near-universal applicability, and can be
formalized well enough to serve as the basis for
theoretical study, is not over.

Shared Variable Models

Shared variable.models of asynchronous inter
action arose because programs running under
multiprogramming systems co111111unicate effici.ently
through shared ~emory locations. The major work
on shared variable modeling appears in [9] (the
information structure model of [8] is equivalent),
and the formulation here resembles Horning and
Randell's strongly becaus~ they seem to have found
the only one which works! Our intention is to
capture the essence of all possible shared vari
able models.

Let us first consider an isolated process P.
It has. a state space · S , the set of all possible
states s in which the process can be. A
computation of P is a sequence (finite or in
finite) of members of S •

If P is to interact asynchronously with
another process, then the processes must share
some portion of their state spaces. So that this
portion can be identified, states mus.t be divided
into a fixed number of named components, .called
variables. Each variable v has an associated
value space V containing all the values it can
assume• Thus S is the set of all combinations
of values. of the .individual state variables.

A change in the state of P. is called a
process step, and occurs through assignment of
new values to variables.. Th.is is for_malized as
an action relation f , whose domain is S and
whose range is the set of all:sets of.assignments.
An assigmnent is a pair (v,u) where v is the
name of a variable and. u is a member of its
associa.ted value space.

Assuming that we know what it means to apply
a set of assignments to a.state, then a computa-

(b)A formalization problem which this paper
ignores is that of programming language seman
tics. Wegner defined a formal process model
called an information structure model ([8])
for the purpose of defining and proving asser
tions about language semantic.s. · The .emphasis
here is on how a model handles asynchronous
interaction, since .the need ,for a dynamic
model of computation has only arisen with
logical concurrency.' · ·

36

tion of P is a sequence of states s 0,s1,s2, •••
S , ••• such that S. ES (i ~ 0) and Si+l is
t~e result of applyilig some member of f(si) to
si(i ~ O)~c) This is shown in Figure 1.

I t I

each state is divided
into variables

,{
'o'. :1\

.,
s l! ... -+--+-+--+-l'--------

1 process.step: application of
, some·member of f(s1)

~l.

Figure 1. A computation of an isolated process.

As long as a value of f(si). contains no
two assigmnents with the same fir1;1t element, its
application is straightforward: all variables
v with no assigmnents (v,u) in the set retain
thetr former values in si+l• and all variables
v with assigmnents (v,u) in the set take on the
va.lues u in si+l ·

The case of two assignments to the same
variable is a race condition, or conflict. It
would do absolutely no good to define it away at
this stage, because it will reappear w~en we
compose processes, anyhow. To deal with it, we
have exactly two choices: to make the resultant
value of the variable: one of the assigned values
nondeterministically, or to make it undefined.
Rather than letting computa~ions be stopped
dead by undefined states, we will choose the
former. Thus a process is deterministic, meaning
that only one computation can be generated from
a given ~nitial state, only if (a) the action
relation is a function, and (b) no value of ~he
action function contains more than one assignment
to · the same variable.

Since there .is no mechanism through which a
Pto.cess .Pl can interact with external entities,
the only way to study the interaction of P1 and
another process Pz is to compose them; forming
another process. This can only be done if their
state spaces, 81 and Sz , have some variables

(c)The precise reason why the more complex action
function, rather than a successor function
~whose range as well as domain is S), must be
used cannot be made clear yet! See footnote
(d). .

in common. For simplicity, it can be assumed
that shared variables have the same names in all
sharing processes, and that all other variable
names are unique. Then the state space of the
composite process consists of all variables of
S1 and S2 with distinct names (in other words,
everything in S1 and S2 except for duplicates
of variables).

Since the action relations of P1 and P2
are indivisible, the notion that P1 and P2
are proceeding in asynchronous parallel translates
to the statement that their relative rates are
unconstrained. In other words, each step of the
composite process should be interpretable as a
step of Pl, a step of P2, or a step of both
(otherwise true parallelism would be excluded),
and steps of each type can be arbitrarily inter
leaved. The three types are shown in Figure 2.
Clearly the composition cannot be deterministic.

l ~ shared variables

.---------"~"--' potential changes

(a)

shared variables~

I

potential changes~~~~~~---~~~~~

(b)

(c)

Figure 2. Possible steps of a composite process.

37

Even if P1 ahd P2 are both determin
istic, race conditions can arise when P1 and
P2 are both active in a step of the composite
(Figure 2(c)), and each tries to assign a dif
ferent value to the same shared variable. As
there is still no basis for deciding who won the
race, the problem has already been dealt with
as satisfactorily as possible in the single
process case. Thus a value of the action rela
tion f of the composite process, with argument
si of the composite process, is eithe1 (a) a
member A1 of f1 (si1), where A1 is a set
of assignments, f1 is the action relation of
Pi, and sn is the portion of the state si of
P common to the state of P1 , (b) a member
Az of f2(si2), defined as above on P2, or (c)
{A1 :A1 E f 1 (si1)}X{A2:A2 E f2(si2)l, where
(A1,A2) is interpreted to be the same as A1 U
A2 . This definition implements the intention
described in Figure 2, rhether P1 and P2 are
deterministic or not.Cd

This basic model is easily extended to com
position of several processes, initialization,
etc. The reader who would like a more thorough
explanation of shared variable modeling is en
couraged to read [9].

The criterion of naturalness is violated by
this model because race conditions cannot be
resolved through indivisible operations on shared
variables, as is commonly done in real situations.
To see why, let us try to model a test-and-set
instruction. It will take one step of the ex
ecuting process, and set a private flag variable
to "go" if successful. Now if two processes
execute test-and-sets in parallel on the same
(unlocked) variable, both will perceive it as
unlocked and set their flags to "go". This is
not even a case involving conflict on the value
of a shared variable, which might cause the state
of the composite process to become undefined or
doubly defined, because both sub-processes will
set the value of the shared variable to "locked."

(d)
The shared variable model has been described

informally because its formalization is very
messy and adds no insight. This footnote is
an attempt to explain why there is no simpler
formulation.

The formalization of a process step cannot
be factored into separate pieces, one giving
the effect of the process step on each variable.
The reason is that in a composite process there
is no way of telling which variable originated
with each sub-process, and thus no way of saying
that certain partial relations must always be
applied at the same time as other partial
relations - yet unless this could be done, com
posite processes would produce nonsense.

Given that the process step must be formal
ized as a single relation, the simple successor
relation, whose value is the set of possible next
states, fails because one cannot separate shared
variables for special treatment when .the process
is composed with another.

In practice, test-and-set instructions,
semaphores, etc. work because of the hardware
conflict resolution which prevents true para
llelism at that level. Bu.t since a formal model
does not distinguish between hardware and soft~
ware levels, it is not possible to remove some
parallelism without removing parallelism alto
gether.

There is, of course, a way to enforce mutual
exclusion on processes in this model: each .com
peting process coD111unicates with a central
arbitrating process through its own shared vari
able. The problems above disappear because
competing processes do .not share variables with
each other, and so all use of shared variables
occurs within a cooperative protocol. This
solution does not seem to mitigate the fact that
a major method o~ ~ynchronization in real pro
cesses cannot be modeled. Furthermore, since
the private shared variables resemble message
buffers., it may be fair to say that this is a
simple implementation of the concept of message
transmission. The i111Plicati0ns will be dis
cussed further in Section 4.

The criterion of usefulness is violated by
this model because shared variable descriptions
do not correspond to reality unless the process
step is limited to what can be accomplished in a
single machine instruction. This is because
steps of parallel sub-processes must begin and
end at the same points in time. This situation
can only be achieved in an implementation if
(1) a sub-process waits until all its fellows
have finished their steps before it starts
a new one, which is ridiculous; (2) the steps
of all sub-processes always happen to finish at·
the same time, which is equally ridiculous; o~)
(3) each step is a single machine instruction}e
which makes the illOdel no more useful than an
assembler listing.

Ideally the action relation of a process
would represent its internal computation (during
which the process need not be in a -well-defined
state), no matter how complex it is.
Between steps the state is well-defined, and the
process absorbs and emits. information. This
allows delayed binding of the exact form of the
internal computation and, consequently, hierar
chical design.

· Since ·.the process is asynchronous with
respect to other process.es, its steps do not
have to be synchronized with theirs. This is
the situation show in Figure 3(a), and known
to every designer of real concurrent processes.
It cannot be -simulated by the trick in 3(b)
because that would fo-rce sub-processes to pro-duce
well-defined states at arbitrary points in the
middle of their steps.

(e)
And instruction execution on all sub-processes
is synchronized. This will be discussed next.

38

to simulate: introduce extra states:
p s I p2 pl I p2
!l h

U_ ~ I J, a

l
r l I ~·· e
d ·- - -.,
Ll_ l I I ! .

v i I i-1- -
l a

I
r ·-1- ~ i ; l I -1~-a L-. I

l
b __ i _ ~ l 1
e

l __ l_ s l I
(a) (b)

Figure 3. An invalid solution to the process
step problem.

Finally, the criterion of generality is
violated by this model because it does not in
clude processes running in parallel on different
nodes of a network. This is obvious from the
preceding argument, in which it was deduced that
initiation and completion of process steps on all
sub-processes had to be synchronized.

Another argument is that inter-node trans
mission delays ate not modeled. We could, for
instance, introduce a shared variable as a model
of a one-way co111111unication link between two
processes. But as soon as one process writes
in it, the information is available to the other
process, which is not at all accurate. This
structure is also susceptible to a criticism
made before: Is it not a simulation of something
else, i.e. message transmission?

To su111111arize the reasons why shared vari
ables cannot be formalized successfully.: to
define a system of asynchronously interacting
processes communicating through shared variables .•
it is necessary to make a stronger constraint on
them than is desirable or possible in pl:actice -
that at any discrete point in time at which~
state information is well-defined and observable,
all state information 1111St be well-defined and
observable. Int-eractioll between processes which
can be formally modeled with shared variables is
synchronized to aome degree.

The. Message Model

As an a1ternatiw0 the process model defined
in detail in [10) permits asynchronous communica
tion only through message transmisaionwith arbi
trary (finite, non-zero) delay. It is cletend.n
istic0 and intended to inelude the l,rgeat
possible class of digital. ·phenOm.ena for whi<:h
deterministic modeling is feasible. Message
modeling does not suffer_ from any of the problems

discussed above because asynchronous sub-processes
have disjoint state spaces.

A sub-process which is internally synchro
nous, but interacts only asynchronously with its
environment, is defined as an atomic process.
An atomic process has a state space (of arbitrary
structure), an initial state which is a member
of the state space, and a total successor func
tion.. An argument of the function consists of
the_present state of the atomic process, plus
the queue of messages (also of arbitrary struc
ture) it has received since the last time it
took a step. A value of the function .consists
of the next state of the atomic process,' plus a
vector of messages, each to be sent on one of
the asynchronous source-to-destination me~sage
paths of which it is the source. The cycle o'f ·
an atomic process is illustrated in Figure 4.

!
a
r
r
i
v
a
1

0

f

m
e
s
s
a
g
e
s

!

~

~
message queue

message·
transmission

Figure 4. Cycle of an atomic process.

Any atomic or external process can be a
message source or destination. An external
process is a component with t.he same behavioral
capabilities as an atomic process, but it is
outside the process being modeled.

The sending and receiving of messages is
modeled as follows.. Between any two atomic
or external processes there is at most one
source-to-destination path in each direction.
Each time the source atomic or external process
takes a step it can send at most one message
on this path, which is received at the destina
tion some arbitrary positive finite time later.
Messages do not pass each other on a source-to
des tination path. At the destination sub-process,
all messages received are saved in a single queue,
in arrival order.

In an atomic process, the actual destina
tions of the independent output streams are still
unspecified. A process consists of one or more
atoa:-ic processes plus a function which specifies

39

these destinations. The separation between out
put streams and their destinations, and the. sym
metry between atomic and external processes,
provide great flexibility in composing and de
composing processes. A possible process config
uration is shown in Figure 5.

Figure 5. A process configuration.

-P
r
0

c
e
s
s

b
0

u
n
d
a
r __ y

In [10) it is explained how the behavior
of external processes is specified, how the
relative rates of atomic processes, external
processes, and transmission delays are specified,
and how such a system is simulated determinis
tically. Examples are given indicating that this
model satisfies the criteria of naturalness,
usefulness, and generality.

EX8!!!Ple: Sharing a Data Base

In this section we consider a familiar
problem: two concurrent "user" processes must
share a data base under conditions of mutual
exclusion. In such a situation, shared variable
modeling may seem the obvious choice (and may
be theoretically sound, if the concurrency is
simulated by multiprogramming and the modeling
is at the machine instruction level). By con
sidering both models, we will show why the
message model seems to be a more powerful con
ceptual tool, and where the ubiquitous shared
variable program structures do fit in.

In the shared variable view, the i:wo pro
cesses share the space in which the data is
stored, and use some cooperative protocol,
based ultimately on hardware mutual exclusion,
to ensure logical mutual exclusion. If each

process passes control to canned programs to
perform its part in the protocol, then we have
a synchroniza.tio.n pri1Q.itive such as a semaphore
or critical region.. If each process passes .
control to canned programs to perform standard.
operations on the dat;a, then we have data
abstraction ({11)). The combination of the two
produces a lllOtlitor.

This is indeed a practical structure, but
the message model also includes ·it. It is
only. nec.essary to see that a monitor· defines an
atomic p~ocess(f) whose state s~ace includes all
the "shared data" - but since only the .. monitor
process uses it, it is not really shared at all.
The steps of this process consist of the execu
tion of a monitor procedure between initiation
or awakening of a call, and termination or
blocking of a call. The monitor process en
forces mutual exclusion on the data base by
servicing only one access request during each
of its steps.

What distinguishes this process structure
is the fact that the monitor process is never
active concurrently w.ith the calling user pro
cess - its logical subordination is echoed in
the implementation strategy of passing the
physical processor along with the call. This
means that the monitor atomic process could not
belong to the same process as the user atomic
processes, because it is in no sense parallel
to them. Where does the monitor fit in?

In [10] it is shown that any process can be
identified as a realization of a function (and
certainly any computable function can be
realized by a process). The data base and its
monitor are employed by a user process as it
goes about its business of computation. We
can therefore conclude that the monitor is an
atomic process in the process which·realizes·the
successor functions of the user processes. Thus
the users share the monitor process, not the data
base, and new light is shed on the statement:
"The main difference between processes and
monitors is the way they are scheduled for
execution" ([12]).

A call on a monitor procedure is a message
sent to the monitor atomic process by another
atomic process in the lower level (implementing)
process. It contains a request for service and
parametric information. This structure is illus
trated in Figure 6.

(f)
Strictly speaking, an atomic process exists
only as. part of a definition, and becomes a
sub-process (not necessarily proper, since a
process need contain no more than one atomic
process) of a process only when message
destinations are furnished. We may use
"process", "sub-.process ," and "atomic
process" to refer to the same entity, de
pending on which usage is most illDllediately
appropriate.

40

external
functional
interface

St. ,,.._
I

I
I

l

-Im

·~ () ,....
to i::

M 0
I P.'j
I~ g

i:l :I
lt'l ~

·~ _J
I

I
I~
r5,....
,~ .s
.........
I~ g
.... ;:I
LM

~'""
I

l

•- - - - - - - - - - - - - - - - _-,
functional interface between external process
and implementing process (virtual machine)

Figure 6. Modeling of a monitor process.

It is the efficient mapping of this logical
structure onto a physical realization which
produces· the familiar constructions. Once an
atomic process has sent a message downward in
Figure 6, it will enter a passive waiting state
until an answer is sent upward. Therefore
allocation of the physical processor follows the
messages. Since a user process and its corres
ponding implementing process are really highly
synchronized, message transmission between them
can be implemented in the degenerate form of
shared space, i.e. the state space of the user
process. As for messages from the implementing
processes to the monitor, only the service re
qu~st need be.queued physically. The parameters,
which are logically part of the message, are
passed by reference.

In addition to this structure, the message
model offers another: The data base process can
be truly concurrent with the user. processes, as
might be expected if they ran on different nodes
of a n.e~ork. Even at a site where all proces
sors (real or virtual).share the same memory,
there.11¥1y be.reasons why this is a good strategy.
If the processors are real, as in an array of
microcomputers, it is a way to distribute the
workJ.oad among them. If the processors. are only
virtual performance will not be affected, but
the opportunities for explicit cooperation,·
scheduling, etc. among the users of the data base
are increased •.

In this- case, illustrated in Figure 7, both
user processes and the data base· process are

atomic sub-processes of the same process, with
no constraints on their relative rates. It
would be advantageous to centralize computations
on the data in the data base process, both for
modularity and maximized parallelism.

..,
I

Figure 7. Modeling of a concurrent data base
process.

In a multiprogramming or multiprocessing
system with shared memory, general message
transmission will be simulated by a virtual
machine created by the operating system, as it
is in the RC 4000 system ([13]). The actual
implementation mechanism is likely to be a moni
tor, as described for the previous alternative.

Thus we can arrive at a tentative charac
terization of shared variable communication,
message col!Dllunication, and their respective
places in process design. It is at least pos
sible to model all mutually asynchronous pro
cesses as the sole owners of and operators on
their state spaces, col!Dllunicating with each
other through messages. This is a high level,
hierarchical concept which can suggest to the
designer a variety of structures.

The implementation of these structures is
another thing entirely. Between computers,
interaction will take the form of data col!Dllunica
tion. Within a computer, message transmission
must be simulated through memory which can be
transferred fluidly from the state space of one
process to that of the other.

41

Here it is wise to take advantage of known
logical constraints on relative rates and
the amount of information which can be trans
mitted. In many cases it will turn out that
a single shared variable is an adequate imple-.
mentation of message transmiss'ion between two
processes. Yet it seems that.much insight is
lost by beginning with the relatively structure
less shared variables themselves.

Conclusion

Searching for a process definition that will
be equally inspiring to programmers and theore
ticians, we find that models based on shared
variable col!Dllunication are formally shaky, and
may encourage process designers to limit them
selves to a few familiar col!Dllunication structures.

A model based on message ~ommunication is
formally sound and apparently 'applicable to a
wider variety of process structures. Yet it
remains to be seen whether or not th.is model will
ever have the impact that the shared variable
model has had, because earlier work compatible
with message transmission has not developed in
the direction of influencing the design and im
plementation of processes. We are encouraged
by the writing of [14], in which the message
model suggested a high level design tool.

It is the author's belief that differences
of opinion about the relative appropriateness
of these models have their origin in the unknown
territory of degrees of synchronization. When
processes are completely asynchronous, as they
are on different nodes of a network, there is
little doubt that they communicate through
messages. Our attempt to formalize the shared
variable model has shown that shared variable
communication often succeeds because there is
some degree of synchronization between the
sharing processes, if only the hardware inter
lock on memory references.

Although we currently take the view that
useful degrees of synchronization will be des
cribable as special cases of the message model,
more convenient descriptions may also be avail
able. We hope this paper has shown that those
more convenient descriptions must be chosen with
care.

Acknowledgment

It is a pleasure to acknowledge continuing
interaction with D. R. Fitzwater on the subject
of process structure.

[l]

[2]

References

E. W. Dijkstra, "Co-Operating Sequential
Processes," Programming Languages, Academic
Press, (1968), pp. 43-112.

P. Brinch Hansen, Operatin~ System Princi
ples, Prentice-Hall, (1973 , 366 pp.

[3] C. A. R. Hoare, "Monitors: An Operating
System Structul'.ing Concept," CACM (October,
1974). pp. 549..;.557. --

(4} T. S. Kuhn, The .Structure of Sdentific
Revolutions, University of Chicago Press,
(1962}, 210 pp.

[51 R. E. Miller, "A Comparison of Some
Theoretical Models of Parallel Computation,"
IEEE Transactions on Computers (August,
1973), pp. 710-717.

f6] J.-L. Baer, "A Survey of Some Theoretical
Aspects of Multiprocessing," Computing
Surveys (March, 1973). pp. 31•80.

[7] J.. L. Peterson, and T, H. Bredt, "A Com
parison of Models of Parallel Computation,"
Proceedings -0f the IFIP Congress (August,
1974), PP• 406-410.

[8} P. Wegner, "Operational Semantics of Pro
gl'.amming Languages," Proceedings of an
ACM Conference on Proving Assertions Ab-0ut
Programs (January, 1972), pp. 128-141.

[9] J. J. Horning, and B. Randel!, "Process
Structuring," Computing Surveys (March,
1973). pp. 5-30.

[10] P. Zave, Functional Equivalence of Parallel
Processes, Computer Science Department,
University of Maryland, TR-439, (January,
1976), 112 pp.

[llJ B. H. Liskov, and S. Zilles, "Programming
with abstract data types," Proceedings of
an ACM Ccmference o.n Very High Level Lan
guages (April, 1974), pp. 50-59.

[12) P. Brinch Hansen, "The Programming Language
Concurrent Pascal," Transactions· on Soft~
ware Engineering (June, 1975), pp 199-207.

42

[13] P. Brinch Hansen, "The Nucleus of an Opera
ting System," CACM (April, 1970), pp. 238-
241, 250. --

[141 P. Zave, An Approach to Parallel Process
Design, Computer Science Department, Uni
versity of Maryland, TR-452, (April, 1976),
24 pp.

HIERARCHICAL MONITORS

A.M. Lister and P.J. Sayer
Department of Computer Science Post Office Teleco11D11unications H.Q.
University of Queensland, Scottish Mutual House, Lower Brook Street,
St. Lucia, Qld. 4067 Ipswich, Suffolk,
Australia England.

Abstract -- A technique is presented for construct
ing an operating system as a hierarchical set of
monitors. The hierarchy reflects and reinforces
the system structure, and extends down to the
system nucleus itself. The nucleus is in fact
treated as a specialised monitor for handling the
central processor. The technique has been used to
write a small pilot system for a DEC PDP-15, and
experience with the system is reported. The
mutual exclusion problem for monitor procedures is
discussed, and a viable solution suggested.

Introduction

The concept of a monitor has been developed
by Hansen [l] and Hoare [2] as a tool for structur
ing an operating system. The idea is to control
the resources of a computer installation by con
structing a scheduler for each class of resource,
each scheduler being implemented as a monitor.
A monitor may be regarded as a collection of
Pr'ocecfiires.'"f'o·-r· manii>iiiat:Ing· ·a···r-e&ource~·····1:o&e'1her
WI'ffi-aiiY: ... nece&sa::ry: Tiicaradnifiiiserative-cra£a~-... T1te
ititegrity-orcr&t:a·Ts'iii'ililEaiiied by'mak.ing~i:'he
execution of the procedures of a monitor mutually
exclusive in time, and compile-time checks ensure
that resources can be accessed only by means of
the appropriate monitor. A detailed definition
and notation is given in [2], and a· particular
implementation of monitors is described in [3).

Examples of resource scheduling monitors are
a paging system [4], a single resource scheduler,
a buffer access controller, and a 'readers and
writers' monitor for controlling multiple access
to files [2]. These monitors function at the
outer levels of an operating system, and rely for
their implementation on facilities provided by
the system nucleus. As far as we know there have
been no proposals to extend monitor functions into
the nucleus itself.

In this paper we propose a methodology for
operating system construction .in which monitors
are incorporated at all levels, including the
nucleus. It is now generally accepted that operat
ing systems Should be constructed in layers, each
layer using the facilities of the layer below and
providing facilities for the layers above. The
advantages (516] are essentially those of applying
structured programming techniques to non-sequential.
systems. The basis of our proposal is that the
various levels of an operating system can be
implemented as a hierarchy of monitors in which
the nucleus, or lowest level, is regarded as a
specialised monitor for controlling the central

processor. The advantages of this approach are
1. unity of structure
2. compile-time protection mechanisms
3. the use of high-level language constructs

at all levels, with a consequent increase in pro
grammer productivity and reduction of error rates.

This methodology, which we call hierarchical
monitors, is discussed in more detail in the next
section. Evidence that the methodology is indeed
useful has been 'derived by constructing a pilot
implementation of a small system. The implement
ation is described in section 3, and the nucleus
of the system is compared with that of a similar
nucleus constructed entirely in assembly language
along 'traditional' lines. Our conclusion is that
the overheads involved in the hierarchical monitor
structure are small enough to be outweighed by the
ease of implementation and the facility of
compile-time checking.

Hierarchical Monitors

Two key problems in devising a methodology
for operating system construction are

1. how to impose a conceptual hierarchy on
the system, i.e~ decide which parts of the system
should belong to each layer

2. how to map the conceptual hierarchy into
an appropriate software structure.

As far as 2. is concerned we hope to show
that monitors are indeed suitable units for build
ing the structure.

With respect to 1. a strong case can be made
[7] for making the bottom two levels

1. interrupt handler and dispatcher (low
level scheduler)

2. interprocess co11D11unication mechaniSIDS.
Our proposals retain these two levels in the
hierarchical monitor nucleus, where they are
implemented as the CPU monitor and IPC (inter.,.
process co11D11unication) monitor respectively (see
figure 1). Other nucleus functions, such as
process creation and deletion, I/O handling, and
memory allocation, are implemented as monitors in
level 3, while the remaining system functions are
in level 4. Level 5 contains user programs. The
justification for this structure is as follows.

Firstly, the only occasions on which the
dispatcher need be called are

1. after certain interrupts (e.g. time-out)
2. after process completion
3. when a process is blocked or awakened by

use of a synchronisation primitive.
In other words, access to the dispatcher is re
quired by nucleus functions only.

Secondly, access to the interprocess connnun
ication primitives wait, signal, and queue [2]
must be limited to monitor procedures only, while
access to monitor procedures themselves can be
allowed at any level.

Hence three classes of privilege emerge:
1. Access to the dispatcher - nucleus

monitors only
2. Access to wait, signal, and queue -

monitors only
3. Access to other monitor procedures - any

level.
In the structure of figure 1 this corresponds to

1. Only levels 2 and 3 can access level 1
2. Only levels 3 and 4 can access level 2
3. Any level can access levels 3 and 4.

Given suitable hardware this pattern of privilege
could be enforced by implementing each level as a
protection domain, and by including the appropriate
capabilities in each domain. However, if each
level consists o! a set of monitors the following
protection can be afforded without use of special
ised hardware.

Compile-time protection. Monitor procedures
can be called only by quoting both the monitor
name and the procedure name. In an implementation
of monitors such as that described in [3] these
names need not be global to the entire system, but
can be restricted in scope to those levels which
have legitimate cause to use them. In particular,
the names of the IPC monitor procedures (which
implement the synchronisation primitives wait,
signal, and queue) can be made known only to other
monitors, and those of the CPU monitor made known
only to nucleus monitors. All data local to
monitors, as well as the names of the resources
controlled by them, can be protected by compile
time enforceable scope rules.

Run-time protection. The compile-time
protection obtained by privacy of names can be
supplemented by run-time checks applied on each
monitor entry. Each time a monitor procedure is
called the monitor can check the privilege level
of the caller (held in an element of its process
descriptor) before the call is allowed. The
monitor thus acts in a manner similar to tha.t of
the MULTICS 'gatekeeper' [8] in validating
transfers of control from one level of privilege
to another. It is worth noting that the.se run
time checks, which carry an obvious overhead, are
necessary only when the implementation of monitors
is.such that the appropriate privacy of names
cannot be guaranteed.

Both forms of protection described above rely
on all transfer ·Of control being performed through
the legitimate procedure call and return mechanisns.
They provide no defence against illegal jumps into
the middle of procedure bodies,. nor agaillst the
construction of illegal data addresses. Such
offences can be prevented only by hardware

44

-protection mechanisms. However, this should not
be seen as a criticism of hierarchical monitors,
since the same connnent can be made whatever a
system's method of construction. The authors'
view is that the use of monitors provides a use
ful first line of protection at compile time, and
that this can (and should) be supplemented by
suitable hardware protection at run time.

A Pilot System

The hierarchical monitor methodology describ
ed in the last s~ction was developed and tested
by constructing a small pilot operating system
for a DEC PDP-15 computer. The system was.written
in BCPL [9], using the implementation of monitors
described in [3]. In this implementation a
monitor is declared as a BCPL procedure, and pro
cedures belonging to a monitor are declared as
further procedures within it. Mutual exclusion
of monitor procedures is effected by disabling
interrupts on monitor entry and re-enabling them
on monitor exit. We shall say more about this
mechanism in the next section.

A brief description of the monitors found at
each level of the system (see figure 1) is given
below.

Level 1

This level con ta.ins the CPU monitor only.
There are two monitor procedures - dispatch and
interrupt (E_). A call to interrupt acts in a
similar way to the traditional extracode or super
visor call, and the parameter n is used to indic
ate the type of service required. Interrupt is
one of the few procedures which need to be
partially coded in assembly language (the others
are concerned with driving I/O devices). The
descent to assembly language is made for saving
and restoring machine registers, and also for
handling externally generated (hardware) inter
rµpts.

The function of dispatch is to.switch the
CPU between processes. It saves the· current pro
cess's environment, chooses the next, process to
run, and restores the new environment.

Level 2

The IPC monitor is the sole monitor at this
level. It contains the synchronisation procedures
wait, signal, and queue. These procedures could
of course be replaced by others if it were decided
to base process synchronisation on a different set
of primitives. A listing of the IPC monitor is
given in Appendix l; it is hoped that the notes
will make the monitor understandable even by
readers not familiar with BCPL. Notice .that the
Boolean usermode (which is in each proce~s
descriptor) is normally used by a monitor to
determine whether it -is b~ing called from a user
program, in which case exclusion has t~ be gained,
or from another monitor, in.which case exclusion
has already, been obtained. In the case of the IPC
monitor, which cannot be called directly from a

user program, the exclusion should already have
been obtained, and so usermode is used as an extra
error check. Note also that both wait and signal
call the CPU monitor to effect process switching.

Level 3

There are several monitors at this level -
the memory monitor, the process monitor, and an
I/O monitor for each peripheral device.

The memory monitor contains procedures for
allocating and retrieving memory. In the current
system allocation is made in arbitrarily sized
blocks from a free chain, but in larger systems
the allocation algorithms could be expected to
reflect the architecture of the machine involved.
In a paged system the memory monitor would call
an I/O monitor to transfer pages to and from
backing store.

The process monitor contains two procedures -
one for the creation of processes and the other
for deletion. Both procedures call the memory
monitor, and deleteprocess calls the CPU monitor
to effect process switching.

Input and output is handled by an I/O monitor
for each device. A typical monitor contains

procedures for initiating transfers, and in
the case of a shareable device such as a disc, it
might also contain procedures for scheduling access.
In the present system only teletype I/O has so far
been implemented (a listing of the teletype monitor
is given in Appendix 2), but monitors for other
devices would follow a similar pattern. The out
line of a disc monitor is given in Appendix 3.

The interface between I/O monitor procedures
and the interrupt handler should perhaps be elab
orated. The busy/ready status of a device is
represented by a Boolean variable which is tested
inside the monitor before I/O is performed. If
the device is busy the requesting process waits
on a condition variable associated with the device
(see, for example, the teletype monitor in Appendix
2). The interrupt handler signals the condition
variable when the device interrupts to say it is
ready. Some distortion of the hierarchical
structure is necessary here: the interrupt hand
ler cannot be said to be called from the I/O mon
itor since it is certain that another process will
be running when the interrupt occurs. In this
specific case the scope rules of moniotrs are bent
to allow the interrupt handler (part of the CPU
monitor) to signal condition variables declared in
an I/O monitor. It happens that this can be easily
accomplished, since the interrupt handler and the
device driver portion of an I/O monitor are both
written in assembly language and hence can be
assembled together.

Level 4

This is the level at which other system or
user monitors occur. These monitors are concerned
with such things as buffer allocation, file access,
device allocation, and so on. Several typical

45

monitors have been written for the pilot system:
experience with these monitors is described in the
next section. Although level 4 at present con
tains all such monitors there is no intrinsic
reason why it could not be split into several
separate levels, with the monitors allocated to
each level as appropriate. This method of ex
tending protection to the higher level functions
might commend itself in large systems.

Level 5

All user (non-monitor) programs are found at
this level.

Construction of the pilot system establishes
that it is possible to use the hierarchical
monitor technique to build a system nucleus. It
does not in itself establish that the technique
is an improvement on already existing methods.
As a control exercise the hierarchical monitor
nucleus was compared with a similar nucleus writ
ten entirely in Macro-15 assembly language, but
using the more traditional P and V operations as
synchronising primitives.

The overheads of the hierarchical monitor
nucleus as opposed to the assembly language
nucleus are

1. the overhead of the high-level language
2. the overhead of the monitor implementat-

ion
3. the overhead of imposing the hierarchical

structure and error checks. It was found that in
terms of the number of machine code instructions
produced the total overhead was about 200%. Of
this about half is caused by use of a high-level
language: the code produced by our compiler is
not very compact, and can be greatly optimised
for such specialised cases as the system nucleus,
We estimate that about half the remaining overhead
is incurred by the way in which monitors are
implemented (each monitor call involving two BCPL
procedure calls and a~ statement). Bearing
in mind the possibility of a better compiler and
a better implementation of monitors we suggest
that the true overhead of the hierarchical monitor
nucleus lies between 40% and 60%. Against this
overhead should be set the compile-time checking,
higher programmer productivity, and increased
reliability afforded by the hierarchical monitor
technique,

We have already mentioned that part of the
interrupt procedure in the CPU monitor is written
in assembly language. This section of code,
which tests device flags and saves machine regis
ters, is 82 instructions long. The lowest level
of I/O, that of initiating transfers, is also
coded in assembly language, as is the BCPL run
time system which comprises

1. procedure entry and exit code
2. arithmetic routines
3. subroutines which operate on the run

time stack
4. BCPL features, such as bit selectors
5. BCPL routines, such as packstring,

longjump, and lock

whi.ch are implementation dependent.
Nevertheless, over 90% of the nucleus is written
in BCPL. Some chaage in this proportion might be
expected if other forms of I/O were added, but
this change is not likely to be large since all
I/O monitors need use assembly language only at
the lowest level.

The ~tual ~lusion Problem

It will be recalled from the last section
that interrupt inhibition is used in the pilot
syst~m as the technique for ensuring that the
execution of monitor procedures by different pro
cesses is mutually exclusive. Although this gives
rise to no problems in the pilot system, where the
interrupt i:-ate is relatively low, the length of
time for which interrupts are disabled might be
unacceptable in other, larger, systems. In this
section we consider alternative means of ensuring
mutual exclusion, and examine whether interrupt
inhibition is in fact as dangerous as it appears.

In considering exclusion mechanisms we make
a distinction between 'local' and 'global'
exclusion. By local exclusion we mean that only
the procedures of each separate monitor are
mutually exclusive; global .exclusion means that
all procedures of all monitors are mutually ex
clusive. Clearly, only local exclusion is
necessary to guarantee the integrity of the data
and resources administered by each monitor.

Unfortunately, local exclusion is difficult
to implemeat in situations where arbit.rarily
nested monitor calls are allowed. The difficulty
(described more fully in [3}) arises in recording
the exclusions acquired by a process which executes
a nested sequence of monitor calls, and more
particularly, in restoring those exclusions when
the process is resumed after a wait operation.
Consideration of this difficulty led to the
decision to use a global rather than a local
exclusion mechanism in the pilot system.

We note in passing that if nested monitor
calls are forbidden a suitable implementation of
local exclusion is a 'test and set' instruction
which acts on a separate memory location for each
monitor. An alternative is to use P and V
operations on semaphores, but while this has the
advantage of avoiding the busy waiting that can
be incurred by a test and set instruction it has
the serious disadvantage of adding another set of
synchronising primitives to the system.

The inhibition of interrupts is of course a
(somewhat drastic) global exclusion mechanism. It
can be used only when

I. the time spent in executing a monitor
procedure does not exceed the crisis time of any
interrupting device
and

2. there is only one CPU in the configurat
ion.
We examine these conditions (both of which are
satisfied in the pilot system) in turn.

46

The crucial factor affecting condition 1. is
the length of monitor procedures. In the pilot
system all the procedures are short, the longest
taking 760 microseconds to execute. The pilot
system is, however, a small one, and it is worth
looking at the kind of monitor which might occur
in larger systems. One such monitor, the longest
we have come across, is Hoare's paging monitor [4]
which implements a virtual memory system. This
monitor uses a memory allocator (similar to our
memory monitor) to allocate page frames, and a
'drummer' monitor to effect page transfers, The
time spent inside the monitor is broken up by a
series of wait operations, for memory to become
available and for page transfers to be completed.
The occurrence of such wait operations is import
ant, since a process wh~executes them releases
exclusion. It appears that the critical factor
is not the length of the monitor itself, but the
length of code between successive ~.operations.
In most situations we would not expect this to be
more than a few instructions.

Another point worth making is that when
monitors are used for all system functions exclus
ion may be granted even when it is not needed.
For example, in the pilot system the procedure
createprocess (part of the process monitor)
creates and initialises a process descriptor and
then chains the descriptor into a global data
structure. Exclusion is required only for the
last of these operations, but it is granted for
all of them. There may be a case here for allow
ing explicit release and acquisition of exclusion
inside monitor procedures, but this would imply
the possibility of a whole range of programming
errors which monitors are specifically designed
to prevent. It would seem more app.ropriate to
revise design ideas so that only those system
functions which require some form of exclusion are
implemented as monitor procedures.

With regard to condition 2. above, a global
exclusion mechanism for a multi-processor config
uration can be provided by means of a test and
set instruction which acts on a single memory
location for all monitors. Such a mechanism
effectively replaces the crisis time problem by a
busy waiting problem. The proportion of processor
time spent in busy waiting will be dependent on
the time spent in executing monitor procedures,
and the earlier comments on this topic still apply.

To summarise, our experience indicates that
local exclusion mechanisms are ruled out by
problems of implementing nested monitor calls, but
that global mechanisms such as disablement of
interrupts or test and set are viable in nearly
all situations. ·

Conclusion

In this paper we have suggested hierarchical
monitors as a design methodology for operating
systems. We have shown that such a methodology
reflects and reinforces the structure of an
operating system, and that it can be applied to all

levels of the system, including the nucleus. The
pilot system indicates, within the limits of any
small scale model, that a full size operating
system could be constructed along these lines.
Further work is necessary, however, to confirm
that the methods of this small scale study are
appropriate for large comnercial systems.

References

[l] P.B. Hansen, "Structured multiprogramning,"
Comn. ACM (July, 1972), pp.574-578.

[2] C.A.R. Hoare, "Monitors: an operating system
structuring concept," Comn. ACM (October,
1974), pp.549-557.

[3] A.M. Lister, and K.J. Maynard, "An implement
ation of monitors," Software .Practice and
Experience (July, 1976), pp.377-385

[4] C.A.R. Hoare, "A structured paging system,"
Computer J.(August 1973), pp.209-215.

' ·~ \

[5] A.M. Lis'ter, Fundamentals of OperatinR
Systems, Macmillan, (1975) • 144 pp.

[6] O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare,
Structured Programming, Academic Press,
(]972). 220 pp.

[7] E.W. Dijkstra, "Hierarchical ordering of
sequential processes."· In Operating Systems
Techniques, ed. C.A.R. Hoare and R.H. Perrott,
Academic Press, (]972), 390 pp.

[8] R.M. Graham, "Protection in an information
processing utility," Comn ACM (May, 1968),
pp. 365-369.

[9] M. Richards, "BCPL - a tool for compiler
writing and systems programning," AFIPS
Conference Proceedings SJCC• (1969),
pp. 557-566.

IEY: PROTECTION === BOUUDARY

==)~· PROCEDURE CAU

USER PROCESSES

NO NO
USER USE!iS

MOW TORS
ii! 3 4 5

LEVELS

FIG.I IMPLEMENTATION OF THE HIERARCHICAL MONITORS NUCLEUS

47

Appendix 1

Listing of the IPC monitor

let !PC.MONITOR (procedure, condvar) • valof
//parameters indicate which monitor procedure and
//which condition variable;
$(
//first.come declarations of monitor procedures;

let wait.(condvar) be
//note 3; -
II wait operation: add calling process to queue
II on condition variable;
$(test condvar ! head =.O
II queue is empty (notes 1,2);

then

$)

$(condvar ! head := curproc;
condvar ! tail := curproc

II process descriptor forms new queue;
$)
or
$((condvar tail) ! cond.var.ptr := curproc;
//note 4;

condvar tail := curproc
II add process descriptor to queue;
$);
runnable ! curproc := false;
II set process not runnable;
CPU.MONITOR (dispatch)
II switch to next process;

and signal. (condvar) be
II signal operation: free first process, if any;
II on queue;
$(if condvar ! head = 0 then ~;
I I queue is empty: do nothing;

nextproc := condvar ! head;
II take first process on queue;

test condvar ! head = condvar tail
II only one process on queue;

then condvar ! head := 0
II now no process on queue;

or condvar ! head := (condvar head}
-cond.var.ptr;

II or simply detach process;
runnable ! nextproc := true;

II set process runnable;
priority .! 11extproc := max priority;

/I force dispatcher to choose it;
if flih.ptr ! sigptr then return;

II signal was called from interrupt handl~r;
CPU.MONITOR {~ispatch)

II switch to freed process;
$)
and queue. (condvar)

//queue operation: gives true if queue not empty;
= (condvar ! head = O ~ false, true);

II end of procedure declarations:
II monitor body starts here;
let res = O;
7T"used to pass out result of queue operation;
if flih.ptr ! sigptr then
71 monitor was called from interrupt handler;

$(signal.(condvar); ~ $);
II so return;
if curproc ! usermode then error action;
71 monitor cannot be called from user level;

48

switchon procedure into
I /enter appropriate ~itor procedure~
$(case wait: wait. (condvar);endcase · case .• signal: signal. (condvar} t endcase

·case queue: ,res := queue.(condvar)~endcase
default: error action c

$};
resultis res
$)

Notes

(1) A condition variable is represented as a
vector of two elements, which point to the head
and tail of the associated queue.
(2) 111 is the B(:PL selector for elements of a
vector.
(3) 1 · • is a valid character in a BCPL identifier.
(4) cond.var.ptr is the offset in a process
descriptor of the element used to chain the
descriptor into a.conditiqn variable queue.

Appendix 2

Partial listing of the teletype output monitor,

let TTYOUT.MONITOR{procedure,Pl} be
'"'j{""p1 is used as parameter of whatever monitor
II procedure is called;
$(

fl declarations of local variables;
static $(tty.busy = false;
--- II teletype busy flag.

tty.condvar = 0
II condition variable;

$};
let key = false;
~- II used to retain exclusion;
I/ declarations of monitor procedures;
let writech.(char) be
/T"outputs single character char;
$(if tty.busy then

IPC.MONITOR(wait>tty.condvar);
·//note l;

machine code segment to output character
$}
and writepn. (n} be
//note :l; -
ff outputs positive integer n recursively;
$(if n > 9 then writepn. (n/10);

writech. (n rem 10 + 1 0 1)

$}
and remaining proc~dure declarations be

II start of monitor body;
if curproc ! usermode ~
II exclusion not previously obtained;
$(lock ();
II obtain exclusion (note 2);

key := true; : .
curproc ! usermode :s false

$)
switchon procedure ~
II enter appropriate monitor procedure
$(~ writech : writech. (Pl); endcase

~ writepn writepn.(Pl); endcase

default
$);

error action

if key then
71 exclusion
$(curproc

must be released;
usermode := true;

unlock(); ~~

II
$)

$)

release exclusion (note 2);

Notes

(1) tty.condvar will be signalled by the teletype
interrupt handler.
(2) lock is a procedure which disables interrupts;
unlock re-enables them.
(3) to avoid redundancy it would perhaps be better
for procedures such as writepn to be incorporated
in a library, and to call the appropriate monitor
procedure (in this case TTYOUT ;MONITOR(writech, •.))
to effect the actual output.

Appendix 3

Outline of a disc control monitor.

let DISC.MONITOR (direction, block,
memory.address) be

II performs disc transfer between block and
II memory.address in specified direction;
$(

II declaration of local variables;
static disc.condvar = O;
II a condition variable;
let cylinder = 0
-rr-used for cylinder number;
let key = false;
-rr-used to retain exclusion;
let HEAD.MONITOR (action, cylinder) be
~A monitor which schedules the disC-head so

as to optimise head movement. A particular
example is given by Hoare [2]. The first
parameter indicates whether the head is to
be acquired or released, the second specifies
the cylinder for the desired transfer.

$)

49

II declaration of DISC.MONITOR procedures;
and read.(block, memory.address) be
~cylinder :=some function (block);

$

II calculate cylinder number;
HEAD.MONITOR(request, cylinder);
II acquire head;
initiate transfer from block

to memory address;
IPC.MONITOR(wait, disc.condvar);
II wait for transfer complete;
HEAD.MONITOR(release, cylinder);
II release head;

and write.(block,memory.address) be
-$-

$)
II monitor body starts here;
if curproc usermode then
71 exclusion not previously obtained;
$ (lock() ;

$)

key := true;
curproc----rliSermode := false

switchon direction into
$(case read :

$

read.(block, memory.address); endcase
case write :

write.(block, memory.address);endcase
default: error action

if key then
71 exclusion must be released;
$(curproc usermode := ~;

$)
$)

unlock()

GARMGE COLLECTION WITH MULTIPLE PROCESSES:
AN EXERCISE IN PARALLELISM

Leslie Lamport
Massachusetts Computer Associates,· Inc.

26 Princess Street :.
Wakefield, Massachusetts O 1880

Abstract

Dijkstra et. al. have described an algo
rithm which allows a garbage collector process to
run concurrently with a list processing proces.s.
Very little overhead is added to the list proc~~sor.
We show that this solution wUl work for multiple
list processes if they obey a simple restriction on
how they are synchronized. We also show how
the garbage collection can be speeded up by the
use of multiple processes. This is done by par
allelizing the sequential collection algorithm.

Introduction

Dijkstra et. al. (l] have described a gar
bag.e coliection algorithm in which a list proces
sing mutator process runs concurrently with a
garbage collector process. This algorithm sug
gests two further problems: (1) to make the algo
rithm work if there are several concurrently exe
cuting mutator processes; and (2) tc:i speed up the
garbage collector by using multiple processes.
In this paper, we solve these problems by (1) in
troducing some constraints on how the mutators
may cooperate, and (2) "parallelizing" the se
quential collection algorithm. As multiprocessor
computers become available, techniques for the
parallel execution of algorithms will become in
creasingly important. We hope that our solution
to this parallel processing problem will contribute
to the development of these techniques.

The primary goal of the original solution
was to keep the mutator's overhead to a minimum,
so no unnecessary synchronization of the mutator
and the collector was introduced. (This is in con
trast to the usual approach to such a problem, as
in [2] •) We shall maintain this goal in our solu
tion. However, we will introduce some extra syn
chronization overhead into the collecting algorithm
when it is executed by multiple processe.s. Ex
perience indicates that we usually cannot expect
to find an n process algorithm which runs n
times as fast as a sequential one, even when com
putational complexity arguments. indicate that it is
pos·sible.

The history of the algorithm in [l] shows
that the concurrent garbage collection problem is
remarkably difficult. Incorrect solutions with
false correctness proofs survived the scrutiny of
the authors for surprisingly long times, and one
was actually submitted for publication before its
error was discovered. (Only the existence of a
careful, formal correctness proof gives us confi-

50

dence in the final solution.) Given this history,
it would seem almost hopeless to look for a com
pletely new solution for multiple mutators and
collectors. We will therefore start with the two
process solution, and will modify it for execution
by multiple processes in such a way that the cor
rectness of the original algorithm is maintained.

This is an exercise in the parallel execu
tion of sequential algorithms, and we will employ
standard parallelizing techniques. However, un
like previous methods which find the parallelism
using only the sequential program, we will use
our knowledge of why the program is correct in
order to transform it for parallel execution. We
do not yet know how this method can be gener- ·
alized beyond this one problem. However, most
multiprocessing problems are difficult, especially
when unnecessary synchronization must be avoid
ed. Starting with a more sequential algorithm
should simplify the problem in many cases.

The Original Algorithm

We begin with a brief sketch of the origi
nal algorithm which will enable the reader to fol
low the rest of the paper. However, for a com
plete understanding he must read [I]. We assume
a data structure consisting of a directed graph
composed of nodes and edges. A nOde has two
edges, each of which either points to a successor
node or else is null. Certain fiXed nodes are des
ignated as roots, and a node is said to be reach
~ if there is a path to it from a root. A non
reachable node is called a garbage node', A pro
cess can perform the following two separate, in
divisible operations: (1) find the destination of a
given edge, and (2) change the destination of an
edge.

We assume that the mutator will never
make an edge point to a garbage node. However,
by changing edges the mutator can turn reachable
nodes into garbage. The collector must identify
the garbage nodes and change them back into ·
reachable ones by adding them to a particular
part of the graph called the free list.

To solve this problem, we let each node
have a color which may be either white, grey or
black. All nodes are initially white. A node is
said to be shaded if it is grey or black. We intro
duce the following indivisible operatiom1: (1)
change a node's color to a specified value, and
(2) shade a node. The latter operation makes a
white node grey and· 1eaves a grey or black node
unchanged.

The algorithm requires that after changing

an edg.e, the mutator must then shade that edge's
new target node. By properly encoding the colors,
this shading operation can be done by just setting
a bit. The only other mutator overhead is the
synchronization needed because it can try to re
move a node from the free list while the collector
is adding a node to it. This need be no more
costly than the usual overhead of testing if the
free list is empty before trying to remove a node
from it.

The collector repeatly cycles through the
following algorithm, where N denotes the set of
all nodes and </> is the empty set.

I shade all roots ;
s := </> ;
while SIN

Q)
IO

J!
0.

8' :g

QQ. choose n e N ;
S :=SU {n} ;
if n is grey then shade each suc

cessor of n ;
color n · black ;
s := </>

~ ft
L od;
rfor all n e N

8' 1-QQ. if n is white then put n on the
:;::: Q) free list
g ~ else color n white

::::::: -a. fi
8 L od-

This is an equivalent but slightly differ
ent version of the algorithm from the one des
cribed in [l]. The choice of n in the marking
phase is arbitrary, but choosing a node in S ob
viously accomplishes nothing. The marking
phase will eventually terminate if a node n not
in S is always eventually chosen.

The correctness of the algorithm is de
duced by proving that during the marking phase,
the following two assertions are true.

P2. All roots are shaded, and for each
- white reachable node there exists a

"propagation path" leading to if from
a grey node, which consists solely of
edges with white targets.

P3. No edge can point from a black to a
- white node unless the mutator has

just changed it and has not yet shaded
its destination.

P2 is the crucial property. It implies that
after the marking phase terminates, there are no
grey nodes and all white nodes are garbage. How
ever, proving the invariance of P2 required prov
ing the invariance of the stronger assertion P2
and P3.

Multiple Mutators

We now consider the problem of allowing
multiple mutators to use the list structure concur
rently. The mutators must obviously be synchro
nized in some way so they do not interfere with
one another. E.g. , if a mutator reads the desti
nation of an edge and then performs some opera
tions which require that the edge retain that des-

51

tination, then synchronization is required to. pre
vent another mutator from changing that edge. We
will not concern ourselves with the implementa
tion of this synchronization, since it will depend
upon the details of the individual application.

In the correctness proof of the original al
gorithm, the only condition to be verified for the
mutator is that it leaves P2 and P3 invariant. For
multiple mutators, we have the following obvious
generalization of P3.

P3' • No edge can point from a black to a
white node unless some mutator has
just changed it and has not yet shad
ed its destination.

The proof that the marking phase leaves P2 and
P3' invariant is the same as the proof that it
leaves P2 and P3 invariant. To prove the correct
ness of the collection algorithm for multiple mu
tators, we need only show that the mutators
leave P2 and P3' invariant.

It is easy to see that the mutators leave
P3' invariant. Hence, we must only show that
they leave P2 invariant. Unfortunately, without
some further assumption, they do not. For exam
ple, assume that the list structure is initially as
shown in the Figure, where b is black, g is
grey and w is white. Suppose that two mutators
then

perform the following actions in the indicated se
quence.

Mutator A Mutator B

make 13 point to w

shade w

make y point to b
shade b

P2 is false from the time mutator B changes the
edge y until mutator A shades w • If the col
lector finishes its marking phase during this pe
riod, then the collecting phase can incorrectly
identify w as garbage and put it on the free list.

In this example, mutators A and Bare
closely cooperating in their use of the list _struc
ture. If B had changed y before A changed 13 ,
then w would have been garbage when A made 13
point to it. We will place the same restriction on
the multiple mutators that we place on a single

one: namely, an edge cannot be changed to
point to a garbage node. Hence, no "transient
garbage" is allowed. This means thatA and B
must be synchronized so that A changes J3 be
fore B changes y • We will require that this
synchronization also insure that A shades w be
fore B can change y •

This requirement is generalized as follows.
We assume that the synchronization mechanism
enforces some partial ordering => on the muta
tors' operations, where e => f means that the en
tire operation e , consisting of changing an
edge and shading its destination, is perfonned be
fore the operation f is begun. We require that
if the operations of the mutators were to be per
formed in any sequential order consistent with
this partial ordering - i.e., in any order such
that if e => f then e is performed before f -
then this is a valid sequence of mutator opera
tions. In other words, the partial ordering must
be enough to guarantee that the mutators correctly
execute some sequential mutator algorithm.

With this assumption, we now show that
the mutators leave P2 invariant. Suppose some
mutator operation e makes P2 false. Then e
must change an edge and thereby make its fonner
destination n a reachable node with no propaga
tion path to it. This implies that after the opera
tion, every path from a root to n has an edge
pointing from a black to a white node. By P3',
each of these edges has just been changed by a
mutator operation which is not yet completed, and
which is thus unordered relative to e by the or
dering => • Hence, all of these mutator opera
tions could have been performed after e • It is
easy to verify that if they were performed after e
then n would be made a garbage node by the op
eration e and would then be made the destination
of an edge by a subsequent operation. This con
tradicts our assumption that the reordered se
quence of operations must be valid, proving that
the mutators leave P2 invariant.

The mutators must synchronize their activ
ity when removing nodes from a common free list.
Synchronization delays can be reduced by using
several separate free lists. The use of multiple
free lists presents no correctness problem, and
can be implemented without any difficulty. We
will not consider it further.

Multiple Collectors

We will parallelize the collection algo
rithm in three steps: first separately parallelizing
each of the two phases, then executing the two
phases concurrently. We begin with the marking
phase. The node coloring performed by this phase
is easily done by separate, concurrently operating
processes. We simply divide up the set N of
nodes into (not necessarily dis joint) subsets N. ,
and have each marker process cycle through the 1

marking loop for the nodes in one of the Ni • For
a collector in which finding and shading the suc
cessors of n and coloring n black is all one op
eration, it is obvious that such a parallel execu
tion is equivalent to the sequential algorithm.
This is not true for the case of interest, in which

52

examining an edge and shading or coloring a node
are separate operations. However, it is easy to
check that essentially the same proof given in [l]
for the "fine-grained" collector proves that the
parallelized version also leaves P2 and P3' invar
iant. Hence, this is a correct parallelizing of the
sequential marking procedure. The only problem
is when to terminate the marking phase.

The invariance of P2 implies that the se
quential marking phase can be terminated any time
after all the nodes have been examined without
finding a grey one. (Extra iterations of the loop
body do nothing.} However, if a grey node is
found, then any node which was previously found
to be white might have subsequently become grey.
Hence, a new marking cycle must then begin.
For the parallel version, this means that when any
marking process finds a grey node, it must cause
all the markers to restart their cycle. We can
thus write the algorithm for the ith of M markers
as follows.

s := ¢

while sl u

do while S f Ni
do choose n e Ni ;

Si := Si U [n} ;

od

if n is grey then shade each suc
cessor of n ;
color n black ;
for j := 1 .llil
til M

fi
od -

do S. := ¢
od J

If there is some locality condition on the
list structure which restricts the set of nodes to
which a single edge can point, then one can show
that S. need only be set to ¢ if n can have a

J
successor in N. •

This par1llel algorithm requires synchro
nization among all the markers. It is written in a
form that suggests an implementation by an array
computer. For execution by loosely coupled in
dependent processors, process i would not actu
ally set S. to ¢ for j f i • Instead, it would
send some) sort of signal to process j • The ac
tual details will depend upon the characteristics
of the system with which it is implemented. The
interested reader can provide an implementation
using his own favorite synchronization mechanism.
We will simply assume that there is some way of
starting the next phase after the marking phase is
finished.

We next consider the collection phase. It
is easy to execute this phase with multiple col
lector processes. The only requirement is that
they be synchronized so that two different collec
tors do not try to change the same edge at the
same time. A simple approach is to partition the
nodes into disjoint sets, and use a separate pro-

cess to collect the garbage in each set. Each
collector can first "neatly stack" the garbage in
its set, and then add the entire "stack" of gar
bage to the free list by essentially the same oper
ation as adding a single node. Each collector
then only performs one short operation which must
be synchronized with the other collectors, so the
overhead caused by this synchronization will be
small. The synchronization required between a
collector and a mutator when nodes are added to
the free list is the same as for the original algo
rithm.

We have now parallelized each phase, but
the markers are idle while the collectors are run
ning, and vice-versa. To run both phases concur
rently, we will pipeline them. I.e., we will per
form the (i + 1) st execution of the marking phase
concurrently with the ith execution of the collect
ing phase. This is possible because the collec
tors collect only already identified garbage, and
the markers cannot mark that garbage.

There is one obvious problem with pipe
lining the two phases. All nodes must be made
white before the marking phase is begun if it is to
accomplish its purpose; but the collector expects
all white nodes to be garbage. There is an ob
vious solution to this problem. Before executing
the two phases, we change all white nodes to
some new color, say purple, and color all black

nodes white. (a) The collectors will then collect
purple nodes and color them black before adding
them to the free list. The markers will ignore
purple nodes. The mutators can then never make
an edge point to a purple node, so it is easy to
see that a grey node never points to a purple one,
and a purple node is never shaded.

It is obvious that this pipelined algorithm
is equivalent to the parallelized two phase solu
tion if the collectors are executed first, and the
markers are started after they have finished. To
prove that the two algorithms are equivalent in
general, we need only show that all the collector
operations commute with all the marker operations.
It is easy to see that this is the case if a collec
tor only changes an edge of a free list node if it
is null, and then must make it point to a black
node. This condition is easily met by an algo
rithm for adding nodes to the free list - e.g. , for
the one in the Appendix of [l].

Our complete garbage collection algorithm
thus consists of cycling through the following
steps.

1. Wait until all markers and collectors
have stopped.

2. Change all white nodes to purple and
all black nodes to white or grey (pre
ferably white) •

3. Shade all roots.
4. Start the markers and collectors.

Note that in step 2 we have allowed the
possibility that a black node is made grey instead

(a)When the algorithm is started for the first time,
the creation of purple nodes must be suppressed.

53

of white. This may happen because of concurrent
mutator activity. To insure that garbage is even
tually collected, we need only guarantee that a
node which is not shaded by the mutator will e
ventually be made white in step 2.

This pipelined algorithm correctly imple
ments the two phase collection algorithm. I.e.,
after completing step 1, the state of the list struc
ture will be the same as after the end of the mark
ing phase and before the beginning of the collect
ing phase in some possible execution of the two
phase algorithm.

For our multiprocess algorithm to be effi
cient, steps 2 and 3 must be fast, since all the
markers and collectors are then idle. Step 3 will
ordinarily be fast, because there should be rela-

tively few root nodes. (b) We must only make step
2 fast. The easiest way to do this is as follows.
We define three different hues numbered 0, 1 and
2. Each node has a hue and a grey value, the lat-

ter either 0 or t. The color of a node is the sum

of its hue and its grey value. The meaning of the
colors is determined by a global variable base, as
follows (arithmetic is modulo 3): --

base - 1 = purple {garbage)

base - t = impossible

base = white
1

base + 2 grey

base + 1 = base + it = black

The mutators' shading operation is done by setting

the grey value to t, so the setting of base need

not be synchronized with the mutators. Step 2 is
implemented by simply incrementing base by one
modulo 3. Since base is changed only in step 2,
a marker or collector need only read its value once
when it is first started in step 4.

To insure that all garbage is eventually
collected, step 2 must not make a node grey un
less it was recently shaded by a mutator. This is
achieved by simply having a marker reset the grey
value to zero when it makes a grey node black.
However, the identification of garbage can be
speeded up if the markers and/or the collectors
reset the grey value for any black node they en
counter.

The redundancy in the above encoding im
plies that it should be possible to save space by
using only two hues. Making use of the fact that
a marker only blackens an already grey node, we
can employ the following encoding (arithmetic is
modulo 2):

base = white

base + l = grey
-- 2
base + 1 = purple {garbage)

1
base + lz- = black •

However, to make step 2 fast, the grey value of

(b)We can also eliminate step 3 entirely by defin
ing a root node to be permanently shaded.

a node must depend upon a global grey, base.flag,
Step 2 complements this flag and increments ~
by one modulo 2, Unfortunately, this requires
synchronization between the mutators and the
collector, In particular, step 3 cannot be execu
ted until the completion of any mutator's shading
operation begun before grey.base.flag was com
plemented. This adds extra steps to the mutator
operation, but still does not requtre a mutator to
wait for the collector (unless the free list is emp
ty), The details are non-trivial, but will be omit
ted,

Concluding Remarks

Let us now review the method we used to
obtain our solution, and see what general obser
vations we can draw from it. First of all, we ob
serve that instead of starting with precisely the
algorithm described.in [l], we rewrote it in a
somewhat more general form, We allowed the
marking phase to examine nodes in an arbitrary
order, and even allowed it to do useless opera
tions by choosing n in S , This simplified our
proof that the parallelized version was equivalent
to the sequential one, We even had to make use
of the fact that the body of the marking phase's
while loop could be executed after the while con
dition became false, although that is not expli
citly allowed by our statement of the sequential
algorithm, In general, the more freedom of choice
there is in the sequential algorithm, the easier it
is to parallelize it,

We also cheated a bit when writing the
sequential algorithm. In the marking phase, it
would be slightly more efficient to add n to S
only if n is not grey. However, in the multiple
process marking algorithm, process i must add
n to S. before examining n's color, otherwise

.1

another process' resetting of Si to ¢ may not

have the desired effect. This is an example of
the general observation that to parallelize an al,..
gorithm, the sequential ordering of its operations
may have to be changed,

The restrictions necessary to allow multi
ple mutators strike us as being remarkably natural
and elegant. We were able to simply postulate
that the mutators must be synchronized, and then
use that assumption without really knowing any
thing about how or why they were synchronized,
We feel that there must be some underlying gener
al principle involved, but we do not know what it
is. We also do not know how fonnal proof of cor
rectness techniques can be conveniently applied
in this case. ·

The techniques ofparallezing the two
phases of the collection algorithm, and of pipe
lining them, appeared to be quite standard. How
ever, the parallel implementation is not complete
ly equivalent to the original sequential algorithm,
Proving its correctness requires knowledge of why
the sequential algorithm is correct. The color
purple and.the coloring step 2 were introduced to
solve the general pipelining problem of keeping the
overlapping computations from interfering with one
another.

Our solution can be viewed as an attempt

54

to optimize the algorithm for execution on a multi
processor computer. We can apply our experience
to program optimization in general to conclude
that doing a good job of restructuring a program re
quires understanding why it works. The reasons
why the program works are embodied in the proof
of its correctness, We expect that in the future,
a programmer will construct a correctness proof .
with every program, Sophisticated opbimizing
compilers will make use of this proof,

Ultimately, the programmer will have so
phisticated automated assistance in verifying the
correctness of his program. Until then, he will
have to construct difficult multiprocess algorithms
by himself, We believe that the method of paral
elizing a simpler sequential algorithm will make
this task easier,

References

[l] Dijkstra, E.W., et; al,: "On-the-fly
Garbage Collection: An Exercise in Co
operation", to appear in Comm. ACM ,

[2] Steele, Guy L •. , Jr,: "Multiprocessing
Compactifying Garbage Collection", Comm,
ACM .!.!l, 9 (September 1975), 495-508.

·------------------

HIERARCHICAL PROPERTIES OF CONCURRENCY

by G. S. Tjaden
Sperry Univac Systems Division

Technical Planning Department
Blue Bell, Pa. 19422

Abstract: Instructions and tasks
can be equivalently treated as requests
for service by computational resources.
For any given machine language program a
request hierarchy can be constructed
which has interesting applications to
the problem of the dynamic hardware de
tection and control of execution of con
currency. Starting with a binary vec
tor-pair model of instructions and
knowledge of the destinations and branch
instructions, a hierarchy of tasks is
constructed which allows a global dy
namic analysis of large programs to be
made by the hardware during the execu
tion of the program. This approach
could lead to detectable program execu
tion speed-ups on the order 0£ 2N for
an N level hierarchy. Better speed-up
results should be obtainable for "top
down structured" programs than for "un
structured" programs.

1.0 Introduction

As pointed out by Amdahl (1), there
is a strong economic motivation to pro
duce higher performance less costly com
puters which do not require new or modi
fied software for efficient operation.
Such computers can be designed by 1)
using a faster-cheaper technology to im
plement an existing architecture, 2) de
signing a new architecture which exe
cutes an existing instruction repertoire
but utilizes more of the concurrency in
existing instruction streams to increase
the performance, or 3) some combination
of these approaches.

Approach 2 can be applied in many
ways. This paper will discuss one of
these involving extensions to the cur
rently known methods for the hardware
detection and control of execution of
concurrency in machine language instruc
tion streams during the execution of the
streams (dynamically) .

An instruction can be thought of as
a request for service by computational
resources (4). A program or task is
then a stream of such requests. On the
other hand, a program or task itself is
a request for service by computational
resources. The task is composed of a
stream of "sub-requests" for service,
each of which may also be a task com
posed of further "sub-requests" as shown
in Figure 1. Thus, from the viewpoint
of requestors and servers, instructions
and tasks become indistinguishable. A
problem as embodied in a program or task

SS

can then be thought of as a "request
hierarchy", with only the bottom level
of the hierarchy being requests for the
actual hardware resources of the com
puter.

This request hierarchy has certain
interesting properties with respect to
the dynamic detection and control of ex
ecution of concurrency. In particular,
this hierarchical representation can
allow a global analysis for concurrency
detection purposes of a large program
dynamically with the hardware. Such an
analysis has normally been thought of as
being feasible only with software during
a "pre-processing" phase. It is also
possible, through proper construction of
the request hierarchy, to "remove"
branch instructions from the instruction
(request) stream with the expectation of
improving the detectable instruction in
dependencies in the stream.

2.0 Representation of Instructions
and Tasks

2.1 Definitions. Computers are thought
of as being composed of two types of re
sources.

Type 1: Storage resources (s
resources), which preserve values over
time.

Type 2: Transformational resources
(t-resources) which transform values ob
tained from storage resources (the
sources of the t-resource) and place the
results into storage resources (the
sinks of the t-resource) .

Resources are used to perform com
putations. Computations are specified
by instructions.

Definition 1: An instruction I is
as follows:

a) A specification of a set of trans
formational resources, a set of sources
for these transformational resources and
a set' of sinks for these transformation
al resources.

b) An ordering relation (partial or
total) over the set of transformational
resou:i;-ces.

Complex computations generally re
quire more than one instruction for
their specification. Such complex com
putations are specified by tasks.

Definition 2: A task T is as
follows:

a) A specification of a set of in
structions.

b) An ordering relation (partial or
total) over this set of instructions.

Let the set of instructions speci
fied by the task be indexed by the posi
tive integers so that Ii is a particular

instruction and 1 ~ i ~ N, where N is the
number of instructions in the task. Let
the ordering relation © be interpreted
such that if I.© I., then I must

l. J i
appear in the sequence before I .• For a

J
partial ordering relation it may be the
case the I. © I . and I . © I but I . ell

l. J l. k, J ...,.,
Ik and Ik G/J Ij ((/J means no ordering is

defined) • In this case more than one
initial execution sequence is defined.
That is, the sequences I., I., Ik' and

l. J
Ii' Ik' Ij are both initial sequences

unaer the above ordering relation. The
fact that Ij and Ik are nor ordered with

respect to each other and that tasks
must be deterministic implies that these
instructions may be executed at the same
time (concurrently) or in any order and
still preserve determinacy.

If the ordering relation is total,
then only one initial execution sequence
is defined, called here the serial execu
tion sequence. Although concurrent exe
cution cannot occur under a total order
ing relation, a partial ordering rela
tion can be derived such that the same
values are computed under the partial
ordering as under the total. The term
potential concurrency will be used to
refer to the chances for concurrent exe
cution under an ordering relation.

Execution of a task under an order
ing relation involves an interaction
between the ordering relation and the
instructions specified. That is, the
actual sequence in which executions are
made may be different from the initial
sequence defined by the ordering rela
tion. This difference is because the
execution of branch instructions can
cause the ordering Ii© Ij to be altered.

Reference (7) formally classifies branch
instructions into two types, forward and
backward by how they alter the orderings
of the relation. Branch instructions
are informally characterized here by the
relative position of the instruction to
which the branch instruction transfers
control, called the destination of the
branch instruction. If a branch in
struction Ii has a destination Id' d 'I i

+ l, in the serial execution sequence
such that i < d, I. is a forward branch

l.

instruction. Otherwise it is a backward
branch instruction.

Backward branch instructions can
cause certain subsequences of the initial
serial execution sequence to be executed
more than once. Thus, these subsequen-

56

ces may appear more than once in the
actual execution sequence.

Definition 3. A cycle is any sub
sequence of the initial serial execution
sequence that appears more than once in
the actual execution sequence. Each
occurrence of a cycle is called an iter
ation of the cycle.

Conversion of a totally ordered
task to a partially ordered one must be
done i.n such a way that determinacy of
the resulting execution sequences with
respect to the original serial sequence
is preserved. The following definition
is the key to converting total ordering
relations into partial ordering rela
tions.

Definition 4. Two instructions,
Ii and Ij are independent if and only

if no sink of Ii is a source of I. and
J

no sink of Ij is a source of Ii. Other-

wise Ii and Ij are dependent.

When I. and I. are dependent, a de-
1 J

pendency is said to exist between them.
From Definition 4, dependencies exist
when a sink of one instruction is a
source of the other. Dependencies are
here classified into two types, data
and procedural. Procedural dependencies
are caused only by branch instructions
while data dependencies can be caused by
both branch and nonbranch instructions.
Branch instructions are thought of as
calculating values which either deacti
vate or reactivate certain orderings in
the ordering relation.

:Definition 5. Suppose that the s
resource denoted by r is a sink of I. x l.
and a source of I ..

J
Then there is a

aependency between I. and I ..
l. J

is a branch instruction and r
x

If I. is
l.

is the

sink used by Ii for the values which

effect orderings, then the dependency is
a procedural dependency. Otherwise the
dependency is a data dependency. Pro
cedural dependencies must be treated
differently from data dependencies. This
difference in treatment is because data
dependencies indicate the necessity of
observing a specific order of execution
while procedural dependencies indica.te '
that there is an uncertainty as to
whether or not an instruction should be
executed. The s-resources into which
branch instructions place deactivation
reactivation values are called IC re
sources.

There is a special type of independ
ency caused by backward branch instruc
tions. Instructions that belong to the
same cycle, but are independent in dif
ferent iterations of the cycle will be

called cyclically independent. Tech
niques for detecting this intercycle de
pendence are complicated by the fact
that, in general, only after the execu
tion of a backward branch is it known if
another iteration of a cycle should be
executed. Thus, this detection must be
done dynamically (that is, while the task
is being executed).
2.2 Vector Representation and Properties
Detection of independence of instructions
requires knowledge of the source and sink
resources of the instructions. Let the
storage resources be indexed by the posi
tive integers so that each s-resource has
a unique index. The symbol ri will be

used to refer to the s-resource whose
index is i. For any instruction I. two

A J
binary vectors e. and d. are defined as

J J
follows:

"{
iff r. is a sink of I.

eji
1 J

otherwise

"{
iff r. is a source of I.

dji
1 J

otherwise

Thus, the set of storage resources are
thought of as a resource space and the
vectors ej and dj for each instruction

I. are vectors in this space.
J

For the purposes of this paper, in
structions will be considered to be com
~letely characterized by these vectors
d and e. This characterization allows
the independence (and dependence) of two
instructions to be expressed mathemati
cally. The following lemma follows triv
ially from D~finition 4.

Lemma 1: Two instructions I. and
A 1 A

I. are independent iff e .• d. = e .. d.
J 1 J J 1

= 0, and are dependent otherwise.
It is assumed that the multiplica

tion indicated is the Boolean scaler pro
duct operation.

Reference (2} describes in detail a
method by which potential concurrency can
be detected and concurrent instruction
execution controlled using the source
sink vector pairs for the instructions of
a task. This particular method involves
the computation of an 11 0-rdering matrix"
(similar to a precedence matrix) for con
currency detection and control. Several
different types of ordering matrices,
differing in the amount of potential con
currency detectable, are discussed. It
is shown that intercycle independencies
can be detected and controlled with a
properly constructed ordering matrix.

The particular method used to detect

57

and control concurrency is not really
important to this paper. It is impor
tant to have shown, however, that a de
scription of a task using source-sink
vector pairs and an initial serial order
ing is sufficient for concurrency detec
tion and control. Certain of the empir
ical results discussed in Reference (2)
with respect to the measured potential
currency obtainable with ordering ma
trices will be used to infer an expected
potential concurrency obtainable with the
hierarchical approach of this paper.

3.0 Formation of Levels

3.1 A First Approach. An instruction at
1

level v 1 , Ii, can be formed from a task

at level V0 , T~, in the following way.

The set of storage resources which the
level V instructions have as sources

0

or sinks are said to form a resource
space. A

The set of d and e vectors of these
level V instructions is said to define

0

a Boolean Vector Space, also denoted by
the symbol V0 . Thus, associated with a

level of instructions, Vi' is a Boolean

Vector Space (BVS), vi. This vector

space will not be Euclidean because of
the way operations in this space will be
defined. Thus, here it is called
Boolean. 1 0

To form I. from T. it is sufficient
1 A 1

to find two vectors, d. and e., which
1 1

completely define the sources and sinks

of I~ in v 1 . The space V1 is formed

from V0 by partitioning of the resources

of V into sets. Each of these sets is
0

a single resource of v 1 .

Although any arbitrary partition
ing of the resources of V0 into disjoint

sets would produce a valid space v 1 , a

particular partitioning scheme which
facilitates construction by a preproc
essor (before any executions take place)
will be described. 0

Suppose a large task, T , of size N
is partitioned into subtasks of size n.
Let these subtasks be denoted by T~,

0 0 T2 , TN.Level V0 instructions
{-}
n o

are in T 1 , In+l ..•• I 2n are in

Define the vectors

n.i
v e. and d~

j=n. (i-1)+1 .J

n.i A

v d.
j=n. {i-1)+1 J

That is, e: and d' are the.·vectors forrn-
l. i

ed by taking t,he element by element
union of the sink and source vectors of
the instructions of T~. The vectors

e' and d' are in the space V0 •
i i

The sets of vectors {ej_} and {di} ..
contain all of the resourc'e information
necessary to corre-=tly order the rela
tive execution of the subtasks. In fact,
one could use .these vectors to calculate
an ordering matrix for these subtasks.
Each subtask would be treated as an in
struction, and v1 would be a subspace of

V0 • Potential concurrency would be

lost, as the following exampl~ demon
strates.

Suppose Ixin T~ has rk as a sink,

and no serially previous instruction in
T (remember T9 is a subtask of T) has

l. '
rk as a source or a sink. Also suppose

that I+ in T9 has r. as a source, and
x a J. J

that T~-b contains an instruction having

r. as a sink. Neglecting branch .in-
J

structions I would be executably inde
x

pendent as soon as T is activated, but
T9 would not be executably independent

l.

until T'? b is exec.uted because of the
].-

dependency caused by r .•
J

The space V0 is a very impractical

one with which to work. For a large
task, T, the dimension of v would be

; " 0
very large since each storage resource
specified occupies one component posi
tion in the vecto·rs of V0 • Notice, how-

ever, that each subtask, Ti' specifies

only a subset of the s-resources speci
fied by T. By assigning this subset of
resources to ·a single component position
in the vectors of another space, v1 , the

dimension of the vectors in v1 can be re

duced. If the dimension of v1 is still

too large, the space,. v1, can be parti

tioned into another space, v 2 , of even

smaller dimension. This process can con
tinue until a space has been constructed
whose dimension satisfies any arbitrary
constraint.

A procedure for constructing these
spaces is now given. Because o(the re
lationship between tasks and instruc
tions, this single procedure is used re
cursively to construct all of the higher
level spaces in a single pass over the
level V0 task. An important parameter

58

in this procedure is the decision rule
for determining the partitioning of a
task into.subtasks. For ease of under
standing, it will be assumed for now
that the partitioning is only according
to the size of the subtask. .zrhat is,
starting at the first instruction of a
task r 1 , it is partitioned into sub-

tasks of equal size, n.. It is assumed
that, when the procedure is examining
instruction I. of the task only the

l.
subspace of V0 defined by ·the instruc-·

tions previous to Ii in the initial ex

ecution sequence is known to the pro
cedure. Thus, the space, V0 , is com:-

pletely defined only after the .Proce.;..
dure has terminated. The following pro
cedure is illuE:trated in Figure 2.
(1) Begin by constructing a1 and e1 for

i 1 , in the subspace of v0 defined by I 1 •

That is, assign each source and sink of
r 1 to a component position in V0 , and

set the components of el and dl to one

or zero as required. The assignments
of resources to component positions are
stored in a special table called the
Resource Table (RT). If this procedure
were incorporated into a compiler, the
RT could be part of the symbol table
of the compiler. A

(2) Then construct the vectors a2
and e2 for r 2 • For each resourc~. rx,

specified by r 2 , check the resource

table to determine to which component
position rx has been assigned. If rx

has not been assigned a position (be
cause it was not requested by I 1) then

a position is assigned to it, this
assignment is noted in the RT, and the
components of d. 2 and e2 are set accord-

ingly.
It is necessary at this point to

construct a new pair of vectors.

. Ao A A Ao A A

Define: 41 = d 1 V d 2 and ~l = e 1 V e 2 .

It is these vectors which will be .used
to co~struct the space v1 • the super-

"O script of 41 denotes the fact that this

vector is formed at level V0 , and the

subscript indicates that it was formed
from instructions in subtask T¥ (first

n instructions in T) . See Figure 2
part b.
(3) s;;onstruct, successively, the vec
tors d. and e. for eacb I. such that

1 l. . 1

3 ~ i ~ n. After each pair of vectors
is constructed, perform the operations

AQ AQ A Ao
~l : = ~l V di and ~l

Then proceed to Ii+l.

c.

: = @o V " -1 ei.
See Figure 2 part

(4)
for I

After the source and sink vectors
have been constructed, the con-

n
struction of the Boolean Vector Space,
v1 may be started. This is done by

partitioning the set of resources speci
fied in TY into disjoint subsets, and

assigning a single resource in v1 to

each of these subsets. There is no a
priori reason to suspect that any rule
for forming these subsets is better than
any other. The simplest rule would be
to not form any subsets at all. That is,
assign all of the resources of TY to a

single component in the vectors of v1 .

Another rule might be to form two sub
sets, one of which has all of the
sources which TY specj_fies (for which

the elements of~~ are set to one), and

the other having the sinks (if any) .
One would expect, intuitively, that par
titioning into many subsets will result
in a smaller decrease in potential con
currency than partitioning into only a
few (or none) subsets. The dimension of
v 1 will grow larger as more subsets are

formed, however.
To simplify the explanation, we

choose to assign the set of resources
specified by T~ to a single resource in

v 1 . Before describing the modifications

to the RT necessary to implement this
rule, the special way in which the IC
storage resource, rIC' is handled must

be described. An IC resource is defined
to exist at every level. Thus, the IC
resource is not included in the set of
v 0 resources assigned to a single v 1
resource. The IC resource is assigned
to component position one of each re
source space.

The modifications necessary to the
RT are illustrated in Figure 3 part a.
Another row, c 1 , must be provided in the

table for the resource assignments of.
space v1 . Under our partitioning rule,

element IC of this row is given the
value one, and all other elements re
quested by T~ are given the value two.

In general, for each resource space
formed, Vk, a new row, ck, must be added

onto the RT.
It only remains in this step to

form the vectors ai and ei for the newly

59

created level v1 instruction Ii corres

ponding to T~. This is done by using

the vectors ~l and !~ in conjunction

with the RT.
Let RTmn be the value in the nth

column of row c of the RT for m > O and
m "o -

n ~ 1. Then Vk such that ~lk 1, find

the p such that RT0 =k. Then find
"l'p

RT1P = x and set dlx = 1. Set all other

"1 elements of d 1 to zero. Then construct

e~ from ~~ in the same way. See Figure

3 part a for an example. These two vec-

1 tors completely represent I 1 . They are

stored for later use in calculating
level v1 ordering matrices.

At this point, delete the vectors
"O 0
~l and ~l as they are no longer needed.

Also, delete the values of the elements
on row c . These values will be re-

o
assigned during the scanning of T~.
(5) At this point in the procedure the
vectors of T~ in space v1 are construct-

ed using steps (1), (2) and (3). The
level V resources of the instructions

' 0

of T~ can be assigned to the same com-

ponent position in V0 as were used for

the instructions of T~, because all

orderings between instructions in T~
and those in T~ will take place via

level v1 instructions Ii and I~. Thus,

instructions in different subtasks at
the same level may have different re
sources assigned to the same component
position of their respective resource
spaces. Figure 3 part b illustrates
this, using the instructions I 5 ... I 8
as T~. Notice that resource c has not

been assigned a component position in
the space for T~ since it is not speci-

fied in this subtask.
After the vectors for I~n have

been constructed a level v1 instruction,

namely I~ is constructed using the me

thod given in step (4). In space v1
the resources requested in T~ have al

ready been assigned a component position.
This position is found in row c 1 of the

RT. All resources specified in T~ but

not specified in T~ are assigned to a

previously unassigned component position
in v1 . In the example of Figure 3, the

variables R1 , A, B, and C were previously

assigned to position 2 in v1 .

To specify I; its source and sink

Al 1
vectors, d 2 and @2 must be constructed

using step (4) with~~ and ~~·
Al 1

The vectors d 2 and @2 are stored as

the second instruction of the level v1

task. The vectors a1 = a1 V a21 and e1
-2 1 -2

Al Al f e 1 V e 2 are formed or later use in con-

structing I~ from Ti, just as Ii was con

structed from T~.
(6) Thus, the construction of instruc
tions at each level is done with an iden
tical procedure. The procedure is
applied to each subtask T~ for 1 ~ i~ n.

The space v1 is formed simultaneously

with the formation of v 0 . After subtask

To has been scanned (after encountering
n

instruction I 0 2)there will have been con-n
structed enough level v1 instructions,

Ii, I;, ... , I~ to begin forming the

space v2 . This space is formed from Vl

in exactly the same way in which v 1 was

formed from V0 • Another row in the RT,

called c2 , will be needed.

This top-down scanning of T con
tinues and, by recursively applying steps
1-6, successively higher levels are form
ed. After I 3 is encountered one can be-

n
gin forming v3 , after I 4 one can begin

n
forming v4 , etc. After all of the in-

structions of T.have been analyzed, there
will be a hierarchy of levels. The top
level, Vk' will have no more tha:n n

instructions, and can thus be represented
with an ordering matrix having no more
than n rows and columns. Note that the
levels are all formed simultaneously, in
a single scan of T.

One can see that for all levels, v.
l.

such that i > 0, the dimensions of each
of the spaces constructed is bounded at
n+l. In each space n instructions were
constructed, and each instruction adds at
most one resource (component position) to

60

the space. The IC storage resource is
defined separately in each space, giving
at most n+l components in the vectors of
each space. For cases of practical in
terest, the dimension of V is also of

0

bounded size. For example, if the in
structions of V0 are machine language

instructions, then the resources speci
fied by these instructions consist of
a fixed set of machine registers and
other physical devices (e.g. I/O
channels), plus a fixed number (usually
one) of memory cell specifications.

3.2 Some Better Partitioning Rules
If an instruction, I?, in a subtask,

l.
mo
ij, is a branch instruction (has rIC

as a sink), then the instruction con

structed for T~ in space v1 will also

be treated as a branch instruction in
v1 . Suppose that the average number

of instructions between branch instruc
tions in T is u. Also suppose that n is
chosen such that n > > u. Then the pro-

bability that a particular subtask T~,
J

contains at least one branch instruction
is very large. But this would mean that
almost every level v1 instruction is a

branch instruction, as would also be the
case for all levels above v1 . One would

expect this p~oportion of branch instruc
tions to seriously degrade the potential
concurrency at these higher levels.

It is apparent that rules for parti
tioning a task into subtasks such that
the probability of creating a higher
level branch instruction is minimized
(or at least reduced) would be helpful.

We will outline here a set of partition
ing rules which will help achieve the
above goal.

There are two types of instructions
whose occurrence during the scanning of

T0 will signal a "good" partition point
in the sense that there may be a reduc
tion in the number of higher level branch
instructions. They are (1) a branch in
struction, and (2) a destination instruc
tion. Destination instructions can be
detected during assembly by the occur
rence of a label.

The following assumptions are made
here:
(1) For each instruction, Ii' at whatever

level, it is known whether or not I. is a
l.

destination.
(2) If Ii is a branch instruction, then

it is known whether Ii is a forward or a

backward branch instruction.

(3) If Ii is a destination instruction,

then it is known whether I. is the desti-
i

nation of a forward branch instruction
(called a forward destination) or of a
backward branch instruction (a backward
destination) .
Note: It is possible for Ii to be both

a forward and a backward destination.
We wish to take advantage of the

following type of situation. Suppose re:>
i

is a forward branch to I~. If I~ and I~
J 1 J

0 1 are in the same subtask, Tk, then Ik need

not be designated a branch instruction

(at least due to the presence of I~)
i

since at level v 1 the destination of I~
is itself. One can see that good parti
tion points would be:
(1) immediately before a forward branch
instruction.
(2) immediately after a backward branch
instruction.
(3) immediately after a forward destina
tion.
(4) immediately before a backward desti
nation.

Partitioning at these points will
increase the probability of placing a
branch instruction and its destination
in the same subtask. These partition
points will also be good ones to use at
higher levels since there will always be
some level at which a branch instruction
and its destination can be found in the
same subtask. However, it may be possi
ble that several branch instructions are

in the same subtask, T~. at a particular
i

level. The corresponding 'level Vk+l in-

struction, I~+l, is thus a branch in-
. i

struction which could have both forward
and backward destinations. However, at
some higher level, Vk+p' this instruction

will be in the same subtask as its desti
nations, a'nd thus will cease to cause
branch instructions at levels higher than
v k+p.

4.0 Executing Programs From
the Hierarchy

We now illustrate one possibility
for a computer organization which takes
advantage of the existence of this hier
archy. It is assumed that a program is
stored in memory as a serially ordered
sequence of instructions, and that this
sequence has been partitioned into a hi
erarchy of levels according to the pre
vious section. The higher level instruc-

61

tions are grouped together into their re
spective levels and are stored as seri
ally ordered sequences in a way which fa
ci li ta tes accessing a subtask of a par-

ticular level, T~. knowing only the level
i

V · t t' Ij+l to which it cor-j+l ins rue ion, i ,

responds.
The execution of a task, T, will

take place as follows. Suppose that Vk

is the highest level formed for T. Then
the first step is to form an ordering ma-

trix for Tk, called Mk, and to initialize

the control variables for Mk using the
control variable transition rules of
Reference (7). Suppose that two instruc-

tions, I~ and I~, in Tk are found exe-
i J

cutably independent. Since these in
structions are "higher level" instruc
tions they do not directly request speci
fic physical machine resources. "Execu
tion" of these instructions is done by
calculating ordering matrices, for the

k-1 k-1 level Vk 1 subtasks, T. and T. , to
- i J

which these instruc±ions correspond.
Then these subtasks are executed from
their ordering matrices. When all of the

instructions of T~-l. for example, are
i

found inactive (task T~-l has terminated)
i

then Mk is notified that I~ has completed
i

execution and the transition rules are

applied to Mk so that other instructJons
may be found executably independent. ··

Suppose that k ~ 2. Then the in-

structions of T~-l and T~-l must be exe-
i J

cuted by forming ordering matrices for
the level vk_ 2 subtasks to which they

correspond, and executing from these
ordering matrices. It is only level v 0

instructions which are executed directly
on the physical machine resources. No
tice that if at some level, VP, for

p > 0, more than one instruction is found
executably independent at the same time,
then there will be at least two level V

0

subtasks executing concurrently. Each
of these subtasks may, of course, have
several instructions executably independ
ent at any one time.

No direct measurements have been
made to determine the amount of detect
able potential concurrency which exists
at levels above level zero. There is en
couraging indirect evidence, however from
which arguments can be made that this hi
erarcpial approach has good potential.

The first such argument is based on the
fact that the empirical results of Refer
ences (5,6) were based on measurements of
machine language programs, while those of
Reference (2) were based on measurements
of high level language programs, (ALGOL
and FORTRAN). Since each statement of a
high level language task is compiled into
an ordered set of machine language in
structions, it seems reasonable to con
sider these machine language "subtasks"
as residing at level V0 , while the high

level language statements are the equi
valent level v1 instructions. The em-

pirical results show that the average
rate of independence (average number of
instructions concurrently executable) is
about the same (1.8) for both levels.
Thus, executing FORTRAN and ALGOL pro
grams under a two-level hierarchy as de
scribed here should lead to an effective
rate of independence of 1.8 x 1.8 = 3.24
(neglecting overheads). Table 1 summa
rizes the results of Reference (5), la
beled Tjaden and Flynn, and Reference
(6), labeled Riseman and Foster, as well
as Reference (2).

The second argument is based on the
strong correlation between the density
of branch instructions and the rate of
independence shown in Table 1. Assum
ing that these two factors are correlated
as the Table indicates (i.e., branch in
struction density inversely proportional
to rate of independence), the rate of in
dependence at the upper levels of the
hierarchy should be the same as that at
lower levels if the branch instruction
density can be maintained equal to this
density at the lower levels. The parti
tioning rules and the definition of high
er level branch instructions were defined
with this maintenance of density in mind.

It is expected that the choice of
maximum partition size, choice of parti
tion points, and the inherent control
structure of the program will strongly
affect the rate of independence at the
upper levels. If the partition size is
too small, relatively few branch instruc
tions will have destinations located in
the subtask with the branch instruction.
If the control structure is very random,
the chances of finding a partition point
such that all of the branch instructions
in a subtask also have destinations in
th~t subtask will be relatively low.
Top-down structured programs should be
well suited for execution in the hiera.r
chical environment described here. Not
only are such programs hierarchical in
structure themselves, but their reliance
on procedure calls and limited control
structure forms should reduce the density
of branch instructions at all levels.
Procedure calls, in particular, should
not be treated as branches and returns,

62

but as higher level instructions with the
procedure itself treated as a subtask at
a lower level.

5.0 Conclusion

If an average rate of independence
of two can be achieved at each level of
the hierarchy, then the effective rate
of independence should be on the order
of 2N, where N is the number 0£ levels.
Very large problems should result in a
hierarchy having a great number of le
vels, and a resulting large effective
rate of independence. There is, of
course, a maximum number of levels be
yond which no increase in potential
concurrency will be realized. Riseman
and Foster (6) have measured a maximum
average speed-up {rate of independence)
due to concurrency of about fifty. Thus,
the maximum number of useful levels will

be that number, N; such that 2N ~ 50, or
N = 5. If, for example, a partition size
of 32 is chosen, the largest program

which can.be partitioned under the 2N
25 speed-up can have no more than 2 "'

3xl07 instructions. If two memory words
are required to store the source-sink
vector pair for each subtask {partition)
of size thirty-two, the memory overhead
as a percentage of program size will be
about 7%.

It is very reasonable that the rate
of independence should increase rapidly
and nonlinearly with program size using
the hierarchical approach. One would
expect large programs to possess a cor
respondingly higher potential for con-'
currency than smaller programs because
of global independencies. This hier
archical approach can result in detection
of these global independencies. It is
not clear that present dynamic concur
rency detection algorithms are powerful
enough to detect such global independen
cies. One would expect that algorithms
which use semantic information contained
in DO-LOOP definitions, for example, may
be required to effectively utilize glo
bal concurrency. A good deal of re
search remains to be performed before
the viability of these ideas can be de
termined.

REFERENCES

(1) G. M. Ahnldahl, Keynote Address
of The Third Annual Symposium
on Computer Architecture,
(January 19, 1976).

(2) G. s. Tjaden and M. J. Flynn,
"Representation of Concurrency with
Ordering Matrices;" IEEE-TC,
(August, 1973), pp. 752-761.

(3) R. M. Keller, "Look-Ahead Process
ors, " ACM Computing Surveys,
(December, 1975), pp. 177-196.

(4) M. J. Flynn, "Some Computer Organi
zations and Their Effectiveness,"
IEEE-TC, (September, 1972.), pp. 948-
960.

(5) G. s. Tjaden and M. J. Flynn, "De
tection and Parallel Execution of
Independent Instructions," IEEE-TC,
(October, 1970), pp. 889-895.

(6) E. M. Riseman and c. c. Foster, "The
Inhibition of Potential Parallelism
by Conditional Jumps," IEEE-TC,
(December, 1972), pp. 1405-1410.

(7) G. s. Tjaden, "Representation and
Detection of Concurrency Using
Ordering Matrices," Ph.D. Disserta
tion, The Johns Hopkins University,
Baltimore, Md. (1972).

FIGURE2

Forming Resource Space Vo
11: R1 = A
lz: R1 = R1 + B
13: IF R1 > 0 GO TO X
14: C = R1

PART A

SUBTASK T~ FOR n = 4

RESOURCE TABLE

RESOURCE IC

row Co COMPONENT 1

IC R1

d~= 0 0

Clo=
2 0

;;o=
-1 0

R1 A B

2 3 4

A B

e~=
0 1 eg=

!~=

PARTS

AFTEIUTEP (21

IC R1

0 1

0

0

A B

0

0 0

0 0

63

FIGURE 1

The Relationship of Tasks and Instructions

•

SUBTASK SUBTASK SUBTASK

FIGURE 2

Forming Resource Space Vo (Cont'd)

RT

I ~:~ I 1~ I R; I : I : I ~I
IC R1 A B c IC R1 A B c

do= -1 0 eo=
-1 0 0 0

dg= 0 0 0 0 -eg= 0 0 0 0

do=
-1 0 0 .o.

-1 0 0 0

d~= 0 0 0 0 ·~= 0 0 0 0

do•
-1 0 0 .o.

-1 0 0

PARTC

AFTER STEP 131

FIGURE3

Forming Resource Space V 1

RT

RES IC R1 A B c
Co 1
c, 1 2 2 2 2

0

PART A
MODIFICATION OF THE RT TO FORM

SPACE V1 FROM STEP (4)

TASK

NO. INSTS.

NO. INSTS.
EXEC.UTED

DENSITY OF
Bf!ANCH INST.

TEST 1
IE•V)v(E·VI'

TEST 2
(f1.y1)v(El,·V'Jt

TEST3

(E' ·V'I ~ IE1 •V1)1

TEST4

{E1•V1J @ (E1·V'}t

·(R')2

TESTS
M'lvM•vMPP

410

62

173

0.371

1.21

1.4

1.5
..

1.5

1.53

TABLE J.

417

48

102

0.354

1.22

1.5~

1.67

1.67

1.96

64

FIGURE3

Forming Resource Space V1 (Cont'd)

115: R1 • D

TO 15: Rt • Rt •A
2 17: R2 = R1 + B

ta: D • Rz

RT

RES. IC R A B

Co 2 4 6
Ct 2 2 2

IC .Rt D A

(jg. 0 0

d~· 0 0

d~= 0 0 0

d~· 0 0. 0 0

(jO.
-2 0

d~· 0

c 0 R
3 5

2 3 3

Rz 8 lC Rt

.g. 0

.g. 0

0 ·~- 0 0

0 .g. 0 0

!~- 0

·i- 0

PARTB

THE RESOURCE SPACES FOR T~ AND 1i

428 TOTALS AVERAGE

58 168

233 608

0.241

R
1.64 1.38 A

T
E

1.83 1.61 0
F
I

2.2 1.79 N
0
E
p

2.33 1.83
E
N
0
E
N

2.45 1.98 c
E

D A Rz 8

0

0 0

0 0 0

0 0 0

0 0

THE FLIP NETWORK IN STARAN (a)

Kenneth E. Batcher
Digital Technology Department

Goodyear Aerospace Corp.
Akron, Ohio 44315

Abstract - The flip network in each array
module of STARAN scrambles and unscrambles
multi-dimensional access (MDA) memory data.
The flip network can permute data on transfers
from memory to PE's, from PE's to memory,
and from PE' s to PE' s. Among the allowable
permutations are barrel shifts, barrel shifts on
substrings, and FFT-butterflies. The network
can be used for such data manipulations as shift
ing, mirroring (flipping end-for-end), irregular
spreading, or compressing and replicating.
These manipulations are useful for sorting, fast
Fourier transforms, image warping, and solving
partial differential equations on multi-mesh
regions.

Introduction

An earlier paper (Ref. 1) describes the
multi-dimensional access (MDA) memories in
STARAN. Memory data can be accessed (fetched
or stored) by words, by bit-slices, by byte
slices, etc. MDA memories are built with ordi
nary RAM chips, and data is scrambled acer
tain way when stored in memory so that it can be
accessed in various ways.

en

READ/WRITE
CONTROL

INPUT

A scramble/unscramble network is required
to scramble the data when it is stored into mem
ory and to unscramble the data when it is read
from memory. The flip network (Figure 1) does
the scrambling and unscrambling and can also
perform a number of other useful permutations.
Bauer (Ref. 2) has s110wia how a number of data
manipulating functions can be performed using
the flip network with appi;opriate PE masking.

Here, we show the co•struction of the flip
network and then a method of irregularly spread
ing and compressing data that is faster than the
method shown in Ref. 2.

Flip Network Construction

Notation

A 2n -item flip network has 2n input-data -
lines labeled with n-bit binary vectors ranging
from (00 .•. 00) to (11. . . 11). It has 2n output
data-lines also labeled with n-bit binary vectors.
The network has two control inputs:

1. Ann-bit flip control that specifies one
of zn flip-permutations.

2" x 2"
MDA
MEMORY

::::> w
al a:
en ::::>
en 1-w u
.a: ::::>
c a: c 1-
<C en

FLIP
NETWORK

PROCESSING
ELEMENTS

n

GLOBAL ADDRESS

ACCESS MODE

SHIFT
CONTROL

Figure 1. STARAN Array Module (n = 8)

(a)Trademark, Goodyear Aerospace Corporation, Akron, Ohio.

65

O.!JTPUT

Z. A shift-control that specifies one of
(nZ + n + Z)/Z shift-permutations.

The flip network permutes the input data
first according to the specified flip-permutation,
then according to the :;;pecified shift-permutation, ·
and presents the permuted data on its output
data-lines.

To scramble and unscramble MDA memory
data, the data:is fed through the flip network
while the flip-control is driven by the MDA
memory global address to cause the desired
flip-permutation.

Flip-Permutations

If F = (fn-l fn-Z ••. f 1f 0) is the n-bit binary

vector fed to the flip-control, the flip-network
moves the data on input-data-line I = (in-l in-2.

... i 1i 0) to output-data-line HDF = (in-l EBfn-1•

in-Z EBfn-Z · .. , i1 EBf1, i0 EBf0), where EB means . .
the exclusive-OR logic function.

l
F • 10001

xx xx
F • 10011

j:. 10101

F • 10111

Figure 2. shows the flip-permutations for an
8-item flip network. When F = (00 ••• 00), there
is no permutation (the identity permutation);
when F = (11. •• 11), there is a complete rever
sal of data end-for-end (the mirror permutatio:n).
Each flip-permutation is its own inverse, and
any two permutations commute with each other.
If F = F 1 EBFz, then flip-permuation F can be

performed by doing permutation F 1 follow.ed

by Fz·

If the control input F has a single 1 and n-1
O's, then flip permutation Fis called an~
(for the ·8-item flip network, the atoms are (001),
(010), .and ClOO)). The set of n atoms forms a
basis for all flip-permutations (any flip-permu
tation ,can be· formed from atoms). This sug
gests one way of constructing flip networks. A
zn -item flip network can be formed from n
levels of logic. Each level is controlled by one
of the flip-control bits and performs one of the
atom permutations whenever the control bit is 1.

F = 11001

F • 11011

F • (1101.

F • (1111

Figure 2. Flip Permutations for 8-ltem Flip Network

Figure 3 shows an 8-item flip .network con
structed this way. The first level of logic per
forms flip-permutation (OOl)if the least-signifi
cant flip-control bit is 1 and identity permutation
if the control bit is 0. Similarly, the second level
does flip-permutation (010) when the middle con
trol bit is l and the last level does flip-permu
tation (100) when the most significant control bit
is 1. With this construction method, a z.n -item
flip network requires n levels of logic, with each
level comprising z.n two-way data selectors.

Figure 4 is an 8-item flip network redrawn
to illustrate that the levels of data selectors are
alike when the data is shuffled between levels.
This means that a flip network can be built from
a number of identical modules. It also means
that the data can be recirculated n times through
one le"el of data select ors if it is shuffed at each
pass. Thus, one can use a shuffie-exchange
network (Ref. 3) as a flip network.

....
0
IC
1-z

~
::;
II.

/ INPUT-DATA

~ ~ I\ 'I ,, "
I \' I l\/i
IX I I~ I
I t' I I /\ I
I 1 \I I/\ I ,, ,, It '1
f ~ , \

~\ ~\." /. I\ ll\ 1" I I 'l ,, I
I jf, 11\ I
l I I ~I\ I
1/ 11 ,1 \I
v , " ..

~ ,,
•' t I I\/ I
I). I
I \ I
I/ \I
~, ~

t, !.
I\, I
It I I I
jf\ I
II \I
t I

Figure 3. An /!.Item Flip Network

'

67

....
0
IC
I-

ts
J
::;
II.

/,.--... INPUT-DATA --..... ,

~ ' '\ ,,
I '1 I {I
I i\ I
It 'I ,, ,,
' '

' I\ /I
I\~ I I I
I \ I
I I \I ,, ,, , '

' . '\ ,,
1 I I
I'(. I
I I\ I
I/ \I

~ ~

'\.___OUTPUT-DATA__/

Figure 4. An 8-/tem Flip Network Redrawn

One level of four-way data selectors can
take the place of two levels of two -way data se -
lectors. If n is even, a z.n item flip network can
be built from n/2. levels of four-way selection.
The 2.56-item flip networks in the current
STARAN each have four levels of four-way data
selectors.

Shift-Permutations

The shift-control in~ut to a 2n-it.em flip
network allows one of (n + n + 2)/2 shift
permutations to be applied after any flip-permu
tation. One of the shift-permutations is the
identity ~ermutation (no-shifting); the other
(n2. + n)/2 permutations are shifts of 2m places
modulo 2.P where m and p are integers so that
OSm < p Sn. A shift of 2m modulo 2P divides
.the 2n data items into groups of 2P items each

IDENTITY

1 MODS

2MOD8

2MOD4

4MOD8

1 MOD4

1 MOD2

Figure 5: Shift Permutations in an 8-ltem Flip Network

68

and shifts the items within.each group right
end-around 2m places. Figure 5 illustrates the
seven shift permutp.tions in an 8-item flip net
work.

When m = p - 1, the shift-permutation of
2m modulo 2P is the same as a flip-permutation
(compare the 1 mod 2, 2 mod 4, and 4 mod 8
shift.,permutations of Figure 5 with the (001),
(010), and (100) flip-permutations, respectively,
of Figure 2). Other shift-permutations are per
formed in the flip network by selectively con
trolling the data selectors on certain levels.
Figure 6 shows how a 1 mod 8 shift-permutation
is performed in the 8-item flip network of FiJgure
3. -

The selective control of data selectors on a
level required for the shift-permutations is ac -
complished by expanding the number of control
signals for the level; each control signal controls
a fixed subset of the selectors· on the level. With
levels of two -way selectors, the first level has
one control signal, the second level uses two

Figure 6. The 1 Mod 8 Shift Permutation in an 8-Item Flip Network

control signals, the third level uses three con
trol signals, etc. A 2n-item flip network re
quires n (n + 1)/2 control signals. Figure 7
shows how six control signals control the data
selectors of an 8-item flip network so that both
flip and shift permutations can be performed.
The control table for this network follows (when
the control signal is 1, the selectors swap data):

Permutation

1 mod 8
2 mod 8
4 mod 8
1 mod 4
2 mod 4
1 mod 2
Identity

OA

1A

~\ 1l " , , I 1 I I
I 1 I
I/\ I
11 \ I
11 '• r ~

OA

1
0
0
1
0
1
0

Control Signal
lA lB 2A 2B 2C

1 0 1 0 0
1 1 1 1 0
0 0 1 1 1
1 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0

18

Figure 7. An 8-Jtem Network for Flip and Shift Permutations

69

For flip-permutations, OA is driven by the least
significant flip~control bit; IA and lB are driven
by the middle flip-control bit; and 2A, 2B, and
2C are driven by the most-significant flip-con
trol bit.

To allow a combination of a flip-permutation
with a shift-permutation in one pass through the
network, each control signal is driven from an
exclusive-OR gate. The shift-permutation con
trol is fed to one exclusive-OR input and the flip
permutation control is fed to the other input. The
resultant permutation is the same as the flip
permutation followed by the shift-permutation.

To shift data in a negative direction, one
can mirror the data with a flip-permutation
(11. .. 11), shift the mirrored data in a positive
direction, and then remirror the data with
another (11. .. 11) flip. The mirroring and re -
mirroring can be combined with the shifts. For
example, a shift of -31 places can be performed
in two passes: A mirror with a shift of 32 fol
lowed by a mirror with a shift of 1.

Data Manipulations

General

The flip network can permute data on mem
ory-to-PE transfers, PE-to-PE transfers, and
PE-to-memory transfers. The permutations
are useful in many applications to manipulate or
route data between PE's. Bauer (Ref. 2) illus
trates a number of these manipula'tions. Some
manipulations require only one pass through the
network; several require log2 N passes for N
items. One class of functions (irregular com
press and expand) required about N passes for
N items. Here, we show how these irregular
functions can be accomplished in about log2
passes.

Irregular Spreading

Spreading (expanding, replicating) takes the
output of a contiguous set of PE' s and spreads it
across a larger set of PE's, replicating some
items but preserving their relative order. As
an example, if we let

abcde (1)

represent the outputs of the first five PE's in
order, then irregular spreading can create the
following pattern of 19 items:

aaaa b ccccc dddddddd e (2)

in the first 19 PE's.

Spreading arises in a number of problems.
To magnify a digitized image, new picture ele
ments (pixels) are created on a finer grid; the
old pixels must be spread and then interpolated
to create the new image. This spreading is ir
regular if the image is being warped, Another

example is solving partial differential equations
on multi-mesh regions; data computed on a
coarse mesh mus,t be spread and interpolated
when mo.ved across a boundary to a finer mesh.

In STARAN, spreading is accomplished with
shift-permutations in the flip-network combined
with appropriate PE masks •. It will be illus
trated with the example of spreading pattern (1)
to obtain pattern (Z). Figure 8 shows the state
of the first 19 PE's at different steps of the
process.

Initially, 'the five data items (a, b, c, d,
and e) are stored in the first five PE's (O,., 1, Z,
3, and 4, respectively). Each PE is to re~eive
one of these items. The second column of Fig
ure 8 shows the initial location of the item (e.g.,
PE' s 5 through 9 are to receive item c, which
initially is in PE Z).

In parallel, each PE computes a shift value,
which is simply the difference between its own
index and the initial location. This shift value
is shown in the third column in binary notation.
The mrimum shift value is 14, which is less
than Z ; thus, four passes through the flip net
work are required to spread the data.

INITIAL
PE LOCATION SHIFT VALUE

INDEX OF DATA 8 4 2 1 lNfTIALLY

0 0 0 0 0 0 a

1 0 0 0 0 1 b

2 0 0 0 1 0 c·

3 0 0 0 1 1 d

4 1 0 0 1 1 e

5 2 0 0 1 1 -
6 2 0 1 0 0 -
7 2 0 1 0 1 -
8 z 0 1 1 0 -
9 2 0 1 1 1 -

10 3 0 1 1 1 -
11 3 1 0 0 0 -
12 3 1 0 0 1 -
13 3 1 0 1 0 -
14 3 1 0 1 1 -
15 3 1 1 0 0 -
16 3 1 1 0 1 -
17 3 1 1 1 0 -
18 4 1 1 1 0 -

The first pass is a PE-to-PE transfer with
a shift-permutation of 8 places. The bit-slice
with weight 8 of the shift value is used as a mask;
where the bit is 0, the PE retains its stored
value and where the bit is l the PE accepts data
from the flip network. The fifth column of Fig
ure 8 shows the va:lues stored in each PE after
this pass. PE's 0 through 10 are masked off and
do not change state; PE's 11 through 18 accept
data from PE's 3 through 10, respectively.

The second pass is a shift permutation of 4
places with the weight 4 bit-slice of the shift
value used as a mask. PE's 6 through 10 and 15
through 18 accept data from PE' s Z through 6
and 11 through 14, respe.ctively. The sixth
column of Figure 8 shows the result.

Similarly, two more passes are executed
with shifts of Z places and 1 place, respectively,
and with the weight Z and weight 1 bit-slices of
the shift value as masks, respectively. The last
column of Figure 8 shows the result; this is
pattern (Z).

As long as the shift va:lue bit-slices are
treated in the correct order (most-significant
bit-slice firsl), spreading can be performed

DATA VALUE

AFTER AFTER AFTER AFTER
8SHIFT 4SHIFT 2SHIFT 1 SHIFT

a a a a

b b b a

c c a a

d d b a

e e c b

- - d c

- c c c

- d d c

- e c c

-, d c

- - e d

d d d d

e e e d

- - d d

- - • d

- d d d

- • • d

- - d d

- - • •
'-"-

Figure 8. Irregular Spread Example

70

without collisions. Data can be spread into zn
PE' s with n passes or less if all shift values are
non-negative.

Spreads with negative shift values require a
modified method. First, all shift values are
biased by a positive constant so that they are all
non-negative. Then, certain bit-slices of the
shift value field are complemented (the bit
slices corresponding to 1 bits in the bias con
stant). The result is a shift value where some
bit-slices have negative weights and some have
positive weights. The spread algorithm is then
followed except that negative shifts are performed
whenever negative-weight bit-slices are used as
masks. The negative shifts are done with mir
rors (with mirrored PE masks). If the bias con
stant is odd, the least-significant shift-value bit
slice has a negative weight and then an extra pass
through the flip network is required to remirror
the data into normal order. Data can be spread
into 2n PE's with n + 1 passes at most.

Irregular Compressing

Compressing (closing) takes data items from
a scattered set of PE's and packs them into a

contiguous set of PE' s while preserving their
relative order. It is the inverse operation of
spreading and can be performed by reversing the
steps of a spread.

Conclusions

The flip network scrambles and unscrambles
data for the MDA memory. It also can perform
the PE-to-PE routing required for many prob
lems.

There is close connection between the flip
network and the perfect shuffle. One can imple
ment any flip network permutation with a few
passes through a :,huffle -exchange network. In
many applications like the fast-Fourier-trans
form, a shuffle is used to pair up certain items.
One pass through a flip network will also pair up
the same items; the pairs may be ordered dif
ferently, however.

Irregular spreading and compressing can be
performed in a few passes through the network.
These operations are useful in image warping,
rotation, magnification, and resampling.

References

1. K. E. Batcher, "The Multi-Dimensional
Access Memory in STARAN. 11 1975 Saga
more Computer Conference on Parallel
Processing, p. 167; also submitted for pub
lication in the IEEETC Special Issue on
Parallel Processing.

2. L. H. Bauer, "Implementation of Data Mani
pulating Functions on the STARAN Associa
tive Processor. 11 1974 Sagamore Computer
Conference, pp 209-22 7.

3. H. S. Stone, "Parallel Processing with the
Perfect Shuffle. 11 IEETC Vol. C-20, pp.
153-161 (February 1971).

71

CONSTRUCTION Of A VERSATILE DATA MANIPULATOR
FOR PARALLEL/ASSOCIATIVE PROCESSORS

W. W. Gaertner, M. P. Patel, C. T. Retter and I. M. Singh
W. W. Gaertner Research, Inc.

205 Saddle Hill Road
Stamford, Connecticut 06903

SUMMARY

At the 1973 Sagamore Computer Con
ference on Parallel Processing (Proceed
ings, p. 101) Tse-yun Feng proposed the
design of a Versatile Data Manipulator
for parallel/associative processors. It
allows the programmer to establish a re
lationship between input and output words,
such that any bit location in the input
word may be specified as the data source
for each of the bi t lo cat i on s i n the out -
put word. Both inp,ut and output data
can be masked. The Rome Air Development
Center has contracted with W. W. Gaertner
Research, Inc. to perform the hardware de
sign and construction of such a data ma
nipulator to operate in conjunction with
the STARAN computer at the RADCAP facil
ity and the future Reconfigurable Com
puter System Design Facility (RCSD{) at
RADC.

As shown in the block diagram of

Figure· 1, the data manipulator operates
under the PIO Control of the STARAN com
puter, but could •lso be interfaced to
other computers such as the QM-1 of the
RCSDF. 1h~ contenti of the input and
output masks, of the Address Control
Registers (ACR), and of the. Input and
Output Control Registers {ICR and OCR),
as well as the data to be manipulated,
are entered ~ia the 256-bit wide PIO
Buffe~ Interface. The manipulated data
leave the data ~anipulator via the same
interface. The instruction repertoire
of the data ma~ipulator allows one to
load the various address registers and
masks, and to start and stop data ma
nipulation. Self-test is performed
by loading address and input-data re
gisters, allowing verification of cor
rect operation even without assist from
the $TARAN computer. Details of physical
construction and operation of the Data
Manipulator are also presented.

PIO BUFFER

64(256) 64(256)

CABLES AND INTERFACE BOARDS
64(256)

64(256)
t:::::=~::=::=::=::=:::;:::::=:::;::::::;-~~~t-~~~~~~~--t OUTPUT DATA REGISTER

OCR ICR/OCR
TO ACR
CONVERSION
LOGIC

64(256)

DATA TO BE
MANIPULATED

INPUT DATA REGISTER

T

MASK REGISTER

8X
64

(256)

LINE
SELECT
ARRAY

Figure 1 - Block Diagram of Data Manipulator

72

FAST ALGORITHMS FOR BOUNDING THE PERFORMANCE OF MULTIPROCESSOR SYSTEMS

Chao-Chih Yang
Department of Information Sciences
University of Alabama in Birmingham

University Station, Birmingham, Alabama 35294

Abstract--Given a finite set of partially
ordered tasks with arbitrary execution times,
more efficient methods for finding two types of
sharper lower bounds in scheduling these tasks
on a multiprocessor system are proposed. These
bounds include a lower bound on the number of
processors with the shortest execution time and
that on the execution time under a specific num
ber of available processors. This paper proposes
fast algorithllis for deriving two types of prece
dence partitions known as the earliest and the
latest precedence partition, an equalization pro
cedure for refining these partitions if their
elements involve unequal time intervals, an alge
braic method for recursively determining the
lengths of all possible time intervals and a new
technique for finding the numbers of coDDllOn
objects in these intervals. The determination
of both types of sharper lower bounds follow the
method proposed by Fernandez and Bussell. Working
examples are used for illustrating all proposed
concepts.

Introduction

Given a finite set of partially ordered tasks
(referred to as a POSET), the scheduling of these
tasks in a multiprocessor system has been widely
studied [2] , [7] • One of the important aspects
of this scheduling problem is the determination
of an optimal schedule where the optimality has
been established with different objectives as
done by McNaughton [15) and Hu [11) among others.
Although the problem of searching for an optimal
schedule for an arbitrary finite POSET could,
in principle, be solved by performing a finite
number of examinations, such an exhaustive search
ing is quite time consuming and becomes impracti
cal for a relatively large POSET. Coffman and
Graham [8] among others indicated that an effi
cient scheduling algorithm must be essentially
nonenumerative or polynomial-time-bounded. Thus
the enumerative searching method is inefficient
since the ni.unber of steps involved is exponential
in the number of tasks. Ullman· [18] showed that
the optimization problem of scheduling tasks in
a POSET on m processors for all m is nondeter
ministic polynomial time complete. Hence, the
problem of de'vising an optimal scheduling algo
rithm for an arbitrary POSET is quite difficult
to be solved and there _would be little hope.that
many more efficient algorithms in thi~ aspect
will be found. Consequently, a possible atti
tude toward the scheduling problem would be in
devoting more effort to design algorithms such
that the performance of the schedules induced by
these algorithms is near optimal. Along this
line, once a schedule is developed, its perfor
mance should be evaluated based on a bench mark
as manifested in the experimental work done by

73

Adam, et al. [l] and Kohler [13]. Therefore,
efficient algorithms for bounding the performance
of multiprocessor systems are of paramount impor
tance and will be concerned in this paper.

In a computer system with m identical and
independent processors, Baer and Estrin [3]
suggested procedures to determine a lower and an
upper bound on m required for maximum parallelism
in a bilogic precedence graph. McNaughton [15],
Hu [ll], Chen and Epley [6], Barskiy [4],
Ramamoorthy, et al. [17), Kraska [12] and Fernandez
and Bussell [9] developed methods for finding
lower bounds on m some among which are applicable
only for special precedence graphs such as trees
or those having tasks with equal execution times.
Fernandez and Bussell also made an analytical
study which showed that their lower bound on m
is equivalent to Barskiy1 s result and is sharper
than others. However, Barskiy 1s method is not
practical for a POSET containing tasks with
different execution times. The lower bounds on
time for a specific m include those proposed by
Hu [11] and Fernandez and Bussell [9] where the
latter is also valid for any other arbitrary
POSET. The methods for finding the upper bounds
on the minimum number of processors were devel
oped by Fulkerson [10] , Barskiy [4] , Ramamoorthy,
et al. [17] and Fernandez and Bussell [9] among
which the last one yields a sharper result.
Although the bounds determined by the methods
proposed by Fernandez and Bussell are sharper,
the computation complexity of their methods limits
their practical usefulness unless ways are found
to improve the computation speed. This improve
ment will be considered in this paper.

In this paper, we shall furnish detailed
algorithms for finding the earliest precedence
partition (EPP) and the latest precedence parti
tion (LPP) on a POSET contain,ing tas~s with
different execution times, an equalization. proce
dure for refining both of these partitions, an
algebraic method for recursively determining tlie
lengths of all possible time irtt~rvals and a new
technique based on recursio~, partition and
succ.essive reduction for finding the numbers of
common objects in these intervals. The algorithms
for finding those precedence partitions are fast,
the equalization is worthwhile, particularly when
some tasks in a POSET require much longer execu
tion times than those of others and the method
for finding the numbers of common objects does
not rely on any load density function [9] , does
not use any bag f 9] and does not perfonil any
slOW.er union operation the latter of which is
replaced by much f~ster algebraic operatfons •·
Illustrations are also provided for d~monstrating
all new proposed concepts for a general ca:~e .. .
involving tasks witp different execution ti,mes ;·

The case involving tasks with equal execution
times.is simpler than .the general case and can be
straightforwardly developed from the latter.

The Earliest and the Latest Precedence Partition

.We consider a general case in which the EPP
and the LPP are both on a given POSET containing
tasks with different execution ti.mes. When a
task is decomposed into a finite number of pieces,
each such piece is called a subtask and assumes
the same label as that of its decomposing task•
This type ~f decomposition will be implicitly
performed in the algorithms for finding the EPP
or LPP.

Definition 1. An unexecuted task or subtask
is a candidate at time t if all its predecessors
have been completely executed by t. The candidate
.!!£_ at t is the set of all candidate.a at t.

Theorem 1. Every candidate set is indepen-
dent.

The independence means that for every pair
of distinct candidates x and y in a candidate set,
x does not precede y and vice versa. This Theorem
can easily be proved by contradiction. Note that
a set of·unexecuted objects being independent may
not be a candidate set unless Definition 1 is
satisfied.

When a POSET is executed, the overall cost
depends on the availability of processors.
Consider a case in which there is no processor
constraint. Under this condition, the length of
a schedule has the least possible value which is
the length of a longest path in the precedence
graph of the POSET. This path is known as a
critical path.

Definition 2. .Given a finite POSET S, let
u1 through Uk be some subsets (not necessarily
disjoint or even distinct for every pair of these
subsets) of s. If these subsets satisfy that
1) thei'r· union is equal to S, 2) .each task or
subtask corresp0nding to S appears in one and
only one such subset, 3) each subset Ui for
i • 1,2, ••• ,k .is independent,' and 4) every pair
of adjacent subsets Ui and Ui+i for i • l, •.• ,k-1
in the sequence Ui.U2•• •• ,Uk has at least one
precedence relation between two distinct labels
or. between two distinct subtasks with .the same
label, then th~ sequence is called a precedence
parU.tion (PP) on the POSET s. '

N.ote that a PP ,on a POSET S is defined as a
seq~ce of some subsets of S :rather than a se.t
of these subsets since condition 2) of this
definition does not necessarily imply that these
subsets of the PP are pairwise disjoint becau&e
of the possible existence of precedence .con
strained subtasks having the $Ue l&bel in some
elements of the PP.. Although these subtasks have
the.same 1abel, they are di~tinct pieces decom,..
pgsed from. the tllsk with that. label. and there
are .pr.ecedence relations among these subtasks
with the same label so that condition 4) of this

74

definition can hold.· As will be seen in a later
section .entitled 'Equalization',.: a special type of
precedence partitions may contain d~licated·
elements.

Definition 3. The latest possible time at
which.the .execution of a task or subtask corre
sponding to a POSET S must be started without
affecting the length of ·a schedule.being longer
than the length of• a critical path in.the prece
dence graph of the POSET S U11.der the condition
in which there is no processor.constraint is
called the latest starting time (LST) of the task
or subtask. The sum of the LST of a task or
subtask and its .execution time is called the
latest completion time (LCT) of the task or sub
task. The sequence of some subsets of S with
each such.subset containing all tasks and/or
subtasks having the same LST and with all such
subsets arranged in the ascending order of those
LST's is called the LPP on S.

Definition 4. The earliest possible time at
which a task or· subtask becomes a candidate is
called the earliest starting time (EST) of the
task or subtask when there is no processor
constraint. Similar to Definition 3, we can
define the earliest completion time (ECT) of a
task or subtask and the EPP on a POSET.

Algorithms for Finding the EPP and the LPP

Definition 5. When the subtasks decomposed ·
from a task have the same label as that of their
decomposing task and this task has been partially
executed, the remaining time required to finish
the execution of this task is called the residual
execution time of the task.

In the two algorithms to be proposed, a set
S is assU111ed to be a nonempty and nonindependent
POSET. Consequently, the detection of an empty
POSET, an independent POSET and the existence of
a circuit can be omitted.

Algorithm 1. An algorithm for finding the
EPP on a POSET S containing n tasks with different
execution times Tx for x = l, ..• ,n:

Step l) Initialize t :• 0 andkE :• 0 and
store S, R, and Tx for all x in S where II. is the
precedence relation on S (or the set of arcs in
the precedence graph of the POSET S).

Step 2) Find the current set of successors
by R2 :• {y[.(x,y)-&R}.

Step 3) Find the current candidate set at t
by·Et := S - R2 and set kE := kE + 1.

Step 4) Print t, ~and Et.
Step 5) Find the least residual execution

time of .some objects in Et by

At ·• · min {T } set t ·• t + At and update
• all x in Et x • . •

Tx :• Tx - At for each x in Et.
Step 6) Update S :• S -<xlx-GEt and Tx • O}.
Step 7) Is S • ' where ' stands for the empty

set? a) If so, set tm := t, print ~ and the

algorithm terminates. b) If not, update
R := R - { (x,y) lx-&Et and Tx • O} and go to Step
2).

In this algorithm, the symbol Et for each t
denotes the candidate set at t as weli as the
element of the EPP containing tasks and/or sub
tasks with the same EST = t, the symbol tm denotes
the length of a critical path and ~ with positive
integer values stands for the kE-th element of
the EPP.

For finding an LPP, we need to derive the
inverse Rr of the precedence relation R on S by
simply reversing the direction of every arc in
the precedence graph of the POSET s.

Algorithm 2. An algorithm for finding the
LPP on a POSET S containing n tasks with different
execution times Tx for x = 1,2, ••• ,n:

Step 1) Find ~ by Algorithm 1.
Step 2) Construct the inverse of R by

Rr := {(y,x) I (x,y)€-R}.
Step 3) Store S and Tx for all x in S and

initialize t' := 0 and V := 1.
Step 4) Find the current set of successors

by R2 := {xj(y,x)-eRr}.
Step 5) Find the current candidate set by

Dt' := S - R2. min
Step 6) Compute At := 11 i D {TX}

a x n t'
where Tx is the residual execution time of x in
Dt'' sett' := t' +At and update TX:= TX - At
for each x in Dt'•

Step 7) Update S := S - {xjx-ent' and
TX = 0} •

Step 8) Is S = ~? a) If so, set Lo := Dt'
and t := O, print t, V, and Lo and the algorithm
terminates. b) If not, update Rr := Rr - {(y,x)j
y€-Dt• and Ty= O}, compute t := tm - t', set
Lt := Dt'• print t, V and Lt• increment V := V + 1
and go to Step 4).

In this algorithm, the symbol Lt denotes
the element of the LPP containing tasks and/or
subtasks with the same LST • t and the values of
V define the levels of tasks and/or subtasks as
will be defined by the following definition. Let
Vu be the maximum value of V. If we set

kL = Vu - V + 1 (1)
then kr. with positive integer values stands for
the Itr.-th element of the.LPP.

Note that Algorithms 1 and 2 can be also
applied to a POSET containing tasks with equal
execution times. However, they can be simplified
for this special case.

Definition 6. If a task or subtask x is
contained in the k1-th element of an LPP, then
the level of x, denoted by W(x), is defined by

W(x) = Vu - kL + 1 (2a)

Theorem 2. The values of V derived from
Algorithm 2 define the levels of the tasks and/
or subtasks corresponding to a given POSET.

75

This Theorem is trivially true since (1) and
(2a) imply that

W(x) = V (2b)
Note that when a task is decomposed, the level
of the task itself is the highest one among those
of its subtasks. Note also that the levels
defined by Definition 6 are always positive inte
gers and are not identical to those defined else
where (16] unless all tasks have equal execution
times of 1 unit.

Illustration 1. Given a POSET S1 = {1,2,3,
4,5,6,7,8,9} with the precedence relation
R = { (1,2), (1,3), (2,4), (2,5), (3,6), (4, 7), (4,8),
(5,7),(5,8),(6,9),(7,9),(8,9)}, and the execution
times Tl = T3 = T9 = 1, T2 - 2, T4 = Ts - 20,
T6 = 12, T7 = 40 and Ts = 30. As shown in Table
I, the first row designated by t denotes the
sequence of times from 0 through 64 where 64
equals the length ~ of a critical path, the next
two rows designated by kE and Et denote the EPP
and the following two rows designated by kt and
Lt denote the LPP. Although both kE and ~ have
the same maximum value 8 for this specific
example, the numbers of elements in both of these
partitions are, in general, not necessarily equal.
The EPP has the EST sequence O, 1, 2, 3, 14, 23,
53, 63 and the LPP has the LST sequence O, 1, 3,
23, 33, 50, 51, 63 whic~ are not identical. Note
that tasks 2, 4, 5, 6, and 7 are each decomposed
into 2 pieces in the EPP and tasks 7 and 8 are
respectively decomposed into 4 and 3 pieces in
the LPP.

An Equalization

Since the decomposition of a task x in the
LPP may not be the same as that of the task x in
the EPP, there does not exist a one-to-one
correspondence from the subtasks decomposed from
x in one PP onto those decomposed from the same
task x in the other PP. This fact increases the
complexity when the numbers of common objects as
mentioned previously are computed. This·requires
that a one-to-one correspondence be established
for each task having been decomposed in each PP.
When the execution times of all tasks in a POSET
are mutually commensurable [8], a trivial solu
tion is firstly finding the greatest c0111110n
divisor w of all such times, then decomposing
every task x with Tx = ~w for ~ > 1 into ~
subtasks and finally deriving the EPP and the
LPP on the refined precedence graph Gw [8], (16]
which has vertices involving equal execution
times of w units. However, this method may not
be efficient because of involving quite a large
number of partition elements, particularly when
some tasks have their execution times being much
longer than w. A feasible technique lies in
providing a one-to-one and onto mapping such
that the k-th subtask of task x in one PP can be
mapped to the k'-th subtask of the same t-.k x
in the other PP if both subtasks have the same
execution time but·· k and k' are not necessarily
equal. The establishment of such one-to-one and
onto mappings for all decomposing tasks is called
an equalization. The equalized EPP a:nd LPP on S

are referred to as the refined EPP (REPP) and
the refined LPP (RI.PP) on s.

For obtaining. the REPP and the RI.PP, we need
to augment some new elements by splitting some
existing elements in either or both of the origi
nal EPP and LPP. as generated by Algorithms 1 and
2 respectively in order to establish a one-to-one
and onto mapping for each decomposing task. Each
of these new elements is actually a dup1ication
of some exiting element Et or Lt and must be
denoted by Et' or Lt' fort< t'. The augmenta
tion requires the following rules:

Rule 1) For each task or subtask x with
ESTx = LSTx = t 1 having been decomposed into nx
subtasks in the interval or subinterval [ESTx,
ECTx3 of one PP at t 2,t3, •••• , and tllx' the task

or subtask x must be also identically decomposed
in the same interval or subinterval of the other
PP.

Rule 2) ·For each task y with ECTy < LSTy
having been decomposed, we need to equalize the
subintervals in both intervals [ESTy,ECTyl arid
[LSTY,LCTy] so that the i-th subtask y in the
former interval and that in the latter interval
have subintervals with the same length which is
the execution time of i-th subtask with label y.

If a task z with ESTZ < LSTZ < ECTZ < LCTZ,
we can consider three intervals [LSTz,ECTz],
(ESTz,LSTz) and [ECTz,LCTz), For equalizing the
subintervals of the first interval, we apply Rule
1. For equalizing those in the second and third
intervals, we apply Rule 2. Note that some
augmentation may induce new decomposing tasks
which were not decomposed in the original EPP
and/or LPP. Thus, an equalization needs·a
repeated refining and can be terminated when and
only when all decomposing tasks including the
induced ones have their one-to-one'and onto
mappings.

Illustration 2. Referring to the EPP and
the LPP on the POSET s1 as shown in Table I,
tasks 2, 4, 5, 6, 7, and 8 are decomposed in
either or both PP's without one-to-one correspon
dences. By Rule 1), we need to augment new ele
ments. L2 .. {2}, L14 = {4,5}, E33 = E50 = E51 =
{7,8} and L53 = {6,7,8} in the interval [1,3] for
task 2 in [3, 23] for tasks 4 and 5, and oin
(23 ,63J for task 7. By Rule 2), we need to aug
ment new elements E4 = {4,5,6} and i 52 = {6,7,8}
in the intervals [2,14] and[51,63] for task 6'.
By Rule 1) again, we need to augment new elements
L4 = {4,5} and E52 = {7,8} in the subinterval
[3,i4] for tasks 4 and 5 and in the subinterval
[51,53] for task 7. Up to .this point, all tasks
have one-to-one correspondences in both PP's so
that the equalization is terminated. The REPP
and the RI.PP as obtained by the equalization
above. are shown by the rows designated ·by k, V '·
Lo(k) .. and Eo(k) iµ Table I. The .va1ues of k are
~rom 1 through 13 which indicate the k-th elements.
The values of V are also from 1 through 13 but' in

76

a reverse order. The latter values can stand ~or
the levels of the tasks and sub.tasks in the ele
ments of the RLPP. Thus, both Definition 6 and
Theorem 2 with minor modifications are applicable
for a RI.PP. Let Vm be the maximum value of V.
Then (2a) becomes

W(x) = Vm - k + 1 (2c)

Since there are 13 elements in either refined
PP, there are 81 time intervals and also 81 num
bers of common objects. On the other hand, if we
use the EPP and the LPP on the refined graph G1
containing vertices with equal execution times of
w = 1 unit, there are 64 elements in either PP so
that there are 2,080 numbers of common objects
which is more than 25 times 81.

Determination of Time Intervals

Let A1(k) fork= 1,2, ••• ,Vm be the lengths
of the time intervals spanned by the k-th elements
of either refined PP on a POSET S.

Definition 7. The length 8:. (k) for j = 2, ••• ,
Vm and k = 1,2, ••• ,Vm - j + 1 ofJthe time intervals
each spanned by j consecutive elements of either
refined PP can be recursively defined as:

k+l
A2(k) = E A1(i), fork= 1, ••• ,Vm - 1 (3a)

i=k '

k+l
Aj(k) = E A. 1(i) - Aj 2(k + 1), for

i=k J- - '
j=3,,4, ••• ,Vm and k = 1,2, ••• ,Vm - j + 1 (3b)

If 81 (k) = w for all k = 1,2, ••• ,Vu, then
Aj (k) = jw (3c)

for j =·2,3·, ••• ,Vu and k.= 1,2, ••• ,vu - j + 1.

It requires exactly (Vm - 2)(Vm - 1)/2
binary subtractions and exactly (Vm - l)Vm/2
binary additions to compute the lengths of all
time intervals by (3a) and (3b). In the special
case it requires only Vu - 1 binary multiplications
based on (3c).

Illustration 3. The lengths of time inter
vals each spanned by j consecutive elements of
either refined PP are shown in Table II.

Determination of the Numbers of Common Objects.

Let E0(k) and L0(k) for k = 1,2, ... ,vm be
the k-th elements of the REPP and the RI.PP on
an arbitrary POSET. Since each E0 (~) is never
empty and so is each L0(k) and every task or .
subtask with EST = LST must be contained in both
of these sets, the intersection of E0 (k) and
L0(k) for each k is never empty. Each such inter
section contains only common tasks and/or subtasks
in the k-th elements of both re~ined PP's. Let

r1 (k) = Eo (k) n Lo (k) for k = 1 , ... , Vin (4a)
Then I 1 (k) is always a subset of E0 (k) and that
of L0(k) so that we can find the reduced sets

from Eo(k) and L0 (k) by deleting those common
objects in r 1(k). Let these reduced sets be
denoted by E1 (k) and Li(k) fork= 1,2, ••• ,Vm.
Then we can define

Ei(k) ={Eo(k) - r 1 (k), fork= 1, ••• ,vm - 1
cji, otherwise (Sa)

and

Li(k) ={Lo(k) - I 1 (k) fork= 2, ••• ,vm
cji, otherwise (6a)

Since Ii(k) f cji for each k, the reduced sets
Ei(k) and L1 (k) must be respectively some proper
subsets of Eo(k) and Lo(k), i.e.,

Er(k) c E0 (k) (7a)
Li (k) c Lo (k) (Sa)

and the intersection of E1 (k) and L1(k) must be
empty, i.e.,

E1 (k) n L1 (k) = cji (9a)
Now, we consider two consecutive reduced

sets E1 (k), E1 (k + 1), L1(k) and L1 (k + 1) for
k = l, ..• ,Vm - 1. Since E1 (k) n L1(k) =
El(k + 1) n L1(k + 1) = El(k + 1) n L1(k) = cji

where the first two empty intersections are based
on (9a) and the last one is due to the fact that
there does not exist any object with LST < EST,
we can compute the set of common objects in two
consecutive reduced sets E1 (k), E1 (k + 1), L1 (k)
and L1 (k + 1) as

I 2(k) ={E1(k) n L1 (k + 1), fork= l, ••• ,V~ - 1
cji, otherwise (4b)

Then, I 2 (k) is always a subset of E1(k) and that
of L1 (k + 1) so that we can find E2(k) and L2(k)
by deleting those common objects in I2(k) and
I 2(k - 1). Let these reduced sets be denoted by
E2 (k) and L2.(k). Then we can define

E2(k) ={E1(k) - I 2(k), fork= l, •.• ,vm - 2
cji, otherwise (Sb)

and
L2(k) ={L1 (k) - I 2(k - 1) for k

cp, otherwise
3, ..• ,vm

If we repeat the previous steps, we can
define the set Ij(k) of common objects in j
consecutive reduced sets Ej-l(k) through
Ej-l(k + j - 1) and Lj-l(k) through
Lj-1Ck + j - 1) and the further reduced sets
Ej(k) and Lj(k) for j = 3, ••• ,Vm•

(6b)

Definition 8, The sets Ij(k), Ej(k) and
Lj(k) for j • 1,2, ••• ,Vm can be alternately and
recursively defined as:

{
Ej-l (k) n Lj-l (k + j - 1),

Ij (k) = for k = 1, .. ., Vm - j + 1
cp, otherwise (4c)

E (k) ={Ej-1 (k) - Ij (k), for k =
j cjl, otherwise

{
Lj-1 (k) - Ij (k - j + 1),

Lj(k) k = j + l, ••. ,vm
4>, othei:wise

1, vm - j
(Sc)

for

(6c)

77

Eqs, (4a), (Sa) and (6a) coincide respectively
with (4c), (Sc) and (6c) for j = 1 and similarly,
(4b), (Sb) and (6b) coincide respectively with
(4c), (Sc) and (6c) for j = 2. There are at most
Vm(Vm + 1)/2 nonempty sets Ij(k) for j = l, ••• ,Vm
and k = l, ••. ,Vm - j + 1. The remaining sets
Ij(k) fork= 2, ••• ,vm and j = Vm - k + 2, ••. ,vm
are always empty. There are at most (Vm - l)Vm /2
nonempty reduced sets Ej(k) for j = 1,2, ••• ,Vm - 1
and k = 1,2, ••• ,Vm - j. The remaining sets Ej(k)
fork= l, ••• ,Vm and j = Vm - k + l, ••• ,Vm are
always empty. Similarly, there are at most
(Vm - l)Vm/2 nonempty reduced sets Lj(k) for
j = l, •.• ,Vm - 1andk=j+1, •.• ,vm. The
remaining sets Lj(k) for j = 1, ••• ,Vm and
k = l, ••• ,j are always empty. In summary, we have

Ij(k) = cp fork= 2, ••• ,Vm and
j = vm - k + 2, ••. ,vm (4d)

Ej(k) = cp fork= l, ••• ,vm and
j = vm - k + l, ••• ,vm (Sd)

and
Lj(k) = cjl for j = l, •.• ,Vm and k = l, ••. ,j (6d)

It requires at most Vm(Vm + 1)/2 binary set
intersection operations and at most (Vm - l)Vm
binary set deletion operations to find all
nonempty sets Ij(k), Ej(k) and Lj(k).

Similar to (7a), (Sa) and (9a), the succes
sively reduced sets Ej(k) and Lj(k) for j = 2, ••• ,
Vm and k = 1,2, ••• ,Vm have the following proper
ties:

Ej (k) ~ Ej-l (k) (7b)

Lj(k) !;;;; Lj-l(k) (Sb)
and

Ej (k) n Lj (k) = cjl (9b)
Eqs. (7a), (7b), (Sc), (Sa), (Sb) and (6c) imply
that

Ij (k) £ Ej-l (k) (lOa)
and

Ij (k) !;;;; Lj-l (k + j - 1) (lOb)
for j = 1, ••• ,Vm and k = 1,2, ••• ,Vm - j + 1.
The validity of (9b) can be proved by mathematical
induction. For the inductive basis, it was shown
that (9a) holds. Suppose that (9b) holds for all
k and for some j > 1. Then by means of (Sc) and
(6c) , we have

Ej+l (k) n Lj+l (k) = (Ej (k) - Ij+l (k)) n
(L.(k) - Ij+l(k - j))

' J ' Ej (k) 0 Lj (k)

!;;;; Ej (k) n Lj (k)
where Ej.(k) and Lj (k) are respectively some sub
sets of Ej(k) and Lj(k) because of (lOa) and
(!Ob), By the inductive hypothesis, the inter
section of E. (k) and Lj (k) is empty so that (9b)
holds for alf j = 1,2, •.• ,Vm.

Theorem 3. The sets Ij(k) for all j = 1, ••• ,
Vm and k = l, ••• ,Vm - j + 1 form a partition on
a given POSET S,

Proof. Firstly, we show that the union of
all sets Ij(k) for each kin {1,2, ••• ,Vm} and
for all j = 1,2, ••• ,ym - k + 1 is equal to E0(k),
i.e.

Vm-k+l
U Ij(k) = E0(k) fork= l, ••• ,vm

jml
By means of (Sc), we have

~w-~~w-~w <~
Taking unions on both sides of (4e), we have

vm-k+l
u Ij(k) .. Eo(k) - Ev -k+l(k)

j=l . m

where Ev -k+ 1 (k) for k • .1, •••• , V m are all
m

empty as shown in (5d).

Secondly, the union of all (nonempty) sets
Ij(k) is equal to the given POSET S, i.e.t

Vm Vm-k+l Vm
U U Ij(k) = U E0 (k)

k=l j=l k=l
where the union on the right hand side is equal
to S. Thus, condition 1) of Definition 2 is
satisfied.

Thirdly, we show that each task or subtask
is contained in exactly one set Ij(k). Consider
the intersection of two arbitrary nonempty sets
Ii(k) and Ij(k) for some k and i + j. Let
A= i - j ~ 1. Then, by means of (4e), (7b) and
the distributivity, we have

Ij+A (k) n Ij (k) .. (Ej+A-l(k) - Ej+A (k)) n
(Ej-l(k) - Ej(k))

= (Ej+A-l(k} n Ej-l(k))

- (Ej+A-l(k) 0 Ej(k))

- (Ej+A (k) n Ej-l (k))
+ (E ·+A (k) 0 Ej (k))

where the left two interiections are identical (to
Ej+A-l(k)) and are cancelled and so are the

remaining two intersections (identical to Ej+A(k)).
Now, consider the intersection of two arbitrary
nonempty sets Ij (k) and Ij (k ') for some j and
k + k'. This intersection contains either nothing
or some subtasks, each of which denotes the same
label of two distinct subtasks with precedence
constraint. Thus, every task or subtask is con
tained in exactly one set Ij(k) for some j and k
and Condition 2) of Definition 2 is satisfied.

Since Conditions 1) and 2) of Definition 2
are both satisfied, the set of all nonempty sets
Ij(k) can be viewed as a partition on s.

Once Ij(k) for all j and k are found, we
can compute the numbers of common objects in all
possible time intervals.

Definition 9. Let Wj(k) be the numbers of
common objects in j consecutive elements of both
refined PP's. Then Wj(k) can be recursively
defined as:

78

w1 (k) = A1 (k) H(I1(k))

w2(k) = A1(k) H(I2(k))

fork= l, ••• ,vm

k+l
+ t w1(i), for

i=k
k = l, ••• ,vm - 1

k+l
Wj(k) = A1(k) H(Ij(k)) + i;k Wj-l(i) -

Wj,_z(k+l), for j = 3,4, ••• ,Vm and

(lla)

(llb)

k = l, •••• ,vm - j + 1 (llc)
where the symbol H applied to a set Ij(k) indicates
the number of objects in the set Ij(k). ·

Finding Vm(Vm+l)/2 numbers Wj(k) requires
exactly (Vm - 2)(Vm - 1)/2 binary subtractions,
at most Vm(Vm + 1)/2 binary multiplications and
at most (Vm - l)Vm binary additions.

Illustration 4. For the refined PP's on s1 ,
the nonempty sets Ej(k) and lj+l(k) are shown
in Table III, the nonempty sets Lj(k) and
Ij+l(k - j) are shown in Table IV, and the numbers
A1(k) #(Ij(k)) and Wj(k) are shown in Table V.
In these tables, every blank entry means that
its corresponding set or number is empty or zero
respectively.

Determination of Lower Bounds

Once the numbers Wj(k) and the time intervals
Aj (k) are available, a sharper lower bound m1b
on m and that t 1b on time can be derived by
following the method of Fernandez and Bussell,
i.e.,

mlb =all ;a:rid k {rWj(k)/Aj(k)l} (l2)

where fzl stands for the least integer greater
than or equal to Z and

max
t 1b = Av (l} +all j and k {Wj(k)/m -Aj(k)}

m Wj(k)/m > Aj(k) (13)
where m is the number of available processors.

Since Wj(k)/Aj(k) ~ fwj(k)/Aj(k)l, the
lower bound t1b on time form= m1b is. equal.to
Avm(l) which is the length of a critical path.

Illustration 5. By means of (12), the lower
bound m1b is equal to 3. By means of (13) based
on m = 3, the lower bound t 1b is 64. If m = 2,
the lower bound on time is 64.5.

Discussions and Conclusions

We have proposed two detailed algorithms for
generating two types of precedence partitions on
any POSET, an equalization of these partitions
with elements involving unequal time intervals,
a recursive and.algebraic method for finding all
time intervals and a faster method for finding
Vm(Vm + 1)/2 common objects. Both types of
precedence partitions are essentially needed for

solving a scheduling bound problem. The algorithm
for finding an LPP can induce "levels" as a by
product and the algorithm for generating an EPP
can yield the length of a critical path as a by
product. Both of these by-products might be very
useful in designing a level-oriented and critical
path-oriented scheduling algorithms. In addition,
a task being known as "essential" or "nonessential"
can be defined by means of both precedence parti
tions in· such a way that a task is essential if
itself or its first subtask has EST = LST and is
nonessential otherwise. All essential tasks are
along critical paths. The price paid for an
equalization to obtaining the refined precedence
partitions might be worthwhile particularly in
a case in which some tasks require much longer
execution times as demonstrated in Illustration 2.
The proposed method for finding common objects
is based on the techniques of recursion, succes
sive reduction. and partition. However, the
method of Fernandez and Bussell [9] relies on
solving the following equations:

k+j-1 k+j-1
wj(k) nc iyk L0(i) n iyk E0(i)) (lld)

for j = 1, ••• ,Vm and k = 1, •.•• ,Vm - j + 1. The
intersections and unions based .on (lld) involve
set or even bag operands which are not only never
empty but also gradually become larger as the
computation proceeds whereas the intersections
needed in our proposed method never involve bags
but involve sets which gradually become smaller
or even empty as j increases. In addition, no
union operations are required in our proposed
method since these slow operations are replaced
by faster algebraic operations.

When a POSET contains tasks with different
execution times in such a way that the number
Vm of elements in either refined precedence
partition is much less than tm/w of the EP.P or
LPP corresponding to the refined precedence
graph Gw. the proposed method is efficient. When
a POSET containing tasks with equal execution
times is relatively large, the proposed method
is still applicable for this special case and is
also worthwhile. The author tried twice to
solve the Manacher's road map [14] (taken from
[5}) with 86 tasks of the same- execution time
w = 1 by hand. When this computation was based
on (lld), it was not only time consuming, but
also difficult to avoid computation errors
because the sets involved became more complicated
as the computation proceeded. However, by means
of our proposed method, it was much .improved.

Acknowledgement

The work reported here was supported in part
by N.I.H. Grant No. 5-501-RR05300-12 at the
University of Alabama in Birmingham. The author
thanks one referee who suggested a more specific
title for this paper, Mrs. Janice Edwards for her
efficient typing of the manuscript and Mr. Andrew
w. Russo for implementing Algorithms 1 and 2 by
PL/I programs.

79

[l]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[10]

[11]

[12]

[13]

[r.4]

References

T. L. Adam, K. M. Chandy, and J. R. Dickson,
"A Comparison of List Schedules for Parallel
Processing Systems," COllllll. ACM, Vol. 17
(Dec., 1974), pp. 685-690.

J. L. Baer, "A Survey of Some Theoretical
Aspects of Multiprocessing," ACM Computing
Surveys, Vol. 5 (March, 1973), pp. 31-80.

J. L. Baer and G. Estrin, "Bounds for Maximum
Parallelism in a Bilogic Graph Model of
Computations," IEEE Trans. on Computers,
Vol, C-18 (Nov., 1969), pp. 1012-1014.

A. B. Barskiy, ''Minimizing the Number of
Computing Devices Needed to Realize a
Computational Process Within a Specified
Time," Eng. Cybern. (USSR), No. 6 (1968),
pp. 59-63.

E. K. Bowdon, Sr., "Priority Assignment in a
Network of Computers," IEEE Trans. on
Computers, Vol. C-18 (Nov., 1969), pp. 1021-
1026.

Y. E. Chen and D. L. Epley, "Bounds on Memory
Requirements of Multiprocessing Systems,"
Proc. 6th Annu. Allerton Conf., Circuit and
Syst. Theory (1968), pp. 523-531.

E. G. Coffman, Jr. and P. J. Denning,
Operating Systems Theory, Prentice-Hall,
(1973), pp. 83-143.

E. G. Coffman, Jr. and R. L. Graham, "Optimal
Scheduling for Two-Processor Systems," Acta
Informatica, 1, (1972), pp. 200-213. --

E. B. Fernandez and B. Bussell, "Bounds on
the Number of Processors and Time for Multi
processor Optimal Schedules," IEEE Trans. on
Computers, Vol. C-22 (Aug., 1973), pp. 745-
751.

D. R. Fulkerson, "Scheduling in Project Net
works," Proc. IBM Scientific Computing Symp.
Combinatorial Problems (1966), pp. 72-92.

T. c. Hu, "Parallel Sequencing and Assembly
Line Problems," Oper. Res. , Vol. 9 (Nov.,
1961), pp. 841-848.

P. W. Kraska, "Parallelism Exploitation and
Scheduling," Dept. Computer Sci. , Univ. Ill. ,
Urbana, Rep. UIUCDCS-R-62-518 (June, 1972).

W~ H. Kohler, "A Preliminary Evaluation of
the Critical Path Method for Scheduling Tasks
on Multiprocessor Systems," IEEE Trans. on
Computers, Vol. C-24 (Dec., 1975), pp. 1235-
1238.

G. K. Manacher, "Production and Stabilization
of Real-Time Task Schedules," J. ACM, Vol.
14 (July, 1967), pp. 439-465. ~~-

[15]

[16]

R. McNaughton, "Scheduling with Deadlines and
Loss Functions," Management Sci., Vol. 6,
(Oct., 1959), pp. 1-12. .

R. R. Muntz and E .• G. Coffman,. Jr., "Preemp
tive Scheduling of Real-Time Ta§ks on Multi
processor Systems, 11 J. ACM, Vol. 17 (April,
1970) , pp. 324-338. Also, "Optimal Preemp
tive Scheduling on Two-Processor Systems,"
IEEE Trans. on Computers, Vol. C-18 (Nov.,
1969), pp. 1014-10200

[17]

[1s]

Table I

C. v. Ramamoorthy, K. M. Chandy, and M. J.
Gonzalez, "Optimal Scheduling Strategies
in a Multiprocessor System," IEEE Trans. on
Computers, Vol. C-21 (Feb., 1972), pp. 137-
146.

J. D. Ullman, "Polynomial Complete Scheduling
Problems," tith Symposium on ·Operating Systems
Principles, Yorktown Heights, New York
(Oct., 1973), PP• 96-101.

Precedence Partitions on the POSET s1

t 0 1 2 3 4 14 23 33 50 51 52 53 63 64
I I I I I

EPP kE 1 2 3 ''4 5 6 7 8
·.

Et 1 2 2 4 4 7 7 9
3 6 5 5 8

6
.,

LPP k1 1 2 3 4 5 6 7 8

Lt 1 2 4 7 7 3 6 9
5 8 7 7

8 8

k 1 2 3 4 5 6 7 8 9 10 11 12 13

v 13 12 11 10 9 8 7 6 5 4 3 2 1

RLPP Lo(k) 1 2 2 4 4. 4 7 7 3 6 6 .6 9
5 5 5 8 7 7 7 7

8 8 8 8

REPP E0(k) 1 2 2 4 4 4 7 7 7 7 7 7 9
3 6 s 5 5 8 8 8 8 8

6 6

80

Table II

llj (k) for j 1, ••• ,13 and k = 1, ••. 14 - j

j k

1 2 3 4 5 6 7 8 9 10 11 12 13 ~ 1 1 1 1 1 10 9 10 17 1 1 1 10 1
2 2 2 2 11 19 19 27 18 2 2 11 11

3 3 3 12 20 29 36 28 19 3 12 12

4 4 13 21 30 46 37 29 20 13 13

5 14 22 31 47 47 38 30 30 14

6 23 32 48 48 48 39 40 31

7 33 49 49 49 49 49 41

8 50 50 50 50 59 50

9 51 51 51 60 60

10 52 52 61 61

11 53 62 62

12 63 63

13 64

Table III

Ej(k) and Ij+l(k) for j = 0, ••• ,12 and k = 1, ••• ,13 - j

j j+l k

1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 1 1 2 2 2 2 4 4 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 9 9

3 6 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8
6 6

1 2 3 6 6 6 8

2 3 3 6 6 6 8

3 4 3 6 6 6 8

4 5 3 6 6 6 8

5 6 3 6 6 6 6 8 8

6 7 3 6 6

7 8 3 3 6 6 6

8 9 6

9 10 6 6

10 11

11 12

12 13

81

Table IV

Lj(k) and Ij+l(k-j) for j = 0, ••• ,12 and k"' j + 1, ••• ,13

k . j j+l

l 2 3 4 5 6 7 8 9 10 11 12 13

1 1 2 2 l 2 2 4 4 4 4 4 4 7 7 7 7 3 7 6 7 6 7 6 7 9 9 0 l
5 5 .5 5 5 5 8 8 7 8 7 8 7 8 7

8 8 8 8

3 6 6 6 l 2
8

3 6 6 6 2. 3
8

3 6 6 6 3 4

L
8

3 6 6 6 4 5
8

3 6 6 6 6 8 5 6
8

3 6 '6 6 7

3 3 6 6 6 7 8

6 8 9

6 6 9 10

10 11

11 12

12 13

Table V

•\ (k)l/(Ij (k)) and Wj (k) for j = l, ••• , 13 and k = l, ••• ,14 - j

j k

1 2 3 4 5 6 7 8 9 10 11 12 13 J
1 1 1 l 1 1 1 2 2 20 20 18. 18 1d 10 34 34 2 2 2 2 2 2 10110. 1 J l J
2 2 2 ~ 3 22 38 28 44 36 4 4 12 111
3 3 4 '23 40 48 62 -46 38 6 14 13.

4 5 24 41 50 82 64 48 40 16 15

5 25 42 51 84 84 66 50 50 17

6 43 52 85 86 10 96 68 10 70 51

7 53 86 87 98 98 88 71

8 87 1 89 99 l 101 118 89

9 90 l!Ol 102 1.21 119

10 102 104 1123 122

11 105 125 124

12 126 126

13 127

82

TWO MODELS OF TASK OVERLAP WITHIN JOBS
OF MULTIPROCESSING MULTIPROGRAMMING SYSTEMS

Mamoru Maekawa(a) and Donald L. Boyd
Department of Computer, Information and Control Sciences

University of Minnesota
Minneapolis, Minnesota 55455

Abstract -- The effects of task overlap with
in jobs on the job throughput rate in multipro
cessing multiprogramming systems are studied.
A job model which represents overlapping tasks
within individual jobs is constructed and then ex
tended so as to represent a system model. The
sy$tem model is further refined so as to include
two different CPU scheduling algorithms; non
preemptive and processor-sharing. Having a
high degree of overlap within a job appears to be
equivalent to the addition of another job in the
system when nonpreemptive algorithms are used.
When a processor-sharing algorithm is used, a
high degree of overlap within a job iii approxi
mately equivalent to doubling the number of jobs
in the system.

1. Introduction

Since the introduction, in the early 1960's,of
independent input/output (I/O) channels to remedy
the disparity in speed between CPU computations
and I/O device operation!!, concurrent tasks
have become a common feature of almost all
computer systems. Concurrency of operations,
CPU tasks and I/O tasks, may occur between
jobs of a multiprogramming system and within
each of the individual jobs of a system. Although
a great deal of analysis has been performed con
cerning the first type of concurrency [l, 3] only
recently has attention been focused on internal
concurrency within jobs as well as between jobs
[9] • The complexity of analysis partially ex
plains this deficit,

In [9] , we modeled a batch-processing mul
tiprogramming system in which the job model al
lowed concurrent CPU tasks and 1/0 tasks within
jobs. We defined the degree of multiprogram
ming to be a two component measure of the num
ber of concurrent jobs competing for processors
and the potential internal concurrency of CPU
tasks and I/O tasks within jobs. By using job
throughput as a criterion for comparison, we
were able to show, with the aid of numerical ex
amples, the effects of both types of concurrency
on throughput for three different system models.
That is, up to a certain point, dependerit upon the
system model, concurrency within jobs has the

(a) Present address: Toshiba Research and
Development Center, 1, Komukai Toshiba
cho, Saiwai-ku, Kawasaki, 210, Japan

83

same effect on throughput as did the addition of
jobs with no internal concurrency. Thus im
proved throughput is achieved without the neces -
sity of additional resources such as memory and
with lower system overhead,

The degree of improvement appears to be a
function of the computer system model, the var
iables include scheduling algorithms and service
time distributions. The three system models
used were:
l, A uniprogramming system allowing a single

job system access under general distribution
assumptions.

2. A multiprogramming system with competing
tasks, but no processor preemption allowed.
I/O service time was exponential while CPU
service time followed a general distribution.

3. A multiprogramming system with a time-slic
ing algorithm used to allocate CPU time
among .competing tasks. In this model, CPU
service time was represented by hyperex
ponential distribution.

The purpose of this paper is to present the
analysis of two additional system models in order
to further observe, through numerical examples,
the effects of internal concurrency on job through
put rate. The two system models are similar to
the last two models mentioned above. However
in the present models, we will assume multiple
identical CPUs, CPU service time to be govern
ed by a hyperexponential distribution, and I/O
service time to be governed by an Erlang distri
bution. The distributions of CPU and I/0 service
times are reported to be hyperexponential and
Erlang [2,, 7]. In the first model the processors
are assumed to be nonpreemptive while in the
second model the scheduling of CPU service fol
lows a processor-sharing algorithm.

In the following section because of notational
necessity we will repeat the fundamental assump
tions for the basic job and system models. We
will again define the measures to be used for nu
merical observations. In section three we will
discuss the development of the equilibrium equa
tions for the two system models mentioned above.
In section four, we will describe some numerical
examples, and conclude with some overall obser
vations.

2. Assumptions and Notation

2. 1 Job and System Models

The job model must conveniently represent
concurrency of CPU and I/0 tasks. We assume
that a job consists of a series of alternating CPU
and I/O tasks, beginning and ending with a CPU
task. Concurrency is achieved when an I/0 task
is created before the completion of its corre
sponding CPU task, The next CPU task does not
begin until after the I/O task is completed and the
previous CPU task completes by issuing a sys
tem request (denoted as a wait) to synchronize
the two tasks. This behavior is shown in Figure
2. 1.

Job Start Job ~d

\ 8 1 ~~ 84 Sn-I ~r
CPU~ c2 d2 C3 ~ C0 -1 d,.-1 C0

~ I),(: 1• '.\(~--·~ ,--
task I I I I I I I I I I

I I I I 1 I I I I I
1/0 I I I I I I I I I I

·task I t1 I I t2 I I t31 1t4, I tn-1 I
L--...1 L__j L.J_. L--..J

Figure 2.1 Job Behavior:xdenotes I/O task cre
ation and· .denotes the wait request.

The notations and assumptions basic to the job
model are the following:
1. A CPU task is defined as the processing time

required of the CPU between two consecutive
wait requests or the processing time between
the beginning of the job and its first wait re
quest or the processing time between the last
wait request and the termination of the job,
These times will be governed by the random
variables si, i=l,2, ••• ,n-1, as shown in
Figure 2. 1. We assume that the Bi are mutu
ally independent and identically distributed.
Thus the CPU task times are denoted by the
single random variable S with mean l/µ and
distributed as a K phase hyperexponential with
distribution function

K -µks
F(s)= I wk[l-e]

k=l
where

and

2. The random variables c., i= 1,2,··· ,n,govern
the processing time reqt.ired of the CPU by a
job from the beginning of execution or a wait
request to the next issuance of an I/O request
or to the termination of the job as shown in
Figure 2. 1. The c i's are also assumed to be
mutually independent and identically distri
buted, thus denoted by the single variable C.
Furthermore, C is defined by two mutually
independent random variables S and B where
C = min{S, B}. The random variable Bis as-

84

---- ·------.

sumed to be exponentially distributed with
mean l/v and distribution function

H(b) = 1 - e-vb •

The variable B governs the time until an I/O
request is made during a CPU task if overlap
exists. B will be used in the measurement of
overlap.

3. Denote by di the processing time required by
the CPU from the issuance of an I/O request
to its corresponding wait request. Thus di,
i= 1,2, .. ·,n-1, is defined as di=si-ci and
denoted by the single random variable D.

4. Denote by ti, i= 1,2,·· • ,n-1, the i-th I/O
channel time requirement. Assume that the
ti's are mutually independent and identically
distributed and thus denoted by the single var
iable T with mean 1/X, and distributed as an
Erlang of order U with distribution function -st ("AU)(XUx)U- le-XUx

G(t) - O (U-l)! dx

5, The three random variables S, B and T are
assumed to be statistically independent.

6. After each partial CPU task of length q, a job
leaves the system with a fixed probability q
or issues an I/O request with probability 1-q.
Therefore the number of CPU tasks of a job is
geometrically distribute4 with mean l/q,
O<qsl.

With these assumptions and the notation
presented above, the behavior of a job as it flows
through the system may be represented as a state
transition graph.

The individual states are defined as follows:
A1: A CPU task has been requested but its cor

responding I/O processor task has not yet
been requested.

A2: Both a CPU and I/O processor task have
been requested and neither of them as yet
have completed.

A3: The I/O processor task has completed but
the corresponding CPU task is not yet com
pleted.

A4: The CPU task has completed but the corre
sponding I/O processor task is not yet com
pleted.

Thus a job enters the system at state Ai and
cycles through the system and finally departs
from the system after an average number of 1/q
visits to .state A 1• The directed cycles are
shown in Figure 2, 2,

Using this job model, the batch-processing
multiprogramming system is now modeled by the
number of jobs in each cif the job states Ai, i = 1,
2, 3,4. We assume that the system consists of M
identical CPU'.s and N identical I/O channels. By
assumption, a departingjob is immediately re-

placed by a new job, thus a constant number L
jobs remain present in the system at all times.
The closed, cyclic queuing model representing
the basic system model is depicted in Figure 2. 2.

Departing Job Replaced

Arrival rA_i _-;:;;:;n--l--~q!__.J Departure
CPU

C=min{S.B)
S>B S~

J/O:T-D

Figure 2. 2 System Model

2. 2 Measure- Degree of Multiprogramming and
Job Throughput Rate

As shown in Figure 2. 2 concurrency of CPU
and I/O tasks within a job is achieved when the
job enters state A2. The probability of entering
state A2 is given by Pr[S> B] and denoted by w.
W will be called the overlap ratio and is an indi
cation of the portion of CPU task time which can
be potentially overlapped with an I/O task. It is
shown in [9] that as the mean of B becomes
large (no overlap), w approaches zero, and as
the mean of B becomes small (perfect overlap),
W approaches one.

The degree of overlap between different jobs
in a multiprogramming system is usually meas
ured by the number of jobs in the system per CPU
or per I/O processor. Denote by r1 the number
of jobs per CPU. The vector (0, w) will be used
to measure overlap for the entire system and is
defined to be the degree of multiprogramming.
The job throughput rate of the system might be
expected to increase as r1 or w increases. This
rate will be calculated for different values of
(rl' w).

The job throughput rate of the system, R, is
defined in terms of the CPU utilization, Pr [CPU
busy] , and the total CPU time required by an
average job in the system, Tc. Thus

M
R = TPr[CPU busy]

c
M

(I/q-l)l/µ + E[C] Pr[CPU busy}

Similarly, R is related to the I/O processor utili
zation, Pr[I/O processor busy] and the total I/O
processor time required by an average job in the
system, TI,as follows

N
R = TPr[I/0 processor busy]

I

85

N
(l/q- l)l/;\ Pr[I/O processor busy]

Define R(M, N ,n, W) to be the job throughput rate
of a system with M CPU's, N I/O channels, and
a degree of multiprogramming (rl ,w). R is
clearly bounded by

R(M,N,l/M,O)~ R ~ R (M, N,oo, 1)

It is shown in [9] that under general distribution
assumptions these limits are given by

q A /(~-q)µ~ R ~ min{Mµ -tq, Nx-tq}

Improvement of the job throughput rate
R(M,N, n,w) . b d d is oun e by

R(M,N, l/M,O)

1 ~ R(M,N ,n,w) .s min{..M..(1+(1-q) t:) ,_!:i._(~ +(1-q)l.
R(M,N,l/M,O) 1-q A 1-q µ '

The upper bound takes the maximum when Mµ =
N;_ , thus given by

M/(1-q)+N

Two detailed system models are outlined in the
following section.

3. Two Specific Cases of the System Model

Further analysis of the general model dis
cussed in section two which would lead to useful
results appears to be fruitless. In this section,
we will concentrate on the algorithms for sched
uling CPU and I/O tasks. We will assume that
CPU and I/0 tasks times are distributed as
hyperexponential and Erlang respectively. Fur
ther, it is assumed that once an I/O task is in the
running state, it is not subject to preemptions.
The system consists of M identical CPU's, N
identical I/O channels, and will support a fixed
number of jobs, L, at all times.

The two cases of the system model will be
distinguished by their assumptions on the sched
uling of CPU tasks. However a few remarks are
necessary concerning the scheduling of I/O chan
nels to I/O tasks. Note that new I/O tasks may
exist in states A2 or A4 as shown in Figure 2. 2.
The question arises as to what selection algo
rithm would best enhance the job throughput rate
of the system. In [9] , it was argued that the
following, SCHEME A, is at least as good as any
other strategy because it maintains a high arriv
al rate of new CPU tasks.
SCHEME A: Tasks at state A4 are given a higher

selection priority tha~ those at state
A2. Among tasks at the same state,
a task is randomly selected.

Although the analysis in this section assumes
SCHEME A, the following SCHEME B has also
been considered and included in the numerical
examples of the following section.

SCHEME B: Tasks at state A2 are given a higher
selection priority than those at
state A4. Among tasks at the same
state, a task is randomly selected,

3. l Case 1 - Nonpreemption

In this model we will assume that after a
CPU task has acquired a CPU it will complete
CPU service without interruptions. Since CPU
tasks are statistically independent and identically
distributed and since preemptions are not allow
ed, the queue selection algorithm will have no
effect on the job throughput rate of the system.
Thus any selection algorithm such as a random
or FCFS may be assumed.

This analysis utilizes the method of states
due to Erlang [4] for I/O time. The hyperex
ponential distribution for CPU time is also ana
lyzed using a similar method. The distribution
function of the hyperexponential distribution is a
weighted sum of K exponentials, thus CPU time
can be simulated by a set of K CPU phases • When
a CPU task is allowed access to a CPU, it choos
es phase i with probability Wi. Phase i
is exponentially distributed with mean l/µi. Due
to the severe limitation on the space allowed we
eliminate the detailed analysis and refer inter
ested readers to [10].

3. 2 Case 2 - Processor-Sharing

In this model we will use a processor-shar
ing algorithm [8] to assign tasks to the CPU's.
Note that although this algorithm is not realiza
ble, it may be viewed as a limiting case of the
classical round-robin algorithm where the time
quantum size approaches zero.

It is assumed that a single CPU task may
never occupy more than single CPU at any time.
If the number of ready CPU tasks, c, is less than
or equal to the number of CPU's, M, the rate of
CPU processing assigned to each task is µ,other
wise the rate is reduced to (M/c)µ. Therefore,
the rate at which CPU tasks complete processing
is min{Mµ/c, µ}. Again we exclude the detailed
analysis and refer interested readers to [10] .

4. Numerical Examples

We will use five example job sets to demon
strate the relationship of the degree of multi
programming on the job throughput rate of the
system for the models discussed in section three.
In each of the five sets, the mean CPU time,l/µ,
and the probability that a job leaves the system,
q, are held constant at l/µ equal to 1 and q equal
to O. 02. The queuing algorithm for I/0 proces
sors is SCHEME A except in cases where the ef
fect of I/O processor queuing is observed. The
random variable B which primarily determines

86

the duration from the beginning of a CPU task to
the issuance of its corresponding I/O request is
exponentially distributed with mean 1/11. The
parameter 11 is varied from 0 to a very large
number thus causing the overlap ratio, w, to
vary from 0 to 1. Other parameters such as the
balance of the system, A/µ, the number of
CPU's, M, the number of I/O channels, N, and
queuing disciplines for the CPU's will be varied.
The characteristics of the five job sets are dis
played in Table 4. 1.

Numerical results are graphically presented.
Each figure is a plot of improvement of the job
throughput rate and the degree of multiprogram
ming, ($1 ,w). The improvement of the job
throughput rate is defined as

R(M, N,D,w)) OO
(R(M,N,l/M,O) - l x l

That is, the improvement is measured as the
percentage of increase in job throughput rate
over a system with a single job which has no
overlap within a job. ($1,W) is represented as a
linear function (D + w), where D = 1, 2, 3, · · • and
os;w.::;;i.

The plots displayed in Figures 4. 1 and 4. 2
are for job sets A and C respectively under a
balanced system. That is, we assume that a
system is balanced when the average job's de
mand for the CPU is equal to its demand for the
I/O channel, thus "A/µ is equal to (1-q). Three
observations are made. First, an increase in
the job throughput rate is obtained by increasing
the overlap ratio. In fact, under nonpreemptive
schedules the following approximation can be ob
served for both job sets A and C.

R(l,l,D,l):.:::: R(l,l,D+l, 0) (4. 1)

This relation was also observed in [9]. That is,
a high overlap ratio appears to be equivalent to

Table 4. 1 Example Job Sets(b)

Job Set CPU time I/O time
Identifier distribution distribution

A l Exponential Exponential
f---- ! Hype rexponential

B : Exponential
(Variance -4)

c Hyperexponential
Exponential

(Variance -16)

D Exponential Erlang

E
Hyper exponential

Erlang
I (Variance -16)

(b)An hyperexponential distributions are two
phases and all Erlang distributions are two
stages.

Improvement of the
Job Throughput Rate

The Upper Bound
100~~~~~~~~~~~~~~~~~~~

80

60~

40~

20~

/,.

/
I

I
I

...... ,, , ,, ,
, ,, ~,

,' ,.,"/,,
'Y/y I /

/ /

processor - sharing
schedules

nonpreemptive schedules

n5 n5 n5 45 n5
(J) (J) (J) (J) (J)

.Q=l .Q=2 .Q=3 .0.=4 .Q=5

Degree of Multiprogramming

Figure 4. 1 Improvement of the Job

80~

60~

40~

20~

Throughput Rate for· Job Set A in a Balanc -
ed System.

Improvement of the

Job Throughput Rate

The Upper Bound

processor-sharing
/,,----.schedules

0.5 0.5 0.5
(J) (J) (J)

nonpreempt i ve
echedules

.Q=l .Q=2 .Q=3

Degree of Multiprogramming

Figure 4. 2 Improvement of the Job
Throughput Rate for Job Set C in a
Balanced System.

87

the addition of another job in the system. This
relation holds only for systems with a single CPU
and a single I/O processor.

The improvement of the job throughput rate
is greater under preemptive schedule than under
nonpreem.ptive schedules. Under processor
sharing schedules, which is the limiting case of
the preemptive schedule the following approxi
mation is observed for job set A.

R(l,l,n,w)~R(l,l,S?(l+w),O). (4. 2)

That is, having a high overlap ratio appears to be
equivalent to doubling the number of jobs in the
system. Relation 4. 2 shows that overlap within
a job has more effect on the job throughput rate
under processor-sharing schedules than under
nonpreemptive schedules. As seen in Figure
4. 2, Relation 4. 2 seems to hold for only small
values of w when using job set C where the CPU
time is hyperexponentially distributed with a high
variance.

The second observation relates to the effect
of time-slicing, In Figure 4. 1, it is observed
that, when there is some overlap within a job,
the job throughput rate is increased by time
slicing even if the distr_ibution of the CPU time
is exponential. This phenomenon is interesting
because, if the distribution of the CPU time is
exponential, and if there is no overlap within a
job, then time- slicing does not affect the job
throughput rate due to the memoryless property
of the exponential distribution. Thus the inclu
sion of overlap within a job causes time-slicing
to have a significant effect on the job throughput
rate.

Increase in the job throughput rate by time
slicing is explained as follows. Task overlap
within a job can actually be obtained when the job
is at state A2. The number of jobs at state A2
is limited by the number of CPU's. Multiplexing
due to time-slicing creates an image of multiple
CPU's and allows more jobs to stay at state A2
at the same time. Hence, more jobs can obtain
task overlap at the same time.

When the distribution of CPU time is hyper
exponential, the improvement of the job through
put rate due to time-slicing is larger than when
the distribution of CPU time is exponential. This
is observed in Figure 4. 2. Baskett [lJ has
shown that the throughput behavior of the system
with hyperexponential CPU times under proces
sor-sharing schedules is identical to the through
put behavior of the system with exponential CPU
times with the same mean. Comparing Figure
4. 1 with Figure 4. 2 it is seen that Baskett's
statement is true o.nly when the overlap ratio is
zero.

The third observation concerns job set C

only. In Figure 4, 2, it is observed that the job
throughput rate improves for a small value of w,
but remains nearly constant for any further in
creases of w. Thus it appears that even a small
amount of overlap within a job will have an equiv
alent effect to total overlap within a job if the
CPU time is governed by a hyperexponential
distribution with a high variance.

Thus far observations have been made for job
set A and job set C. The throughput behavior of
job set B, as might be expected, is between the
throughput behaviors of job set A and job set C.
This is observed, for example, in Figure 4. 3,
where the throughput behaviors are shown under
the nonpreemptive schedule. Apparently the co
efficient of variation is one of the major factors
which determine the throughput behavior. The
coefficients of variation of job sets A, B and C
are 1, 2, and 4, respectively.

Since the behavior of job set B is easily in
ferred from that of job sets A and C, we will not
include this set in what follows.

The effect on job throughput due to changes
of the I/O time distribution is observed in Fig
gures 4. 3 and 4. 4. The system is balanced and
has a single CPU and a single 1/0 channel. Ob
serve that Erlang I/O time provides a higher job
throughput rate than exponential 1/0 time. But
when CPU time is hyperexponentially distributed
with a high variance, the effect of 1/0 time dis
tribution is very small. Relation 4. 1 for non
preemptive schedules still appears to hold for
Erlang I/O time. Relation 4. 2 for exponential
CPU time under processor-sharing schedules
also appears to hold for Erlang I/O time.

The effects on job throughput rate due to
changes of system configurations are displayed in
Figure 4, 5. We assumed that a job requires on
the average four times more 1/0 channel time
than CPU time in order to maintain a balanced
system. When the number of jobs increases,
there are jumps in the job throughput rate up to
a point at which the number of jobs is equal to the
number of 1/0 channels. The height of the jumps
decreases as the number of jobs increases. The
following form of Relation 4. 1 appears to hold.

R(l,N,n, l)~ R(l,N,n+1, 0)

for L '1;: N. R(l,N, n, 1) tends to be larger than
R(l,N,n+l,O). If the number of jobs is less than
the number of 1/0 channels, R(l,N,L,0) is .roug
hly estimated by

_LA/(µ+ LA)
R(l,N,L, O}- A/(µ+X) R(l,l,L, 0)

L(µ + X) R(1 1 L 0)
µ+LA ' ' '

88

Improvement of the
Job Throughput Rate

The Upper Bound
100%,+-~~~~~~~~~~~~~~~~-

80

60

40

20

Job Set D :..:..:: ... :--
"/",... ~et A

, , / ········ ..
; ········· ..

• •• • •• Job Set B .· ..
.. --

,•' Job Set C and /-·-·-·-·
,.' .. · .. "·-·-·-·-·
'·• /·-·-·-·-·/-·-·-·-· Job Set E

-·-·

0.5
(i)

0.5
(i)

0.5
(i)

0.5
(i)

0.5
(i)

D=l .Q=2 .(1=3 .Q=4 .\2=5

Degree of Multiprogramming
Figure 4. 3 Improvement of the Job Through

put Rate in a Balanced System under Non
preemptive Schedules,

Improvement of the
Job Throughput Rate

100%;·~~~~~~~~~~~~~ f The Upper Bound

80%

60%

40%

20%

.Q=l

0.5

(i)

I
I

I

I
I

I

0.5

(i)

I
I

I

.\2=2 D=3

0.5
(i)

Job Set D

Job Set A

Job Set E

Job Set C

Degree of Mui ti programming

Figure 4. 4 Improvement of the Job Through
put Rate for Job Sets A, C, D and E, in a
Balanced System under Processor-Sharing
Schedules.

300~

200

Improvement of the
Job Throughput Rate

The Upper Bound is 400~

~

/
/·-·--- Job Set D

Job Set A
100~ /

/·-·-·-- Job Set E

(J) (J) (J) (J)

.Q=l 0=4 .Q=5 0=6

Degree of Multiprogramming
Figure 4. 5 Improvement of the Job Through

put Rate in a System with a Single CPU and
Four I/O Channels under Nonpreemptive
Schedules.

Improvement of the
Job Throughput Rate

The Upper Bound
200~+--------------:..:.-----------------

100~

Job Set D

Job Set A

-·-· Job Set E

Degree of Multiprogramming

,0.5
(J)

Figure 4. 6 Improvement of the Job Through
put Rate in a System with Two CPU's and a
Single I/0 Channel Under Nonpreemptive
Schedules.

89,

Figure 4. 6 is a plot of the improvement of the
job throughput rate for a system with two CPU's
and a single I/O channel. A job requires on the
average twice as much CPU time as I/0 channel
time in order to maintain a balanced system.
Except for the initial jump in the job throughput
rate, the following general formula of Relation
4. 1 appears to hold.

R(M, 1,0, 1) R: R(M, l,fl+ 1, 0) •

Having a high overlap ratio appears to be equiva
lent to increasing n by 1; that is, equivalent to
the addition of M jobs to the system.

Table 4. 2 shows job throughput rate per
CPU for job set D in two different system con
figurations. Both the systems are balanced.
Queuing disciplines for the CPU's are nonpre
emptive, It is observed that the job throughput
rate per CPU is higher in the multiple processor
system than the single processor system.

In Figure 4. 7, job set D is plotted for a
balanced system with two CPU's and two I/0
processors under nonpreemptive schedules for
the CPU's. Observe that the natural extension
for multiple CPU's and I/O processors of Rela
tion 4. 3 and Relation 4. 4 does not appear to hold.
R(M,N, 0, 1) is smaller than R(M,N, fl +l, 0).
The difference between R(M,N,fl, 1) and R(M,N,
n + 1, 0) is attributed to the difference in the job
throughput rate per CPU shown in Table 4. 2
even for the same degree of multiprogramming.

The effect on job throughput rate due to the
two queuing disciplines for the I/O processors,
SCHEME A and SCHEME B, is observed next.
Table 4. 3 shows the improvement of the job
throughput rate under SCHEME A and SCHEME
B for job sets A, D, and E. The system has
two CPU's and a single I/0 channel. A multiple
CPU system was chosen since queuing disciplines
for the I/O channels do not affect the job through
put rate of a single CPU system. We assume
that a job requires on the average twice as much
CPU time as I/O channel time to maintain a
balanced system, Queuing disciplines for the
CPU's are nonpreemptive. Note that queuing
disciplines for the I/O channels have little ef
fect on the job throughput rate.

Table 4. 2 Job Throughput Rate per CPU

~
Degree of

Multiprogramming

(2, 0) (2 I I)

System with a Single CPU o. 0139 0.0158 and a Single I/O Processor

System with Two CPU's o. 0153 o. 0173
and Two I/0 Processors

Job Set A Job Set D Job Set E
t-S_C_H __ E_M_E_A-..,--S-C_H_E_M_E_B-r--S-C_H_E-ME A SCHEME B I SCHEME A ~-C-H_E_M_E_B--1

(O. s,w)
and

(1, w)
No Difference No Difference No Difference

,_<_1_._s_._o_>_l
1

.__ __ 1_s_6_._1 ___ t--__ 1s_6_._1 --'-1---1_9_s~~-----+--1_95_._5_--l __ 1_54_.4 ___ -1-__ 15_4_._5_--f

(1.5, I). ZZ9.0 ZZ7.Z Z39.6 Z37.4 166.8 165.5

(Z.O) 1 Zll.6 Zll.6 ZZZ.Z ZZZ.Z I 161.1 161.1
r----~+---'-~--~+--e-.~~~+---~~~+-----~---;1---'-~~---1~~----1

(Z, 0.9) Z39.6 Z37.9 Z49.8 Z47.7 172.7 171.l I

Table 4. 3 'Comparison of SCHEME A and SCHEME B

Improvement of the
Job Throughput Rate

300<t>-t~~~~-T_h_e_U~p~pe~r_B_o_u_nd~~~~

200'.£

100'.£

o~
0.5 0.5 0.5 0.5
(d (d (d (d

n=o.5 O=l 0=1.5 0=2

Degree of Multiprogramming

Figure 4. 7 Improvement of the Job Though-
put Rate in a System with Two CPU·'s and
Two I/0 Processors under Nonpreemptive
Schedules.

90

100'.£

80'.£

60~

20~

Improvement of the
Job Throughput Rate

The Upper Bound for the Balanced System

0.5 115 0.5
(Al . (d -

0=1 0=2 0=3 -0=4 0=5

Degree of Mui ti programming

Figure 4. 8 Improvement of the Job Through
put Rate under Nonpreemptive Schedules in
a Balanced System and in an Unbalanced
System

Finally, changes due to system balance are
observed in Figure 4. 8, job sets A, D and E are
plotted for a balanced system where the CPU
and the I/0 channel are equally demanded, that
is, 'A Iµ is equal to (1-q), and for an unbalanced
system where I/O processor time is demanded
four times more than CPU time, that is, A/µ is
equal to (1-q)/4. Queuing disciplines for the
CPU are nonpreemptive, and each system has a
single CPU and a single I/O channel. Observe
that there is less improvement of the job
throughput rate when the system is unbalanced.
Also, the convergence of the job throughput rate
as the degree of multiprogramming increases
is more clearly observed when the system is un
balanced, When the distribution of CPU time is
hyperexponential with a high variance, the im
provement of the job throughput rate is small
regardless of system balance at least for a
small number of jobs in the system.

In conclusion the observations made in these
examples are summarized as follows:

1. An increase in the job throughput rate can be
obtained by increasing overlap within a job.

2. Under nonpreemptive schedules, having a
high overlap ratio is about equivalent to the
addition of another job in the system regard
less of the distributions of CPU time and I/0
time.

3. The job throughput rate is significantly in
creased by time-slicing. This is observed
even if the distribution of CPU time is ex
ponential.

4. When the distribution of CPU time is exponen
tial, having a high overlap ratio under pro
cessor-sharing schedule is approximately
equivalent to doubling the number of jobs in
the system.

5. When the distribution of CPU time is hyperex
ponential with a high variance, small amount
of overlap within a job has an equivalent ef
fect to total overlap within a job. This is
observed under preemptive schedules as well
as nonpreemptive schedules.

6. The distribution of CPU time has significant
effect on the job through rate of the system.

7. The distribution of I/O time appears to have
less effect on the job throughput rate than the
distribution of CPU time.

B. Queuing disciplines for the I/O processors
appears to have little effect on the job
throughput rate.

9. The job throughput rate per CPU is higher in a
multiple CPU system than a single CPU sys
tem for the same degree of multiprogramming.

91

10. The less balanced the system is, the less
improvement of the job throughput rate is ob
tained by multiprogramming and/or overlap
within jobs.

References

[1] F. Baskett, III, Mathematical Models of
Multiprogrammed Computer Systems,
Ph. D. Dissertation, University of Texas
at Austin, 197 O.

[2] J. W. Boyse, Execution Characteristics
of Programs on a Page-on-demand Sys
tem, Comm. of ACM, 17, 4 (April 1974),
pp. 192-196.

[3] D. L. Boyd, A Multiple Resource Model
for a Batch-Processing Multiprogramming
System, Tech. Report No. 39, Department
of Mathematics, University of Iowa,
March 1971.

[4] D. R. Cox and W. L. Smith, Queues,
Methuen and Co., Ltd., London, 1961.

[5] W. Feller, An Introduction to Probability
Theory and Its Applications, Vol. 1, '3rd
Ed., John Wiley and Sons, Inc., New York
1968.

[6] D. P. Gaver, Probability Models for
Multiprogramming Computer Systems,
Journal of the ACM, Vol. 14, No. 3 (July
1967), pp.422-438.

[7] P. A. Houle, Jr., A Study of Performance
Driven Scheduling in a Multiprocessing
Computer System, Ph. D. Thesis, Univer
sity of Minnesota, 1973.

[BJ L. Kleinrock, Time-Shared Systems: A
Theoretical Treatment, Journal of the
ACM, Vol.14, No.2, (April 1967),
pp. 242-261.

[9] M. Maekawa, and D. L. Boyd, A Model of
Concurrent Teaks Within Jobs of a Multi
programming System, Proceedings of the
Eighth Annual Princeton Conference on
Information Sciences and Systems,
Princeton University, Princeton, New
Jersey, March 28-29, 1974, pp. 97-101.

[10] M. Maekawa and D. L. Boyd, Two Models
of Task Overlap Within Jobs of Multi
processing Multiprogramming Systems,
Tech. Report 74- 6, Department of Com
puter, Information and Control Sciences,
University of Minnesota, March 1974.

OPTIMAL SCHEDULING OF VECTOR COMPUTATIONS IN A RECONFIGURABLE
SHARED-RESOURCE ARRAY PROCESSING SYSTEM(a)

Alexander Thomasian and Algirdas Avizienis
Computer Science Department

University of California, Los Angeles 90024

Summary

Large, high-bandwidth main memories consti
tute a component of significant cost in current
high-performance vector processors such as the
STAR-100, the ASC and the CRAY-1. To relieve the
main memory from instruction accesses, the stream
ing mode of operation is incorporated in all three
computers. The CRAY-1 computer additionally pro
vides register files in the CPU to relieve the
memory from saving and refetching temporary re
sults in vector operations. The handling of vec
tor temporary results has turned out to be a major
problem in the other two systems. The Shared
Computing Resource (SCR) is another scheme to
speed up vector operations by efficiently util i z.:.
ing memory bandwidth [l].

The SCR system consists of an array of pipe
lined arithmetic processors (AP's). The AP's are
interfaced with the main memory by means of ad
dress generators (AG's) which handle the fetching
and storing of vector operands with respect to
the main memory. The system is highly reconfig
urable and a control unit sets up the required
interconnections and registers for a given compu
tation. The computation (task) which generally
corresponds to the evaluation of a vector expres
sion proceeds autonomously in streaming mode until
termination. During the execution of a task, the
AP's are interconnected so that they transmit in
termediate vector results directly to each other.

Tasks to be run on the SCR originate from
programs executing in a multiprogramming/multi
processing system. The SCR serves as a shared
resource for vector processing in this system and
several independent tasks originating from differ
ent programs can proceed concurrently in the SCR.
Tasks correspond to the data-flow graphs of blocks
of vector assignment statements which are execu
table by the SCR in vector mode. The nodes of the
data-flow graph, which is a directed acyclic graph
(dag), are either input or computational nodes.
The edges of the data-flow graph correspond to the
transmittal of input or temporary results. A
memory access cost is associated with each edge.
The cost is one memory access per vector element
for edges emanating from input nodes. For tempor
ary results the cost is two memory accesses per
vector element, since they have to be stored and
retetched.

Potentially a data-flow graph can be executed
as a single task, by mapping it into a configura
tion of the SCR system (the AP's and the AG's).

(a)This research was supported by the National
Science Foundation, Grant ifo. MCS72-03633 A04.

92

Since the resources are finite and since there is
limited intercommunication among AP's, this map
ping is not possible in all cases. Hence we allow
each task to request at most p out of m AP's,
where p is a design parameter. The completion rate
of vector computations can be increased if the
partitioning of the data-flow graph is performed
such that memory accesses (partitioning cost) is
minimized in the case when memory bandwidth is the
limiting factor on speed.

We face the issue of partitioning the data
fl ow graph into subgraphs (tasks) such that each
subgraph has at most p nodes and the cost of edges
connecting the subgraphs is minimal. An efficient
graph-partitioning algorithm exists when the dag
corresponding to the data-flow graph is ordered
linearly, the nodes are assigned consecutive num
bers, and a task is restricted to consist of con
secutively numbered nodes [2]. The linear order
ing of the dag corresponds to the original order
in which operations were specified in the input
program. For examples of the application of this
algorithm to the problem at hand the reader is re
ferred to [3].

A tradeoff exists between the maximum allow
able task size (p) and additional memory accesses
made necessary by the need to save intermediate
vector results. The tradeoff is studied by per
forming measurements on existing programs written
for vector computers to ascertain the desirability
of the SCR design and to optimize its parameters.
To determine the maximum task size (the value of
p), a static analysis of a set of benchmark pro
grams is performed by partitioning the data-flow
graphs of vector computations occurring in the
programs. Then we determine the maximum task
size, which while maintaining memory accesses at a
low level, requires a moderate intercommunication
scheme among the AP's.

References

[l] A. Thomasian and A. Avizienis, "A Design
Study of a Shared-Resource Computing System,"
Proceedings of the Third International Sym
posium on Computer Architecture, Clearwater,
Florida, January 1976, pp. 105-112.

[2] B.W. Kernighan, "Optimal Sequential Parti
tions of Graphs," JACM, Vol. 18, No. 1,
January 1971, pp. 34-40.

[3] A. Thomasian, A Design Study of a Shared
Resource Array Processing System, Ph.D. Dis
sertation, Computer Science Department, UCLA,
September 1976.

A HODJ\L T'OR A

Slli\.llED RESOu:tCr. 'UJJZCP!'.OCEf-SOP.

by

T,awrence s. Cheung
Departl'lent of Electrical Engineering

Harquette University
HilwauJ,_ee, Wfaconsin 532 33

and

Frederic J. J<owle
Department of Electrical Eng:i.neering

Purdue !Jniversftv
'·i. Lafayette, Indiana 47'Yl7

Ahstract -- A model for a shared resource
nrultiprocessor is presented, Based on this model,
two different problems are investigated. The
first problem is to study the systel'I utilization
and the response time as a function of the number
Of programs sharing a given set of resources. The
second problem is to develop an algorithm for de
termining the minimum (cost) system configuration
for a given environment.

Throughout this paper, the significance and
importance of system balance and its relation to
resource utilization are emphasized.

The Need For A Shared Resource !~ultiprocessor

~he j_ncreasing demand for computers with
large computing power and high reliability has
led to the concept of modularity. The availabil
ity of large scale integrated circuits also makes
this approach more attractive.

In designing a processor, svsteM architects
~3] have explored and investigated the idea of
dividing a processor into two separate units, an
instruction fetch (I) unit and an execution (E)
unit. The I unit is responsible for fetching in
structions from the memory and sending them to
the E unit for execution. The E unit performs
all the arithmetic and logic operation~ as in
structed by the I unit. In some cases, the E
unit is further subdivided into several indepen
dent functional units (e.g •. IBM 360/91 and CDC
7600) with each functional unit responsible for
the execution of a special group of instructions.
This kind of specialization may increase the com
puting speed, but it may also lead to the prob
lem of low hardware utilization. At any moment,
only a small percentage of all the available re
sources is not idle.

In order to increase the hardware utiliza
tion to an acceptable level, Flynn has proposed
the idea of shared resources 02]. Suppose a
processor has a total of X functional units. At
some instant, task A only requires i units. If

93

there is another task B, which can use some of
the X - i remaining units, then the overall hard
ware utilization can be improved. In another
word, we are asking the X units to serve more
than one program or task in order to increase the
demand for the hardware resources.

It may happen at times that both task A and
task B are requesting the same resource, in
which case a priority scheme will be needed to
resolve the conflict. Due to the possibility of
resource contention, the time needed to execute
task A may be longer in a shared resource en
vironment, however the time needed to execute
both task A and task B will be shorter than if
they had been run sequentially. This is an ex
ample of a trade-off between response time and
system throughput. If the system is properly de
signed, the sacrifice in response time to obtain
high system throughput can be kept at a minimum.

Program scheduling can also play an impor
tant part in increasing system throughput. If
task A and task B have two different resource
characteristics, e.g. task A requires a lot of
floating point arithmetic while task B only works
on non-numeric data, then the resource conflict
can be kept at a very low level.

Balance Of A Highly Parallel System

Instead of looking at a highly parallel
processor as a web of specialized units, it can
be analyzed based on the functions or operati~~'
it performs, e.g. instruction fetch, add etc.
Each operation requires a set of inputs and pro
duces an output. The output of an operation may
also be the input to another operation. Some of
these functions have to be performed frequently,
while others will be needed only occasionally.

(a)Here we assume a processor to be a collection
of functional units interconnecting together in
some manner.

In designing a highly parallel processor,
after identifying all the operations (]'1 , F2, ••• ,

Fn) it has to perform, the next step is to par

tition them into L distinct groups (G1 , G2 , ••• ,

r'L) such that each group of operations can be

carried out by a class of specialized functional
units. Each class i contains Ni independent

functional units. A class i functional unit is
only capable of performing the operations in Gi'

Associated with each operation Fj' we define Tj

to be the time needed to perform F1 • Using this
notation, a processor can be descr~bed by (SL'

N1 , •• .,l\, T1,. .. ,Tn) where SL is the partition of

F1 , ••• ,Fn' into L groups, G1 , G2, ••• ,~.

After defining F1 , ••• ,Fn' a program can be

characterized by wi' i = 1,2,..,n, the probability

that an instruction in the program requires Fi.

For a given partition SL' the probability that an

instruction requests the service of a functional
unit in class i is

p = iS 1 - II (1 - Wj).
Fj e: Gi

The demand by the program on the class i function
al unit is

xiS = pis T J! N 1 •

and the fraction of the total demand on the class
i functional unit is

Given a processor with a partition SL' we

can define DS' the degree of balance, as
L , 2

Ds = L (Wis - l/L) •
i=l

This is a measure of how even the load on the
system is distributed to various classes of
functional units. SL will be called perfectly
balanced if D • 0. · It should be noted that a
perfectly bal~ced partition may not exist. A
partition SL is called balanced if for any other

partition VL of a design, DV is greater than or

equal to DS. A processor is (perfectly) bal

anced if its operations are grouped together
according to a (perfectly) balanced partition.

In a shared resource multiprocessor environ
ment, the L classes of functional units will be
shared among all the active programs. If there
are M active programs with the same characteris
tics, the contention factor, cj, is defined to be

94

This is a measure of the contention for the class
j functional units by the M programs. The total
contention factor, TC5 , for the partition SL i.s

L
TC = E Ci•

s i=l

In a shared resource environment, the re
source contention by different programs should
be minimized as much as possible; in other words,
we want to find a partition SL of F1 's such that

TCS is m:l.nimized. Assuming the Ti's can be de

fined in such a manner that Wj S can. take any

value between 0 and 1, then the question can be

formalized as an ontimi.zation problem.

Minimize
I.

TCS = E
j=l

subject to the constraints

L
E W. 8

j=l J
1

l > WjS > 0 for j 1,2, •• , ,L.

This can be solved by using the Lagrange multi
plier and the solution is

WjS = l/L for j = 1,2, ••• ,L.

i.e., a perfectly balanced partition will result
in a minimum TC8•

However, in most cases, a perfectly balanced
partition does not exist. Therefore, a realistic
goal is to find a partition ~ which is "almost"

perfectly balanced. n8 is a measure of the de

viation of !\ from the i.deal case, and therefore,
it is the baianced partition that we are looking
for. This can be found using perturbation or
exhaustive search.

Note that the execution times for various
operations are dependent on the design of the
specialized units. For example, a "bit by bit"
shifter may take several times longer to execute
an instruction than a variable length shifter.
Therefore, the structures of the specialized
units are also a very important factor in the
design of a parallel system. If some functions
are used infrequently, it is not cost effective
to implement such functions using specialized
units. It is best to invest into the area
where the return is the greatest.

A Model For A Shared Resource Hultiprocessor

In discussing the balance of a processor, a
very crude model was used. No consideration was
given to the system throughput and the response
time. They are the basic concerns in this sec
tion. The model presented in the sequel can be
used to study how the overall system reacts as
the number of programs sharing a given set of re
sources increases.

The structure assumed consists of H I units
sharing a single E unit. The I units are re
sponsible for all the control and sequencing
necessary to execute the instructions of the pro
grams and the E unit is responsible for carrying
out all the arithmetic and logical operations.
Every cycle, each I unit looks at the first K in
structions from a program or an instruction
stream, determines all the independent instruct
ions, decodes them, and sends the appropriate
signals and data to the E unit. When there are
not enough functional units to serve all the in
structions they will be stored in buffers until
the appropriate functional unit is free.

The following assumptions are made on the
system configuration:

1) All the I units are synchronized. They
all decode instructions and request services from
the E unit at the same time.

2) Instructions from different I units are
assumed to be independent of each other.

3) The E unit consists of 1 distinct class
es of functional units, such as multiply unit,
Boolean unit, and divide unit. Class i has Ni
identical functional units. Each functional
unit is capable of independently carrying out a
specific class of instructions.

4) No instruction requires more than one
service from the E unit.

5) The execution time for all the instruct
ions in the same class is the same.

6) The cycle time for a functional unit is
an integral multiple of some unit time.

7) For each class of functional units,
there is a buffer of infinite length to hold all
the service requests. (This assumption is valid
if the size of the huffer:is at least as great
as the number of functional units in class i).

8) The probability, 0 .. , of sending i inde-. l.J
pendent instructions from an I unit to the E unit
when there are j instrucitons from the same I
unit still active in the E unit is given by

ab i+j -li = 1, 2 • ••• ,K

K
1 - l: Qij

i=l

where a and b are some constants less than one
(See [I] for a justj_ficatfon of this assumption)
and K is the number of instructions examin~d by
an I unit in a cycle. ·

95

9) After the arrival of an instruction, it
takes one time unit for it to stabilize fn the
buffer before it can be processed by a function
al unit. Therefore, the minimum time an instruct
ion stays in the system is its execution time
plus one.

10) Each instruction from the I unit has a
probability, pi' of requesting the service of a
class i functional unit.

11) All instructions sent to the E unit
are assumed to have the same priority, regardless
of their origin.

12) All instruction streams are assumed to
have the same characteristics, i.e. Qij and pi

are assumed to be the same for all prograrrm.

Based on theae assumptions, a shared re
source multiprocessor can be studied using a
queueing model (Fig. 1) with multiple sources
(I units), multiple infinite queues (one queue
or buffer for each class of functional units)
and multiple servers (functional units). Each
service station may have more than one stage and
the number of stages is equal to the number of
tirne units needed to carry out the service.
Since pipelining within each functional unit is
not assumed, each service station can only accorn
odate one customer. Normally there is no watting
room between stages.

Nbtation

1 - Number of classes of functional units
Ni Number of functional units in class i

Ti - Cycle time for class i functional units

M - Number of I units in the system
K - Maximum number of instructions decoded

per cycle
Qij - The probability of sending i instruct

ions to the E unit from an I unit when
there are j instructions from the same
I unit still active in the E unit

pi - The probability of an independent in
struction sent by an I unit requests
the service of a class i functional unit

Analysis of the 'fodel

This model can be solved mathematically; but
it is not appropriate here because the model is
too complicated and a set of complex algebraic
e']uattons does not offer any insight. Further
more, there does not exist any closed form solu
tion to the generalized model which is the chief
advantage of a mathematfcal analysis. Therefore,
simulation was chosen to study the model.

However, a simple solution does exist in the
limiting case when the number of I units, H,
approaches infinity. Let's define the demand by
an environment on the class i functional un-its to
be

i 1,2, •.• ,L.

If

Y = Max(Xl ,X2 , ••• ,Y'1.),

we can define the normalized demand on the class
i functional units to be

As M approaches infinity, the class of functional
units with the largest X becomes the bottleneck
in the system and its utilization factor approach
es 1. Under this circumstances, Zi is the norma
lized work done by the class i functional units
and, therefore, is also the utilization factor
for the class i functional units. The limiting
system utilization factor (I,UF) as N approaches
infinity is 1

LUF
! ZiNi

i=l

J,
r Ni

i=l

(1)

Referring back to the section on system bal
ance, the goal there was to minimize contention
among programs so as to decrease system response
time and increase system utilization. These
factors are interrelated and an alternative goal,
to maximize LUF, can also be used. Note that
Zi's are related to the Wis's defined before.

Both of them are measures of the demand for the
class i resource. Therefore, it is not surpris
ing that LUF is maximized when x1 = X2 = ••• =

~·
The example used here to illustrate the

above principles consists of two classes of func
tional units. The cycle time for the first and
second class of functional units are 3 and 1
time units respectively. The example can be des
cribed by the following parameters:

L 2 K = ft..

Tl 3 T2 1

pl 0.1 P2 0.9

Qij 0 .lf (1/2) i+j-l for i 1,2, ••• ,K

K

OOj 1 r. Qij'
i=l

~hree different cases are considered. In
the first case, there are one class 1 function
al unit (N1 = 1) and three class 2 functional

units (N2 = 3). The limiting system utilization

factor is

LUF1
1+1 x 3

4 = 1.0.

In the second case, there are two fu.~ctional

units in each class (N1 = N2 = 2) and the limit-

ing system utilization factor is

96

LUF = (.15/.45) x 2 + 1x2
4 - 2/3"

In the
ti on al
tional
zation

third case, there are three class 1 func
units (N1 = 3) and only one class 2 func
uni t (N2 = 1). The limiting system utili
factor is

LUF3 = (.1/.9)4x 3 + 1=1/3.

For all these cases, the number of function
al units is a constant, but the LUF ranges from
1 to 1/3 (from a perfectly balanced system to a
highly unbalanced system). The idea is to see
~ow the system reacts unde~ different loading
conditions. For each case, five sillBllation runs
were performed with different numbers of I units
(M = 1, 2, 4, 8, 12). The results are shown in
Fig. 2 and Fig. 3. Two different measures are
used, the utilization factor and the response
time. The values shown in Fig. 3 are normalized
against the situation when there is only one I
unit (M=l).

'.!!he results obtained are somewhat expected,
The utilization factor increases "almost linear
ly" for all cases until the svstem becomes satu
rated and is bounded by the LUF as predicted.
P.esponse time also increases as ~! increases. The
performance of case (1) is better than case (2),
and case (2) is better than case (3). Titls
again emphasizes the importance of the balance of

·a system.

Regarding the trade-off between response time
and system utilization, it is hard to define an
optimal point because they are two different
things. However, some general guideline can be
obtained from the model. For example, in case
(I), the utilization factor increases from 0.2545
to 0.8242 as M increases from I to 4 while the
response time only increases by 12.3%. This is a
price many people are willing to pay.

The analysis shown is centered on the proc
essor only and has ignored all the other compon
ents of a computer, such as memory and peripheral
devices. This model can be extended to include
peripheral devices by treating them as a special
kind of functional units. In this case, Qi may
have to be redefined to take into account j the
fact that an I unit may be idle while waiting for
I/O.

When the response time and M are increased,
a program has to stay in the l'lemory longer and
the memory size has to increase in order to a
ccomodate more programs. Since memory is one of
the most important resources in a comput~r, this
should be accounted for when considering re
source utilization. ~.s it is directly related
to response time, this fact can be taken care of
by assigning appropriate weighting factor to
system response time during the design,

In the analysis we have explicitly assumed
that the costs for all kinds of functional units
are equal. In practice, this is not true. It
may be more suitable to use system utilization
per unit cost as a performance criterion. If so,
Xi and LUF can be redefined to be

LITF

I,

E ZiN.
i=l l

J.
E N.C.

i=l l l

(2)

where C. is the cost of a class i functional uBit.
l

A Design Problem

The model discussed can also be used to aid
the design of a shared resource multiprocessor
system. Consider the optimization problem, given
M, L, T., K, Ci, 0 .. and p., minimize

l '1-J l

CF
L
y; N

i=l i

subject to the constraint

instruction execution rate > a.

where a is a constant.

(3)

Instruction execution rate is used as a
measure here because it gives a more precise de~
scription of the capability of the system. Re
sponse time and utilization factor, though dir
ectly related to instruction execution rate, are
only good as relative measures, but too vague to
be an absolute measure.

Since the model is based on simulation, in
order to obtain the optimal solution, the only
way is to use an enumerative approach. However,
certain criteria can be formulated to reduce the
number of trials.

Since l/T. equals the number of instructions
a class i funcEional unit can execute in a cycle
and the total capacity of all the functional
units must be greater than or equal to a., this
can be expressed as

L
E

i=l
> a.

Since the load is distributed among different
classes according to the probabilities pi' more
precisely, we can write

i=l,2, ••• ,L, (4)

97

The second criterion is based o~ the conjec
ture that a balanced system always outperforms a
unbalanced system. Therefore, whenever it is
necessary to add one additional functional unit
to the system, add to ~he class such that the re
sulting LUF is a maximum.

The algorithm in determining the optimal
soJ.utton fs outlined as follows:

(1) Let N = (N1 , N2 , •.• , NL) such that Ni

is the smallest integer that eq. (4) is satis
fied.

(2) Carry out the simulation to find out
whether the constraint is satisfied or not. If
not, go to step 3; otherwise stop.

(3) Find Ni such that the corresponding

is a maximum, i.e. Xi= Hax (X1 , x2 , ••• "})

and increment N. by one. (This is equivalent to
add one additio5al functional unit to class i
with the resulting LUF a maximum). Go to step
(2).

If we use the parameters in the previous ex
ample and let a.= 2, the possible sequence of
combinations one may try is (1,2), (1,3), (1,4),
(2,4), (2,5), (2,6) --. Since the constraint is
satisfied for N = (1,3), in actual carrying out
the algorithm, only two trials have to be per
formed.

If one is interested in the cost of the
system rather than the total number of functional
units used, eq. (3) can be replaced by

CF
L
!.:

i=l
N. C.

l l

and LUF should be defined as in eq. (2) instead
of eq. (1).

Since the sequence of the possible combina
tions is known beforehand, one can make an in
telligent guess and use that as a starting point.
In many cases, this can cut down the number of
trials and speed up the algorithm.

Discussion and Conclusion

Throughout this paper, we have assumed that
all the programs have the same characteristics
(assumption 12). If this assumption is relaxed,
eq. (1) is no longer correct since different pro
grams may impose different loads on the system.
This case will be considered in a future paper.

Another observation is the utilization factor
for a shared resource multiprocessor increases
almost linearly for small H. For a given set of
functional units and M,one can estimate roughly
the utilization factor by determining the LUF and
the utilization factor when H = 1.

The model presented in ~his paper is useful
in analyzj.ng and designing a shared resource
multiprocessor system. The notion of system bal
ance and the il'lportance of LUF are discussed and
emphasized. A design problem is also formulated
and an algorithm for solvj.ng this problem was
proposed.

Bfbliography

(1) Cheung, L. S, • "Techniques for :Reducing De
pendencies among Instructions for a Parallel
Single Processor Computer System," Ph.D.
thesis, Department of Electrical Engineering,
Purdue T'niversity, 1975.

(2) Flynn, ~1. J., "Some Computer nrganization
and Their Effectiveness", IEEE Trans. Com
puter, C-19, 10 (Oct. 1970), 889-895.

(3) Lorin, Harold, "Parallelism in Hardware and
Software", Prentice-Hall Inc., Englewood
Cliffs, N.J., 1972.

I units Buffers Functional Units

Fig. 1. A queueing model for a shared resource multiprocessor.

98

LUF Case 1
1.0

.8

.6

0

0 2 4 6 8 10 12

Number of I units

Fig. 2. Ultization factor as a function of the number of I units.

7 ~

Q)

;j ...
Q) 5 Case 2
OJ

5
p.
OJ
Q)
k

"d 3 Case 1
Q)
N

or-f
.-1 .,
a
k

~ 1

1 3 5 7 9 11 13

Number of I units

Fig. 3. Normalized response time as a function of the number of I units.

99

P~RFORl'IANCE A~ALYSIS OF A DATA-FLOW PROCESSOR*

David P. "isunas
Laboratory for Computer Science

"assachusetts Institute of Technology
Cambridge, "assach'usetts 02139

Abstract -- A data-flow processor is
structured as a packet communication system.
Sections of a processor are connec.ted by
interconnection networks which have a great deal of
inherent parallelism, and the sections coDBDunicate
by means of fixed size information packets. The
proc.essing capability of a data-now processor is
determined through consideration of the flow of
packets within the interconnection networks, and the
actual performance of the processor is affected by
the structure of the networks. The execution time
of an instruction in a processor can vary greatly
due to conflict within the interconnection networks.
The performance of a data-flow processor is measured
through consideration of the delays caused by this
conflict, and the proper network structure and
processing rate of a machine are determined through
analysis of the best and worst case delays.

Introduction

Efforts to develop a model of computat'on
which can effectively express parallelism ho.·'e
yielded a new form of program representation known
as data flow [1,2,3,6,7,8,10]. The attractivene:;;;1
of data flow lies in the fact that it is data
dri ven; that is, an instruction is enabled for
execution only after each required operand has been
provided by the execution of a predecessor
instruction.

We have been conducting architectural studies
to investigate the design of a processor which can
efficiently execute data-flow programs by taking
advantage of the parallelism inherent in the data
flow representation. The resulting architectures
[4, 5] offer attractive solutions to some of the
problems of parallel systems. The usual problems of
processor switching and memory/processor
interconnection are avoided by the use of
interconnection networks which have a great deal of
inherent parallelism. The structure of the
processor allows a large number of instructions to
be active simultaneously. These active instructions
pass through the networks concurrently and form
streams of instructions for the pipelined functional
units.

This research was supported by the Advanced
Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval
Research under contract number N00014-75-C-06661.

100

Initial investigations culminated in the
development of an architecture for a processor. that
executed programs expressed in the elementary data
fl ow language [4]. The elementary language
incorporates no fancy capabi.lities such as
recursion, data structures, conditionals, or
iteration. However, the language and its
corresponding architecture are well-suited for the
representation and execution of signal processing
computations such as filtering, waveform geveration,
fast Fourier transforms, and so forth.

The next step involved developing the
architecture of the basic processor [5]. This
machine and its corresponding language incorporate
conditional and iterative mechanisms and a multi
level memory system in which the active memory is
operated as a cache, and individual instructions ar
retrieved from the auxiliary memory as they becono
required for computation.

The most recently developed machine in th .. s
series expands the architecture and language •o
incorporate procedures, recursive activation, and
data structures represented as acyclic directed
graphs [8, 9). A more conventional approach to the
implementation of a complete data-flow language h~·
been developed by Rumbaugh [11, 12].

The performance of a data-flow processor ia
analyzed through consideration of the flow of
information within the interconnection networks of
the processor. In illustration of this technique of
performance analysis, we consider such an analysis
of the performance of an elementary data-flow
processor.

The Elementary Data-Flow Processor

The computational capability of the elementary
data-flow processor is limited to programs expressed
in the elementary data-flow language. A program in
this language is constructed of two kinds of
elements, called operators and links. Operators are
represented as. circles with a number o.f input arcs
and one output arc. A link is designated by a small
dot and rece.fves results from an operator on its
input arc and distributes them to other operators
over its output arcs.

Tokens are represented by large solid dots and
convey values over the arcs of the program. An

operator with a token on each of its input arcs and
no token on its output arc is enabled and sometime
later will fire, removing the tokens from its input
arcs, computing a result using the values associated
with the input tokens, and associating that result
with a token placed on its output arc. Similarly, a
link is enabled when a token is present on its input
arc and no token is present on any of its output
arcs. It fires by removing the token from its input
arc and associating copies of the value carried by
the input token with tokens placed on its output
arcs.

In Figure I we have a rather simple data-flow
program. There is a value present on each input
arc, and thus links LI and L2 are enabled. Either
one can fire -- suppose LI does. Then operator A2,
which multiplies its input by the constant A, and
link L2 are enabled. Once again, either A2 or L2
can fire, and in this manner tokens travel through
the program until a token appears on the output
conveying the value Ax(x+y). Once operators Al and
A2 have fired, there are no tokens on the arcs
emanating from LI and L2, and the links can fire as
soon as two new input values arrive. Thus, these
elementary programs can readily represent pipelined
computation.

The Memory of the elementary data-flow
processor shown in Figure 2 holds a representation
of the program to be executed. This Memory is a
collection of Instruction Cells (Figure 3); one
Instruction Cell is associated with each operator of
the program. Each Instruction Cell is composed of
three registers, the first of which specifies the
operation to be performed and the address(es) of the
register(s) to which the result of the operation is

A2

A3

Ax (x+ y l

Figure I. An elementary data- flow program.

101

data
pockets

Distribution
Network

.
•

Operation
Unit 0 . . .
Operation
Unit m-1

Instruction
Cell 0

Memory

Instruction
Cell n- I

operation
pockets

Arbitration
Network

Figure 2. Structure of the elementary data-flow processor.

to be directed. The second and third registers
receive operands for use in execution of the
instruction.

When an Instruction Cell contains an
instruction and all required operands, the Cell is
said to be enabled and presents its contents as an
operation packet to the Arbitration Network for
delivery to an Operation Unit which can perform the
desired function, The Ar.bitration Network provides
a path from each Instruction Cell to each Operation
Unit. The network is capable of simultaneously
accepting many operation packets from the
Instruction Cells and delivers each packet to an
appropriate Operation Unit by decoding the
instruction portion of the packet.

Upon receiving an operation packet, an
Operation Unit performs the function specified by
the instruction on the operands of the packet and
produces a data packet, containing one copy of the
result and a destination register add~ess, for each
destination specified in the instruction. A
Distribution Network concurrently accepts data
packets from the Operation Units and, using the
destination address of each packet, delivers it to
the specified register of the Memory. The

In sf ruction Cell

regis1er

instruct ion destine tion destination

register

·I operand I L '--------------''
register

·I operand 2 L _ '--------'
Figure 3. Structure of on Instruction Ce! I.

Instruction Cell containing that register may then
be enabled if an instruction and all operands are
present in the Cell.

A simplified structure of the Arbitration and
Distribution Networks is presented in figure 4. The
networks. are composed of three types of units. An
arbitration unit passes packets arriving at its
input ports' one=at-a-time to its output port, using
a round-robin discipline to resolve any conflicts.
A.switch unit passes a packet at its input to one of
its outputs, controlled by some property of the
packet. In the Arbitration Network this property is
the operation code, whereas in the Distribution
Network, the switch units are controlled by the
destination address. A buffer unit stores a packet
until the succeeding switch or arbitration unit is
ready to accept it.

Due to the large number of inputs to the
Arbitration Network, we wish to transfer data
between the Memory Cells and the Arbitration Network
in serial format to reduce the number of wires
necessary. However, in order to maintain a high
rate of packet flow at the output ports, we wish to
transfer packets to the Operation Units in parallel
format. For this reason, serial-to-parallel
conversion is done gradually within the buffer units
as a packet travels through the Arbitration Network.
Parallel-to-serial conversion is performed in the
Distribution Network for similar reasons.

Processor Performance

To analyze the performance of the elementary
data-flow architecture, we must consider the
utilization of the Instruction Cells of the Memory;
that is, the number of times a Cell will be enabled
within a given time period. This will then allo.w us
to determine the processing rate of the machine.

The execution cycle time of an instruction
within the processor is the minimum elapsed time
between the enabling of the instructio.n and the

from { Instruction
Cells

(o) Arbitration Network

o}
m-1

to
Operation
Units

O sw: :orb w: 0 to
from • • : Memory

{

~uf {Register}

Operation : : Re9ister
Units Units

m-1~ ,.--, ~{Register
~ "-i..:. 3n-I

(b) Distribution Network

Figure 4. Structure of the Arbitration and
Distribution Networks.

102

arrival of the result of the operation soecified hv
the instruction at the desired destination Cell(s
for an instruction of the elementary data-flow
processor, the execution cycle time is equal to the
passage time through the Arbitration Network, the
Distribution Network, and an appropriate Operation
Unit. The delay in the Operation Unit is fixed for
that Operation Unit. However, the network delays
can vary greatly due to the presence of conflict.

The execution cycle time for an instruction is
found by considering the passage of the operation
packet containing that instruction through the
Arbitration Network and the passage of the resulting
data packets through the Distribution Network with
no conflict. The minimum delay through a network,
the Arbitration Network for example, is given by the
summation over the number of stages in the network
of the time required to transfer a packet through
each stage:

(no. bits serial + l)(bit transfer time)

The transfer time for a stage is equal to the number
of bits passing through the stage in serial plus one
for a signal to indicate that the packet is ready to
be transferred multiplied by the time necessary to
transfer a bit. A similar equation applies to delay
in the Distribution Network.

Let us examine the delay within a specific
Arbitration Network (Figure 5). This network has
three stages and seven arbitration units. Packets
travel through stage 0 in four-bit serial format and
are gradually converted to a more parallel format,
passing through stage 1 in two-bit serial and stage
2 in one-bit serial format. As noted previously,
the passage time for a packet through each stage is
equal to the number of serial bits plus one times
the bit transfer time t. For the structure of Figure
5, the t·ransfer times are 5t, 3t, and Zt,
respectively. The minimum delay through the network
is equal to the summation of the stage delays, or
lOt.

Stage
Number

Serial
Bits

P-0ssoge
Time

0

4

5t

2

2

3t 2t

Figure 5. Structure of an elementary Arbitration Network.

To find the time T necessary to process all
instructions contained in the Memory of the
processor, we must consider the maximum delay a
packet can encounter in passing through the
Arbitration Network. Such a maximum delay can occur
in a network which has a packet present at every
node in a machine in which every Instruction Cell is
enabled, placing a packet on each input to the
Arbitration Network (Figure 6). The maximum delay
which can be encountered by a packet, say the
triangular one, arises only when all other packets
in the network pass through the output of the
network before the triangular one does. In order
for this to happen, not only must the triangular
packet lose every conflict, but every packet on the
path it will follow to the output must also lose
every conflict. Thus, finding the maximum delay
involves determining bow many packets will flow
through each stage before the triangular one.

For this network, the worst case packet will
be the 14th through stage Z, the 6th through stage
1, and the Znd through stage o. Multiplying the
number of packets passing through each stage by the
delay in that stage, we find that:

T = maximum delay_
= Z(5t) + 6(3t) + 14(Zt)
= 56t

Hence, if all instructions of the processor are
enabled, they can pass through this Arbitration
Network in a maximum time of 56t.

However, if we as-sume that the network size is
such that the execution cycle time is less than T,
then a number of destination Cells become enabled
and enter the Arbitration Network before all Cells
have been processed, and the processing rate of the
machine can be measured in terms of the output rate
of the Arbitration Network (assuming the
Distribution Network has been structured to
distribute all results as fast as they are
prod.I.Iced). In such a case, the rate of packet
transfer to each Operation Unit is l/(2t). and the
maximum processing rate of the machine is
[l/(Zt)](number of Operation Units).

Furthermore, if each arbitration unit has
enough in·puts to allow a packet to travel t·hrough
the previous stage in less time than that required
to service all busy inputs, the passage of the
triangular packet through the first stages of the
Arbitration Network will occur simultaneously with
the transmission of other packets at the output of
the network. The time T for the transmission of all
packets in the network to the Operation Units is
then 14(Zt) = Z8t.

Network Structure

The results developed in the previous section
seem to indicate that a network of as few stages as
possible is desirable in order to decrease the
execution cycle time and increase the number of
inputs to an arbitration unit of the networ~. In
general, this is true. However, the fact that
packets are transferred from each Instruction Cell
in serial format requires a number of stages in the
Arbitration Network in order to perform the
conversion to parallel format before a packet

103

Figure 6. Example of a ful I Arbitration Network.

reaches the final stage of arbitration. Also, a
number of stages are necessary in order to maint.ain
a queue of instructions for each Operation Unit.

the actual structure of the Arbitration
Network does not significantly affect performance as
long as a few simple rules are observed in its
construction. If DAi is .the passage delay of a
packet through stage i of the Arbitration Network,
and IAi is the number of inputs to stage i, then the
following relationship must hold:

DAi = cl[(IA(i+l))(DA(i+l»], cl(l

This assures that each stage of the Arbitration
Network is kept busy by the preceding stages.

The value of the constant cl is dependent upon
the utilization of the machine. Since the processor
is designed to support pipelined computation, the
value of cl is controlled by the amount of the
machine which is used for computat,ion and the
difference between the sample input rate and the
maximum processing rate.

The addition of a switch unit at th.e output of
an arbitration unit introduces a further .factor for
consideration. If SAi is the number of outputs of
the switch unit after stage i of arbitration, then

DAi = cl[(IA(i+l))(DA(i+l)))/SAi

and the number of inputs to the arbitration units of
stage i+l must be increased by the number of outputs
of the switch unit of stage i in order to keep the
arbitration unit in stage i+l busy.

Similarly, the Distribution Network must be
structured so that

Di = cl[(Si)(D(i*l}))/Ii

where Si is the number of ·outputs of the switch unit
in stage ia Ii is the number of inputs of the
arbitration unit preceding the switch unit of stage
i, and D1 is the delay through stage i of the
network.

An .Example Processor

In illustration of the capability of an
elementary data-flow processor, consider the
execution of a highly parallel, pipelined
computation on a 128 Instruction Cell machine in
which all Cells are fully utilized. The Instruction
CellS of the example machine accept and. transmit
packets in 16-bit parallel, 4-bit serial format.

For a balanced processor structure, one in
which the number of Operation Units is matched to
the number of Instruction Cells, the processing time
T should be equal to the minimum delay D through the
networks and an Operation.Unit. Thus, to determine
the optimal number of Operation Units for the
processor, we must consider the structure of the
networks in order to discover the minimum delay.

To obtain a small execution cycle time, and
hence, a greater processing capability, the networks
must be structured with as few stages as possible.
However, three stages are required in the
Arbitration Network to perform the serial-to
parallel conversion and still maintain the necessary
throughput from stage to stage. The minimum delay
analysis of this three stage network structure is
identical to that described in the previous section:
the delay in the Arbitration Network is equal to
lOt.

Assuming that the minimum delay in the
Distribution Network and the delay in an Operation
Unit are the same as that in the Arbitration
Network, the resulting value for D is:

D = 30t

If t = 150 nanoseconds, allowing 15 TTL gate
delays to accomplish one ready/acknowledge cycle,
the resulting execution cycle time is :

D = 30{150 nsec.)
= 4.5 microseconds

To establish the number of Operation Units
necessary· for a balanced processor structure, with a
stage delay of 300 nsec. for each pipelined
Operation Unit, we must set the processing time T
for all enabled instructions contained in the Memory
equal to the execution cycle time:

T = 4.5 microseconds
= (128)(300 nsec.}/(no. of Operation Units)

yielding:

no. of Operation Units = 9

And the resulting performance of the processor is:

processing rate = 128 instructions I 4. 5 microsec.
= 28 MIPS

Conclusion

There are a number of ways in which the
processing rate of a data-flow processor can be
extended. First, the size of the Instruction Memory
and the number of Operation Units can be increased.

If the additio.nal Cells are fully utilized, the
processing rate· will grow linearly with the number
of Cells added. Second, t1te bottlenecks ·of the
machine, the output of the Arbitration Network' and
the input of the Distribution Network could be
fabricated in a faster technology. A change from
TTL to ICL at the bottlenecks should allow a five
fold increase tn the processing rate. Naturally,
the slower portions of the networks must be
structured in more parallel forms to maintain this
rate. A technology change would also allow a
decrease in the number of Operation Units if they
were to be constructed of the faster technology.

104

References

[l] Adams, D. A., A Computation Jtodel With Data
Flow Sequencing, School of Humanities and
Sciences, Stanford University, Stanford,
Calif., (December, 1968).

[2] Bahrs, A., "Operation Patterns (An Extensible
Model of an Extensible Language),• Symposium
on Theoretical Programming, Novosibirsk,
USSR, (August, 1972).

[3] Dennis, J. B., "First Version of a Data Flow
Procedure Language,• Lecture Notes in
Computer Science 19, (G. Goos and J.
Hartmanis, Eds.), Springer-Verlag, New York
(1974), pp. 362-376.

[4] Dennis, J. B., and D. P. Misunas, "A Computer
Architecture for Highly Parallel Signal
Processing,• Proceedings of the ACM 1974
National ·conference, ACM, New York,
(November, 1974). pp. 402-409.

[5] Dennis, J. B., and D. P. Misunas, "A
Preliminary Architecture for a Basic Data
Flo.w Processor,• Proceedings of the Second
Annual Symposium on Computer Architecture,
IEEE, New York, (January, 1975), pp. 1Z6-
l3Z.

[6] Karp, R. M., and R. E. Miller, "Properties of
a Model for Parallel Computations:
Determinacy, Termination, Queueing,• SIAM
Journal of Applied Mathematics 14 (November,
1966), pp. 1390-1411.

[7] Kosinski, P. R., "A Data Flow Language for
Operating Systems Programming,• Proceedings
of the AtM SIGPLAN-SIGOPS Interface Meeting,
SIG PLAN Not ices 8, (September, 1973), pp.
89'-94.

[8] Misunas, D. P., A Computer Architectu·re for
Data-Flow Computation, SM Thesis, Department
of Electrical Engineering and Computer
Science, M. I. T., Cambridge, Mass., (June,
1975).

[9] Misunas, D. P., •structure Processing in a
Data-Flow Computer,• Proceedings of the 1975
Sagamore Computer Conference on Parallel
Processing, IEEE, New York, (August, 1975),
pp. Z30-Z34.

[10] Rodriguez, J. E., A Graph Model for Parallel
Computation, Report TR-64, Project MAC,
1'1.1.T., Cambridge, Mass., (September, 1969).

[ll] Rumbaugh, J. E., A Parallel Asynchronous
Computer Architecture for Data Flow Programs,
Re port TR - 1 5 0 , Pro j e ct MAC , M • I. T . ,
Cambridge, Mass. (May, 1975).

105

[12] Rumbaugh, J. E., "A Data Flow Multiprocessor,•
Proceedings of the 1975 Sagamore Computer
Conference on Parallel Processing, IEEE, New
York (August, 1975), pp. 220-223.

AN ANALYTIC APPROACH TO PERFORMANCE ANALYSIS .. ~

FOR A CLASS OF DATA FLOW PROCESSORS'

by

Susan C. Meyer
Department of Mathematics

Clarkson College of Technology
Potsdam, New .York 13676

Abstract -- In this paper, an analytic meth~
od is given for determining the projected perfor
mance of a restricted class of data flow pro
cessors. We present a model for describing
processes as implemented on these systems which
is similar to Karp-Miller computation graphs.
Using this model, we derive bounds on the time
required for an implemented computational process.
Since this performance measure is highly depen
dent on the assignment of operations in the
process to functional units, we also investigate
the topic of operation assignment. Time optimal
assignments are defined as those which impose no
artificial restrictions on the time performance
of the implemented process, and conditions are
derived under which a given operator assignment is
time optimal.

I. Introduction

In this paper we develop a method for deter
mining ~he time required by programs implemented
on a class of data flow processors. In doing so,
we provide an analytic approach to estimating the
projected performance of data flow processors.

Data flow processes are those in which each
operation is allowed to occur whenever all of its
operands are available, irrespective of any exter
nal timing considerations. In this paper we
investigate data flow programs which can be
modeled by Karp-Miller computation graphs [l] and
their implementation on processors which are
capable of realizing them. Various architectures
have been proposed for the class of data flow
processors which we consider [2,3]. The tech
niques developed in the paper are general in
nature and are applicable in the context of these
proposed architectures.

The Karp-Miller computation graph is a model
for parallel computation in which each vertex of
a directed graph represents an operation and each
edge of the graph is viewed as a queue which may
contain data. Performance of an operation causes
data to be removed from its input queues and re
sults placed on its output queues. An operation
may occur only if there are a sufficient·number of
operands available on each of its input queues.

The class of processes which can be described
using this model is restricted to those which
involve no data dependent branching. Though this
restriction is a severe one, there are compelling
reasons for studying the performance of these
processes as implemented on data ·flow processors.
Alliong these reasons are the probability that the

TThis work was supported by the National Science
Foundation under grant MCS76-07681.

106

first data flow processors to be built will fall
into the class which realizes just this type of
computation. It is also true that most data flow
programs are composed primarily of segments that
can be described under the restrictions indicated.

In the following section we give a formal
definition of the Karp-Miller model and describe
some of its properties. Since we are concerned
with data flow processes as implemented on data
flow processors, we have modified the Karp-Miller
model to represent factors which affect processor
performance. This modified model is also pre
sented in the next section. In the third section
we show how to calculate the time required by an
implemented data flow program, and in the fourth
we give necessary and sufficient conditions for
time optimality.

II. Foundations

The processes whose implementation dependent
characteristics we investigate in this paper are
those which can be modeled by Karp-Miller compu
tation graphs. These graphs represent parallel
computation by associating an operation with each
vertex and viewing each edge as a queue which may
contain data. The initial distribution of data
and parameters governing queue operation are also
specified in the model.

Definition 2.1 A Karp-Miller computation graph is
a quadruple c = (V,E,~0 .~), where:

1) V is the finite vertex set and
2) E ~ VxV is the edge set of a directed graph,
3) ~O is a function from E to z+ called the

initial marking, (a)
4) ~ is a function, called the firing function,

from E to z+xz+xz+ such that if ~(e) =
(i,j,k) then j ~ k.

The dynamic behavior of the modeled computa
tion is specified by the firing function. This
function is usually written as three functions:
~- (the edge input function), ~t (the threshold
fanction) and ~ (the edge output function) where
~(e) = (~.(e),~~(e),~ (e)) for all edges e in E.
For an op~ration to o8cur, there must be at least
~±(e) data items on each of its input queues, e.
Wfien that operation occurs, ~ (e) items are re
moved from each of its input ~ueues, e, and ~.Ce')
items are placed on each of its output queues~ e'
In this paper we are only concerned with imple
mentations of Karp-Miller computation graphs in
which ~.(e) and~ (e) are strictly positive. Such
graphs ire said t8 be productive.

An example of a Karp-Miller computation graph

(a)z+ denotes {0,1,2, ••• J , the set of nonnegative
integers.

is shown in Figure 1. In this graph, the firing
function cp is given by a vector of numbers associ
ated with each edge. The initial distribution of
data is indicated by the presence of µ. 0 (e) dark
ened circles on each edge.

(1,1,l)

u v

(1,2,2)
(2,1,1) w

(l~

Figure l

Since we are concerned with the processes
described by Karp-Miller computation graphs as
implemented on data flow processors, we modify the
Karp-Miller model to represent implementation
dependent factors. One major modification is
necessary because there will almost never be as
many functional units of a given type available
in the processor as there are operations of that
type in the modeled computation. For this reason,
an assignment of operations in a computation graph
to functional units which realize them must be
made. This is done by means of an operator
assignment function.

Another restriction which is imposed in
implementation is that the queue lengths must be
bounded. This restriction is incorporated by
adding a bounding component, cpb' to the firing
function cp. Then an operation may occur only if
there is sufficient data available and no output
queue of that operation overflows as a result of
that operation's occurrence.

Finally, since we are concerned with deter
mining bounds on the time required for a process
as implemented, we must introduce a timing func
tion to provide a bound on the time required for
each functional unit to complete an operation.
(A similar function has been used in references
[4,5)). Thus, we have the following model of data
flow computations as implemented on a data flow
processor.

Definition 2.2 An implemented computation graph
(ICG) is a seven-tuple C = (V,E,o,µ. 0 ,cp,a,T),
where:

1) V is the countable vertex set and
2) E ~ VxV is the edge set of a directed graph,
3) o is a finite set of operators, or functional

units,
4) µ. 0 is a function from E to Z+ called the

initial marking,
5) cp is a function, called the firing function,

from E to z+xz+xz+xz+ such that if cp(e) =
(i , j , k, .&) , J, :<: j :<: k and J, :<: i ,

6) a is a (total) function from V to O called
the operator assignment function, and

7) T is a function, called the timing function,
from o to R+ which gives the minimum time

107

required for each operator to complete an activa
tion. (b)

The firing function is usually expressed in
a similar way as that for the Karp-Miller model,
as four functions. Thus, cp(e)= (cp.(e),cpt(e),
cp0 (e),cpb(e)) for all edges e in E, 1 where cpi' 'f't•

and cp are as before and cp is the queue bounding
funct~on. Since we are on~y concerned with imple
mentations of productive Karp-Miller graphs in
this paper, the firing function of our implemented
computation graphs will have range NxNxNxN.(c)

A distribution of data items in the' graph,
represented by a function, µ., from E to z+, is
called a marking. New items are produced and used
by the system according to the specification given
by the. firing function cp. If µ. is a marking, then
a queue e contains.µ.(e) items under that marking.
A vertex v in Vis firable whenever µ.(e) :<: cpt(e)

for all edges e directed into v and for all edges
e' directed out of v, µ.(e) + cpi (e') :<: cpb(e'). When

v occurs, or fires, cp0 (e) items are removed from

each edge directed into v and cp. (e') items are
placed on each edge e' directed1 out of v. Thus,
a new markingµ.' is produced, where:

1
µ.(e)+cpi (e) if e is directed out of

but not into v,
µ.(e)-cp 0 (e) if e is directed into

µ.I (e) = but not out of v,
µ. (e)+cpi (e)-cp0 (e) if e is directed into

and out of v, and
µ. (e) otherwise.

The firing of a vertex models the occurrence
of an operation, and the behavior of the system
is the set of all sequences of legal operation
occurrences. The function a associates the
vertices with operators used to realize these
operations. When two vertices are assigned the
same operator (a(u) = a(v)), the firing of these
two vertices represent two different initiations
of the same operator.

An implementation of the Karp-Miller compu
tation graph shown in Figure 1 is illustrated by
the ICG of Figure 2. In this ICG, the operator
assignment function (and operator set) are given
by the vertex labeling in the graph.

(l,1,1,l)

a b

(2,1,l,3)

T(a) 2 T(b) 3 T(C)

Figure 2

(b)R+ denotes the positive real numbers.

(c)N denotes [1,2,3, ••• }, the set of natural
numbers.

4

In order to investigate the timing character
istics of an ICG, it is convenient to develop a
representation for its behavior which explicitly
shows the constraints on each occurrence of each
operator. The infinite structure defined below is
such a representation.

Definition 2.3 Let C = (V,E,0,µ0 ,~,a,T) be an
ICG. The behavior graph of C is the (unbounded)
ICG. BC = (y,~1 2_,!!:.o,~·~•!.) given by:

1) v = [x(v)ja(v)=x for vev and iez},

2) E e = (x(u)i,y(v)j)e! whenever:

i) u = v and j = i + 1, or

ii) there is an edge e = (u,v) in E such
that x=a(u), y=a(v),

·- r(j-l)~o(e)-µo(e)~t(e) l
and i-. ~.(e) ,or

J.

iii) there is an edge e = (v,u) in E such
that x=a(u), y=a(v),

3) 0 = 0,

4) for e

5) ~(e)

6) ~(v)

7) T = T.

. rj~i (e)+µo(e)-~b(e) l (d)
and i= ~ (e)

0

{
1 if i:;;) and

= 0 otherwise ,

j>O or i>O and j~O

(1,1,1) for each edge e in E,
i -

x for all v = x(u) in y, and

Notice that the firing function for the
behavior graph of an ICG contains no queue bound
ing function. Such a function is not necessary
because queue lengths in this infinite graph are
already bounded. The behavior graph of an ICG is
also an infinite marked graph [6,7] (when the
timing function is disregarded). A portion of the
behavior graph for the ICG of Figure 2 is shown in
Figure 3.

Proposition 2.1 Let c = (V,E,o,µ0 ,~,a,T) be an
ICG and let BC (Y•!•2.•!!:.o•~·~·!.> be its behavior

graph. Then c.and BC have the same behavior.

A rigorous proof of this result is straight
forward but tedious. The interested reader can
find a proof for the case in which a is one-to-one
in [8]. Similar arguments establish the res~lt in
the more general case.

(d) fxl denotes the ceiling of x. Thus, rxl is the
least Jnteger greater than or equal to x.

108

Figure 3

In examining the timing characteristics of
these implemented computation graphs, we must
consider one further constraint which is imposed
on such a system by physical limitations of the
devices realizing it. These constraints can be
illustrated with the aid of the behavior graph
shown in Figure 3. It is clear, on e~amination
of this graph, that the vertices a(u)~ and a(w) 1
may be concurrently enabled and that they are
assigned to the same functional unit. It is
usually required that a functional unit complete
one activation before it may begin another.
Therefore, one or the other of these operations
must be performed first.

The physical limitation that only one activa
tion of a functional unit may be in execution at
a time places a total ordering on the operations
assigned to a given operator. Such an ordering
indexes the activations of operators in the
system and can be specified in the following way.

Definition 2.4 Let C = (V,E,0,µ 0 ,~,a,T) be an ICG

and let BC = (:':!_,~,2_,i:!'.o,'£.'~'I.) be its behavior

graph. An ordering for operator a (where aeO) is
a one-to-one functio;-;--w , from a-l(a) to Z (e)such

. a -
that w (a(u) 1) > 0 whenever i > 0 and

a i -1
whenever i $ 0 for all a(u) ea (a}.
ordering function for C is a function

w (a(u)i)$0
a

An operator
w = u w ,

aeO a
where all of the subfunctions w are orderings for
operators in 2_. a

The constraints imposed by an operator order
ing function w may be represented in the behavior
graph of an ICG by adding edges from vertex u to
vertex v whenever a-1 (u) = a-1 (v) =a and
wa(u)+l = wa(v) for wa ~ w. Thus, each operator

ordering gives rise to a new infinite (unbounded)
ICG defined below.

Definition 2.5 Let C = (V,E,0,µ 0 ,~,a,T) be an ICG

and let BC = (:':!_,~,2_,!:!'.o,'£.•~,I_) be its behavior

graph. Let w be an operator ordering function for
C. The w-constrained behavior graph BC(w) =

w w w w w w w
(V ,E ,o ,~ 0 ,~ ,a ,T) is given by

1) vw :':-'._,

2) Ew ~ U[(u,v)j~(u)=~(v) and w(u)+l w(vl} ,

3) ow 2_,

rl

4)
w !

µo(e)=~

lo
5) ~w(e) =

6)
w a a

7)
w

T I.

if e=(x(u)i,y(v)j) and either i$Q
and j>O or j$Q and i>O

otherwise,

(1,1, 1) for all e in ~,

and

Clearly, some of the operator ordering
functions which are well defined are not consis
tent with the natural constraints already present
in the system. For example, in Figure 3, if we
let w (a(u)l) = 1, w (a(u) 2) = 2, and

a a
w (a(w)l) = 3, a set of constraints which causes

a
the process to stop prematurely has been created.
This is not a desirable situation, and if the
system is simply allowed to run freely, such an
ordering will never be chosen.

We denote the number of times an operator a
in an ICG C (or its behavior graph B) by #(ajc)
(or #(ajBC)). Then an operator orde~ing function
w is said to be legal if #(ajBC) = #(ajBC(w)) for
each operator a in O. The only operator functions
considered in this paper are legal ones. Figure
4 shows a portion of BC(w) for a legal operator
ordering w. The heavy lines have been inserted to
enforce w.

(e) f } Z denotes ~· •• -2,-1,0,l,2... , the set of
integers.

109

Figure 4

Remark. It is not difficult to see how legal
operator ordering functions can be constructed.
One only need find all topological sorts of the
partial order on a-1 (a) implicit in the behavior
graph BC for each operator a in 2.· Call this set
T . Then by selecting one element from each of
t~e sets T to obtain a set of w which are compa
tible, oneaconstructs a legal op~rator ordering
function.

When the modeled process is carried out as
implemented, it is not known which of the legal
operator orderings actually is chosen. All of
them are feasible and may occur. An analysis of
timing characteristics must therefore consider all
possible legal operator orderings.

Proposition 2.2 Let C = (V,E,0,µ 0 ,~,a,T) be an
ICG. Then C can behave in one of two ways:

1) it may fire several vertices and then
reach a marking under which no vertex is firable,
or 2) it may fire several vertices, reaching a
previously observed marking, after which the be
havior is repetitive,

A proof of this result is somewhat lengthy.
The interested reader may find a proof of a similar
result in reference [8].

III. Timing Characteristics

In this section we first study timing charac
teristics of ICG's which fire several vertices
then reach a marking under which no.vertex is
firable. Such implemented graphs are relatively
straightforward to analyze because the behavior of
the system is a finite set. Figures gives an
example of such an ICG, and part of its behavior
graph is shown in Figure 6. Notice that in Figure
6, there is a path from b(y) 4 to a(z) 6 to a(x)7 to
b(y)4 to b(w) 4 • The presence of this path indi
cates that b(y) and b(w) can occur no more than
three times each, a(z) can occur at most five
times, and a(x) may occur six times.

a. (x) a

a.(y) b T(a) 3

a. (z) a T(b) 4

a. (w) b

Figure 5

Figure 6

110

Proposition 3.1 Let C = (V,E,O,µ. ,~,Ol,T) be an
ICG with finite behavior. There ~s a finite IC~,
MC, which has the same behavior as C in which

~i(e) = ~0 (e) = ~t(e) = 1 for each edge.

Proof. The proof is by construction. Let
BC = <Y•!•2.•!:!:.o•2•~•!.l be the behavior graph for

c and let lHvjc> be the maximum number of times
a vertex v occurs in c. The M = (V' ·E' O' µ.• c ' '. 'o'
~· ,01' ,T') is given by·:

1) V'={xCvlieyjo~i~#Cvjc)},
0 0 . .

2) E'={(u,v)e!lu,vev'}U{Cv ,v)jv1 =x(u) 1 eV'}

3) O'=O, .

4) (:)={l if e=(xO,yl) in E'
µ.O O otherwise

5) ~· (e)=(l,1,1,2) for all e in E',

6) Ol 1 (v)=Ol(v) for all vertices veV' , and

7) T 1 =T •

It is readily established that the new graph
MC has the same behavior as BC, hence the same as

that of C as well. O

Given this finite ICG, we can .calculate a
lower-bound on the time required to complete the
computation, given that a particular legal opera
tor ordering, w, has been chosen. We denote the
minimum time required for completion under w by
pw and compute pw with the aid of the following

w-constrained finite ICG.

Definition 3.1 Let c = (V,E,o,µ.0 ,~,0l,T) be an ICG
with finite behavior and let Mc = (V',E',0',µ. 0,
~· ,01 1 ,T') be defined as above. Then Mc(w) =

w w w w w w w
(V ,E ,O ,µ. 0 ,~ ,OI ,T), for a legal operator

ordering w, is given by:

1) Vw=V',

2) Ew=E'U{Cu,v)ju,veVw,OI, (u)=Ol'(v), and w{u)+l

3) w_ , w{v)} ,
0-0,. 01

4) w(e)={l if e=(x ,y)
µ.O O otherwise

5) ~w(e)=(l,1,1,2) for all e in Ew ,

6) Olw = a•, and

7) TW=T'

Figure 7 shows Mc(w) for the ICG of Figure 5
and a legal operator ordering w.

The minimum time required to complete the
process under the legal operator ordering, w, can
now be readily determined. Let ~={vev'°jv is

firable under µ.~} and let Il be the set of all

paths TI=v1v2 •.. vn in MC(w) such_ that v1e~. Then

we have the following result.

Proposition 3.2 Let C = (V,E,O,µ. ,~ 1 01,T) be an
ICG with finite behavior. Let w Be a legal opera
-tor ordering for C and MC(w) be the w-constrained
graph defined above. Then p = max(E Tw(v)).

w Tieil veTI

Figure 7

Unfortunately, it is not known which of the
legal operator orderings for C is chosen each
time the computation is performed. Thus, there
are two figures of interest to us:

1) a time, p, which is the minimum time in which
the computation may be completed when the
operator ordering chosen is not known, and

2) a time, pmin' which is the minimum possible

time for completion of the process.

Although the behavior of C is finite, the
number of legal operator orderings for C is still
infinite. However, the only part of a legal
operator ordering w which is of any consequence
in this case is the restriction of w to vertices
v which are also in M • This allows us to re
strict our attention ~o the finite set, W(C), of
legal operator orderings for M • ·The two timing
figures of interest can be cal~ulated according
to the following proposition.

Proposition 3.3 Let c = (V,E,o,µ. 0 ,cp,a,T) be an

ICG with finite behavior and let W(C) be the set
of legal operator orderings for MC. Then

p = max (pwl

weW(c)

and p . = min (p)
min weW(cl w

For the example shown in Figure 5, p = 42 and

Pmin = 39 •
The analysis of nonterminating graphs is not

quite so simple as that of terminating ones. In
this case the behavior is infinite, so there are

Ill

an infinite number of legal orderings which must
be considered. Furthermore, the concept of "time
required for completion" has no meaning for non
terminating graphs. For this reason we use the
concept of computation rate to obtain a measure
of system performance. The computation rate of
the implemented process is defined as the number
of operator occurrences per unit time. It is
clearly desirable to maximize this ratio if at
all possible.

If an ICG does not terminate, there are two
classes of behavior it can exhibit. If
µ. 0 Cel<qit(e)-q>0 (e) for some edge e, the graph will

have an initial transient behavior followed by a
cyclic steady state behavior. If each edge e
has µ. 0 (e)~tpt (e)-q> 0 (e), there is no transient b.e-

havior and the graph is said to be repetitive.
Once a vertex has fired for the first time, there
will always be at least tpt(e)-q>0 (e) items on an

edge, so nonterminating ICG's eventually become
repetitive. Since we are concerned with calcula
ting the computation rate of an ICG, the trans
ient behavior (if any) is of no concern to us.
We therefore, assume that all of the nontermi
nating ICG's considered are repetitive.

In order to deal with the difficulty which
arises because there are infinitely many legal
operator orderings to consider, we must charac
terize the structure of an ICG's behavior. This
has been done for structures very similar to
ICG's in [8], and the results in that case closely
parallel those needed here. The interested
reader may refer to [8] for rigorous proofs.

Let c = (V,E,o,µ. 0 ,cp,cr,,-) be a nonterm_inating

ICG and let BC = (Y.,!•2.•!!:.o•51!.•~•!..l be its behavior

graph. There is always a finite portion of BC

which generates the infinite graph in the sense
that BC is made up of infinitely many copies of

that finite subgraph. These concepts are formal
ized with the aid of the following definitions.

Definition 3.2 _Let BC= CY.,!•2.•!!:.o·~·~·!..l be the

behavior graph or an ICG C = (V,E,0;µ. 0 ,cp,a,T).

Let Y be a function from V to N. Then

E/Y = (Cx(u)i,y(v)jle!ll:!Oi:!OY(ul}

The set generated by Y is then given by:

<Y'P=((x(u) i+nY(u) ,y (v) j+nY(v)) I (x(u) i ,y(v) j)

t:YY and nez}

If <Y'f>=!, then Y is a generator for BC •

Proposition 3.4 Let BC = (y_,!,2_,µ. 0 ,cp,a,T). Then

there is always a generator Y for BC.

Proof. Since C does not terminate, we can
always find a positive integer solution to the
set of equations:

(m,n)t:E} •

Let {z jmev} be a positive integer solution for
m

this set of equations, and let 'i' (a (v) (v)) =z for
each v&V. It is readily established that v
'i' is a generator for BC.

a
The function 'i', where 'i'(u) = 4, 'l'(v) = 4 ,

'i' (w) = 2, and 'i' (x) = 1 is a generator for the
graph BC of Figure 3.

Now let BC = (~1 _!,Q_,l!'.o,~·~·'.!..) be the behavior
graph for a nonterminating ICG C = (V,E,o,µ 0 ,cp,a,
T) and let 'i' be a generator for BC. We denote
the (finite) set of all legal operator orderings
of the vertices in the set {x(u)illi'i'(u)} by

w0 (C, 'i'). The key to dealing with the problem of
considering an infinite number of legal operator
orderings lies in showing that the infinite set
of legal operator.orderings for C may be "genera
ted" by this setwO(C,'i').

Let w be a legal operator ordering for C and
consider the graph B (w). This graph is identi
cal to BC except tha~ edges have been added to
BC.which enforce the ordering w. Thus, we may
write: . .

Ew=<!f'i'>U{ (x (u) i ,y (v) J) [x=y and
w(x(u))+l=w(y(v))} •

Now consider the set of edges

(!/'l')n={ (x(u} i+n'i'(u~ / y(v) ~+n'i'(v))&Ewj

(x (u) i, y (v) J) e!f'!'} •

Notice that (!/'i')n is the n+lst copy of !f'i' in

Ew and let wn be the restriction of w to the set

~n={x(u)i+n'i'I (x(u)i+n'i'(u) ,y(v)j+n'i'(v))&(!/'i'ln} •
Since w is a legal operator ordering for C,
wn must be a legal operator ordering for vertices
in vn. This can be true if and only if there is
a legal ordering w0 for vertices in v 0 such that

i n i+n'i'(u) -
w0 (x(u)))=w (x(u))-(n-1) [L: 'i'(u) J for

each vertex x(u)iev0 .
u&a-l(x)

Let (w0)n(x(u)T+n'l'(u))=

w0 (x (u) i) + (n-1) [L: _1 'l' (u) 1
U&<l' (x)

It has just been established that for any legal
operator ordering w, we may write wn=(w0)n for
some w0 ew0 (,G, 'i') • Thus, we may write:

w = U (wn) = U ((w 0)njw 0 ew0 cc,'i')).
-con.oo -a>n.oon n

w0 cc,'l') is a finite set, so it has been shown
that both the graph BC and the infinite set of
legal operator orderings can be finitely genera
ted.

Now let C = (V,E,0,µ 0 ,cp,a,T) be a nontermi
nating ICG .and let w be a legal operator ordering
for C. Recall that the computation rate of an
ICG is the number of operation occurrences per
unit time. Since the graph BC(w) is finitely
generated, we may write the following expression
for pw' the maximum computation rate of c under

ordering w:

112

i ufv'l'(u)

T. (w)
i

where T.(w) is the time required to complete the
executi5n of vertices in {veyr1[ni-l} and 'l'(u)
is any generator for BC(w). It is easy to calcu-

late utv 'i'(u} for any generator 'i', so we need

only find an expression for Ti(w) to determine pw.

Notation. If 'i' is a generator for BC, we let

~i={vev0jv is firable under µ 0 and wiew0 cc,'l')},

and let Il(w.)={rr=v1 •.• v [v.evO for i=l,2, ..• ,n,
.i n i -

w
v1e~i' and (vi,vi+l)eE

Proposition 3.5 Let C = (V,E,O,µ ,cp,a,T) be a
nonterminating ICG and B be the gehavior graph
for c. There is a gener~tor 'i' for BC such that
for each ordering w.ewO(c,'i') and every path
rr=v1 , .•• v in Il(w.); there is an edge

n() i 1
(vn,v1 l+'i' u) in !f'l' , where v1 = x(u) •

To construct a generator satisfying the
conditions of Proposition 3.5, one begins with
the minimal generator 'i'min" If 'i'min does not

have the required structure, then k*'l' . does for
some integer k, and k*'i' . is also a ~~gerator

min
for BC.

Now let 'i' be a generator for B which satis
fies the conditions of Proposition 5. 5. Then we
may write: i-1

Ti (w) =n~O T(wn)

where T(wn) is the time required to complete only
the nth copy of !f'i' in Bc(w). Thus we have:

p = lim
iutv'l'(u)

i~l T(wn)
w .

i-ooo

where '!' is any generator for BC(w) satisfying the
conditions of Proposition 3.5.

Since each wn is generated by some w ew0 cc,'i'),
n

we know that T(wn) =max (L: T(v)), where wn
uell (w) v&TI

n
generates wn. Given this expression for T(wn),
we may derive bounds on computation rates for non
terminating ICG's.

As before, there are two figures which are of
interest to us:
1) a rate, p, which is the maximum feasible rate

given that the operator ordering chosen is not
known, and

2) a rate, pmin' which is the maximum possible
rate that can be achieved.

Proposition 3.6 Let C = (V,E,o,µ 0 ,cp,a;T) be a
nonterminating ICG and let w be a legal operator
ordering for C. Then

L:v'l' (u) L:v'l' (u)
U& $ ~ U& h

T PW = T . , w ere:
max min

lJ '!' is a generator for the behavior graph, BC, of
C satisfying the conditions of Proposition 3.5,

2) T max

3) T . min

max 0 (max (E T(v))), and
w.ew (C,'±') nell(w.) ven

i .i

min 0 (max T (v))) .
w.ew (C,'±') nell

i

Proof. Notice that T . $T(wn)$T for every
min max

possible choice of wn. Thus, we may write:

iT . min
i

$E
n=l

Substituting, then, we have:

iufv'±'(u) i E '±'(u)
lim lim uev

PW i
;;,,

iT i->CC i...co n max
n~lT(w)

and

lim
iufv'±'(u)

$ lim iufvf(u)
PW

i->CC i i-t00 iT n min
n~lT(w)

u~Vf{u)

T max

ufvf{u)

T min 0

Corollary 3.1 Let c = (V,E,o,µ0 ,~,a,T) be a
nonterminating ICG with Tmax' Tmin' and ¥ as
above. Then

p =
ufvf{u)

T max

ufvf(u)
and pmin = T .

min

For the ICG of Figure 2, p=ll/24 and

pmin = 11/24.
IV. Time Optimality

In this section we derive necessary and
sufficient conditions under which no penalty is
imposed on the rate of computation due to operator
assignment. Throughout the remainder of the
paper, we shall assume that ¥ is a generator ·for
the behavior graph which satisfies the conditions
of Proposition 3.5. Furthermore, since it is not
known which of the many legal operator orderings
will be chosen, we concentrate on the rate p
rather than p . • We present results for the
case in whichm~ncomputation graph (hence the
corresponding ICG) is nonterminating. The analy
sis for the terminating case is similar. It is
first shown that the maximum computation rate, p,
of a nonterminating ICG cannot exceed that of its
one-to-one equivalent.

Definition 4.1 Let c = (V,E,O,µ ,~ 1a,T) be an
ICG. Then the one-to-one equiva£ent to C is an
ICG C'=(V' ,E' ,O' ,µcl'~· ,a' ,T') given by:
1) V' = V,
2) E' E,
3) O' V' V,

4l µc) µo,
5) ~· ~·
6) a' (v) = v for all veV', and
7) T' (v) = T (a), where a(v) = aeO, for each vi;;O'.

Notice that C differs from C only in its
operator assignment function (and operator set).
To allow a meaningful comparison of computation
rates, the function T' is defined so that if
a(u)=a(v) then T(u)=T(v) as well. This allows us
to isolate the effects of operator assignment
alone. Figure 8 shows the one-to~one equivalent
to the ICG of Figure 2.

113

T(U)

T(W)

(l,l,l,l)

2

2

T (V)

T (X)

Figure 8

3

4

Proposition 4.1 Let c = (V,E,O,µ ,~ 1 a,T) be a
nonterminating ICG and c• = (V' ,E9,o• ,µ 0 ,~ 1 ,a 1 ,T')
be its one-to-one equivalent. Let p(C) and p(C')
denote the computation rates of C and C', re
spectively. Then p(C)$p(C').

Proof. Notice that the behavior graphs BC
and B , for C and C' are isomorphic, differing
only In their vertex labeling.

There is only one legal operator ordering for
C' - the one given in BC'' but there may be many
for C. Let w be any legal operator ordering for
c and consider B CW>. Since B is contained in
BC(w) and BC andcBC' are isomo~phic, it is clear

that Tmax(C)2'Tmax(C'). Furthermore, it can

readily be shown that f is a generator for Be if
and only if¥ is also a generator for Be,• It
follows .immediately that p(C)$p(C'). q

This result establishes that no implementa
tion can produce a greater computation rate than
can a one-to-one operator assignment. The con
ditions under which C has at least as great a
compuation rate as C' are simply stated and rela
tively easy, though tedious, to check.

Theorem 4.1 Let C = (V,E,O,µ 1~ 1a,T) be a
nonterminating ICG and let c• = (VQ,E',0',µ0 ,~·,
a' ,T') be its one-to-one equivalent. Then
p(C) = p(C') if and only if T (C)=T (C').

0 . max max
Although W (C,f) for C is finite, it can be

a very large set. Thus, the task of finding
T (c) and T (c ') can be very time consuming.
I~a~an be mad~a~omewhat less tedious by dealing
with a reduced form of the behavior graph which is
obtained by eliminating redundant edges. A por
tion of the reduced behavior graph for the ICG
of Figure 2 is shown in Figure 9.

Definition 4.2 Let C = (V,E,0,µ0 ,~,a'.T) be an
ICG and let BC = (~•!•£·~·~·~·'.!} be its behavior
graph. The reduced behavior graph for C is an
(unbounded) infinite ICG ~=(~1~1 Q,1~,12,,~,:b),
where:
1) ,lk= v,
2) ~ = !-ER where. .

ER={e=(xi,yJ)e!I there is a path ofi
l~ngth greater than one from x to
yJ in ! which has the same initial

marking as e},
3) 0. = 0,
4) ~= ~ restricted t.o ,i1

5) S1. = !£. restricted to ~,
6) ~ = ~' and
7) ;i;, = !.·

Figure 9

It is easy to see that B and BC have the same
behavior. All we have done"l:s remove edges which
specify redundant constraints.

Notation. Let C = (V,E,O,!!:o,~·~·!.> and l.et
w.ewO(c,'i'). Then

1. • . •

!/'i'(wi)=~'tU(Cx(u) 1 ,y(v)J)lx=y and wi (~(u) 1)
+l=w. (y(v)J)}

1 and . . .
K/'i'(w.)=E/'i'(w.)-{e=(x1 ,yJ)eE/'i'(w.)I there
- 1 - 1 - 1

is a

path of leng~h greater than one
from x1 to yJ in E/'i'(w.) J •

We also let Ilc(C,w.) denote the set-of cfitical
paths in BC under ffii.

Ilc(C,w.)={neil(w.)j r: T(v)= max (I: T(v')}.
1 ·1 ven n'eil(w.) v'en'

Notice that IlcCC,w.) s; !f'i'(w). · ·1 ·

Then we have tfie following result.

Proposition 4.2 .Let C = {V,E,O,µ. ,qi,a,T). be an
ICGwith Bc=C~,!_~Q·l;o·~·~·!.l and 2et wiewOcc,'i'J.
Then Ilc(c,wil ·s;; VY<wi).

This result indicates that one only need check
the sets .!l!.'/'i' and K/'l.'(w.) to decide if an opera
tor assigrunent is time oitimal. Thus, the·tedium
necessary can be reduced, but unfortunately it
cannot be eliminated. There are several results
which provide sufficient conditions for either
time optimality or non-optimality that are quite
simple to verify. Unfortunately, these results

114

are not necessary as well as sufficient.

Proposition 4,3 Let C = (V,E,o,µ. ,qi,a,-r) be a.
nonterminating ICG and c• = (V',E9,0 1 ,µ~,cp',a',T')
be its one-to-one equivalent with reduced behavior
graphs B = rl_,~,_Q,,~,91,.~I) and !!c• = (X,' .~· ,g,•,
~191,.~1JJ 1 respectively. The operator assignment
function a is time optimal if ~'/'l.'"=Y'f{wi) for
every w.ew0{c,'f).

1

Proposition 4,4 Let c = (V,E,o,µ 0 ,qi;a,-r) be a
nonterminating ICG. The operator assignment func
tion a is time optimal if there is only one legal
operator ordering w.

Remark. Notice that there is a single legal
operatOrOrdering w only when th.e vertices in
-1 . .

a (a), for every operator a in.an ICG are totally
ordered in Be. In this case, proposition 4.3 also
indicates optimality.

!n contra$: to the preceding two propositions,
the one which follows gives conditions under which
an operator assignment function is nonoptimal.

Proposition 4,5 .Let c = (~~1_Q,,~ 1 12,,1~I) and
BC' = (¥;'·•!.',fl.' ·~•S1.' ,~' ,:i;,' J. If there is some

w.ew0 cc,'i') for which K/'i'(w.) does not contain
1 - 1

every path in Ilc{C',w) then p(C)>p{C').

Sununary

In this paper we have given a procedure for
determining lower bounds on computation rates
achievable for data flow programs implemented on
machines which can exploit the parallelism
inherent in these processes. We have also given
conditions under which an operator assignment is
time optimal. Unfortunately, these cond.i tions are
somewhat tedious to verify, so a n\l!llber of suffi
cient conditions. for optimality {or non-optimal
ity) have also been given.

Two areas of application for the results
presented in this paper immediately come to mind.
First, by calculating the maximum computation rate
of a data flow program, a hard estimate of the
advantage gained in implementing the program on a
data flow processor can be obtained. Therefore,
these results can provide a basis for an analytic
approach to evaluating the projected performance
of data flow processors. Secondly,. in writing a
data flow program, the user of a simulation facil
ity such as the one described by Leung, Misunas,
Neczwid and Dennis [2~ must effectively specify
the operator assignment as part of his program.
The results of this paper provide the user of such
a system with guidelines for choosing an efficient
operator assignment,

References

Ill R.M. Karp and R.E. Miller, Properties of a
model for parallel computations: determinacy, ·
termination, queueing. SIAM J. of Appl.
Math. 14 (November 1966), 1390-1411.

[2] C.K. Leung, D.P. Misunas, A. Neczwid, and
J.B. Dennis, A computer simulation facility
for.packet communication architectures,
Proceedings of the Third Annual Symposium on
Computer Architecture, IEEE, New York

(January 1976), 58-63.

[3] J.B. Dennis and D.P. Misunas, A computer
architecture for highly parallel signal
processing. Proceedings of the ACM National
Conference, ACM, New York (November 1974).

[4] C. Ramchandani, Analysis of asynchronous
concurrent systems by Petri nets, Ph.D.
Thesis, Massachusetts Institute of Technology,
Cambridge, Massachusetts (February 1974).

[SJ R. Reiter, A study of a model for parallel
computations, Ph.D. Thesis, Department of
Communication Sciences, University of
Michigan, Ann Arbor, Michigan (1967).

[6] F. Commoner, A.W. Holt, S. Even, and A.
Pneuli, Marked directed graphs, J. Comput.
Syst. Sci. 5 (1971) 511-523.

[7] A.W. Holt and F. Commoner, Events and
Conditions, Research Report of Applied Data
Research, Inc., New York (1970).

[8] S.C. Meyer, An analysis of two models for
parallel computation, Ph.D. Thesis,
Department of Electrical Engineering, Rice
University, Houston, Texas (December 1974).

115

ON THE EVALUATION OF ARRAY COMPUTERS

R. Hemmersbach and D. Schutt

Dept. of Computer Science
University of Bonn

5300 Bonn, W-Germany

Summary

A new procedure for measuring and comparing

highly parallel computer systems is proposed.

Since the behavior of a system is determined by

the behavior of its components and the specific

modes of combination used, systems are described

by sets of labelled acyclic flow graphs (compare

[2,8]). The nodes of such graphs represent compu

ter facilities like registers or complete process

ing elements, the edges characterize the instruc

tion and control flow between the facilities. The

labels of nodes and maximal paths ('hyperedges')

are induced by the work and power of the f acili

ties and statistical quantities, respectively.

The evaluation of a system is done recursively

as follows: Starting with the evaluation of primi

tive components (first order flow graphs) the re

sults obtained are used for the evaluation of the

next level of description (second order flow

graphs), i.e. the first order graphs are regarded

as nodes of the second order graphs, etc. Since

parallel computers are considered, the highest or

der flow graphs describe the interconnections and

information flow between (arrays of) processing

elements, memories, and control units.

The work of a flow graph G (system or part of

a system) is given by

w(G)

where

n
I:

i=l
n

n 111i_
h. w(hyperedge i) = I: hi I: w(F.)

l. i=l j=l J
is the number of hyperedges of G

n
the label of hyperedge i (I: h.=1)

i=l l.

the number of nodes of hyperedge i

w(F.) the work of the j-th node (facility)
J of hyperedge i

Note that hi may be for example the relative

frequency of an instruction associated to hyperedge

i, and that w is an arbitrary complexity measure.

The power p(G) of G is the ratio of its work

to the (average) cycle time of the corresponding

system or part of the system.

Failures of components of a system normally

116

mean the deletion of 'defective' hyperedges in the

flow graphs involved. Then an investigation of the

reduced flow graphs gives some information about

the effect of the failures.

As an example, the work of an ILLIAC IV array is
determined by means of the measure introduced by
Hellerman [4]. Compare [1,3,9; 5,6,7,8,lo].

Array with 64 PEs 2o9o56 wits (for instructions

[1]

[2]

[s]

Control Unit 32o5 wits
with memory access;
labels hi=const.)

Buffer 1315, Gating Block 65, ACARs 2o48,
Address Adder 388, Shift/Logic Unit 1567,
Decoder 32, Final Queue 512

Processing Element 2352 wits

Registers 3392, Address Adder 256,
Artihmetic Unit 1792, Shift/Logic Unit 1567

PE Memory 821 wits

Common Data Bus 512 wits

CU Bus 4o96 wits

Bus for Enable Signals 1600 wits

References

G. Barnes, et al., "The ILLIAC IV Computer"
IEEE Trans. Comp. 17 (1968), pp. 746-757

C. Bell, and A. Newell, Computer Structures,
McGraw-Hill, (1971)

R. Davies, "The ILLIAC IV Processing Element"
IEEE Trans. Comp. 18 (1969), pp. 800-816

L. Hellerman, "A Measure of Computational Work",
IEEE Trans. Comp. 21 (1972), pp. 439-446

L. Hellerman, "The Power and Efficiency of a
Computer System", GI-NTG Proceedings, Lecture
Notes in Computer Science 8, (1974),
pp. 19o-2o5

R. Hemmersbach, Uber ein informationstheoreti
sches MaB und seine Anwendbarkeit auf Rechner
systeme, Univ. of Bonn, Diplomarbeit, (1975)

R. Hemmersbach, and D. Schutt, "A Comparison
of the Systems 36o-4o and 370-168 by means of
an Information Theoretical Measure", Digital
Processes 1, (1975) , pp. 329-332

[8] s. Hoener, "Zur Leistungsbewertung von Multi
prozessor-Strukturen", GI Proceedings, Lecture
Notes in Computer Science 26, (1975),
pp. 396-405

[9] P. Mies, and D. Schutt, Feldrechner, B.I.
Wissenschaftsverlag, (to appear in 1976)

[10] H.-H. Wielage, Die Bewertung digitaler Systeme
mit Hilfe der Rechenarbeit, TU Munich,
Diplomarbeit, (1976)

ERROR DETECTION AND RECOVERY IN A DATA-FLOW COMPUTER•

David P. Misunas
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts OZ139

Abstract -- The highly modular structure of
data-flow computer permits the inclusion of fault
tolerant capabilities at the module level within
such a machine. Error detection and recovery is
provided through redundant computation. The highly
parallel structure of the routing networks,
comp r is in g the Memory IF unction a 1 Unit
interconnection paths, allows reconfiguration of the
processor upon detection of a faulty component with
only slight degradation of either the performance or
the ability to detect and recover from further
errors. Due to the unique structure of the
interconnection networks, the increase in size and
complexity of a data-flow processor necessary to
implement the fault-tolerant capabilities is less
than the amount of redundant computation necessary
to assure error recovery.

Introduction

Although the reliability of the components
utilized in digital computers has increased
tremendously in the past few years, in any system
with such complexity, there is always a chance of
failure. Also, in many applications it is either
difficult to gain access to equipment for repairs or
any failure would have catastrophic results, as in
such machines as spacecraft computers and air
traffic control computers. For these reasons, a
great deal of effort has been devoted to fault
tolerant design techniques [l, 2, 3, 10, 11].

Most proposed fault-tolerant systems are
composed of a number of processors executing
different copies of the same program and comparing
results. If a discrepancy arises, either a separate
processor is utilized to check the system in an
attempt to discover faulty components or the
processors in the majority disable the minority
processor(s) and continue with degraded fault
reco~nition and recovery capability.

This approach to the structure of a fault
tolerant system has the problem that system
reconfiguration is accomplished at a high level.
The disabling of an entire processor upon detection
of an error significantly degrades the fault
recognition and recovery capabilities of the system
unless there is a large number of redundant
processors. However, the cost of maintaining many
extra processors has thus far been rather

• This research was supported by the Advanced
Research Projects Agency of the Department of
Defense and was m~Pitored by the 0ffic~ ·f Naval
Research under contract number N00ill4-75-t 661.

UY

prohibitive, allowing its introduction only in vital
applications.

The data-flow processors described by Dennis
and Misunas (5, 6] have a highly modular structure
which permits system reconfiguration at a low level.
Indeed, a completely fault-tolerant system can be
implemented on a single processor through the use of
program redundancy. System reconfiguration upon
detection of an error is achieved by selecting
alternate paths around failed components.

The occurrence of a failure in a data-flow
processor and the associated bypassing of the faulty
component do not affect the capability of the system
to detect further errors and further reconfigur the
processor in response to those errors as 14 .. g as
there remain enough fault-free components to prrform
the computation and there are enough paths
connecting the memory and the functional units of
the processor. Also, the additional cost of a
computer incorporating such a solution over the co~t
of a non-fault-tolerant processor is much less than
the additional cost of a system utilizino
reconfiguration at the processor level.

St.ructure of the Data-Flow Processor

A data-flow processor is structured as a
packet communication architecture [4]. Units of the
processor communicate through the transmission of
information packets, and delays in packet
transmission do not affect the correct operation of
the processor.

The data-flow program representation utiha<l
as the base language of a data-flow processor all .s
the data-driven execution of a computation. .\n
instruction of a data-flow progo ;m is enabler" for
execution only after the receipt of all req ed
operands. Upon becoming enabled, an instr• . ion
proceeds to an appropriate functional unit ~ich
performs the desired computation and sends copies of
the result to instructions which need them for
execution.

ln a companion paper [8], we examine the
performance of an elementary data-flow processor
designed to execute signal processing computations.
More advanced data-flow processors, incorporating
conditional and iterative constructs, data
structures, and procedures are described in [6],
[9], and [7], respectively. For the purpose of
examining fault-tolerance techniques applicable to a
data-flow computer, we will use the elementary
processor shown in Figure 1.

date>
packets

• • •

Operation
Unit 0

• • •
Operation
Unit m-1

Instruction
Cell 0

Memory

Instruction
Cell n- I

Host

• • •
operation
pockets

Figure I. Structure of the elementary data-flow processor.

The l'lemory of the processor consists of a
number of Instruction Cells, each composed of three
registers (Figure 2) and holding one instruction of
a data-flow program. The first register of an
Instruction Cell contains the operation
specification and the identifiers of destination
Cells to which results of the operation are to be
sent. The second and third registers contain space
for the necessary operands and initially hold any
values necessary to start the computation. An
Arbitration Network conveys operation packets
containing enabled instructions, each consisting of
an ope.rat.ion specification, a number of destinatio·n
addresses, and all required operands, from the
Memory to the Functional Units. A Functional Unit
performs the specified operation upon the operands
in each operatioll packet received and forms a data
packet, consisting of one copy of the result and a
destination address, for each destination specified.
The Distribution Network accepts data packets from
the Functional Units and conveys them to the proper
destination Instruction Cells.

Instruct ion Ce II

instruction d·est inotion destination-

register

·L operand I t-
regi"ster

{- op erond 2 ~

Figure 2. Structure of on Instruction Cell.

118

tnStruction
Ce ti 0

Instruction
Cell 7

Functional
Unit 0

FunCtional
Unit I

Figure 3.

A-. Arbitration Network

B. Distribution Network

Functional
Unit 0

Functional
Unit I

Instruct ion
Cell 0

ln..struction
Cell 7

Stru-cture of on elementary ArbUrotion and Distribution
Network.

The Host computer is a conventional processor
and is used to initialize the program in the data
flow processor, monitor its execution, and
reconfigure the processot upon detection of an
error. The Host performs these functions by means
of packets sent through th~ networks. For th~
purposes of this discussion, we will assume that th
Host is error-free. Such freedom from error in th•
Host can be achieved through more convention<. ..
techniques [10 }.

To examine the reconfiguration capability of
a data-flow computer, we must understand the
structure of the interconnection networks of the
processor. An elementary structure of the
Arbitration and Distribution Networks is presented
in Figure 3, and the structure of a typical network
node is shown in Figure 4. The arbitration unit in
the node passes packets arriving at its input ports
one-at-a-time to its output po.rt, using a round
robin discipline to resolve any conflicts. Once a
packet has been, accepted by the arbitration unit of
a node, it is stored in a buffer unit until the
succeeding unit is ready to receive it. A switch
unit directs a packet to one of the several possible
next nodes, controlled by some property of the
packet. In the Arbitration Network, the operation
specification controls the switching, whereas in the
Distribution Network, the switching is specified in
the destination address.

.Figure 4. Structure of o network node.

The networks operate asynchronously, following a
"hand-shaking• communication protocol for the
transmission of packets. Once a packet has been
accepted by a node and transferred to its buffer
unit, the appropriate next node in the path is
notified that a packet is ready to be transferred to
it. No further action is taken until an acknowledge
is returned from the succeeding node, at which time
the entire packet is transmitted to that node.

~ Detection

There are three problems which must be faced
in the introduction of fault-tolerant capabilities
to a computer system. First, it must be possible to
detect the occurrence of each error, whether it is
caused by a hardware failure or by some other system
malfunction. Second, the computer must be able to
continue the computation in which the error occurred
to a successful finish. And third, if a given error
is caused by a failure of the hardware, the bad
component(s) must be isolated to prevent the
occurrence of further errors.

In this section we examine the solution to the
first two problems of error detection and revovery.
The next section discusses the reconfiguration of
the processor in response to a determination that a
component has failed. First, however, we must
introduce a few terms. An error within a processor
is the generation of an incorrect result. The
errors that interest us here are those caused by
faults; that is, by hardware malfunctions. Such
faults are generally classified as either transient,
intermittent, or permanent, depending upon their
rate of occurrence. For a thorough discussion of
these distinctions, see [2, 10).

Because inter-unit communication in a data
flow processor is asynchronous, a permanent fault
and many types of transient and intermittent faults
will halt the flow of packets through a particular
unit of the processor. Such is the response to·the
well-studied and common problems of •stuck-at•
faults, shorts, broken IC's, etc. ·

On the other hand, an error need not have such
a readily distinguishable effect. It may only cause
an incorrect result to propogate within a
computation through the generation of an error in a
packet, the production of extra packets, or the
misdirection of a packet. To detect and recover
from such errors, we need to introduce some amount
of ·redundancy; that is, we ~ust execute several
copies of the computation simultaneously and compare
the results through some voting process.

The elementary data-flow processor is designed
to perform stream-oriented computation. Hence, for
this processor we need to use triple redundancy
techniques to allow us to not only detect, but also
recover gracefully from errors. Triple modular
redundancy (Tl'IR) is one of the most widely utilized
methods of fault-tolerant design. Generally, a
system constructed ;in such a manner consists of
triplicated hardware and triplicated voters. Each
voter has three inputs, one from each of the three
identical. hardware modules. Tile implementation of
these techniques wHhin a conventional compliter
system has bl'len widely des1:r:HJed in the literatu!"0
[Z, 10], l!lrad we wiJ.l l!l!lt ~U!>clisv it f11rtlitl!r here.

119

The application of TllR techniques to an
elementary data-flow processor requires the
triplication of several parts of the processor.
There must be at least three functional units of
each type, and a different functional unit must be
utilized by each of the separate copies of a given
program. Also, the size of the Memory must b~
tripled to accommodate the additional programs, and
the programs must be distributed among the
Instruction Cells of the llemory so as to insure that
corresponding instructions of the various copies of
a program do not share final stages of the
Distribution Network or initial stages of tha
Arbitration Network.

The process of result comparison or •voting~
is carried out at the Instruction Cells of the
processor, In .a data-flow processor with triple
redundancy at the instruction level, ea.ch Cell
receives three values destined for each operand
register, OflE': from each of the three copies of the
previous instruction. The Cell incorporates a
mechanism to compare the three values received and
signal that an error has occurred H there is any
discrepancy.

Upon detection of such an error by a Ce 11, if
two or the values received aQree, that value is used
as the operand value, and an error m&ssage is sent
to the Host. If all three operands are different,
not only is an error message sent to the Host, but
an error indicator is used. in the operand field to
indicate that an error has. occurred, and the result
produced by any Functional Unit or Memor,y Cell
processing the error indicator is another error
indicator, causing the error indicator to propogate
through the remainder of the computation. Hence,
the use of a Tl'IR scheme does not permit recovery
from two errors which simultaneously affect the smlle
value in two of the three copies of a computation.
HQ.Wever, the probability of such multi.pie errors is
rather low.

~n error message is sent to the Host in an
.!r.!:!!.!: p·acket which travels through the Arbitration
Network to the Host output ports of the network.
The format of an error packet is an follows:

dest id = Host
unit id at which error occurred

error code

The Host analyzes the location and type of ·ea.ch
error as described in the error packets to determ_ne
the module at fault.

The level at which the outputs of redundant
computations are compared largely determines the
ease with which the .Host can isolat.e the occurrence
of a persistent error to a faulty component. H
such checking is carried out at tha instruction
level, then the Host knows from the unit identifier
at which the error occurred the exact path followed
by the faulty result. However, to achieve this
level of error detection requires increasing the
number of packets flowing through the, proc<::;.;,or by 11

fact.or of nine due tp the fact that each ,of >the
three identical computations tr<:msmits om: copy of
each result not only to the
i!lstr11cUon{ s) withi.n that;
corres~ondin~ next
l.dii!il t; :i.U] f.!i"()~;"IJ!!'I)$.

Compal-ing results at the end of a computation
does not &Jrovide as much useful is;iformatio.n ab.out
the location. of an error; however, i.t only tr.iples
the number of packets flowing through the processor,
and, as we shall describe later; the Host has .other
means at its disposal for finding fau1ty c0111Pom111_ts.

Processor Reconfiguration

The addition of redundant connections within
the network structures of a d:ata-flow ·processor
allows the routing of packets around n8twork nl>des
which have failed. In Fi.gure 5 we show one such
structure for the Arb-itration Network of Figur• Z.
The failure of a node is detected by the preceting
node through examination of its buffer si~e. Since
the arbitration units within a network node operate
with a round-robin discipline, an upper bound on the
time necessary to service a transmis.sion request is
obtl\ined by multiplying the number of inpu.ts to an
arbitration unit by the pac~et transmission time.
Within this time, only a small number N of packets
de-stined for the node can be received by the
preceding node. Thus, if either more than N packets
destined to the succeeding node are received after
sending a transmission request and before receiving
an acknowledge· or an amount of time greater than the
arbitration unit processing time bas passed
(determined through the use of the check packets
described in the next sect.ion), it can be assumed
that the succeeding node has problems. Once this
determination has· been made, all packets destined
for that node are rerouted around it, and the .Host
is notified through the transmission of an error
packet.

In illustration, suppose node ·s of the ·network
sh.own in Figure 5 fails. Either the buffer in node
A will back up, or an amount of time greater than
the packet processing time of node B will pass.
Node A then sends all packets which it contains and
which are destined for B to C. Node C sends the
packets to the correct destination node, for example
node D.

Node A also sends an error packet containing
the network level number and the destination
identifier o.f each rerouted packet to the Host,
indicating that the succeeding node has failed
somehow. Note that multiple failures cause the
generation of multiple error packets.

The Host, upon determination·that a node has
failed, sends a command packet to· the preceding
node(s). ordering the node(s) to permanently bypass
the failed node,· and signals the user that a failure
has occurred. This permanent reconfiguration of the
processor halts the flow of error packets which have
been generated each time the failed node has been
bypassed. All packets contained in the failed node
are lost; however, the redundant computation should
produce the desired result.

More significant problems arise in the case of
multiple failures of adjacent nodes of a network.
In s11ch a case, it may not be possible to reroute
packets at the preceding node since there· may be no
nodes left which can provide an alternate path.
Thus, rerouting-must b-a ordered by the Host at an
earlier level in the network and many more packets
are lost.

120

Jnstruction
Cell 0

•ns.truc-t ion
Cell 7

Figure 5. Structure of a fault-tolerant Arb~1ration Network

Functional
UnitO

Functional
Unit l

· Thus far, we have only considered the failure
0-f a portion of an interconnection network of a
data-flow processor. For conipleteness, we must now
consider the failure of a llemory Cell or a
Functional Unit. Such a failure requires mor~
intelligence on the part Of the Host in order to
correctly reco.ver.

Failure of an Instruction Cell is detected by
the Host through analysis of the messages contained
in the error paclc.ets it receives. If a Cell fails
comple.tely, no destination will receive a result,
and the Host, after checking the path which should
have been followed by th8 operation and data packets
in the manner described in the following section,
can conclude th.at a problem exists within the Cell.
Other failure modes of a Cell are de.termined through
more extensive analysis of the error messages.

Failure of a Cell cannot be solved by the mere
rerouting of packets destined for the Cell. The
Host, upon recognition of the fact that a Cell has
failed, mus.t reconfigure the processor. The
instruction contained in. the Cell must be located in
another Cell, and the destination addresses of the
preceding instructions must be appropriately
changed. Since the Host performed the
initialization of the processor and has full
kn-0wledge of the memory status and content, this
reconfiguration can b!t readily accomplished.

Complete failure of a Functional Unit also
requires reconfiguration of the processor to bypass
the bad un'i t. This reconfiguration is accompHshed
by resetting the switch unit feeding the Functional
Unit U-ntil a new unit can be installed.

The use of pipelined Functional Units allows
· p.artial failure to .be solved through reconfiguration
of the Functional Unit itself. If a Functional Unit
is constructed of stages which are capable of
performing th~ same or similar functions (perhaps
microprogrammed for a specifi.c func,tion) and the
unit contains a number of redundant stages, failure
of a stage can be corrected by bypassing the stage.
The necessary reconfiguration is accomplished by
sending a conunand packet to the stage preceding the
one which has failed. If it is not ·known which
st_age has failed, the unit can be reconfigured one
stage at a time until it either op.erates properly or
is determined to be unsalvagable.

Processor Verification

Through the Host's connection to the
Arbitration and Distribution Networks, the integrity
of the networks and the Functional Units can be
assured. A check packet sent by the Host into the
Distribution Network consists of two destination
specifications. The first designates a path through
the Distribution Network to an Instruction Cell.
Upon reaching a Cell, a check packet is placed
directly upon the Cell's output liJJk and enters the
Arbitr.ation Network, where the remaining second
destination address is used to direct the packet to
an output port of the network connected to the Host.

To examine the operation of the Functional
Units of the processor the Host maintains
connections to the Arbitration Network inputs and
the Distribution Network outputs. Operation packets
are directed from the Host to specific Functional
Units. The destination address contained in such a
packet designates one of the output ports of the
Distribution Network leading to the Host. In this
manner, the Host can see if each Functional Unit is
operating properly.

The periodic use of check packets not only
supplies useful information to the Host as to the
presence of permanent faults, but also provides a
solution to one of the basic problems in fault
tolerant asynchronous design; that is, the
difficulty of knowing how long to wait for a result
in a redundant asynchronous computation. If a
computation is being performed in a TMR fashion and
two of the final results arrive, it is difficult to
tell whether the third has been lost somewhere or is
merely delayed. To determine this, we must somehow
introduce the concept of time.

The structure of a data-flow processor is such
that there is a readily determined upper bound on
the time necessary for the execu·tion of an
instruction within the processor (8). Thus,once we
know the depth of a data-flow program; that is, the
maximum length path from the first instruction to
the last instruction, we can determine a maximum
execution time for the computation.

Check packets sent by the Host through the
Instruction Cells should have a time interval
between successive packets destined to one Cell
which is greater than the maximum instruction
execution time. Then a Cell, merely by knowing the
length of the maximum path between itself and the
last Cell which performed a comparison, can readily
determine if a packet has been lost. This
determination is achieved by waiting an amount of
time equal to the maximum instruction execution time
multiplied by the path length after the receipt of
the first operand. If the time expires and the
other operands have not been received, the Cell
becomes enabled without them, and an error packet is
sent to the Host.

The Cost of .E!!!!!-Tolerance

To examine the penalty invoked in the
implementation of fault-toierant capabilities within
a data-flow computer, let us consider the fault
tolerant structure of the simple processor presented

121

in the. companion paper on performance [8]. The
elementary processor described in that paper
contains 128 Instruction Cells, three level
Arbitration and Distribution Networks,··nine
Functional Units, and can support a processing rate
of approximately 28 MIPS.

The addition of fault-tolerant capabilities to
such a processor structure requires increasing the
number of Instruction Cells by a factor of three, to
384. Also, we are now required to have 27 Functional
Uni ts to maintain the throughput. The Arbitration
and Distribution Networks must be increased in size
to support both the additional memory and the larger
number of p~ckets flowing through the machine.
However, we can support the additional Memory Cells
with only a restructuring of the networks in this
case, no additional stages are required.

The cost of an elementary data-flow processor
is fairly evenly distributed among the four parts of
the processor: the Memory, the Arbitration Network,
the Distribution Network, and the Functional Units.
The addition of fault-tolerant capabilities
essentially triples the cost of the Memory and the
Functional Units. However, the restructuring of the
networks and the additional complexity within each
node only increases the network cost by
approximately 75%. Let c be the cost of the
elementary data-flow processor without fault
tolerant capabilities, then the cost of a fault
tolerant version is:

2(3(.25c)] + 2[1.75(.25c)]
=2.38c

Hence, to introduce fault tolerance we have tripled
the amount of computation performed with only a
140% increase in cost.

In a more advanced data-flow processor,
incorporating procedure activation capabilities,
fault tolerance can be implemented through dual
redundancy. This is possible due to the ability to
relocate a computation within the processor and
restart it upon detection of an error. Hence, the
cost of fault tolerance within such a machine
includes doubling the Memory and Functional Units
and increasing network cost by one-quarter to one
third, yielding a total cost increase between 5/8
and 2/3. With proper attention to detail, it may
even be possible to obtain full fault tolerance
with the long-sought-after 50X increase in
complexity.

Concluding Remarks

The extension of the data-flow architecture
to in.corporate the ability to detect and recover
from errors in a computation appears to be quite
feasible. Though the study of this topic is by no
means complete, preliminary results indicate that
the cost of such an extension is very attractive,
and the low-level reconfiguration utilized shows
much promise in its ability to recover from a
number of hardware failures before incurring
significant performance degradation. The fault
tolerance techniques described .herein are also
applicable to other types of packet communication
systems, such as the Packet Memory Systems
described by Dennis [4], and the study of their
incorporation is currently in progress.

Acknowlec19aent

The author wishes to express.his appreciation
.to bn Weng for many stimulating discussions and
for the he1pful c01111ents on this. paper.

References

[l] •An Application-Oriented ftultlprocessing
System,• IBft ·Systems Journal tNo. · 2, 1967).

(2] AviZienis, A. "Design of Fault-Tolerant
Computers,• .Fall Joint Computer Conferen:ce
31, AFIPS, New York, 1967, pp. 733-743.

{3] Avizienis, A., et al, "The STAR (Self.;Testing
and Repairing) Computer: An Investigation of
the Theory and Practice of Fault-Tolerant
Comput.er Design,• IEE.£ Transactions on
Computers C.;20, (November, 1971), pp. 1312.;
1321.

[4] Dennis, J. B., "Packet Commuriication
Architecture,• Proc-eedintis llf the 1975
Sagamore Computer Conference on Parallel
Processing, IEEE,· New. York, (August, 1975),
pp. 224-229.

.. ·,

· [5] Dennis, J. B., and D. P. ftisunas, •A Computer
Architecture for Highly .Parallel Signal
Processing,• Proceedings of the ACft 1974
~ational Conference, ACft, New York,
(November, 1974), pp. 402-409,

122

[6) Dennis, J. B., and D. P. ftisunas, "A
Preliminary At-chitecture for a Basic Data
Flow Processor,• ·proceedings of the Second
Annual Sympo:sium on Co!!!PUter Ari::hitecture,
I£EE; New York. (January, 1915). pp. 126-132.

(7] Misunas, D. P., A tomputer Architectu're for
Data-Flow COIDpiltation, Sft Thesis, Departll!f!nt
of Elect.ricU Engineering and ComJ>uter
Science, R.I.T., Cambridge, Rass., {June,.
1975).

[8]

[9]

[10]

[11]

fUsuHs, D. P .• •Performance. Analysis of a
Data-Flow Processor,• Proceedings of the 1976
lnterilatioriiil ·conference on Parallel
Processing, I£EE, New York, (August 1976).

ftisunas, D'. P., •structure Process'ing in a
Data-Flow 'Computer,•· Proceedings of the 1975
Sagamore Computer Conference. on Parallel
Processing, IUE,•New York, (August, 1975),
pp. 230-234. .

Newmann, et al., A Studt of Fault-T.olt!rant
Computing: · Final Report, SRI Project 1~93,
Stanford Research Institute, Ranlo Parki
California, (July, 1973).

Wakerly, J. F.; Low•Cost Error Detection
Techniques for Small Computers, Technical
Report No. · 51, Digital Systems taboratory1
Stanford Universtty, Stanford, California,
(Dec.ember, 1973). ·

;,_,

e: .

RELIABILITY ASPECTS OF THE ILLIAC IV COMPUTER*

Iftikhar A. Baqai
and

Tomas Lang
Computer Science Department
University of California

Los Angeles, California 90024

Abstract -- The ILLIAC IV is an array compu
ter used for Single Instruction Stream-Multiple
Data Stream type computations. The large number
of processing elements (PE's) in the system gives
rise to a high probability of system failure.
The use of dynamic redundancy techniques to make
the system fault-tolerant is proposed. After a
permanent fault is confirmed in a PE, the PE is
removed and a spare is introduced into the system.
Due to the highly structured interconnections be
tween the processors, the replacement has to be
done in a way that preserves this structure.

Two different replacement schemes describing
the system recovery after a PE fails, are pre
sented. One of the schemes is very general and
can be applied to systems with interconnection
networks different from that of ILLIAC IV. The
circuit· implementations of the recovery mechanism
are also discussed. It is noticed that at the
expense of a small amount of additional hardware,
a considerable increase in reliability is ob
tained.

I. Introduction

ILLIAC IV is a parallel array computer con
taining four subarrays, each of 64 processing
elements abbreviated as PE's. By using parallel
ism of operation, very high speeds in computing
have been achieved [l].

The special feature of the ILLIAC IV is a
common control unit which decodes the instruc
tions and generates control signals for all the
processing elements in the array. This elimi
nates the cost and complexity for decoding and
timing circuits in each PE. Thus in ILLIAC IV,
processing of various data streams is controlled
by a single instruction stream. The need to ex
clude some data or process it differently is
handled by providing each processor with an
ENABLE flip-flop that controls the instruction
execution at the processor level [l]. The pro
cessors in an array are labeled from 0 to 63. To
facilitate data exchan~e, PE i has connections to
four other processors (i±l)mod 64 and (i±8)mod 64.
The interprocessor data transmission of arbitrary
distance is accomplished by a sequence of rout~
ings specified in a single instruction.

We study the reliability aspects of the
ILLIAC · IV computer with respect to PE failures.
In the present structure, a single PE failure

*This work was supported by tile National Science
Foundation under Grant No. MCS72-03633 A04.

123

causes a system failure and the large number of
PE's (64) in an array gives rise to a high prob
ability of failure. The system availability as
well as its reliability can be enhanced by intro
ducing hardware redundancy and thus making the
system fault-tolerant. The application of static
redundancy is ruled out because of economic con
siderations [2]. In the dynamic redundancy tech
nique that we adopt, fault-caused errors are al
lowed to manifest themselves in the system.
Fault-tolerance is then implemented by two suc
cessive actions. First, the presence of a fault
is detected and then a recovery action takes
place. If a restart of the program (rollback)
fails to correct the error, a permanent fault is
assumed and the faulty PE is removed [2, 3]. In
this work, we limit our attention to the method
of introducing spare PE's into the system to bal
ance the removal of the failed PE.

We propose the use of one spare PE to toler
ate all single PE failures. When a PE fails and
it is removed from the system, the interconnec
tion structure is perturbed. Assuming PE labeled
x fails, then the routing interconnections of x
to (x+l)mod 64 {from now on, all numbers of the
type x+k are assumed to be modulo N when referred
to a system containing N PE's), x-1, x+8 and x-8
are disturbed. So, for x+l, the data for routing
by distance +1 does not come from x and for x~8,
the data for-Y:-outing by -8 does not come from x.
Similarly for x-1 and x+~ the data for routing
by distances -1 and +8 respectively does not come
from x any more. We1nvestigate three schemes by
which the data routing ability is restored and,
as a result, the ILLIAC IV system tolerates PE
failures. The schemes are

i) Reorganization of the Interconnection
Network {ROIN)

ii) Decoupling Network with Direct Replace
ment {DNDR)

iii) Decoupling Network with Indirect Replace
ment {DNIR)

In the ROIN scheme, after a spare becomes
part of the system, the interconnection structure
i.s reorganized so that the data routing proceeds
unhindered as in the pre-failure situation. The
disturbed interconnection structure is restored
by providing extra interconnections and a selec
tor circuit for all the PE's. The extra inter
connections and the selector circuit form the
redundant features of this scheme. In this
scheme, the spare replaces the failed PE indi
rectly in the sense that it {spare) does not
{generally) assume the label of the failed PE.

In the Decoupling Network Schemes the data is
routed to the correct PE by using an additional
network which isolates the PE's from the inter
connection network. In the DNDR case, the spare
replaces the failed PE directly. The intercon
nections between the spare and other PE's are pro
vided through a bus structure. In the DNIR case,
the failed PE is replaced by the spare indirectly
and in the same manner as in the ROIN Scheme.
Here· we use two selector circuits for a PE. The
decoupling network forms the redundant feature of
the ON Schemes.

The ROIN Scheme involves modification of the
interconnection network and is therefore dependent
on the specific interconnection network of the
system. On the other hand, the ON Schemes are
very general and can be easily adapted to any
system.

The ILLIAC IV interconnection network and its
fault-tolerant versions are described in Section
2. The extension of the above schemes to inter
connection networks different from that of ILLIAC
IV is considered in Section 3. Some reliability
estimates are given in Section 4 which indicate
substantial improvement in the system reliability
due to the introduction of redundancy. It is ob
served that the additional hardware required is
very simple, so the increased system cost and com
plexity is minimal. The schemes are compared with
respect to the complexity of their implementation
in Section 5. It is concluded that the ON Schemes
are easier to implement than the ROIN Scheme. The
main draw-back with the DNDR Scheme is that it re
quires a duplex bus structure which has connec
tions to all the PE's in the system. Tbis fact
has critical implications in the system design be
cause· of circuit limitations on the number of con
nections a bus may have. Additionally, the length
of the bus line for such a system may require the
ase ef repeaters.to overcome the problems of noise
contamination and attenuation of the signal val
ues. The length of the bus line is also important
in determining the signal propagation delays and
may affect the speed of the whole system. The
disadvantage of the DNIR Scheme is that the two
selector circuits associated with each PE intro
duce logic delays which rnay slow down the system.
The ROIN Scheme is the faster of the three schemes
as it involves modifying the interconnection net
work and as such does not affect the speed of the
system. The disadvantage of this scheme is that
the number of interconnections required for a PE
is twice the number required for the non-redundant
ILLIAC IV. This feature adds to the system com
plexity.

The comparison of the schemes indicate that
the ON Schemes are superior if the associated cir
cuit delays are acceptable. For a fast fault
tolerant system, however, the ROIN Scheme might be
more practi ca 1.

2. Restructuring of ILLIAC IV
for Tolerance of a Failed PE

In this section, a structure of 64 PE's is
described where PE i is connected to PE's i±l and

124

it8· Three schemes are presented aimed at making
the system tolerate failed PE's. The schemes are
studied with respect to the steps involved in the
recovery procedure and the complexity of its im
plementation.

There are sixty-four physical locations num
bered from 0 to 63. The PE in the ith location
has 'i' as its physical label while L(i) denotes
its logical label. For the non"redundant system,
L(i) = i for all i. The logical relabeling is
done when a spare becomes part of the system. Un
less otherwise specified, the word label refers to
the physical label. The data for i for routing by
distances -8, -1, +l and +8 comes from PE 1 s (i+8),
(i+l), (i-1) and (i-8), respectively.

The above routing is disturbed if any PE
fails, causing a system breakdown. To make the
system tolerate PE failures, we introduce redun
dancy .by adding spares to the original system.
Two different strategies are used to restore the
system back to its original configuration. We
consider the case of,single PE failures only so
that one spare is sufficient. In both these situ
ations as PE x fails, the system enters the r.e
covery mode. If a restart of the program (roll
back) fails to correct the error, a permanent
fault is assumed, the failed PE is removed and the
spare becomes part of the system. The spare is
originally labeled 64.

The restructuring of the system consists of
three principal steps:

i) Relabeling strategy
ii) Transmission of the failure information

iii) Reconfiguration scheme

When a PE fails and a spare is introduced,
relabeling is performed by assigning a new label
to the PE's. It can be done in many ways but we
discuss only two. In the Direct relabeling strat
egy, the spare assumes the logical label of the
failed PE while all other PE's retain their ori
ginal labels. In the Indirect relabeling strategy,
a PE whose label is less than the failed PE's
label reta i.n its original label • whi 1 e the others
have their labels decreased by one. In this
strategy, the spare is relabeled 63 (Fig. 2.1).

The information about the location .of the
failed PE can be transmitted to other PE' s either
by the failed PE itself (Local Transmission) or by
the Central Control Unit.

We discuss two methods by which the system
reconfigures itself after a spare-becomes part of
the system. The. ROIN (Reorganization of the In
terconnection Network) Scheme involves modifying
the interconnection network to preserve the data
routing ability. In Fig. 2.2(a), a schematic. rep
resentation of the non-redundant ILLIAC ·IV is
shown while in Fig. 2.2(b) the redundant system
using the ROIN Scheme is presented. The other
schemes, the Decoupling Network Schemes,,are based
on separating the interconnection network from the
PE's. The interconnection network has 64 ports,
one corresponding to each PE. The decoupling net-

work is used to maintain, after relabeling, the
correspondence between the PE's and the ports.
The redundant ILLIAC IV model using decoupling
network is shown in Fig. 2.2(c).

In designing a system which tolerates PE
failures, a strategy has to be chosen for each
step. In general, all choices described are fea
sible. Based on our analysis, we selected the
ones leading to simpler and more elegant solu
tions. All schemes considered use local trans
mission of failure information. One of the
schemes uses indirect relabeling and reorganiza
tion of the interconnection network. The second
employs direct labeling and decoupling network,
and the third, indirect relabeling and decoupling
network. The schemes are now described and they
are compared in Section 5.

2.1 Reor anization of the Interconnection
Networ ROIN

In this scheme the spare is connected serial
ly with the active ones at one extreme end of the
system as shown in Fig .. 2.1. Whenever a failure
occurs, the failed PE is eliminated and indirect
relabeling is done. Extra interconnections are
provided to the PE's so that after relabeling, the
interconnection network is restructured to its
original data routing ability. Each PE has a
selector circuit built into it which chooses the
correct data input for the respective PE out of
all the inputs it receives. A selector circuit
block diagram is shown in Fig. 2.3. The failure
information is transmitted in the local mode.

Extra Interconnections. Fig. 2.1 shows that
some PE's which were originally at distance eight
with respect to each other, after relabeling are
at distance seven only. Similarly, some PE's pre
viously at distance nine are at distance eight
now. This suggests the need for extra intercon
nections for all such PE's so as to permit data
routing by distances ±8 after relabeling has taken
place. Similar interconnections are also required
for distance ±1 routing.

In addition to the four interconnections for
every PE for the non-redundant ILLIAC IV, the
fault-tolerant version has four extra interconnec
tions. Some of these extra interconnections are
used in the routing of the data whenever a spare
becomes part of the system. The extra intercon
nections are listed in Table 2.1.

Reconfiguration Algorithm. A selector cir
cuit for a PE receives data inputs from eight
other PE's and selects one of these as the correct
data input;

The selection of the correct input and hence
the implementation of the selector circuit is
based on the Reconfiguration Algorithm which de
fines the modified control for routing by dis
tances ±1 and ±8. The disturbed interconnections
for each routing are described separately in Table
2.2. In the table, x stands for the failed PE's
label while the entries in the column i sta.nd for
the affected PE's. The column 'Source' tells

125

about the new source of data. It is implied that
for all PE's not mentioned in the table, the data,
for routing by distance k (where k = ±1 and ±8),
still comes from i-k.

Selector Circuit. The Selector Circuit re
ceives the information about the failed PE as
transmitted by it to the affected PE's. Then
using the routing control signals, it selects one
of the inputs as the correct input for the PE.

As indicated in the Reconfiguration Algorithm
(Fig. 2.1), when x fails, the routing intercon
nections for PE's (x-1) to (x-8) and (x+l) to
(x+8) are affected. In addition, the routing
interconnections for PE's 0 to 7 and 56 to 63 are
also affected. The above observation holds true
for 8sxs55. Similar results are obtained when
Osxs7 and 56sxs63.

To restore the ±1 routin~, a failed PE trans
mits signals of the type (i±l)f=l to the affected
PE's. If PE i receives (i±l)f=l it means that the
PE (i±l) has failed. For the restoration of ±8
routing, a more elaborate arrangement is required.
To communicate with the affected PE's, a failed PE
issues all or some of the six signals as shown in
Fig. 2.4. The 't' signal is transmitted to all
the PE's to the left of x (in the same row). The
'r' signal is transmitted to all the PE's to the
right of x (in the same row). The 'u' signal is
transmitted to the PE above x in the immediate
upper row and to all the PE's to its right. The
'd' signal is, similarly, sent to the PE below x
in the immediate lower row and to PE's to its
left. The signals ft and fb are sent to all the
PE's in the top row and the pottom row whenever x
is in rows one to six.

The above scheme is chosen in such a way that
it isolates the affected PE's. The changes in the
data routing control for these PE's can be imple
mented simply on the basis of the received sig
nals. Thus the modified routing for the PE's in
the top row, middle rows and the bottom row be
comes a function of the received signal values as
listed in Table 2.3. In case a PE does not re
ceive a combination of the specified signals, it
simply means that the given PE has not been af
fected by the failure.

The Selector Circuit based on the above spe
cifications can be designed and the number of
gates used for an M-bit word is approximately 8M
when wired-OR technology is assumed.

If x is in the top or bottom row, ft and fb
signals are not transmitted. Also if x is in the
top row, u is received by the bottom row PE's as
shown by a dotted line (Fig. 2.4). Similarly if x
is in the bottom row the d signal is received by
the PE in the top row as indicated by a dotted
line in Fig. 2.4.

2.2 Decoupling Network Approach

As indicated in the beginning of the Section,

the ILLIAC IV can be characterized as a system
with two blocks (Fig. 2.2(a)) where PE's either
transmit data to or receive data from the inter
connection network. In the redundant version of
the system, the two blocks are separated by the
decoupling network (Fig. 2.2(b)). The relabeling
can be either Direct (DNDR) or Indirect (DNIR).
The two strategies are discussed separately. In
the Decoupling Network implementation, the inter
connection network is regarded as consisting of 64
ports labeled in a one-to-one correspondence with
the PE's. Each port has an entry point (data re
ception) and an exit point (data transmission) as
shown in Fig. 2.5(a). Thus these schemes involve
maintaining the one-to•one correspondence between
the PE's, after relabeling, and the interconnec
tion network ports.

2.2.l Decoupling Network Indirect Replacement
Scheme (DNIR)

As shown in Fig. 2.5(a). the data is trans
mitted to and from a PE to the corresponding port
in the interconnection network. When the PE X
fails, the indirect relabeling is performed accom
panied by some switching to maintain the connec
tions between the relabeled PE's and the corres
ponding ports. The new data routing is shown
in Fig. 2.5(b). The switching action is accom
plished by using two selector circuits for each
PE-Port pair; one selector circuit is placed at
the PE end; the other one at the port end. The
information about the failed PE is transmitted lo
cally. A signal is sent to PE's with labels
greater than the failed PE. The selector circuits
use this signal to effect the switching.

2.2.2 Decoupling Network Direct Replacement
Scheme (DNDR)

In the DNDR Scheme, the failed PE is replaced
by the spare directly and so it (spare) assumes
the logical label of the failed PE. The connec
tions between the PE's and ports when PE X fails
are indicated in Fig. 2.5(c). In order to toler
ate a failure in any PE, the spare should be able
to connect to any port in the interconnection net
work. This function is performed by using a du
plex bus structure which connects a spare to all
the ports through some interfacing hardware. This
hardware is rather simple and consists of a few
gates. The information about the failed PE is
transmitted locally to the corresponding port.

2.3 Comparison of the Schemes

The conclusion derived from the comparison of
the schemes done in Section 5 is that the Decoup-
1 ing lietwork Schemes are simpler to implement be
cause these avoid the complexity of extra inter
connections as required for the ROIN Scheme. For
large values of It the DNIR Scheme seems more suit
able because of fan-out and delay considerations
associated with the UNDR Scheme. However, if the
system requirements call for a design which does
not compromise the speed of the system. then the
ROHi Scneme is probably the uest as it does not
introduce any delays into the system operation.

One need re ca 11 that the ROIN Scheme involves mo
difying the interconnection network, whfle for the
ON Schemes, the selector circuit {DNDR) and the
bus and other assorted gates (DNIR} cause addi
tional logic delays and slow down the whole sys
tem.

3. . General Schemes

Our discussion so far has been with reference
to the interconnect ion network emp 1 oyed for I LU AC
IV only but the nature of the proposed schemes is
such that they can be applied to other intercon
nection networks [6]. In genera 1 any PE i re
ceives data from n PE's labeled j1 through jn.
Similarly data is routed from PE i to n other PE's
labeled k1 through kn.

In case of the ROIN Scheme, the PE 'i' in the
fault-tolerant version of the system receives data
from (or transmits data to) additional n1 PE's.
The number n1 is a function of n (the number of
interconnections for a given PE in the original
system) and the type of interconnection network
used. When a spare becomes part of the system and
logical relabeling is done, the interconnection
structure of the system is disturbed. Some or all
of the extra n1 interconnections prov1ded to the
PE's, are then used to reorganize the interconnec~
tion network. In the non-redundant system a PE
can receive data directly from (or transmit to} n
other PE's but in the redundant version, the PE
receives data from (or transmits to) n+n 1 other
PE's. The n1 extra interconnections are not in
tended to add to its original routing ability but
to preserve it in event of a fa i1 ure .. In this
scheme a selector circuit (which is a part of the
PE) receives data from n+n1 PE's and depending
upon the control signals and the failure informa
tion. chooses the correct input for the PE 'i ' .
The schematic diagram for this scheme is shown in
Fig. 3. 1 .

126

In case of the Decoupling Network Scheme, the
PE's and the interconnection network are separated
by the decoupling network. Furthermore each port
in the interconnection network corresponds to a
given PE in the non-redundant system. The DN is
designed such that it maintains one-to-one corres
pondence between the PE's and the ports. In the
DNIR strategy, a PE can receive data from any of
the two ports. The selector circuit at the re
ceiving end of the PE selects the data from the
correct port by using the information about the
location of the failed PE. Similarly a port in
the interconnection network can receive data from
two PE's, and a selector circuit at that end per
forms the selection. In the DNDR strategy, the
bus is connected to a 11 the interconnection net
work ports and it can accept data from one PE at a
given time to be passed on to the spare. Similar
ly the data may be transmitted by the bus {which
gets it fron1 the spare) to any one PE at a given
time. ·

For the RO IN Scheme. by increasing the number
of extra interconnections provided to the PE' s and

using suitable number of spares, theoretically any
number of failed PE's can be tolerated [5]. It
may be pointed out, however, that circuit limita
tions and complexity may become the limiting fac
tor. In case of DNIR Scheme, for a system to tol
erate m PE failures, the selector circuit at the
receiving end of the PE would select data coming
from one of the m ports of the interconnection
network. Similar selection would be done at the
entry end of the interconnection network ports.
For the DNDR Scheme, the tolerance for any number
of PE failures may be achieved by using multiple
bus-spare pairs.

A significant advantage of the DN Schemes is
their independence from the type of interconnec
tion network used. Here the emphasis is on iso
lating the interconnection network and maintaining
the one-to-one correspondence between the PE's and
the ports of the interconnection network so that
the decoupling network depends only on the re
labeling. The disadvantage is the added circuit
delays caused by the selector circuit and the bus.
The ROINScheme is based on the modification of
the interconnection network and hence depends on
the specific interconnection network. This scheme
is, thus, less adaptable and for each system a new
design is required. The advantage of the ROIN
Scheme lies in its being the fastest of the three
schemes presented.

4. Reliability

In this section, we evaluate the improvement
in reliability of the ILLIAC IV System, obtained
for different values of the module (PE) reliabili
ty. As mentioned before, we only consider fail
ures in the processing elements. The degradation
in the overall system reliability due to the fail
ure possibilities in the interconnection network,
Central Control Unit etc., has not been considered.
It is assumed that the introduction of fault
tolerant features into the PE hardware (and into
the system) does not cause any change in the PE
reliability; that unity coverage is provided and
the failure rate of all the active and spare PE's
is the same. The following notation is employed
throughout the section.

RpE(t) = e-At Reliability of a single PE,
where A is the failure rate. The time
dependence is implicit even when 't'
is not indicated.

64
Rnr = RpE Reliability of the non-redundant

system.
64

Rr = R (65-64R) Reliability of the redun
dant system that completely tolerates
one PE failure.

RIF(At) = ~=:~r Reliability Improvement Factor
with respect to tolerance for one PE
failure.

MTI = TTr where R = Rnr(Tnr) = Rr(Tr). Misnr
sion Time Improvement when the system
completely tolerates one PE failure.

127

The results are shown in Table 4.1. It is
noticed that the RIF increases with the reliabil-
ty of the non-redundant system. For At= 10- 4 ,

the improvement in reliability as reflected by
RIF, is better than two orders of magnitude.
There is also significant improvement in the mis
sion time as indicated by MTI.

The results indicate also that for a prac
tical mission duration, the processing elements
should have a rather low failure rate. For exam
ple, for the redundant system; a mission time of
102 hours at a reliabilit{ of .99 requires a mod
ule failure rate of 2xl0-. failures/hour. If
this is not attainable, tolerance for more than
one failure may have to be incorporated in the
system.

The results shown in Table 4. l indicate the
improvement in reliability obtained when the sys
tem tolerates all single PE failures. The addi
tional hardware (used in the redundant version of
the system) consists of one PE and some selection
circuitry in all the PE's and is insignificant.
Thus appreciable improvement in system reliabili
ty can be achieved by implementing the suggested
schemes in the ILLIAC IV System •..

5. Conclusions

In this Section we compare the proposed
schemes and then comment about the feasibility of
their implementation.

(l) For complete tolerance for single PE
failures, only one spare is required for all the
schemes.

(2) For the ROIN Scheme, the PE's are pro
vided with four extra interconnections along with
a selector circuit. In the DNIR Scheme, a decoup-
1 ing network consisting of two selector circuits
for each PE is required. The DNDR Scheme uses a
duplex bus structure and some interfacing hard
ware.

(3) The ROIN Scheme uses about 8M gates for
an M-bit word for one selector circuit. The
amount of hardware used for the DNIR Scheme is 4M
gates while the DNDR Scheme requires a duplex bus
structure and 3M gates.

(4) The asymmetries in the ROIN Scheme may
necessitate changes in some of the inputs for cer
tain PE's. This aspect may have implications in
the mass production of the system. The ON
Schemes, on the other hand, are symmetrical and
the same kind of circuitry may be used for all
PE's.

(5) The ROIN Scheme does not intr?du~e any
logic delays into the system speed.as 1t 1s ba~ed
on the modification of the system interconnection
structure. The DNIR Scheme uses two selector cir
cuits for every PE-interconnection-network-port
pair and introduces two logic delays into the sys
tem. In case of the DNDR Scheme, all interconnec
tion network ports have a data input/output con
nections to the bus which also acts as an 'OR'
gate. Due to the circuit limitation, a bus can

have a restricted number of data connections, so
as N increases the ONOR Scheme becomes less at
tractive. It may be 'interesting to note that the
use of TRI-STATE logic [4] in the output stages
allows at least 128 outputs to be connected to a
single bus. Additionally a fong bus is needed to
connect all the PE's thus necessitating the use
of repeaters. Here again, the QUAD-DRIVER of the
TRI-STATE logic family can drive up to 1000 feet
of bus line. Thus with the judicious choice of
logic and other design parameters, the above prob-
1 ems can be overcome without ilavi ng to add addi
tional hardware. For large values of N, however,
the length of the bus can significantly affect the
speed of the operation of the whole system. In ·
such situations the ROIN Scheme seems preferable.

(6) The ON Schemes are easily adaptable to
other interconnection networks while a redesign of
the system .is required for the ROIN Scheme because
of the rigid .nature of the extra interconnections.

(7) The ON Schemes are easily extens i b 1 e to
the case of double (multiple) failures while the
ex is not that obvious in case of the ROIN
Scheme. ·

In the light of the above comparison, our
conclusion is that the ON Schemes are more general
and easier to implement. The major advantage of
the ROIN Scheme is its speed. It is noticed that
in general, at the expense of small amount of ad
ditional hardware, tolerance for single PE fail•
ures is achieved. Tolerance for multiple PE fail
ures is also attainable but more detailed and
thorough .investigation is required into the cost
effectiveness aspects of the problem to determine
the optimum amount of tolerance for any given
system.

Tables

PE's Extra Interconnections to

= 0, 1 i+2, i+7. i+9, 64
2 s s' 6 i±2, i-7, i+9

=· 7, 8 i±2, i+9, 64
9 s i s 54 i±2, i±9

= 55, 56 i±2, i-9, 64
57 s i s 61 i±2, i-9, i+7

= 62, 63 i-2, i-9, i+7, 64

Additionally PE 64 is connected to 0, 1, 7, 8, 55,
56, 62, 63.

Table 2.1 Extra Interconnections for the ROIN
Scheme as Applied to the ILLIAC IV

128

+] Rooting

~ i· Source.
0 1 i>4

to 62 0 64
x+l i-2

63 64 62

-1 Routing

~ i Source
0 63 64

to 62 x-1 i+2
63 64

63 62 64

+8 Routing

~ i Source
0 8 64

to 7 0 to .. x-1 i-7
8 64

9 to x+8 i-9
8 to 56 0 to 6 i-7

7 64
x+l to x+8 i-9

57 to 62 x-56. to 6 i-7
7 64

x+l to 64 i-9
63 7 64

64 i-9

-8 Routing

~ i. Source
0 56 64

to 7 Oto x-1 i+9
56 64

57 to x+56 i+7
8 to 56 x-8 to x-1 i+9

56 '.64
57 to 64 i+7

57 to 62 x-8 to 54 i+9
55 i+9

x+l to 64 i+7
63 55 64

64 i+7

Tab le Ll Reconfiguration Algorithm for the ROIN
Scheme

+8 Routing

.i
O to 7
8 to 55

56 to 63
-8 Routing

i

O to 7
8 to 55

56 to 63

Table 2.3

Received Signal
JI,+ ft+ d
d + r
d + r

Received Signal

Source
i-7
i-9
i-9

JI, + u i+9
JI, + u i+9
r + fb + u, i+7

The Relationship Between the Affected
PE's and the Received Signals for the
ROIN Scheme

At RPE Rnr Rr RIF

10-4

10-3
10-2

10-1
{a)

R

0.9
0.99
(b)

.99990 .99362

.99900 .93800

.99004 .52729

.90484 l .6615x10-3

Hr
8.245x10-3
2.303x10-3

.99998 308

.99800 31. l

.86308 3.45
l. l78lxl0-2 1.01

Hnr MTI
l .646x10-3 5
l .560xl0-4 14. 7

Table 4.1 (a) Reliability Improvement for the
ILLIAC IV System

(b) Mission Time Improvement for the
ILLIAC IV System

-0
Q)
.µ

Q) u
E w
Q) .._

.<:: .._
u rt!

(/)
Q)

Z.<::
..... .µ
0
IX.µ

c:
c: Q)

•.- VI

><I~
c..

.._ Q)

0 I-

Q) VI
I-
::S VI

..... cu
•.-.<::
rt!.µ

LL. c:
Q)

Q) I-
.<::rt!
.µ c..
>, Q)

..Q .<::
.µ

-c
Q) Q)
+'-C
U•.-
Q) VI .._ c: .._
~

VI
VI -- LU

LU Q..
a..

Q) VI
cu.<:: -

.<:: I- LU
I- a_

N
cu
I-
::s
en 0

LL.
2

References

[l] G.H. Barnes, "The ILLIAC IV Computer," IEEE
Transactions on Computers, Vol. C-17, August
1968, pp. 746-757.

[2]

[3]

A. Avizienis, "Design of Fault-Tolerant
Computers," A,FIPS Conference Proceedings,
Vol. 31, Thompson Books, Washington D.C.,
1967, pp. 733-743.

A. Avizienis, "Architecture of Fault-Tolerant
Computing Systems," International Symposium
on Fault-Tolerant Computing, Paris, 1975,
pp. 3-16.

[4] "Characteristics and Applications of TRI
STATE IC's," National Semiconductor Corpora
tion, 1972.

[5] I. Baqai, "Reliability and Length of Inter
connection in ILLIAC IV Type Array Proces
sors," Master's Thesis, Computer Science
Department, UCLA, 1976.

[6] T. Lang, and H.S. Stone, "A Shuffle-Exchange
Network with Simplified Control," IEEE
Transactions on Computers, Vol. C-~
January 1976, pp. 55-65.

3 4 5 6

129

0

64

c

63

(a)

l!lterconnection

Network

r--·-·--~ .,...--.,.....,
I . I

,......... __ , 111 _1 I

(b)

0

64

I
I
t
I
I
I
I
I

~f~xtend:i l;:;,e;. _J

connection Network
Original Interconnection
Network Ports

Decoupling
Network

Interconnection
Network

1.

Figure 2.2 {a) Non-rediindant ILLIAC IV System
(b) Redundant ILLIAC IV System Using

the ROIN Reconfiguration Scheme
{c) Redundant ILLIAC IV System Using

the DN Reconfiguration Scheme

130

Control
Signals

(+S)C (-1) From
(-8) (+l C Central.

Data Coming ___ ...,
From
Other
PE'S ·

C Control
Unit

The Data
Delivered
to the
PE

Label af the failed
PE '

Figure.2.3 Selector Block Diagram for
the ROIN Scheme

U4-----.,-----

i------ r

I

d ------------''- - - - - -+ d

fb

Figure 2.4 Transmission of the Signals by the
Failed PE to the Affected PE's for
. the ROIN Scheme

~

:3~ Physical
·o;~ Labels
3.'.3 for PE's

0

62

63

64 ~Spare

Decoupling
Network

(a)

(b)

Ports

Inter
connection

Network

131

(c)

Figure 2.5 (a) The Role of a Decoupling Network
in a Fault-Free Situation

(b) The Routing of the Data Through
the Decoupling Network for DNIR
Scheme

(c) The Replacement of the Failed PE
in the DNDR Scheme

n1 Extra Interconnections

PE '1'

n1 Extra Interconnections

Figure 3.1 Schematic Representation of the
General ROIN Scheme

COMPUTER ARCHITECTURES FOR ADVANCED
AIR TRAFFIC CONTROL APPLICATIONS

Andres Zellweger
Advanced Concepts Staff

Federal Aviation Administration
Washington, D. C. 20591

Abstract This paper investigates multi-
mini (or micro) processor configurations
suitable for advanced highly reliable ATC
applications. The stage is set by a
characterization of the type of processing
that must be performed and by a descrip
tion of the design constraints imposed by
the Federal Aviation Administration (FAA)
operations and maintenance environment.
Multiprocessor designs are developed
against this background at the processor
memory level. Two specific examples, one
a proposed design of an airborne computer
for a future conflict avoidance system
and the other a prototype surveillance
site processor to be built by Texas
Instruments as part of a recently awarded
contract, will be alluded to throughout
the discussion.

rntroduction

Air Traffic Control (ATC) data processing
requires highly reliable computers capable
of both real-time radar data processing
and lower priority processing of aircraft
track and flight data. Output is normally
directed to a dynamic graphic Plan View
Display (PVD) or, in some advanced systems,
to a small cockpit display for use by air
traffic controllers and pilots respectively.
Today this is done with suitably adapted
early third generation medium-to-large
scale general purpose multiprocessors. (1)
Current technology trends towards fast
microprocessors and low cost mini-proc
essors offer a variety of new approaches
to ATC data processing that promise higher
reliability and greater economy in hard
ware, software, and maintenance cost.

This paper investigates multi-mini (or
micro) processor configurations .suitable
for advanced, highly reliable ATC appli
cations. The stage is set by a charac
terization of the type of processing that
must be performed and by a desc~iption of
the design constraints imposed by the
Federal Aviation Administration (FAA)
operations ·and maintenance environment.
Multiprocessor design considerations are
developed against this background at the
processor-memory ,level •. Two specific
examples, one a proposed design of an air
borne computer for a future conflict avoid
ance system and the other a prototype
surveillance site processor to be built

132

by Texas Instruments (TI) as part of a
recently awarded contract, will be
alluded to throughout the discussion.

Processing Characterization

The ATC computers addressed in this paper
have three functions: control of a beacon
interrogation system; processing of beacon
radar data to track aircraft; and detection
and resolution of conflicts (i.e., colli
sion threats) between aircraft. In the
case of airborne systems the computer
drives a cockpit display to present rela
tive position and altitude information
about nearby aircraft and maneuver commands
for the resolution of conflicts. In the
case of a ground-based system similar
information is transmitted to the aircraft
via the beacon interrogation system for
display in the cockpit. This form of
ground-based, automated collision avoid
ance is known as Intermittent Positive
Control (IPC). A discrete address bea-
con system (DABS) that permits message
transmission to and from individually
selected aircraft is assumed in a ground
based system. Detailed descriptions of
the DABS, IPC, and airborne collision
avoidance systems can be found in (2),
(3) and (4). The current terminal
(ARTS III) and enroute (NAS) ATC computers
perform quite similar radar data processing
functions. Conflict detection logic is
operational in the NAS system and under
development for ARTS III. The major
difference is that in the current systems
a controller is in the loop between the
computer and the pilot. The primary out
put device of the NAS and ARTS III systems
is a dynamic graphics display that shows
the position, altitude, identification,
and course of all controlled aircraft to
the controller~ He determines conflict
resolution maneuvers and has the respon
sibility for commands, sent over VHF
radio, to the pilot. Clearly, reli
ability requirements in the advanced
system that automatically generate and
transmit commands to· an aircraft are
much more stringent. Equally ,important is
the ability to isolate or det~ct both
permanent and transient errors soon enough
to prevent data contamination which might
result in erroneous aircraft commands.

The high reliability of the experimental
ground-based system described here will
become a requirement for nearly all ATC
computers in the next two decades. Today's
ATC system, which employs over 25,000 air
traffic controllers, is overly labor
intensive and, with the current traffic
control procedures, will become even more
so in the future. FAA plans call for
increased automation of controller functions
with a human role change from controller
of every aircraft to ATC manager who
handles exceptions while the computer
takes care of routine ATC commands. Plac
ing this increased responsibility on ATC
computers implies that the reliability
questions addressed in this paper have a
much broader application than the two
examples cited and are critical to the
future safety of air traffic.

The most notable characteristic of the
tasks enumerated at the beginning of this
section is that they represent a data
driven application. That is, the entire
ATC process can be broken into a number of
small tasks, each of which takes an entry
from a list, processes the entry inde
pently of other tasks, and updates another
list (see Fig. 1). As an example, consider
the following characterization of radar
surveillance processing:

o A list of digitized reply information
from an aircraft is given to the computer
by the radar beacon.

o Each reply is processed by an information
verification task. The usual output of
this task is an update to a list of
tentative targets. If sufficient con
fidence in a tentative target exists,
the task creates an entry in a list of
declared targets.

o Another task takes individual declared
targets and correlates them to aircraft
tracks.

o A final task projects the aircraft track
on the basis of past history to deter
mine where the aircraft will be on the
next rotation of the antenna.

0 N
LIST

TASK B

)
FIGURE 2: PROBLEM CHARACTERIZATION -

ATC PROCESSING IS DATA DRIVEN

133

This is obviously an oversimplification
and not the case for all aspects of the
ATC algorithms, but experience and analysis
have shown that most tasks and their data
requirements do fit into this mold. Fur
thermore, it is generally possible to
refine tasks to small modules (a few
hundred instructions) when required by a
specific implementation scheme. '

Other important considerations are the
real-time characteristics of ATC processing
and the related life expectancy of the
dynamic data in the system. Radar data
processing is driven by two time periods,
the interrogation period and the antenna
rotation period. In the case of the
DABS/IPC system, the antenna rotates once
every four seconds and has a pulse repe
tition frequency (PRF) of 400 (i.e., an
interrogation period of 2500 µsec). In
this system aircraft are interrogated
individually and thus schedules must be
set up to inerrogate several ·aircraft
during each interrogation period. While
preliminary schedules are set up before
the rotating antenna beam (about 2 1/2-4
degrees in width) gets near an aircraft,
final scheduling cannot be performed until
the aircraft actually falls within the
beam. If, for example, by some preliminary
processing of aircraft replies it is
determined that the response from a par
ticular aircraft was not received or was
garbled (unintelligible), then the computer
must schedule a reinterrogation of the air
craft before the rotating beam passes com
pletely by the aircraft.

While response times on the order of mill
seconds are necessary for these beacon
channel management functions, the response
time for other functions in the DABS system
are driven by the antenna rotation rate.
Once a target is detected and a message .
from the corresponding aircraft is received,
the system cannot communicate with the air
craft again for 4 seconds (i.e., until the
aircraft falls within the beam again).
During this time the aircraft track can
be projected, conflicts with other air
craft determined, and an appropriate
message for the next interrogation of that
aircraft prepared. (An interrogation from
the ground contains the message to the
aircraft and the aircraft reply contains
the necessary response.) Thus, the system
must be able to perform the necessary
tasks within 2 to 4 seconds after the
arrival of the radar data.

The data in the DABS/IPC system consists
of static files that represent things
like the geography of the region surround
ing the sensor and adjacent sensor con
figurations and dynamic files that contain
interrogation schedules, aircraft track
information~ conflict list, etc. The

static files are, for practical purposes,
never chahged and thus have an infinite
lifespan. The dynamic file entries should
be updated at least every four seconds on
the basis of new aircraft state informa
tion. Copies that are more than 20 to 30
seconds old are no longer of interest since
the relative aircraft geometry cannot be
projected that far with confidence. Data
in the dynamic files can therefore be said
to have lifespan of under 30 seconds.
These considerations are important because
they have a strong influence on the memory
reliability schemes for a highly reliable
system.

Design Requirements

The design of a computer system for an ATC
application is constrained by a number of
factors relating to system reliability,
software flexibility, system growth, and
maintenance. This section deals specifi
cally with the particular design require
ments of an FAA operated, ground-based
system like the DABS/IPC site processor
but most of the co.nstraints also apply to
an airborne system. The following list
summarizes the constraints: ·

provide full service at all times by back
ing up an entire failed sensor with adja~
cent sensors. High software reliability
is not a specific goal in the prototype
system although a top-do'Wn, structured
programming design approach is being used
and impact on software complexity was one
of the hardware system design criteria.

In the past, the approach to reliability
of this order (most notably in aerospace
applications) has been to use specifically
designed processors (e.g., the JPL STAR
computer (5), usually constructed of com•
ponents with higher reliability than
standard commercial components. Initial
system cost constraints and FAA maintenance
policies favor the use of off-the-shelf
CPUs and memories configured to achieve
the necessary reliability. The electronic
component state-of-the-art and mini-micro
processor and memory costs make this a
technically viable and cost-effective
alternative.

In the case of the DABS/IPC site processor
the FAA expects to install from 50 to 200
systems. These vary in peak processing
requirements and in site adaptation param
eters. The ideal system architecture

o Very high system reliability (20,000 MTBF) would permit deployment of computer systems
o Off-the-shelf CPUs, memories, etc. of varying sizes, all capable of running
o Component standardization to facilitate the same set of software. Only one soft-

maintenance ware maintenance facility and one hardware
o Low hardware acquisition cost maintenance training facility should be
o System architecture to minimize software needed. Stores for maintenance should be

complexity handled centrally. The DABS/IPC system
o Hardware and software modularity to permit: is a part of the overall FAA.ATC system

addition and modification of functions and as such must be able to interface
at minimal cost with a variety of computer systems and

varying system size with site must be sufficiently flexible to take on
dependent maximum load new functions (or give up old functions)

system evolution to keep pace with as other parts of the system change. The
technology lifespan of DABS/IPC is projected to be

The primary system constraints stem from
the DABS/IPC 20,000 meantime between
failures (MTBF) requirement. This number
refers to failures from which the system
cannot, through automatic switchover to
an appropriate redundant element, recover
within 10 seconds and without loss oi
data. A two hour mean·-time-to-repair
(MTTR) of a failed element that has been
replaced by a redundant element is assumed.
The 20,000 hour figure applies to a system
consisting of all sensor electronics and
power supplies (antenna control, receiver,
transmitter, computer, and modems for
intersite communication). In the case of
the TI prototype design this requirement
translates to a computer MTBF of over
200,000 hours.

The DABS/IPC system does not require fail
soft operation (i.e., degraded operation
with a partially operational system) since
the DABS/IPC network philosophy is to

134

well over 20 years and during tha.t period
the hardware will be upgraded to r.eflect
advances in technology. This should be
achieved with minimal effect on the soft
ware and without impact on continuous
system operation. Finally, the FAA has
expended considerable amounts of money for
software development and maintenance in
the past. It is envisioned that some of
the results of the work of the late 60's
and early 70' s in the reliable, large
scale software system development area
will be applied to new ATC systems to
safeguard against the recurrence of this
state of affairs. The software should be
designed to make modifications and transi
tion to a new generation of hardware as
painless as possible. This implies
modularization and separation of the ATC
related algorithms from architecture
dependent code.

Example: Ground-Based System

Hardware GLOBAL

To facilitate the discussion of design
considerations a description of the pre
viously cited DABS/IPC example is in order.
The DABS/IPC surveillance site processor
being built by Texas Instruments consists
of 20 identical DABS computers, arranged
in quadrant$!groups of four) and connected
by TILINES laJ to two global memories of
128K words each (Figs. 2 and 3). The
TILINE is a multi-user, asynchronous
parallel bus capable of approximately
3 million 16-bit transfers/second. TILINES
can be connected with TILINE couplers. A
DABS computer is made up of two TI 990/10
CPUs, a voter, and an BK-word 300 nsec
local memory (Fig. 4). The TI 990/10 is
a 3 µsec, 16-bit mini that uses register
files (with 16 general purpose registers)
in the local memory. Both local and global
memories are single error correcting and
double error detecting. The global mem
ories are made up of 32K word modules,
each with its own power supply. A global
memory access holds the global TILINE for
approximately 900 nsec but, because of
TILINE coupler delays effective read
and write times are 1200 nsec. Addressing
is at the byte level. A memory map option
gives an address space of 1024K words.
Memory addresses are generated with a bias
register (set up in software) and an off
set from that bias register.

Software

Task are dedicated to computers in the
DABS system. The programs and task
specific data for each task are in the
local memory with a copy of all programs
in the global memory. Several tasks are
usually put in one computer with task
distribution done to balance processor
load and local memory requirements. Task
communication is done through global
memory tables (files) with coordination
achieved through semaphores. The rule
that tasks may only communicate via the
global memory is strictly enforced t.o
permit task reallocation without impact
on software should requirements change.
If one processor is not powerful enough
to handle a task this scheme makes it
possible to set up two identical tasks
in separate processors operating on the
same input file.· Although the DABS com
puters are ordered in priority due to
physical location on TILINES, it is
expected that this priority will not
affect operation of the various tasks when
they make global memory references. There
are two reasons for this. First, the
DABS computer is slow compared to global

(a) Trademark of Texas Instruments, Inc.

us

[

MEMORY

HUME A

QUADPJ\tff QUADRANT . . .
I v .J

TILlllE B

GLOB/IL
MEflORY

FIGURE 2 - DABS/IPC ARCHITECTURE OVERVIEW

QUADRANT TILINE

I J I I
DABS DABS DABS DABS

COMPUTER CC»IPUTER COMPUTER COMPUTER

FIGURE 3 - DABS/IPC QUADRANT

CPU

VOTER

LOCAL
HEMORY

CSK WORDS>

CPU = TI 990/10

CPU

MEMORY • 300 nsec cycle time
single error correcting

FIGURE 4 DABS COMPUTER

TfrnJE

J

memory access time. Second, it is esti
mated that the ratio of local to global
memory references is between 5-1 and 10-1.

The major portion of the DABS computer
executive consists of simple task sched
ulers in each of the computers. From a
philosophical viewpoint it is eminently
reasonable to place the burden of deciding
whether or not processing of a table entry
is to be done on the individual tasks
rather than on a global executive. The
dedicated task scheme with semap~ore
coordination in a multi-mini is estimated
to eliminate 75% of the executive program
that would be needed for this type of
application in a large-scale computer. A
large part of this savings is due to the
fact that in a system composed of many
cheap micros (or minis) system cost is
low enough so that one no longer has to
worry about keeping the machine busy.

Perhaps the most difficult portion of the
software design far a dedicated task,
multi-mini system is the scheme for recovery
from computer failures. Since temporary
data in the local memory of a failed com
puter cannot be retrieved, the task that
was interrupted must be restarted. This
implies that some cleanup of global files
must be performed. A semaphore scheme
should be able to handle this problem, but
it must be carefully designed to minimize
the recovery software, particularly if
there are several identical tasks. It is
not anticipated that computer recovery for
the DABS system will be more difficult
than a checkpoint scheme for a large-
scale computer.

Error Detection and Correction

CPU error detection is done on a clock-by
clock basis. The two CPUs in a computer
execute identical instructions and the
voter compares the output of each operation.
If there is disagreement the computer is
declared faulty and a spare, which may
reside in a different quadrant, is switched
in. When a computer failure occurs, a
signal is sent to all computers and each
one determines whether or not it is a
spare. The first one to decide that is a
spare goes into the global memory, looks
in a table to decide which tasks had been
assigned to the failed computer, loads the
program for these tasks into its local
memory, performs the previously described
cleanup of pointers and begins execution.

Errors in the RAM portion of the memory
are detected by the use of a modified
Hamming code. If possible the error is
corrected. An uncorrectable error in a
local memory results in declaration of
a computer failure. When an uncorrectable
global memory error occurs, the appropriate

32K word memory module is declared faulty
and a backup module is brought in. If the
failed module contains static data, bias
register tables are modified to switch all
references to the backup modul.e that con
tains a duplicate copy of the static data.
If the failed module contains dynamic
data the recovery depends on the form and
method of keeping backup data.

Several alternatives for keeping backup
data a~e being investigated at the time
of this writing. One might modify the
control logic so that a write command

•puts data into both the primary and backup
module while a read command only reads .
from the primary module. The changeover
to the backup module could then be done
totally by the hardware since the address
space, and thus the bias r.egister assign
ment for individual files, does not
change. A second alternative would be
to follow every write into global memory
with a second write into a backup module.
Another possibility would be to take
periodic snapshops of dynamic files and,
if a primary module fails, continue proc
essing with slightly aged data. Finally,
one could maintain, by extra writing,
sufficient up-to-date backup information
to recreate the most critical dynamic
files. All possibilities have serious
drawbacks and thus compromise one or .
more of the design requirements. Special
hardware is needed in one, others result
in possible global TILINE contention
problems or increased complexity in
operational and error recovery software.

The preferred solution to global memory
reliability for handling the DABS/IPC
dynamic file preservation requiremer_it is
to use an error correcting memory with
high enough reliability to meet the
specified MTBF without the need for
redundant modules. The critical element
in aehieving such reliability is the
control logic in the memory module. In
a reliability calculation for the DABS/IPC
memory this contributes approximately
100 errors/106 hours while the RAM and
power supplies (if duplexed) contribute
less than 1 error/106 hours. The impact
of this error rate is to drop the DABS/
IPC system MTBF from 20,000 to 3,000
hours if dynamic memory is not backed up.
It is not clear just how much the control
logic reliability can be improved and
thus whether or not off-the-shelf
memories with the re.quisite reliability
will become available. This and the dual
wri te single read memory described earlier
will ~e investigaged. No matter which
design is selected 'for a produetion system,
all global memory modules will have to be
the same for software flexibility and
maintenance purposes.

136

There are several active components in
the system that contribute errors which
are not detected by the voting logic or
the Hamming codes. The most notable are
the control elements in the data paths
and the memory control logic. The number
of errors contributed by these elements
is not large - in the DABS computer (2
CPUs, voter, local memory) for example,
less than 2 percent of the errors remain
undetected or, in other terms, the MTBF
for the logic that may cause undetected
errors is 180,000 hours. Yet, means
must be provided to detect the errors,
not so much for reliability purposes as
to prevent data contamination. Three
techniques are used: parity along data
paths, periodic reads and writes into
global memory, and periodic processing
of known radar inputs.

Transient Errors

Since data integrity is so important in
an automated ATC system, it is essential
that protection be provided against tran
sient errors. The ratio of transient to
permanent errors for the particular com
ponents used is not known and, in general,
data on transient rates is rare and well
guarded by manufacturers. This author
suspects that for the technology used in
the DABS/IPC system 80-95% of all memory
and processor errors are transients.
Thus, the hardware clock-by-clock checks
(error detecting memory and voting CPUs)
are an absolute necessity. An error
detection scheme that relies heavily on
software checks would be totally unaccept
able. The periodic checks cited· above do
not protect against transients but, in the
DABS/IPC system, are included for complete
ness to detect errors in that small portion
of the logic that is not protected by other,
transient detecting mechanisms. The abil
ity to detect errors as they occur has
the additional advantage of making the
error correcting software much simpler.

The high ratio of transients to hard
failures must be considered in designing
an error recovery scheme. For detectable
memory error, the normal error correcting
mechanisms take care of receovery. Pro
visions must be made to determine whether
or not a memory error was transient for
maintenance purposes~ If monthly mainte
nance is assumed, it can be predicted
that all modules have had at least one
transient during the month and, without
knowledge of which errors are hard, all
memory boards (two per module in the DABS/
IPC system) would hav;e to be repla.ced.
For CPU errors simple computer replacement
whenever a computation disa·greement occurs
may not be appropriate if the ratio of
transients to hard errors turns out to be
too high. It is predicted that a voter in
a computer will detect a hard error every

1:p

5400 hours. In a system with 15 active
computers, a transient to hard error ratio
of 10-1 means that a backup computer would
have to be brought in almost daily. To
overcome this unacceptably high switch
over rate an instruction retry capability
to isolate hard err9rs would be required.
The DABS computer does not currently have
such a capability.

Example: Airborne Computer

The design of an airborne computer for
collision avoidance is at a much earlier
stage of design than the DABS/IPC system
hence a discussion of design details is
not possible. The operational constraints
for an airborne system are different enough
from DABS/IPC to impact the overall system
design and thus a brief discussion of
constraints and resulting architectural
considerations is included here.

Reliability is of concern in the airborne
system, but the driving force is low
system cost. The number of DABS/IPC in
sites is in the lO's or lOO's; the number
of airborne systems, even if installed
only by commercial air carriers, is in
the lOOO's. All systems will be identical
and thus the size flexibility so important
to DABS/IPC is of little concern here.

The proposed system again consist of a
number of dedicated task processors each
with a local memory and connected to a
global memory. Since reliability and·
data integrity is not as important as low
cost, CPUs will not be duplexed and }Toted.
Cost consideration drive one toward read
only memories (ROMs) for program,,stores
but reliability requirements may force ·
the designer to use identical computers
with local RAMs and one or more backup
computers. Error correcting memory . ·
should be used for all RAMs in the system.
Software considerations are quite similar
to those for DABS/IPC and the sam~ benefits
of asynchronous, dedicated task design
can be realized.

Discussion

Meeting Design Criteria

The DABS/IPC architecture meets most of
the design criteria set forth above.
o The specified reliability and data

integrity is achieved with the clock
by-clock CPU checks and the error
correcting memory.

o While a design that requires no data
duplication or memory error recovery
software is preferred~ the current
commercial memories do not permit
this. On~ of the goals of the current

DABS/lPC development program is to
arrive at a compromise memory recovery
design.·

o Executive software is simple since there
is no explicit interprocessor communica
tion and no monitor to assign tasks to

·processors and keep the computer busy.

o Individual tasks can be changed, re
allocated, or split betweeri several
processors with no impact on applica
tions software. Thus, the software
is flexible enough to be used in
systems of differing maximum loads
and to 'evolve as functions change or
are added.

o The overall system architecture is
amenable to upgrading since the TI 990
series is an upward (or downward)
compatible family of micro/minis. Use
of such a family (several are now on
the market) is ~xpected to make it
easier to keep pace with technology
since compatible newer CPUs and
memories can be plugged into the
system as the old ones become outdated.

o Maintenance is facilitated through use
of commercial CPUs and global memory
boards. The local memory and voter
are not standard products. Maintenance
software will in most cases be able to
pinpoint a faulty board which can then
be readily replaced and sent to a
central facility for repair.

o Initial system cost is low because
standard commercial minicomputer
building blocks are used almost
exclusively.

Other Architectural Features
A number of algorithms in ATC radar data
processing and in IPC lend themselves to
special purpose processors or to micro
code implementation. In surveillance
processing, the most time consuming
algorithms are limited in performance
by memory access rates. The use of a
special purpose processor to overcome
this limitation is being investigated.
In IPC, a heavy CPU load is imposed by
the coarse screen algorithm that determines
which aircraft are near o.ne another
(several DABS computers are dedicated to
coarse screen). It has been shown that
by implementing only a few parts of the
algorithm in mictocode the CPU require
ment could be decreased by over 50%.

Both approaches to throughput improvement
have drawbacks and must therefore be
subject to careful .tradeoff analyses. A
special purpose processor violates the
standardization requirements and will not
be as amenable to a cost-conscious high-

138

reliability implementation. Using
special microcode for some of the
algorithms would, in the current DABS/IPC
design, require that all processors have
dynamically writable microprogram memories.
This adds a significant amount to the cost
of a system that employs a dual CPU voting
scheme. These and other variations of
the current .DABS/I PC architecture will be
studied in terms of applicability to a
production version of the DABS/IPC system
and to other future highly reliable ATC
computers.

Comparison with Other Multiprocessors
Many mini or micro multiprocessors have
been proposed in the past and some have
been successfully implemented. Two
approaches that have received wide
publicity are PLURIBUS (6) and the
processor-switch-memory architectures of
C.mmp (7) and the Burroughs D-machine (8).
A brief comparison of these with the DABS/
!PC system will be presented in light of
the highly-reliable task oriented process
ing of ATC applications.

PLURIBUS is a more elegant and more com
plete (in a reliability sense) system than
DABS/lPC .. It also performs a much simpler
application (all tasks are independent)
and is part of an overall network that is
much more forgiving than the DABS/lPC
environment. PLURIBUS has a single task
queue feeding all processors which nor
mally have the same code in their local
memories. (Both systems use local mem
ories to reduce internal bandwidth require
ments.) DABS/IPC tasks are much too
diverse to use this type of arrangement,
thus the tasks must be dedicated to
identical processors. PLURIBUS can live
in its network in a degraded mode of
operation since that will only be reflected
in a lower message throughput rate - DABS/
!PC cannot perform full aircraft separation
assurance unless all resources are. avail
able thus the system is designed to operate
at full capacity at all times (unless of
course the whole system breaks). PLURIBUS
detects the effects of both hard and
transient .errors (and does so extremely
well) with parity, checksums, timers, etc.,
working as part of a Concensus system.
In DABS/IPC such a scheme would not work
because the complexity of the overall
algorithms would make error recovery too
difficult if errors were allowed, as they
are in PLURIBUS, to propagate into memory.
On the whole, many of the architectural
features of the two systems (minis with
local memories, coupled bus data paths,
global memories) are the same. The
approaches to task allocation and to
error detection and correction are differ
ent to .meet different system requirements.

The two processor-switch-memory systems,
unlike PLURIBUS and the DABS/IPC system,
were not designed for specific applications.
In particular, high reliability was not
the primary design goal. Modifying these
systems to achieve high reliability is
more difficult than it would be to modify
a bus oriented system. Although bus
couplers contain active components, the
expected failure rates are much lower than
for a large switch. This means that a
more powerful detection scheme than simple
parity checks will be needed. Further
more, the switch concept does not lend
itself as readily to size flexibility as
the bus-oriented processor-memory connec
tion system. The Burroughs D-machine has
no local memory (C.mmp does) and thus
memory contention becomes a problem for
real-time systems with fast response
requirements. The D-machine does offer
microprogramming (at two levels) which
could achieve dramatic throughput improve
ments, but unless one is willing to
include a large microstore, dynamic task
allocation (a plus for the D-machine)
would be lost through microprogram
tailoring.

Conclusion

It is this author's opinion that a
highly reliable system should be designed
from high level elements for a specific
application, as was done in the DABS/IPC
system and, to a lesser exten~ in PLURIBUS
than to modify an existing, more general
system, for high reliability. The mini
micro technology of the mid-70's is at a
point where off-the-shelf processors,
memories, and buses can be configured
into very reliable systems at a reasonable
cost and with few modifications or one
of-a-kind components.

Few high-reliability applications repre
sent a sufficient force in today's
electronic marketplace to have any
effect on technology's course of develop
ment. To take advantage of low-cost
elements, the designers of highly reliable
systems must ride on the coattails of the
whole industry and use the approach sug
gested above. This will lead not only to
systems with low initial cost and low
maintenance cost, but also to systems
with an extended lifespan. As the power
of microprocessors increases and as
memories become faster and cheaper, these
can readily replace the CPUs and memories
in an existing system if the mini-micro
family is properly selected.

This paper has attempted to motivate,
through the use of examples, some of the
desirable design features for a reliable
ATC radar data processing computer to be

139

used within the operational constraints
of the FAA. It has been suggested that
error detection be achieved through
clock-by-clock checks (voting CPUs and
error-correcting memories) and that the
system architecture should be based on
coupled-bus data paths. Some open ques
tions have been raised and other
approaches briefly examined for
applicability to the Air Traffic Control
problem.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

References

"A Application-Oriented Multi
processing System," IBM Systems
Journal, Vol. 6, No. 2, 1967.

DABS: A System Description,
Report FAA-RD-74-189, U.S.
Department of Transportation,
November 1974.

A Description of the Intermittent
Positive Control Concept, Report
FAA-EM-74-1, O.s. Department of
Transportation, February 1974.

An Active Beacon-Based Collision
Avoidance System Concept (BCAS) ,
Report FAA-EM-75-7, U.S. Department
of Transportation, October 1975.

"The STAR (Self-Testing-And-Repairing)
Computer: An Investigation of the
Theory and Practice of Fault-
Tolerant Computer Design," IEEE 1971
Int. Symp. Smyposium on Fault
Comput1ng, March 1971.

Ornstein, S.M., et.al, "Pluribus -
A Reliable Multiprocessor,"
AFIPS Conference Proceedings,
Vol. 44, 1975, pp 551-559.

Bell, C.G. and W.A. Wulf, "C.mmp -
A Multi-Mini-Processor," AFIPS
Conference Proceedings, Vor:-41.
1972, pp 765-778.

Technical Summary of the·Interpreter
Based Shstem, Report TR 71-1,
Burroug s Corp., 1971.

DISTRIBUTED PROCESSING FOR SIGNAL PROCESSOR USING
THE BUILDING BLOCK SIGNAL PROCESSOR

Frank P. Hiner III
Litton Data Systems Division
Van Nuys, California 91409

Abstract

Requirements exist for the techniques and means wherein
complex programmable signal processors may be constructed.
Single computers have not near enough speed to implement
signal processors, but a distributed processor approach has
been determined and is being implemented.

During the last several years, the Building Block Signal
Processor (BBSP) has been evolved as the processing element
for a distributed processor approach to the implementation
of radar and IFF signal processors. The BBSP is a high
speed processor, constructed of off-the-shelf MSI and LSI
and contained completely on a single circuit board.

The Remote Radar Tracking Station (RRTS) is a cur
rent example of a complex signal processing task mechanized
with a set of BBSPs. The RRTS, though physically quite
small, performs the automatic detection and tracking of
aircraft from radar and IFF returns.

Development of the Building Block Signal Processor

The development of special purpose processors required
for modern radar and IFF equipments has historically been
a painful task necessitating the design and development of
several smaller units of specialized digital equipment. These
units are then integrated together to perform the total digital
tasks. In eacli case, a virtually new design is required, and
a new crew of engineers labors to produce the desired
equipment.

The result is often a complex design which,

a. Requires arduous checkout
b. Is understood chiefly by its original designer
c. Is diffictilt to maintain
d. Is difficult to modify (often impossible)

Recognizing that the complete signal processor is made
up of a set of functions coordinating together to perform
some task (e.g., the detection of radar targets), it was a
natural step to determine if a programmable processor could
be evolved that would be able to implement each of the
separate functions. From this position, it was one more
step to seeing that some of these functions could be parti
tioned into subfunctions. It certainly seemed reasonable
that an elementary processor could be designed that could
implement the subfunctions, or major functions in many
cases. A set of such processors then acting in coordination
would cooperate to perform the total job.

During the design of the processing element, the follow
ing precepts and considerations guided our thinking:

a. The machine must be the processing element used
to solve our signal processing design problems.
Thus, during the design phase, intermediate designs
were tested on paper to determine if the trial
architectures were efficient at the problems we
felt were most likely.

140

b. We desired to take advantage, to the greatest extent,
of the extant MSI and LSI that were off-the-shelf
and second sourced. Therefore, our architectures
were influenced by the real, and soon to be real
worlq.

c. The instruction memory and data memory were to
be separate with the instructions stored in a Read
Only Memory (practically speaking, this becomes
PROMs).

d. The machine would use a single clock and would
operate synchronously .with all other like machines.

e. Recognizing that it is truly impossible to cover all
jobs with a single design, consideration was given to
the requirement to interface special purpose hard
ware to the processor to solve certain complex
tasks. For example, if a very high speed FFT is
required, then a high speed butterfly might be
designed that would be controlled by a BBSP.

f. The machine was not to be in any way a general
purpose computer and hence complex 1/0 struc
tures and multi-level interrupts would not be
required.

The resulting design effort produced the Building Block
Signal Processor (BBSP) in the spring of 1972. The machine
was first incorporated into a delivered equipment in the late
fall of that year. In the next several years, several versions
of the BBSP were produced. During this time, the program
ming language we had produced (BUBAL) also evolved.

Two significant hardware changes occurred in these
years. First, we added a return address stack, allowing
nested subroutines and interrupts. Second, printed circuit
board technology had developed to the point where multi
layer printed circuits for very dense boards were possible
allowing us to package a complete 12 bit BBSP on a single
8" x 8" circuit board. A system could now be designed as
a distributed processor. utilizing the BBSP as the processing
element with automatic maintenance to the single card level
easily attainable. For the designer, the single card machine
meant that if another function had to be added to the
machine, or the implementation of a present function
became too difficult, he could simply add another BBSP
to the system with small impact on system size (take two,
they're small).

Description of the 'BBSP

The 12 bit BBSP (see Figures 1 and 2) is completely
contained on a single 8" x 8" standard logic board and is
constructed of off-the-shelf low power Schottky devices.
With these devices, it has a power consumption of 12 to
15 watts, and operates at a speed of 2 MIPS (i.e., clock
interval of 500 nano-seconds). The board contains a switch,
lamp, and special op code for self-test. Upon pressiflg the
switch, the error lamp is lit and the machine goes into Its
self-test using a portion of the wired in memory. The self
test must turn the lamp off for the machine· to be
demonstrably error free.

Figure l. Block Diagram of the BBSP

Figure 2. The BBSP Card

A 1 024 word instruction Read Only Memory is
addressed by the instruction counter. This counter advances
sequentially in binary fashion unless:

a. An interrupt occurs which forces the address to
zero.

b. A JUMP occurs, which loads the literal field
CF-Field) from the instruction into the address
counter.

c. A RETURN occurs, which loads the output of the
PRODUCT MUX into the address counter.

The output of the Instruction Memory passes directly
to the machine. All instructions (except double precision
operations) including a satisfied JUMP, RETURN or CALL
take one clock period. Interrupts and CALLS are allowed
by virtue of a 16 level RETURN address stack.

Data is stored in the l 024 word data memory and the
8 word Multi-port register (MPR). The data memory may
be addressed by the literal field or by any of the words in
the multi-port register. Outputs from the BBSP occur via
the 12 bit output register and the 8 discrete output
flip-flops.

A left MUX allows the left argument of the ALU to be
the data memory, one of three external inputs, an MPR, the
output register, the F-Field or the return address stack. This
MUX may be masked by the F-Field. The ALU arguments
are brought to the connector to be used as the arguments
for an externally located function (such as a multiply). The

141

output of this function is brought back into the card,
through the connector, into a product mux whose other
input is in the ALU output. The product mux feeds the
memory, MPR and output register.

The machine allows two kinds of double precision.
There exists double precision instructions that allow a 24 bit
sum or difference to be calculated in 2 consecutive clock
intervals. Additionally, one may parallel two machines
(cards) to obtain 24 bit operation in a single clock.

Program Checkout

To enable programs to be checked out without burning
an endless number of PROMs, Loadable Instruction Memo
ries (LIM) cards have been designed that are compatible
with the BBSP. A BBSP and a LIM card are plugged in
side by side and wired together on the back plane. The
LIM additionally contains electronics to facilitate the testing
of programs. Each LIM communicates data serially to a sin
gle Programmer's Control Unit. This unit allows the pro
grammer to inspect the memory contents, output register,
discrete outputs, or product MUX output of any one of the
BBSPs in a system up to a maximum of 16. From this
unit, the programmer may stop the system clock, advance
it by single step or stop it on an address match. He may also
inspect memory contents and change memory contents.

Program loading is performed via a paper tape reader.
Programs are kept on a disc at a time sharing computer
along with the Assembler. Assemblies result in a listing
and a paper tape.

Once a program is finalized for a BBSP, the last paper
tape is used directly to program the PROM. The PROM
chips are mounted on a single removable circuit board
which itself plugs into the BBSP card. When the PROM
module is plugged in, the LIM card is removed from the
system leaving a plenum behind.

The Remote Radar Tracking Station - An Example of a
Distributed Processor Using the BBSP

In the following paragraphs, details are given on the
implementation of the Remote Radar Tracking Station
(RRTS), a distributed processor utilizing the BBSP as the
processing element (see Figure 3). The RRTS is the latest
in a sequence of evolutionary steps which began with. the
large SAGE radar data processors of the 1950s.

Figure 3. The Remote Radar Tracking Station

The RRTS has as its task totally unattended automatic
radar and IFF target detection and tracking. This process
ing must be performed automatically and unattended in the
presence of normal radar receiver noise and radar clutter
(i.e., returns from objects other than aircraft, such as
weather, land masses, automobile, etc.).

Target position, velocity and IFF code data obtained
from the RRTS are transmitted through a communication
link over standard 1200/2400 BPS modems to remoted
users. While all pulse search radars can benefit from such
technology, the gap filler and remote radar applications
are immediate beneficiaries.

The basic RRTS interfaces with a wide variety of radar
pulse search radar types accepting synchro data, resolver
data or ACP/north mark azimuth data. The RRTS accepts
the radar's normal and MTI videos, forms a fine grain clutter
map (currently 65,000 cells) and automatically switches
between normal and MTI video. The clutter map and an
MTI residue mapper also work together to determine when
small localized regions of the surveillance region must be
censored due to bad MTI performance (such regions other
wise produce excessive false alarms). The outputs of the
radar detection logic are applied to the tracker unit which
processes up to 256 targets, plus a false alarm burden, in
an automatic track initiate and track update mode. A feed
back path exists from the tracker to the clutter mapper and
residue mapper preventing valid targets from being mistaken
for clutter.

The tracker automatically controls IFF interrogations in
SIF/MARK XII. The responses are detected, decoded, and
correlated with the radar returns before being input to the
tracker. The outputs of the system communicate through
a communications processor to the remote user.

A local maintenance monitor continually tests the sys
tem and triggers an audible alarm and visual indicators
locally upon a fault being detected. The detected faults
also cause the comm link to be shut down if the trouble
is pathological. The local maintenance man initiates the
Automatic Troubleshooting sequence which then locates the
failed card with a MTTR of one minute to a confidence
level of 95 percent.

Mechanization of the RRTS

Figure 4 is a block diagram illustrating the partitioning
of the tasks of the RRTS into relatively disjoint subtasks.
Some of these jobs are performed in pipeline fashion and

IFF INTERROGATION
CONTROL

REMOTE
USER

~======='--------i~~ERROGATION
CONTROL 76:2S 7 i

Figure 4. Functional Block Diagram of the RRTS

142

some in parallel with other jobs in the machine. Some of
the jobs operate in real time and others in near real time.
It should be reemphasized that radar processors have been
built in the past many times, containing many of the func
tional units here shown but that in these applications all of
the units, excluding the tracker and the comm processor,
have been implemented with special purpose (hardwired)
logic.

RRTS Partitioning Notes

The partitioning of this machine into processing ele
ments follows fairly naturally from the radar/IFF processing
tasks which must be performed. Special purpose machines
of the recent past have employed a similar partitioning.
Once the major functional areas have been identified, the
system designer must determine an algorithmic approach
using the building block elements to implement the function.
On our initial look at this machine, two BBSPs were desig
nated as required each, by the Automatic Clutter Mapper
(ACM), the tracker, the digital radar detector and the IFF
processor. All other areas were felt to require a single
BBSP. As system design proceeded several algorithmic tricks
reduced the ACM BBSP count to one. Analysis of worst
case target and fruit rates combined with algorithm advances
reduced the IFF processor BBSP count to one. Similarly,
the tracker BBSP count reduced to one. The Communica
tions Processor increased to two.

Several units had additional functions added to them
rather than add machines. The Azimuth Converter (AC)
for example, receives all system switches through a set of
multiplexers (which it addresses) and was given the task of
performing the system initialization. The CF AR unit which
had been loafing, was given the additional task of comput
ing the system Maximum Range (RMAX) trigger based on
the synchronized trigger obtained from the Quan/Rang sync
card. A portion of the radar detection logic, which had a
low duty cycle, was given the additional task of correlating
the radar and IFF reports.

Detailed Example:. The Radar Detection Logic

The radar detection logic is here defined as that logic
which accepts the output of the video-to-digital quantizers,
a range counter, and azimuth counter and produces a low
false alarm rate message locating the target in range and
azimuth. This message is then transferred to the tracker.

The digital detector uses two levels of quantization (see
Figures 5 and 6) and makes use of the shape of the returns in
azimuth, which is a function of the antenna beamshape. The
algorithm first quantizes the video into three levels and then
time quantizes the outputs into range bins.

QU."\NHZtl-l.
OUTPUT

PROCESSING nETFCTION
COUNTER STATf 0 0 I 0 0 t 0 I 3 6 9 11 14 15 15 15 15 15 15 15 9 3 0 0 0 0 0 SfOUE~CE

00100101122122:z1221100000001

OF EVENTS
TARGET tN
PROCESSOR 000000000011111111111100000

TARGET RE!URNS
!SHAPED BY
ANTENNA PATTERNS)

t t t
TARGET BEAMSPUT TARGET
START TARGET CENTE.R STOP

WITH BIAS

Figure 5. Consecutive Returns from a Target in a
Single Range Cell

T
AMPLtTlJDE

HI THRESHOLD~---".""----------------
-------- -----------LO THRESHOLD

vtOEO ----------
TIME__..

LO

AMPLITUDE QUANTIZER

I.-----"-' - OUTPUTS

TIME QUANTIZER
OUTPUTS

Figure 6. Digitization of the Radar Video

For each range bin, a four bit counter is maintained
(see Figure 7). This count is set as a function of the
previous state of the counter and the present output of the
quantizers. The function is implemented by a state matrix
which is a look up table with the counter and quantizer
output being the address of _the table and the contents of
the table being the next counter value. The matrix is
designed to respond to the edges of the beam pattern. The
matrix is a function of the number of hits per beamwidth.
A total of 6 state matrices have been designed using simula
ti~ns to empirically jointly optimize detection ability and
azimuth accuracy. The final phase of the detection logic
is to measure the distance between the start and stop signals
and to guarantee that this distance is greater than a mini
mum established by the beamwidth; if so, a target is
declared and the center azimuth is computed.

3 STATE
OUTPUT
FROM OUAA\

!)IJAl\IT!lER THRESHOLD
"0LTAGES

HllS Pl:A REM4WIOTH COUNT

RA OAR
AZIMUTH

.-'"'---'L---
TARGET PROCESSOR
!TESTS AZ. WIDTH
BETWEEN TARGET

/

RANGE ANO CENTEft
AZIMUTH OF DETECTED
TARGETS

T 0 TRACKER \ .-l START ANO TARGET
\ srn•. REAMS"<OTSI

RANGE ANO AZ START OR
AZ. STOP FOR TARGET

F!gure 7, Basic Digital Detector Block Diagram

implementation of this function with BBSPs (see
Figure 8) takes cognizance of the false alarm rates of the
processes. A four bit counter must be maintained for each
rnnge cell and tests continually made on the cell contents.
A smgle BBSP (the edge Detector) is employed for this
task and continually loops through a highly efficient
pro~ram mak.J.ng one pass through the program loop for each
umge. ce-11.

143

INTER-SYSTEM
TRANSFER PATH

EDGE OET.

~rig~~~l~l~~~-·-L-E--4--4----L -----l_ti------j-~-- ~~~=.:P~
!AZIMUTH DATA 1STRANSFERREOON THIS
PATH EACH RMAX SEQUENCEI

AMAX
INTERRUPT

RMAX GATE !ALLOWS TPU To
DISTINGUISH BETWEEN EDGE
REPORT INTERRUPTSANDRMAX
INTERRUPTS!

76257.aA

Figure 8. Implementation Diagram of the Digital
Detection Function

The start and stop signals from the edge detector are
fed to a second BBSP, named the Target Processor Unit
(TPU), which holds the start report, with its range and
azimuth until a stop report is received and then tests the
difference azimuth and calculates the center azimuth. As
start and stop signals from the edge detector occur at a
relatively low rate, the TPU can operate in non-real time.
Thus, the start and stop signals from the Edge Detector
int~rrupt the TPU and load the report with its range into
an mput queue. Azimuth is obtained during the RMAX
sequence (see below) once, each sweep. The TPU then in
non-real time b~gs the reports out of the input queue,
compares them with reports stored in memory and performs
the minimum width measurement and azimuth computation.
~ce a target is declared, it is put into an output queue
(m BBSP memory) and transferred, during a subsequent
RMAX sequence, to the tracker unit.

Intersystem Communication

Design of the communication and synchronization of
the individual processing elements in the RRTS is a· func
tion of the timing characteristics of pulse search radar sets
and the rate of data exchange between the· defined .sub
functions of the RRTS (see Figure 9). Radars are synch
ronized by a timing trigger which defines the transmitter
firing rate (typical range: 200 to 1000 ptilses per second).
A range maximum trigger can be defined that occurs at
the end of the radar listening time.

NOTE
Q• QUANTIZER CARD
tNT ~INTERRUPT

Figure 9. RRTS Inter BBSP Communication

76257·9A

The RRTS accepts the radar range zero trigger and
during system initialization calculates a range maximum
trigger (RMAX) to be used thereafter. The RMAX trigger
is then generated internally by the RRTS each listening time
and interrupts all BBSPs in the machine. Following this
interrupt, an intersystem transfer occurs (the RMAX
sequence). A transfer path has been designed into the
system such that each BBSP acts as a node in a directed
graph connected as a continuous loop. Common system
data is passed throughout the system in bucket brigade fashion.

These transfer paths are also used in initialization and
switch monitoring. Virtually all control panel switches are
input through a multiplexer to a single port on the AC
BBSP. During system initialization, this unit calculates
common system constants and distributes these constants
throughout the system via the loop transfer path. Addition
ally, the AC BBSP reads a different control panel switch
each RMAX time and then distributes the switch code and
the switch value throughout the system. As all BBSPs in
the system receive this information, each BBSP checks for
specific switch value changes of interest to itself and modi
fies its operation accordingly.

Intersystem Synchronization

Units ·such as the TPU in the radar detection logic, the
IFF processor, the tracker and the Comm. Processor operate
in non-real time on inputs received from the real time units.
Once initialized, they remain effectively quiescent until
receiving input. The real time units are synchronized by the
range' zero signal. Units such as the ACM and the Edge
Detector utilize endless program loops that are exited only
upon receipt of the RMAX interrupt. These units then per
form the RMAX transfers, change any parameters as neces.
sary and then wait for the range zero trigger. The range zero
trigger, synchronized to line up the system clocks by the
Quan/range sync card, then times these units into their real
time loops.

Fault Detection

System fault detection is performed by the maintenance
monitor. Periodically, the maintenance monitor injects targets
into the front end of the system and monitors system outputs
for correct operations. During the RMAX sequence, advan
tage is taken of the loop nature of the transfer path to check
that basic intersystem transfers and program execution are
occurring as normal. Other checks are made on the CF AR,
Az converter; ACM and tracker to monitor numerical quanti
ties which are indicative of system normal operation.

Maintenance

Upon a fault being detected, audible and visual alarms are
enabled on the control panel. The ·local maintenance man
may then, by switch action, initiate. the Automatic Trouble
Shooting sequence (ATS). This causes the maintenance
monitor to first perform a self test, and if this is successful,
to transmit the ATS strobe to all BBSPs in the machine.
Each BBSP contains a common ATS program which performs
an exhaustive diagnostic program on itself. Upon the ATS
strobe being received, the FAULT lamp on each of the
BBSPs is illuminated and the machine executes the self-test
program. The FAIL lamp is extinguished if and only if. the
machine passes the test. Upon a BBSP passing its test, it
has the responsibility for checking out its dedicated peri~
pheral cards (e.g., in the case of the Tracker, it has three
mass memory cards and a .multiple array card to be checked

144

out). During the ATS mode several of the discrete outputs
of the BBSPs are defined as error lamp control for a specific
peripheral card. To test a specific unit, the BBSP executes
a diagnostic program, and if it finds an error, turns on the
discrete output. This discrete output, in ATS mode only,
causes the FAIL lamp to glow on the tested peripheral.
If no error is detected, the BBSP proceeds on to test the
·next peripheral until all have been tested or an error has
been found.

As a backup to this automatically initiated and con
trolled system, each BBSP is provided with an ATS switch
mounted on the card itself. At any time, the curious can
press this switch and initiate the internal ATS program (and
the ATS program of the associated peripherals, if any) and
then observe the FAIL lamp(s). This does disrupt the sys
tem, obviously, and the system must then be reinitialized.

Summation and Conclusions

A distributed processor approach to the design of radar
and . IFF signal processors has been determined using the
BBSP. The RRTS has been designed and implemented
using this approach. The RRTS is consequently a program
mable and highly modifiable signal processor, a combination
that until now has not occurred. The processing element used
is the BBSP which is contained completely on a single 8" x
8" board. Four card types, a mass memory card, a multiply
array and two special purpose cards, were used along with the
BBSP to implement each of the subfunctions of the RRTS.
As the BBSP and these ancillary cards arelogic functions,
each completely contained on a single board, the system
could be and was designed with the ability from day one to
be able to locate failures to the single card level to a confi
dence level of 95 percent with an MTTR of one minute·.

Several techniques were developed which generalized
the machine and greatly sped development.

a. AU processing elements are a node in a single
continuous data loop.

b. Transfers from one BBSP to the next in the data
loop are effected by a single control signal allow
ing data to be passed along in bucket brigade
fashion.

c. All instructions take exactly one clock time and
all machines run off of the same clock.

d. All control panel switches are multiplexed into a
single BBSP which then distributes the switch
values to the rest of the machine on the data
loop.

e. Each BBSP contains a diagnostic program which
completely tests itself and its dedicated peripheral
cards.

The distributed processor approach to the RRTS imple
mentation greatly shortened design time, reduced the number
of required design engineers and produced a system which
can be modified extensively by programming changes~

Acknowledgements: The conceptualization of the distributed
processing approach to radar processing was derived jointly
with Mr. Mike Tolle. BBSP development owes much to
the labors of Mr. George Simms while the current RRTS
hardware is largely due to the efforts of Messrs. Fred Erickson,
Sam Pawley and Al Kushida. The digital detection algorithms
descn'bed owe their paternity to Dr. Don Adelman.

ASSOCIATIVE-PARALLEL APPLICATIONS TO RADAR SIGNAL PROCESSING

K. L. Schaffer
Hughes Aircraft Company

Fullerton, California 92634

Abstract -- Two aspects of radar signal process
ing that are excellent candidates for associative/
parallel implementation are spatial correlation and
adaptive processing. By performing the correlation
with a high degree of parallelism to yield short proc
essing times, the data can be processed more than
once using a variable detection logic to maximize
resource utilization without saturation of the system.
Additionally the process can be preceded by adaptive
filter weight control to minimize the desensitization
due to high amplitude clutter or interference. Parallel
processing can be used to significantly speed up the
convergence of this form of adaptability over normal
hardware implementations. Joint implementation of
these processes by using associative/parallel mech
anizations can significantly increase radar effective
ness in heavy interference environments.

CORRELATION PROCESS

Highly sensitive doppler radars must perform
detection over frequency and range domains separated
into small resolution cells. When ambiguities arise in
one of these domains due to, for example, high Pulse
Repetition Frequency (PRF) operation, the detection
processing becomes heavily cluttered with false cor
relations. Associative/parallel processing can
alleviate this problem and provide an inherent form
of adaptability by nature of its processing speed.

Classically, radar detection is based on a
Neyman-Pearson detection criteria using the several
variables typically available in the form of azimuth,
elevation, range and frequency coordinates. Several
correlations within these domains are usually utilized
to exploit the differences in expected target behavior
versus the behavior of noise or unwanted interference.
This is accomplished by filtering and determining the
mean level signals in the vicinity of the cell of interest
with the resulting filtered signal to mean (S/M) ratio
being the fundamental statistic to be dealt with. This
represents the starting point of the following discussion
of a detection process using associative/parallel proc
essing for beam to beam and range cell to range cell
correlation for each doppler filter.

Detection Word Formulation

In order to minimize the number of bits to be
included in memory for this type of detection, a mul
tiple threshold technique is used, In the case here,
two thresholds are used as shown in Figure 1 with the
threshold values matched to the expected target
occurrence. I. e

T 1 r p (ti.~) J 2
T; P (o)

145

where

beam spacing

azimuth (or elevation) pattern with a
peak at p(o)

In this manner, the probability of a low threshold
adjacent beam crossing given that a target has
crossed a high threshold center beam is nearly unity
whereas for noise only the joint probability of two
crossings is low. Thus, by creating a 2 bit detection
word within the target word, the stage is set for beam
to beam correlation. The assignment rule is as
follows:

where

{

1 if Vij /M.ij > T1

dij = 2 if Vij /Mij ~ T2

.0 otherwise

detection bit

denotes the 1th elevation beam

TARGET BEAM
CENTER

~I- AZIMUTH OR
ELEVATION

Pc~i~-- -/BEAM
,,,---........ CENTER /~ '

I / \..E.~~~f<) / (l1GH-,. \
/ ~v«~ / 0 we-11J)JT2 •coNsTANT

I \ I I
I \ / I
I \I I
\ l I
\
\
\

\
\

\
\

\
\

\
\

\

'

J\ T2dB-TldB.

I

I
I

I

I
I

.= p2 (0) dB-P2 (A~) dB

I

Ti *CONSTANT

FOR THE TARGET SHOWN:
IF THE TARGET IS CENTERED IN
THE Ml.DOLE BEAM THEN:

2

0

Figure 1. Multiple Threshold Detection

denotes the jth azimuth beam

Stored voltage magnitudes

Mean Level

Low threshold

High threshold

Additional logic is incorporated in the beam to
beam correlations to determine when the target return
exceeds T2 on several beams which would result in
multiple reports of. a single target.

Beam to Beam Correlations

The detection word formed in the.previous step can
now be utilized to.perform beam to beam correlations.
The basic correlation-matrix is a-9 beam configuration
(3 azimuth x 3 elevation beams). Therefore, define a
3 x 3 matrix as follows:

.B = Beam Correlation Matrix= [bij]

= Expected 01,1tcome for a centered target

and B is of the form

Example:

B

Now let D be the matrix of detection words that are
actually measured."

---Azimuth--

[•u dl2

d"] I D = . d21 d22 d23 Elevation

d31 d32 d33 . i
Define Y, by Y DB and let

Then

Y = I: I: Y ij = decision Statistic
j

y = I: :zj (t d.k bk.)
i j . k=l L J

which, for the stated properties of B, yields

. 2: d d y = <2 bll + b12> l (il + i3) +

(2 b12 + bzzl T d1::,

146

or

y

where

. cl = 2bll + bl2 and c2 = 2 bl2 + b22

For the example glv-en previously, c 1 = 1 and c 2 = 4

The decision rule ls

if y 2: To; a target is pr-esent

if y < To; no target is present

(To = 13 for the example problem)

Figure 2. shows the implementation for a single
filter and range cell and Figure 3. shows the potential
power of a fully parallel implementation to handle·
several filters simultaneously. The prooess is baRic
ally a sliding window in azimuth with each.elevation
scan of three beams moving to the left as a new set is
loaded in. Thus the result of each decision refers to
the beam occupying the center location and if a detec
tion is made the detection. word is set to one; other
wise it is set to zero.

WORD
(ii

~

FIELD

BITS

~:I l w r
~~ l

2

2

2:
3 .. .

l 2 3

(2) (2) (2)

dll di2 d13·

d21 d22 d23"

d3l d32 d33

(1) (F2 11-+ (Fl 1J: FOR ALL I

(2) (F31) -+ (F21") FOR A_LL i

J-+

4 5 .6

(3) (4) (31

4 4dl2 dll + dl3
4 4d22 d21·+ d23
4 4-d32 d31 + d33

(3) NEW ELEVA·TloN SCAN INTO (F31) FOR ALL i

(4) jFljl + (F31) "+ (F6 1) FOR ALL i

(5) (F41J•(F2 1)-+ (FSI) FOR ALL i

(6) (F51) + (F61)-+ (F7 1) FOR ALL i

k+2
(7) l~k (F7i) -+ (F8k) k = l, 4, 7, 10 ••.

7 8

(5) (l)

4 ~12 + dll + d13 l

4 d22 + d21 + d23
4 Cl32 + d31 +. d33 I

0

(8) IF !F8k)>T0 , THEN SET :HE DETECTION BIT TO 1: OTHERWISE SET 0

(NOTE: FJ 1 denotes the ith word of the Jth field).

Figure 2. Detection Process for Beam Correlations

In order to illustrate this process, assume two
targets are present resulting in a data set as shown in
Figure 4 (two adjacent targets in azimuth beams 2 and
3 and one in number 6 with all targets somewhere
between elevation beams 1 and 2). As can be seen,
even in heavy traffic, the basic resolution of the radar
is maintained. Note that in this simplified example no
advantage is taken of the off axis quantities that may
be present if the beams are closely spaced {this is a
•·esult of b11 "' b13 = b31 b33 = 0). Hence the example
is not optimized and is approximati'lly equivalent to

----------256 BITS------------

FILTER 1 FILTER 2 FILTER 10
RANGE RANGE • • • • • • RANGE
CELLS 1-40 CELLS 1-40 CELLS 1-40

1
256
WORDS

FILTERll FILTER 12 FILTER 20
RANGE RANGE • • • • • • RANGE
CELLS 1-40 CELLS 1-40 CELLS 1-40 I

Figure 3. Multiple Filters Can Be Processed Simultaneously

FILTER NF1; RANGE CELL NR

ELEVATION SCAN NO. 2

E
L AZIMUTH_..

y22 1 1 4 E
2 2 7 v 1 5 D ~] [~ ~J=D ~] 3 6 7• •• 0 1 0 A 1 1 1 0 1 0

T 2 I 2 1 2 0
6 3 0 0 0 0 0

y 22 17 ==>-TARGET AT (2, 2)
N

DETECTION WINDOW

ELEVATION SCAN NO. 3

.,-r""~~~-;i,,...;~;---',...._,~ ... • • •
2 2 1 1 0

0 0 0 0

ELEVATION SCAN NO. 4

ELEVATION SCAN NO. 6

5 6 7 •••
0 1 0
1 2 0
0 0 0

[~ ~ ~] [~ ~ ~] = [~ j o~J
000 010 00

Y 23 = 17 ~TARGET AT (2, 3)

[~ i ~J r~ ~ ~] = [i ; oi]
a o o Lo 1 o o o

12 ~NO TARGET AT (2, 4)

y
26 U fl D n = D ~J

Y 26 = 13 =;>TARGET AT (2. 6)

Figure 4. Example of the Beam Correlation Process

treating the elevation and azimuth correlations
separately. In the event the beams are closely spaced
it is an easy matter to include these terms in the con
stants in order to achieve improved detection per
formance. Generally the constants can be represented
by factors of two and hence the multiplications can be
carried out in an expedient manner.

Range Correlation

The detection word resulting from the beam cor
relations can now be used to perform range correla
tions and resolve the true target range. The most
straight forward way to accomplish this is to expand
the measured ambiguous range interval by replicating
the detection word into locations based on the follow
ing rule:

where

.1
l

target range cell (true location)

measured location

Number of unambiguous range cells for
the jth PRF

Total number of unambiguous range
intervals for the jth PRF contained from
O to the maximum range.

Once this is accomplished for 3 PRF 1s, the de
tection bits can be added for all range cells in paral
lel with a detection declared in a range cell only if the
sum exceeds a specified value as indicated in Figure 5
for a simplified case where Ni= 7, N2 = 6 and N3 = 5,

FILTER 1:

Ri

2
3
4

N3 _?_

~2 -~-
1- - -8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1
0
0
0
0
0
0
1
0
0
0 0

4

PRF3 L

0
1
0
0
0
0
1
0
0

1
1
1
0
0
0
0
3
0
0
0
0
1
1
1
0
0
1
0
1
0
1
1
0
0

TARGET

(l} LOAD DETECTION. BITS FOR-ALL THREE

BEAMS (3 PRF's)

(2} (F2i) -1- (F2i+kNl) ALL i, k=l, 2 ... {kl -1)

(3) (F3i) ..+ (F3i+KN 2) ALL I, k=l, 2 ... (k2 · 1)

(4) (F4i) _.. (F4i+KN 3) ALL i, k=l, 2 ... (k3 - 1)

4
(5) L (FJi) -+ (F5i)

J=2

(6) IF (F5i);.. 3, THEN SET DETECTION BIT

TO 1; OTHERWISE SET 0.

Figure 5. Range Correlation Using Multiple PRF's

With this arrangement, only targets with detection
on all three PRF's will be retained, which due to in
dependence of the noise samples, will reduce the false
alarms while simultaneously determining the true
target range. Some false targets, however, may be
retained due to either clutter residue or correlations
of noise with images of the target. The severity of
this depends on the number of false targets contained
at the input of the range correlation process.

This process is configured in a similar manner to
the beam correlation process in that basic processing
section consists of all the range cells for a given filter
and the cells are processed simultaneously. Several

filters can also be processed simultaneously for a
high degree of parallelism depending on the size of the
Associative Processor (AP) dedicated to this task.

Optional Adaptive Feature

The target load passed on to the tracking computer
is largely dependent on the environment when fixed
detection logic is employed. This is true even with
mean level detection when the statistical nature of
clutter is other than Rayleigh. This is a likely
occurrence in the presence of ground clutter. There
fore, in a heavy clutter environment, the system may
be saturated with false alarms while in a clear envir
onment the system may only be used to 10 or 20 per
cent of its capacity. In fact both of these conditions
can occur within a single scan in a long range air sur
veillance radar.

The detection process utilized here can correct
this situation if a high degree of' parallelism is used to
yield high processing rates. This is done in an itera
tive fashion by performing the beam and range corre
lations and then counting the number of detections.
This number is compared with the number of new
target reports the tracking computer is willing to
accept. If the number is excessive, the process is
repeated with a more stringent detection logic (e.g.
higher thresholds). If the number of targets is too
low, which implies the system sensitivity is not being
exploited, the process is repeated with lower thres
holds. Thus with two or three iterations the system
sensitivity can be matched to the requirements of the
tracking computer and the available resources will be
utilized to maximum capability on a beam by beam
basis.

ADAPTNE FILTERING

The intent of this investigation is to develop an
adaptive algorithm to be used by a parallel processor
with emphasis on taking advantage of the program
mable parallel structure. Typically the required
mathematics utilizes matrix manipulations and often
the resulting formulations, though theoretically solv
able, are not practical when time, cost, and size are
considered. · Thus the approach here is to first define
the theoretical solution and then reduce it to an approx
imation that is feasible for implementation. The basic
approach to be utilized is an iterative technique with
the gain function in the iterative relation being the
processor's primary means of dealing with radar
clutter.

Defining The Problem

'J;he following defines the notation to be used and
briefly states the problem at hand:

Let

X(k) received signal incident on the filter
elements from the kth range cell (a
vector quantity)

148

Thus

Where

Let

and

Let

X(k)

c1 (k) + n1 (k)

c2 (k) + n2 (k)

clutter voltage

noise voltage

element weights

* + y(k) = :r:wi xi(k) = W X (+ denotes complex
transpose)

y(k), then, is the scalar output of the filter

Also let xx+

and

p

p A VG [XX+ 1 = covariance matrix
--*-

Assuming c(t) is wide-sense stationary, ni .!lj. 6 ij

* and ci nj = o for all i and j, we get

Rc(o)+ Rn(o) Rc(T) Rc(2T) ... Rc[(N-l)T)

Rc(-T)

Rc(-2T)

Ro(o)+Rn(o) Rc(T) ...

P= Rc(-jl')

Rc(-(N-l)T]

Where

T = 1/PRF

Rc(T) = AVG [c(t) c(t+Til

Rn(o) =No= AvG[n2(t)]

Rc(o)+Rn(o)

Rc(o)+Rn(o)

In terms of these definitions, then, one can show for a
large class of optimization functions the desired
answer for the weights is given by

Where

(This is ~he location of the peak response, e.g., if
Si= (-1)1, the peak response of the filter is at PRF/2
in the frequency domain)

--1 The problem, therefore, becomes one of finding P
and hence the amount of effort required for a solution
depends on the properties of this matrix function.

The primary characteristic that creates a
problem occurs_when heavy clutter is en_£ountered.
For this case, P is nearly singular and p-1 becomes
difficult to find. This will become apparent in later
quantitative treatments of P.

--1
An Iterative Approach To Finding W=P S

In order to gain some insight into the nlJ:1.ure of
the iterative procedure and the influence of P, it is
initially assumed that P is known and that W is to be
found. This can be accomplished as follows:

Let

W(k+l) W(k) + G ~-Y (k) X(k)]

And

W(o) = o (G = NXN Gain matrix)

In general, k is the kth iteration but since our con
cern is to process within a short time interval it is
assumed the clutter statistics are wide-sense station
ary over the entire unambiguous range and hence k is
the kth range cell. (If clutter mapping is available, k
could be the kth scan). Letting Y(k) = w+ (k) X(k),
noting that y* (k) = x+(k) W(k) and further assuming
that the W's vary slowly relative to the X's and taking
the expected value yields

W(k+l) = W(k) + G S - P W(k)

To simplify the analysis, this can be transformed to a
normal coordinate system where scalars instead of
vectors can be studied. Therefore, let M (modal
matrix) be defined by

M-1PM = E

149

where

E = eigenvalues of P =

0

0

e
n

Furthermore, let

W =MW

' S =MS

G' = M-l GM

Then

w' (k+l) = w' (k) + G 1 [s' - E w (k)]

If G is constrained to be diagonal, this yields

Wi (k+l) = Wi (k) - gi [si - ei wi (k)J

where the lower case letters indicate scalars. One
can now use z - transforms to establish that

If

Si Si k
w. (k+l) =- - - (1- g. e.)

1 gi gi 1 1

= Steady state + transient

I [1 - 1r. e.], < 1, then
'1 i max

s.
w = Lim w.(k+l) =!

i k-oo 1 gi

or equivalently

' W =Lim W(k)
k-oo

M-1w = E-l M-1s

w = ME-l M- 1s = -p-ls

Thus with the above constraint, the desired result is
achieved. The question now is how many samples are
required.

Let

p (i) =!Transient/steady state I= !I - gi eil k

For narrowband clutter this becomes

e1 = 1 +NY; Y =clutter to noise ratio (CNR)

e. = 1 for 2 :<:: i :::: N
l

If gi = g for all i (a typical hardware case), then

p (1) =I 1- g (l+NY)I k

p (i) = j 1 - g I k for 2 s i s N

Now define. pc = measure .of transient performance and

Let

Pc = IMAX [p(i)} l
Ignoring the effects of loop noise for the time being, ·
this yields a choice for g such that

-1 + g (l+NY) = 1 - g

g = (2+~Y)

(i. e. , we have minimized Pc)

and thus

. 2)k . NY
pc = (1 - 2+NY = 2+NY

which for large 'Y becomes

- (. 2)k Pc = l - NY

setting p0 = o. 37 yields

. 1 2) = ko = required nwnber of indepen-
ln (1-N '{ . ent samples

or

lko :!! N2Y l (Coupled Loops)

Thus for large Y , the convergence is quite slow.

T.he case just presented represents an implementation
where the correlation processes for each.element uses
identical fixed gains. If one could choose the gl's inde
pendently, then the choices would be

' .£ g1 = l+nY ; (1- E)«l; e is a parameter to.be
chosen .

I

g. = E for 2Sisn
1

. k .
and the transient term woul<:I be (1- E) which is inde
pendent of y, and for suitable choice of«:, yields a fast
COllVergence. E Cannot be Chosen equal to unity ·dUe to
loop ilois~ effects which will be discussed next.

LOOP NOISE CONSIDERATIONS

The steady state output power for the iterative pro
cedure giyen in the previous topic is given by

150

The best result that is achievable theoretically is given
by

. S+P-lS
Po=-~~

s+s

Thus a degradation given by the bracketed term ls
experienced due to "hunting action" of the iteration. Jn
more famlliar terms, there ls a los1:1 in output S/(C+N)
ratio of (l+K) where K = 1/2 !: gi et. For the two pre
vious cases this wOuld yield a degradation of

and

2
2 for g = 2+NY

.1 + ~E for independent choices

Thus in the latter case one cannot· choose 1 · = 1 since
excessive loop noise would result. With this in mind
and recognizbig the ultimate goal is to achieve detec- ·
tion of a target, iet K be specified and identical in both
cases•

Under this constraint it can be shown the gi' s. are
given by

and
I. - 2K.

·~ (i) - Nei

for the constant g• case
(coupled loops)

for independent choices of
g' 1s (uncoupled loops)

where K =specified degradation factor. This yields
transient responses expressed in in00pendent
samples given by

For

(coupled loops) koc
NY =-2K

kou
N

= 2K (uncoupled loops)

K = 1/4 (1 dB of degradation)

k0 c = 2NY

k = 2N
OU

Thus in heavy clutter, the uncoupled case greatly
accelerates the convergence to the desired solution.

Preliminary Development Of The Algorithm

Up to this point, the solution has been carried out
in a normal coordinate system which simplifies the
problem once the transforination is accomplished.
Thus· a choice of coupled or uncoupled system is more
complex to implement than one may initially realize.
The real problem is in achieving the 1,lDCOUpled system.
since the coupled approach is already the siniplest
(though least effective). approach.

Since the G' matrix ls diagonal with at least two
different values along the diagonal for the uncoupled
case, the G matrix (original coordinates) is in general
a NXN matrix. In hardware terms, this means that
output of every element is available for multiplication
by constant and summation at the output of every other
element. Alternatively, one c;iould perform the actual
transformation and work in the transformed ddmain.
The transforming network is also quite complex.

An associative parallel processor however, can
be conf"igured in a manner such that either operation
can be achieved by allocating the appropriate. AM
(Associative Memory) size to this task. · Since this
allocation and also the implementation can be software
controlled, a great deal of flexibility can be achieved.

Even with the advantages of a parallel processor
the actual transformation is a time consuming process.
The order of events is as follows.

(1) Acquire a dwell

(N-PRl'S x m Range cells)

(2) Estimate P

l!::!:: (r + Q2) and-1-!:: !:: TAN-1 ~
mN mN I

(3) Find the eigenvalues of P

(solve an Nth order polynominal)

{4) For each eigenvalue find

Adj [MI - P] and select a non-zero column.
(Adj "" adjoint operator)

(5) Form M (Modal Matrix) from step 4 and carry
out the transformations

Even with routlnes that combine the above operations, a
significant amount of time can be consumed in steps (3)
and (4) for large N and P nearly singular. Thus an
alternate approach is desirable.

Recalling that even with uniform gains, the steady
state answer is achieved in the limit as k-oo; the
problem is not whether adaptivity is taking place but
rather how fast is it happening? Therefore, rather
than jumping to the ultimate approach, a compromise
approach can be utilized. This involves sqlving for M
apriori in closed formed as a function of the quantities
in step 2. This of course is restricted to cases where
a closed form M can be found and the ultimate success
depends on how close the form of the assumed modal
matrix agrees with the actual one. In any event, it
appears likely the results will be better than a totally
coupled system.

Assume, therefore, that a closed form expression
for M can be found and call it :M:. Define the trans
formations in a similar fashion as before but using :M
U-1.sf:ead of M.

151

i\r1 p-l :M = E (This relation defines P)

~ ' W(k) =MW (k)
A f

S(k) =MS (k)

and

The desired answer 1n transformed coordinates is

or

w' <k-1) = w' (kl + 2~ E-1cs' - iVC1 P :M w' (k>J

w (k+l) = w (k) + ~ M E-1[~C1 s - :M-1 p W(k)]

= w (kl+~ :ME :M:-1 [S - P w (kll

Note however that one can define a P-l =ME M-l

Thus

[W (k+l) =[I - ~ P-l P] W (k) + ~ P-18] ·
(recall P = xx+ and is the quantity measured by
the radar.)

Thus any clutter model for which P-l (rather than M)
can be expressed as a closed form expression of 't and
cj>, can be used to generate an approximately uncou
pled, iterative relation without steps (3) and (4).

The case used here is for narrowband clutter
(i.e., R (T1) ~ Y over the interval (N+l) T where
T = l/PRF). With some manipulation one can show
that

where

P-l = [Pik] (l+~y); ([Pik] denotes matrix P)

{
1 + (N-1) Y for i = k.

Pik = Exp [-j (i-k) T/T•cj>] for i ~ k

y and cj> are found as in step (2) and are avail
able as a result of radar measurements (4' is
actually the intersample phase shift) and
T /T = number of unambiguous range cells

The above procedure was utilized in a simulation
and indeed converged very rapidly when the data used
to generate cj> was known exactly. However, to be
realistic, cj> was estimated after complex noise sam
ples were introduced and the resulting errors in <P
caused the results to fluctuate excessively. The iter
ation procedure was re-evaluated with the following
result:

The approximation of the phase term contains
an error component due to nois<;c This intum
causes the eigenvalues of iterati•m ·to be of the
form

2k
ei ~ 1 - 1f (1 + NY<T ~)

where

<T =_a_
~ ,,/mN

m = number of range cells in the sample space

a = function of the estimation procedure
(a = 2 for first forward difference esti
mates to of tf>)

This yields a degradation factor of

and thus to return to the desired specified degrada
tion (K' = K), the gains must be reduced by

l+a~.
This was inserted in the simulation and had the desired
effect of smoothing the filter output.

The above relation was established on an approxi
mate analysis bounding the desired result and may not
yet be the optimum answer but it· suffices for the time
being. For example, a reduction in gain of

(l + ajf')
also smoothed the filter output until wideband clutter
was inserted. In this case it appears that there is a
relation between the gain adjustment and the clutter
bandwidth give by

Where

N' = spectral spread in filter bandwidths
I

In any event, a choice of N = N does not slow down the
convergence appreciably and is the safest choice with
out apriori information on the clutter. Thus the rela
tionship actually implemented in the simulation is

W(k+l) =[I-Ag. P-1PJ W(k)+Ag P-l S

where

Ag= 2: (1+a~) -i

152

Results

A comptiter simulation of narrow and broadband
clutter was developed to test the validity of the rapid
convergence alg0rithm. The results are shown in Fig
ures 6 to B. Fignres 6 and 7 are included to indicate
nominally wbat happens when the filter is required to
simultaneously reduce the clutter response while main
taining a peak in the specified direction. ·. In fact, the
nominal response indicated in Figure 6 is the direct
result of.the choice of the steering vector (S). Fig
ure 7 indicates the adaptation of the filter for narrow
band clutter, which in this case results in a null at the
clutter location in doppler. For wideband cli.:itter, the
null is shifted somewhat towards the highest sidelobe
so that the smaller sidelobe can cancel the impact of
the higher one. (The two adjacent Sidelobes are out of
phase).

Figure B shows the improvement factor for sev
eral different cases as a function of the number of
samples. Note that the rapid convergence algorithm
(uncoupled loops) does converge much faster than the
coupled cases. The limitation on the broadband case
is a result of the choice of S and could be improved by
tapering "8" to yield lower nominal sidelobes and hence
lower residual clutter power. In all cases though the
coupled loops yield rapid convergence.

Summary And Conclusion

The results are very promising; particularly in
terms of the capabilities of the postulated associative
processor. Recall however, that samples are taken
over the range domain (i.e., identical filter weights
at all ranges) and hence some nice assumptions about
the range correlation of the clutter have been implic
itly included. One could conceivably postulate clutter
statistics unsuitable for these algorithms. Therefore
more effort is required for specific applications.
However, since the uncoilpled approximation
converges very rapidly, it is less dependent on the
assumptions and offers a higher probability of success
in real environments. For example, if 10 range cells
are needed for convergence, the range domain can be
divided into 10 cell increments and identical weights
would apply over 10 cells rather than the entire range
domain.

The primary problem of slow convergence rate,
then, has been gi;eatly reduced and in this regard. the
analysis using AP technology has been successful.
In addition, ·a partial solution to the broader problem
of realizable adaptive filter benefits in actual '.environ
ments has also been achieved by virtue of the more
rapid convergence. '

0

-10

iil
~ -20
z
Zi

" II

"' ...
.J
ii: -30

-40

-so

0

so

iii
~ 40
-;:
:J
0
II
z
\(_
z
II
z
\l 30

20

0

CLUTTER
Fl L TER RESPONSE

\
(CNR
= 40 dB)

iil
~
z
Zi
<!l
II

"' ...
.J
;;:

0.2 0.4 0.6 0.8 1.0

Figure 6. Nominal Filter Response

10

0 (CNR
= 40 dB)

-10

-20

-30

-40

-so

0 0.2 0.4 0.6 o.s

Figure 7. Adapted Response

(NARROW BAND CLUTTER) GAINS BASED ON
CNR AND PHASE

UNCOUPLED SYSTEM }

UNCOUPLED SYSTEM MEASUREMENTS
/ (Of= ONE BEAMWI DTH)

1.0

..--L----............. ------- ,,_. ---... -----_,... " ,,. , ~' ... A , \ , e• ,. / ~
/ \, \..J' '-- ••• •·•••

/ ·······~ ;~

., ······ •••
I •••••

•• ••
•• •• ••

•• ••

COUPLED SYSTEM
(GAINS BASED ON
CNR MEASUREMENTS)

• . ----.· ---------.. ----~-•• -- • - • ~ COUPLED SYSTEM DESIGNED
• - • - • FOR MAX CNR (SO dB) (FIXED

GAIN)

5 10 lS 20 25 30

NUMBER OF SAMPLES (RANGE CELLS)

Figure 8. Comparison of Approaches

153

3S 40

A RECEIVER FOR PCM CODEDDIGITONE AND MF SIGNALS
USING ASSOCIATIVE PROCESSING .

Eugene
(a)

S.Y. Shew and Jack M. Cott:on
Bell-Northern Research

Ottawa, Canada

·Abstract --;The techniques of discrete
Fourier transform (DFT) for the detection of
digitized signalling frequencies in telephone
signalling systems shows a great deal of inherent
parallelism which is well suited to implemen
tation using associative processing techniques.
This- paper reviews the background of DFT. and the.
characteristics of tone signalling in telephony
and develops algorithms for the parallel
calculation of signalling frequency power
spectra. The calculations a·re suitable for
implementation on a purposely designed
associative processor. Some estimates are
presented to show that a signaliing receiver
based on this technique is practicable.

1. INTRODUCTION

The Digitone(b) and MF (multifrequency)
receiver is an electronic filtering device.tuned
to a number of discrete frequencies in the voice
band with the ability to determine the presence
of the two strongest frequencies within a
prescribed period of time and from which to
determine a pre-arranged code. It is used in
telephone switching systems for the decoding of
Digitone digits and other supervisory signals.

In the conventional telephone offices where
switching is analog, the signal receiver usually
consists of a number of bandpass filters coupled
to some electronic or electro-mechanical logic
[l]. This paper, however, deals with receiving
such signals in a pulse code modubtion (PCM)
time-division-multiplex exchange by means of
digital filtering.

A number of receiver techniques for digital
signals have been advanced, such as the digital
counter technique. [2]. These suffer from the
common defect of not being programmable. A
programmable digital MF signal receiver using
discrete Fourier transform has been demonstrated
[3] to be practicable to implement using
special-purpose sequential hardware. The basic
discrete Fourier transform approach is adopted
here not only because it is well proven, but also
because the algorithm shows a great deal of
inherent parallelism amenable roassociative
processing.

Designing the receiver out of custom
designed associative processing cells [4] seems
to give a number of advantages. First, a modular
design would provide flexibility in configuring

(a)Now with ITT/TTC, Stamford, Connecticut.
(b}Trademark of Northern Telecom Limited for

Dual-Tone Multifrequ·ency Signalling,

154

various exchange office sizes·. Second, it would
be adaptive to other frequency ·sets. on either a
permanent or programmable ·basis. Third, the
expected increase in processing speed·would
~ke it possible to handle higher data rates.

2. INPUT DATA

The Digitone frequencies consist of eight .
well-defined audible frequencies normally
originating from a Digitone telephone set.. As
shown in Figure 1, four frequencies represent the
columns and the other four represent the rows.
Hence, activating ·a key transmits two frequencies
to the switching centre. Although the fourth
column is normally not present in a telephone
set, it is nevertheless used in other signalling
devices (e~g., voice response systems) and the
1633 Hz frequency is recognized. In addition,
the receiver needs t-0 detect the two dial tone
frequencies for power comparison. -Thus, Digitone
frequency analysis involves 10 frequencies.

Multifrequency pulsing (or MF} is a method
fDr inter-office coDUnunication. Signals such a$

trunk switching, calling number forwarding, and
call supervision are transmitted and received

1209 1336 1477 1633 Hz
I

697 Hz CJ@j(±J

Dial Tone : 350 + 440 Hz

Fig.I. The Digitone and Dial Tone Frequencies

using two out of six frequencies in the voice
band: these are 700, 900, 1100, 1300, 1500, and
1700 Hz. These signals may come through the same
paths as the Digitone frequencies, but the two
sets of frequencies do not mix within an analysis
period.

3. INPUT SIGNAL CHARACTERISTICS

An analog signal of voice or combined signal
frequencies is first sampled to produce PAM
(pulse amplitude modulation) pulses. Twenty-four
channels are multiplexed to produce interleaved
PAM pulses at discrete time intervals. The
encoder converts the magnitude of each PAM pulse
into an 8-bit code. This conversion causes
round-off errors which result in what is known as
quantizing noise.

The effect of quantizing noise can be
reduced by increasing the number of quantizing
levels and by a coding technique known as
companding [5]. The 8-bit companded code format
is shown in Figure 2 where the sample is
represented by a sign bit, a 3-bit exponent of
base 2 (L), and a 4-bit mantissa (V). Companding
provides smaller quantizing steps in the range
whete signal probability is high, and larger
quantizing steps where signal probability is low.

As the first design objective and for
compatibility, the receiver will interface with
Tl trunks which have a format of 24 channels per
frame, and 8 bits per channel with a data rate of
1.544 MHz or 125 microsec sampling rate per
channel.

4. SYSTEM CONFIGURATION

to provide 16~bit accuracy, making it a dual
receiver, As shown in Figure 3, n receivers are
controlled by a coDD11on control and a shared
program store. The ROM (read only memory) feeds
the receiver with pre-defined constants peculiar
to the set of frequencies being analyzed. The
output is either a digit or a null.

5. STEPS TO SOLUTION

The following analysis centres around the
Digitone detection because it is more complex
than the MF, but the algorithm is the same.

The simplified flowchart in Figure 4 shows
the necessary iterative functions which must be
performed in real time and whose implementation
will be discussed in detail later. The final
computation and the rest of the digit recognition
logic is not critical· in terms of time or storage
and requires no novel schemes, we do not intend ·
to deal with its implementation in this paper.

TIMING

·1 PROGRAM.

ROM STORE
CONTROL.

l

c HANNEL 0
1---- DUAL

DIGIT
Three criteria dictated the receiver design: c HANNEL 1

RECEIVER
DIGIT the analysis algorithm, which will be discussed

later, the sampling rate, and the partial result
accuracy necessary to achieve a high detection
probability. The proposed design consists of a
basic 12 by 12 array sufficient to handle two
channels in the 125 microsec sampling·. period and

t=l25
t=O psec.

l J
[!channel 1 I Channel 21 • • • !channel 241

/
I s I L v

Bit 0 1 2 3 4 5 6 7

Fig.2. Data Format on Tl Trunk

155

c
c

0

• •
• .
• •

~ DUAL
HANNEL 2n

RECEIVER
HANNEL 2n+l

n

Fig.3. System Organization

•
•
•

DIGIT

DIGIT

A. Decompanding and Windowing

The first step is to decompand (or expand)
the 8-bit sample value to its 12-bit linear form
by applying the following simplified equation!

Linear Word 2L .(V+l6.5)

where: L
v
16.5

is the 3-bit exponent
is the 4-bit mantissa
pertains to the characteristic
of the quantization.

Successful analysis of the samples requires
that they be properly windowed in order to
present a well-defined frequency spectrum to the
analysis program. The window (6] consists of a
series of weighting constants, one for each
sampling period. There is one window of 160
samples for Digitone equivalent to 20 msec, and
another window of 80 samples for MF equivalent to
10 msec. Thus each sample would be weighted by a
unique window constant before it is analyzed. The
telephony standard specifies that a valid
Digitone signal must be greater than 40 msec;

Y1 (nT)
Y2 (nT)

NEW SAMPLE n AT PERIOD T
X(nT)

X(nT)=DECOMPAND (X(nT)]

X(nT) = WINDOW • X(nT)

Cw1 Y1(nT-T)
cw2 Y2 (nT-T)

+ X(nT) - Y1(nT-2T
+ X(nT) - Y2(nT-2T

2 P(total) = P(total) + X(nT)

EXIT.
WAIT FOR NEXT SAMPLE

Fig.4. Goertzel Iterative Computation for
n = 0,1,2, ••• ,N Samples

156

hence, a 20 msec analys:l.s interval ensures·at
least one try on the shortest possible Digitone
signal, The time specification for MF is derived
in a similar manner,

B, Short Term Power Spectrum

The basic approach is to compute the short
term power spectrum over .the frequency band
desired, then locate the two frequencies having
the highest powers. If they are from the two
orthogonal groups, the digit can be determined.

The power spectrum computation is done by
discrete Fourier transform and is the critical
path of the frequency analysis. The two
well-known ways of performing a discrete Fourier
transform, namely the fast Fourier transform
(FFT} and the Goertzel algorithm, both exhibit
highly parallel mathematical manipulations.
Comparitive studies have shown that for the
detection of k frequencies over N samples, FFT
requires N words to do 2log2N multiplications and
3log2N additions; while Goertzel needs k words to
do (N+l) multiplications and 2(N+l) additions.
Thus although FFT is faster, Goertzel requires
much fewer words in our receiver application.
Furthermore, an extra step of frequency
interpolation will be required in the case of
Digitone if the result is derived from FFT.
Therefore Goertzel gives a better speed/storage
trade off.

The Goertzel algorithm has two parts: the
iterative computation and the final computation.
The iterative equation is:

y(nT) = Cw.y(nT-T)+x(nT}-y(nT-2T)

where: x(nT)
y(nT)
y(nT-T)

is the sample at time nT
is the interim output at nT
is the output of the previous
sample

y(nT-2T) is the output of the next
previous sample

Cw 2cos(wt) for frequency w.

For n samples, this equation iterates n times and
there would be one equation for each frequency
coefficient, Cw, 10 for Digitone and 6 for MF.
Since each iteration involves a new sample and
depends on the result of the last two samples,
the associative processor must be able to
complete all equations within one sample period.

C. Final Computation

The final computation of the Goertzel
algorithm is done only once. It is:

Y(nT)' = -exp(-jwt) .y(nT-T)+y(nT)

where: -exp(-jwt) is the complex coeffic-ient
for frequency w

Y(nT) is the final complex power
output.

This computation and others can be performed at
the end of the windowing period.

6. ASSOCIATIVE IMPLEMENTATION

Implementation of the iterative equation is
not straightforward in a small associative array
such as we propose, if we are to make best use of
the space available. Functions have to be built
up by a hierarchy of macros starting from the
primitive micro-instructions.

A. A Simplistic Approach

A simple associative processing (AP)
approach to the Goertzel algorithm is illustrated
in Figure 5. The availability of local memories
(M's) is not assumed here in order to explain the
basic AP capabilities used. Shown in Figure 5 is
an array of k words (k=lO for Digitone) by 6
fields; the field length is dependent on the
accuracy required. Field F6 holds the k different
frequency coefficients which remain unchanged
throughout the iterative loop.

A new decompanded sample is written into
field Fl. Now the iterative computation can
begin. F3 is moved to F5 then multiplied by F6
leaving the most significant bits (msb) in F4.
F2 is subtracted from F4 and Fl is added to F4.
After shifting fields Fl to F4 to the left by the
field length, we are ready for the next sample.
At the end of N samples, F4 and F5 hold the power
of the frequencies.

2

k

Bit Fields

Fl F2 F3

X(nT) Y(nT-2T) Y(nT-T)

X(nT) Y(nT-2T) Y(nT-T)

. . .
. .

. . .

X(nT) Y(nT-2T) Y(nT-T)

Current Next to Last
sample last output

output

F4 F5

Work
Space

F6

cl

C2

.

.

.

ck

Frequency
coeffi
cients

Fig.5. Large AP Array Layout for the Comutation
of a Discrete Fourier Transform by the
Goertzel Algorithm.

157

B, Compact Approach

From the operation just described, it seems
clear that not all the fields take part in the
manipulation at the same time; e.g., during the
multiplication of F3 and F6, Fl and F2 need not
be present, In fact, only fields F4 and F5 need
to have an arithmetic capability if fast
bit-to-bit communication is available to the
other fields. This in essence is the rationale
behind the BNR associative processor cell
architecture which calls for eight M pages (local
memories) and one A page (auxiliary memory or
travelling accumulators). It will be demonstrated
in this paper that a 12 by 12 array is capable of
performing this computation for two channels by
storing the operands in the M's and doing
calculations in the A. Accuracy longer than the
word length can be achieved by factoring the
operands into short pieces then combining their
partial results.

Proper placement of operands in the M's is
crucial to the optimum operation of the array,
and nowhere is it more evident than in the
placement of frequency coefficients and the
windowing factor. Figure 6 shows the 10 frequency
coefficients (for Digitone) broken up into three
equal parts, stored in bits 0-3 of words 2-11 in
pages MO-M2. They remain there until the receiver
switches to a different set of frequencies (e.g.,
MF). The 8-bit windowing factor is stored in bits
4-11 of word 0 and repeated in word 1 of page M4.
A new factor must be loaded for each new sample.
The undesignated memories will be allocated
later.

C. The Basic 4 by 8 Multiplication

Basic to the iterative computation is the 4
by 8 bits multiplication shown in Figure 7. It is
a successive, conditional addition algorithm
commonly found in many computers except done in
parallel for any number of words. For simplicity
only two words are shown here. One of the M's
holds the multiplicands in bits 4-11. The A is
initially loaded with the multipliers in bits
0-3. By loading one bit-slice at a time from the
multipliers into the mask register (MR), the
partial sums which need to be added are selected.
Steps (1) to (6) show the changes of A as the
partial sums are built up to the final 12-bit
product.

D. The 16 by 12 Multiplication

The most complex operation in the Goertzel
iterative equation is the multiplication of
y(nT-T) by Cw as indicated in Figure 4. This is a
12 by 16 bits multiplication giving a possible
28-bit product from which the most significant 16
bits are kept. Figure 8 shows the use of the
basic 4 by 8 multiplication to achieve this
result. The 16-bit multiplicand is expressed as
the sum of two 8-bit terms, and similarly the
12-bit multiplier is expressed as the sum of

three 4-bit terms. The sum of the six partial
products after scaling constitutes the final
product. However, since only the 16 most
significant bits are needed, some simplifications
are possible:

a. Step (1) may be ignored because it does not
contribute to the 16 msb.

b. In step (2), only the 4 msb from the product
is saved in the work space.

Page MO

Page Ml

Page M2

Page M4

BITS

0 2 3 4 5 ••• 10 11

0

1 -----T---------
2

3

11

0

1

Cw1 0-3 1
I

cw2 0-3

I- - - - --- - ·-
_____ _,

2 Cw1 4-7 1
I

3 Cw2 4-71

I

I
11 Cw10 4-71

0

I- - - - - "T -- - - - - - - _,

2 Cw1 0-1~
3 Cw2 B-1~

I
I
l

11 Cw10 n-1 11

0 Window Factor
Window Factor ---------

Fig.6. Loading of Goertzel Frequency Coeffients
and Window Factor

158

c. After step (3) is done, the result from (2)
is added and only the 8 msb are saved.

d. The result of {3) is added to the result of
(4) and the 8 msb are saved.

e. All of step (5) is saved.
f. The result of step (6) is right-shifred 4

places and then the result of (5) is a.dded,
This is the final result.

MR

DD
HOUT

DD

0 1 2 3 4 5 6 7 8 9 10 11

Multiplicands - 8 bits

XX X X10 0 0 0 1 1 0
I M

xx x x 1 o o o 1 o

Multipliers -
4 bits

0 1

1 1

Q 1 I Q Q Q Q Q 0 Q Q

1 0 : 0 0 0 0 0 0 0 0 A

(1) Read bit 3 to HOUT register

0 1

1 1

Q 1 I Q Q Q Q Q Q Q Q
I

1 0 1 0 o o o o o o o A

(2) Move HOUT

~DI

QJD

DD

DD

0

1

(3) Clear bit 3

4 Add M to A

1 0 0:-0 0 0 0 1 1 0 il
1 1 0 1 0 0 0 o~_o_~A

(5) Right shift end-around once

1 0 1 010 0 0 0 0 1 1 0
I

0 1 1 1 1 0 0 0 0 0 0 0 0 A

Repeat steps (1) to (5) 3 more times

6) Left shift end-around 4 times

0 0 0 110 0 0 0 0 1 0 0

0 1 0 l I 0 0 0 l 0 l 0 0 A

Fig.7. 4-bit by 8-bit Multiplications

2
3

11
2
3

11

2
3

11

2
3

11

2
3

11

2
3

11

2
3

11

2
3

11

Multiplicand 16 bits) * (Multiplier 12 bits)

8 upper + 8 lower) * (4 upper + 4 med. + 4 lower

Ud.2 8 + Ld) * (Ur.2 8 4
) = + Mr.2 + Lr

Ud.Ur.2 16 + Ud.Mr.2 12 + Ud.Lr.2 8 + Ld.Ur.2 8 + Ld.Mr.2 4 + Ld.Lr

STEPS lo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 211

(6) Ur Ud

(5) Mr Ud

(4) Lr Ud

(3) Ur Ld I
(2) Mr Ld

(1) Lr Ld

Fig. 8. The 16-bit by 12-bit Multiplication

0 1 2 3 4 5 6 7 8 9 10 11

c 0-3
w

c 4-7
w

c 8-11 w

Spare

Spare

Spare

Work
Space

Work
Space

Y1 (nT-T) msb

Y1 (nT-T) lsb

;
I
1 Y1 (nT-2T) msb

l
' I j Y1 (nT~2T) lsb

I
I

: · Y 2 (nT-T) msb
l

:
: Y2(nT-T) lsb

l

: Y2(nT-2T) msb
I

i
: Y2(nT-2T) lsb

:

Page

MO

Page

Ml

Page

M2

Page

M3

Page

M4

Page

MS

Page

M6

Page

M7

0 l 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 Page

1 _ o _ ~ _ o _ E _ o_ ~ _ o_ ~ _ o __ o __ o MO

0

1

0

1

0

1

1Total Power x1 msb

_____ t:o_:a~ _:o.:'.e!: ~2... ~~b __

Page

Ml

Page

M2

1Total Power x1 lsb Page

- - - - _jT~t~l_P~w:: _x2. _!~b- - M3

1 indow Factor Page

'Window Factor M4 -----L------------

Figure 9: The Allocation of Operands for the
Iterative Computation of two channels

Figure 10: Squaring and Total Power
Accumulation

159

E. Iterative Computation

In order to perform this piecemeal
multiplication efficiently, the sub-operands must
be placed for easy access. This is the reason why
the frequency coefficients are so distributed.
Figure 9 shows the allocation of the
sub-multiplicands and working spaces. Channel 1
(xl) uses pages MO to M3 in which the 16 bits of
y(nT-T) occupy MO and Ml while y(nT-2T) occupies
M2 and M3. Similarly channel 2 (x2)uses pages M4
to M7. Thus the two samples are operated on by
the same procedure one at a time using the same
sets of multipliers and work spaces.

After the Cw and y(nT-T) are multiplied, the
product is split up between _the work spaces and
the A. Subtraction of y(nT-2T) is done by first
operating on the least significant bits (lsb),
adding the carry (from the HOUT register) to the
msb of y(nT-2T) then operate on the most
significant bits. The difference is stored in
the position of y(nT-2T). After adding the x(nT)
to the least significant bits the data are ready
for shuffling in preparation for the next
iteration. This is simply swapping between the
y(nT-2T) positions arid the y(riT-t) positions.

The last part of the iterative computation
is the total power· accumulation. The squaring
operation is an 8 by 8 multiplication which can
be split up similar to the Cw and y(nT-T)
multiplication. By placing the operands in the
manner shown in Figure 10, it can be performed
at the same time as Cw.y(nT-T).

F. Simulation

Using an AP
370/168, we have
multiplication.
estimated to be
this simulation
parameters.

simulation program in IBM
simulated the 4 by 8
Execution speed has been

about 1;05 microsec by means of
and preliminary call design

G. Execution Time

As stated earlier, the receiver design
stands or falls on its ability to complete the
iterative computation within.the sampling period
of 125 microsec. Since it's a dual receiver, the
time available for the computation is cut to half
or 62.5 microsec. The following shows the
calculated execution time for each part:

Window multiplication
Decompanding
Cw.y(nT-T)
+x(nT)
-y(nT-2T)
Total Time

9.35 microsec
2.62

41.98
1.20
2.20

57. 35 microsec-

160

TW.s 'is witW.n the sampl;Lng period.

7, CONCLUSION

This paper has shown the technical
feasibil:l.ty of a: receiver design using custom
designed associative processing cells. Assuming a
12 by 12 array, it has demonstrated that such a
receiver is capable of handling two channels
producing 16-bit accuracy and still have time and
memory spaces to spare. However, it is a flexible
design because both the accuracy and execution
speed can be improved by increasing the word
length and/or the number of words per channel.

References

[l] Robert H. Beeman, 'Improved Multifrequency
Receiver for 2/6 Code Communications
Switching', IEEE Transaction on Communication
Technology, vol. COM-18, No. 3, pp 165-167,
June 1970.

[2] Kunihiko Niwa, Mitsutake Sato,
'Multifrequency receiver for Pushbutton
Signalling Using Digital Processing
Techniques', IEEE International Conference
on Communications, pp 18f-l-5, June 1974.

[3] Ivan Koval, George Gara, 'Digital MF
Receiver Using Discrete Fourier Transform',
IEEE Transaction on COllllllunication, vol.
COM-21, No. 12, pp 1331~1335, December 1973.

[4] Jackylene Hood, Maitang Mark, Jack Cotton,
'Architecture and Simulation of an
Associative Processor Integrated Circuit'
International Conference on Parallel
Processing, Wayne State University, August
1976

[5] Member of the Technical Staff, Bell. Telephone
Laboratories, 'Transmission Systems for
Communication', 4th edition, Bell Telephone
Laboratories, Inc.

[6] B, Gold, C .M. Rader, 'Digital Processing of
Signals', McGraw-Hill, 1969.

RADAR DATA PROCESSING ON THE ALAP

Hubert H. Love, Jr,
Strategic Systems Division
Hughes Aircraft Company

Los Angeles, California 90005

Abstract - - The distinguishing features and
some typical operations are described for the
Associative Linear Array Processor (ALAP), a
highly-parallel computer. Emphasis is given to
operations, employing a chaining channel, that
permit parallel arithmetic to be performed
between the contents of sets of cells, Next, an
application program for the ALAP, which per
forms radar track correlation, association and
prediction, is described, and several program
ming techniques are illustrated.

Introduction

The Associative Linear Array Processor is
the result of an internally funded development
effort at Hughes Aircraft, the objective of which
was the development of a low-cost associative
memory suitable for both arithmetic and non
arithmetic applications. The project effort has
resulted in the design and fabrication of a complete
associative processor system, including LSI
wafers containing the ALAP cells, and the pro
gramming of support software and application
programs for the system. The subject of this
paper is one of the application programs, which
performs several of the more critical functions
of radar data processing. The program has been
written and checked out, using a symbolic assem
bler and a simulator program operating on the

,Sigma 9 computer.

The remaining sections of the paper give a
very brief description of the ALAP design, a more
thorough discussion of the general programming
techniques for the ALAP for arithmetic applica
tions, and a description of the radar data process
ing program itself. Emphasis is given to the
chaining channel, which is one of the more unusual
features of the ALAP, in both the hardware
description and the programming techniques dis
cussion. A more thorough description of the
ALAP design is found in reference [l]. Brief
descriptions of the ALAP design and a non
arithmetic application are given in references [2]
and [3], respectively.

General Description of the ALAP

Figure l shows the general organization of
the ALAP Demonstrator System. The principal
component of the system is the ALAP memory
module, in which essentially all computation,
except for some I/O processing, is performed.
Programs and constants reside in the general
purpose processor, a General Data NOVA mini
computer. The minicomputer controls the
sequencing of the instructions and furnishes the
control information and data for the instructions

161

to the ALAP memory through the Interface Unit.
The Interface Unit can hold several instructions
in advance of their execution, and thus permits
the ALAP memory to operate with minimal delay
between instruction cycles. The ALAP Demon
strator Unit interfaces with the user through a
Teletype.

r-1 TELETYPE

I
I ~~6A
I CONTROL

DIRECT
PROGRAM
CONTROL

GENERAL-
PURPOSE
PROCESSOR

DIRECT
MEMORY
ACCESS

INTERFACE
UNIT

ALAP
MEMORY
ARRAY

Figure 1. The ALAP Demonstrator

The general organization of the ALAP mem
ory is illustrated in Figure 2. The ALAP mem
ory consists of an arbitrary number of associative
cells interfacing with four communication chan
nels. Two of these channels are common bus-
ses that permit common items of data to be
input from the Interface Unit to one or more
(software-selected) ALAP cells simultaneously.
The third channel, also a common buss, permits
data to be output from one or more (software
selected) ALAP cells to the Interface Unit. (If
data from more than one cell is output, the data
is logically OR-ed on the channel.)

TO
CONTROLLER

ALAP
CELL

Figure 2.

COMMON DATA AND CONTROL CHANNELS

ALAP
CELL

CHAINING
CHANNEL

•••

CHAINING CHANNEL

ALAP
CELL

The ALAP Memory Array General
Organization

The fourth channel, the "chaining.channel",
connects each cell to its neighbor, and thus orga
nizes the cells into a linear array. This channel
is not a common buss. The data output onto this
channel from each cell during program execution
will in general be different at different cells. The
chaining channel transfers data in one direction ·
only, a fact that, as will be described, leads to
some interesting programming techniques. The
chaining channel and all three of the common
channels are bit-serial in operation.

The figure shows the array connected ''end
around" with respect to the chaining channel. This
is a software-controlled option; the first and last
cells can be linked or not as desired for the parti
cular operation being performed.

An ALAP memory wafer contains all chain
ing channel logic for its cells, as well as the re
maining cell logic. An entire wafer has only 20
external connections; this number is independent
of the number of cells which the wafer contains.

Figure 3 is a simplified diagram of the struc
ture of an ALAP cell. The cell holds its data in
a bit-serial "data register". In the ALAP.mem
ory wafers fabricated at Hughes, the data regis -
ters are 64 bits in length. The data register
interfaces with the cell's arithmetic logic, the
chaining channel and the three common channels
(the latter are not illustrated by the diagram) by
means of logic that is set under program control
at the individual cells. The state of this logic for
each cell is determined by the settings of the bits
in the cell's "flag register". This is a six-bit
register, also bit-serial in operation, that inter
faces with the communication channels. A sepa
rate flag, called the "head flag 11 , together with
some additional logic, permits the flag settings
in the flag register to be rearranged as the
register is shifted, and to be AND-ed and OR-ed
together in the process, if desired.

CHAINING
INPUT

AAITH.
LOGIC

HEAD
FLAG

FLAG
REGISTER

.)11 ___ ... ______ ..,.CHAINING

OUPUT

DATA REGISTER
164 BITS)

Figure 3. The ALAP Cell General Organization

The principal instruction-execution operation
performed by the AI,AP memory is called the

162

''word-cycle'' operation.. This operation consists.
of shifting the data registers of a selected subset
of the cells. The number of bit positions shifted
is software controlle~ It is usually 64, the length
of the data registers. During this operation, data
coming into the cell from the chaining channel or
one of the common channels may replace the con
tents of the data register, or else may be arith
metically or logically combined with the contents
of the data register. The results of an arithmetic
operation at the cell may replace the contents of
the cell 1 s data register, if desired. At the same
time, either the previous contents of the data
register or the results of the arithmetic operation
may be output onto the chaining channel to the
next cell. Alternatively, during a word-cycle
operation, the cell may simply act as a relay for
the chaining channel data, transferring the incom
ing data onto the next cell in the array and per
forming no other function.

The arithmetic or logical operation per
formed at a cell during a word.:;cycle operation is
determined by the settings of global control lines
common to all cells. The selection of. the cells
at which the operation takes place is made by the
setting of one of the bits in the flag register. In
the cells thus selected, the operations take place
between the incoming data and the data register
contents. They include exact match, addition,
subtraction, step-multiplication and step-division.

The operation of the chaining channel logic in
each cell during a word-cycle operation is deter
mined principally by the settings of two of the bits
in the cell's flag register. With respect to the
chaining channel, then, the cells can be consid
ered for practical purposes to operate independ'
ently of one another. The settings of other nae:
bits in a cell during word-cycle operations vari
ously determine whether data is to be input to or
output from the cell via one of the common chan
nels, whether a match operation was successful,
or whether overflow occurred during an arithme
tic operation.

In addition to the word-cycle operation with
its various options, there is a class of subordi
nate operations, called "flag-shift" operations,
that are performed in the ALAP memory. These
operations consist of shifting the flag registers at
all cells while performing logical operations at
each cell among the register contents, the head
flag and the input from the chaining channel (the
latter consisting of flag information from the
previous cell in the array.) The states of
selected flags may be output via the chaining
channel to the next cell in the array during flag
shift operations.

The general operation of the ALAP memory
during program execution consists of alternating
sequences of flag-shift operations, which set the
states of the flag register bits and head flags as
desired, followed by single word-cycle operations
during which each cell performs according to the
combination of global control states and its
internal flag settings.

Figure 4 illustrates the way in which the
cells in a segment of an ALAP memory perform

parallel arithmetic operations, using their
chaining and arithmetic logic. These cells are
set up to calculate two separate sums, A+B+C+D
and F+G, during a single word-cycle operation.
The first cell in the segment contains the operand
A. During the word-·cycle operation, this cell
shifts the contents of its data register onto its
chaining channel output to the second cell. The
second cell contains the operand B. During the
word-cycle operation, this cell adds the data at
its chaining channel input to the contents of its
data register, shifting the sum onto its chaining
channel output. The chaining logic in the third
and fourth cells are set to relay state; these cells
relay the chaining channel data to the fifth cell.
At the fifth cell, another addition takes place,·and
the sum is relayed past the sixth cell to the sev-'
enth. Here the final sum, A+B+c+D, is calcu
lated. However, instead of being output to the
next cell, it is stored in the same cell, replacing
the cell's previous contents, D. Simultaneously
with the computation of this sum, the other sum,
F+G, is calculated from the contents of the eighth
and ninth cells and stored in the last cell. This
entire operation is bit-serial; both partial sums
are calculated for each bit of the operands in turn
as all of the data registers are shifted. One clock
cycle time is required for each bit. Since there
are several gate delays at each cell because of
chaining and arithmetic logic, the clock rate,
which is program-controlled, is set slow enough
so that each bit of the initial operands A and F
can propagate through the entire sequence of
operations before the next bit is processed.

A+B

s DOC
F-tG F A+S+C

1 t 1 t
~F-tG II G I ~I F

D,A+B+c+o D
. Figure 4. Arithmetic Operations Using the

Chaining Channel

General Programming Techniques

The ALAP design is general-purpose in that
it is suitable both for arithmetic applications,
such as the radar data processing application to
be described, and for such non-arithmetic appli
cations as fact retrieval and text processing. In
the latter two applications, the ALAP memory is
often programmed to operate as a single long
shift r·egister, using the chaining channel. This
alleviates many problems normal! y encountered
in processing variable-length data items in fixed
word-length machines. ·

161

In arithmetic applications, the programming
techniques for the ALAP are quite different. The
radar data processing program in particular re
presents an example of what might be termed a
"block-oriented" application with respect to the
parallel-processing techniques which are em
ployed. That is, for this application, it is conve
nient to partition the ALAP memory (by software
means) into "blocks 11 of contiguous cells, each
containing the data and associated working stor
age (which must also be replicated if parallel
processing is to be possible) for a single object
being tracked.

Figure 5 illustrates the division of an ALAP
memory into a number of blocks. The memory
is connected "end-around" with respect to the
chaining channel, the purpose for which will
later be apparent.

Figure 5. General Memory Layout for Block
Oriented Data Processing

The technique for processing all blocks in
parallel requires that the corresponding operands
and working storage be in the same relative cell
locations within all blocks. In addition, the first
cell in each block is reserved as a "header word".
All header words have a special tag in a reserved
field, thus enabling them to be identified and
tagged by means of a single parallel match
operation. Once this is accomplished, flag shift
operations can both set the head flags at all cells
to the states of their corresponding match flags
and then, using the chaining channel, can advance
all of the head flag settings past any desired num
ber of cells simultaneously .

The result of this sequence of operations is
to leave the head flags set at exactly those cells
in all blocks that are to be set to a particular
arithmetic and chaining state. Subsequent flag
shift operations can then logically OR the head
flag states at all cells with the states of the de
sired corresponding flag register bits. The OR
operation ensures that the flag settings will be
made at only those cells in which the head
flag is initially set {to 1).

Figure 6 shows a block of 69 ALAP cells as
they are employed in evaluating a set of six
arithmetic functions. The set of functions is

WORD INITIAL AFTER AFTER FIRST AFTER SECOND AFTER AFTER
NO. CONTENTS COPIES MULTIPLY MULTIPLY ADDITION SUBTRACTION

1. Header Header Header Header Header Header
2. D(4)
3. P(l, 1)
4. D(4) P(l, l)
5. P(l, 2)
6. D(4) P(l, 2)
7. 2
8. 2 D(4) P(l,2)
9. P(l, 3)

10. D(4), P(l,3)
11. 2 D(4) P(l, 3)
12. P(l, 2)
13. 2 P(l,2)
14. P(l, 3)
15. 2 P(l,3)
16. 4
17. P(2, 2)
18. 4 P(2,2)
19. 8
20. P(2, 3)
21. 4 8 P(2,3)
22. P(3,3)
23. 4 P(3,3) P' (1, 1)
24. D(4)
25. P(l ,2)
26. D(4) P(l,2)
27. P(l,3)
28. D(4) P(l,3)
29. 2
30. 2 D(4) P(l,3)
31. P(2, 2)
32. 2 P(2, 2)
33. 6
34. P(2,3)
35. 6 P(2,3)
36. 4
37. P(3,3)
38. 4 P(3,3) P'(l,2)
39. D(4)
40. P(l, 3)
41. D(4)P(l,3)
42. 2
43. P(2, 3)
44. 2 P(2, 3)
45. P(3, 3)
46. 2 P(3,3) P' (1, 3)
47. D(5)
48. P(l, 2)
49. D(S) P(l,2)
50. P(l, 3)
51. D(5) P(l,3)
52. 2
53. 2 D(S) P(l,3)
54. P(2,2)
55. 4
56. P(2, 3)
57. 4 P(2,3)
58. P(3, 3)
59. 4 P(3,3) P' (2,2)
60. P(l, 3)
61. D(5) P(l,3)
62. P(2, 3)
63. 2
64. P(3, 3)
65. 2 P(3,3) P 1 (2,3)
66. P(3, 3)
67. D(3)
68. D(3) P(l,3)
69. K P (3, 3) + K P' (1, 3)

Figure 6. Memory Layout for Arithmetic Example

164

taken from the track prediction part of the radar
data processing program. This figure will help
in describing the way in which arithmetic opera
tions are combined within blocks, as well as being
performed for all blocks simultaneously. It will
also be used as an example to illustrate the flag
setup processes described in ,the preceding
paragraphs.

The set of functions to be evaluated is the
following:

P'(l, 1)

P'(l, 2)

P'(l, 3)
P'(2, 2)

P'(2, 3)

P'(3, 3)

D(4)P(l, 1) + 2D(4)P(l, 2)
+ 2D(4)P(l, 3) + 2P(l, 2) + 2P(l, 3)
+ 4P(2, 2) + 8P(2, 3) + 4P(3, 3)

D(4)P(l, 2) + 2D(4)P(1, 3) + 2P(2,2)
+ 6P(2, 3) + 4P(3, 3)

D(4)P(l, 3) + 2P(2, 3) + 2P(3, 3)
D(S)P(l, 2) + ZD(S)P(l, 3) + P(2, 2)
+ 4P(2, 3) + 4P(3, 3)

D(,S)P(l, 3) + P(2, 3) + 2P(3, 3)

P(3, 3) - D(3)P(l, 3) + K

The evaluation of these functions, if per
formed by a serial processor, requires 20 addi
tions, 1 subtraction and 28 multiplications
(including shift operations for multiplying by
powers of 2 in fixed point). By combining opera
tions within the block, the ALAP memory can per
form the evaluation with a total of one addition,
one subtraction, two multiplications and 9 copy
operations, independent of the number of blocks.
(The copy operations, necessary in rearranging
data within the block, have approximately the
same execution time as additions with the same
number of operands and the same relative spac -
ings between cells.)

Figure 6 contains seven columns of figures.
The first of these is a list of the word numbers
for the ALAP cells whose contents are illustrated.
(These ;numbers are assigned by the programmer
only for convenience, since the hardware is sen
sitive only to cell order or relative position.)
The direction of the chaining channel is in the
order of increasing cell number. The second
column contains the initial cell contents before
initiation of calculations. The third column
shows the changes in the cell contents result-
ing from the nine copy operations. The
remaining columns show the changes in cell
contents for each of the remaining operations.

The initial operation in evaluating the six func
tions is that of setting all .A,LAP cells to the relay
chaining state. This is the default chaining state
for all arithmetic operations. Next, the match
flags are set at all cells and a parallel match
operation is made to identify all header words.
The match flags will be reset at all nonmatching
cells by this operation. Next, flag shift opera
tions are performed to set the head flags at all
words to the states of their corresponding match
flags.

The process of setting up the cells to perform
the copy operations now begins. A flag shift
operation is executed which transfers the state of

165

the head flag at each cell via the chaining channel
to the head flag at the next cell. This operation
requires one clock time.

With the head flags now set at Cell 2 of all
blocks, flag shift operations using OR and AND
functions are used to set the flag registers at
these cells so that they will shift their data
register contents onto the chaining channel during
the next word cycle operation. The operation of
chaining the head flag states is now repeated for
22 clock. times, thus setting the head flags at
Cell 24 of every block. These cells are then set
to input the data from the chaining channel into
their data registers during 'the next word cycle
operation. The data will also be output on the
chaining channelfromthese cells, thus making a
multiple copy operation possible.

Next, the head flag chaining operation is
repeated for 15 clock times, and all Cell 39' s
are set to the same. state as the Cell 24' s ., The
set-up operation for the first copy operation is
now complete, ,and a word-cycle operation is
next ~xecuted, copying the operand D(4) from
Cell 2 of every block into Cell 24 and Cell 39,
with all intervening words being in the default
relay state as previously set.

The remaining copy operations shown in the
third column of t~e figure are performed in sim
ilar fashion to the first, except that some time
can usually be saved by having previously stored
the states of the head flags at the header words
in some otherwise unused flags. This avoids
having to repeat the match operation each time;
the flag-shift operations needed to reset the head
flags are much faster.

The first of the two multiply operations is
next set up and executed. Flag shift operations
similar to those for the copy operations are used
to set the flag registers in the cells containing the
multipliers, multiplicands and products to corre
sponding chaining and arithmetic states. It will
be noticed that a single multiplier c.an take part
in more than one multiplication operation simul
taneously as long as there are no conflicts on the
chaining channel. For example, the operand D(4)
in Cell 2 .is multiplied by the operands in Cells 3,
5, and 9 to pr educe products in Cells 4, 6, and
10, respectively.

Multiplication is performed by a subroutine
which performs repeated step-multiply operations
The number of step-multiply operations is equal
to the number of bits in the multiplier. As each
step-multiply operation requires· a complete word
cycle, the multiplication process is the most
time-consuming operation of the entire arithmetic
calculation process.

The second multiplication operation follows
the same order of setup and execution as the
first. The single addition operation is performed·
next. In this operation, several operands are
added together at once. For example, a:ll of
Cells 4, 8, 11, 13, 15, 18, 21 and 23 are·added
together, with the sum being put in Cell 23.

After the addition operation is completed, all
of the functions except the last have been evaluated.
The subtraction operation is then used to complete
the evaluation of the last function. The cell states
for subtraction are the same as for addition, but
the word cycle operation includes the global sub
tractfon command rather than addition. ln each
of the columns in the figure the cell contents are
shown only for ·those cells whose contents have
changed since th,e preceding operation.

. .

Some interesting problems arise in block
oriented applications because of the uni-directional
chaining channel. The radar data processing
program is cyclic. It repeats all of its operations
during each cycle, operating on new data
extracted from the input from the radar antenna
and on data calculated during the previous cycle.
In particular, the values of the six functions
evaluated in the example just discussed will be
used in evaluating these same functions during
the next cycle. For example, the value of
pr (1, 1) will be the next value of P (1, 1). It is
apparent that the chaining channel presents a
problem when the data in the block must be
rearranged to put it in the original relative order
prior to reevaluating the functions. For example,
pr (1, 3) cannot be moved back from cell 6 9 to
cells 9 and 14 to be the new P(l, 3).

Since the data cannot be moved backward
within the blocks along the chaining channel, the
solution to the problem is to move the blocks
forward instead. That is, instead of moving the
new function values back, the program moves
everything else in the blocks forward, including
the header words, thus effectively relocating all
of the blocks. Since this is done parallel by
block for each item, the time penalty is not as
great as it might first. appear.

One can indeed ask why the ALAP cell was
not originally designed with a two-way chaining
channel, in order that the data reordering prob
lems, and other difficulties associated with the
one-way chaining channel might more easily be
handled. The answer is that low-cost produci
bility is a principal objective of the ALAP
design. In the applications thus far explored,
the benefits to be gained in ease of programming
and lower execution time do not appear to be
justified by the cost of the additional ceil logic.
This new logic must result in a greater cell
area on the LSI wafers, and thus in fewer ·cells
per wafer. This means a higher proportional
cost per ALAP cell, no matter how inexpensive
LSI fabrication may become.

The Radar Data Processing Program

The radar data processing program performs
the three functions of track correlation, associa
tion. and .prediction on track data from a i:ad.ar
antenna. This data,;has been preprocessed to
remove· obvious redundancies and to eliminate
tracks which clearly do not represent objects of
interest (e.g. , .. the strength of the return or. the
apparent velocity of the object are outside of
nominal limits imposed by the application).

The data for the apparent tracks (called
"observations") which remain are the inputs to
the ALAP program·. This data consists of five
parameters for each observation: the range,
range rate-of-change and the three direction
cosines. The prograrii operates in cycles. Each
cycle consists of performing the three aforemen~
tioned tracking functions in turn on new sets of
observations.

Track correlation is the process of compar
ing the five track parameters of each observation
in turn with the corresponding parameters for all
tracks being maintained by the program. (These
are tracks for known "targets" or "threats 11 ,

depending on whether the radar is for an offensive
or defensive application.) If all five parameters
for. an observation fall within a preassigned range
of the corresponding parameters for a known
track, the observation is considered to have
"correlated" to the known track~ and thus may
represent an update of that track.

In the ALAP program, all five parameters of
a single observation are compared with all five
parameters of all stored tracks simultaneously.
The five parameters are then input, one at a time,
into all blocks simultaneously at which correlation
has been successful. The blocks must all be
large enough to contain the parameters for
several correlating observations. Correlation is
very efficiently performed by the ALAP pro.gram.
A total of ZZ +Z4S word cycle operations is
required, wher.e Sis the number of observations.
If there are ZOO observations, and if the ALAP
clock rate is 5 MHz. , the elapsed time for cor• •
relation is 8. 3 msec, including a 30 percent
overhead for flag-shift operations.

After the correlation process has finished,
there will in general be cases in which a single
observation has correlated to more than one
stored track, and in which many observations
have correlated to the same stored track. · Track
association is the process of rem.oving both of
these types of redundancy.

The ALAP program performs well at this
function, though ncit so efficiently as for correla
tion. The program first computes an error func
tion for each correlated observation in each;
track. This function is

ERROR

166

The five terms of this function are for the
range, range rate and the three direction cosines,
respectively. The subscript o indicates that the
parameter is for an observation. The subscript
p indicates that it is for a stored ("predicted 11)

track. The denominators in the fractions are
constants in the program.

The computation of this error term for all
correlations requires a total of 146 word cycles
(1. 9 msec with a 5 mHz clock). The single
multiplication and the single division each
account for 65 of these.

The program next resolves all cases in
which a single observation correlated to more
than one track. This is done serially by observa
tion, and consists of deleting the parameters for
the observation from all tracks except the one
having the smallest error term for that observa
tion. This requires a total of 9B +SC word cycles,
where B is the number of observations and C is
the total number of correlations for all of the
observations together. If there are 200 observa
tions, and if l 00 of them each correlate to two
stored tracks, the elapsed time is 46. 5 msec for
a 5 mHz clock, including a 30 percent overhead
for flag shift operations.

Last, the association part of the program
resolves the cases in which more than one obser
vation correlated to a single stored track. This
is done by removing from the corresponding block
the parameters for all observations except that
having the smallest error term. This is done in
parallel for all blocks, and requires a total of
41 word cycles (equivalent to 6. 8 msec for a
5 mHz clock, including 30 percent flag shift
overhead).

Track prediction is the third and last of the
radar processing operations. This consists of
evaluating 29 functions, of which the six functions
in the example of the previous section are the
first. The 29 functions, if evaluated on a serial
computer, require a total of 51 additions, 17 sub
tractions, 4 7 multiplications and 4 divisions for
each stored track. By combining the operations
in the fashion described in the example of the
previous section, the ALAP program performs

167

the evaluations parallel by track with a total of
8 additions, 1 subtraction, 4 multiplications and
2 divisions. Some of the functions are dependent
on others, else only two multiplications, one
division and a single addition and subtraction
would have been required altogether. To this
total must be added 41 multiple copy operations
(needed for reordering the data for the next cycle)
and 24 parallel match operations, making a total
of 475 word cycle operations altogether. This
requires 7. 9 msec with a 5 mHz clock.

Of particular overall significance in the radar
data processing program is the fact that transfers
of data between the Interface Unit and the ALAP
memory are limited to initial input of the obser
vation data and output, if desired, of the updated
track data at the conclusion of each correlation/
association/prediction cycle. At only one point
in the program is it necessary to transfer inter
mediate information to the minicomputer from
the ALAP. This is a single word which is
check.ed for a 1 or 0 in order to select a program
path. Thus the program appears to demonstrate
one requirement for efficient use of associative
processing techniques, namely that there be a
minimum demand on the relatively slow serial
input and output capability of the processor as
compared with the parallel processing
capability.

References

(l] B. F. Meyers, The Hughes Associative
Processor, Computer Science Dept. ,
University of California at Los Angeles,
Modeling and Measurement note No. 26,
May 1974.

(2] C. A. Finnila, The Associative Linear Array
Processor, Proceedings of the 1975
Sagamore Computer Conference on Parallel
Processing, Syracuse University.

(3] H. H. Love, Programming the Associative
Linear Array Processor, Proceedings of the
1975 Sagamore Computer Conference on
Parallel Processing, Syracuse University.

ARCHITECTURE AND SIMULATION OF
AN ASSOCIATIVE PROCESSOR INTEGRATED CIRCUIT

Jackylene Hood, .Maitang Mark; and Jack Cotton (a)
Bell-Northern Research
Ottawa, Ontario, Canada

Summary

The associative processor cell is a storage
and processing element capable of performing
Boolean and arithmetic operations. Similar
circuits were designed at University College of
London [l] and at Stanford Re.search Institute [2].

The operations in an associative processor
array require a direct mask line, a direct data
line/wire-ANDed search results line, and.a ripple
shift/carry line in each direction. ·

L?ZZ
~ L~

L :z-fi. y t V'vt; JI

FV
v ytY
ti' y

For an array instruction such as Add Field
A to Field B the addends must be brought together.
The A's could be shifted over the irttervenirtg
bits but only one bit slice at a ti'me. If the
entire Field A were shifted simultaneously, the
intervening data would be destroyed. So a second
storage element, termed a travelling accumulator,
is added to each cell. The main storage element
is an 8-bit shift register so an array of 4 x 4
cells may be considered as 9 pages of 16 cells
each. The front page is the set of travelling
accumulators.

The microcommands can be divided into
seven groups: logic, arithmetic, search, zero
test, ·input/output, and general. The auxiliary
and main memory elements can be logically
combined, added, or subtracted. An external
constant can be added to multiple accumulators
simultaneously. Equality searches use the wire
ANDed lines, but inequality searches (less than,
less than or equal, greater than, greater than or
equal) must use ripple lines and are consequently
slower. Ten extra commands are provided by not
clocking the main collDllands. For example, an
unclocked OR command tells the system if an OR
Main to Accumulator instruction would give a zero
result.

The shift cOllmlands use FV and FH as control
lines so that 20 shifts are provided by only 8
microcommands. Included are logic shifts (pad
with zero), arithmetic shifts (sign extend),
rotations, jump shifts and propagation shifts.
All shifts are effective in four directions.

(a) Now with ITT TTC, Stamford, Connecticut

168

The main and auxiliary memory elements
may be read simultaneously to both column and· row
output registers. Horizontal and vertical masks
provide the addressing. A rotate command moves
all cells to the next circular shift register
position.

The APSIM, a user interactive software
package operating on an IBM 370/168 was developed
to simulate the manipulatton of arrays of AP cells
and registers. The interactive feature enables
users to evaluate simulation results and to modify
them instantly via a terminal input mode. A
series of commands can be processed via a disk
input mode. Both modes may be intermixed·within
one simulation.

The APSIM employs a modular approach that
anticipates frequent changes in command functions.
Thus an independent program module is used for
each micro-command, so that a change or an
addition 6f command can be accollDllodated simply by

· ii.ltering or adding one module. Uniform logic
structure of each program module is strictly
enforted to aid the maintainability of APSIM.
Each·program module has access to a common data
base'where registers, auxiliary cells, and up to
eight levels of 256 x 256 AP memory cells are
stored. The simulation also accepts simulation
instructions generating loops, branches and ·
subroutines.

In addition t6 the work reported here,
this project iµcludes the hardware and software
design of a genera'! purpose real-time associative
computer. Circuit design and board layouts have
been complete4 for·three black box applications
of this chip:· Multifrequency/Digitone
reception [3], television bandwidth compression,
and speech bandwidth reduction. Prototype chips
will be fabricated late this year.

[l]

[2]

References

M,J.B. Duff et al., "A Cellular Logic Array
for Image Processing," Pattern Recognition
(vol. 5, 1973), pp. 229-247.

W.L. Kautz, "An Augmented Content-Addressed
Memory Array for Implementation with
Large-Scale Integration," Journal of the
Association for Computing Machinery (January,
1971), pp. 19-33.

[3] E. Shew and J. Cotton, "A Receiver for PCM
Coded Digitone and MF Signals Using
Associative Processing," Wayne State
International Conference on Parallel
Processing (August, 1976).

APPLICATION OF PEPE TO REAL-TIME DIGITAL FILTERING

D.B. Kimsey, L.E. Hand, and H.T. Nagle, Jr.
Electrical Engineering Department

Auburn University
Auburn, Alabama, 36830

SUMMARY

This paper describes the application of the IC
model of PEPE [l] to real-time digital filtering.
The PEPE IC model resides in a research laboratory
at Auburn University configured with a dual mini
computer host. The host computers are a Honeywell
H316 and a Hewlett-Packard 2100. PEPE consists of
sixteen parallel units, each with a 32-bit Arith
metic Unit (AU), a 512-word, 32-bit data memory,
and an 8-cell, 40-bit correlation unit. The mini
computer hosts send global commands to the PEPE
Arithmetic Control Unit (ACU) which has no program
memory of its own. The hosts may also transmit
programs to the PEPE Correlation Control Unit which
has a 512-word, 32-bit program memory.

Since the AU's possess a full complement of
fixed and floating-point instructions, one can im
plement a 32nd-order digital filter as a parallel
of 16 second-order modules, each module being im
plemented in one PEPE AU. Floating-point arithme
tic was used in this experiment alleviating what
would have been a time-consuming allignment problem.
The input from the host's A/D was simply inserted
into the high-order fraction bits creating a zero
exponent, (generally un-normalized), floating-point
number. The output of the filter was un-normalized
to a zero exponent and the high-order fraction bits
shipped to the host's D/A.

The frequency sampling technique of digital
filter design [2] lends itself very well to an
implementation on a parallel processor. The filter
structure begins with the comb filter 1-z-N (im
plemented in the.host) which places N zeroes on the
unit circle. The. pass band is then formed by can
celling up to 32 of these zeroes by a sum of lst
order poles in parallel; each of the form

where Hk is the desired magnitude of the response
at that particular frequency.

Complex conjugate poles are paired and the
Hk's forced to meet Hk=HN-k yielding the total
transfer function

~ (11-Z)/2 1)~ ' • (1-z"i "o (1 \. ~ (1) +""" Hlk ~ "(1-z· C0S(2wklNI·
If" J:7f/ I J;=r f:{ T 1-z-12COS(2wk(N) + ,.z

The H0 and HN/2 terms are combined in one AU and
the rema foi ng AU ' s each contain one of the 2nd
order modules in the summation. Computations for
these 2nd-order modules are performed in parallel;
however, the summing of the outputs of these mod
ules becomes a serial problem compounded by the

169

lack of inter-processor communication in PEPE.
Approximately 380 µsec of the total 600 µsec for
one sample period is due to this serial summing;
thus a single "sum all accummulators" instruction
could almost triple the present maximum sample
rate of 1670 Hz. The order of this filter is un-
1 imited as long as the number of non-zero Hk's does
not exceed 32.

A slightly higher sample rate may be obtained
using a cascaded implementation where each AU con
tains a second-order module whose output is the in
put to the next second-order module, The modules
are computed in parallel, but outputs then have to
be shifted to inputs (to the next AU) in a serial
fashion. This is essentially a pipelining process.
The cascaded structure thus obtained introduces a
delay of z-l 5 but the overall thruput is improved
over that of the parallel structure since serial
shifting of outputs is faster than serial summing.

An Nth_order Butterworth low-pass filter
having unity DC gain and an upper cutoff of one
radian is given by the transfer function

where ak = SIN (2k+l)71/(2N)
Bk= COS (2k+l)7T/(2N)
T = sample period in seconds.

A 32nd-order Butterworth low-pass filter was
impelmented in PEPE using a 2nd-order module in
each AU. The execution time for one sample period
was 500 µsec of which 290 was used for the serial
propagation of outputs. Thus a single "propagate
accumulators right" instruction could more than
double the present maximum sample rate of 2KHz.

Several transfer functions having the above
two structures were programmed and the frequency
response curves were plotted experimentally. Sta
bility was excellent despite the high order of the
filters, and all curves agreed wit'.h the theoretical
curves.

REFERENCES

[l] D.B. Kimsey, "A Fast Fourier Transform Program
for the PEPE IC Model", Proceedings of the 8th
Annual Southeastern Symposium on System Theory,
(April, 1976), pp. 153-155.

[2] C.M. Rader and B. Gold, "Digital Filter Design
Techniques in the Frequency Domain~ Proc. IEEE,
(Feb., 1967), pp. 149-171.

HlGH LEVEL LANGUAGE FOR ASSOCIATIVE AND
PARALLEL COMPUTATION WITHSTARAN (a}

· R. G. I..ange
Digital Technology Department

Goodyear Aerospace Corp.·
Akron, Ohio 44315

Abstract - The de sign and manufacture of
computer systems with parallel and vector proc
essing capabilitie.s have brought about rnucb activ
ity in the area of higher level languages. Re -
ports of efforts to design languages with parallel
processing and parallel operation features have
been made (Ref. 1). An effort is in progress to
design and fully specify a higher level language
for STARAN (b). The specification is scheduled
for completion this year.

Introduction

We first state the objectives and require
ments for the language and then show the struc
ture o, a program and the form for declarations.
Next, we describe parallel and associative oper
ations and a sample procedure,. an image proc
essing algorithm for folloWing lines.

Language Objectives and Requirements

The higher, level language for STARAN is a
procedural programming language. It is designed
for programmers to use to implement algorithms
that accomplish an application function. Thus, it
does not attempt to be a specialized problem
oriented language. The language definition em
phasiZes parallel operations on data items, pro
vides for declaration of the data items, and
provides expressions and many operations for the
use of data items. The language is statement
o:riented with statements for assignment and other
operations.

The design objectives for the higher level
programming language are:

1. The lll;nguage must be reasonably com
plete functionally in order to allow the
major portion of a problem solution to
be written in it. The language must
provide, arJ;'.ay and search (associative)
operations.

z. The language must.support the program
design process including structured pro
gramming and other methodologies of
software engineering.

3, The language design should have good
human-factors characteristics; the lan
gl.lage is. a human-machine interface.

4. The language must be implementable in
order to generate STARAN machine
language code and make good use of its
architectural properties.

5. The language must be kept small but
yet large enough to meet the above ob
jectives.

Data declarations are provided for specifica
tion of the range of values of data items, thus
supporting conservation of execution time and
storage space and also providing documentation
of the valid data range. They provide for pre
cision for arithmetic items, length of bit and
character oriented data, and size of arrays.

To aid in the support of structured design,
the language emphasizes abstract data repre
sentation (machine independent) and structuring
of data items. Multiple entry procedures (routine
statements) allow data to be localized to one pro
cedure and thus improve cohesion within the
procedure.

The data organizations provided are simple•
(scalar) data items, simple structures, structures
of arrays (seriai arrays), and arrays of struc
tures (parallel arrays). These data facilities and
others allow the programmer to group related
data items that also may require.similar alloca
tion within a memory type or area.

In order that most of an application can be
written in the language, it is relatively rich in
the number and meaning of operations specified,
The language design attempts to minimize the
number of special rules, such as context-depen
dent exceptional cases.

Programs written in this language should be
as readable as possible to reduce costs in both
checkout and maintenance. The language supports
the use of meaningful names for program and data
entities; mimes may be up to 3Z characters in
length with all characters significant. The tokens
of the low-level syntax are designed in a manner
to allow indentation of the source program
(listing), optionally by compilers, according to
the program 1 s structure.

The development of structured computer
programs is finding increased acceptance within
the computing community because of indications
that the code written in this manner is more

(aJThi~ project was partially supported wider RADC Con~.ract F30,60Z-76-C-OZOO.

(b)Trademark, Goodyear Aerospace Corporation, Akron, Ohio 44315.

170

readable, understandable, maintainable, and
reliable at lower cost. The language supports
structured programming and structured design
through its various data declaration and proce
during facilities; it emphasizes the program flow
aspects of structured programming with an appro
priate set of flow of control statements.

Program Structure

The language is statement-oriented in form
(versus expression-oriented as in ALGOL); all
statements other than the assignment statement
begin with an introductory keyword such as IF or
CALL. In order to enhance program clarity and
to avoid ambiguity, some of these keywords are
reserved. The order and types of statements
used in a· program determine the flow of execution
for that program.

A program consists of one or mo re <program
unit> s together with their operating environ
ment. A <program unit> is the largest syntactic
construct of the language and serves as the unit
of input to the compiler.

The set of <program unit·~ s that constitute
a <program> is determined by CALL statements
and function references during execution of the
program or by use of the linking facility prior to
execution,

The syntax of a <program unit> is just an
<external procedure>.

A <block> i.s an entire <external procedure>
or any <procedure> contained in another <proce
dure>. It delimits the scope of name declaration
and is the major unit that determines program
flow of control during execution,

Syntax:
<program> ::= <program unit>
<program unit>::= <external procedure>
<block> ::= <procedure>
<external procedure> : := <procedure>
<procedure> ::=<procedure statement>

<procedure body>
<endproc statement>

<procedure body> ::=
<:t>rocedure component>

(<routine statement>
<procedure component>]

<procedure component> ::= <statement> •••

<.statement> ::=<procedure>
I< declare statement>
I <basic statement>

I <prefix> <basic statement>
<basic statement> : := <group>

I< independent statement>
<independent statement> ::=

<single statement>
I <conditional statement>

171

<prefix> ::=<label prefix>
I< case prefix>

<label prefix> ::= <identifier>
<case prefix> ::= CASE (<case number>):
<case number>::= < cvi expression>

I< cvi expression> : < cvi expression>

A <routine statement> defines additional
entry points for a procedure as exclusive se
quences of statements; a return is implied for
the previous entry point.

A <group> is a construct used to determine
the flow of control during program execution,
Groups are of two types: loops and case selection.

Syntax:

~"' <group> ::=<iterative loop>
I <repetitive loop>
I< case group>

Individual statements are classified as declar
ative statements or procedural statements. There
is one declarative statement, the <declare state
ment> for declaring data. The procedural state
ments are used to form the executable statements
of a <program unit>. Some of them represent
individual statements; however, the <if state
ment>s must include a corresponding <endif>.
The individual statements are called <single
statement> s,

Syntax:
<single statement> ::=

<assignment statement>
<call statement>
<close statement>
<delete statement>
<goto statement>
<null statement>
<open statement>
<read statement>
<return statement>
<rewrite statement>
<write statement>

All statements are executable, although the
execution of a <declare statement> or <null
statement> has no effect. The close, delete,
open, read, rewrite, and write statements are
"record 1/0" statements and are not discussed
further in this paper.

The ";" symbol is used to delimit statements;
it is a· statement terminator and is shown with the
statements.

Statement Prefixes

A <label prefix> is a means of naming a
<statement>. In certain contexts, such as within
a loop, any <basic statement> may be named by
being preceded by a <label prefix>.

Declarations·

The STARAN language has strong typing of
data, as do most other procedure-oriented pro
gramming languages. There are additional data
properties expressed via data attributes in order
to characterize the data length or precision, its
allocation and life-time requirements, and its
structure or relationship to other data items.

These properties are due in part to the need
to adequately describe the use of data that will
be allocated within STARAN array memories.
The attributes and placement of the data declara
tions in the source program establish the scope of
the data.

Data Types

Five types of computational data are defined;
in addition, there are data types "file" and
"entry. 11 Each of the former types is different
in internal representation and in the values it
may assume. The specification of data types is
concerned with the abstract properties of the
data rather than the internal representation.
Thus, the storage requirements for each type
are not specified.

Computational data is further separated into
arithmetic and string types. The arithmetic data
types are cardinal (attribute is CARDINAL),
fixed-point (attribute is FIXED), and floating
point (attribute is FLOAT). The string data types
are bit-string (attribute is BIT) and character
string (attribute is CHARACTER).

Arithmetic data is specified with a prec1s1on
to indicate the number of bits necessary to repre
sent its values; for FIXED, this may also specify
a scale factor for fractional values. Arithmetic
data is represented in a binary base, and string
data is a contiguous sequence of bits or charac
ters.

A cardinal data item represents an unsigned
integral value stored as a binary number; it may
assume only zero or positive integral values.

Data Organization

· To meet the total requirements placed upon
the language, the data items can be organized as
arrays or structures or they can be individual
data items. '

A scalar is a single element of data or one
member of a set of data elements. A scalar may
appear in a program as a constant or as a vari
able representing one element of data.

Arrays. An array is an ordered set ;of ..
scalars, all having identical attributes; it is
identified by a single symbolic name. An array
appears in a program as a variable representing
a set of scalars.

The unique identification of an array element
consists of the array name and the position of the

element in the array. The position in the array
is indicated by a bracketed subscript list follow
ing the name; for example:

image_table [lineJlumber+l]

The elements of an array are stored as an
ordered sequence so that the rightmost subscript
varies most rapidly and the leftmost subscript
varies least rapidly. This order is required by
the interaction between arrays and structures
and is called row-major order.

An array is declared by appending a dimen
sion specification to the name in a DECLARE
statement.

DECLARE image....table (256) CARDINAL (8);

Structures. A structure is an ordered set of
data elements which may have different attributes.
The elements may be scalars or arrays. A re
lationship exists between data elements of a
structure. The relationship is indicated by level
numbers in the declaration. The main structure
is a level-one; nested structures are given num
bers greater than one to indicate their logical
level.

The main structure, nested structures, and
the innermost data elements all have names.
Qualification is used to uniquely identify a nested
structure or data element name. A qualified name
consists of the name of the main structure and all
nested structures leading to the structure or data
element name to be identified, with a period op
erator as the separator between each pair of
names.

Arrays of Structures. An array of structures
is a structure with the attribute dimension follow
ing the level-one name in the declaration •. Each
element of the array is thus a copy of a structure
with structuring identical to all other array ele
ments. An example is:

DECLARE 1 record (64),
2 fieldl CHARACTER (12),
2 key CARDINAL (8),
2 properties BIT (4),
2 index CARDINAL (16);

Other Attributes

The language has other data attributes such
as for the control of storage class: automatic,
controlled, and static. There is an external
attribute to allow linking of data between separately
compiled programs.

The memory attribute allows the program
to force allocation of an array .or array of struc
tures in the special STARAN MDA (multi-dimen
sion access) memory. There is also an align
ment attribute that forces alignment to memory

. boundaries which are a power of two as requested.

172

Parallel Operations

As we have seen in the requirements, the
language emphasizes parallel and associative
operations. There are two motivations for this.
One is that the language should support problem
solution at a high level and allow index computa
tion and other housekeeping operations to be done
by the compiler. The other is to allow parallel
operations of the target machine STARAN to be
used in the object program.

The parallel operation emphasis is primarily
in four areas. Fir st, there is the extension of
the familiar expression operators to arrays and
structures as operands. Second, there is the
inclusion of a parallel if test for use with vectors.
Third, there is the addition of a new notation for
selecting only a portion of an array's elements in
a reference to the array. The fourth is the in
clusion of several built-in functions for arrays and
the ability to have user functions reference any
array (of a fixed dimension).

Extended Operators

First of all, the infix and prefix operators
that may appear in expressions can have scalar
or structure operands and the operation given is
performed on all items in parallel. The opera
tions include add, subtract, multiply, divide, re
lational comparisons, concatenation, logical-AND,
logical-OR, and logical complement.

For example, if A and B are 128 element
arrays of fixed-point data, then

A<B

is a 128-element array of single-bit strings. We
usually call the latter a bit-vector. It can be
assigned to a variable of that type or tested in an
IFARRA Y statement to control other computations.

IF ARRAY Statement

The IFARRA Y statement has the form:

IFARRA Y <vector valued expression>
THEN

<basic statement>
[ELSE

<basic statement> .. .]
ENDIF;

A simple example shows its use:

DECLARE (A(200), B(200)) FIXED(l5, O);
DECLARE COUNT (200) FIXED (15);

IFARRAY A < B THEN
A(&] = B;

ELSE
A[&] =A* 2;
COUNT (&] =COUNT+ l;

ENDIF;

173

For each element of A that is less than the
corresponding element of B, assign the latter to
replace the value of A. In all other cases, double
the value of the element of A and increment a
counter for each such element. The ampersand
used as a subscript (in context of IFARRA Y-THEN)
means select the subset of only those array ele
ments corresponding to B' 1 1 values in the near-
est containing IFARRAY <expression>. Amper
sand used as a subscript in the context of the
ELSE clause means select the subset of only
those array elements corresponding to B 1 0 1 values
in the IFARRA Y <expression>.

Array Selection Subscripts

There are other forms of array-selection that
provide parallel usage. Similar to the above use
of ampersand alone is

<array name> [& <expression>]

where <expression> is an array matching <array
name> and has values convertible to data type
BIT(l). It selects those elements of <arrayname>
corresponding to elements in <expression> having
value B 1 11 •

An asterisk in a subscript position selects all
elements accessible according to use of all valid
subscripts in that subscript position. This is a
cross-section reference as in PL/I. Another form
of cross- section reference defined is with sub
scripts of the form:

<lower limit> : <upper limit>,

where both of these are <expression>s and their
values during execution select a portion of the
array elements in combination with the values of
other subscripts, if any.

Built-in Functions

Many built-in functions are. extended in a
manner· similar to that done for expression oper
ators so that their operands can be arrays or
structures. Examples are SIN, COS, SQRT,
SUBSTR, and INDEX. Others have been added to
make the parallel facilities more complete .
INDEX_MIN provides the index of (one of) the min
imum values of an array rather than the minimum
value itself. This is useful in searches where
unique values are required. INTERVAL_TEST
is a convenient function for range• testing. For
example:

IFARRAY INTERVAL_TEST (x, prev.x, delta)
THEN ---

is the same as:

IFARRAY ABS(x - prev.x) <=delta
THEN ---

Applications

The appendix shows a sample procedure
written in .the language. It is a portion of an
image-processing program. Even though it does
not exhibit much use of parallelism, it makes
special use of some other facilities for which
STARAN is especially well suited. These facil
ities are primarily the row and column cross
sections (bit slices) of the array 11 data 11 and the
single-bit tests. The procedure is about 14 per
cent of the number of lines of the assembly
language version and is far more readable and
maintainable.

There are other portions of the image proc
essing application such as line thinning or clutter
elimination that use much parallelism, executing
two orders of magnitude faster than on serial
processors.

Summary

The language as designed for the set of re
quirements as stated above is quite large, al
though it initially was proposed as $maller. This
is primarily due to more emphasis on objective
one versus the other objectives mentioned early
in the paper, especially objective five.

Although there was some interest in having
a language similar in facility to FOR TRAN. be
cause of the nature of some of the i:equirements
the final language is more like PL/I, although
still a small subset (dialect) of it. The facilities
required, when considered as a whole, were be
yond the scope of FORTRAN. Many of the basic
concepts that have a counterpart in FOR TRAN
(such as expression evaluation, assignment, and
serial loop control) remain similar to FORTRAN
and its current standardization (ANSI) proposal.

Reference

1. Proceedings of the .Conference on Program
ming Languages and Compilers for Parallel
and Vector Machines, ACM, March 1975.

Appendix -" Line Following

One of the reasons for choosing this algorithm
as a candidate for coding is the nature of the proc
ess performed. The data being processed is
essentially binary ones and zeroes representing
the raster scanned data of a map. It is observed
that the degree of effort and clarity of repre
sentation of the program written in high level
language are good tests for the programming
language.

The line following procedure vectorizes all
lines in an array and outputs the data to various

174

I
tables. A previous routine has performed (in
parallel) such functions as line thinning (reducing
a line to a single cell in width), clutter elimina
tion, and tagging all lines in the array by storing
the starting coordinates in a table. A starting
coordinate may be a boundary point or an inter
ior point. Beginning with a starting point, the
procedure follows the points along a line segment.

Definition of Variable Names

DA TA is a two-dimensional array of single
bit items and contains the points of the lines to
be vectorized. It is oversized by one cell on each
border so that all starting points will be 11interior
points." In this way, no check need be made when
following a line to ensure that the dimensions of
DA TA are not exceeded.

START. TAG is an array of single-bit items
containing a one-bit value in each index position of
a starting coordinate; that is, values in the arrays
START.X and START. Yare selected. START.X
and START. Y are arrays of (x, y) coordinate
starting point values of the various lines contained
in the DATA array.

PREVJ)IRECTION is a variable containing
the direction of the previous successful $earch
along the line. NEXT_DIRECTION is an array of
values containing the next point along the line
and is a function of PREV_DIRECTION.

TABLE-DF...,TRIES is an array containing the
maximum number of possible directions in which
the succeeding point along a line may be found. '

NUMBER...OF_POINTS is a variable containing
the number of points (or vectors) discovered in a
line.

FOUND....SUCCESSOR is a single-bit tag indi
cating whether the line following procedure was
successful at detecting a succeeding point. A
value of one means another point was found; a
value of zero means the end of a line has been
detected.

DIR is a do-loop index and represents the
range of directions to be tried.

CUR....DIR is the direction currently being
tried and is a value between 0 and 7. Directions
are numbered as: 5 6 7

4 0
3 2 1

VECTORJ_.IST is a two-dimensional array
containing. the results of the line following proce -
dure. It has a capacity for 32 individual lines,
each containing up to 256 vector values (up to
256 points).

VECTOR...NUMBER_FOINTS is an array con
taining the number of points for each of the 32
possible lines contained in VECTOR_LIST.

Line Following Procedure

follow_lines: PROCEDURE;

DECLARE data(l94, 194) BIT(l) MEMORY(mda),
prev_direction CARDINAL(4),
n umber-0Ldirections CARDINAL(4);

DECLARE index CARDINAL(5),
1 start(32) MEMORY(mda),

l tag BIT(~),
l x CARDINAL(l6),
l y CARDINAL(l6),

vector-number-points(32) CARDINAL(16),
vector-1ist(32, 256) CARDINAL(4);

DECLARE founuuccessor BIT(1),
number-0Lpoints CARDINAL(16),
(dir, cur_dir) CARDINAL(4),
(i, j) CARDINAL(S);

DECLARE table..oLtries(S) CARDINAL(4) CONSTANT
INITIAL (3, 5, 3, 5, 3, 5, 3, 5),

next._direction(S) CARDINAL(4) CONSTANT
INITIAL(7, 7, 1, 1, 3, 3, 5, 5) ;

/*Clear border around DATA area, */

data [l, *] = B 1 01 ;

data [DIMfdata, 1), *]
data[*, 1J = B 101 ;

data[*, DIM(data, Z)]

= B 101;

= B'O';

/* top */
/* bottom */
/* left */
/* right */

/* Examine bit vector start. tag for ones;·
continue to loop until all start points
have been processed,

*/
index= 0;
DO WHILE(SOME(start. tag)) ;

index = index + l ;
start [index]. tag = 0 ;

/* Start looking in direction 1; try up to
7 possible directions as necessary.

*/
prev_direction = 1 ;
number_oLdirections = 7 ;

/*Obtain coordinates of start point. */

~ = start [~ndex~ . x ;
J = start (index • y ;
number_oLpoin s = O; .

/*Assume another ·point will be found. */

founuuccessor = B 1 11 ;

DO WHILE(found.Jiuccessor) ;

/* Assume end point will be found * /

foun<Lsuccessor = B 101 ;

line...:follow:
DO dir = prev_direction TO

prev-direction + number-oLdirections
cur_dir = MOD(dir-1, 8) ;

175

/*Check direction cur_dir for a l bit */
DO CASE cur_dir ;

CASE(O}:

CASE(I}:

CASE(Z):

CASE(3):

CASE(4):

CASE(S):

CASE(6):

CASE(7):

IF(data[i, j+l])
found successor = B'I' ·

IF(data(i+l, ,j+l)) . •
· found successor = B' l' ;

IF(data(i+l, j))
found .successor = B' l' ;

IF{data(i+l, j-1)) .
· found successor= B'l';
IF(data(i, j-1))

fo\lnd successor= B'l'
IF(data(i-1, j-1))

found successor = B' 11

IF(data(i-1, j))
found successor= B'l';

IF(data(i-1, j+l)) ·
found successor= B 1 11 ;

ENDCASE;
IF (found....succe s sor)

EXIT lineJollow;
ENDDO lineJollow ;

IF found..successor THEN
/*Enter direction discovered. */

number_oL~oints = number,...oL..points + 1;
vector-list Lindex, number-0£...points) =

cur_dir;

/* Start search for next point based
on direction of current point.

*I .
prev_dire.ction = nexLdirection [cur-dir+l];

/*Number of possible directions is
a function of current point direction.

*/
number_oLdirections =

table..oL..trie s (cur_dir+ 1]
ENDIF;

ENDDO;
/*An end point was foun,d; store total

number of points for current line.
*/
vector_number_points [ip.dex] = number_of...points;

ENDDO; .
ENDPROC follow_lines ;

176

ANALYSIS OF THE AWACS PASSIVE TRACKING
ALGORITHMS ON THE RADCAP STARAN

By Robert Katz

Boeing Computer Services, Inc.
Space and Mi I itary Applications Division

P.O. Box 24346
Seattle, Washington 98124

Abstract -- This paper analyzes the com
puter performance of the Passive Tracking pro
grams which are operational on the RADCAP STA
RAN as wel I as an IBM 360/65. A brief review
of the Passive Tracking functions is provided.
Para I lei program design considerations inclu
ding first, second and third order para I lei ism,
floating point software and data movements are
deta.i led. Methods for both sequential and par
a! lei computer performance measurements are dis
cussed. Performance results in terms of timing
and accuracy are presented, The comparison shows
a timing advantage for the para I lei version when
the number of targets tracked exceeds 20, Con-
c I us ions regarding the reasons for this supe
rior performance are given. The para! lei per
formance is extended to consider potential ti
ming advantages when tracking 1000 targets. Fi
nally, recommendations useful for other RADCAP
software applications are offered,

Introduction

Continuing research into para I lei process
ing is being conducted at Rome Air Development
Center IRADCl with the objective of assessing
the efficacy of para! lei processors to military
appl icatiqns distinguished both by high data
rate requirements and by being beyond the scope
of sequent i a I processo·rs. In part i cu I ar, unc I ass
i f i ed versions of Passive Tracking Algorithms
based on the E-3A !AWACS - Airborne Warning
and Control System) have been implemented on
the RADCAP, (See Feldman et al [1] l, the Good
year Staran at RADC, as wel I as on a 360/65
at Boeing Computer Services, IBCSl in Seattle,
Washington.

This paper presents an analysis of the
computer performance in comparing the para! lei
IRADCAPI and sequential 1360/65) program versions
that were implemented, As part of this, timing
methodology and results, as wel I as accuracies,
are provided, It is an outgrowth of research la!
initially described by Prentice [5] and Prentice
et al [6], This paper also addresses the extent
to which software design ~oals and concepts
identified in Prentice [5J contributed to the
superior para I lei computer performance achieved.
Conclusions, extra.pol-at ions and recommendations
based on this para! lei' processing application
study are offered.

(al This research was performed by BCS for RADC
under Air Force contracts F30602-74-C-0025
and F30602-75-C-0112.

177

Background

Passive Tracking is used to locate and
track jamming targets from measurements of the
radiation source azimuth. The Passive Tracking
Algorithms mainta·in and update at each scan,
a track history of targets. Three types of tar
get tracking are treated by the program: self
passive !Mode ll, cooperative passive <Mode
Ol, and active <Mode 2l. Each tracking mode
differs in the number of AWACS aircraft receiv
ing radar reports or scans as wel I as the infor
mation content of the radar scan.

In Self-Passive Tracking, a single AWACS
aircraft flying in a closed loop receives radar
returns containing target azimuth information
only, In Cooperative Passive Tracking, this
information is supplied by each of two AWACS
aircraft. In this way the second aircraft's
radar measurements are cross-told to those
of the first aircraft. Finally, in Active Track
ing, a single AWACS is used to capture the tar
get azimuth and range information~ Range infor
mation is available whenever a target, which
operates its jamming equipment intermittently,
stops jamming.

Input to the program for one radar scan
involves radar azimuth and strobe width data
tor range data) for each observed target along
with the AWACS positionlsl. Output from the
program consists of the calculated position,
velocity, and quality for each target tr~ck.
Figure 1 shows the flow chart for the Passive
Tracking Program. In the sequential FORTRAN
program, each under! ined function performed
by passive tracking requires an interior loop
to process each track. In the parallel program,
the array memory allows al I track related vari
ables to be processed. simultaneously.

For each radar scan, six functions are
used for the tracking activity:

o Track prediction
o Window computation
o Association .'l',

o Correlation
o Smoothing
o Deghosting
Track prediction involves determining the

location and velocity of each target for the
current scan based on that for the previous
scan. A Kalman filter, used in track smoothing,
is similarly predicted. The window computation
determines the width of the window to be used
in correlation based on the track prediction
information. The association function produces
a one-to-one correspondence between the set
of computed, predicted target azimuths and
the input target azimuth set such that rhe com-

ponent differences are mlnimized.
Correlation tests if each input azimuth

with its strobe width fal Is wholly or partially
within the computed window of the associated
track. The smoothing function modifies and up
dates the track location and velocity informa
tion based on the predicted Kalman filter, the
predicted track Information, and the correlated
target azimuths. When.resmootMng duri11g active
.tracking, correlated target ranges arl! used.
When resmoothing cooperatively, th'e updating
additionally involves a.2-scan tlme delay in
processing the secondary AWACS cross-told in
formation. After this cooperative resmoothlng~
deghosting is performed to distinguish between
n true targets and the remaining <n2 - nl strobe
intersections !ghosts! via a track quality in•
dex compiled from range, velocity and accelera
tion I imits applied to t.he smoothed tracks.
Equations representing these functions are
not shown here. They may be found in Prentice {5]
or Lee (4].

Design of the para·11e1 passive tracking
program orchestrates a.I I three RAOCAP process-.
ors - the AP <Associative ProcessorJ, PIO <Par
al'lel Input/Output Processor!, and PDP/11 <Se
quent i a I Processor1 - to execute 60 radar scans
of information.· Al I three processors can acc:;ess
bulk core and the high speed data buffer .IHSDBI
sequential memories. Also, the AP and .PIO can
access the associative array memory• for the
program, the AP is the controlling processor
and performs data movement, and computational
activities. It also initiates sequential input/
output requests and synchronization with the
PIO via interlocks. The PIO is responsible for
data movement and array lrelassignment when
synchronized by the AP. The PDP/11 sequential
processor is used to read and write data onto
the disk from the high speed data buffer memory.

figure 2 detai Is the para I lel version's
program al location and control interrelation
ships. Bulk core memory is used to store most
program instructions and· I ess frequent I y required
variables. The page memory contains system sub
routines as well as time critical program library
subroutines, Included in these are both STARAN
System and BCS floating point routines. The
PIO Interpretive Code, located in bulk core
memory, is processed by the code interpreter
located in PIO memory. This 'interpreter enables
a specific array reassignment 6r data transfer
subroutine to move a set of data to, from,
or within array memory. This processing is
dependent on periodic AP synchronizations using
the interlocks. The reader is referred to any
of the last three references for additional
background,

Design Considerations

There are three desi~n aspects of the par
a! lel version which s~bstantially enhance its
computer per formarice:

o Parallel ism
o Floating Po inf Arithmetic
o Data Movement

Although al I three are concerned with program
timing reductions, the floating point arithme-

-------- -- ----------

178

tic used In the parallel version also enables
numerical comparison and val idc;ition wHh the
sequential program to be performed.

Para I I.el ism

According to Prentice £:>), the STARAN pro
gram was designed ·to exploit three types of·
para 11 e I ism: fl rst, second, and third order
para I tel ism. First order para I let ism ls concerned
with the simultaneous operation on set compo
nents such as in Vector or Matrix addit.ion.
Second order .parat let ism deals with the move
ment, rep I i cation and a Hgnment needed to per
form simultaneous operations on each of the
components of two or more diverse sets~ For·
example, finding the product of a row and column
matrix to form a square matrix requires al I pos
sible pairs of elements to be replicated, moved,
and aligned prior to the matrix multiplication
operation. Third order parallel ism is the simul
taneous operation of two or more computer pro
cessors such as the AP, PIO and f'.DP/11. It can

.be appreclated. that,:suitable.use of third order
parallelism for manipulating data in advance
a I J ows second order para I I e I ism to occur with
the efficiency of first order para 11 el ism.

To effect this situation, the AP and PIO
synchronize during the passive tracking process
ing by means of interlock settings and sensings.
The interlocks are fl ipflops and take on the
functions shown in Table 1. The PIO shuttles,
replicates, and aligns data among bulk core,
the high speed data buffer and array memory
for storage or for future use by the AP• Figure
3 shows the synchronization protcx:ol for each
processor. Note that the routines are function-•
ally identical except for a PIO ready test by
the AP. This is required to avoid a hangup when
the previous AP operation is also a synchroniza
tion. After each return, the next respective
AP and PIO operations are begun.

Floating Point Arithmetic

In order to numerically compare with the
FORTRAN version which uses floating point arith
metic, the parallel version was written using
Goodyear's (software implemented, two's comple
ment I floating point package (2]. Note that
the speed of a single precision floating point
field to field multiply on the STARAN is 832
µsec. This compares with 14 µsec for that
on the 360165. In view of this, it became a
design goal to minimize the number of floating
point operations performed by the para I lel
program. In addition, a set of four additional
single precision floating point routines were
designed for para I lel ism, written in microcode,
and tailored for maximum speed and minimum stor
age in the passive tracking program. These float
ing point routines are Cosine !Sinel, Two Argu
ment Arctangent, field negation or complemen
tation (absolute value! and field to field
comparison. Figure 4 shows the graphs of Cosine
Ill and Arctangent !ll/12l. and their range
of field input values.

The design phi I osophy of l' he i r l gonomet
r i c routines exploits the piecewise syrrmetry

of their graphs. In each case, within the allow
able range, the input fieldlsl is successively
transformed and scaled to the basic approxima
tion range. The polynomial approximation of
the function !precise to seven significant deci
mal digits! is then computed for this scaled
field. Finally, the output function is unraveled
to correspond to its ful I range values, Each
polynomial approximation is only performed
once, since it is more time consuming (based
on 5 multiplies and 3-4 adds) than the set
of pre- and post-transformations. TabJe 2 des
cribes the accuracies and timing and number
of instructions required for these floating
point routines. See Lee (4] for additional de
tai Is regarding these routines.

Data Movement

Although the PIO provides for between-array
data movement via a data driven subroutine,
there are occasions when it is more efficient
for the AP to provide this while maintaining
the current array assignment. In particular,
this occurs when the AP has no computations
to perform; it can only wait while the PIO:

o Completes synchronization
o Reassigns arrays to PIO control
o Transfers the data between arrays
o Is resynchronized by the AP
o Reassigns arrays back to AP control
The AP data movement routine was designed

to operate via the Common Register and be com
parable in speed. The comparison between the
AP and PIO inter-array data movement routines
(named ATADM and ATOA respectively) is pictured
in Figure 5. Note that the AP routine transfers
32 bit words while the PIO routine transfers
lup tol 256 b.it slices. Table 3 provides mea
sured and computed times for the. AP and PIO
inter-array data movements.

Me<Jsured times for the AP rout lne (ATADMl
are taken for each tracking mode during the
first two scans. The average time per cal I is
based not only on the ·number of cal Is but the
number of 32 bit words transferred per call.
In the para I lei program, this can range from
32 up to 256 words transferred per cal I. Compu
ted times are shown to compare the AP routine
with the PtO routine relative to the number
of 32 bit words to transfer. In the PIO routine,
vertical shifts are. handled within a loop, there
by requiring additional time. In the table,
the maximum shift, using a total of eight 32
word blocks (256 words), is based on the first
source word to transfer being. I ocated at the
top of the first word block, and the last des
tination word transferred being located at
the bottom of the I ast word b I ock.

Test Requirements

Both versions of passive tracking are to
use the identical, simulated radar report input
data. These data Ion diskl contain random errors
in azimuth values. These Input data are compat
ible with both the IBM 360/65 and Honeywel I
61BO. !Once the data are on t.he HIS 61BO Multics
System, they can be automatically converted

179

and transmitted to the RADCAP disk>. In order
to validate the accuracy of the sequential and
paral lei versions, true target positions are
provided for comparison. In analyzing the track
history, the values at the end of the last 160thl
scan for each version are compared to each other
and with the true value. The criteria for val ida
tion is that the para! lei computed values should
differ from the sequential computed values by
no more than 10% of the true values.

In both versions, the code was optimized
to minimize the measured execution time. Fur
thermore, timing measurements exclusive of ini
tialization and input/output activities were
taken using hardware performance monitors. These
measurement results are a function of the num
ber of tracks, the number of radar scans, and
the mode of tracking. Nine test cases, all based
on 60 scans, were devised to explore these param
eters. The first five test cases are concerned
with the self-passive mode with the number of
tracks varying from 64 to 16 in steps of 12.
A single AWACS flying in a circle is assumed.
The next three test cases explore the coopera
tive mode with the number of tracks varying
from 32 to 16 in steps of B. Two AWACS flying
at opposite ends of a racetrack are assumed.
The last case provides Information on active
mode of tracking using 64 tracked targets and
a single AWACS, Figures 6 and 7 show the initial
positions of the target set and the AWACS air
craft Isl for the nine test cases.

Test Methods

In the sequential versionF the test cases
were run three times to demonstrate repeatabil i
ty. Three relocatable component load modules
were provided for timing analysis. They were:
execution control, the function of correlation
and al I other passive tracking functions. Each
module was timed separately. The first run pro
vided program. analysis data, Run 2 provided
repeatability, while run 3 with its load modules
reversed, demonstrated proper hookup of the
test instrumentation. CPU usage was measured
using a Test Data System Utilization Monitor
ISUMl and its associated 20 bit comparator (4].
The measurement errors of this equipment arise
from the 1.0 m~crosecond resolution of the timing
counters compared with the 360/65 1 s 0.2 micro
second CPU cycle time and the non-interleaved
memory cycle time of 0.75 microseconds. This
influences the separately timed segments so
as to always exceed the measured CPU problem
state time.

In the para! lei version, strict repeata
bi I ity could not be provided. This was due to
the independence of the PIO and PDP/11 process
ors combined with the dependence of the PIO
on the AP and the PDP/11 on the AP. In particu
lar, because of the variabi I ity of the PDP/11
disk seek times during untimed reading and wri
ting, the subsequent "AP waiting periods for
the Pl O to be ready" which are timed, vary cor
respondingly. Figure B shows the situation.

The PIO has begun a synchronization pro
cess I including some data movement! which re
quires a fixed amount o.f time to complete. The

PDP/11 has begun an 1/0 process involving the
disk that is completed in a variable amount
of time. The AP waits if necessary for 1/0 com
pletion. This wait time is not measured, but
affects when the AP can issue the next synchron
ization to the PIO. lf the synchronization
is issued early, there is an .ihcreased and mea
~ wait time for the PIO to be ready. If
the synchronization is issued late, however,
a decreased !perhaps zero! wait time is experi
enced. In this latter case, the PIO has received
free processing time relative to the AP timing
measurements, thus reducing the overal I program
timing. ITo insure that no hardware malfunction
was occurring and to support the concurrent
processing contention, test case 6 !mode 01
was run twice for 60 scans with the PIO proces
sor turned completely off, The results lper
event) differed by only 0.132 microsecond, well
within the known error tolerance of the perform
ance monitor I.

Thus, to provide indicative values, timing
for each of the test cases was performed at
least four times both through scan 2 and through
scan 60, Subroutine timing for each tracking
mode was also provided to assess the relative
portions of time spent on each passive tracking
function. Finally, total AP waiting periods
for the PIO, for each mode, were separately
timed to capture program delay time. All timing
measurements were performed using the STARAN
Performance Monitor. IPFMI (3). It consists
of two 32 bit registers: an events counter,
and a timer. The events counter measures the
number of times that the timer·is enabled, while
the timer measures the execution times of one
or more instructions. Up to 0.2 microsecond
of error can arise due to timer resolution and
enabling the timer.

Performance Results

In the sequential version, the correlation
load module is a non-1 inear function of the
average number of targets used in searching
and number of tracks, whereas the other two
load modules are linear functions of the number
of tracks •. Overal I measured CPU problem state
time and summed module component time by test
case are given in Table 4. In al I cases, the
surrmed fime exceeds the measured time.

For the para! lei version, validation was
performed by comparing computed sequent i a I and
true target positions. In an overwhelming num-
ber of instances, the maximum component differ
ence in position per test case did not exceed
3/4 of a mile, representing less than 1% devia
tion. Active tracking, which uti I lzes additional
range information, provided a maximum variation
of 0.0033 of a mi le. Table 5 I ists the few vari
ational anomalies that did occur. The four starred
track numbers indicate significantly better posi
tions for the para I lel version. Each of the pairs
in the last 3 columns represents positive compo
nent distances in miles,

Test .case resu I ts show mode 1 leas.es 1-51
to require an average of 3,9 seconds to.execute
60 scans of data. Mode O leases 6-81 requires
nearly twice as much tJme whereas mode 2 only

180

requires half again as much time. Test case
timing is shown in Table 6. The average and
extremal times through 3 scans and through
60 scans are provided. Also averages are compu
ted representing the constant value for each
mode. The calculated time derived by running
component subroutines for each mode Is addition
ally shown and is consistent with the average
time for each mode.

The average AP waiting time for PIO is
~iven in Table 7. Percentages are relattve
to average mode times of Table 6. Because of
the relative constancy 140%1 of this waiting
time in al I three modes, most of the waiting
time appears to occur while the smoothing sub
routine is processing. In fact, the successive
synchronizations in this routine do support
this contention. Too, the smoothing subroutine
itself is the single most time consuming routine,
accounting for 35% of the total mode 1 time.
For mode O and mode 2, where this subroutine
is cal led twice (for resmoothingl per scan,
the percentages are even higher - 48% and 59%
respectively.

The basic computer performance result com
paring both versions is that the para I le! ver
sion is superior to the sequential version:

o For modes 1 and 2, at the 64 track maxi
mum, it is more than 3 times faster

o For mode O, at the 32 track maximum,
it ls about li times faster

The overal I timing comparison for the nine ca
ses in both versions is provided in Figure 9.
The crossover point is defined as the number
of tracks handled by the sequential and paral
lel versions in the same time period. For the
passive modes, the crossover occurs at approx
imately 20 tracks. Furthermore, in. the active
case, the parallel version is 3 times faster
than the corresponding sequential version using
64 tracks.

Conclusions

Based .on the reported comparison between.
para I lei and sequential versions of Passive
Tracking, the para! lel version is at least
as accurate as the sequential version. For 64
tracks in the self passive and active modes,
the parallel version is more than three times
faster; for 32 tracks in the cooperative mode,
the para I lei version is more than one and a
half times as fast. The low 19 and 21 track
crossover points in the passive modes are attri
butable to: 11 efficient, joint use of second
and third order para! lei ism which adds to the
inherent first order para! lei ism of the algor
ithms; 121 minimized number of floating point
operations.

Finally, in analyzing the parallel program
for timing bott I enecks, it appears that the
floating point arithmetic routines account
for 90~95% of the active AP processing time.
It is conjectured that this may hold true for
any STARAN application which uses the softwar·e
floating point package.

Extrapolations

A further conclusion can be entertained
about the trend of the results as the number
of tracks goes beyond 64. Namely, the para! lei
program execution time in all modes increases
more slowly in comparison to the increase in
the number of tracks. From these para I lei per
formance data, it is useful to consider what
occurs for· the passive tracking type of appl i
cation when, for example, 1024 tracks are need
ed. What time savings are possible and what
storage problems and program bottlenecks are
there?

The para I lei passive tracking program is
designed for the 64 track case as a maximum.
Thus, a step function (of size 64l describes
the execution time (vs. the number of tracks)
as the number of tracks increases to 1024. Fur
thermore, the step size depends on the degree
to which the present design is frozen and mem
ory (array memory especial lyl can be enlarged.
This discussion presumes that a larger PDP/11
can be configured with 32K or 64K of sequential
memory to provide for the increase in track
dependent storage. The timing contributions
of association and smoothing functions of the
tracking are particularly sensitive since they
currently uti I ize al I existing array space.

Let vectors T0 , T1 , T2 ; and T3 be defined
as follows:

T0 =the total execution time
(seconds) per mode using
64 tracks (from Tab I e 6 (3.9)
average mode t imesl = 7.2

5.5

Tl= the association function
t i me per mode (0.9)

= 1.5
o.a

T 2 = the AP waiting for PIO (1.5)
time per mode (from Table 7l = 2.7

2.3

T3= the smoothing function
time per mode (1.5) = 3.2

3.0

In the first case, let the design be fro
zen and the array memory modules increased from
4 to 64. It is assumed that, as the number of
tracks doubles, the AP inter-array data move
ment time portion of the association represents
a I ittle less than half (0.45) of T1• Similarly,
it is assumed that al I program wait time for
PIO data movement is concentrated in the smooth
ing routine (an overestimate). Thus, by success
ively doubling the number of arrays from 4 to
64, a factor of 4 is introduced. Symbolically,
we get

T4 =To+ 4*W.45~~T1 + T2l. Thus

(7.9) T4 = 14.2
10.6

which is an estimate of total execution time
for the tracking of 1024 targets with a frozen

181

design and 64 array memory modules. This repre
sents a doubling of time relative to 64 tracks.

In the second case, let the array memory
size be frozen (to 4 arrays) and let the design
be modified so that computation times for asso
ciation and smoothing are doubled le.g. via
multiple passes) each time the number of tracks
is doubled. Let the entire data movement increase
for both routines be represented by the increment
IT3 - Tol, an over estimate. Then, by success
ively doubling the number of tracks from 64
to 1024, a fourfold power of two is introduced.
Symbolically, this is

T 5 = T 4 + 2 4 IT l + T 31. Thus

(46.3)
T = 89.4

5 71.4

which is an estimate of total execution time
for 1024 targets with 4 array memory modules
and a modified design. This represents a 12-
fold increase in time over that for 64 tracks.

Thus, it appears that increasing the number
of tracks 16 times to 1024, increases program
execution time by a factor of at most 12. This
can be a significant time saving particularly
when storage and design modifications are joint
ly undertaken,

Recommendations

It is recommended that for real time appl i
cations or applications in which minimized pro
cessing time is the objective, consideration
should be given to the exploration of second
and third order para! lei ism and the synchron
ization relationship between the two process
ors. To ease future program implementations
on STARANs similar to and including the RADCAP,
several software implementation recommendations
are offered:

1. An extremely useful adjunct, while run
ning the passive tracking program was the devel
opment by RADC of post-processing floating
point conversion routines on Multics. Two rou
tines were used, one to convert unformatted
binary to decimal values and the other to convert
formatted (hexadecimal l ASCII to decimal values.
The main feature of these routines was the speed
at which many thousands of numbers could be
converted. Since no conversion software exists
on STARAN currently, it is recommended that
these routines be made available within Goodyear
syst~m software as an addition to the post
processing capabi I ities of SOM.

2. Portions of the program were written
in pure microcode while other portions were
heavily APPLE assembler language oriented.
Certainly the microcode, once checked out,
is cleaner, faster, more compact code. However,
if minimizing program checkout time is the
main objective, then assembler language should
be utilized throughout. On the other hand,
if minimizing program storage and timing is
the objective, microcoding of key subroutines
and processes should be exploited from the
onset. It is recommended that consideration
be given to the proper mix of language types

used in application programs.
3. A rather discip.I ined approach to the

coding and checkout of the passive tracking
program was undertaken. At_ the microcode level,
symboli.c register status maps were heavily used.
These maps provided an updatable code I ine cor
respondence with the symbolic variables and
equations of the design. Computationa.I subpro
cesses were thereby highlighted. When such code
was tested, one merely traced any discrepancy
between the computed value and the symbolic
value. Even before the code was .checked out,
manua I run throughs detected des_i gn, code and
consistency errors and al lowed for full correc
tions. For the passive tracking subroutine in
tegration, array field and register status maps
were used in a similar manner. It is recommended
that these maps be used in future applications
on STARAN to contain the many opportunities
for error and reduce checkout time.

References

[1) Feldman, J.D. and Reimann, O.A. "RADCAP:

Program Control
Pi!!~meters lnitia11zed

Yes

FIGURE I PASSIVE TRACKING PROGRAM FLOW_ CHART

182

(2)

(3)

[4]

An Operational .Para I lel Processing Faci I ity",
Proceedings of the Sagamore Conference on
Parallel Processing, August 1973.
Goodyear Aerospace Corporation, STARAN Macro.
Apple IMAPPLEI Prograrrvning Manual, GAC Docu
ment Number GER-15643A, September 1974.
Good.year Aerospace Corporation, STARAN User's
Guide, GAC Document Number GER-15644A, Sep
TEiiiiber 1974.
Lee, H.F., Katz, R., Fisher, T., Schenfele,
F., Thomas, G.w., Associative Processor
Application Study, Final Report, Volumes
l and 11. Contract No. F30602-75-C-0112,
BCS Document Number BCS-40106-1 and -2,
to be released.
Prentice,; B.W., "Implementation of the AWACS
Passive Tracking Algorithms on a Goodyear
STARAN", Proceedings of the Sagamore Con
ference on Para I tel Processing, August 1974.
Prentice, B.W., Katz, R., Komajda, R., Lee,
H.F., Nelson, N., Associative Processor
Application Study, Final Report. Contract
No. F30602-74-C-0025, Report No. RADC-TR--
74-326, September 1974.

POP-11

·Data Transfer Program
(bulk core/HSDB - disk)

1/0 Buffers

Pages Data Transfer

f------ Arithmetic Subroutines

:- - - - - -t--=L._i..;br_.~ry Subrou,_t_fn_e_s_-_....,

I Bulk Core

I
Passive- Tracking

f----- - Main Program
1/0

Buffers I
I
I Subroutines

PIO Interpretive Code

(Oota Transfer

bulk core/H5DB - array)

____ H~_!!_B

Reserved Sµacc Branch 1/0
for Program and Link Link

Variables Reqistc.rs WC1rds
==~-

Instruction
Execution

FIGURE 2 PARALLEL PROGRAM ALLOCATlllN & THEIR l~TERRELATIO~S

Interlock

2

3

4

5

TABLE 1 FUNCTION OF INTERLOCKS TABLE 2 QUANTITATIVE STAJISTICS FOR. FLOATING POINT SUBROUTINES

Function

AP operation flag APl

Reset 0 - AP running

Set 1 - AP idling

AP array assignment flag AP2

Reset C - assignment of arrays complete

Set 1 - assignment of arrays incomplete

PIO operation flag PIO!

Reset 0 - PIO running

Set 1 - PIO idling

FUNCTION

Cosine

Arctangent

Absolute Value
(Complement)

Field to Field
Comparison
(Less Than,
Greater Than)

ACCURACY· TIMING STORAGE

Actual error Bulk Core: 25B10
<2_1~ 0.0074768 sec.

Actual error Page Memory: 73210
<2_16 0.0027419 sec.

exact Page Memory: 6210
96.6 11 sec*

exact Page Memory: 5710
50.7 11 sec

PIO array assignment flag f..!.Ql., * Add 30 11 sec. if the output field is mutually exclusive of the
input fie! d.

Reset O - Array Assignment complete;
PIO operati1?n in pl"Ogress

Set l - Array Assignment cannot proceed

,- - - - -· - - - - - - - i
~~':, ~:!'a;_i~n- C_?~~e!e~ ..!

I

PIO ready

Signal AP idle

PIO ready to
Assign arrays

Arrays
re-assigned

r- - - - - - - - - - - -.
I PIO operation completed 1

L-- - - - -,- - - - - ..J

I

Signal PIO idle

AP ready

Assign array m1m2 ••. to.AP

AP idle
acknowledged

to PIO

Return

NOTE: APl = Interlock 2

AP2 .. Interlock 3

PIOl = Interlock 4

P102 = Interlock 5
Return

FIGURE 3a FLOW DIAGRAM OF
AP SYNCHRONOUS SUBROUTINE

183

FIGURE 36 FLOW DIAGRAM OF
PIO SYNCHRONOUS SUBROUTINE

r-'
00 ..,_

I Test
1 Case

i
I l

2

3

4

5

6

J

8

12

:::
@
~

:;j ,.,
~
~
~
~
~
:;j

~
~
~

~
"' :!
0

' ~ ... ____,. ... ---
-~

I I !! I
~~

~N--r-------'

~ ~ I ~ 0 .. •
~ :!. "'lC ,,.

~I ·-IA-5*~

!;, -~~ ... ~ ~f g ~

~ ~ !' .. ~

::
~

TABLE 4: SEQUENTIAL TEST CASE PERFORMANCE TIMES

Measured CPU Su11111ed
Problem Component

No. of State Time Time
Tracks (seconds) (seconds)

64 14.74269 14.74530

52 11.58335 11,58556

40 8.62145 8.62368

28 5.85859 5.86001

16 3.31928 3.32033

32 11.62554 11.62744
24 8.53559 8.53722

16 5.62010 5.62152

64 18.45357 18.45616

H .. =
0
~

~
Mode l

Mode o
Mode 2

::: ...
~ ..
I :c
"' !ii

~
z = ,.
~

~
;1
z

~
3

NO. OF 32 BIT WORDS
TO TRANSFER

32

64

128

256

I

r . F ;;, \ , I I I • I I I Iii ~
........ ~.}\ .. ~ ·~ .. ~

~Ft/ \ : \ •j,. ~
' ·i~ "'

... 1,.

n
p .
0

:.

...

N .
:::;1:::

1-..
19~
I~ n
I ' > - ..
1.:! ~
I -

:. lL~ ~ ""' 1N1::I Z

~ ,~~
:: I gi
~ I

I
+

"'I"

~-AP AND PIO INTER-ARRAY OATA MOVEMENT TIMING

Af' DATA MOVEMENT ROUTINE: MEASURED TIME

NO. OF CALLS
TOTAL TIME (sec)
OVER 2 SCANS

59 0.0209263

114 0.0522385

93 0,0414003

AP ANO PIO DATA MOVEMENT ROUTINES: COMPUTED TIME

~ ----+_,..... ,,._,__...,..,.-:::
·······~····l>o<";.·······::--. ~

~t~ I

'+ ~~
I~).,~... ~;
~ ~

~
····..O:····· iii

~ ~
f.l

AVERAGE NO, OF
AVERAGE TIME (p see) 32 BIT WORDS
PER CALL ~RED

354.683 58.7

458.232 76.0

445.165 74.0

AP: ATAOM (µ s'!£1_ PIO: ATOA (• see)

UNSHIFTEO(a)
MAXIMUM
ill.till.

194.04 271.85 1209 .OS

386.68 276.25 940. 25

771. 96 288.85 671.45

1542.52 30).25 301. 25

(a) Indicates identical location (no vertical shift) in source and destination arrays.

.,,,,

"

•
0

0

0

0

Ill

11111
TAR~t::r:: ~l-~!S

c.:.~e:::oiwcn ,.,..

·=

0 0

0 0 0
0 11

""

~ ,_
1Cl g

<
ll

~ §

I.WA~ l"CStTION

·!O 0 =:I

tEl.P !'~~>VE lo ACT1VE

100

coc;:u;::'l!AitS Et..::r -

•'-'

·=

0

0

•
0

0 ..
0

, ..

0

•
0

" 0
Cl TAn.:;:::·.-::=::;-:.c

~:IOIC."llQTS ., ..
F!Ctl:i.o"Z 6 s::.:.:.:ArttO FOR SCl.F PASSIVE CASES 1-S /\.~D l\CTIVE. CASC l:!

0

II

0

•
0

0

185

•

Tfme

Untfmed
Portion

Timed
Portion

FIGURE 8

PDP/11

j
Begin 1/0

Varyi::~oc.ess
Disk

Access
Time

Complete
1/0 Process

variable

AP

l
Issue

Synchronization
tot!O

ls sue
l/D Request
to PDP/11

I
Perfonn

C-utatlons

I
Waft for l/O

Completion

I
Iuue Next

Synchroni zatlon
to PIO

Time} I
Waft Untfl
P!Oteady

Perfonn
Computatfons

T

PIO

l
Begin

Synchronization
Process

Complete
s.vnchronization

Process

I
Begin Next

Synchronization
Process

T

TYPICAL AP, PIO, PDP/11 EVENT STREAM SEGMENT

DURING PASSIVE TRACKING EXECUTION

0

NO. OF
CASE RUNS

2 8

(MODE 1)(21)

(MOOE O)(12)

(MOOE 2)

12

::i
0 N -:!, 0 ... N, 0

0 0 C> 0 0 0

le :.'l N ~ :.'l :t; ..,

TIME
Seconds

20.0

15.0

10.0

s.o-

TIME
Seconds

20.0

15.0

10.0

5.0

No. of Tracks •

16 28 40 52 64

Mode l (Self-passive tracking)

X (Serial)

(Mode 0) (flode 2)

/(Serial)

~ (Parallel) " (Parallel)

Zl tracks

No. of Tracks

16 24 32 64

Mode 0 (Cooperative passive tracking) and Mode 2 (Active tracking)

FIGURE 9 PARALLEL AHO SERIAL TIM!HG COMPARISON

TABLE 6 OVERALL TIMING - PARALLEL VERSION

TIMING (Seconds)
THROUGH 2 SGAi;S

AVERAGE LO~EST

!lliL_ TIME

0.0687 0.0566

0.0697 0.0569

O.Oo62 0.0628

0.0729 0. 0638

0.0130 0.0631

0.0697

0.1259 0.0937

0.1251 0.1217

0.1349 0.1283

0.1271

0.1075 0.0729

Mode

Self passive

Cooperative

Active

TIMING (Seconds)
THROUGH 60 SCANS

HIGHEST SUBROUTINE NO. OF AVERAGE LOWEST HIGHEST
lli'L_ S~M TIME E!lliL lli'L_ Il!:!L lJ.!:ii_

0.0960 0.0629 3. 7642 3 .4786 4 .1838

0.0828 13 4.0062 3.5001 4 .2418

0.0695 2 4.0323 3. 7590 4 .3057

0.0761 3. 7594 3.5265 3.9922

0. 0830 3. 7702 3.6788 3;8615

(25) 3.9116

0.1589 0.1593 7 .1616 6. 5271 7 .8350

0.1286 7 .0976 6.4113 7 .8111

0.1416 1. 2532 6.5531 7. 9534

(11) 7 .1550

0.1533 0.1319 5.5120 5.0834 6 .1637

TABLE 7: AP WAITING TIM[FOR PIO BY MOCE

alting Time
For 60 Scans
(seconds)

1.47424

2. 70486

2. 30377

Ur6

Total
-Execution Time
(seconds)

3. 9116

7 .1550

5. 5120

Percentage

37. 7

37 .8

41.8

SUSRCUTlNE
SUM-TIME

3.8422

7 .4971

5.4108

Automatic Track Initiation Using the RADCAP STARAN

Edward C. Stanke, II, Capt, USAF
Rome Air Development Center

Griffiss AFB NY 13441

Summary

Automatic track initiation, as used in this
paper, refers to the computer controlled initi
ation of new tracks within an aircraft active
tracking environment, Aircraft active tracking
consists of those steps necessary to keep track
of the path of an airplane and predict the fli~ht
path for the next scan, This process is com
prised of three basic steps. First, the reports
which are received from the radar must be cor
related with the appropriate tracks, Second,
the stored present position of the track must
be updated based on the report and the previous
position, Third, a projected position of the
track for the next scan must be predicted to pre
pare for the next correlation step. I will refer
to these steps as association/correlation, smooth
ing, and prediction respectively, Notice that
all three of these steps assume that the track
has been previously established. That is, at
some point in time, something performed those
steps necessary to get the tracking procedure
started on each track, In the type of active
tracking previously implemented on the RADCAP
STARAN (ITAS program [l], this initialization
was done prior t'o the execution of the actual
tracking program and no new tracks were added
nor were any tracks deleted during the life of
the tracking program. In an operational active
tracking environment, the ta11ging of reports
to be initialized as new tracks by some track
initiation program is done by a human operator,
Based on the demonstrated potential of the paral
lel tracking algorithm previously implemented on
the STARA~, with the potential of tracking hun
dreds of tracks, the number of operators neces
sary for the initiation process becomes
astronomical, This leads logically to the
concept of automatic track initiation,

Automatic Track Initiation (ATI) consists of
those steps necessary to recognize that a report
is potentially an actual track when it does not
correlate with any active track, and to perform
the initialization process on that report to
determine if it is in fact a valid track, This
means that any report which does not correlate
with an established track must be considered a
potential track and must be saved at least until
the next scan to test for correlation with
received reports in that scan, In addition, ATI
implies the deletion from the active track list
of all those tracks which do not have reports
correlated with them for some given period of
time, The mechanism whereby this is done is a
figure of merit which is assi.~ed to each track,
This figure, which I will call firmness, reflects

187

a confidence level in the accuracy of the track.
In the ATI implementation which I will describe,
the range of the firmness is zero to seven, A
firmness of zero is used as a space holder.
That is, if a given track has a firmness of zero,
that track is not active and the space it occu
pies is available for any potential track, The
firmness values of one and two are used in the
identification and initialization of new tracks.
A firmness of three or greater means that the
track is active, This eight-state system is
similar to the ten-state firmness system
described by Eddey and ~1eilander [2].

The implementation of the ATI concept using
the previously implemented ITAS program requires
the breaking up of the program into identifiable
modules (basically the three steps identified
above) and adding additional modules to take care
of the track initiation function. The scheme to
be used is fairly simple. All returned reports
are to be checked for association with the
established tracks, Then, all reports wil 1 be
checked for association with all potential tracks
which were started last scan. Both of these
steps are sequential on the tracks and parallel
on the reports. Next, all reports which were not
associated with either a potential or established
track are identified as potential tracks for the
next scan. All potential tracks which did not
have a report associate with them are dropped.
Followinp. this, all potential tracks which have a
report associated with them are initialized in
parallel and upgraded to established tracks for
the next scan. Previously established tracks are
then tested for correlation and smoothed via a
Kalman filter. Finally, all tracks, established
and potential, go through the prediction routine
in preparation for the next scan. Note that this
sequence is the same as the parallel ITAS flow
with the ATI loop added, Therefore, the effect
on execution time of the ATI step can be fairly
well characterized in terms of the scenario
characteristics.

Using the results from the ITAS implementa
tion [3), the parallel execution time per scan
with ATI can be given by:

Time per scan = 64,4 + 0,4N + F/100 + ATI msec

Where: N = number of established tracks
E = number of false alarms
ATI time due to automatic track

initiation

It is easy to perceive that the ATI term in the
above equation consists of two terms. One of

these is a constant which represents the time
required for updating of the potential tracks
which do have a report associated with them,
plus the time required for initialization of all
llllassociated reports as potential tracks. Since
this updating and initialization are trivial
compared to the correlation and smoothin.g which
accollllt for the constant 64. 4 in the above equa
tion, this term is probably negligible. The
second term making up ATI is the one accollllting
for the potential track association loop. Since
this loop is very similar to the loop for
established tracks, the ATI term wi 11 in all
probability look something like:

ATI ,. O. 4NP

where NP is the number of reports
which didn't associate on the last
scan. This is, of course, highly
dependent on the false alarm rate
in the given environment.

From the above figures, it is apparent that for a
1000-target environment, with an equal number of
false alarms per scan, the execution time for the
tracking program with ATI is somewhat less than
twice that for tracking alone. Based on projected
figures, for the ITAS program, the execution time
per scan for tracking in this environment was

188

o.s seconds. Thus, we could do the tracking
with automatic track initiation in less than one
second which is ten percent of the time avail
able per scan. lt then seems reasonable to
attempt automatic track initiation on the STARAN
to relieve the potentially large manual interven
tion necessary for the track initiation process
in an operational environment.

References

[l] M.W. Summers and D.F. Trad, "The Evolution
of a Parallel Activ.e Tracking Program"•
Lecture Notes in Computer Science,
Vol. 24, Sprine:er Verlag Series Lecture
Notes in Computer Science, pp 238-249.

[2) E.E. Eddey and w.c. Meilander, "Application
of an Associative Processor to Aircraft
Trackinv,", Lecture Notes in Computer
Science, Vol. 24, Springer Verlag Series
Lecture Notes in Computer Science,
pp 417-428.

[3] M.W. Summers, "An Associative Processor
Application Study", USAF, Rome Air
Development Center, RADC-TR-75-318,
January 1976, 43 PP•

CONCEPT FOR A COMPUTER ARCHITECTURE RESEARCH FACILITY

Alan R. Klayton, Capt, USAF
Rome Air Development Center
Griffiss AFB, Rome NY 13441

Summary

Problems such as the high cost of software,
system availability and reliability, and the
requirement for increased processing power con
tinued to be of major concern. In some of these
areas only software based solutions have received
much attention; e.p,, structured programming.
Now, however, rapid progress in L5I technology,
the availability of microprocessors, and the ap
plication of microprogramming techniques offer.
new opportunities for seeking hardware solutions
to key data processing problems, Computer hard
ware concepts previously discarded mainly for
economic reasons are now feasible. In fact,
architectures of the ·future will most certainly
be built from collections of microprocessors in
tegrated in a manner suitable for the intended
application. The increasing interest in concur
rent processing systems is already evident with
economics a positive drivinp. force as micropro
cessors and memory prices continue to fall.

Unfortunately, rapid advances in I.51 hard
ware technology have surfaced new problems. We
lack techniques for efficiently designing and
developing new architectures utilizing the new
L5 I building blocks, Methods for devising an.d
optimizing multi-microprocessor architectures
need to be developed. More specifically, there
is a strong requirement for a computer architec
ture research facility where nonstandard archi
tectures can be designed, evaluated and tuned to
an intended application. To be practical, the
facility must support the efficient emulation,
application programming, and performance monitor
ing of a wide range of computer architectures,

In response to these needs, the Rome Air
Development Center is assembling an experimental
computer architecture research facility which will
be a testbed for: 1) the identification and
development of necessary facility hardware and
software support tools and 2) exploring the appli
cation of multi-microprocessor architectures and
system tuning techniques to the problem areas men
tion.ed above.

Although the design of the facility is the
subject of a number of studies, Figure l depicts
the major hardware components available for the
testbed and outlines a candidate interconnection
scheme.

The QM-1 is an extremely flexible sequential
computer featuring two levels of microprogram
mability with both levels fully accessible to the

189

user. The QM-1 itself offers a strong emulation
capability for conventional architectures and is
the main link to the other system components.

The STARAN Associative Processor is a repre
sentative of single instruction multiple data
stream processinp systems. This nonconventional
architecture has been shown to provide great pro
cessing power for applications possessing a high
degree of parallelism, The multiple dimensional
access memory in STARAN is a unique memory organi
zation capable of 256 different read/write modes,
This flexibility allows optimized high bandwidth
interfaces to exist between the array memory and
the other component parts of the facility, such
as a 256-bit slice or word slice to and from mass
memory, 64 simultaneous four-bit words to and
from the microprocessor array, eight simultaneous
32-bit words to and from the control system, etc.

Each of the microprocessors in the micro
processor array is an arithmetic and logic unit
on a single chip. In today's technology, they
are 2, 41 8, 12 1 and 16 bits wide. Under program
control, the microprocessor chips will be made to
act as independent processing units or grouped
together into functional units. Depending on the
application, they may ·function as stages of a
pipeline machine, peripheral controllers, more
powerful processing elements, or elements in a
distributed multiprocessor system. Since each
of the microprocessor units can execute from its
own program memory, they can perform autonomously
or be made to operate on a cycle-by-cycle basis
on instructions and data issued under control of
the control computer,

The data manipulator routes data and instru~
tions between the various elements of the system
and perhaps most importantly, between micropro
cessors. It can be thought of as a software con
trolled switch which in effect creates a gener
alized high bandwidth interconnection between
elements of the testbed,

The mass memory is a backup store for the
STARAN multiple dimensional array and the micro
processors. It will hold data and instructions
and be able to supply them quickly over the high
bandwidth (1024 bits wide) channel connecting
the ST ARAN arrays to the mass memory.

The Performance Monitoring System (PMS} is
an essential element of the facility. The PMS is
required to conduct quantitative analysis of
alternative computer architectures and to per
form hardware/software/firmware tradeoffs.

The PMS will employ both hardware and software
measurement techniques.

The STARAN associative processor is opera
tional at RADC. A mass memory prototype effort
is currently in progress and the Data Manipulator
is now under construction. The QM-1 is an off
the-shelf item. The microprocessor array and all
system interfaces must be designed. The research
facility will be interfaced to the MULTICS time
sharing system through the QM-1 in order to take
advantage of the many services available on the
MULTICS system, and to facilitate a multi-user
mode of operation for the facility.

Tne success of the compute.r architecture
research facility concept hinges on the develop
ment of those software tools required for
achieving system practicality. The major
tools presently identified, called the USER
(Universal Software Emulation Resources) Package,
is depicted in Figure 2.

The Emulation Desi!!fl Lan.guage (EDL) is a

ST ARAN
AP

MULTICS

QM-1

DATA
MANIPULATOR

MASS
~MORY

.~~AY

Fig 1 SYSTEM AROilTECTURE RESEAROi FACILI1Y

190

high order language (HOL) used for describing
the target architecture which is to be emulated,
The EDL must provide appropriate construct~> for
describing concurrent processing systems,

The EDL translator will be a cros:i. l1Jr
running under the MULTICS system. The t:ra:iTs1.2tor
will output microcode, representing the tr,rg~t
machine emulation, as we 11 as a set of t «.b les ,.
etc .• , required b;:,t the automated code g•~nexator
section of the application language (!1.0L)
compiler.

Full realization. of the RADC Computer
Architecture Research Facility as described
above requires hardware and software state-of
the-art advances, Initial RADC efforts will
focus on the development of the USER Package
depicted in Figure 2, but will be restricted
to supporting the QM-1 emulation computer. As
experience is gained, and as the results of
various studies become available, the facility
ha1"'tlware and software will be expanded towards
the system of Figure l,

HOL

r- e.g.•

I JOVIAL
I
I

I
PROBLEM

\
EDL

COMPILER

FRONT
END

I
I CODE
I GEN
fi
I

Tables,
etc.

AROHTECTURE
RESEARO!
FACILITY
HARDWARE

EDL
TRANSLATOR

I
, I

!
l

I
I
I
!
I
b

I I
I I

:i~·:-:.:::~------EJ·:

A CONTENT-ADDRESSED MEMORY
DESIGNED FOR DATA BASE APPLICATIONS(il)

G-ge A. Anderson
Honey-II Systems • R-rch Conter

Minneapolis, MN 55413

Richard V. Kain
University of MlnMSOta
Minneapolis, MN 65465

Abstract-This paper <lescribes an extended-capa
bility CAM ~ch operates on formatted data baSes up
to around 10 bits in size. The system, called ECAM,
consists of a control unit and a serial associative store
with logic blocks in the 100 gate complexity range
provided at each word. The organization is relatively
independent of storage technology; the current design
assumes CCD memory organized in 4K bit words,
shifted at a 1 microsec. rate. The control unit is
microprogrammed to interpret a block-structured query
language which operates on logical data structures, such
as Codd's relations. The mapping of logical structures
to operatfons on physical storage is performed by the
hardware. A full repertoire of associative search and
arithmetic operators is provided. In its target applica
tion, the ECAM will require less than 1 hour/day to
perform a task that was estimated to require between
40 and 700 hours/day ori a large commerci81 mainframe.

Introduction

Until recently, the extremely high cost of imple
menting associative memories and processors · has
restricted implementations to very small sizes. The
serial STARAf and OMEN ~rocessors have capacities
up to the 10 bit range [lJ, while the biggest fully
parallel device is only 16K bits in size [2]. This paper
describes a design, baSed on recent improvements in
storage technologies, Jhich allows implementation of
memories up to the 10 bit range. The system, called
an Extended Content-Addressed Memory (ECAM), is
being developed by Honeywell, Inc. under the sponsor
ship of Rome Air Development Center, USAF, and is
designed specifically for high-performance database
applications. We first describe the motivation for such
a machine, then the hardware and software approaches
being used.

Background

The requirement for a device such as the ECAM
stems from the inherent performance limitations in
conventional database approaches. Conventfonal data
base systems are implemented on serial processors with
limited amounts of fast memory. This has resulted in
performance which deteriorates drastically as the data
base size increases. Also, conventional memories are
location addressed, a fact which complicates the pro
cessing problem with issues not inherent in either the

(a)This is a preprint of a paper to appear in the Proceed
ings of the 1976 International Conference on Parallel
Processing, held August 24-27, 1976.

191

data or the system functional requirements. The major
effect of location-addressing ha5 been increased storage
overhead for index tables. In large databases, manage
ment of these tables is a problem in its own right. Fast
insertion and deletion of records requires that a
minimum of tables be involved; fast retrieval of
records requires that a large number of different
attributes be indexed in the directories.

In contrast to conventional techniques, content
addressed memories like the ECAM have the capability
of retrieving information directly, baSed on attributes
of the data itself. This is accomplished by including
sufficient processing capability in the data storage
medium to perform searching operations. The use of
Content-Addressed Memories (CAMs) to overcome the
constraints of conventional database systems has been
suggested by many (most recently by Difiore [3]), but
until recently the cost of CAM systems has been
prohibitively high. This high cost was due both to the
cost of logic required for content addressabili~y and to
the high cost of the storage itself. To date, 10 bits has
been the upper limit on implemented CAMs, while our
Air Forcegequirements called for capacity to approxi
mately 10 bits. Advances in LSI technology, however,
have reduced the cost of storage to the point where
historical limits no longer apply. Accordingly, the
ECAM work was underyken with the objective of
designing a buildable 10 bit associative memory by
taking advantage of these developments.

Hardware Structure

The ECAM is a special-purpose machine designed
to be attached to one or more host computers and to be
used as an access processor for the databaSe it contains.
The major functional units of the ECAM are shown in
Figure 1. An artist's sketch of the proposed packaging
is shown in Figure 2.

The maahine is divided into two portiofis; the
CAM array, and the control unit. The control unit is
designed· around a bus-organized m~nicomputer and
includes the mini (called the master);,_ custom-designed
controller for the array (called the slave), and one (or
more) interfaces to the host(s). The array consists of a
multiplicity , qf 4K bit serial storage words, with
combinatiOmil logic at each word to effect the associa
tive functions. 9 1he upper limit on array size is
approximately 10 bits.

·~

Control Unit

The main unit within the control unit is the
master minicomputer. 7.ts memory bus provJ.cies the

(T~ Host)

Master
Minicomputer -,

J

1

(To Host)

___ __ ..,.... __ _...___ I

-Master
Memory

Slave Control Unit

Interpreter i-----.

Buffers

lteraiion
_Control

Fast
1/0

storage
cc>ntrol

CAM Array
Cabinet 111

CAM Array
Cabinet tN

Figure 1. ECAM Structure

Figure 2. ECAM Packa~ng

----- -- -- --- - --- ---

192

basic structlll'.e. 9f the control unit. Furthermore, the
availability of standard software facilitates writing
application code to mediate between the host and the
slave controller. Because of its ubiquity in Air For-ce
applications, we are recommending that the PDP-11/45
be chosen as master control processor, but the control
_unit design is such that almost any bus-organized
.minicomputer could be used.

The ECAM-host interface is designed to -connect
to the host as a standard high-speed peripheral (such as
a disc). It is controlled via the master~s programmed
1/0 facility and transfers blocks of information between
the _host and the master's memory in a transparent
fashion.

The two major- subunits of the stave are _ tlie
ioterpreter and tJte iteration control. The interpreter is
a high-speed microprogrammed 1.11;1it which is designed
specifically for interpretively ~xecuting a block-struc
tured . query. language used to specify ECAM operation
sequences. Query language sequences are passed from
the ·master to the slave via buffers in the master's
memory. The control store of _the interpreter is
writable, .allowing ea8y changes to the query language.
The output of the interpreter is a stream of array
primitives which are passed to the iteration contr!)l unit
via dedicated buffers within the slave. Iteration control
is a hardwired subunit _which generates control signal
sequences to effect the array operations.

In order to keep the bulk of the design indepen
dent of the storage technology, the storage control
functions of addressing, shifting, refresh, etc •. have been
isolated to a single subunit. of the slave. A high
bandwidth 1/0 capability is also provided, under control
of a distinct subunit of the slave.

. The ~omplexity of the ·slave controller is esti
mated at 500-800 small and medium-scale integrated
circuit packages. It is 9esigned for implementation in
TTL circuit technology with 10 MHz clocks.

Array

The array consists of a -large number (up to
250,000) of associative words, as shown in Figure 3.
Each word consists of 4096 bits of CCD storage,

r---------------------- ----

L--~-- ---- - ---- - ------

n Figure 3. ECAM Associative Word

randomly addressable to 256 bit registers, and a block
called the "word logic" which supports the content
addressing and associative functions of the array. The
two major elements of the word logic are the match
memory and the arithmetiC"-logic block. Word logic
operations such as searches, arithmetic, etc. are
performed by selecting one of 16 match bits from the
memory and repeatedly executing the same sequence of
combinational operations on each bit of a field within
the storage word. For most operations, the inputs to
the combinational logic are the selected match bit, a
"global" data signal from the control unit, and the
"local" data bit from the storage part. A summary of
word logic functions is shown in Table 1.

Table 1. Word Logic Function Summary

Processing

Add/Subtract
Reverse Subtract
Arithmetic Compare
Minimum/Maximum

Input/Output

Input
Output
Output and Tag Duplicates

State Manipulation

(14 Logical Functions between Match,
T, and Other Word Logic State Variables)

1/0 and MMR Control

(4 Functions for 1/0, MMR, and
Match Counting)

The ECAM packaging baseline assumes that the
storage is contained on LSICs of 10 words by 4096 bits.
This is within the capability of present CCD technology
of many vendors. In the baseline, we have also assumed
a shift rate of 1 microsec/bit. This is somewhat slower
than current technology capabilities, but was chosen to
simplify signal distribution. Each storage chip is paired
with a word logic chip containing ten word logic blocks
together with first-level support logic for the multiple
match resolver, match counting, and I/0 facilities. At
the next level of packaging, eight storage/word logic
pairs are mounted on hybrid substrates. These
substrates are then placed on conventional circuit
cards. An artist's sketch of the packaging scheme is
shown in Figure 4.

Figure 4. ECAM Array Packaging Scheme

'193

Although the baseline ECAM storage technology is
CCD, the design has deliberately been kept as technol
ogy independent as possible.. The basic constraint on
the storage medium is a requirement for stop/start and
read-modify-write capability on a per-bit basis. Beyond
this, the speed, cost, power consumption, and mechan
ical attributes of the ECAM may be varied by changes
in the storage technology. In particular, use of
magnetic bubble stor~ Wf>i1ld allow ECAM sizes to
increase to perhaps 10 -10 bits with a corresponding
reduction in speed.

In addition to the word logic shown in Figure 3,
the ECAM is provided with a high speed 1/0 path which
allows 10 words to be logically selected onto 1/0 lines
and participate simultaneously during a single input or
output operation. The switch which implements this
fast 1/0 mode is included at the word logic chip level.
The eff~tive transfer ¥ndwidth of the ECAM is raised
from 10 bits/sec to 10 bits/sec by use of the fast 1/0
mode. This faster bandwidth capability is required for
database checkpoint/restart operations.

Application and System Software

The ECAM is primarily intended to operate on
data stored as tables consisting of a number of fixed
size records, each subdivided into fields of varying
length. The design is consistent with the relational
view of data [4], where the tables are the relations, the
records are the n-tuples, and the fields contain domain
values. An example of this basic structure is shown in
Figure 5. Both binary integers and characters are used
as field values; within the ECAM, they are treated
uniformly as bit strings.

1000 TO
500,000
ENTRIES

~

.h

1 ..

ID EQPT ORG

-

-

.300 TO 500 BITS -----r-f•
Figure 5. Stored Data Structure

The division of functions between host and ECAM
is made as follows; terminal handlers and user job
interfaces within the host support the generation of
query sequences. Once such a sequence has been
prepared, it is transferred, together with identification
tags, to the ECAM via the host's standard 1/0 subsystem

hardware and software. The query sequence references
the logical structure of the data store(! in the ECAM
and may, in addition, refer to intermediate search
results left by the user after previous queries.

The master control processor is responsible for
management of pending sequences and for transmitting
the results of queries back to the host. This. includes
allocation of. master memory buffers for incoming
sequences, scanning of sequences to create code for the
interpreter, and allocation of master memory buffers
for results being returned by the slave. In addition,
users requiring temporary storage of results during the
period between two queries may request temporary
storage areas within the ECAM. The master control
processor manages these areas. The mastel' also
schedules and dispatches code blocks to the interpreter.
The slave is. "multiprogrammed" -code blocks may
include "WAIT" type operations which relinquish
control, but no preemption is allowed.

The mapping of the logical table structures onto
the physical stol'age is shown in Figure 6. A small
number of physical word formats .are defined, each
having a different combination of directory entries. A
word may contain one or more entries from one or more
of the directories. The particular packing strategy
chosen will result from a tradeoff between speed and
storage efficiency for a given set of directory widths
and lengths. The choice of a packing strategy is a
database administration function; changes are expected
to occur infrequently.

f Format Tag

I

Eecord ., e

!LT.2

R.T.l

R.T.l

1- ---------

Packed Records

R.T.l ll.T.3

R.T.2 ll.T.2

!l.T.1

R.T.3

ECAM Storage Word --------~

Figure 6. Logical - Physical Mapping

The ECAM word formats are defined by a set of
descriptor tables stored in the master's memory. These
consist of: (1) a Record Type table listing attributes of
the various records (n-tuples) and pointing to (2) Record
Instance lists describing alternative physical placements
of each record type. Finally, a Field Descriptor table
provides information on the placement of fields within
records.

The function of the interpreter is to execute the
code sequences received from the mast~r, including
transforming references to the logical data structures
into references to the physical storage scheme by use of
the descriptor tables. This involves creation of loops to
sequence through multiple instances of records and
modification of programmer-specified loops to optimize
shifting of the array.

An ex!;\mple of the slave's language is shown in
Figure 7; the program marks. that record contuining the

FOR ALL RECORDS (TYPEl) DO

FIND(V ALUEl ,FIELD!)

PUSHl

FIND(V AL UE2,FIELD2)

OR

MAXIMUM(FIELD3)

END FOR

Figure 7. Example Intermediate Language Sequence

maximum value in FIELD3 among those records of type
TYPEl in which either FIELD! contains VALUE! or
FIELD2 contains VALUE2. This language has the
following characteristics:

1. It is strictly block-structured and can be
interpreted using a single stack.

2. The programmer sees the data in its relational
form; there may be many instances of "TYPEl" records
over which the operations within the "FOR" block must
be repeated; these instances may occur in various word
formats and various positions, as specified by the
descriptor tables.

3. The programmer sees the match memory
(Figure 3) as a stack (between operations, these stacks
must be saved with the record instances, since they are•
part of the process state).

The syntax and semantics of the intermediate
language are completely defined by the microcode
stored in the slave. No part of the language interface
has been hardwired. Rather, the hardware has deliber
ately been kept general, so that experience with the
operational system can be used to make improvements
in the master/slave language interface.

The software is structured and its functions
divided among the system components in a hierarchical
manner: the host need not know any details of the
database structure or the query language implementa
tion; the master need not know details of the iterations
through bit positions to scan fields; the iteration
controller handles these lowest-level details in a pre
determined way. By this, we feel we have succeeded in
moving complexities to the lowest possible level, while
simultaneously designing to allow change in all critical
areas.

194

Performance

Analytical estimates of ECAM performance indi
cate that it will operate roughly 200 times as fast as a
conventional database system on a large commercial
mainframe. We estimate that the ECAM will be
significantly less than 1096 loaded in an environment
where the conventional machine would be overloaded
from 100 to 2000%.

References

[1] K. J. Thurber and L. D. Wald, "Associative and
Parallel Processors," ACM Computing Surveys,
(December 1975), p. 197.

[2] L. D. Wald and G. A. Anderson, Associative
MemoAl for Multiirocessor Control, Fmal Report
No. N 12-2087 reptember 1971). Also IEEE-CS
Repository No. R74-172.

195

[3]

[4]

C. R. DiFiore and P. B. Berra, "A Quantitative
Analysis of the Utilization of Associative
Memories in Database Applications," IEEE Trans
actions on Computers, (February 1974), p. 121.

E. F. Codd, "A Relational Model of Data for Large
Shared Data Banks," CACM, (June 1970), p. 377.

TIME AND PARALLEL PROCESSOR BOUNDS
FOR

LINEAR RECURRENCE SYSTEMS WITH CONSTANT COEFFICIENTS*

S. C. Chen
Advanced Technology

Federal and Special Systems Group
Burroughs Corporation

Paoli, Pennsylvania 19301

Abstract. Parallel and direct computational
algorithms are developed to evaluate linear re
currence systems with constant coefficients. We
show that O(log2m log2n) time steps and O(mn)
processors are sufficient to solve such a system.
We also show that general recurrences, i.e., with
m=n, can be computed within O(log2n) time steps

2 2
with at most O(!!..) processors.

4

All algorithms are aimed at easy data rout
ings and simple machine control structures. Thus,
they can be easily implemented through software
such as parallel compiler algorithms, numeric sub
routines, or hardware control programs for future
parallel or pipeline processors.

1. Introduction

Linear recurrences with constant coeffi
cients arise frequently in general numerical com
putations. Several analytic methods for the solu
tion of these equations are available, such as by
solving for the roots of its characteristic poly
nomial or by the use of generating functions.

We are interested in a parallel and direct
computational algorithm which can be used to
evaluate them at a high speed. Such systems may
be represented as x = c + AX where c is a con
stant column vector, A is an nxn strictly lower
triangular matrix with bandwidth of m, m < n, and
all elements are identical along each sub-diagonal.
We show that O(log2m log2n) time steps and O(mn)

processors are sufficient to solve such a system.
We also show that general recurrences, i.e., with

m = n, can be computed within O(log;n) time steps

with at most 0(%2) processors. While such systems

remain in the same order of speed as in the algo
rithms for arbitrary coefficients discussed in
[l], the boun'ds on processors are sharpened by a
factor of m and n for the mth order and general
constant coefficient system, respectively. To
achieve these results, all processors need only
perform one type of operation at each time step
(SIMD operation).

We further show that our method can be modi
fied to evaluate the remote terms in a homogeneous

*This research is supported by NSF Grant
GJ-36936 while the author was with the Dept. of
Computer Science, Univ. of Illinois, Urbana,
Illinois.

196

linear recurrence sequence with at most O(m2) pro-
3 cessors in contrast to the O(m) processors re-

quired by the Miller-Brown algorithm. Also, the
parallel evaluation of nth degree polynomials can
be completed within 2log2 (n+l) time steps with at

most rn;J,1 + 1 processors which compares favorably

with recent results [2], [3], for practical
applications.

The parallel evaluation of recurrence rela
tions has been studied by a number of people [4],
[5], [6), [7], [8], in addition to the most recent
results [l] as stated above. For constant coeffi
cient systems, however, the algorithms presented
here will provide more efficient computations than
all previous results.

Although we do not discuss any details of ma
chine organization in this paper, it is in order
to sketch a machine here. We assume that:

1. Instructions are always available for
execution as required and are never held up by a
control unit.

2. Each processor may perform any of the
four arithmetic operations in one unit step.

3. There are no memory or data alignment
time penalties. Most of these assumptions can be
approached in a properly designed system as dis
cussed in [9].

The following definitions will hold through
out the paper. Let T be the time, measured in

p
unit steps, required to perform some calculation
using p independent (parallel or pipeline) pro
cessors. We define the speedup of a p-processor

machine over a uniprocessor as S
p

Tl
= T' and we

p
Tl

define its efficiency as E = pT < 1, which may
p p

be regarded as the quotient of S and the maximum
p

possible p-processor speedup p. Fo.r notational
simplicity, we will assume all logarithmic func
tions take their ceiling values.

2. General Linear Recurrences with
Constant Coefficients

In this section we discuss bounds on the
time and processors for the direct evaluation of
the following class of general linear recurrences

R<n>: x. 0 for i.::. o, l.
i-1

= Ci + E c:v.. x. for 1 < i " n
j=l J l.-j

In matrix notation, we write this as x = c +
AX where A = [aij] nxn is a strictly lower tri-

angular matrix. For example,

R<4>: xl cl 0 0 0 0 xl

x2 c2 c:v.l 0 0 0 x2
+

x3 C3 (l2 c:v.l 0 0 X3

X4 C4 c:v.3 c:v.2 al 0 X4

For simplicity, we will assume. n is a power
of 2. The main result is Theorem 1. We also give
Algorithm 1 which may be used as a basic algo
rithm for the parallel evaluation of this class
of problems.

First, let us state one important lemma
which will be fundamental in obtaining the main
results.

Lemma 1 Given any

R<n>: x = c + Ax

there is an associated Y matrix such that

x = c + Ye ,

in which Y = [yij]nxn is a strictly lower tri

angular matrix and

where

A =
j

0

aj + AjYj for 1.::. j .::. n

(Yj+l,j, Yj+2,j, ••. , Yn,j)t
t

(aj+l,j aj+2,j' •• •' an,j) '

aj+2,j+l O

~.n-1 0

~ This is a corollary of Lemma 1 in
[l], hence the proof will be omitted here.

Since all elements along each sub-diagonal
of A are the same, it follows directly from
equation (1) that

LellDlla 2 Given any

R<n>: x • c + AX

(1)

197

its associated matrix Y has identical elements
along each sub-diagonal. For example, let

[~
0 0

~] [;
0 0

~] 0 0 0 0
A= 1 0

then Y 1 0

2 1 3 1

It is obvious that the jth column of Y can
be obtained by simply shifting the first column
(j-1) places downward. We will denote this opera-

- - [1 h - th tion as yj = y1 j-1 w ere yj is the j column

of matrix Y. These notations will be used
throughout this chapter.

Now, we present the proposed parallel algo
rithm and the proof of its effectiveness will
immediately follow.

Algorithm 1

a) Let B be a lower triangular matrix of or
der (nxn) in which

and b. = b"2[j-2], 3 < j < n.
J - -

b) Let C be an alias for B, i.e., Band C
represent the same memory locations.

c) Repeat this step for i = 1, 2, ••• , log2n;

i: Set k = 2i;
ii: Partition B and C as shown in

Figure l;
iii: Compute Sj = Sj + Tj * Qj

for 1 < j < min(2,!L.)
- - k

simultaneously;

iv: Set y (i) = y (2)[j-l]
j 1

for 1 < j < k, 2 < i< ~
- - - -k

v: Compute Dj = Dj + Wj * Zj

for 1 < j < min(2,~)
- - k

simultaneously.

d) The first column of B contains the solu
tions xi for 1 ~ i ~ n.

To justify this algorithm, we need only to
prove the following claim:

Lemma 3 At the end of the ith iteration of Algo-
rithm 1, we ha:ve

1) y (l)= (x t
1 l' x2' ••• , ~) ;

2) for each partition

yik+2,ik yik+2,ik+l
yCi+i) •

yik+k,ik yik+k,ik+l 000 yi'lt+k,ik+k-1

n
for 1 1_ i 1_ k - 1

where yij are elements of the associated matrix

Y of A; and

3) for k < !!. , n1 is the vector of the par
- 2

tial SI.Dils of the first k terms in the expression
of ~l' l\:+2' ••• , x2k , and similarly n2 is that

n
of Y3k+l,2k' Y3k+2,2k' •••• Y4k,2k fork~ 1i'

Proof: We prove this claim by induction on
k. It is true for k = 2, as a basis, Let us assume

it is also true for all iterations up to f for

some k as shown in Figure 1. Then, during the cur
rent iteration, by hypothesis condition (1) the
first element of Q1 is l\: and s1 is the vector of

2 k
the partial SI.Dils of the first 2 terms in the ex-

pression of xk , ~ , ••• , xk by hypothesis con-
2+1 2+2,

dition (3).

t-1

·-·
•4-1

Zk-1

x
k
2

~2
2

Hence, we can write

0
I .,
I
I
I
I -------------------------------· ---

a ls.
k,2.

0

0

~.k-1

' I

' I
I
I
I
I

·' I
I O

+

~l
2

x~2
2

By virtue of Lemma 1 and hypothesis condition
(2), the bottom partition of th~ above equation
is equivalent to (S1 + T1 * Q1). This proves con-

dition (1). Similarly, it can be shown that the
ma~rix operation s2 = s2 + T2 * Q2 specified in

step (iii) generates the results of (y8 ,
¥t+l,k

Y3 , • • •, Y2k k) ,. which combines with
2k+2,k •

(yk+l,k' Yk+2,k' ••••Yi) from the previous
r·k

iteration (hypothesis condition (2)) in forming

the first coll.Dllll y1 <2> of partition Y(2) of the

current iteration.

•-I

I
I
I
I
I
I
I

I I

1=======1=========
I I
I I
I I
I I
I I
I I
I I

411 -:--------:---------1 I
I I I I
I I I I
I I I I
I I I I
t I t I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I

a\ •.. ~ ...
(al MATRIX 8 (II) MATRIX C

Figure 1. Dyru:onic Partitioning for> A 7,go:r>i thm 1

198

"

With the new result of y1 <2>, now, we can

see that shifting operation in step (iv) will re
sult in condition (2) due to Lemma 2.

After step (iii) and step (iv), we know that
t z1 • (x1 , x2 , ••• , ~-l) • Since in all previous

iterations, no operation has been done on the

data below the partitions on the diagonal, Y(i)
n

for 1 ~ i ~ k , we have

D =
1

~+l,l ~+1,2

ak+2,l ~+2,2

ak+l,k-1

~+2,k-1

Hence, the resultant vector D1 of step (v) is a

vector of the partial sums as stated in condition
(3). Similarly, it is true for D2• This completes
our proof,

Q.E.D.

It is worthwhile to note that the shifting
operation stated in step (iv) could be easily
accomplished by a proper indexing function,
thereby no major computation time is involved and
more efficient use of storage is possible by such
a scheme.

To illustrate this algorithm, we use a R
as an example shown in Figure 2.

With this algorithm, we can now establish a
general theorem about this class of problems.

Theorem 1. Any R<n> can be computed in T steps
2 p

where TP ~ log2n + 2log2n - l •

2
The minimum speedup is 0 (-n--) and the

2 log2n 2
n maximum number of processors required is O([i"""")

for large n,

th Proof: During the i iteration of Algo-
rithm--r;-if a sufficient number of processors are
given, then the matrix operation in step (iii)
takes at, most one multiplication time plus the

k time for the summation of at most (~l) operands,

which is log2k addition steps. So that for a

total of log2n iterations, this step alone takes

log2n 1 2 3
t 1 ~ E j + log2n •2 log2n +2 log2n.

j=l

199

15.)(

19)(

21)(

ITERATION 3

20)()()(9

Fif!UI'e 2. Pa:l'aZZeZ EvaZuation of R

Similarly, step (v) takes at most one multi
plication time plus the time for the summation of
k operands which is log2k addition steps. Thus,

for a total of log2(I) iterations, this step

needs
n

1082<2> n 1 2 1
t 2 ~ E j + log2 <2> • 2 log2n + '2 log2n - 1.

j=l

Therefore, the total computation time

Since the serial computation time is n(n-1),
the speedup SP is

To achieve the above speed, a sufficient
number of processors should be provided at the
multiplication time for each iteration i. So we

will choose the maximum of the number of multi
plications in step (iii) and step (v) as the num
ber of processors. required for that particular
iteration. For step (iii}, we ean see from Figure
l(a) that

k/2
P1{k=2i) < 2 l: j

j=l
k/2

< E j
- j=l

n
for 2 2 k 2 z ,

fork = n

For step (v), it can be observed from Figure l(b)
that
P2 (k) < 2k(k-l)

< k(k-1)
for 2 2 k 2 * ,
for k = ~

2

For large n, p (n) < (n2 + 2n)/8 and
l -

p2(n/2) 2 (n2 - 2n)/4 give the respective peak

values. Hence., the maximum number of processors

is o C!!.2).
4

Q.E.D.

As the basic algorithm stands, only 2log2n-l

unit time steps are multiplications, the rest
being additions. Also note that in the above pro
cessor count, all processors perform uniform oper
ations at each time step, and hence the bound can
be further improved by lifting this restriction.

We close this section with some observations
about the computational efficiency of this algo
rithm. Although its speed is approximately one
half that of Algorithm 1 in [l], the number of
processors is reduced by a factor of n. Thus, it
gives us a tremendous increase in computational
efficiency. On the other hand, since R<n> is a
special case of arbitrary coefficient system, we
can use the latter algorithm to compute R<n> with
some operations masked off [10]. In this case, it
can be shown that the maximum number of proces-

3
sors required is 0(~28).

3. Mth Order Linear Recurrences with
Constant Coefficients

In this section, we will turn to the con

siderations of the most practical mth order re
currence problems, i.e.,

R<n,m>: xi = 0 for i < 0

m
Ci + l: a x. for l < i < n

j=l j 1-j -

where l < m < n. In matrix notation x = c + AX
with A being strictly lower triangular matrix of
bandwidth m. For simplicity, we will assume both
n and m are powers -0f 2.

200

Since A is now a band matrix, we can further
speed up the computation of Algorithm l when
i ,:: log22m. This is done by changing partitions

Sj, Qj, Tj, Zj, Dj and Wj in Figure l to that in

Figure 3, and introducing new partitions Uj, Vj,

Gj and Ej and their corresponding matrix opera

tions as described in Algorithm 2. The proof of
its validity can be found in Lemma 3 of [l].

Algorithm 2

a) Let B be a lower triangular matrix of
order (nxn) in which

t
b1 = (c1, c2, •• ., en)
b2 = (O, al, a2, ••• , ~· O, ••• O)t,

and b. =b 2[j-2], 3 < j < n.
J - -

b) Let C be an alias for B, i.e., B and C
represent the same memory locations.

c) Repeat this step for i = 1, 2, .•• ,
log2n ;

(i)

(ii)

(iii)

(iv)

(v)

s.et k = 2i

Partition B and C as shown in
Figure 1
(1 2 i 2 log2m) and Figure 3

(log22m 2 i 2 log2n) •
If 1 2 i 2 log2m, then compute

Sj = Sj + Tj * Qj for
1 2 j 2 min(2,~) simultaneously;

m
else compute Sj = Sj + Tj * Qj

for 1 < j < min(2,~) , and
- - k

vj = vj + T2 * uj for 2 2 j 2{Z
simultaneously.
Set y (i) = y <2) [J·-11 for

j 1
1 < j < k, 2 < i < ~ ;

- - - - k
If 1 < i < log2m , then compute

Dj = Dj + Wj *nZj for
1 2 j 2_ min(2, 2m) simultaneously;

else compute Dj = Dj + Wj * zj

for 1 2_ j 2 min(2, ~k) and

E. = E. + w2 * G. for 2 < j < n2 J J J - - k
simultaneously.

d) The first column of B contains the solu
tions xi for l < i < n.

For illustration, an example of R<l6,2> is
shown in Figure 4. In that figure, all numbers
are kept in place to help understanding, although
they may not be used after certain iteratiops.

From the above, we can obtain a general

theorem for the mth order linear recurrence
problems.

I~

..
,_,.

·-·

••

,_,.

n-Zll

' I

~~~ __ J ______ ! ______ ~-----~--
1 I I I 
I I I I 
O I 
I I 

v. I I 
[-I I I I I 

---- --t-- --- - +- - - - - - .. __ - - __ , __ . - -- ~- - --- -+----'"'""'~ 
I I I I t 
I I I I 

' 

2• •• ·-· 
(al MATRIX B 

I I I I 

Cifi-l : : : : 
-----~------r------r-----,--fl-- -
E.!...1 I I I I 

llo I I I I 
1 1 1 

' ' ' 1 I I I I 

-----1------t------~-----1-~~---~--- -
I I I I I 
I I I I I 
I I I I I 

GA : : ~ : : l 
-----~------+------r-----~-~~---~------~--- -
[!,. I I I I I I 

lb I I I I 
r I I I 

' ' ' O I I 

' ' ' 
2• 3• •• n-Zk ·-· 

(bl MATRIX C 

Figu:I'e 3. Dynamio Partitioning fo:ro AZ.gOI'ithm 2 

Theorem 2. Any R<n,m> can be computed in TP 

steps where Tp ~ 2 log2n for m = 1, 
< (2log2m + 3) log2n -
- 2 
(log2m + log2m + 1) for m > 1 • 

For n>>m, the minimum speedup is 

O ( mn ) and. the maximum nllmber of pro-
log2m log2n · ' 

cessors.required is O(mn). 

201 

Proof, For'l ~ i ~ log2m, step (iii) is similar 

to that of Algorithm 1 and takes totally 

log2m 1 2 3 
t 1 ~ E j + log2m = 2 log2m + 2 log2m • 

. j=l 

However, for log22m ~ i ~ log2n, this step needs 

only one multiplication time and one summation 
time of (m+l) operands per iteration. This 
amounts to 

n t 2 ~ (log2(m+l) + 1) log2(;) 

< (log2m + 2) log2 <;> · 

For step (v), it is similar to Algorithm 
m 

1 for 1 ~ i ~ log2 (2) and the total time is 

m 
log2(2) m 

t 3 ~ E j + log2(2) 
j=l 

This same step will take one multiplication time 
and one surniriation time of m operands per itera-

tion for log2m 2_ i .::._log(~) , Thus, in total it 
has 

Hence, 
4 

T < E ti= (2log2m + 3) log2n -

(plo-g22mi=+l ) 1 log2m + 1 , m > • 

Form= 1, since the Wj's diminish, 

TP ~ t 1 + t 2 = 2log2n. 

Comparing this with the serial computation 
time 2mn - m(m + 1), the speedup is 

s > p-
2mn - m(m+l) 

(2log2m + 3) log2n -

O( mn ) 
log2m log2n 

for n>>m • 

In obtaining the above speed, we assume that 
there are enough processors at the multiplication 
time of any iteration. The number of multiplica
tions required in step (iii) can be observed from 
Figure l(a) and Figure 3(a) that 

i k/2 
p1 (k = 2) < 2 E j for 2 2_ k 2_ m, 

- j=l m 
< (!! + l)[ E j + m(k - m)] 
- k j=l 2 
for 2m < k < !! , 

- -2 

< 
m 
E j + m(k - m) 

2 j=l 
fork n. 

For step (v), we can see from Figure l(b) and 
Figure 3(b) that 

p2(k) 2_ 2k(k-l) m 
for 2 ~ k 2_ 2, 



ITERATION l 

Fi(JUPe 4. Pa:raZZeZ EvaZuation of R<l6.2> 

m-1 
< l: 

j=l 
for k = m • 

m-1 
.::. c;k + l>< i: j) 

j=l 

n 
for 2m ~ k ~ 4, 

m-1 
~ l: j 

j=l 
f k -~ or - .2 • 

When n»m, pl(I) = (3mn - 6ni2 + 6m)/4 is 
. 2 

maximum value and p2(k) • O{m ) for all k's. 

Therefore, the processor bound is O(mn). 

the 

Q,E,D. 

As was true with Theorem 1, Theorem 2 re
quires only 2log2n - 1 steps. ·All ?rocessors are 

performing the same operations at the same time. 
Without this restriction, a better processor 
bound could be achieved. Also note that. as m in
creases, greater efficiency can be achieved by 
using this algoritltm instead of Algorithm 2 f6r· 
arbitrary coefficients as described in [l]. On 

202 

the contrary, we can achieve twice this speed by 
applying the latter algorithm with some opera
tions masked off, In this case, the processor 

bound can be shown to be O(mn + m3), and one 
might prefer it as urbecomes very small. 

We will conclude this section with some com
parisons between these results and some known 
algorithms in the evaluations of two distinct 
sp.ecial cases. First, in computing the remote 
terms, e.g., xn'· in a homogeneous recurrence se
quence 

xi+ al xi-1 + a2 xi-2 + ••• +am xi-m =·a ' 

Miller and Brown [11] have shown an algorithm 
with about the same speed as that of Algorithm 2 

3 by using O(m ) parallel processors. However, it 
can be shown easily that all vectors Uj, Vj, Gj 

and E. are zero vectors, and hence those opera-
J . . . ··, 

tions can be masked off totally. In addition, 
since we can .. leave out all unnecessary intermedi
ate results, parts of the matrix operation Sj 

Sj + Tj * Qj in step (iii) and D2 = D2 + w2 * z2 



ITERATION 4 

,5 

11 
111 :11 5 1 I 
-------~---1 I 

2 I 

:@ :s 
1 I 

10 I 111 5 1 I ---- -_ .. ____ --~-- ----
.. : 121 II I 5 I 

'St I 145 21 II 5 :5 
I I I 

70 I 115 41 ZI II 15 1 

141 : i111 H 45 ZI 111 5 

I 

z ' 
5 2 

II 

Z2 

45 

;2 

183 

511 

751 

14n 

2941 

"" 11791 

25-
471&4 

I 

II 5 ,, 
:5 I 
: I 5 I 

'" I 
lz1 II 5 5 I 
I 
145 ZI II 5 :as 41 21 II 

I 111 85 4J 21 II 

Figure 4.. Pa:roa7:lel Evaluation of R<16,2> (Cont) 

in step (v) can be further masked out and modi
fied as shown in the new partitioning in Figure 
5. Therefore, the maximwn nwnber of processors is 

2 3 O(m ), On the other hand, given O(m) processors, 
we can use Algorithm 2 in [l] with the new parti
tioning as shown in Figure 6, and achieve twice 
the speed of the Miller-Brown algorithm. 

As a result, we can establish the following 
facts. 

Corollary 2.1. Any remote term Xu of a 
homogeneous linear recurrence relation 

xi + al xi-1 + a2 xi-2 + ''' + ai-m xm • O ' 
can be computed within (2log2m + 3) log2n time 

steps with O(m2) processors, and within 
3 (log2m + 2) log2n steps with O(m ) processors. 

Any polynomial Pn(a) of degree n can be 

represented as the last solution of the following 
linear recurrence relation 

203 

By Theorem 2, this can be computed within 2log2 
(n + 1) steps. However the processor bound can be 
reduced as we only need th~ last solution. Thi.a 
is done by changing the partitions T1 , Q2, s2 and 

T2 in Figure 3 to that in Figure 5 (note that 

other partitions uj, vj in Figure 3 still re

main). Thus, it can be shown to have the maximwn rn+11 · demand of processors for k•2, i.e., p ~ ~+ 1. 

For illustration, let us evaluate P7 (a) by Algo

rithm 2 but with the modified partitions men-
tioned above on the matrix B • [bij] of 

· 8x8 
Figure 3. The whole process can be &Ulllllarized as 
follows. 

First, we compute 

a2 a•a , 

and bi,l = c1 + ci-l a for i = 2, 4, 6, 8 

simultaneously; then compute 

4 2 2 a •a •a 



I 
I 
I 
I 
1------- -
I 
I 
I I I 

I 1 I 

3k 1-:u·~~t~--j __ _ 
02 m-1 W 

- _::__t. 2 

-j·~tl : 1-m'.!f I 

I : 
I L _____ -
I I 
I I 
I I 
I 1 
I I 
I i 
l 1 I I 

2kr-----------------L--------~---<---
J, 

Figure 5. Dynamia Partitioning for ParaUel Evaluation of Remote Term in 
Homogeneous R<n,m> by Algorithm 2 

k 
2 

1 
I 
I 
1 

-------------- -51 -T1 

I 
1 
I 
I 
1 

I~ ---------------~-+ I 
.L_ 

I 1 
I 
I 
I 

2k ------------------~------~--
-Sz -Tz 
l--m--1 

Figure 6. Dynamia Partitioning for Parallel 
Evaluation of Remote Term in Homogeneous 

R<n,m> by Algorithm 2 of [1] 

2 
and bi,l = bi,l + bi-2,1 a 

simultaneously; and finally compute 

4 
bB,l = bB,l + b4,l a 

for i 4, 8 

204 

which is now 

2 
[(ca+ c7a) + (c6 + csa)a ] 

2 4 
+ [(c4 + c3a} + (c2 + c1a)a ]a 

The final result in b81 is obviously the value 

of P7(a). This procedure may be generalized to 

any degree n and the computational process will 
proceed like 

2 
Pn(a) en+ en-la+ (cn_2 + cn_3a)a 

2 4 
+ (cn-4 + en-Sa + (cn-6 + cn-7a)a )a 

2 
+ (cn-8 + cn-9a + (cn-10 + cn-lla)a 

+ .... 

+ (cn-12 + cn-13a + <Cn-14 

2 4 8 + cn_15a)a )a )a 

It is interesting to note that the above 
procedure is exactly equivalent to the well
known Estrin's method [12). In other words, 
Estrin's method becomes a very special case of 
our algorithms for evaluation of general 
R<n,m> systems. Hence, we can formalize it 
as a corollary. 

Corollary 2.2 th Any n degree polynomial 

can be computed within 2 log 2(n + 1) time st~ps 
[n+ll using at most l-Z-1 + 1 processors. 



By comparing this result with the known kth 
order Horner's rule, it is slightly faster and 
generally requires less number of processors to 
achieve the same speed [5]. Kuck and Maruyama 
[3] show that a general polynomial form of 

degree n can be evaluated in O(log 2n + 18log2n) 

steps. While the speed is faster, it requires 
far more processors (p = 2n) than that required 
by our result. In practical applications where 
n is not very large, this method, even compared 
to the fastest known multifolding method [2], 
becomes attractive not only because of its simple 
implementation but also its easy integration with 
more general linear recurrence problems. 

4. Practical Implications 

The basic algorithms discussed previously 
are primarily for conceptual understanding. By 
more elaborate scheduling procedures or practical 
modifications of the original ones, one can 
develop more efficient computational algorithms 
which can use much less processors without sig
nificantly reducing the speedups. 

For illustration, during the iteration at 
n 

k = 2 of Algorithm 1, we can perform the multi-
plications of each inner-product in step (v) with
in 2 steps instead of 1 step, thereby giving 

2 p2Cn/2) = (n/2)(n/4) = n /8 and 

processor bound of Theorem 1 to 

hence 
2 

O(~) 
8 

changing the 

and time 
2 

bound to log 2n + 2log 2n. This folding scheme 

obviously halves the number of processors needed 
and almost retains the same speed as Theorem 1. 
Similar procedures can be applied to different 
iterations and extended to multiple-folding to 
achieve more efficient use of processors. Alter
nately, we can cut the triangular system into 
strips and then solve the recurrence system on 
the top of each strip with a sufficient number 
of processors. We then compute the partial sums 
in the bottom of that strip for the remaining 
equations as a new constant vector for the re
maining triangular system. This process is re
peated from the leftmost strip to the rightmost 
strip sequentially. This cutting scheme can 
also help in increasing efficiency as shown 
in [ l] . 

We can conclude that a proper design and 
modification of the basic algorithms presented 
here for a particular environment should provide 
us high efficiency computations in exploiting 
future parallel machines. 

Acknowledgment 

I am grateful to Professor David Kuck for 
his stimulation and help. Professor Ahmed 
Sameh also provided fruitful discussions lead
ing to this work. 

205 

References 

[l] S.C. Chen and D.J. Kuck, "Time and Par
allel Processor Bounds for Linear Re
currence Systems," IEEE Transactions on 
Computers, July, 1975, pp. 701-717. 

[2] K. Maruyama, "On the Parallel Evaluation 
of Polynomials," IEEE Transactions on Com
puters, Jan. 1973, pp. 2-5. 

[3] D.J. Kuck and K. Maruyama, "Time Bounds on 
the Parallel Evaluation of Arithmetic Ex
pressions," SIAM Journal of Computing, 4, 
1974, pp. 147-162. 

[4] R.H. Karp, R.E. Miller and s. Winograd, "The 
Organization of Computations for Uniform 
Recurrence Equations," Journal of the ACM, 
July 1967, pp. 563-590. 

[S] Y. Muraoka, Parallelism Exposure and Ex
ploitation in Programs, Departmen~ of Com
puter Science, University of Illinois, Re
port No. 424, Feb. 1971. 

[6] P.M. Kogge and H.S. Stone, "A Parallel 
Algorithm for the Efficient Solution of a 
General Class of Recurrence Equations," 
IEEE Transactions on Computers, Aug. 1973, 
pp. 786-792. 

[7] D.J. Kuck, Y. Muraoka and S.C. Chen, "On the 
Number of Operations Simultaneously Execut
able in FORTRAN-like Programs and Their Re
sulting Speed-Up," IEEE Transactions on Com
puters, Dec. 1972, pp. 1293-1310. 

[8] D. Heller, "A Determinant Theorem with Appli
cations to Parallel Algorithms," SIAM Journal 
of Numerical Analysis, 11, 1974, pp. 559-568; 
also, On the Efficient Computation of Recur
rence Relations, Institute for Computer 
Applications in Sciences and Engineering 
(ICASE), June 1974. 

[9] D.J. Kuck, "Multioperation Machine Compu
tational Complexity," Proceedings of Sym
posium on Complexity of Sequential and 
Parallel Numerical Algorithms, Academic 
Press, 1973. 

[10] S.C. Che11, Speedup of Iterative Programs in 
Multiprocessing Systems, Dept. of Computer 
Science, University of Illinois, Report No. 
694, Jan. 1975. 

[ll] J.C.P. Miller and D.J.S. Brown, "An Algo
rithm for Evaluation of Remote Terms in a 
Linear Recurrence Relation," Computer 
Journal, Vol. 9, 1967, pp. 188-190. 

[12] G. Estrin, "Organization of Computer Sys
tems--the Fixed plus Variable Structure 
Computer," Proceedings of Western Joint 
Computer Conference, May 1960, pp. 33-40. 



On the Ultimate Limitations of Parallel Processing 

Jerome Rothstein 
Department of-Computer and Information Science 

The Ohio State University 
Columbus, Ohio 43210 

614-422-7027 

Summary Computation time depends on the problem, 
the computer, and how well they mesh. If we 
regard the computer as consisting of many inter
acting units the total time involves mutliples 
of fundamental computation times for units, inter
unit signal propagation .times, the extent to 
which sequential operation of single units is 
replaced by parallel operation of many units, 
and the extent to which propagation delays and 
unit idle times can be reduced or eliminated. 
The first two contributions, reflecting funda
mental physics and state-of-the-art device 
design, can be taken as imposed parameters. The 
last two, amenable to analysis by the methods of 
computer science (e.g., computability theory and 
computer architecture), are the chief concern of 
this paper. Specifically, a cellular autolnaton 
exerting local control on an iterative switching 
network (bus automaton, BA) is taken as a model 
of dispersed parallel computing capacity with 
communication between units. The communication 
paths (busses) are varied by the units to meet 
problem requirements. In the one-dimensional BA 
it is shown that the· computation universality of 
the Turing machine is achieved along with 
parallel capability. Significant speed-up is 
demonstrated for the most general case. In many 
important cases the ultimate in speed-up is 
obtained. This is demonstrated explicitly for 
recognition of regular languages and other data 
processing executable by finite state machines. 
Other results are summarized and open questions 
discussed; 

1. Introduction 
Practical motivations for investigating the 

theory of parallel processing include the needs 
a) to decrease the time to solve a problem, b) 
to solve many problems simultaneously, and c) to 
increase the time sub-systems of a large system 
are actually computing. They are interrelated 
for satisfying one frequently contributes to 
others. They differ sufficiently, however, to 
permit different expedients to help in one case, 
but not in another. For example, faster devices 
and reduced propagation delays both help a), are 
less relevant to b), and may or may not contri
bute significantly to c). Parallel processing 
is not only relevant to all three, but one can 
assert that it is the only visible means to speed 
up computation for which insurmountable barriers 
set by physical limitations inherent in real 
devices can be by-passed. 

This paper seeks to formulate problems in 
a manner permitting them to be attacked "ail 
over" simultaneously, rather than sequentially 
and "locally", and how to utilize large parallel 
capacity to implement it. The cellular automaton 
(CA) is taken as the model of dispersed parallel 
capacity, and the equivalent of an iterative 

206 

switching network controlled by the cells,· which 
permits setting up communicatiqn blisses between 
distant cells, enables them to coop·erate. The 
resulting bus automaton (BA) is shown even in the 
one-dimensiOii"al case, to have both the computation 
universality of the Turing machine, and impressive 
parallel capability. The proof utilizes a 
potentially infinite shift register to simulate 
the Turing machine, with addition replaced by 
an arbitrary binary operation (groupoid). 
G.eneralization to higher dimensionality extends 
parallel capability in the sense that it becomes 
easy to reach the "ultimate" for some problems in 
which difficulty is encountered in the one 
dimensional case. 

The next section treats two main topics. 
First, we justify encapsulating the constraints 
imposed by the nature of space, time, physical 
devices and the interactions between them into 
two parameters, C and C • They can be viewed as 
unit time-costs p s associated.with signal 
propagation and device state changes respectively. 
We then show their utility for BA theory, and 
that no essential generality is lost by restric
ting the discussion to homogeneous BA's with C 
and Cs taken as constants. Later discussion pis 
"pure computer science"; C and C suffice to 
represent engineering P s reality. 

Section 3 introduces the groupoid formalism 
and its realization by one dimensional·CA's or 
shift registers, and demonstrates its computation 
universality even with its potential parallel 
capability "crippled". 

In Section 4, the origin of the basic BA 
concept from the foregoing is sketched, and compu
tations by finite state machines are shown to be 
"immediate", i.e., the ultimate in speed-up is 
actually achieved when the parallel capability is 
used. The proof is a special case of a general 
groupoid technique applicable to other problems. 
Some other immediate cases are discussed. A 
significant speed-up result is obtained for the 
most general computation. 

Section 5 briefly relates BA research to 
some other parallelism studies and tries to assess 
its future prospects. 

2. Physical Limitations on Computation Speed 
For localized computing units the fundamental 

time-cost parameter is average time to change 
state, Cs. The computation time T is proportional 
to the total number N of state changes required 

T = NCS (2.1) 
For interacting units there is a communication 
time 

where 'tj is the time to propagate information 



between units i and j, dij measures their sepa-
ration in a convenient distance unit, and 
C is the time-cost per unit of signal propagation. 
P Clearly N is non-physical in that it depends 

only on the problem, the program, and the logical 
{as distinguished from physical) organization of 
the unit. In contrast Cs is physical, reflecting 
the state of the art of device design and the 
necessity to "manufacture" a new state given 
the preceding,,one (and input). 

For reliable device function there must be 
sufficient stability (high energy barrier) to 
prevent random spontaneous transition between 
states, This is expressed by 

EB >> kT (2.3) 

Here ~ is the "height" of the energy "hill" to 
be. surmounted by perturbations (e.g., noise, 
thermal fluctuations) to permi.t state change, k 
is Boltzmann's constant, and T absolute tempera
ture. The strategies of lowering T or raising 
EB are well known respectively in the form of 
refrigeration (or cryogenic techniques) to lower 
noise level, and raising thresholds. 

One must no.t confuse EB. and LIE, 

LIE = E2 - it1 (2,4) 

where E2 and E1 are energies (or energy levels) 
associated witli SJtates 2 and 1 respectively; the 
states can be near the same (low) level with the 
hill EB between them. For selectivity EB should 
be high for noise and for all signals but the 
desired one. For high sensitivity LIE should be 
small. A desired signal should be able to 
"tunnel" through EB and surmount LIE, the unit 
then relaxing to a new state. There may be three 
(or more) contributions to C , namely times to 
circumvent EB' to put in eno~gh energy to take 
care of LIE by absorption or emission, and to 
relax (usually a dissipative process). The 
uncertainty principle of quantum mechanics puts 
an.absolute limit on flt (second contribution); the 
others· are often instantaneous '(tunneling) or, 
non~existent (relaxation) for quantum jumps be
tween atomic· (or nuclear) staces. · We have 

(2.5) 

where h is Planck's constant. It applies to 
absorption and emission (an elementary communica
tion event involves ~ission, propagation and 
absorption) and to ma(:'roscopic objects, described 
by statistical averages or limits, for large 
numbers of atoms, of quantum descriptions. 

Though EB and LIE are very different, for 
atomic systems interacting with heat reservoirs 
we rewrite (2.3) as 

LIE = nkT (2.6) 

where n>>l, n being a kind of stability index, 
as the condition that fluctuations do not quickly 
"wash out" distinctions stored as differences in 
occupation probabilities between two states. We 
obtain 

flt ; h/nkT (2. 7) 

We interpret this to say that physics implies 
th<> existence of minimum times for reliable 
changes of state. The higher the stability index, 

207 

the shorter these times can be~ The bound (2.7), 
with c in place.of.6t, is negligable in practical 
cases.s For n • 100 and T = 300°K, C is about 
1.6 x lo-15 seconds. s ··~ 

Calculation of C for real·devices is no 
doubt prohibitively 3ifficult; due to m~ltiple 
interaction and propagation events within them. 
The result will generally be very much larger 
than indicated by (2,7) 1 However, Cs is a 
characteristic performance paramet,er which the 
computer scientist can take as given. .i)ny unit 
can be viewed as having a characteristic c·s " . 
resulting from the Cs's, C 's, dij 's an,d N.'s 
of its devices and p microprogram&. 
We can take C as constant,. for performance i~ 
bounded by twg uniform cases where c is taken 
as the largest and smallest of the vilue$ asso-
ciated with the units. · 

Discussion of C is ,simpler. Relativity 
imposes an absolutepupper bound (velocity of 
light) on signal propagation or material trans
port. For electrical and optical signaling the 
bound is frequentiy achieved, and when not, 
reduction is generally appreciably less than order 
of magnitude. Also, change in C can often be 
"absprbed" into change of unit f'&r di , a5 with 
"optical path length" (product or lin~ integral 
of refractive index and length, COll.Venient in 
optics). 

The dii reflect spatial arrangement of ,,units, 
and for un:tts occupying finite volumes, represent 
compromises between close packing to reduce.. . 
coumunication delays .and sufficiently sparse 
packing to avoid 'crosstalk, excessive temperature 
rise from energy dissipation in devices,. and to, 
permit convenient servicing. Ju.st· as Cs could 
be 'bounded theoretically by ,constant Cs cases, so 
can C be bounded by constant C cases. Simple 
exten~ion of the same reasoningpshows that net~ 
work performance can be bounded 0by perfortoance ·of 
networks of identical units. For similar .teasons 
the networks can be taken as uniformly arranged 
in space: This 'implies that the total number of· 
units which can receive information from a gi!en· 
unit in time t or less is proportional to t in 
space, t2 in the plane, and t along a line. 

We now rewrite (2.2) as 
; 

(2.8) 

where C is now a constant which can be taken as 
the pro~agation time cost to traverse a single 
'unit, and'' Nii is an integer giving the number of 
units crossed in going from unit i to unit j. 

The discussion thus leads to the BA, i.e., 
the CA with coumunication between separated cells, 
as a theoretical vehicle to study ultimate limi
tations of parallel computation, embodies the 
physics and engineering in two characteristic 
time costs, C and C , and leads to characterizing 
the time costsC of cgmputations as 

C=NC+NC s s p p (2.9) 

where Ns and N are integers depending on problem, 
program, and c8mputer organization. 

If the cell diameter be d and c the velocity 
of light, then we often have 

C ~ d/c (2.10) 
p 



I~ is frequently justified to take 

cP << cs (2.11) 

-3 . 
For example, if a device of diameter 10 cm 
changes state in io-9 fee .. c , c = 3 x lo-14 
sec, i.e., Cs - 3 x 10 c . for Hensely packed 
devices, a speed-of-lightpsignal then propagates 
to about 1012 .devices or more in the time required 
for one state change. Analogous considerations 
may a'pply to the nervous system; axonal propaga
tion velocities are. meters/sec, synaptic devices 
(junctions) are micron size or less, neuronal 
recovery times fie milliseconds or less, and we 
have perhaps 10 neurons packed in our skulls. 
Both for brains' alld BA's it is probably a good 
approximation to consider the major time cost to 
come from Cs. For computer. networks, with trans
mission del&ys much larger than C for devices, 
(2.ll) is apparently grossly in Jror. We say 
apparently because the appropriate Cs may .be a 
turnaround time or time in a queue. For C - C . 
a device may .do simple jobs itself as rapiHly a~ 
it can with help. · 

A seemingly different approach to computing 
time bounds for computation by spatially distri
buted units D is given by Dertouzos [11. His 
bound for T0(n), the tilile to compute ii-argument 
functions, assuming a maximum speed of energy flow, 
a minim:um detectable energy, and a maximum P.Ower 
transmission density, is proportional to nl73, 
But this is basically the same as the nat3 result 
men·tioned before (2.8) (take cube. root of both 
sides). The minimum time to collect data from n 
similar units (certainly a lower bound for· a 
computation) is achieved when they are.densely 
packed in a sphere at whose center collection 
occui1j It is proportional to the radius, i.e., 
ton • . 

3. Gr.oupoids, Cellular Automata, Shift Registers, 
and Turing Machines 
Our original motivation for studying g;roupoids. 

was the feeling that structure and pattern in 
nature evolved from nearest neighbor interactions 
at a moleculim·level [2,3]. 

Adld G ., {al' a2.' ... } is a gro!lpoid if it is 
closed' und!el.1: a. binary operation. This .is expres
sible all5 a mamtillg G x G -+ G, or• with the binary 
operation ("inuil:ltiplication") indicated. by ® 

ai ~al, •ak (3.1) 

The gap- betllfeen; "local" algorithm emb:c!>di.ed in 
groupoid mult1pil:fuati011 and "global" pattern is 
bridged by build:liig:geometric structures· from 
groupoid elements; (1$trings) whose growtn·law 
(production of ditugpter strings) is detlmnined by 
the local algori tlillt;, More formally, for f ini-t:e 
G we define groupoi.il' strings as words (finite or 
infinite) using G as their alPihabet.... From the 
parent.string 

. • •• aiai+lai+2.:' • • 
we form the .daughter str;ing 

••• didi+ldi+2" •• 
where 

(3.2) 

208 

Plane displays of a starting string and succes-· 
sive generations of daughters have been studied 
as exemplars of algorithmic pattern generation . 
and pi'0:posed for investigating·development 
problems of bi0:logical structure by Rothstein 
[2,3}. 

Computation of daughter strings· is performable 
in parallel on a one-dimensional cellular auto
maton (CA), essentially a "shift-register accumu
lator" whose "logic" embodies group0:id multipli
cation; see Figure 1, 

! i'r[]" 
.. , ... 

logic 

Figure 1. Shift Register Computation of Daughter 
String 

The logic unit associated with cell i accepts 
inputs ai and ai+l from cells i and (i+l) respec
tively, substituting di for ai in cell i,· All 
units can c.learly operate in parallel. This .is a 
special CA; it is one-dimensional, and its·neigh
borhood function has two arguments. For classical 
CA theory see von Neumann [ 4 J , Burks [ 5] , Codd [ 6 L 
Smith (7 ,SJ, Banks· [SJ, Nourai and Kashef [iOJ, 
and others. Generally, the next state of a c.ell 
is determined by.the states of n neighbors •. We 
now show that the groupoid formalism can represent 
strings over a symbol set closed under an n-ary 
operation by taking (n-1)-plets as groupoid 
eiements. Successive dallghter-string .. symbols are 
formed by the n-ary operation over the n contig
uous symbols obtained from the previous set by 
dropping the· leftmost symbol and adding the next 
symbol of the parent. · 

Consider the parent string 

ala2'"'an-lblb2"'"bn-l 

• which can be viewed as the concatenation of two 
(n-l)~plets. Let the daughter (n-1)-plet, 
c1 ••• c _1 , be generated .from contiguous parent 
(n-1)-~lets, by the element-wise n~ary operation: 

Gn .f G 

cl • g(a1.' .an•lbl) 

(3.3) 

c 1 ,. g(a lb1b2•· .b 1) n- n- n-
C lear 1 y this process produces one (n-1)-plet from 
two given (n-1)-plets, thus defining a g_roupoid. 
Figure 2 iHustrates the process graphically. 

• •.al a2. • .an;:J..)1 b2 •• 'bn-1" ·' "---"' / • • 'cl c2 • • .cn-1' • •· 

Figure 2. Groupoid Daughter for n-ary Mapping 

The groupoid mapping can be symbolized by the 
notation [2]+[1], an n-ary mapping by [n]+[l]. A 
one-dimensional CA (Figure 3), where the next 
state of Ai is determined by the present states of 



Ai-l' Ai and Ai+l' thus defines a "state-string" 
and an n-ary sfafe mapping with n=3. 

Figure 3. One Dimensional CA 

Its "time-history" is thus expressible as a 
succession of daughter strings over a groupoid 
whose elements are doublets of automata states. 

a b _......_ ,-----... 
t 

t+l 

c 

Figure 4. Parent at Time t, Daughter at Time (t+l) 

Figure 4 shows this for contiguous doublets 
a and b of the (parent) string at time t, produc
ing doublet c of the (daughter) string at time 
(t+l). 

The above shows that the one dimensional CA 
is contained within the groupoid formalism. The 
Turing universality (computation universality) of 
the groupoid formalism will now be demonstrated 
by explicit construction of a groupoid simulating 
an arbitrary Turing machine (TM) using a one di
mensional CA. 

The TM has a finite state control and an 
infinite tape, ruled in "squares" containing 
symbols ("blank" is a symbol). The control is 
in one of a set of states K, 

(3.4) 

when it scans that one of the set of tape symbols, 
i::, 

(3.5) 

at its current address (say n) on the tape. It 
then makes a transition to a new state, prints a 
new symbol at its address n, and moves right or 
left to address n,±.1. General data processing, 
computation, or procedures are a succession of 
such steps. The initial symbol string on the 
tape is the input. It is usual to take q for the 
initial state; with the initial address a~ a left 
end marker or first symbol of the initial string. 
When a state "halt" is entered, the machine stops. 
What is left on the tape is output, processed 
data, or the result of computation, or the halt 
state is taken as embodying the desired decision 
(reject or accept, etc.). The program is 
embodied in the transition function. More 
formally, the action of the machine is defined by 
a mapping 

K x i:: + K x i:: x {right, left} (3.6) 

which specifies, for current state and input 
symbol, the next state, output symbol, and "move" 
to a new address. The mapping is often given as 
a list of quintuples or as a rectangular table of 

209 

triplets (next state, output symbol, move), with 
rows and columns labelled by current state and 
input symbol. 

To simulate TM by CA associate square i of TM 
with automaton Ai of CA, naming states {Q.} of the 
(identical) A. by J 

1 

{Qj} = K xi:: x {on, off} (3.7) 

Cell Ai is "on" if and only if the TM control is 
scanning the symbol at address i; all other r.ells 
are "off" (quiescent). State transition rules 
mimic TM rules: the K x i:: part is unchanged, and 
{right, left} of TM corresponds to {on, off} of 
CA as shown in Figure 5. 

1. 

2. 

3. 

4. 

(a) 
(b) 
(a) 

(b) 

(a) 

(b) 

(a) 

(b) 

TM Control in qr scanning as at address i 
A in state (q ,a , on) 
~ prints at at a3dress i, moves R in 
state <I..• scanning a at (i+l) 
Ai in:state (qr,at, -gff), Ai+l in state 
(qu,av• on) , . 
TM prints at at address i,, moves L in 
state <t.3 • scanning a at (i-1) 
Ai in state (qr,at, ~ff), Ai-l in state 
(~,a , on) 
Symbois on squares j not currently the 
address of TM control are unchanged 
a-component of states of all A. currently 
"off" are unchanged J 

Figure 5. CA Simulation of TM 

Less formally, on or off is determined by L or 
R outputs of TM, namely L means Ai+ off, 
Ai-l + on while R means Ai + off, Ai+l + on. The 
asserted simulation now follows whence TM is 
simulated also by a (unidirectional) "shif t-regis
ter accumulator" and represented by the groupoid 
string daughter formalism over cell state doublets. 
The simulation amputated,parallel capability but 
preserved universality, whence groupoids, CA's 
and BA's invite investigation as vehicles with 
general parallel computation capability. Daughter 
string compu,tation is a paradigm for total para
llelism. Given a daughter, finding a parent (or 
parents) or more remote "ancestors", may entail 
much sequentiality. 

4. Development and Initial Applications of Bus 
Automata 
The immediate stimulus to developing the BA 

concept was a refusal to accept parent string 
computation, given ~he daughter, as inherently.se
quential'. The~key .idea used• however, developed from 
research on·pattern recognition by retina-like 
devices, specifically straight line recognition by 
a plane CA (Rothstein and Weiman (11,12,13].). 
There string manipulations, incident to recogniz
ing whether an encoded candidate configuration 
was a straight line or not, were enormously 
facilitated if cells could enter a conducting 
state, permitting an appropriate neighbor to 
effectively augment its set of neighbors by those 
of the conducting cell. A logic bus, permitting 
"broadcast" type connnunication between cells as a 
group and a "cell synchronizer" was also used to 
simplify automata design, timing problems, recog
nition algorithms, and to enhance parallelism. 
The logic bus was fixed, s,o ess'entially the entire 
capability to adapt communication paths to fit 



the problem was· d:intained in the abi1ity of cells 
to enter' a conducting state." We. show 'how this 
"conduction trick" permi~ parailel computation of 
a parent string. r 

' if •·· •• pi ... is a par,ent string of given 
daughter string ••• di ••• , then the possible · 
candida.tes for pi are all those elements gi of G 
for which another element of G, say gi+l' exists 
satisfying 

gi ~. gi+l = di ' (4.'l} 

Figure 6. Parallel Computation of Parent Strings 

. In Figure, 6, we display ••• d'L ••• with it,s 
elements in boxes corresponding co. CA cell.a., and 
with all .the elements -0f G, in some standard· order, 
written as a column g1 ,g2, ••• ,gk above each di' 
The arrows go from eacn element gi above d1 to 
each element gi+l above di+l satisfying (4.lh 
this is done for all addresses L We thus have a 
directed graph whose vertices are labelled bY 
elements of G and whose edges are determined, by 
the groupoid multiplication table and the string 

••• dth~·~t of possible parents .is then represent
ed . by t.he set of all continuous chains of edges 
constructed above. the string ••.• di., ••. For G .a 
quasigroup of order k (a quasigroup is a groupoid 
with unique two-sided solvabq;f,ty, i.e., for all 
a,b,c in.G unique x and y exist such that.a 
a CliJ x = c and y '<:9 b = c) there are precisely k 
possible parentjl .for any string. A "grandparent" 
string . (or mo,re remo.t.e ancestor~) comes unde;r . the 
same diScussion, ~pr ·a granddaughter. string is 
produc~d by a [3]+{1J mapping_ def:J.ned by G.. It 
follows that telescoping k "gener·ations" in.t:o one 
par~llel computation can always be done with 
incr'e"~···g.roupoid compiexity (this expresses a 
well known time-complexity trade-off)", 

Vi'ewing'edges as conductirig paths, with 
compl~te p¢ths connecting an indicator lamp to 
a power sour'ce, say; and ilotirig· that the circuit 
logic to es'ta.bli:sh them is determined ·by the 
groupoid'(and therefore a "setting" made when'the 
d<i'ta is put ·in), shows 'that parallelism is 
essentially compl'tte. · AlSo, ·specifying a single 
element p. selects a unique chain· (if· it exists). 
As all lo~ic 'is prewired the time' cost ·'to obtain 
a parent is tha't of ·one logical 'State. setting 
(state change) C • The "read-out" time is nC , 
where n is word ~ength and c ' propagation timg 
c-ost for output· signal t'o tt~verse one cell.· 
Readout 'need not be counted as part of· computation 
ti1ne, for the 11an1;1wer" is already stored in the 
state of the system. 

The foregoing applies verbat.im to acceptance 
of a regular language. The groupoid operation 
is concatenation for the syntactic ruonoid or its 
generators. Initial and final elements of the 

210 

string c-orrespond ~o starting and accepting states. 
Regular languages anct their relatfon to finite 
stat.e automata are treated extensively in many 
texts. e.g., Chapter 3 in Hopcroft and Ullman [14], 
Acceptance is 11immediate" for only the time for a 
single state change is needed. Were none required 
there would be no problem, the input being the 
solution. More generally, if k successive state 
changes are needed for acc·eptance~ where k is a 
constant for all 'words ~ the language. no matter 
how long. we still call acceptance immediate. 
The reason is that.a k-tuplet groupoid can always 
be constructed for this case in which acceptance 
is illDllediate. 

Though the transcription is .trivial from 
regular language acceptance to arbitrary computa
tion, translati~r,.,O£rdatf.f~o~si~-~Y-iinite 
state machines. w~-dls~sslo!-t'lie91foup~! tech
nique. It is that homomorphic map.pings can be 
introduced with no additional complications. 
Refer to Figure 6, interpreting ••• di ••• as the 
output string of a finite state automaton (FSA). 
For a Moore FSA outputs are additional labels on 
the states (i.e.. a bOlllODlorphic mapping of the 
state set) and { gl'., .gk t can be identified. with 
the set of states of the FSA. The inputs are . 
simply arrow, labels, traditionally f:i:om the same 
alphabet as . di for CA's but not so fc:ir finite 
state transducers and many other FSA's. For 
Mealy .FSA's inputs and outputs are.arrow labels, 
but no change is needed in Figure 6. However, 
the usual convention is that current state and 
input determine next state and output, i.e., in 
(4.1) di becomes. d. l' an alternative which can 
always be used in ~!ace of (4.1) if .desired. Also, 
as any edge is determined by the vertices it join~, 
and one vertex and an arrow determine the other 
vertex, pairs (gi' gi+i) correspond precisely' to 
pairs (-gi' I.), Where I 1 is the FSA input in 
state gi cau§ing the FSA to enter state gi+l' 

This now leads to a general speed-up 'Eheorem 
for· Turing machines. As any TM constrained to 
move in one direction is simply an FSA whose in
puts and outputs are on the tape, the foregoing 
ilaplies that a one-dimensional BA can do in time 
C (immediately) what TM does between reversals 
oil its tape,. · ~t switches between being a ~'left.· 
FSA" and a "right FSA" at each reversal. The BA 
thus cuts the time cost to .r 

C = (r+l)C + E LC .. ·. (4.2) 
s i=l l. p 

where r is.the number of TM reversals and R.. is . l. 
the number of cells containing the substring 
processed "immediately" between the H:h and the 
(i+l) th reversals. Propagatfon co_sts .have been 
included becaus,e the substrings are effectively 
read o~·t at each ·reversal. If propagation· cost is 
neglected we have the (usual,ly realistic) cost 

C = (r+l)C8 (4.3) 

Seemingly more impressive is the result that 
if there is a fixed upper bound on tape distance 
(number of cells) between reversals for a TM, a 
BA exists doing the calculations of that TM 
immediately. However, it follows easily from the 
foregoing and k-tuplet speedup, where k is now 
the upper bound. With a simple convention about 



null symbols, all substrings scanned between 
successive reversals can be regarded as k-tuplets 
(k is the maximum ti of (4.2)), each viewed as a 
single groupoid element and thus equivalent to 
one symbol. They are processed alternately by 
corresponding versions of Rand L FSA's. But a 
single FSA is easily constructed to embody this 
alternating behavior whence the stated result 
follows. 

To summarize, the one-dimensional BA, with 
communication along busses reduced to mere conti
nuity check, in effect, achieves ultimate speed
up for finite state computations, is computation 
universal, and accomplishes potentially tremen
dous speed-up generally. When (4.3) is valid the 
ratio R of TM time cost to BA time cost for the 
same Cs is 

R (4.4) 

As R is the number of squares visited by the TM 
control divided by one plus the number of turn
arounds, it is at least one (realized only in a 
trivial case), and has no finite upper bound in 
general. 

Two (or higher) dimensional BA's are more 
powerful than one dimensional BA's for several 
reasons. They are easier to apply to geometrical 
or pattern problems. They permit setting up an 
unlimited number of busses parallel to a row of 
cells, or"detouring" around a region of cells. 
The number of cells to which propagation can 
occur increases quadratically, rather than 
linearly, with time (cubic increase for JD BA's; 
higher dimensionality is "non-physical"). This 
implies non-existence of finite upper bounds on 
how much "more parallel" computations of a planar 
(or cubic) BA can be compared to those of a 
linear BA (or cubic compared to planar}. 

The first point has been illustrated both for 
straight line recognition and for determining 
topological connectivity of regions in the plane 
(Rothstein and Weiman, [11)). The latter is of 
special interest here, being particularly vexing 
with sequential approaches yet almost trivial for 
a plane BA. The second and third points are 
illustrated by the following ancedote. Several 
years after Weiman received his degree, Moshell 
sought a dissertation topic, so the writer sug
gested investigating parallel computation by BA's, 
specifically for acceptance of formal languages 
more general than regular. The "ultimate" result 
for regular languages and a powerful speed-up for 
the most general case had already been obtained 
on the one dimensional (lD) BA. Significant 
parallel speed-up for a context sensitive (CS) 
language (line codes [11]) had been obtained with 
a 2D BA, and the writer had also found how to 
speed up acceptance of Dyck languages, which are 
context free (CF), by the lDBA, using only nearest 
neighbor conduction, and a number of computation 
steps equal to the depth of the "deepest nest" in 
the string (no limit on the number of nests). A 
bar to Dyck language immediacy on the lDBA is 
the impossibility of threading an indefinitely 
large number of channels through an FSA. Moshell 
found this easy for the 2DBA to overcome, where
upon the writer showed that the same method worked 

211 

for waftY COfttext sensitive ).anguages like 
(a°b c ,,,t ) an~ ((w w )*), where w is an arbi
trary word and w is w written in reverse order. 
We suspected, from the above and the first speed
up result, that regular languages, and only they, 
were immediate on the lDBA. This turned out to be 
so, but for 2D and 3D CA's the results were less 
tidy. Indeed, a m,ajor part of Moshell's disserta
tion dealt with the problems of precisely charac
terizing immediate languages and their relations 
to known hierarchies of languages (with respect 
to generality, complexity, etc.). 

The work of Rothstein and Moshell [15,a,b,c,d], 
both published and in preparation, has yielded 
some unexpected results. Complexity with respect 
to parallelism (immediate languages are simplest) 
is less for some CS languages, which are highly 
complex from a conventional viewpoint, than for 
general CF languages. For example, words over an 
alphabet of one letter whose length is a prime 
number form a CS language. From number theory 
one would expect it to be very complex, but it is 
immediate. The Cocke-Younger algorithm leads to 
a (log2n)C time bound for CF languages, We do 
not know i~ this can be improved. 

5, Retrospect, Prospect and Concluding Remarks 
The BA is both a CA and an i-terative logic 

(microcellular) array. It is thus more powerful 
than either, andis microprogrammable in principle. 
Array research is sunnnarized in Minnick [16). 
Microprogrammed arrays have been discussed by 
Jump and Fritsche [17). The BA is also a multi
processor. Some theoretical aspects of multi
processors have been surveyed by Baer [18), and 
statistical modelling of their performance con
sidered by Sastry and Kain (19). A discussion 
of several computer organizations and their 
effectiveness, including some parallel processor 
and multiprocessor aspects, is given by Flynn [20]. 
Many lines of parallel computation research are 
treated in a special IEEE Transaction issue (21), 
and in the proceedings of this conference and its 
predecessors. Kuck, Muraoka and Chen [22), 
analyzed Fortran-like programs at the statement 
level to find simultaneously executable operations. 

The overwhelming mass of the literature, 
lightly sampled above, on array multiprocessor, 
contellt addressable parallel processors (23), and 
other parallelism research has either been in 
anticipation of technological advance (e.g., array 
research and LSI) or under pressure of handling 
enormous work loads in real computer environments 
(STARAN, etc.). Fundamental aspects and ultimate 
limitations were thus largely neglected in favor 
of practical ones. While many fundamental ques
tions are treated in CA research, usual absence 
of fast connnunication between distant cells made 
their impact on parallel processing problems smalL 

We believe BA research has made and will make 
progress toward fundamental understanding of 
parallel processing, and that it will eventually 
contribute to operating system design for maxi
mizing speed and throughput, to fully utilizing 
the potential of LSI and other technological 
advances, and to rational device and system archi
tecture, where geometric arrangement, local and 
system logical design and communication bus 
systems merge into a powerful whole. We believe 



BA research will have enormous impact on complex 
system modeling, the BA itself often becoming an 
analog of the system modeled. The straight line 
recognizer [11,12,13] did exactly this for a rudi
mentary visual pattern recognition system with a 
simple BA. Indeed, we now think of much of the 
formal side of theoretical science as design of 
BA's, of which systems of scientific interest are 
analogs. We expect this to recur for modeling 
"higher cognitive functions", adaptive systems• 
artificial intelligence, etc •. 

What can we say about ultimate limitations on 
parallel processing not soon to be proven wrong by 
future research? As in the text, there are 
physical and computer science aspects. Turning 
first to the physical, we expect a form of reso
lution of time cost into C and C components to 
be maintained, for the velgcity of light to be the 
ultimate upper bound on signal transmission speed, 
and for that bound to be frequently achieved. 
Both C and unit size (and thus C normalized to 
unit s~ze) are expected to shrinkptoward atomic 
space and time scales with future advances. 
Estimated values of C and C are likely to have 
short lived validity. 5 The e~ementary computation 
act, like measurement, is irreversible, and the 
quantum statistical mechanics of irreversible 
processes is far too primitive to permit making 
the preceding statement much better. It seems 
clear, however, that much improvement in practical 
devices and systems can occur before ultimate C 
and C limits are encountered. Computation of s 
thoseplimits is a question for future research. 

With C and C as given parameters, can 
computer s~ience get ultimate bounds on time cost 
or speed-up for parallel computation? As shown in 
the text, (4.1) leads to the "ultimate" result for 
regular languages, later generalized to immediate 
languages [15,a,d] (which include many context 
free and context sensitive languages, but which 
have not been shown to properly include the context 
free ones). The result (4.2) gives explicit values 
for N and N of (2.9) in the most general case on 
the lflBA butpr and 1. of (4.2) are complexity 
measures hard to com~ute, and vast improvements 
are possible for 2DBA or 3DBA. For language recog
nition problems, N and N are functions of n; 
languages can be hierarch~cally arranged in com
plexity according to the kinds of function 
involved. Immediate cases had N bounded by a 
constant N by a linear functio~. We expect 

' > g If b II d' • rt "parallel c mplexity theory to e two- imensiona 
(s and p "components"); an important practical pro
blem is how to optimize trade-off between compo
nents. But that may be the "easy" part because 
programs and generative grammars exist, of widely 
differing complexity, which respectively perform 
the same class of computations or define the same 
formal language. Worse yet, there is no way, in 
general, to tell if two programs perform the same 
class of computations or if two grammars generate 
the same langauge! But let us count our blessings: 
many interesting languages are immediate; the 
(s,p) bound for all context free languages is , 
sur.ely not higher than (k1log2n, k2n) , where the k s 
are constant and n is word length [15d]; (4.2) can 
surely be improved; given any TM, there exists a 
faster TM performing the same class of computations. 

212 

So optimism seems to be in order: no inherent 
general limitations short of immediacy have been 
shown to exist and tremendous practical speedup 
is surely possible. 

References 

[l] M. L. Dertouzos, IEEE Trans. Computers, ~. 
12-17' (1973). 
[2] J. Rothstein, Patterns and Algorithms, Proc. 
1970 IEEE Symp. Adaptive Proc. (9th), paper II.4 
(1970). Available as Tech. Report. 
[3] J. Rothstein, Algorithmic Pattern Generation 
as a Basis for Biological Structure, Biophysical 
Soc. Abstr. 10, p. 233a (1970). 
[4) J. von Neumann, Theory of Self-Reproducing 
Automata, University of Illinois Press,(1966} 
[5] Essays on Cellular Automata, A. W. Burks, ed., 
Univ. of Illinois Press, Urbana, Illinois (1968). 
[6] E. F. Codd, Cellular Automata, Academic (1968). 
[7] A. R. Smith, J. Coptr. Sys. Sci._§_, 233-253, 
(1972). 
[8] A. R. Smith, Introduction and Survey of Poly
automata Theory, intro. to German translation of 
[4], Rogner and Bernhard GmbH., Munich (1975). 
[9] E. R. Banks, IEEE 11th Ann. Symp. Switching 
and Automata Theory, pp. 194-215, (1970). 
[10] F. Nourai and R. S. Kashef, IEEE Trans. 
Computer, C-24, pp. 766-776, (1975). 
[11] J. Rothstein and C. F. R. Weiman, Computer 
Graphics and Image Processing~. 106-124, (1976). 
[12] c. F. R. Weiman and J. Rothstein, 1975 Saga
more Conf. Parallel Proc. 168-170, (1975). 
[13] c. F. R. Weiman and J. Rothstein, Pattern 
Recognition by Retina-Like Devices, Report, OSU
CISRC-TR-72-8 (AD 214 665/2), (1972). 
[14] J. E. Hopcroft and J. D. Ullman, Formal Lang
uages and their Relation to Automata, Addison
Wesley, Reading, Mass. (1969). 
[15] In addition to papers of Moshell and Roth
stein at this conference, see: 

(a) Bus Automata, report CS-76-14, Dept. of 
Computer Science, U. of Tenn. (1976); 

(b) Immediate Languages, report CS-76-16, Dept. 
of Computer Science, U. of Tenn. (1976); 

(c) Bus Automata and Parallel Computation, Proc. 
1976 Southeastern Symp. System Theory, U. of Tenn., 
Knoxville, pp. 246-252. 

(d) J. M. Moshell, Parallel Recognition of Formal 
Languages by Cellular Automata, Ph.D dissertation 
The Ohio State University, Columbus, Ohio, 1975. 
[16] R. Minnick, JACM ~. 203-241, (1967). 
[17] J. R. Jump and D. R. Fritsche, IEEE Trans. 
Computers, Vol. C-21, 974-984, (1972). 
[18]J. L. Baer, Computing Surveys, ~. 31-80, 
(1973). 
[19] K. v. Sastry and R. Y. Kain, IEEE Trans. 
Computers Vol. C-24, 1066-1074 (1976). 
[20] M. J. Flynn, IEEE Trans. Computers, Vol. C-21 
948-960 (1972). 
[ll] IEEE Trans. Computers, August 1973. \lei c·l3'3' 
[22] D. Kuck, Y. Muraoka, S. Chen, IEEE Tra~s. 
Computers, C-21, 1293-1310, (1972). 
[23] c. C. Foster, Content Addressable Parallel 
Processors, Van Nostrand, New York (1976). 



AN EFFICIENT MULTIPROCESSOR ARCHITECTURE 

by Vincent UNG 

INSTITUT DE PROGRAMMATION 

Universite Pierre et Marie CURIE - PARIS -

(FRANCE) 

Abstract : In a parallel/distributed proces

sing system, the efficiency of such a system de

pends essentially on the manner in which the pro

cessors intercommunicate. In the standard way, 

communication uses the internal buses, the I/O bu

ses or the DMA channels. In every case, the data 

transfer ta~es time. In a multiprocessor system, 

each processor generally has a specific task and 

possesses a unique structure such as its word 

length. As a general rule, transfer processing, 

managed by firmware or software, is needed to con

vert between different word lengths and to store 

the data. 

This paper describes a hardwired method 

which facilitates both rapid communications bet

ween processors, and at the same time, rapid word 

length transformation, in a local multiprocessor 

system. 

I - Introduction 

Because of the proliferation of more and 

more sophisticated microprocessors and low cost 

minicomputers, distributed and parallel proces

sing is more interested in decentralizing the data 

processing to decrease cost and increase efficien

cy. We can envision a multiprocessor in control of 

peripheral devices [I ] , syntactic filtering [ 2 ] , 

lexical processing [3], arithmetic processing 

etc ••• 

The processors have to inter-communicate 

[ 10 ] , or the system is not a multiprocessor. As 

a general rule, communication is realized by using 

internal buses, input-output buses or DMA channels 

and reduces the efficiency of the whole system. 

213 

The causes for the reduced efficiency are. 

Data strangling on the buses. 

- transfer time that causes waiting 

- transfer processing as the word 

length transformation and the storage function. 

II - Multiprocessor justification 

Our reseach on an APL machine which incor

porates automatic evaluation of calculation er

rors caused by truncation [4] led us to propose 

a multiprocessor architecture rendered necessary 

by two aspects of APL. 

- conversation 

- ~U:merical treatment. 

The conflict between these aspects is clear: 

the first is essentially slow and the second needs 

a high speed treatment. One approach to resolve 

the problem is a two-processor system : 

- An eight-bit microprocessor [5] which 

treats a string of symbols coming from the APL 

terminal, codes it in internal codes, processes 

the syntactical analysis, creates executable data 

in a common memory block for the second processor, 

and then delivers the results for the terminal. 

- A thirty-two- bit high-speed processor 

based on bipolar technology [6,7] which is micro-

programmed for numerical calculations array 

treatment, floating point arithmetic, and preci

sion evaluation. 

III - Communication. 

In the usual mode, the drm.hacks are evident. 

In this paper, we present a hardwired method per

mitting the rapid transfer of a memory block and 



at the same time, rapid word length transforma

tion (fig.!). 

With this method, we have true parallel pro

cessing : two processors work simultaneaously wit

hout the drawbacks of shared buses. 

IV - Memory organization 

Around the memory and for each processor, we 

build a data bus and an address bus, correspon-

ding to the structure of this processor. An ex-

emple illustrates this organization : the memory 

is formed out of IK-bits RAM chips. Each 8 chips 

forms one indivisible sub-block of fK-8 bits. This 

size is determined by the smallest processor (8 

bits). The 32 bit processor will determine the 

minimum number of sub-blocks per block. In this 

case, four sub-blocks are needed to form one block 

of IK-32 bits. 

This same block, used by Pl, 

will become a 4K-8bits. For Pl,, contrary to the 

usual organization, the two least significant ad

dress bits will be decoded to select one sub-block 

out of four. 

In this organization, when P1 is operating 

memory locations addressed consecutively are not 

physically consecutive, that is, two successive 

locations are not in the same sub-block. Looked at 

from a logical point of view, however, these loca

tions appear consecutive (fig. 2). When P2 is 

working all four consecutive locations of P1 

(from the logical point of view) appear as one lo

cation of P2, and are access simultaneously by 

P2 • (fig. 3). 

V - Generalisation of this method 

The memory blocks can be distributed to se

veral kinds of different processors (fig. 4). The 

organization (fig. 5) is facilitated if the follo

wing relationship holds 

(l) c x w 
n n 

constant 

214 

by Pi 

Wi is the word length of the processor Pi 

Ci is the number of words in the block used 

and 

Consequently : (fig. 5) 

2: 1c 2:2c -n+l 
(2) c n-1 n-2 

2. c1 n 

(3) 
2 2n-lw w = 2.Wn-1 = 2. wn-2 ... n • I 

In the limit, Cn = l which determines the 

minimum size of the usable bloc for any processor 

Pi. In our case and from definition of en' in (2) 

above C < C 1< .... < Cl we have n n-

wn 32 

wl 8 

Then Wn Cl + cl 4 
Wl Cn 

The minimum size for P 1 will .be c1 = 4 

The formulas (I), (2) and (3) can 'e obtained 

from the binary address decoder. (fig. 6). 

VI - How to synchronize the processor ? 

We have many situations, all of which fall 

into two categories : 

- Master - slave processors 

- Symmetric processors. 

The first configuration is not complicated 

to manage [SJ. The master processor determines 

the distribution.of the memory blocks for the be

nefit of the slave processor which, after execu

tion, interrupts the master processor. Only sta

tus information is communicated on the input-out

put buses. 

In the second solution, each processor keeps 



its autonomy and can use some of the other's re

sources but we must take care to avoid deallock 

I 9 l . 

Conclusion 

Connnunication between processors in the met

hod presented offers the advantage of speed and 

simple software. The hardware realization is sim

plified by using' ·three-state gates to separate 

processor-buses. There is however a problem with 

the optimum size of a block, since minimum com

munication is equivalent to the size of a block, 

which is often imposed by the coDDDercial RAMs. But 

the current low price of these allows us not to 

insist on the optimum size. Finally, this solu

tion allows a very close logical interaction and 

frolil a physical point of view (real parallel.pro

cessign and no bus sharing) an almost negligible 

interdependence. 

AKNOWLEDGEMENTS 

I wish to thank Professors J, VIGNES and 

C. GIRAULT, for their encouragement on this re

search and M.·JAMMIER for helpful discussion 

about software. 

References 

[ I ] Microprogrammed Multiprocessor Graphic Con

troller. 

- A. BERNARDY - MICRO - 6 MARYLAND 1973. 

(2] Design of a microprogrannned Alphanumeri~ 

terminal. 

- F. DROMARD. MICRO. 7 Palo-Alto califor

nia 1974. 

[3 I Design of a Microprogralllllled lexical Micro

processor - Y. CHU - MICRO 8 CHICAGO 1975 

215 

[4] A Firmware organization for error evalua

tion in numerical computations. 

S.S.HYDER, V. UNG and J. VIGNES 

Micro - 7 PALO - ALTO CALIFORNIA 1974 

[ 5 ] intel 8080 Microcomputer Systems 

[ 6 ] MMI 4 Bit Expandable Bipolar Microcontrol

ler 

[7] A powerful Microprogram control-Unit - the 

.6700 Clive Ghest -

Micro 8 CHICAGO 1975 

[8 I A MicroprograDDDed Module for Musical 

Acquisition, Synthetical Replay and Edition. 

C. APERGHIS, R. TERRAT, V. UNG. 

Micro 8 CHICAGO 1975. 

[ 9 ] A minimal connection b.etween two SYDDDetri

cal · cotiputers 

M. CHEMINAUD, C. GIRAULT, V. UNG - Online 

international - conference LONDON 1975. 

[ l 0 ] Un gysteme de coDDDunications Logiciel ou 

Materiel ? 
M. CHEMINAUD et A. SCRIZZI - Colloque Inter

nationale sur la:PrograDDDation 1974 - PARIS. 



Memory 

- - - - - .:,_->El-On block·.·· · · P . . . .. 2 
.. 32 

"'"---(n+l) block 

Fig I The distribution of memory block n for 

use by processor P 2 

8 bits .. ,. 

n 32 bits 
n. + I 

n + 2 ~ ._I _n~--Ll_n_+_· ----Jl1.-n_+ ____ 2_· .L-n_+_3-__JJ 
n + 3 

fig 2 Logical representation 

216 



Pl sele 

block 
select 

AO 

Al 

Pl 
address A2 

bus 
An 

8 

Fig 3 Physical 8-32 bits organization 

-----

Fig 4 A memory block used by any Pi with Wi 

217 

Sub-bloc 
memory 

P2 select 

Ao P2 
address 

An-2 bus 

P2 =W/R 

bus 

driver 



Cl 

d'J[J< 
··o· ..... · ... " . 

' ' 

C2 

~ig 5 Successive foTlllS of a memory block 

P3 select 

Fig 6 Detail about chip select operation 
( Pl e P2 e P3 m P4 = l ) 

218 

P4 select 

Memory 
sub block 



DESIG:J COHSIDGHATIOi/S I!l 
l!ULTI-lamcrntFUTF.R PERFORNA:,CE 

Tadaald Dandoh 
Yul:io I~auamoto 

Hitachi '~es ear ch Lab. of '.-:itachi Ltd. 
l;itachi-shi, Iharaki-ken, Japan 319-12 

Summary 

This paper deals with the ini>ut output perf or-
1:1ance of raulti-minii::omputer structure. Fir,. I shows 
the typical structure of the multi-·rainicomputer. 
I:ach processor element (PE) has its own private 
memory (P'l) and input output devices. The common 
::tclt:•-.ry (C:l) and the COMl'ilOll input output devices 
arP shared J,y several nrocessors. T:i.e common re
source contention decrt?.ases the instruction exe
cution rate [l] and also causes the over-·run error. 

The over-run error is cauoed by the ~·1aiting 
time excee<linf the maximum allowance. Some input 
outriut devices, e.g. dis!'s or drums (D7-!A) must 
transfer the data in proryortion to their revolu
tion. The waiting time is the time for which a DNA 
must· wait until it can transfer the data. 

In order to decrease the over-·run error, it is 
necessary to make the waiting time shorter and the 
allowance longer. Tl1e influential designs are, 
(1) :cque.st selection logic .in C':i: This selects a 

Pr: or a :OHA which accesses C'.i .• The tyoical 
logic is priority or circular methocl. 

(2) Acknowledge time: This is the time require<l 
for a PE to re$pontl to the request of a iJHA. 
In the iaulticor.iputer system, this is at .least 
two memory cy.cles because of the test and set 
instruction which requires two memory cycles. 

(J) Continuous transfer: This method allows·a DMA 
to transfer data continuously if some datas 
are remained in the buffer. 

(4) nuffer t:apacity: Larger buffer .capacity of DNA 
allows longer waitine tiI11e. All D!IAs should 
have the same allowance·, or the DHA which has 
the larger allowance causes an over-run error 
of the DliA which has the smaller allowance. 

(5) Interleaving of Cl'i: This technique is effec·
tive to reduce the average waiting time, but 
not the maximum waiting time. 

T11ese factors decide the over-run probability, 
i.e. how many Di-:As can run simultaneously. 

219 

::ext, the quantitative data is examined in a 
simple case. Fig.2 shows the model of the analvsia. 
There are 2 stages nf the selection, i.e. the 
selection in a L'US and the selection in C~l. Assu:\<": 
only PE accesses Cli and iJNA accesses orly J?M. Gi11< 
must wait while PE accesses CM. The access rcque;;t 
of FE to c:; is a closed loop and exponentially 
distributed. ::'1 is the probahility that a l'E re
quests during Cl'. single cycle. The service time of 
c;! is a unit time. The req·..ie.:;t selection logic ii1 

C:'. is either FIFO 01· priority or circular method. 
In this case, if the distribution of the waiting 
time is known, the over-run probability is ob
tained by using the time chart. 

The waiting time distribution is calculated bf 
using the concept of imbecided Iiarkov Chain [2]. 
Let x(ti) be the state (i.e. queue size) when th? 
i th caller service is completed. The calculatio;1 
method is as follows. 
(1) Hake a transition matrix from x(ti) to x(ti+l) 
(2) Calculate the probability of the entry posi-

. tion of a new request in x(ti) 
(3) Follow the position of the new request in th? 

transition matrix until it is serviced. 
;rhe result of the calculation is shown in l'ig. 3. 

The waiting time is normalized as the single ser-
. vice time is 1. The waitin~ time t (n-1<. tin) is 
represented by time n. In the case of priority 
service, the waiting time of the lowest priority 
is shown. The result indicates that the circular 
service is not so different from FIFO and the 
priority service has disadvantage. 

References 

[ 1] ~lileep P. Bhandarkar, "A11alysis of i.emory 
Interference in ;Iultiprocessors", IEEE 
TRAUSACTIONS ON COUPUTERS Vol. (:-24, No. 9, 
Sep. 1975, p:> 397·-908 

[ 2 J Leonard Kleinrock, QUEUEING SYSTE:·lS, Vol.1 
John Wiley & Sons, pp. 174 

Pt-ob(). bi liiy 

' 
10-1 

\0-2. 

J03 

IOf 
-s 

10 

OIJ..34S"t7 



A MODULAR VECTOR PROCESSING UNIT 

s. R. Ahuja and J. R. Jump 
Rice University 

Houston, Texas 77001 

SUMMARY 

This paper presents and analyzes the archi
tecture of a vector processing system. The system 
is best viewed as a functional unit similar to the 
pipelined aritlunetic unit found in some current 
computers [l, 2, 3] • However, it differs in 
the following two significant ways from conven
tional pipelined units. 

First, the proposed system is modular. It 
consists of several identical and independent 
modules. The external functional behavior does 
not depend on the number of modules and it will 
work properly with any number of modules. The 
only effect of changing the number of modules is 
to change the computation rate of the system. 
Thus modules can be added or removed without chang
ing any applications or systems programs. This. 
allows a straightforward tradeoff between hard
ware and performance. Moreover, the system exhi
bits fail-soft properties since if a faulty module 
is detected, it can simply be removed, resulting 
in a slight decrease in performance but no other 
changes. 

Second, the system is programmable. Each of 
the modules is a general purpose processor (per
haps an LSI Microprocessor). Each operation per
formed by the system is defined by a microprogram. 
A copy of each such microprogram is stored in 
every module. Hence, the choice of operations is 
not limited to simple aritlunetic operations. The 
operations can be chosen to fit the needs of the 
user and can be changed for different applications 
or when improved microprograms are developed. 

The system consists of a number of processor 
modules which share two data busses; i) a common 
input data bus for the transfer of operands from 
an external memory to the processors, and ii) a 
connnon output data bus for the transfer of results 
from the processors to the memory. The control of 
each bus is distributed among the modules and es
sentially consists of a one bit shift register 
used to shift a single activation bit cyclically 
from one module to the next. Whichever module 
contains this activation bit has access to the 
bus. Thus the module containing the input acti
vation bit will receive operands necessary to per
form an operation. Once the operands are received, 
the operation is init;iated and the activation bit · 
is passed on to the next module. Similarily the 
module containing the output activation bit trans
fers the results of a previous operation, if any, 
to the memory, after which the activation bit is 
passed on to the next module. An activation bit 
is held at a processor only until the processor 
completes its data transfer. 

220 

This scheme allows i) the execution of 
several operations to proceed concurrently in 
different processors, and ii) the input and out
put phases (data transfers) of a processor module 
to be overlapped with the execution of operations 
in other processors. The input and output con
trol loops work independently and asynchron
ously. Thus the output loop ensures that a pro
cessor module can output its results as soon as 
the module finishes an operation, irrespective 
of the execution time of that operation. 

The performance analysis of the system pro
vides a derivation of the throughout (i.e., the 
number of operations performed per unit of time) 
as a function of the number of modules, the 
number of operations to ·be performed, and the 
time required to perform a single operation in 
one module. Hence this analysis provides a 
quantitative measure of performance that can be 
used to determine the number of modules needed 
to achieve a given throughput. The performance 
of a system with N modules is shown to be the 
same or better than that of an equivalent N stage 
pipelined system [4]. In particular the total 
time of operation for a vector operation is 
given by 

z 
T (Z+l)r + R + <f N° 1-1) (R4 (N•l) t) 

where N = the number of processors, Z = the vec
tor length, R = the processing time per processor, 
r =data transfer time (input and output), and 
R!(N-l)r=R-(N-l)r if R>(N-l)r and 0 otherwise. 

This tends asymtotically to (~}Z fqr yery 
large z, showing an effective processing time of 
(R+r) per operation. That is, the system ex-

N 
hibits a parallelism of order 'N' in that it pro
cesses the operations at a rate 'N1 times that of 
a single processor. 

REFERENCES 

1 Anderson, S .F., et al, "The IBM System/360 
Model 91; Floating Point Execution Unit," 
I.BM J. Res. Develop., Vol. ll, pp. 33-53, 
January 1967. 

2 "Control Data Star-100 Computer System Hard
ware Reference Manual," Technical Publica
tion Dept., CDC, Arden Hills, Minn. 55512. 

3 "ASC - A Description of the Advanced Scien
tific Computer System", Texas Instruments, 
Inc,, April 1973. 

4 Jump, J.R. and Ahuja, S.R., "Effective Pipe
lining of Digital Systems," Submitted for 
publication. February 1976. · 



A SHARED MEMORY TECHNIOUE FOR 
DIFFERENT MICROPROCESSORS 

Dr. Ronald L. Krutz and Bob Reynouard 
Department of Electrical Engineerinp, 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

To investigate shared memory techniques 
two popular general purpose microprocessors 
were choRen as bases for investigation - Intel 
8080 and Motorola 6800. The criteria for 
evaluating each technique was desiim simplicity, 
efficiency and nrop,ramming limitations. The 
system, as imagined, was to provide each 
processor with local memory (ML), to which 
only that processor has access, and to inter
face the two processors through a block of 
shared memory (MS). The problem was to avoid 
simultaneous requests for shared memorv bv 
both processors. 

Direct memory access was considered as a 
solution to the nroblem, but several short
comings to this approach made it a second or 
third choice to the "wait state" technique 
described below. Of the two processors only 
the 8080 possessed the desired ability to be 
externally halted in the middle of an instruc
tion. This feature served as the basis for the 
shared memory interface design. The 6800 is 
given top priority permitting it immediate 
access to MS. When both processors are vying 
for MS the 8080 is alerted of the 6800's re
rruest, then enters a "wait" cycle. The 6800 
clock must be svnchronized with the 8080 clock 
to insure sufficient time to alert the 8080 of 
a 6800 request for MS. 

The technique proves efficient and easily/ 
economically implement - an example for inter
facing an 8080 and 6800 with lK of shared 
memory costs under $50. 

221 

Good programming practice can achieve high 
90 percentile efficiencies. Good programming 
practice means program mapping to allow each 
processor to operate in parallel as much as 
possible. An example, given in the main text, 
achieves 99% efficiency relative to each 
processor operating independently. 

Parallel processing can prove to be an 
advantage in real time systems where execution 
time is critical. Another advantage of a 
shared memory system is shared I/O with common 
peripheries being accessed through MS address 
locations. 

Three or more processors may also be 
configured to share memory using this "wait 
state" technique. The general requirements 
for multiprocessor shared memory communication 
are discussed further in the main text. 

References 

[l] _Motorola Microprocessor Applications 
Manual, pp. 2-16 

[2) Intel 8080 Microcomputer Systems User's 
~anual, (July 1975) 

[ 3) Intel 8080 Assembly Language Programming 
Manual, p. 55 



PARALLEL RECOGNITION Of PAllil!RNS: INSIGHTS FROM FORMAL LANGUAGE THEORY 

Michael Moshell 
The University of Ten~a,e 
Knoxville, Tennessee · 3?9l6 

Abstract 

We define bus automata, which are unifonn ar
rays of finite automata ("cells") wfth modifiable 
channels through cells which allow long-distance 
communication, This pennits separation of the 
functions of state-change (or switching) and in
formation transmission, and analysis of theirre
spect'ive time costs. Most previous cellular auto
-maton research does not make this distinction. 

We define inmediate la~uages as those fonnal 
languages accepted in a. fix number of steps by 
bus automata, regardless of the size of the input. 
Subfamilies within the immediate languages are de
scribed and compared to other parallel processing 
language hierarchies. From these comparisons we 
can infer some of the geometric and algebraic 
properties of language and pattern classes which 
admit rapid syntactic recognition by parallel cel
lular computing devices. 

I. Introduction 

One important model of parallel computation 
has been the cell1Jlar automaton (CA), introduced 
by Von Neuman (16} to study self-reproducing sys
tems. We add to the CA a locally.modifiable com
munication network, composed of binary channels 
through cells. The resulting bus automaton (BA) 
formalism allows us to design cellular computers 
with less concern for communications problems com
mon to earlier CA research, such as the "firing 
squard synchronization problem" (17). The conceot 
of the BA originated with Rothstein (12,13,18}, 

A bus automaton is a collection of finite 
sequential machines ("cells") arranged at the 
points with nonnegative integer coordinates jn an 
n-dimensional Cartesian coordinate system (N ). 
The inputs to a cell C are the outputs of neigh
boring cells in a. standard neighborhood, the cells 
directly or diagonally adjacent to C. In d dimen
sions, C has Jd-1 standard neighbors. All cells 
change state synchronously; the new state is a 
function of the old state and inputs. 

Most previous CA research used Moore finite 
sequential machines (Moore fsm's) as cells. In 
formalizing the BA, we use Mealy fsm's with a par
ticular type of output function (the "C-function") 
to represent binary channels through cells. This 
restriction also avoids the problems of indeter
minacy for Mealy cellular automata pointed out by 
Hennie (2). 

For brevity, complete proofs are omitted in 
this paper. Mo.st of these proofs involve geomet
ric arguments and many diagrams. 

222 

<:-Functions 

Jerome Rothstein 
The Ohio State University 

Columbus, Ohio 43210. 

II. Bus Automata 

A function f:Bk + Bk of Boolean (column) k

vectors is a c..:function iff there exists a k by k 
Boolean matrix Mf such that, for b in Bk' 

f(b) = Mf.b• where • represents Boolean matrix 
product. C:-functions are precisely the functions 
realizable by passive diode networks. See the 
example in Figure 1. 

For vector b = ( 1 0 0 1)1 , 

Figure l: Example of C-Function (''conduction 
function") 

C-functions easily generalize tom arguments, 
using m Boolean arrays. 

For example, consider the binary C-function 
H:B3 x B3 + B3 represented in Figure 2. 

v = 
l 

v = 
2 

~] = v 
3 

Figure 2: A Binary C-Function H:B3 x B3 .... B3• 

H uses the connection matrices M1, M2 of m(=2) 
bipartite subgraphs. We have 

We define the set Cm, k as the set of a l1 m-ary 

C-functions from (Bk)m to Bk. 



Bus Automata 

We need the following definition. A Mealy 
finite.sequential machine (fsm) is an ordered quin
tuple M = ( r.. ~Q.f,h) where 

Eis a finite set, the input alphabet; 
~is a finite set~ the output alphabet; 
Q is a finite set called the state set; 
f: Ex Q + Q is the state transition function 
h: Ex Q +~is the output function. 

The standard ~eighborhood of a point Y is the 
set NBHD(Y) = {We:Z IW = (y1+e, .... ,yd+ed)• 

Y = (yl•"·•Yd)•eie:{-1,0,1} for 1 ~ i ~ d, and 

. W "I Y.} Let NBR:N x zd + zd be any function such 
that for 1 < i < j < 3d-1, NBR(i,Y)e:NBHD(Y), and 
if i "I j, NBR(f:-v) 1 NBR(j,Y).' · 

A bus automaton (BA) is an ordered 7-tuple 
M = (d,k,Q,f,g,G,q0 ) where 

1) d, a positive integer, is the dimension of 
the BA; 

2) there is a defined a Mealy fsm 
d 

C = ((Bk)3 -l ,Bk,Q,f,h) called a cell 
of.M, with --

(Bk)3d-l as input alphabet, 
Bk as output alphabet, 
Q as state set, (the "cell state 

. d set") 
f: (BJ! -1 x Q + Q the state 

transition function, 

. h: (Bk)3d-l x Q + Bk the output 
function; 

3) g: Q+ Bk is the local output function, and 
G: Q + C d is the C-function selector 

3 ,k function and 
h is defined in terms of g and G: 

d 
f V ( ) . (Bk) 3 -1, or = v1, ... ,v d 1n 

3 -1 

h(V,q) = G(q)(v1•···•v d ,g(q)) 
3 -1 

4) q0 e: Q is the quiescent state, and 

(( )3d-1 ) -f 0,0, ...• o ,q0 - q0 and 
3d_1 

h((O,O, ... ,0) •%) = (0,0, ... ,0) 

Condition 3 (the definition of cell output function 
h) means that with each state q of a cell of M is 
associated a C-function G(q) which represents· 
"channels" in cells. Channels transmit locally 
originated signals (g(q)), or signals from cell 
inputs (v1 .... ,v d ) to outputs without requiring 

3 -1 
state changes. Different C-functions may be asso
ciated with different states; the channels are 
thus modifiable by state changes. 

Operation of Bus Automata 

For a bus automaton M = (d,k,Q,f,g,G,q ) we 
define a state configuration of M as a func~ion 

y:Nd + Q (i.e., an assignment of a state.to .every 
cell of M). y is finite iff the set {Ye:Ndly(Y) "I 
q0 } is finite (i .e-::onTy a finite number of M's 
cells are non-quiescen~). An output configuraaion 
of M is a function w:N +Bk. The sets r ={:N + Q 
SUcJi" that y is finite} and n = {11>:Nd +Bk} are the 
sets of all finite state and output configurations 
of M, respectively. 

When a given state configuration is established, 
the BA will then run through a series of output 
configurations, until all signals have reached 
their destinations ("settled"). The next state 
configuration may then be determined on the basis 
of these settled (or stable) values.· We now for
malize this. 

For Ye:Nd, ye:r. we:n. we write <y>y when we 
mean the state of cell Cy• and <w>y whe~ we mean 
the output of cell CY" For Ye:Z0 but 

Y~Nd, we trivially extend all y and wi <y>y = q0 
and <w>y = (o,o •...• o). 

We define an output configuration history 
function e':N x r + n as follows: for any 

ye:r,ce'(O,y)>y = (o,o, ... ,o) 
and for j ~ 1, 

ce>(j,y)>y = h(ce'(j-1,y)>NBR(l,Y)···• 

<0'(j-l,y) NBR(3d-l,Y)~<y>y) 

Informally, the va 1 ue of e'(j •Y) is an output con
figuration of M which results from j applications 
of an "output updating operation" to a state con
figuration y; y is not changed during such a pro
cess. The "output updating operation" is just the 
application of output function h to each cell of M. 

We now define the stable output function 
e:r + g; for ye:r • if there exists a positive inte
ger t such that e>(t,y) = e'(t>,y), for all t' > t, 
let< be the least such t. Define e(y) = e'(,,y). 
If no, exists, then e(y) is undefined. 

Informally, the value of e(y) is the output 
configuration resulting from state confuguration y 
after all "propagating signals" have reached their 
destinations, and all transients have settled. 
Hennie (2) showed that for most classes of cellular 
automata consisting of Mealy fsm's, it is undecid
able if e is totally defined. Feedback loops may 
occur sucti that the outputs of some cells "osci 1-
late":, and these loops are not always detectable. 
If, in state configuration Y• oscillation is oc
curring and is not somehow arrested, then e(y) will 
be undefined, because no two successive output 
configurations are ever the same. We proved (10) 
that no bus automaton undergoes such oscillations 
during one clock interval. 

223 



f. 

<IT(y)>y = f(<e(y)>NBR{l,Y}° ... ' 

<e( y )>NBR { 3d_ 1 , Y) ' <y>y) 

II{y) is undefined otherwise. 

We see that rr is just the "gl-Oba1 analog" of 

Let us define the state configuration history 
function W:N x r + r which for an initial state 
c-0nfiguration y specifies the configuration 
1nm,y) resulting after "m applictions of II'', 

rr>(o, y) = y 
W(m,y) = rr(rr>(m-1,y)) if the right side is 

defined 
rr>(m,y) is undefined otherwise. 

Physical Interpretations 

The formalisms used to describe the operation 
of bus automata weremotivated by physical consid
erations. It is intended that bus automata repre
sent constructible electronic devices. The output 
configuration history function e> (recursively 
defined), represents the transmission of signals 
through the cells without cell state-change occur
ring. This means that signals are conducted 
through the channels represented by the ·C-functions, 
but the channels are not modified. 

The stable output function 0 represents the 
signal values after they have been settled. The 
state transitions of cells, represented by the 
state configuration history function rr> , only 
occur when e is defined. Thus, for BA for which 
e(y) is defined for all finite state configurati~ns 
y, represents a constructable physical device. la} 

Let us denote by C ·("cost of propagation") 
the time required for apsignal to traverse a cell 
of some physical model of a bus automaton. That 
is, a change of input, where the cell-state does 
not change, results in a change of output after 
interval cp. 

Let C ("cost of state-change", or "cost of 
switching"~ denote the time required for a cell to 
change state, after a clock pulse, and to change 
the functions Gq and g(q). Cs and CP are both 

assumed to be greater than zero. During the 
state-change interval (of length Cs) the ce1l out
put is undefined. The state to wh1ch a ce11 
changes is, of course, a function of its previous 
state and inputs at the instant of the clock pulse. 

(a) 
Of course, systems where the non-quiescent 
part of space is very 1 arge may s ti 11 not be 
practica 11y constructable. 

224 

All cells are ass4med. to receive the clock pulse 
at the same time.lb) 

Consider the task of recognizing (or comput
ing some function of) a pattern, represented in a 
BA by ce11s' initial states, and having a maximal 
diameter ("span"} of n cells. On the order of nCp 
time is required, in general~ before results can 
be obtained. The time is required to conmunicate 
the details of the extremities of the pattern. 

Consider a bus automaton operating with clock 
period L (T ~ Cs, by necessity). Let us say 

that clock pulses arrive at times tT fort= 1,2, 
. . . In the time interva 1 between ftT + Cs) and 
(t + 1 )T, signals propagate through cells at a 
tirne-cost of CP per cell. If r is the range, or 
maximum distance a signa1 can travel be
fore the next clock pulse; then 

rCp = ( t + l)T - ( tT + Cs) 

= T - Cs 
or 

T = Cs + rCP 

If a particular algorithm being studied re
quires access at each clock step to all the data 
in a region of span n, then range r must be at 
least n; so 

T = Cs + rCP ~ Cs + nCP 

This constraint on physical models of bus 
automata is, of course, applicable to any physical 
realization of an abstract machine. (That is, 
signals must have time to reach their destinations.) 
The constraint requires re-emphasis here because 
bus automata {like other cellular automata) are 
extended in space so as to embody a parallel com
putation on an input of size n, where n may vary. 

Geometric Notation for 1- and 2-dimensional Bus 
Automata 

We represent the neighborhood of a particular 
cell by an octagon. Four connection faces are 
numbered l to 4 clockwise from the top; the remain
ing four are numbered 5 to 8 counter-clockwise. 
See Figure 3, 

A neighbor cell of a cell B is referred to as 
the "i-th neighbor" of B if it touches the i-face 
of B. An incoming channel on face i is 1abelled 
Ri (R for "receiving") followed by a sequence num
ber or symbol. Thus R6.l is the first incoming 
channel on face 6. Outgoing channels ·are similar
ly labelled, using T ("transmitting"). The cell 
in figure 4 'is in state q; its channel.s are repre
sented in writing, as: 

(b) 
We will not concern ourselves with problems of 
distributing the clock signal; since (unlike 
signals flowing through cells} its routing is 
uniform and unchanging J achieving simultaneous 
arrival is just a matter of delays. 



1 Rl.1 
5 

o: 6 R6. l ~T3.I T3.2 

7 4.1 
8 

Figure 3. Cell Faces Figure 4. Channels 

q: (R6.l; T3.2, T4.l) 
(Rl. l; T3. l) 

Multiple channels with the same route may be 
grouped and referred to by a common name; they are 
drawn as double lines. See Figure 5. 

R6.A 

TS.A 

Figure 5. Multichannels 

Equivalence of the graphic notation and the 
(two-dimensional) BA definition is shown in refer
ence (10). 

II. Immediate languages 

We intend for a BA to accept strings from 
some formal language in this fashion: the string 
is represented by the states of cells along one 
"edge" of the BA. The BA is run; if the origin 
cell (C0 ,o, ..• ,o) ever enters a designated 

"acceptance state", then the string is accepted. 

We consider a bus automaton M = (d,k,Q,f,g,qJ. 
State set Q contains states E1, and E2 and 
designated "acceptance state" Ea· The cells 
C1,o, ... ,o•···•cn,O, ... ,O in Mare called the 

buffer of length n in M. 

Consider any set V c: {Q-{El'E2,Ea,q0 }); we 
call V an input alphfbet. For any 
string X = x1···xneV, the state configuration Yx 
of M is defined as the function yx:Nd + Q such 
that: 

(E1 is the left 
endmarker S"tite; ) 

<yx>(1 0 o) = Xi, 1 ~ i ~ n {X = x1 .•• xn 
' , ... , is the input to M;) 

225 

<yx>{n+l 0 ••• o) = E2 {E2 is the right 
' ' ' enamarker state;) 

<YX>v = q0 for all other YeNd. 

We say that M accepts X iff there exists a 
positive integer r such that <rr{r,yx)>(o 0 o) 
= Ea. The l angua~e accepted by M, ' ; · · · ' 

l(M), is t e set of all strings XeV 
accepted by M. 

For a bus automaton M and its state configu
ration history function rr', l{M) is inrnediate on M 
iff there exists a positive constant Kl such that, 
for all Xel(M), <Il'(m,yx)>{ ) = Ea for 
some m < K. o,o, .. ,,o 
For any fohnal language l, if there exists a bus 
automaton M such that l is immediate on M, then l 
is an immediate language (leIMl). Thus an immedi
ate language is a language l accepted by some BA 
in at most Kl steps, regardless of the length of 
the input string. 

Consider a bus automaton, M; and its stable 
output functione:r + n. Using e we define a 
function P:r + N as follows: for yer, P(y) = T = 
the least t such that e{y) = e'(t,y) if Sly) is 
defined, and P(y) is undefined otherwise. The 
value of P(y) represents the number of iterations 
of the output configuration update function re
quired for the outputs to stabilize after M enters 
state configuration y. We call P(y) the propaga
gation time for y. 

For M a bus automaton, if l = l(M) is immedi
ate on M then l is linear propagation time immedi
ate ("l-immediate") on M iff there exists a posi
tive constant k such that for all strings X of 
length n in l, 

For any formal language l, if there exists a 
bus automaton M such that l is linear propgation 
time immediate on M, then l is a linear propaga• 
tion time immediate language (LellML). We some
times say that M accepts l in l-immediate time. 

For M a bus automaton, if l = l(M) is immedi
ate on M then l is polynomial propagation time im
mediate on M iff there exists a polynomial function 
f:N + N such that for all strings X of length n 
in l, 

For any formal language l, if there exists a 
bus automaton M such that l is polynomial propaga
tion time immediate on M, then l is a polynomial 
propagation time immediate language (LePIML). 

The set of languages immediate on bus 
automata of d dimensions will be called IMLd. 

Using the previous definitions with obvious 



extensions,_ .we can define the foll.owing families 
of languages: · 

IML; lMLd for all d > 0 
PIML; PIMld for all d .> 0 

LIML; LIMLd for. all d > 0 

. The following inclusions follow di.rectly. from 
the.definitions. 

lMLd+ l ::> .IMLd 

u u 

Plf.tld+ 1 :::i PIMLd 

u u 
LIMLd+.1 :> LIMLd 

Examples of I11111ediate Languages 

Theorem: the family of languages which are 
i11111ediate on one-dimensional.bus automata is 
exactly the family of regular languages. In fact, 
IML1 = PIML1 = LIML1 = REG, the class of regular 

.. 1 anguages. 

. The technique used in the proof of the in-
clusion of REG in IML1 will be briefly sketched 
here.· The proof that IML1 is included in REG is 
based on a theorem by Hennie (3) concerning lin
ear-time languages and Turing machines. Both 
complete proofs are found in reference (9). 

Consider a finite-state automaton, M, with 
the state transition diagram shown in Figure 6. 
The double circle represents the accepting state, 
and the feathered arrow designates the start 
state. 

Figure 6. Finite Automaton M. 

M accepts the regular language L = 
((a+b)(ab)*ac)* over the alphabet V = {a,b,c}. 
We now design a bus automaton to accept L. To 
ea,ch 1.etter x of V we assign a state qx• with 
channels as sho,wn in Figure 7. The "left 
inputs" of a cell correspond tG the state of M. 

Thus, 'if a letter a takes M from state 0 to 
state l, a cell in state qa c.ontains a channel 
connecting input O to output L An input string 
X = x1 ••. x is placed in the BA by setting cel1s 
C1, ... ,en ~o states qX1'"' .. ,qxn· Wlij!n the BA 1s 

226 

activated, cell ·Cti originates a signal (symbolfzed 
by * and · •.• in flgure 8) which flows through the 
channels, tracing a "state history" of M with 
~tring X as inp1.,1t. At the right. end,. cell Cn+l 
ls in special state E2. If the tnput to thfs cell 
corresponding to the acceptance state of M (in 
this case, input 0) receives. a signal, the signal 
is sent back to c0• Then c0 enters state Ea and 
string X is accepted. This process requites only 
one state change by the BA, regardless of the 
length of X. 

os··· oos·· .. · .. 008·· .. .o 1 11 ... 11 . 1 
2 22 22 2 
. \ . . . . . 

Figure 7. States of Corresponding Bus Automaton 

The proof consists of a general treatment of 
this idea, which resembles the Krohn-Rhodes (6) 
semigroup representation of a finite automaton. 

Figure 8. Operation of Bus Automaton Accepting L 

Linear Languages 

The linear context-free languages are those 
for which there exists a gra11111arG = (Vn,Vt,P,S) 
whose productions are an o.f the fonn 

A + aBb where A,B€Vn• 

or a,b€VtU{X, the null symbol} 

A+ c 

Languages such as {anbnln ~ l} are linear langu
ages. The linear languages are the "two'-sided" 
analogues of the regular languages. Since a one
dimensional BA accepts any regular language', we 
might expect that given any linear language L, 
there exists a two-dimensional BA to accept L. 
This turns out to be the case. . . · 
.Theor,em: the linear languages are in LIML2. 

Proof: Reference (9). 

Dyck languages 

Consider three alphabets Arn= {a1, ••. ,am}• 



A 'm "' fa{ •...• a~}. and their union Pm· The Dyck 
language ~ is the set of strings in P; that can 
be reduced to the empty string by successive dele
tion of substrings aia:', l ~ i ~m. Informally, 
language D,,, is isomorp~ic to the set of "correctly 
balc:,nced strings" of m kinds of parentheses, e.g. 
D2 = {(},<>,(}<>,(<>), ... }. 

Theorem: For any positive integer m, a two-dimen
si~na l bus automaton ~ can ~e constructed which 
accepts Dyck language Om in L-immediate time. 

An example of the operation of Min is gi.ven. 
The proof is found in reference (9). 

Let m • 2. For readability replace a1 af.a2,a2' 
by (,),<,>, respectively; and call the language 
D?. The string X = (<()><>)e:02 is placed in the 
input buffer of M2. When M2 is started, sig
nals are sent upward on coordinate busses y1 and 
y2 (see Figure 9) by cells of the buffer contain
ing "left parentheses" and "right parentheses", 
respectively. 

Y, y, Ya. Y ... 

I I 
I I 

I I 

I I 
..L 

>""" ) ~ ... E~ 

Figure 9. y Signals 

Figure 10. R and F States 

~uiescent cells receiving signals ·on busses 
Y1 and y2 ent7r states R ("ri~ing") and F ("fall
ing") respectwely, with mult1channels H and J, 
as in Figure 10. 

Ari input buffer cell containing a "left par
entheses" sends out a signal representing that 
symbol, via the bus formed of H and J multh:hannell\ 

If X is well-formed, each cell storing a 
"right parentheses" receives a. signal. via the. H-J 
bus, representing the corresponding left symbol. 
The cell then enters state Z, Figure 11. 

Cells in state Z send a signal on a single
channel bus H'-J', which connects the same set of 
cells as are connected by the H-J bus; but signal 
propagation is in the opposite direction. For 
brevity, we say that H'-JA is antiparallel to H-J. 

227 

The cell originating the left symbol signal thus 
receives a return signal, which indicates correct 
pairing of symbols. This cell also enters state Z. 
See Figure 12. 

Figure 11. Right Paired Cells Enter State Z. 

Figure 12. Left Paired Cells Enter State Z. 

If the entire input buffer enters state Z then 
an "acceptance signal" flows from the cell in state 
E2 to the origin cell, in state E1• The latter 
tnen enters state Ea• and Min accepts X. 

Other Immediate Languages 

We have shown that: 

IML1 is precisely the class of regular 
languages 

LIML2 includes the linear context-free lan
guages, the Dyck languages, and many 
other context-free languages; 

LIML3 includes Lp = {aPIP is prime} 

Ls = {asls is square} 

and many other non-context.,.free 
languages. 

Closure Properties of Immediate Languages 

All the IML families (IML,PIML,LIML, and !ML;, 
PIML;, and LIMLt for i > 1) are closed under 
Boolean operations, reversal, intersection with 
regular sets and inverse homomorphism; nohe (ex" 
cept IML1 = REG) are closed under homomorphism. 
The families IML, PIML and LIML are closed under 
Kleene (star) closure. Proofs of all these are 
found in reference (9), 



,III. Relationship to Work of Smtth 

Smith (ls) studied a type of one-dimensional 
Moore CA, called bounded cellular s aces (BCS}. 
Language families DBC ~n D are t e JaQguages 
accepted in real-time CJ and linear-ttme (cJ, 
respectively by deterministic BCS. RDBCS includes 
all examples so far found in LIML3. We proved (g} 
inverse homomorphic closure for LDBCS; the closure 
properties of LIML3 and LDBCS are then identical. 
It is tempting to speculate that LIML3 and RDBCS 
(or LDBCS, perhaps) are the same set of languages 
where LIML3 represents a "factoring out" of the 
communicat1on problem from the computation problem, 
arranging the corrmunication in extra spatial dim
ensions rather than using cell-state transmission. 
The chief obstacle to this conjectyr~ is that the 
"A -move-free determi ni sti c CFL' s" { d J are in RDBCS 
but have not been found in LIML3• This class is 
defined by .acceptance on a push-down automaton, a 
sequential operation more easily simulated on a 
BCS than a BA. 

IV. Context-Free Languages (CFL) 

Cole (1) studied "iterative arrays of finite 
automata" (IFAs), which are Moore cellular automa
ta with a sequential input (one symbol per clock 
interval) to some single cell, e.g. the origin. 
He showed that some non-CFL's could be recognized 
by an IFA in real-time, and that there exist CFLs 
which no IFA can recognize in real-time. Kosaraju 
(5) showed that any CFL can be accepted by some 
2-dimensional IFA in (l+E}real time for any E>O. 

We have not determined the relationship be
tween CFLs and the IML families. However we have 
shown (9) that for any CFL, a BA· can be construc
ted which accepts its strings in a number of clock 
intervals proportional to the logarithm of string 
length. It is also not known if a 1-dimensional 
CA (of any type) can be built to accept a given 
CFL in linear time, but most evidence suggests not. 

Relationship of .the IML families to other lan
guage famiHes is shown in the following diagram. 
Sets are included in sets above them to which they 
are connected. Double lines indicate that proper 
inclusion has been established. 

(c) 

(d) 

I.e., in a number of clock intervals equal 
to (real-time) or proportional to (linear
time) the length of the input string. 

Languages accepted by a deterministic PDA 
which moves its input head with every 
controller state-change. 

RE. ~J~~SETS~ . 

CSL--- ~%P-MCA ~IML 
n&~ ~ ·1 

I[ \_~._2-~ /L\DllL3 
CF ~I ---V . 

LD'lfCS LIML-........_ PDIL3 
RDBCS -......... I. 

----- .-YDIL3 example 1angu.ages: 
Linear CFL,Dyck,etc. 

/ 
LAR SETS 

CSL = context-sensitive languages 
DBCS = deterministic bounded cellular space 
DCSL = deterministic CSL 
!ML = inmediate language 
L- = 1 inear-time 
LOG-BA = logarithmic number M state changes in a BA 
MCA = Moore cellulifr automaton 
P- = polynomial time 
PTAPE = polynomial tape 
RE = recursively 'enumerable 
TM = Turing machine 

Figure 13. Inclusion Among Language Families. 

V. Conclusions 
Observation 1: 

Neither the DBCS nor the IML families corres
pond well to the "Chomsky hierarchy" of formal 
languages. The context-free languages have not 
been included in LDBCS, nor in an IML family; 
neither do they correspond to any naturally occur
ring class of IFAs. However, many IML languages 
(even in LIML2) are not context-free. Parallel 
recognition-defined languages simply represent a 
different partitioning of the formal languages 
than do the sequentially defined "traditional" for
mal languages. For this reason also, we can pre
qict that array grammars (8) will not generate 
classes of patterns which are easily recognized in 
parallel, since their "degenerate" (one-dimension
al) cases must correspond to the Chomsky-hierarchy 
languages. 

Observation 2: 

Considering a variety of "parallel" formalisms 
for generation of languages, we see that none of 
them correspond to an IML or DBCS family. None of 
the L-system languages in (4} are closed under in
verse homomorphism; all the IML families are so 
closed. The parallel CFL's (14) and the absolutely 
parallel languages (11) are closed under arbitrary 
homomorphism, whereas no IML or DBCS family is so 
closed, It is likely that few if any determinis
tic parallel-acceptance classes will be found which 
correspond to parallel-generated classes of pat
terns. Parallel generation formalisms can create 
diversity i-n patterns so rapidly that it seems 
clear that, even using parallel devices, only a 
non-deterministic recognizer could recognize the 
patterns in time c0111Dens.urate with the time used 
to generate them. Proofs in this area are tanta
moun.t to so lv fng the P = l'lP prob 1 em. Results 

228 

such as Observation 2 reinforce the conviction 
that parallel generation systems produce p.attern 



classes which are yet another partitioning of the 
set of patterns, not simply related to parallel or 
sequential recognition. ~ 

Observation 3: 

Languages so far found in IML and DBCS fre
quently have geometric or arithmetic descriptions; 
for instance Lp and L2. (But note that the arith
metic is in "base l" notation. The numbers in
volved are the lengths of the strings, not the 
strings interpreted in a radix system. -rhus they 
are one level of "interpretation" closer to geom
etry than are, say, expressions of analytical 
geometry.) The speed with which these languages 
are recognized is partially a result of the facil
ity cellular computers have in "spreading a compu
tation out in space". 

At a deeper level, these successes result 
from the existence of descriptions of geometry and· 
arithmetic in terms of associative, distributive 
(sometimes commutative) operations. Relationships 
can be seen between this work and that of Kuck and 
Muraoka (7) and others, on parallel arithmetic. 
There also, these "tractibilities" (associativity, 
etc.) allow arithmetic expressions to be reorgan
ized into equivalent expressions whose tree repre
sentations are broader and less deep. In our work, 
addition's associativity allows, for instance, 
multiplication to be represented by a collection 
of sets of additions simultaneously performed on 
variablesrepresented byasignal's position in cel
lular space. These methods extend to some non
numeric computations such as Dyck and linear lan
guage recognition. It is unclear how many other 
"non-geometric" computations will be facilitated· 
by cellular computers. 

Acknowledgements 

Portions of this research were performed under 
the support of a University Fellowship at Ohio 
State University. 

References 

1. Cole, S. N., "Real-time computation by n
dimensional iterative arrays of finite-state 
machines". IEEE Trans. Computers. C-18, 
Nr. 4, April 1969. 349-365. 

2. Hennie, F. C., Iterative Arrays of Logical 
Circuits. MIT Press, 1961. 

3. , "One-tape, off-line Turing machine com-
putations". Info. & Ctrl. ~. 553-578 ( 1965). 

4. Herman, G. T., "Closure Properties of some 
families of languages associated with bio
logical systems". Info & Ctrl 24, 101-121 
(1974). 

5. Kosaraju, S. R., "Speed of recognition of 
context-free languages by array automata". 
SIAM J. Computing 4, 331-340, September 
1975. 

229 

6. Krohn , K. and Rhodes, J. , "Algebraic theory 
of machines, I. Prime decomposition theorem" 
Trans. Amer. Math. Soc. 116, 450-494, 1965. 

7. Kuck, D. J. and Muraoka, Y. , "Bounds on the 
parallel evaluation of arithmetic expressions 
using associativity and commutativity". 
Acta Informatica 3, 203-216 (1974). 

8. Mil gram, D. L. and Rosenfield, A., "Array 
automata and array grammars". Proc. IFIP 
1971 Congress, Yugoslavia. 

9. Meshell, J. M., Parallel recognition of formal 
languages bb cellular automata. Ph.D. Dis
sertation, hio State University, 1975, 

10. and Rothstein, J., Bus Automata, Tech. 
~CS-76-14, Computer Science Department, 

. University of Tennessee, March 1976. 

ll . Raj l i ch, V. , "Absolutely parallel grammars 
and two-way finite-state transducers 11 • 

J. Cptr. Sys, Sci. 6, 324-342 (1972). 

12. Rothstein, J., "Patterns and Algorithms". 
Ninth IEEE Symp. on Adaptive Processes: 
Decision and Control". Austin, Texas, 
December 7-9, 1970. 

13. . "On the Ultimate Limits of Parallel 
Processing." International Conf. on Parallel 
Processing, Aug. 23-26, 1976. Detroit, Mich. 

14. Siromoney, R. and Krithivasan, K., "Parallel 
Context-Free Languages". Info. & Ctrol. 24, 
155-162 ( 197 4) • 

15. Smith, A. R., "Real-time language recognition 
by one-dimensional cellular automata". 
J. Cptr. Sys. Sci. 6, 233-253, 1972. 

16. Von Neumann, J. (A. W. Burks, Ed.), Theory 
of Self-Reproducing Automata. University of 
Illinois Press, 1966. 

17. Waksman, A., "An optimum solution to the 
firing-squad problem". Info. & Ctrl. 9, 
67-78, 1966. 

18. Weiman, Carl and Rothstein, J., "Polyautoma
ton Design for Recognizing Certain L•System 
Languages by Parallel Computation". 1975 
Sagamore Cptr, Conf. on Parallel Proc., 
August 19-22, 1975, Rquette Lake, New York. 



SOME COMPUTATIONAL AND SYSTEM THEORETIC PROPEi.TIES 
OF REGULAR PROCESSOR NETWORKS 

Renato M. ErmaJUl and William I. Grosky 
School of Information and Computer Science 

Georgia Institute of Technology 
Atlanta, Georgia 30332 

Abstract ~· The interconnecti6n of a large 
number of microcomputers f$.becoming an attractive 
option. However, the knawiedge of how to effec
tively utilize such networks is still rudimentary. 
In this paper we first demonstrate that regular 
processor networks can be used to solve within 
polynomial-time, some problems for which conven
tional computers have most probably no better than 
exponential-time algorithms. A general formulation 
in the propositional calculus that permits exam~ 
!nation of the dynamical behavior of those networks 
is then introduced. The questions of completeness, 
controllability and reproducibility, with the 
optional stipulation that they preserve a given 
set of properties, can be analyzed by using that 
tool. The concept of a periodic state configuration 
is introduced and the evolution of periodicity 
throughout time in a uniform machine is character
ized. Some necessary conditions on the neighbor
hood structure and set of hardware instructions 
of a uniform machine that executes a given algo
ritha. are finally determined. 

Introduction 

In this paper, we explore some characteristics 
of h01110geneously interconnected networks composed 
of identical processing elements. The definition 
of a regular processor network is introduced as .a 
simplified model for this class of parallel sys
tems. A group-graph formulation is chosen to 
represent Che interconnection structure. It allows 
us to analyze apparently very different kinds of 
networks under a unified framework. Topologies 
such as rings, trees and square, triangular, 
heJtagonal cell.ular structures are represented by 
groups. Most of the fundamental results concerning 
regular networks are due to Yamada and Amoroso 
[lJ - [3) and Smith [4] - [5]. 

A regular processor network (RPN) is a 
4-tuple (A, P, NI, I) where A is a finite, non
empty .set ealled the state alphabet; P is a set 
of points called the cellular space, that asso
ciates with a· binary operation ·, so that together 
they define a. group; NI is an ordered set of n 
points referred to as the neighborhood index, and 
I Ls a nonempty set of functions called the 
admissible loca.l transformations. The set A con
sists of the states which may be assumed by each 
individual identical processor (called a cell) in 
the cellular space; NI describes the regular inter
comnection pattern by specifying for each cell in 
the space, the set of cells directly connected to 
it (its neighbors); set I may be thought of as the 
collectima of hariware Lnstructions built into the 
network. 

The group-graph formulation defines structures 
such that the neighborhood patterns look the same 
when viewed from.any cell. A group is a set P and 
a binary operation • on P, such that associativity 

230 

holds, there is a unique identity element e and 
every element of P has a unique inverse. Directed 
graph D = (G,A) with point set G and arc set A is 
called the group-graph of group_~ if it satisfies: 
P ,p1 e G, (pi ,pi7 e A iff p p1 e H, where H is 
tke set of geberators of gr~p G. If H is a set of 
elements of group G and i.f all elements of G can be 
expressed as compositions involving only elements 
of B and their inverses, then H is the set of 
generators of group G. Figures 1 and 2 illustrate 
a square and an hexagonal cellular group, respec-, • ' • ' t ~ t __ ..., __ 

b ai I .. i~ I 

• • • 
t l t a 

• "1>1• ~ J 

Fig. 1. Square cellular structure. 

/ \ .. · \ 
> \ ~1 \ . ' : \ ' .. ~ ... • bi\ .. \ . 
~ ; ~ I 

\ .. \ . 
'i .. al 

-•-a 
-.b 
....... c 

Fig. 2. Hexagonal cellular structure. 

tively. The de~ining_rel2tion for the group in 
Fig. 1 is (ab) = (a "'b) = e, where a and b are 
the generators. Relation abc = cba = e specifies 
the group in Fig. 2. If the cellular space is 
Cartesian, the RPN is called a d-dimensional 
tessellation processor network (TPN). Let the 
neighborhood index NI be NI = ( w ,w 2, •• , w ) • Then 
N(i,NI), the neighborhood of cell 1 with ~espect 
to NI is given by N(i,NI) • (w 1,w21, .. 1w 1). 
A contiguous, scope-n neighborAood in' Z is defined 
as NI = (k,k+l, •• ,k+n-1), whe~e Z is the set of 
integers and k is an integer.It is convenient to 
include in the state.alphabet two specially desig
nated states: the quiescent state, denoted by O, 
and the boundary state, denoted by B. A cell in 
state B remains permanently in state B and no cells 
in boundar)r states can be created after time zero. 
If all the neighbors of a quiescent cell are 
quiescent, then it will remain in state O. The set 
of cells not in state B constitute the active 
cells. ·A space state. configuration is an arbitrary 
mapping from P into A. If 1 is a cell in P, and 
the space is in configuration c, then c(i) is the 
current state of the p~ocessor located at cell i. 
By the state of the neighborhood of cell i in con
figuration c we mean the ordered set c(N(i,NI)). 
A configuration is called finite if and only if 
c(i) = O for all but finitely many cells 1. 

The operation of ~ RPN is specified by local 



transformations which produce the next state of 
each cell in P in terms of the state of its 
neighborhood. The simultaneous invocation of 
the same local transformation to the state of 
the neighborhood of every cell in the cell1.1lar 
space defines a global transformation of the 
current configaration int.o the ne:x:t. This mode 
of operation will be called uniform and the RPN 
will be said to have a single-instruction-mul
tiple-data-stream. When different local trans
formations are applied to different cells, the 
type of processing will be called non-uniform 
and the RPN will be said to have a multiple
ins truc tion-multiple data-stream. 

The fourth component in the quadruple is 
now defined. The set of admissible transforma
tions I is any nonempty subset of the set of all 
local transformations definable from A, P and NI. 
If I contains a single transformation, the RPN 
is said to be monogenic. If it contains at 
least two, it is said to be polygenic. In the 
latter case a sequence of transformations is 
required to specify a particular computation of 
the RPN. We say that two configurations c1 and 
c2 are shift-equivalent if and only if there 
exists a u such that for any cell i in P, 
c1(u·i) = cz(i). The equivalence classes deter
mined by the relation of shift-equivalence are 
called patterns. 

We say that a RPN is controllable, if it is 
possible to transfer it from an initial configu
ration to any of a set of final configurations 
in some finite lapse of time through a sequence 
of admissible transformations. Reproducibility 
is the ability of a RPN to generate any member 
of a given class of configuration sequences. If 
a RPN can be transferred from a certain canonical 
starting configuration to any finite configura
tion in the space, with every transformation 
being admissible, it is said to be complete. 

Let a property Q be a subset 9f the set of 
all configurations. A global transformation 
preserves property Q if a configuration has 
property Q if and only if its successor has 
property Q. 

Computational Power 

The Classes of Problems NP and P 

Smith [4] and Seiferas [6] have presented 
some cases of computations for which TPN are 
faster than Turing machines, i.e., conventional 
computers. We further establish the computa
tional potential of RPN by demonstrating that 
they can be used to compute within polynomial
time, answers for which there is broad evidence 
that Turing machines have no better than expone~
tial-time algorithms. 

More precisely, let us define NP (respec
tively P) to be the class of problems solved 
within polynomial-time by nondeterministic 
(respectively deterministic) multitape, multi
head Turing machines. Many important problems 
which are not known to be in P are in NP. Karp 
[7] has provided strong evidence that the two 
classes may not be the same, by showing that 
many problems in NP would be in P if and only if 

231 

P and NP were identical. The equivalence class 
of problems in NP having this property is called 
polynomial-complete. Either all of them admit 
some polynomial-time Turing algorithm or none of 
them does, and none is currently known. Poly
nomial-complete problems include testing the 
satisfiability of a propositional calculus 
formula in conjunctive normal form, traveling 
salesman, determining the maximum clique or mini
mal coloring of a graph, scheduling, register 
allocation, integer programming. 

An algorithm for a problem in NP can be 
regarded as a procedure which, when confronted 
with a choice between (say) two alternatives, can 
create two copies of itself, and follow up the 
consequences of both courses of action. There is 
some constant k such that there are no more than 
k choices of next move in any situation. 
Repeated splitting may lead to an exponentially 
growing number of copies. Each sequence of moves 
leading to a halt of the nondeterministic Turing 
machine that executes the algorithm is of poly
nomial length. Thus, a problem in NP can be 
computed by a deterministic Turing machine 
through a backtracking search of polynomial 
bounded depth that takes exponential-time. 

Formally, a sequence of up to t(n) moves of 
the non-deterministic machine M1 , where n is .the. 
size of the input, is represented by a string 
over the alphabet l.: = {O,l, ••• ,k-1} of length up 
to t(n). A deterministic machine Mz simulates 
M1 on an input x of size n as follows. M* 
successively generates all strings v in l.: of 
length at most t(n) in lexicographic order. 
There are no more than (k + 1) t (nJ such strings. 
As soon as a new string is generated, Mz simu
lates av, the sequence of moves of M1 repre
sented by v. If av causes M1 to halt (generating 
a solution), then Mz also halts. If av does not 
rep resent a valid sequence of moves by M1 or if 
av does not cause M1 to halt, then Mz repeats 
the process with the next string in i.:*. 

A One-Dimensional TPN 

We now demonstrate tha.t any problem in NP 
can be solved within a time proportional to a 
polynomial of the input size, by us.ing a deter
ministic exponential-space 1-dimensional TPN 
with a special outputting cell that has every 
active cell as its neighbor. By applying an 
effective bounding schema and performing inter
processor conununication, an exponential number of 
active cells will only be needed in an insignifi
cant number of cases. Init.fally ,. each etf a 
possibly exponential number of active cells 
simulates a sequence of moves av of the non
deterministic Turing machine, as descrfb,ed 
before. Within polynomial time, each o,f the 
cells will have either found a tentative solution 
or failed, and if there is a bounding schema, 
rated it according to a merit function. Fo,1r 
example, in the case of the minimal colo.ring 
problem a tentative solution .would be a coloring 
that is not necessarily minimal. The merit 
function would reflect the chances a certain 
coloring (possibly partial) has. of being optimal, 
by determining a lower bound on the coslr of a 



tentative solution. When a bounding schema is 
included to r-educe the search process, the cur
rent bound propagates throughout the cellular 
space, thus discarding tentative solutions which 
do not meet it and diminishing the required 
number of active cells. The selection of a solu
tion demand'S that each cell be able to C-OD!pare 
its tentative solution with the rest. The out
putting cell would display (by convention) the 
state of the leftmost cell which has a tentative 
soluti-0n of highest merit. This may be done 
either in unit time by means of a combinational 
circuit, or in polynomial time by performing a 
process similar to a binary search. 

The essential feature of processor networks 
as compared to multihead, multitape Turing 
machines that permits the improvement in through
put is, in this case. the possibility for space
unbounded propagation of information. The most 
appropriate technique for implementing the 
outputting schema seems to be a packet switch
ing broadcast communication mechanism. 

Although there is the theoretical asymptotic 
limitation in propagation speed given by the 
speed of light, it is quite clear that in prac
tical cases that bound will not be approached. 
As a matter of fact, since in general the time 
needed for propagation of information between 
two cells is negligible compared to the actual 
computation time, if we eliminated the outputting 
cell an exponential growth in total processing 
time would only start occurring for very large 
inputs. 

Tree-Structured RPN 

When tree-structured regular processor net
works are used, the need for a distinguished 
cell to perform the input/output process disappears. 
A regular tree of fanout k can be represented as 
a group-graph with k generators, having the 
group identity element as its root. 

In a p-node tree the path distance between 
two arbitrary nodes is bounded by logk p. This 
implies that complete interprocessor communica
tion in a tree-structured RPN may be achieved in 
polynomial-time. 

The idea of the processing method is to 
assign tasks to cells in the network so as to 
mimic the operation of the nondeterministic 
machine to be simulated, as described before. A 
sequence crv in the nondeterministic machine, will 
correspond to a path going from the root to a 
node labeled v in the network. Since now com
plete communication among processors is possible, 
the search tree may be pruned very effectively, 
thus reducing the necessary number of active 
cells. By keeping only a polynomial number of 
best paths, optimal solutions will be generated 
in most cases. Otherwise, the solutions will be 
near-optimal, which is sufficient for many appli
cations. Heuristic knowledge about the problem 
might be somewhat helpful in the definition of 
the merit function, but would not be required. 
The internode distance of a p-node tree built into 
a cubical structure is of order pl/3. This limit 
on the speed-up seems less critical than the 
volume constraint. 

232 

A Methodology 

Preliminaries 

We introduce a general formulation in the 
propositional calculus that permits the examina
tion of the dynamical behavior of RPN. For 
simplicity, the approach is first illustrated 
through an·example. 

Let us consider the question ·of completeness 
for the case of a 1-dimensional, 2-state, scope-2, 
uniform polygenic TPN. Let c1 and c2 be two 
configurations stipulated by 

c1 = ox0x1x2x3 ••• xmO 

c2 Oy1Y2Y3···YmO' 

where 0 denotes a quiescent portion. The neigh
borhood index is given by NI = ((-1,0), (0,0)). 
We need to determine the smallest length m for 
which there is a c2, such that no c1 can be 
found that is a predecessor of c2. If such an m 
exists, this will mean that the TPN is incom
plete. Notice that c1 can be given the indi
cated form without loss in generality; if 
Ox0 •• xm •• xm+k0 is a predecessor of c2, then so 
is c1 . 

A local transformation on two variables a,b 
can be expressed as abz1 + abz2 + abz3, where '+' 
denotes logical OR and '-' represents complemen
tation. Without loss in generality we may let 
Y1 = Ym = 1. We now state the following set of 
Boolean equations, where Yj, j=2, •.• ,m-1 are the 
independent variables and xi, i=O, ••. ,m, 
zk,k=l,2,3 the unknowns. 

0 

1 

Ym-1 

1 

0 

0 

XOZ2 

xOxl zl + xOxl z2 + xOxl z3 

xlx2zl + xlx2z2 + xlx2z3 

xm-2xm-l zl + xm-2xm-l z2 + xm-2xm-l z3 

xm-lxmzl + xm-1 xmz2 + xm-lxmz3 

xmzl 

= zlz2z3 

(O) 

(2) 

(4) 

(5) 

(3) 

(1) 

(*) 

The last condition {*) has been included to 
rule out the identity transformatio.n. The sys
tem is first expressed in the form g(x,y,z) = 1, 
and the set of interpretations of y that make 
the equation unsatisfiable is then established 
from it [8]. For m=3 this set is empty, and for 
m=4 patterns 011010 and 010110 are obtained. By 
performing a recursion on m, a general expres
sion g ·for each length m can be derived. 

A propositional language that deals with 
nonbinary state alphabets in a similar way -has 
been defined. The description is lengthy, and 
thus is not included in this paper. We said 
that a global transformati-0n preserves property 
Q when a configuration has property Q if and 



only if its successor has property Q. Properties 
of interest, especially for pattern recognition 
applications, include connectedness, convexity, 
having a given Euler number, monotonic growth, 
monotonic convergence to a set of goal configu
rations. The questions of completeness, con
trollability and reproducibility, with the 
stipulation that they preserve a set of proper
ties, can be analyzed with the procedure we 
have outlined. Time bounds can be derived by 
obtaining a general form g through a recursion 
on the number of steps. The independent varia
bles in the set of equations are now given by 
the initial and goal configurations x and y and 
the unknown variables shall correspond to the 
local transformations ez, where superindex e 
refers to the step number. The minimum e that 
makes the system of equations solvable for an 
arbitrary interpretation of x and y is the 
desired lower bound on the number of steps 
required in a trajectory. 

By solving the corresponding equation 
g(x,y,z) = 1 an optimal trajectory between two 
given patterns x and y can be derived. Since 
the expression for g may be determined by recur
sion on m and e, as illustrat~d before, proper
ties such as completeness and controllability 
can be proven by induction on m and e. Lower 
time bounds on trajectories are of interest 
both in the uniform and non-uniform modes of 
operation. 

The practical importance of deriving timing 
constraints as a function of interconnection 
structure and instruction set size lies in that 
they provide the designer with guidelines in 
choosing a network that meets his requirements. 
These questions may be investigated in the pres
ence of different kinds of cell failure and from 
their understanding fault-tolerant schemas 
developed. 

Periodic Configurations in Uniform Machines 

We explore the concept of periodicity for 
uniform RPN. A periodic fragment c8 , defined by 
set S, is a subconfiguration of c, c8 : S +A, 
such that S is the largest set of cells iEP for 
which there exists a set of points D, called the 
shift index, that verifies 

c(i) = c(i·L(D)) 

with the stipulation that i "L(D) £ S, where L (D) 
is an arbitrary linear combination of the ele
ments in set D. A periodic fragment in zd is 
rectangular if S = s 1xs 2x •. xsd. The periodic 
index PI of a peri.odl.c fragmemil: defined by 
re.gion S, is given by the largest subset of cells 
in S such that no two cells i 1,i2 ar:e :in the 
relation c(i1) = c(i2·L(D)). The periodic index 
PI defines the template that repeats itself, and 
the set S indicates the region of periodicity. A 
pattern may have several periodic fragments. The 
following leDD11as illus tr ate the way periodicity 
evolves throughout time. 

Lemma l Let M be a uniform po>lygenic RPN 
with neighborhood index NI. Let cl be a configu-

233 

ration in M with periodic fragment defined by 
region Si, periodic index PI1 and shift index D. 
If the set of transformations I is unrestricted, 
the periodic region will be reduced in a successor 
configuration to s 2 , where the lower bound for Sz 
is given by 

s2 = {i: NI·i~ s1} 

Proof. Let W = {i: NI• i C S } • If i t W, 
then there exists a linear combtnation L(D) 
such that the states of the neighborhood of 
cells i and i•L(D) differ, i.e. c1(N(i,NI)) 1 
c1 (N(i•L(D),NI)), since by definition of a 
periodic fragment c1 (NI•i) 1 c1 (NI·i·L(D)) and 
N(i,NI)=NI·i. Thus, there exists a successor 
configuration cz such that cz(i) # cz(i·L(D)). 
Therefore i i s 2 and Sz !;;; W. 

Conversely, let i £ W. Then c1 (NI· i) = 
c1 ((NI·i)·L(D)) and thus c1 (N(i,NI)) = 
c1(N(i·L(D) ,NI)). So i c Sz because of the con-
straints of uniformity and WS Sz. * 

Note that Lemma 1 does not hold if the defini
tion of periodicity provides for preoperation by 
L(D) instead of postoperation. This occurs in 
the case of a group-graph where commutativity 
does not apply, as can be verified in the above 
proof. Lemma 1 characterizes how a given per
iodic pattern progresses throughout time. The 
following Lennna 2 illustrates the role of the 
neighborhood index in that evolution. We say 
that a configuration has periodic constraint when 
the set of its successors is restricted (due to 
the uniform operation of the machine) as a result 
of certain periodicity present in it, in the 
sense that there is at least a configuration that 
it can not directly produce. 

Lennna 2. Let c be a configuration in M with 
periodic fragment defined by region S, periodic 
index PI and shift index D. Configuration c has 
no periodic constraint originated by S if and 
only if there is no cell iEP such that NI•i c=. S. 

Proof. Since NI· i <j S for any iEP, c(NI • i) .P 
c((NI•i) ·L(D)). Thus c(N(i,NI)) # c(N(i·L(D) ,NI)) 
for any iEP. Consequently, periodic fragment cg 
has no periodic constraint. * 

The more periodic a configuration is, the 
longer it takes to produce any other pattern 
from it. The theorem makes this precise. 

Theorem 1. Let M be a uniform polygenic RPN 
with neighborhood index NI. Let c be a configu
ration in M with periodic fragment defined by S, 
periodic index PI and shift index D. If2there is 
no cell iEP such that NIJ • i C S, where X = 
{r·s: r,s £ X}, then there is-a configuration: that 
can only be reached from c in at least j steps. 

'Proof. It follows from the previous lemmas .K 

There are only (#A)ndifferent patterns of size 
n, .given a ·state alphabet A. Thus, configurations 
with nonquiesaent region of size at least (//A)n 
·will necessarily exhibit some periodic constraint 



since there will be cells in them with identical 
neighborhood states. The largest r~gion of cells 
that can be free of periodic constraint, given a 
neighborhood .index NI, is characterized in the 
following theorem. 

Theorem 2. Let M be a. uniform polygenic RPN 
with neighborhood index NI. The largest region of 
cells that may be free of periodic constraint is 
given by NIU.ii where u i~ the large$t inte§er 
such that Nru- will have· no .. more than (#A) ele
ments and i is the center of the region. 

Proof. Every cell j e:Nru-l. i is such that 
N(j ,NI) C Niu•i since NI;Niu-l.i = Niu•i. Any 
other region R with a different topology but the 
same number of cells as NIU· i will be of no lower 
periodic constraint because its subregion 
{j: N (j, NI) C R} will be of lower cardinality 
than Nru-1.f.-

Structural Conditions for Reproducibility 

The following question, of particular inter
est when a special"."purpose machine has to be 
designed is studied. Given a set of configura
tion sequences a uniform RPN shou.ld generate, we 
ask what the necessary neighborhood index NI and 
set of admissible transformations I for the 
machine are. 

Answers to th.is problem are developed by 
constructing algorithms which determine NI and I 
under various criteria of optimality. These pro
cedures clarify the existing trade-offs between 
NI and I. 

The concept of a prime neighborhood index 
proves to be useful. Let the configuration 
sequence c1 ,c2, .•• ,cv'.,. be produced from ini
tial config~ration c1 by a sequence of local 
transformations z1 ,z2 , •.• ,z , ••. in I. Reprodu
cibility is the aoillty of X machine to generate 
any member of a given class of configuration 
sequences. Let us consider the transition from 
cv to cv+l produced by the application of local 
transformation z • Neighborhood .index NI is 
said to be primevat step v if v 

cv(N(i1,NI)) = cv(N(i2,NI)) 

implies cv+I (i1 ) = cv+l (i2), 

i 1 , i. 2 e: P and there is no NI c NI that ftilfills 
tnat condition. v 

A method for deriving the set of prime 
neighborh.ood indi.ces at each step v by using the 
propositional calculus has been developed, but 
it is not described here. A neighborhood index 
ts said to' be prime with respect to a given set 
of configuration sequences, if it is prime at 
each step of the sequences. 

· Let SNibe the set of prime neighborhood 
indices. Two.criteria of optimality may be 
applied to determine an efficient interconnection 
structure. The aim of the first criterium is to 
minim+ze the neighborhood size. An optimal NI 
according to it is a NI e: SN! such that its 
cardinality is minimum. 

234 

In the second criterium, minimizing the 
cardinality of the set of admissib.le local trans
formations I is of basic concern. Now, neighbor
hood index NI is such that .NI e: SN'.I and the set 
{z: z (c (NI·i)) = c 1 (i), iE:P, ve:V} of local 
trXnsfirmXtions implill by NI is of minimum 
cardinality. 

There is a trade-off between NI and I. because 
in general and neighborhood index that is of mini
mal cardinality will tend to imply a larger set 
of admissible transformations, and conversely. 
A way to find a NI that is optimal under both cri
teria is to define a combined merit function and 
then to select NI E: SN! that maximizes this func
tion. 

References 

[1] H. Yamada, and S. Amoroso, "Tessellation 
automata," Inform. Contr. 14 (1969), pp. 
229-317. 

[2] H. Yamada and S. Amoroso, "A completeness 
problem for pattern generation in tessella
tion automata," J. Comput. System Sci. 4 
(1970), pp. 137-176. 

[3] H. Yamada, and S. Amoroso, "Structural and 
behavioral equivalences of tesselation 
automata," Inform. Con tr. 18, 1 (1971), 
pp. 1-31. 

[4] A. R. Smith III, "Two-dimensional formal 
languages and pattern recognition by cellu
lar automata," Proc. 12th Annual Symp. on 
Switching and Autom. Theory (1971), pp. 144-
152. 

[5] A. R. Smith III, "Real-time language recog
nition by one-dimensional cellular automata," 
J. Comput. System Sci. 6, 3 (1972), pp. 233-
253. 

[6] J. I. Seiferas, "Observations on nondeter
ministic multidimensional iterative arrays," 
Proc. 6th ACM Annual Symp. on Theory of 
Computing (1974), 276-287. 

[7] R. M. Karp, "Reducibility among combina
torial problems," In Complexity of Computer 
Computations, R.E. Miller and J.W. Thatcher, 
Eds., Plenum Press (1972), pp. 85-103. 

[8] M. Davio, and J. P. Deschamps, "Classes of 
solutions of Boolean equations," Philips 
Res. Reports 24 (1969), pp. 373-378. 



A PROOF METHOD FOR CYCLIC PROGRAMS 

Nissim Francez and Amir Pnueli 
Weizmann Institute of Sciences 

and 
Tel-Aviv University 

Israel 

Abstract -- A formalism is developed for 
specifying.and proving correct behaviour in time 
of cyclic (non terminating) programs. The state
ments use explicitly a time variable and program 
counters in order to specify correct response to 
external stimuli • The same technique is also 
shown to be applicable for concurrent programs1 
where each in turn is considered as an external 
environment acting on its associate. 

I. Introduction 

The computing activity generally [1,5] 
attributed to programs ·is the computation of 
some partial function over some domain. In other 
words, a program is an (algorithmic) realization 
of a given input - output relationship. 

Hence a fundamental property of such func
tional programs is the Halting Property. A 
correct program should halt and produce as 
output the desired function of its inputs, while 
a cycling computation is either incorrect, or 
represents an undefined value of a partial func
tion. 

However, there are many programs whose 
essential role is to cycle forever, provided 
they respond correctly to incoming stimuli , 
or arising conditions. Examples of such programs 
are Operating Systems and, to some extent, Simu
lation programs, and even Artificial Intelligence 
programs. 

Most of the effort invested so far in form
alizing the notions of specifications and correct~ 
ness of Programs has been directed xowards func
tional Programs. We feel that cyclic, nonhalting 
(sometimes referred to also as continuous )programs 
require an extension of the current techniques, 
and deserve special attention, being an intrinsic 
part of very complex systems, where verification 
problems are most acute. 

The essential difference between our approach 
and the usual "inductive assertions" method is 
that no longer can the execution be captured by 
snapshots at selected points in the program-text. 
The behaviour should be described as viewed at 
selected time instances, when significant events 
occur. 

The programming model we propose to study in 
this paper is a continuously (ad infinitum) run
ning program, which accepts external stimuli almost 
at random. Its behaviour is judged by its ability 
to respond correctly to those external events. 

In order to describe the program's behaviour 
in time, we find it useful to introduce (into the 
proof only) the time variable t and the program 
location-counter variable ir While their 
explicit introduction in the case of functional 
programs might be considered a superfluous comp
lication, it seems mandatory for cyclic programs. 

Once a methodolop::y for analyzing the behav
iour in time of a cyclic program under external 

235 

influence is developed, it can be utilized to 
analyze the joint behaviour of two (or more) con
current cyclic programs, where each of them can 
be considered an external agent to the other. 

Consider, for example, two concurrent pro
grams, P1 and P2 , which communicate via an 
interface L (shared variables, signal lines 
etc.). Suppose we are able to characterize the 
desired communication between P1 and P2 by 
a predicate ~p 'P (t) , and between P2 and 
and P1 by l 2 1j.p P (t) • 

2· l 

~p p (t) 
l' 2~~---~ 

~~ L -\_ p2 ) 

~P 2 ,P1 (t) 

Suppose, further, that· we were able to treat 
P1 separately and show that provided its incom
ing signals satisfy ~ p . P (t) , it will gener
ate outgoing signals 2' l which satisfy 
~P p ( t) • Assume P 2 can be treated simi·larly. 

l' 2 Then, it is claimed that the correct 
joint behaviour of P1 , P2 is ensured. 

Usually, when proving 1'1p P (t) we do not 
need the full power of 2' l 1jl P (t) , 
and a weaker condition is sufficient. pl' 2 
Correspondingly, we first prove that each pro
gram ensures a weaker commitment $p p to its 
coprogram, and then, being ensured l' 2 of such 
a condition in its turn, we can prove the full 
commitment ljlp P • 

This l' 2 method enables the partition 
of a problem involving two concurrent processes 
into two sub-problems involving each a single 
(sequential) process. (Sometimes, by symmetry, 
it suffices to treat only one of them.) As with 
other program_ verification methods, the require
ment for formulatinp; 4> p P ( t) and ljl p p ( t) 
explicitly, has l' 2 2' l 
intrinsic value of its own, forcing the program
mer to account in a detailed manner his idea 
of the desired interface between the processes. 

The importance of having a proof method 
encompassing the cases of continuous, nondeter
ministic and concurrert programs has also been 
underlined by Milner [ 7 ] • · 

The rest of the paper is composed as fol~ 
lows: In section II we introduce a detailed 
description of the programs model for a single 
(sequential) cyclic process. In section III we 
discuss in detail a case study, and specify and 
prove a scheduler for the "dining-philosophers" 
problem. In section IV we extend the model to 
include concurrent programs, and discuss in. 



detail another case study, the "mutual exclusion" 
problem. Section V ends with a discussion. 

II. A MOdel for cyclic (sequential) programs 
and their formal specifications 

As our basic model we shall consider flow- · 
charts without an ending (halting) node. The set 
of variables in a program is divided into three 
classes: 
1. Event (input) variables, E .• 

These variables receive th~ir values from 
some external source. The usual interpretation 
of such variables will be external requests or 
messages to which the system has to respond. 
The setting of these variables is completely 
unsynchronized with the program's control, and 
occur independently of the program counter state. 
Their values ma:y be tested by predicates (tests) 
in the program. 
2. Working (local) variables, Y .• 

These are the internal variatiles of the 
program, set by assignments in the program, 
and checked by tests in the program. 
3. Status (output) variables 2 S .. 

These are variables through Which the pro
gram contacts the external agent. They are set 
by assignments in the program. Usually, they 
will be interpreted as granting of requests, 
acknowledging a message or any other signal to 
the external agent. 

E , Y , S will denote the Vectors of 
Event variables, local variables and status 
variables, respectively. 

Usually, a cyclic program is correct if, 
whenever a certain configuration appears in the 
Event variables, the program will eventuall,y 
set a response configuration in the Status vari
ables. In addition, it may be required that 
certain contradictory configurations (such as 
an allocation of the same resource to two pro
cesses) never arise. 

In order to be able to state formally such 
claims, we need an explicit reference to the 
running time variable, t As long as our 
discussion is qualitative, we can with no loss 
of generality assume that t takes succe.ssive 
integer values, starting with 0 • By this 
assumption, nothing interesting happens between 
integral time points, while a single instruc
tion ma:y take several time units to execute. 

The value of t wi;l.l often be used to 
parametrize the other variables, e.g. y(t) 2 ~ 
which signifies the value of y just after ~ 

the instance t , when all changes have settled 
to their steady value. 

The time value will often appear quantified. 
We shall use the notation Vt(P(t))•Q(t) as an 
abbreviation for Vt [P(t) ::::> Q(t)] , and 
:Jt(P(t) )•Q(t) as an abbreviation for 
3t[P(t) A Q(t)] • For example vt(t::'._t0 ).Q(t) , 
or 3t(t1~t~t2 )• Q(t) • · 

We also round it useful to introduce· an 
explicit location counter variable, 1T , whose 
value is the next instruction to be executed. 
Note that 1T points to the place between state
ments, be:fore the next statement and after the 
last executed·statement. 1T enables us to state 

assertions whi~p are valid at a set of locations 
in the program. 

Consider the following illustration of' a 
typical time dependent construct. We may want to 
express the idea ~a variable's value being 
changed, and define the predicate 

Sett (x,e) :: x(t-1) # e A x(t) = e , 
where x is any variable and e any value. 

An extension is Sett(P) , where P is a 
predicate (possibly involving several variables) 
and t is an instance when it becomes true 
(due to some assignment at instance t to some 
variable occurring in P ). 

A specification for the correct behaviour 
of a cyclic program consists of two parts: 
cf> and 1jJ • 

We intentionally use the standard [l] 
notation used in f\mctional programs terminolo~, 
the intent being that cf> denotes the input · (E) 
condition guaranteed by the external agent; and 
1jJ denotes the output (S) condition which 
characterizes the behaviour of the program. 

Thus, for a cyclic program·to be correct, 
it is necessary and sufficient that, whenever 
the external agent behaves in accordance to cf> , 

the program will respond according to !JI • 
Following are some examples of typical con-

stituents of cf> • 

(*-1) 

Such an assertion ensures that Q(E) will 
not be set, unless the program allowed for it, 
or is ready for it. For example, if we interpret 
Q(E) as a resource allocation request, the mean
ing of *-1 could be that no such request will 
be issued if the resource is already allocated to 
the same requesting process. 

Vt1 ,t2 (t1~t2 r [Sett (Q(E),\Vt(t1~t~t2 )• -pt (S):>Qt ~~ 
1 2 

(*-2) 

Such an assertion means that once a request 
is made by setting an event Q(E), the requesting 
agent will not change its mind and reset the event, 
until the program responded to (or acknowledged) 
the request. 

Vt1 3t2(t~t1 )•[Pt (S) ::::>Sett (Q(E))] , 
1 2 

or EV1 (P(S), Set (Q(E))) (*-3) 

We shall use the abbreviation EV1(P,Q) for 
Vt13t2 (t;?t1 )• [Pt::::>~ ] • ·This can be used to 

require, for example , that once a resource has 
been granted to an outside user, this user will 
eventually release the resource and notify the 
program by setting Q(E) • 

*-1 ·to *-3 are not necessarily imposed on 
each event, but only as appropriate to the case. 
For exampl.e 2 if in *-3 , Q(E) denotes a request 
rather than a release, we do not require that the 
agent. ultimately asks for any particular resource. 

236 

Next, we give examples of some typical 
1'> -assertions. 

EV 1 (Set ( Q(E.} ,. Set CP(S) ) ) , or, more fully~ 

~-----·------



Vt13t2(t22:.t1 )·[Sett (Q(E)) =>Sett (P(S))](*-4) 
1 2 

This assertion states that, eventually, every 
event will be properly handled. For example, every 
request will be granted af'ter a finite delay. 

(*-5) 

This assertion assures that some global 
("eternal") limitation is never violated. This 
handles cases like conflicting requests, e.g. two 
simultaneous requests for the same resource, 
which should not be allocated to two users simul
taneously. 

( *-6) 

This assertion states that no P(S) happens 
unless explicitly requested by an event Q(E) . 
For example no resource is granted if not requested. 

To summarize the notion of correctness of a 
cyclic (sequential) program we present the follow
ing definition: 
Definition: Let P be a cyclic program1 $ and ~ 

are explicitly time dependent predicates. The 
program P will be called correct w.r.t. p 
~ if , whenever an external agent ensured a 
behaviour consistent with $ , the program P will 
respond in a behaviour (S -variation with time) 
satisfying ~ . 

The concept of correctness defined above 
actually corresponds to what Manna [l] calls 
total correctness. As we shall see in the sequel, 
when proving correctness, we do not separate the 
proof into partial correctness and some analog of 
termination. Rather, we always show that control 
does follow some path in the flow-chart, and some 
assertion relates the starting and ending state
vectors. Thus, in order to prove a statement of 
the type EV1(P,Q), we have first to locate all 
the possible places where P might have become 
true. We then proceed to isolate and trace signi
ficant events which ultimately lead to Q becom
ing true. The passage from one such intermediate 
event to its successor is proved based either on' 
inspection of the program behaviour (symbolic 
execution), or relying on some external commitment 
<ti . 

We want to stress that our model is qualita
tive in its nature in that the general statements 
to be proven are about ultimate proper response, 
where nothing is said about the length of the de~ 
lay. 

In a more quantitative treatment one will 
possibly have to define an "Eventually" predicate 
with some concrete time bound on the delay, i.e. 

* EV1 (P,Q): 3NVt3t' (t~_t',~t+N)•P(t)=>Q(t') 

which will limit the eventual occurrence of Q 
within a certain predetermined period. This will 
make the use of such a commitment very convenient, 
but will be harder to prove as a commitment to 
others [8] 

III. FIRST CASE STUDY: the Dining philosophers: 

III.l Informal presentation: 
The example is based on a problem stated and 

237 

solved by Dijkstra [2] . 
Five philosophers are seated around a round 

table, each one having a plate. Between every 
two neighbour philosophers is a fork. The eternal 
life of each philosopher alternates between the 
activities of eating and thinking. Both actions 
of eating and thinking are known to terminate 
af'ter a finite amount of time (strictly positive). 
For performing his "eat 11 action, each philosopher 
needs exactly 2 forks. As a consequence, no 
two neighbour philosophers may eat simultaneously. 
When starting to think, the philosopher frees 
his forks. All the philosophers act completely 
asynchronously. The problem is to devise a sys
tem for which the philosophers act as external 
agents, requesting the allocation of forks and 
freeing them. A correct system should ensure 
that each request will be granted eventually. 

Dijkstra's solution is by means of a syn
chronization via semaphores. We present here a 
sequential cyclic program (figure 1), which 
serves as a scheduler. 

The following variables are used: 
R[l:n] - An array of external-event-variables. 
R[j]=e means an Eat-request issued by philoso
pher j . Actually: this-Is a request for re
source (forks ! ) allocation. R [ j] =t means a Think
request. (It should not be confused with time=vaI
uel~--This in turn is a notification of resource 
release. 

S[l:n] - An array of Status variables. 
S[j]=e means philosopher j is granted permis~ 
sion to eat; S[j]=t means philosopher j is 
allowed to think. We may assume that a philoso
pher j wishing to change his state (from e 
to t or vice versa) will issue a request 
through R[j] and sit watching S[j] until it 
switches to his desired new state., at which point 
he will immediately enter this state. 
q - A queue variable, capable of holding indices 
of philosophers. The notation h_q , ,:!i_q , q~t 

means, respectively: first element of the queue, 
rest of the queue, insertion at the end of the 
queue. The predicate q=A is true if q is an 
empty queue. © ' e represent addition and 
subtraction modulo n in the range l, ..• ,n. 

The program has a main cycle consisting 
of three loops 11 ,12 ,1, . 11 searches pending 
t-requests, which are illlmedia~ely granted and 
recorded in the corresponding S-entry. Obviously, 
11 is executed n times per cycle. 

L looks for new e-requests. For any such 
request, the corresponding index is entered at the 
end of the queue. L2 'is also executed n times 
per cycle. 

L checks whether·the e-request of the top 
elemen~ of the queue (if such exists) can be 
granted. If possibl~, it is taken out of the 
queue and the next -.element of the queue is tried. 
Otherwise, .a:new cycle starts. A request may be 
·granted:i'f'·.the needed resources are free. 

;The: fil.ea>behind the operation is most simple. 
Each·pl:iilosopher in the queue waits until all 
philosophers placed above him are served. The one 
on the top will be served a~er his neighbours 
finish eating and release their forks. Once 
finished, they cannot interfere anymore, since 
any subsequent request will be placed at the end 



o:f the queue, beyond the waiting one. Thus, even
tual servi.ae is guaranteed. 

n:r .2 'l'}le Corrsftws woof: 
In this section we _outline a formal proof of 

the correctness, using the ideas discussed before. 

rrr.2.1 Speicif:j.gations: 
First, we give_-- the specifi«ations · 

Vi(l<i<n)•Vt t { 
1. Sett(R[i],eJ :::> S hl =j t 

- - 2. Sett(R[i},t) :::> St[i] :i: e 

( cj>-1 )_ 
This <fl -assertion establishes the interpre

tation of S=e as the eating state, and S=t as 
thinking state. It guarantees that a request 
will be- i.seued c:mly from an "opposite" state. 

Vi(l~i~n) •Vt3t '(t ·~)· [St[i]=~ett, (R[i]~t)] 

( cj>-2) 
This establishes the fact that every "eat" 

action lasts only a finite period of time. The 
corresponding fact about the ''think" action is 
not used in the proof, and so not stated in the 
specifications. 

Next, we state the lji-assertions. 

~ .Sett ( R(i] ,t)::S-ett ,_ (S [i] ,t} 
Vi(l<i<n) •Vt3t-' ( t 1 >t} 

- - - 2.Sett (R[i] ,e ):>Sett 1 (S [iJ;e 

- (lji-1) 
This assertion states the requirement, that 

eventually every request will be granted. 

This describes the requirement that no two 
neighbour philosophers eat simultaneously. 

Vi(l§~n) •Vt {~: Sett(S[i},t) :::>- Rt[i] = t_1 

Sett(S[i],e) :::> Rt[i] = eJ 
w..:. 3) 

This means that the status is not changed, 
unless requested. No one is forced to eat (or 
think) against his will. 

III.2.2 Proof of 11!-l.l 
Let i 0 and t 0 be such that 

Sett (R[i0 ],t) holds. From <fl-1.2 we have that 

St [~0 ]=e • We perform a case analysis according 

to0 the value of 'lf-(t ) , the program counter. 
0 

a. n(t) E L1 A it< i (or, it= i A n(t )=a): 
0 0 0 0 l 

0 0 

This case occurs when the setting of R[i ] 
happens while the program is within ~ , 0 and has 
not yet tested R[i ]. By induction on the value 
of i , we have tha£ for some t 1 ~ t the 
following holds: 0 

n(t1)=~ A Rt [i ]=t A S [i ]=e A i =i 
l 0 tl 0 tl 0 

238 

sli0 l=e remains(a)true since we do not pa11s 
through-any assignment to S • R[i ]=t remains 
true by cj>-1. l • o 

- Now the test a1 is satisfied, and 
Set(S[i0 ],t} occurs, which proves the claim_ 

•-1.1 for case a • 

b. n(t0 ) E L3 : 

This is the case that R[i ] was set to t 
while control was the in L3 lo8p. 

Let R, = r ~ I (the leng:th of q) • By in

duotion on JI. we 0 get that, for some t > t -, 
the following holds : - 2 - o 

n(~ )=a0 A Rt/i0 ]=t As~ [i0 ]=e 

S[i0 ] did not change because, by lemma Q , 
i~ t q for t~t~t2 , and we do not pass E with 

i=i0 R[i0 ]=t remains true by iP-1.l . 

At t 2+1 we have i=l A n=a1 , and the 

rest of the proof is like case a • 

By induction on i , we get for some 
t 3 ~ t 0 _ that 

n(t 3) = a 3 A Rt
3
[i 0 ] = t A st [i l 

3 0 

where the invariance follows as before. 
rest of the proof is like case b • 

= e 

The 

d. n(t0 ) € L1 A it > i 0 (or, it = i 0 A nt ¥ a1 ) 
0 0 0 

As in case a , we get for some t 4 ~ t 0 
that 

n(t4) = a2 A Rt4 [i0 ] = t A St[i0 ] = e 

and the rest of the proof like in case c 

Q.E.D. lji-1.1 

III.2.3 roof of 111-1.2 : 
Let i - and t be such that 

0 0 

Sett (R[i0 ] ,e) . From cj>-1.l 

Firs£, we show that i 0 ¢ ~ . 
0 

we have St [i0 l =t. 

For, ass~ 

i 0 E ~ From Sett (R[i ] ,e) we know that 
0 0 0 

Rt ~1 [i0 ] = t , and so, by lemma Q, i 0 ~ ~ _ 1 
0 0 

Thus, Sett ( i 0 E q) is true. It follows that 
0 

n(t0 -l) = a 2 A it =i0 , and the test yields the 
0 

value T , which is a contradiction to 

(a) Actually, this step in the proof needs further 
justification in more formal proof, to show that 
control does not leave L1 until t 1 



Rt -l[io] = t. 
0 

So, we have Rt [i0 ] = e A St [i0 ] = t A i 0 ' ~ 
0 0 0 

Now, we split the proof according to the 
possible values of 1T , to prove that 

3t*( t*~0 )_• [n( t*)=a2ARt*[i0 ]=eAst* Ci)= t 

Ai0'~*Ait*=i0 ] (*-6) 

i.e. that at a later moment we will be just on 
the verge of putting i 0 into the queue. 

a. n(t0 ) e: L2 A it <i0 (or, it =i0 A nt =a2 , 
0 0 0 

which means (*-6) is immediately true) • 
The claim follows directly by induction over i 

S[i ]=t remains .true, for we do not pass 
through an~ asignment to S • 

R[i0 ]=e remains true by ~-1.2 , 

b. n(t0 ) e: L1 

By induction over i we prove that 
3tl(tl~o) s.t. 

n(t1 ) = a2 A Rt [i ] = e A st [i ] =t 
1 0 1 0 

Ai '~ A it = 1 
0 . 1 1 

remains true, since we do not pass(b) S[i ]=t 
0 

through the assignment to S with i=i , f0r 
the test a 1 fails for i 0 , R[i0 ]=e 0 remains 

true by ~-1.2 • 
The rest of the proof is like in case a • 

c. n(t0 ) e: L3 : 

Let .t= I~ I > 0 • By induction over i , 
0 

we prove that 3t2(t~0 ) s.t. 

n(t2 ) = a A Rt [i ] = e A St [i ] = t Ai ' ~ 
0 2 0 2 0 0 2 

i ' q remains true, because there is no addi
t~on to q in L3 • S[i0 ]=t remains true, since 

we skip the assignment to S , because i ¢ q • 
0 

R[i0 ]=e remains true by ~-1.2 

The rest of the proof is like in case b • 

d. n(t0 ) e: L2 A it > i 0 (or 
0 

By induction on i we 

it =i0 and 1T 'f a2). 
0 

get 3t4 Ct4~0 ) s.t. 

n(t4) ~ a 3 A Rt [i ] ~ e A st [i ] = t A i ¢ a. 
4 0 4 0 0 '"'t4 

i ¢ q remains true, since i > i implies that 
wg do not pass the addition to q 0 with i=i • 

0 

The other two invariants are justified as before. 
The rest of the proof is like in case c 

(b) Even if we have passed, still the new value 
would be t . 

239 

This finishes the proof of (*-6). Now the 
test will succeed, and i will be added to q , 
and by induction .over i -0 we have, for some 
t (t>t*>t ) (this will be the end of the current - -o 
loop in which we put i 0 into q)1 . 

n(t) = a A i e: a.,. A R-[i. ] = e A S-[i ] = t 3 o-c to to 

( *-7) 
Now,. we prove that 3t'(t'~t) s.t. 

n(t') =EA it'= i 0 

which establishes ljl-1.2. From i 0 e: q it 

follows that there exist words x,z over 
{1,2, •.. ,n} (possibly empty), s.t. 

~ = z·ia •x 

The claim follows from the following lemma Q • 

Lemma Q: 

Vx,z Vi0(l~i~n)•Vt 3t 1 (t'~t)·[~=z•i0 •x :::> 1Tt 1=E 

Ait 1 =i0A~,=x•y] 

where i ' y , 
0 

i.e. for each index which is currently in the 
queue, there will be a time in Vhich it is ta.ken 
out of the queue and granted its e state. 
Proof: First·, we prove another lenuna, Q0 

VxVi (l<i <n)•Vt3t'(t'>t)•3y[n =a Aa.=i •x:::> 
0 - 0-. - t ~ _'"'t 0 

1T (t 1 )=EAit ,=i0A~ ,=x•y] 

where i ' x , 
0 

i.e. Each index which is currentlY at the top of 
the queue will eventually be taken out. 
Proof of Q : Let t be such that · 

0 

n(t)=a.3 A~=i0 •x holds.By lemma Q wehave 

R-[i·] = e A S-[i] = t •. Since t 0 t 0 

~ = i 0 •x :::> ~ 'f A , control r~e.ches y with 

i=i0 We distinguish between four possible 

subcases at t* , the time of arrival to y . 

1) 
2) 

3) 

4) 

S[i0 (±) l] = S[i0 C) l] = t 

S[i <t) l] e A S[i 8 l] = t 
0 0 

S[i c±)l] = t A S[i 81] = e 
0 0 

S[i @ l] = S[i r.:'\ l] = e o oV 

1. In this case, the test y yields inunediately 
the value T , and control reaches E , which 
implies the claim of Q . 

2. By ~-2 there exis~s(c) a t1 (t1~t*)s.t. 
(c) We take the~ t1 



Sett {R(i ('!)IJ,tJ is true. Thus~ i ©1 (.flt. 
1 9 0 1 

(Le. i 0 {f)l ~ x) • During the period t~~t1 
st [i 0 J=t remains true. for the -test y fails 

because S[i G) ll = e , and we do not pass E • 
For tRe same reQ.son, no element is removed 

from the queue, • but solne elements were possibly 
added. So, q = i 0 •x•y1 :f'e>r some y1 (possibly 

A). i 0 ¢ Yi: , because. of the test before enter

ing the insertion point, Q • Also, Rt [i0 l=e 

remains true by cp-1.2 • 
Now• applying l{i-1 to t 1 and i 0 , we 

get that there exists some ( d\~-( \~~t1 ) s. t. 
Sett (S[i ~ ll,t) is true. -

2 0 

During the period _ t1~t~t2 The test 

at y still fails for i ~· l , and we do not 
0 

pass through E • Thus, St- [i ]=t remains true, 0 -

and ~2=10 x•y1 •y2 for some (possibly empty) 

y2 , s.t. i 0 f y2 Also, by cp-i.2, R[i0 ]=e 

remains true. 
Now. at t 2 we have St

2 
(i0 (!)ll=t . Also, 

for the period t*~t~t2 • st [io e l}=t remains 

true. For, there a-re two possibilities : _ 

i. set(R(:i.0E:;-1J,e) 

Set(S(i 91,e} 
0 

did not happen, and so 

al.so did not happen. 

2. 5et(R[i0 $.ll,e_) di_d happen. So, either 

io e1 did not enter the queue yet, or-

\, E)l € y1 •y2 -~ and is waiting for granting 

its new request. 
Thus, at some t*, t •_::t2 , we have nft '}=yAit:i=i0 • 

Again, for the._ same reason as just noted, 
St' fi 0 @l]=St,[i0 (9l}=t still holds, the test 

suceeeds and 'IT reaches E with i=i This 
0 proves Q - for case 2 . 

0 -
3. This case is similar(t~ case 2° •. __ 
4. By cp-2, there exist e t 1 ,t2 (t1_-•t'"2'2~t*)s.t. 

Sett [i (t)l,t] A Sett [i E}l},dJ 
L o 2 o 

(assume t1~t2 ) • 

As before, this implies i 0©L i ~*A10GIL (. ~* 
During the period t*~t~t2 : 

St[i }=t reins.ins true, for the test' y 
0 -

fails by assumption, and 'fl'. does not pass 
through E . 

For the same reason, no element is removed 
from the queue, and some elements were possibly 
added. Thus <lt2 = i 0 •x•y1 for some y1 

(possibly A). Again, i 0 ¢ y1 because· a 2 

(d) Again, we take the least t . 
(e) Again, we consider the least t 1 , t 2 . 

240 

Rt(i0 l=e remains true due to ~1.2~ 

Now, we apply 1/l-l twice, to get t3 ,t 4~2 
(assume t~t4 ) s.t. 

Sett-(S[i @l},t} A Sett [i 01J,tJ holds. 
- 3 0 4 0 

During the interval t~t~t3 : The. test- y 

still fails ,._ and 'JI' does not pass through __ E • 
So, St[i 0 }=t remains true, and ~3=i0•x•y1-y2 
for some (possibly empty} y2 , s.t. i0 ~ Y-2 • 

Again, Rt[i }=e remains true due to ~l..2. o-
This means we reached a state as in case 

3 , which completes the proof. Q.E .D. Q 
We may. now proceed with the proof o'i LemmaQ. 

Let ~ • z•i •x , and 1 = lzl (the length 
of z}. We proceed0 by induction over 1 • 

For 1=0 • we have z=A , and we have 
exactly the claim of lemma Q . 

Assume the lemma is tru~ for z s.t. 
0 ~ fzl < JI, , and let z* be such that 
lz*I = 1>0. This means that z* = i*•·z• for 
some i * ,_ and I z' I <1 . Then, 

tlt = i*•z'•i •x 
0 

By lemma Q , we know that Rr[i*}=e A S[i*l=t 

As before, by case analysis, we can show that 
for some t * ~ t •-- -
n(t*} = a.3 "' Rt*[i*] = e A st*[i*l = t • and 

we can apply- lemma Q0 to i * , to get for 

SOl!le t" ~ t* 

~n = z'•i0 •x•y 

where _ i J- y • And now, the proof follows by the 
o -~ I induction hypothesis, since z' I < JI. • 

Q.E.D. Q 

To finish the proof of t/1-1.2_. we have-to 
prove the lemma Q-, quoted above several times. 

Lemma Q :Vi(l~i~n)•Vt[i € ~ ::> Rtlil=e.llfl_£[i]=tl 

Proof: Let i 0 , t~ be s.t. i 0 E: ~ 
0 

Let t* be defined as max Sett(i €<It) • 
t<t 0 
-o 

i.e.- t* is the last time i entered the queue 
q . _ From the definition, it0 follows that 

(*-8) 

obviously, t* > 0 • Also, from the definition 
of t* it follows that n(t*)=Q , the only point 
of insertion into the queue. 

From this we know that 

Rt*[i ) = eASt*[i ) = t (*-9) 
. 0 0 

and we have to show the invariance of ( *-9) dur
ing the interval t*~t~t0 

-------------- -~---------~-



Assume that 3t1 (t*~t~t0 )•[Sett (S[i 0 ],e). 
1 

This means that n(t1 )=E , the only point where 
S is assigned e . But, n(t1 )=E also means 
i ~ o. , in contradiction to (*-8) . Thus, 

0 "1;1 

we establish that 

Vr(t*<t<t )•[S [i ]=t] 
-- 0 t 0 

Now, 

by 

Vt(t*<t<t )•[R [i ]=e] 
- - 0 t 0 

<j>-1.2. 

III·2.4.l Proof of tli-2: 

follows immediately 

Q.E.D. Lemma Q 
Q.E.D. ljl-1. 

Tne proof of this part of ljl is easy, 
because in this program we have an exp1icit test 
to this effect. (f) 

Assume that there exist · 

that Sett (S[i0 ] 

Obviously9, t 
0 

S[i @l]=e). 
0 

> 0 • 

Without loss of generality, assume 

i 0 ,t0 , such 

C*-10) 

St -l [i0 l=t /\ St -l [i0 @ l]=e . It follows that 
0 0 

n{t ) = c5 /\ it =i , a contradiction to the test 
c5 .o 0 0 

Q.E.D. ljl-2 

IIl.2.4.2 Proof of tli-3: 
a. For ljl-3.1 the result is immediate, 

since Sett(Sfi 0 ],t) implies n(t)=T , and hence, 

the test a1 was true, which implies Rt[i0 J=t 

b. For ljl-3.2, assume Sett(S[i0 },e) 

This implies that ir(t)=E • But, i 0 =it=~ ~ , 

which means i 0 € Cli; , and the result follows 

by lemma Q. 
Q.E.D. ljl-3 

This completes the proof of all $-assertions, 
and establishes the correctness of the program. 

IV. Concurrent cyclic programs 

IV.l In our second case study, we depart from 
the previously described non-deterministic model 
of cyclic programs, to consider concurrent cyclic 
programs, where the concurrency is explicit, 
instead of its implicit nature in the previous 
model. It is interesting to observe that the 
same modes of correctness-definition and correct
ness-proof apply also in this case. 

There is a methodological novelty in the 
analysis of concurrent progr{lJl!s proposed here, 
whichw35 enabled by the introduction of time into 
the s~ecifications of programs. The discuiision of 
the correctness o~ eaneurl'IUlt p.-ogramij.n the liter-
ature considers a pail· P , P of such programs 
as a single complex entit~. wtlen describing such 
a system as a process of transitions between 
states, a state consists of constituents deter-

(f) Again, consider the~ t 0 • 

241 

mined by both P1_ and P2 e.g. the values of 
the variables in ooth programs. (See [9] for 
such analysis.) 

We suggest a viewpoint of concurrent pro
grams, which isolates each program as if it were 
acting alone, and condenses the effect of the 
second program in a <j>-assertion, on which it 
can count while computing. Thus, cp will 
describe the commitment of P2 in b~aviour in 
time, which enables P to achieve its own 
correct behaviour in ttme, $1 , and likewise 
for cp2 , ip2 . Also, there is a part $1 2 , 
which prevents violating some global res~tiction 
on both P1 and P2 . 

The aa:vantage of this approach is that 
instead of dealing with a joint behaviour of two 
programs (whose complexity is the product of 
the complexities of those two programs) we de
compose the proof into two proofs, dealing each 
with one cyclic (sequential) program, and two 
pairs of <<j>, ljl> specifications. The complexity 
in this case is only the sum of the complexities 
of the two programs. We do reduce the problem 
of concurrent programs into two problems of 
(sequential) cyclic programs interacting each 
with an external agent, whose behaviour i~ given 
through the cp specification. Hence, in addi
tion to the steps in the proof that were required 
in the case of-a sequential cyclic ,program, 
where cp was taken for granted, in the reduction 
of concurrent programs we have another step in 
the proof, which establishes that the <j>-asser
tions are indeed true. 

This approach has also the great methodolog
ical benefit of forcing the programmer to state 
explicitly what is "the point" of the interaction 
between P1 and P2 , and thus understand better 
his own programs. Such an attitude may lead to 
a more constructive way of designing concurrent 
programs, in a similar way as the introduction of 
loop-invariance in functional programs. 

We shall assume the following model for con
current programs: P1 and P2 are cyclic flow
charts, with non-disJoint sets of variables. 
At each time instant t , either ir1 or ir2 move 
one step (either assignment or-test]. Also, 
each 'JT. is bound to move a step a~er some time. 
Nothinlis known about the relative speed of ir1 
and ir2 • 
Method of Proof: 

In order to prove correctness of a pair of 
interacting concurrent programs P1 , P2 , w.r.t 

specifications 411 ,ip1 ,cp2 ,ip2 ,ip1 ,2 the following 

has to be shown: 

a. is correct 

is correct 

b. P1 is correct 

P2 is correct 

c. $1,, 2 holds. 

w.r.t ~. cp2> 

w.r.t <~, cp1> 

w.r.t <cp1 , $1> 

w.r.t <cp2 , $2> 

In step a., we prove (with no assumptions) 
that each P. is capable of guaranteeing itiS 
cp commitment. Then, given those <j>-commitments, 
we prove that the $-behaviour follows. These are 
one level higher than the <j>-assertions. Inde-



pendently., Ye prove at step «4· some joint prop-
erties, · 

We must note that .not every set of concurrent 
programs . is amendable to this approach. Some con
current program$ may be too tightly interactive to 
allow easy decompositicin. of the type we are sug
gesting here. 

IV.2 SECOND CASE STUDY - The MutUa.1 Exclusion 
Problem~ · 

We. consider· a problem which, ilke the first 
one, was firs~ de.scribed by Dijkstra [3] , who 
relates· the solution to Dekker. 

P1, P2 are two cyclic concurrent programs, 
which enter from time to time into a critical 
section. It is desired that in a given instance 
of time, only one program mey reside in its· 
critical section. The problem is to design a 
synchronization between the two programs, which 
will prevent the simultaneous entry of P · and 
P2 into.their critic8.l sect~ons, and wilt post
pone the decision in case .of"·confiict for only 
a finite time, and ensure that every wish to 
enter a criticai section will eventually be ful-
filled. · 

The solution is reached by means of three 
shared variables, c1 , c2 and "turn". ci is 

boolean and expresses a wish of Pi to enter its 

critical section·. ci is changed only by Pi, 

but is available for inspection by its companion. 
turn E {1,2} , determines which Of the· two·. pro
cesses is to give up in case of conflict. (Fig
ure 2). 

The strategy in case of'conflict is the fol
lowing: If turn = l , P1 has the right to in~ 
sist on entering. the critical section. Thus, it 
enters the loop L1 , where it waits:tliltil P2 
si ves up for· a while. On the other ha,nd, P · 
sees it is its turn to give up, and e~ters the 
loop R2 , in which it waits imtil P1 ~changes 
"turn", after exit from.the critical section. 

In case. turn =·2 initially, we have a 
symmetric case. 

Now, if 'We try to analyze P1 .. by itself, we 

see that there are two assumptions on the behav
iour of P2 , which fully describe the interac
tion. 

1. If it is P1 1s turn to insist on its 

right, P 2 will give up for long enough so ·that 

P1 can accomplish its wish. 

2. If }tis P2 1 s turn to insist, then 

some time later the right to ins;st will turn to 
pl • 

Since P1 and P 2 are symmetric, the same 
argument applies to tfie assumption of P2 about 

P1 1 s behaviour. One has still to show that it 

is impos·sible for P1 , P2 to enter their C.S's 

simultaneously. This follows easily from the 
tests a.3 , a3 , being always reached. with their 

own c variable equal to 0 . 

242 

IV. 3 The. correctness proof:· 

IV.3.1. Formalized specifications: 
-We shall add · few abbreiri.ations of more com

plex time dependent predicates. Let P,Q,R rep~ 

resent predicates over the state-vectors. 
Ev2{P, Q, R) will mean the following: 

Vt{P(t))•3t1 (t1~t) 

• Cvt2(t~t2~t1)•QCt2 > ;:) sett (R)l 
l 

The meaning of this predicate is the follow
ing. Suppose P was true at some mol!!ent t , 
then, there exists a later moment, ti , s. t R 
will be set to true at ti , provided'" Q was 
continuously true in the 1nterval . { t, ti} , Q 
will usually correspond to some signal one pro
gram sends to another, while R corresponds to 
a proper response. P corresponds. to some :initial 
condition that held when Q arose. 

Note that ·· Ev2 onlY 151larantees the setting 
of R to true. Sometimes a stro.nger requirement 
is needed, to the effect of holding R true for 
a while, ( imtil it is detected) provided Q con
tinues to hold. This :will be expressed by the 
predicate EV3 (P, Q, R) ., which means 

Vt(P(t) )·•3t1 (t1~) •Vt2(t~1 ) 

•[Vt 3(t~tj$.t2 )•Q(t3 ) b E(t2 )J 

These predicates enable us to ste;te .. condi
tional commitment of one program to another. 

Now we state the specifications. 

(4>-l~I) 

Thi~ assertion eA'J)resses P2 1 s commitment 
to give up its wish.to access the c.S ('2=1) , 

if it is P 's turn to insist (turn=l) • It 
will do so tor as long as P1 needs it (c1=0) 

All this hold in case of a conflict (c2=o). 

EV2((c2 = 0 "turn = 2) , c1 = l , turn = llcp-1.2) 

This assertion expresses P 's commitment 
to eventually pass the right to i~sist to P 
if it had this-;right and used it (turn=2 " c1=o) 
provided P1 gave up its wish to access its2 ~.s 
and "'waits patiently" ( c =l) . Here we rezy on the 

- 1 . 
property of the variable "turn", which can be set 
back to 2 only by p itself. So, we need not 
worry about turn=l staying true for a time in~ 
terval. 

The 
es P2 1 s 

$-2 assertion is similar, and express
expectations of P1 

EV3(c1 = 0 , (c2 = 0 A turn = 2), c1 = 1)($-2.1) 

EV2((c1 = 0 A turn= 1) , c2 = l , turn= 2($-2.2) 

Next, we specify the l)i-assertions. 

(l)i-1) 



Thus, it is claimed that if 'IT1{t)=a3 which 

means P wishes to access its C.8 , then even
tually, 1at some t'~ , 'IT1 (t')=a5 , which means 

the wish was fulfilled. 

In addition, we have the global requirement, 
that never will P1 and P2 access their C.8 

simultaneously, which is expressed by 

As mention~d in section IV-1 , every node 
in the flow-chart once reached, will be · le~ 
eventually. An exception to this rule are nodes 
a1 (and 131 ) , in which P1 (P2 ) may wish to remain 

forever, never requesting access to C.8. This, 
of course, should not affect the correctness. 

IV.3.2 Proof of the specifications: 

We shall outline the various steps in the 
proof method mentioned above. Because of sym
metry, only half of the propositions need proof. 

a.. P1 is correct w.r.t <true, <1>2> • 

We show that P1 is capable of fulfilling 

its commitment to P2 with no additional prem
ises, i.e. independently of P2's behaviour. 

tl:_ We prove first ~2 . 2 
Let t be such that 

0 

c1 (t0 ) = 0 A turn(t0 ) = 1Ac2(t0 )=1 (T ) 
0 

Hence, 11'1 (t0 ) E fo3, a4, a5, a6, a7} . We per

form a case .analysis. 

a-1.l: 
'!Tl(t/ E {a5' a.7} 

tl~' '!Tl(t1)=a1 ' 

a-1.2: 

Clea.J1y , for some t 1 , 

which implies the claim. 

:rr.:-rtl";., a3 • 
1 0 

(T ) 
0 

and 

remains so subse:q~ntly, '111 reaches a5 , and 

the case is reduced to a-1.1 

The test a4 succeed by (T ) , 
0 

and c2=1 still holds by the <I> antecedent, 
and so the ca~e reduces to a-1.2. 

reaches the test 

fails. Hence reaches 

again, the case reduces to 

~ Next, we prove <l>-2 .1. 
Let t be s.t 

0 

Q.E.D. 

a8 , which 

c1=o , and 

<l>-2.2 

243 

c (t ) = O A c2(t ) = O A turn(t ) = 2. (8 ) 1 0 . 0 0 0 

~: Assume the following 81 holds: 

-3t~(t~t0 )•['!T1 (t~) = a1 V n1(t~) = a8] , (81 ) 

from which follows 

which, in turn, implies 

turn(tl = 1 . 

Hence, <l>-2.2 is vacuously true, with t 1 cho
sen as t* 

~ Now, assume -s1 holds, i.e. 

3t'(t'>t )•[n (t') =a v n (t') = a 81 (s3) 
0 0-0 1 0 :i- 1 0 

We check the two subcases separately. 

a-2.2.1: 
n1(t~) = a.8 In this case, we may choose the 

t 1 ,of the EV3 predicate as t~ • Once at 

a8 , n1 remains in L2 with c1=1 as long as 

P2 needs, i.e. as long as turn=2 A c2=0 remains 

true, as required by the EV3 predicate. 

a-2.2.2: 
'IT (t') = a. 

1 0 1 
Thus, c1(t~) = 1 • Again, there 

are two subcases. The first one is 
joains at Rest1 forever, and thus 

when P1 re
c1=1 remains 

true (since not changed in Rest1 ). We may then 
choose the required t 1 as t~ .• 

The second subcase occurs if 11'1 reaches 

a2 , and hence also a 3 • If c2~o , the EV3 
predicate is vacuously true. otherwise, since 
turn='2 remains true by the antecedent, ir1 
reaches a8 , and the case is. reduced to 

a-2.2.1. 

Q.E.D. <l>-2.1 

b. P1 is correct w.r.t <<!>2 , ljl1> 

We show now that, assuming <1>2 is guaran
teed by P2 , P1 is able to satisf'Y w1 

Let t 0 be such that n1 (t0 )=a3 • Hence, 

c1 (t0 )=0 In the trivial subcase, where 

c2(t0 );.l , i.e. there is no conflict between P1 
and P 2 , a 3 yields ~' anci n1 reaches 

immediately a.5 , which proves the claim. 

Thus, assume c1 (t0 )=0 A c2(t0 )=0 • We 

distinguish two cases, according to the value of 
turn(t ) • 

0 

b-1: turn(t ) = 1 • 
-- From t~ onwards, n1 E 11 holds, and no 



variables are changed. Hence, by ¢-1.1 (EV 
predicate), there exists a t which makes . .:S 
it true. Let tl = t' , and d~fine t" as 

0 0 

t 11 = min 
0 t">t' -o 

1T(t")=a. 
1 3 ' 

i.e. the 

test 

next time when 

According to 

P1 will evaluate the 

¢-1.1, c (t")=l , and 2 0 

1T1 will reach a, , as claimed. 

b-2: turn(t ) 2 . 
0 Thus, 1Tl will reach L2 with c1=1 

remaining ture. Then, by ¢-1.2, at some t~ 

t' > t turn(t') = 1 will become true, and 
0 - 0 ' 0 

remain so. Hence, 1T1 will reach a.3 with 

c2=o , and the case reduces to case b-1 

Proof by reductio ail. absurdum. Assume the 
existence of a t 

0 

such that 

Let tl max 1Tl(t) CJ.5 
t~t0 

t = max 1T2 ( t) 135 2 t<t 
' 0 

and assume tl 2_t2 

Thus c2 (t2 )=0 Since c2 is not modi-

fied in the c.s we have also c2 (t1 )=0 
' 

which 

contradicts the assumption that a.3 fails at t 1 . 

V. Discussion: 

V-1 Comparison with related methods: 
a. Actually, our method is an extension of 
Floyd's method of induction assertions, if applied 
to functional programs. The introduction of the 
implicit variables of time and program-pointer 
enables one to express the propositions which 
follow from Floyd's method. 

Thus, if {Q.} is the set of inductive 
assertions of a gi v§n program at cut-points a... , 

i 

the following propositions have to hold in order 
to prove correctness: 

\ft [1T( t) 

3t[1T(t) 

a..::::iQ.(Y(t))J 
l l 

Halt] 

Of course, the introduction of implicit time and 
program-pointer variables complicates the formal
ism, and should be used only when necessary. 

The main idea behind the inductive asser
tion method is induction over the path of compu
tation. One shows that if computation ever 

244 

reaches a.. , then Q.(Y) holds. Yet, our app
roach is ifi a way an i"inverse approach", which 
exhibits another kind of induction, more related 
to Burstall's structural-induction. We show that 
if so and so happens, then the computation will 
eventually reach ai 

b. Thus, our method also extends Burstall 1 s meth
od [4] • His notation 

a.: Q(Y) 

which means that currently computation is in the 
point a. with Q true for the Y's at that 
moment, might of course be stated as 

1T(t) =a A Q(Y(t)) 

Also, his more general statement 

a.: Q(Y) ::::i [3: P(Y) 

may be translated as follows: 

Vt3t'(t'_::t)•{1f(t)=a A Q(Y(t)) ::::i 1T(t')=f3 A P(Y(t'))] 

Yet we allow more complex quantifications 
over time; Also, since we include non-determinism, 
we do not bind the Q's to "space" points a.. , 
but only to time points, since one does not Rnow 
where control resides when an event occurs. 

Thus, we may group together (during the 
proof) various points in the program, which are 
equivalent with respect to the occurrence of an 
event. 

1. Z. Manna: 

2. E.W. Dijkstra: 

3. E.W. Dijkstra: 

4. R.M. Burstall: 

5 . R. W. Floyd: 

6. N. Francez: 

7. R. Milner: 

References 

- Math. theory of computation; 
McGraw-Hill, 1974. 

- "Hierarchical ordering of 
sequential processes"; in: 
Operating systems techniques" 
C.A.R. Hoare, R.H. Perrott 
(eds.); Academic Press, 1972. 

- "Cooperating sequential pro
cesses"; in: Programming 
Languages; F. Genuys (ed.); 
Academic Press, 1968. 

- "Program Proving as Hand 
Simulation with A Little 
Induction"; in: Information 
Processing 74; North-Holland 
1974. 
"Assigning meaning to pr0-
grams"; in: T. Schwarz (ed.) 

Math. Aspects of Computer 
Science; A.M.S.; Providence, 
R.I., 1957, 
"The Analysis of Cyclic Pro
grams"; Ph.d thesis; Dept. 
of Applied Mathematics, 
Weizmann Inst. of Sci.1 to 
appear. 
"Processes: a Mathematical 
Model of Computing Agents"; 
in: Proceedings of the Logic 
Colloquium Bristol, 157-173. 



7, R. Milner: (cont.) - North-Holland, 1973. 
8. C.A.R. Hoare: - Privatecommunication. 
9. P. Gilbert and 

W.J. Chandler: 

a6 

- "Interference between 
Communicating Parallel 
Processes"; CACM 15, 6, 
427-437, June 1972. 

START 

c1-c2-1 
turn -1 

a7 /3e /37 
c1-1 turn- 2 c2-I turn -1 

c1-t c2-t 
3 R3 

as 
L2 

/3e 

F 
turns 2 

T 

Fig. 2 

START 

q-A 
'v' (i :ei:en)SCi 1 - t 

ao 

a1 

RCiJ=t /\ SCil=e F 

T € 

L1 SCil-t 

T 

T 

RiiJ=e /\ SliJ=t /\ i;q 
F 

T 

T 

a 
T 

F 
q= A 

SCiG)1J =SCiE)lJ=t i --!!q 

T 

Fig. 1 

245 



ON DETERMINACY AND EQUIVALENCE OF PARALLEL PROORAM SCHEMATA 
. Manilal Daya * 

Honeywell Information Systems, Inc, 
Billerica, Massachusetts 01821 

SUll!J!l8.rY 
A formal mod.el of parallel computational sche

mata is the basis of this research, The specifica
tions of this model have been influenced by various 
existing models [3],[4] and [6] so that the deter
minacy and equivalence problems for "repetition
free" [3] schemata can be investigated uniformly, 
A schema is reJ>E;tition-free if it is both "free" 
and "liberal" L6], The motivation for considering 
repetition-free schemata only is that if this hy
pothesis is excluded then most of the properties 
of interest are undecidable [5].! The results sum
marised here appear in full in"l2], 

Briefly, a parallel program schema consist of1 
a set of memory eel~ a set of ope:ca.tions which 
depend on and may affect memory cell values, and 
a control specification which defines the flow, 
The schema. model is related to the "realization" 
model in [4] with the following exceptions: (i) A 
halting state is explicitly introduced in the con
trol, The "persistent and finite delay properties" 
associated with a computation [4], are excluded, 
(ii) During execution, there is a choice involved 
in selecting the next·state from the current stat~ 

A schema is: (a) 0-determinate (respd.l2.-deter
minate) iff for each interpretation if there exis1s 
a halting computation then all computations are 
halting with identical final memory cell values . 
(resp,, identical memory cell history [4]); and (b) 
f>-determinate iff for each interpretation if the:ie 
exists a halting computation then all computations 
are halting and syntactically equivalent[4], 

The notion of progression introduced in [ 6] is 
generalised in the following way: A schema is ~ 
gressive iff for any halting computation, at least 
one of the values written in memory by any opera
tion executed during that computation, is either 
used by a succeeding operation encountered in that 
computation whose set of range cells is non-empty 
or remains unchanged until the end of the computa
tion •. It is shown thli.t a repetition-free and pro
gressive schema is 0-determina.te iff it is A-de
terminate, Similar conclusion also holds true 
between 0-equivalence and .n.-equivalence, 

A concept of minimality is introduced for 
repetition-free schemata, This concept is a. 
generalisation of the notion of minimum state 
finite automata, It is shown that if a repetition
free schema has a minimal schema. then it is unique 
up to an isomorphism ( i, e, , a renaming of the 
states), 

*This research was completed while the author 
was 'a ~raduate student at Harva. rd University -
see [2J. , · 

246 

The notion of minimal schemata is important 
because it iinplies code-optimization and "ca
nonical-form" in some sense, As a result of this, 
it is show that p-determinacy is decidable 
for a class ~ of repetition-free schemata, 
The class Ii is defined in a complex way based 
upon the notion of minimalityJ and membership 
in «, is not known to be decidable, The corres
ponding "independent" [ 6] schemata defined from 
non-deterministic two-tape one-way automata [l] 
are also properly included in the class ~ , 
(It can be also shown that the class of repeti
tion-free, "resolvable" (4] schema.ta is also 
properly included in the class 't, , ) It is 
asserted that every conservative and fl-deter
minate schema has a minimal schema, This 
assertion implies1 (a) ~ is the class of finite 
state and repetition-free schemata; and (b) 
f' -equivalence is decidable for the class of 

repetition-free and f' -determinate schema.ta 
(which incidently also implies that the equiva
lence problem for n...:tape one-way deterministic 
autoilata is decidable), 

A notion of ".n. -reducibility" is introduced 
which means removal of redundant lossy operatione. 
It is shown thli.t a repetition-free schema S is 
..o. -determinate iff an.n,-reduced schema of S is 
.n. -determinate.The significance of this is that 
based on an assertion that repetition-free, ..n.
reduced and A-determinate schema is JO-determi
nate, it is shown if p-determinacy is decidable 
for repetition-free schemata then.n.,-determinacy 
is also decidable, The result mentioned above 
can also be extended for 0-determinacy by inclu
ding the progressive property mentioned earlier, 

References 
[l] M,R, Bird, "The Equivalence Problem for Det

erministic Two-tape Automata", J, Comput, Sc:t, 
Vol, 7, 1973, pp, 218-236, 

[2] M, Daya, "A Study in Parallel Program Sche
ma.ta", Ph,D, Thesis, Tech, Report TR 2-75, 
Center for Research in Computing Technology, 
Harvard University, 

[3] R.M, Karp, R,E, Miller, "Pa:ca.llel Program 
Schemata", J. Comput, Syst, Sci,, Vol, 3, 
No, 2,1969, pp,147-195, 

[4] R,M, Keller, "Parallel Program Schema.ta arid 
Maximum Parallelism I & :U:", J, of the ACM, 
Vol,' 20, Noi;, )&4, 1973. 

[5] R,E, Miller, "Some Undecidable Problems for 
Parallel Program Schemata", SIAM J, Comput,, 
Vol, l,No, l,1972,pp, 119-129, 

[6] M,S, Paterson, "Equivalence Problems in a 
Model of Computation", Doctoral Thesis, 
Cambridge University, 1967; reissued as 
MIT Artificial Intelligence Lab, Memo, No, l, 
1970. 



COORDINATION OF PARALLEL PROCESSES IN PL/l 

HOWARD S. MODELL, M.S. 
COMPUTER SCIENCE TEACHING ASSOCIATE 

RONNIE G. WARD, Ph.D 
ASSISTANT PROFESSOP IN COMPUTER SCIENCE 

TED fL SP ARR, Ph • D 
ASSISTANT PROFESSOR IN COMPUTER SCIENCE 

UNIVERSITY OF TEXAS AT ARLIN~TON 
ARLINGTON, TEXAS 760I9 

Abstract 

This paper explains procedures to 
coordinate and control parallel 
processes in PL/I under OS/370. The 
necessarv additions to simulate Dijkstra 
P and V operations are discussed. 
Examples are provided to illustrate 
usage of these additions. 

Introduction 

Considerable interest has developed 
in multiple CPU architecture to solve 
distributed rrocessinn problems. The 
use of microprocessors has intensified 
this interest. The difficulties of 
direct program checkout on 
microprocessors has resulted in the 
frequent use of simulations on larger 
machines for initial phases of checkout. 
This simulation approach is even more 
desirable for more complex 
multiprogramming solutions. The 
multitasking capabilities of PL/1 [1] 
suggest that PL/I should be an ideal 
vehicle for verifying multiple CPU 
algorithms targeted for smaller 
machines, as well as for implementing 
production programs. However, PL/I does 
not provide sufficient control 
mechanisms for implementation of 
concurrent processes. The purpose of 
this paper is to present tools fo~ use 
in simulations written in PL/I that 
involve concurrent processes. These 
tools have been utilized extensively, 
and to our knowledge operate correctly. 
This paper does not apply to PL/I 
implementations on machines which 
already provide synchronizing primatives 
via hardware. 

247 

Coordination Tools 

A major source for problems when 
writing a program with concurrent tasks 
is coordinating the tasks with respect 
to their access and usaqe of resources 
(e.q. memory, I/Q devices, etc.). As a 
general rule, it is desirable to 
restrict that access to onlv one task at 
an:v one time. · 

There have been several different 
algorithms or methods proposed as 
solutions to this coordination oroblem. 
One such solution is "Dekker's 
Algorithm" [2], which allows each task 
in turn to enter the critical reqion*. 
(See Figure l} Another solution involves 
the use of the PRIORITY pseudo-variable 
in PL/1. Sefore entering its critical 
region, a task raises its own priority 
to a value greater than that of any 
other task in the program. Thus, when 
the CPU Manager next gives CPU time to 
any task of this job, the t~sk with the 
highest priority will be qiven that 
time. After leavina the critical 
reqion, the task lowers its relative 
priority back to 'its oriqinal value. 
(See Figure 2) 

Both of 
disadvantages 
preclude our 
coordination 
algorithm, for 

these solutions have 
inherent to them that 

usino them as qeneral 
methods. Dekker's 
example, "schedules" 

* Bv "critical region" is meant 
that bl~ck of code which accesses or 
manipulates a resource that only one 
task at a time should be accessina or 
manipulating. 



tasks to enter their critical region on 
a strictly cyclic basis. That is, if 
task number "i" is in the critical 
region now, task number " (i modulo n) + 

l" r n = number of tasks in program J 
will be permitted to enter the critical 
region next. Although this strictly 
cyclic assignment of turns can be 
altered, there is still the potential 
that when task i releases the critical 
region, no other task has asked for it. 
The releasing task must arbitrarily pick 
another task, task "x", for the next 
turn. If task "x" does not need the 
critical region when TURN= 'x', then 
all the other tasks will be locked out. 
In addition, Dekker's algorithm is not 
easily adaptable to more than one 
critical region, and is not adaptable at 
all to a multiple CPU machine. Lastly, 
when a task is waiting to enter the 
critical region, it does this by 
executing a undesirable "spin-loop". 

The use of the PRIORITY 
pseudo-variable also has its 
disadvantages, which while subtle, are 
none the less significant. When one 
task gets control of the critical region 
by increasing fts relative priority, 
this necessarily implies that as long as 
that priority remains high, the CPU will 
remain "in the custody" of that task, 
and therefore, all the other tasks of 
that job will remain READY but 
non-executfnq. This includes tasks that 
are not trying to enter the critical 
region, which is wrong; the only tasks 
that should be suspended are those 
"desiring" to enter the critical region. 
This method also can not be adapted to a 
multiple - CPU machine. 

A more suitable solution to the 
coordination problem is the method 
proposed by Oi.ikstra [3 J which uses 
semaphores and two operators, P and V. 
A semaphore is either a boolean or 
integer variable, logically associated 
with the resource that needs coordinated 
access. Whenever a task "desires" 
access to the critical region/resource, 
it performs a P operation on the 
semaphore for that resource/region. If 
the region is unoccupied (i,e, the 

248 

resource is not being used), then the 
semaphore is set to "occupied", and the 
task proceeds to enter the critical 
region. If the reoion is occupied, then 
the task performinq the P operation is 
suspended. When a task leaves a 
critical region, it performs a V 
operation on the semaphore for the 
region/resource it controls. If there 
is any tasks suspended and waiting for 
that resource/reoion, one is selected 
and reactivated. If no tasks are 
waiting, then the semaphore is reset to 
"unoccupied". In either case, the task 
performing the V can continue execution. 

There are-at least two different 
ways of implementing P and V, one which 
involves actually creating and 
maintaining a queue for suspended tasks, 
and the other which involves essentially 
a test loop. We have already discussed 
the first implementation [4], in which 
we called the procedures PROCUPE and 
LIBRATE. In several months of usage, in 
a variety of simulation programs, [5,6] 
the routines have performed adequately. 

The second implementation is based 
on a different des·cription of P/V [7]. 
In this version, when a task performs a 
P operation, if the resource is not 
available the task enters a test loop in 
which it WAITs for the resource to be 
free, at which time the availability of 
the resource is again checked. If it is 
sttll free, the task acquires it; else 
it WAIT~ again. (See Figure 3) 

Both implementations have their 
advantages and disadvantages. The 
queueing method ha~ the advanta"e that 
some q~eueing discipline other than 
straight FIFO is desired, (e.g. a 
scheme based on task priorities) it can 
be accomplished. The other method has 
the advantage that it is shorter (in 
terms of number of statements }, and may 
be faster in execution since it is not 
performing oueue manipulatii>n. , Thus the 
advanta~es of -0ne implementation imply 
the disadvantages uf the other. As far 
as we have been able to determine, there 
does not seem to be any significant 
difference in execution time of programs 
run usinq first one, then the other set 
of routines. 



The key proble111 that had to ''e 
solved in order to implement these 
routines was the rroblem of makinq the P 
and V procedures act as indivisible 
operations. Another ~ay to state this 
is to state that the procedures for P 
and V are themselves critical regions. 
The solution we devised is to write two 
ALC routines, ENQUEUE and DEQUEUE, which 
do nothing nore than issue ENQ and DEQ 
macros [8] on a single resource. ENQ 
and DE0 are ALC MACRO instructions ~hich 
act tike P and V primatives, 
respectively. When a task wish~s to 
access a resource, it issues an ENQ on 
that resource, · 
naming the resource and the name of a 
riueue. If the resource is alrearly held, 
the task is "entered" into the queue, 
and suspended. If the resource is free, 
the EHQueing task gets possession of it. 
1!hen the task is finished Hith the 
resource, it releases it by issuing a 
DE~ macro, naming that sa~e queue. If 
the Gueue is occupied, the first task 
vithin is dequeued and reactivated. The 
DEQueing task continues, regardless. 
The main body of the ? and V procedures 
are "~racketed" ~Y calls to these ALC 
routines, and only the first task to 
enter P or V gets to execute it; any 
"late-comers" are suspended until the 
executing task performs a DEQ, releasing 
the P or V procedure. 

This approach to obtaining 
indivisibility p•rallels that developed 
by ricGowen and Kelly [9]. They also use 
ALC ENQ/DEQ macros to bracket the 
critical region within REQUEST and 
RELEASE routines (similar to PROCURE and 
LIBRATE). Their implementation of 
ENQ/DEQ provides for mutual exclusion 
for only those tasks REQUESTing a 
particular resource. While in our 
implementation, only one task can 
execute PROCURE or LIBRATE at any one 
time, regardless of the resource. Their 
implementation provides for separate 
allocation and deallocation routines for 
each resource. In our first 
implementation [ 4 ], the same queueing 
strategy is used for all resources. In 
our second implementation, (see Figure 
3) the environment is totally 

249 

competitive; when a resource is freed, 
all tasks "rueued" for it are released 
to trv for it. Our routines, while less 
qeneral, are somewhat simpler to 
understand and require less user 
initialization of special data 
structures. 

µhile the ~xclusive use of a 
resource by a task is a common situation 
in concurrency simulation programs, it 
is not the onlv manner in which 
concurrent tasks can use resources. 
Provided that the resource is quarenteed 
to remain unaltered by tasks which 
access it (e.g. a rea~-only-dataset), 
there is no reason why more than one 
task cannot be accessing that resource 
simultaneouslv. That is, the tasks 
share the , resource. The only 
restriction on this type of resource 
usane is that if the types of "users" 
are mixed (i.e. some who need exclusive 
access, and some who can share the 
resource), then the coordination 
routines need to be modified so that the 
type of access is taken into account 
~hen allowing a task to enter the 
critical region. 

The criterion for entry into the 
critical region now becomes: if one 
task who can share the resource has 
control of it, other sharers can be 
allowed to enter the critical region at 
the same% time, while any exclusive-use 
task that requests entry to the region 
is suspended·. On the other hand, if an 
exclusive-user is in the region, th~n 
everyone else requesting entry to the 
critical region is suspended. 

We have implemented a pair of 
ushared access" coordination routines. 
We used the names PROCURS and LIBRATS to 
distinguish them from the 
exclusive-access-only routines. (See 
Figure 4) 

It must be noted that with all four 
routines, PROCURE, 
LIBRATE, PROCURS and LIBRATS, the user 
is responsible for using the routines 
properly. This entails the allocation 
and initialization of the data 
structures that the routines work on. 
For PROCURE and LIBP.ATE, the correct 
data structure is a PL/1 EVENT variable 



for each resource for which coordination 
is desired, and each of these EVENTS 
must be initialized to "complete" (i.e. 
'l'D). PROCURS and LIBRATS, on the 
other hand, act upon a slightly more 
complicated structure. for each 
resnurce for which coordination is 
desired, the user must allocate a data 
structure composed of two EVENTs -- one 
for shared-access, and one for 
exclusive-access and a counter for 
the number of shared-access users who 
currently control the resource. Both 
events must be i~itialized to 
"complete", and the counter must be 
initially zero. 

Regardless of which pair of 
routines is used, the programmer must 
not modify the data structures i.n any 
way. Once initialized, only the 
coordination routines are to operate 
upon those data structures. Also, the 
rrogrammer is currently responsible for 
insuring that each PROCUR has a LIB~AT. 
(See [ 4] for suggestions on a possible 
solution to this problem.) 

Applications Of Coordination Tools 

In th• ten months since the design 
and implementation of these coordination 
routines, they have heen utilizedquite 
extensively. They have seen particular 
exercise in two simulation projects 
cairied out at UTA. 

The initial project ~as carried out 
as a class assignmentJ and involved 
simulating a hypothetical operating 
sys tel'l [ 5 ]. The problem was to write a 
simulation of an operating system which 
controlled two "card readers", two "line 
printers", a "drum" for secondary 
storage. There w•re also a "loader", 
"drivers" for each of the "I/0 devices", 
and three "job initiators". "Input" and 
"Output" ~ere allowed to occur 

250 

concurrently, both within and without a 
"job". In one particular desion, 
semaphores were associated with each 
"device", "driver", and other resource. 
PROCURE and LIBRATE were incorpora~ed 
into two lar~~r routines~ P and V, which 
operated on counting semaphores (the 
semaphore can take on any integer value, 
with O as the threshold for oueueing), 
and maintained a "future events list". 

The second project was the subject 
of a graduate research project in 
Artificial Intelligence [ 61. The 
research involved the desion of routines 
for computer image feature extraction 
which used parallel processing to speed 
up the extraction process. The 
algorithm that was tested via the 
simulation involved dividing the 
digitized image being stanned into 
3-point-by-3-pbint arrays, and 
initiating multiple tasks to analyze 
them, one task to one array. As there · 
were several resources ·common to all 
tasks, the tasks had to be coordinated 
with respect to their access to those 
resource~. This was accomplished by 
associating semaphores with each 
resource, and_brackettina the code in 
which access occurred. wt th PRaCURE and 
LlBRATE. 

Conclusions 

The PROCURE, LIBRATE~ PRDCURS and 
LIBRATS routines .de~cribed in this paper 
enable general purpo•e coordi~ation of 
tasks in PL/1. llithin the limits of our 
ability to accurately trate. the 
execution behavior of the progr,ms we 
have concluded that our 'implementations 
do properly coordinat~ concurrent task~. 
~iving both mutual exclusion a~d shared 
access to critical resources. The 
suitability of PL/1 ror verifi ca ti pn ~-nd 
implementation of . multitaskinn 
algorithms is thereby enhanced. 



In MAIN: 
DCL (Cl,C2,TURN) nINARY(15); 
Cl,C2 = O; TURN = l; 

In task #i (where i -v= ,i): 
c i = 1; 
DO \!HILE( Cj = 1); 

IF TURN-v=i 
THErJ DO; 

END; 

c i = 0; 
DO \.!HILE(TURN-v=i); 
END; 
Ci = 1; 
END; 

/* critical section */ 
c; = 0; 
TURN = .i; 

/* remain~er of task*/ 

FIGURE 1. Dekker's AlgorithM. 

PRIORITY = 100; 
/* statements which consititute */ 
/* critical section */ 

PRIORITY = 0; 

FIGURE 2. Using PRIORITY Psuedo-var
iable to obtain exclusive access. 

251 

PROCURE: PROCEDURE(SEtl ADDR) 
OPTI0NS(REENTR/\NT); 

DCL SEM AODR POINTER, 
RINXRY SEM EVENT 

SASED(SEM AnDR), 
(COMPLETION) BUILTIN: 
(EN0UEUE,DEQUEUE) ENTRY 

OPTIONS(ASM INTER) EXT; 
CALL ENQUEUE; 
DO \.!HILE 

( COMPLETION(SEM ADDR->BINARY SEM)); 
CALL DEQUEUE; - -
WAIT(SEM AnDR->BINARY SEM); 
CALL ENQVEUF.; . -

END; /* OF DO-WHILE */ 
COMPLETI0N(SEM ADDR-~BINARY SEM)='O'S; 
CALL DEQUEUE; - -
RETURN; 
END PROCURE; 

LIBRATE: PROCEDURE(SEM ADDR) 
OPTI OtlS (REEN TPANT) ; 

DCL SEM ADDR POINTER, 
BINXRY SEM EVENT BASED(SEM ADDR); 

DCL (COMPLETION) BUILTIN, -
(ENQUEUF.,DEOUEUE) ENTRY 

OPTIONS(ASM INTER) EXT; 
CALL ENQUEUE; 
COMPLETION(SEM ADDR->BINARY SEM)='l'B; 
CALL DEQUEUE; - -
RETURN; 
END LIBRATE; 

FIGURE 3. PROCURE AND LIBRATE 



PROCURS : PROC( SEM_ADDR, REQ) OPTIONS( REENTRANT); 

DCL SEM_ADDR PTR, 

1 SEMAPHORE BASED( SEM_ADDR), 

2 EXCL EVENT, 2 SHR EVENT, 

2 # SHR FIXED BIN(15), 
(COMPLETinN) BUILTIN, REQ CHAR(l), 
(ENQUEUE,DEQUEUE) ENTRY OPTIONS(ASM INTER) EXT; 

CALL ENQUEUE; 
IF REQ = 'S' /* I.E. IF USER WANTS SHARED ACCESS */ 

THEN .DO; /* SHARED ACCESS OF RESOURCE */ 
DO WHILE( COMPLETION(SEM ADDR->EXCL)); 
CALL DEQUEUE; HAIT(SEM ADDR->EXCL); CALL ENQUEUE; 
END; /* OF DO-WHILE *7 
COMPLETION(SEM AODR->SHR) = 'O'S; 
SEM ADDR-># SHR = SEM ADDR-># SHR + 1; 
CALr DEQUEUI; RETURN;- -

END; /* OF THEN DO */ 
ELSE DO; /* EXCLUSIVE ACCESS TO RESOURCE */ 

DO ~HILE(~COMPLETION{SEM ADDR->EXCL) I 

END PROCURS; 

~coMPLETION(SEM-ADDR->SHR)); 
CALL DEQUEUE; -
WAIT(SEM ADDR->EXCL,SEM ADDR->SHR); 
CALL ENQUEUE; -

END; /* OF DO-WHILE */ 
COMPLETION(SEM ADDR->EXCL) = 'O'B; 
CALL DEQUEUE; RETURN; 
END; /* OF ELSE DO */ 

LIBRATS: PROC(SEM ADDR) OPTIONS(REENTRANT); 
DCL SEM ADDR PTR, 

1 SIMAPHORE BASED(SEM ADDR), 
2 EXCL EVENT, 2 SHR-EVENT, 
2 # SHR FIXED BIN{15), 

(COMP[ETION) DlJILTIN, 
(ENQUEUE,DEQUEUE) ENTRY OPTIONS(ASM INTER) EXT; 

CALL ENQUEUE; 
IF COMPLETION ( SEM ADDR-> EXCL)~=COMPLETION( SEM ADDR-> SHR) 

THEN IF COMPLETION(SEM ADDR->EXCL) -
THEN COMPLETION(SEM ADDR-> EXCL) = '1 ''.'.; 
ELSE DO; /* RELEASE OF SHARED RESOURCE */ 

SEM ADDR-> # SHR = SEM ADDR-> # SHR - 1; 
I F SE M ADD R-:-> # SH R = 0 -

THEN COMPLEiION ( SEM ADflR-> SHR) '1 'B; 
END; /* OF ELSE DO */ -

CALL DEQUEUE; RETURN; 
END LIBP-ATS; 

FIGURE 4. ROUTINES FOR SHARED ACCESS. 

252 



References 

[1] IBM PL/1 CHECKOUT AND OPTIMIZING 
COt1PITTP LANGUAGE RD'TRTMCE MANUAL, 
GC33-0009-3 

[2] Tsichritzis,D., Bernstein, P 
OPERATING SYSTEMS, Academic 
1974, flP 32-33 

.. 
Press 

[ 3 ] Di .i ks tr a , E • IL , " Cooper at i n g 
Sequential Processes", PROGRAMMING 
LA~GUAGES, F.Genuys(ed.), Academic 
Press, 1968 pp.43-112 

[4] t1odell, H.S, '!ard, R.r,,, "Language 
Additions To PL/1 For Controlling 
Concurrent Processes", Proceedings 
of the International Conference on 
Design and Implementation of 
Algorithm--rc--Languages, JONE 1976.-

[ 5 ] MacEwen, G.H., A 
Project For A Course 
Systems, -Queen's 
Kingston, Canada 

Programming 
In Orerating 
university, 

[6] Model 1, H. S., Image Feature 

[ 7] 

Extraction Usi~ Para 1 lel 
Processing, Master'S thesis, OTA, 
1976 64 r;p. 

Presser,L., 
Coordination", 
SURVEYS, \fol 
[lp.21-44 

"Multiprogramming 
ACM COMPUTING 

7, Mo.1, March 1975, 

[8] IRM OS/370 SUPERVISOR AND DATA 
MANAfiEMENT SERVICES -MANlJAL; 
#GC28-6646 

[9] McGowen,C., and Kelly,J., TOP-DOWN 
STRUCTURED PROGRAMMING TECHNIQUES, 
Petrocelli/Charter Puhl., NY 1975, 
pp 164-203 

253 



ON THE TIME REQUIRED TO PARSE AN ARITHMETIC 
EXPRESSION FOR PARALLEL PROCESSING 

Ross A. Towle 
Federal and Special Systems Group 

Burroughs Corporation 
Paoli, Pa. 19301 

Richard P. Brent 
Computer Centre 

The Australian National University 
Canberra, Australia 

Several algorithms that attempt to reduce the 
tree height of a parse tree of an arithmetic ex
pression by using associativity and coamutivity 
have been proposed t l] - (5J • Baer and Bovet 
t:il conjectured that their algoritlun obtained 

a minimal-height tree, Later Beatty (2] proved 
this conjecture. Without distributivity, the 
upper bound on the tree height is: 1 + 2d + 
{log2~where n is the number of operands and d 

is the depth of parenthesis nesting [61 • The 
selective use of distribution reduces the up_per 
bound on the tree height to r 4 log < n.;.1 >1 L 7) , 
Several algorithms which use distribution have 
been proposed t 7] - [ 9J • 

Using the algorithms of Beatty C2] and Brent 
[7J we can show that the use of associativity 
and colllllutivity adds O(N) steps to the parsing 
process, while the use of associativity, coamu
tivity, and distributivity adds O(N log2 N) 
steps. Both algorithms work on parse trees pro
duced by ordinary compilers and the times quoted 
are in addition to the ordinary parsing time. 

We shall assume that an arithmetic expression 
contains N tokens (identifiers, constants, and 
operators), In calculating the number of opera
tions required to parse an expression we shall 
count each instance of an arithmetic operation, 
logical operation, push on stack, pop stack, and 
store as one operation, 

The results are sulllll&rized in the following 
theorem: 

Theorem t10J Let E be any arithmetic expres
sion with N tokens. The additional time to parse 
E is at most: 1. 13N + 8 by Beatty's algoritlun 

2. 31N ~2 N ~ Brent's algorithm 

References 

(1) J,L, Baer and D.P, Bovet, "Compilation of 
Arithmetic Expressions for Parallel Compu
tations", Proc. 1l!f Congress ~. 
pp. 340-346. 

254 

(2) J.C. Beatty, "An Axiomatic Approach to Code 
Optimization for Expressions", Journal gJ_ 
~ ~(October, 1974), pp.613-640, 

(3) J. Hellerman, "Parallel Processing of Alge
braic Expressions", IEEE Trans. on Electron
ic Computers (January, 1966), pp. 82-91, 

(4) J.S. Squire, "A Translation Algorithm for 
Multiple Processor Computers", Proc ACM 
18th Nat. Conf,, 1963. -- --

(5) H.S, Stone, "One-pass Compilation of Arith-
metic Expressions for a Parallel Processor", 
Conn, .ACM (April, 1967), pp. 220-223. 

( 6) D, Kuck and Y. Muraoka, "Bounds on the Paral
lel Evaluation of Arithmetic Expressions 
Using Associativity and Commutivity",S!!.. 
Informatica (August, 1974), pp, 203-216. 

(7) R.P. Brent, "The Parallel Evaluation of Gen
eral Arithmetic Expressions", Journal of ttle 
ACM, (April, 1974), pp. 201-206. 

(8) Y. _Muraoka, Parallelism Exposure ~ Exploit
~~ Programs, Dept. of Computer Science, 
University of Illinois at Urbana-Champaign, 
Report 424, (February, 1971), 236 pp, 

(9) R.P. Brent, D,J, Kuck, and K.M. Maruyama, 
"The Parallel Evaluation of Arithmetic Ex
pressions without Division", IEEE Trans, on 
Computers, (May, 1973), pp. 532-534-.-- -

(10) R.A. Towle, Control~ .Eil! Dependence.!£!. 
Program Transformations, Dept. of Computer 
Science, University of Illinois at Urbana
Champaign, UIUCDCS-R-76-788, (March, 1976), 
113 pp. 

This work was sponsored by the National Science 
Foundation through grant US NSF DCR73-07980 A02 
while the author was at the University of 
Illinois. 



LAU SYSTEM SOFTWARE : A HIGH LEVEL 
DATA DRIVEN LANGUAGE FOR PARALLEL PROGRAMMING 

by 
o. Gelly, et al, Dpt of Computer Science, ONERA CERT, BP 4025 Toulouse, France 

Sullllnary 

The LAU parallel system [I] is a contribution 
to the development of the software concept of sin
gle assignment [2] to parallel programming langua
ges and parallel processor architecture[31 
This paper emphasizes some points among the main 
features of the high level language LAU : 

Objects. A new attribute takes place in th~ object 
definition, and is defined as a set of environmen
tal rules which tell HCM and WHEN the object may 
be manipulated by the program statements. The 
standard implicit value for this attribute is the 
"single assignment" rule, i.e. : any object may be 
assigned at most once during program execution. 
This rule leads to a parallel and deterministic 
execution of statements based on the "readiness" 
of their operands. For example, X=A+B placed any
where in the program may be computed as soon as A 
and B have their (unique) values. 

The user may also define "non standard" objects 
using a special collllnand CREATE. The "environment" 
section characterizes the possible manipulations 
of the objects. The environmental expression makes 
use of the actual values of an input parameter su
blist and operators that may be compared to Camp
bell's Path expressions. The object BUFFER defined 
below has its environment characterized by the 
couple (object operating on BUFFER, operation re
quested). WHO and WHAT will participate to the 
environmental expression, which means that : 
- A WRITE operation, from Pl, must occur first 
- A sequence of one READ operation, from any one 
and one WRITE operation from P2, may follow. 
- A COUNT operation from P3, if no more read re
quests at that time, will definitely close the ma
nipulations of BUFFER. 

CREATE BUFFER (WHO,WHAT,QTY) (ANS) ; 
IN : WHO,WHAT : EVENT ; QTY : INTEGER 
OUT : ANS : INTEGER ; 
LOCAL : BUFF, N : INTEGER ; 
DO : CASE WHAT 

(WHAT = READ) : ANS = OLD BUFF 
(WHAT = WRITE) BUFF = QTY ; 

COUNT = OLD COUNT + 
(WHAT = COUNT) ANS = OLD COUNT ; 

END CASE ; 
SYNC ON <WHO,WHAT> 

BY <Pl ,WRITE>. (<*,READ>.<P2,WRITE>) 
<P3,COUNT> 

END CREATE; 

Statements. All statements must be considered as 
assignment statements. A statement is semantically 
defined by Orie or more Data Production Sets (DPS) 
which consist of a couple (set of statements S, 
set of objects to be computed, 0). 
Simple assignment statements are quite conven
tional, except that their semantics is purely 
directed by the data. 

The EXPAND statement is simply an extension of 
vector operations, equivalent. 

The CASE statement looks like a general CASE OF. 
A run time, one DPS will be activated, and will 
produce the object Outputs corresponding to the 
CASE statement. 

255 

CASE (X>O):C•X;B=TRUE CASE 
(X=O) :C=O; 
(ELSE):C=-X;B=FALSE; CTL 

END CASE; ..._--~-~ 

(Exp I): (Exp2): 
• • • 

DPSI DPS2 DPS 

END CASE 
DPSi : S statements nested in EXPi 

O all objects assigned between CASE and 
END CASE 

If X=O, then CASE assigns C=O B=NIL by DPS2 
The loop statement has been designed to make 

iteration easy to devise in a parallel asynchro
nous environment. A loop header controls the value 
of a loop event, set initially to START and then 
at each iteration and activates the corresponding 
DPS. For any object in the OUT LOCAL section, a 
"local environment" is created by defining OLD X 
as the previous value of X, and NEW X or X as the 
value to be assigned at the current DPS activa
tion. An implicit DPS STOP terminates the loop 
execution by assigning the actual outputs of the 
loop. LOOP 

NEW 

CTL event 
Header 

DPS 2 

values 
• • • 

LOOP FIBN 
OUT:X,Y; 
LOCAL:N; 
(START) :N=l;X=2;Y=I; 

OLD FIBN=NEXT; 
values 

(NEXI):CASE(OLDN=IO): 
STOP LOOP FIBN 

(ELSE): 
X=OLDX+OLDY 
Y•OLDX; 
N•OLDN+I; 

END CASE 
END LOOP FIBN ; 

As a conclusion, this language has been tested 
on about 50 problems and makes parallel program
ming easy to write and debug. 
A compiler produces object code to the simulator 
(2). 

References 

[I] D.Comte ,G.Durrieu,O.Gelly ,A.Plas,J .C.Syre 
TEAU 1-9, Technical Reports ,Authors' address. 

[2] A.Plas, et al., LAU System architecture, 
These Proceedings. 

[3] Tesler L.G.,and Enea,H.J. A language design 
for concurrent processes, Proc AFIPS SJCC68 
p. 403-408. 



A HIGH LEVEL LANGUAGE ORIENTED MULTIPROCESSOR+ 

Mario F. de la Guardia and James A. Field 
Department of Electrical Engineering 

University of Waterloo 
Waterloo, Ontario, Canada 

Abstract -- A stack organized multi-processor 
whose instruction set is oriented to high level 
language processing is described. The proposed 
areas of application are communications control 
and industrial process control. The memory is 
organized on a segment basis so that procedure 
calls, parameter passing, and process suspension 
and activation have very low overheads. Dijkstra 
semaphores are used to co-ordinate all signalling 
activities between processes, All processing of 
semaphores, ready lists, etc., is performed by 
hardware (firmware) allowing the user to program 
the machine in a high level language. 

Introduction 

There are many computer controlled systems in 
which the control activity logically consists of 
several co-operating parallel operations. 
Examples are industrial process contro~, and 
communications control activities such as message 
switching and front end processors for 
teleprocessing. In such systems one can identify 
processes that could be performed in parallel, 
with little interaction, on the computer. 
However, until recently the only computers 
available (with suitable cost to performance 
figures) for such applications were the standard 
single processor minicomputers. In such 
processors no advantage could be gained.from the 
parallel nature of the problem, and indeed, the 
frequent necessity of producing pseudo-parallel 
service to meet the real time requirements placed 
a significant execution time and/or memory space 
overhead on the system. Now, however, the general 
availability of microprocessors has made it 
feasible to consider using a set of co-operating 
microprocessors to perform the desired function. 
In some situations the power of an individual 
microprocessor will be well matched to the 
requirements' of an individual process. In such 
cases a set of loosely coupled microprocessors 
will conveniently and effectively meet the total 
system requirements. In other cases such 
divisions are not possible and a more tightly 
coupled and more interactive configuration of 
microprocessors is required. Several authors have 
discussed such possible configurations of mini 
and microprocessors with the goal of greatly 
improved service to cost ratios compared to single 
processor systems [1-4]. Unfortunately, the 
development· and general applications of such 
systems suffers from a serious handicap: neither 
the basic hardware nor software (language) really 
"thinks" parallel. · 

+This work was supported by the National 
Research Council of Canada. 

256 

It was desired to develop a system, probably 
microprocessor based, that could exploit current 
LSI technology for systems of the above parallel 
nature, The approach was to consider the current 
software and hardware limitations to such parallel 
activity, and to develop a structure that did not 
contain these restrictions. 

Consider first the software problems: these 
are language and operating system. Most mini and 
microprocessor systems are programmed at the 
assembly language level. This is frequently 
justified on the basis of program efficiency. 
However, given the current state of compiler 
development there is no reason why efficient code 
cannot be generated by an appropriate high level 
language (HLL) compiler for any processor in 
question. True it may require support by a larger 
computer, and for highly optimized code may be 
slow, but this is easily justified by the higher 
portability, reliability and maintainability of 
the resulting program, This is particularly true 
where the program will be used for a considerable 
period of time after being developed. It might 
be noted that such HLL programming is being very 
successfully used in the SL-1 PBX telephone 
switching computer [5]. 

What form should the HLL take? A safe choice 
would seem to be a block structured language along 
the Algol model. Such languages have been widely 
used and studied. Consequently, a good 
understanding exists of what data structures are 
required, what hardware features are needed, and 
very importantly, how compilers should be written. 
These languages also support recursion, which as 
well as being a useful feature, requires many of 
the mechanisms that are required to support 
parallel process execution, and hence, such 
languages are logically and conveniently 
extendable to parallel concepts, Current planning 
is to use a modification of the Algol-W language 
[6]. (One modification would be the deletion of 
the goto, thus no.t only forcing more structured 
coding, but also resulting in a more efficient 
compiler [7],) 

With respect to operating system software, 
there should be none. Features such as 
schedulers, loaders, I/O handlers, etc., are 
software patches between the user language and 
the hardware. With the availability of firmwar.e 
support they could, and should, be made 
transparent to the user. 

Turning now to a consideration of the 
hardware, the most obvious feature is that the 
hardware should support the programming language. 
When using a HLL with conventional machines the 



operations of procedure call, actual parameter 
passing, and process suspension and restart have 
high overheads. If the processor has machine 
language instructions specifically related to 
these, and other complex HLL constructions, more 
efficient operation will obviously result. 
Further, by closely matching the hardware to the 
language, the operations of the compiler closely 
approach those of a traditional assembler; there 
is a machine instruction for every major language 
construction. (However, the final step to direct 
execution of the HLL is not being considered at 
this time. HLL has considerable symbolic 
inefficiency compared to a well designed machine 
code, e.g., a HLL program occupies at least the 
same amount of program store, and requires more 
decoding operations, than HLL oriented machine 
code. Thus more program store, and either more 
decode hardware or slower execution would result.) 

For the general capabilities outlined above 
for the hardware, it appears that provision of the 
services by firmware may be the best solution. 
Current planning is that such firmware may be 
supplied by microprocessors with read only memory. 
However, the actual mechanism is not significant, 
and in the following sections no distinction is 
drawn between firmware and hardware. 

The general structure of the proposed machine 
is shown in Figure 1. It allows several processor 
elements but will operate with only one with no 
system changes. A key component is the ready list 
and priority structure. This is the mechanism 
that allows parallel execution of processes. It 
services both input/output and software 
interrupts, and maintains the list of processes 
awaiting processor availability. This is done via 
the Dijkstra P and V operations [8]. (The same 
techniques are used to share mutual data areas.) 
It is accessible by all processors, but with 
appropriate locks to prevent simultaneous access. 
It will be discussed more fully later. 

110 AND PRIORrTY CONTROL BUSS 

Figure 1. Computer structure, 

Input/output devices are seen as consisting 
of two components, the controller and the memory 
port. For simple devices (one word at a time), 
the controller is sufficient. For high speed 
devices the controller is associated with a 
memory port, and it co-ordinates the'flow of 
information through that port. Interrupts 
generated via the I/O controllers will be sent to 

257 

the lowest priority processor via the ready list 
and priority unit. 

The memory is considered to consist of two 
sections: the program store and the data store. 
This distinction is made because the program store 
contents are fixed by the compiler, while the data 
store contents are dynamic. Consequently it is 
convenient to use different addressing mechanisms, 
and hence, logically, if not physically, separate 
memories. The instructions are variable length, 
consisting of 8 bit elements, and are fetched 16 
bits at a time. This operation is quite 
conventional and will not be considered further. 
The significant feature is the data memory 
organization. The basic approach is to use a 
stack organization. However, it is extensively 
modified to give good performance in the high 
overhead areas of procedure call and process 
suspension and restart. This will be considered 
in detail in the next two sections. It should be 
noted that several of the concepts discussed are 
used in the Burroughs computers [9]. However, the 
Burroughs machines are large scale systems. Here 
the emphasis is on small machines with significant 
real time parallel activity and frequent proce~s 
suspension and restart. 

Stack Organizatiort of Data Blocks 

The concept of using a stack oriented data 
structure follows from the choice of a block 
structured language since such languages release 
data blocks in the reverse order to creation, 
i.e., a first in last out stack. There are 
actually four distinct operations in the system 
that may be conveniently organized around a stack 
structure. These are (1) allocating space for 
data blocks, (2) recording return environments for 
procedure calls, (3) evaluating arithmetic 
expressions, and (4) the passing of parameters to 
called procedures. Neglecting for the moment the 
question of multiprocess operation, we will 
consider how these four services may be combined 
in a single stack discipline. 

Experience with compilers for block structure 
languages indicates that (1) and (2) above can be 
conveniently combined into a single stack. The 
first items on the stack are the saved environment 
parameters, followed by the data area for the 
block or procedure. Similarly, investigations of 
direct HLL execution, or HLL oriented machines 
have used such an organization [S,9,10,11]. All 
these implementations consider the address of a 
variable to consist of a number pair: one i.umber 
selects the data block via a display and the other 
locates the item within the block. 

As is well known, a stack may be used for the 
efficient evaluation of arithmetic expressions in 
the machine code equivalent of Polish postfix 
notation. This form of code is not only simple 
for compilers to generate, since it avoids the 
problems of register assignment and intermediate 
result storage associated ~ith register oriented 
computers, but is also a compact code since only 
a few instructions require memory addresses. The 



simpler compiler is not insignificant in view of 
the earlier remarks regarding the desire for an 
assembler-like compiler. That the arithmetic 
evaluation stack can be conveniently combined with 
the data block stack has been demonstrated 
[5,9,11]. The ·disadvantage of using the same 
stack for expression .evaluation is speed. If a 
sep-arate stack were used it could be composed of 
higher speed registers than the normal memory 
cells. Thus having only one stack apparently 
limits the.arithmetic operations to memory speed. 
However, this can be avoided, if necessary, by 
providing a few high speed registers to serve as 
the top few stack locations. This would allow 
most arithmetic expressions to be evaluated 
without using (slow) memory for stack area. When 
it is necessary to advance the stack pointer to 
create a new data block, the content of these 
registers would be automatically stored in memory. 
If the registers are only used during arithmetic 
operations they would seldom be forced into 
memory. Further, if once stored into memory they 
are never reloaded, such register saving puts very 
little overhead in the system operation. The key 
item is to prevent repeat loading/storing of these 
registers in memory and there must, consequently, 
be no attempt to keep them full. 

The same stack can also be used for passing 
parameters during a procedure call. This is done 
by leaving a "hole" in the stack (by incrementing 
the stack pointer) for later recording of the 
calling environment, and then placing the 
parameters on the stack. (This is especially 
convenient if the actual parameters are 
expressions since they must be evaluated on the 
stack.) The procedure c.alled then considers this 
section of the stack as the initial part of its 
data block. One point must be noted; the compiler 
must do complete checking as to the number and 
type of arguments, and their method of being 
passed. (This is not an unreasonable request to 
make of a compiler in any system.) The.methods 
of passing parameters being considered are value, 
result and array. Result does not place items on 
the stack; rather it copies items off the stack 
after the return from the procedure call. Call
by-name could be implemented but does not appear 
to be of value for the applications being 
considered. 

As an example consider the program fragments 
shown :in Figure 2. The procedure demo has three 
formal parameters and four local variables. In 
the calling sequence the machine instruction space 
advances the stack pointer by four words leaving 
space for the later recording of the calling 
environment (see Figure 3). The current values 
of the two value formal parameters u and v are 
then generated on the stack. The machine then 
executes the instruction pbegin 3,2,11 (which 
corresponds to the procedure declaration and the 
enclosed integer type declaration). Here the 
machine uses the non-result formal parameter 
count (i.e., 2) to locate the environment save 
area address relative to the stack pointer and 
record the appropriate values, and uses the block 
size (i.e., 11) to set the stack pointer to the 
next free location. The body of the procedure is 

258 

then executed. When the procedure is complete 
the result formal parameter w is placed on the · 
stack. The machine code pend then releases the 
data block and transfers the specified number (1 
in this case) of result parameters from the top
of-stack before block deletion to the top-of
stack after block deletion (a). The .P!!l!. machine 
code in the calling block then stores the value in 
the actual call-by-result parameter. 

In the implementation of block structured 
languages on conventional computers the mechanisms 
of acquiring/releasing data blocks, and the 
transferring of parameters to procedures, have 
been high overhead areas. It can be seen that the 
above approach has placed the overhead operations 
in the hardware where it can be performed more 
efficiently than in conventional software. 

Another area of potential high overhead is 
the maintaining of a valid display. The display 
must be updated on every block or procedure entry 
or exit. In computers with insufficient base 
registers to maintain the display, this usually 
requires that a new copy of the display be 
generated for every new data block created [12]. 
This is partially due to exiting problems created 
by uncontrolled use of goto. In the proposed 
system goto is not permitted and there are 
sufficient base registers for the display. Under 
these conditions the only slow operation is 
procedure exit. Consider first the block entry 

lll.L program 

procedure demo 
(integer value u,v; 
integer result w); 

begin integer p,q,r,s; 

end demo; 

demo(a,b*c,d); 

machine code 

demo pbegin 3,2,11 

push w 
pend 1 

space 
push a 
push b 
push c 
mult 
call demo 
.P!!l!. d 

Figure 2 • Example of actual and formal 
parameter association. 

(a)This transfer will be quite rapid if the stack 
is augmented with high speed registers. In 
that case no data movement is needed; rather 
the various stack pointers are modified. 



DYNAMIC POINTER 
RE TURN ADDRESS 

I 
STACK ~NT£111 
(AFTER S!!:!:.I 

t 
STACK POINTER 
(AFTER .em.utl 

Figure 3. Data block structure for the 
procedure ~· 

and exit operations. When a block at level n is 
entered control must come from level n-1. Thus 
the display is correct up to level n-1, and when 
the level n data block is created, all that must 
be done to the display is put the address of the 
new block in the nth display register. At block 
exit no action is needed since the display is 
already valid for level n-1. With respect to 
procedure calls, consider the enclosure tree shown 
in Figure 4. Suppose a call is being made from 
block x to some procedure. The procedures that 
may be referenced are marked with an asterisk. 
Now, at each of those locations the display is 
correct up to the previous level, and only the 
address of the new data block must be inserted. 
However, when the called procedure terminates, 
varying amounts of the display must be regenerated 
to restore the environment of block x. This 
restoring is done by tracing back the static 
pointers in the environment area of the data 
blocks. The nwnber of levels to be restored is 
given by (level of block x - level Qf called 
procedure+ 1). In normal circumstances this is 
quite small and will be done rapidly. One memory 
reference must be made to obtain each value of the 
display to be restored. 

Multiprocess Stack Organization 

The above approach is quite satisfactory for 
a single process system. However, when there are 
several parallel processes, each must have its own 
stack since each process will be dynamically 
acquiring and releasing data blocks. In 
conventional systems this is handled by using a 
memory allocation routine, and a pure stack 
allocation technique does not result. Rather a 
process explicitly requests space for a new block 
from the allocator routine, and then explicitly 
releases the block to the allocator routin.e on 
block exit. This means the stack for a given 
process may be fragmented if other processes make 
intervening requests. This creates difficulties 
in the use of the stack for argument passing and 
expression evaluation due to the need for 
mechanisms to ''bridge" over the "gaps" created by 
the non-sequential allocation. The system also 
requires the services of a "garbage collection" 
routine to reassemble small fragments of memory 

~ O~ISPLAY •• ~i"/•• 
2 / '"' ' . . . . 
. - ... C\. /!"'. 

/..~1 "'· 1 ./"'. ./"' . . / 

Figure 4. Enclosure tree indicating 
procedures accessible to block x. 

space into usable blocks. As the extensive 
literature on this latter item indicates, it is 
a non-trivial task when using conventional 
software methods. Generally speaking, software 
memory allocation schemes add considerable 
overhead time to program execution. 

Another troublesome feature of multi-process 
operation is that a process may be suspended and 
then re-activated. During the idle period the 
processor will be assigned to some other process. 
This requires that the display registers be saved 
when the process is suspended, and restored when 
it is re-activated. Since in many applications 
the running time of a process between activation 
and suspension may be quite short, the saving and 
restoring of registers could contribute 
significant overhead. To reduce the overheads, 
hardware solutions to the memory allocation and 
process suspension/restart problems were 
developed. The first step is using a memory 
segmenting scheme under which each parallel 
process has an effective memory space extending 
from word zero to its stack limit value. When 
the stack pointer is advanced past the stack limit 
the hardware automatically assigns a new memory 
segment to the process and adjusts the stack 
limit. 

Figure 5 shows the address decoding scheme 
that provides the desired operation. It is 
proposed that the data memory shall consi~t)of up 
to 256 segments of 1024 sixteen bit words lb • 
Each process may have a stack size up to 64 
segments long. Associated with each running 
process are 64 high speed registers (segment 
registers) that hold the true memory address of 
the segments that constit.ute the process' stack. 
Figure 5 shows both the block level address (via 
the display) and the segment address decoding of 
a memory reference instruction yielding the 18 
bit actual memory address. Other addresses, such 
as the stack pointer, bypass the block level 
decoding. 

(b)The number and size of segments is not 
critical to the method. 

259 



INSTRUCTION 

STACK POINTER 

• I IO 

STACK LIMIT 

o:::J 

MEMORY ADDRESS 

Figure 5. Memory address decoding system. 

AB indicated earlier, incrementing the stack 
pointer past· the current stack limit causes the 
hardware to acquire a new segment from the free 
segment pool, place its address in the appropriate 
segment register, and adjust the stack limit. 
Similarly, when the stack pointer drops below a 
segment boundary it would be possible to release 
the segment to the free segment pool and adjust 
the stack limit downwards. It is possible, 
however, that the process would then shortly 
advance the stack pointer across the boundary thus 
creating a r.equest for a segment. To eliminate 
this overhead, it is proposed that .the release of 
vacated segments does not occur until a process 
is suspended, and at that time all full segments 
above the stack pointer be released and the stack 
limit adjusted accordingly. 

The memory segmenting solves the problem of 
multiple stacks and "garbage collection," but it 
has apparently compounded the problem of 
saving/restoring the .display registers on process 
suspension/restart by adding the segment registers 
which must be . treated in the same fashion as the 
display registers. However, the presence of 
segments allows the permanent assignment of save 
areas for these registers. The segment and 
display registers will be saved.in words 0 through 
63 and 64·through 79 respectively of the segment 
pointed to by the initial segment register. Now, 
since a program tends to exhibit "locality" of 
data reference, and further, since it is 
anticipated that many processes will be active for 
only short periods, it follows that most display 
and segment registers will not be required during 
any given process activation. Therefore it is 
proposed that on process reactivation only the 
initial segment register is reloaded. All the 
segments and display registers will have a flag 
set to indicate they are not initialized. If 
during code execution reference is made to,an un-

260 

initialized register a correct copy is fetched 
from the appropriate word of the initial segment 
and the register is marked as initialized. In 
this way only items that are actually needed will 
be restored. With regard to saving the registers, 
a similar technique could be used to mark those 
that have been modified, and then when the process 
is next suspended the marked registers would be 
saved. This introduces a variable delay in the 
suspension process which may be undesirable if the 
suspension is caused by higher priority pre
emption. An alternate method is to record in the 
initial segment save area any modification made 
to a segment or display register at the time the 
modification is made. Then none of the registers 
must be saved when the process is suspended. This 
point needs further study to select the optimum 
method. 

Co-ordinating Parallel Activity 

AB indicated earlier the system allows 
signalling, and mutual resource protection, by 
means of "semaphore" operations based upon the 
P and V operations of Dijkstra. The semaphore 
variables use two words each. The first is the 
semaphore value, and the second is a link to the 
first process waiting (blocked) on that semaphore. 
Figure 6 shows a semaphore with three blocked 
processes. The second word also indicates the 
priority of the blocked process. The actual link 
value is the initial segment address of the 
blocked process. In the initial segment word 80 
is used to continue the chain to the next blocked 
process, etc. Words 81 and 82 are used to save 
the stack pointer and restart address respectively 
of the blocked process. 

VALUE PRIORITY IN)TIAL SEGMENT 

l="'Cll 
16 8 8 

80 81 az 
SEGMENT REGISTERS DISPLAY 

SAVE AREA SAVE AREA 

Figure 6. Semaphore and blocked processes. 

When a V operation is performed on'a 
semaphore the first process on its queue ~s 
transferred to a ready list. There will be a 
separate ready list for each desired priority 
level with the head of the list in a hardware 
register. .Figure 7 shows a typical ready list. 
When a processor becO!lles idle, it selects the top 
item on the highest priority non-empty ready list. 
When a process is released (V operation) whose 
priority is higher than one or more of 'the running 
processes, and ,.no processor is idle, an interrupt 



will be generated in the processor running the 
lowest priority process. The only funct~on of the 
interrupt is to cause the processor to suspend the 
current process, and return it to the top of the 
appropriate ready list. The processor is then 
idle, and will automatically select the highest 
priority process from the ready lists. Obviously, 
to prevent confusion there must be an arbitration 
mechanism so that only one processor at a time can 
manipulate semaphores and the ready lists. 

READY LIST REGISTERS 

PRIORITY 0 PRIORITY I 

D 

Figure 7. Ready list structure. 

PRIORITY 2 

Input/output interrupts will be handled by 
recording the desired priority and the address of 
a semaphore (initial segment number plus 16 bit 
address) in the I/O device controller's registers. 
When an I/O device wishes to cause an interrupt, 
it generates a signal similar to the higher 
priority process ready interrupt. This signal 
causes the lowest priority processor to read the 
semaphore address from the input/output device and 
perform a V operation upon it. It is not 
necessary for the processor to suspend the running 
process unless the V operation releases a higher 
priority process. 

To allow inter-process co1I1111unications it is 
necessary that parallel processes can share co1I1111on 
data. This will be achieved by a running parent 
process spawning a child process with access to 
the parent's data blocks. This is done by 
acquiring an initial segment for the child process 
and initializing its segment and display register 
save area with a copy of the appropriate parts of 
the parent process' save area. For example, 
suppose the child process was at block level 4 and 
hence had access up to block level 3 of the 
parent, and that this occupied (due to recursion 
or large arrays) from segment 0 to part way up 
segment 5, then segment registers 0-5 and display 
registers 0-3 of the child would be copies of the 
parent. The next available segment (6 in the 
example) is the initial segment of the child 
process. The start address of the child is stored 
in location 82, and the value of the initial stack 
pointer address (word 83 of segment 6 in the 
example) is stored in word 81 of the initial 
segment. The initial segment address is then added 
to the ready list of the desired priority and the 
child process is established. To prevent nasty 
accidents due to the parent process releasing its 

261 

segments while the child is still using them, the 
compiler must insert semaphores that prevent such 
release until the child process has terminated. 

Concluding Remarks 

In the above the emphasis has been on the 
data store management used to minimize overhead 
during environment changes. The constructions 
adopted do not in any way inhibit flexible data 
manipulation. For example, it is expected that 
the Algol-W ~ class concept could be easily 
implemented in addition to arrays and simple 
variables. It might also be noted that the 
segmenting features could be extended to program 
store if a dynamic programming environment were 
needed. Further, it would be possible to extend 
the segmenting concepts to allow paging activity 
to/from a secondary store if desired. 

At the moment the design is nearing 
completion on two versions of the processor: a 
microprocessor based system and a microcoded 
logic design. These will be evaluated with 
respect to expected performance and cost. 

[l] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

Reference 

A.C.M. Chen and W.D. Barber, "Multi
Microprocessor System for Industrial Control" 
Summary, Proc. 1975 Sagamore Computer 
Conference on Parallel Processing, August 
1975, p. 105, 

A. Baum and D. Senzig, "Hardware 
Considerations in a Microcomputer 
Multiprocessing System," Digest of Papers, 
Tenth IEEE Computer Society International 
Conference, February 1975, pp. 27-30. 

D. Schutzer, "A Modular Approach to the 
Design of a COIIllilunications Control Processing 
Center - Pros and Cons," Digest of Papers, 
Eleventh IEEE Computer Society International 
Conference, September 1975, pp. 31-33. 

M. Irland and E. Manning, "Multiprocessor 
Simulation Using Minicomputers of Packet
Swi tched Data Networks," Proc. A.I.M. 
International Meeting on Mini-Computers and 
Data Communications, Liege, January 1975. 

B. Kelsh and P. Lewis, "Key to System 
Features: SL-1 Software," Telesis, Vol. 4, 
No. 3, Fall 1975, pp. 91-95. 

N. Wirth and C.A.R. Hoare, "A Contribution 
to the Development of ALGOL," Comm. ACM 9,6, 
June 1966, pp. 413-431. 

A.W. Wulf, "Programming without the GOTO," 
Information Processing 71, North-Holland, 
1972, pp. 408-413. 

E.W. Dijkstra, "Cooperating Sequential 
Processes," in "Programming Languages" (F. 
Genuys, Ed.), Academic Press, New York and 
London, 1968. 



(9) E.I. Organick, "Computer Systems 
Organization: The B5700/B6700 Series," 
Academic Press, New York and London, 1973, 
132 pp. 

(10) L.s., Haynes, "Structure of a Polish String 
Language for an Algol 60 Language Processor," 
ACM-IEEE Symposium on High-Level-Language 
Computer Architecture, University of 
Maryland, November 1973, pp. 131-137. 

262 

(11) M.J. Lutz, "The Design and Implementation 
of a Small Scale Stack Proce$sor System," 
Proc. National Computer Conference, 1973, 
pp. 545-553. 

(12) D. Gries, "Compiler Construction for 
Digital Computers," Wiley, 1971, p. 195. 



THE IMPACT OF APPLICATIVE PROGRAMMING ON MULTIPROCESSING* 

Daniel P. Friedman 
David s. Wise 

Computer Science Department 
Indiana University 

Bloomington, Indiana 47401 

Abstract -- Early results of a 
project on compiling stylized recursion 
into stackless iterative code are reviewed 
as they apply to a target environment with 
multiprocessing. Parallelism is possible 
in executing the compiled image of argu
ment evaluation (collateral argument 
evaluation of Algol 68), of data structure 
construction when suspensions are used, 
and of functional combination. The last 
facility provides general, concise expres
sion for all operations performed in LISP 
by mapping functions and in APL by typed 
operators; there are other uses as well. 

Keywords: Functional combination, 
suspensions, recursion, parallelism, 
compiling, LISP. 

CR categories: 4.32, 4.29, 4.12, 4.13. 

Introduction 

The purpose of this paper is to re
view the implications of recent results 
in recursive programming under a highly 
parallel execution environment. These 
are early results of a project aimed at 
the compilation of stylized purely recur
sive code. They have been presented 
elsewhere [5], but the implications of 
this type of compilation for highly 
parallel target code have not'been 
gathered in one paper. 

As programming tools these results 
appear as enhancements to applicative 
programming, enhancements we find neces
sary to strengthen classic (LISP [20], 
ISWIM [3] & [19]) recursive languages to 
express preimages of classic iterative 
programming techniques. While iterative 
programming is better developed, more 
familiar, and better understood than 
applicative programming, we strongly 
believe that it is unsuited to modern 
programming problems. Iterative program
ming has its roots in Turing's theoretical 
work. It grew with the first computers 
and matured through the development of 
programming languages (FORTRAN and des
cendants) which at first attempted to 
model iterative machine architecture and 
later, because of their universal accep
tance, proceeded to determine that 
architecture. The work of Godel and 

*Research reported herein was supported 
(in part) by the National Science 
Foundation under grants numbered 
DCR75-06678 and MCS75-08145. 

263 

Church, contemporary with Turing's, 
supports another philosophy of program
ming which we feel is required to concep
tualize solutions to problems for imple
mentation on modern hardware. 

We adopt a philosophy requiring all 
programs to be expressed as functions. 
There are no explicit loops (hence no 
goto controversy), no assignment state
ments (only parameter bindings), and no 
explicit input/output functions (instead 
input files are taken as arguments to the 
main program and output files are results 
[9]). The language described below has 
been implemented semantically in a single 
processor environment [10]. The techni
ques described here do not change the 
semantics of the language as far as 
computed results are concerned. They wil~ 
however, alter a program by allowing con
current processors to alter the space 
requirements as necessary to allow compu
tation to proceed. 

An issue not discussed here but 
implicit in all our designs is the style 
in which the programmer is expected to 
express his algorithm. Stylized recursion 
[5] is a methodology of formulating recur
sive programs which encourages good, 
efficient program structure and permits 
effective analysis and transformation 
before the code is executed. It is during 
this compilation phase that we expect 
that parallel processing can be specified. 
The programmer does not concern himself 
with the possibilities and pitfalls of 
parallelisms; the compiler selects the 
parallelisms from his stylized code and 
provides the synchronization of the pro
cesses it has identified. Our control 
structures allow more of this automatic 
parallelism selection than classical 
iterative control structures [16]. 

The remainder of this paper is in 
five parts. Only the last explicitly 
discusses parallelism; the first four 
develop a language with trivial syntactic 
structures but with semantics which have 
only been recently proposed and which 
allow a remarkable degree of parallelism 
in interpreting applicative languages. 
The first section introduces the elemen
tary syntax of the language whose only 
control structure is a function call; 
an obvious parallelism allowed is colla
teral argument evaluation. The second 
feature introduced is functional combina
tion, whereby conceptually parallel 



applications of several functions may be 
dispatched across multiple arguments 
yielding multiple results. Third, an 
extension of functional combination to 
arbitrary instances of the same function 
or the same argument allows a simple 
representation for the concept of "mapping" 
or "pipelined" operations on homogeneous 
structures. The fourth feature, provided 
by suspended argument evaluation in the 
primitive constructor function, allows for 
massive unstructured parallelism in a 
system with thousands of processors. The 
last section develops possible interpre
tations of these features at run-time; the 
reader more familiar with parallelism than 
with applicative programming might scan it 
first in order to cast his interpretation 
of the four language sections in terms of 
something more familiar. 

The Language 

The only structure in the language is 
a parenthesized acyclic list. The 
programmer may use it to construct arrays 
(e.g. a list of lists), trees, and 
directed ordered acyclic graphs (doags). 
(n.b. This does not mean that the run-time 
structures are necessarily linear or 
acyclic -- the compiler may have changed 
them.) Functions that manipulate these 
data may be built from a given set of 
elementary list operations. 

Lists are composed of elementary 
items or other lists. An elementary item 
is either an identifier (which may be 
bound to another value) or an integer 
(which is implicitly bound to itself). 
For example, the five following structures 
are legitimate as data: 

123 
FRED 
(2 3 4 5 6) 
() . 

(FRED (8) (2 MANY () (GREEN)) BANANAS) 

A program is a function which takes as 
data a list of the above sort and generates 
a list or an elementary item as a value. 
The program, however, never uses the 
parenthesis notation explicitly. 

The first programming notation is 
square brackets: a bracketed sequence 
evaluates to the list of the evaluated 
items.of the sequence in order. For 
example, [6 5 4 3] evaluates to (6 5 4 3). 
Let x have the value (2 4 6 8) and let y 
have the value (B A N A N A S) • Then 
[x y] evaluates to 

((2468)(BANANAS)). 
Bracketed sequences provide only for 
creating lists of fixed size and therefore 
they can be associated with record struc
tures of other languages. There is also 
a list building function, cons, for 
building lists of undetermined length; but 

2£4 

before introducing it we must introduce 
the syntax for function invocation. 

Function invocations are represented 
by a pair of items enclosed by angle 
brackets: <f i> The function position, 
here denoted by f, indicates the operation 
to be performed upon the argument list i. 
Combined with square brackets this func
tional syntax is very suggestive of 
standard mathematical notation. Instead 
of min(i,j) we write <min [i j]> , and 
<sum [2 3 4 5 6]> evaluates to 20. (See 
also [l] and [13] for similar applicative 
expressions.) With the binding of x from 
above, <sum x> evaluates to 20; this case 
illustrates that the argument list need 
not be explicitly bracketed although it 
usually is. 

A most important primitive is cons; 
it takes two arguments, an item and_a_ 
list, and returns the list whose first 
element is that item and whose remainder 
is the origi~al list. Thus <cons[2 y]> 
evaluates to (2 B A N A N A S) . Two 
complementary operations, first and rest, 
return the first item on a list and the 
list without the first item, respectively. 
<first[x]> evaluates to 2 and <rest[y]> 
evaluates to (AN AN.AS) . The semantics 
of these three functions are particularly 
interesting [8], and we shall return to 
them in the next section. 

We shall use other elementary func
tions without definition; their meaning 
is obvious from context. These are often 
arithmetic, like sum, and include simple 
predicates: null~sts whether its argu
ment is an empty list, and zero tests if 
its argument is o. Example functions are 
presented by relating a prototype invoca
tion to its definition in terms of a condi
tional expression. This definition is 
presented as an alternating sequence of 
tests and values whose interpretation is 
assisted by the insertion of the 
"commenting words" if, then, elseif, and 
else. For example, 

<min[i j]> = 
if <less[i j]> then i 
else j 

can be abbreviated by 

<min[i j]> = 
<less[i j ]> i 

j . 

The tests are evaluated in sequence until 
one succeeds; the value immediately 
following that test is the value of the 
function. If no test succeeds then ~he 
value of the function is the value of 
the last expression in the sequence if the 
sequence is of odd length {the else part), 
or rarely the empty list if the sequence 
is of even length. 



As an example we present the defini
tion of the function allrember which 
removes all members equal to its first 
argument from the list which is its second 
argument. 

<allrember[e i]> = 
if <null[i]> then [] 
elseif <same[<first[i]> e]> 

then <allrember[e <rest[i]> ]> 
else <cons[<first[i]> 

<allrember[e <rest[i]> ]> ]> 

It is also possible to define functions 
which take an arbitrary number of argu
ments in the same manner. An example is 
the function concat which returns a list 
which is the concatenation of all its 
arguments (each of which is a list). An 
auxiliary function, aptend, is required 
which concatenates jus two lists. 

<concat is> = 
if <null[is]> then [] 
elseif <null[<rest[is]>]> 

then <first[is]> 
else <append[<first[is]> 
~~ <concat <rest[is]>> ]> 

<append[ia ib]> = 
if <null[ia]> then ib 
else <cons[<first[ia]> 

<append[<rest[ia]> ib]> ]> 

Integers may be used as functions; as 
a function the integer i simply returns 
its ith argument. One use of this notation 
provides for array subscripting: if c is 
bound to a list of lists (a matrix) then 
<3<5 c>> evaluates to the third item in 
the fifth list (or the entry in the third 
column of the fifth row). The integer 1 
may also be used as an identity function, 
often with the "invisible argument marker" 
symbol #. 

The symbol # evaluates to a token 
which is ignored as a parameter to a 
function. Its evaluation is therefore 
useless except as an eventual argument to 
some function; in that role it acts much 
like the numeral zero: as a place-holder 
in argument structures with no ultimate 
meaning itself. For example, if d is 
bound to the evaluation of 

[# # 9 # 15 # #] 
then <l d> evaluates to 9, <2 d> evaluates 
to 15, and <3 d> diverges since there is 
no third item in d taken as a parameter 
list. A list liked is often used in 
conjunction with functional combination 
(below). 

Functional Combination 

Functional combination is described 
elsewhere in some detail [6] and [7]. It 
provides the framework which allows one 
recurrence to accumulate several results 

265 

in the same way that a single iterative 
traversal of data may yield several 
summary statistics. We describe its 
syntax and semantics formally here. The 
hallmark of functional combination is the 
occurrence of a list in the function 
position. In first order languages (where 
forms cannot evaluate to functions) 
this can only happen if an explicit list 
(within brackets) appears where a function 
is expected: 

<[fl f2 · · · rm J [pl P2 · · · pn]> · 
0 

The list immediately following the left 
angle bracket is called a combinator and 
is not evaluated. Instead each f j is 

presumed to be a legitimate function; 
either it has a definition as a function 
or it too is a combinator. Any fj must 
require at most n arguments; its arguments 
are extracted from the structure of the 
arguments to the combinator, p., each one 
is presumed to be a list. i 

The semantics of functional combina
tion depends on the lengths of the 
arguments and of the combinator itself. 
Let m. be the length of Pi·• the 
.th ]. 
i~ row. Let m = min mi 

O<i<n 

The result of evaluating the form with a 
combinator as its function is a list of 
length m. The jth element in that list is 
the result of 

<fj [<j' P1> <j' P2> ·•· <j' Pn>] > 

(The integer function j' is the same as 
the function j except that a token 
evaluation of # is counted in selecting 
the result. If the result of applying j' 
is an instance of # it is passed as a 
parameter to fj, which ignores it.) 

In full blown form we have 

[<fl [<l' pl> <l' p2> 

<f2 [<2 1 p1> <2' p2> 

<l I p > J > 
n 

<2 I p > J > n 

An elegant interpretation of the evalua
tion of such a form arises from viewing 
the result of evaluating each pi as the 
ith row of a matrix whose columns are 
then referred to as y. for l<j<m . The 

J - -
result of evaluating the entire form is 



that of 

[<fl Y1> <f2 Y2> ·•• <fm ym>] 

Thus the evaluation procedure can be des
cribed as an evaluation of arguments in 
row~major order with parameters passed to 
functions in column-major order. The 
derivation of m as a minimum implies a 
"guillotine rule" which causes· a "jagged" 
matrix of arguments to be truncated at the 
narrowest width. In the cas.e that m = 0 
the result of the evaluation is the empty 
list. As an immediate result the list [] 
is defined as a constant function: <[] R.> 
evaluates to the empty list regardless of 
the binding of R.. 

In order to facilitate the matrix 
interpretation of functional combination 
its invocation will appear with the argu
ments on separate lines and vertically 
aligned to suggest the columnar relation
ship. Furthermore, names of functions 
which return results of fixed length will 
be hyphenated to suggest the meaning of 
each component of the answer. For 
example: 

<[sum 
[ 0 

[ 1 

[ 0 

product quotient difference] [ 
1 63 19 ] 

3 
3 

# 

9 

13 
# 

] 

] ]> 

evaluates to (1 9 7 6). 
A more interesting example illus

trates the power of functional combination 
as related to recursive programming. The 
function R.t-eg-gt takes a list of numbers 
and a numeric value as parameters and 
returns three results corresponding to 
the three components of the partition of 
the list by that value: those less than, 
those equal to, and those greater than it. 
The construction of the partition is 
accomplished by a single linear recursion 
over the list. Since operations like this 
are common in programming (for example, 
it is the key step in the Quicksort . 
Algorithm [14]), it is important that 
they be expressible in a form analogous 
to the simple loop available to iterative 
programmers. 

The following example uses functional 
combination three times in essentially 
the same way: the pattern of invocation 
is<[ .•. ] [ •.• ]>which $U1ts the row/ 
column description given before. An 
invocation may also appear as<[ ••• ] R.> 
where R. is bound to a matrix which will 
be decomposed to extract parameters in 
the manner described above. It is also 
possible to write something of the form 
<[ •.• ]< ..• >>which indicates that the 
matrix will be the result of invoking a 
second function. 

266 

<R.t~eq-gt[R. v]> : 
if <null[R.]> then [ [] (] [] ] 
eiseif <less[ <first[R.]> v]> 

then <[cons l l][ 
-- [<first[R.]> # #] 

<R.t-eq-gt[ <rest[R.]> v]> ]> 
elseif <greater[ <first[R.]>v]> 

then <[l 1 cons· · ][ 
-- [# # <first[R.]> ] 

<R.t-eq-gt[ <rest[R.]> v]> ]> 
else <[l cons l][ 

[# <first[R.]> #] 
<R.t-eq-gt[ <rest[R.]> v]> ]> • 

Another application of functional· 
combination involves the invocation of the 
function being recursively defined with 
the combinator. We present an example in 
which the defined function appears twice, 
resulting in two recursive invocations. 
In a deep recursion the invocation pattern 
generates a binary tree: at the 
nth level the results are determined by 
the results of 2n functional combinations 

which dispatch 2n+l recursive calls. That 
tree structure is no accident since the 
example is concerned with searching binary 
trees [17] (those whose inorder [18] 
traversal visits the nodes in order of 
their keys). Let R. be an unsorted list of 
perhaps duplicated keys. We present a 
function, guickbatch, which probes tree 
to extract any information for every key 
in R. and returns a list of the associa
tions for those keys which had information 
planted in tree. The list will be 
returned in--a5Cending order of keys; and· 
the search will be batched [21] , so that 
every subtree is visited at most once. 

Define a binary tree to be () or a 
list of three items: ( left information 
right ). Information represents the data 
stored at the root of the tree whose sub
trees are left and right, respectively. 
In this case information is an association 
of a key and data. The invocation 
<key[tree]> extracts the key from the root 
of the non-null tree; the definition 
requires that this key be greater than 
every key in the left subtree and less 
than any in the right subtree. 

<quickbatch[R. tree]> = 
if <null[!]> then [] 
elseif <null[tree]> then [] 
else <concat ~~ 
-- <[quickbatch hit quickbatch] [ 

<R.t-eq-gt[R. <key[tree]> ]> 
tree ]> > 

<hit[R. info]> : 
if <null[R.]> then [] 
else [info] .--

The last line of guickbatch deserves some 
explanation. The result of the use of 
functional. combination is three lists of 



associations on keys which are to be con
catenated. The first and third are 
derived from recursive calls on the left 
and right subtrees of the non-null tree. 
The middle list is empty unless the key 
found at the root of the tree happened to 
be mentioned once or more in the ta~get 
list of the search. Finally, the sorting 
of the answer list is carried out by an 
implicit Quicksort at each node in the 
search tree. The function ~t-eq-gt parti
tions at <key[tree]> the target list 
carried in an unordered batch to tree. 
For example, if tree is --

(5 asp) 

(9 dor) 

(2 ant) ( 4 fly) 

then <quickbat·ch[[9 2 3 6 8 7 3] tree]> 
evaluates to 
((2 ant)(3 boa)(8 eel)(9 dor)) . 

Stars 

The next language feature is called 
"star" because of its syntax, reminiscent 
of the Kleene star. The list [A*] evalu
ates to the list (A*)= (A A A A •.• ), 
which has the semantics of a list of an 
infinite number of A's, although it may 
be represented in finite space and printed 
in finite (star) notation. Similarly, 
[O*] evaluates to an infinite list of 
zeros (the zero vector) which, fortunately, 
may be printed as (O*); [x*], under the 
binding of x as (2 4 6 8), evaluates to a 
matrix with an infinite number of rows and 
only four columns which may be printed: 
((2 4 6 8)*) • 

The star notation may be applied in 
constructing combinators if all elements 
are identical. For instance, in order to 
add one to every element of a vector, x, 
one can write 

<[sum*][ 
[ l* J 

x ]> 

which evaluates to (3 5 7 9) under our 

267 

binding for x. The definition of 
functional combination above still applies 
under the convention that the values mi 
can be infinity for starred rows. In the 
previous example m0 = m = m1 and 
m2 = 4 so m = 4. Of course if all mi = m, 
then m = m, as established by the 
convention 

< [f* J [ 
[a1*J 

[a2*J 

The star notation may be applied only to 
the suffix of a list whose prefix is 
explicitly expressed: [cons cons sum*] 
is a legal combinator and [2 3 4 5*] 
evaluates to (2 3 4 5 5 5 5 ... ). 

• Starred structures are most useful in 
the context of functional combination. 
Starred functions are "spread" (or mapped 
[20]) across all available columns of the 
argument matrix; starred arguments are 
shared by all columns. As an example of 
the impact of stars we present Gaussian 
matrix multiplication, leaving the defi
nition of transpose to the reader. 

<dotproduct[vl v2]> = <sum<[produ.ct*][ 
vl 
v2 ]»; 

<row[vec transp]> - <[dotproduct*][ 
[ vec* ] 

transp ]> 
<mtxmpy[ml m2]> - <[row*][ 

ml 
[<transpose[m2]>*] ]> 

The role of suspending cons 

The function cons is representative 
of an entire classOffunctions which 
build structures by filling in the values 
of fields within nodes. Syntactically it 
also serves as a space allocator although 
that characteristic plays a lesser role 
in the following discussion. We have 
proposed a new semantics for cons and its 
extractor functions first and rest which 
avoids the construction of those portions 
of structures that are never accessed. 
after their creation. The results apply 
to any operation which assigns a value to 
a field, provided that it is possible to 
preserve a record of all relevant 
bindings. This criterion is difficult to 
meet in a system in which users can change 
assigned values, but it is easily satis
fied under a regime of applicative 
programming in which the user can only 
create and implicitly release such 



bindings [15]. 

Using the function cons as a paradigm 
of structure-creating functions, we 
briefly explain its semantics. When~ 
is invoked by the user, the value returned 
is a pointer to a newly built structure. 
Rather than evaluate the arguments to ~ 
and create the complete structure, we 
create a structure consisting of two 
suspensions. A suspension consists of a 
reference to the form whose· evaluation was 
deferred and a reference to the environment 
of variable bindings in which the suspen
sion was originally created. These two 
structures must remain intact for the life 
of the suspension. The reference to the 
form is a pointer to a piece of program, 
so the space it occupies usually repre
sents no great overhead. Environments 
present more of a problem, since we are 
accustomed to viewing them only as tempo
rary structures. Moreover, use of des
tructive assignment operations generally 
requires recreation of the entire environ
ment in order to assure the integrity of 
references to the environment as it 
existed before the assignment. Destructive 
assignments, if not well controlled, become 
costly; it is fortunate that they do not 
exist in our source language. 

When either of the functions first or 
rest is invoked, the following events 
occur. A designated field of the argument 
is checked to determine if it contains a 
suspension (suspensions are flagged and 
easily distinguished); if not, then its 
contents is returned. If a suspension is 
present, then the evaluator is invoked 
upon the designated form within the pre
served environment. The result is stored 
back in the designated field in place of 
the suspension (for next time); and the 
value is returned as a final result. 
These events constitute coercion of the 
suspension. The two functions, first and 
rest, therefore act as probes into the 
data structure, with possible effects of a 
predictable and benign sort; rather than 
as simple extractor .functions. 

As a result of suspending, evaluations 
are delayed as long as possible. Ultimate
ly all evaluations take place as a result 
of the demands of the driver of the output 
device which tries to move the contents of 
its list to the external device. As it 
traverses the list it is outputting, it 
invokes first and rest, causing top-level 
evaluation, which in turn results in the 
creation and inspection of more structure, 
indirectly forcing all of the necessary 
evaluations. Regardless of the intentions 
of the programmer, the only structures 
which are actually built are those which 
are essential to deciding what information 
i& to be output. Least-fixed-point seman
tics for the language result [8]. 

.268 

A fortunate side-effect of suspending 
the creation of data structures is the 
ability to deal with infinite structures. 
Consider the list defined (but never 
completely constructed) by the invocation 
of <terms[O]> where 

<terms[n]> = <cons[<recip[<square[n]>]> 
<terms[<addl[n]>]> ]> 

That list, the reciprocals of the squares 
of all the positive integers, might be 
familiar since its sum, excluding the 
first term, converges to ~ 2/6. Suppose 
that z were bound to the result of 
<terms[O]>; in fact, because of the sus
pending cons, z is initially bound only 
to a "promise" of this result. As long 
as <l z> is not-computed (since it 
diverges on division by zero) and as long 
as a complete traversal of the structure 
is not invoked, the infiniteness of z 
poses no problem. An access to <6 z>, if 
essential to the output device, would find 
the answer 0.04 even though that number 
had not been present before that access; 
it would have been computed had it been 
of in~erest earlier. (This use of ~ 
is similar to Landin's prefixs [19] as 
explained by [3], but it differs precisely 
in that the rest of the list z may be 
accessed without computing the divergent 
first element.) More implications of~ 
on infinite structures may be found in 
[11]. 

The same techniques used for cons may 
be applied to any record creating (field 
assignment) function within the system. 
We have proposed an interpreter [8] in 
which all field assignments are suspended. 
This has a great impact, as in particular 
the construction of environments may be 
suspended. This means that no argument 
will be evaluated unless the corresponding 
formal parameter has been accessed by some 
operation critical to the execution of 
the program (i.e. critical to the creation 
of output). This effects the call-by-need 
argument-passing protocol [24], the 
call-by-delayed-value [23], and lazy 
evaluation scheme [12]. 

Another effect is on the semantics 
of functional combination. The result of 
an application of functional combination 
is a list which, not surprisingly, is 
conventionally built with cons. If cons 
suspends then only those items in that 
list which are accessed are ever created. 
F.or instance, the result of an invocation 
of qu:i,ckbatch is a list. That list, if 
hot trivial, is the result of an invoca
tion of concat which uses cons. Later 
arguments to concat need not all be -com
puted at once (or even at all if only a 
part of the result were ever needed for 
printing). The argument list for concat 
is the result of functional combination 



and thus, as we suggest here and demon
strate elsewhere [6, 7] need not be 
computed all at once. Instead of computing 
the complete answer, only that computation 
path essential to the answer is pursued. 
Intermediate environments are preserved in 
case any suspensions are coerced later. 
Recursive calls on the left and the right 
subtrees often need not both be evaluated. 
For instance, only five recursive calls on f uickbatch are required to determine the 
irst information-pair, (2 ant), in the 

example above which requires fourteen 
recursive calls (plus the outermost call) 
in order to ascertain the final answer. 

Opportunities for parallelism 

With the language defined, we now turn 
to the opportunities for parallelism pro
vided in the language. We do not explicit
ly require these parallelisms to be 
performed, nor do we require that the 
programmer be aware that they even may 
occur. Programs are easily written with 
these control structures with the semantics 
described in the previous section, which 
do not depend on concurrencies. It is 
significant that some of the semantics of 
the language allow for improvements in 
parallel interpretation of programs 
written in a very popular language differ
ing only syntactically from a part of ours 
[20]. It is the role of a compiler to 
detect the opportunities for parallelism 
in its pass over the program before run
time and to alter the code to be interpre
ted in order to provide for the parallelism 
allowed by the target hardware. The 
responsibilities for synchronization are 
therefore the concern of the compiler so 
the programmer need not worry about 
issues of "structured multiprogramming" 
[2 J. 

At the same time that we say that the 
compiler should detect parallelism for run
time, we should point out how the source 
language helps the compiler in this task 
by allowing simple program structures. 
Most notably, the language does not have 
destructive assignment statements; it is 
free of side-effects. All variable/value 
bindings are established as parameter/ 
argument bindings in function linkages, 
and they are therefore not subject to 
change during their lifetime. An obvious 
(but not new [25]) opportunity for 
parallelism is collateral argument evalu
ation, establishing these bindings simul
taneously since they are independent of 
one another. These bindings are abandoned 
after all computations under the environ
ment of the function invocation have been 
completed, but until then they remain 
intact. This integrity of environments, 
essential to the suspending cons, also 
alleviates the concurrency problem, since 
no conflict arises because of a reader 

269 

accessing a value as a writer alters it 
[4]. 

The feature of suspending cons, 
itself, provides opportunity for massive 
parallelism. A system implemented with 
only the user's invocations of ~ 
suspended, or with those and all the 
system structures suspended, may have 
hundreds of suspensions pending on the 
system during the course of computation. 
In a single processor system all (but one) 
of these would await probing by the system 
functions, first and rest, before their 
coercion would be initiated. If the run
time environment were enriched with idle 
processors, then any of these suspensions 
could be coerced simultaneously without 
delaying the progress of the critical 
evaluation (the single one active on a 
single processor). Let us designate that 
distinguished evaluation as the colonel 
and any other processors available will 
be called sergeants. 

The parallel evaluation strategy is 
to keep the colonel working on the same 
critical process which would occupy a 
single processor and to allocate the 
sergeants to suspensions which are "near" 
the colonel process. Since evaluation of 
suspensions usually converges to nodes 
containing new suspensions rather quickly, 
sergeants tend to finish tasks rapidly 
after which they are reassigned to new 
ones "closer" to the moving colonel. (It 
is possible that a sergeant could fall 
into a divergent evaluation and therefore 
be lost to the system until the suspension 
it was·evaluating becomes irrelevant.) 
The colonel behaves exactly as a single 
processor would, except that from time to 
time it accesses what would.have been a 
suspension and instead finds the ,result 
already provided by a sergeant who had 
passed through earlier. The de.finition ,of 
the "near" metric should be chosen to 
maximize the likelihood of this fortunate 
event. The sergeants scurry about the 
system following the colonel doing their 
best to satisfy his anticipated needs. 
Some of their effort may be wasted since 
not all handiwork of sergeants need be 
accessed by the colonel. Yet the time to 
compute the final result is no more than 
the time using a single evaluator since 
parallelism has been provided at essen
tially no overhead. There is no cost due 
to interprocessor conflict and communica
tion. Some'additional cost may arise from 
the enf.orcement of the "near" metric; but 
this req;uire~s -overhead only as a sergeant 
process is initiated -- not while it's 
running. 

Even·though a processor has been led 
down the gardenpath (diverges) [8], there 
is still an opportunity for recovery, if 
the value it is supposedly computing is 
discovered to have become unnecessary to 



the system. This, in fact, is rather 
easily accomplished because processor 
allocation is so cl6i~ly t~ed to the data 
structure. The same mechanism which 
determines that a node .has become useless 
and is to be returned to available space 
need only stop execution of any process 
(some wayward sergeant) which is operating 
on a suspension referenced from that node. 
Since all space allocated by the colonel 
for its computation will be returned after 
the result has .been provided, it follows 
that all sergeants will be recovered as 
well by that time. Therefore, if the 
colonel's computation converges it is not 
possible to lose a sergeant; all space and 
processors will be restored to the system. 

Functional combination offers two 
sorts of parallelism. The first is 
exemplified by the code for tt-eq-gt. In 
the definition for this function the 
recursion is linear down the list param
eter, but at each recursion step each of 
the three developing results must be 
handled. Clearly the three pieces of the 
ultimately final result can be handled by 
three concurrent processes. So a simple 
but bounded parallelism is provided 
depending on the size (m in the definition 
above) of the result when all elements of 
the combinator are defined independently 
of the function definition in which the 
combinator appears. 

Another kind of parallelism results 
if that function itself appears in the 
combinator. The coding of the function 
guickbatch is an example of this. If m 
processors are allocated for computing the 
result of a combinator and a combinator 
has occurrences of the function being 
defined as some fj' then a process tree 

can result with processors active only at 
the leaves. The tree results because a 
single processor evaluating a recursive 
function might encounter an instance of 
functional combination and become dormant 
while the m processes from that instance 
compute. If some of those processes are 
recursive invocations, then each of those 
processes may become dormant in the same 
way. If all processes terminate then the 
invocation tree is of finite depth with 
degree mat any node, with dormant pro
cesses at all non-leaves, and with active 
processes only at the leaves. If a combi
nator has more than one recursive call in 
such a scheme then a very "bushy" process 
tree can result. For example, the 
guickbatch function.of the Quicksort 
Algorithm can be implemented so that every 
recursion requires a new processor. At 
the nth level 2n processors may be 
required. The processors are all evalua
ting the same function definition under 
disjoint (and static) environments, 
however, so that lock-step evaluation is 

entirely appropriate. 
These semantics require very little 

interprocessor protocol. Upon interpre
tation of functional combination the 
active process goes dormant and spawns m 
new processes. Each of these processes 
is independent and need not initiate 
communication with any other user process 
except to report its result. As it 
reports its result a process dies but its 
dormant parent is jarred; we call this 
process stinging. A stung parent becomes 
active when it is stung with the (chrono
logically) last result. Therefore, the 
only run-time processor synchronization 
involves process creation and stinging. 
(Environments are static!) This is no 
more complicated than what is required 
for collateral argument evaluation. 

The star notation used on an argument 
to functional combination merely denot'es 
that the argument is to be shared by all 
m processors. When the combinator itself 
is a starred structure then the combinator 
is implicitly homogeneous and a different 
sort of concurrency may be used for inter
preting the function, This use of combi
nators is most similar to mapping functions 
[20] and their generalization [22]. An 
example is the code for dottroduct above 
in which all additions may ake place 
concurrently. Due to the expression of 
the combinator with the star, the compiler 
can easily detect that the same operation 
will be performed on all objects in the 
data structures which are arguments to tne 
combinator. Then the evaluation may 
proceed using pipelining across the n 
arguments to the starred combinator. 

Similarly, the starred notation used 
within the combinator itself denotes that 
the code for the function is to be used by 
each of the m processors. Under parallel 
interpretation this kind of functional 
combination has the semantics of shared 
pure code. For instance, the algorithm 
for mtxmpy specifies that the code for the 
function row is to be shared by all pro
cessors used in interpreting its functional 
combination, up to M in an M by N times an 
N by P problem. Also, row specifies that 
the code for dotproduct can be shared by 
the up to N processors used for its 
functional combination, where each of 
these is a starred combinator distributing 
the code for the primitive instruction 
product across P proce.ssors. Thus up to 
NxMxP multiplications might be performed 
simultaneously by processors interpreting 
the shared code in parallel. 

270 

Conclusions 

Functional combination allows the use 
of known forms of controlled parallelism, 
whereas the suspending cons will allow 
masses of sergeant processors to be 



occupied on heuristically useful computa
tion. The former facility fits existing 
hardware which now requires specific 
higher-level languages and specially 
trained programmers in order to occupy the 
processors productively. The latter 
approach offers a hope for occupying a 
machine with arbitrarily large numbers of 
processors whose temporal configuration 
cannot be known to the programmer. 

This ability of our semantics to 
use a system with massive parallelism 
(thousands of processors) is very important 
for future hardware design. Such systems 
will not be built unless there is a way to 
program them, even though the current cost 
of processors suggests that they will be 
technically possible. With communication 
cost high and processor cost negligible, 
pressure will build for a massive computa
tion on data while it remains within 
storage directly accessible to any proces
sor. Not only do our semantics admit such 
massive (albeit heuristic) parallelism, 
but also they achieve these results on a 
well known language, pure LISP, imposing 
these semantics on programs extant fifteen 
years ago. 

Taken together these approaches to 
programming in purely applicative source 
code provide the programmer with higher
level tools for expressing algorithms so 
that the compiler can recognize and com
pile parallel code. 

Acknowledgement: We are grateful for the 
suggestions of C. Brown which helped 
refine this paper. s. Smoliar pointed out 
the implications of functional combination 
for sharing code. 

References 

[l] J. Backus, Programming language 
semantics and closed applicative 
languages, Proc. ACM Symposium on 
Principles of Programming Languages 
(1973), 71-86. 

[2] P. Brinch Hansen, Concurrent program
ming concepts,.Computing Slt!J:'veys 5, 
4 (1973), 223-245. 

[3] W. H. Burge, Recursive Programming 
Techniques, Addison-Wesley, 
Reading, MA (1975). 

[4] P.J. Courtois, F. Heymans, and D. L. 
Parnas, Concurrent control with 
'readers' and 'writers', Comm. ACM 14, 
10 (1971), 667-668. 

[5] D. P. Friedman, and D. S. Wise, 
Unwinding stylized recursions into 
iterations, Computer Science Depart
ment, Indiana University, Technical 
Report No. 19 (1975). 

[6] D. P. Friedman, and D. S. Wise, 
Multiple-valued recursive procedures, 

271 

Computer Science Department, Indiana 
University, Technical Report No. 27 
0976). 

[7] D. P. Friedman, and D. S. Wise, 
An environment for multiple-valued 
recursive procedures, Proc. 2nd 
Collogue sur la Prograrnrnation, · 
Springer-Verlag, Berlin (1976). 

[8] D. P. Friedman, and D. S. Wise, CONS 
should not evaluate its arguments. 
In S. Michaelson & R. Milner (eds.), 
Automata, Languages and Programming, 
Edinburgh University Press, Edinburgh 
(1976), 257-284. 

[9] D. P. Friedman, and D. S. Wise, 
Output driven interpretation of recur
sive programs, or writing creates and 
destroys data structures, Computer 
Science Department, Indiana Univer
sity, Technical Report No. 50 (1976). 

[10] D. P. Friedman, D. S. Wise and C. A. 
Brown, Implementation of extended 
semantics for pure LISP (in 
preparation). 

[11] D. P. Friedman, D. s. Wise and M. 
Wand, Recursive programming through 
table look-up, Proc. ACM Symp. on 
Symbolic and Algebraic Computation 
(1976), 85-89. 

[12] P. Henderson, and J. Morris, Jr., 
A lazy evaluator, Proc. 3rd ACM Symp. 
on Principles of Programming Lan
guages (1976), 95-103. 

[13] c. E. Hewitt, and B. Smith, Towards 
a programming apprentice, IEEE Trans. 
on Software Engineering SE-1, 1 
(1975), 26-45. 

[14] C. A. R. Hoare, Quicksort, Computer 
~. 1 (1962), 10-15. 

[15] C. A. R. Hoare, Towards a theory of 
parallel programming. In C.A.R. 
Hoare & R.H. Perrott (eds.), 
Operating Systems Techniques, Academic 
Press, London (1972), 61-71. 

[16] G. Kahn, The semantics of a simple 
language for parallel processing, 
Proc. IFIP Con~ress, North-Holland, 
Amsterdam (197 ), 471-475. 

[17] D. E. Knuth, Sorting and Searching, 
Addison-Wesley, Reading, MA (1973). 

[18] D. E. Knuth, Fundamental Algorithms 
(2nd ed.), Addison-Wesley, Reading, 
MA (1975). 

[19] P. J. Landin, A correspondence between 
ALGOL 60 and Church's lambda notation, 
Part I., Comm. ACM 8, 2 (1965), 89-
101. 

[20] J. McCarthy, P. W. Abrahams, D. J. 
Edwards, T. P. Hart, and M. I. Levin, 
LISP 1.5 Pro~rarnrner's Manual~ M.I.T. 
Press, Cambridge, MA (1962J. 



[21] B. Shneiderman, and V. Goodman, 
Searching of sequential and tree 
structured files, ACM Transactions on 
Database Systems 1, 8 (1976). 

[22] G. Tesler, and H. J. Enea, A language 
design for concurrent processes, Proc. 
S rin Joint Com uter Conference,~~-
Thompson, Washington 19 03-
408. 

[23] J. Vuillemin, Correct and optimal 
implementation of recursion in a 
simple programming language, J. Comp. 
Sys. Sci. 9, 3 (1974), 332-354. 

[24] c. Wadsworth, Semantics and Pragmatics 
of Lambda-calculus, Ph.D. dissertation, 
Oxford (1971). 

[25] A. van Wijngaarden, B. J. Mailloux, 
J. E. L. Peck• C. H. A. Koster, 
M. Sintzoff, C. H. Lindsey, L. G. L. 
T. Meertens, and R. G. Fisker, Revised 
report on the algorithmic language 
ALGOL 68, Acta Informatica 5, 1-3 
(1975). 1-236. 

272 



SINGLE INSTRUCTION STREAM - MULTIPLE DATA STREAM MACHINE 
INTERCONNECTION NETWORK DESIGN* 

. ** Howard Jay Siegel 
Department of Electrical Engineering 

Princeton University 
Princeton, New Jersey 08540 

Abstract -- An SIMD machine must have an 
interconnection network to pass data between pro
cessing elements. We Introduce a model of SIMD 
machines which allows a formal mathematical analy
sis and comparison of different interconnection 
networks. Five interconnection networks that have 
been proposed in the literature are defined in 
terms of our model. They include a network simi
lar to the one used In the STARAN, a network 
similar to the one recommended by Feng to Imple
ment data manipulating functions, the Ill lac IV 
network, and the Perfect Shuffle. The networks 
are evaluated in terms of the upper and lower 
bounds on the time required for each network to 
simulate the actions of the others. It Is usually 
Impractical to implement-all the interconnections 
that may be needed by the machine to perform a 
large variety of computations, so the abll lty of 
a network to simulate other interconnections is 
important. The methods used to prove the lower 
bounds and to construct the simulation algorithms 
to demonstrate the upper bounds can be generalized 
and applied to the analysis of other networks. 

I. Introduction 

One aspect of the design of SIMD (single 
instruction stream - multiple data stream (8)) or 
array machines is the construction' of an Inter
connection network to pass data from one processor 
to another. One way to view the structure.of an 
SIMD machine is as a set of N processing elements 
(where each processing element consists of a pro,
cessor with its own memory), Interconnected by a 
network, and fed instructions by a control unit. 

*This work was supported by NSF Grant DCR74-21939. 
The article Is a revised summary of Princeton 
University, Department of Electrical Engineering, 
Computer Science Laboratory Technical Report 198. 

**Author's current address is Purdue University, 
School of Electrica.1 Engineering, West Lafayette, 
Indiana 47907. · 

273 

The network connects each processing element to 
some subset of the other processing elements. The 
connections are represented by a set of Inter
connection functions. Only one interconnection 
function of the network can be used at a time; 
i.e., at any time, each processing element Is 
connected to only one other processing element. 
A transfer instruction causes data to be moved 
from each processing element to the processing 
element to which it Is connected. To move data 
between two processing elements that are not 
directly connected, the data may be passed through 
Intermediary processing elements by executing a 
programmed sequence utll izing the interconnect-Ion 
functions in that network. 

When building an SIMD machine, an inter
connection network must be implemented. To choose 
which interconnection functions to include in the 
network, the system designer must consider the 
types of problems the machine will be used to 
solve. Generally, it Is not possible to include 
all of the Interconnection functions desired. 
Therefore, those that will be used most often 
would be implemented and used to simulate the 
other Interconnections that may be required. Also, 
an SIMD machine may be being designed as a general 
purpose machine, to handle a large variety of 
tasks. Thus, it Is very important for the system 
designer to consider the.ability of a set of inter
connectfon functions to simulate other Inter
connection functions. 

In this paper we shall develop a realistic 
model of SIMD machines and use It to evaluate 
Interconnection networks. We shall discuss five 
particular interconnection networks and show them 
to be equivalent in the sense that each can simu
late the actions of the others. The networks we 
will examine are: the Cube network, a network 
similar to the one Implemented In the STARAN 
machine [3]; the PM21 network, a network similar 
to the one used by Feng to implement data manipu
lating functions (6), [7]; the 111 iac network 
[l], [5]; the Perfect Shuffle, which has been 
popularized by Stone [JS]; and the WPM21 network, 
a variation of PM21 which was Introduced in (14]. 
These networks are analyzed in terms of the time 
complexity required for one network to simulate 
another. 

A model Independent lower time bound for each 
simulation shal_l be presented. Many of these 
lower bounds are proved in [14]. In this paper 
we shall prove only those lower bound results 
which are better than those presented In (14). 



The upper time bo1,1ndfor each simulation 
shall be demonstrated by an algorithm that per
forms the simulation. The methods used to con
struct these algorithms can also be used to write 
algorithms to simulate Interconnections not pre
sented here. The algorithms we shall present c:an 
be directly Implemented on an SIMD machine that 
satisfies the assumptions we shall make tn section 
IV. 

II. The Model 

Our model of an SIMD machine consists of 
four parts: processing elements, interconnection 
network, machine Instructions, and masking 
schemes. Each processing element (PE) is a pro
cessor together with its own memory-;"""a set of at 
least three fast access registers (A, B, and C), 
and a data transfer register (DTR).-The DTR of 
each PE ls connected to the DTR1"5 of the other 
PE's via the interconnection network. When an 
Interconnection function is executed, it is the 
DTR contents of each PE that are transferred. 

There are~ PE's, each assigned an address 

from 0 to N-1. We assume that N • 2m; i.e., 

-log2N .. .!!!· -We also assume that PE 1 has a register 

ADDRESS that cqntains the Integer I. Let 
ADDRESS (J) be the J!!!., b It of ADDRESS. 

Each PE is always in either.active or In
active mode. If a PE is active It executes the 
instructions broadcast to--rti>'Y the control unit. 
If a PE is inactive It will not execute the 
instructions broadcast to it. 

.An interconnection network Is a set of 
interconnection functions, each a bijection on 
the set of PE addresses. When an Interconnection 
function f is applied, PE1 copies the contents 

of Its DTR into the DTR of PEf(i)" This occurs 

for all i simultaneously, for 0 ~I< N and PE 1 
active. Thus, saying an interconnection network 
maps the address ~ !!:!,. the address y_ is equi va I ent 
to saying that it causes PE to pass its data to 

x 
PE • No.te that an Inactive PE may receive data y . 
from another PE if an interconnection function is 
executed, but It cannot send data. 

To pass data from one PE to another PE a 
programmed sequence of interconnection functions 
must be executed. This sequence of functions 
moves the data from one PE's DTR to another's by 
a single transfer or by passing the data through 
intermediary registers. 

For example, let one of the interconnection 
· functions-·f in a network be defined by f(x) = (x+I) 
mod N,where xis a PE address. Then when f (the 
cycle function) ls applied, PE number o·,transfers 
the contents of its DTR to the DTR of PE number 
f(O) =I, PE. number I transfers the contents of 
its DTR to the DTR of PE number f(I) = 2, ••• , and 
PE number N-1 transfers the contents of its DTR 

274 

to the DTR of PE number f(N-1) • O. To pass data 
from PEI to PEl+l mod N' 0 !, I < N, f may be 
executed tlwce. 

In section 111 five particular Interconnection 
nea«>rks wl It be deft ned. 

The machine Instructions are those operations 
that each processor can perform on data In Its 
individual memory or registers. We assume there 
Is a separate control unit (CU) computer which 
stores-programs and broadCasts Instructions and 
data. All active PE's execute the same instruction 
at the same time, but on possibly d~fferent data. 

Actual SIMD machines al low data to be moved 
among the memory, the fast access registers, and 
the DTR of a single PE. All we assume, without' 
loss of genera 11 ty, Is that data may be moved 
among the registers. The notation X + Y means the 
contents of register Y are copied l'ii'tO'""'reglster 
X, where X and Y could be A, B, C, or DTR. 

A masking~ Is a method for determining 
which PE's wil 1 be active at a given point in 
time. An SIMD machine may have several different 
masking schemes. Each mask partitions the set of 
PE addresses Into those PE's that will be active 
and those that will be Inactive. 

If PE address masks are used, ·an m-position 
mask will accompany each instruction and will 
determine which PE's are active, I.e., execute 
that Instruction. Each position of the mask is 
either a 0, I or X ("don't care 11). and the only 
PE's that will be active are those that match the 
mask for each of them bit positions.of their 
address. For example, If N = 8 {so m = 3) and 
the mask is iXO, then oniy PE's 6 JiiO) anl 4 nooj 
would be active. Superscripts will be used as 

repetition factors, e.g., x301 2 wc>uld be XXX011. 
Square brackets will be used to denote a mask. 
For example, executing the Instruction 
"DTR +A [Xm-!0] 11 would caus~ each even numbered 
PE to load Its DTR with the contents of its A 
register. This scheme was presented and 
discussed In [14]. 

Data conditional masks are the implicit 
result of executing "if-then-else" statements 
that Involve local d.ata In each PE's registers 
or memory. This type of/masking Is used In such 
machines as the llliac. IV ([I], [51. [12]) and 
PEPE [20]; Whenever a conditional statement is 
executed each PE' may be exec;ut i ng It wl th 
different data, so the outcome may differ from 
one PE to the next. Thus, as a result of the 
conditional each PE will set an internal flag so 
that It will be active for either the "theri" or 
the "else,'' but not both. The execution of the 
"else" statements must fol low the "then" state
ments; i.e., they cannot be executed simulta
neously. For example, as a result of executing 
the statement: "If A > B then C + A else C + 811 

each PE will loadlts C register with--. 
the maximum of its A and B registers; I.e., some 
PE's will execute 11C + A, 11 and then the rest 
will execute "C + B. 11 Thus, for SIMD machines, 



data condi tlonal masks and "if-then-else" state
ments are the same. 

PE address masks and data conditional masks 
will be the only masking schemes used in this 
paper. PE address masks provide a concise method 

to activate 3m different sets of PE's. Data con
ditional statements are an essential part of all 
programming languages, so it ls fair to assume 
they would be present in all SIMD machines. The 
results of this paper would still be valid even 
if only data conditional masks were used. This 
is because if each PE knows its own address, then 
data conditional masks could be used to simulate 
PE address masks using no additional inter
processor data transfers. 

Whenever an interconnection function is 
executed, all active PE's pass their data at the 
same time. Since each interconnection function 
is a bijection, this transfer of data occurs 
without conflict if all PE's are active. It is 
possible, however, that masking can cause trans
fers of data no longer to represent bijections 
on the PE addresses. Such data transfers would 
destroy data. 

For example, let N = 8 and let the inter
connection function be f(x) = (x+I) mod 8. Suppose 
f is executed with the PE address mask [OXX]. 
Then f(4) = 4, since PE number 4 Is not active, 
and f(3) = 4, since PE number 3 is active. Thus, 
this data transfer is not a bijection, so it 
destroys data. In this case the original con
tents of the DTR of PE number 4 is destroyed by 
the data transferred into that DTR from PE number 
3, In order to have saved this data the DTR con
tents of PE number 4 would have to have been 
copied into a register or memory location of that 
PE before the data transfer instruction was 
executed. 

Formally, an SIMD machine can be represented 
as the 4-tuple (N,F,I ,M), where: 

(I) N is a positive integer, representing 
the number of processing elements in 
the machine; 

(2) F is the interconnection network, where 
each interconnection function is a bi
jection on the set .{O, I, .•• N-1 }; 

(3) I is the set of machine instructions, 
instructions that are executed by each 
active PE and act on da.ta within that 
PE; 

(4) M is the set of masking schemes, where 
each mask partitions the set {O,l, ••• N-1} 
into the set of active PE's and the set 
of inactive PE's. 

By specifying N, F, I, and M, a particular SIMD 
machine architecture can be modeled. 

275 

I I I. Interconnection Networks 

Let the binary representation of a PE address 
be Pm-IPm_ 2 ••• p1p0, let l'"i be the complement of 
of p1, and let the integer n be the square root 

of N. 

(I) Perfect Shuffle (PS). This network 
consists of a shuffle function and an exchange 
function. The shuffle is defined by: 

and the exchange ls defined by: 

The shuffle function is a left rotation of the 
bits of each address. The exchange function 
complements the low order (0th) bit of each 
address. For example, s(3) = 6 and e(6) = 7, for 
N = 8. The shuffle can be thought of as the 
result of perfectly shuffling a deck of cards 
( i • e., 0 + 0, N/2 + 1 , 1 + 2, N/2+ 1 + 3, etc.) 
(see [9], LlOJ, [14], [18]). 

This network has been shown to be quite use
ful by Stone in [18]. It is also the basis of 
Lawrie's "omega" network [11]. 

(2) 111 lac. This network has four functions de
fined as follows (recall n is the square root of 
N): 

1+1 (x) x+l mod N 

1_1 (x) x-1 mod N 

l+n (x) x+n mod N 

I (x) x-n mod N. -n 

For examp I e, if N = 16, l+n(O) = 4. When we 

discuss the I Iliac we shall assume mis even, that 

is, n = 2m/2 is an integer. If the PE's are con
sidered as an x n array, then each PE will be 
connected to its north, south, east and west 
neighbors (see [1], [5], [12], [14], [17]). 

This network is implemented in the 111 lac IV 
system. The ability of this system to perform 
various tasks is described in [5]. 

(3) Cube. This network consists of m 
functlOriS defined by: 



• 

for O < i < m. The Cube function c 1 complements 

the Ith bit of each address. For example, 
c2(7)-;" 3. When the PE addresses are considered 

as the corners of an m-dlmensional cube this net
work connects each PE to its m neighbors (see 
(14]). Note that c0 and the Perfect Shuffle 

excha~ge function e are identical. 

The network used In the STARAN Is a wired 
series of Cube functions (see [3]). In [2] and 
[4] the applicability of this network to practical 
problems Is discussed. A version of this type of 
network was used as part of a parallel machine 
simulation in [13]. 

(4) Plus-Minus 2i (PM21). This network consists 
of 2m functions defined by: 

t+i(j) = j+2i mod N 

t_i(j) = j-2i mod N 

for O .::_ i < m. For example, t+1(2) = 4 if N ~ 4. 

Note that the I Iliac IV is a subset of this net
work. Various properties of the PM21 network 
can be found in [14]. 

The network recommended by Feng to implement 
data manipulating functions ls a wired series of 
PM21 functions [6]. The various data manipulating 
functions that this network can. perform are 
discussed In [6] and [7]. 

(5) Wrap-around Plus Minus 21 (WPM21). This 
network consists of 2m functions defined by: 

where 

and 

where 

qi-1 ' .. qoqm-1 • .. ql+lqi = 

(pi-I'· ·PoPm-1 "·Pi+lpi)+l mod N, 

qi-I ... qoqm-1 ' .. qi+lqi = 

(pi-l"'PoPm-l'"Pi+lpi)-I mod N, 

for O < i < m. WPM21 is I ike PM21, except any 
"carryiT or "borrow" wi 11 "wrap-around" to the 
p1_1 bit position. Note that any "carry" or 

"borrow" cannot affect pl. For example, if 

N = 8 and m = 3, then w_ 1 (001) = 110, whereas 

t _ 1 ( 00 I ) = 111. 

The WPM21 network was introduced in [14]. 
It is a variation of the PM21 which has the 

ability to simulate any other interconnection 
function when the networks are treated as sets of 
permutations on the integers from Oto N-1. In 
terms of group theory, WPM21 can generate the 
entire group of permutations on N elements. Of 
the five networks presented here, only WPM21 
has this ability (see [14]). 

IV. Simulations Results 

The designers of SIMD machines must choose a 
set of interconnection functions to Implement, and 
they will either base their choice on the type of 
computations the sys tern w 111 be expected to per
form or assume they are building a general purpose 
machine. The number of functions that will be 
included In the network will be constrained by 
such factors as cost and hardware complexity. 
Therefore, it is quite Important for the designer 
to cons Ider the ab i II ty of the network that is 
chosen to simulate other functions. 

In this section we compare the simulation 
ability of five different types of interconnection 
networks that have been proposed In the literature 
and have been shown to be useful. The lower 
bounds on simulation times and the simulation 
algorithms that follow demonstrate techniques that 
can be used to compare and analyze other networks. 

We use these specific simulations to 
demonstrate our methods for several reasons. 
There Is little in the literature directly com
paring the abilities of these types of networks. 
The following theorem provides a means for such a 
comparison. In addition, by using these simula
tions to demonstrate the techniques, the system 

·designer may observe the minimum number of data 
transfers needed If a network presented here was 
implemented and it was then found necessary to 
simulate the actions of one of the networks that 
we have defined. The designer is also provided 
with an algorithm to perform the simulation. 
Since these networks have been shown to be useful 
it is very possible that any network Implemented 
may have to simulate one of them. 

276 

The lower bound results are valid for all 
models of SIMO machines. The only assumptions 
made for Theorem I are: 

(1) that at any given point in time a PE 
must be either active or inactive; 

(2) that the interconnection function, of the 
network to be simulated, which requires 
the most time to simulate, will determine 
the lower time bound for the network; and 

(3) that when an interconnection function is 
simulated, its effect on all PE's must 
be. simulated. 

The model - independence is significant because 
It means that the results and the methods used 
to obtain them apply to real machines. 



The lower bounds are in terms of the number 
of times interconnection functions must be executed 
in order to perform the simulation. Recall that 
the transferring of data from PE to PE will x y 
also be referred to as mapping the address~ toy_. 
The mappings will be described by logical or 
arithmetic operations on them bits of the PE 
addresses. 

Theorem 1 explores the lower bounds on the 
time required for each network defined in section 
111 to simulate the other networks. In Theorem 2 
the upper bounds on the simulation time are 
analyzed. 

Many of the lower bound results were presented 
in [14]. We wi 11 sketch the proofs of only 
those new results which provide tighter bounds. 

Theorem 1: In the following table the entry in 
row x, column y, is a lower time bound for net
work x to simulate network y. An* indicates that 
the proof of the bound is sketched in [14]. 

Cube 

PS 

111 iac 

PM21 

WPM21 

Cube 

-
m+l 

(n/2) + l 

2 

2 

PS 

2Lm/2P 

-
(n/2)+1>~ 

m 

m/2* 

111 i ac PM2 I WPM21 

m• .. m•._ m* 
2m-l >~ 2m-l* 2m-l '~ 

- n/2>~ (n/2) + 1 >~ 

l - 2 

3 3 -

Proof: The notation "x-+ y" means "the case 
where x is used to simulate y." 

( m-2 m PS -+ Cube: Observe that c 1 l 01) = 1 and 
m m-2 c 1 (1 ) = 1 01. At least m-1 shuffles must be 

m-2 m executed to map l 01 to l , as we must move the 

0 to the 0th bit position so that the exchange 
can change-rt. The only way to perform this 
mapping in m steps is to execute m-1 shuffles 

m m-2 
followed by one exchange. To map 1 to 1 01 at 
least one shuffle must be used after an exchange 
is e~ecuted. Therefore, at least m+l steps are 
requ 1 red. 

llliac-+ Cube: Let d(x,y) = lx-yl, the absolute 
difference of x and y. The function d is a 
metric (see [14]). Let j = (m/2)-1. d(O,c. (0)) 

J 
n/2. d(x,l+n(x)) = d(x,l_n(x)) = n, O .::_ x < N, 

so l+n and l_n cannot be used to move a distance 

of n/2. d(x,1+1(x))= d(x,1_ 1(x)) = 1, O ~x < N. 

Therefore, the only way to map O to n/2 In n/2 

steps is to execute '+I n/2 times. But c·(lm) = 
m/2 (m/2)-1 J /2 

1 01 and no subsequence of (l+l)n can 

perform this mapping. Thus, at least (n/2)+1 
steps are required. 

277 

PM21 -+Cube: For 0 < j < m-1 and 0 < i < m 
c. 7 t+l" Thus, at least two steps are required. 

J -

PM21 -+PS: An interconnection function f has the 
effect of adding x distinct integers, mod N, to 
x different addresses, one to each address if 
f(k.)-k. = q., such that k. ~ k. and q. ~ q. for 

I I I I J I J 
i ~ j, 0 < i, j < x. Each execution of a PM21 
function can add either a mod N integer, if the 
PE is active, or nothing, if the PE is inactive, 
to the set of PE addresses. Thus, the number of 
distinct integers added to addresses after log2x 

executions of distinct PM21 functions is at most 
x. The shuffle function has the effect of adding 
N-1 distinct integers to the set of addresses. 
Thus, the PM21 network requires at least 
flog 2(N-l)l = m steps to simulate the shuffle. 

PM21-+ llliac: l±l = t±O' l±n = t±(m/2)• 

PM21 -+ WPM21: For 0 < j < m and 0 < i < m, 
w+. ~ t+·· Thus, at least two steps are required. -J _, 

WPM21 -+Cube: For 0 < j < m and 0 < i < m, 
c. 7 w+·· Thus, at least two steps are required. J _, 

WPM21-+ llliac: l+n(lm) = Om/21m/2 . The only 

way WPM21 can perform this mapping in two steps 

is w_ 0 followed by w+(m/2). l+n(lm/2om/2) =om. 

The only way WPM21 can perform this mapping in 
two steps is w+(m/2) followed by w_0 . Thus, at 

least three steps are required. 

WPM21-+ PM21: Follows from WPM21-+ llliac 
analysis. 0 

In Theorem 2 we demonstrate methods to con
struct algorithms to simulate particular inter
connections. (In [16] algorithms to simulate 
arbitrary interconnections are presented.) The 
algorithms that follow have more than theoretical 
significance. Given an SIMD machine which satis
fies the assumptions we will make these 
algorithms can actually be used to perform the 
various simulations. 

We make the following assumptions: 

(1) All results are in terms of the model 

presented in section I I, where N = 2m, 
F will vary, I includes instructions 
for moving data between the DTR and the 
other registers of the same PE, and 
M = {PE address masks, data conditional 
masks}. (Recal 1 that. data conditional 
statements can be used to simulate PE 
address masks without using any 
additional interprocessor data transfers.) 

(2) Time bounds are in terms of the number 
of executions of interconnection functions. 

(3) When simulating the interconnection 
function f the data to be transferred 



starts in the DTR of PE and must end in 
x 

the DTR of PEf(x)• 0 ::_ x < N. 

(4) The Interconnection function Is to be 
simulated as if it were executed with 
all PE's being active. In [15] it is 
shown how this restriction can be removed. 

When PE address masks and data conditional 
masks are used together, the PE address masks 
accompany each instruction in the "then" block and 
in the "else" block. Thus, in order for a PE to 
be active it must be in active mode as a result of 
the conditional and match the PE address mask 
accompanying the instruction. The notation A- B 
is an abbreviation for registers A and B switching 
their contents using a third register. 

After each algorithm an example ls given to 
demonstrate how the algorithm operates. For the 
examples we assume that the original contents of 
the DTR of PEi is the integer i, all addresses 

and integers will be in binary, and unless other
wise stated, N will equal 8. 
Theorem 2: In the fol lowing table the entries in 
row x, column y, are lower and upper bounds on the 
time required for network x to simulate network y 
given the above assumptions. Each upper bound is 
based on the time complexity of the algorithm 
presented to do that simulation. 

PM21 PS Cube WPM21 111 iaq 

~ 2 I lower - m 2 
upper - 2m-2 2 2 1 

~ 2m-J m+l 2m-l 2m-l lower -
upper Zm - m+l Zm 2in 

Cube 
lower 2[m/2J m - m m 
upper m m - m m 

r¥Et1ll m/2 lower 3 2 - 3 
upper ) zm-T T - 3 
111 iac 

llower n/2 (n/2)+1 (n/2)+1 {n/2)+1 -
upper n72 -6Tn-rJ \n72l+l Tn721+1 -

Proof: The notation "x + y" means "the case where 
XTS"used to simulate y. 11 In [15] we discuss each 
algorithm and prove that it is correct. 

PM21 +PS: For the exchange see the PM21 +Cube 
analysis, since c0 = e. 

278 

For the shuffle: 

(Sl) A+ DTR [lXm-l] 

(S2) for i = m-2 until 0 step -1 
- t+i cxm-11+2To1xi] 

(S3) B + DTR [~-IO] 
(S4) DTR +A [IXm-IJ 

(S5) for i = m-2 until 0 step -1 
- t_ 1 [Xm-1f+2Tl OX i] 

DTR + B [~-lO] (S6) 

S2 S2 
SJ i=l i=O S3. S4 

PE DTR A DTR DTR B DTR 

00_0 000 - 000 000 000 000 
I~ _Q_O_! - _Q_O_! 00_! - 00} 
010 ::_(lJO - _()_I 0 001 001 001 

55 
i=l 
DTR 

000 
00} 
100 

OJ::! ]I!_ - OJI 011 - 011 }01 
J_Q_Q J:OO _!00 O_!O O_!O 010 100 lOO 
IIO:! J:OT IOI 011 011 - 101 J_Ol 
11.Q _!lO 110 110 011 011 110 110 
11..! ..!I I 111 ll l 111 - 111 111 

Example of PM21 + Shuffle 

S5 
l=O 
DTR 

000 
100 
100 
101 
_!00 
110 
110 
111 

PM21 +Cube: For cm-l use t+(m-l)" For 

Ci' 0 ::_ i < m-1: 

Sl S2 
PE DTR DTR DTR 
000 000 110 O}O 
oor 00} 111 OJ.I 
010 010 000 000 
01} 011 001 001 
100 100 010 110 
!Ol IOI OJ I 111 
110 110 100 JOO 
..!.!.!: 111 101 101 
Example of PM21 + c1 

56 
DTR 

oo_c 
I~ 
001 
101 
ou: 
11] 
Oil 
111 

PM21 + WPM21: 

For w+i, O < 

For w+O use t+o and w_0 use t_0• 
< m (w . similar): 

-1 

(Sl) A+ DTR [Om] 

(S2) t [lm-ixi] 
+O 

(S3) A.-.. DTR [Om] 

(S4) t+i [Xm] 

(S5) DTR + A [Oml 



SI S2 --S-3 S3 SZI SS 
PE DTR A DTR A DTR DTR DTR 
000 000 000 111 l]l 000 110 JO: 
001 001 - 001 - 001 110 110 
010 010 - 010 - 010 000 000 
011 011 - 011 - 011 001 001 
I 00 100 - 100 - 100 010 010 
IOI 101 - IOI - 101 011 01 l 
110 110 - 110 - 110 100 100 
111 111 - 110 - 110 101 101 

Example of PM21 + w+I 

PM21 +!Iliac: '+i = t+O' 1_ 1 = t_ 0 , 

1+n = t+(m/2)' 1-n = t-(m/2)" 

PS+ PM21: For t+i' 0 ~ i < m (t_i is similar): 

(SI) for j = i until m-1 do 

(S2) s [x"1] 
(S3) e[lm-(j+l)Xj+l] 

(S4) for j =I until i do s[xm] 

S2 s3 S2 S3 Sii 
j=l j=I j=2 j=2 j=l 

PE DTR DTR DTR DTR DTR DTR 
000 000 000 000 000 110 110 
001 001 100 100 110 000 l"l} 
O_!:O 010 001 001 100 010 000 
011 011 101 101 010 100 001 
100 100 010 110 001 111 010 
101 101 110 010 111 001 011 
110 110 011 111 101 011 l@ 
111 111 111 011 011 101 101 

Example of PS+ t+I" 

PS ... Cube: For c 0 use the exchange function e. 

For c 1, O < i < m: 

( S l) for j = until m- i do s [Xm] 

(S2) e [Xm] 

(S3) .!'.£.!:.. j = until i do s[Xm] 

SI SI s3 
j=l j-2 S2 j=l 

PE DTR DTR DTR DTR DTR 
000 000 000 000 010 010 
001 001 100 010 000 011 
010 010 001 100 110 000 
011 011 101 110 l 00 001 
100 100 010 001 Oil 110 
101 101 110 011 001 111 
110 110 011 101 111 100 
111 111 111 111 IOI IOI 

Example of PS+ c1 • 

PS+ WPM21: For w+O and w_ 0 see the PS+ PM21 

analysis since w+O = t+O and w_0 = t_0 • 

For w+·• 0 < i < m {w. is similar): 
I -1 

279 

(SI) for j = i unti I m-1 do 

(S2) e [lm-jXj] 

(s3) s [Xm] 

(S4) e [Xm] 

(SS) s [Xm] 

(S6) for j = 2 unt i I i do 

(s7) - e [l i-jom-i+lxj-1] 

(S8) s [Xm] 

S2 S3 S2 
j=l j=l j=2 

PE DTR DTR DTR DTR 
000 000 000 000 000 

IO'Ol MT OOT 100 Too 
010 010 ol"o 001 001 
011 on on 101 101 
100 Too 100 010 111 
101 101 101 111 010 
110 110 111 011 110 
111 111 110 110 011 

Example of PS + w+l. 

S3 
j=2 S4 SS 
DTR DTR D°!:B 
000 111 111 
111 000 110 
100 010 O@ 
010 100 001 
001 110 O@ 
110 001 011 
101 011 100 
01 l 101 101 

PS+ llliac: Follows from the PS+ PM21 analysis. 

Cube + PM21: Fort+i'O<i < m (t . is similar): 
-1 

(SI) ci [Xm] 

(S2) for j i+l until m-1 do c. [Xm-joj-ixi] 
- J 

S2 
Sl j=~ 

PE DTR DTR DT_~ 
000 000 010 11] 
001 001 011 111 
010 010 000 oqg 
011 011 001 001 
100 100 110 01] 
101 101 111 011 
110 110 100 I@ 
111 111 101 101 

Example of Cube + t+l • 

Cube + PS: For the exchange use c 0 • For the 
shuffle: 

(Sl) ..!...f. ADDRESS(m-1) = ADDRESS(O) then A+ DTR [Xm] 

else c 0 [Xm] 

(S2) for j = I to m-1 do 

(S3) .!i ADDRESS(j) ~ ADDRESS(j-1) 

then A - DTR [Xm] 

(S4) c. [Xm] 
J 

(SS) ..!...f. ADDRESS(m-1) = ADDRESS(O) then DTR+ A [Xm] 



s3 s3 I~1 S3 S3 SI.I 
Sl Sl j=l j=l j=2 j=2 j=2 S5 

PE DTR A DTR A DTR DTR A DTR DTR DT_.BI 
000 000 000 001 000 001 010 000 010 - 000 
001 001 - 001 001 - 011 001 011 100 100 
010 010 010 011 011 010 001 001 011 100 001 
011 Oil - 011 - 011 - - - 101 IOI 
100 100 - 100 - 100 - - - 010 010 
101 101 IOI 100 100 101 110 110 100 011 II O 
110 110 - 110 110 - 100 110 100 011 011 
111 111 111 110 111 110 101 111 101 - 111 

Example of Cube+ Shuffle. 

Cube+ WPM21: For w+O and w_0 see the Cube+ PM21 

analysis since w+O = t+O and w_ 0 = t_0• 

(Sl) ci (Xm] 

(S2) for j = i+l until m-1 do 
(S3) ~[om-ixi] --

(s4) for j = 1 until i-1 do 

Sl 
PE DTR DTR 
000 000 010 
001 001 011 
010 010 000 
011 011 001 
100 100 110 
101 101 111 
110 110 100 
111 111 101 

c . [ xm- j oj - i x i ] 
J 

c. [om- ix i - j oj] 
J 

S2 
j=2 s3 
DTR OT~ 
110 111 
111 110 
000 000 
001 001 
010 010 
011 011 
100 100 
101 101 

Example of Cube+ w+l' 

Cube+ 111 iac: Follows from the Cube+ PM21 
·analysis. 

WPM21 + PM21: For t+O use w+O and for t_0 use 

w_ 0• For t+i' O < i < m (t_i is similar): 

(Sl) A+ DTR [lm] 

(S2) w+i [Xm] 

(S3) B + DTR [Xm] 

(S4) DTR + A [lm] 

(S5) w_ 0 [Xm] . . 
(S6) B + DTR [Om- 1X1 ] 

m-1 
(S7) w+i [l O] .. 
(S8) B + DTR [Om- 1 11 ] 

(S9) DTR + B [~] 

280 

Sl S2 s3 S4 S5 S6 s7 S8 
PE DTR A DTR B DTR DTR B DTR B 
000 000 - 111 111 111 110 110 110 11_.Q 
001 001 - 110 110 110 000 000 111 111 
010 010 - 000 000 000 001 000 001 Od_Q 
011 011 - 001 001 001 010 001 010 001 
100 100 - 010 010 010 011 010 011 010 
101 101 - 011 011 011 100 011 100 011 
110 110 - 100 100 100 111 100 111 100 
111 111 111 101 101 111 111 101 111 101 

Example of WPM21 + t+l' 

WPM21 +PS: For exchange see the WPM21 +Cube 
analysis, since c0 = e. 

For the Shuffle: Same as PM21 +PS, using w+i 

in place oft+. and w. in place oft .• 
I -1 -1 

WPM21 +Cube: For c., 0 < i < m: 
I -

(S l) 

(S2) 

(S3) 

(S4) 

(S5) 

Sl S2 s3 
PE DTR A DTR A 
000 000 - 000 -
001 001 - 001 -
010 010 010 000 000 
011 011 011 001 001 
lOO 100 - 100 -
101 101 - 101 -
110 110 110 100 100 
111 111 111 101 101 
Example of WPM21 + c1 . 

s3 
DTR 
000 
001 
010 
011 
100 
101 
110 
111 

S4 S5 
DTR DTR 
010 010 
011 011 
010 000 
011 001 
110 110 
111 111 
110 100 
111 101 

WPM21 + llliac: Follows from the WPM21 + PM21 
analysis. 

llliac + PM21: For t+i' m/2 < i < m 
(t. is similar): 

-1 

for j = 1 until 2 i /2m/2 do I [Xm] 
- +n 

Executing I+ 2i/2m/2 times is equivalent to 
• n 

adding 2 1 , which is equivalent to t . , m/2 < i < m. 
+1 -

For t+i' 0 2. i < m/2 (t_i is similar): 

for j = 1 until 2i do l+l [Xm] 

Executing l+l 2i times is equivalent to adding 2i, 

which is equivalent to t+i' 0 2. i < m/2. 

llliac +PS: For the exchange see the 
llliac +Cube analysis, since c0 = e. 

For the Shuffle: See Orcutt's thesis [12], 
section 111. 



I Iliac+ Cube: For cm-l see Ill lac+ PM21 

analysis, since cm-l = t+(m-l)" 

For c 1, m/2 ~·I ~ m-2: 

(SI) A + DTR [Xm-(i+l)lXi] 

(S2) for j = I 
1 unl~I 2 /~ do '+n [xm] 

(S3) A 8 DTR cxm-(1+l)1x'1 

(S4) ~j = I until 2i/n do I [Xm] 
-n 

(S5) DTR +A [Xm-(i+I) 1xi1-

S2 S4 
SI J=I S3 S3 j=l 

PE DTR A DTR A DTR DTR 
0000 0000 - 1100 - noo 0100 
000] O'[o] - ]!Q_! - _!!OJ _Q!QJ_ 
OOIO DOTO - 1no - TilO 01}0 
OOIT 0011 - ::rrn - 1_!!1 O]l_l 

IOTOO 0100 OlOO 0000 0000 0100 0}00 
o]o] o]OI 6J:OI 0001 006I 0101 OJ.OJ 
OTIO 0110 0110 0010 0010 ono 0110 
O}IJ 01}1 611] ooi] Offi <ill.! 0]1] 

[TOOO IOOO - OTOO - :]TOO !TOO 
1001 1001 - 0101 - 0101 l]OI 
10}0 1010 - 0110 - 0110 1110 
[OTI 1011 - 0111 - 0111 1111 
1100 1100 1100 1000 1000 1100 1100 
1101 1101 I IOI 1001 1001 1101 1101 
1110 1110 1110 1010 1010 1110 1110 
1111 1111 1111 1011 1011 1111 1111 
Example of I Iliac+ c2, when N =·16. 

For c(m/2)-I: 

(Sl) for j • 1 until n/2 do l+I [Xm] 
(S2) B + DTR (Xm/21X(m/2)-l] 

(S3) I [Xm] 
(S4) D;~ + B [Xm/21X(m/2)-l] 

-sT ST 
j=I j-2 S2 

PE DTR DTR DTR B 
oc>oo 0000 nn THO -
OOOJ 000] 0000 :rrrr -
IOOfO GOTO CHfOT 0000 0000 
oo]J 00]1 0010 0001 000} 
OTOO 0100 0011 0010 -
O!DI 0101 0}00 0011 -
DITO OTTO 0101 0100 0100 
OllT om OJIO 0101 O}O! 
1000 1000 0111 0110 -
llfOT lOOT 1000 0111 -
1010 1010 100} 1000 1000 
1011 IOTI 1010 1001 1001 
noo ]100 10}1 }O!O -
I IOI IlOI 1100 1011 -
l}TO TITO _l 101 1100 1100 
[lTI 1 1111 1110 1101 I IOI 
Example of I Iliac+ c1, when N • 16 

S3 
DTR 
0010 
OO!! 
Ol_Q_O 
010} 
0110 
01 l_l 
1000 
100! 
1010 
1011 
1100 
l_lOJ 
1110 
1111 
0000 
0001 

S5 
DTR 
OIQ.C 
OJO 
01..!] 
0111 
OOQ! 
qQ_O 
OOH 
001 
]JQ_O 
1101 
u10 

}111 
1000 
1001 
IO!.] 
IOI I 

S4 
DTR 
0010 
00}1 
0000 
0001 
0110 
0111 
0100 
010] 
1010 
1011 
1000 
1001 

]!10 
1111 
1100 
1101 

281 

For c1, 0 ~I~ (m/2)-2, is similar to I lilac 

to c., m/2 < i < m-2: subsltute "I" for "n". 
I - -

I Iliac+ WPM21: Use the algorithm for PM21 + WPM21, 
substituting l+I for .t+O' 1_1 for t;..o• and using 
the I Iliac+ PM21 algorithm for t+I' 0 <I< m. 

V •. Cone I us Ions 

A model of SIMD machines, designed to reflect 
all of the flexibility of real SIMD machines, was 
presented. Five different Interconnection net
works that have been proposed in the literature 
were defined in terms of the model and evaluated, 
The networks were analyzed in terms of the time 
required for each network to simulate the others. 
A lower time bound for each simulation was 
presented and an upper time bound was demonstrated 
by an algorithm that performed the simulation. In 
most cases tight bounds were found. 

An SIMD machine designer must choose a set 
of interconnection functions, I.e., an inter
connection network, to implement. It Is not 
possible to Include all of the Interconnections 
an SIMD machine will need to perform a large 
variety of computations. Thus, when choosing an 
Interconnection network, a designer must consider 
the ability of the network to simulate other 
Interconnection functions. 

If an SIMD machine is being designed for a 
specific task, then the peculiarities of that 
task must be considered when choosing an inter
connection network to Implement. ·1f one assumes 
that the machine will be a general purpose one, 
then the results of the theorem Indicate that a 
hybrid network consisting of the PM21 functions 
and the shuffle function would be quite powerful 
In terms of simulation ability. This hybrid would 
be able to simulate any network discussed here in 
at most 2 steps. 

The methods used to prove the lower bounds 
and to construct the simulation algorithms can be 
used to analyze and compa~other networks and 
hybrids of the networks presented here. To con
struct the simulation algorithms one must consider 
and keep track of the flow of N data words passing 
through N processing elements. In addition, one 
must determine which data may get destroyed by a 
data transfer that is not a bijection and save 
that data in such a way that It can be Identified 
and reloaded later. 

The table In Theorem 2 provides comparison 
Information to aid the system designer In choosing 
a network from among those discussed. The methods 
presented provide tools for the designer to use 
to evaluate other networks. 

VI. Acknowledgements 

I would like to thank Professor J, D. Ullman 
for his help and guidance with this research. I 
would also like to thank L. J, Siegel for her comments, 



[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

cal 

{9] 

V 11 ~ Refe.rences· 

G •. H. Barnes, et. al., HThe ILLIAC IV . 
computer, 11 IEEE Tr,ans.-::comput., Vol. C-.17: 
(Aug. , 1968) , pp. 746-757. .. 

K. E. Batcher, "STARAN/RADCAP hardware 
architecture," Proceedings of the 1973 
Sagamore Computer Conference on Parallel 
Process Ing, pp. 147•152. . 

K. E. Batcher, The Multi-Dimensional Access 
. Memory In STARAN, submitted to the IEEE . 
"Trans. Comput. ·Special Issue on Pariii'T'le'l 

Processing; summary rn the Proceedin¥s' of 
the 1975 Saganiore Conference on Para lei 
Processing, page 167. 

L. H. Bauer, 11 lmpl ementat ion of data· 
manlpula.ting func'tions on the STARAN 
assoclat·ive processor," Proceedings of the 
1974 Safamore Computer Conference on 
Paralle ·Processing; pp. 209-227. 

W. J. Bouknight, et. al., "The 111 lac IV 
. system," Proceedings of the IEEE, Vol. 60, 

No. 4 (Apr., 1972), pp. 369-388. 

T. Feng, "Data manipulating functions In 
paral l'el processors and the Ir Implementations," 
IEEE Trans. Comput., Vol. C-23 (Mar., 1974), 
pp. 309-318. 

T. Feng, Parallel Processing Characteristics 
and Implementation of Data Manipulating ·. 
Functions, Dept. of Electrical and Computer 
Engineering, Syracuse University, RADC;.TR-73 
189 (July, 1973). 

M. J. flynn, "Very high-speed computing 
systems," Proceedings of t'he IEEE, Vol. 54, 
No. 12 (Dec., 1966), pp. 190H909. 

S. W. Golomb, "Permutations by cutting and 
shuffHng, 11 SIAM Review, Vol. 3, No. 4 
(Oct., 1961), pp. 293-297. 

[10] ,.P. B. Johnson, "Congruences and card "· 
· shuffl Ing," American Mathelnatical Monthly, 

Vol. 63 (Dec., 1956), pp. 718-719. · 

282 

[II] 

[12] 

[13] 

[14] 

[IS] 

[16] 

[17] 

[18] 

[19] 

D. E. Lawrie, Memorr·Processor Connec:tlon 
Networks, Dept. of Computer Science, 
University of lllinols, Rep. 557, (Feb., 
1973). 

S. E. Orcutt, Computer Organization and 
Algorithms for Very-High Speed Computation, 
Dept •. of Computer Science, StanfOrd . 
Un Ivers i ty, Ph.D. Thesl s, (Sept., 1974). 

D. Rahmlow, "Paraslm, 11 Princeton University, 
unpublished paper, (1974). 

H. J. Siegel, "Analysis Techniques for SIMD 
Machine Interconnection Networks and the 
Effec;ts · of Processor Address Masks, 11 

Prpceedlngs of the 1975 Sagamore Conference 
on Parallel Processing, pp. 106-109 •. 

H. J. Siegel, SIMD Machine Interconnection 
Network Desi,n, Princeton University, 
Department o Electrical Engineering, 
Computer Science Laboratory Technical Report 
198, (Jan., 1976) • 

H. J. Siegel, Single Instruction Stream
Multiple Data Stream Machine Interconnection 
Network Universal fty, Princeton University,· 
Department of Electrical Engineering, 
Computer Science Laboratory Technical Report 
(Aug., 1976). 

D. L. Slotnick, et. al., "The SOLOMON 
computer," 1962 Fall Joint Computer Conf., 
AFIPS Proc., Vol. 22 (1962), pp. 97-107. 

H. S. Stone, "Parallel processing with the 
perfect shuffle," IEEE Trans. Comput., Vol. 
c.,20 (Feb., 1971), pp. 153-161. 

R. C. Swanson, "Interconnections for 
.paral lei memories to unscramble p-ordered 
vectors, 11 IEEE Trans. Comfut., Vol • c-23, 
No. 11 (Nov., 1974), pp. 105-1115. 

[20] D. E. W.i Ison, ''The PEPE support software.: 
system," Sixth Annual IEEE Com uter Societ 

. .lnternationa Con .erence 1972 , pp. 1.-



EFFECTIVENESS OF SOME PROCESSOR/MEMORY INTERCONNECTIONS 

K.Y. Wen and D.H. Lawrie 
Department of Computer Science 

University of Illinois 
Urbana, Illinois 61801 

Abstract -- This paper is an overview of some 
of our efforts to determine the combined effective
ness of program restructuring techniques and. vari
ous processor/memory interconnection networks from 
the user's point of view. This paper first at
tempts to investigate the structural and functional 
similarities and differences of some of these net
works. Some new results on network properties and 
their capabilities in handling computations are al
so presented. Then the paper describes how we can 
apply the theoretical results of various networks 
to predict their performances in a real program en
vironment, which is the true measure of network ef
fectiveness. The result of this study enables us 
to answer some long standing questions about the 
real effectiveness of various interconnection 
schemes. 

Introduction 

Recently, component speeds have continued to 
improve. However, there are certain physical limi
tations to component speeds. Multiprocessing then 
seems to be an area to show the most promise for 
any further speedup of computations. The arrival 
of the cheap but powerful LSI microprocessors 
greatly increases the attractiveness of multipro
cessing systems. However, a big problem arises in 
finding the best way to interconnect all the pro
cessors. The questions that are yet to be answered 
are what kind of network should we use, how should 
we compile or restructure computation algorithms in 
order to use it, and how well does it work on ordi
nary application programs. 

Many interconnection schemes have been pro
posed or built in recent years. Thurber [l] gives 
a survey on some of the more important ones. How
ever, each of the networks proposed or built has 
different requirements to fulfill and their imple
mentations are based on different theoretical back
grounds. Frequently, their capabilities are incom
pletely known, and their control algorithms are 
poorly understood. Hence it is very difficult to 
categorize or assess the merits of each of these 
networks. 

This paper first sunnnarizes some new results 
on certain network properties and their capabili
ties in handling computations. Then the paper de
scribes how we can apply the theoretical capabili
ties of various networks to predict their perform
ances in a real program environment, which is the 

* This work was supported in part by NSF Grant 
MCS73-07980-A03. 

283 

true measure of network effectiveness. This per
formance prediction is being done using an Ana
lyzer /Simulator program, which can be used as a 
tool to compare various parallel architectures. 

In general, processor(/memory) interconnec
tion networks can be divided into two ciasses. 
The first class has multiple stages of switching 
elements. The second class has only a single 
stage of switching elements and this stage may have 
to be recycled many times to obtain certain permu
tations. Examples of the first class are the 
Batcher network[2], the Benes network[3] the omega 
network[4], the barrel shifter, and the Feng's data 
manipulator[S]. Networks such as the Illiac IV 
connection[6], the Swanson connection[7], the +l 
shift network and the perfect shuffle network[S] 
are good examples of the one stage networks. Al
though single stage networks may be.slower in per
forming general permutations of data than the 
multistage networks, they are much cheaper in com
parison. If we can restructure and recompile some 
of the commonly used computation algorithms into 
algorithms which fully utilize the available con
nectivities, we can retain the performance level 
while drastically decreasing the cost of the pro
cessing system. 

One of the multiple-stage networks which has 
been of particular interest to us in recent years 
is the omega network. This network cannot perform 
all connections of its inputs to outputs, yet it is 
capable of producing most of the connections re
quired by numerical programs. Because of the in
complete capabilities of this network, it is neces
sary to analyze the network to determine exactly 
which connections it can produce. A number of 
these connections have been demonstrated in [4]. 
Before proceeding with a discussion of the program 
analyzer and simulation experiments, we summarize 
in the next two sections some new theorems about 
omega networks which demonstrate connection capa
bilities that are important fpr handling certain nu
merical algorithms found in many application pro
grams. 

Omega Partition Theorems 

One important property of the omega network is 
its ability to be partitioned. The theorems in 
this section will show that a large omega network 
can be regarded as a conglomeration of many smaller 
omega networks, each passing a different smaller 
omega-passable connection function. These parti
.tion theorems help to establish many capabilities 
of a larger size network on smaller, partitioned 
connections. 



Example: 
Given an 8x8 omega network. Assume that 

source ports 0-3 want to do an end-around 1-shift. 
Assume also that destination ports 4-7 request data 
from port 5. So the complete set of source destina
tion pairs is P~{(O,l),(1,2),(2,3),(3,0),(5,4), 
(5,5),(5,6),(5,7)}. We know that a 4x4 omega net
work can perform an end-around 1-shift, as well as 
a one-to-many broadcasting function. By using the 
partition theorem stated below, we can be sure that 
an 8x8 omega network can pass P. 

Definition 1 

For example, let L=4, M=4 and N=l6. If 

PM :{(O,l),(l,2),(2,3),(3,0)}, 
0 

a 1-shif t perinutation, 

PM ={(O,o);(o,1),(0,2).,(0,3)J, 
. 1 . 

a.l-to-4 broadcast connection, 

PM ={(0,3),(1,2),(2,l),(3,0)}, 
2 

a ·flip permutation, 

PM -{ (O,O), (1,3), (2, 2)., (3,1)}, 
3 . 

a 3-order unscrambling, and 

PL={(0,2),(1,3),(2,0),(3,l)}, 

a 2-shift permutation. 

Then by definition, PN={(0,9),(1,10),(2,11), 

(3,8),(4,12),(4,13),(4,14),(4,15),(8,3),(9,2), 

(10,1), (11, O), (12,4), (13, 7), (14, 6), (15,5)}. 

In words, the sources and destinations of PN 

are divided into 4 partitions. PL is the inter

partition permutation function, and PM 's are the 
i 

individual partition permutations. PL moves par

tition 110 to partition f/2 and then the individual 
elements in partition #2 will be moved according 
to PM , and so on. A pictorial illustration of P 

o N 
is shown in Figure 1. 

LeDD11a 1 

(Equivalent Statement of Theorem 2 in [4J) 
Given a set of desired input-output connec

tion PN={(si,di)[ O~i<N}, then NxN omega network 

passes PN if and only if for all s-d pairs in PN 

and for all m=2k; where ~k~log N, si ~ sj' or 

m 
si t sj or di t dj. 

m N 

Alternatively speaking, a binary omega does 
not pass a connection P if and only if there exist 
(s.,d.) and (sj,d.) and where k=logm, such that: 

l. l. J 

l) the leading (logN-k) bits of si and sj are not 
m 

equal (s. i sj), 
i N 

2) the trailing k bits of s. and s. are equal 
l. J 

(s, 
l. 

= s.), and 
m J 

3) the leading (logN-k) bits of d. and dj are 
l. m 

equal (di = d.). 
.. N J 

Theorem 1 

Proof 

Let QLtPL and ~+PM.'O~i<L, and let N=LxM, 
l. 

spM+tpq' D1=dpM+epq' s2=suM+tuv' D2=duM+euv and X 

x 
such that s1 t s 2, s1 = s 2 and n1 = n2• 

N X N 

Let m=logM, n=logN, b = logL, and x logX. 

If X>M, pictorially we have: 
- +b+ .+m+ 

s1 I Sp I tPa I I dp I e pg 

s2 I su I tuvl I du I e 
UV 

~ '-y-' 
x bMn-x 

Here the trailing x bits of s1 and s2 are 

equal, but the leading (b+m-x) bits are not equal, 
and the leading (b+m-x) bits of n1 and n2 are 

284 



equal. Since .x_::m, the trailing (a=x-m) bits of s 
p 

and su are equal but the leading (b-a) bits are 

different, and the leading (b-a) bits of d and 
p 

du are equal. This contradicts '\_+PL. 

If X<M, pictorially we have: 
+b++m+ 

sl I Sp 

s2 I su I 

t pq 

t I UV 

~ 
x 

d 
p 

e pq 

Since the leading (b+m-x) bits of o1 and D2 
x 

are equal and m>x, we have d =d and e =e 
p U pqM UV 

Since OL+PL and dp=du' p has to be equal to u. So 

s =s • This implies that t +t since p U pq UV 

S 1 ~s2 • s1:s2 and X<M implies that t :t • Set-
~ X pqX UV 

x 
ting p=u, we get epq:epv' tp~tpv and tpq~tpv" 

They imply that ~/PM , which is a contradiction. 
p 

Hence, Theorem 1 is proved. 

In Theorem 1, the tag bits denoting the par
titioning are the most significant log L bits. In 
the following two theorems, we extend the result 
to any set of log L bits in the tag representation. 

Let us look at (s.,d.) and (s.,dj) like the 
following: i i J 

(si,di): (2:1X2x~4x5x6x7~x~l0' 

L1Y 2Y }L4Y Sy 6y i"47 ~10) 
(sj,dj): (!!_1a2a~a5a6a7~a~10 , 

E.1b2b~b5b6b7~b~10> 

Assume there are log L underlined bits and 
log M non-underlined bits. 

Theorem 2 

Assume all the underlined bits of (s,d) sat
isfy an omega passable connectiont PL' and all the 

non-underlined bits of (s,d) satisfy an omega pas
sable connection P~, where k represents the total 

numerical value of the underlined bits of s. Then 
{(s,d)} is passable by an omega network of-size 
LMxLM. 

Proof: see [9]. 

tNote that a connection can be a broadcasting func
tion, while a permutation cannot, i.e. a connec
tion can be one-to-many while a permutation must 
be one-to-one. 

285 

Theorem 3 

Assume all the underlined bits of (s,d) sat
isfy an omega passable permutation PL' and all the 

non-underlined bits of (s,d) satisfy an omega pas
sable connection P~, where k represents the total 

numerical value of the underlined bits of d. Then 
{(s,d)} is passable by an omega network of size 
LMxLM. 

Proof: see [9]. 

It should be noted that all three theorems 
allow P~'s to be any connection function, and PL 

can be any connection in Theorems 1 and 2 but must 
be a permutation in Theorem 3. 

This partitioning property of the omega net
work proves to be vital for the efficient handling 
of many algorithms, especially the Recurrence 
Solvers, as discussed later in this paper. 

Another important property of the omega net
work is its ability to produce broadcast connec
tions, i.e. one-to-many mappings of inputs to out
puts. This ability is necessary for.example in 
certain matrix multiplication algorithms and al
gorithms for solving recurrence systems. We will 
summarize the broadcast theorems in the next sec
tion. 

Omega Broadcast Theorems 

Theorems 10 and 11 of [4] describe certain 
broadcasting functions for small square submatrices 
of data. In this section, we are going to extend 
these results to 3-dimensional arrays, not neces
sarily of equal size edges. 

We use the notation (k,x,y) <a,b,c> to denote 
element (k,x,y) of an axbxc array. Here O<k<a, 
O..::_x<b, O~<c. Also (k,x,y) <a,b,c> ---+(*-;-x,y) 
<a,b,c> symbolizes the mapping of the element 
(k,x,y) to elements (O,x,y), (l,x,y), •••• (a-1,x,y). 

Now we can show six extensions of the broad
cast theorems. 

For constant k and for all values of x and y: 

1) 0abc + {(k,x,y) <a,b,c> - (*,x,y) <a,b,c>} 

2) 11abc + {(k,x,y) <a,b,c> - (x,*,y) <b,a,c>} 

3) 0abc + { (k,x,y) <a,b,c> - (x,y,*) <b,c,a>} 

4) 11abc + {(k,x,y) <a,b,c> - (y,x,*) <c,b,a>} 
iff a>c 

S) 11abc ' {(k,x,y) <a,b,c> - (* ,y ,x) <a,c,b>} 

6) 11abc ' {(k,x,y) <a,b,c> - (y,*,x) <c,a,b>} 

These broadcast theorems are also essential 
in implementing the recurrence algorithms discus-
sed in Section 4 and are some of the more important 



properties of the omega network. They will not be 
proved here. However, proofs can be found iri (9). 

Psuedo Compilation of Code for 
S.imulation of Parallel Architecture 

In order to evaluate the true effectiveness 
of a parallel architecture, we must hypothesize a 
compiler capable of compiling ordinary programs 
into code which most effectively utilizes the ar
chitecture, especially the data alignment capabili
ties. The resulting code could then be simulated 
and the important performance measures determined. 
This is one of the goals of an ongoing effort at 
the University of Illinois. A Program Analyzer 
has been implemented which accepts Fortran source 
programs, and by detailed analysis of the control 
and data dependencies it produces a highly paral
lelized version of the original program (see (10]). 
Next, this parallelized version is input to another 
program, the Resource Request Generator (RRG), 
whieh attempts to compile the parallelized program 
into simulatable code. This pseudo compilation 
is done based on the capabilities of the architec
ture to be studied, including the type of inter
connection network. Finally, the output of the 
RRG is input to a simulator capable of simulating 
a wide variety of architectures. The Program An
alyzer is described elsewhere [10] and we will not 
discuss it here. In this section we will briefly 
describe the RRG. 

The most easily recognizable form of paral
lelism is typified by a matrix addition shown be
low. 

DOlO I=l,N 

DO 10 J=l,M 

10 A(I,J)=B(I,J)+c(I,J) 

The Program Analyzer will determine that 
· there are no restrictions on how this computation 

can be 'sliced'. The addition can proceed by rows, 
by column, or in fact, the elements of the resul
tant matrix can be computed in virtually any order. 
The task of the RRG is to decide on the best way 
to slice this computation based on the size of the 
matrices, the number of available processors, the 
matrix storage scheme, and the type of alignment 
network. Various aspects of this problem are dis
cussed in the literature. For example, Budnik and 
Kuck [ll] and Lawrie [4] discussed ways of organiz
ing the memories to allow conflict-free access to 
various slices of arrays. Linear skewing is a 
standard technique. However, the data output will 
sometimes form a p-ordered vector, which cannot be 
unscrambled by means of a simple shifter. Lawrie 
[4J dis~ussed the alignment requirements for some 
of the most conunon types of array access. 

The parallelism in other computations may not 
be so obvious. Consider for example the computa
tion shown ·below. 

286 

DO 10 I=l,N 

10 X(I)=A(I)*X(I-1) +B(I) 

This is an example of what we call a recur
rence computation. Special techniques must be used 
to perform such a computation on a parallel proces
sor in order to' maintain reasonable performance. 
Kogge and Stone [12], Heller [13] and Chen and Kuck 
[14) have shown various algorithms which can be 
used to speed up such computations. However, we 
will not discuss all of these techniques here. 
Suffice to say that the Program Ana ... yzer detects 
such computations, and offers the RRG a variety of 
options for their solutions. 

The adaptation of a computation onto a par
allel processor must be tailored according to the 
limited number of available connections of the 
alignment network to minimize alignment time. In 
the extreme cases, the alignment network may have 
only a limited number of connections (like the 
Illiac IV shifter or a one-stage perfect shuffle 
network). To obtain any general permutation, the 
network has to be recycled many times. For exam
ple, a one-stage perfect shuffle network may re
quire O(IN) alignment steps before we can start on 
a processing step. By carefully rearranging some 
of the operation sequences in normal algorithms 
and by assigning intermediate storage patterns in 
a deliberate fashion, we can sometimes reduce the 
number of alignment operations per processing step 
down to a constant (not dependent on N). 

A good example is matrix mult:l.plication. A 
Fortran code section that performs matrix multi
plication is as follows: 

DO 10 I=l,N 

DO 10 J=l,N 

DO 10 K=l,N 

10 A(I,J)=A(I,J)+B(I,K) *C(K,J) 

Notice the obvious parallelism in the I and 
J indices, but that the K index involves a recur
rence. Assuming the number of processors is small 

2 compared to N , an efficient way to perform the 
calculation would be to compile the product by col
umns (parallel on I), or by rows (parallel on J) 
as shown below. 

DO 10 I=l,N 

DO 10 K=l,N 

10 A(I,*)=A(I,*}+B(I,K)*C(K,*) 

This algorithm will require O(N2) shifts to 
align the operand matrices. A one-stage perfect 
shuffle network simulating an omega network will 
take log N steps per shift, and the Illiac IV type 



of switch will take O(IN) steps per shift' on the 

average. So a total of O(N21og N) or O(N21N) 
routing steps are required for matrix multiplica
tion. However, using Algorithm 1 which follows, 

2 we need only O(N ) steps. This algorithm can use 
either a one-stage perfect shuffle network or an 
!Iliac IV type of switch. 

Assume we want to multiply two matrices B 
and C to form A and that they are all of size NxN. 
The first method uses N processors and requires 
that the storage scheme for the matrices be 1-skew 
and 1-skip. The storage pattern is shown in Figure 
2. Each processor will have a corresponding mem
ory from which. it can fetch data. Any data a pro
cessor wants but not in its own memory will have 
to be routed from the other processors. This al
gorithm also calculates the relative address (RA) 
for each array it references. 

Each processor has a wired-in processor 
port number, PPN (O_::.PPN<N-1). T is a temporary 
array. 

Algorithm 1 

for IC = 0 to N-1 do 
fetch B(RA=IC) into Rl 
IR <-- (PPN-IC) mod N 

for IT = 0 to N-1 do 

end 

fetch C(RA = IR) into R2 
R3 <-- Rl*R2 
G-permute IR 
store T(RA=(PPN-IR)mod N) from R3 
G-permute Rl 

Rl <-- 0 
for IT = 0 to N-1 do 

end 

fetch T(RA=IR) into R2 
Rl <-- Rl + R2 
G-permute Rl 
G-permute IR 

store A (RA=IC) from Rl 
end 

Algorithm 1 depends on the ability of the 
alignment network to do a 'G-permutation'. Defini
tion: A G-permu~ati~n is defined as a permutation 
G such that G, G , G , ••• GNt are distinct and form 
a group with GN = I, the identity permutation. 

Every G permutation can be uniquely repre
sented as a cycle (i0 ,i1 , ••• ~_1) where G(i0 )= i 1 , 
G(i1)=i2 , •• G(~_1)=i0 • 

Two obvious G-permutations are the +l· shift 
permutation and the -1 shift permutation. In gen
eral, +k shift and -k shift permutations will be 

t i 
G implies i consecutive applications of the per-
mutation G to the input set. 

287 

G-permutations if k is relatively prime to N. 
Some nonshifting G-permutati-0ns can be found using 
a perfect shuffle based permutation. The G-permu
tations have a general form of: 

G(i) = [2i+b(i))~od N 
where b(i) b(i+N/2) V i=O •• ;N/2-1 
and b (i) = 0 or 1 V i 

A list of all {b(i) ,i=O •••• N/2-1} that will 
give G-permutations for 'N=4 and 8 and the corres
ponding G-permutations are listed in Table 1. 

Size 

4 

8 

b i 

1 1 

1 1 0 1 

1 0 1 1 

Table 1 

G- ermutation 

(O 1 3 2) 

(O 1 3 7 6 5 2 4) 

(0 1 2 5 3 7 6 4) 

The significance of this result is that for 
certain one stage networks, if there exists a G
permutation, then each intermediate routing will 
take only 0(1) time instead of O(log N) time or 
O(IN) time. This greatly reduces the alignment 
time for the system. 

The RRG uses results like these to produce 
code which effectively utilizes a given architec
ture. 

Experiments and Preliminary Results 

Over the next six to twelve months we will 
be conducting experiments to determine the real 
effectiveness of various array processor architec
turals. In this section we will describe the de
sign of these experiments and present some prelim
inary results. 

The simulator can simulate essentially any 
architecture. Possibilities include systems com
posed of parallel processing elements, pipelined 
processors, or combinations of both, and various 
alignment networks and memory systems. The ar
chitecture may include one or more scalar proces
sors, control units, and I/O subsystems. The 
simulation can proceed at various levels of detail, 
from a gross level where a group of processing 
elements forms a single system resource, to finer 
levels where even register usage is accounted for. 

The output of the simulator is a set of per
formance measures. One such measure is T , the 

p 
time required for simulated execution of the pro
gram using p processors. Another measure is the 
speed factor, F , which is defined as T1/T • In 

p p 

addition, the simulator calculates measures of the 
utilizations of various system resources. If the 
architecture is a SIMD multiprocessor, i.e. an 



array' of processors, then the processor utiliza
tion is br-0ken down into several separate utili
zations, ua, u~, and u1F. First, ua, the arr11y 

duty cycle, is the percentage of time that at 
least one processor is performing a cOll)putation. 
However, whenever ,an array· operation is being per
formed, only some of the processors maY be actually 
doing useful work. This is measured by the slicing 
utilization, Us. For example, to.add two 30 ele-

ment vectors together using 20 processors would re
quire two steps. The .first step would form the 
first 20 sums and would use all 20 processors re
sulting in a· slicing utilization, Us' of 100%. 

The second step would form the last 10 sums using 
only 10 processors and would result in Us=50%. 

The overall Us would then be 75%. Finally, some 

processors are turned off because of IF statements 
in the original programs, and this is measured by 
u1F. For example, assume that in the following 

program, 1/3 of the B(I) are less than zero: 

DO 10 I=l,30 

10 IF (B(I).GE.O) A(I)=A(I)+B(I) 

Then UIF=67%. Thus, using 20 processors on this 

program, Ua might be 80%, e.g. because the proces

sors are waiting for memory access or data align
ment. ·of this 80% of the time, only 75% of the 
processors could be used because of the difference 
between the number of processors and the array size 
(Us=75%), and of these 75% of the processors, only 

67% are turned on (UIF=67%). Thus, the total aver

age processor utilization, UT' is equal to U a *Us *UIF 

= 80%*75%*67% = 40%. By separating the compon_ents 
of processor utilization in this way we can deter
mine the source of processor inefficiencies. 

Our initial experiments will deal with the 
effects of the following architectural parameters: 

1) The number of array processors, and the speed 
of the processors relative to the array memory 
system. Initially, the processors will be re
stricted to a single group of processors opera
ting from a single instruction stream (SIMD). 

2) The presence or absence of an independent 
scalar processor and/or memory. The absence of 
a scalar processor forces scalar operations to 
be performed by the array processors. 

3) The memory system, including the array storage 
scheme (1-skew, etc.), and the number of mem
ories(power of two or prime). 

. 4) The type of alignment network: 
a) crossbar 
b) omega network 
c) ±1,±v'P shifter (Illiac IV) 

These parameters will be studied for a ;Large 
variety of application programs, and in addition 
the size of the application programs (i.e. the ar
ray sizes) will be varied in order to produce fam
ilies of performance figures. 

The tables below present some preliminary re
reS'll ts -0.f experiments on three programs. We would 
like to stress at this point that these results are 
preliminary. The three programs can hardly be con
strued as representative of any large population 
of applications. The first program, ADVV, is a 4-
point relaxation scheme. ADVV was chosen because 
of its highly parallel nature. The second program, 
ELMBAK, forms the eigenvectors of a real matrix by 
back transforming those of the corresponding upper 
Hessenberg matrix. ELMBAK is reasonably complicat
ed, but has no recurrences. The third program, 
SLEQl, is a Gauss-Jordan reduction program.. SLEQl 
was chosen because it contains a representative 
recurrence relation. We present the results of 
these three programs only as an indication of the 
types of results we expect from our experiments. 

Table 2 shows the speed factor, F =T1/T , 
p p 

and processor utilization UT using 16 processors, 

17 memories, a crossbar alignment network, skewed 
storage, and separate scalar processor and memory. 
The results are presented as a function of N, the 
data array sizes. Notice for ADVV the speed fac
tor quickly approaches the maximum value of 16. 
Processor utilization ranges from 43% to 71%. The 
result for N=l6 indicates that Ua = 70% (Us=l00% 

since N=p=l6 and for ADVV, UIF=l00%). Thus, the 

processors are only busy 70% of the time due to 
non-perfect overlap of array processor operations 
with alignment, memory, and scalar operations. 
However, the speed factor is 16 which would indi
cate a similar degree of non-perfect overlap in a 
comparable serial processor. The other programs 
ELMBAK and SLEQl indicate much lower speed factors 
and utilizations. SLEQl contains recurrences, 
which are handled in parallel but much less effi
ciently than the pure vector operations in ADVV. 
Notice, however, that even though SLEQl contains a 
recurrence, the speed factor of 14.5 is very close 
to the maximum of 16 when N is 60. ·we believe it 
is significant that we are able to handle recur
rences this well. 

The reason the ELMBAK results are so low il
lustrates an interesting situation. At the present 
time programs are compiled into three address vec
tor or scalar instructions. If the vectors are of 
sufficient length, then an implicit loop is estab
lished in order to cycle the processors, memories, 
etc. a sufficient number of times. Within this 
implicit loop there is usually overlap between pro
cessor, alignment and memory operations. However, 
between separate vector instructions, there is no 
overlap. Thus, one instruction must finish before 
the next starts. This is what causes the low 

.28B 



Program N=lO N=l6 N=40 N=60 N=lOO 

ADVV 9.7, 43% 16.0, 70% 14.1, 62% 15.9, 70% 16.2, 71% 

ELMBAK 2.0, 6% 3.0, 10% 5.9, 23% 8.0, 32% 9.6, 39% 

SLEQl 

Table 2. 

cessors, 
storage. 

4.5, 14% 6.8, 21% 9.6, 30% 14.5, 45% --

Speed (F16) and processor utilization (UT) using 16 pro-

17 memories (cf [11]), crossbar alignment network and skewed 
N is the data array size . 

b Cross ar Om ega Ill" iac IV 

Program Straight Skewed Straight Skewed Straight Skewed 
f--

ADVV 1416 1416 1416 1416 1384 1384 
(9. 7) (9. 7) (9. 7) (9. 7) (9.9) (9.9) 

ELMBAK 1760 1760 1760 1760 1261 1282 
( 2.0) ( 2.0) ( 2.0) (2.0) (2.8) (2.8) 

SLEQl 2636 2636 2636 2636 * * 
(4.5) (4.5) (4.5) (4.5) 

*SLEQl contains recurrences which we have not yet programmed on Illiac type intercon
nections. 

Table 3. Execution time, Tp, and speed factor (Fp) using various alignment networks 

and skewing schemes. (p=16). 

289 



figures for ELMBAK. This indicates to us that it 
is important to design the vector instructions and 
control unit so that different vector instructions 
overlap each other. 

It is also interesting to note that F and 
p 

UT continue to increase with N for both ELMBAK and 

SLEQl. This is due to increased overlap of opera
tions within the implied loops of vector instruc
tions and, in SLEQl, more efficient recurrence al
gorithms which are used when N is sufficiently 
larger than the number of processors. 

Table 3 indicates the effectiveness of vari
ous alignment networks and skewing schemes. As we 
can see, the crossbar and omega networks performed 
equally well. The Illiac network performed some
what better, at least for ADVV and ELMBAK. This is 
due to two facts. First, the Illiac network was 
set to operate four times faster than the other 
networks. This reflects the difference in the com
plexity of the networks. Second, we were able to 
"compile" the programs using very simple alignment 
requirements which could be easily handled by all 
three networks. The lack of difference between 
straight storage and skewed storage is also a 
reflection of this second point. We were able 
to compile the programs so they only needed ac
cess to rows, and thus they do not benefit from 
skewed storage. However, we do not believe this 
result will hold for larger, more complicated pro
grams. 

Table 4 illustrates another interesting re
sult. One question which continually plagues ma
chine designers concerns the relative speed of the 
memory and processor. Should the memory be the 
same speed as the processor, twice as fast, or 
three times as fast? The answer depends on many 
things: the design of the machine instructions, 
the size of arithmetic expressions in the source 
program, etc. Table 4 shows the execution time, 
Tp, 'and processor utilization UT for three differ-

ent cases. In column 1, the processor array, 
alignment network, and memory all have the same 
cycle time. In column 2, the alignment network 
alone has been made twice as fast. There is very 
liutle difference between columns 1 and 2. This is 
because the faster crossbar switch is only effec
tive when data alignments are required in the ab
sence of memory accesses. None of these three 
programs required such alignment. The small dif
ference present between columns 1 and 2 simply 
represents a shorter overall time for a "short" 
vector operation in the absence of inter-instruc
tion overlap. 

Column 3 of Table 4 corresponds to a machine 
whose alignment network and memories are twice as 
fast as the processor arrav. For ADVV, the improve
~ent in Tp is noticeable but not significant. This 

is because ADVV has relatively large expressions in 
the source program so the ratio of memory to pro
cessor operations is close to 1: 1. Thus ADVV does 

not need a very fast memory. For ELMBAK and SLEQl 
however, the improvement in T is more significant. 

p 
This would indicate that, at least for these pro
grams, the faster memory might be cost effective. 

Table 5 shows the effectiveness of an inde
pendent scalar processor and scalar memory on T • 

p 
Also included in the table are the utilizations of 
scalar memory and scalar processor respectively. 
A scalar processor and memory should be effective 
for several reasons. First, without a scalar mem
ory, when a scalar is being broadcast over all .ele
ments of an array, the scalar operand would have 
to be fetched from the array memory and aligned 
(broadcast). This constitutes wasteful use of the 
array memory. Second, the use of both scalar mem
ory and processor would allow some scalar operation 
to be done simultaneously with array operations. 
Thus we would be able to overlap or mask out cer
tain truckulent serial operations in the program. 

In Table 5 we can see that the scalar proces
sor causes no improvement in T and the scalar mem-

p 
ory results in only marginal improvement, even 
though .both are utilized to some extent. However, 
we believe that our "compiler" can be improved so 
as to utilize the scalar hardware more effectively. 
This will involve improving the inter-instruction 
overlap and more accurate accounting for such 
things as subscript calculation. 

Conclusion 

In this paper we have presented an overview 
of our efforts to evaluate high speed computer ar
chitectures in an environment of real programs. 
This has involved a number of separate efforts. 
First, a program Analyzer described elsewhere (c.f. 
[10]) was developed which can analyze a program and 
allow us to restructure the program so it can more 
effectively utilize a given architecture. Second, 
we investigated the capabilities.of various align
ment networks and designed algorithms which could 
utilize these capabilities. Finally, we developed 
a simulator to test our theories. We believe that 
by using these tools we.will be able to answer some 
long standing questions about the design and ef fec
tiveness of high speed computers. 

Acknowledgement 

The Program Analyzer is the result of the ef
forts of Bruce Leasure, Ross Towle, Mike Wolfe and 
Mike Wilde. Donald Chang wrote the simulator. 
Yuzo Hayashi provided assistance in experimental 
design and debugging. Much progress in the solu
tion of recurrences has been provided by S.C. Chen 
and Ahmed Sameh. We are deeply indebted to these 
colleagues, and especially to Dave Kuck who has 
stimulated and overseen the entire effort. 

290 



References 

[l] K. J. Thurber, "Interconnection Networks--A 
Survey and Assessment," AFIPS Conference 
Proceedings, Vol. 43, pp. 909-919, May 1974. 

[2] K. E. Batcher, "Sorting Networks and Their 
Applications," Proceedings of the 1968 SJCC, 
pp. 307-314. 

[3] V. E. Benes, Mathematical Theory of Connecting 
Networks and Telephone Traffic, Academic Press, 
New York, 1965. 

[4] D. H. Lawrie, "Access and Alignment of Data in 
an Array Processor," IEEE Transactions on 
Computers, pp. 1145-1155, December 1975. 

[5] T. Feng, "Data Manipulating Functions in 
Parallel Processors and Their Implementations," 
IEEE Transactions on Computers, pp. 309-318, 
March 1974. 

[6] G. H. Barnes, et al, "The Illiac IV Computer," 
IEEE Transactions on Computers, pp. 746-757, 
August 1968. 

[7] R. C. Swanson, "Interconnections for Parallel 
Memories to Unscramble p-ordered Vectors," 
IEEE Transactions on Computers, pp. 1105-1115, 
November 1974. 

[8] H. S. Stone, "Parallel Processing with the 
Perfect Shuffle," IEEE Transactions on Com
puters, pp. 153-161, February 1971. 

[9] K. Y. Wen, "Interprocessor Connection--Capa
bilities, Exploitation, and Effectiveness," 
Ph.D. Thesis Dissertation, August, 1976. 

[10) B. R. Leasure, "Compiling Serial Languages 
for Parallel Machines," M.S. Thesis, Uni
versity of Illinois, 1976. 

(11] P. Budnik and D. J. Kuck, "The Organization 
and Use of Parallel Memories," IEEE Transac
tions on Computers, pp. 1566-1569, December 
1971. 

[12) P. M. Kogge and H. S. Stone, "A Parallel 
Algorithm for the Efficient Solution of a 
General Class of Recurrence Equations," 
IEEE Transactions on Computers, pp. 786-792, 
August 1973. 

[13] D. Heller, "On the Efficient Computation of 
Recurrence Relations," Inst. Comput. Appl. 
Sci. Eng.(ICASE), June 1974. 

[14] S. C. Chen and D. J. Kuck, "Time and Parallel 
Processor Bounds for Linear Recurrence Sys
tems," IEEE Transactions on Computers, pp. 
701-717, July 1975. 

291 

,.. 
Ill ..... 
Ill 
u 
Ill 

..c 
'"' i8 

,.. 
Ill 
r-1 
Ill 
u 

Cll 

,.. 
Ill 

r-1 
Ill 
u 

Cll 

..., 
r-1 
0 
t.J 

N 

r-1 
0 
t.J 

r-1 

r-1 
0 
t.J 

a 
~ 0 ,.. 

p.. 

~~ "' : II ·IQ..., ..... 
QI e • . u .... "' O'tl N ,.. = ..... 
13.111 

,.. 
0 "' Ill . ..., 
Ill • QI "' . g~ .... I 

,.. = 
i:i. 0 

IQ I 
>. .... 
~~ • . '°"' N N 
QI 'd r-1 e o 

,.. 
QI • I ..c • '"' "' . ..... 
QI 

.... I 

z 

a 
~ 

~ 0 ,.. 
p.. 

IO N ..., "' ..., co NO 
0"' Or-I ..... r-1 

. "' 0"' CO-d' "' ..... ...,. 
IO 

r-1 .... 

IO N 0"' r-1 ..., IO IO ...,....,. ..... 
r-1 r-1 

~ 

~ 
IQ 

3 
r.:i 

"' N "' Or-I IQ°' 
IQ ..., 
..... . IQ 

..... "' NIH 
N co ..... 

"' N N ..... NO\ 

"' "' co . ..... . 
r-1 I N I 

0 I IO I 
IO ..., 
..... IO 
r-1 "' N N 

N co ..... 

• I N I 

"' "' co . ..... . 
r-1 I N I 

~ 
r-1 

O' 

3 r.:i 
...:i 

r.:i Cll 

N N 
0<"1 
ION 
r-1 

N N co...,. 
"' r-1 N 

ION ..., ...,. 
IO r-1 
N 

.... 
la 
..:I 
Cll 

,.. 
Ill 

r-1 
Ill 
u 
Ill 'tl 

'tl ~ 
= = Ill 

0 
>. ..... ,.. 

'"' I Ill 
N ..... 

r-1 ..... ,.. 
'"' Ill ::I 

r-1 
Ill >. 
u ,.. 
Ill 

I Ill 

.... 
0 ,.. 

Ill 
r-1 

i:i. Ill 
E-< u 

Ill 

! QI ,.. 
Ill 

'"' Ill 

= QI 
0 ~ ..... 
'"' bO 
::I ..... 
u .... 
QI 
~ QI 
QI bO 

Ill 

= '"' 0 fi3 ... u 
u ,.. 
QI QI .... i:i. .... 
QI QI 

l! ES 
E-< 

i.: 
.,; 0 

II.I 
Ill 

QI QI ..... u 
~ 0 ,.. 
E-< i:i. 

>. 
r-1 
QI 

~ 
'"' u 
QI 
i:i. 
Ill 
QI ,.. 
g 

..... 
'"' Ill 
N .... ..... ..... 
'"' ::I ,.. 
0 
Ill 
II.I 
QI 
u 
0 ,.. 
i:i. ,.. 
Ill 

r-1 
Ill 
u 
Ill 

"fi .... ..... 
:ii,... 
II.I • 

QI 
,.. bO 
Ill Ill ,J:J,.. 
Ill 0 
Ill .... 
0 II.I ,.. 
u 'tl 

QI 
• :ii 

Ill QI 
,.. .Id 
0 II.I 
II.I 
11.1 'tl 
QI = u Ill 



0 0 0 
1 0 1 

Partition /lo 2 0 2 Flip 

3 0 3 

4 0 4 
5 0 5 

Partition Ill 
6 0 6 3-order unscrambling 

7 0 7 

8 0 8 
9 0 9 

Partition 112 
0 10 1-shift 

10 
11 0 11 

12 0 
13 0 

12 
13 Partition 113 14 0 1-to-many broadcast 
14 

15 0 15 

Figure 1 A Partitioned permutation 

Memory 

0 1 2 3 

(O,O) (0,1) (0,2) (0,3) 

(1,3) (1,0) (1,1) (1,2) 

(2, 2) (2,3) (2,0) (2,1) 

(3 ,1) (3 ,2) (3,3) (3,0) 

Figure 2 l~skew 1-skip Storage Scheme 

292 



LAU SYSTEM ARCHITECTURE : A PARALLEL DATA-DRIVEN 
PROCESSOR BASED ON SINGLE ASSIGNMENT 

by 

A. Plas, et al*, Universite de Toulouse, France 

Abstract -- This paper presents the architectu
re of a data driven processor interpreting a high 
level machine language. 
This language is based on single assignment which 
allows a natural description of maximal paralle
lism in the program. The basic control mechanisms 
of a data directed execution are briefly descri
bed. The way they are implemented is stressed, 
principally for the control unit which replaces 
the program counter and related controls of a 
conventional Von Neumann machine. 
Finally, simulation results, taken from a set of 
programs run on the LAU system are given and eva
luated. 

Introduction 

This paper deals with a parallel computer archi
tecture based on data directed execution and sin
gle assignment language. Single assignment natu
rally implies a maximal parallelism description 
of problems. First, a machine language is descri
bed, and some general aspects on the global para
llel architecture are given. The following sec
tions of the paper present the outlines of an exe
cution processor composed of three main units, 
each of them being described to understand the 
basic hardware mechanisms replacing a conventional 
control unit and allowing a fully parallel, data 
driven interpretation of instructions. 
A compiler of a high level language and a simula
tor have been designed. The last section presents 
the simulation results and gives some performances 
compared to sequential executions for sample 
programs. 

Basic software features 

The processor described in this paper, inter
prets a single assignment machine language. The 
object code is produced by a compiler from a high 
level single assignment language : LAU, [I), (2). 
The single assignment rule states that an object 
(we prefer "object" than "variable" to denote the 
data entities defined by the programmer) may be 
assigned at most once during the "program life" 
(3),[4J1(5J,[6],(7J. Any assignment statement can be 
represented by : 
'/! = f(I) f 

I 
'Ii 

operation code 
(I I, 12 .•. In) 
(01,02 ••• Or) 

input set 
output set 

(*) Research supported under contract SESORI 
74167, D. Comte, O. Gelly, J.C. Syre, 
ONERA - CERT, Toulouse, G. Durrieu, A. Plas, 
Universite Paul Sabatier, Toulouse. 

Authors'a,dress : ONERA CERT/ DER! 

BP 4025 

31055 TOULOUSE CEDEX FRANCE 

293 

If one makes a program obeying this semantic 
rule on data objects, then one has naturally 
expressed the data dependencies between the pro
gram statements, in a deterministic way. Given the 
fact that, once computed, an object value is uni
que and will not change any longer, then a new 
type of statement sequencing and execution is 
allowed : 
- A statement is claimed "ready for execution" as 
soon as its operands have their values. 
- It can be actually executed at any time later. 

Once executed, the above statement produces 
values to output objects and will have to propa~ 
gate that knowledge to other statements using r/J, 
or part of it, as operands. The fairly simple 
example listed below shows this new sequencing 
mechanism. 

A=2 SJ 
C=A-B S2 
D=A+B S3 
E=A-S; S4 
F=(CXD)/(AXB) S5 
G=(C-D)/E S6 
H=B*(A+ I) S7 
I=Ex(A/2+H) SB 
B=JO S9 

At first step of execution: Sl//S9 (one or both 
of them) 

At second step of execution : S2//S3//S4//S7 
At third step of execution : SS//S6//SB 
Execution sequence : (Sl//S9),(S2//S3//S4//S7) 

(SS//S6//SB) 
Other possible sequence : (SI), (S9//S4), (S2/ /S3), 

(S5//S6//S7) ; (SB) 

Data dependencies can also be represented by the 
following data flow graph. 

2 10 

Fig I Single assignment programming example. 



All instructions, despite of their syntax, must 
be considered as assignment instructions. In order 
to enlighten this point, we now define fir11t .the 
general data.and instruction formats. Then, the 
concept of Data Production Set is defined toge
ther with the different primitive operations. 
acting on it. 
After that we shall give, for each type of in~'i' 
tructions, 
- its syntax 
- its semantic definition using the concept of 
Data Production Set (DPS) 
- its execution using the primitive operations on 
the Data Production Sets (DPS). 

General instruction and data formats 

The general instruction format is composed of a 
result address, an operation code, two operand 
addresses and three control tag bits. 

I CODOPI RES I OP 1 j OP2 I 
Fig 2 : General Instruction Forma·t 

The three control tag bits CiO Cil Ci2 denote the 
state of the instruction. Cil and Ci2 tell whether 
the two operands OPI and OP2 are "known" or not. 
The third one tells about the environment control 
of the instruction (due to the possible nesting 
of the instruction within a DPS). This bit is set 
by the control instructions. An instruction will 
be executable, or "ready" when the three control 
tag bits match the 111 value. 

'lThe general data forn;at is the following 

value I link! link2 I 
Fig 3 : General data format 

An data object is composed of two kinds of 
fields : - a conventional value field 

- several propagation fields 
- a control tag bit. 

Propagation fields are link!, and link2. This 
means that instructions at addresses link! and 
link2 use the operand. A bit, in link address, 
denotes if it is a right or left operand. Addi
tionnal links may be placed in the following 
words, if more than two {nstructions use the ope
rand (compilation of real ·program5 has shown that 
the average number cif links is approximately two). 
The tag bit Cd denotes whether the data has been 
calculated or not. The lack of register addres
sing certainly implies a larger memory use of 
temporary data, However, the instruction execu
tion does not depend on the processor's type or 
number, which will make \;he architecture comple
tely modular and asynchronous. Only the operation 
code will be possibly used to drive a ready ins
truction on to a functional processor. 

The concept of Data Production Set (DPS) 

A DPS is defined as a couple of 
- a set of instructions, I· 
- a set of data objects, O. 

Any instruction will be completely defined by 
- one or more DPSs 
- how , it wi11 operate on its DPSs. 
The different operations on DPSs are now given. 
They will be implemented in the Control Part of 
the p,rocessor structure and are considered as 
basic control primitives by the different instruc
tions. 

Basic control primitives 

The four following primidves will act either 
on the I part or on the O.part of a DPS, by acti
vating or updating instructions tag bits, or by 
check.ing or updating data tag bits 

PI : SET TAG BITS (CiO, A,_ L). 

This primitive sets to I the CiO tag bit from ad
dress A, of length L. (Activation of a DPS). 

P2 : SET TAG BITS (Cil, Ci2, Al, A2, L) 

This primitive sets the control tag bits Cil and 
Ci2, with a boolean mask (built at compile time 
and stored at address Al), from address A2, of 
length L. This mechanism permits to clear the con
trol tag bits when instructions are executed more 
than once (DPS clearing). 

P3 : CHECK TAG BITS (Cd, Al, A2, A3) 

This primitive checks the value of Cd from address 
Al to address A2 and propagates, when ail bits 
match 1 I 1 value, the event "end of checking" at 
address A3. This mechanism permits to know the end 
of a DPS activation (DPS termination). 

P4 : MASK TAG BITS (Cd, Al, A2, L) 

This primitive sets tag bits Cd, with a boolean 
mask (built at compile time and stored at address 
Al), from address A2; of length L. This mechanism 
permits to initialize the Cd bits of the object 
part of a DPS (starting at A2, of length L). 
We now come to the different instructions of the 
machine language. 

Computational instructions 

Their syntax is exactly given by Fig. 2. They 
are semantically defined by a simple DPS. For 
example, C=A-B is implemented by the following 
instruction : · 

F le address I A address 1 B addressl 00 
The DPS created is composed of 
- I this instruction 

- 0 : c 
The execution of a comi>utational instruction con
sists of : 

294 

I. reading OP I, OP2 
2. performing f (OPI, OP2) 
3. writing RES = f (OPI, OP2) 
4. propagating the result by updating the tag 

bit Ci I or Ci2 of ins true tions using RES, 
by means of link I, link2 ••• 



5. setting the tag bit Cd corresponding to RES. 

Control instructions 

These instructions are close to the high level 
language. 

ACT instruction : it operates on one DPS, and 
controls its execution. ACT makes use of : 

P4 
Pl 
P3 

DPS clearing (O control part initialization) 
DPS activation (I control part activation) 
DPS checking (for DPS termination). 

LOOP instruction : the general iteration process 
is expressed by the LOOP statement in the high 
level language, and by a set of machine instruc
tions. We first give an idea of the semantics of 
the LOOP statement, and then we shall explicit 
its execution in terms of DPSs and primitives. 

GO 

Fig 4 

$TO'°: 

OVT l/alves 

Example of LOOP statement 
(computation of factorial) 

LOOP L 
OUT:FACT; whitin the LOOP, 

FACT denotes NEW 
FACT 

LOCAL: I; 
(START):FACT=l;I=l;L=GO; 
(GO):I=OLD I+I; 

CASE(OLD I>N):STOP 
LOOP L; 

(ELSE): FACT= 
OLD FACTzOLD I;; 
END CASE; 

END LOOP L; 

LOOP statement and associated control 
structure 

Each object X declared in {OUT} U {LOCAL J 
section is split into 3 objects : OLD X will refer 
to the previous value of X, for the current itera
tion. NEW X, or simply X, will be the object com
puted by the current iteration. OUT X or Xis the 
actual value of X as assigned by the LOOP state
ment. A LOOP Control event is first set to START, 
and is assigned at each iteration. The Loop Header 
is then activated and will activate itself the 
DPS corresponding to the value of the Loop event 
given by the previous DPS activation. When acti
vated1a DPS produces the NEW objects values, then 
gives control back to the Loop Header. A special 
STOP value given to the Loop event will be inter
preted by the Loop Header as the activation of a 
special implicit DPS STOP which will assign the 
OUT objects (actual objects computed by the Loop 
statement). 
As far as its implementation is concerned, the 
Loop statement may be represented by the follo-
wing algorithm : · 
I - The START DPS is activated by an ACT instruc
tion ; the NEW objects receive their values. 
2 - A SWITCH DPS is then activated, pushing the 
NEW values into the OLD values. 
3 - The LOOP instruction is executed. Depending 
upon the loop event value, it activates either a 

295 

user defined DPS, or the STOP DPS. An activated 
user defined DPS will in turn activate the SWITCH 
DPS as in step 2, and the iteration process goes 
on. 

l1CT 

NE.W 

Va\u<i!. 

CtlEC.1<. (Cd,1'111,AS I F\Ei D\..C 

l-
Voh . .a<i !t. 

As 
Dul 

\lo.lvcz.s. 

11CT A<>T 
lh 

DI? .s. D\:>s DI'S 

switc.h G>o S.to'f' 

Fig 5 : LOOP internal mechanisms 

CASE instruction : The CASE instruction, when all 
booleans are calculated, activates the DPS corres
ponding to the TRUE boolean and forces the produc
tion of objects which are not calculated. 
The sequence of primitives is : 

I. Pl 
2. P4 

Exemple of CASE programming 

CASE X 
(X=O) :Y=2; 
(X= I) :Y=3; 
(X> I) :Y=4;Z=3; 
(ELSE): Z=I; 

END CASE ; 

y,,2 

Z-: NIL 

Y:::~ 

.Z: tJIL 

Fig 6 CASE statement mechanism 



EXPAND statement : The body of Expand forms a DPS. 
AB each iteration is independent from the others, 
we can execute several such DPSs concurrently. The 
nuni>er of copies is static, but can be fixed by 
the programmer, according to the level of para
llelism he wishes. An ACT instruction is associa
ted with each copy. The EXPAND mechanism splits 
into two instructions : STEXP (START EXPAND) and 
EXP (EXPAND). There is one instruction STEXP, and 
n EXP instructions, according to the number of 
copies. The STEXP is an initialization instruc
tion1i.e.1 it initializes the index of each copy, 
activates the corresponding EXP instruction and 
checks for the end of then copies. 
The EXP instruction controls its own copy : it 
first clears the control tag bits Cil Ci2 by 
means of (P2), increments and tests the current 
index, and activates the ACT instruction (if the 
index is less than the upper bound) associated 
to the copy. 

Example of EXPAND progranming 

EXPAND I=A STEP B TO N: 
TAB (I)=X+I; 

END EXPAND; 

f\C.T 

lndirczcr 
offcic.tot\oV> 
o'i TAI!. (1:-1) 

out volue 

F\C.T 

\ndircz.c.r 
off'ri.c.tot;o,,, 
ot lft~C. (12) 

'------.i Af"Y"oy 
\AB 

"IC.T 

out value 

Fig 7 : EXPAND mechanism 

CALL Statement : The body of the procedure is a 
DPS with inputs and outputs which are formal para
meters. Several copies of the procedure are gene
rated by the compiler on the request of the pro
grammer. A header, associated with the procedure, 
manages the calls. 

When actual input parameters are calculated, the 
CALL instruction becomes executable and· looks for 
an idle copy by means of the header. If there is 
one, formal parameters are assigned with actual 
parameters and the copy is activated by the -A<::r 
instruction corresponding ; if there is no idle 
copy, the CALL instruction is put into a waiting 
queue. 
A RETURN Instruction, when all outputs of the 
copy are calculated, is activated. It tests the 
content of the queue,. and if there is a waiting 
CALL, releases it. 

296 

This mechanism can be extended to non standard 
objects. The synchronization algorithm, given by 
the programmer, can be described in the header of 
the object and executed at every access to the 
object. 

[ C.AL..L.. 

I 

~ c;.., 

-~ AC.T LR<=.T 

Cof>y-1 w • • Cof>'I Y'\ 

~ r, •"'·I ~ 1~, •"'·I 
\l.f.TUR.1\1 .l. L-.(_RETIJR.r..I l 

_J 

l 

Fig 8 : CALL and RETURN Instructions 

The general architecture 

The processor now described takes place in a 
greater architecture and is only the execution 
part of the system. We give here a brief account 
of the general architecture. 
(See Fig. 7). 

The peripheral processors deal with peripheral 
devices. The secondary storage holds all of the 
programs users. They are managed by the Job 
Supervisor which knows which are the programs 
actually running together on the machine. 
Programs are divided into a set of tasks by the 
compiler. These tasks are loaded into an execution 
processor on the request of the Scheduler contai
ned in the Job Supervisor. 



jsac°""'da"Y lfcz.<iphu·ol .lo'o To,;,'i<. 

sro .. oq,cz. 1\-oCJl&.'-OY" js\)p<t<Vi5.0 ~v~•vi~ 

t'\0V\a9cz.< 

CovviVY"lvV\\cario"' .-..cz.rv.io .. I<. 

P.\ • . • "'"' 

Fig 9 : General architecture 

The execution processors are independent and 
are managed by the Task Supervisor which knows 
the state of each processor and informs the Job 
Supervisor which tasks must be swapped. This 
architecture allows three levels of parallelism 

- between the different programs (concurrent 
programming) 

- between the different tasks (inter task para
llelism) 

- between the instructions within a task 
(elementary actions). 

Now we shall insist on the last kind of paralle
lism provided naturally by single assignment. 

The processor structure 

The processor is composed of three units 
- the local memory 
- the execution unit 
- the control unit. 

The local memory subsystem 

The memory contains one or several tasks at a 
given time. Each task is composed of two parts : 
instructions and data, and can be considered as a 
DPS. A task is loaded when its inputs are known. 
The task will be said terminated when all its 
outputs are known (calculated or no longer calcu
lated). Since the number of memory accesses is of 
great importance this memory has been divided 
into several interleaved banks managed by a 
Memory Control Unit (MCU). 

297 

The MCU controls all memory accesses coming from 
the Execution Unit and the Control Unit. Memory 
conflicts arP. solved using a priority mechanism. 
The MCU dispatches the information coming from 
memory towards the right unit. 

lac.al W\ctwio .. y 

r- ---- - ----,Svbys.Te""' 
I I 

r 
I 
I 
I 

I 

I 
I 

I Loe.a\ I 
I I 
I VV\QVV\O"Y I 

: I 
I I """' t 

I I L __ _ ____ ..J 

AU c.. E. u 

LOOf' Cl'IS.~ • • • 

Updafar 

1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L---------- ------' 

Fig IO : The processor structure 

The control unit (CU) 

This unit is the truly original part of the 
processor. It implements the typical sequencing 
mechanisms of a data driven execution. It holds 
the control which indicates the state of the 
machine (instruction and data). Two memories hold 
the control bits Cd and (CiO, Ci!, Ci2). 
The Instruction Control Memory (ICM) contains the 
instruction control tag bits (CiO Ci! Ci2). 
The Data Control Memory (DCM) contains the data 
control tag bits (Cd). 

'!'h,e_!li!!.,tE,U.,S~i.£1!.. £OE:£!2.1_~!!1-'2.r.l· The ICM is com
posed of n three bit wide words, where n is the 
length of local memory. A word at address x is 
associated with a word in local memory, becomes 
executable when the three bits match the 1 111 1 

configuration. Two devices act on this memory. 
- The ICM Updater Processor (ICMUP) modifies 

the contents ef the ICM by executing the func
tions sent by the Execution Unit. The ICMUP can 
set any of the three bits CiO Ci! Ci2 without 
modifying the others. 



This needs two accesses to the ICM : the informa
tion is read from the memory, modified in the 
ICMUP and finally written back into the memory. 
The ICMUP can perform several logic operations 
(OR, AND) between the informations received from 
the bus and the information read from the ICM. 

DC.MUP 

f.,o,,... C. E. U ci.,...cl 
Vpdafav-

OC:.t1 

'I c. t1 

Fig II : The control unit. 

- The Instruction Fetch Processor (IFP) checks 
for ready instructions. This processor has an 
associative access to the ICM (ICM is a content 
adressable memory), When finding the 1 111 1 confi
guration it sends the corresponding address to 
the MCU and asks the ICMUP to write the 1 011' 
value in the word matching 1 111 1 • (Not to find 
again the ready instruction). The MCU reads the 
ready instruction from the local memory and sends 
it to the Execution Unit. IFP has a lower priority 
than ICMUP, as far as ICM accesses are concerned. 

.'111.: _p~t~ .f~I!.!!.ol)!7.!!!:~I'l.· The DCM is a one-bit wide 
memory of length n. Cd set to I at address x 
means that the datum, at address x in the local 
memory, is calculated or will never be calculated, 
Like the ICM, the ICM is associated with two devi
ces acting on it. 

- The DCM Updater Processor (DCMUP). Its role 
is the same that the ICMUP, i.e. it executes, on 
DCM, the updating functions sent by the Execution 
Unit. 

- The Check Processor (GP). This device execu
tes the Primitive (P3) : CHECK TAG BITS (Cd, Al, 
A2, A3). It checks the DCM from address Al to 
address A2. If all Cd bits are 1 11 , it asks the 
ICMUP to write the 1 111 1 configuration at address 

298 

A3, i.e. its make the associated instruction exe
cutable. If a Cd bit is not 1 11 , the DCMUP pushes 
the Primitive into a waiting queue and releases 
another primitive of the queue for execution. 

The Execution Unit. 

The Execution Unit is multi-pipeline unit. 
Due to the data driven control, ready instruc
tions are independent, so the computation power 
may be split into several asynchronous units, 
each of them being able to execute ready instruc
tions in parallel. This unit is composed of three 
parts : 

- A decoder 
- An Arithmetic Execution Unit (AU) 
- A Control Execution Unit (CEU) 

The decoder dispatches ready instructions towards 
therfgiitunit. It works on a buffer which con
tains instructions. This buffer is supplied with 
instructions by the MCU on the request of the IFP. 
The IFP has a variable priority to access local 
memory, this priority is managed by the decoder. 
When the content of the ready instruction buffer 
is greater than an upper bound the priority of 
IFP is decreased ; if the buffer is full, IFP is 
stopped. This decoder analyzes the first bits of 
the operation code and sends the instruction to 
AU or CEU. 

The Arithmetic execution unit (AU) This unit 
CofilPrt~sse~rtlS~Urits:-

- floating point execution unit. 
- fixed point execution unit. 
- vector execution unit. 

To improve parallelism, there may be several 
identical subunits. Pipelining floating point 
and vector units is also a good means to improve 
concurrency because pipeline mode of execution 
is well adapted in a data-driven processor. Since 
no dependency exists between ready instructions, 
these instructions may enter the pipeline in any 
order and they will certainly deliver a result. 
Hence all precedence conflicts are suppressed, 
and so are the gaps caused by conditional jumping 
for the simple reason there is no branching ins
truction. 
An updater is associated with the Arithmetic Unit. 
It executes the steps 4 and 5 of the execution : 
when the result is calculated, the updater recei
ves linkl and link2 from memory, and acts on the 
control unit to update the corresponding tag b.i ts. 

The control execution unit (CEU) : The CEU is 
d'ivi<led-intoTn"depen"dent Tune tional sub uni ts. 
Each subunit performs a control instruction. 
We can find the LOOP, CASE, EXPAND, CALL, ACT 
subunits. As in the AU, a subunit may be dupli
cated to improve parallelism. It may be the case 
of EXP subunit, because there are always several 
EXP instructions concurrently executable in the 
task. 



Performance - Simulation 

Parallelism achievable in the processor depends 
on the power of the execution unit (number of 
operators), but it also depends on the level of 
parallelism we can find in programs. Simulation 
has shown that most of programs contain paralle
lism (see simulation results). The programmer may 
adjust the level of parallelism by changing the 
number of copies (EXPAND instructions) generated 
at compile time. 

A simulator of the processor has been designed. 
It makes use of parallel processes facilities 
offered by a software system built formerly. 
Each elementary unit described in the paper is an 
asynchronous process. This simulator works on 
real programs generated by a compiler, from the 
high level single assignment language. The simu
lator shows us, by comparison with real sequen
tial machines, that performances are good if the 
level of parallelism is great enough, (that is the 
case of many programs}. 

E.llE.C CONT'A.CL- VNI\ SVB!:>'f$\EM 
NAM to 

*"'" <.VC.L.'E.. TIMI:. ft C.'iCL.£ \II"\£' lo-IE..C.1'1N<O 
&!'IN~ 

IN:>.1"1'WC.ilOlllS 
!.1\1.11'$ 

D1'\"H~ j>jl,Q<..ES.'>00.. INf>\. 1:>1'11¥\ 

.STt:> oo .... so -I So .... 

:&TO -I 

2 
a~ abo"<Z. 

~ 

Li 
s 

PC.TL 2. -1 !>o -I So 2. 

PCIL :. OS obc va. "?> 
4 Lj 

5 5 

1l 8 

HE.M -1 -I so -I so -I 

'?. 

t, 

5 
C\S. abOV<L 

G 
..io 
..\2 

-t> 
-14 

VC.TL. -I -\ ~o -\ 1.o ...f 
\ 

UC.IL '2 -I (,o -I bO 
"' U CTI..~ 4 --rz.o Lt -11.0 "' 

Due to constraints imposed by our computer faci
lity, the simulator allows no more than 12 A.U 
processors and 8 Control processors. 
The standard implicit values for the different 
parameters of the simulated LAU system are the 
following : 

- Control Unit subsystem : Instructions (CO Cl 
C2): One memory bank, SO ns cycle time7Data (Cd) 
one memory bank, SO ns cycle time. One checker 
processor. 

- Memory subsystem : 4 banks, SOO ns cycle time, 
100 ns manager cycle time. 

- Processing subsystem : 12 AU processors, 2 EXP 
,CASE,LOOP,ACT processors. Typical add time : 
100 ns. 
This LAU system corresponds to "STDOO" simula
tions. 34 other configurations have been taken to 
measure the influence of the LAU architecture on 
program execution, some of them being listed on 
Fig 12. About SO programs have been executed for 
every configuration. Only partial results can be 
shown here, however they may give an idea of the 
overall performance of the LAU system. 

ME.MOP.'f SUl!>S'ISiEM PRoc.c.s.s.1Nc;, SUl!.SY$1EM 

1+ '-"C.L.E Mf\Nf'IC.l:.Q, '"- ~ :13: "* ~ 

BA\!~ 111"\E '/<..1..~\ll"\E A/I- EJ(.I" P,CT (F\!>I:. l.OOf> 
I'\~ 

Lt soo .-loo -12. 'l. 2. 2. 2. 

-t'Z. 4 4 2 2 

..\7. "' '2. '2. :2 

..\0 L/ '-I 2 2 
-to " 2 2. 2 

..io '6' z. 2 2. 

4 500 -100 -t'Z.. 2- z. 2. 2 

o.s. a~ vq, 

4 500 -\oo ,\'2.. '2. 2 2. 2. 

-! -100 .\oo 

2 2.SO ..\00 Q.S. abou~ 

2. E.oO "'00 

2. 'l.OO -loo 
'fl too -\OO 

-I ..\60 ~eo 

2. ~'Z.o ..\60 
_y_ 650 w\60 

Li 500 -\OO -i2. 'Z. 2. 2. 'Z 

a~ C1b OVll.. 

Fig 12 Part of configurations list for LAU system simulation. 

299 



Evaluation of the EXPAND statement Fig 13 shows 
execution times for two programs. SMEX is an 
EXPAND statements whose body consists of one 
array element instruction, BGEX is an EXPAND sta
tement whose body contains 22 instructions. 
Fig 14 - 15 give the parallelism observed in the 
machine. 

SME.)(. CZJ<.Ol.C.. f\w-cz. (µ,;.) 

Pt:.C.P.EE O~ 
..,\ 2. Lt 6 cg I '2.. 16 

E'X~l'llJS.tON 

01!.~ECT 
GODE 1.9 u ~B '+8 'J) IF 

lRE.XI'\) 

STDoo ·Hoo 6'.!>'3 3E.4 2~9 °>06 ~l'i' '?>1>& 
STD -I ,, " ?.LI g '2.li'6 '2S-9 Z.:!.3 2..51 

S.TD z " .. " 'l.'H '2.46 2.1~ 'l.40 
S.TD ~ " 

,, 
" 2. \?(, 2~1> '2.sl 

S.ID ti " " I• 27Y 2.'2.9 '2.1.jO 

~\O 5 ,. ,. II " '2.4f 2.4 I 'Z."!,6 

BCTE-?<. <2.)<Q...(., • \-i \l'V'le.. (µo) 

P£G.~££of 

£i<-PAMS\Of\l 
-1 z. Li 6 ~ ll. \6 

»TD oo Zb~o \i'os l\,"!,'f 155& ..f55li ASS'l 

STD-I I• H80 H.2.1 -l54'i ~5'?>0 

S.IDZ. ,. ..f '.\44 ~f.11 ..f5S.f ..\516 

STt> ~ .. II ~bl.ig ..j5~5 ~52:1. 

S.\D li .. ,, 
~&Z.i .IS>1 ~sn ~541 

S\D5 " • " ~51.jf, ~541 

111 }"-$ MEl"l 10 'II IBM 370/11tg 

SHEX ( IZ) 394 .zo J5'3o 

BG f!)( ( IZ) 110 9. go GOOO 

Fig 13 SMEX and BGEX executions. 

These results show that : 
- In SMEX, overhead is very important, and the 

optimal expansion degree is nearly 6. A higher 
degree makes object code too big and correspon
ding execution not faster than expected. Paralle
lism is interesting for SMEX 8 (3), SMEX 12 (6), 
but not for SMEX 16 (8). 

- In BGEX, there is much more "good" paralle
lism. The larger the object code, the more para
llel execution is, but some factors must be taken 
into account : First, the length of object code 
becomes important for degrees of expansion larger 
than 8 or 12. Secondly, the processing subsystem 
is saturated beyond 8 parallel expansions, and 
increasing the expansion degree is no more useful 
for the configurations chosen. 

300 

5 

2 

11 

6 

._ __ _. __ ------·---·-- _,. (") 

S.MEX (2) 

f'AR<'IL-L.ELISM 

.,__ -""""--•---~ e,c.Ex l-lb) 
•--::..-::.:~-=--""- ----- ..... BG.£.)( (~2.J 

--------...---..._... --·--- 9,GE.X l'S) 

---------·- ........... __ _.--.-. BGEX lb) 

..... -------·-----·--- &G:>EX (4) 

5Tl)00 $ TD2.. S"TOLi 
~;\p-\ $TO~ STOS 

Fig 14 : Average parallelism for SMEX and 
BGEX. (depe~ding on expansion degree, and 
r:,onfi.gurati.on. 
PARAl\..ELl.>M(f\~ITHMETIC/1...0C,,IC. UIJ\1!> 01\.lL..V) 

~2. -------------------,MAX 

·H 
/-..._ K!>eturnrio") 

(
"../'-- /\ --......_. ~ A\l\:.RAG.£ 

I\ "._./ j 
~O I I I 

Q 1· , ..... ..,,,/ \...... " /\ l 
-' 1\ '\ I \ I \ I 

I\ I l \ ,,• 'I 
t f 1 .,,_ \1 MIN 

8 \1 \ 

~00 ~ooo ..\500 }JS 

~00 
Fig 15 

-1000 ~500 }JS 
Parallelism observed during simulation 
ST02 of program BGEX (12). 



- Program CARLXX simulation results. This program 

computes J~ f(x) dx by the Monte Carlo method. 

Here f(x) = x2. 
For convenience, the random numbers ALEAX and 
ALEAY are put into two arrays at run time. 
The source program is as follows 
%/C/CLEAU/LS,LO,CM,XD,EX(4) 
PROGRAM CARLX040G 
DECLARE: 

ALEAX,ALEAY:ARRAY(O:IS) OF INPUT; 
CARLO : ARRAY(O: 15) OF INTEGER 
NX,INTEGRALE : INTEGER; 
XY,YC,II : INTEGER; 

DO: 
NX=IS 
EXPAND II = 0 TO NX 

LOCAL : Y,YC,X 
X = ALEAX (II); 
Y = ALEAY (II); 
YC = liX; 
CARLO (II) = (YC>Y); 

END EXPAND; 
INTEGRAL.e = VSUM(CARLO)/(NX+I); 
OUTPUT I : INTEGRALE; 

END PROGRAM. 

By changing the expansion degree as declared in 
the compile command, 3 programs have been genera
ted CARLX040G, CARLX080G, CARLXl60G. 
Fig 16 lists the static data for these programs. 

CARLX04 CARLX08 CARLX16 

SOURCE 
2. 1 2. f 2. i-CODE 

OBJECT 
-1 s 8 2 51- 356 CODE 

TEMPORARY :,2 1::. -114 OBJECTS 

Fig 16 : CARLXOG : Static data 

As far as dynamic data are concerned, the two 
curves below can summarize the behaviour of these 
programs, depending on the simulation parameters. 

Fig 17 

PRRALLELl5M 

/ 
/ 

/ 
/ 

'..,, .... "" 

0 

/. 
/ 

P.ELATl\IE 
Elli:.C.UTlOIJ Tit'\!: 
(&f\5 \S 100 FO~ 

C.f\tl.L'lC.16) 
-iOO 

95' 

'30 

-ib E.'ll.PAtJ~lON 
OE.G.1=1.EE 

Parallelism and relative execution times 
for STDOO simulation. 

Fig 17 shows that, despite a high degree of 
parallelism CARLXl60G suffers from some conflicts 
in ressource sharing, Fig 18 confirms this remark 

when we are interested in the different memory 
subsystem configurations. 

300 /1 
• 1 

// 
I 

2.oo 

'S.tl>OO 4 s 6 

Fig 18 : CARLX : Exec times versus 
Memory subsystem configuration. 

Other simulation results. Since our machine is 
not dedicated for a given application, we have 
experimented various programs such as sorting al
gorithms, pattern matching problems or mathemati
cal formulas. In Fig 19, PLAGOO denotes the 
Lagrange polynomial computation, TRIPOS denotes a 
parallel sorting algorithm. PMAT30 is a 3x3 matrix 
multiply POLYOO is a polynom product. PAYE02 is a 
program computing salaries and incomes in our 
company. 

301 

Fig 19 shows the results for various executions 
and the corresponding times on a CII IRIS 80 
(similar to an IBM 370/!45). 
Notice that source programs have been written 
without any optimization techniques (which will 
be used later). 

PROGRflM EXEC. NFl"E. IR. IS 

IJF\ME S1t)OO MEM3 Uc.'T L-\ PC.IL.Lt 'tr 0 

POL'i O() l 4) -1.402. o.~os -\.~<;15 -\.'.!.49 ~-E.w.s. 

Pt'\l'IT:?.O (:!>) o.5'46 C.'.!>S2. o.Sl.\I o.s14 -\. b !Ms. 

l>U\G. oo l2) -1.S'!S -1. -i02. -\. S~.-\ -\.S~2. -\'Z.6MS 

iP. IPO-l l4) :!..052. 2..204 ~.o=rn ?,.02..I Li.Y~:s. 

1>t!1~1e. 0'2. -\. ~9(, 0.C?.\3, 1.~1<21 -\. ~"" '2..4W\5' 

CA!>l-)( 0'1 o.z.ii:. o . .\s~ o. 2.1& o.z.11.i D."!»f,o 

Fig 19 Other simulation results and compa
rison to sequential executions on 
CII IRIS 80. 

Conclusion. Though a great deal of work is still 
to be done, the LAU system simulation results al
low us to say that single assignment may be a good 
way to express and exploit parallelism in programs. 
Further work should confirm that. By now, results 
have given us some hope for the future of our 
project. 



Conclusion 

This paper has presented the outlines of the 
LAU parallel system. Based on the software con
cept of single assignment, this system is compo
sed of : 

- A high level language, close to Pascal, 
which allows the user to express the concurrency 
in the program statements in a natural way. 
Parallelism is achieved by the data dep.endencies 
only. All statements, including decision or ite
ration statements are considered as assignment 
statements, due to the concept of Data Produc
tion Set. 
This high level language has been tested on a 
large number of problems. 

- A machine language, based on a three-address 
instruction format. This language implies entirely 
new cadencing mechanisms based on data directed 
execution of instructions, and can be executed 
on a completely modular asynchronous multipro
cessor structure. A compiler translates programs 
written in the high level language into executa
ble code, and includes many debugging tools. 

- A multiprocessor architecture, whose Control 
subsystem is uniq·ue and implements the control 
primitives on data and instructions tag fields. 
Its main characteristics are modularity, pipeli
ning and asynchronism allowed by the data driven 
mode of execution. The corresponding simulator 
has been fully parametrized and some partial re
sults have been given here. 

The next step in our study will be to optimize 
and simplify the LAU multiprocessor, and build a 
prototype which could be specialized for some 
classes of applications. 

References 

[t] J.C. Syre, et al, Parallelism, Control and 
Synchronization eipression in a single assign~ 
ment language, 4th ACM Computer Science Con
ference Anaheim, .Feb. 76. 

(2) O. Gelly et al, LAU Software System : A high 
level data driven language for parallel pro
gramming these proceedings. 

(3) D. Comte, et al, The LAU parallel system : 
software definition and implementation through 
a multiprocessor architecture. EUROMICRO 2nd 
symposium on microprocessing and micropro
gramming. October I2 - 14 Venise 1976. 

(4] Tesler L.G., Enea H.J. A language design for 
concurrent processes. Proc. AFIPS, SJCC Vol 
32, 1968 pp 403 - 408. 

(5) Chamberlin, D.D. Parallel Implementation of a 
single assignment language Ph. D. thesis 
January 71 - Technical report n° 13. 

[6] Klinkhamer, J.F. A definitional language, 
Philips Research Laboratory, Internal report 
Eindhoven (Hollande), 71. 

[7] Irani K.B., a proposal .for a programming lan
guage for parallel processing environments, 
Internal Report Jul 72 - Jan 75, RADC, Febr. 
75. 

(8] Urschler, G., The transformation of flow 
diagrams into maximally parallel form. Saga
more conference on parallel processing, 1973. 

[9] Dennis, J.B. 1st version of a data flow pro
cedure language, computation structures 
group MEMO 93, MIT, Nov. 73. 

[10] Dennis, J.B. Packet Communication Architec
ture, Sagamore computer conference on Para
llel Processing, 1975 p. 224 - 230. 

[t t] Misunas, D.P., Performance of an elementary 
data flow processor. Computation structures 
group MEMO 115, Project MAC, MIT February 
1975. 

[12] Ramamoorthy C.V., and Li, H.F., Pipeline 
processor architecture. A survey, Sagamore 
computer conference on parallel processing 
1975. p. 40 - 63. 

p 3] Rumbaugh J.E., A parallel asynchronous com
puter architecture for data flow programs, 
Ph. D. thesis. MIT Project MAC. May 1975. 

~4] Comte D., Durrieu G., Gelly O., Pl as A., 
Syre J.C., Techniques et Exploitation de 
l'Assignation Unique. Vol 5 - 8. 
Contract SESORI 74 167. 

D5J Anderson, D.W., Sparcio F.J., Tomasulo R.M. 

302 

IBM System 360/91 : Machine philosophy and 
instruction handling! IBM Journal, Vol 11, 
N° I, 1976 p 8. 24. 



UPPER BOUNDS ON THE PERFORMANCE OF 
SOME PROCESSOR-MEMORY INTERCONNECTIONS 

R.C. Pearce and J.C. Majithia 
Department of Electrical Engineering 

University of Waterloo 
Waterloo, Ontario, Canada 

Sunmary 

The maximum multiprocessor performance 
achievable is evaluated for four commonly proposed 
switching methods: cross-point, time-shared bus, 
pipelined loop, and binary switch. The processor 
behaviour model is based on a "unit instruction," 
consisting of a single memory access followed by 
a data processing interval. The upper bound on 
performance is evaluated under the assumption that 
the number of processors and memory banks are 
equal, the memory request pattern produces no 
conflicts, and the arbitration time for conflict 
resolution is negligible. 

The performance of a cross-point switch [l] 
is affected by two switching delays, one for 
transmission of the address to the memory and one 
for return of the data to the processor. Hence, 
the multiprocessor cross-point throughput is given 
by 

T 
c 

n 
t + t + 2t 

p m s 
where n is the number of processors and memories, 
tp is the processing time per unit instruction, 
tm is the memory access time and ts is the 
switching delay per stage. Consider a time-shared 
bus multiprocessor [2] which makes use of two 
busses, an address bus, for transmission of 
addresses to the memories, and a data bus for 
return of data to the processors. The time-shared 
busses will become saturated when the number of 
processors N is such that Nts = tp + tm + 2ts. 
Hence, the time-shared throughput is given by 

T = n for n ,;; N 
t t + t + 2t p m s 

1 
ts 

for n > N 

A multiprocessor could also be operated with a 
pipelined loop as the main data path. Each "slot" 
on the loop would either be a memory request or a 
data return for the processors. The maximum 
throughput for the pipelined loop is 

n 
Tl = t + t + 2nt 

p m s 
where 2n is the number of loop nodes, one for each 
processor and memory. The binary switch [3] is 
arranged in log2n stages where n is the number of 
processors and memories. Each of two incom~ng 
lines to a binary switch module can be connected 
to either of two output lines. Routing is accom
plished by using one bit of the memory bank 
address for selection at each stage. The maximum 
throughput attainable by the binary switch is 

Tb = t 
p 

where log2n is 

n 

the number of switch stages. 

303 

The normalized performances are shown Gn the 
graph below for example values tp = 500nsec, 
tm = 500nsec, and ts = lOOnsec. Simulations were 
also done with the conflict-free assumption 
removed and these showed the same relative 
behaviour between the four switching methods but 
at reduced performance. The crosspoint switch 
shows a linear increase in performance for a cost 
increase of n2, while the binary switch shows a 
n/log2n increase in performance for a cost of 
nlog2n. The time-shared bus shows a linear 
performance until the bus bandwidth is reached. 
The pipelined loop shows poor performance in 
comparison to the other techniques. The results 
indicate that the most cost effective solution for 
a small number of processors would be a time
shared bus while for a large number of processors 
the binary switch yields the highest throughput 
for the least cost. Further studies are being 
made into improving the performance charac
teristics of the binary switch for use in a 
multiprocessor computer architecture. 

References 

[l] W.A. Wulf and C.G. Bell, "C.mmp - A Multi
Miniprocessor", AFIPS FJCC Proceedings, 1972, 
Vol. 41, Part II. 

[2] P. Danielsson and B. Gudmunsson, "Time-shared 
Memory-Processor Interface", Proceedings of 
the 1975 Sagamore Conference on Parallel 
Processing. 

[3] I.A. Davidson and J .A. Field, "Design 
Criteria for a Switch for a Multiprocessor 
Computing System", Proceedings of the 1975 
Sagamore Conference~ Parallel Processing. 

1-
ir 32 
:I: 

~ 28 

:I: 24 
I-

i.I 20 
...J 
!!l 
Ill 16 
Ill 
~ 12 

~ 8 
::E 
x 4 
C[ 

:::i: 
0 

IDEAL 

CROSS-POINT 

BINARY SWITCH 

,4-....,,.""'------TIME- SHARED 
BUS 

4 8 121620242832 

NUMBER OF PROCESSORS 

Fig. 6 PERFORMANCE (UPPER BOUND I OF VARIOUS 
MULTIPROCESSOR SWITCHES 



OPERATING SYSTEM MODELLED AS A 
CONGLOMERATE OF INTERDEPENDENT ACTIVITIES 

T. Feng 
Department of Electrical & Computer Engineering 

Wayne State University 
Detroit, Michigan 48202 

Abstract -- A computing system is viewed 
upon as a collection of different resource types 
to serve different users with different demands, 
while its operating system assumes a managerial 
role. To best utilize the available resources to 
achieve a desirable level of production, i.e., 
computation, an optimal planning (programming) is 
needed. Optimality can be judged if a performance 
index can be established and this index can be 
quite general. The question of system resource 
allocation is then formulated as a linear program
ming problem with constraints on resources, and 
optimization is over a linear objective function. 
Program loading (memory allocation) is static 
while program execution (scheduling, or dispatch
ing) is dynamic in a multiprogrammed environment. 
The scheduling problem is studied through the 
viewpoint of memory utilization with a warehousing 
model. 

The Programming of Activities 

The notion of programming is a general one. 
On the user level, an individual program can be 
considered as the organization of activities, 
which, when successfully carried out, would 
achieve the objective of a computation. The trend 
of using high level language removes a user from 
the details of resource management. In fact, he 
is oblivious to them. On the system level, the 
main concern would be the proper coordination of 
individual user's activities under the limitation 
of system resources. It is the programming of the 
latter kind that we will be dealing with in the 
ensuing discussions. 

Basic Assumptions 
An operating system may be considered as. 

comprised of various observed activities. We may 
also assume that there exist some refinements as 
representative building blocks of different types 
that might be recombined in varying amounts to 
form yet more complex but possible activities. 
The whole set of possible activities will be 
referred to as a technology, i.e., the technology 
of operating systems. Additional assumptions that 
are closely related to those postulated by Dantzig 
in the study of econometrics [l], may be made as 
follows: 

(1) There exists a set of all possible 
activities. 

(2) There exists a finite set of basic 
activities, xi, such that any possible state of 
an activity can be represented as 

i = 1, 2, ... , n 

where ai is the level of basic activity xi. 

304 

C. P. Hsieh 
Undersea Electronics Programs Department 

General Electric Co. 
Syracuse, New York 13201 

(3) There exists a linear objective function, 

i=l,2, ••• ,n. 

where ci is a constant associated with Xi, depend
ing upon a specific formulation of the objective 
ftinction. 

(4) An activ.ity in a possible state consumes 
a certain amount of res.ources of a certain kind, 
possibly limited by a constant h. That is, 

i = 1, 2, .•• , n 

The Allocation Activity 
The immediate task is to identify a finite 

set of basic activities. Since a resource 
allocator deals exclusively with user programs, it 
appears natural to choose the set of user programs 
on the system job queue as the set of basic activ
ities. More precisely, since a user's program may 
consist of more than one stage (job step), it is 
that particular job step that is up for allocation 
consideration that becomes one component of this 
basis.· If we further perceive that each possible 
state may consume different kinds of resources, 
and that if we adjoin these possible states toge
ther, we have 

Ax < b (1) 

where A is a rectangular matrix, x and b are 
column vectors. In reality, the number of ele
ments in column vector b is equal to the total 
different resource requirements and other cons
traints by the set of basic activities, the column 
vector x. Thus, the allocation activity becomes 
the finding of a solution to Eq. (1). Since the 
feasible solutions to Eq. (1) are many, we may 
naturally want to.find the most desirable one 
according to some criterion. We have thus come to 
the notion of goal oriented allocation. That is, 
if we further establish a linear objective func
tion and set our goal to be the vector x that 
satisfies Eq. (1) and that also maximizes the 
objective function. This is stated formally as 
follows: 

i = 1, 2, ... , n 

(2) 
Subject to: Ax < b 

Program Loading - Static Planning 

Although a program may require many different 
types of resources before the execution can be 
connnenced, none will be more critical than memory 



space. Thus, we choose to look at the system 
allocation activity as primarily, at least for the 
moment, an activity which distributes primary com
modities (memory spaces) among the basic activi
ties (individual user programs) to achieve produc
tions (computations). The purpose is then to 
devise a way (a plan) to allocate those available 
memory spaces such that the computer system may 
execute programs according to some policy. In a 
simplified viewpoint, we equate the allocation of 
memory space to a program to that of initiating 
that particular program from system job queue to 
system ready queue. Using a common, long-estab
lished terminology, we would say that this is 
"loading" a program into the memory. If we con
sider that the loading action happens at discrete 
points in time and that at each occurrence of this 
action, memory will be filled to the extent possi
ble, according to some goal, then this action is 
static in nature. That is, the goal is either 
satisfied or not, at the moment of loading, and 
not over a period of time. If we state our cri
terion in the form of a linear objective function, 
the simplex method provides the answer. 

Problem Formulation 
Let Xi be a fraction of an individual program 

i, i.e., 

0 < x. < 1 
]_ - (3) 

and (x1 , x2 , .•• ,~)the collection of such frac
tional programs. We look upon xi as a basic acti
vity, and if associated with xi there is a number 
A.i• the "level" of the activity, then the total 
activity, i.e., the allocation activity, is con
strained by the total resources, M. It is 

(4) 

If M is the total memory space available, then A.. 
is the size (maximum memory units required per i 

basic activity) of program i. We further state 
that the goal of our allocation activity is to 
plan our use of the memory spaces such that a 
certain linear function, namely, the objective 
function, is maximized. This objective function 
has the general form of 

(5) 

where ci's are constants. 

The canonical form of this maximization prob
lem is the following: 

where 

Maximize: ex 

Subject to: Ax< b 

0 < x. < 1, - ]_ -

(6) 

305 

"1 "2 A. M 
n 

1 0 0 1 

0 1 0 
A b 

1 

0 0 .... 1 1 
(7) 

c = a constant row vector. 

We can devise a specific optimal allocation 
plan only if the objective function, i.e., the 
row vector c, is explicitly defined. 

Example 
Let us consider a set of programs (x1 , x2 , 

x3) with memory requirements 40, 30, and 20,res
pectively, and a total memory equals to 60 units, 
i.e., 

Pro ram Size Total Memory 

xl 40 M = 60 

X2 30 

x3 20 

Note that the program size and the total memory 
are of the same units, such as words, blocks, or 
pages. Following Eq. (4), we can write: 

In addition to the resource constraint, we also 
have the condition stated in Eq. (3). Combining 
all the constraints, we may write down a set of 
simultaneous inequalities as follows: 

40 x1 + 30 x2 + 20 x3 < 60 

xl < 1 

X2 < 1 

x3 < 1 

Clearly, the structural matrix A and the con
straint vector b assume the following values: 

A b 

60 

1 

1 

1 

What remains to be specified is our objective 
function. 

A. Case I 

(9) 

(10) 

If our objective for the memory alloca
tion is to pack as many programs as possible, 
i.e., maximum degree of multi-programming, then we 
may write the objective function as: 

(11) 



The row vector c thus becomes: 

c = [l, 1, l] (12) 

If x.'s are treated as continuous variables, then 
the ~olution vector xT = [%, 1, l] satisfies the 
constraints of Eq. (9) and the requirement of 
Eq. (11). However, if we consider the programs 
xi's to be indivisible, then we must look for 
integer solutions. In this case, we have two 
feasible solutions: .· 

xT = [O, 1, l] 

B. Case II 

T or x [l, 0, l] (13) 

Suppose, associated with each individual 
program, there is a "value". Specifically: 

Pro ram Size Value 

xl 40 70 

x2 30 50 

x3 20 30 

Each value shown here is a quantification of the 
relative importance of each program. Then, Case I 
can be considered as a special case in that all 
programs are of equal importance. Let us state 
that the goal is to find a subset of programs to 
load into the memory such that the total values 
are at a maximum. The objective function becomes: 

Maximize: 70 x1 + 50 x2 + 30 x3 (14) 

Once again, if we restrict ourselves to inte
ger solutions, xT[l, 0, l] satisfies Eq. (9) and 
the requirements of Eq. (14). 

Interpretations and Related Questions 
In Case I, there are two possible solutions. 

Each can be considered as an optimal solution 
since each achieves arrived at these two solutions 
by different pivoting sequences. However, it is 
highly impractical for the operating system to set 
up and solve maximizing problems every time the 
system has to carry out the allocation activity.In 
other words, arriving at an optimum policy, i.e., 
finding the solution which solves the programming 
problem,is not necessarily the same as implement
ing it. 

From practical considerations, solving the 
linear programming problem is a problem of se
quentially loading the programs in accordance with 
the given constraints. 

Branch-and-bound method [2] in solving the 
integer programming problem can, of course, handle 
this situation. This method essentially involves 
implicit enumeration on all the feasible solutions 
and. chooses the solution that optimizes the ob
jective function. When the number of variables 
involved is large, it becomes cumbersome. To 
avoid such cumbersome procedure we introduce the 
following heuristic approach which provides an 
alternate solution to the problem. It will yield 

306 

an optimal solution probably most of the time, 
but not all the time, yet the procedure is much 
simplified. 

Heuristic Approach 
Let us assume that we have a pool of pro

grams (x1•····•xn) which are to be considered for 
memory space allocation. Associated with each 
xi, there is a value of ci• and the value-to~size 
ratio can be formed. Let us further suppose that 
this community of programs are put into a sorted 
list according to the magnitude of each value-to
size ratio in descending order. This sorted list 
has n items with the top and the bottom each cor
responding to the largest and the smallest ratio, 
respectively. The relative positions of, or the 
index to, this sorted list signifies the magnitu
de of each.value-to-size ratio relative to each 
other. For n < 2, the sequencing problem is 
obvious, For n-> 3, the algorithm is shown in the 
form of a flow chart in Figure 1. 

i) At least one program can fit in. 
ii) We are working with a sorted list, i.e. : 

ck c 
<r->i > <f>j if i > j 

k p 
where i, j are indices (positions) on 
this list. 

iii) In the flow chart, "load j" means to 
load the program that is in the jth 
position on the list. 

Clearly, the algorithm as proposed is a subopti
mal one. 

The Value Concept 
In our previous discussions, we have used 

the term "value" freely,without actually elabora
ting on it. Also, we have seen that under simi
lar circumstances, the formulation of different 
objective functions could lead to different allo
cation plans. We have propounded the notion of 
goal oriented allocation. What is this goal? It 
is clear from the context that we have chosen our 
goal to be the maximization of a given set of 
possible values. The programs thus selected 
(allocated) would be of the.utmost valuation to 
the system if actually processed. Therefore, the 
whole question of system performance is tied to 
the resource allocation problem through the 
determination of a general objective function. 
Furthermore, this general objective function can 
be formulated by defining a generalized value for 
each individual allocation unit, .such as a job, 
or job step. 

Definition: For each program unit xi there 
is an associated generalized value c;, such that 

ci = G (ali' a2i' • • ·' ald) 

for i 1, 2, ... , n, where a j i, j = 1, 2, ••• , k 

are the individual attributes of program i and G 
is any well defined function or a composite of 
functions. 

As is defined, the function G is perfectly 
general and ci depends on program attributes 



which may be tangible or intangible. As an exam
ple, we may choose G to be a linear functional. 
Specifically, we will consider: 

and 

for 

G = cSlFl(ali) + cS2F2(a2i) + ... + cSkFk(aki) 

cSi being either 1 or 0 (15) 

i = 1, 2, 3, ... , n 

START 

No Load j 

STOP 

Fig. 1 Flow chart of a heuristic 
algorithm for finding pro
gram loading sequence, for 
n > 3. 

307 

For the simplest ~ase, suppose we consider the 
value to be a function of only one parameter. 
That is: 

cSl = 1 cS. = 0 for j 2, ... ' k 
J 

then c. = Fl(ali) for i 1, 2, ... , n l. 
(16) 

If a1 • =Ai' i.e., the size of the program xi and 
if w§l.choose to define the function F1 Ca1i) as 

(17) 

where a is a constant, then the generalized value 
ci so defined is inversely proportional to the 
size of program xi. When we set up our linear 
objective function as 

we are, in effect, getting a maximum degree of 
multi-programming as a result. This is easy to 
see when we realize that the value-to-size ratio 
in this case is inversely proportional to program 
size, and a descending order of value/size ratio 
means an ascending order of the program size. 
When using largest ratio first algorithm, if this 
is treated as continuous variable case, or using 
the sub-optimal algorithm in Figure 1 as in inte
ger case, the programs will be loaded in a se
queace with the smallest being the first. 

If we include the possibility that each job 
has been assigned a priority class, it is quite 
natural to incorporate the priority scheme into 
our frame-work of the generalized value concept. 
Coasider that a1 • being the size of program x. 
and F1 (a1 ) as o~ing defined by (17). We mayl.con
sider that a 2 . is the index to a certain priority 
class to whicft program x. belongs. l. 

Furthermore let us define: 

F2 (a2i) =Si' i = 1, 2, .•• , n 

where Si is a constant. Then the generalized 
value ci is: 

(18) 

i 1, 2, ... ,n (19) 

where: 

Fl(ali) =~ 
ali 

F2(a21) Si (20) 

t\ = cS2 = 1, cS. = 0 j = 3, 4, s, ... ' k 
J 

We can see that the priority class is a way 
to designate a certain "urgency", based on what
vere predetermined guidelines that the system 
employs, to each individual program. This, by 
itself, is artificial and the artificially chosen 
number, S., is a reflection of this perception. 
The choic~ of a is also somewhat arbitrary, so 



that the absolute values of both F1 (a1i) and 
F2 (a2i) are compatible, e.g., of the same order of 
magnIEude. But this is only one of the possibi
lities. We can just as easily assign the S 's to 
be at least one order of magnitude larger t~an 
those of F1 (a1i)'s. 

In so doing, the allocation policy becomes 
strictly priority oriented. A more balanced 
approach can be implemented readily by simply 
adjusting the relative magnitudes between func
tions F1 and F2. In general, we may remark that 
the generalized value of an individual program is 
the composite of a set of functions whose para
meters may be chosen from intrinsic program pro
perties, such as its size, or subjective reasons, 
such as priority classes, or both. 

Program Execution - Dynamic Planning 

In the .previous section we have examined the 
problem of program loading. We have, in fact, 
treated such action in a static manner. It is 
static in the sense. that our goal is achieved by 
following an optimizing plan for that particular 
instance, namely, the instance of the operating 
system's allocating activity. We have grouped all 
such activities into "concentrated'' points in 
time. But in a multiprogramming environment, not 
all programs terminate at the same time. Each 
time. a program (or a particular step of a program) 
is done, the system either removes this program or 
continues onto its next job step. If a program is 
being removed, then memory space it once occupied 
would be available, thus making it possible for 
other programs waiting on the system job queue to 
be loaded, i.e., to be allocated memory space. 
Consequently, the activities of loading and remov
ing jobs are interspersed throughout the system 
up time. Even.if we may be assumed to have loaded 
all the programs into memory to the extent possi
ble, the termination, and hence the removal, se
quences for programs cannot be predicted, due to 
the fact that the system ready queue is managed in 
a dynamic fashion. This dynamic management of the 
system ready queue constitutes what is considered 
to be the scheduling activity. In this context, 
scheduling should not be confused with allocation; 
one does not necessarily imply the other and vice 
versa. Furthermore, we have equated scheduling to 
execution sequences for programs. If we again 
consider the idealized situation in that all the 
program loading activities are "concentrated" and 
that no program will be removed individually until 
most (maybe all) are completed (terminated), then 
the two major operating system activities are, in 
effect, taking place cyclically. If each of such 
complete cycles is called a period, then we may 
ask what sort of planning action can we make, 
i.e., loading and executing, so that an objective 
function is optimized over several periods? 
Before supplying answers to this question, we must 
first decide upon the objectives. Of course, the 
memory spaces as necessary and scarce resources 
are central to this question. Now, it can be 
restated: how can we best utilize a given amount 
of memory space in a given processing environment? 
The loading (allocating) and scheduling (execut-

308 

ing) activities thus become the means to an end. 
This brings up a well known model in mathematical 
programming applications, namely, the Warehousing 
Model [3]. Essentially, the warehousing model is 
dealing with the question of, given a fixed capa
city and the buying and selling prices of c01I1111odi
t ies over several periods of time, what action 
should the warehouse owner take so that his profit 
is maximized. In the ensuing discussions, we will 
examine this question in the context of operating 
systems. 

Formulation for the Identical Programs Case 
Let us consider a multiprogramming system 

where all the users (programs) are idnetical in 
size. This is neither an over simplification nor 
too far fetched a situation. Many so called 
express job queues are prime examples of this 
category, in which every user program is (normal
ly) given a fixed, equal amount of memory space. 
The user programs are identical to one another in 
size only, not the amount of computations. 

We will denote a list of variables as the 
following: 

Let xi be the total memory space occupied 
during period i, 

. y .. be the total removed memory space 
during period i, 

M be the total memory space, 
I be the initial occupied memory in 

period 1, 
d. be the cost per unit memory during 

period i, 
gi be the gain per unit memory during 

period i. 

While some of the variables·are self-explanatory, 
others will need further clarifications. The 
variable xi is in fact the sum total of all the 
memory requirements for programs that are loaded 
in period i and yi represents the total amount of 
memory space being freed, due to the termination 
of programs during period i. The other two vari
ables, d. and gi, are artificial quantities. We 
may thinR of the memory space as being the neces
sary resource for certain productive activities 
and that it incurs a cost when being occupied; 
and the system accrues profit (gain) .when pro
grams are being run to completion and subsequent
ly removed from memory. 

We have pointed out earlier that we view 
this as two major activities taking place in a 
cyclic manner. To "start" our problem, we must 
designate one of the two activities as the start
ing point in the model. Let us therefore assume 
that, initially, memory is loaded with programs, 
up to I units. Thus, we have arbitrarily fixed 
the processing activity to be the beginning acti
vity in period l; loading activity would follow, 
thus completing period 1, etc. It can easily be 
shown that, in general, for i = n, we have the 
loading constraint as 

.n 
L (xi - yi) < (M - I), 

i=l 
(21) 



and the processing constraint as 

n-1 
Yi :5._ I+ E (xi - yi). 

i=l 
(22) 

From the definitions of di and gi we see that the 
net gain for each period i would be 

(23) 

and it is natural to state our objective over n 
periods to be 

n 
Maximize: E (giyi - dixi). 

i=l 

Combining (21) and (22), we can write down the 
structural matrix as follows: 

1 -1 l 
1 1 -1 -1 

1 1 1 .... 1 -1 -1 -1 ... -1 

A 0 1 

-1 0 1 1 

-1 -1 0 1 1 1 

-1 -1 ... -1 0 1 1 1 ... 1 

(24) 

(2S) 

and let A be the column vector of direct variables 
and b be the column 

x 
n 

vector of 

b 

constraints, 

" M - I 

M - I 

M - I 

I 

I 

I 

i.e., 

(26) 

Furthermore, if we denote w to be the row vector 
of dual variables t.'s and ui's corresponding to 

I I • l. xis and yi s, 1.e., 

then we can write down both the Direct formulation, 
and its Dual, of the linear programming problem 
as: 

(1) Direct Problem 

Maximize: CA 
(28) 

Subject to: AA:::._ b, A > 0 

309 

(2) Dual Problem 
n n 

Minimize: (M - I) E t. +I E u. 
i=l 1 i=l 1 

(29) 
Subject to: wA > c, w > 0 

where c is a row vector, i.e., 

(30) 

Rather than the usual simplex method for 
solving the Direct Problem, a special algorithm 
[3] can be employed to attack the Dual Problem 
instead, due to the nature of this problem as 
depicted by the special form of its structural 
matrix shown in Eq. (2S). 

Example 

Let us consider the memory usage question of 
five periods, with the cost and gain in each 
period as given in Table 1. The total memory 
capaci-ty is 200 units and prior to period 1, 100 
units of memory space had been occupied. 

Table 1 An Example with Five Periods 

Period (i) Cost (di) Gain (gi) 

1 20 2S 

2 20 3S 

3 20 21 

4 20 40 

s 20 so 

M 200 units, I = 100 units 

Notice that the costs are identical in every 
period. Also, it should be clear that these cost 
and gain figures have no absolute meaning; only 
their relative magnitudes may reflect upon our 
system policy. 

By using the special algorithm[3], the solu
tion to the minimization problem of Eq. (29) can 
readily be found to be: 

Y1 100, 

Yi 200, i 2, 3, 4, s; 

x. 200, i 1, 2, 3, 4 ' 1 

XS o. 

Thus, the processing-loading pattern as 
shown in Fig. 2 is optimal in the sense as 
defined by Eq. (24). 

Period 
Processing 

Load in 
Fig. 2 

1 2 3 4 s 

Optimum processing-loading 
patterns for five periods 



If we modify slightly the values given in 
Table 1, the resultant "program" might change 
accordingly. Suppose, g2 has a value of 17 
instead of 35, it can be shown that 

yl = 100, 

Y2 O, 

yi = 200, i = 3, 4, 5 ; 

200, i=l,3,4. 

o. 

This results in an optimum processing-loading 
pattern as shown in Fig. 3. 

Period 
Processing 

Load in 
Fig. 3 

1 2 3 4 5 
100 0 200 200 200 + ___ + __ .;_..... 
200 0 200 200 0 

Optimum processing-loading 
pattern with period 2 inactive 

Clearly, it can be shown to be true that if 
for any period i, i ; 1, di > gi, then during that 
period there will be no processing in the final 
optimum plan. In the extreme case that di > gi 
for all i, then optimal strategy is simply to 
process everything already in the memory, i.e. , 
the initial load, and stop. In short,it is no 
longer advantageous to continue to operate the 
memory system under such circumstances. Or, view
ed differently, the entire productive system 
(processor and memory) in this case cannot satis
factorily carry out the processing demand accord
ing to some predetermined performance criterion. 

Multiprograms with Different Sizes 
This represents a more typical multiprogram

ming environment, where different user programs 
have different sizes. We will, based upon the 
ideas and results propounded in the immediately 
prior sections, inquire into some possible sche
duling disciplines. 

Let us assume that there are m different pro
grams loaded into memory to be processed, each 
with size Ii units, Eiii .::_M. If we partition the 
memory space exactly according to each I., then we 
may view the system as having m independint memory 
sections or more, each with a capacity of I 
units,with the possible exception being that por
tion of the memory space where no program can fit 
in. Furthermore, each section is full; except the 
fragmented portion, which is empty:---'Each indivi
dual section can now be viewed as similar to the 
problem treated previously, but with only one 
program and such that this program takes up the 
entire available space. 

Now we will redefine the notion of "period". 
A program's processing can be delayed due either 
to I/0 activity or through timer interrupt. 
Therefore, the processor is being switched among 
all the resident programs based on either a 
cyclic rule or some "dynamic" discipline. If it 

310 

is cyclic, then it requires no decision on the 
part of the system, once all the programs are in 
memory and the system ready queue is thus formed. 
However, because of the unpredictable nature in 
terms.of timing of I/0 activities or due to prio
rity considerations, a program may not always be 
able to continue even though the processor has. 
made its "round" and back again. In this case, 
the particular program is being "skipped" for the 
time being. The definition can now be stated as: 

Definition A period for program i is the 
time between 1) processor entering and leaving 
(active), or 2) leaving and returning (delayed), 
or 3) a skip, of program i. 

Note that we consider that the processor, after 
entering a program and upon interrogating the con
dition, decides not to stay, to be a skip. Note 
also that periods defined are possibly of unequal 
length within a program and among programs. 

The objective function for the entire system 
of m programs over n periods can be stated as: 

n n 
Maximize: E E (gij - dij) Ii (31) 

j=l i=l 

where gij is the gain for program i in period j 
and dij is the cost for program i in period j. 
Clearly, the best (optimal) strategy is that for 
all i, process those programs for all j such that 
gij ~ dij' and skip if otherwise. This is a 
direct extension of the results discussed in 
last section. If we follow this approach, then 
the scheduling discipline is clearly decided upon 
by the relative magnitudes of gi·'s and dij's. 
Previously, we stated that a pariicular program 
may be skipped over, possibly due to some 
"natural" causes such as waiting for I/0 comple
tions. By defining our objective function as 
Eq. (31) and following the optimal plan, it is 
possible to exert dynamic control over the sche
duling activities by manipulating gij's and dij's. 

Considerations for gi.'s and d .. 's and Schedul:!:!!& 
Discipline J J 

We have pointed out earlier that both the 
gain and the cost of a particular program are 
something rather intangible and the values chosen 
to quantify them are indeed artificial. However, 
artificiality does not imply arbitrariness. We 
certainly would like to consider the relevant 
factors in choosing their values so that, in the 
final analysis, the scheduling disciplines thus 
resulting constitute viable actions. 

(1) dij = du for all j ; that is, the cost 
per unit memory for program i does not change 
according to period j. Let us further denote that 
dil = di. We would consider this cost as a func
tion of both the program size and memory speed, 
i.e., 

where I 1 is the. size of program :i. and p is the 
speed of the memory, On first glance, it would 



seem redundant to include Ii as a parameter since 
di is already the cost of per unit memory. But, 
upon closer examination, this definition would 
give us the freedom to "favor" programs according 
to their sizes. For example, if we define di to 
be 

nii 
d =i p 

n = constant 

then the smaller program will be favored since the 
cost will be higher for the larger programs. 
Also, defined as above, di is inversely propor
tional to p, the memory speed, in units of time 
and the higher the speed, the higer the cost of 
di. There are, of course, many possible choices 
of relevant parameters and many possible function
als. We only suggest one here so as to illustrate 
a point. 

(2) Recall that in previous sections we have 
discussed the "loading activity" of the system, 
based on the concept of generalized value ci for 
program i, and we will utilize this value to start 
the scheduling cycle. Specifically: 

i) Let gil = Ci 
ii) If at period j, program i is being 

skipped over, then for period (j + 1), set 

O<y<l. 

This reflects the thinking that every time a pro
gram is being skipped, rather than increasing 
the cost of residency, we instead think of it as 
being potentially more valuable, i.e., higher gain, 
to process this program at a possible earlier 
time. Therefore, we increase its gain per unit 
memory proportional to its cost for the next 
period. Hence, the dynamic nature is reflected in 
the monotonicity of gij while di remains constant. 

A possible scheduling discipline is as follows: 
In period j, select the job with the highest 

gij among all i such that gij > di to be process
ed. 

We will make these remarks regarding this parti
cular scheduling discipline: 

i) It is priority influenced since gil = 
C· and ci is the generalized value for program i 
wfiich can be directly related to priority classes. 

ii) No program will be skipped indefinitely 
since gij is monotonically increasing and will be 
processea eventually. In a way, this is dynamic 
readjustment on priority while the choice of c. 
is static. i 

iii) The actual schedule depends on the 
function ~ and also the constant y. 

Conclusion 

We have discussed the ideas of activities and 
activity aggregates. Unlike the notion that the 
operating system can be modelled as a set of in
teracting processes, we view the system as a con
glomerate of interdependent activities; interde
pendent in the sense that they either compete for 

311 

resources or their action sequences necessarily 
follow each other. Constrained resource alloca
tion problem and linear objective functions lead 
to linear programming problem; its mathematical 
underpinnings are well known. However, by study
ing the solution process of the programming pro
blems, a more practical algorithm can be esta
blished. By presenting a sub-optimal yet prac
tical algorithm in optimizing a general linear 
objective function, we have in effect, suggested 
a mechanism for optimization while the generaliz
ed value concept provides a way to formulate any 
policy, e.g., allocation policy, based on some 
chosen program attributes. The steps, or the 
mechanics, of an algorithm can be implemented 
readily in the controlling module(s) within the 
operating system while the modification of a 
policy, as for example the allocation policy, can 
be carried out simply and effectively by changing 
the "values" associated with individual programs. 

References 

(1) Dantzig, G. B., "The Programming of Inter
dependent Activities: Mathematical Model", 
Activity Analisis of Production and Alloca
tion, T. C. Koopman, ed., New York, John 
Wiley and Sons, Inc., 1953. 

[2) Little, J. D. D., Murty, D. G., Sweeney, D. 
W., and Karel, C., "An Algorithm for the 
Travelling Salesman Problem", Operations 
Research, 1963, 11, pp. 972-989. 

(3) Charnes, A. and Cooper, W., "Generalization 
of the Warehousing Model", Operational 
Research quarterly, Vol. 6, No. 4, December 
1955, pp. 131-172. 



A SCHEME FOR THE PARALLEL EXECUTION OF SE~UENTIAL PROGRAMSt 

C.V. Ramamoorthy and W.H. Leung 
Computer Science Division 

Department of Electrical Engineering and Computer Sciences 
and the Electronics Research Laboratory 

University of California 
Berkeley, California 94720 

Abstract -- A scheme for the parallel execu
tion of sequential programs is d.escribed in this 
paper. The scheme does not require an extensive 
parallelism detection procedure before the actual 
execution of the program. Instead the precedence 
relation among statements being executed is pre
served automatically by the synchronization action 
of monitors on the processors during execution. 
The monitoring process is aided by two pieces of 
information: (1) the reference table which indi
cates how a variable is used in the program state
ments, and (2) a stack of trace vectors which 
keeps track of the execution order of statements. 

Introduction 

The statements of a sequential program are 
coded serially as if they are to be executed by a 
processor one at a time. In this paper, however, 
we are concerned with the simultaneous execution 
of more than one of them. 

Two types of statements in a sequential pro
gram are considered: (1) assignment statements 
and (2) branch statements. An assignment state
ment is of the form X = Ex where X is a varia
ble defined by the arithmetic or logical expres
sion Ex. A branch statement is indicated by 
If c then (s1~n> where c. is a conditional 
expreSSTOn and sl•··· ,sn are statement labels. 
c can have n possible outcomes. The j-th out
come directs execution to statement Sj. A branch 
statement can be unconditionally written as 
GOTO Si· In a DO-loop the last statement which 
branches backward to complete the loop can be 
considered a conditional branch statement. 

Existing schemes [BERN 66, RAMA 69, BAER 73, 
KUCK 75] for the parallel execution of a sequen
tial program require a procedure to detect paral
lelism in a program before its execution. State
ments thus determined to be parallel executable 
must satisfy the following condition. Let Ri 
and Wi be the variable space read and updated 
by statement Si. If Si and Sj can be exe
cuted at the same time then Aij = (Ri nwj) u 
(Rjnwi)u(winwj} = 0. 

Two observations can be made: (1) the paral
lel executable statements share limited variable 
space (only Ri nRj is not required to be empty) 
and (2) the processors executing them do not com
municate with each other. The scheme proposed 
here relaxes these two restrictions so that 
statements being executed at the same time can 

tResearch sponsored by U.S. Army Research Office 
Contract DA-ARO-D-31-124-73-Gl57 and National 
Science Foundation Grants DCR72-03734-A01 and 
DCR74-21248. 

312 

have non~empty A;j's. The execution will be 
monitored to preserve the inherent precedence 
relation among statements. Some static informa
tion about the use of variables will be generated 
before execution to aid the monitoring procedure. 
But the overhead of doing so will be considerably 
smaller than an extensive parallelism detection 
procedure. The monitoring process also requires 
some dynamic information to trace the execution 
order of statements. 

We use the notion task Pi to represent a 
statement si under execution. Figure 1 depicts 
the conceptual basis of the scheme. Given two 
tasks Pi, Pj and their corresponding Aij• pro
cedures called monitors are placed on the access 
paths of Pi and Pj to Aij· The monitors 
regulate the execution of Pi and Pj to pre
serve the precedence between them. Tne computer 
model evolved from this idea will have a monitor 
associated with each processor as shown in Figure 
2. 

data access paths 
H ./ •~• \ U • P. 

monitor ~ monitor J 

Figure 1. Monitoring parallel execution. 

!Inter-processor Communication! 

! ! ! 
l5IE!1ll~~1···l~~1 

! ! t 
!Processor-Memory Communication! 

t 
Memory Systems ~ 

reg_isters 

Pi = Processor 
Mi=Monitor i 

Figure 2. A multi-processor model 
to carry out the scheme. 

Theoretical Basis 

A sequential program can be modeled by a 
direct graph. A node Si in the graph reprt!sents 
the i-th statement of the program. An edge (i,j) 
in the graph indicates the flow of control from 
node Si to node Sj· Only the node representing 
a conditional branch statement has more than one 



outgoing edge. Usually an exclusive-or sign ED 
is attached to it indicating that only one of its 
edges will be ~arried out during execution. 
Figure 3 shows an example program graph. 

Figure 3. An example program graph. 

When a sequential program is being processed 
by a single processor, the execution follows a 
route in the program graph. More formally, an 
execution route is an ordered sequence of nodes 
(statementS}and if node si precedes node Sj 
immediately in the sequence, then there exists an 
edge (i,j) in the program graph. An execution 
route of the program graph in Figure 3 is shown 
in Figure 4a. 

We denote the execution order of two nodes 
Si and Sj as si + s· if Si is specified by the 
route to be execute~ before sj. Because of con
ditional branch statements, the execution order 
of program statements is generally unknown before 
the execution of the program. HQwever, if given 
a program block which consists of only assignment 
statements, then si + sj if and only if si < Sj· 

The precedence which must be preserved among 
statements is related to both their execution 
order and data dependency. Given two statements 
Si and Sj, if (1) Si+s,;. (2) (WinRj)-;. 0 
and (3) for any sk such tnat si+sk+Sj and 
Wkn(WinRj)=0, thenwesay Sj is an imme
diate data dependent of si. A variable in 
(Wi nRvis read correctly by Pj (the task cor
responaing to statement Sj) if it is not modi
fied between the time it is updated by Pi and 
the time it is read by P ·. We assume that a 
statement Sj is executed correctly if all varia
bles in Rj are read correctly. It follows that 
a program will be executed correctly if all the 
statements in the execution route are executed 
correctly. This is what this scheme must 
guarantee. 

For a statement Sj to be an immediate data 
dependent of Si, it implies that Pj should not 
read variables in (Wi nRj) before Pi updates 
them. But in order to execute Pj correctly, we 
must also protect the integrity of the variables 
in (Wi nRj). For this purpose, we define the 

11 J 

s trace i nterva 1 1 ..._ll'-'l-'-1 ..... I _._...1..-....__. 
*Result of s2 branches to s5 

11101010111 I 

1110101011111 

*Result of s6 branches to s2 

1 lbl~l~l 0 l 1 l 0 I 
s . t i'nterval 2 *Execution of s1 in interval 

race 1 completed 

-~ - - - - - - - - _1~1~1~1~1~1:1_ - - - - - -i - *Result of s4 branches to s1 
(5,) 000010 T o o 1 o o o 

(S;)trace interval 3 *E:ecution of s5 in interval T 1 comp 1 eted 

7 
7 
7 
C0 

(a) An example execu
tion route for the 
program graph in 
Figure 3. 

1~1°1 1 1°1°1°1 

(b) A possible sequence 
of trace vectors cor
responding to the 
execution route in (a). 

Figure 4. Execution route, trace intervals 
and trace vectors. 

direct precedence relation between two statements 
as the following. Given two statements si and 
SJ, if si+Sj and Aij=(Rinwj)U(Rjnwi)U 
(Wi nW·)-;. 0 then si directly preceaes Sj with 
respect to elements in Aij· This means tHat Pi 
must finish processing elements in Au before 
Pj can operate on them. Aij is cal red the 
shared variable set. Figure 6 lists the shared 
variable sets of--ui"e assignment statements in 
Figure 5. 

It should be noticed that given two state
ments which do not directly precede one another 
does not mean that they can be executed in paral
lel. Consider the sequence of statements in 
Figure 6. s1 must be executed before s5 
although A15 is empty. 

However, the direct precedence is important 
because bf the following fact: If the direct 
precedence relation among all statements along 



sl: A(I,J) = 1.0 A12 = f1J; A13= {I}; A14 = {J}; 
s2: X = X+I A15 = fll; Al 6 = fll; A23 ={I}; 
S3: I = I-1 A24 = f1l; A25={X}; A26 = 0; 
s4: J = J-1 A34 = fll; A35 ={I}; A36 ={I}; 
s5: Y( I) = I+X A45 = 0; A46 = {J}; · A56 = 0 
s6: Z(I ,J) = I*J 

Figure 5 Figure 6. Shared variable sets 
for the·example in 
Figure 5. 

An example assign
ment statement 
block. 

the execution route are obeyed, then the state
ments will be executed correctly in the sense as 
stated earlier. 

The proof is in the following. Let Sj be an 
immediate data dependent of Si· It follows that 
s; also directly precedes Sj· 

Suppose there exists a statement sk which 
could modify variables in (Wi nRj) then 
Wk n (Win Rj) 1 fl!. Therefore sk is not a state
ment between si and Sj in the execution route. 

If sk + Si then sk directly precedes si 
because Wk nwi 1 fll •. Furthermore, if Sj + sk 
then Sj directly precedes sk because wk nRj 1 fl!. 

If the direct precedence relation among si• 
Sj and sk are obeyed then Pj will read varia
bles in lWi nR·) correctly. Since si is arbi
trary, it follo~s that Pj can read R· correctly 
if the direct precedence relation amorllg all tasks 
are preserved. Hence sj can be executed correct
ly. This will hold for all other statements. 

The above argument suggests that if we can 
(1) determine the execution order of statements 
and (2) obtain the shared variable sets of state
ments, then we can preserve the direct precedence 
relations and execute a sequential program cor
rectly. The monitors in Figure l are intended to 
preserve the direct precedence relation among the 
statements when they are being executed. 

The shared variable sets can be more conve
niently represented by a variable reference table 
which will be described in the following section. 
A stack of trace vectors can be used to indicate 
the execution order of statements. It will be 
shown after the description of the reference 
table. 

Reference Table 

It is possible to obtain the shared variable 
sets for every pair of program statements by pre
processing procedures similar to data flow analy
sis [ALLE 76]. However, if a program has n 
statements, then there can be as many as n(n-1)/2 
shared variable sets. It will be difficult to 
manage this large number of shared variable sets 
in execution time. 

One method is to use the reference table in 
lieu of the shared variable sets. Essentially, 
the reference table indicates in which statement 
a variable ·Js referenced. It is commonly used as 

314 

a debugg-ing.aid and many existing FORTRAN.compilers 
can generate it with a small overhead. In our par
ticular implementation, it also shows how the 
variable is used in a statement. An element in the 
table is denoted as RT(X,si) where X is a varia
ble name and s; is a statement label. RT(X,si) 
can have one of the following four values: 

{

00 if X is not referenced in si 

RT(X,s.) = 01 if X is ·read in s1 
1 10 if X is updated in si . 

ll if X is read and updated in si 

We assume that the table will be searched 
associatively using a variable name. Therefore 
the first index of the array RT is a variable 
name. The reference table for the block of assign
ment statements in Figure 6 is given in Figure 7. 

A 

I 

J 

x 
y 

z 

10 

01 
01 
00 
00 
00 

00 00 
00 11 
01 00 
11 00 
00 00 
00 00 

00 00 00 

00 01 01 

11 00 01 
00 01 00 
00 10 00 
00 00 10 

Figure 7. The reference table for 
the program block shown 
in Figure 5. 

The reference table is important because it 
actually indicates the membership of a variable in 
shared variable sets. It is quite clear from 
Figure 7 that the variable J belongs to A14, A24 
and A46· The dimension of a reference table is 
directly related to the size of a program block. 
For large programs, it is necessary to partition 
the program into program blocks and associate a 
reference table with each of them. 

Next, we describe the trace vectors. 

Trace Vectors 

The trace vectors convey two messages: 
(1) They show whether a statement in the execution 
route has been completed or not. (2) They reveal 
the execution order of statements. 

An element of the trace vector is denoted as 
TV(u ,si) where si is a statement label and u 
indicates a trace interval .. A new trace interval 
is added when a backward branch is in effect. The 
element TV(u,si) = 1 means that Si is being exe
cuted in interval u. TV(u,s-) =O implies the 
execution of si is completed or si does not ap
pear in the execution route in interval u. Two 
non-zero trace vector elements TV(u,s;) and 
TV(V,Sj) show the execution order between Si and 
Sj according to the following: 
(1) If v < u, then sj + si. 



(2) If v = u and Si < Sj then s; + Sj 
otherwise if Sj < si then sj + s;. 

(3) If v > u then si + sj. 
The trace vectors will be updated frequently 

during execution to keep track of the execution 
order of statements. We consider three cases in 
updating the trace vectors. 
(l) When a statement Si is fetched for execu

tion, the corresponding TV(u,si) will be 
set to one. There is no change in trace 
interval. 

(2) When a statement sm is fetched as a result 
of forward branching from statement si, the 
statements between St and sm are not 
covered in the execution route. Hence, for 
all St< Si < sm, TV(u,si) will be reset 
to zero and TV(u,sm) = l. There is no 
change in trace interval. 

(3) As shown in Figure 4a, a backward branch from 
statement sm to sR. means that some state
ment sk, such that St< sk < Sm, may pre
cede St in execution order, To account for 
this fact, a new trace interval u+ 1 wi 11 be 
created when sR. is fetched for execution. 
Suppose the program block under consideration 
contains n statements. Then TV(u,s1} = O 
for all Sm< si < sn and TV(u+l,SjJ = 0 
for all si ~ Sj < St• since these state
ments are not covered in the execution route. 
But TV(u+l,sR.) will be set to one. 

When the execution of a statement is completed, 
the corresponding trace vector element will be 
reset to zero. 

Figure 4b shows a possible sequence of trace 
vectors for the execution route shown in Figure 
4a. It should be noticed that before the trace 
vectors are updated due to the fetching of state
ment Si, no task which executes statement Sj 
and si + Sj can use the trace vectors. 

Statements in different trace intervals can 
be executed at the same time. We say a trace 
interval u is used if TV(u,s;) = l for some si 
otherwise it is not used. Since at least one pro
cessor is executing a statement in a used trace 
interval, the number of used trace intervals is 
bounded by the number of processors. 

Monitor 

It is clear that given the information in the 
reference table and the trace vector, the direct 
precedence relations among statements can be 
determined. We are now in a position to describe 
the monitors. 

A monitor regulates the execution of a pro
cessor to preserve the direct precedence relation 
among statements. Suppose a variable X is refer
enced by a processor executing statement s;. If 
it is found by the monitor that there exists at 
least one statement Sj which directly precedes 
Sj with respect to X and has not been completed, 
tlien the monitor will issue a message "wait(X)" to 
interrupt the execution of the proc!f'ssor. On the 
other hand, if the operation on X has: been 

315 

completed, the monitor sends a "signal(X)" message 
to inform other monitors in the system. 

To match up the speed of the processor, a 
monitor should be implemented by hardware. But 
for simplicity and clarity, we shall describe it 
as a procedure. 

A monitor consists of (1) a set of data, the 
reference table and the trace vectors, which are 
shared by all other monitors and (2) two procedures 
which regulate the execution. If variable X is 
referenced in statement s; in trace 'interval u, 
then depending on the operation (read or update) 
the monitor will do one of the following proce
dures: 

Procedure Monitor Read (variable X; statement 
s;; trace interval u); 
Begin 

For ((all intervals v<u and all state
-ments Sj) or (interval v=u and all 

statements Sj <Si)) DO 

End. 

If any (TV ( v, s j) = 1 and (RT ( X, s j) = 10 
- or RT(X,sjl = 11)) 

then wait(X) 
else begin 

read(X); 
signal{X); 

end; 

Procedure Monitor Write (variable X; statement 
si; trace interval u); 
Begin 

For {(all intervals v < u and all state
-ments Sj) or {interval v = u and all 

statements Sj <Si)) DO 

End. 

.!.!. any (TV(V,Sj) and RT(X,Sj) 'I 00) 

_then wait(X) 
else begin 

update(X); 
signal(~); 

end; 

The proof that these two procedures correctly 
preserve the direct precedence among statements is 
quite straightforward and we shall not present it 
here. 

The decision of whether to issue; "wait(X)" \n 
either procedure essentially fo11ows two steps: 
( 1) fetch the row RT( X .s ~) from the reference 
table, and (2) compare Rt(X,sj) with the trace 
vector to reach the decision. 

Figure 8 illustrates the performance of the 
scheme if the program block in Figure 6 is exe
cuted by three processors. There are a wff·lety of 
methods to "improve the performance of the monitor. 



But we shall not cover them here. 

Processors 

I sl 11 S4 I 
I s2 I I S5 I 

I S3 11 s6 I 
2 3 time 

Figure 8. Time chart of executing the 
program block given in 
Figure 5. 

Final Remark 

As a final remark, the scheme has an advan
tage that it requires little preprocessing over
head since the major part of the parallelism 
detection is done during execution time. But 
because of the same reason, it cannot guarantee an 
optimal scheduling strategy in the sense that the 
processors are fully utilized. Further investi
gations are needed to evaluate its effectiveness. 

References 

fALLE 76] F.E. Allen, and J. Cocke, "A Program 
Data Flow Analysis Procedure," Co1m1. 
ACM (March 1976). --

[BAER 73] J. L. Baer, "A Survey of Some Theoreti
cal Aspects of Multiprocessing," ACM 
Computing Survey (January 1973). -

[BERN 66] A.J. Bernstein, "Analysis of Programs 
for Parallel Processing," IEEE TC 
(October 1966). -- -

[KUCK 75] D.J. Kuck, "Parallel Processor Archi
tecture--A Survey," 1975 Sagamore 
Conference Proceedings:--

[RAMA 69] C.V. Ramamoorthy, and M.J. Gonzalez, 
"A Survey of the Techniques for Recog
nizing Parallel Processable Streams in 
Computer Programs," AF I PS FJCC ( 1969). 

316 



ON FURTHER APPLICATIONS OF THE 

HU ALGORITHM TO SCHEDULING PROBLEMS 

Edgar Nett 

Gesellscha~ :fii.r Mathematik 

und Datenverarbeitung 

5205 St. Augustin, West Germany 

Abstract-- This paper concerns the generation of 

optimal task schedules for multiprocessor 

systems. So far, non-exhaustive algorithms for 

the generation of optimal schedules have been 

devised only under restrictive assumptions. One 

of them is the so-called Hu algorithm, which, 

because of its simplicity, appears to be very 

attractive for practical applications and, 

therefore, deserves further investigations. A 

new solution for the two-processor scheduling 

problem is proposed which predominantly employs 

the Hu algorithm. Furthermore, special task 

dependency structures are introduced which essen

tially are composed of trees and anti-trees, and 

include the structure of nested DO-loops. If 

two additional constraints are imposed on these 

structures, then the application of the Hu 

algorithm yields optimal schedules for an 

arbitrary number of processors. 

I. Introduction 

The allocation of processors to tasks in a 

multiprocessor environment has proved to be 

a problem of high complexity if a high degree 

of utilization of the available processing power 

or, which is essentially the same, the minimi

zation of the overall job run time is to be 

achieved. To process any two tasks simultaneous

ly, it must be made sure that both are indepen

dent of each other, i.e. one task must not pro

duce code or data that are required to process 

the other task, and at no time during their 

execution must both use identical resources 

unless, as in the case of reentrant code, it is 

explicity allowed. Both criteria usually are 

quite naturally met by two different user 

programs or by a user and a system program. 

317 

Therefore, the simultaneous processing of a 

independent program is commonly preferred to 

simplify the job of the task dispatcher. 

However, in some cases it might be desirable or 

even necessary to significantly reduce the run 

time of a particular program by executing in

dependent tasks within the program simultaneous

ly. Tasks of this sort may be single instruct

ions or small instruction sequences such as, for 

instance, the branches of a DO-loop. An optimal 

processor allocation at this level usually is 

very difficult to accomplish for there may be 

exist rather complex and strong dependencies 

between the tasks that must be strictly obeyed 

during program execution in order to produce 

correct results. 

The task dependencies within a program which are 

commonly caused by data transfers from one to 

another, can be formally described by a tuple 

(T,<-), where T = (t1 , .•. ,tn) is the set of tasks 

and <· is a partial ordering on T. If ti <- t j, 

then, the execution oft. must not be initiated 
J 

before the execution of ti has been completed. 

If, however, t. ft. and t. f.· t., then both 
1 J J l 

tasks are said to be independent of each other 

and, therefore, may be executed simultaneously. 

The tuple (T,<-) can be represented as a task 

graph G = (T,<-,a,e), in which the tasks are 

shown as nodes, where a and e are the single 

entry and exit nodes, respectively. <· is re

presented by directed edges so that there is a 

directed edge from task t. to task t. if and 
1 J 

only if t. <- t. and there is no task tk so that 
1 J 

ti <- tk <- tj. The task scheduling problem can be 

considerably simplified if the nodes in a task 

graph G are considered as task units each of 



which requires one unit of time for execution. 

This unit of time is to be chosen so that a 

real task can be represented as a chain of task 

units in the corresponding task graph. In the 

following, the term 'task' alwS¥s refers to a 

task unit. Furthermore, it is assumed that the 

scheduling is non-preelilptive and that a pro

cessor is left idle for a period of time only 

if no task is executable within this period 

(demand scheduling). 

If an optimal task scheduling strategy is to be 

performed, then, usually it does not suffice to 

simply assign an idle processor to any one task 

out of a pool of executable tasks, i.e. tasks 

whose predecessors in the task graph have 

already been processed. In addition, some order 

of priority among the executable tasks must be 

established that can be derived from the struc

ture of the task graph. 

One of the simplest priority criteria is the 

so-called level criterion. The level i(t) of a 

task t is defined as the maximum number of tasks 

that can be encountered on a path from task t 

to the exit task e in the corresponding task 

graph. The level criterion gives priority of 

execution to the tasks with the highest levels 

among all tasks which, at some instant of time, 

are executable. 

So far, Hu [2] has demonstrated that a schedu

ling algorithm which exclusively applies the 

level criterion suffices to generate optimal 

schedules for partial task orderings that 

feature a tree structure. This structure, how

ever, does not represent task dependencies 

which typically can be found in conventional 

computer programs. 

This paper is to present two more scheduling 

problems for which the Hu algorit.hm generates 

optimal schedules. In section II, it will be 

shown that the classical two-processor problem, 

for which Coffman/Graham have proposed a soph

isticated labelling scheme [1], can be solved 

using predominantly the simpler level criterion, 

318 

and in section III, a special task dependency 

structure, essentially composed of trees and 

anti-trees, is introduced for which the Hu algo

rithm yields an optimal schedule as well. 

II. The two-processor problem 

It appears useful to set out with an informal 

discussion of the problems that arise when apply

ing the Hu algorithm to task scheduling in a two

processor system. 

Fig.1 shows, as an example, a typical task depen

dency structure. In this graph, tasks (nodes) of 

identical level are arranged in horizontal rows; 

the levels are identified to the right of each 

row. 

Level: 

7 

6 

5 

4 

3 

2 

Optimal Hu-schedule S0 

1 2 " 5 6 7 8 9 10 11 

p1 a 18 15 14 11 1o 9 6 3 2 e 

p2 ij> 16 17 12 13 8 7 5 4 ij> 

Fig.1. Example of a task graph and an optimal 

schedule for it. The numbers in the nodes serve 

as task identifiers. 



Consider first a reduced graph from which the 

nodes 17, 13, 12, 3 and the corresponding 

directed edges are removed. This graph features 

an even number of tasks in every level, except 

those levels which only consist of the entry 

task a and the exit task e, respectively. Hence, 

after execution of the entry task a, all tasks 

having an identical level can be processed 

pairwise concurrently in arbitrary order, so 

that all tasks having different levels can be 

processed sequentially in the order of mono

tonically descending levels until task e is set 

free. The resulting schedule must be optimal 

since in all but the first and last time slot 

both processors are busy. 

A more complex situation comes about, if the 

tasks 17, 13, 12, 3 are included in the task 

dependency structure of Fig.1. Now, the level 

6 comprises an odd number of tasks which become 

free for execution after task a has been comple

ted. To achieve an optimal schedule, one of 

the tasks of this level must necessarily be 

processed concurrently with a task of level 5. 

This task, however, cannot be selected arbitrari

ly. As can be recognized in Fig.1, task 18 is 

succeeded by all tasks of level 5 and, therefore, 

definitely cannot be processed together with a 

task of level 5 and, therefore, not as the last 

task of level 6 either. 

A similar situation occurs when processing the 

tasks of level 5. Since one of these tasks has 

to be 'executed.together with a task from level 

6, again, an odd number of tasks is left over. 

Consequently, one of them must be performed 

concurrently with a task from level 4. If one 

of the tasks 10, 11, 12, 13 from level 5 is 

chosen, then it can only be executed tQgether 

with task 6 of level 4. Thus, only task 7 is 

left over for execution in the next time slot, 

for it blocks all tasks of lower levels. If, 

however, task 8 or 9 of level 5 is paired with 

task 7 of level 4, then task 6 can be paired, 

for instance, with task 3 of level 3, which 

leaves over an even number of tasks in the 

319 

remainder of the levels 3 and 2. Intuitively, 

it appears that these situations can only be re

solved if the sets of successors of the tasks 

are taken into consideration. Whenever the number 

of executable tasks of the highest level becomes 

odd, then it seems necessary to select the task 

with the smallest number of successors for exe

cution together with a.task of the next lower 

level. 

Thus, the following extended Hu algorithm is 

proposed for task scheduling in a two-processor 

system: 

In every time slot, the tasks with the highest 

levels among the executable tasks are assigned 

to the processors. If there is a tie among more 

than two tasks and the number of them is even, 

then an arbitrary pair of these tasks can be 

selected. In the case that their number is odd 

the task with the smallest number of successors 

has to be processed last. 

To verify that this algorithm is optimal, the 

notions of 'dominance' and '.Incompletely Qccupied 

!ime .§.lot (abr. IOTS) are introduced, 

A task r is said to dominate a task s in a task 

graph G if the set of successors of s, N(s), is 

a subset of the corresponding set N(r) of r. 

Two task sets I= {t1 , ••• ,tk} and J = {s1 , ••• ,sk} 

are said to have identical structure if there 

exists an edge (t ,t ) in the corresponding task u v 
graph G if and only if there exists an edge 

(s ,s ) in G, too. Now we extend the notion of u v 
dominance as follows: 

I is said to dominate J if and only if for every 

integer i out of {1, ••• ,k} it is 

N(t.) 
l. 

(N(s.) - J), 
l. 

These definitions of dominance are slight modi

fications of those given by Ramamoorthy et. al. 

[3]. 

The dominance criterion requires that a task is 

always executed before or at the same time as 

those tasks it dominates. We immediately conclude 

from these definitions: 



Lemma II.1: If a task r dominates a tasks, then 

the level 1(r) of r is greater than or equal 

to the level 1(s) of s. 

Let us now introduce the notion of an 'IOTS' • 

Suppose, S is a schedule over a task graph G, 

then, Mi is defined as a subset of all tasks 

t E T that are ready to be executed at the 

beginning of time slot i, Si is defined as the 

subset of all tasks t E T that are executed 

during time slot i. 

Let w(S) be the number of time slots required 

to execute G according to the schedule S and 

let i (1 ~ i ~ w(S)) be a time slot so that ls. I 
1 

is smaller than m, the number of processors. 

Then, i is said to be an IOTS. The following 

property of an IOTS can be readily verfied: 

Theorem II.1: Let i be an IOTS, then the set 

N(S.) of all sucessors of the tasks belonging 
1 

to Si is equal to the set of all those tasks 

that have not been executed at the end of 

time slot i. 

To find out whether a schedule S over G is 

optimal or not we must study the IOTS' s of S. 

However, many of them have no influence on the 

optimality of S. (See for example the first and 

last time slot of the schedule in Fig.1.) 

An IOTS i is called irreducible if and only if 

there is at least one optimal schedule R over 

G so that Ri =Si' otherwise, i is called redu

cible. Henceforth, we are only interested in the 

reducible IOTS's, for which from theorem II.1 

we can derive the following important property: 

Corollary II.1: Let i be a reducible IOTs· in a 

non-optimal schedule S over G. Then, there 

exists at least one task t e S. which in 
1 

every optimal schedule R over G is executed 

in a preceding time slot, 

This Droposition means that there must exist a 

time slot j which precedes i and at least one 

tasks in the corresponding set S. so that, in 
J 

order to generate an optimal schedule, task t 

must be executed ~ task s, 

320 

Now we can propose the following theorem: 

Theorem II.~: Let S be a Hu-schedule for two 

processors over some task graph G and let the 

dominance criterion not be violated in S. 

Then, S is optimal. 

f!:Q.Q!.:_ See appendix 

We are now in a position to verify that the pro

posed algorithm is optimal.From Lemma. II.1follows 

that it suffices to ensure that the dominance 

criterion is not violated if we have to select 

for execution two out of more than two tasks 

which have the ~ level. A violation has no 

influence on the optimality of the schedule S if 

the number of tasks having the same level is 

even. In this case no processor is idle during 

the execution of tasks having the same level and 

the task graph which is le~ over after 

execution of all tasks of a particul?-r level is 

independent of the sequence of execution.If,how

ever, the number of tasks of a level is odd, then 

we only have to make sure that a dominating task 

is not executed as the last one •. This, however, 

is in compliance with the proposed algorithm 

which requires that the task with the smallest 

number of successors is executed as the last one. 

Hence, the extended Hu algorithm produces optimal 

schedules for two-processor systems. 

In comparison to the labelling scheme developed 

by Coffman/ Graham [ 1 J , the extended Hu algorithm, 

on the average, requires less computation to 

produce an optimal schedule. The task priority 

assignment by the level criterion is to be 

supplemented by the dominance criterion, i.e. 

by an assessment of the number of successors of 

a task, only if the number of executable tasks 

of the highest level is odd. In contrast to this, 

the Coffman/Graham algorithm assigns a unique 

label, which implicitly reflects the number of 

successors, and thereby a unique priority to 

every task of the same level even though this 

further distinction of priorities may not be 

necessary. 



III. Scheduling of tree-antitree task depen

dency structures 

As has been pointed out in the introduction, 

optimal task scheduling in a multiprocessor 

system is known to require exhaustive algorithms 

if the number of processors exceeds two and if 

arbitrary partial task orderings (dependency 

structures) are permitted. Then, the com

plexity of the algorithms is polynomial complete 

[5]. 

Obviously, this complexity can be reduced to 

yield nonexhaustive scheduling algorithms only 

by two measures, of which one, the restriction 

on the number of processors leads to a simpler 

algorithm only in the two-processor case. The 

other, a simplification of the permissible task 

dependencies has been successfully applied only 

to tree and antitree structures, for which the 

Hu algorithm was originally developed. 

Intuitively, it appears very promising to follow 

this direction and to try to consider simple 

task dependency structures which can typically 

be found in computer programs and are easy to 

schedule. Fortunately, it tilrns out that (nested) 

DO-loops not only are rather simply structured 

but also provide the overwhelming majority of 

concurrently executable tasks (instructions) 

within a program.[4] Consider, as an example, 

the following ALGOL program which generates a 

symmetrical matrix. 

Proc SYMM (n,a) 

integer n; array a(1:n, 1:n); 

begin integer i, j, k; 

for i : = 

a(i,i) 

for i : = 

begin 

1 step until n do 

: = O· 
' 

step until n-1 do 

k = i+1; 

for j:=k step until n do 

begin 

a(i,j):=.i+j; 
a(j,i):= a(i,j); 

321 

If n = 4 is assumed, then the dependencies bet

ween the individual tasks (instructions) are as 

shown in Fig. 2. 

Level: 

1o 

9 

8 

7 

6 

5 

4 

3 

2 

Fig.2: The computational structure of the ALGOL 

program 

The tasks have to.be interpreted as follows: 

Task a - - - initialization of the first DO-loop 

Task 24 
up to27_ the matrix elements lying on the 

diagonal are set to 0. 

Task 23- - - termination of the first DO-loop 

Task 22-

Task 19 
up to21 _ 

Task 16 
up to18_ 

initialization of the second DO

loop 

integer k is set to 2,3,4, respecti

vely. 

initializations of the third DO

loop 



Task 4 

ur to15- - - computation of the matrix elements 

Task 1 

up to3- - - terminations of the third DO-loop 

Task e- termination of the second DO-loop 

If linear substructures are considered as tri

vial trees, then this kind of structure appears 

to be composed entirely of trees, the branches 

of which are joined again by equivalent anti

trees. This, in turn, suggests that optimal 

task schedules for more than two processors may 

be generated by exclusively applying the Hu 

algorithm. 

To investigate this problem, first the set of 

task graphs 'f* which includes the structures 

in question is informally defined. Graphs of the 

<tl • set r can.be constructed recursively out of 

two basic graph elements by systematically sub

stituting tasks in some task graph G E: ~· by 

these elements. These task elements are: 

1) graphs consisting of two nodes that are 

connected by a directed edge; 

2) all graphs in which every node i except the 

entry node a and the exit node e is immediate 

successor of a and immediate predecessor of 

e. 

(These graph elements are illustrated in Fig. 

3) 

1 ) 2) 

Fig.3: The basic graph elements ofJ* 

It is important to note that the construction 

• of graphs G £ f must always start with an ele-

ment of type 2 whose entry and exit node, how

ever, must never be substituted. If two additio

nal conditions ar~ imposed on the graphs from 
If,,* • 
7 concerning the number of branches which 

emanate from the entry node a and the number of 

322 

tasks in each of this branches, then it can be 

shown that the Hu algorithm yields optimal sche

dules. 

To show this, the following lemma proves very 

helpful: 

• Lemma III. 1 : Let G £ lf be a task graph and let 

D(a) be the set of immediate successors of the 

entry task a£ G, then tfn(a) N(t) = {e}, 

where N(t) is the set of successors oft. 

The proof of this lemma follows straightfor

wardly from the structure of the task graphs 

• from ~ • 

Now, the following theorem can be formulated: 

* Theorem III.1: Let G = (T,<,a,e) E: ~,let 

Y = (Y1 , ••• ,Yp) be a partition class on D(a) 

that meets the following conditions: 

1) IN(Yi)vYil .::_ L-2 (1 ~ i ~ p), where Lis 

the length of the longest path in G and 

N(Y.) := tUY N(t.) 
i i£ i i 

2) p > m 

Then, every Hu-scheil.ule over G is optimal. 

~ see appendix 

The conditions of this theorem essentially re

quire that the number of branches emanating from 

the entry node a is at least equal to the number 

of processors, and that the number of tasks in 

every branch must exceed a certain limit which 

is roughly given by the largest number of task 

levels in a single branch. 

These two conditions can easily be met by 

(nested) DO-loops, if the number of branches of 

the outermost loop is greater or equal to the 

number of processors. 

Consider as an example, again, the task graph 

of Fig.2. It is composed of two subgraphs from 
w* . the set q , the first one extends from the node 

a to the node 23, and the second one extends from 

the node 22 to the node e. To generate an opti

mal schedule for the entire task graph struc

ture, the optimale schedules of the two sub

graphs may simply be concatenated. 



Since in each of the two subgraphs all branches 

emanating from the respective entry nodes com

prise the same number of task levels, (L=3 in 

the upper subgraph and L=7 in the lower sub

graph), the first condition of Theorem III.1 is 

fulfilled. The second condition is met if the 

number of processors, for instance, is assumed 

to be three. This is equal or smaller than the 

number of branches in both subgraphs. Hence, an 

optimal schedule for three processors generated 

by the Hu algorithm is of the following form: 

Optimal Hu-schedule 

p1 a 24 27 23 I 
_I 22 21 16 13 1o 4 7 1 

p2 <ti 25 <ti <ti I 
I <ti 2o 17 14 11 5 8 2 

p3 <ti 26 <ti <ti I 
I <ti 19 18 15 12 6 9 3 

1. Subgraph I 
I 2. Subgraph 

Concluding remarks 

e 

<ti 

<ti 

The Hu algorithm seems to be most suitable for 

practical scheduling applications, because it is 

relatively simple in comparison to other algo

rithms. 

In this paper an extension of the Hu algorithm 

is applied to the two-processor scheduling pro

blem and to the scheduling of special task struc

tures that include nested DO-loops. 

Acknowledgements 

The author would like to thank Dr. W. Kluge 

for his help and guidance with this research, 

and he would also like to thank his colleagues 

for their useful comments and helpful sugges

tions. 

References 

1) Coffman, E.G. and Graham, R.L.: 

'Optimal Scheduling for TWo-Processor Systems~ 

Acta Inf'ormatica, Vol. 1, No. 3, 1972 

2) Hu, T.C.: 

'Parallel Sequencing and Assembly Line Pro

blems' Op. Res., Vol.9, No.6, Nov. 1961 

323 

3) Ramamoorthy, C.V. et. al.: 

'Optimal Scheduling Strategies in a Multi

processor System', IEEE Trans. on Comp., 

Vol. C-21, No.2, Febr. 1972 

4) Baer, J .L.: 

'A Survey of some Theoretical Aspects of 

Multiprocessing', Computing Surveys, Vol.5, 

No. 1, March 1973 

5) Ullman, J.D.: 

'Polynomial Complete Scheduling Problems', 

Techn. Report 3, Dept. of Comp. Science, 

Univ. of California at Berkeley, March 1973 

Appendix 

The correctness of Theorem II.2 is shown by 

proving its contraposition. 

From the definition of a reducible IOTS it 

follows that in a non-optimal schedule there are 

two reducible IOTS's. As can be derived from 

Corollary II.1, a reducible IOTS comes about if, 

prior to this IOTS some task s has been executed 

before some other task r, although task r must 

be executed before task s in order to obtain an 

optimal schedule. 

It will be shown that then task r dominates task 

s. 

Proof of theorem II.2: Let S be a non-optimal 

Hu-schedule, let i be the reducible IOTS with 

the smallest number and let S. = {r }. Then, 
l. 0 

according to Corollary II.1 there must be a time 

slot j < i with S. = {s ,t}, in which r should 
J 0 0 

be executed instead of s to make the schedule 
0 

optimal. This, in turn, implies that s0 must be 

executed later than r , and, hence, that s tv(r ) 
0 0 0 

and, furthermore, N(s0 ) ~ N(r0 ), i.e. for the 

levels of s and r must hold: 
0 0 

I) l(s ) < l(r ) 
0 - 0 

Let q be the greatest integer so that in S there 

exists a task r 1 € Sq with r 1 € V(r0 ), We now 

have to distinguish between the following three 

cases: 

Case 1): j < q 

Then, the tasks s0 and t are executed before 



task r 1 and, therefore, we can state: r 1 # t. 
Since ·r1 is a predecessor of r , l(r ) is 

. 0 0 

smaller than l(r1) and, since l(s ) < l(r ), 
0 - 0 

it follows also l(s0 ) < l(r1). Therefore, task 

t must be a predecessor of r 1 , since otherwise 

r 1. should be executed instead of s 0 in time 

slot j, Consequently, l(r1) is smaller than 

l(t). Now we can construct the following chain 

of relations: l(s ) < l(r ) < l(r1) < l(t) and, 
0 - 0 

therefore, l(t) > l(s ) +2. However, since the 
- 0 

level criterion has been applied to generate 

the schedule, no time slot j' < j contains pre

decessors of the tasks t and s which have the 
0 

same level. Hence, there is no possibility to 

execute task t, and, subsequently, task r 0 be

fore task s 0 • According to corollary II.1, this 

is a contradiction to the assumption that i is 

an reducible IOTS. 

Case 2): j > q 

The1i, the tasks s 0 and t are executed after the 

task r 1 and, therefore, t cannot be a prede

cessor of r 0 • Hence, r 0 is already executable 

in time slot j. Since N(s ) 5 N(r ), this means, 
o r o 

that r 0 dominates s 0 at the beginning of the 

j-th time slot, i.e. the schedule S violates 

the· dominance criterion. 

Case 3): j = q 

In this case, it is r 1 = t. Then, by Corollary 

II.1 there exists an integer h < j with r, 

s € ~· i.e. the tasks r and s are executable 

in the time slot h, where r and s have the 

following properties: 

i) l(r) = l(s) 

ii) s € V(s0 ); r E V(r 1)u{r1} 

iii) s E Sh; r ¢ Sh, i.e. s was executed in 

time slot h, but not r. 

Let h be the greatest integer with these 

properties, and let us assume that r does 

not dominate s. 

Then, from l(r) = l(s) and N(s ) 5 N(r ) follows 
o r o 

that there is a tas.k p E (N(s) - N(s )) so that 
0 

the number of immediate sucessors of p, \D(p)\, 

is greater than 2 because otherwise it is in

stantly clear that the task set 

324 

I (N(s) u {s} - N(s )) is dominated by a sub-o 
set 

J = (N(r) u {r} - N(r )) since N(s )5N(r ), 
o o r o 

Let p1 , p2 € D(p) and, without restriction of 

generality, let l(p2 ) ~ l(p1 ). If l(p2 ) < l(p1) 

there exists a task p3 E N(p1) with l(p3 ) = 

= l(p2 ). In the case of l(p2 ) = l(p1) we define 

P3 := P1. 
Now let Sk = {p2 ,r2}, Sk, = {p3 ,r3} with 

h < k < k' ~ j. From the choice of the integer 

h and the properties of sh follows that the 

tasks r 2 , r 3 must be elements of N(r) and, 

additionally, l(p2 ) < l(r2 ) and l(p3 ) < l(r3). 

Consequently, it results that l(p2) < l(r3 ), 

since l(p3 ) = l(p2 ), Hence; task r 3 must be a 

successor of task r 2 , since otherwise, according 

to the level criterion, r 3 would have been exe

cuted instead of p2 in the time slot k. So we 

can derive: l(r2 ) > l(r3 ) > l(p2 ). This means 

that l(r2 ) ~ l(p2 ) +2 •. But this - as in case 

1.) - is a contradiction to the fact that the 

tasks r € V(r2 ) and s E V(p2 ) are executable in 

the same time slot h. Hence, this ia a contra

diction to the assumption that r does not domi

nate s. This completes the proof. 

Proof of theorem III.1: Let us assume the exis

tance of a non-optimal HU-schedule S over G. Let 

h be the reducible IOTS with the smallest number 

in S. Let p- \sh\ = b > 0 and 

N'(Y.) : = N(Y.) u Y. - {e}. Then, according to 
i i i* 

the structure of f -graphs, 

u : = {Y. E Y\N' (Y. )n sh= ¢} so that \u\= g > b. 
i i 

It follows from Theorem II.1 that 
w(S)-1 

N(U) n U S. ¢ and, since h is assumed to be 
i=h i 

minimal, that h < w(S)-1, 

Hence, there is a task r E Sh with l(r) ~ 3, Let 

k be the greatest number so that N(U) n Sk # ¢, 

then, k is smaller than h. Let s 0 be a task which 

is an element of N(U) n Sk. Then, l(s 0 ) = 2. Since 

l(r) ~ 3, there must be a task r' in the set 

V(r)u Sk so that l(r') ~ 4. Let 

a = t 1 + t 2 + •• , t j , •• + tL = e be a path 

with maximum length L in G. Furthermore let 



~ J.: = lJ Si where the index set I. is de-
- i€I. J 

J 
fined as follows: 

Ij := {ii there exists a task t € S. with 
0 ]. 

l(t ) = L-j and 
0 

there is no task t € S. with 
]. 

l(t) > l(t )} (0 < j < L-1). 
0 - -

Hence, X_ . is the union of -1,-J 
contain a task t which has 

0 

all those S. that 
]. 

the same level as 

the corresponding task tL-j on the longest path 

in G, and that contain no other task with a 

higher level, Now, from the definition of the 

sets XL .(0 < j < L-1) it follows immediately 
-J - -

that for all sets x_ . with Jr.I > 2 all tasks 
--i,-J J -

of the first lr.J -1 time slot, which are ele
J 

ments of X_ • are of level L-j, This means, --i,-J 
that all tasks t E N'(U) which are elements of 

a set XL ., are elements of the last S. in 
~ ]. 

X_ ., i.e. those S. for which the index i is 
--i,-J ]. 

maximal in Lj. Let Sk be an element of Xd+3 • 

Since r' E Sk and l(r') .:::_ 4, it holds: d .:::_ 1. 

From the condition 1.) of this theorem and 

from l(s0 ) = 2 it follows: at the beginning 

of time slot k there exists at least (d+1)•g 

executable tasks of level 2 to keep busy all 

processors. We know that Sh€ Xd+3 with d .:::_ O, 

because r € Sh and l(r) .:::. 3. Thus, we can con

clude that at the beginning of time slot h 

there exists at least g executable tasks of 

level 2 to keep busy all processors, too. This 

contradicts the assumption that h is a redu

cible IOTS and completes the proof, 

325 



A. Avizienis 

R. M. Burstall 

J. L. Baer 

Kenneth Batcher 

P. Bruce Berra 

Randal Bryant 

Thomas Bredt 

Vinton G. Cerf 

K. Chandy 

I-Hgo Chen 

Wei-Tih Cheng 

Gregory Chesson 

Yaohan Chu 

Robert B. Cooper 

John A. Cornell 

Edward S. Davidson 

Edward W. Davis 

Jack B. Dennis 

Tse-tun Feng 

Caxton C. Foster 

M. D. Freedman 

W. W. Gaertner 

Mario J. Gonzalez 

William Grosky 

C. A. R. Hoare 

John Howard 

R. C. Holt 

J. J. Horning 

Carl A. Jensen 

Robert W. Johnson 

1976 INTERNATIONAL CONFERENCE 

ON 

PARALLEL PROCESSING 

L I S T 0 F R E F E R E E S 

326 

Robert Jump 

Dennis Kafura 

Leonard Kleinrock 

David Kuck 

Leslie Lamport 

G. Jack Lipovski 

Hubert H. Love 

Joe M. McKay 

w. c. Meilander 

R. E. Miller 

G. Misunas 

D. Scott Parker 

c. v. Ramamoorthy 

s. s. Reddi 

Jerome Rothstein 

John S. Sammon 

Kenneth J. Schaffer 

Howard Jay Siegel 

Daniel P. Siewiorek 

Hon Hing So 

Harold Stone 

Kenneth J. Thurber 

Ross Towle 

Jeffery Ullman 

William A. Wulf 

David c. Walden 

Hisao Yamada 

S. s. Yau 

Roy J. Zingg 



1976 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING 

AUTHOR INDEX 

Author Page Author Page 

Ahuja, s. R. 220 Kain, R. Y. 191 

Anderson, G. A. 191 Katz, R. 177 

Avizienis, A. 92 Kawamoto, Y. 219 

Bandoh, T. 219 Kimsey, D. B. 169 

Baqai, I. A. 123 Klayton, A. 189 

Batcher, K. E. 65 Krutz, R. L. 221 

Boyd, D. L. 83 Krygiel, A. J. 34 

Brent, R. p. 254 Lamport, L. 50 

Chen, s. c. 196 Lang, R, G. 170 

Cheung, L. s. 93 Lang, T. 123 

Cotton, J. M. 154, 168 Lawrie, D. H. 283 

Daya, M. 246 Leung, w. H. 312 

De La Guardia, M. F. 256 Lister, A. M. 43 

Erman, R. M. 230 Love, H. H. Jr. 161 

Faiss, R. 24 Lyon, J. 24 

Feng, T. 30 Maekawa, M. 83 

Field, J. A. 256 Maj i thio, J. c. 303 

Francez, N. 235 Mark, M. 168 

Friedman, D. P. 263 Meyer, R. A. 18 

Gaertner, w. w. 33, 72 Meyer, s. c. 106 

Gelly, 0. 255 Misunas, D. P. 100, 117 

Grosky, w. I. 230 Moellman, D. E. 18 

Hand, J. 168 Moshell, M. 222 

Hemmersbach, R. 116 Modell, H. s. 247 

Hiner, F. P. III 140 Mowle, F. J. 93 

Hood, J. 168 Nagel, H. T. Jr. 169 

Hsieh, c. P. 304 Nett, E. 317 

Jump, J. R. 220 Patel, M. p. 33, 72 

327 



1976 INTERNATIONAL CONFERENCE ON PARALLEL'PROCESSlNG 

AUTHOR INDEX 

Author Page Author Page 

Pnueli, A. 235 Sparr, T. M. 247 

Plas, A. 293 Stanke, E. c. 187 

Pearce, R. c. 303 Thomasian, A. 92 

Quinn, M. 24 Tjaden, G. s. 55 

Reddi, s. s. 33 Towle, R. A. 254 

Retter, c. T. 33, 72 Ung, Vincent 213 

Reynouard, B. 221 Ward, R. G. 247 

Rothstein, J. 206, 222 Weiman, c. F. R. 1 

Ruben, s. 24 Wen, K. Y. 283 

Sayer, P. J. 43 Wise, D. s. 263 

Schaffer, K. L. 145 Yang, c. c. 73 

Schutt, D. 116 Vorgrimler, K. 11 

Shew, E. s. Y. 154 Zave, P. 35 

Siegel, H. J. 273 Zellweger, A. 132 

Singh, I. M. 33, 72 

328 


