
n
Q
z: .,,
m :a
m z:
n
m
Q
z:
"""a
> :a
> r-
r
m r-

PROCEEDINGS
OF THE

1980 . INTERNATIONAL CONFERENCE
· ON

PARALLEL PROCESSING ·

PROCEEDINGS
OF THE

1980 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING

Papers presented on
August26-29, 1980

Co-Sponsored by

Department of Electrical and Computer Engineering
OHIO STATE UNIVERSITY

Columbus, Ohio

and the

~®
IEEE Computer Society

In Cooperation with the

8
Association for Computing Machinery

IEEE Catalog No. 80CH1569-3

Additional copies are available from:
IEEE Computer Society.

10662 Los Vaqueros Circle
Los Alamitos, CA 90720

or

IEEE Service Center
445 Hoes Lane

Piscataway, NJ 08854

JEEE Catalog No. 80CH1569-3
Library of Congress No. 79-640377

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for private
. use of patrons those articles in this volume that carry a code at the bottom of the first
page, provided the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, P.O. Box 765, Schenectady, NY 12301. Instructors are permitted to
photocopy isolated articles for noncommercial classroom use without fee. For other
copying, reprint or republication permission, write to Director, Publishing Services, IEEE,
345 E. 47 St., New York, NY 10017. All rights reserved. Copyright © 1980 by The
Institute of Electrical and Electronics Engineers, Inc.

PREFACE

For this Ninth International Conference on Parallel Processing

we received a total of 117 papers, 31 of which were from 6 countries in

Europe, Canada, Israel, Japan, and the People's Republic of China.

Sixty-five papers were accepted for presentation at the meeting, 21 of

which are to be presented in a one- and one-half hour poster session.

In a poster session visual displays of all the papers are mounted on

bulletin boards, and the author of each paper is present during the

entire session for explanation and in-depth discussion with interested

persons. This session allowed us to accept more interesting papers than

would have been otherwise possible.

The conference featured a film festival covering the history of

and advances in computer architecture, and a panel session addressing

the outstanding issues of designing high performance computer systems.

We would like to thank Tse-yun Feng, the conference chairman, for

arranging the location of this meeting, and printing and distributing the

preliminary announcements. We are indebted to Mrs. Vivian Alsip for her

valuable help in keeping all the correspondence to the authors and

reviewers superbly organized. We also extend our thanks to Ms. Gerrie

Katz of the IEEE Computer Society for her patience and help in producing

this proceedings. Finally, we thank Tse-yun Feng and K.H. Kim for

handling the papers by Banerjee, Gajski, and Kuck, and Lawrie and Vora.

iii

PROGRAM COMMITTEE
David J. Kuck
Duncan H. Lawrie
Ahmed H. Sameh

I

TABLE OF CONTENTS

SESSION 1: SOFTWARE AND LANGUAGES

A Parallel Operating System for an MIMD Computer
R.A. Schmidt

The Programming Language Parallel PASCAL
A.P. Reeves, J.D. Bruner, M.S. Poret

Decomposing a Program for Multiple Processor Systems
Arv ind

Automatic Exploitation of Parallelism on a Homogenous Asynchronous
Multiprocessor

T,L, Rodeheffer and P.G. Hibbard

SESSION 2: ARCHITECTURE

A Controllable MIMD Architecture
S.F. Lundstrom and G. Barnes

Array Machine Control Units for Loops Containing IFs
u. Banerjee, D. Gajski, D. Kuck

VASTOR: A Microprocessor Based Associative Vector Processor for Small Scale
Applications

W.M. Loucks, W.M. Snelgrove, S.G. Zaky

An Outline of the Computer System with Associative Pipelining
S.Y. Berkovich

Framework for Communication in Loosely Coupled Multiple Processor Systems
V,P, Srini

Suitability of Bubble Memories in Parallel Processor Architectures •• , ,
E.W. Davis

On the Performance of On-Line Arithmetic
M.D. Ercegovac and A.L. Grnarov

SESSION 3: INTERCONNECTIONS I

An Interconnection Network for Processor Communication with Optimized
Local Connections

Y. Chow, R. Dixon, T. Feng

Use of the Augmented Data Manipulator Multistage Network for SIMD
S.D. Smith, H.J. Siegel, R,J, McMillen, G.B. Adams III

Design and Validation of a Connection Network for Many-Processor •
Multiprocessor Systems

G.H. Barnes

The Prime Memory System for Array Access
D. Lawrie and c. Vora

v

Machines

Page

3

5

7

15

19

28

37

47

49

53

55

65

75

79

81

SESSION 4: PERFORMANCE

Empirical Results on the Speed, Efficiency, Redundancy • • • • • • • • • • • • • • 91
and Quality of Parallel Computations

R.B. Lee

Performance Evaluation of Pipeline Architectures
J.H. Mirza

A Cray-1 Simulation Using PASCAL-Plus
R.H. Perrott and c. K~ng

SESSION 5: RESOURCE CONTROL .AND ALLOCATION

Hardwir.ed Resource Allocators· for Reconfigurable Architectures
B.D. Rathi, A.R. Tripathi, G.J. Lipovski

Resource Control in a Demand-Driven Data-Flow Model
B. Jayaraman and R.M. Keller

POSTER SESSION

High-Level Operating System Formation in Network Computers •
A.M. van Tilborg and L.D. Wittie

Design Optimization for a Special-Purpose Multiple-Computer •••••
C.F. Summer, R.O. Pettus, R.D. Bonnell, M.N. Huhns, L.M. Stephens

Numerical Computations on CM
P.G. Hibbard and N.S. Ostlund

An Organization of a Three-Dimensional Access Memory
H. Shirakawa and T. Kumagai

Loop Decomposition in the Translation of Sequential Languages to.
Data Flow Languages

S.J. Allan and A.E. Oldehoeft

.

101

105

109

ll8

131

133

135

137

139

Goodyear Aerospace Corporation's Microcomputer Array Processor System • • • • • • 141
F.G. Carty and R.H. Ries

Simultaneity of Events in Petri Nets
R.C.O. Martins and K.B. Irani

Parallel Computer Architecture Employing Functional Programming Systems
J.C. Peterson and W.D. Murray

The Requirements of a Language for Asynchronous Parallel Image Processing •
R.J. Douglass

A Fastbus System Description Language • • • • • • • • • • •
T. Christopher, o. El-Dessouki, M. Evens, w. Kabat, s. Wagle

VSP: Building Blocks for Parallel Processors • •
w.s. Dowey

A New General-Purpose Distributed Multiprocessor System Structure
J, Lan

A Multi-Microcomputer Architecture for an Iterative Algorithm
D. I. Moldovan

Parallel Nonlinear Minimization by Conjugate Directions • • •
E.C. Housos and o. Wing

vi

143

145

147

149

151

153

155

157

,/A Parallel Algorithm for Solving Band Systems of Linear Equations ••••
L. Halada

LSI Implementation of Modular Interconnection Networks for MIMD. Machines
L. Ciminiera and A. Serra

Another Approach to Making_Supercomputer by Microprocessors--Cellular
Vector Computer of Vertical and Horizontal Processing with
Virtual Common Memory

G. Qing-Shi and z. Xiang

An Algorithm of Parallel -Processors for Theorem Proving and Its Applications
x.c. Zeng

SESSION 6: DISTRIBUTED PROCESSING I

Design and Implementation of a Language fo•r._ Commlinicating Sequential
Processes

M. Jazayeri, c. Ghezzi, D. H~ffmc:tn, D. Middleton, M. Smotherman

A Comprehensive Framework for Evaluating Decentralized Control
J.A. Stankovic

•
Directions for User Defined Cotfununication for Distributed Software

R.B. Kolstad and R.H. Campbell

SESSION 7: NUMERICAL ALGORITHMS'"AND APPLICATIONS

SIMD Algorithms to Perform Linea; Predictive Coding for Speech
Processing Applications

L.J. Siegel, H.J. Siegel, ~.J. Safranek, M.A. Yoder

159

161

163

165

173

181

188

193

\,/ A Note on Pipelining a Mesh Connected Multiprocessor for Finite • • • • • • • • • 197
Element Problems by Nested Dissection

D. Gannon

v Solving Linear Algebraic Equations on a MIMD Computer •
R.E. Lord, J.S. Kowalik, S.P. Kumar

205

v Optimal Integrated-Circuit Implementation of Triangular Matrix Inve~sion • • • • 211
F.P. Preparata and J. Vuillemin

v VLSI Computing Structures for Solving Large-Scale Linear System of
of Equations

K. Hwang and Y-H Cheng

SESSION 8: NONNUMERICAL ALGORITHMS AND APPLICATIONS

Simulation and Analysis in Deriving Time and Storage Requirements
for a Parallel Alpha-Beta Algorithm

D.G. Akl, D.T. Barnard, R.J. Doran

Parallel Alpha-Beta Search on Arachne • • • • • • •
J.P. Fishburn, R.A. Finkel, S.A. Lawless

Two Parallel Algorithms for Shortest Path Problems
N. Deo, C.Y. Pang, R.E. Lord

217

231

235

244

A Partition Algorithm for Parallel and Distributed Processing • • • • • • • • • • 254
S.B. Wu and M.T. Liu

vii

SESSION 9: DATA BASE ARCHITECTURE AND SOFTWARE I

A Highly Concurrent Tree Machine for Database Applications
s.w. Song

A Study of the Interconnection of Multiple Processors in a Database
Environment

J.R. Goodman and A.M. Despain

On Database-Oriented Peripheral Transformation Processor Systems
D. Schutt

SESSION 10: DATABASE ARCHITECTURE AND SOFTWARE II

Stochastically Conflict-Free Data-Base Memory Systems
D. Klappholz

PANEL DISCUSSION: DESIGNING HIGH PERFORMANCE COMPUTER SYSTEMS

A Manufacturer's Viewpoint •
R.J. Malnati

General Purpose Supercomputers • • • •
B.J. Smith

SESSION 11: DISTRIBUTED PROCESSING II

Hierarchical Analysis of a Distributed Evaluator
R.M. Keller and G. Lindstrom

Specification and Synthesis of Synchronizers
K. Ramamritham and R.M. Keller

SESSION 12: INTERCONNECTIONS II

Data Broadcasting in SIMD Computers
D. Nassimi and S. Sahni

Packet Communication in Multistage Shuffle-Exchange Networks
D.M. Dias and J.R. Jump

A Layout for the Shuff le-Exchange Network
D. Hoey and C.E. Leiserson

Toward a Generalization of Two and Three-Pass Multistage, Blocking
Interconnection Networks

A. Shimor, and S. Ruhman

LATE PAPER

259

269

279

283

293

295

299

311

325

327

329

337

Modelling Control Strategies for Artificial Intelligence Applications . • • . • • 347
A. Giordana, P. Laface, and L. Saitta

viii

ADAMS III, G.B.
AKL, D.G.
ALLAN, S.J.
ARV IND
BANERJEE, U.
BARNARD, D.T.
BARNES, G.H.
BERKOVICH, S.Y.
BONNELL, R.D.
BRUNER, J.D.
CAMPBELL, R.H.
CARTY, F.G.
CHENG, Y.H.
CHOW, Y.
CHRISTOPHER, T.
CIMINIERA, L.
DAVIS, E.W.
DEO, N.
DESPAIN, A.M.
DIAS, D.M.
DIXON, R.
DORAN, R.J.
DOUGLASS, R.J.
DOWEY, W.S.
EL-DESSOUKI, O.
ERCEGOVAC, M.D.
EVENS, M.
FENG, T.
FINKEL, R.A.
FISHBURN, J.P.
GAJSKI, D.
GANNON, D.
GHEZZI, C.
GIORDANA, A.
GOODMAN, J.R.
GRNAROV, A.L.
HALADA, L.
HIBBARD, P.G.
HIBBARD, P.G.
HOEY, D.
HOFFMAN, D.
HOUSOS, E.C.
HUHNS, M.N.
HWANG, K.
IRANI, K.B.
JAYARAMAN, B.
JAZAYERI, M.
JUMP, J.R.
KABAT, W.
KELLER, R.M.
KING, C.
KLAPPHOLZ, D.
KOLSTAD, R.B.
KOWALIK, J.S.
KUCK, D.
KUMAGAI, T.
KUMAR, S.P.
LAFACE, P.
LAN, J.
LAWLESS, S.A.
LAWRIE, D.
LEE, R.B.

AUTHOR INDEX

75
231
139

7
28

231
19,79

47
133

5
188
141
217

65
149
161

53
244
269
327

65
231
147
151
149

55
149

65
235
235

28
197
173
347
269

55
159

15
135
329
173
157
133
217
143
118
173
327
149

118,299,311
105
283
188
205

28
137
205
347
153
235

81
91

ix

LEISERSON, C.E.
LINDSTROM, G.
LIPOVSKI, G.J.
LIU, M.T •.
LORD, R.E.
LORD, R.E.
LOUCKS, W.M.
LUNDSTROM, S.F.
MALNATI, R.J.
MARTINS, R.c.o.
MCMILLEN, R.J.
MIDDLETON, D.
MIRZA, J.H.
MOLDOVAN, D.I.
MURRAY, W.D.
NASSIMI, D.
OLDEHOEFT, A.E.
OSTLUND, N.S.
PANG, C.Y.
PERROTT, R.H.
PETERSON, J.C.
PETTUS, R.O.
PORET, M.S.
PREPARATA, F.P.
QING-SHI, G.
RAMAMRITHAM, K.
RATHI, B.D.
REEVES, A. P.
RIES, R.H.
RODEHEFFER, T.L.
RUHMAN, S.
SAFRANEK, R.J.
SAHNI, S.
SAITTA, L.
SCHMIDT, R.A.
SCHUTT, D.
SERRA, A.
SHIMOR, A.
SHIRAKAWA, H.
SIEGEL, H.J.
SIEGEL, L.J.
SMITH, B.J,
SMITH, S.D.
SMOTHERMAN, M.
SNELGROVE, W.M.
SONG, S.W.
SRINI, V.P.
STANKOVIC, J.A.
STEPHENS, L.M.
SUMMER, C.F.
TRIPATHI, A.R.
VAN TILBORG, A.M.
VORA, A.
VUILLEMIN, J.
WAGLE, S.
WING, O.
WITTIE, L.D.
WU, S.B.
XIANG, Z.
YODER, M.A.
ZAKY, S.G.
ZENG, X.C.

329
299
109
254
205
244

37
19

293
143

75
173
101
155
145
325
139
135
244
105
145
133

5
211
163
311
109

5
141

15
337
193
325
347

3
279
161
337
137

75,193
193
295

75
173

37
259

49
181
133
133
109
131

81
211
149
157
131
254
163
193

37
165

W.B. Ackerman

D.P. Ag,rawal

D. E. Atkins

J-L. Baer

U. ·Banerjee

Y. Bard

G.H. Barnes

D.H. Bartley

T.R. Bashkow

K.E. Batcher

G.G. Belford

K. Bowyer

M. Bozyigit

w. Brainerd

J.D. Brock

R.M. Brown

R.H. Campbell

A. Casavant

V.G. Cerf

P-Y. Chen

s-c. Chen

Y-C. Chow

K. Culik

E.S. Davidson

E.W. Davis

N. Dershowitz

D.M. Dias

M. Edelberg

o. El-Dessouki

J. Ellis

LIST OF REFEREES
1980 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING

J. Emery

P. Emrath

M.D. Ercegovac

M. Faiman

A. Fantechi

E.A. Feustel

P.M. Flanders

M.A. Franklin

R.N. Kapur

v. Kathail

R.M. Keller

K.H. Kim

W. Kim

T. Kimura

J.C. Knight

D.J. Kopetzky

J. Metzner

R.S. Michalski

C.T. Mickelson.

D. Mickunas

R. Montoye

J.D. Mooney

K. Schwans

H.J. Siegel

B.J. Smith

S.D. Smith

s.w. Song

M. Sowa

P.T. Mueller, Jr. V.P. Stini

W.D. Murray J.A. Stankovic

D.D. Gajski B. Krieg-Bruckner D. Nassimi R. Stokes

D.B. Gannon W.J. Kubitz
O.N. Garcia D.J. Kuck
W.M. Gentleman R. Kuhn
W. Gillett L. Lamport

M.J. Gonzalez, Jr.J~L. Larson

J.R. Goodman

J. Grear

I. Greenberg

I. Greif

D.H. Grit

R.K. Gupta

P.E. Hagerty

W. Handler

R. Haskin

F.P. Hiner, III

L. Hollaar

E. Horowitz

K.B. Irani

A.K. Jones

H.F. Jordan

R.Y. Kain

D.H. Lawrie

B. Leasure

K.Y. Lee

R. B-L. Lee

v. Lesser

G. Lindstrom

G.J. Lipovski' -

B. Liskov

R.E. Lord

S.F. Lundstrom

T. Macke

M. Maekawa

M. Marathe

R.C.O. Martins

K. Maruyama

R.J. McMillen

x

C. Neuhauser

J.D. Noe

S.E. Orcutt

s. Owicki

D. Padua

R. Paige

D.S. Parker

J. Patel

J.C. Peterson

D. Plaisted

s. Preece ·
..

C. V •.. Ram_amoorthy

R. Towle

S.H. Unger

K. Vairavan

J. Vanaken

A.M. van Tilborg

R.G. Voight

C.R. Vora

D. Watanabe

D. Weiss

J.E. Wirsching

D.S. Wise

J. Wisniewski

K. Raiiiamritham· _M. Wolfe

H.K. Reghbati

J.E. Robertson

T.L. Rodeheffer

Y. Saad

S.K. Sahni

A.H. Sameh

M.s. Schlansker

R.A. Schmidt

C-1. Wu

w;c. · Ye.n

P'.'"C. Yew

SESSION 1: SOFTWARE AND LANGUAGES

1

A PARALLEL OPERATING SYSTEM FOR AN MIMD COMPUTER

Rodney A. Schmidt
Denelcor, Inc.

Denver, Colorado 80205

Summary

The HEP computer system developed by
Denelcor, Inc. under contract to the U.S. Army
Ballistics Research Laboratory is an MIMD machine
of the shared resource type as defined by Flynn
[1]. The architecture of this machine has been
covered earlier in a paper by Smith[2]. Briefly,
processes in_ HEP reside within tasks . ._ ..)l'lh.ic:ll_.lL~:::-
fine both a protection domain and an activitation

·s-faTe···1;r0-rm<J_ri!7~-f fiver:-·ra5k5 ·r:e side w i th rn···---
p roce s so rs, all ofwhich access a shared data
~ry. Multiple tasks may cooperate by sharing
a common region in data memory. Cells in data
memory have the property of being "full" or
"empty" and the execution of instructions in
processes may be snychronized by busy waiting (in
hardware) on the full/empty state of data memory
cells. Other than the state of data memory,
processes and tasks in different processors have
no means of synchronization or communication.

High-level language (e.g. FORTRAN) programs
in this machine are explicitly parallel. Sub
programs are made to run in parallel with the
main program by an explicit CREATE statement
analogous to CALL in ordinary FORTRAN. Code
within a subprogram is SISD. The objective of
the HEP operating system is to preserve the
parallelism of the user program by executing in
parallel during the performance of 1/0 and re
lated supervisory functions. The operating sys-
tern must :

1.)

2.)

3.)

4.)

Allow all user processes to execute
during 1/0 related supervisory
computation;

Allow multiple concurrent supervisory
1/0 computations;

Allow reentrant use of code in the
supervisor and the user program;

Provide maximum user performance by
consuming minimum resource in both time
and space.

In SISD computers, reentrancy is usually obtained
with some form of dynamic memory allocation.
Concurrency of the operating system and the user
is not possible due to the SISD nature of the
machine.

In HEP, most dynamic memory allocation would
generate considerable serialization of code
around the resource lock required to safeguard
the memory allocation data structure. In
addition, HEP cannot allow any memory used by the
system to be writeable by the user since the
user is running truly in parallel with the sys
tem and could destroy any location at any time.

CH1569-3/80/0000-0003$00. 75 @ 1980 IEEE

3

In the HEP operating system, the available
general purpose registers (about 2,000 of them)
are divided a priori into groups of uniform
length. When a process is created, the creating
process must obtain a register environment from
a table of available groups. This operation is
relatively infrequent and inexpensive. All
register environments are identical, and no state
is retained in them.

Main memory (data memory) environments are
obtained at the subprogram level by each sub
program as it is invoked. Space is obtained from
a pool of data memory environments peculiar to
that subprogram. The user must specify at link
time how many such environments should be
allocated for each subprogram. Control of an
environment is obtained via a table of free
environments, but the table is local to the sub
program. Thus, serialization for access to an
environment is only between multiple, nearly
simultaneous, invocations of the same subprogram,
and is much less damaging to performance.

Data memory environments are a resource not
visible to the user, and as such can contribute
to deadlock problems. Given the user's ability
to increase the amount of data memory resource
allocated to a subprogram, the deadlock problem
can be circumvented without much difficulty.

Concurrent 1/0 presents its own set of
problems. In FORTRAN, a single 1/0 is implemented
with multiple calls to 1/0 formatting services.
State must be retained by the formatter during
this process. This state is bound to the 1/0
unit, not the subprogram. Further, the amount
of space required is not known until run time.
Thus, some type of run time memory management is
required, and the resource thus allocated is
invisible to the user. The space must be allo
cated in an area accessible to all processors
in a multi-processor job, so that all tasks may
share the same 1/0 units.

The strategy employed in HEP is to allocate
1/0 buffers for a logical unit upon the first
1/0 to the unit. The space is then consumed for
the duration of the program, even if the 1/0 unit
is closed. If the 1/0 unit is re-opened for
another file, the record length of the new file
must be less than or equal to that of the old
file. In this implementation, space can be
allocated from a top-of-memory pointer which
moves in only one direction. Serialization of
processes occurs only on simultaneous first 1/0
operations, and only for the few microseconds
required to move the pointer. This contrasts
with the substantial serialization introduced
by the normal scheme of a linked list of avail
able space with garbage collection.

Consideration is being given to allowing a
user to supply his own logical record buffer,
with only the fixed portion of the 1/0 state held
at the top of memory. This would allow the user
greater dynamism in the logical record size, at
the expense of managing his own resources.

HEP supervisors require two types of
dynamic memory: registers to use while copying
logical records to/from physical records, and
data memory to hold file parameters for open
files. Of these, the register allocation is the
simplest. Since the users register requirement
can be determined from the number of processes
requested (a control card.parameter), all re
maining registers in the register memory parti
tion can be used for supervisor 1/0 operations.
These registers are allocated from a bit table
to active 1/0 operations.

Data memory allocation is more difficult.
It is not known until run time how many files
will be used, or how much logical record buffer
space will be required by the user. Fortunately,
the amount of supervisor space required per open
file is constant. The operating system merely
allocates supervisor space for enough files to
accomodate the larger system programs
(compiler, etc.) and leaves the remaining space
for the user. The default limit on open files
may be overridden with a control card for users
with special requirements.

The present HEP system provides a high
performance low overhead environment for parallel
computational activities. Our next activity will
be to extend this capability with high
performance parallel 1/0 operation with speed
comparable to our processing speeds. The
parallel file system will include such features
as record interlock within files and concurrent
read/write capability from multiple jobs to the
same file.

References

Flynn, M.J .• , "Some Computer Organizations
and Their Effectiveness", IEEE-C21,
(September, 1972).

Smith, B.J., "A Pipe I ined, Shared Resource
MIMD Computer", Proc. of the 1978
International Conference on Parallel
Processing, (1978), pp. 6-8.

4

THE PROGRAMMING LANGUAGE
PARALLEL PASCAL

by

Anthony P. Reeves, John D. Bruner, and Mark s. Poret

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

Summary

An extended version of the Pascal programming
language for Parallel processors is described.
This language reduces the semantic gap between the
very popular sequential Pascal language and a
large group of highly structured parallel proces
sors. Only a small number of carefully chosen
features have been added to the conventional Pas
cal language. A specification of the language is
given in [l].

Most parallel processors are currently pro
grammed in either assembly language or a machine
dependent special version of Fortran. In some
cases, an attempt has been made to implement a
sequential high level language on a parallel pro
cessor. This may work well on a tightly-coupled
processor with a small number of processing ele
ments (PE's). The advantage is that existing pro
grams may be used without change and that program
mers do not have to learn anything new. Unfor
tunately, sequential languages are often unsuit
able for the expression of array manipulations and
efficiency is lost. By contrast, since Parallel
Pascal has been designed for SIMD processors, it
is a high level language offering efficiency, por
tability, and error detection and diagnosis facil
ities.

Parallel Pascal primitive operators are based
on the instructions available on Parallel Matrix
Processors (PMP's), a class of highly structured
parallel processors involving a large number of
PE's with a limited PE interconnection scheme.
Two examples of PMP's are the MPP [2] and BASE
[3]. It should be efficiently implementable on a
very wide range of architectures, including vector
and pipeline processors. However, the cost for
this portability is that many powerful features of
particular parallel processors may not be made
easily available as operators. As a result, it
may be necessary to perform some simple ref ormula
tion of algorithms to achieve optimum efficiency
when transporting programs.

Parallel Pascal is not simply implementable on
an MIMD processor. However, a program written in
Parallel Pascal can be divided more easily into
subtasks than an equivalent conventional Pascal
program.

The prime objective of
processor is to achieve

developing a parallel
high sp,eed execution;

The work reported here was funded by NASA-Goddard
Space Flight Center under grant NAG 5-3.

CH1569-3/80/0000-0005$00. 75 © 1980 IEEE

5

therefore an efficlent programming of any problem
is essential. The extensive error checking avail
able with conventional Pascal impairs the effi
ciency of the program execution unless the paral
lel processor contains error checking hardware
(which is usually not the case). An implementa
tion of Parallel Pascal should provide for the
generation of code without runtime error checking
once programs have been debugged. In addition, an
implementation should provide for the inclusion of
assembly language segments for critical sections,
most likely as externally called procedures.

A translator program has been written for a
subset of Parallel Pascal which will translate a
Parallel Pascal program into a conventional Pascal
program; the translator itself is written in Pas
cal. The design of Parallel Pascal is being re
fined as experience is gained with writing practi
cal Parallel Pascal programs and running them via
the translator. A Parallel Pascal compiler for
the MPP is being developed.

The two principal goals of the Pascal program
ming language were to make available a language
for teaching systematic, structured programming
and to develop reliable, efficient implementations
on presently availabl.e computers [4]. The result
ing language is based on Algol 60 and has a richer
set of program control structures and data struc
tures (types).

The goal of implementability was achieved by
considering how to simply compile the language
when it was designed. The structure of the
language was chosen so that a simple parsing algo
rithm could be used [5]. Unfortunately, the goal
of simplicity has led to a few deficiencies which
should be remedied in future language revisions.
One serious deficiency for Parallel Pascal is the
lack of dynamic arrays array dimensions may
only be specified by constants. This provides
simplicity and strict typing, but makes it very
difficult to write a library of functions for gen
eral array operations.

A.special version of Pascal with operating sys
tem features, called Concurrent Pascal [61 has al
ready been developed by Per Brinch Hansen. In a
sense, Concurrent Pascal reauces the semantic gap
between a user Pascal program and the total com
puter environment including the supervisor mode
and operating system. In Parallel Pascal an at
tempt is made to reduce the semantic gap between
the Pascal language and parallel processor archi
tectures.

In Parallel Pascal a set of standard functions

for general array manipulations will be intro
duced. All standard functions will be defined for
any size arrays; this is consistent with the Pas
cal concept of standard functions operating on
more than one data type. User defined procedures
and functions will be limited to a single array
size.

Parallel Pascal is characterized by the follow
ing extensions to Pascal:

(a) Arrays to be manipulated by the parallel pro
cessor may be explicitly declared as such by
the word parallel, e.g.

a,b,c: parallel array [l •• 8,1 •• 8] of type

(b) Expressions may involve entire arrays; also,
functions may return entire arrays, e.g.

a := b + sin(c) + 3

means

a[i,j] := b[i,j] + sin(c[i,j]) + 3 V i,j

(c) All control statements may have arrays for
control variables, e.g.

if A>B then C := 3

means

if A[i,j])B[i,j] then C[i,j] := 3 V i,j

(d) A new set of standard functions are available
for entire array manipulation. These func
tions are defined for all array sizes and
types.

shift(array, Sl, S2, ••• , Sn)
rotate(array, Sl, S2, ••• , Sn)

The shift function moves the data in the
amounts specified by the integers Sl ••• Sn
(one S for each dimension of the array).
Null values are inserted at the edges of the
array. The rotate function is similar to
shift except that the data shifted in at one
edge of the array is the data shifted out of
the opposite edge of the array.

expand(array, dimension, size)

The expand function replicates the array
along a new dimension size times.

transpose(array, Dl, D2)

This transposes an array about the two given
dimensions Dl and D2. If only one dimension
is specified then the data is "flipped" about
that dimension.

There are also several functions which
apply a reduction operator over all of the
specified dimensions.

general format: fn(array,Dl,D2, ••• ,Dn)

6

as um
a prod
aand
aor
a max
amin

arithmetic summation
product
logical and
logical or
maximum value
minimum value

For example, the sum of all elements in a ma
trix Mis specified by asum(M,1,2) and a vec
tor containing the maximum values of each row
of M is specified by amax(M,2).

(e) For convenient input and output of parallel
array data the procedures read and write have
been extended so that a whole array may be
read on written. The capability of reading
or writing a subarray of a large array file
may be added later.

(f) The index for a Parallel Pascal array may be
scalar, elided, a logical vector or a set. A
scalar index selects one item in a dimension
and reduces the rank of the result by one.
An elided index specifies all items in that
dimension. A subset of items in a dimension
may be specified by either a set or a logical
vector. The logical vector must be the same
length as the dimension it indexes.

Parallel Pascal also has a bit indexing mechan
ism for the low level programming of bit-serial
parallel processors. This mechanism is outside
the normal usage of the language; however, its
availability may make it possible to avoid using
assembly code for low level bit serial operations.
This feature is, in general, not portable between
different implementations as the bit representa
tion of numbers is machine dependent.

References

1. Reeves, A. P., Bruner, J., and Poret, M.,
"The Programming Language Parallel Pascal",
Internal Purdue Electrical Engineering re
port, 1980.

2. Batcher, K.' "MPP A Massively Parallel
Processor," Proceedings of the 1979
International Conference on Parallel
Processing, 1979, P• 249.

3. Reeves, A. P., "A Systematically Designed
Binary Array Processor," IEEE Transactions_£.!!
Computers, April 1980. --

4.

s.

6.

Jensen, K. and Wirth, N., "Pascal User's
Manual and Report," Springer Verlag, New
York, 1974, p. 133.

Wirth, N., "The Design
Software-Practice and
1971, P• 320.

of a Pascal Compiler,"
Experience, Vol. 1,

Brinch Hansen, P., "The Programming Language
Concurrent Pascal", IEEE Transactions on
Software Engineering, Vol. SE-1, No. 2, June
1975, PP• 199-207.

Decomposing a Program for Multiple Processor Systems

Arv ind

l\fassadmsctts Institute of Technology
Laboratory for Computer Science

545 Technology Square
Cambridge, Mass. 02139

Abstract

The success of high perfonnance multiple processor systems depends upon our ability to decompose a
program into small segments suitable for execution on one processor. It is argued in this paper that purely
applicative languages arc better suited for parallel processing because they offer considerable advantage over
Fortran-like languages in program transformation and decomposition. A scheme for decomposing applicative
programs is described through examples.

1 Introduction:

'l11c operation of a multiple processor system designed to
increase the execution speed of a single program can be viewed at
two levels. At the macroscopic level the system carries out the
computations of the user's high-level program. At the microscopic
.level each processor executes its own set of instructions and
exchanges data with other processors as needed. Implementing a
program on such a system requires transforming the high level
description into a set of programs for the individual processors.

Work at the University of California, Irvine has shown how
high-level dataflow programs can be mapped onto a set of
asynchronously cooperating processors as the computation unfolds
dynamically [4, 10]. For applications such as partial differential
equation simulation, however. the cost and overhead of fully
general, dynamic mapping may be unwarranted. These
applications are characterized by ex trcmely high computational
requirements and simple and regular program and data structures
[3]. Hence a static mapping of activities onto processors may prove
more efficient and cost effective without creating an undue loss of
flexibility. Furthermore. a static mapping scheme for these
problems could distribute activities and data structure clements
over the processors in such a way that information flow is hig'ily
localized. This would allow a simpler, lower cost interconnection
network than is required to achieve high performance with
dynamic mapping. The effccti veness of static mapping of activities
is directly related to the decomposability of a program.

In this paper we first discuss the appropriateness of purely
applicative languages for parallel processing and then give a
scheme for decomposing applicative programs for multiple
processor systems. It is assumed that each processor is capable of
storing its own program and data and can communicate with any
other processor in the system. The internal organization of a .
processor docs not affect our scheme.

This research was supported by NSF Grant no. MCS-7902782

CH1569,.,3/80/00QO,.,Q007$00. 75. © 1980 IEEE

7

2 Impact of High level language on
Decomposability:

Traditionally, Fortran and it~ extensions have been regarded as
the only acceptable high-level languages for high performance
systems such as CRAY-1, STAR-HJO and !Iliac IV. The main
reason for programming in Fortran is to maintain compatibility
with a large existing body of scientific software. This compatibilitY
is oflittlc use in practice because existing Fortran programs do not
show significant performance gains on new machines with different

architectures. In fact, a recoding of parts of the program either in
machine language or in some new extension of Fortran is required
to achieve high perfonnance. Software tools such as vectorizing
and optimizing compilers have been successful on a very limited
class of Fortran programs, namely those programs that do not have
undesirable. "side-effects" (see [I) for an in-depth discussion of
side-effects). In a maximally parallel program, statement
executions arc ordered only by data dependencies. It is difficult to
d.::tcct data dependencies in a Fortran (in fact in any imperative
language) program due to accesses to global variables and
operations on data structures. A programmer often tries to
minimize storage by reusing the same array over and over again.
This further complicates detection of minimal data dependencies.
A ban on the use of global variables or arrays seems absurd in view
of the fact that for efficiency, a clever Fortran programmer often
passes parameters to subroutines through common declaration.
Potential side-effects of common declarations in Fortran are so
intricate that most optimizing compilers will not optimize across
subroutines.

Kuck and his associates [12, 13, 14] have studied and classified a
large number of Fortran programs in an attempt to identify
features that should be supported by high performance systems.
·n1cy have given various statement execution orderings that
potentially could be exploited by a compiler for a multiple
processor machine or an array or pipeline machine. Variou~

transformations of the source program arc also suggested to
enhance parallelism in a program. Even though the usefulness of

studying existing algorithms1 for designing high performance
architectures is undeniable, we take issue with Kuck's acceptance of
the adequacy of Fortran or its extensions. An efficient multiple
processor architecture cannot be developed unless it supports the
execution model of a parallel processing language systematically.

Our approach to program decomposition may be applicable to a
class of Fortran programs structured along certain guidelines.
However the basis of our programming is so radically different
from Fortran that syntactic compatibility with Fortran is of little
use. If a Fortran program has to be rewritten for a· high
performance architecture then it can just as well be written in a new
language. We hope that eventually parallel processing languages
will remove the constraints placed by Fortran-.like languages on our
thinking, encouraging us to develop yet faster alg()rithrlis~

3 Applicative Programming for Parallel
Processing:

A parallel or asynchronous programming language for a
multiple processor system should not incorporate the concept of an
updatable storage cell [4, 8]. This is essential to avoid complex
synchronization mechanisms and rlaboratc sequencing of
operations. When all computation is based on values, as opposed
to addresses where values are kept, the possibility of a race to read
or write is not possible. The two most widely known languages that
can support pure applicative (i.e., functional) programming are
LISP and APL. However, both have such different syntax from
conventional languages that the effort involved in learning either of
them is quite substantial. The difficulty is further compounded by
the fact that both LISP and APL also present entirely different
programming paradigm. One has to almost unlearn Fortran
programming to be able to think clearly in either of these
languages. LISP due to its recursive nature and strange syntax is
treated by scientific programmers as an amusing diversion for
academicians. The inefficiency of these languages on conventional
architectures also lends support to Fortran adherents.

We think that the· "syntax" problem of applicative languages is
completely solvable. Two languages, ld[4] and VAL[2], currently
under development at the University of California at Irvine and
MIT provide a syntax as well as a programming paradigm that is
superficially quite similar to Algol- Pascal family of languages.
Both of these languages arc purely applicative, and we believe that
a programmer familiar with Algol can learn Id in a few days.

Generally, an applicative language such as LISP allows the
creation and use of data structures in a much more dynamic
manner than Fortran. Hence a fair comparison of their efficiency is
difficult. However, for most numerical algorithms this expressive
power of applicative languages is not required. An applicative
language with as restrictive a control and data structure as Fortran
may still be less efficient than Fortran on a sequential computer.
I-lowever, for a multiple processor machine the efficiency of a high
level language will depend on the availability of program
decomposition schemes, and due to this fact applicative languages
may indeed turn out to be more efficient than imperative languages

1we prefer to study algorithms over programs because algorithms are more
L1nguage independenl

8

for such machines. A consensus seems to be emerging on this point
(6,9,11].

The problem of decomposition can also be viewed as an exercise
in program transfonnation. A fair amount of work has already
oecn done on transfonning applicative programs (see (7) for
example). We illustrate the flexibility for decomposition provided
by an applicative program through an example. Consider· a
classical relaxation algorithm in one-dimension. One computes the
new values of the x clements repeatedly using the following
equation.

where x0 and x0 + 1 remain constant.

A straightforward Fortran program would du this in the
following way.

C X JS AN ARRAYOFN+2 ELEMENTS
C X(l) ANDX(N+2) REMAIN CONSTANT

Nl=N+l
D020K=l,KMAX
D0101=2,Nl
Y(I) = (X(l-1) + X(I) + X(I + 1))/3.

10 CONTINUE
DO 15 1=2, Nl
X(I) = Y(I)

15 CONTINUE
20 CONTINUE (1)

A compiler can easily generate good code for a multiple processor
machine from tl1e above program. Even if a programmer is clever,
and avoids copying array Y into X by switching back and forth
between X and Y, a vectorizing compiler will be able to deal with it
effectively. However, if array X is large, and a programmer decides
to avoid using another array Y altogctl1cr, the following program
may result

Nl=N+l
DO 20 K= l, KMAX
Tl=X(l)
T2=X(2)
DO 101=2, NI
X(l)=(Tl+T2 + X(l+l))/3.
Tl=T2
T2=X(I+l)

10 CONTINUE
20 CONTINUE (2)

It' would be extremely difficult for a compiler to detect a
transformation in which all the clements of array X arc relaxed
simultaneously.

On parallel computers, programmers use the trick of relaxing
only half the clements (i.e., odd or even) in one iteration to avoid
excessive use of storage. lt should be noted that the algoritl1m for
relaxing odd and even clements alternatively is an entirely different
one, and requires mathematical sophistication on the part of a
programmer to prove its stability.

Now we contrast this situation with an appliCative program
written in Id.

(fork from 1 to kmax do
new x +-(initial y +- <O:lb, n + l:rb>

! lb and rb represent the boundary values at
selectors 0 and n + I respectively!

return x)

for i from l to n do
new y[i] +- (x[i-1) + x[i] + x[i+ 1))/3.

return y)
(3)

We rely on readers intuition to understand the control structure of
the above Id program. Manipulation of arrays (i.e. an example of
structures) in applicative languages needs some explanation. One
d1inks of every array construction operation (such as append) as
producing a new array. Hence append (a,i,v) produces a new array
a' which differs from a only in position i. Even though 11ewy(i) +- ...
looks like a conventional assignment statement, y(i) docs not refer
to a storage cell. Rather one should think of the whole array as a
value. and y[iJ as referring to a part of the value. Naturally if one
changes a part of a value the aggregate value changes too. In this
example since i is 1akenfiw11 an unrepeated ser ofl'a/ues(i.e., 1 ton)
it is possible to regard y as an I-structure [SJ_ In contrast to ordinary
structures, an clement of an I-structure can be used as soon as it is
created. Thus I-structures allow greater freedom in manipulating
programs for efficient execution on a parallel computer.

Using a vectorizing compiler it is as easy to generate code for a
multiple processor machine from this Id program as it was with the
first Fortran program. However, the same Id program allows us to
generate code that may overlap several iterations of the outer loop.
Note that since y is an I-structure, the k + 151 iteration of the outer
loop can begin as soon as the first three elements of x from the kth
iteration have been computed. If we desire we can easily derive
implementations of this Id program that will use the same
minimum amount of storage as the second Fortran program and
still allow concurrent execution of several iterations (sec Figure 1).

Our premise is that a high level language should permit coding of
algorithms to show the maximal parallelism inherent in an
a/gorithnL Such languages have to be purely functional in nature.
The task of decomposing and transforming maximally parallel
programs for a parallel machine is considerably simpler than the
task of decomposing Fortran programs. In the rest of this paper we
will outline a scheme for decomposing Id programs for multiple
processor machines. The scheme will be described through
examples.

4 Decomposition Scheme:

Applicative programs that have loops as their primary control
structure and that operate on bounded-size data structures can be
decomposed into programs for a set of individual processors in
three steps:

1. lbe nested loop structures are unrolled into a network
of computation cells.

9

2. Data structure clements arc assigned to the cells.

3. The network of computation cells is mapped onto the
actual processors of the system, according to the size
and structure of both the network and the computer
system.

/\ compuration cell can be regarded as a virtual processor to
which a program and local data has been assigned. However, the
virtual processor program may also refer to data that is not local, in
which case a communication hctween this virtual processor and the
virtual processor holding the data takes place. We will use
programs written in Id language to illustrate the decomposition
scheme. /\II expressions in Id have the property that for every set
of inputs r.eccivcd they must produce exactly one set of outputs.
Due to this property, the communication between computation cells
is highly structured and its pattern can be determined a priori. In
order to remain consistent with the data-driven nature of Id, we
assume, without loss of generality, that a non-local value is sent to,
rather than demanded by, a computation cell. We can draw a
directed link from the cell that sends a value to the cell that receives
it. and thus a network of virtual processors can be created. If an
unbounded number of processors were available and if these
processors could be interconnected in any desired pattern, then an
ideal network topology for the physical system would be the
topology of the computation cell network.

4.1 Defining Cells of Computation:

/\ programmer defines a cell by specifying what task is to be
carried out by it. For example a task may be defined as the work
done in the i1h iteration of a loop, hence by unfolding a loop a
number of computation cells may be defined. A program for the
task carlied out in the i1h iteration of an Id loop can be generated
automatically. There is in general more than one computation cell
definition possible as we show below. Consider the following
program for conventional matrix multiply algorithm.

procedure matrix_multiply (a, b, I, m, n)
! multiply matrix a of dimensions I X m by matrix b
of dimensions m X n!

(initial c+- < > ! < > represents an empty structure!
for i from l to I do

new c[i) <- (initial d+- < >
for j rrom l to n do

new dUJ <-

(initial s<-0
for k from 1 to m do

new s +- s + a(i,k)*b(kj)
returns)

return d)
return c) (4)

In Id a matrix is represented .by -an one-dimension array of
one-dimension arrays. Hence output matrix c is constructed by
appending together 1 rows, each represented by an array d. We note
that this Id program when executed under the U-interpreter (5) can
automatically carry out all the I X m X n multiplications in
parallel. This effect is achieved without any global analysis of the
program. As stated earlier the attempt in this paper is to perform

certain functions of the U-interpreter at compile time and hence
map concurrent activities statically onto processors.

Suppose we specify computation cells to carry out one iteration
of the loop with index variable i. The network of Figure 2 will be
produced by unfolding loop i. The program for the i1h cell can be
written as follows.

append(ci~l• i, d) where dis computed as follows
di- (initial d <--(>

for j from l to ndo
new d[j) <-- (initial s <-- 0

return d)

for k from l to m do
news<-- s + a[i,k] * b[kj]

returns)

The subscript on a variable (i.e. ci·l) indicates the cell where that
variable will be computed. This program is valid for cell numbers l
to I. The computation cell 0 should produce an empty array < >.
and the result should be available in cell I+ l.

The definition of computalion cells can be critical to exploiting
parallelism in a program. In the matrix multiply procedure if I is
much smaller than the actual number of processors available then
unfolding either both loop i and loop j, or only loop j may be more
advantageous than unfolding only loop i. The network produced as
a result of unfolding loop i and loop j of program (4) is shown in
Figure 3.

There is no obvious advantage in unfolding the outer loop of
program (3) for the relaxation algorithm. Computation cells
produced in this manner will execute essentially in a sequential
order. However, if loop i is unfolded concurrent relaxation of all
the elements of x is possible. The process of unfolding an inner
loop without unfolding the outer loop in a nested loop structure is
somewhat tricky. The result of unfolding loop i of program (3) is
shown in Figure 4. The cell programs are given below.

for cell 0

Yo<-- <O:lb, n+ l:rb>

forccll 1~ i ~ n

Yi <-- append (Yi-l• i, t) where tis computed as follows
t <-(X0 +1[i-1J + X0 +1!il + X0 +1[i+lD/3.

Note that as before xn+l means that xis defined in cell n+l.
The program for cell n + 1 is

(for k from l to kmax do
new x <-- y0(x)

return n)

The meaning of y 0(x) is that output from cell n is needed but it can
only be obtained after x is supplied. In a dataflow interpretation
the value array x is sent by cell n + 1 to all the relevant cells as soon
'lS x is produced. For every x value that cell n + 1 outputs it
receives an input value y 0 which becomes the new value of x. The
initial value of x has to be given to .cell n + 1 to start the

10

computation. Such an input is implicit in program (3).

A reader at this point may co!1sider the computation cell
network of Figure 4 to be very wasteful because it makes many
copies of array x. Indeed this is what we wish to avoid by mapping
structures on computation cells.

4.2 Mapping Data Structures on Computation Cells:

Once computation cells have been defined, a mapping of data
structures (i.e., matrices and arrays) onto these ·cells can be
specified. For example a programmer may specify that x[ij) for all
j should be mapped onto cell k. Mappings may not be one to one.
Consider again program (3) with the inner loop unfolded. A
mapping that seems quite sensible is that clements x[i-1), x[i) and
x[i + l] be mapped on to cell i. This mapping assigns each clement
of x to three computation cells. Treating a data structure as
collection of elements--each one of which is assigned to a cell or
cells--eliminates the select operation on data structures. Suitable
mappings to reduce communication due to the select operation are
straightforward to derive but unfortunately solve only half the
problem.

Consider a mapping in which each x[i) is mapped onto only cell
i. The program for cell i can be expressed as follows:

Yi<-- appcnd(Yi-l• i, t) where tis computed as follows
t <-- (x[i-lli-l + x[i] + x[i+ lli+l)/3.

where each xm should be treated as one value and the meaning of
x[j)k is as usual that x[j) is defined in cell k.

The value t computed by cell i becomes part of array y, and is
passed on to cell i+ 1 which passes it to cell i + 2 and so on. It
finally reaches cell n + I as a part of the value y 0 • The new value of
x is y0 , and it is y0 that is distributed to cells I to n. Hence the x{i]
that cell i receives is i11 fact the last t computed by cell i. This makes
the whole process of constructing x and then distributing it seem
unnecessary. Every cell should compute t and store it for the next
calculation oft. It must still communicate the value oft to cells i-1
and i + 1 in order for these calls to compute their t values but most
of the communication from cell n + I to cell i will be avoided.
1bcre has to be some communication from cell n + 1 to cell i to
indicate if the computation has terminated or not (i.e., k>kmax?).
Figures 5.1 and 5.2 depict the effect of simplification achieved by
. this data structure mapping.

In order to achieve the simplification suggested by Figure 5.2 we
have to be able to determine the cell where a particular clement of
a structure is generated. This can be done easily in program (3)
once we note that no clement of y in the inner loop is ever
redefined that is. y is an I-structure. As noted· earlier an clement
belonging to an I-structure can be distributed as soon as it is
generated.

For the kind of programs we arc interested in, the selector for
the append operation is often directly and simply related to the
loop index. If the loop index is taken from an unrepeated set the
condition of 1-~tructurcs is automatically met Now we give a rule

for determining the number of the cell where the clement of a data
structure is generated in such cases.

Suppose we want to find the cell number where clement cfij] is
defined in program (4). First, find the cell that appends a value on
selector i of c. Let kO be the cell. Then

ckO <- appencK.cu. i, d1t2)

where subscripts kO, kl and k2 refer to cell numbers. Once k2 is
known find the cell that appends a value on selector j of du. Let k3
be such a cell. Then

dk3 <- appe1u~dk4, j, v)

Mapping c[i.j] onto cell k will mean that cell k3 will send value v to
cell k. Suppose we consider the cell definitions of Figure 3. 'Jben
mapping c[ij] onto cell number <ij> results in all the append
operations being eliminated. Cell <ij> would compute a value s
and hold on to it. On the other hand, mapping c[ij] on cell <ij + l>
would result in cell <ij> sending the values to cell <ij + l>.

It is useful in a large program to map a data structure according
to how it is used rather than how it is created. When matrix
multiply is part of a larger program one will have to take into
account the cells where matrix c will be used to specify cffidcnt
mappings. /\. common situation is that of unncsted loops where
one loop produces a structure and the other loop uses it. In such
cases a cell definition may include one iteration of each loop.

5 Mapping Computation cells on processors:

In general one expects the network of computation cells to be
larger than the number of processors available. The mapping in
such cases takes the form of specifying a foldiug of the network of
cells to fit the machine. Suppose we want to map the network of
Figure 2 onto a p processor machine when I » p. For the
interconnections of Figure 2 we consider 3 mappings:

I. Map cell i on processor number i mod p (see Figure
6.1).

2. Map cells 0 to p-1 on processors I to p. Map cells p to

2p- l on processors p to 1, and so on (sec Figure 6.2).

3. Map cells O to f-1 on processor number 1, cells f to 2f-1
on processor number 2, and so on where f =
r(I + 2)/p 1 (see Figure 6.3).

If the p processors are connected by a ring bus there may be no
reason to choose between mappings l and 2. However the first two
mappings arc clearly inferior to the third mapping if the p
processors have any kind oflocality in their interconnection.

This small example only illustrates that a reasonable mapping of
a network of cells onto an actual machine can be derived by simple
reasoning. In fact we expect to do such simple folding of networks
automatically.

11

6 Conclusions:

The success of large multiple processor machines crucially
depends upon their programmability. Flexibility in programmiog
such machines is ultimately limited by our ability to decompose a
program into smaller programs suitable for execution on one
processor. In the past, decomposition efforts have had limited
success due to Fortran being the source language. It is suggested in
this paper that applicative languages with restrictions on data and
control structures arc far more amenable to decomposition. It is
generally quite easy to write a maximally parallel applicative
program for a given algorithm. Undoubtedly the problem of
decomposing a maximally parallel program is far simpler than
detecting parts of a sequential programs that are suitable for
concurrent execution.

A strategy for decomposing applicative programs for a multiple
processor machine has been outlined. It creates a network of
computation cells without relying on any information about the
topology or the number of processors in the actual machine. lbe
network is mapped onto the actual machine as the last step in the
procedure. Our research efforts for the time being arc concentrated
on deriving efficient cell programs for the network of computation
cells.

Acknowledgments

Bill Ackerman, Dean Brock, Randy Bryant and Vinod Kathail have
provided invaluable help by reading several drafts of this paper.

References

I. 11.ckcnnan, W.B., "Dataflow Languages". AF/PS NCC
Proc., Vol. 48, (June 1979), 1087-1095.

2. /\ckcrman, W.B. and Dennis, J.B., "VAL -- /\. Value
Oriented /\lgorithmic Language: Preliminary
Reference Manual." TR-218, Laboratory for Computer
Science, M.l.T. Cambridge, Mass. (1979).

3. /\rvind, and Bryant, R.E., "Parallel Computers for
Partial Differential Equation Simulation." Proc.
Scientific Computer lnfmmation Exchange Meeting,
Livermore, California, (Sept 1979), pp. 94-102.

4. /\rvind, Gostclow, K.P., and Plouffe, W., "An
Asynchronous Programming I .anguage and Computing
Machine." University of California, Irvine, Technical
Report l14a (Dec. 1978).

5.· 11.rvind. and Thomas. R.E., "I-structures: /\n efficient
data type for functional language." TM, Laboratory for
Computer Science, M.l.T. Cambridge, Mass. (June
1980).

6. Backus, J., "Can programming be liberated from the
von Neumann style? /\. functional style and its algebra
of programs." Comm. ACM, Vol. 21,N o. 8, (/\ug.
1978), pp. 613-641.

7. Burstall, R.M. and Darlington, J., "A Transfonnation
System for Developing Recursive Programs." J.ACM
Vol. 24, No. 1, (January 1977)

8. Dennis, J. ll., "First version of a dataflow procedure
language." TM 61, Laboratory for Computer Science,
M.I.T. Cambridge.Mass. (May 1975).

9. Friedman, D.P., and Wise, D.S., "'lbe impact of
applicative programming on multiprocessing." Proc.
1976 Intl. Conf. on Parallel Processing (Aug. 1976), pp.
263-272.

10. Gostelow, K.P. and Thomas, R.E., "t;'erformance of a
Dataflow Computer." IEEE Transactions on
Computers, (to appear Oct. 1980).

11. Keller, R.M., Lindstrom, G., and Patil, S., "A
Loosely-Coupled Applicative Multiprocessing System."
AF/PS NCC Proc., Vol. 48 (June, 1979), pp. 613-622.

i-1

k •

k+l

k+2

•
j-l

time ----- ..

i+l

•

i-1

12. Kuck, D., Budnik, P., Chen, S.C., Davis, E. Jr., Han, J.,
Kraska, P., Lawrie, D., Muraoka, F., Strebendt, R. and
Towle, R., "Measurements of Parallelism in Ordinary
FORTRAN Programs," IEEE Trans. on Computer,
Vol. C-23, No. 1, (Jan., 1974), pp. 37-46.

13. Kuck, D.J., Muraoka, Y. and Chen, S.C., "On the
Number of Operations Simultaneously Executable in
FORTRAN-Like Programs and Their Resulting
Spced·Up." IEEE Trans. on Compllla, Vol. C-21, No.
12,(Dcc .• 1972). pp.1293-1310.

14. Kuck, D.J. and Padua, D.A., "High Speed
Multiprocessors and their Compilers." Proc. of
International Conference on Parallel Processing.
(August 1979), pp. 5-16.

i+2 i+3

• •

i+l i+2

i+l

Figure 1 Overlapping iterations in program (3)

0 1·~ --~----'~ 1 ~
c append(c. 1,i;d)

C c. 1 1-
Q 1- l d ... I)

.._ ___ <_> ___ __.(1111Ua

Figure 2 Computation cell network when loop i is

unfolded in the matrix multiply procedure

12

L+1

···~ ""''"'

<J,O>

EJ
t

<l,n>

•1.n +-

<i.O>

n
~o

<i.i> A.j-1

dij +-

appcnd(d ij-l j,(init..))

dj . ,J

<i,n> J~.n-1
di,n +-

<Ln>

appcnd(d l,n-l ,n, ...) append(d i,n-l ,n, ...)
<\.n +-

... appcnd(d ~n-l ,n)

di,n

<l,n+ l> <i.n+l> <ln+l> i-

<> co,n+l \n+l +- \n+l
+-

~ appcnd(c. , i,d.)
. 1- l ,n + 1 1,n appcnd(c O,n + 11,d I,d

_. \n +-

appcnd(c bl 1,L,'1 } ,n+. ,I
-..

0

~
+-

Figure 3 Computation cell network when Joop-i and loop-j

arc unfolded in the matrix multiply procedure

• f • t n+l

y +- (fork from 1
to kmax do

Xn+l

ppend(y i· l'i,t) <O:lb,n + l:nb> new x +- y n (x) Yi-1 t +- ~
(xn+ l[i-1)+

Xn + l(i) +

x [i+ 1))/3

Figure 4 Computation cell network when inner loop·i is
unfolded in the relaxation program(3)

0 ~l

G·········Yi-2

return x)

<l+l,n+l .-:--
cLn+l out-

put

'--

Figure 5.1 Mapping x[i] on cell i by distributing x in the
network of figure 4. (- show reference pattern, - show mapping)

13

>

'1[~ \-1 i~ 'i+:+g
~ lj

Figure 5.2 Mapping x[i) on cell i by sending it from the cell
that generates x[i).Sincc cell i generates x[i] no
dashed line with value x[i] is shown.

1 2 3 p-1
• • • •
0 1 2
I ••

pl ~+l
I ~·2 ..

Figure 6.1 Mapping (1) - cell ion processor i mod p

1 2 3 p-1
• • • •

0 1 2 p-2

•
~~l

Figure 6.2 Mapping(2) cells 0 to p-1 on processors 1 top,

l
•

2
•

3 •

cells p to 2p- l on processors p to 1 etc.

p-1
•

Figure 6.3 Mapping (3) cells 0 to f-1 on processor 1,
cells fto 2f-l on processor 2 etc.

14

~

p-1 ...

p.

~

processors

.. cells

processors

] cells

processors

cells

f=l 1+2/p I

Automatic Exploitation of Parallelism on a
Homogenous Asynchronous Multiprocessor

Thomas L. Rodeheffer and Peter G. Hibbard
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania, 15213

Summary

This paper describes an investigation which is starting

into the practical issues of automatically detecting

parallelism in ordinary programs and exploiting it on a

multiprocessor. We are looking at user programs written in

Fortran and our target multiprocessor is cm•, a distributed

multiprocessor designed and built at Carnegie-Mellon

University.

We have chosen Fortran because of the following

reasons: we have a modern Fortran compiler written in C

which is accessible and easy to modify; Fortran has a

simpler implementation than other commonly-used high-level

languages; much previous work has been concerned with

analyzing Fortran programs, thereby allowing our results to

be more easily compared with the results of others; and

finally, Fortran is a language of much practical interest to

the scientific computing community.

We have chosen cm• [1] as our target multiprocessor

primarily because it is a part of our· research environment.

Since cm• is the subject of several projects, our work can

enhance other research. Operating roughly as a classic,

shared-memory multiprocessor with .fifty identical, asynchro

nous processors, cm• has the advantage that its memory

accessing mechanism is implemented by a hierarchical

switching network whose nodes can be microprogrammed to

provide special operations in addition to simple memory

mapping. Finally, Medusa [2], an operating system which

supports a Unix-like environment but still allows almost a full

exploitation of the cm• hardware, has recently become

available.

Measurements on cm• [3] indicate that speedups near

the theoretical limit are attainable for programs which have

been carefully designed to take advantage of the available

parallelism. Unfortunately, sufficiently careful and ingenious

design has not proved to be a simple matter. Programming

a multiprocessor is a difficult and tedious task, especially at

CH1569-3/80/0000-0015$00.75 © 1980 IEEE
15

the detailed levels of inter-processor coordination. Further

more, multiprocessors are not generally available and thus

much work has tended to be theoretical in nature.

Previous work on automatically detecting and exploiting

parallelism has been directed primarily at architectures other

than those of asynchronous multiprocessors. Kuck et al. [4]

have studied extensively the ways in which programs can be

transformed to extract parallelism under the assumption that

the target architecture consisted of synchronous processors

which perform exactly one operation every time step. Allan

and Oldehoeft [5] have considered the same problems with

a data-flow machine as a target architecture. In both cases,

no consideration need be given to the problems of commu

nication and synchronization between the processing ele

ments, because such problems are assumed to be solved by

the architecture at no cost. Gonzalez and Ramamoorthy [6]

have studied through simulation the problems of scheduling

on a multiprocessor parallel tasks of a program at the

statement level.

We view the exploitation of parallelism as an optimiza

tion technique which is useful on a multiprocessor architec

ture. We are interested in automatically taking advantage of

low·level parallelism-parallelism which would be difficult or

just too tedious for a programmer to specify but which can

be detected on a fairly local basis. The more global

problem of designing a program or algorithm specifically to

use parallelism falls beyond the scope of what we consider

automatic optimization techniques.

We are building a prototype system which compiles

Fortran programs into machine code for cm•, detecting

implicit, low-level parallelism and generating a schedule of

tasks to minimize the time-to-completion of the program. All

detection and scheduling is done during compilation. The

run-time system on Cm• provides inter-processor communi

cation and synchronization primitives which the compiler

uses to effect its schedule.

For our purposes, each of the individual processors in

cm• contains a copy of the same code and shares access

to the same data locations. As explained in [2], such an

arrangement is not the most effective use of Cm•, but its

simplicity and similarity to the normal manner of use of

tightly-coupled mu.ltiprocessors is appealing. This arrange

ment is essential!Y the same as pr~sumed in [6].

The compiler processes the Fortran source program on

a subroutine-by-subroutine basis. Each subroutine is

compiled into a directed graph of actions, in which each

action represents an operation at the level of the individual

operations of expression evaluation, and each edge repre

sents a data- or control-flow dependency. The compiler

then analyzes the flow graph to determine an execution

schedule for the actions of the program.

The compiler uses approximate execution times for the

various machine instructions and run-time system primitives

in order to. transform the .flow graph to reduce the estimated

time-to-completion of the final object code program. For

example, a sequence of actions each of which is dependent

solely upon its predecessor is probably best executed as a

single task with no intemal scheduling actions, Even

actions that could be performed in parallel probably ought
to be executed sequentially without scheduling if the

overheads required of the run-time system to coordinate

another processor are too large relative to the time that

could be saved by parallel execution. These are only the ·

simplest transformations, however.

Kuck et al. [4] have developed transformations appli

cable to assignment statements and common forms of
Fortran DO-loops which exploit parallelism to reduce total

execution time. Although the transformations were designed

for a synchronous multiprocessor architecture such as an
array machine, . with proper consideration of inter•processor

· . c:.oordination costs it seems that these transformatiOns could

. :be. useful in the environment of an asynchronous multi

processor as well.

Another important class of transformations are those

which act to defer or distribute overheads so that work is

removed from the criticat, limiting path of the computation.

For example, instead of creating a new task at some point in

the program (which involves the run-time overhead of

lo~ting a free processor and communicating the task start.

address to it) the compiler may be able to identify an earlier

16

task whose completion had recently been awaited and

arrange to re-use that task by passing signals for synchro

nization;. this assumes that the task creation and completion

primitives are more expensive than a signal between two

existing tasks.

Our goal is to demonstrate a workable system for

exploiting low-level parallelism on a multiprocessor. We are
encouraged by previous. results [7] which indicate that

substantial low-level data parallelism is in fact available,
although in that implementation the language run-time

support was so complex that performing all analysis at run

time was feasible. Now we direct our attention to a

language of much simpler requirements in order to address

the practical issues of a workable system.

References

[1] R. J. Swan, S. H .. Fuller, and D. P. Siewiorek, "Cm•-A
Modular, Multi-Microprocessor", AF/PS Conference
Proceedings, 1977 National Computer Conference,·
AFIPS Press, Montvale, New Jersey, (1977), pp. 637-
644.

[2] J. K. OUsterhout, Partitioning and Cooperation in a
Distributed Multiprocessor Operating System: Medusa,
PhD dissertation, Computer Science Department,
Carnegie-Mellon University, (Apr. 1980). ·· Available as
CMU Tech. Report CMU-CS-80-112.

[3] L. Raskin, Performance Evaluation of Muniple
Processor Systems, PhD dissertation, Camegie-Mellon
University, (Aug. 1978). Available as CMU Tech.
Report CMU·CS-78-141.

[4] U. Banerjee, S. C. Chen, p. J. Kuck, and R. A. Towle,
"Time and Parallel Processor Bounds for Fortran-Like
Loops", IEEE Transactions on Computers, Vol. C-28,
No. 9, (Sept. 1979), pp. 660-670.

[5] S. J. Allan and A. E. Oldehoeft, "A Flow Analysis
Procedure for the Translation of High Level
Languages to a Data Flow Language", Proceedings of
the 1979 International Conference on Pa;allal
P.rocessing, Oscar N. Garcia, ed., IEEE Computer
Society, Long Beach, California, (1.979), pp. 26-34.

[6] M. J. Gonzalez, Jr., and C. V. Ramamoorthy, "Parallel
Task Executi1>n in a Decentralized System", IEEE
Transactions on Computers, Vol. C-21, Nop. 12, (Dec.
1972), pp. 1310-1322.

(7] P. G. Hibbard, A L. Hisgen, and T. L. Rodeheffer, "A
language Implementation Design for a Multiprocessor
Computer System", Proceedings of the 5th Annual
Symposium on Computer Architectute, IEEE Computer
Society and the Association for Computing Machinery,
(1978), pp, 66-72.

SESSION 2: ARCHITECTURE

17

A CONTROLLABLE MIMD ARCHITECTURE(a)

by
Stephen F. Lundstrom

George H. Barnes
Burroughs Corporation

Paoli, PA 19301

Abstract -- A MIMD architecture targeted at
1000 Mflop/ sec has been described to NASA. This
system is targeted to be the Flow Model Processor
(FMP) in the Numerical Aerodynamic Simulator.
This paper describes the strategies adopted for
making a many-processor multiprocessor
controllable and efficient, primarily by
decisions that are made at compile time.
Hardware features include the division of memory
into space private to each processor and space
shared by all, and a hardware synchronization of
all processors. The connection network,
connecting 512 processors to 521 memory modules,
is an essential element.

Two main constructs are needed in the
language to control the architecture. First, an
expression that a number of instances of a given
section of code can be executed concurrently, and
second, a determination as to whether variables
are local to the instance or global to the entire
program.

Performance validations used who1e programs,
not kernels. Simulation and analysis combine to
demonstrate achievement of the goal of 1000
Mflop/ sec on suitable programs and good
performance on others.

Introduction

Present generation very-high-speed computers
generally exploit vector algorithms for their
highest performance. A study for NASA Ames
Research Center was conducted to determine the
feasibility of a "Flow Model Processor" (FMP)
which could achieve a sustained computational
rate of one billion floating point operations per
second on complete aerodynamics flow programs
[l]. It concluded that the dependence on vector
operations for high throughput was no longer
necessary.

Given that device technology has been fully
utilized, parallelism can be used to achieve
performance beyond that possible with a
uniprocessor. Historically, two approaches have
been used to achieve parallelism: a pipeline

(a)This work was done for NASA under Contract
NAS2-9897 and reported to them in [l].

CH1569-3/80/0000-0019$00.75 ~ 1980 IEEE

19

where parallelism is achieved by each stage of
the pipeline operating on a different step of
successive operation, or an array of identical
execution units each simultaneously evaluating
the same instruction on different data.
References (2,3,4, and 5] have recent examples of
both. In either case the result is a vector mach
ine where the data comes from orderly addresses
in memory and the same instruction acts on each
data element.

The Flow Model Processor makes use of the
parallelism of a MIMD (multiple instruction
stream, multiple data stream) architecture. The
architecture includes specific features so that a
single program can be issued to all the
processors and result in cooperative execution on
a single application for a single user.

This paper describes motivations behind the
design and some of the strategies used to ensure
controllability. The architecture described here
avoids or sidesteps the limitation observed in
some MIMD architectures which are unable to
utilize more than a few processors effectively.
The result is an architecture that is somewhat
specialized to a class of applications (although
much less specialized than a vector machine would
be). This architecture exploits any concurrency
inherent in the problem, whether or not that
concurrency can be described as vector
operations.

The problem was approached by first studying
the aerodynamic applications (6]. These
applications have a large numerical component,
much inherent concurrency, and simple control
structures. Due to the wide variation in the
amount of computation that may concurrently
proceed between times at which synchronization is
required, efficient implementation of the
synchronization function is required. Due to the
many different natural modes of accessing data, a
large memory equally accessable to all processors
is required. Due to the practical limitation on
the speed attainable in a large common memory,
and due to the need for speed, an architecture is
required which allows many memory accesses to be
from memory local to each processor.

Software strategy is based on the premise
that source text submitted to the compiler should

result in a single program being compiled for all
processors in the array which will then execute
it cooperatively. This premise is also advocated
in [7]. From another point of view, the compiler
emits a single program which is to be executed
independently by each of the processors in the
array. Included by this program are instructions
which cause the processors to cooperate by
sharing data and by synchronizing their actions
appropriately when needed.

A second element of the strategy is to make
certain decisions at compile time instead of run
time. These dee is ions can then be supported by
efficient hardware mechanisms, not by system
software.

The functional constructs on which a
language for this architecture is to be based can
be compared to discussions previously found in
the literature. A general discussion of parallel
languages is found in [8]. Some proposed
parallel languages are directed at the vector
type of architecture, as in [9,10,11,12], others
are not [13,14,15]. Some workers have proposed
that the requisite parallelism can be found by
starting from algorithms expressed in serial form
[16, 17] so that standard Fortran can be mapped
onto various parallel architectures without
language extensions. In the present case the
architecture is such that the operations which
can be done. independently of each other and in
parallel are whole sections of code, not
restricted to single operations. ·

We believe that the architecture proposed
here has several advantages over other parallel
architectures previously proposed and that the
simulations and performance validations reported
below uphold this view. While no single feature
of this architecture is by itself new, we believe
the combination of features is. Some previously
proposed architectures have all memory shared
among all processors, [18, 19, 20, 21] but
without processor private memory for data. In
some cases, a central control processor is
involved with ·the control of interconnections
between processors, or from processors to memory
[22]. N such centralized control is required
here during execution of user programs. To our
knowledge, fast hardware synchronization as seen
here has not been proposed for MIMD
architectures, although any SIMD machine, such as
in [3], will be synchronized.

The development of the system concepts
evolved from the applications to system
architecture (involving both hardware and
software) to a more detailed definition of both
the hardware and software. In order to simplify
the introduction of the software concepts, they
will be preceded by a short summary of the
hardware architecture. Following the software
concept summary,. a more detailed description of
some parts of the hardware will be provided.

Hardware Overview

The block diagram of the
multiprocessor is shown in Figure 1.
features of this hardware are:

proposed
Salient

* A prime .number of memory modules to reduce
memory access conflicts.

* Separation of the memory space seen from
each processor into a private part, and a section
shared among all processors.

* A connection network whereby all processors
can simultaneously request access to various
memory modules.

* Hardware synhcronization, a P-way AND of the
signal from each processor that marks its having
gotten to a specific point in the program.

Each of the 512 processors has its own
program counter, its own. local memory for program
and data, and its own connection to a shared
memory. The shared memory is built of many. (521)
independently accessible modules. In order to
provide connectivity between the processors and
the memory modules, a connection network which
has a complexity of O(P log(P)), instead of the
O(P2) complexity expected for a fully general
cross-point network, was chosen. This choice
satisfies both the economic requirements and the
bandwidth requirements of the system. For
discussion of the connection network, see [23].

Software

The expense involved in application software
development and maintenance over the life of a
system now often exceeds the total costs of
operations support and acquisition/ amortization
of the computational equipment especially in
development environments. The development of any
new capabilities for such environments must,
therefore, carefully consider both efficient
utilization of the computational facility and the
efficiency with which application development can
proceed. In the past, unfortunately, the
emphasis has been almost entirely on efficient
hardware utilization. The provision of
capabilities to embed assembly or machine code
within high-level languages such as FORTRAN are
an example of this approach. One recently

20

introduced extended FORTRAN supports both
development, with application-oriented vector
forms, and efficient hardware utilization (12].

The major concern during the study was the
feasibility of a hardware system with the
required sustained performance. Automatic
conversion of standard FORTRAN was not required.
Rather, the project emphasized the definition of
FORTRAN extensions that provided efficient
control of the hardware capabilities ease in
application definition.

Language Overview

The basic language construct chosen for this

MIMD system was one of computational pro.ceases
that proceed concurrently between appropriate
synchronization points. This type of construct
is clearly compatible with a MIMD system. Such a
construct is also convenient for application
descriptions in that it is more general than the
vector forms currently in use. The concurrent
processes may include boundary value computations
and central value computations simultaneously.
Thus, each program for the FMP has a structure of
pieces of normal serial code, :which describe the
details of what must be done at a given time, or
at a given element of some index set, embedded in
a control structure that expresses the location
of concurrency and where the synchronization must
occur.

Three extensions to standard FORTRAN are
proposed. The primary extension is the construct
described above which allows the definition of
the inherent concurrency in a process. This
construct is called "DOALL". The second
extension is a construct to allow the definition
of index sets, called "DOMAIN" s. The third
extension is a means for identifying the data or
variable dependencies between the instances of
various processes and for differentiating which
variables or data are independent of the global
process structure and are therefore local to a
particular instance.

Domains

A means for describing index sets to the
compiler is needed. In FMP FORTRAN such sets are
called DOMAINS. A DOMAIN has an associated name
and can be interpreted as a one or multi
dimensional index set. For example, the
declaration

DOMAIN/EYEJAY/: I=l, IMAX; J=l, JMAX
declares that there are IMAX*JMAX elements, each
consisting of one pair of values of I and J, with
values in the range shown. Standard set
operators are allowed. For example, if one has
also declared

DOMAIN/KAY/: K=l ,KMAX
then the cartesian product

DOMAIN/IJK/: EYEJAY .X. KAY
defines a three-dimensional domain with extents
in each dimension of IMAX, JMAX, and KMAX.

In the aero flow applications, only
rectangular domains such as the example "IJK"
were seen. Extensions to the domain concept will
be needed for other applications. Simple
modifications to domains can be implemented by
conditional statements within the doall program
segment.

In addition to their use in specifying the
index sets for doalls as explained in the next
section, domains can substitute for the iteration
index sets in do loops, and for dimensionality in
the declaration of arrays.

21

One convenient use of the DOMAIN construct
is for the description of the geometry (or
computational limits) of the problem. By naming
the controlling index set, and refer;.ring to the
index set by name throughout the rest of the
program, changes relating to geometry need be
made in only one place in the program.

DOALL Construct

The DOALL construct is the FMP FORTRAN
extension for describing the inherent concurrency
in a process. Figure 2 shows the conceptual flow
of execution in this construct. Once the
construct is entered, all individual parts may
proceed simultaneously dependent on the availabi
lity of resources. Control is not allowed to
pass beyond the construct until all individual
parts (called instances) have completed whatever
computation they are to do.

The doall construct consists of a "DdALL"
header, followed by a doall program segment
followed by a doall terminating delimiter. The
header will contain a specification of a domain,
perhaps by name. If the domain in the header is
the domain "EYEJAY" as declared in the example of
the previous section, and IMAX = 100 and JMAX "'
50, then there are 5000 intances of the doall
program segment to be executed. Each instance of
the doall program segment can execute indepen
dently of, and without any interaction with,
every other instance of the doall program
segment. Within each instance, there may not be
any references to computations within any other
instance, but no restrictions on references to
"old" values exist. The computation within each
instance may be conditional on location in the
model, on data, or on any other condition.

Hardware Support of the DOALL Construct

An issue is the mapping of the DOALL
construct onto real processor resources. A DOALL
construct execution begins when processors 0
through 511 pick up instance numbers 0 through
511. For a DOALL with I and J for instance
variables as in the example above, each processor
computes I and J values from the instance number
by solving the equation

instance number = J*IMAX + I
Specifically, I is · instance number modulo ·IMAX
and J is instance number DIV IMAX. When each
processor has finished its instance of the DOALL
program segments, it increments instance number
by 512, computes new I and J values, and proceeds
to iterate thus until the I and J values computed
.are outside the domain. Once the processor has
completed all assigned instances, it drops down
to a "WAIT" instruction. When all processors get
to "WAIT", a 512-ay AND of the WAITing state .is
used to create a "go" signal which causes all
processors to step to the next construct or
instruction. Thus, an essential feature to make
the DOALL construct work is a fast hardware

synchronization operation. DOALL program seg
ments can be as short as a single statement. A
single-statement DOALL with regular subscripting
on variables exactly corresponds to a vector
operation in a vector machine and hence this MIMD
architecture includes vector computations as a
subset of its capabilities.

Waiting implies processor idle time. In the
aerodynamic flow and weather codes which were
analyzed during the study, the amount of
processing per processor was nearly equal for all
processors, and hence processor efficiency was
high, the first processor to finish being only
slightly ahead of the last.

Memory Allocation

System control is simplified by making
decisions at compile time rather than having them
made by system software art run time. The
distinction between the various sorts of memory
is made in the compiler with help from programmer
declarations.

The potential four types of memory
allocation are:

1. A variable or array element is visible to any
part of the program, can be accessed from within
any instance of a doall program segment, or from
any serial section of code between doall program
segments.

2. A variable is a temporary variable which need
not remain defined after the end of the instance
in which it is used.

3. A variable is so frequently accessed that
each processor deserves to have its own local
copy.

4. A one-to-one relationship between the
elements of an array and the elements of a domain
holds. Within the instances of a doall program
segment over that domain, elements of that array
are accessed in correspondence to the
relationship.

The exact form of the declarations for
helping the compiler make appropriate assignments
of different data to different types of space is
still under discussion. It is clear that some
analysis on the compiler's part is possible; an
array which is subscripted with the instance
variables inside a doall must be either type 1 or
type 4, for example. If the language is to be an
extended Fortran, each common area must contain
variables of only one category.

The sets of memory declarations suggested to
date contain some common features. First, there
is a declaration to the effect that a variable is
shared (type 1). Second, there is a declaration
(pr default) that a variable is temporary to the
instance (type 2). Third, there is a means for

22

declaring that a set of variables is of type 4.
This last is the "INALL" declaration. The INALL
declaration couples a variable or array with the
dimensionality and index set of a domain. For
example, the declaration

INALL/EYEJAY/ Cl, C2, A(5)
declares that there is an element of Cl, an
element of C2 and five elements of A associated
with each element of the domain "EYEJAY". When
there is a doall construct over the domain
"EYEJAY (I,J)" then these variables can be used
with the doall. program segment and each instance
will have its own copy. Referring to a variable
such as C2 either without subscripts, or with
"centered subscripts" i.e., "C2(I ,J)", is
permissible and functionally identical. Outside
of doalls over "EYEJAY", these three identi
fiers will identify arrays which have
dimensionality
Cl(IMAX,JMAX), C2(IMAX,JMAX), and A(IMAX, JMAX,5)
respectively.

Given that · there are two kinds of memory
space, memory private to each processor and
memory shared by all processors, variables of
type 2 and type 3 will be found in processor
private memory, and type 1 would be in shared
memory. If a variable of type 4 is only accessed
within doalls over the appropriate domain, and
always on centered subscripts, it can be held in
the private memories of the processor that will
compute the instances that are in one-to-one
correspondence with the appropriate array
elements.

Parallel Functions

Some common parallel operations and first
order linear recurrences would be supported by
new intrinsics.

Parallel sum. Consider a variable defined
within each instance at the end of a doall. The
parallel sum of all those variables is created,
which will then be accessible· after the end of
the doall. 512 such vatiables can be su111iifed in 9
steps using interprocessor communication.
Similar parallel functions are parallel AND,
parailel OR, and MAXIMUM across all instances.

First-order lineatr recurrence, Given
quantities B(I) and-:-crrr in each instance of a
doall whose index set is I=l, IMAX; for111 the
sequence A(I) = A(I-l)*B(I) + C(I). A(O) is
given as an initial value. As with the parallel
sum, this function can be implemented in N steps
when IMAX = 2N. [24}

Other Software Issues

Although the mechanisms shown de1110nstrate
that one can design a langauge to enhance control
of the MIMD machine by imposing structure and
regularity on the MIM!l interprocessor
interactions at compile time, there are certain

issues which have to be resolved before fixing on
a final design for the language.

One issue is a trade between making memory
allocation decisions based on programmer declar
ations and making allocation decisions by
compiler analysis. Many users of high-throughput
machines insist on being able to control every
detail of machine action, out of fear that the
vendor's compiler will be inefficient if left to
its own devices.

Using Fortran as a starting point raises an
issue that might not arise with some other
starting point because of the requirement in
Fortran for separate compilation. At compile
time the compiler must distinguish between a
subroutine called within a doall program segment
where each instace of the doall calls its own
copy, and a subroutine called outside the doall
which runs on the array as a whole. The simplest
solution would be to distinguish between the two
kinds of subroutine by a difference in the
SUBROUTINE statements.

"Every instance of the doall program segment
must be independent of and free from any side
effects that would interfere with any other
instance of the same doall program segment".
This over-simplified statement is true at the
first level of understanding of the working of
the machine. However, steps taken to enforce
this rule are subject to a trade between authori
tarian and libertarian schools of programming.
There is no hardware limitation on the processors
fetching or storing any variable in shared memory
at any point in the program. Since the relative
timing between actions that occur in different
instances of the doall is not controlled, this
allows for data accesses and definitions to occur
in an uncontrolled order. Hence there is a
question about the enforcement of data prece
dence. Absolute enforcement by the compiler, so
that code which is emitted is guaranteed to be
free of data precedence violations, may be
undesirable. First, such a compiler will be
unable to detect all cases in which the instances
are independent of each other and as a result
will forbid certain useful functions. Second,
for some applications [25] a change in the
sequence of performing the computations will
change the result to another, different, but
still acceptable result. One does not wish to
forbid such programs. However, if the compiler
made no .check, gave the user no help, unnecessary
errors might be committed. The following rule is
observed to cover all cases that .arise in the
aero flow and weather codes, and appears simple
to impletllent. "If an array element in shared
memory is used on the right side of an assignment
statement within a doall progr!llll segment then any
assignment to that array in the same doall
progra!ll' segment mu$t be on centered subl!lcripts
and will be held in a "new" copy of the array.
The "new" copy ;till replace the· old copy of the
array at the time of synchronization at the end
of the doall."

23

Hardware Details

Instead of implementation details, discus
sion below will concentrate on how hardware
features support the langauge extensions.

Processor

Analysis of the aerodynamic flow and global
weather model programs (provided by NASA Ames
during the NASF Feasibility Study as samples of
typical application programs) showed that up to
several thousand processors could efficiently
work in parallel. In these cases, the actual
number of processors supplied is irrelevant over
a large range; only total throughput matters.
The design intent was to supply a processor that
had maximum throughput at minimum cost. The
trade-off evaluation was based on assumptions of
the technology suitable for 1983 delivery and on
the desire to limit complexity to control project
risk. The result was 512 processors, each having
capability of about 3Mflop/sec.

Each processor has independent integer and
floating-point execution units with limited
instruction look-ahead. To hide access time of
the shared memory, each processor has a one-slot
queue, called the "CN Buffer", which manages
accesses to the shared memory while other
processor operations go on concurrently. A
processor-local memory of about 32K words is
appropriate to the applications studied.

In reference (1), the shared memory is
called "Extended Memory" (EM). It consists of a
prime number of memory modules (521) in order to
reduce conflicts for the case that the pattern of
accesses from the processors forms a regular
pattern [26,27].

All processors independently compute
accesses in shared memory, and independently
access memory. Given that processor no. i is to
access shared memory address A(i) the processor
will compute address-within-module given by

L(i) = A(i) DIV 512
and module number

M(i) = A(i) modulo 521
When the addresses being accessed by the
processors form a vector with c'Cinstant stride the
formula for the A(i) is

A(i)=A(O)+p*i
Here the M(i) fall into 512 different memory
modules because p and the number of memory
modules are relatively prime. This is the basis
for claiming that a prime number of memory
modules makes certain kinds of accessing
11 conflict-free 11 •

Features for 11'!!-ult Tolerance

Because of the flexibility of the connection
network, a simple method of providing spate
processors and lllemory modules is planned. Each

CN buffer contains a "replacement unit directory"
to redirect connections around spare units.
Single error correction, double error detection
(SECDED) code covers all memory and transfers
through the connection network. The connection
network, being duplexed, has a simplex mode of
operation as backup.

Staging Memory

Staging memory is called "Data Base Memory"
in (1) where a size of 128 Mwd is assumed. Later
discussions have centered on !l size of 256 Mwd.
Transfer rates must be on the 'order of 50 Mwd per
second to and from shared memory. Access time
requirements make disk undesirable. If staging
memory were to be built of semiconductor compon
ents, then 256k-bit chips would be desirable.

The design and control of the staging memory
has no surprises. The structure is one of a dual
port memory. One port responds to requests from
the coordinator for high-speed transfers between
staging memory and Extended Memory. The other
port is externally controlled and provides the
high-speed data path to the rest of the system.

Connection Network

The connection network is used like a dial
up network, with any processor requesting
connection to any memory module at any time, with
the concommittant "message" being an address plus
one word of data either stored to or fetched from
the memory module involved. All processors could
request simultaneously. Blockage must be low
enough that the average added delay due to
blockage is small compared to the time due to
cable delays, access time of the memory module
and memory conflicts. In addition processors
must be treated 11 fairly". In the intended
applications all processors have an equal amount
of work to do. If any processor had a low
probability of making its connections through the
connection network, then that slower processor
would tend to be the last processor arri.vi.ng at
the synchronization points, thereby slowing up
the whole system.

The chosen configuration (Figure 3) is
called the "baseline" network by Wu and Feng 28}.
We first derived it as an isomorphism to the
Omega network of Lawrie [29]. A parallel paper
[22} discusses the design and validation of the
connection network showing that it indeed
performs as desired.

The time it takes to make a connection from
any one of the 512 processors to any one of the
521 memory modules is estimated at 120 ns.,
barring conflicts or blockage. The throughput
analysis of the FMP assumed a path width of 11
bits. During throughput analysis of the FMP, a
particular distribution of shared memory
conflicts and of blockage in the connection

network was assumed. After the simulations to
evaluate performance were nearly finished,
simulation of the connection network [23] showed
that the assumed delays were in fact correct.

Synchronization

Synchronization is mechanized by the WAIT
instruction. A processor continues to execute
WAIT until a "go" signal is received. The "go"
signal is the 512-way AND of a signal emitted by
each waiting processor. Synchronization ensures
that no processor tries to fetch new data until
that data has in fact been produced, perhaps by
the slowest processor, in the preceding DOALL
construct.

Figure 4 shows a mechanism whereby the
512-input AND gate is implemented as a tree-form
cascade of 8-input AND gates (Figure 4 is
actually drawn for a 27-input AND gate
implemented as a cascade of 3-input AND gates;
the nwnber of levels in the tree comes out the
same in either case). The root node of the tree
reflects the "GO" signal back to all processors
when the "AND" output is true at the root node.
Note that the spare processors must always appear
to be waiting even when being serviced or checked
off-line from the primary problem.

The total delay from the last processor
accessing a WAIT instruction until the "go"
signal reaches all processors has been estimated
at 160 ns.

Performance Validation

NASA had supplied two complete three
dimensional aerodynamic flow codes, solutions of
the time-averaged Navier Stokes equations, and
some weather codes. Three of these programs were
completely analyzed. The method of analysis was
to determine the calling se;iuence, the path of
execution through the entire program, with
notations as to how often each section of the
code was called. Appropriate DO loops were
converted into concurrent "DOALL" constructs in
which DO iterations are converted into DOALL
instances. Representative sections of the
programs were exercised in simulation to deter
mine running time. Other sections had their
running estimated based on how their parameters
were related ·to the parameters of the simulated
sections. The most significant parameter was the
number of floating point operations per reference
to the shared memory. The running time and

. number of fl<>ating point operations in each
section are each summed to give the running time
for the whole program and the number of floating
point operations for the whole program. The
quotient of these two totals is then the
throughput for the entire program in terms of
floating point operations per second. Details
are in [l) in Appendix A.

24

Ii

The results of this analysis are summarized
in Table I. In brief, performance met the target
of 1.0 Gflop/sec for favorable aerodynamic
applications, and varied from 0.5 Gflop/sec on up
for other suitable applications. The chemistry
and radiation portions of the global circulation
model were not vectorized, but consisted of a
doall with one instance at each point on the
globe; the doall program segment having much data
dependent branching within it.

Conclusion

A generalization of vector architectures for
high-throughput numerical computing has been
presented. The lack of any need to vectorize the
application should make it more widely applicable
than are the current generation of vector
machines. Validation using actual application
programs supports the expectation of high through
put.

The three prograllli~ing constructs are
parallel execution of many instances of the
code, the use of named index sets,. and
concept of two types of memory, one pri.vate
single instance, the other shared across
entire program.

Acknowledgements

the
same
the

to a
the

In any project of this size, many people
contribute. The authors have singled out, for
special acknowledgement of their contributions,
Howard Pearlmutter and Philip E. Shafer.

References

[1] Final Report, Numerical Aerodynamic Simula
tion Facility Feasibility Study, Contract No.
NASZ-9897 Burroughs Corporation, Paoli, PA, for
NASA Ames, March 1979.

[2] R. M. Russell, "The Cray-1 Computer System",
Communications of the ACM, Volume 21, No. 1
January 1978, pp. 63-72.

[3} P. M. Flanders, D. J. Hunt, S. F. Reddaway,
D. Parkinson, "Efficient High Speed Computing
with the Distributed Array Processor", in High
Speed Computer and Algorithm Organization, ed. D.
J. Kuck, et al, Academic Press, 1977, pp. 85-89
(SIMD).

[4] R. A. Stokes,
Processor", in High Speed
Organization, ed, , D. J.
Press, 1977 pp. 85-89.

"Burroughs Scientific
Computer and Algorithm
Kuck et al, Academic

[5] L. Fung, "A Massively Parallel Processing
Computer", in High Speed Computer and Algorithm
Organization, ed., D. J. Kuck et al, Academic
Press 1977, pp. 203-204 (MPP).

[6] D. R. Chapman, "Computational Aerodynamics
Development and Outlook", Dryden Lectureship in
Research, 17th Aerospace Sciences Meeting 1979
NASA Technical Report 79-0129.

[7] T. Christopher, O. El-Dessouki, M. Evens, P.
Greene, A. Hazra, W. Huen, A. Rastogi, R.
Robinson, and W. Wojciechowski, "Uniprogramming a
Network Computer", 1978 International Conference
on Parallel Processing IEEE, Computer Society,
Long Beach CA, 1978, pp. 312-138.

[8] D. J. Kuck, "A Survey of Parallel Machine
Organization and Programming", Computing Survey,
Volume 9, No. 1 (March 1977), pp. 29-60.

[9] D. H. Lawrie, T. Layman, D. Baer, J. M.
Randal, "Glypnir A Programming Language for
Illiac IV", Communications of the ACM,
No. 3, March 1975' pp. 157-164.

[10] E. W. Davis "STARAN Parallel
System Software", AFIPS National
Conference, 1974, pp. 17-22.

Volume 18,

Processor
Computer

[11] J. R. Dingledine, H. G. Martin, and W. M.
Patterson, "Operating System and Support Software
for PEPE", Sagamore Conference on Parallel
Processing, Proceedings, 1973 IEEE, pg. 170-178
(claims to describe PFOR).

[12] Burroughs Corporation, Burroughs Scientific
Processor (BSP) Fortran Reference Manual, Ref.
No. 1118338, February 1980, Paoli, PA.

[13] J. B. Dennis, D. P. Misunas, and C. K.
Leung, "A Highly Parallel Processor Using a Data
Flow Machine Language", Computation Structures
Group Memo. 134, MIT, January 1977.

[14] P. Brinch-Hansen, "The Progrannning Language
Concurrent Pascal", IEEE Transactions on Software
Engineering, June, 1975, pp. 199-207.

l 15] J. P. Anderson, "Program Structure for
Parallel Processing", Communications of the ACM,
Volume 8, No. 13 (December 1965), pp. 431-155.
(Very early discussion of "conventional" multi
processors).

[16] D. J. Kuck, P. P. Budnick, S. C. Chen, E.
W. Davis, Jr., J.C. Han, P. W. Kraska, D. H.
Lawrie, Y. Muraoka, R. E. Strebendt, and R. A.
Towle, "Measurements of Parallel ism in Ordinary
Fortran Programs", IEEE Computer, Vol. 7, No. 1,
pp. 37-46, Jan, 1974.

[17] Leslie Lamport, "Parallel Execution of DO
Loops", Communications of the ACM, Volume 17, No.
2, February 1974, pp. 83-93.

[18] R. J. Swan, S. H. Fuller, D. P. Siewiorek,
"Cm*, a Modular, Multiprocessor", in "Collection

25

of Papers on Cm*", Technical Report, Computer
Science Dept., Carnegie-Mellon University,
February, 19 77.

[19] W. A. Wulf, C. G. Bell, "C.mmp - A Multi
mini-processor", AFIPS Conference Proceedings
Vol. 14, Part II, FJCC 1972, pp. 765-777.

[20] H. J. Siegel, P. T. Mueller, Jr., and H. E.
Smalley, Jr., "Control of a Partitionable Multi
microprocessor System", Proceedings of the 1978
International Conference on Parallel Processing,
IEEE Computer Society, 1978.

[21] Burton J. Smith, "A Pipelined, Shared
Resource MIND Computer", Proceedings of the 1978
International Conference on Parallel Processing,
IEEE Computer Society, 1978.

[22] R. Kober, C. H. Kunzia, "SMS - A Multi
processor Architecture for High Speed Numerical
Calculations", Proceedings of the 1978 Inter
atnional Conference on Parallel Processing, IEEE
Computer Society, 19781.

[23] G. H. Barnes, "Design and Validation of a
Connect ion Network for Many-processor Multi
processor Systems", this conference.

Case

Implicit

Explicit

Weather

FFT

Implicit -
Explicit
Weather

Table I

Performance Summary

No. Thru Run
Grid Size Time put;. Time

Step Gf/s min.

lOOx 50x200 100 1.01 6

lOOxlOOxlOO 100 0.89 9

89xl44x 9 1008 0.53 4.5

512 to 4096 0.45-
o. 7

Implicit Aero Flow Code
Mixed Explicit/Implicit Aero Flow Code
Global Circulation Model

FFT = Fast Fourier Transform

26

[24] S. C. Chen, D. J. Kuck, "Time and Parallel
Processor Bounds for Linear Recurrence System",
IEEE Transactions on Computers, Volume C-24, No.
7, July 1975, pp. 701-717.

[25] Gerald M. Baudet "Asynchronous Iterative
Methods for Multiprocessors", Journal of the ACM,
Volume 25, No. 2, April 1978, pp. 226-244.

[26] P. Budnick and D. J. Kuck,
Organization and Use of Parallel Memories",
Transactions on Computers, December 1971.

"The
IEEE

[27] Roger C. Swanson,
Parallel Memories to
Vectors, IEEE Transactions
1974.

"Interconnect ion for
Unscramble p-ordered
on Computers, November

[28] C. Wu and T. Feng, "Routing Techniques for a
Class of Multistage Interconnection Networks",
Proceedings of the 1978 International Conference
on Parallel Processing, IEEE Computer Society,
1978.

[29] D. H. Lawrie, "Access and Alignment of Data
in an Array Processor", IEEE Transactions on
Computers, C-24 (1975), pp. 1145-1155.

PROC. 0 PROC.1

EXTENDED
MEMORY

PROC. 511

DATA
DASE

MEMORY
1,ib

OBM
ONTROLL£FI

TO/FROM
SUPPORT
PROCESSOR
SYSTEM fSPSi

Fig. 1. Block Diagram

2
••••

Instances of Code

to be Executed

N-1 N

Fig. 2. Flowchart, Concurrent Construct

Fig. 3. Form of Connection Network

PROCESSORS

Fig. 4. Tree Form of AND Implementation

27

* ARRAY MACHINE CONTROL UNITS FOR LOOPS CONTAINING IFs

** U. Banerjee, D. Gajski and D. Kuck
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Abstract -- The control unit is the interface
between the compiler and the processing part of a
computer. A number of array (parallel or pipe
line) machines have been built with scalar or
array instruction sets. Most such machines do a
poor job of handling sparse data arrays and this
paper addresses how such computations may be
better handled. We emphasize two areas:

l. Conditional statements can lead to
Boolean recurrences that must be solved to gener
ate control bits. We discuss hardware for the
solution of Boolean recurrences.

2. Sparse array computations lead to diffi
c.ult memory access and data alignment problems.
We discuss an efficient bit string approach to
handling such computations.

1. Introduction

The control unit of any computer is the point
at which the compiler meets the rest of the com
puter system. Thus, a well-designed control unit
is necessary in achieving good system performance.
In an array processor, the control unit is rela
tively more important because the system is more
complex. Furthermore, compiler algorithms should
be designed hand-in-hand with the control unit to
achieve high system performance for ordinary user
programs.

In this paper we discuss a subject that has
seldom been handled well in existing parallel or
pipeline machines, namely, the processing of
sparse arrays in an efficient manner. We will
present ideas that can be applied to array ma
chines that execute single-array operations, which
we denote SEA (single execution, array), and can

'~

**

This work was supported in part by the National
Science Foundation under Grant No. US NSF MCS77-
27910.

Current address is:
Honeywell Information Systems - M/S C87
P. 0. Box 6000
Phoenix, AZ 85005

CH1569-3/80/0000-0028$00.75 1980 IEEE

28

be regarded as simple parallel or pipeline ma
chines. The ideas are also useful in.MEA mul
tiple execution, array) machines which can execute
several array operations simultaneously, and MES
(multiple execution, scalar) machines, which can
be regarded as tightly coupled multiprocessors
whose goal is the speedup of one program at a
time [KuPa79]. For more discussion of the above
notation, see (Kuck78].

Specifically, we will discuss three hardware
aspects of executing programs: accessing data in
parallel memory units, alignment networks that
pair proper array elements, and the processing
pattern of the elements. In a parallel machine
the problem is pairing elements in different pro
cessors, while in a pipeline machine the problem
is pairing elements to be fed into the pipeline.

We assume that a traditional serial language
is used to specify array operations, and that
arrays are stored densely in a parallel set of
memory units. The problem arises when conditional
statements in loops cause the selection of only a
limited, random set of the array operations to be
performed. We will show that there are simple
synchronous ways of accessing and aligning such
arrays that should give high performance in most
programs.

Two aspects of programs will be discussed.
First, IF-statements contained in the scope of
iteration statements (e.g., DO loops) give rise
to mode bits that are used to control the execu
tion of subsequent statements. We will discuss
the fast generation of such mode bits, even when
cycles of dependence are involved. This gives
rise to new algorithms for the fast execution of
Boolean recurrences.

Secondly, we discuss the use of mode bits in
executing arithmetic array statements. Here the
problem of accessing sparse arrays in parallel
memories arises. We will present some theoreti
cal results, sketch some hardware and give an
example of the operation of our ideas. Formerly,
high degrees of vectorization have been achiev
able in these cases, but the sparseness of the
vectors led to poor efficiency unless the arrays

were first compressed [Kuck76].

We do not discuss the handling of compressed
arrays. Most serial languages do not have ex
plicit ways of specifying compress and expand
operations; however, they may be useful operations
when arrays are extremely sparse or indexing pat
terns are such that the methods we· describe per
form poorly. Some languages and software systems
do allow the specification and manipulation of
sparse arrays, and these are useful in many appli
cations. In [Kuck70], this subject was dealt with
for a few special cases and the ideas of this
paper can be extended to this area as well, but
are beyond our present scope.

The remainder of the paper contains five
sections. In Section 2, some background ideas are
presented. Section 3 discusses Boolean recur
rences and Section 4 is about arrays and mode
bits. Section 5 contains a detailed example and
Section 6 gives some remarks and conclusions.

2. Theoretical Background

Here we briefly discuss the theoretical foun
dations of our work. For more details, see
[Bane79]. Earlier results about compilation with
conditional statements may be found in [Towl76]
and [Kuck76].

Consider an arbitrary program consisting of
loops, assignment statements, and conditional
statements. Because of the presence of the condi
tional statements in the program, some instances
of some of the statements may fail to get executed.
For each assignment statement S, we define a
Boolean valued function FS of a suitable set of

(loop) index variables, such that

(1) FS has a value for each instance of S;

and (2) the value of FS corresponding to a given

instance of S i~ 1, iff that instance must be exe
cuted. We call FS the mode function of S and its

values the mode bits for S. Clearly, the mode
function of a statement is determined by the con
ditions of all the conditional statements whose
scopes contain that statement. The efficient
generation of mode bits and their proper use is
our main concern.

The statements in the program are dependent

A cyclic mixed subprogram is such that some
of the variables defining the conditions of its
conditional statements are evaluated within the
subprogram itself. This leads to the design of
progra111111Sble hardware for the solution of Boolean
recurrences (Section 3). A Boolean recurrence
B<n,m> of degree n and order m (1 < m < n) is a
set of equations of the.form -

x = k (1 ~ k ~ n)

where x1 , x2, ••• , xn are Boolean variables and

x0 , x_1 , ••• , x-m+l Boolean constants.

Consider now a subprogram where all variables
defining the conditions of all the conditional
statements are computed outside the subprogram.
If in addition there is exactly one assignment
statement, all of whose instances can be executed
independently of one another, then we have an
acyclic subprogram. Thus the mode bits for the
unique assignment statement are known at execution
time. This leads to the.use of mode bits to con
trol the execution of array assignment statements,
involving the accessing of memory and aligning of
data to and from memory. We will see in Section 4
that hardware for this can easily be added to
standard indexing hardware, and this extends the
earlier work on conflict-free array access
[BuKu71], [Lawr75].

A cyclic arithmetic subprogram has one or
more arithmetic assignment statements which are
dependent upon one another or on themselves;
except for that, it is similar to an acyclic sub
program. Here also the mode bits are known at
execution time, but the instances of the assign
ment statements can no longer be executed inde
pendently. A subprogram of this kind is equiva
lent to an arithmetic recurrence with mode bits.
A conunent is made on the solution of linear arith
metic recurrences with mode bits in the final
section; we do not discuss this problem in detail.
(The definition of an arithmetic recurrence is
obtained from that of a Boolean recurrence given
above by making the obvious changes. An arithme
tic recurrence is linear, if each ~k is a linear
function of its arguments.)

3. Generation of Mode Bits

3.1 Cyclic Mixed Subprograms

upon one another in a certain way. Using this Consider the following example.
dependence structure, we can break up the given
program into a partially ordered set of sub
programs. The same results would be obtained, if
instead of executing the given program serially we
execute the subprograms in any parallel way, as
long as. a subprogram is never started until all of
its predecessors have finished.

No subprogram can be further decomposed along
similar lines. Moreover, these subprograms can be
grouped into several classes according to their
characteristics, among which are the classes of
cyclic mixed subprograms, acyclic subprograms,
and cyclic arithmetic subprograms.

29

DO k = 1, 100, 1
IF [C(k) > U(k) + C(k-1)]
THEN BEGIN

sl C(k + 1) = V(k + 1)

82 Y(k) C(k + 2) + Y(k - 1)

END
ELSE BEGIN

SJ C(k + 1) W(k + 1)
END

Let ~ denote the condition of the IF statement.

Then the Boolean variables x1 , X2' ... , xlOO
satisfy the Boolean recurrence B<l00,2> described
below.

x = k akO xk-1 xk-2 + .akl xk-1 xk-2

+ ak2 xk-1 xk-Z + ak3 xk-1 xk-2
(1 2. k < 100)

where

x_l 0, XO O;

alO [C(l) > U(l) + C(O)], all al2 a13 O;

a20 [W(2) > U(2) + C(l)], a21 0,

a22 [V(2) > U(2) + C(l)], a23 0,

akO [W(k) > U(k) + W(k-1)]

akl [W(k) > U(k) + V(k-1)]

ak2 [V(k) > U(k) + W(k-1)]

ak3 [V(k) > U(k) + V(k-1)]

(k = 3, 4, ..• ' 100)

(Here [..•] represents a Boolean valued expres-
sion.)

The Boolean coefficients akt (1 2. k 2. 100,

0 < t < 3) of this recurrence can be computed in

L

parallel on a vector machine like one shown in
Fig. 1. They are all stored in the Boolean
coefficient memory. After n sets of coefficients
are stored, the Boolean-recurrence solver gener
ates mode-function bits for n iterations of the
loop. Those bits are stored in the mode-function
register and control the parallel execution of the
true and fa_lse branches of the conditional state
ment in the loop. In our example, the statements
s1 and s2 are executed in each processor that has

a mode-function bit equal to 1. Processors with
mode-function bit equal to 0 are turned off.
After s1 and s2 have been executed, the content

of the mode-function register is complemented and
statement s3 is executed.

If the upper limit of index k is much larger
than the number of processors n, the execution of
the loop can be partitioned into n-iteration
slices. In this case, the computation of mode
functions by solving Boolean recurrence can be
overlapped (pipelined) with the computation of
Boolean coefficients and execution of the IF
statement. This way IF statement control becomes
time-transparent to the original vector machine.
Thus, we must be able to solve such Boolean re
currences.

We now consider a general cyclic mixed sub
program. From this program we extract a Boolean
recurrence. To evaluate the kth variable xk of

this recurrence, we need to know certain values
computed inside the subprogram itself and certain
values coming from outside. The values (arithme
'tic and Boolean) coming from outside will be

~~
....---....-------..i H i-----+--+----t--------~

~~

800.LEA.c/
c.t:>&-'1'1Clll-H?".S

~

MRl'fOIZY Ak't¥NIVE#T A/ETIVat!K.

Fig. l. Control hardware for the loops with IF statement

30

completely known at run-time, and they are to be
treated as constants. The formula defining xk

can be expressed in terms of the constants in at

most 2k-l different ways, but frequently requires
much less than that, since several different paths
may lead to the same expression and hence can be
combined.

3.2 Solution of Boolean Recurrences

In what follows, n and m denote two integers
such that 1 < m < n. Consider an arbitrary set

of m Boolean variables {y-1 , y 2 , ... , y m}. The 2m

minterms of these variables are numbered 0, 1, 2,
m-1 th 2 in the usual way, and the t minterm

is denoted by Pt(y1 , y2 , ... , ym). We will use

AND and OR gates, such that each gate has a gate
delay of one unit of time. It is assumed that
each gate gives true and complemented outputs
with no time or cost penalty. The sole purpose
of this assumption (which holds for ECL circuit
family gates) is to keep our formulas simple; ex
tension to the general case is easy and straight
forward. For any positive integer k, we write
log k to denote r1og2kl.

Let us define a Super Cell (SC) (Fig. 2(b))
to be a piece of combinational logic which takes

(m+l) 2m inputs {aslo 2_ s 2_ 2m-l} U {brtll 2_ r < (b)

m, 0 2_ t 2_ 2m-l} and produces 2m outputs ct de

fined by

2m-l
E

s=O

where each ct is realized by the logic in a Basic

Cell (BC) (Fig. 2(a)). The following lemma is
obvious.

Lemma 1

If fan-in and fan-out considerations are
ignored, then an SC can be implemented in 2 gate

delays with 2m(2m+l) gates. •

Consider now a general Boolean recurrence
B<n,m> of degree n and order m, defined by the
equations

2m-l

E
t=O

(1 2_ k 2_ n)

where the a's and x0 , x_1 , ••• , x-m+l are known

Boolean constants.

Theorem 1

If fan-in and fan-out considerations are
ignored, then the Boolean recurrence B<n,m> can be

(c)

31

solved in

2(log n + 1) gate delays

with
n m m m ((2 log n)2 (2 +l) + n(2 +l)) gates.

For a proof of this theorem and for
in the limited fan-in, fan-out case, see
As an example, the solution of B<8,2> is
Fig. 2(c).

(a)

"" X7 x. x,- x. Xz

Fig. 2.

(a) Baf c Cell (BC) for m 2

(b) .. per Cell (SC) for m 2

(< 1 •i.tion of Boolear recurrence B<8,2>

•
results
[Bane79].
shown in

"'

4. Arrays .and Mode Bits

Assuming that mode bits exist, we now discuss
their use in memory accessing for arrays. We will
discuss alignment later. Its implementation is
straightforward with a crossbar switch but less
costly with an extended omega network [Lawr75].

Assume a storage scheme such that the element
X(I) of an array Xis stored in memory module.num
ber f(I), is given by

f(I) = I + BaseX) mod m

where BaseX is the number of the module that con

tains X(l) and m is the total number of memory
modules. The following two results are crucial
for our discussion; for proofs, see [Bane79].
(The notation of this section is somewhat differ
ent from those of the previous sections.)

Lemma 2

Let A0 , a denote integers such that gcd(a,m) =
1. Then the elements X(a0 + ai) and X(a0 + aj) of

an array X are stored in the same memory module,
iff {j - i) is a multiple of m. •

An immediate consequence of this lemma is the
following corollary.

Corollary 1

Let a0 , a, n denote integers such that gcd

(a,m) = 1 and 0 < n < m. Then for any i, the set
of elements {X(a0 + aI)ii .'.'._I.'.'._ i + n - l} of an

array X can be accessed from memory without any
conflicts. •

Consider now the program

DO I = 1, u, 1

s Z(c0 + cl) = X(a0 + al) op Y(b0 +bl)

END

where X, Y, Z are one-dimensional arrays, u, c0 ,

c, a0, a, b0 , b are integer constants, and op some

valid operation. (The conditional statements are
not shown explicitly; we deal with the mode func
tion of S instead.) Let us assume that mis a
prime number and that none of a, b, c is a mul
tiple of m. If the value of the mode function F8

of statement S is equal to 1 for each value of I,
then everything works just fine. We can fetch
X(a0 + al) and Y(b0 + bl) arid store the result of

op in Z(c0 + cl) for any m consecutive values of

I, without ever getting a conflict. However, in
general, F8 (I) = 1 only for a random set of values

of I. And only those instances of statement S
are to be executed for which F8 (I} 1. We

may still fetch the full set

32

{X(a0 + al) I 1 ~ i ~ m} without any conflicts, but

now probably only a few of these values need to be
sent to the processors.

The above lemma points to a way of avoiding
this potential inefficiency. We look at a number
of values of F8 (I), much larger than m. A set of

m or fewer l's are selected from these values,
such that if F8 (i) and F8 (j) are in this set and

i ~ j, then (j - i) is not a multiple of m. The
values of the index I corresponding to these bits
are guaranteed not to produce any conflicts in the
memory addresses of the elements X(a0 + al) of any

arbitrary array X, as long as gcd(a,m) = 1. Our
scheme fails.when gcd(a,m) > 1, but then nothing
can be done in that case; X(a0 + al) will lie in

the same memory module independently of I. If m
is a large prime number, these instances of fail
ure should occur very rarely.

The selection of m or fewer mode-bits with
value 1 is accomplished by the Mode-Function Com
pressor (MFC) shown in Fig. 3. The MFC has two
outputs: mode bits and their. corresponding indi
ces, and it can be thought of as consisting of m
content-addressable memories, each storing pairs
of the form (F8 (i), i). Any two pairs (F8 (i), i)

and (F8 (j), j) have (mod-m)-equivalent index val

ues; that is, i = j(mod m). Each memory when en
abled, reads out the first value (F8 (i), i) with

F5 (i) = 1, or the pair (F8 (i) = O, i = 0) is is

sued when there is no pair with F5 (i) = 1. Mode

bits are stored in Mode-Function Register as be
fore. F8 (i) = 0 will turn off the corresponding

processor Pi which will generate a null result

that is never stored in any module of the Parallel
Memory. The corresponding index values are sent
to the memory address generator which generates
memory address for each memory unit from the com
mon vector descriptor containing a 0 , a, and BaseX

for each vector X(a0 +al).

The set of m associative memories may become
prohibitively costly for reasonable values of m
(16 to 64) and index set I (1024 to 4096). For
this reason, we will now describe a less costly
but slower design of the MFC (Fig. 4).

Part of this design is similar to a paging
system. Suppose that the set of all values of the
mode function FS (in the Boolean Coefficient Mem-

ory) has been broken up into a number of "pages,"
each page being m bits long. Page 1 consists of
the values {F8 (1), F8 (2), ••• , F8 (m)}, page 2 con-

sists of {F8 (m + 1), F8 (m + 2), ••. , F8 (2m)}, and

so on. There are L "page frames," where Lis some
suitably chosen number, and a frame is an m-bit
register. The "page table" consists of L lines,
where line t gives the number of the page residing
in frame t, and a. test bit which ~s 1 iff frame t

&OOLB-4-V

'lJ'B.';Ig~!/r..r A.l./6NN/;AIT" Nli1?"/IN:11ZI' I/

Fig. 3. Control for the high speed execution
of loops with IF statement

9't:J..3e I

MOD'E-'81r R.Et51sre12.s
1 e k .,.._, m.

r~~h I 1-------1-
2.

L '-----<i----'

0

0

i..£A./J//l/t!i IJA!ES
Pe>.s1;10N
couNTE/f?.

'l'a.3e2

,04 6E rAaLIJ
'P A6£ AJ (). 7riST .!Ir

{)

LL.... _____ _..

PA6E
7,1,.'/U .. E

Fig. 4. Implementation of the MFC

33

.
{,

TD
ME NOR.'f
At>Df.2ES.5
6EAIERA7FJR

has at least one 1 (1 .::_ t .::_ L). A page is brought
to the frames iff it has at least one 1. (We
assume that the sum of all the bits in a given
page is also stored in memory, and that this bit
is tested before the page is brought out.) No
page is brought to the frames more than once. Any
frame can hold any page. When the time comes to
bring new pages into frames, a frame is refilled
iff all the l's of the page originally residing in
this frame have been used up (as indicated by its
test bit). We will see that the l's in frame 1
are always used up before refill-time, and hence
its test bit should be permanently fixed at O.

We start by bringing L pages into the L
frames. Then we choose the leading 1 in each of
them columns, i.e., the leading 1 among the 1st
bits of all frames, the leading 1 among the 2nd
bits of all frames, and so on. The values of the
index I corresponding to these bits lead to exe
cutable instances of statement S, and they do not
cause memory conflicts. If the position of the
leading 1 in the kth column is t, then the value i
of index I corresponding to this bit is given by

i = (number of page in frame t - l)m + k

(1 .::_ k .::_ m, 1 .::_ t .::_ L, 1 .::_ i .::_ u)

If the kth column has at least one 1, then the
index value i corresponding to the leading 1 goes
to the Memory Address Generator.

Before the process is repeated, we must reset
the leading 1-bit in each column and update the
test bit for each frame. New pages are brought
into the frames whose test bits are equal to 0.
And we start all over again. If the loop-size is
large and the steady stage is reached, we should
be able to get out m (or close to m) conflict-free
index values from the MFC, for a number of times.

5. Example

In this section we present an example of
handling sparse array operations using the method
of the previous section. As was mentioned earlier,
the idea can be used for a register-to-register
pipelined processor as well as for a parallel ma
chine as sketched here.

Consider the program of Fig. S(a), a segment
of a larger program, in which the X array is
tested and C(I) is updated whenever X(I) is non
negative. Fig. S(b) shows those index values (I)
for which this test is true. Given a memory sys
tem with five memory units, conflict-free access
to array elements is guaranteed except for such
subscripts as SI, lOI + 3, etc. Such a memory is
shown in Fig. 6.

A snapshot of the system in Fig. 3 is shown
in Fig. 7. It is assumed that the entire mode
function has been computed and stored in mode-bit
registers inside the MFC. The contents of the
mode-bit registers are shown in the first row in
Fig. 7.

We now have the problem of accessing only
hose elements of arrays for which the mode bits

34

DO I = 1, 15

IF (X(I) ~ 0)

THEN C(I) = A(2I + 1) + B(I + 3)

END

(a) The program segment

1, 3, 4, 7' 8, 9, 11, 12, 13, 15

(b) Values of I for which X(I) > 0

Fig. 5. Program with IF in loop

Fig. 6. Memory units with stored arrays
MEMORY
ADDRESS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

B
9

A·
5

are 1. The 15 bits (one per loop iteration) are
folded over in rows of length 5 (one column per
memory unit). After one leading one's detection
in each column, mode bits corresponding to index
values 1, 7, 3, 4, and 15 are selected and they
appear at the outputs of MFC. At the same time
the MFC outputs five l's to the Mode-Function
Register. The array elements A(3), A(l5), A(7),
A(9), and A(31) correspond to index values of 1,
7, 3, 4, and 15.

Using the code 0 for this first set of

elements and referring to Fig. 6, we see that all

() elements in the A array can be fetched with

out conflict. Similar statements can be made

about accessing the () elements in the B and C

arrays. The second cycle in Fig. 7 shows the
mode bit registers after the first set of l's are
deleted and the results of a second leading one's

detection are presented with the Cl
elements are also marked in Fig. 6.

code: the
On a third

cycle, only one element, marked 4 , would be
accessed. Note that five elements are accessed
on the first cycle, four on the second and one on
the third. The effective memory bandwidth will
always drop off toward the end of a vector access,
but will remain high on earlier cycles as long as
the addresses are uniformly distributed across the
memory units.

1 2 3 4 5 1

MODE-BIT 1 0 1 1 0 0
REGISTERS 0 1 1 1 0 0

1 1 1 0 1 1
MODE-FUNCTION

2

0
0
1

COMPRESSOR
f_i_index values)

1 7 3 4 15 11 12

MODE-FUNCTION

COMPRESSO:) 1 1 1 1 1 1 1
fJ.mode bits
HEM. ADDRESS

GENERA:~ 7 2 1 2 3 - 4
(A Arra
PARALLEL
MEMORY A(31) A(7) A(3) A(9) A(lS) - A(l7)
OUTPUT
ALIGNMENT I A(3) A(l5) A(7) A(9) A(31) A(23) A(25)
OUTPUT
HEM. ADDRESS
GENERATOR
I (B Array)

8 9 8 8 10 10 10

PARALLEL
MEMORY B(4) B(lO) B(6) B(7) B(l8) B(l4) 8(15)
OUTPUT
ALIGNMENT I B(4) B(lO) B(6) B(7) B(l8) B(l4) B(l5)
OUTPUT
PARALLEL
PROCESSOR C(l) C(7) C(3) C(4) C(l5) C(ll) C(l2)
OUTPUT
ALIGNMENT II

C(3) C(4) C(l5) C(l) C(l2) C(8) C(7)
OUTPUT
HEM. ADDRESS
GENERATOR 15 14 14 16 13 16 15
(C Array)

First cycle. All memory Second cycle.

Next, consider the processing of data for
this program using the five processor parallel
machine of Fig. 3. The Memory Address Generator
calculates from index values supplies from MFC and
vector descriptor supplied by the control unit the
proper addresses of array elements. For example,
an array indexed as A(a0 + ai) has a0 , a,

BaseUnit' and BaseAddr included in the vector

descriptor, where BaseUnit and BaseAddr are memory

unit number and address of A(l). For each index
value i the address (f(a0 + ai + BaseUnit - l)/ml

- 1) + BaseAddr is supplied to memory unit 1 +
(a0 + ai + BaseUnit - 2) mod m. For details, see

[LaVo80]. We see that the array elements from A
and B arrays are not paired properly for proces
sing.

This leads us to our final point, consider
ation of data alignment between memory units and
processors. It is obvious that if a crossbar
switch is provided between processors and memo
ries, then the proper alignments would be pos-

sible. Instead of an O(n2) gate switch between n
memory and processor units, however, we can employ
an O(n log n) gate omega network [Lawr75], because
only uniform shifts and squeezes are involved.
Thus, an array indexed as A(a0 + ai) can be

aligned with an array indexed as B(i), by a shift

3 4 5 1 2 3 4 5

0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0

8 9 - - - 13 - -

1 1 0 0 0 1 0 0

5 4 5 - 6 - - -

A(23) A(9) A(25) - A(27) - - -
A(l7) A(l9) - - - A(27) - -

9 9 - - - 10 - -

B(ll) B(l2) - - - B(l6) - -

B(ll) B(l2) - - - B(l6) -
C(8) C(9) - - - C(l3) - -
C(9) - C(ll) - C(l3) - - -

15 - 15 - 16 - - -

All memory Third cycle. All memory elements
elements read or written elements used in this cycle used in this cycle are denoted by
in this cycle are denoted are denoted by a in Pig. 6. d in Fig, 6.
by 0 in Pig. 6.

Fig. 7. A snapshot for example in Fig. 5

35

of a0 and a squeeze of a. Additionally, a shift

by the difference in their base memory unit num
ber is required.

These ideas can be clarified in our example.
Notice that the A array is stored beginning in
unit 1, whereas the B array begins in unit 3.
Thus, B must be left-rotated by distance 2 because
of its base address, plus 3 because of its sub
script (I+ 3), for a total of 5, which is pre
cisely the number of memory units. A rotation of
distance 5 (mod 5) is no rotation at all.

The A array,'on the other hand, requires a
left rotation of 1 (mod 5) because of its sub
sc:ipt (but none due to its base address in memory
unit 1) and a squeeze of distance 2 (mod 5) be
cause of its subscript. This combination is pre
cisely that between input and output of Alignment
Network I. Since pair elements are correctly ac
cessed by the scheme described earlier, they are
correctly aligned using methods for dense arrays.
More discussion of dense arrays and omega net
works can be found in [Lawr75]. It may be ob
served that the scheme we are using for sparse
arrays can be. regarded as substituting for one
element of a dense array, another desired element
that happens to be stored in the same memory
unit. For example, A(l5) is substituted for A(5)
and A(31) is substituted for A(ll). Thus, the
omega network handles the alignments properly.

6. Remarks and Conclusion

The solution of linear arithmetic recurrences
with mode bits will be studied somewhere else.
Here it would suffice to make a few comments.
Since linear arithmetic recurrences of low order
can be processed in time proportional to the log
of the serial time, breaking a recurrence into
two parts to be processed consecutively could
actually slow down a computation. In certain
cases, however, breaking up a large recurrence is
quite profitable. If a very large number of small
recurrences arise, an MES machine (or an MEA ma
chine with very many instruction sequences) could
execute each one serially (or using limited pro
cessor algorithms [ChKS78]). For register-to
register pipeline processors with vector registers
(e.g., CRAY-1), register-contained recurrences are
desirable since no memory access is needed other
than at the beginning and end. Also, on any ma
chine, remote term recurrences can be speeded up
by only computing the final sequence required to
obtain the remote terms.

To illustrate the basic idea, consider an
R<n,l> recurrence defined by

(1 ~ i ~ n)

with appropriate initial conditions. Suppose this
appears in a loop with an IF statement, so a inode
bit pattern controls its execution. If .one mode
bit is zero, then this may be computed as two
independent recurrences, using an initial value
for x in the zero mode bit position. Similarly
if some a. happens to be zero, the recurrence c~n

l. .

36

be broken into two recurrences.

A new scheme for handling array operations
inside DO loops with IF statements has been pre
sented in this paper. The idea of Mode Function
Compressor can be easily extended to processing
of any type of sparse arrays on a parallel ma
chine. We also gave a new result on solving
Boolean recurrences.

Acknowledgment

We thank David Padua for his helpful discus
sions.

References

[Bane79] U. Banerjee, "Speedup of Ordinary Pro
grams," Ph.D. thesis, University of
Illinois at Urbana-Champaign, Dept. of
Computer Science Rpt. No. 79-989, Oct.
1979.

[BuKu71] P. Budnik and D. J. Kuck, "The Organiza
tion and Use of Parallel Memories,"
IEEE Trans. on Computers, Vol. C-20, No.
12, pp. 1566-1569, Dec. 1971.

[ChKS78] S. C. Chen, D. J. Kuck and A. H. Sameh,
"Practical Parallel Band Triangular Sys
tem Solvers," ACM Trans. on Mathematical
Software, Vol. 4, No. 3, pp. 270-277,
Sept. 1978.

[Kuck70] D. J. Kuck, "A Preprocessing High-Speed
Memory System," IEEE Trans. on Com
puters, Vol. C-19, pp. 793-802, Sept.
1970.

[Kuck76] D. J. Kuck, "Parallel Processing of Or
dinary Programs," in Advances in Com
puters, Vol. 15, pp. 119-179; Ed. by M.
Rubinoff and M. C. Yovits (Academic
Press), 1976.

[Kuck78] D. J. Kuck, The Structure of Computers
and Computations, Vol, I, John Wiley &
Sons, Inc., NY, 1978.

[KuPa79] D. J. Kuck and D. Padua-Haiek, "High
Speed Multiprocessors and Their Com
pilers," Proc. of the 1979 Int 1 1. Conf.
on Parallel Processing, pp. 5-16, Aug.
1979.

[LaVo80] D. Lawrie and C. Vora, "The Prime Mem
ory System for Array Access," Proc. of
the 1980 Int'l. Conf. on Parallel Pro
cessing, Aug. 1980.

[Lawr75] D. H. Lawrie, "Access and Alignment of
Data in an Array Processor," IEEE Trans.
on Computers, Vol. C-24, No. 12, pp,
1145-1155, Dec. 1975.

[Towl76] R. A. Towle, "Control and Data Depen
dence for Program Transformations," u.
of Ill., C. S. Rpt. 76-788, Mar. 1976.

VASTOR: A Microprocessor Based Associative
Vector Processor for Small Scale Applications*

W.M. Loucks, W.M. Snelgrove and S.G. Zaky

Dept. of Electrical Engineering,
University of Toronto

ABSTRACT

A word-parallel, bit-serial associative processor built around an array of 1-bit wide
microprocessors is introduced. It is intended as a low-cost auxiliary processor in small scale
computer systems. Data are organized in an array of fixed number of elements, variable word-length
vectors. Processing proceeds in parallel on all elements of a vector. Information about the location
and word-length of these vectors is stored in a small general-purpose. computer which is used to
control the storage and processing array.

I. INTRODUCTION

The parallel processing capabilities of an
associative processor are highly attractive in
many non-numeric applications. Operations such
as searching and sorting are inherently parallel
in nature, since they may be regarded as a se
quence of basic operations such as compare,
shift, and mark performed in parallel on a large
number of operands. Many organizations have
been proposed for associative processors (8,
10]. Of these, the word-parallel, bit-serial,
or vertical (9], organization has received con
siderable attention. This is due to the fact
that the bit-serial organization leads to a con
siderable simplification of the hardware in com
parison with fully parallel schemes.

Because of the hardware intensive nature of
associative processors, they tend to be economi
cally viable only in large, high capital cost
systems. The purpose of this paper is to intro
duce an associative processor that is meant for
relatively small applications. It is based on
an array of commercially available 1-bit wide
microprocessors. Machine organization is word
parallel, bit-serial. Data is stored and pro
cessed in the form of vectors consisting of a
fixed number of elements. The machine has been
dubbed VASTOR for Vector Associative Store TO
Ronto.

VASTOR is intended as a special purpose
processor to be attached to a conventional
mini-computer system. In what follows, the min
icomputer will be referred to as the host. In
such a system, VASTOR would handle those parts
of the work load that can benefit from its asso
ciative and vector capabilities. Use of 11as-0cia
tive processors in this manner has been sug-

* This work was partially supported by the
Natural Sciences and Engineering Research
Council of Canada under research grant #A8994

CH1569-3/80/0000-0037$00.75 (f) 1980 IEEE

37

gested by many authors, e.g. (5]. Also many po
tential applications have been studied [3]. The
main feature of VASTOR is that it represents an
associative structure and its implementation
that are economically viable in a minicomputer
system environment. A prototype processor has
been constructed and tested.

The main constraints in the design of VA
STOR were low cost and modularity. This re
quired that readily available components be
used, that internal communication and control be
kept simple, and that VAS TOR should not 0·1erload
the computer to which it is attached. Modular
ity also meant that backplane interconnections
between modules should be kept simple and easily
expandable.

The VASTOR processor, figure 1, consists of
two main components, namely the processing array
and the controller. The processing array con
tains all the storage and processing elements cf
VASTOR. The controller translates high level
commands received from a scalar machine -the
host- into sequences of control signals for the
processing array. This paper presents a practi
cal implementation of the array and its control
ler, and describes input/output transfers bet
ween the array and the host computer. Algor
ithms that may be implemented on vector oriented
machines such as VASTOR are readily found in the
literature (2, 3 and 7].

II. MACHINE STRUCTURE

The organization of the VASTOR array is il
lustrated in figures 2 and 3. The storage sec
tion in the array is an n-word memory, with a
word length of several kilobits. Operations are
performed on vectors of data elements, figure 2,
when the elements of a given vector occupy the
same bit positions in all words. While the num
ber of bits per element is the same for all ele
ments of a given vector, it may vary from one
vector to another. A 1-bit wide processing ele
ment PE is a part of every word. Shift-register
SH provides the main mechanism for data transfer

among VASTOR words, as well as between the array
and the outside world.

VASTOR's architecture, depicted in figures
2 and 3, has the properties both of an associa
tive processor and of an array processor, in the
sense in which those terms are defined in [10].
It is an SIMD machine, as are both of these
types (note that opcode lines are shared by all
cells in figure 2). Each cell contains a sto
rage element which may be used to mark indivi
dual words. The I/0 structure enables the host
to read from and write to marked words in the
memory. This allows VASTOR to be used as a con
tent-addressable memory for the host machine.
Each cell also has the ability to perform logi
cal and arithmetic operations on its memory un
der the control of the mark bit, so that one may
operate (in parallel) on all data elements sa
tisfying some arbitrary condition. The above
features give VASTOR the properties of an asso
ciative processor.

On the other hand, one may leave all words
selected and use VASTOR as an array of proces
sors. Its I/O structure allows large quantities
of data to be transferred to and from the host
machine via the parallel port on the right of
figure 2. I!O data transfer rate ranges from
0.5 to 8 Mbit/s, as will be discussed in section
V. Each cell C can perform data manipulation
operations on one word of the memory M. From
this point of view, VASTOR is an array proces
sor. Inter-processor communication within the
array enables handling of data organized in the
form of a one-dimensional array, hence the word
"vector" in the machine's name. Thus associa
tive operations may be seen as a particular case
of array processing, in which a preliminary com
putation is used to select data in certain cells
for further processing or output to the host ma
chine.

VASTOR operations are essentially word-par
allel, bit-serial. The major differences bet
ween VASTOR and other serial machines, e.g.
STA RAN [10], stem from pragmatic considerations:
component cost and backplane complexity.
STARAN's memory is multi-dimensional: data may
be accessed either by row (horizontally) or co
lumn (vertically) of a 256 row by 256 column me
mory array. These two modes of access involve a
relatively complex interconnection network,
which is referred to as a "flip network". Such
a network is not required in VASTOR.

VASTOR uses 256 conventional 1024 by 1 bit
random-access memories, all driven by the same
address lines (cf. figure 2). Operations can be
performed only on columns of memory. Because of
this it is a "vertical" computer similar to that
proposed by Shoeman [9]. The I/0 structure has
been designed to compensate for the resulting
difficulty in communicating with the "horizon
tal" host machine.

When the number of elements in a data vec
tor is greater than the number of cells in a co
lumn of memory, operations can be carried out on
"sub-vectors" of 256 elements each. This com
promise exists in Shooman's machine also.

As mentioned earlier, development of the
structure of VASTOR has been heavily influenced

38

by interconnection considerations. The array
has been designed to use only "daisy-chained"
and "bused" connections between circuit boards.
This allows new boards to be added at any time
to increase the size of the array with minimal
modifications to the existing backplane. The
structure is also well suited to large-scale
integration because of the small number of in
terconnections required between modules.

The main implication of the above restric
tion on backplane complexity is that it limits
the inter-word and associative facilities that
may be used. Hence, inter-word communication is
accomplished via a shift-register, which in
volves a daisy-chain connection between circuit
boards for both data and control information.
Moreover, a single bused connection common to
all words of the array combined with an analogue
to digital converter (not shown) are used to
provide limited accuracy associative testing.

The structure of VASTOR may be discussed in
terms of three separate features: the intra
word storage and computation, the inter-word
communication, and the associative testing capa
bilities. Each of these features is discussed
briefly below.

2.1 INTRA-WORD FACILITIES

Figure 4 shows the components of a VASTOR
word: two kinds of storage, a 1-bit processor
and one bit of a shift register.

The random-access memory referred to in the
figure as WK constitutes the 'jiorking store'.
Data are taken from this memory and returned to
it during computation. A second memory, refer
red to as BK, for .Q.acking store, is a serial me
mory. Its contents are swapped with the contents
of the working store in pages containing 256
bits per word. One more bit of storage is
available for each word in its part of the
shift-register SH. This may be used for tempo
rary storage of operands. It should be noted
that the intra-word facilities can be expanded
through the use of the line marked 'B' on the
figure.

The 1-bit processing element PE with which
VASTOR has been implemented is the Industrial
Control Unit - Motorola MC14500B. It performs a
limited set of primitive operations on external
data and a 1-bit internal accumulator called RR
(the .r.esult .r.egister). Another internal regis
ter, .Q.utput ,gnable or OEN, contains a mask which
is used to enable selective write-back into
either the working or the backing store. The
collection of the OEN registers in all words
constitutes the output enable vector.

2.2 INTER-WORD COMMUNICATION

The shifter SH is the primary medium for
inter-word communication. It is the only ma
chine feature that defines any order to the
words. The shift-register SH is divided into
8-bit segments as shown in figure 5. Each seg
ment of SH has two parallel bidirectional ports
A and B. The B port is connected to one "phrase"

[i

of eight VASTOR words.The A
ments are connected together
I/O bus.

ports of
to form

all seg
an 8-bit

Two multiplexers CIRC and SHMODE connect
the serial inputs of the segments of SH to any
of a number of sources. This allows data trans
fer between the shifter and VASTOR words to take
place in one of the following modes.

1 •

2.

3.

4.

VASTOR to shifter parallel mode
through the B port: in this mode the
source of data may be the processing
element PE, the working store WK or
the backing store BK.

VASTOR to shifter serial mode
through the SI port: in this mode up
to eight bits of data may be loaded
from any word of a phrase into the
shifter segment. This operation takes
place in parallel for all phrases.

Shifter to VASTOR
VASTOR words may be
from port B of the
processing element

parallel mode:
loaded in parallel
shifter SH via the

PE.

Shifter to VASTOR serial mode: 8
bits of data can be moved serially
from a shifter segment to any word in
the corresponding phrase. This is ac
complished via the combined use of the
output enable vector OEN and the abil
ity to circulate data within each of
the 8-bit segments of SH.

We should note that in the two serial modes
2 and 4, only one word of each phrase is in
volved in data transfer. This reduces the par
allelism in the array by a factor of eight.
However, the seria.l modes are necessary to sim
plify byte-oriented data transfer between VASTOR
and the host machine, as will be discussed in
section V.

2.3 ASSOCIATIVE TESTS

All VASTOR operations may leave a result in
register RR of the processing element. Contri
butions from all RR registers are summed, in an
analogue fashion, onto a single line. This is a
simple scheme to obtain a limited accuracy esti
mate of the number of responders S, i.e. the
number of words with RR:1. The most useful va
lues for this number are zero, one and more than
one. A simple analogue to digital converter is
used to extract this information from the ana
logue sum.

III. EXAMPLES OF VECTOR OPERATIONS

This section presents two examples of vec
tor operations in order to illustrate the capa
bilities of the VASTOR array. In the first ex
ample vector addition is described. The second

39

example deals with an associative search for the
largest element of a vector.

Let A and B be two vectors that are resi
dent in the VASTOR array, Figure 6a. It is re
quired to obtain a third vector R which repre
sents the arithmetic sum of A and B. Informa
tion regarding the two vectors A and B is stored
in a table in the controller. The table stores
the relevant parameters for each vector, e.g.
starting address in the array, number of ele
ments, number of bits, etc. The ADD operation
is initiated by the host computer by sending a
high level command specifying the function to be
performed and the two operands A and B. It is
not necessary for the host computer to specify
such details as the addresses of the operands,
the number of elements or the element lengths.
Operands are identified by means of pointers
into the operand table stored in the controller.
~hen the operation is completed, the controller
returns to the host the value of the pointer
corresponding to the result vector R.

Addition is performed in a bit serial, word
parallel manner. The sequence of operations is
given in Figure 6b. As indicated in the figure,
control of the sequence of operations and ad
dress calculations are performed in the control
ler, while vector operations are performed in
the array. The optional masking operation at
the beginning of the sequence disables those
words of the array for which the mask contains
"O"s. This may be needed when the vectors in
volved contain fewer elements than the number ·of
VASTOR words. The mask used in such operations
is set up at the time vectors A and B are
created.

An implementation of the binary search al
gorithm [3] for positive or unsigned integers is
given in Figure 6c. In this case the elements
of the vector are scanned starting with the MSB.
A one-bit wide vector TEMP masks out the words
that have been rejected at any stage of the
search. The associative sum S is used to deter
mine the first bit position where one element of
TEMP contains a "1" while all other elements
contain "O"s. At the end of the search TEMP
contains "1"(s) in the word(s) containing the
largest element(s).

The above examples illustrate the operation
of VASTOR on short vectors with all bits conti
guous in fields. When there are more elements
in a vector than words in the array, the vector
may be broken into several subvectors. Each
subvector is operated on independently. It is
also possible that the elements of a vector may
occupy two or more non-contiguous fields in a
word. In this case the controller repeats the
operations on the different fields of the vec
tor.

IV. THE CONTROLLER

The function of the controller is to reduce the
control overhead required from the host m~chine
to drive VASTOR. In order to keep the VASTOR
array continuously active, 50 control bits are

needed every microsecond. That ·is, a control
bandwidth of 50 bits/microsecond must be sup
ported. This rate exceeds the bandwidth of the
entire PDP-11 UNIBUS. Hence, it must be reduced
to a level which does not prevent the host from
performing operations not related to VASTOR.
The controller receives high level commands from
the host machine, requiring a much lower control
bandwidth. These commands are then translated
into the sequences of control signals needed to
drive the VASTOR array.

The complexity of the commands that have to
be interpreted by the controller is represented
by the examples given in seotion III. In order
to support such operations, a hierarchical ap
proach has been adopted. Each level in the
hierarchy serves to reduce the bandwidth re
quired from the higher levels. Furthermore, in
terpretation of high level commands has been
made relatively simple because of the use of
well defined interfaces between various levels.

The hierarchi9al approach led to the con
troller organization shown in Figure 7. It con
sists of three distinct units. The microcon
troller which performs low level looping control
operations, the buffer memory which is used as a
communications medium, and the microprocessor
which is responsible for interpreting high level
commands received from the host and for space
allocation within the VASTOR array. As such,
the microprocessor performs functions similar to
that of the "interpreter" in ECAM [1]. The mi
crocontroller corresponds to the iteration con
trol logic in ECAM. The three subsystems of VA
STOR 's controller are discussed briefly below.

4.1 THE MICROCONTROLLER

The microcontroller UC serves to remove
some of the redundancy at its output, the array
control lines, in order to reduce the bandwidth
required at its input. Its sophistication, and
therefore cost, can be selected to provide al
most any desired bandwidth at its input. We
have chosen to implement a device that executes
sequences of microcode stored in an internal
Read Only Memory, with primitive branching and
looping capability. Input commands to the mi
crocontroller come from a buffer memory M which,
in turn, is filled by the microprocessor UP.

Linear microcode sequencing provides a
large reduction in the control bandwidth. Hence,
it was adopted as the main sequencing mechanism
in the microcontroller. The starting address
for a given microcode sequence is loaded from
the buffer M. Since data can be made to appear
in the VASTOR array in fields of consecutive lo
cations, further compression of the control in
formation is obtained with a simple loop coun
ter/index register. This counter is decremented
and tested to control microprogram loops. It
also serves as an index register to modify the
addresses transmitted by the controller to the
array memory.

Some further control bandwidth compression
is obtained by introducing a data-dependent
branch. The associative sum of responders is

40

compared to a reference in the microcode. One of
two branch addresses is then selected from the
buffer M.

4.2 THE BUFFER MEMORY

The buffer memory is divided into sixteen
separate task control blocks. These blocks are
filled by the microprocessor and interpreted by
the microcontroller. Whenever the microcontrol
ler finishes a task it interrupts the micropro
cessor to request the address of the next con
trol block. Task control blocks contain up to
26 bytes of information. This includes starting
and loop control information for the microcode
of the microcontroller. It also includes speci
fications for the operands in the VASTOR array.

4.3 THE MICROPROCESSOR

Controller algorithms represented by one
control block in the buffer memory take from 1
to several hundred microseconds to complete and
to interrupt the microprocessor. These inter
rupts are usually quite simple to service but
would be uneconomically frequent for the host
machine. The microprocessor is therefore in
cluded to provide further compression of the
control bandwidth. It simplifies the interfac
ing software by translating high-level opera
tions into sequences of microcontroller tasks.

In addition to sequencing control, the mi
croprocessor performs the storage management
function. This includes allocating and freeing
fields of storage, garbage collection, paging
variables into the working store from the back
ing store, allowing the widths of elements (e.g.
integers) to expand and contract, and segmenting
vectors longer than the VASTOR array into man
ageable components.

V. INPUT/OUTPUT

Data transfer between VASTOR and the host
machine is generally difficult because of the
incompatibility of the addressable units in the
two machines. While a host machine generally
obtains all bits of a single element of a vector
with one reference to its memory, VASTOR obtains
one bit of each element. The transposition re
quired to match the two machines is the source
of the difficulty.

The simplest type of vector to transfer is
a boolean vector, which is only one bit wide,
figure Ba. In order to transfer such a vector
from the host into the VASTOR array, its ele
ments may be shifted serially by bit into the
shift register SH. This is followed by a trans
fer from SH to a column of WK using the parallel
mode (mode 3, section 2.2). If elements of the
boolean vector are packed into bytes in the host
machine, as is the case in some versions of APL,
shift register SH may be loaded serially by byte
through its 'A' port. In the current implemen-

j:
I
I

tation, data rates for the bit-serial and byte
serial modes are 1 Mbit/s and 1 Mbyte/s respec
tively.

Consider now the case where data is pre
sented to VASTOR so that some number of consecu
tive bits must be loaded into a single word,
figure 8b. This may be achieved by first load
ing register RR of the ICU from the CONST line,
figure 4, and then storing the content of RR in
the enabled word. Due to that two-step sequence
and the fact that only one word is enabled at a
time, the transfer rate is limited to 500
Kbits/s. ·

The phrase structure may be used to in
crease the transfer rate of byte-organized data,
as shown in figure 8c. This corresponds to mode
4 of section 2.2. The data rate achievable in
this case is 2.5 Mbits/s. In this approach con
secutive words from the host machine are not
loaded into consecutive words of VASTOR.
Rather, they are loaded into the same relative
positions in consecutive phrases. A sentence

structure consisting of two phrases per sentence
also exists and may be used for 16-bit wide 1/0
transfers. The detailed procedure is given in
reference [6].

VI. PERFORMANCE IN APPLICATION AREAS

This section discusses potential applica
tions of a VASTOR processor. The primary appli
cation of VASTOR is as an auxiliary processor in
a minicomputer system. In this case, it would
serve to enhance the performance of the system
in vector and associative operations. A second,
and equally important, potential application
derives from the fact that VASTOR can be re
garded as a collection of 1-bit wide controllers
driven in parallel by a host computer. Each of
these two application areas is discussed briefly
below.

Table 1.

Performance Comparison

Between VASTOR and a PDP-11/45
with Bipolar Memory in Vector Operations Involving

256-Element Vectors, with 16 Bits per Element.

Operation Result VASTOR PDP-11/45
Execution Time ·Execution Time
Microseconds Microseconds

Compare Vector 4 us/bit *
= 64

Addition Vector 10 us/bit *
= 160

Mark Vector 3 us/bit *
Largest = 48
Element

Compare Vector 3 us/bit *
to Scalar = 48

Sum Scalar 336 us/bit *
Reduction = 5376

Vector and associative operations are per
formed quite frequently in the operating system
software of a computer. Symbol table manipula
tion and file management are two such examples.
Also, some computer languages, such as APL and
SNOBOL, are based upon the organization and ma
nipulation of data in the form of vectors [4] or
character strings [7]. A VASTOR processor is
ideally suited to such tasks, and hence can take
a considerable load off its host computer. Ta
ble 1 gives an estimate of VASTOR's performance
in this area. The table gives execution times

16 bits 3.225 us/word * 256 words
= 825.6

16 bits 1. 9 us/word * 256 words
= 486.4

16 bits 2.5 us/word * 256 words
= 640

16 bits 2.5 us/word * 256 words
= 640

16 bits 1. 5 us/word * 256 words
= 384

for a number of operations on 256-element vec
tors, where each element is 16 bits wide. These
times are based on the current implementation
using a processing element, the ICU, which runs
at a 1 microsecond cycle time. For comparison,
the times required to perform the same opera
tions in a PDP-11/45 minicomputer are given. As
can be seen from the data in Table 1, VASTOR is
an order of magnitude faster than a PDP-11/45
when executing tasks that involve parallel oper
ations on all elements of a vector. However,
operations such as sum reduction (adding all

41

elements of a vector) take much more time. In
this case, VASTOR's performance is limited by
its inter-word communication facilities. How
ever, when dealing with much longer vectors VA
STOR 's performance on sum reduction approaches
its performance on vector addition. This is due
to the fact that many elements of the vector
would be stored in the same word of the array.

At the present stage of development of the
VASTOR processor, it is very difficult to obtain
an accurate estimate of the gain in performance
that would result from adding a VASTOR processor
to a minicomputer system. While the data in Ta
ble 1 indicate that considerable gain can be re
alized, this gain will be partially offset by
the overhead resulting from transferring data
between VASTOR and its host computer. This ov
erhead is expected to be of the same order as
that involved in transferring data between the
main memory of a computer and a disk file.
Therefore, VASTOR is most suited for use in ap
plications where a number of vector operations
have to be performed before a given vector is
transferred back to the host machine.

Stand-alone ICU's have applications in pro
cess control and monitoring. VASTOR may be used
in situations where a number of ICU's performing
similar tasks are to be interfaced to a common
host computer. In this case, VASTOR represents
an organized way of performing I/0 and control
functions. Each ICU is capable of sampling data
from and controlling an external device at data
rates of the order of a few kilohertz. Status
information and data such as minimum values,
maximum values, averages, setpoints and enabling
bits for each device may be kept in the corres
ponding working storage. The main limitation to
this approach is that it is necessary to syn
chronize data transfer between the ICU's and the
various devices.

VII. CONCLUSIONS

The VASTOR processor presented in this pa
per represents a trade-off between the capabili
ties and cost of the inter-word communication
facilities in an associative processor. The re
sult of this trade-off is a processor that al
lows a nontrivial associative processing capa
bility to be incorporated in small scale mini
computer systems. The communication hardware
provided in the VASTOR array enables data trans
fer among the words in the array without requir
ing costly and complicated hardware. It also
results in simple backplane interconnections
between different modules. The modular struc
ture of VASTOR allows .its capabilities to be ex
panded easily and economically.

Some of the limitations of the current im
plementation of VASTOR are due to the slow speed
of the processing element used (the ICU). A
faster and more powerful 1-bit wide processing
element can lead to a considerable increase in
performance without the need for any changes to
the architecture. In fact, because of the low

42

number of interconnections involved, the struc
ture is well suited to integration. Some of the
possibilities would be the implememtation of an
array of 1-bit processors, or processors and me
mory on a single chip. Another possibility
which is currently being investigated by the au
thors is the use of a table driven processing
element made of memory only. Some other limita
tions of VASTOR, such as the difficulty of re
ordering a vector, are more fundamental. In
order to perform such operations at high speed,
a more complex, and hence more costly, inter
word communication scheme must be provided.

REFERENCES

1. Anderson, G.A., and Kain, R.Y., "A Content
Addressed Memory Designed for Data Base
Applic<itions", Proc. 1976 International
Conf. on Parallel Processing, IEEE, New
York, 1976, pp. 191-195.

2. Baudet, G. and Stevenson, D., "Optimal
Sorting Algorithms for Parallel
Computers", IEEE Trans. Comput., vol.
C-27, pp. 84-87, Jan. 1978

3. Foster, C.C., Content Addressable Parallel
Processors Van Nostrand Reinhold Co.,
New York, NY, 1976.

4. Grey, L.D. A. Course in APL\360 with
Applications, Addison-Wesley Publishing
Co., Reading, Mass., 1973

5. Kaplan, A., "A Search Memory Subsystem for
a General-Purpose Computer", Proc. AFIPS
1963 Fall Jt. Comp. Conf., Vol. 24,
Spartan Books, Inc., Baltimore, Md.,
1963, pp 193-200.

6. Loucks, W.M. and Snelgrove, W.M., "VASTOR
1978", Univ. Toronto Computer
Engineering Report 13, June 1978.

7. Mukhophadhyay A., "Hardware Algorithms for
Nonnumeric Computation", Proc. 5th Ann.
Symp. Comp. Arch., April 1978, Palo Alto
CA. , pp • 8-16.

8. Parhami, B., "Associative Memories and
Processors: An Overview and Selected
Bibliography", Proc. IEEE, Vol. 61, pp.
722-730, June 1973.

9. Shoeman, W., "Parallel Computing with
Vertical Data", Proc. 1960 Eastern Jt.
Comp. Conf., Eastern Jt.:c Computer
Conf. 1960, pp 111'-115.

10. Yau, S.S. and Fung, H.S. "Associative
Processor Architecture - A Survey", ACM
Computing Surveys, Vol 9, No. 1, pp.
3-27, March 1977.

i~
1,
I

HOST COMPUTER

EL- DATA HIGH LEV
COMMAND s i--

1- --- ----- --1

1 I
CONTROLLER 1--- I

I
I

ONTRO~
IGNALS

I
I~
I

I
I

I
STORAGE AND I

I PROCESSING I
I ARRAY I
I
I VAS TOR I
L ________ J

Fig. 1. The VASTOR processor

Fig. 2. Control and data paths

WORDO

WORDN-1

STORAGE

VARIABLE
ELEMENT
LENGTH

r ·1

'--v---J
N-ELEMENT

VECTOR
(N~ 256)

...
0

8
I a.

0

10 5

!z
~
VJ
z
0
u

M-MEMORY

Cj-CELLj

t-BIT
PROCESSING

ELEMENT
(lcu)

43

8

CONTROLLER

,---------.,
I

1/0

8

PHRASE
0

PHRASE 31

Fig. 3. Organization of
the VASTOR ARRAY

BK
BACKING
STORE CCD

WK
WORKING
STORE RAM

DATA

CONST•

B

PE

RR

SERIAL IN

__ l __ ~
SHIFT
REGISTER A

SH

--r--
SERIAL OUT

• •

Fig. 4. One word of the storage
and processing array

WORD 0

WORD

WORD 7

ta:
0
0..

Co

TO NEXT
PHRASE

ADDRESS LINES

+ COMMON TO ALL ARRAY WORDS

FROM PREVIOUS
PHRASE

SH

A PORT
ENABLE

• t-a:
0
0..

:<

FROM PREVIOUS
PHRASE

_LJ CONTROL
SHIFT
REGISTER

SH CONTROL* -r Fig. 5.

• COMMON TO ALL PHRASES.
TO NEXT
PHRASE

44

The phrase structure

Fig. 6a. Vector addition
example

~ADDRESS
CARRY MASK ~ TEMP

WORD NO--T""".r-r"::!-...,.,,-..---,---.----.+:r---f'-,,...f----.

I
0

0

OEN RR

--11~~1~

CLEAR C
OEN + MASK
FOR i = O, W - 1

ADDRESS (Ai)

ADDRESS (Bi)

ADDRESS (Ri)

ADDRESS (C)

LSBA + i

LSBB + i

LSBR + i

= LSBC

Ri + Ai v Bi v C

C + AiABi V AiAC V BiAC

WK ICU
(a)

Clear carry.vector - array operation (optional)
Vector array operation
Controller operation
Address calculation - controller operation

Address calculation - controller operation

Address calculation - controller operation

Address calculation - controller operation

Vector array operation

Vector array operation

Fig. 6b. Implementation of vector addition

TEMP+ MASK
FOR i = O, W - l

Vector array operation
Controller operation

ADDRESS (Ai) MSBA - i Address calculation - Controller operation

RR+ TEMP.Ai

IF (S = 1)
EXIT

ELSE IF (S -I 0)
TEMP + RR

Fig. 6c.

Vector array operation

Controller operation
Controller operation
Controller operation
Vector array operation

Search for the largest element

45

WORD I

Fig. 7. Controller hierarchy

ADDRESS

WORD NO. N BITS !BYTE

j
r I I r

_fL

V/1//,1

Vl/JA

(a) (b) (c)

~//;z;J AREA LOADED WITH I TRANSFER

46

HOST COMPUTER

CONTROL COMMAND
,----------,
I I
I I
I MICROPROCESSOR UP I

a: I .5-5
BIT/J.Js

I
I
I ~I g,

!z I
0
ul

I

BUFFER
MEMORY

M

I MICROCONTROLLER UC
I
I

- - - _J

I
L ____ _

MICROINSTRUCTION 50 BIT/ µs

VASTOR ARRAY

Fig. 8. Alternative modes for
input/output transfers

An Outline of the Computer System with Associative Pipelining

Simon Ya. Berkovich

Department of Electrical Engineering and Computer Science
The George Washington University

Washington, D.C. 20052, USA

Summary

The fundamental ways for increasing the pro
ductivity of computer systems are parallelism and
pipelining. In both cases for the sake of effi
ciency the computing processes should be decompos"d
into possibly small and uniform parts. The most
appropriate elementary computing operations from
this point of view are provided byafully parallel
word-organized associative processor [l]. Unfortu
nately, the successful application of the associa
tive processors comes across two limitations: the
implementation of such devices of sufficiently
large scale is rather diffi~ult and the necessity
to make supplementary moves of data in and out of
the working area cut down the gain in their fast
processing.

In this work we consider a new type of compu
ter system - dual to the associative processor.
Its main component is a homogenous array of cells
[2], which realizes pipelining transformations in
space, isomorphic to parallel transformations
realized by the associative processor in time (fig.
l). The algorithms of the associative processing
are based on the alternation of two types of
commands: (l) <P - the isolation of the subset of
words having a given indicator and (2) A - the
multiwriting of given codes simultaneously in cer
tain digits of all the words of the isolated sub
set. The program in (<P-A) form for the processor
controls the pipeline elements as well. The data
are processed during transmission and the number
of the pipeline e.lements is equal to the length of
the program rather than to the amount of these
data. The above-mentioned limitations on the size
of the device and speed of the computing process
fall away, and it gives fresh impetus to the appli
cation of the long and well developed theory of
associative processing.

The principle of associative pipelining can be
applied to different types of computers from rela
tively small specialized devices to very large data
processing systems. The computing process can be
constructed as a succession of the uniformly orga
nized data transmissions; if the program is longer
than the available pipeline length, the processing
can be arbitrarily divided into successive steps.
A general purpose architecture is shown in fig. 2 ..

The pivotal part of the computing system is
the associative pipeline in the form of a closed
curve to decrease possible losses due to fragmen
tation. Information storage is spread over a num
ber of some devices with cyclic access, which are
called DLS - "Drum-Like Storage," because a drum

CH1569-3/80/0000-0047$00.75 (£) 1980 IEEE

47

presents a clear view of word stream supply. Main
functions of the control rocessor are the presen
tation of control programs in <P-A form and the
dynamic allocation of the DLS and pipeline
resources. The switching circuit establishes the
necessary paths between DLS and output units
through some segments of the pipeline and directing
interfaces. The control program can be sent to
such a path essentially simultaneously with the
data stream.

In the framework of this architecture it is
simple to achieve multiprogramming facilities by an
interleaving technique for data transmissions. The
solution of the concurrency problems can be orga
nized in such a way that as soon as some informa
tion starts out to transfer from one DLS to another
DLS, all the requests to the former should be re
assigned to the latter, and the access to the up
dated information will be available right away,
before the whole process of updating will be com
pleted.

Associative transformations of isolated words
should be extended to some operations concerning
their collective properties. These operations can
be applied to sets of short words considered as
long-word packets, and to data collection as a
whole for sorting, eliminating duplicates, max/min
and so on. It is more easy to provide such faci
lities for the associative pipeline than for the
associative processor, because the processor re
quires extra circuitry in bulk, while the pipeline
needs only some additional equipment for its indi
vidual devices - directing interfaces and output
units.

The pipeline operations are efficient for mani
pulating with different types of information
structures, especially in a table form. They may
be used in sublanguages based on relation~] algebra
as SEQUEL. Associative pipelining is adjustable
for most reasonable table functions as MAX, MIN,
COUNT, TOTAL and for transformation operators like
SELECTION, PROJECTION, DIVISION, and JOIN. The
computer system with associative pipelining is
beneficial for inverted file directories, which
can be organized by presenting the keys of records
in packet form. The access may be accelerated by
an order of magnitude and even more. Associative
pipelining provides not only all necessary infor
mation, corresponding to simple key matching,
but more complex searching criteria, including
logical functions and partial name matching can
be accomplished in the same time.

The most crucial question for system applica-

tions is the_ pipeline length, i.e., the number of
{4>-A) elements to be implemented. Estimates show
that one such element with word length - r about
40 bits should contain approximately -0.5•103 gates.
A moderate system of about 105 logic circuits may
present a pipeline with -200 elements. This is
fairly enough for most information retrieval proce
dures, for which are typical the algorithms with
O{r) number of ~qi-A) elements. A larger systemon
the order of -10 logic circuits may present a pipe
line with -2,000 elements. Such systems may be
used for computational problems for some kind of
algorithms with O(r2) number of {4>-A) elements.

The idea of associative pipelining is in accord
with data-fl ow concept [3]. The advantages of this
approach are hardware/software uniformity, high
speed, easeofoperational control and multi-access
using a corrmunication computer. This system natu
rally integrates into network environment. It is
worthwhile to notice that a reply processing can
be initialized before the completion of the request,
when it is in {4>-A) form. Because any algorithm
can be realized at the rate of word transmission
with no bottle-neck situations, associative pipe-
1 ining is appropriate for code conversion by send
ings and receivings of data, e.g. for any kind of
encryption and error correction, and for rather
more complicated real-time signal processing.

p
R
0
c
E
$
s
0
R

L

A
,--- 1''RA.HS-

FOR.MA.11-0N

J

... _,.. -- .,.

PI PEL.IN&

F19. l

A '5C:.OC. IA Tl\/E PROC.E~!OOR • PIPEllNE !>VAL IT'Y

48

Associative processors are known to be useful
for different parallel algorithms, but their most
powerful applications arein information retrieval.
The associative pipeline as a dual structure
has the similar_properties too. Hence, this com
puter system may be in particular considered as a
sort of a database machine [4]. In this case, a
unified approach to different types of information
systems can be developed, including features of
information retrieval and database management.

References

[l] K.J. Thurber and L.D. Wald, "Associative and
Parallel Processors," ACM Computing Surveys
{December 1975), pp. 215-255.

[2] S. Ya. Berkovich, Yu. Ya. Kochin and G.M. Lapir,
"Algorithms for Group Word Processing in an
Associative Memory and their Realization by
Homogenous Computing Arrays," Automation and
Remote Control, (August 1974), pp. 1342-1349.

[3] P.J. Denning, "Operating Systems Principles
for Data Flow Networks," Computer (July 1978),
pp. 88-96.

[4] G.G. Langdon, Jr., Guest Editor, "Special
Issue on Database Machines," IEEE Trans. on
Computers {June 1979).

DI.. f,

0

~ 0.._1.
0 -); - -

"
·. ,/ O_..-A' '

Y/c
'-__/ /
0

C.Or'\t. rot
PY"OC(C.SOr

NE.TWORI<

5Y!:.T£M A.RCHITEC.TU R£

FRAMEWORK FOR CCM1UNICATION
IN LOOSELY f.OUPLED MULTIPLE PROCESSOR SYS1E'1S

VASON p I SR IN I

COMPUTER SCIENCE DEPARTMENT
UNIVERSITY OF SOUTHWESTERN LOUISIANA

LAFAYETTE, LA 70504
'fhe problem of communication between
processes in multiple processor systems is
addressed. Three high level communication
mechanisms are presented. The first
mechanism is based on sequential processes
consisting of modules, procedures and
processes that communicate via procedure
calls and input/output statements. The
second mechanism is based on message
passing consisting of modules with
conditional send message and receive
message primitives. The third mechanism
is based on structured message-passing
consisting of blocks that receive messages
at the beginning of a block and send
messages at the end of a block.
Programming language constructs for
supporting each of the three mechanisms
are outlined. The structured
message-passing approach (or abstract
dataflow approach) has features that
facilitate automatic scheduling of blocks
to processors, brings out all parallelism
at the block level, facilitates
synchronization without using semaphores,
and facilitates a design approach using
abstractions and refinement.

I. nnRODUC'i'ION

Most of the multiple processor systems
that have been developed during the past
several years can be divided into three
categories:

a. Tightly coupled systems such as
multiprocessors with shared memory
or a shared bus (e.g. C.mmp UC
Berkeley's PlUME, Burroughs
6700/7700, and PLURIBUS).

b. Loosely coupled systems such as
distributed systems, and systems
which communicate by passing
messages (e.g. HP's 3000, IBM's
8100).

c. Netv1orks of computers (e.g.
ARPAJ.~ET, ALOHANET, Ethernet) .

The development of each of
systems has required significant

the above
software

Since
hardware

development and maintenance.
software is more expensive than

This work is supported in part by TI Inc.,
Corporate Engineering Center, Dallas, Tx.

CH1569-3/80/0000-0049$00.75 ~ 1980 IEEE

49

or firmware, the implementation of the
strategies and policie~ used.in.the ab~ve
systems is not possible in inexpensive
multiple processor systems. In this
paper, an outline of strategies for
interprocess communication in mult~ple
processor systems is pre~ented. A detailed
discussion is presented in [1,2].

STRA·r.t.:GIES FuR INTERPROCESS COMMUNICATION

A fundamental concept useful in loosely
coupled multiple processor systems is the
distributed process, dp. A dp is a
collection of blocks, called dp blocks.
·1'he dp blocks communicate either by using
messages or by sharing data structures.
'l'he details of dp ,blocks are discussed
later on. A dp consists of the following:

1. Its own address space.
2. Its own resource environment.
3. A list of all other dp's it can

access (capability list) and a list
of other dp's that can access it
(access list).

All communications between dp's take place
using relatively short messages. The code
and data associated with a dp is stored in
the address space. The address space of
any dp is symbolic (e.g. a collection of
named objects). The code of a dp is
executed using the data in the address
space and the resources available in the
environment. The resource environment of
a dp provides the runtime support for the
dp. It contains standard library
programs, a runtime stack(s) for
supporting activation records, a heap(s)
for supporting storage needs, a
processor(s), virtual or real devices, and
special functional units such as a
floating point processor, and a FFT
processor.

i{.i::;QU1Rf:1vJl':jJ'1'8 OF IL~T.t.:RPROC;.>SS COl'1MUNICATIOU

one of tne m;:i.jor areas to be addressed in
the support for dp's is the interprocess
communication. lhe following dp su~port
requirements are noted:

a. Ability to share large data
structures and to communicate short
messages.

b. Ability to block requests on
various conditions.

c. Ability to refuse requests for
resources.

d. Fdcility to employ different
strategies in accessing resources.

e. Facility to handle local and system
exception conditions.

f. Facility to prevent deadlocks.

Asynchronously executing dp's can
communicate using three distinct
approaches. The first approach is based
on the procedure call or the use of
monitors [3]. In this approach, a program
is partitioned into process,es by the
pror::Jrammer. In each process, the
pro3rammer makes decisions regarding the
sequence of statements. An OMODULE
construct is introduced to realize the dp
concept. The OMODULE consists of a
collection of PROCESSs, MODULES, IMODULEs
£or shared objects, DMODULEs for device or
control dependent activities, procedures,
initialization part, and a module body.
'fi1e constructs MODULE, IMODULE, DMODULE,
PROCESS, and procedure represent the
dp block. .i::!ach MODULE consists of a
collection of procedures, MODULEs, an
initialization part, and a body. A MODULE
establishes a scope rule for its local
variaoles. An IMODULE is the extension of
tne interface module in MODULA [4]. It
encapsulates shared objects and operations
allowed on 'these objects. An H10DULE
consists of a collection of procedures,
one or more DMODULEs, an initialization
part, and a body. desting of IMODULEs is
n.:>t dllowed. A DMODULE is an extension of
device modules in MODULA. The syntax of
the above constructs and the informal
semantics of the constructs are shown in
[2 J.

The second communication strategy is based
on message passing. A program is
partitioned into modules by the
programmer. In each module, the programmer
makes decisions regarding the sequence of
statements. Communication between modules
is by sending messages and receiving

·messages. This approach to communication
avoids the delay inherent in procedure
calls when the called procedure cannot be
entered.

i'he third communication strategy is a
structured message-passing approach based
on dataflow with high level primitives
[1, 2]. 'l'he highlights of the third
strategy are shown in the next section.

STRUC'i'URED M~SSAG.t!!-PASSING

The structured message-passing approach to
communication between asynchronous
processes uses principles of dataflow [5].
Basic dataflow has been used in computer
systems organization and in the

50

specification of algorithms. All
activities that can be performed in
parallel are expressed as nodes without
data dependencies. Activities are
sequenced only when there is data
dependency. One problem with using basic
dataflow is that the resulting graphs are
complex, containing all the details.
Another problem is the rather restricted
set of primitives. Basic dataflow has
been extended so that users can define
operations suitable to their applications.
~ach of these operations is a procedure in
a highlevel language. This abstract
dataflow approach is supported by a
dataflow simulator [6,7]. Dataflow
programs using basic dataflow priraitives
and user defined operations can be run on
the dataflow simulator. This has opened
up several possiblities in analyzing
algorithms for parallelism and functional
partitioning of programs.

Each node in abstract dataflow waits for
the arrival of tokens on the required
input arcs. If space is available on the
output arcs for tokens, then the node can
be enabled for firing. Thus, communication
between nodes is accomplished using tokens
on arcs. Tokens can be thought of as
messages and specified arcs as data paths.
This cornm.unication facility is different
from the message passing approach in
several aspects:

a. Using a standard firing rule, once
a node starts firing, it cannot be
interrupted by other nodes sending
tokens to it and the node cannot
wait for tokens from other nodes.

o. Using a nonstandard firing rule, a
node starts firing when tokens
arrive on a specified subset of
input arcs and continues to accept
token(s) on a specified subset of
input arcs.

c. All tokens generated by a node are
sent as output on the designated
arcs either at the end of firing,
if a standard firing rule is used,
or during firing if a nonstandard
firing rule is used.

There are several advantages to the above
mentioned communication facility:

a. The communication mechanism
each node is the same.

for

b. Each node has a specified set of
output arcs for sending tokens to
other nodes and a specified set of
input arcs for receiving tokens
from other nodes.

c. The communication structure
regular and comprehensible.
resulting program is
structured.

is
The

well

d. Synchronization is achieved by
using enabling conditions which

require at least one token on each
of the required input arcs. There
is no need for semaphore variables
and P and V operations on
semaphores.

In the structured message passing
approach, a program is an abstract
dataflow graph (ADG). Each ADG is a
labelled and directed graph which is an
interconnection of subgraphs. Eac~

subgraph consists of nodes which are
interconnected by arcs. Bach node and arc
has a number of attributes. Some of the
attributes of a node are label, operation,
and input/output (I/O) arc specification.
1'he label of a node is a unique identifier
for the node. The operation attribute
specifies the semantics associated with
the node. The I/O arc specification
attribute specifies the input arcs and
output arcs of the node. Each I/O arc
specification of a node has a set of
conditions that must be met before the
node can be fired. can be fired. This
set of conditions is called the enabling
condition and is represented as a set,
called the firing semantics set (FSS).
Some of the attributes of an arc are
label, token type that the arc can carry,
and arc capacity.

A simple example is shown in Figure 1.
~he READER reads a job, copies it into an
empty buffer, and outputs a filled buffer
to PROCESS JOB. The PROCESS JOB
manipulates and fills an empty buffer with
its results. The buffer received from
READER is returned as an empty buffer to
the BUFFER POOL MANAGER. The \TRITER
receives the-filled buffer from PROCESSOR,
outputs the contents of the buffer, and
returns the empty buffer to the
BUFFER POOL MANAGER. The node
BUFFER-POOL-MANAGER in turn r.e\lloves an
empty buffer from one of its in,?ut arcs
and outputs the empty buffer on one of its
output arcs using the policy specified in
the semantics of BUFFER POOL t'1ANAGER.
Initially, empty buffers are on the arc
EMPTY BUFFERS.

A detailed discussion on ADG, extensions
to ADG, and several examples are shown in
[9]. In order to use the structured
message-passing approach in multiple
processor systems, we need either an
environment supporting the execution of
ADGs or a high level language with
constructs for representing nodes, arcs,
and tokens. In this paper, the high level
language approach is pursued. He propose
a construct for representing nodes. This
construct is called a dp block. He now
draw an analogy between the ADG and the dp
concept, and describe the details of
dp_blocks.

If we treat a dp as analogous to the

51

execution of a subgraph in an ADG, the
dp nlocks are analogous to the nodes in an
ADG. Since any number of nodes can be
fired in parallel depending on the FSS and
the availability of data, any number of
dp_blocks in a dp can potentially be
executed simultaneously. 'rlrn syn tax of
this construct is shown in Table 1.

'rhe name of the dp block corresponds to
the name of the operation assigned to a
node. ·J.'he label of the dp block
corresponds to the node label. The-input
arc descriptions correspond to toe
description of all arcs incident to the
node. An arc description consists of arc
name, arc capacity, label of tile source
block, and tne type of token the arc can
carry. The condition part corresponds to
an FSS and specifies the set of input arc
names that must have at least one token in
order to enable the node for firing.
'i'hose arcs that can receive a token(s)
during the firing of the node are
specified in INPUT. The condition part
can be a Pascal IF statement using any of
tne input arc names or constants, or
logical operators such as AND, OR, or i.<"OT.
If the condition part is absent, then a
token must be present, on each of the
input arcs in order to execute the block
and the block should not contain any arc
names in INPUT. The body of the dp block
represents the node semantics. - The
constant, type, and local variable
declarations have the usual Pascal syntax
and semantics. The statements in the
block can be any of the executable Pascal
statements except procedure calls, and
blocks.

Assignment statements in a dp block use
the single assignment rule- which is
similar to those rules proposed by Tessler
and Chamberlin [10].

The result of a node's firing is provided
by the last line in the block. If values
have been calculated in the block for the
output arc names, then these values are
sent as output by the last line in the
block provided the condition part is true.
outputs can also be sent during the node
firing. The output arcs that receive
tokens in this manner are shown in OUTPUT.

PROGRAM DECOMPOSITION

Since a program is a directed and labelled
ADG using nodes and arcs with ·an operation
assigned to each node, this operation can
be the name of the ADG. Such a node is
called a recursion node, and the graph is
called a recursive graph. Each recursive
graph is denoted as a dp. Each invocation
of a recursive graph has a distinct graph
color. This color is used by all the
tokens in the invocation of the graph.
All the invocations of a recursive graph

can reside in one dp address space, use
the dp environment, and have the
capabilities of the dp. Each invocation
can also use a distinct copy of the dp's
address space, environment, and
capabilities.

There is a special kind of operation,
called APPLY, that can be assigned to a
node [6,7]. This operation builds a graph
dynamically using tokens on input arcs.
Each APPLY node is denoted as a dp. A
nonrecursive graph can be partitioned into
subgraphs using clU$ter detection
algorithms [11] or by computing cut sets
[12,13], satisfying a given objective
function. The arcs in the cut set
represent the data paths for communication
between subgraphs. Each subgraph is
denoted as a dp. If a graph contains
nodes representing recursive subgraphs or
nodes with the operation APPLY, then each
such node is denoted as a dp. Nodes that
nave, ·.not been denoted as dps are analyzed
in the above manner to identify all dps.
In other words, program decomposition can
be performed algorithmically.

·.rhe author
Shriver and
Appelt, Doug

1--
1

I

ACK1~0\lii8DGEMEN°rS

is thankful to Ors. Bruce
Pat Carr, Steve Landry, Daren
Johnson, Laurence Brevard,

EMPTY_ BUFFERS JOB_ STREAM

I

I

the members of Project
stimulating discussions, and to
for preparing the manuscript.

REFERENCES

Kappa for
Mary Davis

1. v.p . .srini,"Framework for communication in loosely
coupl,d:d multiple computer systems", Technical
Report,TR-80-3-3, ~mputer Scitmce Dept., University of
Southwestern .i:.ouisiana, Lafayette, LA 70504, March 1980.

2. v.P.s.rini and s.o.Shriver, "Abstract dataflow prot.'Ocol
for communication in distributed systems", Proceedings
of Compcon, Sept. 1980.

3. C.A.R.Eioare, "Towards a theory of parallel proqramming",
Operating Systems Techniques, Academic Press, ~ew York,
1972. '

4. ,J.\lirth, "MODULA: A language for Modular
Multiprogramming", Software - Practice and Experience,
Vol. 7, No. l, Jan. 1977, pp 3 - 35.

s. J.S.Dennis, and J.B.Fosseen, "Introduction to data flow
schemas", Computation Structures Group Memo: 81, Project
MAC, MIT, Cambridge, MA, 1973.

5. s.p,andry, and B.D.Shriver, "A dataflow simulation
research environment", ~lorksnop on Data Driven Languages
and Machines, Toulouse, France, Feb. 1979, pp V l - 15.

7. a .. D.Sh~iver, and S.P.Landry, "An overview of dataflow
reJ:ated research at the University of southwestern
Louisiana", ~./orkshop on Data Driven Languages and
M~c:hi,'les, Toulouse, France, Feb. 1979, pp l - · 15-.

a. p.ari.nch Hansen, 11 'rhe nucleus of a multiprogramming
system", CACr1, Vol. 13, No. 4, April 1970, pp 279 - 288.

9. V.P.Srini, "Extended abstract dataflow models for
reconfigurable systems". Technical Report, TR-80-3-5,
Computer acience Dept. I University of Southwestern
Louisiana, Lafayette, LA, 70504, May 1980.

lli1. D. D .Cl1amberlin, "Parallel implementation of a single
ass~gnment. languageu, Technical Report No. 13, Jan.
1971 .. Stanford Electronics Labs., Stanford University,
.Stanford, CA.

11, ."!..Cornish, o.~/.Hogan, and J.C.Jensen, "The Texas
Instruments Distributed Data Processor", Proceedings of
Louisiana Computer Exposition, Lafayette, LA, March
1979, pp 189 - 193.

12. F.aar'ary, Graph Theory. Addison-Wesley Pub. co.,
Reading, MA, 1974.

13. A.V.Aho, J.E.Hopcraft, and J.D.Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesleyh Pub.
Co., Reading, MA, 1974.

14. V.P.Srini, "Programming language specification by using
thrt!e forms", Proceedings of CSC Conference, Detroit,
Feb. 1978.

Table 1 Syntax of dp _block

1-lDE
DESCRIPTIQ! DELIVERED

I k losed

I
Eom <label>: BEX;IN <name> (<input_arc_descriptions>)

{<condition> J ! .
!INRIT <arc _descriptions> J,

H.I'
RW BR

RP

I
.

{ <constant_declaration>} Q

I {<type_declaration> }~
l

{<local_ variable_ declarati.on'>} ~ I

{<statement> J ~
READER .

{<0011'1Jf <arc_descriptions>},

FP
~ (<output_arcTdescriptions>)

{ <condition>} o «Ip-block>

-··-·· J

expressi.on ~arc_name>, <arc_ capacity> ,
fonn

<label_of_ source_dp_ block>,
m

<token_ type>, <arc_m::xle>) >., <arc
desCrlptlonS>

expression
Eot111 <Any Pascal statrrent other than procedure

FW
calls, or dp_blocks> <statement>

expression
form <constant declaration in Pascal> <cons tan~

declaration>

WRITER exp-r<-~ssion

I
form <Type declaration in Pascal> <type_

declaration>

L
PRINT

expression
form <variable declaration in Pase.qi> <local-variable

declaration>

Figure l F.xam[>Je of strUctured mes!'iagc-p;assin'g approach
I---

52

h
I

SUITABILITY OF BUBBLE MEMORIES IN PARALLEL
PROCESSOR ARCHITECTURES

Edward W. Davis
Department of Computer Science
North Carolina State University
Raleigh, North Carolina 27650

Summary

Advances in computer architecture result from
creative organizational ideas, improvement and
innovation in components, and the requirements of
new applications. Architectural creativity has
led to various parallel processor organizations.
Technological inventiveness has produced magnetic
bubble memories. When bubble technology was a new
item in the research labs, the major anticipated
application was mass memory for large computer
systems [5]. Now that commercial bubble devices
are available, the applications have in reality
been microprocessor oriented [9]. Certain prop
erties of bubble storage devices make them quite
suitable as components in a memory hierarchy for
parallel processors. Five aspects of this suit
ability are outlined in this paper.

Parallel Processor Memory Considerations: A
parallel processor follows the definition that
there is a single control unit with the responsi
bility of driving a set of identical processors.
These machines have primary memories from which
processing elements (PEs) operate. Secondary
memory is typically disk storage interfaced to
primary memory, the control unit, or even a host
computer. Clearly this definition includes real
machines such as ILLIAC IV [l], PEPE [8], and
STARAN [2]. It also includes newer ideas such as
data base machines [4,7].

There are two aspects of the memory systems
that need to be mentioned. First, the amount of
primary memory per processor is typically much
smaller in parallel processors than in uniproces
sors. For example, ILLIAC IV has a 2K word by 64
bits memory associated with each processing ele
ment, PEPE has lK by 32 bits per PE, and STARAN
with its more global, multi-dimensional access
memory has a 256 by 256 bit memory array associa
ted with 256 PEs or 256 x 9216 in the STARAN E.
These numbers reflect memory component technology
available at the time the machines were built.
They also illustrate the comparatively small pri
mary memory size used in parallel processors.
Movement of data in and out of primary memory is
an important part of total system performance.
The second aspect is secondary memory and its
interface to primary. The usual device is a disk.
This provides good storage capacity but is poor
with respect to access time and interface path.

Bubble Memory Characteristics: Magnetic bub
ble memory technology became commercially avail
able in the late 1970's. An introductory refer
ence is [9]. Bubble memories are essentially
shift register storage structures. Several shift
path organizations are possible. One of these,
the major-minor loop organization, offers a good

CH1569-3/80/0000-0053$00. 75 © 1980 IEEE
53

compromise between capacity, access time, and sim
plicity of operation. Figure 1 shows the basic
structure. Information flows serially in or out
of the device on the major loop but can be trans
ferred in parallel as a "page" to or from the
minor loops.

Given a major-minor loop organization, the
access time components for a read are (a) posi
tion the page at the transfer gates, and (b)
transfer to the major loop and shift to the
detector. Presently available devices have page
position times of 3 to 10 msec and major loop
shift times of 4 to 30 msec. At the device level,
capacities range from 92K bits to lM bits. Expec
tations are that device capacity will double annu
ally and that new techniques will improve shift
rates by a factor of te·n in the near term.

Support circuits are needed to implement
memory systems. These circuits include a con
troller which provides an interface to other
equipment through useful features and functions
such as page buffering, format conversion between
bits and bytes, maintaining page position, error
detection and correction, and indicating status.
The controller exercises control over individual
bubble devices attached to it. Functions acti
vated at one device are independent of other
devices. That is, bubble memory devices are indi
vidually operable.

Bubble memories clearly represent a new
choice for designers. The properties and charac
teristics of this new choice need to be examined.

Five Suitability Factors: The five subsec
tions that follow are intended to provide a con
trast between bubble and disk devices when used
in parallel processor memory hierarchies. Figure
2 shows the model for bubble memory usage as an
intermediate level in the hierarchy.

(1) Access Time. With the small primary memory
capacity in typical parallel processors, fast
access to a secondary storage is important.
Access to randomly located information in cur
rently available bubble memories is about ten
times faster than access times to random informa
tion using movable head disks. Fixed head disks
match bubble access times but are not competitive
in terms of cost or modularity.

Storage allocation techniques for reducing
access times are applicable to both. However,
bubble memories have a performance improvement
due to their unique capability to "stop" the
rotation. Pages can be positioned at the trans
fer gate waiting for an I/O command.

(2) Selectable Input/Output, The ability of an
individual processor within a parallel processing
system to execute instructions sent from the com
mon control unit, or else do nothing, represents
one form of local, individualized control. This
control exists because it is useful, or even
essential, for devising parallel algorithms. In
previous architectures, the ability to enable
local entities applied only to processors and the
primary memory associated with them. Control of
a bubble memory system is readily exercised at the
level of individual components. By using such
memory components, local control can extend to
secondary memory. This is a logical extension of
the need for local con.trol which becomes practi
cal through bubble memory technology.

(3) Localized Memory Addressability. In most
parallel organizations an additional local control
feature is memory reference modification.
Addresses supplied to all processors from the con
trol unit can be modified individually within the
processors. It is this feature that enables
simultaneous access to rows or columns of arrays
through skewed storage schemes [6]. It is a
variation of this feature that produces multi
dimensional access memories [3]. In preVious
machines, local control of addresses was limited
to the primary memory. Now, with device level
control of bubble storage devices it is possible
to extend local addressability to the secondary
memory.

(4) Customized Configurations. Bubble memory
components are ideally suited to customized design
of secondary memory configurations. Modular com
ponents allow memory design customized to the num
ber of PEs and capacity requirements. For exam
ple, the number of modules can match exactly the
number of PEs for bit stream operations. It can
be a multiple for byte wide or other size I/O
operations. If I/O transfer rates are less
demanding, a contro.ller can operate more than one
memory module. Essentially, the technology allows
a great deal of flexibility.

(5) Fault Tolerance. First note that non
volatile bubble memories are manufactured using
integrated circuit techniques. There are no
moving parts or mechanical adjust~ents. The
devices are inherently more reliable than disk
storage units. As further protection against
failures, storage loops can be provided for single
error correction and double error detection. When
an uncorrectable failurf? occurs, the system
remains operable with reduced parallelism. It i·s
reasonable to assume the fault can be located to a
replaceable unit provid1ng a minimal mean time to
repair.

Conclusion: Research is needed to develop
a better understanding of the data structures and
algorithms for efficient use of bubble memories in
parallel processing environments.

References

[l] G. Barnes et ai; "The ILLIAC IV Computer,"
IEEE T. C., (Aug. 1968), pp. 746-757.

54

[2] K. E. Batcher, "STARAN Parallel Processor
System Hardware," Pro. of the NCC, (1974),
PP• 405-410.

[3] K. E. Batcher, "The Multidimensional Access
Memory in ST.ARAN," IEEE T. C., (Feb. 1977),
pp. 174-177.

[4] P. B. Bera and E. Oliver, "The Role of Asso
ciative Array Processors in Data Base
Machine Architecture," Computer, (March,
1979), pp. 53-61.

[5] P. I. Bonyhard et al, "Applications of
Bubble Devices," IEEE Trans. on Magnetics,
(Sept. 1970), pp. 447-458.

[6] P. Budnik and D. Kuck, "The Organization and
Use of Parallel Memories," IEEE T. C.,
(Dec. 1971), pp. 1566-1569.

[7] G. A. Champine, "Current Trends in Data Base
Systems," Computer, (May 1979), pp. 27-41.

[8] A. J. Evensen and J. L. Troy, "Introduction
to the Architecture of a 288 Element PEPE,"
Proc. of the 1973 Sagamore Computer Confer
ence, (1973), pp. 162-169.

[9] J. E. Juliussen, D. M. Lee, and G. M. Cox,
"Bubbles Appearing First as Microprocessor
Mass Storage," Electronics, (Aug. 4, 1977),
pp. 81-86.

Generate (input) Detect (output)

Minor Loops

Figure J. Major ~ Minor Loop Bubble Memory Organizatton

DISK
STORAGE

CONTROr
UKlT

Bubble Memt!lirfes.' • ...

Figure 2.. Par~lftl lltocesS'or· wHfr Distributed Secondary:Memr'y

* ON THE PERFOOMANCE OF ON-LINE ARITIMETIC

Milo~ D. Ercegovac and Aksenti L. Grnarov+

UCIA Department of Computer Science
University of California,

Los Angeles, California 90024

Abstract -- An analysis of the per

fofmance and effectiveness of on-line ar

ithmetic structures is provided. A rela

tive comparison with structures based on

the conventional arithmetic in computa-

tional problems such as the evaluation of

scalar and vector expressions and re

currence systems indicates speedup and

cost benefits of on-line arithmetic struc-

tures.

l. Introduction

Thus, an on-line algorithm is performed

always in a digit-serial manner from the

most to the least significant digit. In

order to compute the first digit of the

result, the inputs have to be known to 8+1

digits of precision. Thereafter the next

most significant digit of the result can

be obtained for each additional input di

git. The on-line delay 8 is a small in

teger, typically 1 to 5 for the basic ar-

ithmetic operations. The algorithms for

addition, subtraction, multiplication and

square root with 8=1 have been described

in the literature [1,5]. The on-line

The purpose of this research is to division algorithms require 8=3 to 5,

analyze the performance of on-line arith- depending on the radix [l,4,5]. Interest-

m'etic structures and provide a relative

comparison with the conventional arithmet

ic in computational problems such as the

evaluation of scalar and vector expres

sions and recurrence systems. On-line ar

ithmetic algorithms have be-en investig.ated

by a number of authors [1-6]. Here we re

view only the bas1c definitions and

characteristics that ate used in the fol

lowing discussion.

An algorithm is on-line if the j-th

leftmost output digit is computed using no

mote than (j+i) leftmost input digits.

* S-upported in part by
No. N00014-19-c-.0866
Distributed Process!ng)

the ONR Contract

+ On leave from the
El e:etr ic al Eng ineadng,
Sk9pje, Skopje, Yl!goslavia.

{Research in

oepartmerrt
Univeri;;ity

of
of

CHl56,-i/80/o000 .. 60SS$00. 75 () 19'80 IE£E

$5

ingly, there is an algorithm for fast po

lynomial and rational function evaluation

with an on-line delay of -1 [2].

The use of a redundant number system

in the representation of the variables is

necessary and desirable in on-line arith

metic. Computation of results from left

to right in all operations requires the

use of a redundant number system in the

representation of the results. Conse

quently, the input operands should also be

acceptable in the redundant form. A

redundant number system system can be
used conveniently in the on-line algo

rithms. The titoe required .to compute one

output digit, td' can be made independent.

of the len9th of operands by using inter

nally a redundartt representation of the

partial results. Alternatively, an inter

nal carry-save, structure can achieve the

same effect.

The on-line representation

number x is defined as

and

.! -i
).. xir

i=l

The digits x. belong to a redundant
l

set

{-p ••• ~,-1,0,l, ••• ,p}

of a

digit

where r/2 5 p 5 r-1 determines the amount

of redundancy.

In general, an on-line algorithm is

specified recursively in terms of the on

line representations of operands, results

and some internal values. The recursion

is of the form

where Aj denotes the internal vectors re

quired by the algorithm. For example, in

the c.ase of mul.tipl ication A. 1 contains
J-.

the scaled residual wj-l' and o~line

representations of the operands X. 1 and
1~

Y. 1 [l J. ln general, the internal vec-J- .
tors at the j-th .s.tep require j radix r

digits in the representation. The primi

tive operations used in the recursion are

addition, multi plication by a sing-le radix

r digit, one position shi-ft and concate.na-

. ti on. 'l'he output dig it is determined by a
·limited precision selection fun.C-

tion[l,2,4.S,7,8]:

56

where A is a truncated value of A. Since

only a small number of most significant

digits is required for the selection of

the output digit, the recursion can be

performed using totally parallel opera-

tions, i.e., carry-propagation limited

operations. Thus the recursion s~ep time

or the time td to obtai~ one output digit

is independent of the length of the

operands and an on-line algorithm can be

a highly modular manner implemented in

without speed degradation. An organiza-
• tion of on-line unit as a linear array of

identical modules operating in parallel is

shown in Figure 1.

The number of modules is determined

by the precision s o.f the selection func

tion S (Aj) and the number of digits n:

P = f<n + s)/2dl

assuming that each module has internally d

digits of precision. Detailed descrip

tions of modular organizations of on-line

units are discussed in [2,3,S].

The on-line algorithms are interest

ing for several reasons. Since the results

are always computed from left to right, a

sequence of operations- can be sped up by

overlapping the operations at the digit

level. Fur the rm<> re, the interconnections

in an on-'".line ad thmetic network are much

simpler than in a conventional one since

only single digits are transferred between

the operation units. Therefore, the struc

tures using on•l ine arithmetic can be im

plemented in a highly modular manner. The

on-line arithmetic realizes by definition

a variable-precision arithmetic with a

built-in signHicance indicati.on: for the

inputs of k significant digits the output

has at least k-& siqnificant digits.

i-

The on~line algorithms can be used in

a floating-point system without difficul

ties. The exponent arithmetic should be

implemented using a conventional approach.

One apparent advantage of the on-line

floating-point arithmetic is in the

operand alignment phase. It can be per

formed in on-line manner and, thus, over

lapped with the mantissa operation. Howev

er, in the present discussion we are as

suming that, given the same resources, the

floating-point exponent operations,

operand alignment and mantissa normaliza

tion require the same time in on-line and

conventional arithmetic. Therefore, our

analysis of relative performance of these

two approaches is restricted to mantissa

operations.

We first consider the performance of

on-line and conventional arithmetic unit

structures (networks) in evaluating scalar

expressions. In this case we are interest

ed in the total delays of networks, their

costs and effects of of the interconnec

tion bandwidth on the speedup. The arith

metic units, on-line as well as conven

tional, are not pipelined. Later we dis

cuss the relative performance and cost

effectiveness' of on-line and conventional

networks of pipelined units in evaluating

vector expressions, i.e., scalar expres

sions repeated on sets of operands.

2. Evaluation of Scalar Expressions

We consider a scalar expression to be

of the form

z = E (~)

where z is a scalar, ~ is an argument vec

tor of n-digit elements and E is an arith

metic expression formed with the

floating-point operators {+,-,*,/, square

root } and the elements of x.

57

Assume that a network to evaluate E

consists of non-pipelined arithmetic un

its, connected as a tree network of L lev

els. In the case of conventional arithmet

ic we assume that the units at the i-th

level begin operating only when all units

at the level i-1 have finished. In an

on-line network the units are synchronized

with a common digit clock. An on-line unit

at level i can generate the first output

digit as soon as the coressponding 6+1 in

put digits are available. Therefore, a

network of L levels of on-line arithmetic

units has the delay latency) :

where 6imax is the largest on-line delay

.at the i-th level, n is the number of di

gits and ta is the time to compute or load

one digit.

Similarly, a network of L levels of

conventional arithmetic units has the fol

lowing delay:

where Timax is the time of the slowest

operation unit at the level i and tLOAD is

the time to transfer operands between two

levels in the network.

We assume in our analysis that 6imax

is 3 on the average. In the case of con

ventional arithmetic units, we assume that

where c=l if the conventional arithmetic

operation time is T=O (n)
2 c (log n) /n if the operation time

2 T = 0 (log n) .

The on-line and the conventional

and

is

networks, consisting of the same number of

units, are compared using the speedup fac

tor S:

s L(cn + 1)
n + 4L

assum~ng that tLOAD = ta. The minimum

number of levels for which an on-line net

work is faster than a conventional network

is

For example, let n=32 and c=5 2/32. Then a

network with two or more levels is faster

in on-line arithmetic than in the conven

tional arithmetic. For large L,

S ~ (cn+l) /~max. In particular,

(logn) 2 n + 1
4 < S (oo) ~ - 4-

The number of levels required to -achieve k

percent of the maximum speedup is:

kn
L = 4(1 - k)

The relation between the speedup S and the

number of levels L is illustrated for n=32

and a-25/32 in Figute 2.

The minimum number of digits for

which an on-line network is hstE:lr than

the conventional one is:

n .
m:i.n

In the previous analysis the differ

ence in the bandwidth requirements 6.f on

line and conventional networks was ig-
no red. If a conventional arithmetic unit

bas a bandwidth of B digits per variable;

its delay is increased to:

and the speedup becomes

s = L (n + cBn)
B(n + 4L)

The additional speedup, due to the

bandwidth limitation, is n/48 for large L.

3. Organization of On-Line Structures

A pipelined on-line unit consists of

(n+o) stages with the stage delay td. In

the steady state, the unit is computing up

to n different results, the first stage

producing the first digit of the i-th

result and the last stage producing the

last digit of the (i-n)-th result. As

mentioned before, to implement the recur

sion of an on-line algorithm., the working

precision that increases with the number

of steps must be provided. If the result

is to be computed to a maximum precision

of n digits, the recursion requires at

the j-th step a precision of j digits for

j < n/2 and a precision of n-j digits for

j ~ n/2. Therefore, n simultaneous opera

tions in various stages of completion re

quire a total working precision of about

n 2 /4 digits.

This indicates that a one-dimensional

array of modules~ shown in Figure lt would

not be suitable for pipelining since the

•odules {~heir internal precision) and the

inter-module bandwidth would depend on the

relative position in the array. We st'.lggest

a two""dimensio'nal array that uses identi

cal m·odules as illustrated in Fi9ure 3.

This array, 1f implemented with d-digit

wide modul'E!·S, requires rn/dl rows With a

variable number of modules per row with

the maximum number of modules in a row as

indicated above. The total number of d

digit modules for ·a maximum precision of n

digits is approxi•ately (n/d) 2 /4. In terms

of digit circuHs., the pipelined one

dimension,al and array units have

equivalent complexities, the later scheme

having more uniform implementation.

4. Evaluation of Vector Expressions

Consider vector expressions that have

V vector operands and one vector result,

each of M elements:

z

and

Each vector element is represented with n

significant digits.

A conventional pipelined unifunction

al unit is assumed to have N stages with

the stage delay ts [9]. The time required

to compute M results using a network of L

levels of pipelined conventional units,

shown in Figure 4, is:

TCOP = [NL+ M - l]ts

In this analysis we are ignoring the time

required to "chain" pipelined units.

A pipelined on-line unit of array

type discussed in the previous section,

has n + ~ stages for a precision of n di

gits. The stage delay is td. The time re

quired to compute M results using a net

work of L levels of pipelined on-line un

its, shown in Figure 5, is:

We are assuming that the latencies of a

conventional and an on-line pipelined unit

satisfy the following condition:

59

Nts = cntd

where c is defined in Section 2. The
speedup factor in this case is:

SP
TCOP cn(LN + M - 1)
TOLP N(L~ + n + M - 1) max

The speedup factor for several cases

in which L=4 is given below:

c

25/32

1

1

1

n

32

32

32

64

N

4

4

8

4

M

100

100

1000

1000

Sp
4.9

6.2

3.9

15.0

For a large number of operands, i.e.,

when M ~ oo, the speedup is:

SP = cn/N

and in the case of networks with a large

number of levels L, i.e., when L ~oo:

SP = cn/4

These results indicate that the additional

speedup due to on-line arithmetic is

between 2 and 16 for typical precision.

One distinct advantage of on-line ar

ithmetic is that it can be easily applied

in cases that are known to be difficult to

speed up using pipeline or parallel com

puter organizations. For example, non

linear recurrences [10,11] cannot be sped

up by algebraic transformations and thus a

parallel or a pipeline system organization

is not useful. Consider an m-th order

non-linear recurrence

X(i) = F(X(i-1), ••• ,X(i-m))

for l<i<M where F requires L levels of

operations. Using a network of pipelined

on-line units, F can be evaluated in time

L
(M :i: Si + n) ta

i=l

In the case of conventional arithmetic:

L
M :£ T.

i=l l

For example, a non-linea'r

compute the square root of y

recurrence to.

x (i+l) ~[x(i) + xf'rrl
requires k iterations in order to obtain n

digits of precision. If implemented using

conventional arithmetic units, the time

would be

and

in on-line arithmetic.

5. Cost Considerations

The implementation costs of conven

tional and on-line networks consisting NU

arithmetic units are compared with respect

to the total cost of arithmetic modules

and the costs of data communications in

the network. The cost of a conventional

network is defined as:

where CCU is the cost of a conventional

arithmetic unit; CB is the total communi-

cation cost per bit; and NK is the number

of data paths in the network.

Similarly, the cost of an on-line

network c0 L is defined as:

60

assuming one signed radix r digit per data

path.

If the number of modules required to

implement a conventional arithmetic unit

with the module cost CCM is at least

linearly proportional to the number of di

gits, i.e.,

we obtain that

since the number of modules in an on-line,

non-pipelined unit is proportional to n/2.

Let

ex

The ratio of implementation costs can now

be expressed in the following form:

R

where

is the communication cost ratio and x is

defined as,

x =
(log 2 r + l)NKCB

nFNUCCM

where G, H and F are implementation

dependent parameters. We estimate [12]

that for non-pipelined units G=l, H=n and

F=l while for pipelined units G=2c, H=l

and ~=c assuming a stage delay of td un

its.

The cost ratio R indicates, for exam

ple, that the sufficient condition for an

on-line, non-pipelined network to be less

costly than the conventional one is that

the cost of the on-line module is no more

than twice the cost of the conventional

module.

6. Concluding Remarks

On-line arithmetic offers an alterna

tive approach in achieving higher speed in

numeric computations. On-line arithmetic

is complementary to other approaches that

are used to achieve concurrency in execu

tion of algorithms: for example, it can be

used in minimal-depth tree-structured net-

works. In particular, the use of on-line

arithmetic in non-linear recurrence sys

tems would be advantageous. The main

features of on-line networks are (a) high

modularity and (b) simple interconnection

requirements. These properties make on

line arithmetic very attractive in recon

figurable networks. Importantly, the on

line structures are easily extendable to

accomodate either more levels or higher

precision. Thus it is interesting to com

pare the on-line arithmetic networks with

the conventional ones. The results of

this study indicate that by using on-line

arithmetic, besides highly reduced commun

ication requirements and modular, uniform

implementation, one can expect an addi

tional speedup factor of 2-16.

Acknowledgements

The authors are grateful to A.

Gorj i-Sinaki and c.s. Raghavendra for con

structive comments.

61

References

[l] K.S. Trivedi aoo M.D. Ercegovac, Cb-line al
gorithms for division aoo multiplication,
IEEE Trans. on Computers, Vol. C-26, No. 7,
July 1977, 681-687.

[2] M.D. Ercegovac, A general hardware-oriented
method for evaluation of functions aoo canpu
tations in a digital computer, IEEE Trans. on
Computers, Vol. C-26, No. 7, July 1977, 667-
680.

[3] M.D. Ercegovac, .An on-line square rooting al
gorithm, Proc. Fourth IEEE ~positm on Com
puter Arittmetic, October 19~ 183-189.

[4] K.S. Trivedi aoo J.G. ~snak, Higher radix
on-line division, Proc. Fourth IEEE SymposiLm
on Computer Arithmetic, October 1978, 164-
174.

[5] M.J. Irwin, .An adthmetic unit for on-line
computation, (Ph.D. dissertation), Report No.
873, Department of Computer Science, Urliver
sity of Illinois, Cl:lampaign-Urbana, 1977.

[6] M.J. Irwin, Reconfigurable pipeline systems,
Proc. 1978 Annual Conf. of the JlCM, December
1978, 86-92.

[7] J.E. Robertson, A new class of digital divi
sion methods, IRE Trans. Electron. Computers,
Vol. FC-7, September l958, 218-222.

[8] D.E. Atkins, A stooy of methods for selection
of quotient digits during digital division,
(Ph.D. dissertation), Report No. 397, Depart
ment of Computer Science, Urliversity of Illi
nois, <llampaign-Urbana, June 1970.

[9] J.R. Jump aoo S.R. Ahuja, Effective pipelin
ing of digital systems, IEEE Trans. on Com
puters, Vol. C-27, No. 9, September 1978,
855-865.

[10] D.J. Kuck, 'Ihe Strt.cture of Computers aoo
Computations, John Wiley & Sons, Inc., 1978.

[ll] H.T. Kung, New algorithms a00 lower bol.llds
for the parallel evaluation of certain ra
tional expressions aoo recurrences, Journa1
of the ACM, Vol. 23, No. 2, April 1976, 252-
261.

[12} A.L. Grnarov and M.D. Ercegovac, VI.SI
Oriented Iterative Net\«>rks for Array Compu
tations, Proc. IEEE Intl. Conference on Cir
cuits aoo Computers, 1980.

···~ ... ----L_J

Figure 1: A Modular Organization of an On-Line
Unit

s

LEVEL

l

2

L

~~+-~+-'---+-~-+~--l~~l--~~

16 3 2 64 i2s L

Figure 2: Speedup for n=32 and c=25/32

ts

1 2

... {[]-
L

t 5 - STAGE TIME

N = n

TIME

Figure 4: Conventional Pipeline

*

----------------~

x ;+ 5, l

xi+ 4,2

x i+ 3 I 3

I x ;+ 2.4 I

I
I

x . I
i+ l. s I

I
I
I

X i ,6 I
I

I z i+ 4, I

I
I
I

I z 1+ 3, 2

I
I
I
I z i+ 2. 3

I
I
I
I Z i+ 1,4

I
I

I z ; . s
I
I
I

L - - - - - - - - - - - - - - _J Z i- 1,6

* Xj,k DENOTES THE K-TH DIGIT OF THE J-TH VARIABLE

Figure 3: An Array Organization of Pipelined Q1-

Line Unit (n=5, d=l, s=3, o =l)

l

LEVEL

1
.s,

~ 62

2

L

62

. .
.

.SL .

2 ... -o-
6i - ON-LINE DELAY

td - DIGIT TIME

TIME

Figure 5: On-Line Pipeline

SESSION 3: INTERCONNECTIONS I

63

AN INTERCONNECTION NETWORK FOR PROCESSOR COMMUNICATION
WITH OPTIMIZED LOCAL CONNECTIONS

Y. Chow, R. Dixon, T. Feng
Computer Science Department

Wright State University
Dayton, Ohio 45435

Abstract -- In this paper we use a simple
graph model to describe the routing algorithms
for a class of circuit switchi.ng networks in inter
processor communication including permutation
and full processor communication networks. In
full processor communication systems, processors
communicate with each other in arbitrary pairs
as opposed to pairs between two disjoint sets of
processors in a permutation network. It is also
assumed that the pool of processors is hierachi
cally structured and the minimum connection paths
for local (and/or global) connection are desired.
We propose such a full processor communication
network with optimized connection paths. Both
size and routing complexities are shown to be
O(N log N).

I. Introduction

The interconnection network is an essential
part of a multiple-processor system and has been
widely investigated as a means of interprocessor
communications. These networks are generally
classified as non-blocking, rearrangeable, or
blocking in terms of their flexibility in inter
connection. A special class of the interconnec
tion networks is the multi-stage organization.
This kind of organization has appeared in various
literatures [CLOS 53, BENE 65, WAKS 68, OPFE 71,
STON 72, FENG 74, BATC 76, SIEG 78, WU 78,
NASS 79, etc]. Research problems associated
with multi-stage interconnection networks include
system topology, connectivity, control structure
(routing), fault tolerance, and. cost-effectiveness
of the system. In an SIMD or an MIMD environment
two major interconnection schemes that are of
interest are permutation networks and partition
networks. A permutation network performs specific
one-to-one connections between two disjoint sets
of processors while a partition network partitions
a set of processors into disjoint subsets such
that the processors within each subset can commun
icate with each other. A special case of parti
tioning in which a set of processors is partitioned
into pairs of processors will be referred to as
full processor communication throughout the paper.
This kind of full processor communication tan be
achieved by extending some existing permutation
networks. In this paper we will discuss some
proposed full processor communication networks
and then present an interconnection network for
full processor communication with optimized local
connections, i.e., a network in which the pool of
processors is hierachically structured and the
minimum connection paths for local (and/or global)
communications are obtainable. The complexities
of routing and switching elements in the network

CH1569~3/80/0000~0065$00. 75 © 1980 IEEE

65

are discussed.

In Section II we review a bipartite graph
routing algorithm for permutation networks. The
algorithm can also be applied to the routing
control in the full processor communication
models. Section III includes the discussion of
existing full processor communication networks
and a network with localized property is pro
posed. The routing for such network is developed.
A formal description of the routing is discussed
in Section IV.

II. The Bipartite Graph Routing Algorithm

A general structure of multi-stage networks
which allow complete permutation of a set of
processors is shown in Figure l. This NxN
(where N=2n) network is recursively defined and
Pi denotes.a complete permutation network of
size (21x21). Each (2x2) switching element may
assume one of the three states as indicated in
Figure 2. This network is a special case of the
general Clos network [CLOS 53]. Its structure
covers networks such as base line, omega, and
indrect binary n-cube networks since it has been
shown that these networks are topologically
equivalent [WU 78]. It is also shown by Clos
[CLOS 53] that this network can realize all N!
permutations of the N inputs. The argument is
usually made by induction using HALL's theorem
[HALL 35] although it can be illustrated easily
in the bipartite graph algorithm. Connections
between processors (routing} can be established
by some local addressing schemes [WU 78] or by
a centralized routing control [OPFE 71]. Exist
ing routing algorithms for realizing any permuta
tion using only two states, straight and cross,
have been shown to have the complexity of
O(N log N) if the algorithm is implemented in a
single processor system.

The bipartite graph algorithm is demon
strated as follows. The structure of the network
in Figure l is recursively defined with O(log2N)
stages. Figure 3 shows an example of such net
work with N=8. This is essentially a 8x8 Benes
network. For a given permutation (or connections),
the routing is to determine the switch settings
of the entire network such that desired connec
tions can be achieved. If we set the switches
iteratively from outer stages into the inner
stages, we observe that after each iteration the
network is divided into two independent subnet
works. This property leads us to a simple con
clusion, i.e., in order to connect two processors
(one from the left hand side, one from the right

0 __,....____,
1
2
3

N-4 -+---1
N-3 -+---1

N-2 ~----1
N-1 -+---1

Pn

Pn-1

Pn-1.

Figure 1: A Base-2 (NxN) Multistage Pennutation network (N=2n).

straight
connection

cross
connection

-k A-
1; '.L -L__J .

loopback
connection

Figure 2: Three States of the (2x2) Switching Element.

Figure 3: A 8x8 Benes Network.

66

0
1

2
3

4

5

6
7

0
1
2
3

N-4
N-3
N-2
N-1

~> <~~~> <3-0:>
7~5

-2 '::> <~ ~> ~lY<~> 3 ...0 ,4
<~~> <~:X-l > 5/

<~ ~ :> <~ "--~> <0-3> 5--6
1st iteration 2nd iteration 3rd iteration

a) b) c)

Figure 4: Coloring of Graph for Switch Setting in Figure 3 Network

hand side), they must be switched either both to
the upper subnetwork or both to the lower sub
network. This is the basic idea behind the graph
algorithm. The graph algorithm is illustrated
by the following example of permutation

to l 2 3 4 5 6 7) Figure 4-a is a bipartite
3 7 4 0 2 6 l 5 •

graph that represents this permutation. The
symbols '<' or '>• denote a switch and the
lines across the two set of numbers (processors)
denote the desired connections. A mark o on a
switch indicates that the corresponding processor
will be switched down (or up) while the other
processor to the same switch should be switched
up (or down). The whole graph is marked such
that each pair (two numbers linked by a line) are
both marked or both unmarked. This process en
sures that the two processors in each connected
pair will always go to the same sub-pennutation
network in the next stage. It is obvious that we
can rephrase the marking process by saying that
the paths in the graph are marked alternately.
The same process is repeated as shown in Figure
4-b and Figure 4-c for the subnetworks. It takes
log N iterations to complete the marking of the
graphs and therefore the switch settings of the
entire network. The result is shown with dashed
lines in Figure 3.

There is a non-conflict marking for every
permutation graph since there are an even number
of paths and the marking is done alteratively.
After log N iterations we will always obtain
,2log N-l(2x2) subgraphs and still maintain the
desired connections. It is always possible to
realize a (2x2) subgraph by a (2x2) switch. Thus
all N! permutations are realizable by using the
interconnection network in Figure 1. The routing
algorithms using the graph model requires the
traversal of the graph and is of complexity O(N).
There are a total of log N stages in the network.
The overall complexity for setting the switches
for any permutation is therefore O(N log N).
Since subgraphs are independent, parallel pro
cessors may be assigned for computing the routing.

67

2i-l processors may be used to set the J:!.,__l
21-

switches at the ith iteration. Thus a parallel
algorithm would require the following computa
tions:

N + !i + !i + + _N __
2 4 21og N

For large N, this would have an upper bound of
2N. We reduce the time complexity from O(N log N)
to O(N) if parallel processors are available:

III. The Full Processor Communication Models

In full processor communication systems,
processors communicate with each other in arbi
trary pairs as opposed to pairs between two dis
joint sets of processors in a permutation network.
Full processor communication can be achieved by
including the loop-back state of the (2x2)
switching elements or by using additional two-ways
(straight and cross states) switches in a conven
tional binary switching network. Several full
processor communication models are presented in
this section. Subsection A describes a non
blocking network using three-state switching
elements with complexity O(N2). Subsection B
introduces a blocking interconnection network with
complexity O(N log N). Finally in subsection C,
we present a rearrangeable model with optimal
connections and of complexity O(N log N).

A. A non-blocking network using three-state
switching elements

By using all three states of the (2x2) switch
ing elements as shown in Figure 2, Gecsei [GECS 77]
shows a non-blocking full processor communication
system with O(N2) switching elements. A typical
eight processors network is shown in Figure 5 in
which pairs of processors (07) (16) (25) (34) are
to be connected. For N processors the possible
ways of connections is (N-l)x(N-3)x ... 3x1. The
total number of switches required is (N-2) +
(N-4) + ... + 2 = .tt_2 _ !i The non-blocking

4 2 .

(07) "(16) (25) (34)

Figure 5. A Non-Blocking Interconnection Network with Three-State Switches.

' ' . , ' .. .,,. 0 ~-~-• uu····c - _9 8= 8 1 2 •· •, a • .. • 15 ,' ·. 11 -·., -· _ g

2
3

4
5

6
7

14
15

Figure 6: A Sixteen Processors Colllllunication Network.

property of the network can be easily shown by
induction.

B. A blocking network using three-state switch
ing elements

The non-blocking network previously des
cribed becomes impractical for large N since it
has a size complexity of O(N2) and an average
delay of O(N). Better solution must be solicited.
By incorporating the loop-back state in the (2x2)
switching element. it becomes possible to connect
a pair of processors in the same side of the
multi-stage permutation network. The pennutation
network thus becomes a full colllllunication network
of 2N processors. Figure 6 is an example of 8x8
sixteen'processors network for the connection of
{(l 2) (4 5) (0 15) (3 7) (6 12) (8 14) (10 13)

68

(9 11)}. Since the network is hierachically
structured we can introduce the concept of local
connections. e.g. connections (01) (23) (45) (67)
are considered as the first level local connec
tion, (03) (46) as the second level local connec
tions. and (15) (36) as the third level local
connections. etc. Connections between the two
sides of the network are considered as long dis
tance connections. If we use binary numbers to
name the processors. then the levels can be re
presented in bit positions. Assume that lower
level local co.nnections are more likely to occur
than the long distance connections. It is there
fore desirable to have minimum delays for the
local connections such that the overall perfor
mance of the routing delays can be improved. With
some modifications the graph algorithm presented
in Section II can be used for the routing control

in the full processor communication systems. It
is illustrated in the following example. Figure
7 is a connection graph similar with that of the
permutation network. Again the '<::_' or ';>•
denotes a switch, the curved lines and the straight
lines represent local connections and long dis
tance connections respectively. There are two
unconnected sub-graphs in the graph. Both sub
graphs have odd number of paths. An alternating
marking is possible only if the number of paths
is even in a sub-graph. The sub-graph
<~) is called a minimum sub~graph since it has
the minimum number of paths possible in a graph.
Such a graph implies an immediate loopback since

~>

<~

Figure 7: Connection Graph for Connection
of Sixteen Processors

the alternating marking is impossible. This
loopbacked switch can be utilized by other sub
graphs. A non-minimum sub-graph with even number
of paths can be marked as usual. If it contains
odd number of paths, some rearrangements have to
be made. This rearrangement must utilize the
loopback switch, if available, to make an even
paths graph such that an alternating marking is
possible. Figure 8 shows such an example of
marking. The path between 0 and 15 is deleted

loop
back

a

Figure 8: Rearrangement of Connections.

and connections of (0 4) and (5 15) are estab
lished. This rearrangement makes an even path
subgraph and yet maintains the connection of

69

(0 15) because the (4 5) connection is a loopback
and the output of the switch is shorted. The
marking is done for the first iteration (Figure 8)
and the outside layer of switches is set accord
ingly (Figure 6). The second and third iterations
of the marking process are shown in Figure 9 where
a, b, c are the common connection points due to
loopback switches. The final switch setting
dashed lines in Figure 6) shows that all local
connections have the shortest paths at the ex
pense of the prolonged delay of the long distance
connection (0 15) which has a delay of 9 switches.

It can be seen from the above graph example
that a connection is realizable only if all sub
graphs have an even number of paths in each itera
tion or all non-minimum subgraphs with odd number
of paths can be made into even paths subgraphs by
combining with minimum subgraphs. Although the
network has a complexity of O(N log N) and has
local connection property, it is a blocking net
work. Figure 10 is an example that connections
can not be realized. The connection {(0 8)
(l 11) (2 12) (3 13) (4 14) (5 6) (7 15) (9 10)}
involves two sub-graphs with odd number of paths
and no minimum subgraph can be utilized. In
this example the loop back of the local connectior
(9 10) forces the two terminals8 and 11 to both
go to the upper subnetwork or the lower subnet
work. The two terminals 0 and l to be connected
with 8 and 11 can only go to different subnet
works. Thus one of the connections cannot be
made unless there is a minimum subgraph that pro
vides a loopback for the connection.

C. A rearrangeable network using two-state
switching elements

Both non-blocking and blocking full processor
communication networks presented earlier use
three-state switching elements. The former net
work requires O(N2) switching elements while the
later has a size complexity of O(N log N). We
now propose an O(N log N) full processor communi
cation network which has optimal local connec
tions and requires only two-state switching
elements. Figure 11 is a sixteen inputs modified
reverse-exchange network. The sixteen outputs
on the right hand side are shorted to form the
connections {(0 8) (l 9) (2 10) (3 11) (4 12)
(5 13) (6 14) (7 15)}. It can be seen that four
switches in the lower right corner are redundant.
The network now consists of two parts: a
partition network on the left and a permutation
network on the right. The partition network
partitions the input processors such that half of
the processors goes to· the upper part of the
permutation network and the other half is sent to
the lower part of the permutation network. For
any desired full processor communication, e.g.
the eight sets of connections (0 15) (l 4) (2 7)
(3 14) (5 9) (6 11) (8 10) (12 13) of sixteen
terminals, if we can partition the terminals
into two sets such that the two termi na 1 s in a 11
the connection pairs appear in different sides
of the permutation network, then it becomes
possible to achieve the desired connections. We
will show by using the graph model that the

loop <~) C1~> loop <~ l~)> back back
b c

<a~12/ 6 --0-- •. 15 <~ 1~)-

<~)l ~,i~ <~) cm> loopback

< ~-· 13 > <~) (1 ~ > loopback I.>
14

a). Second iteration b). Third iteration

Figure 9: 2nd and 3rd Iterations of the Marking Process

Figure 10: An Unrealizable Connection.

Partition Permutation

0
1

2
3

4
s 5

I 6

D 7

E
8

9

1 10
11
12
13

14
15

Redundant
Figure 11: A Modified Reverse Exchange Network for Full Processor Communication

70

partition network in the box shown in Figure 11
will accomplish such a partition. The graph in
Figure 12 represent the desired connections.
To obtain a connection, the two terminals linked
by a curved line should be dispatched to two
different sides of the permutation network, e.g.
pair (2 7), if terminal 2 is labeled left (1)
then terminal 7 should be labeled right (r). We
can traverse the graph marking the terminal 1 or
r without considering the curved lines as paths.
Since we have even number of straight paths, a
partition of the terminals into two sets is always
possible. The labeling of the graph in Figure 12
gives us the two sets (0 2 4 6 9 10 12 14) and
(1 3 5 7 8 11 13 15). By using these two sets
as both sides of the permutation network we can
achieve the permutation
(0 2 4 6 9 10 12 143) by using the

15 7 1 11 5 8 13
graph algorithm and therefore establish the
connections. The result is shown in Figure 11.

The full communication network is similar
with the one proposed by Chung and Wong [CHUN 79].
However the interconnection network is centralized
in the sense that all terminals are considered as
a single group and all connections have the same
delay (the number of switches traversed). We
are interested in the concept of local connections,
i.e., processors are hierachically structured and
local connections are expected to have minimum
delays. We have shown that the network in
Figure 11 can be used to get all possible con
nections. By structuring the network we can
obtain an equivalent network with local proper
ties. To illustrate the restructuring we use
the same network in Figure 11. The network is
first unfolded (turn the bottom half to the right
hand side) in order to make the picture clearer.
Then we merge the redundant switches and rearrange
the switch boxes. The network is then converted
into the following (Figure 13).

The twisted switch boxes in the center stage
essentially serve as the purpose of straight
through long distance connection or loopback local
connections. Such additional switches can be
used in other stages to provide an immediate loop
back local connection without effecting the other
routing in the whole network as indicated by dash
lines in the figure. The structure of the network
indicates that these modifications can be grouped
in pairs as a standard form shown in Figure 14.
Two-state switches Sl and S2 are additional
switches for 1 oop-back purposes. There a re four
inputs (a, b, c, d) to each pair of switches. To
perform loop-backs we have six possible connec
tions: (ab), (a c), (ad), (b c), (b d), (c d).
Connections (a b) (c d) can be ruled out because
in the graph algorithm they would have been
routed to different center stages. Connections
(a c) (b d) are not necessary because they come
from the same subnetwork and if local connections
are desired they would have been looped back in
the previous stages. Thus, if a local loop back
is desired, it should be either (a d) or (b c).
In other words, if we use binary code for each

71

input, a loop back is performed only if the pair
of processors differ in the two least significant
bits. Switch Sl and S2 in Figure 14 have the
ability of looping back (ad) and (b c) in straight
state and preserving original connections when in
cross-state.

The overall algorithm for full processor
communication is summarized as follows:

a. partition the terminals into two dis
joint sets by using the graph algorithm

b. connect the two sets of terminals by
using the permutation graph algorithm
iteratively

c. restructure the network and set switches
for routing local connections

The complexity of the overall process is O(N log N).
The process establishes all connections with
shortest possible routes for both .local and long
distance connection with twice the number of
switches as in a non-localized network. The
number of switches remains O(N log N). The mak-
ing of the localized full communication network
is more formally described in the following
section.

IV. A Formal Description of Routing in the Network

We have shown that the interconnection net
work in Figure 13 can be used for permutation and
full processor communication. We may formally
define our switching schemes as follows:

Let the processors be labeled 0 to 2n -1.
For each processor, a, define its binary

expansion as:

a = anan-1 · .. a2al.

Number the stages of the switching network as
1,2, ... ,n-l ,n,n-1, ... 2, 1.

In all the networks below we define a con
nection and switching procedure for which a is
switched to

location anan-l· .. a2a1 at input to stage

location anan_ 1 ... a3x1a2 at input to stage 2

location anan_1 ... x2x1a3 at input to stage 3

location anxn_ 2 ... x1a0 _1 at input to stage n-1

where x.'s are determined by the switch posi
tions. 1

A. Permutation Network

For permutation the nth stage is r~dundant.
Here we may map any a to b if an= on (O=l, T=O).

0 l v.
Figure 12: Graph for Partitioning 16 Tenninals.

Stages 2 3 4 3 2

0 8
1 9

2 10

3 11

4 - 12
5 13

6 ., ,
.........

Figure 13: A Restructured Interconnection Network with Local Properties.

a

c

b

d

a
b

c
d

Figure 14: A Standard Circuit Which Provides Loopback and Preserves Other Connections.

The n-lth stage consists of 2n-2 switches each of
which corresponds to the middle n-2 digits of the
input, Xn_2 ••• x1. The 4 inputs are detennined
by an an_1(i.e. the first and last bit). The
switch is one of type which will map an an-l to

72

Thus if our routing algorithm maps a to b then
an = bn and
if a maps to anxn_2 ••. x1an-l

and b maps to bnYn-2 ..• y1bn-l

B. Fu11 Processor Communication Without Loca1
Connection

The inputs to the nth stage are x _1xn_2 ...
x2x1an. The nth stage consists of 2n-~ switches
each of which corresponds to the front n-2
digits of the input x0 _1xn_ 2 ... x2. The four in-
puts to the center stage switches are determined
by the ~igits x1an. The switch has the mappings
x1an + x1y

where a maps to xnxn_ 1 ... x1an

and b maps to YnYn-l y1bn

then xn=yn ... x2=y2 and x1=Y"1

4
5
6

7

8
9

10

11

12
13

14
15

Stage 1 Stage 2

C. Fu11 Processor Communication \H th Optimized
Loca1 Connection

Two inputs a and b are local at stage k if
an=bn·· ak+l=bk+l and ak t bk. Let a and b be
local at stage k, and suppose we want to connect
them. Follow the ful1 connection algorithm to
stage k. Then we have

a is at an ... ak+lxk ... x1ak

bis at bn ... bk+lYk···Ylbk

Since an=bn ... ak+l=bk+l and since we know the
routing produces xk=yk ... x2=y2, x1=y1, we know
the precise relationship of these calls already

Stage 3

Figure 15: A Ful1 Communication Network With Localized Connections.

73

at the kth stage, i.e. x1=y1, ak=bk, the local
connection differs in the two least significant
bi ts.

We add to the network. switches to optionally
connect at each stage k, k=l, 2, ... n input
ZnZn_ 1 ... z1 to znzn_1 ... z1. This exactly doubles
the number of switches in the network. The add i ...
tional switch type is shown in Figure 14.

We now notice that at the nth stage, if a is
to be mapped to b with an=bn then it will have
been cut across by the n-1 stage switches. Thus
the mapping x1an +x1 y where y=O or l is only
necessary when an=y. Thus no switch is necessary
and we map x1an + x1an and we can eliminate the
nth stage.

Finally, we give one last diagram using the
switch from Figure 14, represented by the symbol

fl , and =0= to represent

this figure:~ . Figure 15 is the

full processor communication network with opti
mized 1cca1 connections.

Conclusion

We have used a graph model in computing the
routing for permutation network, partitioning
network, and full processor communication network.
Special emphasis is placed on multistage full
interconnection network with hierachical structure.
A rearrangeable non-blocking interconnection net
work with local properties is developed for full
processor communication. Such network provides
shortest routing for both local and long distance
connections. The complexity of the routing
algorithm and the number of switches used a re
both in the order of N log N. It is also shown
that by using parallel processors, the routing
computation time can be reduced to O(N). In
addition to the rearrangeable non-blocking inter
connection network, blocking and non-blocking
models are reviewed. Interconnect networks play
an important role in communication and parallel
processor systems .. Further research results in
the application of the techniques used in this
paper to general Clos networks with fUll processor
communications and local routing are expected.

References

[BATC 76] "The Flip Network in STARAN," K.E.
Batcher, Proceedings of the 1976 Inter
national Conference on Parallel Pro
cessing, pp. 65-71, 1976.

74

[BENE 65] Mathematica 1 Theory of Connect_ii:'9-~.et
works, V. Benes, New York, Academic
Press, 1965.

[CHUN 79] "Asymptotically Optimal Interconnection
Networks from Two-States Ce 11 s," K. M.
Chung and C. ·K. Wong, IEEE Transaction
Computer, Vol. C-28, No. 7, pp. 500-~05,
July 1979.

[CLOS 53] "A Study of Non-blocking Switching
Network," C. Clos, Be 11 Systems Tech
nical J., Vol. 32, pp. 406-424, 1953.

[FENG 74] "Data Manipulating Functions in Para
llel Processors and their Implementa
tions," T. Feng, IEEE Transaction
Computer, Vol. C-23, No. 3, pp. 309-
318, March 1974.

[FENG 79] "A Microprocessor-Controlled Asyn
chronous Circuit Switching Network,"
T-Y Feng, C-L Wu, D. P. Agrawal, Pro
ceeding 6th Annual Symposium on -
Computer Architecture, pp. 202-215,
April 1979.

[GECS 77] "Interconnection Networks from Three
State Cells," J. Gecsei, IEEE Trans
action Computer, Vol. C-26, No. 8,
.......... ;nr: "'71 i n .. - .. -"- 1nt7
1-'I-' • I u..i-1 I I ' f"lU~U:> l.. I :JI I •

[HALL 35] "On Representatives of Subsets, "P.
Hall, J. London Math. Soc., 10, pp.
26-30. 1935.

[NASS 78] "An Optimal Routing Algorithm for
Mesh-Connected Parallel Computers,"
D. Nassimi and S. Sahni, TR 78-19,
University of Minnesota, 1978.

[OPFE 71] "On a Class of Rearrangeable Switching
Networks," D. C. Opferman and N. T.
Tsao-Wu, Bell System Journal, Vol. 50,
No. 5, pp. 1579-1599, May-June 1971.

[SIEG 78] "Study of Multistage SIMD Inter
connection Network," Proceeding 5th
Annual Symposium on Computer Ar~hi
tecture, pp. 223-229, April 1978.

[STON 72] "Parallel Processing and the Perfect
Shuffle," H. S. Stone, IEEE Trans
action Computer, Vol. C-20, No. 4,
pp. 357-366. April 1972.

[TRIP 79] "Packet Switching in Banyan Networks,"
A. R. Tripathi, G. J. Lipovski, Pro
ceeding 6th Annual Symposium on com
puter Architecture, pp. 160-167, April
1979.

[WAKS 68] "A Permutation Network," A. Waksman,
JACM, Vol. 15, pp. 159-163, 1968.

[WU 78] Interconnection Networks in Multiple
Processor Systems, Ph.D. Dissertation,
Wayne State University, C.L. Wu, 1978.

USE OF THE AUGMENTED DATA MANIPULATOR MULTISTAGE NETWORK FOR SIMD MACHINES

S. Diane Smith
University of Wisconsin, Electrical and Computer Engineering Dept., Madison, WI 53706

Howard Jay Siegel, Robert J. McMillen, George B. Adams III
Purdue University, Electrical Engineering School, West Lafayette, IN 47907

Abstract -- The capabilities of the augmented data
manipulator (ADM) and the inverse ADM (IADM) as
permutation networks for SIMD machines are ex
plored. Redundant control settings for commonly
used permutations are examined. A method to count
the number of distinct permutations performable by
these networks is given. Finally, techniques for
controlling these networks in SIMD mode are
presented.

I. INTRODUCTION
In [13] it is shown that the multistage cube

networks called the generalized cube, omega, in
direct binary n-cube, and STARAN flip are
equivalent and that the capabilities of the aug
mented data manipulator <ADM) network are a super
set of those of these multistage cube networks.
In this paper, the use of the ADM in an SIMD en
vironment is studied.

An SIMD <single instruction stream-multiple
data stream) machine has a control unit which
broadcasts instructions to N processors. A pro
cessor along with its private memory is called a
processing element or PE. ALL active PEs execute
the same instruction""""ilt the same time, each pro
cessor on data from its own memory. Data can be
transferred by the interconnection network from PE
to PE. Each PE is assigned a unique address from

0 to N-1, where N=2n.
An interconnection network can be described as

a set of interconnection functions, where each
interconnection function is a permutation (bijec
tion) on the set of PE addresses [8]. When inter
connection function f is applied, input i is con
nected to output f(i) for all i, O<i<N, simultane
ously. An equivalent definition is that the in
terconnection network takes the set of PE ad
dresses as its input and produces as its output a
permutation of these PE addresses, i.e., it maps
an input address to an output address.

The Plus-Minus zi (PM2I) network consists of
the 2n functions defined by

PM2+i(j) = j+2i mod N and PM2_i(j} = j-2i mod N

for O<j<N, O<i<n [8], where (-x = N-x) mod N.
The data manipulator network [2J, Fig. 1, con

sists of n stages with N switching cells per
stage, plus a column of network output cells. The
stages are ordered from n-1 to O, where the inter
connection functions of stage i are PM2+i' PM2_i,

This work was supported by the Air Force Office of
Scientific Research under AFOSR-78-3581. The U.S.
Government is authorized to reproduce and distri
bute reprints for Government purposes notwith
standing any copyright notation hereon.

CH1569-3/80/0000-0075$00. 75 (0 1980 IEEE

75

N

p

u
T

STAGE 2 0

Figure 1: The data manipulator
network for N=B.

and the identity (straight~. There is one pair of
control signals perstage. At stage i, cells whose
i-th address bit is 0 respond to one control, the
other cells to the other control.

The augmented data manipulator (ADM) is a data
manipulator with individual -cell control
[9,11,13,14J. Each cell receives control signals
independently of any other cell.

If the stages of the ADM are traversed in re
verse order, i.e., the input stage is stage 0
(PM2+o> and the output stage is stage n-1

CPM2:n_1>:. the resulting network is the inverse

ADM CIADM) [15J.

II. CAPABILITIES OF THE ADM AND !ADM
Lemma 17 The ADM passes the permutation-f-if and
only if the !ADM passes the inverse permutation.
Proof: See [15J. <:)
Theorem 1: The ADM can perform a perfect shuffle
in one pass through the network.
Proof: The perfect shuffle interconnection func
tion is shuffle(pn_1 ••• p1p0> = Pn-z···P1PoPn-1'
'p = Pn_1 ••• p1p0, O_sP<N. The switch settings for

stage i, n>i>O, are determined as follows, where
the address of-a cell P at stage i is Pn_1 ••• p1p0•

set stage n-1 to straight across;
for i = n~2 step -1 until 0 do

if Pi+1itpi
then if Pi+1"'o

then set cell P at stage ·i to PM2+;i
else set cell P at stage i to PM2_;;

else set stage i to straight across;·
For the controls calculated from the algorithm,

data originally from PE pn_1 ••• p1 Po is sent to

cell Pn-2Pn-3···P;Pn-1P;_1 ••• p0 ~t stage i. This
algorithm is related to. the "PM2I + shuffle" al~
rithm in [1QJ and is proved correct in C15J. V
Corollary 1= The IADM can perform an inverse per
fect shuffle in one pass through the network.
Proof: Follows from Lemma 1 and Theorem 1. Q
"i'iie'Orem 2: The IADM cannot perform a perfect shuf
fle in one pass through the network.
Proof: Assume arithmetic is mod N. Consider P =
on-211, where the superscript is a repetition fac

tor, e.g., 0411 = 000011. The difference of the
addresses P and shuffleCP) is an odd number.
Since no combination of PM2+; and PM2;;.i' O<i<n,
yields an odd number difference as the shuffle
does, data from P must use PM2+o at stage O. The
distance between P+1 and shuffleCP+U is even, as
is the di stance between P-1 and shuffle (p ... 1). The
straight connections are used for the data from
P+1 and P-1 at stage 0, creating a conflict. Q
Corollary != The ADM cannot perform an· inverse
perfect shuffle in one pass through the network.O
Proof: Follows from Lemma 1 and Theorem 2.
----:riie generalized cube and its equivalents Li3J
cannot perform the shuffle or inverse shuffle (for
N~16, 00pn_3 .••• p11 and 10pn_3 ••• p11 conflict at
stage n-1 for the shuffle, and 1pn_2 ••• p201 and

1pn_2 ••• p211 conflict at stage 1 for the inverse
shuffle>.
Theorem 3: A bit reversal function transfers data
from PE- p = Pn-1···P1Po to P' = PQP1···Pn-1· For
N>8, the IADM cannot perform a bit reversal in one
pass through the network.
Proof: Let P = on-211. The distance between P and
~bit reversal is an odd number, so PM2+o must
be used. The distance between P+1 and its bit re
versal is an even number, as is the distance
between P-1 and its bit reversal. The straight
connections are used for the data from P+1 and PQ-1
at stage O, creating a conflict.
Corollary _1: For N>8, the ADM cannot perform a bit
reversal in one pass through the network. Q
Proof: Follows from Lemma 1 and Theorem 3.
--.:Or some transfers, more than one setting· ex~
ists for the ADM. In addition. to being of
theoretical interest,. the existence of redundant
paths adds a certain amount of fault tolerance.
Two classes of these redundant settings are . shown
Caetai ls in C15J).
Theorem 4: There are n-i different control set
tings for the ADM which realize the Cube; inter-
connection function, 0 ! i ! n-2.

f.!:221: Cube; Cpn_1 ... p1p0> = Pn-1 •• ·P; •• ·Po, O.::_i<n
[8J. Cube; can be realized by setting the ADM
controls such that at stage i, cells whose i-th
address bit equals 0 perform PM2+i' while those

76

whose i-th address bit is 1 perform PM2_;· Since,

2i = 2k-2k-1-••• -2i, n>k>i, there are n-i dif
ferent settings for the ADM which accomplish.
Cube;. Data items from an arbitrary pair of in-
puts, P and P', P<P', cannot conflict.
Case 1: P;=pi'• Always P'-P cells apart.
Case 2: P;~Pi'· For stage j, j>i, the data items
must be in cells which differ in at least the i-th
bit position (since P;~P;'>. At stage i, the data
from P will be at eel l Cube; CP) and the data from

P' will be at Cube;CP'>, which will differ in at
least the i-th bit position. 0

The uniform shift permutations send data from
PE P to. P' = P+A mod N, O<A<N, for all PEs. Let A
= an-1 " •• a1 ao·
Theorem 5: The ADM has redundant control settings
for all uniform shifts of A mod N, O<A<N.
Proof: The ADM can be set as follows: at stage i,
~;=O, then set the network to straight across;
if ai=1, then set the network to.PM2+;• Let A be
expressed in signed digit notation, where
ai' £ {0~ +1, -1), the sum and difference of
powers of 2 Ce.g., A = 0111 = 100C-1> = 10<-1>1 =
1C-1>11>. The following are all equivalent [7J:

a' ~ ••• a'.01 ••• 110a' .••• a'~
n-1 K J U

a' n-1 ••• a' k 10 ••• oc-1 >Oa' j ••• a' 0
a'n_1 ••• a'k1D ••• DC-1>10a'j•••a'o
a'n_1 ••• a'k1C-1>1 ••• 10a'j···a•0

Each of these different representations of A can
be used to yield control settings for the ADM net
wor.k as follows: at stage i, if a; '=0, then set
stage i to straight across; if a;'=1, to PM2+ii if
ai '=-1, to PM2_;. Since all eel ls in a stage are
set the same way, no conflicts can occur. Q
Corollary _i: Theorems 4 and 5 hold for the IADM.
Proof: Follows from Lemma 1, Cube:1=cube., and the -- , , 0
inverse of shift A mod N is shift N-A mod N.

One measure of a network is the number o.f per
mutations it can perform. The generalized cube
network Cand its equivalents [13]) can perform
2Nn/2 permutations [12J. The following theorems
consider the number of permutations performable by
the ADM (details in [1 J>. .
Lemma 2: For N = 4, the ADM can perform all possi
bleli!-= 24 permutations.
Proof: By enumeration Csee [15J). 0
--A-size N ADM can be partitioned into two in
dependent subnetworks of size N/2 [11J, plus stage
O. These subnets have the same structure as a
size N/2 ADM. All the inputs of one subnet are
even-numbered .Cthe even subnet). The subnet with
all the odd•numbe~ inputs is the. odd subnet.
The connection of the two subnets to stage--ir--of
the size N ADM is shown in Fig. 2. All even
numbered inputs of stage 0 are connected · to the
outputs of the even subnet and all odd-numbered
inputs to the outputs of the odd subnet.

Let Si' D; specify a source/destination pair.

s
Even t

Subnetwork •
g

• Figure 2: 0
Part I tioning

the ADM network.
Odd n

Subnetwork
p
u
t
s

A connection in stage 0 that does not affect the
Low order bit, i.e., <so>; = <do>;, is a straight
connection. A connection that changes the Low
order bit, <so>; ~ <do>;, is called an exchange
(see Fig. 3). A regular exchange is between stage
0 inputs P = Pn_1pn_2 ••• p10 and P+1. An irregular
exchange is between stage 0 inputs P and P-1 mod
N. Any possible configuration of stage 0 that is
a permutation, except the all +1 or all -1 confi
gurations, consists of straight and exchange con
nections only [11J and can be expressed as an N
bit number. A bit is associated with each adja
cent pair of inputs, including the wrap-around
pairing of 0 and N-1. If the adjacent pair of in
puts form an exchange, the bit is 1; if not, 0
(see Fig. 3).

Two kinds of adjacency for binary numbers are
distinguished. When the first and Last bits of
the binary number <representing the wrap-around>
are not considered adjacent it is Linear
adjacency. When the first and Last bits are--con=
sidered adjacent it is circular adjacenc~.
~l: Every configuration of stage, except
the settings all +1 or all -1, that is a permuta
tion, has a unique associated binary number with
no circular adjacent bits that are 1.
Proof: If there are circular adjacent 1's, then an
input P is in two exchanges such that P + P+1 mod
N and P + P-1 mod N. Q
Lemma 4: The number of N-bit numbers with no
Tiriear- adjacent 1's is
BCN)=BCN-1)+B(N-2); BC2)=3, 8(3)=5, N>4.
Proof: If the number ends in a O, it iiiust have no
Linear adjacent 1's in the first N-1 bits. If it
ends in a 1, the bit immediately preceding must be
a O, and the first N-2 bits must have no Linear
adjacent 1's. ()
Lemma 5: For an N-input ADM network, the number of
stage 0 configurations that yield a permutation of
stage 0 inputs to outputs is
a(N) = B(N) - BCN-4) + 2 ; N > 8.
Proof: By Lemma 3, a(N) is the number of N-bit
numbers with no circular adjacent plus all +1

Figure 3:

a) Straight connections
b) Regular exchange
c) Irregular exchange
A 1 so shown, the
associated binary number
(N = 8).

-o
-0
-I

-o
-o
-1
-0
-0

77

and all -1. BCN> exceeds the number with no cir
cular adjacent 1's by the number with no linear
adjacent 1's which do have circular adjacent 1's •
These numbe·rs are of the form 10a1a2 ••• aN_401

where a1 ••• aN_4 has no linear adjacent 1's. ()
Lemma 6: Consider the stage 0 permutations except
tiie"""""aTL irregular exchanges, all +1, and all -1.
Any two of these permutations differ in the source
subnetwork for at Least one output.
Proof: Consider two distinct permutations of the
given set. There must be at least one output D. ,
which is mapped differently. If output D; is con-

nected to a straight stage 0 connection,
Cd0>; = <so>;· If it is connected to an exchange

at stage O, <do>; ~ <so>;, and it receives its
data from a different source subnet. ()
Theorem 6: A lower bound on the number of distinct
permutations performable by the ADM, PCN), is

PCN) > PCN/2) 2•[a(N)-3J; P(4)=24; N>8 •
Proof: Each subnet can perform PTN/2) permuta
tions. Let stage 0 be restricted to any permuta
tion other than all +1, all -1, or all irregular
exchanges; there are a(N)-3 such configurations.
By Lemma 6, any change in the stage 0 setting will
cause at least one output to be mapped from a dif
ferent subnet, changing the overall permutation.
PC4) is from Lemma 2. ()
Theorem 7: An upper bound on the number of dis
tinct permutations performable by the ADM is

PCN) < PCN/2) 2•aCN); P(4)=24; N~8 •

Proof: Assuming that the composition of any input
permutation with any stage 0 permutation yields a
unique overall permutation gives the above result.
The<inequality is because the assumption is false
(there are redundant settings). ()

III. NETWORK CONTROL
Routing tags are used to distribute control of

the network among the N PEs. A full routing !!a.
= f2n-1f2n-2···f1fo at each input can specify any
arbitrary path. In stage i, if f 2;=0, the

straight link is used; if f2;=1 and f 2;+1=o, the

+2i Link is used; otherwise the -2i link is used.
If all the sign bits in a full tag are the same,
form an n+1 bit routing tag by computing the
signed magnitude difference between destination D
and source S: T = tntn_1 ••• t 1t 0 = D-S, where tn=O

indicates positive and tn=1 negative, and

tn_1 ••• t 1t 0 equals the absolute value of o-s [SJ.

At stage i if t;=O, the straight connection is

used; if tn=O and t;=1, the +2; link is used; oth

erwise the -2; Link is used. If all N tags for a
permutation are calculated in this way, then the
permutation is routed using natural routing tags.
An individual route consisting of only straight or

+2;-type connections is positive dominant; an in
dividual route consisting of only straight or

-2i-type connections is negative dominant [5J.

Two tags are equivalent if they route a message
from the same source to the same destination.
Theorem 8: Let A' denote the two's complement of A
and T¢0 TS¢D). Then T' is equivalent to T.
Proof: See [5]. 0
--A-permutation is routed using positive dominant
routing tags if those tags that are negative dom
inant in the set of natural routing tags are con
verted to positive dominant using Theorem 8.

Lenfant has defined five families of frequently
used permutations C4J. Theorems 9 to 12 show that
two of the families are passable by both the ADM
and IADM using positive dominant tags. The proofs
are very briefly sketched and the details are in
[6J. Let Ca2,a1> be the bitwise representation of

an address P, a2 the j high order bits, and a1

the n-j low order bits. <T>r denotes T mod 2r.

Lemma 7: The location of a message in stage i of
~!ADM is cell <S + <T>i>n, where T is the mag-

nitude portion of its positive dominant tag.
Proof: At stage i, bits 0 to i-1 have been exam
ined, so the message has been displaced by <T>i.()

Theorem 9: The class of permutations A~nk)' which
J,

maps X to jX+k mod N Cj odd>, is
!ADM using positive dominant tags.
Proof: Lemma 7 is used to show no

passable by the

conflicts can
occur. 0
Theorem 10: The class of permutations A~nk)' which

J,
maps X to jX+k mod N Cj odd>, is passable by the
ADM in one pass using positive dominant tags.
Proof: Lemma 1, Theorem 9, and properties of the

ring of integers mod N [3] are used to show A-1=A
and the class is passable. 0
Theorem .!.!= The class of permutations o t~, which

maps ca2,a1> to ca 2,A~~kj) Ca1» Cj ~ n>, is pass
able by the !ADM using positive dominant tags.

Proof: It is shown that if a1 < 2n-j_k, the tag is

OO ••• Okn-j-1 ••• k1k0; otherwise it is 11 ••• 1kn-

. _1 ••• k1k0• This is used to demonstrate no
fl1cts can occur.

Theorem 12: The class o~n)k Cj < n) is passable
---- J, -
the ADM using positive dominant tags.
Proof: Lemma 1 and Theorem 10 are used to
~ o =o and the classis passable.

Positive dominant routing tags cannot be
to route all passable permutations without
flict (e.g. perfect shuffle).
Theorem 13: The perfect shuffle is passable by
ADM network using natural routing tags.
Proof: If pn_1=1, T = Cshuffle(P)-P)~O, i.e. T

negative dominant. In Theorem 1, if pn_1=1,

con-
0

by

show
0

used
con-

the

is

the

bit pair Pi+1Pi will always be of the form 10 or

11. The algorithm specifies settings of -2; and
straight respectively, representable by a negative
dominant tag. The case for pn_1=o is similar. Q

Corollary~: The inverse shuffle permutation is
passable by the IADM using natural routing tags.
Proof: Follows from Lemm.a 1 and Theorem 13. 0
--rile tags used in Theorems 9 to 13 require only
n+1 bits and are easy to compute. If a passable
permutation is needed, but cannot be represented
with natural or positive dominant tags, full rout
ing tags can be precomputed.

IV. CONCLUSIONS
The use of the~DM and IADM networks for SIMD

processing have been explored. Analyses such a$
these are necessary in order to evaluate the
cost-effectiveness of the ADM (and !ADM) as SIMD
interconnection networks.

ACKNOWLEDGEMENTS: Significant contributions to the
counting the number of stage 0 permutations were
made by C. H. Smith and M. J. O'Donnell.

V. REFERENCES
1 Adams, Siegel, Tech Report in preparation.
2 Feng, "Data manipulating functions in parallel

processors and their implementations," IEEE
~· Comp., 3/74, pp. 309-318.

3 Goldstein, Abstract Algebra: ~ First Course,
Prentice-Hall, NJ, 1973.

4 Lenfant, "Parallel permutations of data: A
Benes network control algorithm for frequently
used iJC-fiiiutatioos," ICCC ir·ar·1s. Cu.-np., 7i70,
pp. 637-647. --· --

5 McMillen, Siegel, "MIMD machine communication
using the augmented data manipulator network,"
~- Comp. Arch., 6/80, pp. 51-58.

6 McMillen, Siegel, Interconnection Networks and
Operating System Considerations for PASM - ~
Reconfigurable Multimicroprocessor Sya8em,
Elec. Eng. School, Purdue, TR-EE 80-15, 6/ •

7 Reitwiesner, "Binary Arithmetic," in Advances
in Computers, 1, Academic Press, NY, 1960.

8 Siegel, "Analysis techniques for SIMD machine
interconnection networks and the effects of
processor address masks," IEEE Trans. Comp.,
2/77, pp. 153-161.

9 Sieqel, "Interconnection networks for SIMD
machines," Computer, 6/79, pp. 57-65 •

78

10 Siegel, "A model of SIMD machines and a compar
ison of various interconnection networks," IEEE
Trans. Comp., 12/79, pp. 907-917. --

11 Siegel, "The theory underlying the partitioning
of permutation networks," IEEE Trans. Comput.,
9/80.

12 Siegel, McMi llen, Mueller, "A survey of inter
connection methods for reconfigurable parallel
processing system," Natl. Comp. Conf., 6/79,
pp. 529-542.

13 Siegel, Smith, "Study of multistage SIMD inter
connection networks,"~· Comp. Arch., 4/78,
pp. 223-229.

14 Smith, Siegel, "Recirculating, pipelined, and
multistage SIMD interconnection networks,"
Intl. Conf. Parallel Proc., 8/78, pp. 206-214.

15 Smith-;-5iegel, Design and Analysis of
Interconnection NetiiO'rks "'fOr PartitionabTe
Parallel Processing Systems, Elec. Eng. School,
Purdue, TR-EE 79-39, 8179.

Design and Validation of a Connection Ne(~~rk for
Many-processor Multiprocessor Systems ·

George H. Barnes
Burroughs Corporation

Advanced Development Organization
Paoli, Pa., 19301

Summary

A connection network is described for
connecting any or all of a large number of
processors on one side to a large number of
memory modules on the other. Each processor
independently requests connect ion through the
network. Response time is to be commensurate
with the access time of memory, and hence no time
can be allowed for global control of the network.
The connection is made at combinatorial logic
speed, and the connection held for accessing one
word only. In the specific case studied, a
network to be embedded in the Flow Model
Processor of the Numerical Aerodynamic Simulator,
there were 512 processors and 521 memory modules,
with an assumed memory access time of 240 ns.
[1, 2].

The selected network (the "baseline"
network of [3]) is isomorphic to the Omega
network of [4]. Figure 1 shows an example of
this type of network together with an example of
how the individual bits of the requested memory
module number control the connection being made
through each two-by-two node. To avoid the
hazards of designing with arbiters and synchro
nizers, the connection network is synchronized by
a clock, whose cycle time exceeds the roundtrip
delay through the net, but may be substantially
shorter than the memory access time. The bidirec
tional path through the network is latched up
with the acknowledge bit from the memory module
while addresses, memory commands, and data are
transmitted. A path width of 11 bits was chosen.
This width is wide enough to allow the module
number and a strobe through the network in
parallel and provides sufficient bandwidth for
the balance of the system.

The entire collection of processors will
run no faster than the slowest processor due to
points of synchronization within the programs
being executed. An important constraint on the
netwqrk is that it treat processor requests
fairly since a slow processor will slow the.whole
system; in the applications studied, all pro
cessors had equal amounts of computation to do.

(a) The information in this paper was previously
submitted to NASA Ames as the final report of
contract NAS2-9897.

CH1569-3/80/0000-0079$00.75 () 1980 IEEE

79

Thus on the average no node. in the network may
favor one input port over another. For redun
dancy and additional bandwidth the CN is assumed
to be duplexed.

The performance of the Connection Network
was evaluated by simulation. The simulators
collected data on the effect of blockage in the
network on processor throughput, particularly the
effect on the last processor to finish. The
simulator generated its own test cases. Table 1
shows the result when the simulator is presented
with a single access from each processor, and
then runs to completion. The test cases included
the three data access patterns that dominated the
aerodynamic flow programs furnished by NASA, as
well as the case where the 512 processors request
access to memory modules which have been selected
at random. Figure 2 shows the result for one
case in which each processor has a number of
random memory access requests. The three curves
in Figure 2 are R (the number of processors
making a request on this memory cycle), M (the
number of different memory modules represented in
these reque·sts (some processors request
connection. to the same memory modul~, and thus
conflict with each other)), and Z (the number of
processors which the connect ion network succeeds
in connecting to some memory module). Z/M is the
fraction of .successes versus maximum possible
number of successes. In all these simulations,
the network was duplexed.

Simulations reported by Harris and
Zichterman [SJ, and reproduced here by
permission, are shown in Fig. 3 and 4. In this
case, the processor queues were filled by
requests (and· the associated timings) generated
by a simulator of the FMP processor. In this way
the test case had realistic timings. Fig. 3
shows six accesses· during this fir lit iteration of
a particular segment of cod·e. Fig. 4 shows the
fourth iteration of these same six access
patterns. The spread of access times represents
the processors getting ·slightly ·out of
synchronism with' each other as .some get delayed

•slightly.

The network, with NlogN complexity,
been validated for application to
many-processor . multiprocessor with . success
only for the access patterns exhibiteq in
targeted· areodynamic. flow code applica·tiOns,
also for random patterns of accessing.

has
a

not
the
but

References

[l] "Final Report, Numerical Aerodynamic
Simulation Facility Feasibility Study", Burroughs
Corporation, March 1979, prepared for NASA Ames
under Contract NAS2-9897.

[2] G. H. Barnes and S. F. Lundstrom, "A
Controllable MIMD Architecture", this conference•

[3] C. Wu and T. Feng, "Routing Techniques for a
Class of Multistage Interconnection Networks",
Proceedings of the 1978 International Conference

Table I
Simple Cases

A. Aerodynamic Cases

Pattern: let 3d

p = 1 100 30 50

Cycle 1 1 2 1 2 1

R(req.) 512 512 72 512 8 512
M(mem.) 512 512 72 512 8 512
Z(succ.) 512 440 72 504 8 512

B. Random Case

Cvcle -
R(req.) 512 212 63 16 4 1
M(mem.) 327 158 48 12 3 1
Z(succ.) 300 149 47 12 3 1

2d

(1) (2)

1 2 1 2

512 69 512 4
447 69 508 4
443 69 508 4

Note: · First and third patterns are vectors with
stride p. Second pattern is the simultaneous ac
cess of several vectors. Case (1) has p•l, vector
l~th • 31, and stride between vectors, q, of
31 modulo 521. Case (2) has p .. 1, length = 100,
and q = 5000 modulo 521.

Port
No.
0
1

z.
)

1011

. ' ~ 1.
or4
(I)

... '
i ' • • 10 Un e

Pol
1Z
Q

M
II

Port
No.

0
1

2
)

4
! .g

or4

' (I) f
t'

~1
10 11-
12
13·

14
I!

Fig. 1. Network with Ex11111ple of Control

80

on Parallel Processing IEEE Computer Society,
1978.

[4] D. H. Lawrie, "Access and Alignment of Data
in an Array Processor", IEEE Transactions on
Computers, C-24 (1975) pp. 1145-1155.

[SJ K. R. Harris and J. L. Zichterman,
"Evaluation of the Numerical Aerodynamic
Simulation Facility, Final Report", Computer
Sciences Corporation, June 1979, prepared for
NASA Ames under contract NASZ-9359.

lOO
~-J_

.~l~''fo _
~ory Cycle Number

Fig. 2. Sequence of Random Requests

512

0

!\ 11
!iA
I'

I
.. .. '•

\
. . , .

I

1 -.:: ... '.
•.

\ ·:· •. ··.
" . , ...

lot
Memory Cycle N\llllber

30th

Fig. 3. Test Case from FMP Simulator, Start

512

" ..•... -... •···· ... ~·
,;J ... ,1 _ ,. .• .. -, , --#· _.~

Memory Cycle N\Dllber

Fig. 4. Test Case from FMP SimUlator, cont.

* THE PRIME MEMORY SYSTEM FOR ARRAY ACCESS

D. Lawrie
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

and

** C. Vora
Burroughs Corporation

Paoli, Pennsylvania 19301

Abstract

In this paper we describe a memory system
designed for parallel array access, and first
used in the Burroughs Scientific Processor. The
system is based on the use of a prime number of
memories to allow conflict free access, and a
powerful combination of indexing hardware and
data alignment switches. The use of a prime num
ber of memories causes certain difficulties in
addressing hardware, and particular emphasis is
placed on the memory indexing equations and
their implementation.

L Introduction

The problem discussed in this paper is the
design of a memory system that can access, in
parallel, the required sections of an array,
e.g., a row, column, diagonal, etc. A number of
these memory systems have been discussed in the
literature. In [Batc77], Batcher discusses a
scheme for allowing access to words, bit slices,
or "byte" slices of a two-dimensional bit array.
Feng described another scheme for assessing
various "slices" of data in [Feng74]. Other work
described in [Ston71], Swan74], [Lang76],
[LaSt76], [Orcu76], [Sieg77], [Lawr75], and
[Shap75] has t.reated the problem from a variety
of viewpoints. However, all of these designs
have restrictions either on the kinds of
"slices" available without memory access con
flicts or in the data alignment capabilities.

In [RuKu71], Budnik and Kuck observed that
if the number of memory modules is a prime
number, then access to any "linear" array
slices can be achieved without conflict (provided

*This work was supported by Burroughs Corporation,
Paoli, PA, and in part by the Department of Com
puter Science, University of Illinois at Urbana
Champaign, Urbana, IL 61801.

** Current address is:
Data General Corporation
15 Turnpike Road
Westboro, MA 01581

CH1569-3/80/0000-0081$00.75 (£) 1980 IEEE
81

that the memory ordering of the desired array
elements is relatively prime to the number of
array elements). This observation turns out to
be quite useful. However, the problem of addres
sing this type of memory turns out to be diffi
cult due to the need to do integer divisions and
modulo operations in the addressing hardware. In
this paper we will discuss these problems in more
detail, and will present a feasible implementation
of the prime memory system.

Since many of the ideas in this paper have
been incorporated in the design of the Burroughs
Scientific Processor (BSP), we will describe some
of the details of the memory, alignment, and
indexing hardware of this machine. The BSP is a
high performance computer designed to be espec
ially effective on vector processing applications,
without significantly impairing its performance on
scalar computations. As can be seen in Figure 1,
the BSP consists of sixteen processing units,
seventeen memories, two alignment networks, and a

Figure 1. Block Diagram of the Burroughs Scienti
fic Processor

central control and scalar processing unit. The
control unit includes a fully funct.ional scalar
processing unit which can be overlapped with
vector operations, and additional memory for
scalar data and program storage. (See [KuSt79]
for further details.) Special hardware is
included in the cont.rol unit to perform vector
addressing and alignment control, and these
operations can be overlapped with vector and
scalar processing. We refer to the alignment,
indexing, and memory systems collectively as the
AIM system. We will discuss this system in more
detail in Section 3.

The alignment networks shown in Figure 1 are
in reality crossbar switches controlled by ~
tags. (That is, each output port of the network
can supply a "tag" which specifies the number of
the input from which it needs data.) While in
general, crossbar switches are too expensive for
large arrays of processors, due to the relatively
small number of processors in the BSP it was
determined that crossbar switches were the most
cost-effective form of switch capable of perform
ing all the desired alignments.

In particular, the functions such as com
press, expand, merge, require a random aligning
pattern which only the crossbar switch could per
form efficiently in the allocated time. Other
forms of switches were investigated, e.g., the
Swanson network [Swan74], Omega switch [Lawr75],
Barrel Shift network, etc., but these switches
do not perform all the functions needed in the
allccat~d tiwe, and they become cost-cff~Gtive
only with a large number of ports.

2. The Storage Scheme and Associated Equations

By a storage scheme, we mean the set of rules
which determine the module number and address
within that module where a given array element is
stored. For the present, we will restrict our
attention to two-dimensional arrays. However,
generalization of these storage schemes is
trivial for higher dimension(ild arrays.

Figure 2 shows an 8x8 array stored in 5
memory modules using one storage scheme. Notice
that any 5 consecutive elements of a row, column,
diagonal, etc., all lie in separate modules, and
thus can be accessed in parallel, i.e., without
conflict. For example, the second through sixth
elements of the first row are stored in module
numbers 3, 1, 4, 2, O, and at addresses 2, 4, 6,
8, 10., respectively.

We begin with some definitions. Let M be
the number of memory modules and P be the number
of processors, where we assume P < Mand M is
prime. There are two storage equations, f(i,j),
and g(i,j) which determine the module number and
address, respectively, of element (i,j) of the
array. In our case, we have the following
equations:

f (i ,j)

g (i,j)

[j * I + i + base] mod M

[j * I+ i + base]/P

(1)

(2)

where we assume the array is dimensioned (I,J),
"base" is the base address of the array, and P is
the greatest power of two less than M. Notice

82

Memory Module Number

Address 0 1 2 3 4

0 00 10 20 30 x

1 50 60 70 x 40

2 21 31 x 01 11
-3 71 x 41 51 61

4 x 02 12 22 32

5 42 52 62 72 x

6 13 23 33 x 03

7 63 73 x 43 53

8 34 x 04 14 24

9 x 44 54 64 74

10 05 15 25 35 x

11 55 65 75 x 45

12 26 36 x 06 16

13 76 x 46 56 66

14 x 07 17 27 37

15 47 57 67 77 x

Figure 2. Example of an 8X8 Array Stored in 5
Memory Modules

that these equations require a MOD M operation
where M is a prime number. They also require an
integer divide by P operation. However, P is a
power of two which makes this divide easily im
plementable. This simplification is made possible
by the "holes" shown in Figure 2.

Clearly, the number of holes in each row of
the memory is equal to M - P in gneral. For
example, if M = 37 and P = 32, then 5/37th of the
memory is wasted. These holes could be filled
with other data, e.g., scalar data, but a cleaner
solution is available at the expense of an
increase in the complexity of the indexing equa
tions (see [LaVo79]).

Next we define a linear N-vector, or simply
an N-vector, to be an N element set of the ele
ments of the array formed by linear subscript
equations:

V(a,b,c,e) {A(i,j): i =ax+ b,
j = ex + e, 0 < x < N} (3)

where again we assume the array is dimensioned
A(I,J). Thus, if a= b = 0 and c = e = 1, then
the N-vector (N = 5) is the second through sixth
elements of the first row of A: A(O,l), A(0,2),
... , A(O,S). If a= c = 2 and b = e = O, then
the N-vector (N = 4) is every other element of
the main diagonal of A: A(O,O), A(2,2), ... ,
A(6,6). Notice that the elements of the N-vector
are ordered with index x.

. Next we define the index equations for the
N-vector V. We define a(x) to be the address, in
module µ(x), of the x-th element of the N-vector.
Thus combining equations (1) through (3) above,
we get:

µ(x) f(ax + b, ex+ e)

[(ex+ e) *I+ (ax+ b) +base] mod M

= [dx + B] mod M (4)

where d a + cl and B = b + el + base. We define
d to be the order of the N-vector, and B to be the
initial address. Next we get:

a(x) f(ax + b, ex + e)

[(ex + e) * I + (ax + b) +

base] /P (5)

It is easy to show that if d is relatively prime
to the number of memory modules, then access to
the N-vector can be made without memory conflict.
(See [BuKu71] and [Lawr75] for a proof.)

Since it is most convenient to be able to
generate the address a(x) in memory µ(x), we solve
for x in terms ofµ and get:

x(µ) = [(µ - B)d'] mod M (6)

where d' is the multiplicative inverse of d modulo
M. Substituting this into equation (5), we get:

a(µ)= {(a+ Ic)f(µ - B)d' mod M] + b +

el + base}/P

{df(µ - B)d' mod M] + B}/P

For example, consider the 5-vector V(0,0,1,1,),
i.e., the second through sixth elements of the
first row of A(8x8). We have B = 8 and d = 8,
thus

µ(x) [(x + 8) * 8 + O] mod 5,

a(x) [(x + 8) * 8 + 0]/4,

(7)

and since d' = 2 (i.e., 2 * 8 = 1 mod 5), we get:

a(µ) = {8[2 (µ - B) mod M] + 8}/4.

Thus,)l(x) = (3, 1, 4, 2, O),

a(x) = (2, 4, 6, 8, 10),

and

a(µ)= (10, 4, 8, 2, 6).

Notice that the proper addresses in memories O, 1,
... , 4, are 10, 4, 8, 2, 6, respectively. We use
the)l(x) equation in the x-th processor to deter
mine the module number of the memory containing
the x-th element of the desired N-vector. At the
same time, addressing hardware in memory \l uses
the a(µ) equation to determine the necessary
address of the desired element. We use a(µ)
instead of a(x) because this eliminates the need
to route the addresses from the processors
through the switch.

This process is reasonably straightforward,
except that it is not; obvious that the hardware
can do the necessary calculations efficiently.
In Section 3, we will describe how we partition
the equations into parts that can be done
separately by special hardware in the CU, AU,

83

and memory addressing box.

3. Indexing Hardware

Vector instructions in the BSP are designed
to allow processing on vectors of arbitrary
length. The control unit automatically sequences
vector operations as a series of superword opera
tions where a superword consists of 16 or less
vector elements. For example, a vector instruc
tion which specifies a vector of length 53 would
be sequenced as three superwords of 16 elements,
followed by a superword of 5 elements.

Associated with every array is an array
descriptor (AD), shown in Figure 3(a). The two
values in the AD describe the base address and
total volume (words) of the array, and are used
for addressing and bounds checks on the array.
Every vector instruction refers to at least one
and as many as six vector operands. Each vector
operand is referenced through a vector set des
criptor (VSD), shown in Figure 3(b). The VSD
actually describes a set of vectors from a given
array. B is the address of the first element of
the first vector in the set. This vector is
ordered with distance d, and contains L elements.
The first element of the second vector in the set
is the (signed) distance D from the first element
of the first vector. There are K vectors in the
set. Thus the VSD describes a two-dimensional
set of data.

BASE v

Figure 3(a). Array Descriptor

B d D L LL K

L,LL

b,B"-x ,..-d--...
x'\ x x x x x x

D

x XJ x x x x x x K

x x x x x x x x !
b: Memory address of the first element of a super

word
B: Memory address of the first element of a

vector
d: Vector element displacement
D: Vector displacement
L: Remaining (unprocessed) length of a vector
LL: Initial length of a vector
K: Total number of vectors in the vector set

Figure 3(b) Vector Set Descriptor (VSD)

For example, the VSD (B = 1, d = 8, L = 8,
D = 2, K = 4) describes the odd numbered rows of
the array A(8,8) shown in Figure 2. Similarly,

VSD (B = 0, d = 1, L = 8, D = 16, 'K = 4) describes
even numbered columns, and VSD (B = 0, d • O,
L = 8, D • 1, K = 8) describes a two-dimensional
set of data, X(i,j), where X(i,j) = A(i,l),
0 < i, j < 8, and A(i,j) is the array shown in
Figure 2. The above parameters are not all
stored together. The first step in preparing a
vector instruction is to compute the above para
meters, together with other values needed for
addressing and alignment. -This is greatly facili
tated by special-purpose indexing hardware.

The purpose of the indexing hardware is to
generate alignment tags and memory addresses for
vector access-. Consider first the input align
ment network. To access a superword, processor p
must generate an input alignment tag, IAT, which
specifies the memory module number of _the p-th
element of the superword, i.e., µ(p). At the
same time, the address of the p-th element, a(p),
is generated in memory µ(p). Notice that each
processor could generate the required address
using equation (5), and then route this address
to the proper memory through the output alignment
network. However, by using equation (7), we
avoid the extra routing operation.

The output alignment network works similarly.
Memory µ(p) is to. receive the p-th element of a
superword, and thus generates an output alignment
tag, OAT, whose value is computed from equation
(6) above. Each memory also computes the required
address, a(µ), for storing the output.

The alignment, indexing, and memory systems
are responsible for a number of other functions.
We will discuss these functions in a later sec
tion. For now, we will restrict our attention
to accessing linear N-vectors.

3.1 Linear N-Vector Access

Let us assume for the moment that we are
interested in access to a single superword, with
initial base address B, and with order d. If the
superword is to be fetched from the memory, then
for each memoryµ, we must generate an address
(see equations (4) through (6))

where

a(µ) = {B + p(µ) • d}/P

p(µ) = (µ - B) d' mod M

(8)

(9)

and for each processor p, we must generate an IAT

µ(p) = (B + d * p) mod M (10)

However, if the superword is to be stored in the
memory, then for each memory µ, we must generate
an address given by equations (8) and (9) and for
each memoryµ we must also generate an_OAT

p(µ) = [(µ - B) d'] mod M (11)

Thus M-addresses and P-IAT's or M-OAT's are
required to access a superword. In the next sec
tion we will show how the generation of these
values can be simplified.

3. L 1 Recursive Generation Technique

(p + k) and (p - k) for p, we get

]J (p ± k) [B + d * (p ± k)] mod M

[µ(p ± k + 1) ± d] mod M (12)

Equation (12) implies that µ(p ± k) can be
generated from µ(p) with modulo M addition/sub
traction operations instead of a multiply followed
by a modulo M addition. Extending the notion,
from any µ(p) all tags can be generated recur
sive1y with appropriate modulo M additions or sub
tractions. In practice, primary µ(p) for several
values of pare generated using equation (10),
and secondary µ(p) for the remaining values of p
are generated using equation (12). The number of
primary µ(p) versus the number of secondary µ(p)
calculated can be determined by a simple hardware
versus time tradeoff.

The same technique can be applied to generate
output alignment tags and memory addresses. The
equation for the OAT's is:

p(µ ± k) = [p(µ ± k + 1) ± d'] mod M (13)

For memory addresses, the equation is:

a(µ+ k) = (B + {[p(µ ± k + 1) ± d']

mod M}+ d)/P

3.1.2 BSP Illll>lementations

(14)

For the BSP, P = 16 and M = 17. The base
address, B, is a 23-bit value. Element displace
ment, d, is a 23-bit signed quantity. For timing
and hardware considerations, 4 initial memory
addresses, 4 IAT's and 4 OAT's are generated by
using multiplications and modulo and normal addi
tions. Other addresses and tags are generated by
using binary adders. To use the binary adders,
the equations described in the previous section
were further simplified as follows. Let o =
d mod M, and notice that µ(p) < M. For IAT's,
we get

µ(p + k) = µ(p) + ko - cM

where cM < µ(p) + ko < (c + 1) M

(15)

For example, assume M = 17. We might generate
primary µ(p) for p = 1, 4, 7, 10, 13, 16 from
equation (10). Secondary µ(p) for the remaining
values of p would be generated as follows from
equation (15).

µ(p + 1) = µ(p) + 0 corrected by -17 if

µ(p) + 0 ~ 17

µ(p - 1) µ(p) - o corrected by +17 if

µ(p) + 0 < 0

Equations for OAT's are the same as above
~cept o is replaced by d'. For memory address
generation, the equations are as follows. Let

A(µ) B + p(µ) • d so that a(µ) = A(µ)/P.

Consider the equation (10). Substituting Then

84

A(µ + k) = B + d • p(µ + k).

B + d([d'(µ + k - B] mod M)

= B + d([p(µ) + dk'] mod M)

= A(µ) + kdd' - dcM

where cM ~ p(µ) + kd' < (c + l)M

0 1 2 3 4 5 6 7 8
L __ -- _______ J

(16)

9 10 11

9 10 11

Figure 4. Primary and Secondary Address Generation

Address generation in the BSP is performed
as follows. Primary A(µ) are generated for µ = 2,
6, 11, and 15 as shown in Figure 4. Then secon
dary values are generated for K = ±1, ±2.
Notice that A(µ) for µ = 4 and 13 are each gener
ated twice. This redundancy is used to check the
hardware integrity by comparing duplicated values.
(In addition, modulo 3 checks are performed on all
additions to further verify hardware integrity.)

A primary A(µ) generator is shown in Figure
5. B mod M and d' are each 5-bit quantities
(since M = 17) and are supplied by the Central
Index Unit (to be discussed in the next section).
The quantity d' (µ - B) mod M is supplied by a
1024x5 bit ROM. (The ROM contents differ for each
primary µ.)

B d

23

MULTIPLICATION

1024. 5

ROM

8 MODM

d'

d'lµ.-BIMOO M" plµ.I

TO OAT GENERATOR

Alµ.l=B+d(d'lp.-BIMOO M]

Figure 5. A Primary Address Generator

A secondary address generator for A(µ + 2)
is shown in Figure 6. Notice that in equation
(16) a test is required to determine the quantity
added to (or subtracted from) A(µ). This .. test

85

depends on the quantity p(µ) + 2d' = d'(µ - B)
mod M + 2d' (see equation (16)). d'(µ - B) mod M
(available from the primary address generator) and
d' are each 5-bit quantities and are used as

12 13 14 15 16 0

12 13 14 15 16 0

address inputs to a 1024x5 ROM. The output of the
ROM determines the test result and is used to mul
tiply the necessary additive factor for the final
adder. The other secondary address generators for
A(µ+ 1), A(µ - 1), and A(µ~ 2) are similar to
the one shown in Figure 6. However, the A(µ ± 1)
generators only need 2-way multiplexers and a one
bit wide decision ROM. (Through further simplifi
cation, these decision ROM's can be reduced to 512
words, so that the total decision ROM for four
secondary generators is just 6x512 bits.) The
primary and its four associated secondary address
generators are all grouped together physically.

Alµ.l=B+d (d'lµ.-BlMOD M)

2dd'

2dd'-dM

3

Alµ.+ 21

1024• 2

ROM

d'(µ.-ll)MODM

DECISION BITS

Figure 6. Secondary Address Generation for
A(µ + 2) .

Generation of IAT's and OAT's is essentially
the same or simpler than address generation. Only
the values and number of bits change. One group
of hardware, described above, generates the
addresses, and a similar group· of liardware gener
ates both the IAT's and OAT's. Both groups of
hardware form part of the Central Index Unit that
will be described next.

3.1.3 The Central Index Unit

One of the components of the control unit is
the Central Index Unit (CiU). The purpose of the
CIU is to a) perform automatic indexing of multi
ple superwords; b) generate input and output
alignment tags; and c) generate 4 initial ll!emory
addresses and indexing constants. The CIU can
be divided into 4 major sections: 1. Descriptor
Store Unit; 2. Descriptor Processing Unit;
3. !AT and OAT generators; and 4. Memory Address
and Indexing Constant Generators. Figure 7 shows
the organization of the above sections. The IAT,
OAT and address generators were described in the
previous section. The descriptor store unit
stores up to 16 vector set descriptors (VSD). A
simplified descriptor's contents are shown in
Figure 3 (b) • .

DESCRIPTOR

STORE

UNIT

l 1
DESCRIPTOR IAT El OAT

MEMORY ADDRESS

PROCESSING "' GENERATOR INDEXING . CONSTANT
UNIT GENERATOR

l l
+ +

TO ANS. TO ·MEMORY

Figure 7. Central Index Unit

A superword access requires an Indexing Event
in the CIU. During this event the descriptor is
updated by the Descriptor Processing Unit to
reflect the access. The processing depends upon
the kind of descriptor as well as the data values
within the descriptor. For example, suppose we
have a two-dimensional vector set operand (e.g.,
K > 1). The processing will be as follows:

If the length L is loriger than a superwGrd
(N), then the descriptor values· are updated as
follows. These updates are performed after each
superword access is initiated.

b + b + d * N

B + B

L + L - N

I<:+ K

However, if the length L of the last. access
was equal or less· than 11 superword (N)., then the
next super.word should come from the next vector
in the vector set. The appropriate update equa
tions are as follows.

b+B+D.

'B+B+D
L + LL

K + K - l

86

These actions cause the length to be reset
to the initial length (LL), and increment the base
address (B) to the base of the next vector in the
set.

3.2 Other Functions of the Alignment, Indexing,
and Memory System

As we mentioned above, the AIM system is also
responsible for a number of other functions. In
order to facilitate the smooth flow of data
through the vector processing elements, forms of
data other than linear N-vectors must be handled
more or less automatically. These functions will
be discussed next.

3.2.1 Automatic Padding of Short Superwords

As mentioned earlier, not all superwords in
a vector operation are a full 16 words. Inter
nally in the BSP System, the Arithmetic Elements
(AE) recognize a "NULL" operand. The array memory
also recognizes the NULL operand and inhibits a
store when a NULL operand is encountered. The
control uriit automatically causes the alignment
networks to pad short superwords by selecting NULL
operands during .inpµt and output· alignment .events.

3.2.2 Vector Element Conflict

In the memory storage scheme, if d mod M = O,
all the elements of the linear vector lie in the
---------------.:'I .1- rn1-.J..- .!- ---~------.:I.._ ___ _
Od.lllt:: 111ClllUJ.J lHVUU.l.t:::• .LU.LO J..~ J.C.l.~L.LCU \,..U CLO ct.

vector element conflict condition. In this case,
the access to the memory has to be sequential.
In the BSP System, this condition is handled by
forcing superword size equal to 1. Thus the BSP
System automatically adapts to this case without
any software or other interruption.

3.2.3 Inner and Outer Loop Optimization

Consider the following FORTRAN program
setment.

DO 10 I "' 1, 14

DO 10 J = 1, 4

10 A(I,J) + B(I,J)

This program can be performed in a single BSP
vector operation consisting of 14 superwords each
of length 4. However, it is faster to execute the
above program segment with inner and outer loops
interchanged, using 4 superwords of size 14. The
BSP optimizes these cases by u.sing h:ardware detec
tion of the fastest loop order from th;e parameters
L and K of a VSD. Of course, not all loops can be·
interchanged, and a software check is made to
allow the above optimization.

Space prevents us from describing all the
other functions performed by the alignment and
memory system. These functions include, among
others, handling scalar data in vector operations,
data compression and expansion, and mode vector
operations.

I~

4. Conclusion

In this paper we have shown one design for a
conflict-free array access memory. This design is
based on the use of a prime number of memories.
Crucial to this design is the simplification of
the indexing equations which allow most of the mod
M operations and much of the other index calcula
tions to be done with ROM's and other simple hard
ware. These simplifications were discussed in
Section 3, along with a brief discussion of some
of the necessary indexing hardware. Further
details can be found in [LaVo77].

The design of this memory system fits nicely
in the context of the Burroughs Scientific
Processor ([Stok77], [KuSt79]). The vector
machine instructions on this computer can encom
pass two levels of loop nesting, and the indexing
hardware carries out the necessary addressing and
alignment calculations automatically, once the
initial vector set descriptors have been set up.
One of the major problems with large vector com
puters has been that indexing overhead and memory
access conflicts have a significant effect on
overall vector performance. By using the prime
memory system and indexing hardware described in
this paper, the BSP is able to execute vector
instructions efficiently.

Acknowledgment

A number of people have contributed to this
work. The overall design of BSP is due primarily
to David Kuck and Richard Stokes. Special thanks
go to Robert Cantarella, who made many significant
contributions to the BSP design and especially to
the alignment, indexing and memory system, and to
Om Gupta and Ram Gupta.

References

[ArHS76] E. Artzy, J. A. Hinds and H. J. Saal,
"A Fast Division Technique for Constant
Divisors," Comm. of the ACM, Vol. 19,
No. 2, pp. 98-101, Feb. 1976.

[Batc77] K. E. Batcher, "The Multi-dimensional
Access Memory in STARAN," IEEE Trans. on
Computers, Vol. C-26, No. 2, pp. 174-177,
Feb. 1977.

[BuKu71] P. Budnik and D. J. Kuck, "The Organiza
tion and Use of Parallel Memories," IEEE
Trans. on Computers, Vol. C-20, No. 12,
pp. 1566-1569, Dec. 1971.

[Feng74] T-y. Feng, "Data Manipulation Functions
in Parallel Processors and Their Imple
mentations," IEEE Trans. on Computers,
Vol. C-23, No. 3, pp. 309-318, Mar. 1974.

[GaRu78] D. D. Gajski and L. R. Rubinfield,
"Design of Arithmetic Elements for
Burroughs Scientific Processor," Proc.
4th Symp. ou Computer Arithmetic, pp. 245-
256, 1978; also, Proc. 1978 LASL Work
shop on Vector and Parallel Processors,
1978.

87

[KuSt79] D. J. Kuck and R. Stokes, "The Bur
roughs Scientific Processor (BSP)," sub
mitted for publication, 1979.

[Lang76] T. Lang, "Interconnections Between Pro
cessors and Memory Modules Using the
Shuffle-Exchange Network," IEEE Trans.
on Computers, Vol. C-25, No. 5, pp.
496-503, May 1976.

[LaSt76] T. Lang and H. S. Stone, "A Shuffle
Exchange Network with Simplified Con
trol," IEEE Trans. on Computers, Vol.
C-25, No. 1, pp. 55-65, Jan. 1976.

[LaVo77] D. H. Lawrie and C. R. Vora, "Multi
dimensional Parallel Access Computer
Memory System," U. S. Patent No.
4,051,551, Sept. 27, 1977.

[LaVo79] D. H. Lawrie and C. R. Vora, "The Prime
Memory System for Array Access," sub
mitted for publication, IEEE Trans. on
Computers, Mar. 1979.

[Lawr75] D. H. Lawrie, "Access and Alignment of
Data in an Array Processor," IEEE Trans.
on Computers, Vol. C-24, No. 12, pp.
1145-1155, Dec. 1975.

[Orcu76] S. E. Orcutt, "Implementation of Permu
tation Functions in ILLIAC IV-Type
Computers," IEEE Trans. on Computers,
Vol. C-25, No. 9, pp. 929-936, Sept.
1976.

[Shap75] H. D. Shapiro, "Theoretical Limitations
on the Use of Parallel Memories," Ph.D.
thesis, University of Illinois at
Urbana-Champaign, Dept. of Computer
Science Rpt. No. 75-776, Dec. 1975.

[Sieg77] H. J. Siegel, "Controlling the Active/
Inactive Status of SIMD Machine Proces
sors," Proc. 1977 Int' 1. Conf. on Par
allel Processing, p. 183, Aug. 1977.

[Stok77] R. A. Stokes, "Burroughs Scientific
Processor," Invited paper, in High
Speed Computer and Algorithm Organiza
tion, pp. 85-89, Academic Press, Inc.,
1977.

[Ston71] H. S. Stone, "Parallel Processing with
the Perfect Shuffle," IEEE Trans. on
Computers, Vol. C-20, No. 2, pp. 153-
161, Feb. 1971.

[Swan74] R. C. Swanson, "Interconnections for
Parallel Memories to Unscramble p
Ordered Vee tors," .IEEE Trans. on Com
puters, Vol. C-23, No. 11, pp. 1105-
1115, Nov. 1974.

I,

SESSION 4: PERFORMANCE

89

EMPIRICAL RESULTS ON THE SPEED, EFFICIENCY, REDUNDANCY AND QUALITY
OF PARALLEL COMPUTATIONS*

Ruby Bei-Loh Lee
Computer Systems Laboratory

Stanford University
Stanford, California 94305.

Abstract -- The purpose of this paper is to
present empirical results on the performance of
parallel computations, with respect to various
performance criteria, under different assumptions
of the underlying computer architecture. The
performance criteria used are the Parallel Index,
the Speedup, the Utilization, the Efficiency, the
Redundancy, the Compression and a definition of
the Quality of the resultant computation. The
underlying architectures assumed are parallel
processor organizations of both the SIMD and MIMD
varieties, with limited and unlimited degrees of
physical parallelism.

Introduction

Computer architectures incorporating
multiple processors which execute in parallel are
being designed to speed up the execution-time,
for better cost-performance, greater reliability
and modularity. The trends appear to be towards
special purpose, scientific supercomputers on the
one hand, and towards general purpose multiple
microprocessor systems with high performance to
cost ratios, on the other hand. Although the
decreasing cost and size of processors makes it
feasible to consider using a large number of
processors in a computer organization even at
reduced efficiency of each component processor,
it is important to estimate the effective speed
actually attainable, over a representative set of
computations. The sample considered in this
paper may be described as existing general
technical computations drawn from military,
commercial and academic environments. It is
emphasized that we are not interested in the
maximum or minimum performance for any individual
computation, but in the average performance over
all the computations.

A computer organization with p parallel
processors will rarely attain its maximum
parallel execution bandwidth of p operations per
time-unit, or a speedup in execution-time of p
times that of the uniprocessor organization, due
to both logical and physical constraints on the
parallel execution of operations. Logical
constraints on parallelism include intrinsic
data-dependencies, control dependencies and
operator precedences in the program, which force
a sequential chain of execution amongst the
dependent operations, and hence limit the number
of operations which may be executed in parallel
[9]. Physical constraints on parallelism include

*This work ·was supported in part by the Office of
Naval Research under Contract N00014-79-C-0516.

CH1569-3/80/0000-0091$00.75 ~ 1980 IEEE

91

the maximum number of processors available in the
architecture, the control restrictions on the
different types of operations which may be
executed simultaneously, and the delays due to
the communication and competition amongst the
interacting components in the computer
organization. The empirical results in this
paper account for the logical constraints and the
first two physical constraints mentioned. For
tractability, the experiments assume that the
rest of the system, like effective
memory-processor and processor-processor
bandwidths, are balanced with respect to the
execution-bandwidth of the parallel processors.
This may even be considered an advantage since
the results are then independent of the specific
machine implementation. The empirical
performance results in this paper should be
interpreted as the best performance results
expected with current techniques for parallelism
exposure in Fortran programs [5-8, 2], assuming
no delays due to the cooperation and competition
amongst the components of the parallel processor
organization. The results would be degraded
if communication delays within the system are
considered, but at the same time, the results
would probably be improved by the explicit
specification of parallel programs or by even
better algorithms for the automatic conversion of
serial programs to parallel computations.

Some of the questions we ask are: What is
the performance of a computer organization with a
limited number of parallel processors in the
architecture? What is the performance in the
idealized case where the number of processors is
essentially unlimited? Are there severe
performance degradations when only one type of
operation may be executed simultaneously in one
time-unit by the active processors?

2 Model and Definitions

A parallel computation is a sequence of
steps, where each step consists of i operations
which may be executed simultaneously, by i
parallel processors. A step with i simultaneous
operations is said to have degree of parallelism
i, 1<i<P, where P is the maximum degree of
parallelism in any step of the computation. The
logical parallelism or minimax degree of
parallelism, P', is the smallest maximum number
of processors required by the computation in
order to achieve its minimum execution time,
linin.

A parallel processor organization is a
computer organization with multiple processors,
each of which is capable of executing one
operation in one time-unit. Each processor is
also capable of executing .the whole repetoire of
operations. An SIMD (Single Instruction ttlltiple
Data) organization is a parallel processor
organization where only one type of operation may
be executed by the active processors in any one
time-unit. An MIMD (ttlltiple Instruction
Multiple Data) organization is a parallel
processor organization where more than one type
of operation may be executed by different
processors in the same time-unit [3].

A parallel processor organization with p
processors available in the architecture is said
to have limited physical parallelism of degree p,
and denoted a p-limited architecture. A parallel
processor organization which always has as many
processors, P', as required by the computation in
order to achieve its minimum execution-time is
said to have unlimited physical parallelism, and
denoted an unlimited architecture. A p-limited
computation is a parallel computation executing
on a p-limited architecture, and an unlimited
computation is a computation executing on an
unlimited.architecture.

TOP-form. The TOP-form is a canonic form
of parallel computations defined as the following
3-tuple:

(T(P), O(P), P)

where T(P) is the execution-time of the
computation in steps, O(P) is t.he
computation-size in number of operations
executed, and Pis the maximum degree of
parallelism in the computation. P=P', the
logical parallelism, for unlimited computations,
and P:min(P 1 ,p) for p-limited computations.

The TOP-form captures the fundamental
difference in the dimensions of the parallel
canputation when compared to a serial
computation. In a serial computation, since each
operation takes one time-unit for execution, the
execution-time and computation-size have the same
value, T(1)=0(1). But in a parallel computation
where P>1, the execution-time and
computation-size necessarily have different
values, T(P)<O(P), forming two distinct
dimensions of a parallel computation. The
maximum degree of parallelism forms a third
variable dimension in a parallel computation.

Equivalence,· Optimality and Acceptability.
Computations are said to be equivalent if given
the same inputs, they always produce the same
outputs. The internal algorithms and
intermediate results in equivalent computations
need not be the same.

An optimal serial computation is defined as
a serial computation with the minimum
computation-size, Qnin. An optimal parallel
computation is defined as a. minimum-time

92

minimax-parallel computation, which is a
·computation that achieves the minimum execution
time, 'Dllin, using the minimax degree of
parallelism, P'. Further discusssion on these
definitions of optimality are available in [9].

A serial computation is said to be
acceptable for comparison with a parallel
computation if 0(1)<0(P). otherwise, the O(P)
operations of the ?irallel computation may be
executed one at a time to obtain a shorter serial
execution time and computation size. A parallel
computation is said to be acceptable for
canparison with a serial computation if
T(P)<T(1). otherwise, the 0(1):T(1) operations
of the serial computation.may be executed using
one processor to get a shorter parallel execution
time. Hence, we propose the following:

Principle of Acceptable Parallel-Serial
Comparisons. ··A performance comparison of a
parallel computation with an equivalent serial
computation is said to be acceptable iff

T(P) ~ T(1) and 0(1) ~ O(P), or equivalently

T(P) < 0(1) < O(P), if each operation takes
one time-unit for execution.

This principle of acceptable
parallel-serial comparisons is necessary to
ensure that any measured performance improvements
are due solely to parallel versus serial
processing, rather .than due to other factors.
For example, the Speedup in execution time may be
greater than p, the number of processors
available in the architecture, when a parallel
computation is compared with an unacceptable
(nonoptimal) · equivalent serial computation. Part
of the performance improvement in this case is
due to the optimization of a relatively
inefficient serial computation. Similarly, the
Speedup in execution time may be less than one,
if the parallel computation entering into the
comparison is unacceptable.

Performance Measures. The TOP-form of a
parallel computation and its equivalent serial
size form the smallest set of parameters for the
evaluation of all the performance criteria
considered in this paper. Basically, the
performance criteria fall into four categories:
the speed of execution given by the Parallel
Index and Speedup measures, the utilization of
the processor-time resource given by the
Utilization and Efficiency measures, the
Compression (or conversely, the Redundancy) in
the size of the computation, and the resultant
Quality of processing.

The Parallel Index and Speedup measure the
average and effective speed, respectively, of the
parallel computation in operations .executed per
time-unit:

PI(P) = O(P}/T(P),
S(P,1): 0(1)/T(P) = T(1}/T(P).

'lbe Speedup is defined with respect to the
computation-size of an equivalent serial
computation, and takes into account the extra
operations introduced into a parallel computation
to reduce its execution time. 'lbe Speedup may
also ·be regarded as the ratio of the
execution-time of the serial computation, to that
of the parallel computation, making it equivalent
to the definition found in [5].

'lbe Parallel Index and Speedup may al so be
regarded as measures of the average and effective
parallel execution bandwidths of the underlying
parallel processor organization, during the
execution of the given computation.

The Utilization and Efficiency measure the
cost-effectiveness of the computation in the
sense that they weigh the speed improvement with
the number of processors required. 'Ibey measure
the performance of the parallel computation with
respect to its use of the processor-time
resource:

U(P) = O(P)/[P.T(P)], E(P, 1) = 0(1)/[P.T(P)].

In figure 1, the Utilization is the
proportion of the rectangle PxT(P) covered by
busy processor-steps, i.e., those time-units
where a processor is busy executing an operation.
'lbe Efficiency may be regarded as the ratio of
the serial processor-time requirement over the
parallel processor-time requirement, since
T(1):0{1).

'lbe Redundancy measure is the ratio of the
parallel computation-size, O(P), to the serial
computation-size, 0(1), of an equivalent serial
computation. 'lbe Compression measure is the
inverse ratio:

R(P,1) = O(P)/0(1), and C(P,1) = 0(1)/0(P).

One significance of the Redundancy measure
is that it relates the relative speed and
efficiency measures, Sand E, to the absolute
speed and efficiency measures, PI and U:

S = C.PI = PI/R and E = C.U = U/R

The Speedup, Efficiency and Compression
measures compare serial to parallel execution
time requirements , processor-time requirements
and computation-size requirements, respectively
(see table 1). In an optimal serial computation,
the execution-time, proce.ssor-time and
computation-size requirement are each equal to
Omin. The Quality measure is defiiled as an
overall ·performance measure comparing serial to
parallel computations with respect to these three
requirements:

Q(P,1) = S.E.C = S.E/R

Hence, the Quality measure is a more
stringent measure of the performance improvement

93

of parallel versus serial processing than the
Speedup measure. One use of the Quality measure
is to decide whether parallel processing is
preferable to serial processing for a given
program. For example, a computer installation
may decide that parallel processing is desirable
for a given program if the quality of processing
increases by at least fifty percent (Q~1.5).

In all acceptable parallel-serial
comparisons, the following relationships hold:

1 < S(P,1) < PI(P) < P
1/P < E(P,1) <U(P) (1.
1 < R(P,1) < T/E(P,1) < p
1/P < E(P, ff< C(P, 1) (1
Q(P,1) ~ S(P,1) ~ PI(P) ~ P

PI is an upper bound for S, and U is an
upper bound for E, with equality iff O(P):0{1) so
that R=C=1 • 'lbe .standard of comparison, an
optimal serial computation, has PI, S, U, E, R, C
and Q all equal to unity.

'lbe last relationship above shows four
successively refined measures of the performance
improvement of parallel versus serial processing.
First, P=min(p,P') indicates the maximum
processor bandwidth, or the maximum speed of the
parallel computation. 'lben, the Parallel Index
indicates the average processor bandwidth, or
average speed, of the computation. '!bird, the
Speedup indicates the effective processor
bandwidth, or effective speed, of the
computation. Finally, the Quality is a single
performance measure that takes into account
mainly the speed improvement, but also the
efficiency and the redundancy of parallel versus
serial processing.

TABLE 1: OPTIMIZATION OF PERFORMANCE MEASURES
AND TOP-FORM PARAMETERS

Performance Measure TOP-form parameter

(1) maximizing Speedup = minimizing T(P)

(2) maximizing Efficiency = minimizing PxT(P)

(3) maximizing Compression = minimizing O(P)
(minimizing Redundancy)

(4) maximizing Quality = all of the a~ove:
minimizing T .O.P

(minimizing each component of TOP-form
with emphasis on time)

Measures o.f Central Tendency. To
characterize the performance af a set of
computations rather than an individual
computation on a given parallel organization,
measures of the central tendency of the data are
desired. In table 2, the sample mean· of the
performance measures and TOP-form parameters are
given, and in table 3, the median values are
given. In table 4, another measure of central

tendency is introduced, called the aggregate
performance measures [9]. The aggregate
performance measures are performance measures
defined for the aggregate computatiog, which is
the computation consisting of every step of every
computation in the set of computations. In other
words, the aggregate computation. is the
end-to-end concatenation in time of all the
computations in the set. In parallel-serial
comparisons, the aggregate performance measure is
a ratio of the sum of the requirements of all the
serial computations in the sample, divided by the
sum of the corresponding requirements of all the
equivalent parallel computations. For example,
the aggregate speed measures for .a set of
computations are defined as:

Sa = l: T(1) I l: T(P) = TfiT I T(P)

Pia l: O(P) I l: T(P) = Offi I T(P)

Pia and Sa may be regarded as the
average and effective parallel execution
bandwidths, respectively, for a set of
computations, in a single program environment,
i.e., when the execution of the next computation
in the set does not start till the execution of
the current computation has .ended. Since not all
the processors are utilized by a computation
during all steps of its execution, the
introduction of multiprogramming could reduce the
overall execution-time of all the computations in
the set, though it cannot reduce further the
execution time of any individual computation.
Hence, Pia and Sa may be interpreted as lower
bounds for the average and effective parallel
execution. bandwidths in a multiprogramming
environment.

Whereas the mean performance measures give
equal weight to each computation in the set, the
aggrega~e performance measures tend to weigh each
computation by the relative magnitudes of its
computation-size and execution-time. It seems
reasonable that the overall performance.should be
more affected by a longer computation than by a
shorter one. In general, the aggregate
performance.measures indicate the performance of
all computatic:>ns considered as. a whole, whereas
the mean performance measures indicate the
expected performance for ;my one computation in
the set of computations. ·

3 The Experiments

The raw data is obti;i.ined from runs of the
Illinois Analyser version 2 [7], which transforms
ordinary serial programs into equivalent parallel
computations. The Analyser- incorpora:tes
sophisticated algorithms for. recognising serial
program constructs anq converting these .. to
parallel program. constructs for fast and
efficient par~llel execution. Version 2 (1978)
of the Analyser -differs from- version 1 (1973) [5]
mainly in tbe improved handiing, of linear
recurrences [2] found in the seria_l pr.og,ram.

94

Existing Fortran programs (ANSI standard)
were obtained from .various locations, like the
Air Force Weapons Laboratory, Burroughs
Corporation, the collected algorithms published
by the ACM, a well-known scientific library of
programs called EISPACK, some of .the old programs
from the Illinois Analyser Version 1 (prior
1973), and other miscellaneous sources. These
programs are run through the Illinois Analyser
version 2, which produces as output, the
dependency graph of each program. This is then
entered as input to simulators, which restructure
the computation when necessary, to execute on
either an unlimited MIMD organization, an
unlim~ted. SIMD organiz~tion, ~rap-limited SIMD
organization where p=2 , for i=1,2, ••• ,14.
Hence, 16 different parallel processor
organizations are compared with the uniprocessor
organization.

Various data on the nature of the serial
program and its parallel. equivalent are
collected, from which we abstract sixteen sets o.f
raw TOP-forms and the raw serial computation
size, 0(1), for each computation, to use as
inputs to our analysis programs. First, a
standardization procedure is performed, to ensure
that only acceptable parallel-serial comparisons
of performance are produced. Essentially, the
standardization consists of estimating the
optimal serial computation size and the optimal
parallel TOP-form. for each
computation-architecture combination [9]. The
performance measures are then calculated from
these standardized TOP-forms. The rows labelled
11 SIMDB11 and 11 MIMDB11 in tables 2, 3 and 4 refer to
the unlimited SIMD and MIMD cases, respectively.
The row labelled. "MIS ratio" gives the statistics
for the ratio of values in the unlimited MIMD
over the unlimited SIMD cases, to compare the
effect of the added control restriction of SIMD
parallel architectures. All the statistics in
the tables 'are calculated for the entire sample
of 355 computations.

4 The Results.

TOP-form parameters: When the same sample
of 355 computations is executed with varying
degrees of limited physical parallelism, both the
mean and median execution~times decrease, and
both· the mean and median computation-sizes
increase, as the number of processors increases.
In eacn case, the sample .mean is about two o,rders
of magnitude larger than .the sample median,·
indicating a distribution that is s~ewed to the
right. The mean and median execution-times in an
unlimited MIMD .environment are ab.out· 60'£ of' the
corresponding execution-times in an unlimited
SIMD environment.

The median values of the maximum number of
processors required, P', indicate that if up to
64 parallel processors are available in the
architecture, more than half the computations
executed will utilize all the processors
available during .execution. For this sample of

TABLE 2: MEAN PERFORMANCE MEASURES AND TOP-FORM PARAMETERS

p PI s u E R Q T 0 P'

1. 00 1. 00 1. 000 1. 000 1. 00 1 • 00 47524. 1 47524. 1 1.0
2 1. 46 1. 36 0.732 0.682 1.08 0.95 28926.9 49427.4 1. 7
4 2.53 2.18 0.633 0.546 1. 20 1. 36 14817 .8 49745.2 3,3
8 4. 31 3,49 0.539 0.436 1. 35 2.02 8538. 1 50819.3 6.5

16 7. 19 5. 57 0. 449 0. 348 1. 52 3. 07 5372. 4 51359.2 12.4
32 11. 73 8.73 0.366 0.273 1. 72 4. 69 3664.6 54437.8 23.0
64 19. 04 13.47 0.297 0.210 2.51 7. 14 2700.8 56381. 2 42.0

128 28.72 20.10 0.224 0.157 3.62 10. 45 2224. 1 67413.5 72.2
256 44.85 29.48 0.175 0.115 5, 87 15. 07 2019.9 91305.2 119. 1
512 68.83 44.73 0.134 0.087 6.59 23. 22 1883.5 96505.7 199.7

1024 98. 07 63.84 0.096 0.062 8.31 31. 00 1803.6 120378.9 314.7
2048 136. 27 89.12 0.067 0.044 8.50 40.60 1768.4 120494.6 480.5
4096 172. 87 116.74 0.042 0.029 8.90 44. 95 1754.6 121472.6 693.7
8192 220.70 136.51 0.027 0.017 11.91 37.75 1747.4 140873.1 1134.4

16384 282. 62 180.96 0.017 0.011 16.64 51 • 11 1741.7 156339.9 1748. 9
SIM DB 1792. 65 1 87 . 68 0. 309 0. 261 145. 20 118. 53 1620.5 294950.9 235922. 1
MIMDB 2524. 83 364.01 0.248 o. 199 145.23 168. 12 1058.0 295011.7 236718.0

M/S 2.07 2.01 0.975 0.974 1. 03 2. 14 o.6 1. 0 4. 1

TABLE 3: MEDIAN PERFORMANCE MEASURES AND TOP-FORM PARAMETERS

p PI s u E R Q T 0 P'

1 1. 00 1. 00 1. 000 1. 000 1. 00 1.00 607.0 607.0 1
2 1. 49 1. 24 0.745 0.622 1. 00 o.65 553.5 673.0 2 FIG. 2: PARALLEL INDEX vs. p

4 2.74 2.01 0.686 0.502 1.00 0.83 335.0 866.5 4 200
I ~ r I

8 4.50 3.04 0.562 0.380 1.02 0.78 254. 0 991.0 8 }- x: MEA'."'
~ ->: AGG?.EGATE I

16 6.64 4.24 0.415 0.265 1. 03 o. 72 162. 5 1005.5 16 '.- o. \!EDL·\i" I

32 8.57 4.80 0. 268 o. 150 1.03 0.49 132.5 1062.0 32
150 I 1 I

64 10.45 5.60 o. 163 0.087 1.06 0. 31 110.0 1217.0 64 I 1
I

128 11. 50 5,79 0. 090 0.045 1.07 0. 19 87. 0 1210.0 94 ::='.:
I

P'

256 12.77 5. 81 0.050 0.023 1. 08 0. 11 78.0 1198. 5 100 : 100 ..-;

I -~ -r11n{p)
512 13.80 6. 11 0.027 0.012 1. 09 0.06 69.0 1262.5 100

:,_;
I

~ I ~i

1024 14.06 6. 11 0.014 0.006 1.09 0.03 66.5 1372. 5 100 I
j

~ 50 <-- I -i
2048 13.96 6. 27 0.007 o. 003 1. 08 0.01 65.0 1372. 5 100 [/ ~ j
4096 13. 96 6. 36 0.003 0.002 1. 08 0.01 63.0 1372.5 100 l ,~--- ~
8192 14.36 6. 36 0.002 0.001 1. 09 0.00 61. 0 1402.5 100 0 ~'"'.::::-_::.. - - --- -· -·- - -·-·_- -·- - - - -· -·- - - - __:;n(p)

16384 14. 36 6.76 0.001 0.000 1. 09 0.00 61.0 1416.5 100 ~_l_· . " I .
SIM DB 16. 12 7,57 0.205 o. 153 1. 12 0.99 60.5 1451. 0 100 0 100 200 300 100 500

MIMDB 29. 16 12.65 o. 164 0. 117 1 . 13 0.95 32.0 1451.0 208 NeMEER OF !"ROCES~CRS, p

M/S 1. 58 1. 58 1. 000 1. 000 1. 00 1. 33 0.6 1. 0 2

TABLE 4: AGGREGATE PERFORMANCE MEASURES 1"1G. I. ,\ l'AEi\LLEL COMPUTATION

p PI s u E R Q

1 1. 00 1. 00 1. 000 1. 000 1.00 1. 00 12
2 1. 71 1. 64 0. 854 o. 821 1. 04 1. 59 ·--

x-~-
·--- -

1~p " D::, :~:':""0' 4 3, 36 3. 21 0.839 0.802 1.05 3. 41 1 x -f x x

8 5.95 5,57 0.744 0.696 1.07 6.06 + + [] 4 + D

16 9,56 8.85 0.598 0.553 1.08 9,77
32 14. 85 12. 9·; 0.464 0.405 1. 15 13.33 D x 0 + x slcp (12,2)

-· ·-- -··-.. ~

64 20. 88 17.60 0.326 0.275 1. 19 18.89 + D 0 lJ D

128 30. 31 21.37 0.2370.167 1. 42 20. 96 ··-· --··-- _,,_ ---

256 45.20 23.53 0.177 0.092 1. 92 10.79 x [J xi

512 51. 24 25.23 0. 100 o. 049 2. 03 5. 61 (> x x D -£> Free processor-
1024 66.74 26.35 0.065 0.026 2.53 2. 79 8lep (S,6)
2048 68. 14 26. 87 0.033 0.013 2.53 1. 42 (> x x

4096 69. 23 27. 09 0.017 0.007 2.56 0. 71 8 x
8192 80. 62 27.20 0.010 0.003 2.96 o. 34

16384 89. 76 27.29 0.005 0.002 3.29 0. 17 TOP-form (T. 0, P) ~· (12, 42, 8)
SIM DB 182. 01 29.33 0.004 0.001 6.21 1. 19
MIMDB 278. 83 44.92 0.005 0.001 6.21 1. 47

M/S 1. 53 1. 53 1. 198 1. 197 1. 00 1. 24 Procc•ssors

q5

FIG .. 3: SPEEDUP vs. p
200~,..,....,-.,....,,_,.....--~...,..,,....,....,..,~-~~-.,.-,-.-.,..-,......-...--....,,~

~ x: MEAN ,' ~
~ ~~ ~~~~~~GATE ,' j

~~ : ~
f :' ·~

10~;... r -1
L / _ -"P/ln(o)

1.0

I
I - - - -.:-.-:-.::.'.'..'.".:'.··j

__ ...:;,;.:.;._...,,:::::::::o:__ ____ __,3-:!(p)

100 200 300 400 500
NUMBER or PROCESSORS, p

FIG. 4: MIMD SPEED VS. P'

GO 100 150 . 200
l.OGICAL FARALl..EIJSM, P'

FIG. 5: UTILIZATION vs. p

. I' I .. " I

x: MEA.'i
o: AGGRECATE
::i: MEDIA."i

FIG. 6: EFFICIENCY vs. p

x: MEAN
9: AGGREGATE
o: MEDL.\N

NUMBER OF PROCESSORS, p

1

., _,

96

FIG. 7: MIMD UTILIZATION & EFFICIENCY vs. ·P'
'I' I" , ! 1

j

~~-~~~~g: ·----l · ---
~
]

FIG. 8: REDUNDANCY vs. p

100 200

I' I :::j

- - - - - - jog2(p)
----- ..i

300

---------1n(p)
]

J

400 500
XUMBER OF PROCESSORS, p

FIG. 9: MIMD AND SIMD REDl:NDANCY vs. P'

10 '-

~ x: MIMD
i o: SIMD

8 r-

+ /~
t . /
: I ,.Cl"

4 r:... I , ~
~ I I

c

""j
- - - - - - - $•12(P')

-- --- .i ..J

- - --c-;- - - -:- - - - -cTcp·>

j

r I /

~ 11 x '
2: JC C X _J

~ I ::i,ptl' x x x o .

f~~-°-~- --- ~ -------- ----- --- ~1
QI ! 1

0 lCO 200 300 "100

LI
50 t.-

40~
t I

30 r- p

LOGICAL PA.~ELISM, P'

FIG. 10: QUALITY vs. p

I
I

I

I
I

I x: MEi'S
o: 1.GC?.ECATE
n: >!I:DIA."i

5-00

- - - - - ... -=~r.(p'

0 ~· JC!>s.--...~----~"--------··-=--=:/p:-
r I : . _:..-l.-~~~'--~~~,_:

o 100 .:?oo 300 ~o~ 5co
!'\UMBER OF PR:'CF;~SORS, p

computations executing under an SIMD environment,
half the computations require not more than 100
parallel processors. Also, half the computations
use twice as many processors when an MIMD
organization is assumed than when an SIMD option
is assumed.

Parallel Index and Speedup. In [9],
probabilistic hypotheses on the parallelism
distribution in computations were proposed,
yielding simple characterizations of the average
speed, PI. Necessary and sufficient conditions
were given for PI to have a value on the order of
P/ln(P), and for PI to have an upper bound of
P/ln(P). The natural logarithm function of P,
ln(P), is used as an approximation to the Fth.
Harmonic number, H(P). The predicted values of
PI, which are upper bounds for S in all
acceptable parallel-serial comparisons, agree
well with empirical observations.

In figure 2, the average and aggregate
values of PI are well approximated by the p/ln(p)
curve, for p<300. For larger p, the average and
aggregate values of PI are less than p/ln(p).
Similarly, in figure 3, the average and aggregate
values of Sare well approximated by p/ln(p), for
p<lOO, and less than p/ln(p) for larger p. The
ln(p) curve forms a lower bound in each case.

The mean, aggregate and median PI values
tend to run approximately parallel to the
corresponding Speedup values. Hence, the trend
of these measures of central tendency (mean,
median, aggregate) of the Speedup values are well
predicted by the corresponding trend of the PI
values, and vice versa.

Figure 4 plots the Parallel Index and
Speedup values, averaged over every ten
consecutive points, assuming an MIMD organization
with unlimited physical parallelism. The solid
lines are the smoothed curves automatically
generated for the crosses (PI) and diamonds (S)
by the plotting package [1], using a smoothing
algorithm involving running means, running
medians, quadratic interpolation and "hanning"
[11]. There is excellent agreement between the
observed average PI values and the P1/ln(P 1)

curve, for this range of P1 • The Speedup values
tend to lie below the P1/ln(P 1) curve.

Similar plots for the unlimited SIMD
computations indicate that there are no
significant differences in the trends of the
observed PI and S values when compared with the
unlimited MIMD case.

Binomial tests [4, 9] with a significance
level of 5S were performed which indicate that
the majority (more than 50S) of computations
encountered have Parallel Indices and Speedups
less than P1/ln(P 1), in an SIMD or MIMD
environment with unlimited physical parallelism.
In fact, for unlimited MIMD computations,

Prob{S(P',1) < P'/ln(P')} > 0.75

97

In an SIMD environment with p-limited
physical parallel ism, the majority of
computations have Parallel Indices and Speedups
less than p/H(p) for p sufficiently large (p>64
processors for PI, p>16 processors for S). More
than 80S of the computations have Speedups less
than p/H(p), for p~256 processors.

Utilization and Efficiency. For any
individual computation:

PI(P) = U(P) .P, and S(P, 1) = E(P, 1) .P,

where P may be interpreted as the physical
parallelism, p, in a p-limited parallel
architecture, or as the logical parallelism, P',
in an unlimited parallel architecture.

This relationship between the Parallel
Index and Utilization measures, and between the
Speedup and Efficiency measures also holds for
the corresponding pairs of mean, median and
aggregate values for a set of p-limited
computations. For example,

PI(p) = U(p,1). p, and S(p,1) = E(p,1). p.

It is sometimes hypothesized that the
Speedup is a linear function of p, of the form,
k.p, for some constant k<1. However, figures 5
and 6 clearly show that the mean, aggregate and
median values of U and E are not constants
independent of p. Hence, it is impossible for
the corresponding values of PI and S to be linear
functions of p. In fact, the mean, median and
aggregate values of U and E are decreasing convex
functions of p, implying that the corresponding
values of PI and S are increasing concave
functions of p. Note that the p/ln(p)
characterization of PI and S is an increasing
concave function of p.

In the case of unlimited physical
parallelism, the smoothed curves of U(P') and
E(P 1 ,1) are well approximated by the 1/ln(P')
curve (figure 7). However, if the first data
point is ignored, it is not clear that U(P') and
E(P',1) are necessarily decreasing convex
functions of P'. In fact, they could be
described as very slightly decreasing linear
functions of P', which may even be considered
constant functions, independent of P'. The first
data point plotted.has P', U(P') and E(P',1) all
identically equal to 1. The ten computations
represented by this data point are those where
the optimal parallel computation is in fact a
serial computation, since the minimax degree of
parallelism, P', is equal to 1. Except for this
first data point, all the other averaged U and E
values lie between 0.1 and 0.4. These empirical
observations suggest the following

· Hypothesis on the Conservation of
Processor-Time. The ratio of the processor-time
requ.irement of an optimal serial computation to
that of an equivalent optimal parallel
computation is:

Qnin
E(P',1) = = k, where k~0.5.

P'x'I'min

This hypotheses on the conservation of
processor-time does NOT imply that when more
processors are available to execute a given
computation, then the execution-time will
decrease accordingly, so that the processor-time
requirement stays constant. Rather, it implies
that the optimal parallel processor-time
requirement is more than twice the optimal serial
processor-time requirement, and the ratio of the
two quantities appears to be fairly constant over
many different computations.

There are no major differences in the
utilization of the processor-time resource, when
the computations are structured for an SIMD
organization rather than an MIMD organization,
with unlimited physical parallelism.

Redundancy. In the empirical results, the
median redundancy is less than 1.15 for all MIMD
and SIMD computations, with unlimited and limited
degrees of physical parallelism. Hence, half the
computations achieve a parallel execution-time
less than the serial execution-time, with the
introduction of less than 15j of redundant
operations compared with the serial computation
size. Although the mean redundancy is less
robust than the median redundancy to extreme
values, it is less than O(log(P)) (figures 8 and
9).

A variable X is said to be positively
associated or in agreement, with another variable
Y if large values of X tend to occur with large
values of Y, and small values of X tend to occur
with small values of Y. Similarly, Xis said to
be negatively associated, or in disagreement,
with Y if large values of X occur with small
values of Y, and small values of X occur with
large values of Y. The Spearman rank correlation
coefficient, R, may be used to test the degree
and direction of association between any pair of
variables. The magnitude of R, O<IRt<1 gives
the degree of association, and the sign of R
gives the type (agreement or disagreement) of
association.

From the tests of association based on the
Spearman correlation coefficient in both
unlimited SIMD and MIMD cases, the redudancy
measure is found to be negatively associated with
the Efficiency and Quality, positively associated
with P' and the Parallel Index, and not
associated with the Speedup. It has also been
observed [10] that larger redundancies are
associated with larger probabilities of numerical
instability in the parallel computation, as
compared with the serial equivalent. Hence,
parallel computations with large redundancies
should be avoided, since these tend to be
associated with inefficient computations with low
qualities and higher probabilities of numerical
instability. Also, since the Redundancy measure
is found to be independent of the Speedup

98

measure, redundant operations should be
introduced into a parallel computation only if
this increases the Speedup (effective speed), and
not just the Parallel Index (average speed), of
the resultant parallel computation.

Quality. In the tests of association based
on the Spearman correlation coefficient, the
Quality measure is found to be independent of the
logical parallelism, P 1 , in both SIMD and MIMD
computations, assuming unlimited physical
parallelism. This is a desirable result for the
chosen definition of the Quality.measure, since
the quality of processing should not be biased
towards computations with either smaller or
larger degrees of logical parallelism.

The empirical median quality decreases as
the physical parallelism increases beyond p:4,
and is less than one, in all cases. Hence, more
than half the computations in each p-limited and
unlimited SIMD and MIMD case have higher
qualities when executed as a serial computation
than when executed as a parallel computation.

Unlike the relationship between the mean
quality and mean speedup, the definition of the
aggregate quality does not constrain it to have
an upper bound given by the aggregate speedup
measure. In the sample of computations examined,
the aggregate Quality increased in value, at
approximately the same rate as the aggregate
Speedup, up top around 100 (figure 11). Asp
increased beyond this "saturation point", the
aggregate Speedup began to level off and the
aggregate Quality declined. This behaviour is
representative of most individual and aggregate
computations, and hence the Quality measure may
be used to chose the optimal number of processors
to use in executing a given computation, or set
of computations.

Figure 12 shows the frequency distribution
of the values of p at which the highest quality
is attained for each computation in the sample.
Almost half (46j) of the computations examined
attain their highest quality value of one, at p:1
(serial computations). The next largest
frequency occurs at p:16 and P=32, where about
eight percent, each, of the computations attain
their highest quality.values. The cumulative
relative frequency curve indicates that about
ninety percent of the computations attain their
highest quality values for p<256. If this sample
is representative of computations in general,
then the parallel processor' organization need not
have more than 256 processors, in order that
ninety percent of the computations executing on
it may attain their highest quality· potential.
It is an interesting coincidence that the ILLIAC
IV, an SIMD machine, was originally designed to
have a maximum of 256 parallel processors.

5 Conclusions

The characterization of the performance
measures varies according to the maximum degree

.f

of parallelism, P. Hence, we define the

follow~~~ ~~~~~~i~=~~t:a~~~~~. and P:0(10i)

i-1 i . denote 5.10 .s_ P .s_ 5.10, for i=1,2, •••

For p-limited architectures, the best
characterization for the mean or aggregate values
of the speed measures are (figures 13a,b,c):

Approx. range of p Speed: PI, S

p 0(1) O(p)
p 0(10) or 0(100) O(p/lnfp))
p = 0(1000) O(ln(p)).s_PI,S.s_O(p/ln(p))
p = 0(10000) or more O(ln(p))

In the case of unlimited physical
parallelism, PI and S are best characterized as
O(P'/ln(P')), for all P'=0(1000) or less.

These empirical observations support the
speed characterization of parallel computations
given in [9]:

"For general technical computations, the
measures of central tendency such as the mean,
median and aggregate values of the Parallel Index
and the Speedup, all lie between k 1.ln(P) and
k2.P/ln(P), where O<k 1.s_1 and k~1.
Furthermore, the majority of computations will
also have individual PI and S values between
these lower and upper bounds. P may be
interpreted as either the logical parallelism P',
in an environment with unlimited physical
parallelism, or as the physical parallelism, p,
for sufficiently large p, in an environment with
limited physical parallelism. So,

max(1, k 1.ln(P)) .S. S(P, 1) .S. PI(P)
~ min(k2.P/ln(P), P)"

Suppose that k 1=0.5 and k2:2. Then,
for P>B, ln(P)/2 is greater than 1, and
2.P/ln(P) is less than P. Hence, except for the
smallest P values, the O(ln(P)) and O(P/ln(P))
bounds form increasingly tighter bounds for S and
PI, as P increases, when compared with the
absolute limits of 1 and P.

The empirical speed characterization may be
used as a rough guide to the minimum number of
parallel processors needed to attain a certain
average or effective parallel execution
bandwidth. For example, if an average parallel
execution bandwidth of ten operations per
time-unit is desired, then at least 36 parallel
processors should be used, since p/ln(p) =
36/ln(36) = 10.05. This predicted speed of
O(p/ln(p)) operations per time-unit for p:0(10)
processors should be regarded as the expected
speed potential, since in practice, interactions
between processors, memories and other components
of the computer organization will cause further
performance degradations. Conversely, given a
parallel processor organization with limited
physical parallelism of degree p, the appropriate

99

speed characterization given above may be used to
estimate its expected speed potential.

For p-limited architectures, the best
characterization for the efficiency measures, U
and E, are obtained by dividing the corresponding
values of PI and S by p. For example, if p:0(10)
or 0(100), U and E are characterized by
0(1/ln(p)). Hence, if an efficiency of at least
25 percent is desired, then less than 60
parallel processors should be used, since 1/ln(p)
= 1/ln(59) = 0.25, but 1/ln(60) = o.2q. For a
smaller efficiency, more parallel processors may
be used.

For p-limited architectures, the empirical
mean and aggregate Utilization and Efficiency
measures substantiate the observation that the
corresponding mean and aggregate PI and S
measures are increasing concave functions of p,
like p/ln(p), and not increasing linear functions
of p.

For unlimited architectures, the averaged
Utilization and Efficiency measures defined with
respect to the logical parallelism, P', suggested
a hypothesis on the conservation of
processor-time.

Parallel computations with large Redundancy
measures should be avoided since these are
associated with inefficient computations with low
qualities and higher probabilities of numerical
instability. Also, redundant operations should
be introduced into parallel computations only if
this decreases the parallel execution-time when
compared with known equivalent serial
execution-times.

The Quality measure may be used to choose
the optimal number of processors to use in
executing a given computation or set of
computations.

The mean, median and aggregate values of
the MIS ratios for the Speedup and Quality
measures imply that the performance improvement
of MIMD versus SIMD organizations is less than
two and a half times. This same performance
improvement may also be obtained by increasing
the number of processors available in the
architecture. For example, to upgrade the
performance of a given p-limited SIMD
architecture, the incremental cost of conversion
to the less restrictive MIMD organization should
be compared with the incremental cost of adding
more parallel processors to the SIMD
arc hi tee ture •

Acknowledgements

I am indebted to Professor David Kuck,
Robert Kuhn, Michael Wolfe, Bruce Leasure,
Pen-Chung Yew and other colleagues at the
University of Illinois, for permission to use the
raw data generated by the Illinois Analyser
version 2. The invaluable database built up at

Illinois represents probably the largest and most
significant experimental effort on the speedup of
existing serial programs by parallel processing.
This paper represents only one possible study of
a small subset of the data available in the
Illinois database.

I also wish to thank Professor Michael
Flynn of Stanford University for his advice and
help.

References

[1] Chaffee, R. , B., 11 Top Drawer", CGTM No.
178, SLAC Computation Group, Stanford,
California, revised August 1978.

[2] Chen,s.c., and Kuck,D., "Time and
Parallel Processor Bounds for Linear Recurrence
·Systems" , IEEE Transactions on Computers, c-24
no. 7, July 1975, pp.701-717.

[3] Flynn,M., "Some Computer Organizations
and Their Effectiveness", IEEE Transactions on
Computers, c-21, Sept 1972, pp.948-962.

[4] Gibbons, J. D., "Nonparametric
Statistical Inference", McGraw Hill, 1971.

[5] Kuck,D., Budnik,P., Chen,s.c.,
Davis,E., Han,J., Kraska,P., Lawrie,D.,
Muraoka,Y., Strebendt,R., and Towle,R.,
"Measurements of Parallelism in Ordinary Fortran

FIG. 11: AGGREGATE SPEEDUP & QUALITY vs. p

IOOr I,' ·~4 X: SPEEDUP

' J o: QUALITY ... ~p/lr:.(p)
aor.- /--j

~ ,' ... ~
60 ~ I~ ,," _:j

4+ / /~ ~ / i
: ~k::~-----_-,-_-_-_-}"' bEs.~, .. ! ... !._

0 100 200 300 400 500
NUMBER OF PROCESSORS, p

x: MEA.'l PARALLEL INDEX

o: MEAN SPEEDUP

100

Programs", 1973 Sagamore Computer Conference on
Par all.el Processing.

[6] Kuck, D.J., "A Survey of Parallel
Machine Organization and Programming", Computing
Surveys, vol. 9 no. 1, March 1977, pp. 29-58.

[7] Kuck,D., Kuhn,R., Wolfe,M., Yew,P.,and
Leasure ,B., "A Database of Parallel Programs
Automatically Generated from Ordinary Fortran.
Programs", private communication, October 1978.

[8] Leasure, B., "Compiling Serial
Languages for Parallel Machines", Report No.
805, Department of Computer Sci.ence, University
of Illinois at Champaign-Urbana, Noveinber 1976.

[9] Lee, R.B., "Performance
Characterization of Parallel Processor
Organizations" , Ph.D. thesis, Stanford
University, May 1980, distributed by University
Microfilms International, 300 North Zeeb Road,
Ann Arbor, Michigan 48106.

[10] Sameh,A., "Numerical Parallel
Algorithms - A Survey", Proceedings of the
Symposium on High Speed Computer and Algorithm
Organization, April, 1977, (invited), Academic
Press pub. 1977, (D. Kuck, D. Lawrie, A.
Sameh, eds.).

[11] Tukey, J., "Exploratory Data
Analysis", Addison-Wesley Publishing House, 1977.

FIG. 12: PROCESSORS l'SED FOR HIGHEST QUALITY

"
80 \-

60 ~
_J

Histogri:l."1: PP.rcent
Curve. Cut':l.U!!!Uve Ferc.nl

1·

PERFORMANCE EVALUATION OF PIPELINE ARCHITECTURES

Jamshed H. Mirza
Division of Computer Science

Polytechnic Institute of New York
Brooklyn, New York 11201

Summary

This paper is a report on the investigation of a
generalized method for evaluation of pipeline
processors under more realistic conditions than
has been previously considered.

In Section I, our aim is to consider several al
ternatives for a performance measure for pipeline
architectures, and come up with an index that
clearly reflects how well the pipeline has been
organized from a purely architectural point of
view. The chosen index should be independent of
all issues unrelated with the architectural
sophistication of the design. Such a performance
measure would be useful during the initial design
stages for analysing a design to see if it is
likely to meet the stated requirements. It can
be used for studying and comparing several alter
natives for a design, and as an aid to making
relevant architectural decisions based upon that
study. It can be used for studying and evaluat
ing several structurally different pipeline
architectures and to determine which, if any, is
inherently superior under a given job environment.

In section II, a Markov Chain model is proposed
for pipeline processors, and a method is suggest
ed for determining the performance factor. This
is followed by an illustrative example and some
results of a preliminary analysis of the Texas
Intsturments Advanced Scientific Computer (TI-ASC).

Section I: Our aim in this section is to inspect
several alternative performance indices for pipe
line architectures, and select one that best
satisfies the following two conditions: (a) it
should clearly reflect the sophistication of the
design, viewed from a purely architectural point
of view, and (b) it should be unaffected by as
pects that are not relevant to the basic archi
tecture. To satisfy these conditions, we need a
performance factor that shows the increase in
throughput rate attained by the pipelined archi
tecture, as compared to an unpipelined architec
ture supporting strictly sequential, non
overlapped execution.

The throughput rate of a pipeline is directly
affected by the number of segments in the pipe,
the job characteristics, the pipe structure, and
the pipe configurability. By jobs we mean units
of computation that are separately initiated. In
the usual instruction processing pipe, a job
refers to a machine instruction. The jobs pro
cessed may be logically dependent or independent
of each other. The pipe structure may be linear
(when each segment receives control from only one
segment and transfers control to only one other
segment), or planar (when the previous restriction
does not hold). The pipe may also be configurable
(when the segment-interconnection structure is
capable of taking different forms at different
times), or non-configurable (when the interconnect
ion structure is always constant).

101

CH1569-3/80/0000-0101$00. 75 © 1980 IEEE

The number of segments in the pipe will determine
the extent of possible overlapped execution, and
therefore the possible increase in throughput
rate. Job characteristics will decide whether
logical dependencies are possible. Dependent
jobs imply more complex control requirements and
lower utilization and throughput rates. Pipe
structure, on the other hand, will decide whether
job collisions are possible. While planar pipes
allow the sharing of common segments among two or
more functional pipes, they also introduce the
possibility of job collisions (two or more jobs
attempting to use a particular segment at the
same time). Detection and avoidance of col
lisions also result in complex control require
ments and reduced throughput rate. Configurable
pipes also allow the sharing of segments while
reducing the collision problems. However, they
entail a reconfiguration overhead; a job require
ing a configuration different from the one
currently existing is held up until pipe is com
pletely flushed. Thus the efficiency of a pipe
line architecture tends to increase with the
number of segments into which it is divided,
while it is adversely affected by logical
dependencies, collisions and reconfiguration
overheads.

Previous attempts at evaluating pipeline archi
tectures can be found in rl, 2, 3]. However, they
all consider linear, non-configurable pipes and
only [3] considers logical dependencies between
jobs.

There are several alternatives for a performance
measure for pipeline architectures that ought to
be considered. Manufacturers have used the seg
ment clocking rate to show the absolute raw
processing rate of a pipelined machine. However
that need not reflect the architectural sophisti
cation. The number of segment in the pipe is an
appealing parameter to be used as an index of the
pipelining used. However, it fails to consider
delays due to dependencies, collisions and re
configuration. Moreover, one could increase the
number of segments by introducing unnecessary non
compute segments which would result in no real
gain in throughput rate; it may in fact deterior
ate because dependent instructions may now have to
wait even longer for the dependencies to be
resolved, Utilization (average number of active
segments at any time) would reflect the extent of
performance deterioration because of various
delays. However, it would not show the extent of
segmenting employed. One could raise the
~pparent utilization by reducing the number of
segments in the pipe al though .it would tend to
i::educe the throughput rate. Average instruction
initiation rate, used as a performance index
gives a measure of the processing rate of the
system if the various delays are considered.
However it also fails to take into consideration
the number of segments in the pipe.

None of the above alternatives shows itself to be
the unified quantity we are looking for-one that
takes into account both the number of segments in
the pipe as well as the delays due to dependencies,
collisions and reconfigurations. The performance
factor finally chosen is in fact a combination of
two of the alternatives considered. It is given
by:

PF = m /d avg avg
Here, m is the number of segments in the differ-
ent fun~¥¥onal pipes weighted by their probability
of being traversed. d is the average job-avg
initiation rate; it takes into account the
relative frequency of occurence of the different
instructions and the delays due to the various
reasons. Note that often non-compute segments are
inserted in the pipe in order to balance out the
flow of jobs through the different functional
pipes so as to avoid or reduce delays due to
logical dependencies and collisions. Since these
segments perform no computational step, they
should not be considered in the determination of
m • However, since they help to reduce delays,
dl.¥~e con-compute segments should be considered in
the evaluation of d avg
The ratio of m to d effectively gives the avg avg
average number of segments in the pipe that are
active at any time (i.e., actually processing an
instruction). This provides a measure of the
speed-up realized over strictly sequential, non
overlapped execution. Factors that affect the
absolute throughput rate, but have no bearing
upon the pipeline characteristics of the system
have no effect upon the performance factor.

Section II: In this section an analytic method,
based on a Markov Chain model, is presented for
analysis and performance evaluation of a pipe-
line architecture. The proposed method is general,
and is applicable to.multifunctional pipeline
systems with N ~ 1 functional pipes, The pipes
may be linear or planar, non-configurable or con
figurable, and the jobs processed may be mutually
dependent or independent.

Let (S , P) be a multifunctional pipeline system
containing N functional pipes.

S = [s1, s2 , s3 , , Sm } is the set of m

physically distinct segments in the system. Some
of these segments may be functionally identical
if, for overall efficiency reasons, certain
relatively over-utilized segment-types are
replicated, Also, some of the segments may be
non-compute,

Each segment Sj is specified by a 3-tuple:

Sj := (F(Sj), U(Sj)' C(Sj)) where F(Sj) is the

set of operations performed by S., and U(S.) and
. J J

C(S.) identify the set of source ("used") and
J

destination ("changed") elements referenced by
sj.

is the set of N p = {Pl' P2, p3' .. • ' PN }
different functional pipes,
ent path through a subset of

They define a differ
the segments. Thus

102

each functional pipe is defined by an ordered
sequence

, S. > ,
L,mi

E S , and is the segment that a job where S ..
J., J

traversing functional pipe P. would be in during
the jth active cycle after J. initiation.

Let ex = < ex1 , ex 2 , ex 3 , ••• exN >, the expected
job-profile oe also known, where exi is the

probability that a job entering the system will
traverse functional pipe Pi. We insist that

N

I
i=l

ex.
].

1

If this is not the case (allowing for the possi
bility that at certain points in time no job
arrives at the pipe for initiation), we intor
duce a fictitious "null" pipe PN+l which uses

no segments and for which exN=l = 1 - lex i
The proposed method of analysis assumes that all
segments have identical and constant processing
time so that the segments are clocked synchron
ously. This is a reasonable assumption that
simplifies the analysis without limiting its
applicability.

We also assume that a "Delay-Before-Initiation"
(DBI) strategy is used for job initiation.
According to such a strategy, all delays neces
sary for proper execution of a job are inserted
before the job is actually initiated. When a job
arrives at the pipe, it is delayed just sufficient
ly so that once it is initiated, it will not have
to be held up at any segment within the pipe in
order to resolve dependencies or avoid collisions
with jobs that had entered the system earlier.

The DBI strategy is unlike the "Delay-After
Initiation" (DAI) strategy. In the case of the
DAI strategy, all necessary delays are not insert
ed at just one point right at the beginning.
Instead, jobs suffer short delays at several
different stages in its path as required to re
move the immediate threat of unresolved depend
ency or collision. For planar pipes DAI strategy
in general results in fewer overall delays than
the DBI strategy, but is much more difficult to
analyse and to implement. Our evaluation method
will therefore yield a wort-case of linear pipes,
however, both strategies result in the same amount
of delays, and therefore the assumption about the
job-initiation strategy is not significant.

In a practical environment, the job arrivals are
random and have no particular regularity. More
over, logical dependencies will require that
dependent sequences of instructions ·to be initi
ated in the order they arrive. Consequently, a
first-come-first-served greedy scheduling strate
gy is the practical choice and is assumed here.
We also assume that the processor is an SISD so
that at most one instruction is initiated at each
cycle. If we do allow for the possibility of
more than one instruction being initiated at the
same time, an extra. degree of complexity would be
added to the evaluation process.

Evaluation of m : This is the weighted average
of the number o~V§egments in the N functional pipes
and is given by _ ~

m - L. ct, (m, - m~c)
avg i=l L L L

where
mi = length of functional pipe Pi in number of

segments
nc

mi number of non-compute segments in Pi

cti = probability that a job will traverse pipe Pi

Evaluation of d : This is the expected job
initiation rate~vgln the ideal case d = 1. avg
Under more realistic conditions, when delays due
to various reasons exist, d > 1, thus reducing

avg
the throughput rate. Therefore we need a repre
sentation for the state of the pipeline system that
contains sufficient information to allow us to
estimate this delay.

Associated with each functional pipe Pi is a Nxp
binary matrix D. called the Delay Matrix. Here N
is the number of functional pipes, and

Di(j,k) = 1 implies that scheduling a job P. k
time units after a job, P. has J
been initiated is to be ~revented as
it will violate logical dependency
rules, cause a collision, or because
a reconfiguration is required.

Di(j,k) = 0 implies P. may be initiated k times
after P. J has been initiate~.

1-

Note that by a job P. is meant a job that travers
es pipe P .. The i Delay Matrix is an extention
of the collision vector proposed by Davidson et.al.
r4,SJ. Since we are assuming a DBI strategy,
information regarding logical dependencies and
reconfiguration overheads can also be determined
and incorporated into the Delay Matrices r6J.

The state of the pipelined system with N function
al pipes is then defined by Nxp binary matrix q
such that

q (j, k) = 1 if and only if scheduling a job P. k
J

will cause
within the

time units from the present
p. to collide with some job

J
pipe, or will
dependency of

allow some logical
P. on an earlier job

J
within the pipe to go unresolved, or
if P. requires a reconfiguration.

J
Using such a Nxp binary matrix as the state of the
system, we develop a Markov Chain model for the
pipeline processor. The Markov Chain is derived
by associating with the system an internal state
every time a job is initiate.cl. These states are
called the initiation states. For each of the N
job-types that could be waiting to be initiated,
the current state provides information about the
delay that would be incurred, and the next state
to which the system transfers after the job is
initiated. Note that at the very beginning,
before any job has been initiated, the state of

103

the system is q0
elements zero).

{ O } (a matrix with all

Definition: qo

If q
also

[O }is an initiation state.

is an initiation state, then so
a re a 11 states

Shl(q,k.) uD. for all 1 ~ i ~ N
1- 1-

where q(i,ki) 0

and q(i, j) 1 for all j < ki

Shl(q,k) is the Nxp binary matrix obtained by
shifting each row of q, k positions to the left.
Logically OR-ing the delay matrix D. correspond
int to the job P. is initiated. 1

1-

The behavior of a pipelie system (S , P) can
now be completely described by the 6-tuple

(Q , P , D , cr , A , q0) ,

where
Q is the set of initiation states of the

system

p

D

cr

[Pi' P2 , • • • , PN } is the set of N

different job-types (functional pipes)

[D1 , D2 , ••. , DN} is the set of N

Delay Matrices associated with the N
job-types

Q x P.,. Q is the next state function;
given the present stat and the job-type,
the function identifies the initiation
state the system will enter when the job
is initiated

A Q x P [1, 2, • • • • , p } is the de lay
function; given the present state and the
job-type, the function identifies the
delay that is incurred before the job is
allowed to be initiated.

is the initial state of the system;
qO 0 { O}

The functions g and le are defined by the follow
ing relations: Let the present initiation state
be q, and the job waiting to be initiated by Pi.

If q (i, k) 0

and q(i,j) 1 for all j < k ,

then cr(q,Pi) = Shl(q,k)UDi and 1c(q,Pi) = k

With the help of the next-state function cr, and
the expected job-profile ct , we can find the
state transition matrix T = [t . . } . T can be

i, J
shown to be a stochastic matrix. Algorithms to
determine Q, cr , A, and Tare given in r6]·

The following theorems are proved regarding the
system:
(a) The set of states
one ergodic set ~

Q c Q
(b) lf any Di= [O} then

Q contains one and only

I\
Q = Q

A fast algorithm is suggested in r6] for determi
ning the transition states and the ergodic states.

I\ A I\ I\ I\
Let Q = [q1 , q2 , q3 , ••.• , qn.} ke the ergodic
set and T be the

be the corresponding nxn transition matrix (obtain
from T by deieting rows and columns corresponding
to the transition states). At steady-state, the
system will be in the ergodic set; let

A_ <A A A A
'IT - TTl, 1'T2 , lTJ' ••• , TTn > be the steady-

state state-probability vector which can be
determined by solving the set of equations:

and

II

A A A
TtxT= TT

n r ~i = 1
i=i

Let X be the nxN delay function matrix corre""
spending to the n ergodic states; it is obtained
from the delay function x
Then d can be shown to be: avg

d = ,,. x X x (a) transpose
avg

A simple extention of the evaluation method,
allows pipelined vector processors to be handled
r 6J.
The following is a simple example to illustrate
the performance evaluation method developed here.
The hypothetical pipeline processor being con
sidered here is planar, non-configurable and multi
functional with two functional pipes.

Processor: = (S , P)

s { s1 , s2 , s3 , • • • , s9 }

p { pl' P2, }

Pl = < sl s2s3s3s4s5s9 >

P2 = < sl s6s7s6s2s8s9 >
Based on this information and the complete speci
fication of the 3-tuples corresponding to each
segment S. (not shown here), the Delay Matrices
are found 1 to be :

Dl = 0000000 D2 = 0100000 { 1100000) (0010000)

The state-diagram showing the behavior of the
system is shown in the figure.

qo ql q2 q3 q4 q5

T

qo .3 .7
ql .3 • 7
q2 .3 .7
q3 .3 .7
q4 .3 .7
q5 .7 .3

The Ergodic set is 'Q = tql,q2,q3,q4,q5} '

the steady-state probability vector is

an!}

A
TT5) ~ .., < f;-1 fT2 ~3 114

= (0.114 0.332 0.080 0.186 0.288)

d avg
1. 7374

PF 4.029

m = 7.0 avg

Thus, for the expected job-profile a, the effec-

104

tive processing power of the pipelined processor
is about 4 times that of a corresponding non
pipel ined machine.

Table I shows some of the results of an analysis
of the Arithmetic-Logic Unit of the Tl-ASC. This
unit U configurable and requires the complete
pipe to be flushed everytime a new configuration
is to be set up. The expected performance in a
scalar processing environment, in a vector pro
cessing environment of several different expected
vector lengths, and the ideal throughput poten
tial are shown. These are compared with the ex
pected performance if the ALU was in fact not
made configurable and hence not burdened by the
reconfiguration overheads. As can be seen, the
improvement in a scalar-processing environment is
quite significant, but is insignificant in a vec
to.r environment with even moderately large vector
lengths. A more detailed study and relevant dis
cussion will be found in _[6].

TABLE I : ANALYSIS OF THE Tl-ASC ALU
(10 Functional Pipes considered)

Processing Configu- Non- Improve-
Environment rable Configu- ment*

rable

Scalar 1.190476 2.869866 2.410688
Vector(L=lO)** 2.986179 3.995209 1.337900
Vector(L .. 100) 4.362761 4.530451 1.037284
Vector(L=lOOO) 4.614627 4.633850 1.004166
Vector(ideal)*** 4.645000 4.645000 1.000000

* PF(non-configurable)/PF(configurable)
** L is the expected vector length

*** L is considered infinitely large

[1 J

PJ
[3]

[4]

[5]

[6]

References
T.C.Chen, "Parallelism, Pipelining artd Computer
Efficiency", Computer Design (Jan. 1971).
C. V .Ramamoorthy ,H.F .Li, "Pipeline Architec
ture", ACM Computing Survey (Mar. 1977).
D.P.Bovet,M.Vanneschi,''Models and Evaluation
of Pipeline Systems",Computer Architecture &
Networks,North Holland Puhl.Co. (1974).
E.S.Davidson,"Scheduling for Pipeline Proce
ssors",Hawii lntn.Conf.System Sciences(l974)
E.S.Davidson et al, "Effective Control for
Pipeline Computers",Proc.COMPCON(Spring 1975)
J.H.Mirza,"Generalized Method for Analysis of
Pipeline Architectures",Polytechnic Institute
of New York, POLY-CS-80-001 (Sept. 1980) •

I

A CRAY-1 SIMULATION USING PASCAL-PLUS

R.H. Perrott and C. King
Department of Computer Science

The Queen's University of Belfast
BT7 lNN N. Ireland

Summary

This paper reports on an experiment in par
allel program construction, namely, the simulation
of the computation section of the Cray-1 computer
[l] using the language Pascal-Plus [2]. Pascal
Plus is an extended version of Pascal which pro
vides the user with parallel features.

As a result of this project we now have a
working model of the Cray-1. The model accepts
programs written in CAL, the Cray-1 assembly lang
uage, and produces a summary of the usage of the
functional units, the memory accesses, the amount
of scalar and vector computation, the run time of
the program, the MFLOP and MIP rates. In addition
the user can request an instruction by instruction
trace of a program.

Previous simulations of the Cray-1, such as
that at the University of Michigan [4], have been
constructed using a sequential programming lang
uage like Fortran. We found that the parallel
features, program modularisation and data abstrac
tion facilities of Pascal-Plus were well suited
for the simulation of the concurrent activities of
the Cray-1.

The language used for the simulation was
Pascal-Plus, full details of which may be found
in [5]. However the salient features which were
used in the construction of our model are des
cribed below.

Pascal-Plus is an extended version of Pascal
which was specifically designed to support paral
lel processes and to enable discrete event simul
ation. The language extensions are the envelope
structure which is an aid to program modularis
ation and data abstraction, the process, monitor
and condition structures which provide a means of
representing parallel processes and controlling
their subsequent interaction, and, a simulation
monitor, which provides pseudo-time control fac
ilities for parallel programs.

The envelope is used to define a data struc
ture and all the operations that can be performed
on that data structure; the operations are repres
ented by means of procedures or functions. In
addition, there is a control structure which
brackets or envelopes the execution of any block
which creates an instance of the data structure.
In this way the user can ensure that certain
actions can be performed before and after the
execution of the block in which the instance of
the data str\J.cture is declared.

In our model the envelope was used to
represent the collection and the output of

CH1569-3/80/0000-0105$00.75 @) 1980 IEEE

105

statistics for each program executed by the simul
ator. In this way the design, development and
construction of the statistic collection module
could be isolated from the development of the rest
of the model.

The overall structure of this envelope was
as follows:-

envelope statistics ;
declaration of local data procedures and

functions ;
begin (* body of the envelope *)

initialisation of the data ;
*** ; (* inner statement *)
finalisation
~ ; (* statistics *)

Instances of this envelope, as many as the pro
grammer requires, can be declared as follows:
instance timing : statistics ; The block in which
1timing 1 is declared is then executed in place of
the inner statement which is represented by '***'
in the body of the envelope.

Only the procedures and functions of the
envelope which are prefixed by an asterisk '*'
i.e., starred can be called by the statements
comprising the body of the block in which 'timing'
is declared; starred data identifiers can also be
accessed but in read only mode. All other ident
ifiers and procedures are therefore protected.

The envelope was found to be a useful
abstraction mechanism in this simulation experi
ment, The block which declares and uses the
facilities of the 'statistics' envelope requires
no knowledge of its representation or its initial
isation or finalisation phases. Hence it could be
constructed separately and even modified at a
later stage provided none of the starred ident
ifiers were changed.

Processes are used to identify any independ
ent actions which may take place in parallel, for
example, the execution of the functional units.
A process can be defined and then instances of it
declared, similar to the way in which envelopes
are defined, The inner statement of the block
in which an instance of the process is declared
represents the execution of the body of the pro
cess, Once activated the processes proceed con
ceptually in parallel until they terminate where
upon the finalisation statement (if any) is
executed,

A monitor [6] consists of the data which
several processes wish to share and the procedures

which can manipulate this data; the data can only
be accessed and updated by a single process at a
time. Thus a monitor provides a means of control
ling communication and interaction among the pro
cesses by guaranteeing exclusive access to the
data.

If a process enters a monitor to update a
shared variable it may have to be suspended pend
ing the action of another process; this is achieved
by means of condition queues. Hence within a mon
itor for each condition that must hold before a
process can continue, a queue is required. Pro
cesses wait on a queue until signalled by another
process to continue.

The user can declare these queues as follows
instance unitqueue : condition ; To suspend
itself on a condition queue a process performs a
wait operation as unitqueue.wait. To release a
process from a queue another process performs a
signal operation, indicating to the signalled pro
cess that the reason it was delayed no longer holds
as unitqueue.signal. Thus processes and monitors
are the basic structuring tools for programs
involving parallelism.

Each functional unit of the Cray-1 was rep
resented as a process. All the functional units
have a similar structure in that they oscillate
between periods of activity and inactivity. When
they are inactive they wait on a condition queue
until requested by an instruction to perform their
function. Because of the similarity in their
structure an array of condition queues and pro
cesses was declared.

The structure of a functional unit process
is such that after creation it will wait on a
condition queue, when it is signalled by another
process it enters an infinite loop. The loop con
sists of periods of activity and then waiting on
its condition queue again.

One instance of this process for each of
the functional units is declared; a parameter is
used to distinguish between them. Each functional
unit process is initiated whenever the inner state
ment of the block in which it is declared is
encountered. The order of creation is the same
as the order of declaration of the processes.

A simulation monitor is included in Pascal
Plus in order to provide facilities which help
with discrete event simulation. The main feature
is an ordered queue known as the time queue on
which processes suspend themselves for a period of
pseudo-time using a procedure 'hold'. The queue
is organised so that processes with early wake up
times are at the front of the queue; the wake up
time for a process is the sum of the current time
plus the parameter of the 'hold' procedure.

Thus for a functional unit process the
period of activity is represented as a call to
this monitor procedure. For example, simulation.
hold {holdunittime) where the parameter 'holdunit
time' represents the period of time for which this

106

particular functional unit is meant to be execut~
ing.

Simulation time only advances when all pro
cesses are suspended either on a condition queue
or on the time queue. Only then is time advanced
to the wake up time of the first process on the
time queue. All processes waiting for this value
are then reactivated.

The simulation terminates when all the pro
cesses in the model are waiting on condition
queues.

This section describes the structure of the
model and some of the problems we encountered
during the design phase.

Our original plan was to model the comput
ation section of the Cray-1 as a series of
dynamic and static resources; the former being the
functional units and the latter being the memory
and the various registers. In this way each
dynamic resource could be represented by a process
which would lie dormant on a queue until it is
presented with operands and asked to perform its
function.

The static resources were to be assigned to
various monitors in which they would be protected
from the unpredictable effects of parallel pro
cesses. Whenever a functional unit required a
particular register it would make a request to the
appropriate monitor. If the request could not be
satisfied the process or functional unit would
have to wait on a condition queue until it became
available.

However two situations complicated this design
decision and caused the model to be restructured:
a functional unit could become free before the
registers that it was using; our scheme implied
that the acquiring and releasing were performed by
the functional unit process, and, the technique of
chaining, where the result operand of one func
tional unit is fed to another, caused a similar
type of problem about the releasing of registers.

To surmount these difficulties the classific
ation of dynamic and static resources was changed,
The registers were described by processes so that
they could be released before the functional unit
which was using them.

The structure of these register processes
was similar to that of the functional units, and
defined and declared accordingly.

The memory was also regarded as a functional
unit and treated as a process for timing consid
erations. Our model did not take account of the
complex timing mechanism relating to the issue of
instructions whenever bank conflicts occur.

We found the program and data structures of
Pascal-Plus well suited for the representation
and manipulation of parallel events. The major
benefit of Pascal-Plus in comparison to a sequen
tial programming language is the ease with which
concurrent operations can be specified and
synchronised.

SESSION 5: RESOURCE CONTROL AND ALLOCATION

107

I~

HARDWIRED RESOURCE ALLOCATORS FOR RECONFIGURABLE ARCHITECTURES

Bharat Deep Rathi
Anand R. Tripathi

G. Jack Lipovski
Department of Electrical Engineering

University of Texas at Austin
Austin, Texas 78712

Abstract

This paper describes hardwired resource
allocators for TRAC-like reconfigurable
architectures. These allocators facilitate
searching for available resources in the system
and allocation of a subset of these to a given
request. Various algorithms can be implemented
for the search and the allocation of the
resources. Tree-structured allocators look
particularly attractive with the cost-delay
product being of the order of M*(log M)2for a
system with M resources of the same type. The
paper also describes how this scheme can be
extended to allocate multiple type of resources in
the system.

~ Introduction

Conversion of software functions into
hardwired modules looks attractive because of the
pranise of improved execution speed. Due to the
recent advances in semiconductor technology the
trade-offs involved in cost-speed functions have
favored increased speed at a small increase in
hardware cost. This trend in decreasing hardware
costs has encouraged system designers to
incorporate many of the software functions,
specially those related to the operating systems,
into hardware modules [8], [13]. For example,
sane architectures provided hardwired functions
for manipulating capabilities [3]. The Symbol-2R
[8] architecture had a hardwired supervisor to
support a time-shared environment, and had
features for direct execution of high-level
languages. In some of the IBM 360 series machines
table-look-up and address translation functions
for paging systems were made faster using
associative memories. CASSM [11] arx'I similar kind
of architectures [6 l proved that many of the
conventional software functions in data-base
applications could be easily transplanted into
hardware to enhance the overall system
performance. PASM [9] architecture uses separate
microcontrollers to control partitioned processor
arrays in SIMD mode. These controllers can
selectively mask sane of the processing elements
(PEs) in the array by using a mask vector which
specifies the addresses of the PEs to be masked.
More than one PE can be specified by using
don't-care values .in the address tuples. The

--
This research is supported by NSF Grant
MCS77-15968.

CH1569-3/80/0000-0109$00.75 -~ 1980 IEEE

scheme provides an intelligent mechanism to
specify and decode the addresses once it is known
which PEs are to be selected for execution.

In this paper we show that the resource
allocati~n for architectures such as TRAC [10] can
~ hardwired. The scheme presented in this paper
is useful in deciding which of the available
reso~r~es be allocated_. to a given request for
partition. Such decisions are dependent on the
algorithm implemented in the hardwired resource
allocator. In fact, the kind of resource
allocator we present here can be used in any
architecture having large number of identical
modules as assignable units. If the system has
mor7 ~an one type of assignable modules (e.g. in
addition to memory modules it may have disks,
tape-drives, or printers), then this approach can
be easily extended to cover such cases. But it is
especially useful in allocating resources that
need to be set up quickly, such as canponents of a
switch or of shared memory. The structure
presented here is a step towards decentralization
of control. The hardware cost of this kind of
resource allocator is of the order of M*log(M)
when there are M assignable modules in the system.
Tree-structured allocators are particularly
attractive because delay is of the order of log M.

We have used TRAC as a model to present our
thesis that hardwired schedulers can be
effectively used to implement a range of
algorithms for resource allocation on

109

reconfigurable machines. Performance
(effectiveness) of scheduling algorithms for
architect~res based on networks, such as banyans,
can be highly dependent on the mix of the jobs to
be scheduled on the system. This paper neither
proposes nor claims effectiveness of any
schec;iuling algorithm for reconfigurable
architectures like TRAC. This kind of study of
scheduling algorithms for banyan network based
architectures is being done elsewhere [2].

One of the basic philosophies in scheduling
large, modular multi-processor architectures is
that the software scheduler should maintain only
minimal amount of information on the global
system-state. The scheduler should transmit
parameters to the hardware which allocates the
resources. The hardware should allocate resources
to avoid blockage, faults, etc., and respond with
a success or failure signal to the scheduler. If
done with care, thiE; philosophy can permit

distributed control of the switch which enables
parts to be controlled independently, removes the
centralized controller and most importantly
removes comnunication paths (pins) between the
central controller and the switch. Using the
resource allocators presented here, we find that
there is little need to maintain even the list of
available resources in the system. However,
maintaining such information can be very useful so
the scheduler will not attempt to allocate
resources when there are not enough currently
available in the system.

In this paper we present two strategies to
search for available resources in the system, and
two algorithms to select a subset of available
resources. The selection algorithms when used for
TRAC like architecture require additional
hardware. In contrast, the search strategies can
be implemented using the logic of the banyan
switch as used in TRAC. The constitution of the
rest of the paper is as follows: the next section
presents the problem description; section 3
describes algorithms for search and selection;
section 4 describes algorithms for search and
selection of resources; section 5 presents the
functional design of hardware structures and the
required control logic; and finally section 6
presents some ideas on multi-type resource
allocators.

~ Problem Description

In the architectures which we will be
primarily concerned with in this paper a set of
resources - processors, memories, I/O devices - is
connected by a switching network which is used to
partition these resources into independent
processing structures. Goke [4] showed that
banyan networks are suitable for this purpose, and
an architecture based on banyan networks was
proposed in (5]. We will be using this
architecture to demonstrate our ideas on hardwired
resource allocation. In the following paragraph
the logic for setting up such partitions is
briefly described. We show that if a certain
partition on the switch is requested, it is either
granted and an acknowledge signal is returned to
the scheduler , or a failure is signalled in case
of a blockage.

In [5] the partitions consist of data-trees
and instruction trees. A data-tree connects a set
of memory modules to a processor called the root
of that data-tree. Instruction-tree connects a
set of processors which are roots of data-trees to
facilitate SIMD mode of operation. In [4] the
basic logic of setting up such partitions is
described, a more detailed design of such a
switch, as used in TRAC, can be found in (7). In
TRAC a four-level banyan switch with spread=2 and
fanout=3 is used; the switch has 81 base and 16
apex nodes. The memory-modules and the I/O
devices are connected to the base nodes, and the
processors are connected to the apex nodes. One
of the base nodes can be used as a port into which
the software scheduler feeds . comnaoos aoo
addresses into the hardware resource allocator.

110

In order to set-up some partition on the
switch, the scheduler has to first decide which of
the available memory modules are to be chosen as
candidates. A bus connects the port (feeding
conmands to the switch) to all the resources, so
they can be addressed, like I/O devices in a
microcomputer. The selection procedure then
selects and marks a subset of these memory modules
sequentially using the control bus. Marking is
done by addressing the resources, as I/O devices
are addressed in microccmputer, and setting a
flip-flop. To connect a set of memory modules (as
data-tree leaves) to a processor, the marked
modules send a request signal up towards the
processor nodes. This request signal, at every
node in the switch, proceeds upward to all links
imnediately above it, through all the levels to
the apex processors. If the request signal finds
a busy or faulty node at any level, then from that
node upwards a denial signal is sent. The denial
signal, like the· request signal proceeds upward to
all links connected imnediately above it, through
all levels to the processors. All those
processors which do not receive a denial signal
are candidates to be the root for the desired
tree. There exist unblocked paths from these
processors to each of the requested memory
modules. One of these processors is selected as
the root of the data-tree. Then from this
processor a grant signal is sent towards the
memory nodes. This grant signal proceeds toward
the memory, going out on each link below each node
that it gets to. Any link getting both a request
and a grant signal is part of the tree. Such a
link switches itself to a conducting state to form
paths between the processor and the requested
memory modules. The set of links, though
physically a tree, act like a wire-OR or a
tristate bus connecting the resources.

Because of the blocking nature of the switch
it is possible that none of the processors can be
connected to all the requested memory modules.
Such a partition is said to be blocked and a
negative acknowledge is signalled to the
scheduler. Generally, a process requires a set of
memories and I/O devices. Some resources have
data in them required by the process. These are
~ resources, but other resources need only be
selected from a pool of similar resources, such as
empty memory modules. If the request for some or
all of the memory modules is of don' t-care type
(i.e. any set of memory modules can be selected
from the available modules), then the request for
setting up the data-tree is retried with another
set of modules. Testing all don't cares to
generate sets of specific resources to form a data
tree is an NP-complete problem, and a serious
limitation in the i:;cheduling mechanism used in the
TRAC. In this paper we study how this selection
can be done by hardwired allocator algoritiuns.
These algoritiuns are defined in the next section.
Our interest in the resource allocation problem
was mainly instigated because of its existence in
the TRAC system.

i.:Q Resource Search and Selection Algorithms

Resource allocation has three phases: search
for qualified resources, selection and validation
of a subset for allocation, and finally granting
of resources to the request. It is important here
to understand what we mean by the term "qualified
resources". The set of qualified resources is a
subset of the available resources, and various
criteria can be used to designate an available
resource as qualified. These criteria determine
what strategy must be used to find the qualified
resources in the system. The second phase is to
select a subset of the qualified resources and
validate them if the desired partition can be
set-up. In the last phase, on successful
validation, these resources are marked unavailable
for use in further tree allocation and the
partition is set up. The search and selection
algorithms might make use of some properties of
the interconnection network. In case the selected
set of modules cannot be connected, the selection
phase retries another subset of the qualified
modules.

l:_l Search Srategies for Qualified Resources

In this section we describe two strategies to
search for qualified resources in the system.

Strategy 1: The simplest way to define qualified
resources is to designate every available resource
as qualified. Therefore, the selection algorithm
considers all the available resources when
selecting a subset for validation. A tag bit can
be associated with each module to indicate whether
it is available or busy; when the resource is busy
this bit is reset, otherwise it is set. Failed
modules can be excluded from the set of qualified
resources by resetting this bit. Using a tag bit
on each module to indicate its availability, there
is no need to have a search phase, because all the
available modules are tagged, which also signifies
that they are the qualified modules.

Strategy~ This strategy shows how qualified
resources can be defined on the basis of some
properties of the interconnection network. In the
proposed strategy, a signal is s~nt down fr?m an
unused processor towards the memories. The signal
propagates downward only if it does not encounter
any busy node on its path. All the base nodes
which receive the signal are designated qualified,
and are connectible to this processor. If the
number of qualified modules is greater than or
equal to the number requested for the data-tree,
then the allocator algorithm allocates a subset of
these and requests the data-tree formation.

If the number of qualified modules is less
than the desired number, then this procedure is
repeated with the next available processor. If
all the available processors have been tried, that
means that the requested data tree cannot be
loaded at the current state of the switch.

The advantage of these strategies is that
there is no need to maintain a list of available

111

resources with the scheduler. Whenever needed,
the scheduler can generate this information in a
few memory-cycles.

l.:_l Resource Selection Algorithms

We will be considering two
algorithms: first-fit and group-fit.

selection

First-fit Algorithm: In this algorithm all the
qualified modules are serially assigned a number,
the order in which this number is assigned can be
a function of the network topology. In banyan
networks this numbering can be based on the
addressing scheme (12] which implicitly captures
the concept of the distance function [4]. For a
data-tree request of "rr" modules the scheduler
allocates the first "rr" number of qualified
modules. The switch controller then attempts to
form the data-tree, in case of a failure the first
module in the selected set is replaced by the
(rr+l) 'th qualified module. The data-tree
formation is retried with this new set of modules.
This process is continued either for a fixed
number of attempts, or until the request with the
last available module is tried. This can be
viewed as a moving selection window of width "rr",
which is moved one step from left to right for
every attempt until the requested partition can be
set-up.

In the design of the resource allocators
presented here, we show how this selection method
can be used with the search strategies 1 and 2.
This selection algorithm, when used for TRAC-like
architectures along with the search strategy 2,
does not need retries because any partition with
the qualified resources is guaranteed to be
unblocked.

Group-fit algorithm: In the systems which have
resources organized in groups on the basis of
physical proximity, it may be desirable to select
all the resources for a request from the same
group. These groups may possibly be divided into
smaller subgroups. For example, in TRAC which has
a fan-out of 3, the smallest group size for the
base nodes is 3, and it increases as powers of 3,
e.g. next larger sizes of groups are 9, 27, and
81. A group of size 9 contains three subgroups of
size 3; similarly a group of size 27 contains
three subgroi.lps of size 9. Nodes belonging to the
same group are "closer" (in terms of the number of
links in the smallest sub-tree which can connect
them in the banyan network) to one another as
compared to any node in a different group.

A group-fit algorithm is encoded in a
simulator for TRAC [2]. For a data-tree request
it tries those memory modules, from the list of
available modules, which belong to the same group.
(Note that in TRAC the resource modules to be
assigned by the allocator are connected to base
nodes of the banyan network.) The number of such
modules is fl, where 1 is the number of levels in
the switch. The algorithm is defined below for a
banyan network with spread=s and fanout=f. The
algorithm presented below is for the search

strategy. 2. In this case the setting up of the
data-tree is guaranteed if the required number (or
more) of resources qualify during the search
phase.

{rr = number of resources r~ested}
set m such that ~IJI<= rr < f 1
if rr <= number of available resources then
begin

for n:= m to 1 do
begin

end;

if .rr modules are available from
base node addresses

in the range (l+(i-l)*fn) •• i*fn
then allocate rr modules and request

data-tree formation

If the number of base-nodes is M and the number of
processors is P, then the canplexity of the above
algorithm is O(P*log M) for strategy 2.

4.0 Functional Design of the RE:!source Allocator

The designs which we propose here support
search and selection phases of resource
allocation. Validation and granting would
normally be supported by the control logic for
partitioning and reconfiguration on the
interconnection structure. The functional design
of these hardware allocators is presented here.

When designing hardware, a tradeoff in cost
and speed is always encountered. To reduce the
cost of a design, it is desirable to take
advantage of low IC replication costs. This
requires a design constr~int on the nllllber of IC
pins. While to gain speed, structures with
minimal delay are required. In the hardwired
resource allocator designs, this tradeoff is
guided by the operating environment.

We propose two types of allocator designs:
first is the Tree Structured Allocator, and the
second is the Linear Structured Allocator. The
first allocator optimizes on speed and provides
t'NO types of algorithms. One is the First-Fit
algorithm, where the resources are allocated on
the first available basis. The second is the
Group-Fit algorithm; ·here we asst111e that the
system network structure div.ides the resources
into groups. 'Ibis grouping can be done
intentionally, or can be a side effect of the
interconnection network. The Linear Structured
Allocator is aimed at optimizin.J hardware cost.
The delay of the allocator is proportional to the
mmber of qualified resource modules. Only the
First-fit ·algorithm C:an be supported by this kind
of allocator design. ·

For the discussion of the allocators given
below, we .ass\llle that the resources are of the
same type. Extending the algorithm to handle
multiple types of resources is not difficult, and

solutions for this are given in a later section of
the paper.

4.1 ~ Structured Allocators

. 4.1.1.Functional ~erview'Of the design To
achieve high speeds in a .cost effective way, we
chose a tree .interconnection structure for the
resource allocator. 'Ibis interconnection
structure is separate f ran the interconnection
structure used · for reconfiguration and
multiprocessing. The resources are attached at
the leaves, or at the leaf and .internal nodes of
this tree structure. The tree structure is used
to calculate the number of qualified resources to
the left of each node/leaf and also the total
number of qualified resources in the system. This
structure also assigns a serial nllllber to the
qualified resources. 'Ibis is done in time
proportional to log(M), where "M" is the total
number of the resource modules connected to the
tree.

Each node of the tree looks like an adder
[l]. If we assume a binary tree, then each node
has 3 pairs of directed links incident on it
(Fig. l). Each pair has its left link going down,

Figure 1

x y + z

I
PD PU

X Y X+Y Z

Functional view of the Tree-adder
node

while the right link goes up. If a m:anber x is
placed on the link PD, and nllllbers Y and z are
placed on the links LU- and RU respectively, the
resulting sum of these nllllbers is shown at the end
of links PU, lD and RD in Fig. 1. The PU link of

.the root node outputs the total number of

112

qualified resources in the system.

To explain the working of our algorithm in
hardware, we assume that the resources are placed
arbitrarily as the leaf nodes. The algorithm
requires each resource to indicate if it is
qualified. 'Ibis is done by appropriately setting
a flip-flop QR in each qualified resource. Then
QR true i~icates the resiource is qualified, while
QR false indicates it is- busy. It is also
necessary to store the value "rr", the number of
resources requested by the task. A suitable bua
will be assumed for. this transfer .to take place
fran the controller to the resource inodules.

Since only the qualified resources should be
considered for allocation, we need to sum only the
values of all QRs. Thus the numbers y am z {in
Fig. 1) are the QR values of the respective
resources connected at those locations, while X is
set to zero to indicate that there exist no
resources to the left of the left most leaf. This
is best explained by studying Fig. 2. Here a
system of 8 resources

Resource
ModUl•

Figure 2

m ~· lndtc.ates busy resources

CJ :• Indicates qua1ffted resources

COllTIIOUEI

ResourceJ
Select.
Lino

Tree resource allocator example

is connected as explained above. Each directed
pair of links of Fig. l is shown as a single link
between nodes, while the arrows indicate the
directed links. The value at their head gives the
respective sum at that link.

The total number of qualified resources in
Fig. 2 is obtained at the root and is sent to the
controller. If "rr" for a task is less than or
equal to this total then.the controller knows the
task can be scheduled. The controller then
asserts the resource select line to assign the
resources to the processor. Each resource that is
qualified and has a sum less than "rr" on its LO
{or RD) link, automatically selects itself. The
sum on the LO (or RD) link would be the serial
number assigned to the resource. After the
selection, the next phase of validation might be
necessary if search strategy-1 is being used.

To implement the moving window of search
strategy-1, to shift the window to the right we
decrement the value X being fed into the PD line
(figure 1). The controller does this when
required, and stops this process on the last
qualified module being tried in the window.

The example given above presents one type of
architecture for tree structured resource
allocators. We give below three different types
of tree-structured architectures, two for the

113

First-Fit algorithm, arxi one for the Group-fit
algorithm. · These are implemented assuming search
strategy-2 is used for selecting the resource
modules. The cost of such resource allocators is
of the order of M*log{M) when there are M resource
modules. The linear term specifies the cost of
the tree nodes, while the log (M) term gives the
cost of the links in the tree structure.

4.1.2 First-fit Algorithm -- Binary~ With
Resources At The Leaves The resulting tree
structure obtained on connecting the resources is
shown in ·Fig. 2. Each leaf node is the resource
module itself. A block diagram of the internal
nodes {including the root) is given in Fig. 3.
The full adders of a node can be

Figure 3

"

An internal node of a Binary tree
allocator with the resources
attached to the leaves

SN74283 [14]. A separate bus to pass "rr" from
the controller to the resources is not required.
Instead we feed "rr" into the root nodes PD 1 ink
and then set the B port to 0 to get the F = A
function. Looking at Fig. 3, we see our tree
would be functionally equivalent to a bus.

The width of each link is w = flog 2 (M)l and
the number of wires per node required is 6w. This
is a large nunber if the node is to be implemented
as an IC module. But we notice that the number of
pins can be reduced to 6, if we serialize the data
in the links of the tree • This would be at the
cost of a reduction in the execution speed of the
algorithm. But this cost may be overshadowed by
the cost of implementing 2 to 3 nodes on the same
IC module.

Assuming a parallel data transmission tree
structure, the following execution times are
obtained. Here ND is the delay imposed by the
node, while "M" is the total number of resources
connected to the tree. The time taken to compute
the total number of resources is "Ta", while the
time taken to serialize is "Ts".

Ta =

Ts = (2* r1og2Ml - 1) * ND for M ~ 2

This architecture can be used when minimal
design changes to the existing resource module are
wanted, or when the resource modules are placed
far apart. Here the consecutive leaf nodes can be
the resources that are physically close to each
other. This would reduce the length of the link
(wire) connecting them to the tree.

Binary Tree With ~ Resource At Each Node In
this implementation we place the tree node in the
resource module itself. This way each leaf and
internal node, including the root of the resulting
tree is a resource module. This approach reduces
the number of nodes and levels in the resultil'J1
tree. The node design will have to be modified as
shown in Fig. 4.

FULL ADDER

A

FULL ADDER
r

Figure 4

Resource
Module

A node of a Binary tree structured
allocator with the resources
~ttached to all nodes

Like the above described design we can use
SN74283 ICs. This structure has the advantage
that no external tree need be implemented. The
resource modules would have to be linked to their
neighbors in the appropriate manner. Resources
connected to the tree as shown in Fig. 5. The
node numbers indicate their i;tiysical location,
with node 1 assi.lned to be the left most node. The
node allocation basically follows an in-order tree
traversal path. This arrangement reduces the
length of the links (wires) in the tree structure,
which is necessary to reduce the cross talk and
the cost of the tree.

The cost can be further reduced by
simplifyiIJ1 the leaf nodes to contain only the
serial register MR, the QR flip-flop and the

114

Figure 5 Assigning resources to nodes of
the tree structured allocator.

resource control hardware
number of pins required on
totally parallel data
w = r1og 2(M)1*6.

(as in Fig. 2). The
each node IC for a

transmission tree are

The execution time for this tree structure is
as follows -

Ta (r1og 2 (M + 1 Jl - 1) * ND

Ts (2 r1og 2 (M + Ill - 3) *ND for M ~ 2

This architecture can be used, when the
resource modules are implemented as ICs, or are
placed physically close to each other. The node
can then be placed within the IC, arrl using serial
data transmission the pins can be reduced. Even
if an IC implementation is not required, the node
design given above is cheaper in terms of
hardware, if the leaf nodes are simplified as
explained above.

4.1.3 Group--fit Algorithm In networks which
have their resources organized in groups, it may
be advantageous to select the resources from a
single group. If we can allocate all the required
number of resources from the same group, then we
can save on the number of links allocated. This
saviIJ1 is in terms of reduciIJ1 the possibility of
blocking other available resources in the
following allocations [4].

An example of this design for the TRAC
architecture [10] is presented here. Other
applications can use this by modifying the node
design as required. we use a ternary tree, with
the resources attached to the leaves. This allows
for a simple node design as shown in Fig. 6. A
request for partition is sent to the root of the
tree, from which it moves towards the leaf nodes
as described below. A node selects a particular
son if that subtree has the required number (or

lD

Figure 6

PD "'

A node of the group selection tree
structured allocator

more) of qualified resources, arrl none of its
elder brothers (if any) have the required number
of qualified resources in their subtrees. If none
of the sons satisfy the above corrlition, then the
first "rr" resources in that subtree are selected.
To correctly identify the active subtree an extra
line is required in the node. This is set if the
parent of a node has selected this branch of the
tree (i.e. line PA).

Qualified resources transmit their QR values.
The resultill':J sum at the root arrl the serial
numbers are calculated. At the root cell a
canparator checks the sum, the PA line is asserted
if there are equal to or more than "rr" qualified
resources. A similar check is done at all nodes
and the respective control lines are asserted (see
Fig. 6). If a node lies in an inactive subtree
then the LU, MU and RU links are pulled down to O.
This can be done by designing them to be wire-OR
lines. At.any node in the tree, the respective
lines are then made 0 if their canpare function is
0. This ex tr a hardware (not shown in the Fig • 6)
is needed to correctly serialize the resources
that are in the active (selected) subtree. The
resources allocated are those which are qualified,
have their PA set, and have serial numbers less
than "rr".

The tree will have the following worst
timill':J :-

case

115

1 ND for 1 ~ M ~ 3

Ts = l (3 r1og3Ml - 1) * ND for M > 3

~ Linear Structured Allocator

First-fit Algorithm This architecture does
not require the tree structure, instead it uses a
counter in each resource module (see Fig. 7).
Each resource module requires a

DIC

COftTROLLER

RU

Figure 7

Q.EAR

Linear structured allocator with a
counter in each resource module

register (MR) to hold the value "rr". A single
line bus (RESREQ) from the controller is used to
serially transmit this value to all resource
modules. Another line INC, to increment the
counter is also required fran the controller to
all modules. Each module constantly compares the
counter output with "rr", arrl sets the DONE line
as soon as an equality match is obtained.

The resource modules are qualified to
participate in the present allocation run, as done
in the other designs. The QR flip-flop is
appropriately set, all counters cleared, and the
MR register initialized. The controller then
sends pulses on the INC line, and all enabled
counters are incremented with each pulse. A
counter is enabled if QR is set and the resource
has not set its right neighbor link (see Fig. 7).
The counter is enabled as long as the left
neighbor link is not set. On this bein;i set the
module increments the counter for the last time,
arrl sets its right link. After this for all
following pulses the counter is not incremented.
If an intermediate module is not qualified, then
its left link is internally joined to the right
link, arrl the counter cleared and disabled.

The incrementing process is stopped as soon
as the DONE line is set. It is set by a qualified
module, when its counter reaches the value "rr".
All resource modules with counter values less than
or equal to "rr" select themselves. The counter
value for each selected resource is its serial
number. If the number of qualified resources are
less than "rr" then the RLINK line is set before
the IXJNE line. At this point the controller would
select the next processor (if any) , and do the
above.

This architecture has the advantage of having
a low cost, since only few lines and minimal logic
is required. It furthers lends itself to be
implemented within the resource module itself. A

significant loss in speed will be felt only when
the "rr" for the allocation is large. This is
because the allocation is sequential and has the
time complexity of O(rr).

~ Ideas on Multi-type Resource Allocators

The above described allocator algorithms
considered resources of the same type. We can
extend them to handle multi-type resources, as
described here. The actual solution chosen, would
depend on the cost-speed tradeoffs of the system.

~ Tree Structured Allocators

There are two types of multi-type resource
allocators ·- Multi-pass and the Single-pass. In
the Multi-pass allocators all the resources of the
system are connected to the hardwired allocator as
described in the single resource type case. CAlly
the resources of the same type are qualified
during a pass. If a task required 3 types of
resources to be allocated, then 3 passes would be
required.

The Single-pass type allocator allows us to
maintain the time complexity of the algorithms
described earlier. Here "M" would mean the
cardinality of the largest resource type. On the
other hand it increases the cost of the hardware,
since the width of each link is increased.

Each link for the above defined algorithms
had a width of w= r1og 2 (M) l . To handle
multi-type resources in a single pass we have to
increase the width to

w = w1 + w2 + + wi + wn

liVhere "w," is the width for resource type "i", and
we have~ "n" different resource types. Each link
is logically divided into "n" fields (Fig. d), but
would be considered to be a positive integer
number by the

Field for the

6251 o m.~~ ,~
~·~~~~~~~~~ w~~~~~~~~~~~--'>

Figure 8 Width of a link in a tree structured
allocator

tree adder. If a resource module is qualified it
increments only its logical field value. No
o~erflows be~ween ~djacent fields take place,
since the field width for each resource type is
w = flog 2(M)1 • The serialization and the
surrrnation process of the tree adder would not be
changed. But the QR flip-flop connection to the
tree and the allocation procedure of the algorithm
is slightly altered.

]'he QR flip-flop output for a resource type
is attached to the least significant bit of the

respective logical field. While the MR register
in each resource module is divided into the· above
~99ical.fields. For.a resource module only its
field is made active and the other fields made
inactive. This is because during the comparison
for allocating a resource, this active field in
the MR register is used. It would compare itself
with the resulting serialized number obtained at
the resource node. '!be resource would be
allocated as done before. The controller allows
allocation only if all resource requests are
satisfied.

~ Linear Structured Allocators

The Multi-pass and Single-pass algorithms can
be implemented for this allocator algorithm too.
In the Single pass allocator all the resources
would be connected together, and only one type of
resource would be qualified per pass. While for
the Multi-pass allocator we would have a separate
controller for each resource type. Resources of
the same type are connected to their controller as
described earlier. The algorithm would execute as
before, the only difference being that the system
controller is interfaced to the controllers of
each resource type.

~ Conclusions

In this paper we have shown how resource
allocation functions for reconfigurable,
multiprocessing architectures can be delegated to
hardwired structures. such hardwired resource
allocators look very attractive for large systems
because it relieves the scheduler from the burden
of maintaining lists of available resources. Even
the resource selection function, which would
normally be done serially by the scheduler can be
done in parallel using the tree-structured
allocators presented here. This would reduce the
overhead of serial conmunication fram a central
scheduler to the resource modules during the
selection phase. The tree-structured schedulers
look particularly attractive because of the cost
and delay both being of the order of log(M), where
the system has "M" number of assignable units.
Secondly, the tree-structured schedulers have an
inherent capability to capture same of the
topological properties of certain interconnection
structures, such as banyans, and thereby providing
a convenient mechanism to implement a set of
intelligent resource allocation algorithms.

Acknowleagements

116

It is our pleasure to thank Dr. Miroslaw
Malek and the refrees, for carefully reading
drafts of this paper and for their useful conments
and suggestions.

References

1. J.A. Bush, G.J. Lipovski, S.Y.W. Su, J.K.
Watson, S.J. Ackerman, "Some Implementations
of Segment Sequential functions", Proc. of
the Third Annual Symposium on Camputer
Architecture, 1976, pp. 1-8.

2. D. DeGroot, A.R. Tripathi, D.P.S. Charlu,
M. Malek, J.C. Browne, "Report on
Simulation and Scheduling of the TRAC

Architecture", TRAC Report 8,1979, Dept. of
Electri9al Engineering, university of Texas
at Austin.

3. D.M. England, "Capability concept,
mechanisms ard structure in system 250",
Symposium on Protection in Operating Systems,
IRIA, Recquencourt 78150 Le Chesnay, France,
Aug. 1974, pp. 68-82.

4. R. Q>ke, G.J. Lipovski, "Banyan Networks
for Partitioning Multiprocessor Systems",
First Annual Symposium on Canputer
Architecture, 1973, pp.21-30.

5. G.J. Lipovski, A.R. Tripathi, "A
Reconfigurable Varistructure Array
Processor", First International Conference on
Parallel Processing, 1976, pp. 165-174 .•

6. E.A. Ozkarahan, S.A. SChuster, K.C. Smith,
"RAP - An Associative Processor for Data Base
Management", AFIPS Conference Proceedings,
Vol.44, 1975, pp. 379-387.

7. u.v. Premkumar, R. Kapur, M. Malek, G.J.
Lipovski, P. Horne, "Design and
Implementation of the Banyan Interconnection
Network in TRAC", AFIPS Conference
Proceedings, Vol.49, 1980, pp.643-653.

8. H. Richards, A.E. Oeldhoeft,
"Hardware-Software Interactions on
Symbol-2R's Operating System", Proc. of the
Secord Annual Symposium on Canputer
Architecture, 1975, pp.113-118.

9. H.J. Siegel, P.T. Mueller, H.E. Smalley,
"Control of a Partitionable
Multimicroprocessor System", Proc. of the
1978 International Conference on Parallel
Processing, w 9 - 17.

10. M.C. Sejnowski, E.T. Upchurch, R. N.
Kapur, D.P.S. Charlu, G.J. Lipovski, "An
overview of the Texas Reconfigurable Array
Canputer", AFIPS Conference Proeedings,
Vol.49, 1980, pp.631-642.

11. S.Y.W. Su, G.J. Lipovski, "CASSM: A
Celluar System for large data bases",
International Conference on Very Large Data
Bases, 1975, pp. 456-472.

12. A.R. Tripathi, G.J. Lipovski, "Packet
switching in Banyan Networks", Proc. of the
Sixth Annual Symposi\111 on Caq;>uter
Architecture, 1978, pp. 160-167.

13. T.A. Welch, "An Investigation of Descriptor
Oriented Architectures", Proc. of the Third
Annual Symposium on Canputer Architecture,
1976, pp.141-146.

14. Texas Instrllllents Inc., "The TTL Data Book
for Design Engineers", Second F.dition, 1976.

117

RESOURCE CONTROL IN A DEMAND-DRIVEN
DATA-FLOW MODEL

Bharadwaj Jayaraman
Robert M. Keller

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112.

Abstract -- An approach to
and scheduling of resources
data-flow model is outlined.

the synchronization
in a demand-driven

It is shown that
demand evaluation provides a natural model for
resource usage and yields elegant solutions to
certain problems, such as the avoidance of busy
waiting and resource scheduling. A graph-based
applicative language (FGL), with data-flow
semantics, is first introduced for explaining our
primitives for resource control. A textual
version of FGL is later used for presenting
examples. The benefits of an applicative
language in aiding well-structured design, and
the clarity of data-flow models in making
indeterminate behavior explicit, are al so
illustrnted.

INTRODUCTION

Data-flow models are well-known representations
for achieving asynchronous and concurrent
execution of applicative programs ([11), [4)).
The term 'data-flow' has, in the past, been
synonymous with 'data-driven', since the
execution of any operator in a data-flow program
is initiated by the availability of its input
data. Recently, a demand-driven execution model
for a data-flow program has been proposed as the
computational basis for an Applicative
Multiprocessing System [14). Demand-driven
execution is based on the principle that the
execution of any operator is initiated by a
demand for its result, rather than by the
availability of data. In comparison with
data-driven models, the main advantages of a
demand-driven model are in avoiding unnecessary
computations and allowing conceptually infinite
data-structures to be constructed, without
requiring them to be manifest all at once.

The work presented here is motivated by the need
to introduce the concept of a resource, and
techniques for their control, in a demand-driven
data-flow model. The emphasis is on a reliable
and modular approach to designing many of the
synchronization and scheduling functions of an
operating system.

This research is supported by the National
Science Foundation under Grant MCS-77-09369 AOl.

CH1569-3/80/0000-0118$00.75 © 1980 IEEE

118

A demand-driven model of execution has led us to
develop an extension for resource usage that is
al so "demand-driven." It is worth noting that a
model for resource usage based explicitly on
demands is not 'unrealistic since user programs
may be viewed as making demands on the underlying
operating system to allocate/access resources.

Some aspects of resources that are ostensibly
alien to a demand-driven data-flow model are the
following:

1. In purely applicative models, there has
heretofore been no notion equivalent to a
reference to a data object, since all data
objects are values and all computations are
value-oriented. As a consequence, there is
no notion of updating a data object.
Instead, "modified" data objects are
essentially new data values. A resource, on
the other hand, requires some notion of a
reference to it in order to be shared in a
concurrent environment, and is updated for
sake of efficient storage u.tilization.

2. Pure data-flow programs are determina.te,
since their output is determined solely from
their input data values, regardless of the
timing of operations. On the other hand,
due to the unpredictability in the timing of
operations and the updatable nature of
resources, the behavior of a resource could
be indeterminate. Since any legal
interconnection of pure data-flow programs
can only result in determinate
programs [12], it is necessary to explicitly
introduce operators for expressing
indeterminate behavior.

The main advantages of a demand-driven model for
resource control are the following:

1. Since waiting is fundamental to demand
evaluation, the avoidance of busy waiting is
accomplished without a need for explicit
protocols for "putting to sleep" and "waking
up" a task. In fact, no additional
mechanism is necessary for creating and
destroying tasks.

It is possible to eliminate the use of
"bracketing" operations around a critical
operation, e.g. the operations startread
"lnd endread around a read operation, as in
Monitors [9]. These bracketing operations
are effectively substituted by the demand on
'l resource to perform an operation and the
return of a result by the resource.

2. Unlike conventional models, where
indeterminacy is caused by concurrent
operations updating some shared global data,
in a demand-driven data-flow model,
indeterminacy is a local effect that must be
explicitly introduced, and is associated
with the time-dependent arrival of demands
or data at some operator. This has the
advantage of being able to easily identify
indeterminate behavior as occurring at
well-defined points of the program.

3. Since any indeterminacy must be
introduced, the arbitration and
of operations becomes explicit
user-programmable.

explicitly
scheduling
and al so

AN APPROACH TO RESOURCE CONTROL

We summarize the salient features of our approach
to resource control. A logical resource consists
of two main components:

- the actual resource and associated operations
on i-t-.--

the specification of its synchronization and
scheduling.

In the interest of modularity, these components
can be independently defined. At this stage, we
wish to treat the actual resource as an abstract
object whose structure and representation are not
of critical interest. Hence, we will omit
detailed definitions of the access operations.
The issues of access rights, i.e. the protection
of resources from unauthorized or improper
access, have not been considered in this
presentation. However, owing to the modularity
of our approach, such constraints can be
specified separately. The focus for the rest of
this presentation will be on synchronization and
scheduling.

our solution to the problem of specifying
synchronization is to indeterminately order
concurrent accesses by using. queue primi ti,ves.
It is perhaps worth noting that alm'ost all
synchronization schemes proposed in the
literature rely on some mechanism for q1;1eueing.
We feel the concept is basic to synchronization,
and hence have introduced i.t explicitly as a
primitive. Thus, multiple queues may be defined,
and different types of accesses can be allocated
d'ifferent queues. the a]!iocation policy being
under the control of the programmer. The
availability of multiple queues, each
inde"pend·ently acc€ssible, also overcomes the
problem of a sir'l'gle input cweue ·bO·ttleneck.

Scheduling C-onsist5' of selecting some order for

serving these queues. Hence, primitive operators
are provided for waiting and removing requests
from queues. In a model where demands are the
only means of initiating the evaluation of any
operation, the evaluation of the actual operation
to be performed on the resource may be viewed as
being intiated by two demands: the first is the
user's demand to access the resource; the second
is the demand from the resource scheduler to
start evaluation. Thus, primitive operators for
evaluation control are also provided. When used
in conjunction with the queuing operators, these
operators allow a programi:ler to tailor the
scheduling of evaluation of concurrent accesses
according to many desired specifications.

FUNCTION GRAPH LANGUAGE

The data-flow language described here is a
graphical variant of a pure applicative language,
and is called Function Graph Language (FGL)
([14], [12]). An FGL program is a "graph
grammar" in which each production rule associates
a programmer-defined node (the antecedent of the
production) with a directed-graph (the consequent
of the production). A well-formed graph is any
arbitrary interconnection of nodes and arcs,
including cycles, with the following properties:

1. The graph, and each node in it, has a
(possibly empty) set of arcs directed into
it, called input arcs, and exactly one arc
directed out of it, called the output arc.

2. Every arc in the graph (except for its input
and output arcs) is directed between two
nodes. An output arc may fan out into two
or more arcs, but merging of arcs into a
single arc is not allowed.

3. Every node has a name which may be either
pre-defined or programmer-defined, i.e., the
antecedent of a graph production.

The nodes in the graph represent operators, and
pre-defined names correspond to primitives of the
underlying machine. An operator is a pure
function whose output is determined solely by its
inputs, and does not have any side-effects. Arcs
represent data paths between operators, the
actual data values being either atomic, e.g.
integer, string, etc., or tuples of arbitrary
function graphs. Atomic data values are created
by 0-ary operators and represent constant
functions. Tuple data values are created by the
operator cons, and can be used to construct
conceptually infinite data structures, as will be
explained.

Figure 1 ill us tr ates a typical graph production
ii)· this language. Our convention is to use
ellipses for primitive operators, and rectangles
for programmer-defined operators. The primiti ire
operators car and cdr select the first artd last
components oT a tuple respectively. The
programmer-defined operator appty-to-all
constructs its output recursively by applying the
function t in its fir,st argument t.o every
component of the infinite seque11ce x in its

second argument. The sequence x can be
constructed using nested pairs, e.g. cons(x 1 ,
consCx2 , cons(.•.))), where x 1 , x2 ... are the
components of x. However, owing to demand-driven
evaluation, only those components of the output
that are demanded are in fact constructed.

Figure 2 presents snapshots during the evaluation
of the operator apply-to-all when the fir st
component of the output is demanded by a car. We
indicate the presence of a demand using an
asterisk and, for sake of brevity, we denote a
sequence created by cons using angle brackets.

apply-to-all

f x

Figure 1: FGL program for stream
processing

Demand-driven evaluation
TI1e execution of any operator is initiated by a
demand on its output arc, and its completion
causes the computed result to be returned to the
source of demand. A demand on the output arc of
the graph initiates all evaluation. Demands
propagate along arcs in the graph when arguments
to operators are evaluated. Propagation of a
demand along some arc terminates when it reaches
a 0-ary operator, e.g. an integer, or the tuple
creating operator cons. A data value (a
reference to the tuple in the case of cons) is
then returned to the demanding node, which in
turn propagates its computed value back. The
evaluation of the graph is complete when the
result at the output node is finally computed.

An important feature of the evaluator is its
ability to exploit asynchronous and concurrent
evaluation of all independent operators. Two
operators are independent if the result computed
by one is not needed, either directly or
indirectly, as an input of the other. For
example, in figure 1, the operators car and cdr
are independent; however, apply and car are not.
Independent operators are the only source of all
concurrency in this model, which occurs due to
operators having multiple input arguments.
Asynchronous evaluation allows independent
operators to execute at their own speed without
any centralized timing constraint. Thus, the
propagation of demands, computation of values,
and propagation of values can all proceed
concurrently in different parts of the graph.

Types of operators
Primitive operators are evaluated in one of two
ways: In the case of strict operators, e.g. add,
all arguments are demanded concurrently, and the
operator is applied only after all arguments have
completed their evaluation. Non-strict
operators, e.g. cond, do not require all their
arguments to be evaluated in order to compute
their result. Therefore, only some subset of
their arguments is evaluated, possibly in some
fixed order. The result of evaluation of a
primitive operator causes the operator to be
transformed into a 0-ary operator whose function
is the constant function corresponding to the
computed value.

Cons is a notable example of a non-strict
operator that does not evaluate any of its
arguments. Evaluation is done when selector
functions, e.g. car, cdr, etc., are applied to
extract specific components of the tuple. It is
this property of cons that allows conceptually
infinite sequences to be constructed, since the
components of cons could be function graphs that
recursively construct tuples, and are never
evaluated until actually needed [5).

When a programmer-defined operator is demanded,
the corresponding graph is substituted in place
of the operator. A demand is placed on the
output arc of the graph, which in turn initiates
further evaluation. As a consequence, only those
arguments of a programmer-defined operator that
are needed to compute its final result are
evaluated.

In the case of both primitive and
programmer-defined operators, one may assume that
after an operator has notified all sources of
demand the availability of its result, it is
deleted from the graph (a) Thus, the computation
may be visualized as a dynamically expanding and
shrinking graph.

Evaluation of shared subgraphs
One of the properties of an FGL graph is that it
may have shared subgraphs, since the output arc
of some operator in the graph may fan out into
two or more arcs. Shared subgraphs correspond to
common subexpressions, since the result of their
evaluation may be used as the input of more than
one operator. Sharing of some external graph
implicitly occurs when the input arc of a graph
fans out into two or more arcs. When two
independent operators share a common subgraph, it
is possible for both of them to demand the shared
subgraph concurrently. In general, it is
possible for the output node of a shared subgraph
to be demanded concurrently along all its
(fanned) output arcs.

The synchronization needed here is a trivial case

(a) In practice, however, storage will be
deleted only in units of entire function graphs.

120

of the synchronization needed when a shared
resource is accessed: concurrent or multiple
demands on a shared node are treated by
propagating only the first demand that arrives at
the node, thereby avoiding re-evaluation of the
common subexpression; the result of evaluation is
then returned to all sources of demand.

Further details of the features of the language
and the demand-driven evaluator may be obtained
from [14]. A loosely-coupled architecture, with
FGL as its machine language, is described
therein. Other features of the language and some
details of an implementation are al so discussed.

OPERATORS FOR RESOURCE CONTROL

A resource is accessed by applying an access
operator to a pair of arguments: the first being
the resource itself, and the second, a tuple
consisting of all arguments needed to perform the
actual operation. If the actual operation
requires no arguments, then the resource will be
the only argument to the access operator. Unlike
operators discussed thus far, which are purely
applicative, access operators could result in
side effects. As a consequence, the behavior of
a resource could be history sensitive.

Figure 3a illustrates a typical use of
resources~b). The programmer-defined operator
filesystem represents an abstract file system for
sequential files that is accessed by the set of
operators, openfile, readnext, endoffile,
closefile and readerr.or, which have the usual
meanings. Side effects are caused by the
operators, openfile, readnext and closefile. For
example, openfile returns nil if it was unable to
open the file; otherwise, it returns a reference
to the file and, as a side effect, actually opens
the file. Consequently, the operator file system
is history sensitive. For example, the result of
a readnext operation depends on whether an
openfile was fir st per formed, and on the number
of readnext operations that preceded it.

Synchronization
As indicated earlier, the synchronization of
concurrent accesses is achieved by queues. These
queues are created inside the resource, and an
access operator is synchronized by enqueueing a
request onto the appropriate queue. We
illustrate the use of the operator enq (defined
below) by defining the access operator openfile
of figure 3a:

(b) The primitive operator seq sequences the
evaluation of its arguments; the
programmer-defined operator compute is not
described here, but is assumed to perform some
computation.

121

~~elect-queueTf for-open file
actual-openfile

operation

res- args
ource

res
ource

args

Figure 3b: Synchronization of the
operator openfile

When a resource is accessed for the first time,
its scheduler gets demanded and in turn proceeds
to examine its input queues. The scheduler is
essentially a··non-terminating iterative program
that controls the order of removal and evaluation
of requests on its input queues. However, the
scheduler may have to wait occasionally, i.e.
when there are no requests to be served. Hence,
operators for waiting and dequeueing are also
provided. We first informally define the
primitive operators for queueing, and then
illustrate their use with examples.

Operators for queueing
In the following definitions, q represents a
queue created using a gqueue, and a is any
operator or FGL expression whose evaluation is to
be synchronized. In all our examples, a will be
the actual access operation to be performed on
the resourc~ ref~rence to a subgraph a is
obtained by cons(a)(c , and is similar to an
unevaluated ex press ion (since cons does not
evaluate its arguments). The evaluation of a is
initiated by taking the car of such a reference.

gqueue()

enq(q, a)

deq(q)

waitq(q)

nonempty(q)

creates an empty, updatable FIFO
queue.

synchronizes the evaluation of a
using q; the result of evaluating a
is the value of enq.

the first
from q; a
value of
demanded).

request,
reference
deq (a

a, is removed
to a is the
is not yet

the demand on waitq is satisfied
and returns T only when q becomes
non-empty.

T if q is non-empty, nil otherwise.

Mutual exclusion on
accessing a particular

all queueing operators
instance of a queue is

(c) In FGL, cons can take an arbitrary number of
arguments, including just a single argument.

assumed. However, the evaluation of a takes
place outside this exclusion, and is under the
control of the dequeueing program. It should be
noted that accesses to different queues can occur
independent of one another. Furthermore, any
waiting that occurs does not block out other
queueing operators from accessing the queue .•

Avoidance of busy waiting
There are three occurrences of waiting in the
above operators:

1. an enq operator waiting for a to be dequeued
and evaluated, before returning its result.

2. a deq operator waiting for a to be enqueued,
before removing a.

3. a waitq operator waiting for a to be
enqueued, before returning T.

In order to avoid busy waiting in the above
cases, we must first detect two conditions to be
true before initiating some action. For example,
the evaluation of a requires that a be both
enqueued as well as dequeued. In terms of
demands, this suggests the need to wait for two
demands before evaluating an operator. We
therefore introduce a special operator for this
purpose:

djoin(cr) evaluates er only after two demands
are received.

Figures 4, 5 and 6 present snapshots of the
important transitions that occur when a queue is
accessed by the queueing operators. As before,
asterisks indicate the presence of a demand. It
should be remembered that the operator cons does
not evaluate its arguments until demanded by
selector operators, which in this case are car
and cdr. Al so, the queue created by the operator
gqueue is updatable, and hence is referenced.

Scheduling
Scheduling involves two main tasks: waiting for
some subset of queues, based upon some condition,
to become non-empty, and selecting one such
non-empty queue for dequeueing, followed by
evaluation. The types of information that are
referred to in these conditions determine the
flexibility of scheduling that is achieved. A
partial list [2] of these types is the
following: the type of access operator, its
relative order of arrival, the actual arguments
needed for the operation, the state of
synchronization, the state of the resource, .and
the history of accesses on the resource. The
operators introduced here, however, are mainly
for evaluation control. We first give informal
definitions of their behavior, followed by
examples of their use.

seq(a 1, ••• ,an)
evaluates a 1, ••• ,an sequentially; returns
the result of evaluating an.

par(a 1, ••• ,an)
evaluates a 1, ••• ,ar concurrently;
the result of eva uating a 1, as

returns
soon as

it is ready.

spar(a 1, ••• ,an)
evaluates a 1, ... ,an concurrently; returns
the result of evaluating an, after all
arguments have been evaluated.

arbit(a 1, a 2)
evaluates a 1 and a 2 concurrently; returns
nil if a? evaluates its result before a 1,
else T; 1 .e. arbit favors a 1 in case of a
tie.

The operators seq and spar are strict since they
require all their arguments to be evaluated
before returning their result; however, the
operators par and arbit are not. The operator
arbit is indeterminate, since its result depends
on the relative speed of evaluation of its
arguments. Except for the indeterminacy
associated with arbit. these four operators are
similar to all other operators of the base
language in that they do not require any
extension of the demand evaluation semantics we
have described here.

An example: mutual exclusion of two acceses
We illustrate use of the queueing operators and
operators for evaluation control by constructing
a resource scheduler for a simple problem: mutual
exclusion of two types of concurrent accesses.
Figure 7 shows a .scheduler mutex that enforces
mutual exclusion in the evaluation of requests on
its two input queues p and q. The
programmer-defined operator mutex is essentially
a non-terminating iterative prf~ram, although
recursion is used to achieve this •

Figure 7: Mutual exclusion of two
accesses

The operator seq first demands cond which in turn
causes the arbit to be demanded. Arbit then

,demands the waitq operators on its two inputs.
As soon as an access is enqueued on to one of the

(d)This form of "tail" recursion can easily be
detected, and hence the the storage for each
recursive invocation may be deleted as soon as it
has been completed.

122

queues, the corresponding wai tq will return T to
arbit. In case both queues are non-empty at the
same time, there will be a "race" between the two
waitqs in notifying arbit of their results.

Arbit will return T if its left input was
selected, and nil otherwise. Depending on
whether arbit returned Tor nil, cond will demand
its second or third input argument respectively.
This causes the selected queue to be dequeued,
followed by evaluation of the access operator.
Upon completion, the result of evaluation will be
notified to cond, which in turn returns the
result to seq; This causes the second argument
of seq to be demanded, thereby starting another
iteration.

Since each iteration evaluates only one access
operator, mutual exclusion among the access
operators is guaranteed. However, owing to the
possibility of a race condition, it is possible
for a particular queue to be ignored
indefinitely. Hence the above scheduler does not
guarantee fairness in serving its input queues.
Fairness can be guaranteed by a simple extension
to the above scheduler, i.e., by testing the
non-emptiness of each queue in strict
alternation, using the operator nonempty and
serving a request on a queue if it is non-empty.

Before concluding this section, we present a
rough sketch of how the queues and the scheduler
are encapsulated inside a resource, and how
access operators are synchronized by them.
Figure 8 presents snapshots of some possible
sequence of transitions during the operation of a
resource that uses the scheduler mutex.

EXAMPLES OF RESOURCE CONTROL IN TEXTUAL FGL - --
The need for a textual representation is
motivated by the fact that although graphs are
useful during initial program development, and
are suitable for representing concurrency, they
could lead to awkward program structures. This
is because every data dependency has to be
explicitly indicated by an arc, thereby
complicating the physical layout of such graphs.
On the other hand, if one were to name input arcs
of a graph and any shared subgraphs within it,
these data dependencies can be expressed simply
by referring to these names.

The correspondence between a graph and its
textual equivalent is quite straightforward,
hence we will not discuss the translation in
detail. In order to illustrate this
correspondence, we define the operator mutex in
the textual language (see figure 9).

The precise syntax of the language is defined in
[15), along with examples of their use.

However, we will explain the special features of
the language as and when we introduce them. In
this regard, the reader may note that the serial
composition of unary functions, e.g. f(g(10}),
may be written without parentheses, i.e., as f g
10. We use the keyword, function, when a

mathematical function is being defined;
otherwise, we use the keyword, procedure.

procedure mutex (p, q)
begin seq(if arbit(waitq p, waitq q)

then car deq p

end

else car deq q,
mutex(p,q))

Figure 9: The operator mutex,
in textual FGL

An important feature of the textual language is
the ability to name any expression, using the let
clause, and to refer to these names. Whena
graph has no shared subgraphs, e.g. the graph of
figure 1, the textual equivalent will require no
additional names, apart from those required for
the input arcs of the graph. Even in such cases
where graphs do not have any shared subgraphs,
naming common subexpressions can be a useful
abbreviation, besides avoiding unnecessary
computation.

A simple version of the Readers and Writers
prObI'eiil
Figure 10 shows a scheduler for a simple version
of the Readers and Writers problem [3], in which
neither fairness nor any fixed priority is
enforced. The only control enforced is the
mutual exclusion of readers from writers, and the
exclusion of a writer from all other readers and
writers. Thus, readers are allowed to execute
concurrently with one another.

procedure readwrite1(wq, rq, rr)
let removeread be deq rq,

read be car removeread,
begin if arbit(waitq wq, waitq rq)

then comment service writer;
seq(rr,

end

car deq wq,
readwrite1(wq, rq, nil))

else comment service reader;
seq(removeread,

spar(read,
readwrite1(wq, rq, spar(read, rr))))

Figure 10: The readers and writers problem:
a simple version

The scheduler readwrite1 has two queues rq and wq
for read and write accesses respectively. The
input argument rr maintains the set of running
readers, as will be described, and is nil at the
outermost call.

When the queue for writers is selected by arbit,
a write access is evaluated after ensuring all
running readers have completed their evaluation.
When the queue for readers is selected, the seq
(line 10 of the program) first dequeues a read
access without evaluating it, then causes spar
(line 11 of the program) to evaluate the dequeued
read access concurrently with the next iteration
of readwri te 1. Thus, as long as the queue for
readers is being selected on consecutive
iterations, all read accesses will be evaluated

123

concurrently.

The set of running readers, i.e. the set of
concurrently executing read accesses, is
main t:iined by the input argument rr and is
constructed recursively when consecutive read
accesses are evaluated. Since the input
arguments of a programmer-defined operator, in
this case the operator readwrite1, are not
evaluated until demanded, the input argument rr
and hence the chain of spars, is evaluated only
when demcinded explicitly (by seq in line 6 of the
program). This ensures that all running readers
have completed when a writer is about to start.

As indicated earlier, this version of the Readers
and ilriters problem guarantees neither fairness
nor any fixed priority in evaluating read and
write accesses.

The Readers and Writers problem with 'write'
Priority
Suppose thcit in addition to the exclusion
constraints of the simple version of this
problem, it is required to give a waiting writer
priority over waiting readers. Figure 11 shows
the resource scheduler that achieves the desired
scheduling requirements.

procedure readwrite2(wq, rq, rr)
let write be seq(rr,

car deq wq,
readwrite2(wq, rq, nil)),

removeread be deq rq,
read be car--removeread

begin if nonempty wq

end

then comment service writer;
write

else if arbit(waitq wq, waitq rq)
then comment service writer;

write
else comment service reader;

seq(removeread,
spar (recid,

readwrite2(wq, rq, spar(read, rr))))

Figure 11: The readers and writers problem:
writers priority

The basic idea is to examine the queue for
writers at the start of each new iteration. If
there is a waiting writer it will be allowed to
execute after ensuring all running readers that
have been previously scheduled have completed.
Thus, as long as the queue for writers is
non-empty, writers will have priority over
readers. When the queue for writers becomes
empty, waiting readers are allowed to execute
concurrently with one another, and will continue
to do so until the queue for writers becomes
non-empty(e) .

(e) It should be remembered that the operator
nonempty, unlike waitq, does not result in any
waiting, but merely returns the current status of
the queue.

In the transient situation when both queues are
empty, and become non-empty simultaneously, a
reader may be selected in preference over a
writer. If this situation occurs infinitely
often, to consider the worst case, then readers
and writers will be served in alternation.

We finally present a skeletal description of a
resource database that uses the above scheduler,
in order to illustrate the overall structure of
the typical resource in textual FGL (see figure
12). The dots in the program indicate the
absence of details. The where clause allows the
nesting of functions and procedures, and is
similar to the block-structure of conventional
languages. However, the scope of a name does not
extend by default over all nested functions and
procedures, but must be explicitly imported.

resource database()
let actualdatabase be
access procedure write ..•
~--procedure read ...
scheduler dbmanager()

end

queues write: wq,
--- read: rq
begin readwrite2(wq, rq, nil)
where procedure readwrite2(wq, rq, rr)

end

Figure 12: Skeletal structure of a resource

RELATED WORK

The main thrust of previous work in data-flow
models (both data- and demand-driven) has been on
determinate and so-called "value-oriented"
com put at ions. Efforts at hand 1 ing indeterminate
behavior and the problems of resource control
have been few.

We summarize some aspects of related work:

124

1. Dataflow Monitors [1] are closely related
to our approach. Their scheduling and
arbitration of requests is also explicit and
user-programmable, but the underlying
computational model is data-driven. Since
the transfer of data between operators is
the only means of initiating any computation
in a data-driven model, two types of
operators entry and exit are used for
indeterminately merging all input requests
to a resource and . for returning the results
back to the requesting source(T). For the
same reason, data signals, such as
readenable and readdone for a read
operation, are needed within the scheduler

(f) In our approach, a single operator gqueue
performs both the entry and exit functions. The
external demand to access the resource
corresponds to the entry, and the return of the
result by the resource corresponds to the exit.

for signalling the start and termination of
an operation.

2. The work of Friedman and Wise on Applicative
Multiprogramming is also related [6]. An
indeterminate constructor frons is used for
constructing a multi set, the order of whose
elements is determined only upon access.
However, the synchronization of concurrent
accesses and resource scheduling are not
handled at the level where frons is used.

3. Serializers [8] have some similarities with
our approach. A Serializer is a high-level
synchronization construct that has been
developed in an Actor message-passing model
of computation. Serializers do not require
the aforementioned "bracketing" operations,
and hence provide good modularity. However,
there is a fixed underlying arbitration and
scheduling discipline, which is perhaps less
flexible than desirable.

4. Sentinels [13) come closest to our approach
to sync hr on i zation and resource scheduling,
al though the concept has been developed in
an Algol-like language, extended with some
tasking facilities. A Sentinel is a
sequential process that controls the order
of evaluation of requests on its input
queues. The arbitration and scheduling of
requests in a Sentinel is also explicit and
user-programmable. In comparison, our
scheduler may be thought of as a Sentinel
that controls the order of evaluation of FGL
expressions.

CONCLUSIONS AND FUTURE WORK ---------
We have presented an approach to resource control
that has been influenced strongly by a
demand-driven model of resource usage and an
applicative style of programming. We have shown
that some problems of resource control, such as
the avoidance of busy waiting and scheduling, are
solved in a more elegant manner under demand
evaluation than in conventional models of
evaluation. Furthermore, the clarity of our
examples indicates that a demand-driven model of
execution is well-suited to conceptualizing
resources and their control.

The .operators introduced here for synchronization
and scheduling are representative of a class of
machine primitives for resource control in
applicative languages, and are not meant to be
exhaustive. Al though many standard problems in
synchronization can be solved quite elegantly
using our primitives, in general the adequacy of
our primitives from the standpoint of efficiency
and convenience of use might be subject to
question.

Heretofore, the applicative style of programming
has not been explored as a vehicle for resource
control in depth. Al though we have introduced
indeterminate and side-effect operators for
arbi tr at ion and queueing, the applicative style

125

actually aids well-structured
operators, since the order of
arglHDents to a function is the
achieving any form of "control."

use of these
evaluation of
only means of

In order to enhance reliability and
well-structured use of these primitives, we are
al so developing an expression-based language, in
the sense of Path Expressions [7], for
specifying the behavior of our scheduler [10).
We envisage that resource scheduling in FGL will
eventually be programmed using such expressions,
and a compiler will automatically translate them
into the primitives described in this paper. For
example, the expression,

(p + q)*
specifies that the scheduler
arbitrary sequence of p's
translation of this expression
mutex, described earlier.

may serve any
and q's. The
is the scheduler,

The main advan.tages of such an expression-based
language for specifying resource control in FGL
are a) the specifications are concise, elegant
and the notation makes good stylistic sense, b)
the semantics of such expressions can be
formalized in terms of FGL graphs, and c) the
structure of the translated programs closely
preserve the structure of the defining
expressions, hence the correctness of the
translation may be demonstrated more easily. The
main disadvantages are a) it is possible to write
ambiguous specifications, and b) additional
notation seems necessary for specifying fairness
criteria and exclusion/priority constraints based
on parameters to operations. Thus, their
expressive power is short of being complete.

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

Arvind, K.P. Gostelow, and W. Plouffe.
Dataflow Monitors. In Proc. of the Sixth
ACM Symposium on Operating Systems
Principles, (1977), pp. 159-169.
T. Bloom. Evaluating Synchronization
Mechanisms. In Proc. of the Seventh ACM
Symposium on Operating Systems Principles,
(1979), pp. 24-32.
E.J. Courtois, F. Heymans, and D.L. Parnas.
Concurrent Control with readers and writers.
Communications of the ACM ~. 10 (October
1971), 667-668.
J.B. Dennis. First version of a data-flow
procedure language. Lecture Notes In
Computer Science, New York, (1974), pp.
362-376.
D. P. Friedman and D.S. Wise.
not evaluate its arguments.
Languages, and Programming,
(1976), pp. 257-284.

Cons should
Automata,

Edinburgh,

D.P. Friedman and D.S. Wise. An
Indeterminate Constructor for Applicative
Programming. In Proc. of the Seventh Annual
Symposium on Principles of Programming
Languages, (1980), pp. 245-250.

[7] A.N. Habermann and R.H. Campbell. The
Specification of Process Synchronization by
Path Expressions. Lecture Notes in Computer
Science, (1974), pp. 89-102.

Ul] C.E. Hewitt and R.R. Atkinson.
Specification and Proof Techniques for
Serializers. IEEE Transactions on Software
Engineering SE-2_, 1 (January 1979);" 10-23.

[9] C.A.R. Hoare. Monitors: an Operating System
Structuring Concept. Communications of the
ACM 11.• 10 (October 1974), 549-557.

[10] B. Jayaraman. Resource control in a
Demand-driven Data-flow Model. Ph.D.
Dissertation proposal. Department of
Computer Science, University of Utah.(June,
1980).

f I {xi ,(x2, (- . :)})

[11] R.M. Karp and R.E. Miller. Properties of a
11odel for Parallel Computation: Determinacy,
Termination, and Queueing. SIAM Journal of
Applied Mathematics 14 (November 1966"");"
1390-1411.

[12] R.M. Keller. Semantics of parallel program
graphs. UUCS-77-110, University of Utah,
(July, 1977).

[13] R.M. Keller. Sentinels: a Concept for
Multiprocess Coordination. UUCS-78-104,
University of Utah, (June, 1978).

[14] R.11. Keller, G. Lindstrom, and S.S. Patil.
A loosely-coupled Applicative
Multiprocessing System. AFIPS Proc.,
(1979).

[15] R. M. Keller, B. Jayaraman, G. Lindstrom,
J.B. Marti, A. K. Nori, and D. Rose. FGL
Programmers' Guide. Unpublished
manuscript.(March, 1980).

Figure 2: Snapshot evaluation of apply-to-all

proeessfile c::::C>-

Fi<]ure 3a: FGL PrQIJrain for seq\141ntial file processi119

126

queue

Figure 4: Enqueueing two accesses to an empty queue

/"'."'" ,
I \

I
I
I

I : :
', <§::)-,~----'

.... _ -~

Figure 5: Dequeueing a non-empty queue Fiqure 6: Dequeueinq a non-empty queue, followed by evaluation

p and q are
evaluated when dequeued

by mutex

Figure. 8: overview of a resource operation

127

POSTER SESSION

129

HIGH-LEVEL OPERATING SYSTEM FORMATION IN
NETWORK COMPUTERS

Andre M. van Tilborg and Larry D. Wittie
Dept. of Computer Science

State University of New York at Buffalo
Amherst, New York 14226

A network computer is an MIMD computer built
from an interconnected collection of independent~
asynchronously executing, and loosely couplea
processing nodes. Each node consists of at least
one CPU attached to a local RAM. The memory of
one node is not directly accessible by any other
node. An example of such a machine is described in
[2].

To control such networks, we have proposed
[1] a high-level operating system schema
structured as in Fig. 1 as a framework for
implementing distributed control techniques. The
hierarchical structure can be formed in networks
with entirely different physical connection
topologies. Each blackened circle represents a
node. The links indicate management paths; they
do not necessarily represent direct physical
connections between nodes. The nodes at level-0
(workers) are available for user tasks. Those at
higher levels (managers) are responsible for
maintainin~ the integrity of the local
communications subnetwork and for performing
resource allocation in ever larger subregions.
Although the exact number will vary, each manager
node can probably directly handle about 10 to 20
subnodes. To avoid processing bottlenecks, higher
level managers use more condensed summaries of
allocation information than do lower level
managers.

Fig. 1

Since the control schema outlined above is
meant to be implemented in arbitrary, and
possibly even dynamically changing, network
computer topologies, an automatic procedure for
creating hierarchies with close to minimal delays
between linked nodes is desirable. The "FOCUS of
activity" initialization technique introduced in
this paper partitions a network computer into
layers of processor clusters consisting of
managers and their subnodes. To form a management
hierarchy, all meaningful activity is initiated
by and surrounds a single node, the FOCUS. To
approximate heavy message load conditions, all
processors send meaningless local messages when
thef are not p~rticipating in FOCUS-initiated
activity. The FOCUS is not fixed in one location
but rather progresses through the network
trailing a chain of inter-foci pointers that are
used in later phases of the initialization.

The control hierarchy is built up from the
leaves. To produce a hierarchy of L levels, there
are L-1 separate but almost iaentical phases to
the initialization. Each phase selects the next
higher level of managers until at last a top
level (oligarchy) is formed. The technique
assumes that the lowest level communications
kernel that passes messages between physically
connected (neighboring) nodes already exists in
each node before hierarchy initialization begins.
One arbitrarily selected node is known as the

2

0

131

CH1569-3/80/0000-0131$00.75 ~ 1980 IEEE

SOURCE. During phase 1 it is both the first and
last FOCUS. It is also the last node to be active
during each phase.

The objective of the procedure is to assign
N subnodes per manager at each level of a tree
with the constraint that each path from a level-~
mana~er to its subnodes be shorter than RsubJ
physical links. Rsubj is computed from Rsub1 and
N. N is supplied as a parameter; Rsub1 may either
be supplied or estimated from N.

The following labeled steps and
cross-referenced example describe the FOCUS of
activity technique in detail:

A. The SOURCE broadcasts a messa~e telling all
nodes to obtain the identifiers of their
physicallY. connected neighbors and to start
sending aummy messages to provide communicationa
background activHy. The SOURCE becomes the f:i.rst
FOCUS for phase j=1.
B. The FOCUS sends limited (by Rsubj) broaduast
"connect" messages to its neighbors in
level-(j-1).
C. Other nodes less than Rsubj links away send
"reply" messages back to the FOCUS if they are
not yet managers in phase j nor subnodes in any
other phase.
D. The FOCUS stores paths to the first N or fewer
nodes which reply before a timeout interval
expires.
E. If zero nodes reply, the previous FOCUS must
select a new FOCUS at step K.
F. Otherwise, the FOCUS accepts each of the N or
fewer replying nodes into a new cluster and sends
each a list of the identifiers of all the others.
G. Each accepted subnode sends the FOCUS a list
of its "connections" outside the cluster. In
phase 1 all the physical connections are used; in
phase j>1 only the forward and backward pointers
to foci in phase j-1 are used.
H. The FOCUS and the worker "nearest" each
subnode (in a message-delay sense) in the new
cluster send one message to every other node in
the cluster. Each worker sends the sum of the
reply delay times to the FOCUS.
I. If the FOCUS has the least delay sum it
becomes manager for the cluster. Otherwise the
worker with the least sum becomes both FOCUS and
manager and receives all the information about
the cluster from the previous FOCUS. In phase 1 a
deposed FOCUS becomes a subnode of the new FOCUS;
in later phases it again becomes a subnode of its
previous level-1 manager.
J. The FOCUS lists as possible next temporary
foci all the nodes physically connected
externally to the cluster with the less
frequently connected (i.e. farfhest) ones first.
K. To spread groups far apart the FOCUS finds
the first (farthest) potential temporary FOCUS
which is not yet a subnode nor a manager in this
phase (j) by polling all the connected nodes. In
phase 1 the temporary FOCUS is a worker. In other
phases the temporary FOCUS selects a worker from
its subtree. The old FOCUS stores the identifier
of the worker. The worker becomes the next FOCUS
at step B. If no temporary FOCUS is left, then
the FOCUS for the previously formed clus~er in
this phase must select the next FOCUS at step J.
If there is no previous FOCUS in this phase then
phase J is complete and step L is performed.
L. A FOCUS for a new phase j+1 must be selected
by ·the SOURCE if more than 2N managers were
chosen in phase .i. Starting with the SOURCE, the
subnodes of old foci are searched until a worker
is found. The worker becomes the first FOCUS of
the new phase j+1 at step B.
M. Otherwise the 2N or fewer managers in the
phase j FOCUS chain exchange identifiers and use
limited broadcasts to find short paths to each
other. They form the oligarchy of the hierarchy.
N. The SOURCE broadcasts a message to all nodes
~elling them to stop sending dummy messages.

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

•s 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2
Figure 2 shows a 4-neighbor mesh network

with the SOURCE positioned at point S. For
readability the communications links which attach
each node (0) to its 4 nearest neighbors are not
drawn. Hierarchy formation begins phase 1 with
the SOURCE as the first FOCUS. In phase 1 the
FOCUS tries to form clusters of N=9 level-0 nodes
close to itself by sending limited extent
(Rsub1=3) broadcast connect messages (steps A&B).
Level-0 nodes which receive the broadcast and are
not yet subnodes of any manager respond . to the
FOCUS (C). In general, during phase j,
level-(j-1) nodes wliich are not subnodes of any
manager respond. The cluster of 9 nodes
surrounding the SOURCE was formed first by the
procedure tD).

Once a cluster is formed, the nodes
in that cluster determine among themselves
which one can communicate best with all
the others (E-I). In phase 1 all of the
level-0 nodes exchange messages and pass
the total delar times to the FOCUS. In
phases j>1 the evel-(j-1) managers in the Fig. 3
new cluster all tell the "nearest" level-0

chain. All worker nodes are assigned the same
number as their manager. Level-1 clusters are
enclosed by straight boundaries; level-2 clusters
by curved boundaries. A 729 node mesh is small
enoufh that the edres have an undue influence on
leve -2 clusters or many combinations of input
~arameters. Still, the clusters produced by the
echnique are generally quite compact.

The FOCUS of activity hierarchy formation
technique has both good and bad characteristics.
One strong point is that the technique does not
need to oe told anything about the §lobal
topology of the network to produce good"
hierarchies. In experiments with mesh networks it
has consistently been able to form hierarchies
with average link utilizations and path densities
only slightly hi~her than minimal.

Another nice feature is that clusters of
nodes can be made as "tight" as desired. Since
the nodes in a cluster will tend to communicate
often with each other during the solution of
multiple task-multiple node problems, it is
important that message delays between them be
short. Based on the experiments it appears that
com~act clusters with about N members can be
achieved consistently.

Finally 1 the FOCUS technique does not
generate oscillations in hierarchy structure nor
does it depend on race conditions. Although the
technique will not produce the same structure
repeatedly in a given network the hierarchies
will all have almost identical characteristics.
Since oscillations are guaranteed not to occur
the technique produces a control structure in a
short time even for a large network. The FOCUS
technique can be regarded as an algorithm for
producing hierarchies in network computers.

The technique also has some undesirable
features. First, it produces a hierarchy more
slowly than parallel techniques we have
discovered. Second, all clusters do not
necessarily wind up with the same number of
nodes. Extra clusters and even levels of
hierarchy may be formed. Lastly, there is no war
to predict nor control exactly which nodes wil
cluster together. In certain situations it might
be desirable to specify some cluster connections
in advance.

node to do this. In this way only worker ' ' ' • s ' 1 " '

nodes can become level-j managers and the """"---"""
12 13 14 15 16 17 18 19 20 11 22 2) 24 25 26 27

already formed lower levels of the
hierarchy are undisturbed. Thus, a
well-situated worker node becomes the
FOCUS and manager of a new cluster.

The node which was the FOCUS around
which the cluster was formed is only a
temporary FOCUS because all record that it
was ever the FOCUS is discarded. A chain
of forward and backward pointers connects
all of the "true"l i.e. non-temporary,
foci in the order n which ther became
managers. Since the chain is acyc ic there
must always be at least one pointer to a
level-(j-1) FOCUS outside of a newly
formed cluster. The new manager forms a
list of all such external connections. In
phase·1 the list consists merely of direct
physical connections outside the cluster.

To find the next FOCUS in phase jl
the current FOCUS scans the list or
external connections (J). If one of those
nodes is not yet a member of any level-j
cluster, then it is given the . task of
choosing a nearby worker to be the next
FOCUS of phase j. In phase 1 the
level-(j-1) node is already a worker. When
the FOCUS can find no more candidate foci
the previous FOCUS in the chain assumes
the search for the next FOCUS (K). The
phase finishes when all previous foci
cannot find an uninitialized node to be
the next FOCUS. Since the foci form a
tree, the FOCUS will be back at the SOURCE
then and the next phase, if needed, can
start (L-N).

Figure 3 shows an actual hierarchy formed by
the technique during simulations with a network
of 27**2 nodes. Each node is marked by a three
digit cluster number to which it belongs. Level-1
managers are circled. The number assigned to a
manager represents its position in the FOCUS

132

[1] L.D. Wittie and A. van Tilborg, "Control
Hierarchies for Arbitrarily Connected
Microcomputer Networks", SUNY/Buffalo Canputer
Science Dept. Tech. Rep. 126, (May 1977), 37PP•

[2] L.D. Wittie! "MICRONET: A Reconfigurable
Network for D stributed Systems Research",
Simulation, (Nov. 1978), pp. 145-153.

DESIGN OPTIMIZATION FOR A SPECIAL-PURPOSE MULTIPLE-COMPUTER*

C. F. Summer
Naval Training Equipment Center, Orlando, FL

and

R. 0, Pettus, R. 0. Bonnell, M. N. Huhns, and L. M. Stephens
University of South Carolina, Columbia, SC

SUMMARY

The design and performance analysis of the
architecture of a special-purpose multiprocessor
is presented. The architecture is a hierarchi
cally structured and functionally distributed
type. Its operating system is a multilevel
structure implemented in an optimal combination
of hardware, firmware, and software. This archi
tecture is suited to any application, such as
process control or real-time system simulation,
in which the basic computational tasks are dedi
cated and do not change in time.

Each processor has a dedicated memory space
in which program tasks are stored. In addition,
there is a system bus to a global memory which is
used primarily for communication among the pro
cessors. To minimize contention for this system
bus, selected areas of global memory are dupli
cated at each processor. This allows the proces
sor to obtain needed information by using a local
bus rather than the global, system bus. All
write operations to the shared memory are global
and the information is duplicated at processors
having shared memory at that address. Read

Control Application
Processor Processor

No. 1

Bus
l'\rbi tration Sha red t1emor:y_ Bus

'--

Module

I
Control Bus

I
I
I
I

operations then become primarily local and can
occur in parallel.

Control functions are distributed among the
processors; the scheduling and execution of con
trol and application tasks are governed at each
processor level by a local, real-time executive.
This executive is implemented primarily in firm
ware to minimize overhead. However, the control
structure is designed to be independent of imple
mentation so that a variety of processors can be
utilized together. Moreover, it is possible to
add to each processor an additional subprocessor
which implements the executive in hardware.

A block diagram of the system is shown in
Figure l. Each processor has its own local
memory and I/0 interfaces as required. In addi
tion, each processor has access to a global shared
memory. Access to the shared-memory bus is con
trolled by a bus arbitration module which imple
ments a multiple-priority, daisy-chained struc
ture. Arbitration is overlapped to provide maxi
mum bus utilization. The control processor
occupies the position nearest the arbitration
module, giving it the highest priority at each

- -1

Application Processor No. ti

Control
Bus

Interface

Local
Memory

Processor

ache t1emor
nd Shared
Memory

Interface
L ___ _ _ ___ _J

Shared
Memory

Figure l. System Block Diagram

*This work was performed for the Naval Training
Equipment Center, Orlando, FL, under contracts
N61339-78-C-0157 and N61339-79-C-0096.

133

US Government work not protected by as Copyright

level. Each processor has a control port which
is accessed by the control bus. No arbitration
is required for this bus as only the control
processor may act as the bus master.

The key to successful operation of a multi
ple-instruction-stream, multiple-data-stream
(MIMD) computer is effective communications among
the processors. As discussed previously and
shown in Figure 1, there are two system buses-
one for communicating data and the other for
communicating control information--which are
common to all of the processors. The most criti
cal system resources are these global buses which,
by being shared by all of the processors, become
the limiting factor in the overall performance of
this multiple-computer system. It is thus crucial
that the design and utilization of these buses be
optimized.

The architecture of the entire system can be
designed to minimize bus usage. Most of the sys
tem control functions are distributed among the
processors and are handled by the local executive.
Also. because the programs to be executed are
fixed, each processor is assigned its function in
advance. Hence, although one processor is desig
nated as a control processor, it needs to communi
cate only a minimum of control information during
normal system operation. This control informa
tion is transmitted on the control bus so as not
to interrupt the data flow on the other bus.

One way for processors to communicate is by
writing messages and results into a shared memory
where other processors can access this informa
tion. For the MIMD system described herein, all
of the system memory is distributed among the
processors. Part of the memory for each proces
sor is local and can be accessed only by that
processor. This allows most run-time memo~y oper-
ations to be local, thereby avoiding contention
for the global buses. The rest of a processor's
memory is global and available to all processors
for memory-write operations. This global portion
is designed in a dual-port configuration so that
it can be read locally while being written glob
ally. Also, all processors can read in parallel
without any possibilities for contention or dead
lock. By removing all global read operations
from the bus, the bus traffic is reduced by much
more than ha 1 f.

As an example of this reduction, if a param
eter calculated by one processor is needed by
four other processors, a simple shared memory
would handle this transfer in five cycles (one to
write and four to read). With the shared memory
duplicated at each processor, only one cycle is
required to simultaneously write the parameter to
all processors which need it. The destinations
for a parameter are determined by its location in
the memory address space. The read operations
then occur locally and independently.

An additional architectural feature which
maximizes the bandwidth of the global data bus is
synchronous operation. This reduces the overhead

134

associated with each data transfer and allows most
data transfers to be scheduled.

The utilization of the bus can be further
minimized because the system is to be used for a
single dedicated application. The program for
this application will be partitioned into tasks
and assigned to processors for execution in a way
that minimizes the interprocessor communications.
Also, the communications can be scheduled in ad
vance to minimize idle period for the bus and wait
periods for processors, both of which add to com
munications overhead. Neither of thes optimiza
tions are readily available in a general-purpose
MIMD system.

For the multiple-computer system presented in
this paper, a cycle is the time allowed to com
plete a write plus a read on the global shared
memory bus:---During ea.ci;-cycle, a set of calcula
tions is also performed by the individual proces
sors. The physical sampling period which con
sists of several cycles is a function of the sig
nificant highest natural frequency of the system
being simulated. The sampling period is estab
lished by the control processor for all applica
tions processors. Because the total computation
is performed by a repetitive sequence of cycles,
the speed-up ratio which is a system efficiency
measure is based on only one cycle.

Consider a muitipie-computer system which has
n individual processors and a total computation
load of M tasks where a task is a self-contained
portion of this load. The average computation
time for one task is denoted by TA. The average
time for data exchange on the shared-memory bus
per task with only global shared memory is de
noted by T . The average time for data exchange
on the sha~ed-memory bus per task with both local
and global shared memory, Tc'• is given by

Tc' = k Tc
where k is the local shared memory factor (O<k<l).
A lower bound fork is l/(n -1). -

The average processor utilization for compu
tation, a, is given by

TA
a= T (O<a<l)

M -
where TM= the maximum time allowed for computa
tion. Given the above parameters TA, Tc'• n, M,
and a the speed-up ratio for the multiple-computer
system without distributed control, aa, is given cy

MTA
a-==-.....,-=.,.......,,_...,,....-
d To+MTc+~T

na A
where To = duration of control phase. The speed
up ratio for the multiple-computer system with
distributed control and with local shared memory
a~ is thus given by

'"

NUMERICAL COMPUTATIONS ON CM*

Peter G. Hibbard and Neil S. Ostlund<al
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

Summary

Experience related to the suitability of multiprocessors

for large scale computations has been mainly limited to

synchronous SIMD machines such as llliac IV, and array

and pipeline processors. Relatively little work has been

performed on asynchronous MIMD machines such as

C.mmp [1], Cm• [2], and S-1 [3]. Algorithmic

dEcompositions which are suitable for such organizations

have been studied by Kung [4] and Baudet [5] , but these

investigations were not concerned with software

Or!1anizational problems of task force management, or with
th•.! effects of different strategies for memory and processor

allocation, or with the effects of different synchronization

techniques on the performance of programs using these

algorithms.

For the past year we have been involved with assessing

the suitability of cm•-like architectures for large-scale

scientific computations, specifically in the area of the

approximate solution of Schrodinger's equation for

molecular systems, and in the area of the statistical

mechanics of liquids. Our current efforts are directed

towards the study of a Monte Carlo simulation of the

properties of liquid water. This problem has a non-trivial

computational complexity and provides an excellent

vehicle for studying memory organization, communication,

synchronization, and other factors which affect the

efficiency of use of a mu!tiprocessor. In addition, such

simulations of liquids have been of great interest in recent

years and the multiprocessor calculations can be

compared directly with extensive related calculation,o; on
conventional processors.

The Metropolis Monte Carlo algorithm [6] obtains the

properties of a macroscopic liquid by averaging over a

large number of random microscopic configurations cf a

collection of individual molecules. A microscopic

configuration is represented by the positions and

orientations of a finite number (N) of molecules contained

in a "central box". The infinite liquid is simulated by having

"mirror image boxes" surround the centrat.;box. A new

configuration is generated from the current configuration

by choosing the next molecule in sequence and moving it

to a random new position and orientation. The total

potential energy E; of the new i-th configuration is then

computed, using an empirical potential energy function, by

summing over the changes in the pair interaction energies

CH1569-3/80/0000-0135$00. 75 (Q'. 1980 IEEE

135

of the moved molecule with the N-1 unmoved molecules.

The new configuration is accepted or rejected according to

a simple decision criterion [6] dependen. on the change in

p1tential energy AE;i in going from the i-th to the j-th

configuration. If AE;i is negative the neN configuration is
ac:cepted; if it is positive then the accephnce probability is

exp{-AEiilkT}, where k is Boltzmann's .:onstant and T is

th1l absolute temperature. If the nev. configuration is
rejected, another configuration is generated from the

current one, and the steps repeatad; the current
configuration is included as a member of the sampled set

af many times as is necessary until a new configuration is

accepted. In this way a sequence of configurations is

gnnerated which sample the appropriate classical
B Jltzmann distribution, i.e.,

configuration probability er exp{-E/kT}

Macroscopic properties are obtained by a simple averaging
over a sequence of 0(106) configurations.

The bottleneck in the serial Metropolis algorithm is the

calculation of intermolecular interactions. For a single

move, the time complexity is O(N) becaJse there are N-1

new interactions with the moved molecule. The

bookkeeping operations of generating the move, acceptin~

or rejecting the move, etc., are constant-time operations

Our initial decomposition scheme, which is almost ce_rtainl)
not the optimum one, uses K processors to evaluate the

N-1 interactions with a moved· molecule. We employ a

master-slave relationship among the processors with the

master processor performing the bookkeeping operations

and the slave processors evaluating the intermolecular

interactions. The algorithm is a synchronized lock-step

algorithm; all slaves complete their current activity before

new activities are assigned by the master. An

asynchronous algorithm would be preferred provided it

could be shown to ·converge to the same Boltzmann

average·asthe present synchronous one. This first attempt

at a parallel Monte Carlo algorithm is pote·ntially capable of

a speedup which is linear in K the number of processors

available. However, to.obtain linear speedup requires that

memory contention and interp1ocess bus contention are

small, and that synchronization and latency costs are

negligible. Initial experiments show that this is far from true

and synchronization appears to be particularily costly.
Developing an asynchronous algorithm, which we are

currently trying to do, is more an ex~rcise in statistical

mechanics than in algorithm development.

Our initial results have been confinec: to a small number

of interacting atoms and do not use the periodic boundary

conditions mentioned above, appropriate to an infinite·

system. As a simple example, 26 atoms and 25 processors

(the master is its own slave) leads to a soeedup of 18-20 for

unoptimized versions of the program. One of the limiting

fa::tors in this sample computation involves having to add

ur• the interaction energies calcuhted on separate

processors. No number of processor~ K can reduce this

O,N) operation to better than 0(/og2N). While the speedup

obtained in this sample calculation appears quite
reasonable, it is somewhat misleading. The present version

of the program uses software double precision floating

point routines. With double precision floating point

hardware, the amount of local computation relative to

global communication would be considerably reduced, and

the speedup that could be obtained would be consider~bly

smaller. One of the problems in using Cm• to investigate

numerical algorithms is the poor floating point performance

of the LSl-11 processors and the consequent need to
extrapolate present results to those for a hypothetical

multiprocessor with a better floating point capability. From

a detailed examination of the Metropolis algorithm,

however. it appears that many of the difficulties with the

present program can be solved, particularily when the

number of molecules N increases relative to the number of

processors K. We are relatively confident that a

multiprocessor architecture such as that of cm• can

provide an efficient solution to Monte Carlo calculations of

the structure of liquids.

The present program is written. in Bliss-11 and runs on

the bare Cm• hardware. It is being converted to run on top

of the Medusa [7] operating system. We are also extending

the current programs to include molecular interactions and

periodic boundary conditions, for a system of 256 water

molecules using all the 50 processors of Cm•.

References

[1] W.A. Wulf and C.G. Bell, "C.mmp - A

Multi-Mini-Processor", Proceedings Qf. the AFIPS 1972 Fall

JQ.i!l1 Computer Confere~. (December, 1972), pp. 765-777

[2] S.H. Fuller, J.K. Ousterhout, L. Raskin, P.1. Rubinfeld,

P.J. Sindhu, and R.J. Swan, "Multi-Microprocessors: An

Overview and Working Example", Proceedings Qf. the~.

(February, 1978), pp. 216-228

[3] T.M. McWilliams, LC. Widdoes, Jr., and L.L. Wood,

Advanced Digital Processor Technology Base

Development for N9.l!Y Applications: ~ ~ Project, Office

of Naval Research Technical Report N00014-77-F-0023,

(September, 1977)

136

[4] H.T. Kung, "Synchronized and Asynchronous

Parallel Algorithms for Multiprocessors", in Algorithms and

Complexity: New Directions and Recent Results, J.F.

Traub, editor, Academic Press, New York, (1976), pp.
153-200

[5] G.M. Baudet, The Design and Analysis Qf Algorithms

f.Q!: Asynchronous Multiprocessors, Ph.D. Thesis,

Department of Computer Science, Carnegie-Mellon
University, (April, 1978)

[6) N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,

A.H. Teller, and E. Teller, "Equation of State Calculations

by Fast Computing Machines", ,,!Q!Jm,fil .Qf Chemical

~.(June, 1953), pp. 1087-1092

[7] J.K. Ousterhout, D.A. Scelza, and P.S. Sindhu,

"Medusa: An Experiment in Distributed Operating System

Structure", Communications .Qf 1b.e. ACM (March, 1980), pp.

92-105

Cal Permanent Address: Department of Chemistry,

U 1iversity of Arkansas, Fayetteville, AR 72701.

AN ORGANIZATION OF A THREE-DIMENSIONAL ACCESS MEMORY

H. Shirakawa and T. Kumagai
Dept. of Information Science

Utsunomiya University
Utsunomiya, JAPAN 321

SUMMARY

Multidimensional access memory was proposed by
[l]. In this paper a three-dimensional access
method will be discussed in detail.

Consider the array given by.w(i,j,k) i,j E S\i•

k E ~N' where S\i = {0,1,2, ••. ,N-l}, nLN {0,1,2,
} n l .•. ,LN-1 , N = 2 , L = 2 and L < N. Let k = k' +

k"L, k' E ~· k" E S\i• where ~ ;;;-· {0,1,2, .•. ,L-1}.

As might be expected, L-bit is used to represent
data in the three-dimensional N x N x N array.

We consider two kinds of modes to access the
array w(i,j,k). Let us call them mode 1 and mode
2.

mode 1
i-slice;

j-slice;

k'-slice;

{w(a.,j ,k); a, E S\i• for some j and

{w(i,a.,k); 0. E S\i• for some i and

{w(i,j,a.+k"/(N/L)•N); Cl E S\i• for

some i, j and k" which satisfies
k"// (N/L)=O}

k}

k}

k"-skips; {w(i,j ,k'+a.L); a. E S\i• for some i, j
and k'}

mode 2
i*k '-slots; {w((i+a.) // N ,j, S+k" •L); (a, S) E

S\i/L x nL, for some i, j and k"}

j*k'-slots; {w(i, (j+a.)// N,S+k"•L); (a,S) E

S\i/L x ~· for some i, j and k"}

k"*k'-slots; {w(i,j ,S+(k"+a.)// N•L); (a.,S) E

S\i/L x ~· for some i, j and k"}

where S\itL = {O,l,2,'.'''N/L-1}, and I and II rep
resent, respectively, a quotient and a nonnegative
remainder after integer division. Two access modes
are illustrated in Fig. 1.

Let i, j, k and m E S\i be represented by a bi-

nary representation form, i = (in-l'in_2, ••. ,i0),

j = (jn-l'jn-2•···•jo), k = (kn-l'kn-2•···•ko) and
m = (mn-l'mn_2, ••• ,m0). Define the function l(i,j,

k,m),

l(i,j,k,m) = (in-lt!ljn-lt!lkn-lE!l!nn-1' in-2$jn-2

t!lkn-2E!l!nn-2•···· iot!ljot!lkoE!l!no)
where (!l represents Exclusive OR.
A q*r shuffle S * is defined as a mapping [2],

q r
S * (i) =(qi+ i/r)llqr 0 ~ i ~ qr-1

q r
We define three functions as follows,

F(a.) = l(SL*N/L((i+a./L)//N),SL*N/L(j),a.//L,

SL*N/L(k"))

G(a.) = l(SL*N/L (i) ,SL*N/L ((j+a./L)// N) ,a.// L,

SL*N/L(k"))

H(a.) l(SL*N/L (i) ,SL*N/L (j) ,a.// L,

SL*N/L ((k"+a./L) II N)) a. E S\i

CH1569-3/80/0000-0137$00.75- ~ 1980 IEEE

137

Theorem l; If o p,q,r E 0 can be expressed (p,q,r) -""N
by the description,

(
0 • • • N-1)

0 (p,q,r) = l(p,q,r,O) ••• l(p,q,r,N-1)

Then o() is the permutation on the set nN' p,q,r
and can be realized by an n-stage shuffle-exchange
network[3].

The permutations required for access mode 1
are defined as follows.

0 i,j,k' = 0 (i,j,k'•N/L)
0 i,j,k" = 0 (i,j,k")
0 i,k',k" 0 (i,k'•N/L,k"/(N/L)•(N/L))
0 j,k',k" = 0 (j,k'•N/L,k"/(N/L)•(N/L))

-1 -1
It can be shown that o .. k' = o_ . k" o .. k" i,J. i,J' i,J.

-1 -1
0 · · k" ' 0 i k' k" = 0 · k ' k" and 0 j k ' k" 1,J, ' , 1, ' ' ,
O. k' k"' Control signals required in the realiza-
J. •

tion of the o() are n and are uniform in each
stage. p,q,r

Theorem 2; If oi, oj and Ok can be expressed by

the description, respectively,

N-1)
F-l (N-1)

N-1)
G-l (N-1)

N-1)
H-l(N-1)

Then oi, oj and Ok are the permutations on S\i• and

can be realized by an n-stage shuffle-exchange
network.

Theorem 3; The inverse permutations of o., o. and
-1 -1 -1 .]_ J

Ok' denoted oi , oj and Ok , respectively, can be

realized by an n-stage shuffle-exchange network.
-1

It should be noted that in general oi 1 oi , oj
-1 1 1 OJ, and Ok 1 o~ • Control signals required in

-1 -1 -1
the realization of oi, oi , oj, oj , ok and Ok
are (l+l)•N/L-1.

Three-dimensional access memory is physically
implemented by N RAM chips, each organized as a
one bit by N2L-word memory. A cell location is de
noted by T(I,J) I E S\i• J E S\i2L' where S\i2L = {O,
1,2,. • .,NL}.

WRITE operation to the three-dimensional ac
cess memory is performed by applying a permutation
a on the set of data indices and by addressing for
each memory chip. Conversely, READ operation is
performed by addressing for each memory chip and

-1 applying an inverse permutation o on the set of
chip numbers I.

Storage schemes for mode 1 and mode 2 are
given as follows.
mode l; A memory cell m(I,J) contains a three-di
mensional array entry w(R..(I,J//N,(J/N)//L•(N/L),
J/NL),J//N,J/N) I e ~· J E ~2L• Conversely, a

three-dimensional. array entry w(i,j,k) is stored
in a memory cell m(R..(i,j ,k' •N/L,k") ,j+kN) i,j ,k"
€~,k 1 €~,kE~.

mode 2; A memory cell m(I,J) contains a three-di
mensional array entry w(SN/L*L(l(I,J//N,(J/N)//L,

J/NL)) ,SN/L*L (J// N), (J/N)// L+SN/L*L (J/NL)oN) I E

ON' J € ~2L. Conversely, a thi;.ee-dimensional ar

ray entry w(i,j,k) is stored in a memory cell
m(SL*N/L (R..(i,j 'SN/L*L (k ') ,k")) 'SL*N/L (j)+k 'N+

SL*N/L(k")•NL) i,j,k" € ~· k' € ~' k e ~·
Addresses J, permutations o and inverse permu

tations o-l for each access mode are summarized in
Table 1.

Addressing circuitry is realized by Exclusive
OR gates for mode 1. However, N/L n-bit adders are
required for mode 2. Rewriting address J for memo
ry chip I in a more convenient form, we get for
i*k'-slots,

J = k"// (N/L)o2n+ZZ.+k"/(N/L)o2n+i+.e.{j/(N/L),
I// L, [i+l(j // (N/L), I/L,N/L-1,k" // (N/L))]

I (N/L), k" I (N/L) }• 2n+j // (N/L)o2z.+j I (N/L)

The coefficient of 2n shows that NiL n-bit adders
can determine the address. Similar arguments can
be applied for both j*k'-slots and k"*k'-slots.

Now, we consider a block-oriented access of
slots, i.e., i// (N/L)=O for i*k '-slots, j // (N/L)=O
for j*k'-slots and k"// (N/L)=O for k"*k'-slots. In
this case, the coefficient of Zn is l(j/(N/L),
I// L, i/ (N/L), k" I (N/L)). Thus, addressing circuitry
can be implemented using only AND and Exclusive OR
gates. Moreover, control signals of the shuffle
exchange network in mode 2 become n and are uni
form in each stage as well as in.mode 1.

There exists an aigorithm of data exchange in
the memory to switch from one access mode to the
other mode. Data exchange is performed through
memory-to-memory data path with data permutation
network. Necessary permutations are implemented by
an n-stage shuffle-exchange network and a wired
shuffle network connected in cascade.

The algorithm may be solved in 0(3N2L) steps,
where step is a total time of a fetch cycle time,
a propagation time through the data permutation

access

mode 1
i-slice

address J

j+kN

l(i, I,k I •N/L,k")+kN

network and a store cycle time.
As a result, a technique for organization of a

three-dimensional access memory is given.

REFERENCES

[l] Batcher,K.E.,"The Multidimensional Access
Memory in STARAN", IEEE Trans. Comput., Vol.
C-26, No.2, pp.174-177 (1977)

[2] Patel,J.H.,"Processor-Memory Interconnections
for Multiprocessors", Proc. 6th Annual Symp.
on Computer Architecture, pp.168-177 (1979)

[3] Lang,T. and Stone,H.S.,"A Shuffle-Exchange
Network with Simplified Control", IEEE Trans.
Comput., Vol.C-25, No.l, pp.55-65 (1976)

i-sl ice -~+--1-'-1

k-slice
& skips

j-slice

k

f j ,,L:... ________ "'14/
/ ,/•

/ j*k'-slots / I

N

/
/ ,,

1i*k'-slots
)

" " "

I
I
I
I
I
I
I
1,/
v

Fig.l. Three-dimensional access

o

0 j,k',k"
j-slice

k'-slice

k"-skips

j+SN/L*L (l(i,j. I, k"))N+(k" I (N/L))N2

j+k'N+l(i,j,k 1 •N/L,I)NL

0 i,k'.,k"
0 i,j,k"

0 j,k' ,k"
0 i,k',k"
0 i,j,k"
0 i,j,k'

mode 2
i*k'-slots

j*k'-slots

k"*k'-slots

SL*N/L (j)+(:~l (I)// L)N+SL*~{L (k")NL "

SL*N/L ((j+G (I) /L) // N)+(G (I)// L)N+SL*N/L (k)NL O j

SL*N/L (j)+(H-l(I)// L)N+SL*N/L ((k"+H-l(I)/L)// N)NL Ok

Table 1.

138

-1 o.
~l

oj
-1

Ok

I·

Loop Decomposition in the Translation of
Sequential Languages to Data Flow Languages*

Stephen J. Allan
Department of Computer Science

Colorado State University
Ft. Collins, CO 80523

Summary

This paper deals with compile-time exposure of
parallelism in high level sequential programs for
eventual execution on a data flow computer.
Specifically, it deals with the analysis and
restructuring of loops which are written for
sequential execution, transforming them into loops
whose iterations may be conceptually executed in
parallel. The technique presented in this paper
differs from other techniques in that outer loops
are examined, even if some of the inner loops need
to be executed sequentially. ~here are certain
types of parallel computers (e.g., data flow
computers) on which the parallel execu.tion of
outer loops may yield significant reduction in
execution time even though some inner loops are
executed sequentially.

A data flow machine [2,3,5,6] is a highly
parallel, asynchronous computer. The assumption
underlying a data flow computer is that a program
is not a sequence of instructions that cause
changes to a memory space, but instead a program
is a collection of computations related to each
other by the need for data values that are
produced and consumed. The order of execution of
the computations is not directly stated by the
program but rather by the partial ordering
provided by the data dependencies. The derjvation
of this partial ordering is detailed in [11.
Therefore, transforming sequential loops to
parallel loops, whose iterations are independent,
may greatly reduce the execution time of a program
executing on a data flow machine.

Loop decompo·si tion has been proposed as a
technique which attempts to decompose the body of
a loop into several smaller loops while
maintaining the .data dependencies between the
statements. In the loop decomposition technique
by Lo [4], the entire loop is initially analyzed
to see if the iterations are independent. If they
are independent, the loop is directly transformed
into a parallel loop. If they are not
independent, the loop is examined to see if the
iterations can be made independent through forward
substitution or saving of values in a temporary
array. If the loop cannot be transformed into a
parallel loop using these transformations, the
loop is then decomposed into smaller loops. Each
of these smaller loops is analyzed to see if its
iterations are independent or if the iterations
can be made independent through the use of the
above transformatio"s.

* Research reported herein was supported in part
by the National Science Foundation under Grant
NCS77-02467

CH1569-3/80/0000-0139$00.75 ~ 1980 IEEE

Arthur E. Oldehoeft
Department of Computer Science

Iowa State University
Ames, IA 50011

Loop decomposition techniques are applied to
the innermost loops first. If an inner loop
cannot be transformed into a parallel type loop,
no attempt is made to transform the enclosing
loops. The reason for this is parallel machines
typically do not take advantage of the parallelism
available in the outer loops if some of the inner
loops are executed sequentially. In a data flow
environment this js important because parallel
execution of the outer loops may yield significnnt
reductions in execution time even though the inner
loops are performed sequentially. For this
reason, all loops are analyzed regardless of the
type of statements that appear in the body of the
loop.

The algorithm discussed below extends in two
ways the method introduced by Lo. First, the
requirement that an array name appear on the left
side of an assignment statement only once in the
body of a loop has been eliminated. ~his

facilitates the transformation of non
single-assignment high level sequential languages
to a data flow language. Second, the requirement
that the body of the loop consist of only
assignment statements has also been eliminated.
Any type of statement, including compound
statements, may appear in the body of the loop.

A brief general description of the algorithm
is given here. ~here are two matrices associated
with the algorithm called "order" and "try". 'l'he
"order" matrix contains a row and a column for
each statement in the body of the loop. Entries
in the "order" matrix indicate that an ordering
relation exists between two qtatements in the body
of the loop. A "t" in order(i,j) indicates that
statement i must be executed before statement j
because of data dependencies or interference in
the usage of storage caused by parallel execution
of the loop. The data dependencies may occur
across iterations of the loop. F:ach time an entry
appears in the "order" matrix, a corresponding
entry appears in the "try" matrix. An entry in
the "try" matrix has a list of transformations
which are applicable in breaking a cycle in which
the two statements might appear. A cycle
indicates that the statements in the cycle have
data dependencies on each other. ~he different
transformations used in restructuring a loop for
parallel execution are forward substitution of
expressions, savinp values in a teMporary arrP.y,
or changing a scalar value into an array value.
If none of these transformations are applicable in
breaking a particular cycle, an indication of this
is placed in the "try" matrix. Both of these
matrices are constructed at compile time during
the analysis of the body of the loop.

139

The compile-time loop analysis proceeds as
follows. All statements in the body of the loop

are analyzed to determine their relationship with
the other statements in the body of the loop. If
any statement in the body of the loop is a
cornpound statement, all the statements in the body
of the compound statement must also be analyzed to
determine its relation with the o.ther statements.
The detai.ls of the data flow analysis needed to
analyze the data dependencies appear in [1]. A
statement is analyzed in the following manner.
Every value defined by the statement is analyzed
by finding all the uses of the value in the body
of the loop. The uses are found in a list which
~s associated with each value defined by the
statement. Each use is compared with its
definition in the loop to find its relation. If
the definition in the loop is prior to its use in
the same iteration, it is possible to use the
forward substitution transformation to break a
cycle in which the statements might be contained.
If a use appears prior to its definition in the
same iteration, or a previous iteration, it is
possible to save the old values in a temporary ar
in which the statements are involved. These facts
are noted in the "try" matrix. If a scalar value
is assigned, a note is made in the "try" matrix
indicating that the scalar value must be changed
to an array value if the statement is to appear in
the body ·of a forall construct. All values·
defined by a given statement are analyzed, as
described above, and the "order" and "try"
matrices are formed.

Once the "order" and "try" matrices have been
formed by the data flow analysis routine, the loop
decomposition algorithm proceeds in the following
manner. The "order" matrix is analyzed for
cycles. If no cycles are found, the iterations of
the loop are independent and the loop may be
transformed directly into a forall construct. If
there are cycles, an attempt is made to break the
cycles using the transformations mentioned above.
If the attempt is successful, the loop is
transformed into a forall construct. If the
attempt is unsuccessful, the lqop is decomposed
into minor loops. A minor loop contains either a
cycle or a single statement. Each minor loop that
contains only a single statement can be
transformed into a forall construct as long as the
single statement does not have a data dependency
on itself. If the single statement has a
recursive data depencency, it must be executed as
a sequential loop. Each minor loop which contains
a cycle is analyzed to see if the cycle can be
broken by the transformations noted in the "try"
matrix. If the saving of values in a temporary
array or forward substitution techqniues break the
cycle, the minor loop is transformed into a forall
construct. If .not, the minor loop must be
executed sequentially. If any scalar values are
assigned in a loop which has been transformed to a
forall construct, the scalar value must be changed
to an array value.

Consider the program segment in Figure 1 which
multiplies two matrices, a and b, and produces a
matrix c. Assume that the array a is 1 x n, the
array b is 1 x m, and the array c is m x n.

140

do i = 1 to 1
do j = 1 to n

a(i,j) := 0
do k = 1 to m

a(i,j) := a(i,j) + b(i,k) * c(k,j)
end

end
end

Figure Matrix multiplication

This program segment is analyzed using the
technique given above and finds that the innermost
loop has to be executed sequentially, but the
outer two loops may be transformed into forall
constructs. This is done giving the program
segment in Figure 2.

forall i in (1,1) do
forall j in (1,n) do

a(i,j) := 0
do k = 1 to m

a(i,j) := a(i,j) + b(i,k) * c(k,j)
end

end
end

Figure 2 Transformed matrix multiplication

The resulting speedup of the transformed loop
depends on the manner in which the forall
cons-truct is implemented. Assuming the index
values in a forall construct are generated
sequentially, it is possible for the program in
Figure 2 to be executed in O(l+m+n) time. As it
appears in Figure 1, the data dependencies are not
known so that the code generated results in
O(l*m*n) execution time.

References

1. S. J. Allan and A. E. Oldehoeft, "A.. Flow
Analysis Procedure for the Translation of High
Level Languages to a Data Flow Language," IEEE
Transactions on Computers (to appear).

2. Arvind and K. P. Gostelow. A Computer Capable
of Exchanging Processor Elements for Time,
Computer Science TR-77, . University --of
California, Irvine, (January, 1976).

3. J. B. Dennis and D. P. Misunas, "A Preliminary
Architecture for a Basic Data Flow Processor,"
The 2nd Annual Symposium on Computer
Architecture~E, New York, --C-1975), PP•
126-132.

4. D. Lo, Transformation of Loop Programs
Parallel Execution, Ph.D. Thesis,
University of Kichigan, (1976).

for
The

J. Rumbaugh, "A Data
IEEE Transactions on
1 977) ' pp. 1 38-1 46 •

Flow Multiprocessor,"
Computers (February,

6. K. Weng, Stream-Oriented Computations in
Recursive Data Flow Schemas, M.S. Thesis,
M.I.T., Cambridge, Mass., (1975).

GOODYEAR AEROSPACE CORPORATION'S
MICROCOMPUTER ARRAY PROCESSOR SYSTEM

F. G. Carty and R. H. Ries
Digital Technology Department

Goodyear Aerospace Corporation
Akron, Ohio 44315

Goodyear Aerospace Corporation's
Microcomputer Array Processor System [l]
is a programmable multiprocessor com
puter system designed for Electronic
Warfare applications for the Air Force
Avionics Laboratory (AFAL). The
applications involved sorting, identi
fying and tracking emitter signals in
real time for very dense radar environ
ments. The main problem in achieving
this goal is that the signal densities
constitute a severe data processing
load which greatly exceeds the capa
bility of present airborne computer
systems.

The architecture of this system
(Figure 1) retains many of the classic
multiprocessor design concepts including
a master-slave relationship among its
microprocessors in a tightly coupled
structure. Each processor is a 32-bit
programmable computer with its own
dedicated memory and a capability to
execute approximately four million in
structions per second. Each processor
can communicate with several banks of
common memory (referred to as global
memory). The global memory modules and
their communication structure tie the
individual processors together in a
symmetrical multiprocessor computer
architecture. The multiprocessor system
is modular and can contain at least two
and at most eight processors coupled
with up to sixteen banks of global
memory and executes up to 32 million
instructions per second. Expansions
beyond these limits are possible if
every processor does not have to have
access to every global memory module.
Currently, a four processor system (with
three banks of global memory) is in
stalled at Wright Patterson AFB for use
by AFAL. This system will be expanded
to six processors during 1980. Thi.s
multiprocessor subsystem occupies approx
imately 1.6 cu. ft. and consumes under
400 watts.

Global memory is implemented as
several independent memory banks to allow
simultaneous accesses (i.e., one con
current access per bank). Each memory
bank contains at least 1024 32-bit words
and can be accessed by each processor.

CH1569-3/80/0000-0141$00. 75 © 1980 IEEE

141

Global memory can be used to store
data common to several processors, to
swap programs with or add subprograms to
those in local memory of any processor
and to facilitate communication between
processors and/or other subsystems.
This last use can be accomplished by
message switching techniques and may be
initiated via software polling or via
hardware driver interrupts.

Conflicts between microprocessors
in accessing global memory are generally
minimal in the current application for
three reasons. First, each micro
processor has its own dedicated memory
which contains its program instructions
and local variables. Next, in the
current application we can predict
relative accesses due to various para
meters so that algorithms were chosen
which distributed global memory accesses
uniformly. Finally, each microprocessor
executed many more computational in
structions than global memory accesses.

)..

"!MORY
llQUIST LOGIC r------ ----- ------ -- --- ------- ----,

Figure 1.

I
I
I
I
I r __ J

Architecture of the Micro
computer Array Processor
System

The memory request logic connects
the global memory banks to each
processor (and peripheral device) in a
manner which will support as wide a
communication bandwidth as possible
without requiring an unreasonable amount
of hardware. The logic structure also
allows expansion in the number of
processors and/or memory banks. These
features led to the multi-port multi-bus
communication structure. A port struc
ture and a port controller are attached
to each memory bank. Any processor (or
device) which is to communicate with a
given memory bank must be connected to
a port associated with the bank. A
microprocessor initiates a global memory
access by issuing a request over its
output bus. Each port determines if the
request belongs to the address space of
its memory bank and hence, only the
proper port will accept the request. If
the requested memory bank is not
currently busy the request will be
serviced immediately. Otherwise, the
request is held in the port. When the
memory becomes available all requests
held (a maximum of one per processor) are
queued into the memory port controller
and serviced on a priority basis. Each
request requires approxima_tely 200 ns to
be serviced. It takes a minimum of 750
ns for a processor to make a request.
Thus, if the average rate of accessing
for any given global memory bank is less
than three requests per 750 ns period
the memory access structure is trans
parent to the processor and no time is
lost by the processor.

Each of the processors contains a
CPU, program memory, a microprogram
sequencer, a pipeline register, a condi
tion decoder, clock and timer and an
interrupt control. The CPU contains
sixteen addressable registers and an
arithmetic logic unit. The program
memory contains microcode for the
program and local data. The micro
program sequencer causes program memory
to sequence through its microcode in
proper order. The pipeline register
holds the current instruction being
executed so that program memory maybe
released to fetch the next instruction.
The condition decoder is used to
facilitate conditional branching. The
clocking and timing unit allows each
instruction type to be executed at the

142

fastest rate possible. The interrupt
control allows the processor to respond
to asynchronous external stimulus with
out resorting to polling.

The architecture of the individual
processors is centered around utiliza
tion of LSI bipolar bit slice technology
rather than the MOS. "computer on a chip"
which is more commonly associated with
the term microprocessor. Each processor
is composed of eight 4-bit CPU chips
which are cascaded together to form a
high speed 32-bit processor. The
resulting processor is capable of
executing register-to-register opera
tions (i.e., adds, subtracts and
logical operations) on 32-bit data words
in under 300 ns.

Bench testing of the system has
shown that multiprocessor based systems
are a practical solution to the applica
tion problem. During bench testing two
observations were made. First, that
prolonged operation of this system has
clearly demonstrated that (for this
application at least) very high sub
system interaction rates can be
supported in a cost effective manner
through proper hardware design. The
second observation was that for dedi
cated use in a master/slave mode main
taining control and coordination in this
application among various processors is
not an overly difficult task.

This work was supported by Air
Force Avionics Laboratory, Air Force
Systems Command, Wright-Patterson Air
Force Base, Ohio 45433 under Contract
F33615-75-C-1179 Project 7633.

References

[l] R. H. Ries, Microcomputer Array
Processor, Air Force Avionics
Laboratory, AFAL-TR-78-157,
(October, 1978) 131 pp.

SIMULTANEITY OF EVENTS IN PETRI NETS

R.C.O. Martins and K.B. Irani
Department of Electrical and Computer Engineering

The University of Michigan
Ann Arbor, MI 48109

SUMMARY

Probably the most obvious and intuitive
property of concurrency (or parallelism) is not
simultaneity of events. Although various
different formal models of parallelism have been
proposed which model different aspects of
parallelism and synchronization ([l]),
simultaneity of events has not been directly
represented in any of those models. Rather it
has always been represented by interleaving
distinct events into sequences and it has been
analyzed by studying the properties of the set of
all such sequences. Thus, in Petri nets we have
"firing-sequences", which are total orderings of
occurrences of events. In this context, two events
a and b are "simultaneous" if xaby and xbay are
possible sequences of events in the modelled
system, for some sequences x and y. It is very
simple and convenient to represent simultaneity in
terms of sequences with implicit interleaving.
However, as was shown by Miller and Yap ([4]),
interleaving alone is a weaker notion than
simultaneity and only under certain conditions
can simultaneity be represented by a form of
interleaving It should also be pointed out
that this inability of modelling simultaneity of
events exactly is not peculiar to ordinary Petri
nets, but is evident in all its previous
extensions as well.

In this work we have developed a new version
of Petri nets, called "Timed Petri nets", which
directly represents simultaneity of events. We are
mainly interested in the effects of this extension
(i.e. modelling of simultaneity) on the complexity
of the formal properties which can be tested on
the nets and which are useful for system analysis.

A Timed Petri net (TPN, for short) is
defined as a pair (PN,Tm), where :

- PN = (P,T,I,O,Mo) is a generalized Petri net
(see [2]) such that every transition has at
least one input place.

-Tm : (Zo)nx T + N, where N=Zo - {O} and Zo
is the set of nonnegative integers and n=IPI
(the cardinality of set P). Tm is the
"firing time function".
This definiti.on implies that a TPN has the

same structure as a Generalized Petri net.
However it has different flow of tokens, as we
will see later on.

The function Tm assigns to each transition t
in T a "firing time", the time interval that the
transition t takes to fire. The firing time of
each transition is also a function of the cul'rent
marking of the net.

This research was supported by INPE and CNPq
(Brazil).

CH1569-3/80/0000-0143$00,75 {) 1980 IEEE

143

Let I; be a nonnegative real number. We
denote by M(I;) the marking of the net at time
instant I;. Then M(I;) denotes the number of
tokens in the i'th place pi at time instant I;. As
usual, M(I;) can be represented by a vector where
the i 1 th component, M(l;)(i), is given by M(I;, pi).
By definition, M(O) = Mo.

A few attempts have been reported at
introducing time as a new parameter in Petri nets,
but only to permit the analysis of system
performance. We had a different objective and we
have followed a distinct approach. Roughly
speaking, we characterize parallelism of events by
the firing of transitions in a TPN under two very
intuitive notions :

- events can occur simultaneously (or in
parallel) only if they are independent. The
characterization of independence among events
(or firing of transitions) at each control
state (or marking of a TPN) is crucial
throughout the whole paper,

- only independent events can occur
simultaneously. Time was introduced in TPN by
associating a firing time to each transition
in the net only in order to support a
primitive notion of simultaneity.

Under that approach, a transition is said to
be enabled at a given marking M at a time instant
I; iff it is enabled in the usual sense defined in
Petri nets (i.e., M(Q ~I (t)) and t is not firing
at this time instant. However only certain
subsets of the set E[M(Q] of enabled transitions
at M(I;) are "simultaneously firable". This is
defined by an independence relation on the power
set of E[M(I;)], called "Simultaneity Relation"
Sy [M(l;)]. If A and B belong to the power set of
E[M(I;)], then:

(A,B) E Sy iff A!iB and BiA and
M(l;)#Ll(t) (where t6AUB).

Sy is a symmetric and irreflexive relation.
Using the relation Sy[M(1;)] a family of sets,

called S[M(I;)], is defined such that each element
SF of the set S at marking M(I;) is a set of
si~ultaneously firable transitions. For every set
SF E:S the following conditions are satisfied:

!) I SF. I =l or -VB, CE:SF i s. t. B%c and ciB then
(B,C)E:Sy.

b) !+/ BtSF. then (SFi,B)¢Sy.
S is a ci5ver of the set E [M(l;)] and all the

transitions in one of these sets SF. can initiate
their firing at the same time insEant I;. The
choice of what set SF.ES will initiate firing at
time instent I; is arbitfary. However, once a set
is selected for firing, every transition t in
t¥is set will initiate its firing at time instant
I; by removing I(p,t) tokens from each input place
p, and will be "firing" until time instant
Tm(t)+I;, when it deposits O(t,p) tokens in each
output place p.

Condition b in the previous definition
implies that each set SF. of the cover S is a
"maximal" set. Thus a n~w set of transitions can
be enabled only at markings defined by the
termination of transition firings, or the initial
marking Mo=M(O). These markings are then called
"active markings".

In order to specify the state of a TPN at a
given time instant ~. we need then to specify the
marking M(~) and the termination times of all
transitions which are firing at time instant ~.
If this is done for active markings, the behavior
of a TPN can be completely described.

An "instantaneous description" of a TPN at
time instant~ is a pair (M(~),r), where

-M(~) is an active marking.
-r is a vector such that r(i) is the remaining
firing time of transition ti' defined at time
instant ~.
Under these firing rules it can be shown that

a TPN is able to represent non-monotone predicates
on the set of its markings, contrary to ordinary
Petri nets that only represent monotone predicates
([4]). For instance, for the TPN in figure 1, if
p2 and p3 have initially one token each, the net
can be used to test whether or not p1 has a token
at M(O), since this fact determines the final
marking M(2). However, if the firing rules of
ordinary Petri nets are followed, it can be
easily seen that this test cannot be made on
Petri nets.

Using the net of figure 1, it can be showT1
that TPN can simulate any 2-counters automaton
and, therefore, Turing Machines. It is also
possible to show that the simultaneity of events
(or firing of transitions) is by itself a
sufficient condition for simulation of 2-counters
automata by TPN's.

As TPN's retain the structure of generalized
Petri nets, they can represent all the problems of
parallelism and synchronization modelled by these
simpler nets, and also directly represent the
simultaneity of events in real systems. It can be
shown that TPN's have also enough features to
limit, when necessary, the number of simultaneous
firing of transitions. In the extreme situation
only interleaving can be allowed. In this case
the simultaneity relation Sy is empty and each
element of the set S, i.e., a set of
simultaneously firable transitions, is a singleton
set. Therefore, under our formalization of TPN,
interleaving can be seen as a degenerate case of
simultaneity of events.

pl
Tm(t)=l,

lJ"te:T.

FIGURE 1

P9

Mo=(l ,1,1,0,0,0,0,0, O) -+ M(2)=(1,0,0,0,0,l,l,O,O)
Mb=(O,l,l,O,O,O,O,O,O) -+M(2)=(0,0,0,0,0,0,0,l,l)

The direct modelling of simultaneity of
events by TPN's has the effect of increasing the
complexity of the basic decision problems in TPN.
Problems like the reachability, boundedness,
coverability, liveness and persistence problems
are undecidable. Even for a persistent TPN these
first four problems are also undecidable. These
results can be derived by proofs similar to
that of simulation of any 2-counters automata
by TPN.

As it was pointed out, TPN's are "Turing
complete" (in the sense defined in [l]).
Previous Petri nets extensions, such as Extended
Petri nets ([l]), Priority Petri nets, C-CPM
model and EC-CPM models ([SJ) are also Turing
complete. However none of these petri net
extensions can model all the characteristics of
parallelism and synchronization, namely,
simultaneity, reentrancy and priority.

For example, TPN models simultaneity of
events, but cannot represent reentrancy and
recursivity, which need colored tokens (or
distinguishable tokens), as shown by Zervos
([SJ). On the other hand, the Petri net
extensions cited above cannot directly represent
simultaneity of events, since they only represent
interleaving of events. Thus we can conclude that
"Turing-completeness" does not express the fact
that a given model is complete in the sense that
it can represent all the characteristics of
parallelism and synchronization. So far
parallelism and synchronization, in all their
distinct aspects, have defied precise modelling.
More understanding of the fundamental properties
of parallelism and synchronization has to be
developed, before we are able to perfectly
characterize "model completeness".

144

REFERENCES

[l] Agerwala, T .K.M., "Towards a Theory for
the Analysis and Synthesis of Systems
Exhibiting Concurrency", PhD. Thesis,
John Ropkins Univ., Baltimore, Maryland,
1976.

[2] Irani,K. and c. Zervos, "Modelling of
conflicts, priority hierarchies and
reentrancy in concurrent synchronization
structures", Proceedings of 1979 Inter
national Conf. on Parallel Processing,
pp. 196-204.

[3] Keller, R.M., "Vector Replacement Systems:
A formalism for Modelling Asynchronous
Systems", Tech. Report 117, Computer
Systems Lab., Princeton University,
Princeton, 1972.

[4] Miller, R.E. and Yap, C.K., "On Formul
ating Simultaneity for Studying Parallel
ism and Synchronization", to appear in
Journal of Computer and System Sciences.

[S] Zervos, C.R., "Colorea Petri-Nets: Their
Properties and Applications" Ph.D. Thesis,
CICE Program, Univ. of Michigan, Ann Arbor,
Michigan, January 1977.

PARALLEL COMPUTER ARCHITECTURE EMPLOYING FUNCTIONAL PROGRAMMING SYSTEMS

John C. Peterson
Denver Research Institute and

University of Denver
Denver, CO 80208

Summary

A new approach to computer architecture is
suggested by functional programming (FP) systems
(see Backus [l]). An FP system provides a ma
chine language with no variable names, free of
side effects, executable in a parallel manner
using data flow techniques, easily translated to
from procedural languages, and straightforward
to implement.

In an FP system, objects represent all data
and data structures. These objects can represent
any data type. FP functions can be designed for
the functions or operations of any language.
Functional forms (functions which use other func
tions as parameters) can model any control flow
(procedural) aspect of a language.

Like other data flow systems [2,5] the FP
based machine obtains its parallelism directly
from natural data dependencies among operations
in a program.

Five items describe an FP system: a set of
objects, a set of primitive functions, a set of
functional forms, a set of function definitions
called D, and the operation of application. An
object is either an atom, a sequence of objects,
or 1 ("bottom" or "undefined"). Atoms include
numbers and identifiers. The special atom ~ de
notes the empty sequence. Sequences are repre
sented by enclosing the sequence elements in
< and >. In the FP system of the authors (3)
the incomplete object is introduced. An incom
plete object contains portions which have yet to
be determined, but will be filled in later if
needed. These objects will be used to represent
the partial result of a function which has not
yet completed its execution. Incomplete objects
are expressed with the incomplete atom w, the
fundamental unit of incompleteness, capable of
assuming any value on completion. An w can be
viewed as a placeholder, representing the result
of an arbitrary function which has not yet com
pleted execution. An w resembles a suspension
[4], except that the function associated with
the w is active instead of suspended.

Each w is associated with a completion func
tion which will eventually specify a value to be
used in place of the w. Many references to a
single w can exist and replacing an: w with a
value may alter many obj.ects.

When an w is a sequence for an append func
tion, a new incomplete object, O, is created.
O is the arbitrary subsequence and indicates a
section of an arbitrary length sequence which
has not yet been filled in. 0 is like a sus-

CH1569-3/80/0000-0145$00.75 ~ 1980 IEEE

145

William D. Murray
University of Colorado

Denver, CO 80202

pended CDR except that it can occur anywhere in
a sequence.

Conceptually, an incomplete object represents
a set of objects containing all possible values
the object may assume on completion. A partial
ordering of incomplete objects can be constructed
using the containment operation on sets. An in
complete object, X, is more complete than another
Y, if the set of objects associate with Xis a
proper subset of the set associated with Y.

Arguments require no names since all functions
have only one argument. Because programs are
composed only of functions, variable names are
eliminated. Functions which would normally re
quire more than one argument are applied to a
sequence containing all arguments needed. Exam
ples of primitive functions are:

apply:<f,x>
n:x
tl:x
id:x
eq:<x,y>
reverse:x
distr:<s,x>
length:x
+:<x,y>
apndl:<x,seq>

Apply function f to object x.
The nth element of seq. x.
Remove first element of seq. x;
Identity. Return x unchanged.
Test if x & y are equal objects.
Reverse elements of seq. x.
Seq. pairs of elements of s,x.
The length of a sequence.
Add x and y.
Append x to the left of seq.

A 1 is produced when a function is applied to
an improperly formed object. All functions (but
not necessarily forms) are l preserving, return
ing l when applied to l·

Functional forms use other functions creating
expressions involving functions. The principle
functional forms are:

fog:x
[f1•···•fnl:x
(p+f;g) :x
/f:x
af:<x1 ,Xn>

Composition returns f:(g:x).
Construction, seq. f1:x,f2:x ••.
If p:x is T, f:x, else g:x.
Insertion of f into seq. x.
Apply f to all elements of x.

A computer based on an FP system will have
three basic components: a set of processors, a
memory, and a READY list. The processors apply
functions to objects, the memory holds these
objects, and the READY list (which may reside i~
memory) holds functions waiting to be executed.

A list element (instruction) contains:
<function, object, Wr• D>.

The function and object describe an application,
wr (wresull:) indicates the atom being completed
(a function awaiting completion of this instruc
tion), and D defines the program being executed.
All instructions of a particular program will

have the same D.

The processors execute elements from the READY
list with three possible results: if the wr is
not referenced, the instruction can be discarded;
the object may be insufficiently comp.lete for
function execution and the instruction is attach
ed to the incomplete atom blocking its execution;
the instruction can be executed, the result is
installed into wr and all functions awaiting com
pletion of wr are added to the READY list.

A processor need not be abl.e to execute all
functions, but can be specialized for groups of
functions in the READY list. All intercommuni
cation among processors is through memory and
the READY list. Processors have no state saved
between instructions.

Memory contains only objects, which include
list elements, D's, functions, and incomplete
atoms. Memory must be managed, allowing new ob
jects to be created and removing objects which
have become garbage. Garbage must be identified
immediately since processors need to know which
wr's are unused.

In the FP computer incomplete objects control
execution and thus introduce parallelism. Two
principles govern incomplete objects: all func
tions are completion functions associated with
an w and the function apply will create incom~
plete atoms. Thus forms defined in terms of
function application generate new w's. For exam
ple, fog:x expands to f:(g:x), so that a new atom
is created to hold the result of g:x.

Different functions require arguments of dif
ferent degrees of completeness. Those which ma
nipulate atoms, like + or -, require a complete
object. Functions which work with the structure
of objects often can be executed with an incom
plete operand. (Length:<w1,w2> can be computed
without values for w1 or w2 and l:<w1,X> evalu
ates to w1.) In postponing the completion of a
sequence, the 1 preserving nature of the sequence
constructor has been lost and it is natural for
an FP system which uses incomplete objects to
have a sequence constructor which is not 1 pre
serving.

The basic forms to be implemented include com
position, construction, apply-to-all, condition
and insertion. Composition uses an incomplete
atom to link the functions being composed. When
<f 0 g,x,wr,D> is executed, a new incomplete atom,
Wt• is created. The function g is started by
placing the instruction <g,x,wt,D> in the READY
list. The function f, represented by <f,c.ut,Wr,D~
is attached to. Wt· As soon as g puts a result
into Wt, the function f will attempt to proceed.
When Wt is replaced by an iHcomplete object, the
execution of f and g will overlap if f is able to
proceed. This will generally be the case when f
and g are highly composite functions.

The construction and apply-to-all forms are

146

similar in that each creates a sequence. Con
struction applies a variety of functions to the
same object, while apply-to-all applies the same
function to a variety of objects. In either. case
function evaluations can proceed in parallel due
to the absence of side effects. Since construc
tion brings together multiple arguments for a
function parallel argument evaluation results.
When <[f1,f2, ••• ,fn],x,wr,D> is executed, <w1,w2,
•• ,wn> is formed and installed into Wr· Also
each <fi,X•!fli,D> is placed on the READY list .• The
apply-to-all form is similar except that the func
tion will be the same and the argument will dif
fer for each new READY list element.

A special case insertion can be executed in a
parallel manner. Insertion computes a result by
absorbing each element of a sequence into a dy
adic function. With associative functions (which
can be recognized before execution) an insert
associative form is used. When th~ form </f,
<x1,x2 , ••• ,xn>,wr,D>, is executed instructions
are created to cause execution to proceed through
a binary tree. A function to obtain this tree
organization can be defined using parallel con
struction.

The conditional form is of special interest in
parallel processing. To obtain maximum parallel
ism, p:x, f:x, and g:x would be evaluated in
parallel when (p-+ f; g) is executed. The problem
is that once p;x is evaluated, either· f;x. u.c g:x
must be discarded. When f or g are iterative
functions (or especially recursive functions), it
is best to wait for completion of p:x before
starting f:x or g:x.

For the non-parallel conditional, a new form,
choose, is introduced. For <(p-+f;g),x,wr,D> the
atom, wt is created and <p,x,wt,D> is placed on
the READY list. <(choose f g x),wt,Wr,D> will be
attached to Wt· When p:x is completed choose
will be activated to select f:x or g:x.

Ref er enc es

[l] Backus,J.W.,"Can Programming be Liberated
From the vonNeuman Style?,A Functional Style
and Its Algebra of Programs," Comm ACM, Aug. '78.

[2] Misunas, D. P .,"Report on the Second Workshop on
Data Flow Computer and Program Organization,"
Report #MIT/LCS/TM-136,MIT Lab for Computer,
Science,June '79.

[3] Peterson,J.C. &W.D.Murray, "Parallel Computer
Architecture Employing Functional Programming
Systems," Proc. Int' 1. Workshop on High-Level
Lang.Comp.Archit.,May '80,190-195. (&Peter
son, M.S. Thesis, U.Colo. at Denver.)

[4] Friedman,D.P., &D.S.Wise,"Aspects of Applica
tive Programming for Parallel Processing,"
IEEE Trans.Computers, Apr. '78, 289-296.

[5] Rumbaug,J.E.,"A Data Flow Multiprocessor,"
IEEE Trans. Computers, Feb. '77, 138-146.

The Requirements of a Language for
Asynchronous Parallel Image Processing

Robert J, Douglass
DP.partment of Applied Mathematics

and Computer Science
University of Virginia

Thornton Hall
Charlottesville, VA 22901

Summary

Image processing has long been considered
an important application area for parallel
processing because of the large amounts of data
involved and because the same operations are
performed on every part of an image. Although
both parallel architectures and programming
languages have been developed for image proces
sing [l], they have been of the SIMD array
variety. A large class of image processing
algorithms, however, does not fit into an SIMD
array format. These algorithms are highly
parallel but asynchronous, and they have very
different characteristics than the low level
filtering, smoothing, and gradient operations
that are performed on SIMD machines. This paper
lays out the requirements for a high-level
language for asynchronous parallel image pro
cessing. This work is part of a broader study
of parallel language design being undertaken by
the Pisces Project on Parallel and Distributed
Processing at the University of Virginia.

In contrast to low level image processing
algorithms which can be expressed as parallel
operations on every point of a two-dimensional
array representing an image, higher level image
processing uses a more abstract description of
the image usually in terms of edges or regions
(areas of approximately uniform color and tex
ture). These descriptions can be thought of as
a graph where the nodes of the graph represent
regions or edges and where the links between the
nodes represent the connections between neigh
boring regions or edges in the image. There is
a large cl:lass of asynchronous parallel algorithms
which process such image graphs by assigning an
identical process to each node of the graph.
The process updates that node's description
using information from the descriptions of
neighboring nodes. Relaxation labeling and
region matching for change detection are two
examples of this class of algorithms.

These algorithms pose particularly inter
esting problems for the designer of parallel
languages since they demand a degree of process
interaction that is intermediate between SIMD
array languages such as ACTUS [2] or PASCALPL
[3] and distributed processing languages such
as CONCURRENT PASCAL [4] or Hoare's communi
cating sequential processes [5]. Their charac
teristics can be summarized as follows:

CH1569-3/80/0000-0147$00. 75 © 1980 IEEE

147

1) Division of identical or similar processes
to work on different parts of a large common
data structure such as an image graph. This
type of parallelism is a common feature of SIMD
array languages but quite different from con
current processing languages.

2) Parallelism is at the level of procedures
rather than individual operations as in the
SIMD array languages.

3) Dynamic creation and destruction of pro
cesses and their interconnections. Unlike the
static monitors of CONCURRENT PASCAL or MODULA,
parallel processes must be created as new nodes
in the image graph are created and terminated
as nodes are removed. Unlike the fixed 4 or 8
connected configurations of SIMD arrays, asyn
chronous parallel image processes must be
allowed to communicate with an arbitrary con
figuration of connected nodes in the image
graph.

4) Closely coupled processing: since a process
on one node must frequently access the informa
tion describing neighboring nodes and since the
processes are working on parts of one large
common data structure, processor communication
is best supported by using shared data rather
than passing messages.

5) Multiple simultaneous reads of shared data.
If all processes sharing the information in a
node's description were forced to access it in
a strictly sequential fashion as in CONCURRENT
PASCAL, then much of the advantage of having
parallel processes on each node of the image
graph would be lost.

6) Sequential writing of shared data. If
several processes are permitted to modify the
values of shared data at the same time, the
results become dependent on the speeds of the
particular processes involved and thus are no
longer deterministic. A process which is modi
fying shared data must be able to lock out all
other processes from either writing or reading
the data. This problem is the familiar readers
and writers problem which has many solutions,
but it is so central to the parallelism in
image processing that it needs to be solved by
the language designer not by the applications
programmer as in [6].

The design of a language for asynchronous
parallel processing must satisfy the six cri
teria above. We are exploring an extension of
the distributed process concept developed by
Hoare [5] and Brinch Hansen [6]. An image
graph program is defined by specifying the data
structure of a prototype node and the proce
dures which can process that node. As nodes
of an image graph are created, their corres
ponding procedures are activated to run
concurrently with the processes on other nodes.
A process running on one node can read the
data on any neighboring node but it must call

a procedure in the neighboring node to modify
the neighbor's data. Synchronization of reads
and writes is transparent to the programmer.

An entire image graph is processed by
specifying a sequence of actions to be applied
to all nodes in parallel in a manner reminiscent
of the single instruction stream of an SIMD
array machine. The actions on a node, however,
are independent processes which resemble a dis
tributed processing network.

An architecture to support the language
must be a multiple instruction multiple data
stream machine which can dynamically establish
communication between different processing
nodes. Multimicro-processors with general inter
connection networks such as PASM, TRA:C, and CM*
appear to be good candidates. We feel that new
applications in image processing will be opened
up using the language to program such asyn
chronous parallel processors.

References

[l] M. Duff, ed., Proceedings of the Workshop
on High-Level Languages for Image Pro
cessing, Windsor, England (June, 1979).

[2] R. Perrott and D. Stevenson, "ACTUS - a
language for SIMD architectures,"
Proceedings of the 1978 LASL Workshop on
Vector and Parallel Processors, Los
Alamos (1978).

[3] L. Uhr, A Language for Parallel Processing
of Arrays, Embedded in PASCAL, Univ. of
Wis. Computer Science Technical Rpt.
#365 (September, 1979).

[4] c. Hoare, "Communicating Sequential Pro
cesses," CACM (August, 1978), pp. 666-677.

[5] P. Brinch Hansen, "The Programming
Language Concurrent Pascal,'·' IEEE Trans.
on Soft. Eng. (June, 1975), pp. 199-206.

[6] P. Brinch Hansen, "Distributed Processes:
A Concurrent ProgranD!ling Concept," CACM
(November, 1978), pp. 934-940. --

148

A FASTBUS SYSTEM DESCRIPTION LANGUAGE

T. Christopher, O. El-Dessouki, M. Evens, W. Kabat, S. Wagle

Computer Science Department
Illinois Institute of Technology

Chicago, IL 60616

Summary

Fastbus, the new bus standard which has
been jointly developed by the U.S. high
energy physics laboratories, presents serious
software problems. The first requirement for
building and maintaining a large Fastbus data
acquisition networks is the development of
language facilities for describing the
hardware and software architecture of an
arbitrary Fastbus system. This paper
proposes two levels of network description
language: a hardware Network Building
Language (H)NBL and a software language
(S)NBL.

The current status of the Fastbus standard
is well documented in [l]. It is a segmented
bu~ and combines the high local bandwidth
attainable at a segment level with global
communication via inter-segment connections
(SI's). Systemwide addressability is
supported and the hardware assumes the
responsibility of routing the data to the
correct segment and module, be it on the
local segement or on a distant segment.

Figure 1 shows a topology typical of those
employed in the collection and analysis of
data emanating from a particle physics
experiment. A bank of data collection
computers are employed to collect the massive
amount of data coming from the sensors. It
is then passed through a filtering network to
a host computer where it is recorded and
reviewed by the physicists. Besides reducing
the data volume, the filtering computers also
perform detection of the particle-collision
events that are of prime interest in these
experiments.

In some ways Fastbus is similar to the
architecture of the Cm* system being
developed at CMU [3]. Like Cm*, Fastbus can
eliminate the need for explicit
protocol-based communication among the
computers in a local computing network (LCN).

The need for a network description
language arises from a desire to develop
software that can be easily adapted to a
range of system topologies. At the system
software level functions that will have to be
provided include system initialization,
setting up paths between every pair of
segments, assisting in the flow of data
within the network, loading of software in
different computers, and monitoring the
status of the network. The applications
software, on the other hand, will be written
as a collection of parallel activities that
can be carried out simultaneously on
different computers in the network. In both
cases, the software can automatically adapt
itself to a particular environment if a
description of the current topology is also
available on the system in some suitable
form. To enter this information in a
structured and verifiable manner a network
description language is needed. We assume
that a typical Fastbus system will have a
large number of segments, say about 100.

Requirements of the language:
Such a language, an NBL, could either be
procedural and algorithmic or it could be
purely declarative. We restrict ourselves to
the former variety. For the non-programmers
such as hardware engineers we expect to
provide an interactive utility through which
most of these functions can be carried out;
in addition, the utility could provide
display of the network in graphic form.

NBL should be capable of describing
hardware as well as software resources and
current status of all the resources. The
hardware resources include network components
such as segments, segment interconnects,
processors, memories and devices. At the
hardware level, NBL should allow
specification of how segments are connected
and what modules are attached to each
segment. To assist the hardware engineers as
well as to enable software

L :

DCC .. "Dltl '-tl"flst11,

h:Ja • Trf9!11f' COllpUter
DC • D1t1 Col1ectf1111 Callputer

FDC • F11t Dita Co1 lectfan C.Uter
.. ftll s.......c Oii , .. flltbrn

Ffgure l. Jlldel F11tbu1 tra struc:tun.

149

CH1569-3/80/0000-0149$00.75 ~ 1980 IEEE

verification, NBL should also admit the
physical description of the network in terms
of crates and occupation of slots by hardware
modules• The software facilities of NBL
should minimally allow one to specify loading
of different software modules into different
parts of the network and establish data paths
among them. At the software level NBL could
be thought of as a job control language for a
distributed system.

Hardware language:
The example hardware program shows a
description of the system pictured below:

10 SEGMENT 'l'OP
20 PORI•l'l'04
30 SLO'l' I BAS 'l'OPSI (I) 1 St
40 REXT I
50 SLOT 5 BAS BOST 1 PDP-11
60 SLOT 6 BAS OO'l'PU'l' 1 PDP-11
70 SL01' 1 BAS OO'l'PU'l'BUPS 1 JIBll HI
80 DD SBGftENT 'l'OP
90PORI•l'1'04

100 SIGMENT IRTBRMED (I) .
110 SLO'l' l BAS 'l'OPSI (I) : SI
120 roRJ•l'1'020
130 SLO'l' J+2 BAS MEDSI (I,J) 1 SI
140 SIGMENT LEAF (I, J)
150 SLOT l BAS llEDSI (I,J) r SI
160 POR I. • l '1'0 20
170 BLO'l' l+l BAS DC(I,J,I.) 1 STP
180 &EXT K
190 BLO'l' 22 BAS FDC(l,J) 1 B'l'P
200 IF I <• C OR J <• 20
210 SLOT 24 US LU.l"Sl (l,J) 1 SI
220 ENDIP
230 IF J > 1
2f0 SLOT 23 BAS LBAP'SI(l,J-1) ; SI
250 ILSE IF I > 1
26il SLOT 23 BAS LBA!'SI(I-1,20) I SI
270 ENDIF
280 IND Jl.BGMEft LBAF(I,J)
290 NEXT J
300 SLOT 23 BAS IRTEJUll.EDBOP'S(I) 1 UM 2561C
310 SLOT 24 BAS DCC(I) 1 VAX
320 SLOT 25 BAS 'l'RIG(I) 1 VAX
330 END SEGMENT DITDllED (I)
li&O REX'!' I
350 RDIOVE LEAFSI (4,2)
36EI REMoVE DC(2,20,9)
370 !ND

There are three types of ~P~mPnts. There is
one TOP segment with segment interconnects at
geographic addresses one through four, a host
computer in position 5, an output computer in
position 6, and a memory module in position
7. There are four INTERMED segments with a
SI to the TOP segment in position one, Sis to
LEAF segments in positions 3 through 22, a
memory in position 23, and two computers in
positions 24 and 25. There are 80 LEAF
segments with a SI to an INTERMED segment in
position one, specialized data collection
computers in positions 2 through 22, and Sis
to preceeding and succeeding LEAF segments in
positions 23 and 24. Two devices are
presumably out of comission since they are
REMOVEd at the end of the specification.

Software language:
The software description language must be
able to load the devices mentioned in the
hardware description language program,
parameterize the various instances of the
same program by initializing global
variables - especially with addresses of
other hardware or software objects on the
system, allocate and initialize some standard
software objects - such a& buffers, and make
the initialization conditioaal upon the
existence of neighbouring devices (so that
the system can cope with not all devices
working all the time).

The example software program fragment
given below is to load a data collection
program into the hardware system described
above. Each DC computer is loaded with a
COLLECT progr~m, i~ given a ~uffer for its
rlata, and 1s given the address of its
preceeding and succeeding DC computers (so,
the neighbours can be told to read out
sensors near "hits").

The present work is only a part of a much

larger network software project under way at
Illinois Institute of Technology with
generous technical and financial assistance
from Fermilab. The hardware version of NBL
is being implemented; the translator
~enerates a data base for the network which
is designed to support initial program load,
user program design and deployment, system
maintenance, fault detection, and
reconfiguration [4].

1.

2.

3'.

4.

rso

10 LET !'DCBDPSIIS-600
20 LET DCBUFSIZS-600
30 LET OIJTBUPSIZS-16380
•OFORI•l'l'Of
50 POR J•l 'l'O 20
tio LOAD PIJC(I,J)
70 to PAS'l'COLLECT
80 IRIT PMlBH'l' • f'DCBUP(J) IR IllTIRMEDBOFS(I)
90 IHIT PAREH'l'SIH • PDCBUFSIU

100 SRD LON> PDCII,J)
110 llEX'l' J
120 BEX'l' I
130 FOR I • l '1'0 •
140 FOR J • l to 20
150 FOR1t•l'I020
160 LOAD DC(I,J,K)
170 LO COLLBCT
180 l'RIT PARER'l' • DCBOF{J,K) IN Dft'DJllDBUFS(l}
190 llllT PARBR'l'SIIE • DCBDPSUE
200 LBfal•l+l
210 LIT al' Iii .t
220 LET ll • I
230 IP ll > 20
2i&O Lft 11 • 1
250 LB'l'Jl•Jl+l
2ti0 DID IP
270 IF Jl > 20
280 LIT Jl • l
290 LET Il • 11 + l
300 DID IF
3'10. IF DC(ll,Jl,11) llISTS
320 INIT SDCC • CSlt._PREDIRPD'l' DI DC(Il,Jl,JU)
330 IlfI':r SUCCDtPD • l
3.fO ILSE ,
350 rtn'l' SUCC • BULL
360 INIT SDCCDEFD • 0
370 DDIP

: aiailarly for predeceasors

5fio BRD LOAD DC(I,J,5)
570 R!XT It
580 NEXT J
5 90 LOAD X>CC U)
600 LO DSQUEEZ
610 IllIT DCBUFS • DCBUF IR IR'l'BRKIDBUFS(I)
620 INIT DCBUPDELEMSZ•DCBUPSIZB
630 IRI'l' l>CBUFSDilll•20
HO IRI'l' DCBOFSDIM2•20
650 IRIT PARIN'l' • IDF(.I) IH OO'l'PDTBDFS
660 lllI'r PARB!i'l'SIIB-001'80PSIZB
670 DD LOAD
680 LOAD TRIG(l)
HO LO TRIGGER
700 IN1'1' 'fRIGDA'l'A • FDCBUP Ill IR'l'BltlllDBDFS(l)
710 IRi'l' '!RIGBLIJISIIB-PDCBDFSIIB
120 INl'l' '?B.IGDA'l'ADJM-20
730 IF TR.IG(I+l) BXISTS
7'0 INI'!' RDTTRIC-CSl\.,.PRIDIRPO'l' IR !RIG(l+l)
750 IHI'l' llllt'l'RIGBXIS'H•l
760 BI.SB
77 0 IRrl' RBX'l"l'RIC-ROLL
7 80 IJfIT HEXT'l'RIGBXIS'?S•O
790 IHDIF

: •ildlarly f0r 'fRIG(I-lJ

s7o DD LOAD
880 LOAD IR'l'BRMEDBUFS { t)
890 ALLOc;. DC8UF(20,20) 1 BUFFER(DCBUFSIZE)
900 ALLOC rdt::BUF(20) : BUFFER(FDCBUFSIZE)
910 END LOAD·
;20 REX'l' l
93 0 LOAD OU'rPtrl!&UPS
9'.0 ALLOC 80F(4) I 8UPFER(OU'l'BOPSIZE)
950 END LOAD
960 IND

References

US NIM Committee, "Fastbus, Modular High
Speed Acquisition System for High Energy
Physics and other applications", January
1980.

R. J. Swan, et ~l., "Cm* - A modul~r,
multi-microprocessor", AFIPS Conference
Proceedings, Vol.46, 1977 NCC, pp.
637-644.

M. A. Mayor, "A Language for Network
Analysis and Definition", SIGPLAN
Notices, Vol.15, No. 1, January 1980,
pp.130-1,38.

T. Chris·topher, et al., "A
Description Language for
Systems"', to appear in COMPC.ON
proceedings.

N'etwork
Fastbus
Fal1'80

VSP: BUILDING BLOCKS FOR PARALLEL PROCESSORS
William S. Dowey

Gould Inc., Chesapeake Instrument Division
6711 Baymeadow Drive, Glen Burnie, MD 21061

This paper addresses the Vector Scalar Processor
(VSP) solution to the problem of proliferation of high
cost specialized processors for computationally large
algorithms. As the title implies, the processors can be
configured in a variety of distributed parallel processor
formats. The Vector Processor (VP) is the title given to
the processor block responsible for repeated sum of
product operations. The Scalar Processor (SP) is the
title given to the processor block responsible for
communications, scheduling, and data storing/retrieval.
This VSP solution is unique in that the hardware (based
on the AM 2900 family) in the blocks is interchangeable
within and between VP and SP processors. This inter
changeability trades off design complexity for multiple
low cost processor blocks which achieve computational
requirements.

CONDITION
CODES

PROGRAMABLE

INSTRUCTIONS

MAP REGIS'fER

PERIOD ,__ __ ...,

CLOCK

DATA PATH CONTROL Ll'IES

Figure 1. Controiler for Vector and Scalar Processors

SP
CONTROLLER

SP

Both the SP and the VP use a similar controller
configuration centered around an AM 2910 sequencer
(Figure 1). This sequencer has four modes of control for
microcode address selection. An external condition code
is used primarily for the data dependent operations of
the SP; the Internal Counter equal to zero is used for the
structure (algorithm) dependent VP operations. The
controller block is completed using a horizontal field
pipeline register to allow for simultaneous action of all
functional blocks in the data paths. The pipeline ROM
which contains the microcode instructions removes the
combinational logic from the design process. This logic
is replaced with programmable fields which determine
the state of the functional blocks for each clock period.
Both SPs and VPs have individual clock units, each VP
clock being slave to an SP clock. Both clocks are
capable of outputing instruction selectable periods (from
60-480 nano seconds in 30 nanosecond increments). This
allows matching propagation delay paths to execution
times instead of restricting execution times to the
longest propagation paths for all instructions.

The Scalar Processor shown in Figure 2 features a
Von Neumann type machine modified to incorporate AM
2901 based next address generator (NAG) for retrieval of
instructions and data from a common (macro) memory.
With the horizontal microcode, ALU operations can be
taking place on data while the next address generator is
fetching data or the next instruction word. The SP
supports both the AN-UYK-20 assembly language in
struction and special microcode instructions (beyond the
standard instruction set) to achieve operational speed
increases for a Direct Memory Access (DMA) data
handling operations. The Scalar Processor communicates

INPUT
DATA SP INPUT BUS

SP INTEANAt. BUS

VP INTERFACE
REGISTER

VP PARAMETER BUS

VP
CONTROLLER

INPUT
DATA

MEMORY

VP CONTROL LINES

SP SERIAL
INTER, ACE

VP AE$UI;; T BUS

Figure 2. f'unctional Blocks of the Vector and Scalar Processor

151

CH1569.,3/S0/000it·Ol51$00 .15 .@ 1980 IE~E

with multiple VPs through a VP data bus and receives
status from the VPs in a serial fashion. Communications
with other SPs also takes place over other serial lines.

The VP shown in block form in Figure 2 features a
controller which performs repeated operations on data
with a taper-on and taper-off of data flow required from
the data memories. Arranged this way, the VP gains
efficiency as the number of identical operations exceeds
8. The Multiplier is interchangeable with a multiply
accumulate, allowing for faster execution of sum of
product algorithms. If the complexity or throughput
requirements of the algorithm do not allow for in-place
computations, SPs are used to collect partial processed
data, reorder, and pass it on to the next level of VP
processing.

The three VSP configurations below illustrate the
modularity of the building blocks. The first configura
tion was the first pilot VSP development. It implements
an FIR Interpolation filter of l million operations per
second (MOPS) per VP. This figure is exclusive of VP
overhead operations. This filter configuration, shown in
Figure 3, is a computationally distributed network. It
features two parallel paths comprised of two SP and VP
elements. Here both halves of the parallel network
contain duplicate microcode, so that each side is capable
of processing either half of the incoming data. The
second SP in each half parallel leg collects results and
performs half aperture broadside beamforming on the VP
result data. While it would be possible to link the VP
parallel branches in a Single Instruction Multiple Data
(SIMD) fashion, the necessity of haif aperture operation
overruled this approach. Similarly, the two legs of each
VP could be combined under one controller, but the
interchange of data at the SP was initially thought to
preclude this.

SKEWED
DATA

INTERFACE

Figure 3. Interpolation Filter of 4 MOPS in 2 Parallel
Paths

A W·idrow Filter application shown in Figure 4 is in
development. It utilizes one SP and 8 parallel VPs
composed of 2 parallel arithmetic elements (AEs). The
VPs, are under the control of 1 sequencer, in SIMD
fashion. Each AE calculates results and interchanges
these results with its paired AE, checking for computa
tional inaccuracies. In executing the Widrow filter,
there are 5.2 MOPS/ AE, which yield a total of 84 MOPS
of SIMD instruction. In this configuration, the 24 bit
coefficients are updated each cycle and rounded to 12
bits for use in the filter applications.

152

INPUT (

ANALOG(
DATA

SCALAR PROCESSOR

SYSTEM CONTROLLER
}

OUTPUT
ANALOG

DATA

Figure 4. SIMD Control Achieves 84 MOPS in 8 VP
Elements

The geometric processor is an embed processor in a
simulator for image processing calculations. The
computation rate is 9 MOPS for 6000 edges. It is
configured as shown in Figure 5, with VP 2 and VP
sharing a common controller and executing in a SIMd
fashion.

Figure 5. VP 2, VP 3 are SIMD Units for 80% of

Computational Time.

The Filter configurations, shown above, are in the
process of being built with Standard Electronic Modules
(SEM) of the U.S. Navy. All the control sequencer block
is available in this format. All but one of the data path
cards (the AM 2903 dual port accumulator/ ALU) are
available as standard modules. The GP is being
developed on 5 card types, from which both SP and VP
modules can be configured. The five distinct card types
(Controller, ROM, RAM, ALU, Multiplier) are each based
on the AM 2900 family components.

The Building Blocks processor approach to dis
tributed parallel processing is a viable concept, as the
variety of applications cited here demonstrate. Each of
the applications uses different algorithms, yet the same
approach of stacking the processors has been used to
achieve the desired computational throughput from the
basic 6 MOPS for the VP to the 84 MOPS for the 8
parallel dual VPs in the Widrow application. The VSP
architecture allows simplicity and reliability of design -a
cardinal trait of effective building blocks.

A NEW GENERAL-PURPOSE DISTRIBUTED
MULTIPROCESSOR SYSTEM STRUCTURE

Jin Lan
Department of Computer Engineering and Science

Tsinghua University
Peking, The People's Republic of China

Summary

One of the basic problems of organizing
a multiprocessor is to develop a good sys
tem structure, which, from the author's
point of view, should be modular, reconfi
gurable, partitionable as well as tightly
coupled.These properties are necessary for
forming a general-purpose system, in which
multitasking and multiprogramming can be
combined together to enhance the overall
system efficiency. As a possible solution
of this problem,a distributed multiproces
sor system structure was proposed in this
paper.

It is noted that among the great varie
ties of parallel and multiprocessor struc
tures bus (1)-(4) and array(5)-(8) are the
widely-accepted approaches to solving in
terconnection problem in many operational
systems. The proposed scheme tends to com
bine these two structures to form a new
one, taking advantages of simplicity and
possibility of using commercially avail
able models of processors from the side of
bus, and regularity and adaptivity to lar
ge-scale systems and high processing power
from the side of array. But the new struc
ture has 1 ts own special features, not
belonging to its "predecessors". Its main
difference from the bus structure is the
concept of "spli tted bus", realized by in
troducing switches for routing control and
elimination of bus contention. The basic
structure resembles a mesh connection, but
it is more flexible and has shorter mes
sage paths than the simple array. These
considerations lead to the structure shown
in Fig .1 for n *n processors. The circles
denote the three-pole bidirectional swi
tches, and the solid dots denote the pro
cessor-nodes.This structure can be redrawn
symbolically in Fig.2, where lines, cross
points and shaded triangles represent bus
segments, processor-nodes and switches
respectively. Each switch has three poles
connected to three processors at its
corners. This notation helps in revealing
some advantages of the structure owing to
the existence of connecting paths along
the diagonal directions of the array. This
fact causes a significant reduction of
message transfer distance between proces
sors, maximum length of whioh for an n*n
array equals to

d 2n - 2n (modulo. ')
max •

'
CH1569-3/80/0000-0153$00.75 (§) 1980 IEEE

153

Fig.1 Two-dimensional system structure

Fig.2 Graphical representation
of a. planar array structure

It means that n = 2k + 1 fork= 1, 2, •••
will be t~e optimum array sice. In compa
rison with other structures with message
distance O(log2N), this structure may take
some benefit for moderate systems with
total number of processors not exceeding
Ill ... 100, 6 because in this case dmax • 6,
while 2 = 64 < 100.

Another main characteristic of the pro
posed structure is the ability of dynamic
reconfiguration and programmable parti
tioning of the system. Two examples are
shown in Fig.,, in which the 4*4 array can
be transformed into a linear array or
ring, or two separate trees with 7 and 9
processors respectively. Another example
of transforming a 6*6 array into a 5-level
binary tree is shown in Fig.4.

linear array(ring) Double tree

Fig.3 Examples of reconfigured systems

-/(C>/-1
--1ii)i

------... '11- __ I
I I I

I I -1--,---,
I I

d
I __ ,

, I I I I L_. _ _L _ _j__ • _ _L _ _J
b c

Fig.4 Reconfiguration into a five-level
binary tree

A further improvement of the structure
can be achieved by using four-pole bidire
ctional switches with the symbol shown in
Fig.5. The number of different states of
the switch increases to 15, giving a great
flexibility of interconnections. The four
poles of it can be imagined to form three
planes perpendicular to each other. This
provides convenience in organizing a three
dimensional cube structure. Every one of
the n cross-sections parallel to any sur
face of this cube contains n*n processors,
forming just an array like that shown in
Fig.1. This makes the structure useful for
organizing an MSIMD system with total num
ber of processors N = n**3, so that the
message distaJ':lC,i.. between any two nodes is
reduced to 0 (~ N) , and the optimum size of
the system is extended to N = 1000.

Still another way of using the fourth
pole of the switch may be to add more mes
sage paths to the original array of Fig.1.
One of the modified arrays thus obtained
is shown in Fig.6. For clarity, only a
small part of the additional paths are
represented: the 6 paths from one switch
(by heavy lines), and the paths connecting
one processor to its 12 neighbours.

154

Fig.6
One-to-twelve
connections

Fig.5 Symbol of a 4-pole
bidirectional switch

~
I

I
--1

I 1 I I I .__ .. ____ _._ _ _,
I I I I I
L_ _ _J __ J_ - _J - _J

References

(1) R.Kober,and Ch.Kuznia, "SMS - A Multi
processor Architectare for High Speed
Numerical Calculations", Proc. 1978
Int'1 Conf. Parallel Processing (Aug.
1978 • pp. 18-24.

(21 E. P. O'Grady, "A Multiprocessor for
' - Continuous System Simulation", ms.a.

1979 Int'l Conf. 8jrallel Processing
(Aug. 1979), p. 30 •

(3]

(4J s. Uchida, and T. Higuchi, "A Mill ti
Mini-Computer System for Picture Pro
cessing Experiments and Its Intercon
nection Mechanism", Proc. 197§ Int'l
Cgnf. Parallel Processing (Aug. 1978),
pp. 88-94.

(5) W,J. Bouknight, et al, "The lllia:c IV
System", Prgg. IEEE, vol.60, No.4(Apr.
1972), pp. 369-388.

(6) K. Batcher,"MPP - A Massively Parallel
Processor", Proc. t979 Int'l Conf. Pa
rallel Proce§singAug. 1979), p, 249.

(7)

(a)

P.M. Flanders, et al, "Efficient High
Speed Computing with the Distributed
Array Processor", in High Speed Compu
ter and Algorithm Organization,ed. D,
J. Kuck, et al, Academic Press,(1977),
pp. 113-128.

U. Herzog, et al, "Performance Modeling
and Evaluation for Hierarchically Or
ganized Multiprocessor Computer Sys
tems", Proc~ 1979 Int'l Con!. Parallel
Processing Aug. 1979), pp. 103-114,

A MULTI-MICROCOMPUTER ARCHITECTURE
FOR AN ITERATIVE ALGORITHM

Dan I. Moldovan
Department of Electrical Engineering

Colorado State University
Fort Collins, CO 80523

Summary

This paper analyzes the inherent parallelism
in computation of some recursive algorithms. The
class of functions considered present at least
two levels of parallelism. A multi-computer arch
itecture is proposed for this class of problems.
This architecture can be easily implemented with
microcomputers, and a high degree of modularity
may be achieved. The operation of such architec
ture, including the computer communication and
timing was studied on a simulated model.

Consider the following recursive vector
function

x(k+l) f[x(k) ,x(k-1), ... ,x(k-m+l)] (1)

with x(k) E Rn and k € {0,1, .• .,K}. The vector
x(k+l) depends of its previous m values. The
iterative nature of the above expression derives
from the fact that the computational procedure
repeats when k is incremented. Equation (1) can
represent a system of difference equations de
scribing the behavior of some dynamic systems
commonly seen in control theory and signal pro
cessing. Sometimes, logic equations used in the
design of digital systems are put in the form of
expression (1).

The first level of parallelism in computing
(1) is achieved when all components of vector
x(k+l) are computed simultaneously. Next, let
us assume that each component can be written as

x.(k+l) = f.(¢. 1 ,cp. 2 ,. .. ,cp . ., ... ,cp.) (2)
i i i i iJ iri

where <Pij = <Pij [x.(k) ,x(k-1), .•. ,x(k-m+l)]. Notice
that all <Pij can be computed independently and
simultaneously if they are assigned to different
computers, provided that vector x is available.
This represents a second level of parallelism
which can be exploited. While further levels
might be possible, we consider only the first two
levels, and this is sufficient of many applica
tions.

Parallel processing is oftenly motivated by
the desire to increase the speed of computation.
Thus, especially under real-time conditions paral
lel processing might be the only solution to com
plex numerical problems. Some recent micropro
cessors, with their relatively low cost and high
computing power open new possibilities to imple
ment powerful multiprocessor systems.

One possible multi-computer architecture for
computing x(k+l) is shown in Figure 1.

CH1569-3/80/0000-0155$00. 75 © 1980 IEEE

155

Each function <Pij is assigned to one microcompu
ter µcij· The functions fi are computed on
microcomputers µci. The vertical buses Bi are
used to transfer data between µci and µcij• in
both directions. The horizontal bus B is used
to transfer tbe newly computed vector components
xi(k+l) from their source to other computers
µcjA· Each microcomputer consists of a micropro
cessor, memory, I/O and control logic. Because
of the iterative nature of the problem under
consideration, the memory of each computer is
relatively small.

Several operations of this computing struc
ture are possible. We choose to operate each
computer independently of others and run by
different clocks. However, the computer does
not start its processing tasks until the required
data has arrived. This is considered to be syn
chronized operation because all necessary compu
tations are performed within one iteration. The
synchronized operation is preferred here over
asynchronous operation because we want to main
tain a high degree of accuracy in computations.

The transmission of data from source to
destination is conditioned by the availability
of the respective bus and the readiness of the
destination. In the model used, a computer
cannot be interrupted to receive data while
processing.

For our convenience, we partition the activ
ities involved for one iteration in processes.
The following types of processes take place for
each iteration.

Pl. Transfer components of vector x(k) from µci
to µcij• as needed.

P2. Compute <Pij on µcij·

P3. Transfer the result <Pij from µcij to µci·

P4. Compute xi(k+l) = fi on µci.

PS. Transfer xi(k+l) from source to other micro
computers on B bus, as needed.

P6. Next iteration, k + k+l, update variables.

Our goal is to perform simultaneously as many pro
cesses as possible.

The study of such architecture was done on a
simulated model. The first step is to map the
mathematical problem of form (1) into an archi
tecture of the type shown in Figure 1. Since no
formal procedure for this mapping was established,
and hence is not unique, the aim of the simula
tion is to estimate the system performances and
to identify ways of improving them. We are not
interested too much in simulating the execution
of a program on microcomputers, instead, we simu
late the data flow between computers and the op
erational strategy. A simulated real-time clock
marks the timing events. For each time unit the
program scans all the microcomputers, determines
their status and initiates or terminates activi
ties. Various processing times and data trans
fers between computers, dictated by the mathemat
ical problem, are stored in a set of matrices.

The output of the simulation program pro
vides the number of time units required for one
iteration, the structure's speedup factor and its
efficiency, the utility factors for all microcom
puters and the number of bus contentions. An
analysis of such output data allows us to "tune"
the architecture according with the mathematical
problem to achieve the desired performances.

Example: Consider the following problem.

+

(3)

First, partition the problem such that only 6
computers are used. One possible way is:

<flu
')

a 11 Xi(k) + bll x1 (k) x1 (k-1)

<1>12 al2 x;(k) + b12 X2 (k) x2 (k-l)

4>21 a21 xi(k) + b21 x1 (k) X1 (k-l)

4>22 a22 x;(k) + b22 x2(k) x2(k-l)

fl = 4>11 + 4>12 and f2 = 4>21 + 4>22

Based on this partitioning of the mathematical
problem and knowing the characteristics of the

156

microcomputers used, one can estimate the execu
tion time for each function. It is feasible to
consider fluctuations in the processing speed of
these functions for different iterations. A uni
form distribution around a selected mean was
assumed in our simulation. For Intel 8086 based
microcompute_!::s, it is estimated that tij = 210
time units, ti = 10 time units and transmission A
between two adjacent computers is 5 time units.
One time unit corresponds to approximately 5 clock
cycles.

For this input data the simulation program
provided the outputs indicated in the first col
umn of Table 1. It can be seen that µc 1 and µc 2
are underutilized when compared with the rest.
Next, we want to further decrease the computation
time for problem (3) by introducing more
computers.

6 µc 10 µc

~peed up factor 3. 72 7.20

jEfficiency 0.62 0. 72

!11cn utility 0.98 0.89

!µcl2 utility 0.97 0.93

lµcl3
utility Uot used 0.97

µcl4 utility Not used 0.82

jµc21 utility 0.95 0.87

µc22 utility 0.97 0.93

µc23 utility Not used 0.86

µc24 utility Not used 0.90

µc 1 utility 0.12 0.49

µc 2 utility 0.10 0.46

Iteration time 243 t.u. 125 t.u.

Table 1.

This is done by assigning 4 computers to compute
f 1 or f 2 instead of only two as used previously.
The results are summarized in the second column
of Table 1. Notice that the computation time per
iteration is reduced by almost half and the utili
ty factors for µc 1 and µc 2 improved while the
others still remained high.

PARALLEL NONLINEAR MINIMIZATION BY CONJUGATE DIRECTIONS

Efthymios C. Housos and Omar Wing
Department of Electrical Engineering

Columbia University
New York, NY 10027

Summary

In the development of parallel algorithms for
minimization new requirements, such as minimi
zation of the communication time and the exchange
of data among processors, become as important as
the classical requirements of good convergence and
numerical robustness. In this paper algorithms
suitable for the solution of the unconstrained
minimization problem on a parallel computer are
presented. The algorithms involve the parallel
execution of linear searches along conjugate
directions. The basic assumptions about the
parallel computer are the following:

1) Every processor is able to exchange informa
tion with every other processor.

2) The communication time is important and
should be minimized.

The algorithms
direction ty~e
ported in [l j.

developed are of the conjugate
but are different than those re-

The importance of conjugate directions for
the solution of the unconstrained minimization
problem has been realized by many researchers[s,6].
The conjugate direction algorithms are based on
the conjugacy properties of a set of vectors with
respect to a certain matrix. Namely, a set D
{d., i=l, .•• ,n} consists of conjugate vectors with
re~pect to a matrix H, if and only if

(d., H d.) = 0
-1 -J = 1

for
for

i .; j
i = j

Assuming that there is some way of finding a set
of conjugate directions given a matrix H and
using theorem 1 below, the solution of the problem

min J(~)
x

(1)

where J(~) is quadratic, could be found in one
parallel step involving a linear search along each
of the directions.

Theorem 1
t

The minimum of a quadratic function, J(~)=~ H ~ +
btx + c, can be found by searching through a set
D={!!i_,i=l, ••• ,n} of conjugate directions with
respect to H once and only once in any order.

This theorem implies that if a set of n con
jugate directions with respect to H and a set of
n processors were available then the solution of
(1) could be found in one major parallel step and
an additional step that"i°nvolves the addition of
the local minima. Of course, this is only true if

CH1569-3/80/0000-0157$00. 75 © 1980 IEEE

157

J(x) is quadratic. If J(~) is not quadratic the
above theorem would suggest finding a set of con
jugate vectors with respect to the Hessian of
J(~). Thus the major problem becomes one of find
ing a set of conjugate vectors in parallel. That
is, develop methods of producing conjugate vectors,
with respect to a matrix, which are amenable to
parallel computation. The difference between the
serial and the parallel algorithms comes from the
fact that for parallel computation it is necessary
to estimate all the conjugate directions before
any linear searches are performed. Once this is
achieved, all the linear searches may be performed
in parallel and, hence, a large part of the total
computation time is thus parallelized. This is
because a linear search usually involves 3-5
function evaluations which can be time consuming
for a fairly complex objective function. The
parallel execution of linear search procedures
also insures that the utilization of the parallel
computer will be high because the communication
time (time for the exchange of information among
processors) will be a small fraction of the total
computation time. It has been shown that for the
class of parallel computers such as the SIEMENS
SMS 201 the ratio of the communication time to the
actual computation time is the most critical f ac
tor in achieving a reasonable "speed-up" [2].

The Gram-Schmidt method could be used for
finding a set of conjugate vectors with respect
to a matrix but this method is both computational
ly inefficient and not readily parallelizable.
For these reasons it would be desirable to have
methods of finding conjugate or semi-conjugate
directions which are amenable to parallel compu
tation. An algorithm for the solution of (1)
based on two theorems proved by M.J.D. Powell [3]
will be presented next. Details about the algori
thm and computational experience in solving power
system problems using this algorithm can be found
in [4].

Algorithm

Choose a set of orthogonal vectors as the
initial search vectors. Let these vectors be
d., i=l, ••• ,n, where n is the dimension of the
pfoblem. Choose an initial point ~O and calcu
late J(~O).

~· Find the n one dimensional minima along
the n search vectors that is,

min
:>..

i = 1, ... ,n

where :>... is the optimum steplength. Let
l

x. = XO + \~ (2)
--i

STOP if a solution has been found. This step can
be implemented in parallel using up to n pro-
cessors.

Step 2. Set
n

x = x 0 + i:: /...d. (3) -n+l - i=l i--i

or calculate
n n

J(2!.0 + a.*(i:: /...d.)) =min J(~0+a.(_i:: /..i.!!.,))
i=l i--i a · i=l c-.1.

n
and set X = XO +N* " ' d -n+l ~ ~ Ai •

i=l --i

~· Set xO = x. such that - l.

J(~) min J(~) k 1, ... ,n+l (4)
k

Usually J(~) = J(~+l)

Step 4. Normalize the current search directions
with respect to the Hessian matrix of J(~). That
is, estimate (~,H ~), i=l, .•• ,n, and set

_,
-'=-i

d.+-----
-i

(5)

(ii,H~)~

where H is the Hessian matrix of J.

~· Update the search directions using an
orthogonal matrix P as follows:

n
i:: p.k .<!,_

k=l l. -,,._
i=l, • • 11 ,n (6)

That is, every new search direction is a linear
combination of all previous search directions.

Step 6. Set .!!_, + d!· a. i=l, ••• ,n
~ --i l.

where a.. is (with equal probability)
either 11 or -1.
GO TO Step 1.

As it can be seen, the algorithm involves primari
ly the parallel execution of linear searches along
semi-conjugate directions. An orthogonal matrix
P is used in updating the current set of search
directions to another set of directions, which is
closer to being conjugate with respect to the
Hessian matrix than the original set of search
directions. More details about the significance
of the orthogonal matrix P and test case results
using different orthogonal matrices can be found
in [7].

[1]

[2]

[4]

[5]

[7]

158

References

E.C. Housos and Omar Wing, "Solution of the
Load Flow Problem by a Parallel Optimization
Method," 1979 Power Industry Computer Appli
cations Conference, pp. 332-335.

R. Kober, "A fast communication processor for
the SMS multiprocessor system," Proc. Second
Sympositim ort Micro Architecture, M. Sarni.
J. Wilmink, R. Zoks (eds.), EUROMICRO, 1976,
pp. 183-189.

M.J.D. Powell, "Unconstrained Minimization
Alorithms without Computation of Deriva
tives," Report T.P. 483, A.E.R.A. Harwell,
United Kingdom, April 1972.

E.C. Housos and O. Wing, ''Parallel Nonlinear
Minimization Methods with Applications to
Power System Problems", SIAM Conference Pro
ceedings, "Electric Power Problems: The
Mathematical Challenge", Seattle, March 1980.

M.R. Hestenes and E. Stiefel, "Methods of
Conjugate Gradients for Solving Linear Sys
tems. II Research Journal of the National Bureau
of Standards, Vol. 49, pp. 409-436, 1952.

M.J.D. Powell, "An Efficient Method for Find
ing the Minimum of a Function of Several
Variables without Ca.lculating Derivatives,"
Comput. J., 7 (1964), pp. 155-162.

Efthymios C. Housos, "Parallel Nonlinear
Optimization Methods with Applications to
Power Systems," Ph.D. Thesis, Columbia
University, 1980.

A PARALLEL ALGORITHM FOR SOLVING

BAND SYSTEMS OF LINEAR EQUATIONS

Ladislav HALADA

Institute of Technical Cybernetics

Slovak Academy of Sciences

809 31 Bratislava, Czechoslovakia

Summary

In this paper a new parallel direct

algorithm for solving band systems of li

near equations is discussed. The algorithm

is similar to the "shooting method" pro

posed by Bank and Rose [11 and to the LU

decomposition mentioned by Sameh and

Kuck [2]. However, the formula from which

the algorithm is derived is believed to

be new.

Let us consider linear systems of

equations Ax= b, where A is a regular

band matrix of order n with bandwidth

(2m+ 1), i.e. aij= 0 for li-jl> m and

ai,i-t-mj:O for i"" 1,2, ... ,n-m. We assume

a frequent situation in practise, m << n.

The algorithm is based on the follo

wing assertion [31. If A is a nonsingular

matrix the first m components of the so

lution vector x satisfy

(1)
zn-m'tl

(2)
zn-m+l

(m)
zn-m+l xl

(OJ
zn-m+l

(1) (2) (m) (0)
zn-mt2 zn-m+2 zn-m+2 x2 z

n-m+2

- . (1)

z
(1)

z
(2)

z
(m)

x z
(0)

n n n m n

where z~i)is the j-th unknown of the sys
J

CH1569-3/80/0000-0159$00. 75 © 1980 IEEE

159

tern

T z = c. i = 0,1,2, .• ,m. (2)
].

Here, co= b and Ci' i= 1,2, ... ,m is the

i-th column of A. The matrix T is modi-

fied matrix A. It originates from A by

omitting columns c 1 ,c2 , .•. ,cm and by ad

joining columns -en-mtl'"""' -en after
the last column of A, where e. is the

J
j-th column of the identity In. Thus, T

is a lower triangular matrix of order n

with bandwidth (2m+l) •

If x 1 ,x2 , ... ,xm are known, solving

the system

TY= d (3)

where components of the column vector d
m

are given by di= bi - L a .. x.,
j::l l.J J

i = 1 , 2, ... , n, we can obtain other compo

nents of x, because Yi= xi+m' i= 1,2, ... ,

n-m holds.

Thus, the algorithm consists of the

following stages:

Stage 1. The solution of the sys

tems (2). Let us use for solving (2) Al

gorithm II of [4] . A simultaneous compu

tation of (mtl) triangular systems dif

fering from each other only in the right

hand side by this algorithm requires

't'(l) = (2-t-log 2m) log n -

- (1/2) (log22m+log 2m)~ 3 time steps u

sing no more than 3m2n+mn-8m3 processors(a).

Stage 2. The computation of the sys

tem (1) . Solving this dense system of or

der m using Gaussuan elimination with pi

voting requires 'l:'(2J:: 3m(log m-1) + 0 llog2m)

steps using (m-1) 2 processors.

Stage 3. The computation of the sys

tem (3). Solving (3) by Algorithm II with

the computation of di requires rc:'(3) = 't(l) t

+ log m+2 steps using no more than

(1/2) m2n+(l/2) mn-m3 processors.

Unfortunately, the algorithm fails

for the same reason as banded triangular

solvers. It suffers from the possibility

of over- or underflow. On the other hand,

it does not fail if all of the leading

principal submatrices are singular and it

can be easily modified when the number of

available processors is much less than the

ord~ of the system, e.g. by using a prac

tical band triangular system solver dis

cessed in [5]. However, we have proved

the following theorem.

Theorem. Let A be a regular band ma

trix of order n with bandwidth (2m+l),

where m << n. Then Ax :: b can be solved on

SIMD type parallel machine in

(4+2log 2m) log n+O(mlog mJ time steps u-
2 sing no more than 3m n+O(mn) processors.

We remind the .reader that the algo

ri thrn can accept effectively matrices

with a different number of non-zero super

and subdiagonal lines or matrices of the

semi-band form, but the elements of the

uppermost line above diagonal has to be

non-zero.

(a) Throughout this paper log p = flog 2 p 1,
and time is measured in steps.

160

In addition, if A is a matrix of

Hessenberg form or more general of regu

lar m-band triangular form (a .. = 0 for
l. J

j-i>m and a. ·+ =t=-o for i=l,2, •.. ,n-m)
i,i m

the equations (1)-(3) are valid, too, but

T is dense lower triangular matrix, now.

In such a case, if one applies Algorithm I

of [4] for the computation of (2) and (3),

the total time for solving Ax= b will be

log2n-t3log n+O(mlog m) time steps using

no more than (15/1024) n 3 + O(mn2) proces-

sors.

References

2 R.E. Bank, and D.J. Rose, "An O(n)

Method for Solving Constant Coeffi

cient Boundary Value Problems in

Two Dimensions~ SIAM J. Numer. Anal.

/Sept., 1975/, pp. 529 - 540.

[2] A.H. Sameh, and D.J. Kuck, " On

Stable Parallel Linear System Sol

vers", Journal of the ACM /Jan.,

1978/, pp. 81 - 91.

[3] L. Halada, "A generalization of Syl

vester~s Identity", /to be publis

hed/.

[4] A.H. Sameh, and R.P. Brent, "Solving

Triangular Systems on a Parallel

computer", SIAM J. Nurner. Anal.

/Dec., 1977/, pp. 1101 - 1113.

[5] s.c. Chen, D.J. Kuck, and A.H. Sa

meh, "Practical Parallel Band Trian

gular System Solvers", ACM Trans

actions on Mathematical Software

/Sept., 1978/, pp. 270 - 277.

LSI IMPLEMENTATION OF MODULAR INTERCONNECTION NETWORKS
FOR MIMD MACHINES

L. Ciminiera and A. Serra
Centro Elaborazione Numerale dei Segnali
c/o Istituto di Elettrotecnica Generale

Politecnico di Torino
C. so Duca degli Abruzzi, ··n. 24 - 10129 TORINO - Italy

Summary

This paper presents the LSI implementation
of a class of permutation networks including
omega, indirect binary n-cube and flip networks.
Since the set of interconnection networks
considered belongs to the class of delta
networks, defined in (1] , the control functions
can be easily distributed among several devices.
A new control scheme, suitable for MIMD machines,
which allows fully asynchronous operations,
is also introduced.

The parallel implementation of this
class of interconnection networks, without
recirculating or pipelining, is discussed
in this paper. The minimization of transmission
delay and implementation cost is considered, ta
king into account the constraints imposed by the
current integrated circuit, IC, technology.

The basic block, replicated for construc
ting the whole network, is a one rum omega net
work,with n=2p instead of the 2x2 crossbar switch.
In such a way the total number of modules is re
duced by the factor n/2 · l~ n and the complexity
of the resulting chip is moderate. Since Wu and
Feng in [2] state the topological equivalence
between a baseline network and the simplified
manipulator, flip, omega, reverse baseline and
indirect binary n-cube networks, using the nxn
omega network as a basic component, it is possi
ble to obtain each of the previously mentioned
networks. In the following it will be considered
that the number of inputs and outputs of the
whole network to be implemented is equal to N=2m
with m>p. Another parameter which should be taken
into account is the number, B, of signals that
are exchanged between each transmitter-receiver
pair;it will be assumed B1 unidirectional signals
and a2 bidirectional signals, with B1 + B2= B.

Each integrated circuit, performing the
switching function of a nxn omega network,allows
the parallel transmission of w1 unidirectional
signals or "'2 bidirectional signals between each
input-output pair. Obviously, the larger the va
lues of n, w1 and w2 are, the smaller is the num
ber of chips required to implement a given net
work of the class considered. In effect, n, w1
and w2 affect both the complexity of the circuit

CH1569-3/80/0000-0161$00. 75 © 1980 IEEE

161

integrated in a single chip, and the number of co~
nection~(pins) required; hence the values of n, w 1
and w2 should be determined so that the con
straints imposed by the current integration and p~
ckaging technologies are satisfied. The number
of connections required by the implementation of
a unidirectional nxn omega network ,-'2 (n, w1) , is
given by the following formula:

assuming a different control signal for every 2x2
crossbar switch, so that the maximum number of
allowed presentations may be achieved (nn/2).

The complexity of the implementation of
one nxn omega network depends on the number of
gate levels. Using 2 lg n levels, the complexity
is O(nl~n). Implementing the same switching func
tion using only two gate levels, the circuit ob
tained is faster than the first implementation
and the number of gates required is given by the
following formula:

G(n,w 1) = w p(n+l) (2)

For bidirectional nxn omega networks it is possi
ble to derive analogous formulas.

From equations (1) and (2) it is possible
to deduce that the value of the ratio (number of
gates)/(number of pins) is smaller than the cur
rent values obtained with the LSI technology; thus
increasing the values of n, w1 and ~ , the pins
available are saturated when chip area is still
available.

One of the main design goals in MIMD inter
connection networks is to distribute the routing
functions among several uni ts, each of them con
trolling a subset of the whole network, so elimin~
ting the centralized control, which introduces
performance and reliability battlenecks.

Since the ratio gates/pins of the previous
ly IC proposed is very small, one might guess that
it is feasible to put in the same chip both the
connecting subnetwork and its control unit. The
latter needs a set of input and output signals,
therefore many other pins are required. A more
attractive solution is depicted in Fig. 2, the
control of a subnetwork, built with the !Cs propo
sed here is concetrated in a dedicated chip. It

broadcasts the command signals to the unidirectio
nal (A,B) and bidirectional (C) switching elements

of the corresponding subnetwork. The mechanism
of searching and allocating the path requested

through the network is described below • The re

quest generated by a processor is issued at the
input to the control unit of the subnetwork in

the first stage, connected with that processor;

each request is issued with the binary output de
vice address. The control unit in the first stage

receives the request signal and lg2 n bi ts of the
output device address. This set of lg ';!1 address

bits is chosen on the basis of the type of network
implemented. In a omega network, for instance,

the most significant lg f1 bi ts are connected with

the control unit of the first stage subnetwork,

the next lg2 n most significant bits are connected

with the second stage control unit and so on. On
the basis of the state of the switching elements,

the active requests and the addresses related to

them, the control unit decides whether or not to

accept the request. If the request is accepted

at the first stage, a request for the second sta

ge is generated and the status of the switching
elements is changed to accomodate the new connec

tion. \'/hen the second stage receives the request
issued by the first stage, an analogous mechanism

starts. Thus, the path requested is searched for

and allocated, stage by stage, until the target
outlet is reached. If, in any stage, the control

unit detects a conflict between the requested

path and the connections active at that time, the
status of switching elements is not changed and

a busy signal is issued back to the processor
through the previously allocated connections. \'/hen

the busy signal is received by the requesting pro

cessor, the associated request is turned off and,

re-issued later. The connections are kept until

the processor, which issued the request, termina

tes the transfer of information at that time,
it clears the request and releases, stage

by stage, all the trunks which compose the
whole connection. A control unit for one

nxn omega network, performing the functions abo
ve specified, could be implemented using an asyn

chronous sequential circuit, which may be integr~
ted in a single IC. Using formulas (1) , (2) and

analogous formulas for bidirectional nxn omega

networks, it is possible to find the values of
n, w 1 and w 2 leading to the minimum number of
chips required for implementing a given network

of the class considered in this paper.' The re

sults of this calculation, for different values

of the pins per package available, Po, are shown

in Table I, where the values of n, w1 and w2 are

calculated: for a network having N=l6, B1 =26, B2
=16. In this table , the values of the number

of chips, C, required for implementing the above

specified network, are also shown. From Table

I it can be seen that, using the implementation

proposed, few chips are required to built an in

terconnection network.
References

[1]Patel J .H., "Processor-memory interconnections

for multiprocessor", Proc. 6th Ann. Syrnp. on

Computer Architecture, April 1979,pp.168-177.

[2]\'lu C. and Feng T. "Routing techniques for a
class of multistage interconnection networks",

Proc. 1978 Intern. Conf. on Parallel Processing,

August 1978, pp. 197-205.

,..,., .. !
TABLE I F

busy-out,

0 0
1 8

2 1
3 9

4 2
5 10

6 3
7 11

8 4
9 12
10 513 11

12 6
13 14
14 7

15 15

Fig.1. 16xl6 indirect binary ·'4·-c.::_

be using eight 4x4 omega networks.

Po 40 60 120

n 4 4 4

Wl 4 6 4

w 3 6 13
2

c 27 18 12

Fig.2. Interconnection oetween
central and switchiog units.

162

.ltNOTHER APPROACH TO MAKING SUPERCOMPUTBR BY
MICROPROCESSORS--CELLULAR VECTOR COMPUTER

OF VERTICAL AND HORIZONTAL PROCESSING
WITH VIRTUAL COMMON MEMORY

Gao.Qing-Shi Zhang Xiang

(Institute or cromputing Technology, Academia Sinica)

Summary

ln this paper*, Starting from the
"Pipeline Vector Computer of Vertical and
Horizontal Processing" (m ')(np type) "(1}
which is based on small and medium scale
integrated circuits, then we briefly des
cribe "Pipeline CVCVHP with Common Memory"
(m)<n type, m x np type) (2 }, which is
introduced because of the development of
large-scale integrated circuits. This is
a new type of vector computer employing a
multiple data stream and multiple instruc
tion stream architecture.

Afterwards, we emphasize a new type
or supercomputer, i.e. CVCVHP with "Virtual
Comm.on Memory" rather than with "Comm.on
Memory". 'rhis system may consist of thou
sands of cells (or microprocessors) (3J.

'rhis system has the features as fol
lows:

1. The main part of the system can be
implemented by microprocessors. one calls
it cell. (It is desirable that the design
of microprocessors will well suit the
system configuration). '!here is an arith
metic unit, an instruction unit, a main
memory (S2) and a bipolar memory in every
cell. The bipolar memory is used ror look
-ahead and post burrers (L), operating
registers (R), local instruction memory
(S3) and high-speed memory (Sl).

* Part of this paper was completed
in Nov. 1973. and part of it was completed
in Nov. 1977.

CH1569-3/80/0000-0163$00. 75 © 1980 IEEE

163

2. ·rhe important dirf'erence between
this system and another microprocessor
complex system is that the rormer does
not need a particular ~.

3. According to the physical con
struction, the system is a multi-dimen
sional array processor, its memory is
distributed. According to the functions,
or rrom the view of user, it is a vector
computer, its memory is common. The user
can program in vector augmented language
on a unified memory space. 1'he move or
vectors among cells is automatic, and is
overlapping with the execution or arith
metic.

4.According to the different requ
irements of various users, the number or
cells can be, B, 16, up to thousands or
tens or thousands, the system can be used
alone (with the addition or 1/0 periph
eral processor) or can be connected to
another large system. or course, a cell
can also be used alone (with the addition
or I/0 interface).

5. Th~ system can execute two kinds
o:t' parallel computation "multi-instruc
tion stream" and "multi-data stream". It
adopts the principle of virtual common
memory, the erficiency is higher and the
range of applications is wider than
conventional array or vector computer
(with same capacity, same speed and same
number of cells.)

6. As a simplifies system, the instru
ction control unit can be omitted from

all the cells, then the high-level langua
ge may be the same as1 conventional vector
computers (Such as STAR-100, CRAY-1).

7. A Virtual memory system is adop
table.
An example:

Using 1024 cells to construct a ten
-dimensional array (210). The memory
capacity of each cell is 16K words, 32-64
bi~s per word. The speed of each cell is
1 MIPS, work frequency is 15MC, 16 bits
transmission with parallel and serial
mode, the maximum moving time of fetching
process is 1. 7 "'2. 6 µs, the peak value of
system is one billion instructions per
second.

In this system, solving a linear

algebraic equation set of 4000 orders with
the elimination method of column main

elements, the efficiency could reach 66

per cent. lf take appropriate measures,
the efficiency could even over 98 per cent.

~ :--k-~~ u'.'
r11 .•

, • I

~-r ~- -:i.<!~1:1J_~
(memory) memory)

Fig. 3. i,.s..u..iiu,.l.!i!tL---------i

+> Arithmetic
i::•n unit
~§
+'
Or-I R L s1 s3 ::I 0
~~
+''d s2 (Main) ~o
HO memor1
{O)

REFERENCES

(1) Gao Qing-Shi, Zhang Xiang, A scheme
of' Pipeline Vector Computer o:t' Ver
tical and Horizontal processing.
lnher report ln 1973, 11 and 1975. 7.

~2~ Gao Qing-Shi, Zhang Xiang, On the
Pipeline Cellular Vector Computer of
Vertical and Horizontal Processing.
Acta Electronica Sinica 1978 No. 2.

[31 Gao Qing-Shi, Zhang Xiang, A general
-purpose cellular Supercomputer-CVCVHP
With Virtual Common Memory.
Chinese Journal of Computers Vol. 2,
No. 1. 1979.

m pipeline processors
/~------""------

Uni:t'ied
instruction!
control

Look-ahead t /
vector bu:ff'ersl' f ____ .__ _ __, ____

1 Common memory Post vector I ..
buffer J

Fig.l. Pipeline Vector Computer of V.H.P.

Cell Cell

(1) (N-1

IM C'entral
IC

r---- ---1

1 EXtensible I
1 medium speed I

mass memory 1

High speed
buffer memory

(Small capacity) L _________ _

Fig.2. Cellular vector computer of V.H.P.
with "virtual common memory."

164

An Algorithm of Parallel Processors for 'lheorem
Proving and Its Applications

Xian Chang Zeng
Institute of Computer Science
Computer Science Department

Wuhan University
Wuhan, Hubei

People 1 s Republic of China

Abstract. An algorithm on parallel processors
is discussed for solving three artificial intelli
gence problems. 'lhe Robinson's resolution prin
ciple in the field of theorem proving is simpli
fied. A formula is obtained to calculate the num
ber of universal trails in a digraph. And the
order of a free distributive lattice can be e:xpli
ci tely expressed by the lengths of given generat
ing chains. '!he main results are described in
'lheorem R, Theorem E, and 'lbeorem D.

KEY WOR:O.S AND PHRASES: deductive algorithm,
synthetic aJ..gorithm, Wuhan Parallel Processor, re
solvent of well-formed formulas, universal trail
on a digraph, the order of a free distributive
lattice generated by chains, the speedup of.a par
rallel algorithm.

(1) Introduction

'!his short paper describes some results ob
tained with Wuhan Parallel Processor (lfuPP), 11hich
is intended to speed up digital computing by use
of parallelism in Wuhan University, and has been
studied by our group for almost two years. WuPP
is a sy-stem of computers for Mn.ID parallel proces
sors intended to support programs llhich consist of
many independent parallel subroutines { l] •

'!he goal for speed up computation with WuPP
is restricted to much lower levels of hardware and
software than many other llDlD machines. At this
low level, parallelism is to befound in virtually
every program, and the softwares must be rewritten
or reorganized to speed up computation. But the
main subject of multiprocessor research has been
the effort to discover parallel programs 11hich
constitute the independent parts of the principle
computation.

We have examined to solve ma.n;r problems llhi'('.h
can be programed by parallelism described above.
Among the idealized models of parallel muJ. t~ro
cessing we have found the best ones are the fol
lowing artificial intelligence problems, 'Whose
general solutions can not be obtained :Lmmediatel;y.
\fe should examine many special cases, and execute
ma.n;r program8 on WuPP, then from the output datas
we could find some desired results, and discover
the algorithm for the general solution. Ye have
considered the follOll'ing three problems.

(2) '!he Robinson's problem

Let F 1 , Fi 1 ••• , F11. be n given well-formed
formulas, and G be another formula of the first

CH1569-3/80/0000~0165$00.75 <§) 1980 IEEE
165

order logic. If the formula F1 I\ F.i, f\ ••• A. F .. ~ G
is valid, then G is called a consequence of F 1 ,

F:1,, • , • , F.,,_. '!he formula F 1 A F,_t1. ••• AF,.. 4 G is
called a theorem, and the formulas F,, Fi,, ••• ,
F..._ are axioms (2J.

'!he particular formula G is also called the
conclusion of the theorem • A demonstration that
a conclusion folloliS from a.xi.oms is called a
proof. A procedure for finding proofs is called
an algorithm of mechanical theorem proving in
which a major breakthrough was made by Robinson.
What is the a1gorithm of mechanical theorem prov
ing, it is called the J. A. Robinson's problem.

In the field of theorem proving, the Robin
son's resolution principle is well- known. Accord
ing to this principle, the algorithm of mechanical
theorem proving can be implemented on a digital
computer, and we have programed such an algorithm
on WuPP. Now we define such an algorithm with
deduction as the following.

As described above, we know 'What a particular
formula G is called the conclution of a set F which
contains n given a.xi.oms F1 , F~, ••• , F~. A deduc
tion of G from F is a finite sequence 0 1 , G:i., ••• ,
Gk of formulas such that Gl either is a formula
in F or a resolvent of formulas preceding Gi, and
GI< = G. A. deduction of empty formula from F is
called the proof procedure· of 1, or the inconsis
tency of F is to be proved. '!he method used to
get the proof procedure is called the algorithm
for proving F.

We divide such algorithm into two kinds, Ac
cording to their usefulness for different problems.

'lh.e first is a deductive algorithm, which is used
to deduce the conclusion of a theorem fr& some
a.xi.oms, as many authors had done in the field of
theorem proving [l, 3]. But in our group the fol
lowing theorem is always utilized to simplify the
softwares and the parallel programs executed on
WuPP for speed up computation.

THEOREM R. Let P and Q bP. two given sets.
If there exist two sets L11 L.i.. such that P:: L1V A.,
Q=La..Y B, L,::::,..,L:p then PA Q is a subset of AVB.

If P, Q are formulas of the first-order logic
then AV B is the resolvent of P and Q. '!his
theorem is equivalent to the Robinson.• s resolution
principle, and can be easily proved. We need no
background in symbolic logic to prove it, only a
basic knowledge of elementary set theory is enough.

· Shdlariy 1 we can aimplify some other theorems in
the field of' theorem proving.

'!be second is a synthetic al.gori thm which is
used to get the general. result of' a problem from
given conditions. Sometime we shaJ.l collSider some
problems, from which we can obtain only partial
datas and certain results at special. conditions,
but we can not make precise decision abQut the
conclusion. For example, how man;r universal.
trails in a given directed graph [4J, what is the
order of' a free distributive lattice generated by
n given elements £6). "IYe can not get immediately
the general. solutions or such .problems.

We should examine llllU\V' special. cases, SOJlleiio
times n need some programs and a lot of' computing
110rks on parallel processors, then the algorithm
for general. solutions might be found by synthetic
method. We have got some results with WuPP, and
shall state some in the following.

(3) 'lhe Euler's problem

An eulerian trail in a digraph G is a closed
spanning waJ..lc in which each arc of' G occurs exact
ly once. A digraph is eulerian ii' it bas such a
trail [4]. '!his means an eulerian digraph can be
traversed by such a trail. '!be number of' eulerian
trails of' a digraph was obtained by '1\1.tte in the
year 1941 [$].

Ii' a given digraph H can be traversed by at
least t eul.erian trails in which each arc of H
occurs exactly once,, and these t trails are &?'
ranged in a fixed order. 'lben ereey such arrange
ment is defined as a universal. trail of' H. What
is the number or universal. trails in a digraph, it
is called the Euler's problem.

Ii' H is a general. digraph, it may not be eu...
lerian, then the outdegree and indegree of' some
vertex may not be equal. Let p be a point dis
tinct from any vertex v of' H, then we can join p
and v nth suitable or no directed a.res to make
od(v) = id(v). When v runs over all vertices of'
H, we get a new digraph D, which is cal.led the
coD:responding graph of' H, and this D should be an
eulerian ones.

We have examined many special. digraphs with
their corresponding graphs, and calculated the
universal. trails on WuPP duing the past two years.
We have the following:

'JHF,OREM E. Let H be a general. digraph, ac
cording to the method described above, we can con
struct an eul.erian digraph D corresponding to the
given H. 'lben the number u of' universal trails of
H is equal to the value of' eulerian trails or D,
it can be calculated by the i'ormul~

n.
u ::::: c • TT < d. - 1 > !

i::.1 I<

llbere d; :id(v.:) and C is the CODDl!On value or the
cofactors of lloct 1 and n is the :rmmber of vertices
of H [4].

166

'lhis theorim is a generalization of the re
suU or i\ltte and Haraey' [4, 5'). Let G BE a givq
eulerrian digraph, ii' the eulerian property is
preserved, bow man;y ~ can be tolJJld to orient
its arcs. 'lhis ia still an open question. But we
have examined some eulerian digraphs on ll'uPP, and
found that the number w of' wq8 to orient a ge
neral. digraph H can be calculated by w = 21(,.

(4) '!be Dedekind's problem

Let P, , P .u ••• 1 P,., be n given propositions 1

llhioh may be used to generate well-to:r.med formulas
with finite many applications of' tlconjunction" and
"disjunction", bu.t the application or "negation"
is not permited. 11bat is the munber or non-equi
valent formulas generated b,y n given propositions
with applications or conjunction and disjunction,
it is cal.led the Dedekind 1 s problem.

'lbis problem was considered in 1897 b,y DEDE
KIND {6]. He stated as the following: Let P1 , P.i,
••• , P.,., be n positive integers. Where the l&W' ot
conjunction means to find the greatest COllllllOn di
visor, and the disjunction means to i'ind the least
cammon mutiple.. What is the number or integers
generated by P1 , P~u ••• 1 P11. with finite many ap
plications of conjunction and disjunction. It is
the original. form ot Dedekind's problem.

In the theory or lattices the problem is
stated as the following1 Let L be the tree distri
butive lattice with n geIJerators, i'(n) be the
order or L, i. e. the total number of' elements
contained in L including zero and unit. What is
the exact expression or r(n)' it is the form of
Dedekind's problem stated by Birkholt (7). We
have knOllll that t(l) = 31 t(2) = 6, 1'(3) == 20,
t(4) = 168, t(.5') = 7581, t8], llhich a.re agree with
lluroga • s work and can be calculated by hand.
Using computer, Ward in 1946 obtained f(6) is
equal to 7 ,818,354 [9] •

It took about thirty three years, noboc:IT
could accept or refuse the Warci's result. Now
we have executed programs on 1fuPP, and we are
confident the result obtained by Ward is right.
And even more we have an algorithm to calculate
.f(n) for n is greater than 6, llhich will be pub
lished in another pape:D.

From the proposition calculus, we know that
i'(n) < 2~"", even using computer it is difficult
to find out the explicit expression or f(n~. In
the following we shall make a little generaliza
tion by considering the problem in another wa.y.

Let L(k) BE the tree clistributive lattice
generated by the following k chains with lenghs
r, s, ••• , t respectively:

O:: x,0 < x11 <Xu.<••• < x,,,.(x,,,.,.1=I,
0 = Xio' X,u <:: lli:i..<•." ~ x,,~ < Xa,sff =I' .•.•...•....••....••.
0 = Xi.a<:: xtt<X'f.:~ • • '(Xrc,,t'(X~,tff =I'

llhere o, I are the zero and unit elements or L(k)
respectively.

For k ~ 3, we have completely solved the Dede
kind's problem, i. e. we can e:xplicitly e:xpress
the order o.f .L (3) in terms or the lengths of the
generating chains. '!be resul. t is the following:

THEOREM D. Let L(3) be the free distributive
lattice generated by three chains or lengths r, s,
t respectivelly. And let fr, s, t]be the order
or L(3), then we have

[r s t]- { Cr±s+t+2)!!r!!s!!t
' 1 -r+s+i) !!Cs +t +l) !! (t+r·+li

where r!!= r!Cr-1)!. •• 3!2!1! when r:s.=t:::2, 110

get [2, 2, 21 = 98o. When t =- o, then we have
tr, s) = (r+s+2)!/(r+l)!(stl)!, which 1raS ob

tained by Birkhoff L7l.

When k = 3, it is called the case or 3 vari
ables for Dedekind 1 s ptoblem. We have aiso ob
tained some special resul.ts for 4, 5, 6 variables.
For example, we have the follow.l.ng explicit forms:

[1, l, 1, tJ=(tt5)+1s(t!6)+48(ti1J

(S) (stt)I
'Where \. t :: ---syl;y-.:., and we have

r1. 1, 2, t] (t+4)·[ie ~ 6)+ 2i (tr 1;
+ .!±f (t ; B) t 6~l(t ii 9JJ.

[1, 1, 3, tJ=(t t 7)t98(t ! 8)+2580(\~ 9)
26668(t i210) t u130e1t nJ+183953(t l~ 12).

[r,s, t} [r,s, t] = [_r,s-1,t + lJ· [r,s t l, t-1)
+(r-1,s,t)-(rtl,s,t).

'!be last formula can be used to calculate the
large values of (r, s, t) from the smaller ones
of r, s, t.

We had examined many special cases and execut
-ed a lot of programs on WuPP, before we obtained
the formula described in Theorem D. Similarly,
we have got the following explicit form for four
variables

~+B) (t+8\ (t+8) (1,1,4,t} = a,·\ 7 -t- a.i: 8 ;t ··• ·+ar'f' 20

Since the a' s are very large, the programs used to
calculate them should be parallel, otherrlse the
rurm:l.ng time would be very long. We have:

a,::l, a:i,:::::188, a3 :=.9468, a11-:::204700,
a,:: 2353308, ai,=.16185984, a":: 71429138,
as= 210763120, a~= 424570176, a 10 = 585753336,
a 0 = 544446914, al.t: 325903329,
a,~: 113456486, a 1* = 17454844.

. " If we define the com,1-ete set for the polyno-
mial (1, 1, s, t] as in the next paper (ll.1, then
the complete set of (1, 1, 6, tJ contains the fol
low.l.ng 28 constants:

167

l 538 74349
4401070 14l734859 254680708o

38890518764 383234658030 284017323485S
16321468185832 74l.i10146837079 2738168625665.36

923954320708219 ~246583910286 4229330326988924
7297544167083306

105414174431.27500
12886752737504718 12750255339454502

10834085412245518 7519.3649.36739514
425943075699231.0 1936572050862474 689462l461504l2
185108336363412 35237007891428 4238527206900

24220155468o

Kmlth stated a problems "Investigate three
dimensional arrays, in order to see how IWly" of
the properties or two-dimensional Young I s tableaux
can be generalized. n (10}. We conjecture that if
this problem is solved, then the Dedekind's prob
lem will be al.so solved.

If we define the speedup of a parallel algo
ri tbm as Lemme and Rice [11], then the Dedekind's
problem in the case of four variables can be im
plemented on (q + 1)(r + 1)(s + 1) processors, and
[q1 r, s, t] can be calculated.

References
1 Zeng X.C., (1978) Mechanical. 'lbeorem Proving

and Dedekind I 8 Problem, Science Report Of
Wuhan University, Wuhan, China, 4, 19-31..

2 Chang C.L., (1973) Symbolic Logic and Me
chanical '.lheorem Proving, Academic Press,
New YORK.

3 Ballantyne .A..M. and medsoe W.W., (1977)
Automatic Proofs or 'lberems in Analysis,
Using Nonstandard Tecbniquess, J. ACll 24, 3,
353-374.

4 Harary F. , (197 2) Graph '.lheory, Addison
Wesley, Reading, Mass.

5 Smith, c.A.B. and Tutte W.T. (1941), On
Universal Paths in a Network of Degree 4,
Amer. Math. Monthly 48, 233-237.

6 Dedekind R. (1897) uber zerlegungen von
Zahl.en durch ihre grossten gemeinsamen
Teller, Ges. Werke, Bd. II, 103--148.

7 Birhoff a., (1965) Lattice '.lheoI'J', 3rd ed.
A. 14. s. Collquium Pub., New York.

8 Jofuroga S., (1971) '.lhreshold Logic and Its
Applications, John Wiley, New York.

9 Ward 14. , (1946) Note on the Order of the
Free Distributive Lattice, :ail.l • .A..M.S.

10 Knuth D.E., (1973) '.lhe Art of Computer Pro
gramming, Reading, Mass.

11 Lemme J .Lr., and Rice J. R., (1979) Speedup
in Parallel Algorithms for Adaptive Quadra
ture, J. ACll 26, 1, 65-71.

12 Zeng x.c., (1980) An Algorithm on Parallel
Processing for 'lbeorem Proving and Solving
Dedekind Problem, '!bis Proceeding.

An Algorithl'll on Parallel Processing for '.Iheorem Proving
and Solving Dedekind's Problem

Xia.n Chang Zeng
Institute of Computer Science
Computer Science Department

Wuhan University
Wu.ban, Hubei

People's Republic of China

ABSTRACT. First in the field of theorem prov
ing, the Robinson's resolution principle is con
sidered how to be applied to general resolution.
Second in the field of graph theory, let H be a
generaldigraph 'Which can be traversed at least by
t trails. Suppose this property of H is preserv
ed, how many ways to orient H? '.Ihis problem is
solved, and the '.lheorem E in the previous paper
can berigorously proved. '.Ihird in the field of
Lattice '.Iheory, some properties and more details
about the algorithl'll for solving Dedekind's problem
are obtained. 'lhe complete sets of polynomials
[l, 2, 3, t], (1, 1, 6, t] and [l, l, l, 2, t] are
calculated. finally an algorithm for computing
pairs of twin primes is desc~ibed.

(1) 'lhe Robinson's problem

Jn the previous paper (1), the algorithm for
solving three artificial intelligence problems was
discussed. Now we describe some new results and
more details of this algorithm obtained about one
year ago on Wuhan Parallel Processor (WuPP} with
parallel programs by our group in Wuhan Univer
sity.

First we consider the 'lheorem R in the pre
vious paper. Robinson in an unpublished paper
11rote the following opinon:

Perhaps '.Iheorem R can be applied to
general resolution by taken the elements
of the sets to be models?

He had given a hint to solve this problem and
said: "See discussion in my book on compactness,
topology, and completeness. 11 L'fJ

:ait we have examined many special cases and
execute many programs with WuPP and found that it
is intemately related to the foundations of logic
and lattice theory, so 'lheorem R Jlla1' be proved by
axiom method. We will discuss it in another
paper.

(2) 'Iha Euler's problem

Second we consider the Euler's problem. Let
H be a given general digraph which can be travers
ed at least by t trails. According to the method
described in the previous paper, we can construct
an eul.erian digraph D corresponding to H. And we
can prove the number u of universal trails of H
is equal to that of D. 'lheref1D110 it can be calcu-
1ated by the following f'ormul.a:

T\.

(A) u = c. n (d.- l>!.
t=l t

168

where the meaning of c, n, d~ can be found in the
previous paper. And we have:

Corollary E. Let H be a given general digraph,
'Which may not be eulerian. If its property tra.
versed at least by t trails is preserved, how many
ways can be found to orient its arcs. We will
solve this problem. Let w be the ways to orient
its arcs, then we can prove the following:

(B)

where u is the number of universal trails of H.
The rigorous proof of (A) or (B) is a little long,
we omit it. :ait it is not difficut to prove (B)
from (A). We just need to consider the definition
of universal trail of H. If the t trails used to
traverse H are not arranged in a fixed order, then
the equality should be w = t ! X 21\

(3) 'lhe Dedekind's problem

'lhird we consider the Dedekind 1 s problem.
Using the similar method described in the previous
paper, we can discuss the case of four variables
for solving Dedekind's problem as the following.
Let L(4) be the free distributive lattice generat
ed by 4 chains of length q, r, s, t respectively-,
and let [q, r, s, t] be the order of L(4), then
we have:

Corollary D. (l) '.tbe order [q, r, s, t] is
a. symmetrical· function of the 4 variables q, r, s,
and t. For example [q, r, s, t) = (q, s, i:; t] =
[q, r, t, s] = [s, r, t, q}.

(2) Whe:n IUq" three, say q, r, s of the four
variables are fixed, then [q, r, s, t J is a poly
nomial of the remaining t, and with degree
(q"l"l)(r+l)(s+l). For example [l, 11 1, t] is
a polynomial of t with degree 8.

(.3) 'lhe polynomial [q, r, s, t] vanishes
when t = -2, -3, -4, -5, ••• , -(q+ r+ s)- 2. For
example [l, l, 1, t 1 has 4 zeros at t = -2, t =-.3,
t=-4, and t=-5.

(4) When t=-1, the value of [q, r, s, tJ is
equal to l, so that [q, r, s, -1]:::::: l.

(5) When the va:riable t is replaced by
-(q+r~s+t+4) then the value of [q, r, s, t]
is not changed, i. e.

[q, r, s, tJ=[q, r, s, -(q+r+s+t+4))
For example [l, 1, l, t) [l, 1 1 1, -t - 1], espe
cially [1, l, 1 1 1) = [l, l, 1 1 - 8]:::: f(4) ::: 166.

(6) When one of the variables, say t, is
equal to zero then this variable can be stricken
out from the function (q, r, s, t]. For example
[q, r, s, 0):: [q, r, s].

It is not difficulty to prove the properties
(1)--(6) in the above Corollary D. But it is long
for writing in a short paper, so we omit the proof.
Using these properties we can easily find the foI'
mula and the algorithm with parallel programs for
computing [q, r, s, tJ. For example the degree of
polynomial ll, 1, l, t] is equal to 8, so we need
9 values to determine its coefficients. From
Corollary D, we have

[l, 1, 1, 1} = 168, [l, 1, 1, OJ = 20,
11, 1, 1, -11 = o, Ll, 1, 1, - 21 ==- o,
(1, 1, 1, -3] = o, (1, 1, 1, -41 = o,
[l, 1, 1, -5J = o, [l, 1, 1, -6] : 1,
[l, 1, 1, -7] = 20, [l, 1, 1, -8] = 168.

We already have 10 values of (1, 1, 1, tJ, so it
can be completely determined. Therefore we have:

[1, 1, 1, tJ ==(ti 2) t 18(t; 2)+111(t; 2)

t 311 (t 4 2) + 540 (t ; 2) -t 495(t ~ ~
+ 240 (t ; 2) t 48 (t 8 2)

1Vhere (t ~ 2) = -n ~ \+ _ 2~' ! kf' which is agree
with the result of previous paper. The following
set of constants:

l 18 111 311 540 495 240 48

is defined to be the complete set of the polyno
mial 1, 1, 1, t , Similarly we have found the
complete set of polynomial [1, 2, 3, t] contains
the following 24 constants:

1 488 58o75
2857576 74739914 1198664320

1289252957 98739543042 56144dl.048o3
24422115776oo 8304538700959 22420686173258

485790.3008718o 8504l.i074724532 120670489307306
l38726o71967266 l2868o9893476o7 95484963754!i08

55868886745375 25197675728o00 845o4Zl.827031
1984105018136 29131681235 2007lIL50430

And the complete set of polynomial 1, l, 6, t
contains 28 constants, 1Vhich can be found from the
previous paper.

One year ago we computed the constant 183957
for the complete set of [l, l, 3, t], the running
time was half an hour. But now we use parallel
programs, it is about two minutes to get the num
ber 12886752737504718 for the complete set of
[l, 1, 6, t]. We hope the general formul.a of
ll, 1, s, t], can be found from the constants
given by this paper. This problem is closely re
lated to the :Muroga's works [2].

(4) The twin primes problem

Finally we have examined many special cases
with computer and find an algorithm to computing
the number Z(N) of the pairs of twin primes less
than N. We will describe the method which is very
similar to the sieve of Eratosthenes1

Let the sequence formed by the natural
nu111bers ~ N be the following:
(S) 1, 21 3, 4, ••• , N 1, N.
'.!hen the 11.lgorithm for computing the pairs of twin
primes can be defined by 4 steps:

169

Step (1). All even numbers ~ N are stricken
out (sieved out) of (S) and let i = l.

Step (2). Let p,: be the ith odd prime of
(S), p0 =l, p 1 =3, and aJ.1 proper multiple of Pi
are stricken out from (S).

Step (3), All numbers of the form (k+l)p,-2
less than or equal to N are stricken out from (S),
and k runs through all positive integers.

Step (4), When p,_, >JN, the algorithm will
be stopped, otherwise i willbe re~laced by the
value of i + 1, and go to Step (2),

For example, let N = 200 we get the following
sequence:

(T) 3, 5, 11, 17, 29, 41, 59, 71, 101,
107, 137,149 '175, 191, 197.

Now we need to prove the following two pro
perties:

(P) If and only if the first member of twin
primes willbe contained in the sequence ('f),

(Q) When N tends to infinite the sequence
(T) willbe also tends to infinite, i. e. There
e.xists infinite many pairs of twin primes.

Let p be an odd prime, if p + 2 is not a
prime, then it is composite, and p t 2 :::. q · r 1Vhere
q is a prime less than p. Hence p = q·r - 2, and
r :;> 1, by the property of Step (4), this prime p
must be stricken out of (S),

When p + 2 = q and q is an another prime,
then q - 2 = p is a prime. This p can not be
written as (ktl)·p, - 2, otherwise q = (k+l)p,
will be composite. Also by the property o.f
Step (4), the prime p :::: q - 2, can not be stricken
out of (S). 'Iherefore we completely proved the
property (P).

It is difficult to prove the property (Q),
We belive that the conjecture "There are infinite
many pairs of twin primes." is true, And moreover
we belive also that the conjecture of Danial
Shanks:

Z(N),....., 1.3203236 f-(i;~n):i.
2.

is true [3J. I.ht the details are intemately
related to the Dirichlet's 'Iheorem: ''Every arithe
matic progression an+ b, where a, b are relative
prime integers, and n runs through all positive i~
integers. " We like to discuss this problem in
another paper.

1

2

3

4

References

Zeng X, C. , (198o) An Algorithm of ltlrallal
Processors for 'Iheorem Proving and Its
Applications, '.I.his Proceedings.
Muroga s., (1971) 'Ihreshold Logic and Its
Applications, John Wiley, New York.
Shanks D. , (1962) Solved and Unsolved Pro
blems in Number '.theorem, Spartan Books,
Washington D. c.
Bt&binson J. A, , (1979) Logic: Form and func
tion, 'lhe Mechanization of Deductive Reason
ing, Edinburgh University Press, Edinburgh.

SESSION 6: DISTRIBUTED PROCESSING I

171

Desiqn and Implementation of a Language for
Communicating Sequential Processes

llehdi Jazayeri

TBil Vidar
77 Ortega Avenue

llountain View
California 94040, USA.

Carlo Ghezzi

Istituto di Elettrotecnica ed Elettronica
Politecnico di llilan·o
Piazza L. da Vinci 32
20133 Milano, ITALY.

Dan Hoffman

David Middleton

Mark Smotherman

Department of Computer Science
University of North Carolina

Chapel Hill
North Carolina 27514, USA.

Aspects of the design and implementation of
CSP/80, a language based on Hoare 1 s commu
nicating sequential processes, are dis
cussed. The goal of the design has been to
stay as close to Hoare•s original notation
as possible. The goal of the implementa-

CH1569-3/80/0000-0173$00.75 {) 1980 IEEE

tion has been to reduce the amount of rein
vention by making utmost use of facilities
prov.ided by the operating system (UllTII).
This has shortened the implementation tiae
considerably. CSP/80 is to be used for
evaluating CSP as a programming language
for distributed processing applications.

173

In "Communicating Sequential Processes"
[1], Hoare px:opose J. a.n el egar. t notation for
programming distx:ibuted systems. The nota
tion, hereaftex: called CSP, combines
Dijkstra's nondetex:ministic control struc
tures for sequential programming £2] ~ith
"blocked" input/output for communication
and synchronization between parallel pro
cesses. In order to evaluate CSP's utility
as a concurrent px:ogramming language, we
have undertaken to produce a prototype
implementation. our final goal is to apply
the language in programming several distri
buted systems. This paper presents the
design and implementation of our version of
CSP, called CSP/80. We discuss and moti
vate the important design decisions and the
deviations from Hoare•s version. As Hoare
observed in his paper (1, p. 667], his
notation "should not be regarded as suita
ble for use as a programming language ••• "·
The work reported in this paper has been
aimed at producing a suitable programming
language based on Hoace•s notation.

CSP is one of several recent proposals
foe distributed processing. As Brinch Han
sen points out in [3), ho wevec, these pro
posals must be evaluated based on their use
in practice. In order to do this experi
mental evaluation, one needs an implementa
tion of the concept. Because the implemen
tation is a vehicle for evaluation of an
untried approac.h, the implementation time
must be kept small. Therefore, ve have
tried wherever possible to use already
existing facilities.

We have tried to include in CSP/80 two
methodological ideas that have .been found
to be valuable in designing other types of
programs. These are modular programming
and strong typing. The idea of modular
programming is that it should be possible
to design the different modules of a pro
gram independently. The requirement in CSP
that a process must name all the processes
it communicates with violates this rule. We
have tried to remedy this by introducing
ports and channels- Ports and channels
have also allowed us to turn CSP into a
strongly typed language {i.e. all type
checking can be done at compile time).
This is a very important characteristic of
a language that helps in the development of
reliable software.

In section 2 we brie.fly review the lan
guage concepts of CSP. In section 3 we
give the differences between CSP and
CSP/80. lie do not go into great deta.il
about the reasons for these differences;
these are covered in [4]. In section 4 ve
discuss the implementation of the language
and the important design decisions made.
Section 5 concludes tke paper.

174

COMMUNICATIBG ~JBTIAL PROCES~~~

A program in CSP consists of a fixed number
of parallel processes (which may run on
distinct processors). Each process con
sists of a series of sequential statements.
Statements are provided for assignment,
alternation, repetition, input and output.
The assignment statement is similar to that
in other languages. · The alternation and
repetition statements are based on Dijkstra
(2]. Input and output are the only really
novel concepts provided by the notation.
An input (correspondingly, output) state
ment names a process from which (to which)
the input (output) is to be received
{sent). Upon execution of an input (out
put) command, the process is suspended
until a corresponding output (input) is
performed by the named process. At that
point, the input/output transaction takes
place and both processes continue execu
tion. The I/O commands th us provide for
both communication and synchronization bet
ween processes. Furthermore, Hoare allows
the use of input commands in the guards o.f
the alternative and repetitive statements.
such a guard is selected only if the part
ner process has already committed (i.e.
been suspended due to having requested an
output to this process).

In the next section we discuss where,
how and why we have deviated from Hoare•s
notation.

proqram structurfi

A program in CSP/80 consists of a fixed
number of (separately compiled) parallel
processes, and a list of channel declara
tions. Each process may have one or more
inp11t or output ports through which it com
municates with other processes. A channel
declaration establishes a link between a
port in one process and a port in another
process.

As an example, the bounded buffer exam
ple of Hoare [1, p. 673] written in CSP/80
is shown in Fig. 1. The complete syntax of
CSP/80 is given in lppendi.x A.

I.
I
I

process p.roduce .•
output int Y;
int s;
s = O;
*(1 - > s = s + 1 ;

!Y = s;
]

end process

process consume ••
input int z;
int s;
int sum;
sum = O;
*(1 -> ?s = Z;

sum = sum + s;
]

end process

process X ::
guarded input int Y;
guarded output int Z;
int in;
int out;
int buffer(9];
in = O;
out = O;
*[in < out + 10;

?buffer[in%10] = Y
->in=int1;

Jout < in;
!Z = buffer[out1'10]

- > out = out + 1 ;
]

end process

/*buffered version*/
int channel from produce.I

to X.Y
int channel from x.z

to consume. Z

/*unbuffered version*/
int channel from produce.I

to consume. z

Note: 11 %11 is the modulo operator.

Figure 1: produce and consume in two
configurations

lnt.er-Pi;ocess s;,g,J!l!!Ul!U.£~Hon ~
syn~ht:!l!Li.ution

In order to send information from pro
cess P to process Q, P must have an output
port, x, and Q an input port, y. These
ports must be 1 inked by a channel, dec-
1 a red:

<type> ~nel !£2!. P.x 12 Q.y
<type> is the data type of the inforaati9n
being transferred and must be the same as
the types associated with x and y. The
actual transfer takes place after both of
the following have taken place (in either
order):

175

• x has been used as the target of an
assignment statement in P; (Ix= expres
sion;)

• y has been used as the source of an
assignment statement in Q. (?variable =
y;)

The way input/output is done is differ
ent from CSP, where communicating processes
must name one another and a type mismatch
is caught only at run-time. The use of
typed ports in CSP/80 allows type checking
to be done at compile time. The use of a
channel allows a process to be written
without explicit knowledge of the name(s)
of the communicating partner(s). This
allows a process to be connected to differ
ent processes without recompiling the pro
cess. The connection is performed by a
"linker". The ability to reconfigure the
system without recompilation is an attrac
tive capability in a distributed system.
Figure 1 shows two possible ways that the
same producer and consumer may be con
nected.

The use of typed ports also removes the
need fo.r one of Hoare•s constructs.
Instead of the special signals, e.g.
has(n), we can define a port by the mne
monic name, e.g. has. Any I/O through this
port then has the meaning of has (n).

Alternat~ and ~titive commands

CSP/80 is identical to CSP in this res
pect except that we allow output commands
to appear in guards as well. If a port
name is to appear in guards, however, the
port declaration must declare the port as
9..!!9.!'.ded. This is to enable the detection
of the anomalous situation where two commu
nicating processes both have their I/O
statements in guards. This situation,
which is a form of deadlock, vas the reason
Hoare ruled out the possibility of output
commands in guards. llith our solution, ve
allow more freedom and still provide a mea
s11re of protection. This issue is dis
cussed at length in [3,q].

Arrays Q{ pg>cess~ and channels

Just as in CSP, CSP/80 allows the use of
arrays of processes. The effect of the
following process declaration:

process P(i:0 •• 9]:: •••••• ~process
is the same as having ten processes called
P(O),P{1) ••• P(9). The occurrence of the
bound variable i in P is replaced by 0 in
P (0), 1 in P(1) • etc. Any variables and
pqr:t,s declared in I.> are local and therefore
no confusion can exist in channel declara
tions. For example,

<type> channel LI21! P(1).x 1!!.
p (2). y

We also allow channel declarations of the
form:

<type> g,han!J..el(i:0 •• 9).f!;:stJ! P(i).x :t2
P (it1mod10) .y

Both ar.rays of processes and channels are
merely shorthand notations and do not add
any power to tne language. They can be
regarded as a primitive macro processing
capability.

The language is implemented on a
PDP11/45 in the programming language c
under the UNIX [6] operating system. The
overriding concern in the implementation
has oeen to limit the time and e.ffort
requii:ed for implementation and still pro
vide us with programming experience in CSP.
Thus, all features have been restricted in
such a way as to produce a usable language
and also allow for future expansion of the
system. For example, currently only (sca
lar and array) integer and character data
types are supported. It is relatively
straightforward to add other data types to
the language and the current language is
sufficiently powerful for investigating
distributed proces~s.

Another example is the implementation of
the nondeterministic control structures.
We hdve made no effort to ensure that the
selection of guards is completely random.
o~r.goal was nJt to investigate nondeter
minism. Furthermore, our implementation
does meet Dijkstra's requirements for an
implementation of the guarded commands (2~

The CSP/80 system consists of a translator
and d linker. The translator accepts one
CSP/80 process and translates it into a C
program (which will run ~s a UNIX process).
The linker accepts the names of some CSP
processes (already compiled by the c compi
ler) and a list of channel declarations.
It produces an executable CSP/80 program
consisting of the processes communicatinT
via the channels. Both the translator and
the linker were written using LEX and YACC,
the translator writing tools available
under UNIX.

At execution-time, a CSP program con
sists of a set of UNIX processes each
representing a CSP process, and another
UNIX process call.ed the monitor, which\
coordinates the com1nunication between pro
cesses. There is also a direct access
file, called the channel file, which con-

17.6

tains the required channel buffers. A UBIX
pipe connects all processes with the
monitor. This organization is shown in
Figure 2.

A simple output command from process P
to process Q is implemented in the follow
ing way: P writes its output in the loca
tion in the channel file reserYed for out
put on the appropriate channel. It then
sends a message along the pipe to the moni
tor indicating that it reguires an output
service. P then puts itself to sleep (by
invoking pause, a UNIX primitive). An
input command is implemented in a similar
way.

The monitor constantly reads its request
pipe, responding as soon as a request
arrives. The pipe mechanism provides for
the queuing of messages that arrive while
another one is being serviced. If the
request is an input (or output) , the moni
tor sets the status of the requesting pro
cess as committed to perform input (or out
put). It then cllecks to see whether the
other partner is committed. If it is, then
the output data is copied from the output
to the input section of the appropriate
channel bu.ff er (in the channel file). Note
that channels and ports are implemented
simply by a location within the channel
file that the two communicating processes
use to write into and read from. The
linker assigns the address of this location
to the partner processes. Thus channels
and ports are conceptual tools for specify
ing the communication, and they allow
strong type checking and can be implemented
efficiently in a uniprocessor.

The more interesting interaction between
the processes occurs when an I/O command
appears in a g•ard. According to the
semantics o:f the construct., this guard can
be chosen only if the partner process has
already committed. Furthermore, there may
exist several guards with I/O commands in
them. This is implemented by the process
sending an activity check request to the
monitor and going to sleep1 This request
asks the monitor to wake up the process if
and when any of the process's partners
either commit to an I/O operation with this
process or terminate. Upon waking up, if
the commitment affects any of the gua.rds,
then that guard is selected. Otherwise,
the process issues another activity check
request and goes to sleep.

A final interaction between the
cesses and the monitor occurs when a
cess1 just before terminating1 sends a
sage to that effect to the monitor.
monitor records that information which
be of use to the process• s partners.

pro
pro
mes*'.

The
will

The implementation of the guarded com
mands is a compromise between polled (busy
waiting) and interrupt driven processing.
In the polled case, the process would con
stantly test the guards until one of them
became true (as a result of a partner pro
cess making a commitment). This might be
acceptable if processes were indeed allo
cated to distinct processors. On a unipro
cessor, on the other lland, this is disast
rous because this testing of the guards
would itself use up some if not all of the
time otherwise available to other processes
waiting to do useful work (including the
commitment necessary for the resumption of
the waiting process).

In the interrupt-driven case, the pro
cess would go to sleep after asking to be
woken up when any of the processes it is
waiting on makes a commitment. It would
only be awakened when a guard can be
selected. This is more efficient of pro
cessor time than polling but is more com
plicated to implement.

In our implementation, the process goes
to sleep and is awakened if any of its
partners has an activity (commitment or
termination). It is possible that the
activity does not affect any of the guards,
in which case the process goes back to
sleep after testing all its guards. Thus
the process is not always busy waiting,
just sometimes. This implementation is
much less complicated than the puce inter
rupt-driven case and is more efficient of
processoi: time than pure polling.

For simplicity, our implementation tests
the guards in purely sequential order. If
the first guard is always true. therefore,
the other guards will never be selected.
Although this is unfair and could lead to
starvation of cei:tain pi:ocesses, such sche
duling policies are not ruled out by the
language semantics. It is the responsibil
ity of the progi:ammer to write programs
that do not rely on specific scheduling
policies.

Although the curi:ent version is adequate
for our purpose of the evaluation of CSP as
a pr:ogi:amming language, we envision expand
ing the system capabilities a great deal.
First, we intend to enhance CSP/80 foe mul-

177

tiprocessor operation. Design e.fforts are
underway .for a tvo processor version to be
inplemented on VAX 11/780 computers. With
this implementation meaningful benchmarks
can be run. In particular, ve would like
to measure hov much time a process spends
waiting for its partner to commit and how
much of this time could be saved i.f non
blocked I/O were used. We would also like
to enhance CSP/80 to:

• support more data types

• provide simple deadlock detection and
handling,

• use a fairer guard selection algorithm.

£0NCLUSIONS

We have described the design and i11ple
mentation of CSP/BO. an implementation of
Hoare•s communicating sequential processes.
As far as we know, this is the first such
implementation. The implementation is
heavily based on and uses facilities pro
vided by UNIX (and C) to minimize implemen
tation time. Although this restricts our
ability to exert control over process sche
duling, it has resulted in a quick imple
mentation.

BIBLIOGRAPHY

1. Hoare, C.A.R.
Processes. £2.r!!!·
666-677.

Communicating Sequential
!Qt 11, 8 (August 1978),

2. Dijkstra,, E. Ii. A Dj.scipline of .UQ.
g.r;amming. Prentice-Hall, Englewood Cliffs,
N.J., 1976.

3. Brinch Hansen, P. Disti:ibuted Pro
cesses: A Concurrent Programming Concept.
£Q!!!!• !£1111, 11 (November 1978), 934-941.

4. Ghezzi, c., and Jazayeri, M. More Com
ments on Communicating Sequential Process
ing. Dept. of Computer Science, un;v.
North Carolina, Chapel Hill, N.c., 1979.

5. Kieburtz, B.B., and Silberschatz, A.
comments on Communicating Sequential Pro
cesses. !£! TQF~ !. 2 (October 1979),
218-225.

6. Ritchie, D. M.,
UNIX Time-Sharing
Tech. 4.· 57,
1905-1929.

and Thompson,
system. l!~il
6 (July-August

K. The
syst~m
1 978) ,

MO/llifO~

t

Pl;ocess L f'Rc.c£ss 2 0 0 0

Figure 2. Run-time organization of CSP/80 processes

178

APPENDIX A

Below is the moditied BNF description of
CSP/80. What is shown has been extracted
from the actual input to LEX, a lexical
analyzer, and YACC, a parser generator,
both .available under UNIX. .Nonterminals
are in lower case; terminals are in upper
case. The metacharacters are:

: "produces"

or

end of a production

Tb.e meaning of the · terminals is shown in
the table following the productions.

process

range

portdec

decls

decl

dim

guarded

stmnts

PROCESS !DENT
range
DBLCOL portdec
decls
stmnts
END PROCESS

I* empty */
LPAREN !DENT
COLON NUM
RANGE NUM
RP A REN

I* empty *I
portdec guarded INPUT
PORT.TYPE
dim /* element size */
!DENT
dim /* number of ports */
SEMI COL

I* empty */
decls decl SEMICOL

TYPE
ID ENT
dim

I* no bound => scalar */
LBRA
NUM
RBRA

GUARDED
I* empty */

command
stmnts
command

179

command

alt

choice

al terns

al tern

SKIP SEMICOL

expn SEMICOL

io SEMICOL
cil t
PASSTHROUGH
error

choice
al terns
RBRA

REP
LBRA

al tern
alterns BOX altern

guard
ARROW decls stmnts

guard boo!

bool

expn

sub

op

io

target

decls
bool
SEMI COL
decls io

decls io

expn
bool SEMICOL
expn

NUM
STRING
QUOTE
IDE NT
sub
LP AR EN
expn
RP AR EN
expn op expn
expn op
op expn

I* empty */
LBRA
expn
RBRA

OP
EQUALS

QUERY
target
EQUALS port
EX CLAM
port
EQUALS expn

ID ENT
tswb

tsub I* empty *I
LBRA
expn
RBRA

port IDE NT
psub

psub /* empty *I
LP AR EN
expn
RPAHEN

180

AR HOW
BOX
COLON
DBL COL
END
EQUALS
EXCLAM
GUARDED
IDE NT
INPUT
LP AR EN
LBRA
NUM
OP

P ASSTHROUGH
PORT
QUERY
QUOTE

HAN GE
RBHA
HEP
RP 1\H EN
SEMI COL
SKIP
::>THING

TYPE

"-)II
II: II
If .. "

H: : It
"end"
"= 11
n ! 11

"guarded"
C identifier
"input"
It (II

II [II

unsigned integer
u-n, "*11, "/", "+", "%",
lf(11J H)H, tl&fft 11""1t

a line with "II" in column
"port"

a single character delimited
by single quotes
u 11

"J "
"* ["
") II

H •II

' "skip"
a string delimited by double
quotes
"int"

A COMPREHENSIVE FRAMEWORK FOR EVALUATING
DECENTRALIZED CONTROL

John A. Stankovic
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, Massachusetts 01003

Abstract -- Effective decentralized control
algorithms will help achieve many of the poten
tial advantages of highly cooperative distributed
systems. Currently, there is no unified approach
for developing and analyzing decentralized con
trol algorithms. This paper describes a compre
hensive framework that can serve such a purpose.
Highlighted in the framework are the underlying
principles of distributed systems and the need
for effective evaluative techniques. A partial
example of the application of the framework to a
simple decentralized job scheduling algorithm is
also presented.

1. Introduction

The dramatic reduction in computer costs
coupled with the potential advantages of connect
ing computers in a network makes distributed
processing systems inevitable. These potential
advantages include increased resource sharing,
better performance, higher reliability and easier
extensibility than possible with uniprocessors.
However, current distributed systems achieve
these advantages in a very limited manner due to
the multitude of "new" problems that distribution
causes. Foremost among these problems are the
high cost and critical nature of centralized con
trol. These two issues must be resolved before
the potential advantages of distributed process
ing can be realized to a large degree.

This paper describes a comprehensive frame
work for decentralized control. The framework
aids the development and analysis of decentral
ized control algorithms. These algorithms can
then be used to eliminate the high cost and cri
tical nature of centralized control. Although
there is a wide spectrum of distributed systems,
the framework concentrates on one specific type
of distributed processing system that is still
in the early research stage. Specifically, it
addresses distributed systems characterized by
decentralized system-wide control of resources
for the cooperative execution of application
programs. By decentralized system-wide control
we mean that overall executive control is exer
cised through the cooperation of decentralized
system elements to form a single organism [21].
For the sake of brevity the term "system-wide"
will be dropped when speaking of decentralized
control in this paper. The proposed framework
is applicable to the decentralized control of
any function that must operate with incomplete
or inconsistent data and under strict time re
quirements. Such functions might include rout
ing, scheduling and resource allocation.

CH1569-3/80/0000-0181$00. 75 © 1980 IEEE

181

The framework is described in section 2. As
an example, a new decentralized job scheduling
algorithm is partially described and evaluated by
means of the framework in section 3. Finally,
the usefulness, potential and limitations of the
framework are summarized in section 4.

2. A Framework for Decentralized Control

Currently, there is no unified approach for
developing and analyzing decentralized control
algorithms. In this section a comprehensive
framework that can serve such a purpose is devel
oped. First, the minimum requirements of the
framework are stated, and then the framework it
self is described. Since this field of research
is in its infancy, the philosophy behind the
development of the framework is to allow for easy
extensibility and modifiability as new fundamental
principles of distributed systems are discovered.

Requirements

The minimum requirements of the decentralized
control framework are:

1) to address the central issues of decentralized
control including,

a) concurrency,
b) operation in the presence of missing,

incomplete or erroneous state information,
c) uniqueness in time and space principle

(see 2.2), and
d) cost (overhead) of the algorithms,

2) to enable meaningful evaluation of the decen
tralized control algorithms,

3) to provide a convenient structure for the
development and comparison of new algorithms,

4) to be generalizable to all functions, and

5) to allow for the incorporation of new research
results.

The Framework

In the development of the framework, a distri
buted system is viewed as a collection of func
tions, f i, where each function fi of the system

must be controlled by a decentralized system-wide
control algorithm, Xi' which utilizes the set of

state information {Yi} to achieve a set of goals

{Zi}. As an example, the function fi might

include routing, message communication, schedul
ing, resource allocation, data management, and
distributed applications. Then for each fi we

develop algorithms xil' xi2' xi3' ... ,where each

Xij has different sets of state information {Yij}.

The set of goals (requirements) {Zi} is chosen by

the designers depending on the function f i and

the application. A formal specification of the
requirements is necessary to fully evaluate the
solution. Since formal specifications is an
active research area, the current framework per
mits an informal specification of the goals
(requirements) as the set {Zi}.

The intent of this approach is that for a
given fi, various decentralized control algorithms

X, ,, can be developed and compared as a function
l.J

of the state information and design goals (infor
mally stated at this time). Important research
questions include the amount of state information
required to properly control function fi' how that

information is accessed, and how many distributed
entities decide on the resultant control choices.
The formulation of the problem in these terms is
necessary to meet conditions 2, 3, and 4 of the
framework, although not sufficient.

The next step in the development of the
framework is to incorporate the central issues of
decentralized control known at this time.

Concurrency.

mented by multiple

asynchronously and
central control or

Each algorithm X .. is imple-
l.J

entities e1 , e2 , ..• ,en running

acting together but without
data.

Operation in the presence of missing, incom
plete or erroneous state information. A fundamen
tal characteristic of distributed systems is the
long and unpredictable delays experienced in in
terprocess communication giving rise to missing
or incomplete s·tate information. This implies a
great need for algorithms that can effectively
operate under these conditions. In general, dis
tributed systems will also experience greater
probability of errors (hardware and software)
than uniprocessors giving rise to the greater need
for resilient algorithms.

Uniqueness in Time and Space Principle. One
central principle confronting the design of de
centralized control algorithms involves dealing
with the absence of uniqueness both in time and
space [26]. This characteristic of distributed
system implies that the multiple, decentralized
entities implementing the control algorithm get
either a partial and coherent (i.e., observations
are made at the same moment in the system--univer
sal time) view, or a complete but incoherent view
of the system. The consequences of this charac
teristic are not fully understood, but it is a
critical distinction between centralized and
dec·entralized systems.

rsz

The framework addresses the "uniqueness of
time and space" issue, by viewing five dimensions
of decentralized control.

1) Global Environment - this is the sum
total of all the local environments at one inst
ance of universal time. For decentralized control
algorithms it will be impossible to know the
global state accurately. Yet, some information
about the global environment is necessary for
system-wide control algorithms.

2) Local Environment - the state of the
machine on which this entity is executing. Some
subset of the information about the local environ
ment will also be used by the algorithm. In most
systems this information is assumed to be correct
and timely. There are no special assumptions
about the correctness of the local data in this
framework.

3) Algorithm - The algorithm's logic obvi
ously plays an important role in the effectiveness
of the decentralized control. The algorithm's
logic cannot assume that it knows or can construct
the absolute chronological ordering of events, nor
that the set of entities implementing the algo
rithm perceive identically the set of events in
the system.

4) Data - This is the actual information
about the global and local environment used by
the algorithm. The data may be missing, incom
plete or in error.

5) Time - There is no universal time refer-
ence.

In decomposing the "uniqueness of time and
space" principle into these five components, we
believe that the implications of this principle
for decentralized control algorithms can be
better understood and algorithms being developed
will better address the important aspects of the
problem. The example of the next section should
help clarify this point.

Overhead of the Algorithms

In order to address the overhead of algo
rithms issue, the algorithms, Xij' must meet the

following conditions:

a) execute to meet strict time requirements,
b) be decentralized (i.e., xij will be

implemented by multiple entities acting
together but without central control or
data),

c) be able to operate with uncertain, miss
ing or erroneous data, and

d) require no more than a specified amount
of memory.

The evaluation of decentralized control algO'"'
rithms will consist of two parts. The first is an
absolute evaluation that determines i£ the algo
ritfun meets its requirements. The second is a

comparative evaluation of different algorithms
that meet the requirements. At a minimum the de
centralized control framework requires that the
following parameters be part of the evaluation:

o performance (e.g. response time and
throughput,

o logical correctness (absence of deadlocks,
cycles, etc.),

o resiliency (capable of operating in the
presence of failures as well as recover
ing from failures),

o overhead (execution time, memory, and
communication costs),

o stability (presence of an anomaly should
not have chaotic effects),

o fairness,
o extensibility (the algorithm should easily

control additional resources of the same
type),

o cost and difficulty of initialization, and
o understandability.

Although it is not possible (to date) to quantify
many of these parameters, the choice of a practi
cal algorithm should take all of these parameters
into consideration. In general, the measurements
of thest> parameters for decentralized control algo
rithms are open research questions. As part of
the extensibility of the framework 1) new para
meters may be added to this list, and 2) new
techniques for evaluation of these parameters can
replace techniques shown to be inferior. Current
ly, the appropriateness of different mathematical
techniques (mathematical programming, dynamic
programming, game theory, decision theory under
uncertainty, and decentralized control theory)
for use in the evaluation of the performance para
meter is under investigation. Presently, decision
theory under uncertainty utilizing a Bayesian
decision strategy seems promising.

The elements of this decentralized control
framework are meant to be general for all func
tions. Individual functions may have certain
specialized characteristics that require exten
sions of this basic framework to deal with these
characteristics.

3. Decentralized Control of Job Scheduling

This section provides an example of how the
proposed framework for decentralized control
might be applied to the development and evaluation
of a new decentralized control algorithm for the
function of job scheduling. For the sake of
brevity some issues of the framework are summarily
dismissed. In practice, every issue of the frame
work would be addressed in detail. A network of
seveh hosts configured as in Figure 1 is assumed
f6r this discussion.

ui>ing terminology of the framework, the
function f. to be addressed' is job scheduling.
There exist seven entities e1 , e2 , .•• , e 7 that

taken' together impleifient fi. These entities exe'

cute on hosts· 1, t, .. ·., 7 respecfively. The

183

local state information at host i is the length
of the queue of jobs waiting to enter the system
at host i. The global state information used at
host i is host i's perception of the queue lengths
at the other host locations. Note, that the
framework allows iterative changes to these state
information quantities for direct comparison.
The primary goal of the algorithm is assumed to be
a high throughput of jobs. In practice the re
quirements on throughput would be more precise
and the requirements on all other parameters list
ed in section 2 would also be addressed.

Briefly, the intent of this decentralized
control algorithm is to perform load balancing at
the job level. Periodically, each entity, ei,

updates its Workload Table, sends load estimates
to its neighbors, and performs scheduling which
might include movement of jobs to other hosts(a)
These factors are part of the overhead costs of
the algorithm.

Figure 2, conceptually illustrates the Work
load Tables that are maintained at each host (in
actuality not all columns need be retained be
tween updates implying a low memory overhead) .
Table i exists at host i. The first column of
each table i is host i's view of the system. The
additional columns in table i correspond to the
nearest neighbors (defined as having a direct
physical interconnection) of host i, e.g. in
Figure 1 host 1 has nearest neighbors 2 and 4.
Hence TABLE-1 of Figure 2 has 3 columns labelled
1, 2 and 4. Conceptually, these additional
columns of the table are host i's perception of
its nearest neighbors view of the system.

The actual values in the table are workload
estimates calculated based on the state informa
tion chosen as part of the algorithm. In this
example, this is simply the number of jobs in a
queue. In general, host i can determine precise
ly the number of jobs in its own queue (accurate
local data) and therefore will believe his own
estimate rather than his neighbors perception of
his workload. These values are the boxes marked
with vertical lines in Figure 2. Since nearest
neighbors of host i are only 1 step away, their
estimates of their workload as passed to host i
will be only slightly our of date and in general
be a better estimate than estimates other nodes
have of them. Therefore, host i will assign a
higher probability of correctness to nearest
neighbors estimate of themselves (boxes marked
with horizontal lines). All other estiriiates are
grouped into a third probability category. If
the precise configuration of the network is
known, weights could be assigned' to the estimates
proportional to the distance from host i. In the
third probability category, host i determines the
workload by computing an average of the columns·
of nearest neighbors. Using the average is an
arbitrary choice at this time. Only after a

(a)Not addressed in this paper a;te implementation
issues of job movement, S1,lch a:s data transla
tion H non-ho!llogeneous lfosts are involved.

proper evaluative comparison will the choice of
an average be substantiated.

Each table is periodically updated by a host
using messages from its nearest neighbors. For
example, host 1 receives messages from host 2 and
host 4 containing their view of the system (i.e.,
their column vectors). This is global data.
Host 1 then recalculates column 1. To do this
host 1 looks at its job queue to obtain the number
of jobs waiting at host 1 and places this number
in the first column, first row. It then takes
host 2's view of 2 and places this number in the
first column, second row, then host 4's view of 4
is placed in the first column, 4th row. All other
entries in the first column are calculated by tak
ing an average of host 2 and 4's perception of
other hosts. In general there may be more than
two columns (see Table 2).

Periodically a scheduling decision must be
made. If host j is substantially less busy than
host i then some number of jobs will be moved to
j from i. Both the substantial difference para
meter and the number of jobs to move are import
ant variables.----rflthis algorithm a substantial

difference is chosen to be 3 jobs and ~i + ~j - ~
jobs are moved assuming this calculation results
in a positive number. The jobs moved are taken
from the back of the queue to account for some
degree of fairness. At this point the algorithm
is completely ad hoc. A substantial evaluation
is required before we attest to the usefulness of
this algorithm.

In this example, the variables that must be
varied and evaluated are:

o the substantial difference variable,
o using an average or should other weight

ing schemes be used,
o the period of update,
o the probability assigned to the nearest

neighbor view,
o the state information used, and
o the number of jobs to move.

Note that during the entire development of
the algorithm, the five dimensions of control are
constantly kept in mind. The global environment,
the local environment, the algorithm's logic per
formed by multiple entities which do not perceive
the identical set of events in the system, the
missing, incomplete or erroneous state of the data
used by the algorithm, and the fact that there is
no universal time reference are all incorporated
into the algorithm either explicitly or implicitly.

Finally, in addition to the variables just
mentioned the algorithm must also be evaluated
according to the 9 major evaluation parameters of
the framework. Performance can be evaluated by
any of the standard techniques; analytical models,
simulations or implementations and measurement.
This is, of course, easier said than done. In
many cases closed form solutions are not possible
and simulation studies will have to be used.

184

However, we are actively pursuing the use of deci
sion theory under uncertainty as a mathematical
treatment of the evaluation of performance.

The other evaluation parameters (logical
correctness, resiliency, overhead, stability,
fairness, extensibility, cost and difficulty of
initialization, and understandability) will not
be discussed in this paper. However, the reader
might notice that the algorithm presented has many
of the same problems as the original ARPA routing
algorithm (e.g. ping-panging).

4. Conclusions

The main ideas behind the development of this
framework are 1) to provide a structure inwhich
to think, develop and analyze decentralized con
trol algorithms, 2) to provide a convenient
mechanism for a more meaningful comparison of
proposed algorithms (meaningful in the sense that
the assumptions, strengths and weaknesses of the
algorithms are addressed), and 3) to encourage
the development of more mathematical techniques
for the evaluation aspects of the framework.

Currently, a major limitation of the frame
work is the scarcity of effective techniques for
evaluating the parameters. A mathematical formu
lation of the problem is being sought. We are
investigating the possibility of using decision
theory under uncertainty, cooperative game theory,
utility theory and mathematical programming.
Other evaluation parameters like understandability
might always be subjective but nevertheless should
be addressed as best as possible. Finally, the
framework described in this paper is merely the
beginnings of a comprehensive framework.

Bibliography

[l] Austin, Donald M., editor, Proceedings of the
Second Berkeley Workshop on Distributed Data
Management and Computer Networks, Computer
Science and Applied Math Dept. Lawrence
Berkeley Laboratory, University of California
May 1977.

[2] Bokhari, S.H., "Dual Processor Scheduling
with Dynamic Reassignment," IEEE Transac
tions on Software Engineering, Vol. SE-5,
No. 4, July 1979.

[3] Bokhari, S.H., "Optimal Assignments in Dual
Processor Distributed Systems Under Varying
Load Conditions," ICASE Report No. 79-14,
July 1979.

[4] Casey, L., and N. Shelness, "A Domain Struc
ture for Distributed Computer Systems,"
Proceedings of the Sixth ACM Symposium on
Operating Systems Principles, Nov. 1977,
pp. 101-108.

[5] Chow, W., F. Ferrante, and M. Bolagangadhar,
"Integrated Optimization of Distributed
Processing Networks," Computer Studies,
Technical Report, TR 77-01, North Carolina

State University, Raleigh, N.C., 1977.

[6] Chow, Yuan-Chieh, and Walter H. Kohler,
"Dynamic Load Balancing in Homogeneous Two
Processor Distributed Systems," in Computer
Performance, K.M. Chandy and M. Reiser, Eds.,
New York: North Holland, 1977.

[7] Chow, Yuan-Chieh, and Walter H. Kohler,
"Models for Dynamic Load Balancing in a
Heterogeneous Multiple Processor System,"
IEEE Transactions in Computers, Vol. C-28,
No. 5, May 1979.

[8) Conway, Richard W., William L. Maxwell, and
Louis W. Miller, Theory of Scheduling,
Addison-Wesley Publishing Co., Reading, Mass.
1967.

[9] Denning, P.J., "Fault-Tolerant Operating
Systems," ACM Computing Surveys, Vol. 8,
No. 4, December 1976, pp. 359-389.

[10] Farber, David J., and Kenneth C. Larsen,
"The Structure of a Distributed Processing
System - Software," Proceedings Symposium
on Computer Communications Networks and
Teletraffic, Microwave Research Institute
of Polytechnical Institute of Brooklyn,
April 1972.

[11) Farber ,David J., et al., "The Distributed
Computer System," Proceesings 7th Annual
IEEE Computer Society International Confer
~· February 1973.

[12) Feiler, Peter, "Implementation Issues of a
Distributed Operating System, Notes on the
Cm* Operating System," presented at the
Brown University Workshop, August 1976.

[13] Forsdick, Harry C., Richard E. Schantz, and
Robert H. Thomas, "Operating Systems for
Computer Networks," IEEE Computer, Vol. II,
No. 1, January 1978.

[14) Foschini, G.J., "On Heavy Traffic Diffusion
Analysis and Dynamic Routing in Packet
Switched Networks," Computer Performance,
K.M. Chandy and M. Reiser (eds.), North
Holland Publishing Co., 1977, pp. 499-513.

[15] Gallager, R.G., "A Minimum Delay Routing
Algorithm Using Distributed Computation,"
IEEE Transactions on Communications, Vol.
COM-25, No. 1, January 1977, pp. 73-85.

[16] Gerla, Mario, and Leonard Kleinrock, "On
The Topological Design of Distributed Com
puter Network," IEEE Transactions on Com
munications, Vol. COM-25, No. 1, January
1977. pp. 48-60.

[17) Gonzalez, M.J.,Jr., "Deterministic Proces
sor Scheduling," ACM Computing Surveys,
Vol. 9, No. 3, Sept. 1977, pp. 173-204.

185

[18) Graham, G.S., editor, "Special Issue:
Queueing Network Models of Computer System
Performance," ACM Computing Surveys, Vol.
10, No. 3., Sept. 1978.

[19] Hamilton, Jim, "Functional Specification
for the WEB Kernel," Digital Equipment
Corporation, R & D Group, Maynard, Mass.,
Nov. 1978.

[20] Hewitt, C., et al., "Parallelism and Syn
chronization in Actor Systems," 1977
Conference on Principles of Programming
Languages, Los Angeles, California,
January 1977, pp. 267-280.

[21] Jensen, Douglas, "The Honeywell Experimen
tal Distributed Processor--An Overview of
its Objectives, Philosophy and Architec
tural Facilities," IEEE Computer, Vol. 11,
No. 1, January 1978.

[22) Jones, A.K., R.J. Chansler, I. Durham,
P. Feiler, K. Schwans, "Software Manage
ment of Cm*, a Distributed Multiprocessor,"
AFIPS Conference, Vol. 46, NCC, 1977.

[23] Kleinrock, Leonard, Queueing Systems:
Volume 2: Computer Applications, John
Wiley & Sons, New York, 1976.

[24] Kleinrock, Leonard, and Holger Opderbeck,
"Throughput in the ARPANET--Protocols and
Measurement," IEEE Transactions on Connnuni
cations, Vol. COM-25, January 1977, pp.
95-104.

[25] Lamport, L., "Time Clocks and the Order
ing of Events in a Distributed System,"
Massachusetts Computer Associates, Wakefield
Mass., March 1976.

[26-) Le Lann, G., "Distributed systems--towards
a formal approach," Proceedings IFIP
Congress, Toronto, North Holland Pub., Aug.
1977, pp. 155-160.

[27] Le Lann, G., "Algorithms for distributed
data-sharing systems which use tickets,"
Proc. 3rd Berkeley Workshop on Distributed
Data Management and Computer Networks,
Aug. 1978, pp. 259-272.

[28] Lesser, Victor, and Daniel D. Corkill,
"Functionally-Accurate Cooperative Distri
buted Systems," Computer and Information
Sciences Technical Report, Univ. of Mass.,
February 1979.

[29] Lipsky, L., and J.D. Church, "Applications
of a Queueing Network Model for a Computer
System," ACM Computing Surveys, Vol. 9,
No. 3, Spet. 1977, pp. 205-221.

[30] McQuillan, J.M., "Throughput in the ARPA
Network--Analysis and Measurement," BBN
Report 2491, January 1973.

[31] McQuillan, J.M., "Adaptive Routing Algo
rithms for Distributed Computer Networks,"
BBN Report No. 2831, May 1974.

[32] McQuillan, J.M., and D.C. Walden, "The
ARPA Network Design Decisions," Computer
Networks, The International Journal of
Distributed Informatique, Vol. 1, No. 5,
August 1977, pp. 243-289.

[33] Menasce, Daniel A., and Richard R. Munt-z,
"Locking and Deadlock Detection in Distri
buted Data Bases," IEEE Transactions on
Software Engineering, Vol. SE-5, No. 3,
May 1979.

[34] Michel, J. and Andries van Dam, "Experi
ence with Distributed Processing on Host/
Satellite Graphics Systems," in Proceedings
SIGGRAPH, 1976.

[35] Mishkin, Eli, and Ludwig Braun, Jr.,
Adaptive Control Systems, McGraw Hill> Inc.,
New York, 1961.

[36] Myers, Glenford J., Composite Structured
Design, Van Nostrand Reinhold Co., N. Y.,
N.Y., 1978.

[37] Narendra, K.S., editor, Proceedings of the
Workshop on Applications of Adaptive Control
Yale University, August 1979.

[38] Rosenkrantz, Daniel, Richard E. Stearns, and
Philip M. Lewis II, "Systelll Level Concur
rency Control for Distributed Database Sys
tems," ACM Transactions on Database Systems
Vol. 3, No. 2, June 1978, pp. 178-198.

[39] Schwartz, Mischa, Computer Communication
Network Design and Analysis, Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1977.

(40] Segall, A., "'.rhe Modeling of Adaptive Rout
ing in Data-Cbllllllunication Networks," IEEE
Transactions on Cotmnunications, Vol. COM-25,
No. l, January 1977, pp. ~5-95.

[41] Stabler, G.M., "A System for Interconnected
Processing," Ph.D. Dissertation; Brown
Univ., Providence, R.I.; Oct. 1974,

[42) Stankovic, John A,, and Andries van Dam,
"The Distributed Processing Workshop,"
Brown University Technical Report CS-32,
available from the IEEE Computer Society
Repository R.77-373, August 1977.

{43] Stankovic, John A., et al., "Issues in
Distributed Processing, 11 IE:EE Computer,
Vol. 11, No. 1, January 1978.

(44) Stankovic 1 John A., "Structured Systems
and Their Perforniance Improvement Through
Vertical Migration," Ph,D, Thesis, Brown
University, CS technical Report CS-41,
May 1979.

186

(45] Stankovic, John A., "Communications Mech
anisms: Procedure Calls Versus Messages,"
submitted to IEEE Computer, August 1979.

[46] Stankovic, John A., and Andries van Dam,
"Research Directions in (Cooperative)
Distributed Processing," Research Direc
tions in Software Technology, MIT Press,
Cambridge, Mass., 1979.

(47] Stevens, W.P., G.J. Myers, and L.L.
Constantine, "Structured Design,"
IBM Systems Journal, Vol. 13, No. 2, 1974,
pp. 115-139.

(48] Stone, H.S., "Multiprocessor Scheduling
with the Aid of Network Flow Algorithms,"
IEEE Transactions on Software Engineering,
Vol. SE-3, January 1977.

[49] Stone, H.S., "Critical Load Factors in
Distributed Computer Systems," IEEE Trans
actioris on Software Engineering, Vol. SE-4,
May 1978.

[50] Sunshine, Carl, "Formal Techniques for
Protocol Specification and Verif-ication,"
IEEE Computer, Vol. 12, No. 9; S~pteinber
1979.

[51] Swan, R.J., S,H. Fuller, and ti.P. Sie'Wiorek,
"Cm*: a Modular, Multi~Multiproc.essor,"
AFIPS Conference, Vol. 46, NCC,' 1977'.-

!

1
2

2 3

4
5
6
7

3

1

1

2

3

4
5

6

4 5 7
7

1
2
3

6
4
5
6

7

Figure 1: Arbitrary Distributed Network

187

TABLE - 2 TABLE - 1

1 2 4 2 1 5 7 3
[JJ 1

2 lW
3

4
5

6
7

TABLE - 3

3 2 7

l=

[ill

TABLE - 5

5 4 2 6

t===

r==

1W

TABLE - 7

7 2 3 6

1
2 .I==

3
4

5
6 !:=:

7 lli

1:.::::::

'1
2

r-
3

4

5
6

7

1
2
3
4

5
6

7

/-

---=

1-c---

TABLE - 4

4 1 5

I=

[ill

TABLE - 6

6 7 5

I-

[ill
1--

Figure 2: "Workload" Tables

DIRECTIONS FOR USER DEFINED COMMUNICATION
FOR DISTRIBUTED SOFTWARE

Robert B. Kolstad & Roy H. Campbell
Department of Computer Science

University of Illinois
Urbana, Illinois 61801

Summary

Advances in hardware technology have decreased
costs of processors and memory, thus permitting
collections of processors to be coupled cost
effectively into distributed,.. computing systems.
The distribution of computing resources may f acili
tate access speed, physical control, and contention
reduction (though load sharing may become more dif
ficult) (24]. The interconnection of computer
resources to allow processes to communicate is a
difficult task, though success has been achieved in
closely coupled environments (21], [4], [l], (19].
Loosely coupled environments such as networks do
not yield elegant solutions so quickly. Much
research proceeds on low level network protocols
and a few researchers have enhanced the users'
ability to communicate between processes in a
nonhomogeneous environment [14], [26], [24], [15],
[13]' (22].

Our criteria for implementing software for con
nected systems are evolving with gains of knowledge
about and experience with these systems. We
believe that a modular specification technique
which allows separation and static description of
synchronization, concurrency, and data access is
necessary and that it is important to have the
ability to develop software for connected systems
(utilizing user specified communication) in a uni
form, top-down manner. The ability to specify and
implement true concurrency along with freedom of
concern (during specification, design, and coding)
of actual physical embodiment of a process's execu
tion are fundamental. Desirable solutions meeting
these criteria will include few extensions to
current thinking and hide implementation details
from the programmer. Certain qualities enhance
general programming languages: conciseness, strong
typing and user specifiable types, a direct rela
tion between an algorithm's complexity and the com
plexity of its representation, separation and
orthogonality of available language constructs
(constructs should not overlap in function), and
the ability to make static declarations (instead of
data-dependent ones). These properties enhance
modifiability, reliability, portability, readabil
ity, maintainability, and promote higher produc
tivity. Unfortunately, few high level languages
of fer facilities to exploit abstraction of syn
chronization, concurrency, and communication.

Other researchers have proposed different
methods for interprocess and interprocessor commun
ication-. Explicit send/receive of messages (some
times with automatic message encoding) has been
proposed by [20], [15], (13], (16], [19], (18],
[24], [28], and [25]. Signal/wait is similar to
send/receive and has been proposed by [2], [3], and
(16]. Many schemes rely on shared memory [4], (5],
[2], [3], (22]. Those schemes which allow communi
cation in a loosely coupled environment usually
require fixed configurations [4], [5], [15], and

CH1569-3/80/0000-0188$00. 75 @ 1980 IEEE

188

(10]. All schemes so far (except [16]) use dynamic
synchronization methods or simple mutual exclusion.
The schemes of [10] and [16] provide facilities
similar to our proposal below but at the expense of
extending language syntax.

Path Pascal was developed by augmenting Pascal
[17] with a small number of orthogonal constructs
to specify concurrency, encapsulation, and syn
chronization. The Path Pascal object encapsulates
a set of data, a set of services to operate on the
data, initialization for the data, and a specifica
tion of the synchronization for the services. Path
Pascal [8], [21], [6], [7] contains path expres
sions [9] for synchronization and the process
declaration for concurrency. Although Path Pascal
has only been used in a closely coupled environment
(with shared memory), we believe its object con
struct models the desired behavior of a (possibly
remote) service.

Path Pascal objects are normally used in a mul
tiprocessor environment with shared memory (or a
multiplexed uniprocessor environment). We propose
that their implementation be extended to encompass
not only tightly coupled systems but also loosely
coupled ones. In this new methodology, objects
exist on any of the connected processors and com
munication between them is restricted to the invo
cation of objects' operations and return of var
parameters. This invocation represents a transfer
of control from the invoking process to the (possi
bly remote) object. Flow of control is always
explicitly and deterministically controlled by the
user: invocations of processes create new flows;
terminations of processes destroy old ones. This
control methodology resembles that of (12],
strongly resembles (10], and is different from
[11] which is the basis of several previous
schemes.

This networking of objects is achieved by com
piling invocations of "foreign" objects to calls on
special communication routines which encode the
parameters of the invocation (including references
to other objects) [29], transmit them to the
foreign object's host, await their return, decode
return arguments, and return control to the invok
ing process. This represents only a change in the
scoping and compilation of objects and is a dual of
message passing systems [23].

The advantages of objects hold: encapsulation
exists for each object (each object is represented
on one machine) synchronization specifications are
maintained, and data can be manipulated by all
processes (local or remote) possessing the capabil
ity [12] for invoking the data's object's opera
tions. Network objects extend the convenient mani
pulation of shared data to loosely coupled systems
and require no changes or extensions to Path
Pascal's syntax (though separate compilation
becomes desirable). The link editor deduces the

location of objects and imposes performance penal
ties only on true foreign object references.

Instantiation, naming, and compiling of new
objects on different hosts requires special care
[27). The communications template of an object
will be portable and is dlstributed to remote pro
cessors which require communication facilities.
Binding of Path Pascal processes and objects to
individual processors can be performed any time
before execution of the process or object begins.

References

[l] Brinch Hansen, P., Operating System Prine.,
Prentice Hall, Englewood Cliffs, ~ 1973.

[2] Brinch Hansen, Per, "The Programming Language
Concurrent Pascal," IEEE Trans. on Software
Engineering, Vol. SE-1, No. 2, June, 1975.

[3] Br inch Hansen, Per, "Experience with Modular
Concurrent Programming," IEEE Trans. on Software
Engineering, Vol. SE-3, No. 2, March, 1977.

[4 J Br inch Hansen, P., "Multiprocessor Architec
tures for Concurrent Programs," Proc. of 1978
Nat'l ACM Conf., pp. 317-323, 1978.

[5] Brinch Hansen, Per, "Distributed Processes: A
Concurrent Programming Concept", Comm. ACM, Vol.
21, No. 11, pp. 934-941, November, 1978.

[6] Campbell, R. H. and R. B. Kolstad, "Path
Expressions in Pascal," Fourth Int'l Conf. on
Software Eng., Munich, Sept. 17-19, 1979.

[7] Campbell, R. H. and R. B. Kolstad, "Practical
Applications of Path Expressions to Systems Pro
gramming," ACM79, Detroit, 1979.

[8] Campbell, R. H. and R. B. Kolstad, "A Practical
Implementation of Path Pascal," Technical
Report, Dept. of Comp. Sci., Univ. of Ill. at
Urbana-Champaign, UIUCDCS-R-80-1008, 1980.

[9] Campbell, R. H., "Path Expressions: A technique
for specifying process synchronization," Ph.D.
Thesis, U. of Newcastle upon Tyne, August, 1976;
Also, DCS Tech. Report, Univ. of Ill. at
Urbana-Champaign, UIUCDCS-R-77-863, May, 1977.

[10] Cook, Robert, "*MOD, A Language for
buted Computing," First Int'l Conf.
Comp. Systems, Huntsville, Ala., pp.
Oct. 1-5, 1979.

Distri
on Distr.

233-241.

[11) Dijkstra,
Determinancy
grams," CACM,
August, 1975.

E. w., "Guarded Commands, Non
and Formal Derivations of Pro
Vol. 18, No. 8, PP• 453-457,

[12) Fabry, R. s., "Preliminary Description of a
Supervisor for a Machine Oriented Around Capa
bilities," ICR Quarterly Report 18, Univ. of
Chicago, C00-614-64, Aug., 1968.

[13] Feldman, Jerome A., "High Level Programming
for Distributed Computing," Comm. ACM, pp.
353-367, Vol. 22, No. 6, June, 1979.

189

[14] Geller, Dennis F., "The National Software
Works: Access to Distributed Files and Tools,"
Proc. of 1977 Nat'l ACM Conf., pp. 39-43, 1977.

[15] Hoare, C. A. R., "Communicating Sequential
Processes," CACM, Vol. 21, No. 8, pp. 666-677,
August, 1978.

[16) Ichbiah, J. D., et al., "Rationale for the
Design of ADA ••• " & "Preliminary ADA Reference
Manual", SIGPLAN, Vol. 14, No. 6, June, 1979.

[17) Jensen, K. and N. Wirth, Pascal User Manual
and Report: Second Ed., Springer-Verlag, l~

[18] Jones, A. and K. Schwans, "TASK Forces: Dis
tributed Software for Solving Problems of Sub
stantial Size," Fourth Int'l Conf. on Software
Eng., Munich, pp. 315-330, Sept. 17-19, 1979.

[19) Jones, A., et al., "StarOS,
Operating System for the
Forces," ·Proc. of 7th Symp. on
117-127, Dec. 10-12, 1978.

a Multiprocessor
Support of Task

OS Prine., PP•

[20) Kahn, G., "The Semantics of a Simple Language
for Parallel Programming," Proc. of 1974 IFIPS,
pp. 471-475, North Holland Pub. Co., 1974.

[21] Kolstad, R. B. and R. H. Campbell, "Path Pas
cal User Manual," Dept. of Comp. Sci., Univ. of
Ill. at Urbana-Champaign, Tech. Rept. UIUCDCS
R-80-893, Feb., 1980.

[22) Lampson, Butler w. and David D. Redell,
"Experience with processes and monitors in
Mesa," Symp. on O/S Prine., pp. 43-44, 1979.

[23) Lauer, Hugh and R. Needham, "On the Duality of
Operating System Structures," Second Int'l Symp.
on Op. Systems, IRIA, Oct., 1978.

[24 J Liskov, B., "Primitives for Distributed Com
puting," Proc. of 7th Symp. on OS Prine., pp.
33-42, Pacific Grove, CA, Dec. 10-12, 1979.

[25 J Mao, Tsang and Raymond Yeh, "Communication
Port: A Language Concept for Concurrent Program
ming," First Int'l Conf. on Dis tr. Computing
Systems, Huntsville, Ala., pp. 305-314, Oct.
1-5, 1979.

[26] Millstein, Robert E., "The National Software
Works: A Distributed Processing System," Proc.
of 1977 Nat'l ACM Conf., pp. 44-52, 1977.

[27] Peterson, James L., "Notes on a Workshop on
Distributed Computing," Operating Systems Review
(SIGOPS), Vol. 13, No. 3, pp. 18··27, July, 1979.

[28] Tarini, F., et al., "A
Language," First Int'l Conf.
Systems, Huntsville, Ala., pp.
1-5, 1979.

Network System
on Distr. Comp.
305-314, Oct.

[29] Wallis, Peter J, L., "External Representations
of Objects of User-Defined Type," ACM Trans. on
Programming Lang. and Systems, pp. 137-152, Vol.
2, No. 2, April, 1980.

SESSION 7: NUMERICAL ALGORITHMS AND APPLICATIONS

191

SIMD ALGORITHMS TO PERFORM LINEAR PREDICTIVE CODING FOR SPEECH PROCESSING APPLICATIONS

Leah J. Siegel, Howard Jay Siegel, Robert J. Safranek, Mark A. Yoder
Purdue University, School of Electrical Engineering

West Lafayette, Indiana 47907

ABSTRACT
The use of the SIMD (single instruction stream
multiple data stream) mode of parallelism to

perform the speech analysis task of linear predic
tive coding is explored. Linear prediction
represents one of the major analysis techniques
for speech compression, transmission, and recogni
tion applications. Parallel algorithms to perform
linear prediction have been developed, and are
evaluated in terms of the number of arithmetic
operations and interprocessor data transfers need
ed. From the algorithms, architectural require
ments such as machine size and interconnection
network capability are analyzed.

I. INTRODUCTION
Because of the complexities involved in a gen

eral purpose parallel system, it is becoming ap
parent that one practical way to harness the power
of large-scale parallel processing may be to con
sider its use as applied to a specific type or
class of tasks. One area which appears to be well
suited for such consideration is speech process
ing. Speech analysis, performed for either data
compression or speech recognition purposes, in
volves substantial computation on vectors and ar
rays. SIMD (single instruction stream - multiple
data stream [6J) parallelism may therefore be ap
plicable to a number of speech processing tasks.
Studies of how SIMD machines can be used to per
form fast Fourier transforms [25J and pitch detec
tion C1J have confirmed that speech processing
operations can benefit from the SIMD mode of
parallel processing.

In this paper, the use of SI~D machines to per
form the speech analysis operation of linear
predictive coding C2,11,12,16J is explored.
Linear prediction is closely related to techniques
in time series analysis [4J, Kalman filtering [7J,
and Wiener filtering [28J. It is one of the prin
cipal analysis methods used for speech compres
sion, transmission, and recognition [2,16,23J, and
is applicable to problems in neurophysics and se
ismic signal processing [11J.

A general model of an SIMD machine is assumed
for the development and analysis of parallel
linear prediction algorithms. The SIMD machine

model consists of a control unit, a set of N=2n
processing elements CPEs>, each a processor with
its own memory, and an interconnection network
[19J. The control unit broadcasts instructions to
all PEs, and each active PE executes each instruc
tion on the data in its own memory. The instruc
tion is executed simultaneously in all active PEs.

This material is based upon work supported by the
National Science Foundation under Grant
ECS-7909016.

CH1569-3/80/0000-0193$00. 75 © 1980 IEEE

193

The interconnection network enables data to be
transferred among the PEs. Each transfer is ex
pressed in terms of an interconnection function,
where interconnection function f is a bijection on
the set of PEs which transfers a data item from PE
i to PE f(i). The transfer occurs simultaneously
for all i for which PE i is active [17J.

Detailed SIMD algorithms to perform linear
prediction analysis are given in [26J. In these
algorithms, some known SIMD programming techniques
have been extended [8,14J and new methods are in
troduced. In this paper, the relative complexi
ties of corresponding serial and parallel algo
rithms are reported, and the machine size and in
terconnection network requirements of the algo
rithms are presented. The network requirements
are expressed in terms of the interconnection
functions which are executed. The ability of in
terconnection networks in the literature to per
form the required transfers is discussed.

II. LINEAR PREDICTIVE CODING
Speech production is commonly modeled as a

filter driven by an excitation component. The
filter represents the configuration of the vocal
tract - i.e., the positioning of the mouth, nose,
and throat. The excitation represents the air
flow from the lungs which has been either
transformed into a periodic sequence of pulses by
the vocal cords (the pitch in the production of
pitched sounds>, or set into rapid, "noise-like"
motion by being forced past some constriction
(e.g., the teeth against the lower lips in the
production of an "f").

Linear predictive coding CLPC) analysis
operates on a sampled signal {s}, where, if m is
an integer variable, s(m) represents the m-th sam
pled value of a continuous-time speech signal. In
the linear prediction model, it is assumed that
each ·sample s(m) of the signal {s} can be ex
pressed as the sum of two components, one a
weighted sum of the previous p samples, and the
other a residual component 6(m) which may differ
for each s<m> [2,11,16J:

p .
s(m) = I: a(k)s(m-k) + Hm>.

k=1

The weighted sum portion can be interpreted as the
"predicted" value §Cm) for speech sample s(m). If
it is assumed that each s<m> can be approximated
by §Cm>, then the predictor coefficients CaCk)'s>
can be obtained by minimizing the total squared
prediction error, defined as

2 "' 2 p 2 E =L.[s(m)-§Cm)J =I:es<m>-I: a<k>s<m-k>J (1)

m m k=1

The minimization of E2 is performed by solving the
set of equations

1 ~ k ~ p. (2)

By choosing the interval over which the linear
prediction analysis is performed to correspond to
an interval over which physiology precludes a sig
nificant change in the vocal tract configuration,
the linear predictor will accurately model the vo
cal tract, but will not accurately model the exci
tation. For this reason, the linear prediction
coefficients will describe the components of the
speech due to the slow changing, "predictable"
configuration of the vocal tract, while the error
between s(m) and s(m) will be primarily due to the
less regular excitation component. Linear predic
tion is therefore used in speech analysis to ob
tain characterizations of the vocal tract and ex
citation components of speech.

The number of samples s(m) used in obtaining a
set of predictor coefficients will typically be
between 100 and 400, corresponding to 10-20 mil
liseconds of speech, depending on the rate at
which the original speech signal was sampled. The
Linear prediction analysis will therefore be per
formed between 50 and 100 times for a second of
speech. Typical values of p, the number of terms
used in the approximation of sCm), will be between
6 and 25 C12J.

Different assumptions about the range of m in
C1) yield different formulations of Linear predic
tion, on which different techniques to solve the
system of equations in C2) can be used. The as
sumption that sCm) is 0 outside the interval
0 < m < M, for some M, results in the autocorrela
tion method C12,16J. This method possesses some
desirable computational properties, but the as
sumption that sCm) = 0 outside the given interval
is not, in general, true. The assumption that m
is to range over a fixed interval p < m < M, but
that the signal may be non-zero outside that in
terval Cin particular, that s(L), 0 < L < p, need
not be zero) results in the covariance method
[2,12,16J. This is a more accurate model of
speech, but the solution of the equations in (2)
is more expensive than with the autocorrelation
method. Both methods are widely used.

III. SIMD ALGORITHM ATTRIBUTES
Under the assumptions of the autocorrelation

method, the predictor coefficients, Ca<k>'s), can
be obtained by solving the system of equations
[11,16J:

p
:Ea Ck> RC Ii-kl>
k=1

R (i) < i ~ p (3)

where the R(i)'s are the short-time autocorrela
tion functions:

R Ci>
M-1-i

:E sCm)sCm+i)
m=O

Equivalently, the predictor coefficients can be
found by solving the matrix equation:

194

CQ a = R (4)

where R and a are the p-element column vectors of
elements R(i) and a(i) respectively for 1 < i < p,
and '1? is the p by p matrix in- which
'1?Ci,k) = R<li-kl>, 0 < i,k < p. CQ is a Toeplitz
matrix, i.e., it is symmetric, with all elements
in each diagonal being identical.

Obtaining the predictor coefficients using the
autocorrelation method consists of two steps: com
putation of the RCi>'s and solution of the system
of equations in C3). SIMD algorithms to compute
the RCi)'s in N > M PEs were given in [24J.
Durbin's method C16J is an iterative serial tech
nique for solving a system of equations involving
a Toeplitz matrix. A parallel algorithm based on
Durbin's method for computing the a(k)'s given the
R(i)'s is presented in [26J. The relative com
plexities of the serial and parallel algorithms
are shown in Table 1.

The two algorithms to compute the RCi>'s use
N > M PEs. The interconnection functions required
by-the first algorithm are the Shift_1 function

and the Cube interconnection functions. The
Shift_1 is one of the uniform shift functions,

where in general the Shift±d function is defined

as the interconnection function which transfers
data from PE i to PE Ci±d) mod N, 0 < i < N. The
Cube functions [17J consist of n interconnection
functions, defined for 0 ~ i < n as

Cube;<Pn-1···Pi···Po> = Pn-1···Pi···Po

where pn_1 ••• p0 is the binary representation of a

PE address and - denotes complement. The second
R(i) algorithm employs the n Cube functions and a
Broadcast, defined to be the transfer of a data
item from one PE to all PEs. The parallel algo
rithm based on Durbin's method uses N > p PEs and
requires the log2p Cube functions, the Shift±d

functions for 1 ~ d < p/2, and p/2 Exchd func-

tions, defined for p/2 ~ d < p as

j+d 0 ~ j < p - d

Exchd(j) = j p - d ~ j < d

j-d d ~ j < p

In Section IV, the ability of various interconnec
tion networks to execute these interconnection
functions is discussed.

Under the assumptions of the covariance method,
the predictor coefficients can be obtained by
solving the system of equations C2,12J:

p
:E a<k>c<k,i) = -cCO,i)
k=1

< i ~ p (5)

The c<k,i)'s represent a covariance matrix

cCi,j)
M-1
:E s(m-i>s<m-j)

m=p
0 ~ i,j ~ p (6)

where samples s(O) through s(M-1) are available in

the speech segment. Solut1on of the system of
equations in (6) is equivalent to solving the ma
trix equation:

c.! = -.£. (7)

where C is the p-element column vector of elements
cCO,D; 1 ~ i ~ p, and C is the p by p covariance
matrix in which r.ck,i> = cCk,i), 1 ~ i,k ~ p.
Solution f.or the aCk>'s in the covariance method
consists of two steps: computation of the cCi,j)'s
and solution of the system of equations in (5) or
C7>. Parallel algorithms to compute the cCi,j)'s,
perform the matrix inversion, and compute the
matrix-vector product needed to solve for the
aCk>'s in equation (7) are given in [26]. Com
plexities of the serial and SIMD algorithms are
shown in Table 1.

The algorithm to compute the cCi,j)'s uses
N > M PEs. The interconnection functions required
are the Shift_1 and Shift_CM-p) functions, the
Shift . functions for 1 < i < p, and the set of n +1 - -

"Minus2i" functions. The Minus2i functions are
defined for 0 ~ i < n as

Minus2i (j) = Cj - 2i> mod N.

The matrix inversion algorithm uses N ~ p PEs, and
requires a Broadcast, the Shift±d functions for

1 < d < p, and the set of log2p "Plus2i" functions

defined for 0 ~ i < n as

Plus2i(j) = Cj + 2i> mod N.
The algorithm to compute the matrix-vector product
uses N ~ p PEs, and requires a Broadcast.

IV. MACHINE REQUIREMENTS
From the algorithms developed, it is possible

to infer some characteristics of an SIMD machine
designed to perform LPC analysis efficiently. The
machine should have at least M PEs, needed for the
fast computation of autocorrelation or covariance
coefficients. A submachine of size p will be used
to solve for the predictor coefficients. For the
autocorrelation method, the Cube, Shift, and Exch
functions must be performed. A Broadcast may also

be needed. For the covariance method, the Plus2i,

Minus2i, and Shift functions and a Broadcast are
used. It can be shown [26] that each of these
functions and the Broadcast can be performed in a
single pass through a number of multistage net
works, including the data manipulator [5], aug
mented data manipulator [18], generalized cube
Cwith four-function interchange boxes> [22l, and
omega [9] networks. In one pass, the indirect
binary n-cube [15] can perform each of the func
tions; the effect of a Broadcast can be achieved
in at most n passes, using a transfer pattern
similar to that of recursive doubling. The STARAN

flip network [3] can perform the Cube, Plus2i, and

Minus2i functions in a single pass, the Shift
functions and Broadcast in at most n passes, and
the Exch in at most 2n passes. A single-stage
shuffle-exchange network [27] can perform each of
these data transfers in at most n shuffles and n
exchanges. More details are in [26J.

V. CONCLUSIONS
Many large-scale multimicroprocessor systems

which can operate in the SIMD mode of parallelism
have been proposed [e.g., 10, 13, 15, 20, 21J.
This paper explores the use of SIMD parallelism

Table 1. Summary of serial and SIMD algorithm comAlexities for linear prediction computations.

AUTOCORRELATION
METHOD:

R(i) 's serial

SIMD - M PEs*

or SIMD - M PEs*

a Ck) 's seri"al

COVARIANCE
METHOD:

cCi,j>'s

11atrix

SIMD - p PEs

serial

SillD - M PEs

inversion serial

matrix-vector

product

SIMD - p PEs

serial

SIMD - p PEs

* presented in [24J

11ultipl ications additions

MCp+1>-pCp+1)/2 MCp+1l-pCp+1>12

p+1 Cp+1Hog2M

log2M+1 t 2 (log;t'+1> t

p2+2p p2+p

5p-2 plog2p+3p+log2p

Mp+p2-p Mp+p2-p

p+1 Cp+1)(log2M+1>

p3+p-1 p3-2p2+p

2p2 2p2-p

p2 2 p

p p

t C011Plex artthutic

195

inter-PE
transfers

log2MCp+1)+p

log2M

p

types of
transfers

Shtft_1, Cube

Cube, Broadcast

Cube, Shift, Exch

Shift, Minus2i

Broadcast, Shift, Plus2 i

Broadcast

for the applications area of speech processing by
discussing parallel algorithms to perform Linear
predictive coding analysis. From the algorithms,
design criteria for an SIMD machine for speech
analysis applications can be derived.

The approach taken to studying the applicabili
ty of SIMD machines to Linear predictive coding
has been to develop and analyze parallel Linear
prediction algorithms. On one hand, these ana
lyses provide direct information towards evaluat
ing the usefulness of parallel computers for
speech processing and related areas. At the same
time, however, they contribute to the more general
body of knowledge concerning parallel processing.
By developing algorithms for a general model of a
parallel system, insight can be gained into a num
ber of aspects of parallel processing. The algo
rithms can be used to define specific architectur
al features, such as the number of processors
needed/useful for a class of problems, the sizes
of memories required, interconnection network
capabilities needed, and the type of processing
capability required in each processor. Thus, ap
plications studies such as this provide informa
tion for both the speech processing and the paral
lel processing researcher.

REFERENCES

[1J A. V. Ashajayanthi, s. Rajaram, N.
Viswanadham, "A parallel processor for
real-time speech signal processing." 1979
IEEE Int. Conf. Acoust. Speech Signal Proc.,
Apr. 1979, pp. 868-871. --------

[2] B. s. Atal, s. L. Hanauer, "Speech analysis
and synthesis by Linear prediction of the
speech wave," J. Acoust. Soc. Am., Vol. 50,
Aug. 1971, pp.-637-655. - -

[3] K. E. Batcher, "The flip network in STARAN,"
1976 Int. Conf. Parallel Proc., Aug. 1976,
pp. 65-71. -- --

(4] G. E. Box and G. M. Jenkins, Time Series
Analysis Forecasting and Control:-San Fran
cisco: Holden-Day, 1970.

[5] T. Feng, "Data manipulating functions in
parallel processors and their implementa
tions," IEEE Trans. Compl!!.., Vol. C-23, Mar.
1974, pp. 309-318.

[6] M. J. Flynn, ·~ery high-speed computing sys
tems," Proc. IEEE, Vol. 54, Dec. 1966, pp.
1901-190~ --

[7] R. E. Kalman, "A ne,w approach to linear
filtering and prediction problems," Trans.
ASME, .:!._. Basic~., Series D82, pp. 35-45,
1960.

[8] P. M. Kogge, H. s. Stone, "A parallel algo
rithm for the efficient solution of a gen
eral class of recurrence equations," IEEE
Trans. Comput., Vol. C-22, Aug. 1977, pp.
786-792.

[9J D. H. Lawrie, "Access and alignment of data
in array processor," IEEE Trans. Comput.,
Vol. C-24, Dec. 1975, pp. 1145-1155.

[10J G. J. Lipovski, A. Tripathi, "A reconfigur
able vari structure array processor," 1977
Int. Conf. Parallel Proc., Aug. 1977, pp.
165-1~ --

[11J

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24J

[25]

[26]

[27]

[28J

196

J. Makhoul, "Linear prediction: a tutorial
review," Proc. IEEE, Vol. 63, Apr. 1975, pp.
561-580. -- --
J. D. Markel, A. H. Gray, Jr., Linear
Prediction £.f. Speech. NY: Springer-Verlag,
1976.
G. J. Nutt, "Microprocessor implementation
of a parallel processor," 4th~- Comp.
Arch., Mar. 1977, pp. 147-152.
M.C. Pease, "Matrix inversion using paral
lel processing," JACM, Vol.14, Oct. 1967,
pp.757-764. ~-

M. C. Pease, "The indirect binary n-cube mi
croprocessor array," IEEE Trans. Comput.,
Vol. C-26, May 1977, pp. 458-473. --
L. R. Rabiner, R. W. Schafer, Digital
Processing £.f. Speech Signals. Englewood
Cliffs, NJ: Prentice-Hall, 1978.
H. J. Siegel, "Analysis techniques for SIMD
machine interconnection networks and the ef
fects of processor address masks," IEEE
Trans. Comput., Vol. C-26, Feb. 1977, pp.
153-161.
H. J. Siegel, "Interconnection networks for
SIMD machines," Computer, Vol. 12, June
1979, pp. 57-65.
H. J. Siegel, "A model of SIMD machines and
a comparison of various interconnection net
works," IEEE Trans. Comput., Vol. C-28, Dec.
1979, pp. 907-917.
H. J. Siegel, P. T. Mueller, Jr., H. E.
Smalley, Jr., "Control of a partitionable
multimicroprocessor system," 1978 Int. Conf.
Parallel Proc., Aug. 1978, pp. 9-1-:;:- -
H. J. Siegel, L. J. Siegel, R. J. McMillen,
P. T. Mueller, Jr., S. D. Smith, "An
SIMD/MIMD multimicroprocessor system for im
age processing and pattern recognition,"
IEEE Conf. Pattern Recog. Image Proc., Aug.
1979, pp. 214-224.
H. J. Siegel, S. D. Smith, "Study of mul
tistage SIMD interconnection networks," 5th
~- Comp. Arch., Apr. 1978, pp. 223-229-. -
L. J. Siegel, "A procedure for using pattern
classification techniques to obtain a
voiced/unvoiced classifier," IEEE Trans.
Acoust. Speech Signal Proc., Vol. ASSP-27,'
Feb. 1979, pp. 83-89.
L. J. Siegel, "Parallel processing algo
rithms for linear predictive coding," 1980
IEEE Int. Conf. Acoust. Speech Signal
Proc., Apr. 1980, pp. 960-963.
~- Siegel, P. T. Mueller, Jr., H. J.
Siegel, "FFT algorithms for SIMD machines,"
17th An. Allerton Conf. Communication,
COritro~ Computing-,--Oct. 1979, pp.
1006-1015.
L.J. Siegel, H.J. Siegel, R.J. Safranek,
M.A. Yoder, "Linear Predictive Coding Algo
rithms for SIMD Machines," Purdue Univ.,
Elec.Engr. Tech. Rept.,. in preparation.
H. S. Stone, "Parallel processing and the
perfect shuffle," IEEE Trans. Comput., Vol.
c-20, Feb. 1971, pp. 153-161.
N. Wiener, Extrapolation, Interpolation and
Smoothing £.f. Stationary Time Series with
Engineering Applications. Cambridge, MA:
M.I.T. Press, 1949.

A Note on Pipelining a Mesh Connected Multiprocessor for Finite
Element Problems by Nested Dissection.

Dennis Gannon(a)
Department of Computer Science

University of Illinois, Urbana-Champaign
Urbana, Illinois, 61801

Abstract -- A pipelined version of the
parallel Givens Reduction algorithm of Sameh and
Kuck is developed that runs on a quad-connected

2 p multiprocessor array. With the addition of a
shuffle transformation, this permits the solution
of the n by n system Ax= fi i = 1, •• ,r in time

C(n/p) 2(n+p+r). When A has band width p, the
time is C(n/p)(p+r). This is used as the kernel
for a pipelined nested dissection solver for the

2 2 n by n algebraic systems that arise in finite
element problems on n by n grids. With an n by n
mesh-connected multiprocessor, the method runs in
time C(n+rlog(n)).

INTRODUCTION
The method of Nested Dissection by George

[1] has been shown by Liu [2] to be capable of

2 2 solving the sparse n xn system of equations Ax=f
on an n by n finite element grid in time O(n)

with O(n2) processors. Like many of the now
classical parallel algorithms, this theoretical
result did not consider the problem of inter pro
cessor communication. Kung and Leiserson [3]
have shown that, by a "wavefront" or "systolic"
process, the solution of a dense n by n system of
linear equations can be pipelined on a hex-

connected array of O(n2) processors which carry
out standard Gaussian elimination. The result is
an explicit scheme of computation that includes
inter processor communication within the standard
O(n) time bound. More recently, Kuhn [4] has
demonstrated a class of program transformations
that map a great number of algorithms onto
specific architectures with the property that the
resulting execution time is of the same complexi
ty as the classical asymptotic time bound.

Among the more stable dense system solvers
is the method of Parallel Givens rotations by
Sameh and Kuck [5]. As has been observed by Kung
and Leiserson, this method can be easily be
adapted to this type of pipelined array environ
ment. The pu~pose of this note is to develop one
such implementation of the Sameh-Kuck algorithm
that runs on a quad-connected multiprocessor ar
ray, and to use this as the kernel for a nested

(a)Currently at Department of Computer Science,
Purdue University, West Lafayette, Indiana.
Supported by the Department of Energy grant
ENERGY/EY-76-S-02-2383 and an IBM Graduate
Fellowship.

CH1569-3/80/0000-0197$00.75 () 1980 IEEE

197

dissection solver that can be pipelined on a
mesh-connected multiprocessor such as the
N.A.S.A. Langley Finite Element Machine [6].

The following paragraphs will first treat
the Sameh-Kuck algorithm as well as several other
useful operations that can be executed on a
square array mesh-connected multiprocessor.
These operations will constitute a set of primi
tives from which the nested dissection solver
will be constructed in the third section. The
last section will discuss the significance as
well as the shortcomings of such an approach.

The Givens Rotation
Consider the problem of finding the solu

tions to the system Ax = fi, for load vectors fi,

i = 1 •• r. The approach taken by Sameh and Kuck
is to reduce the matrix A to upper triangular
form by the application of a carefully chosen se
quence of rotations. It is shown in [5] that
this sequence of rotations can be blocked in such
way that all rotations within a given block may
be executed in parallel. Once A is in upper tri
angular form, an algorithm such as the column
sweep method described in Kuck [7] can by used to
complete the back solve process to obtain the
solution vectors x.

The basic Givens rotation of two rows i,j of
the matrix (A, f) is given by

Assume that the i,j rows of the (A,f) array are
made available to a pair of connected processors
every C time steps. After receiving the first
column, the processor pair must compute the rota
tion coefficients given by

2 + 2)1/2
d • (ail ajl '

ail
c =--

d '
=~ s d

and then output (d, O)t. Assume· the pair of pro
cessors can communicate one item of data in ei
ther direction in one unit of time. The algo
rithm for the pair of processors consists of the
following sequences

In p~ocessor Pl

input ail

2 d ·= ail

send d to P2
recv c from p2
d := d + c
d ·= sqrt(d)
c := ail/d

send c to P2
recv s from P2
output d

In pro.cessor P2

input ajl

d := 2
ajl

recv c from Pl
send d to Pl
d := d + c
d := sqrt(d)
s := aj/d

recv c from Pl
send s to Pl
output 0

At succeeding blocks of C time steps
the pair computes and outputs

a' ik = caik + sajk k 2, •• ,n,

f'ik cfik + sfjk k 1, •• ,r

in processor 1, and

a' jk =-saik + cajk k - 2, •• ,n,

f'jk =-sfik + cfjk k 1, •• ,r

in processor 2. From the first stage of computa
tion, it can be seen that C • 9 + one square
root. At the expense of a more complex instruc
tion sequence for each processor, the square root
free method of Hammerling [8] can be implemented
(In this case, in order to prevent underflow the
processor pair must make a test, and possibly
switch the computational roles of the two proces
sors).

Figure 1 illustrates the overall structure
for the pipelined algorithm. It is assumed the
matrix and right hand side vectors (A, F) are
stored by rows in a column of memory units along
the right hand side of the array of processors.
One column is accessed every C time units. The
data marches, column by col111111l, through the array
of processors. The pattern of zeros introduced

Figure 1. Givens Reduction Array.

198

into the matrix is given by the numbered ele
ments. When matrix element x reaches processor x
the :reduction sequence is .started. The processor
x and the processor marked by * above x carry out
the programs described above for Pl and P2
respectively. The unmarked processors simply ex
ecute a receive, wait, and transmit operation on
all data they recej.ye. In order to keep the rows
synchronized as they move through the array, the
wait cycle should be equal to c. As in figure 1,
an n by n matrix is reduced to upper triangular
form after being passed through a triangle imbed
ed in a rectangular array of 2n-3 by n quad con
nected .processors.

The total time
all n columns of

to preform the reduction on
A plus the r columns fi i =

l, •• ,r is C(3n+r-3). The reduction operation is
equivalent to a left multiply by an orthogonal
matrix Q• If we let the upper triangular matrix
be represented by U = QA, and let f' i • ~i i =

l, •• ,r, the problem has been reduced to the solu
tion of the system

Ux f'
i

i = I, •• ,r.

A second pass through the processor array can be.
used to execute a column sweep back solve algo
rithm as illustrated in figure 2. The initial
storage scheme is identical to the reduction
sweep. First the entries of U are moved into the
array with a simple pipelined broadcast along the
rows of the array. In the computational phase of
the algorithm the rows of the f i vectors are ad
vanced into the computational array. The move
ment is not by columns but is stagered so that
the first entry of the last row is entered first,
then the first entry of row n-1 and the second
entry of row n. In figure 2, the numbers beside
the arrows indicate the order of the data move
ment for the first column as it passes through
the array. The activities of the processors fall
into three categories. The processors containing
matrix diagonal elements receive a data item from
the right and divide by the diagonal element.
The result is an x value and is transmitted both
upward and to the left. The processors above the
diagonal receive an x value from below which they

+

+ 7

- 6 8

- 5 7 9 -4 6 8 10

- 3 5 7 9 11

~ 2 4 6 8 10 12

...... 1 3 5 7 9 11 13
J

Input matrix.

multiply by the contained ma.trix entry, and sub
tract from the value received from the right.
The difference is passed to the left and the x
value is sent on upward. Processors below the
diagonal receive x values which they transmit to
the left~ If the vectors fi i=l, •. ,r is viewed

-1
as an\. n' by r ma·l!rix F, this process computes U F
in time C(3n+r). In this case C, the maximum
time for any processor to complete one cycle of
its task, is about 4 instructions.

8 6 5

xl fll fl2

£21 f22

£31 f32

£41 £42

£51 f52

Figure 2. Back solve.

In a similar manner, orie can compute the ma
trix product AB for an n by n matrix A, and an n
by r matrix B. This is illustrated in figure 3.
In this case, matrix A is initially stored along
the top row and the matrix B is stored along a
perpendicular edge. During the first phase the
matrix A is moved into the array. In the second
phase, the matrix B is piped through the array.

Figure 3. c AB

199

The result of the inner product is accumulated as
the data moves vertically, and the values of B
are piped horizontally. The result of the pro
duct appears along the top row. It should be
noted that the above two procedures are simple
adaptations of ideas that are not at all new and
fall under the general heading of 'column sweep'
or 'wave front' algorithms.

For the purpose of a concise description of
the dissection algorithm.we shall adopt the fol
lowing notation... Given an n by n array of pro
cessors connect.en:. vertically, horizontally, and
diagonally to theiI' neighbors, and an n by n ma
trix A and an n by r matrix B, define

GR(A; B) = the Givens reduction process
of forming (U, QB).

BS(U; B) the back solve process

to form U-lB.
MP(A; B) = the matrix multiplication process.

The notation (A, B) will describe the n by n+r
matrix formed by the concatenation of the ma
trices A and B. If P is a row or column of pro
cessors the notation ~ shall mean that A is

stored in the memories of P one row per proces
sor. The above processes all share the property
that one starts with data along one edge of the
processor array and the results are produced
along some other edge. The dissection algorithm
shall have occasion to require the results of an
operation to lie in the same processor memory set
as those in which the data originated. For this
reason define the process

~ := MV(Ap) = the pipelined copy

of A from processor set P to
processor set R.

Note that the Givens reduction, as defined
above, does not exactly correspond to the algo
rithm described previously. The difference lies
in the size of the processor array required. The
basic reduction process requires a 2n by n array.
Rather than treat the problem of reducing the re
quirement to an n by n array, consider the more
general limited processor problem of reducing an
n by n matrix with a p by p processor array with
p < n. For simplicity, assume that p divides n.
The more general case is not difficult to
develop. The process of reducing a p by n matrix
to upper triangular form by a height p processor
array will be called p-reduction. Observe that

2 by using p processors divided first into two
height p/2 triangles, one. can reduce a pxn matrix
to the form illustrated in figure 4. This is
simply two reduced p/2 by n matrices stacked
vertically. The resulting process will be called
a 2(p/2)-reduction. The problem is then how to
complete a 2(p/2)-reduction to a p-reduction.
The solution lies in the use of a shuffle
transformation to rearrange the rows of the ma
trix so that a second pass through the processor
array will complete the task. For p even, the

a'11 a'12 a' 13 ... T 0 a'22 a'z3···
0 0 a'33 ••• p/2
0 0 0 t a'51 81 52 a's3···
0 a'62 a' 63• • •
0 0 3 '73••• p/2
0 0 0 _L

au a12 a13 ... aln
3 21 8 22 a23 ... 3 2n

~ a31 a32 a33 ... a3n
8 41 a42 a43 ... 3 4n
8 51 as2 3 53 ... asn

~ a61 a62 a63 ... a6n
a71 an a13 ... 8 7n
as1 as2 ag3 ... asn

Figure 4. The 2(p/2)-reduction.

+ -0 0 -
~ 1 + - 0

+ 0 2 - - 0 0

.... 0 1 3 - - 0 0 0

- 0 0 2 4 + -
+ 0 0 1 3 5 - -0

- 0 0 0 2 4 6 - -0 0 -0 0 0 1 3 5 7 - 0 0 -0 0 0

Half Givens array. Half reduced array. Shuffle 2 (n/2) arrays reduced.
Figure 5.

shuffle permutation is given by

sh(i) 2i

sh(i) 2i-p+l p > i ~ ~-

By applying a shuffle transformation, the two
(p/2)-reduced arrays are merged to a matrix that
is "half" reduced in the sense that the existing
zeros correspond to those introduced by the right
half of the 2p by p processor triangle studied
above. Hence, the remainder of the reduction can
be completed by using the left half of the height
p processor triangle (see figure 5). Employing
the block elimination scheme illustrated in fig
ure 6 for the case p/2 = n/4, the n by n system

n2 2 can be n-reduced in time 2c=z(p+n+r) using p
p

Figure 6. Block Reduction.

200

processors. The algorithm first completes n/p
2(p/2)-reductions and the remainder of the blocks
are reduced by the shuffle half reduction scheme.
The order of elimination of the various block is
given by the numbering in figure 6. A similar
analysis gives the case of a band width p system

in time Cn(3#).
p

To complete the mapping of this process onto
the p by p processor array, it suffices to ob-

serve that the shuffle permutation is easily
pipelined. This is illustrated in figure 7 for
the case of p = a.

Figure 7. Pipelined Shuffle.

NESTED DISSECTION

The nested dissection algorithm is simply
Gaussian elimination based on a very special ord
ering of the variables in the system. Initially,
one starts with a finite difference or finite
element problem defined on a n by n grid of
nodes. The variables of the system correspond to
the solution values at the nodes of the grid.

2 2
The n by n matrix of coefficients in the system
of equations corresponds to the pairwise interac
tions of the nodes on the n by n grid. The main
idea behind the algorithm can be described as
follows. First, from the system of equation, we
eliminate all variables corresponding to the in
terior nodes of the square grid. What remains is
a much smaller system involving only the nodes on
the boundary. Once the smaller system has been
solved, the boundary values obtained are used in
a back solve process to obtain the values for the
interior node variables. The important feature
of the algorithm is the way in which we eliminate
the interior node variables. Divide the n by n
grid into 4 grids of size n/2 by n/2. Eliminate
the interiors of each of these smaller grids (in
parallel) and then eliminate the variables for
the nodes on the cross that quartersected the
grid. The elimination of the interior nodes for
the subgrids is the same process, recursively ap
plied. By repeatedly subdividing, all interior
nodes are eventually seen to lie on some subdiv
ing cross. In terms of the Gaussian elimination
process, subdiagonal segments of the columns in
the matrix corresponding to the smallest subdi
viders are eliminated in parallel first. Then
the subdiagonal matrix elements corresponding the
the next smallest are eliminated. The process
continues until all subdiagonal elements for all
interior nodes have been eliminated. The para
graphs that follow will give a more rigorous
description of this process.

The dissection algorithm is one of the very
large class of algorithms based on a recursive
divide-and-conquer approach. These algorithms

start with a problem of size 2k and generate 2

problems of size 2k-l, then 4 problems of size

2k-2 , and so on. Previous studies of parallel
nested dissection have been to consider the ap
plication of the algorithm to a machine like the
CRAY 1. The unique feature of a vector architec
ture is that only a few vectors can usually be
processed in parallel, and one wants these to be
as long as possible. Unless one defines the vec
tors used in the computation to be cross sections
of the components of the subproblems, the recur-

k
sive algorithms very quickly generate 2 vectors
of length 2. Calahan has proposed a method [9]
based on "generalized vectors" to deal with this
problem.

A second approach is to consider termination
of the algorithm before the vectors get too short
and then switch to a second method. The transi
tion point depends upon various factors such as

201

the pipe start-up time. George, Poole, and Voigt
[10] have studied this trade off in great detail
and have developed several very attractive algo
rithms.

An architecture of the MIMD class provides a
very flexible environment for the parallel imple
mentation of algorithms based on the recursive
divide-and-conquer technique. In its simplest
form, the N.A.S.A. Langley finite element machine

2
is an array of n microprocessors that correspond
to the nodes in a finite difference grid and are
interconnected in a manner that corresponds to a
nine point finite difference operator, i.e. each
processor is connected to its eight nearest
neighbors. In the local memory of each processor
we can easily generate the rows of the stiffness
matrix A and the load vectors f that correspond
to that node of the grid. For simplicity, let

n=2k+l for some k>O. Number the nodes by (x,y)
coordinate pairs on an integer lattice with (0,0)
as the lower left hand corner. Let the processor
at (x,y) be denoted by P(x,y). Let a,b,s~O, and

consider a (2s+l) by (2s+l) block with P(a,b) as
the lower left hand corner. In order to describe
the algorithm it is helpful to define certain
sets of processors and variables associated with
such a block. Define

s
PX1(a,b)

s
PX2(a,b)

s
PY l (a,b)

s
PY 2(a,b)

PY~(a,b)

s-1 s
{p(a+2 , b+j) 15.J.9 -1}

{p(a+j, b+2s-l) 15_j5_2s-l j12s-l}

{p(a+i, b+2s) 15_i5_2s}

{p(a+2s, b+i) 05_i5_2s-l}

{p(a+i, b) I 0_'.£i5_2S-l}

{p(a,b+i) I 15_i5_2s}.

Let PN(a,b) be the set of processors in this
block not contained in the above sets. In short,

s the set PX1 is the set of processors on the vert-

ical bisector.
s

PX2 is the set along the horizon-

tal bisector less the center processor, and pys
i

i=l, •• ,4 is the
outer edges of the
figure 8. Let N,

set corresponding to the four
block. This is illustrated in
Xi, Yj with i=l,2 and j=l, •• ,4

be the set of indices of the corresponding vari
ables where the superscript s and base address
(a,b) are dropped when the context is clear. Let
Z be the set of indices corresponding to the
columns of fi i=l, •• ,r and define A(H;I) to be

the subblock of the matrix (A, F) for rows H and
columns I. Special blocks of interest will be

Bij = A(Xi, Xj) l~i,j~2,

Ci = A(Xi; y jj=l, •• ,4, Z) i=l,2,

Dij = A(Yi; Xj) l~i~4, l~j~2,

Ei = A(Yi;Yjj=l, .• ,4, Z) l(i(4.

The main idea behind the implementation con
structed here is to map the dissection algorithm
onto the array of processors so that when the
grid is recursively quartered, the processors in
each quadrant are assigned the task of completing
the computation associated with the variables in
that quadrant subgrid.

pys
4

'l

(a,b)

PXS
2

pyS
1

PXR ~
1

i

pys
3

pJt5
2

...iJ

Figure 8, Quartered Grid.

pyS
2

The only problem to be solved is how to or
ganize the computation of the recursive reduction
process in a manner that avoids memory and pro
cessor contention for processors associated with
the subdividing cross. In order to visualize the
process, consider the structure of the matrix (A,

F) in a block of size 2s+l by 2s+l after the el

imination of all bisectors of size 2s-l and
smaller (corresponding to the elimination of all

variables X~ for
matrix is shown in

r~s-1). The structure of the
figure 9.

N x1 Xz yl y2 Y3 Y4 z

N ~""''\'\\
Bll Bl2 c

~l

B21 B2~ c2

Dll Dl2 El I
0

D21 D22 E2 l
D3~ D32 E3

D41 D42 E4

(A, F) Block Decomposition.
Figure 9.

202

The algorithm must reduce the matrix Bij and

eliminate the subdiagonal blocks Dik for i,j=l,2

and k=l, •. ,4. The nested dissection reduction of
the interior variables of the grid can be
described in the following algorithmic form.

Procedure NDR(s,a,b)
Begin

if s>O pardo
call NDR(s-1,a,b);

s-1 call NDR(s-1,a+2 ,b);

s-1 call NDR(s-1,a,b+2);

s-1 s-1 call NDR(s-l,a+2 ,b+2);
odpar;

I* move the Bij rows to the outer

edges of the array */
(Bll'B12'Cl) s :=MV(Bll'Bl2'Cl);

PY2(a, b)

(B2l'B22'C2) s :=MV(B2l'B22'C2);
PY3(a,b)

I* reduce the B11 matrix */

(U 11' Bl2' cl): =GR(Bu;BL2' cl);

(B'12•C'1) s :=BS(Ull;Bl2'Cl);
PY2(a, b)

(B'12•C'1) s :=MV(B'12•C'1);
PY1 (a,b)

/* if x2 is nonempty eliminate
B21 and reduce B22 */

if x2 <> 0 then

(B22' c2): =MP(B2 l ;B, 12•C' 1)+(B22' c2);

(U22'C2):=GR(B22'C2);

C'2 :=BS(U22 ;C2)

/* el.iminate the DiJ' subblocks */
for i=l to 4 do

(Dil,Ei) s . :=MP(Dil;B'12•C'1)
PYi(a,b)

od;
if x2 <> 0 then

od;
i.fi;

''erld;

+(Di2'Di);

The first block of the algorithm is the parallel
recursive call, and hence constitutes the only
possible point of processor or memory contention.
In fact, each call to NDR must be seen as an al
location of a square block of processors to that
called process, and the blocks defined here over-

lap along the common boundaries The only

possible way contention can occur is if some
operation requires a pair of opposite outer
edges. In this case, the same process executing
on a neighboring block will demand access to the
processors along the common boundary, and a con
flict will develope. To see that no contention
does develope, observe that at no point during
the NDR procedure are there more than two perpen
dicular sets of edge processors involved in any
one step of the process. The first set of moves
are from the interior cross to an outer edge.
The Givens reductions and the back solves start
along an outer edge, but terminated short of the
outer edge on the opposite side. The matrix mul
tiplications employ a pair of perpendicular
edges.

A time complexity estimate can be derived by
observing that each operation in the procedure

runs in time 0(2s+r). Hence, if Ts is the time

to complete a call to NDR(s,a,b) then there ex
ists some constant C such that

k With n = 2 +l, a call from the top level would
be completed in time 2C(n+rlog(n)).

A top level description of the algorithm
would appear. as

begin
call NDR(k,0,0);

call the limited processor
Givens reduction
to reduce the 4n by 4n block
correspondlng to the exterior

k variables Yi i=l, •• 4.

call a limited processor
back solve to obtain the 4nr

. k
variables Yi.

call NDBS(k,0,0);
end.

Once the subdiagonals associated with the interi
or nodes have been eliminated the reduction and
solution of the problem corresponding to the
boundary variables become a straight forward ap
plication of the limited processor techniques
described earlier. The last call is to a nested
dissection back solve procedure which is outlined
as follows.

203

procedure NDBS(s,a,b)
begin

define YVi' XVj

to be the 2s by r solution

values associated with PY:(a,b), P~(a,b).

define Fi •A(Xi;Z)

Cij•A(Xi ;Yj);

for i•l to 2 do
for j•l to 4 do

F1:•F1-MP(Cij'Yj)

od;
od;

xv2 := BS(U22;F2);

F1 :• F1 - MP(B12,xv2);

xv1 := BS(U 11 ;F1);

(XV1)PX := MV(XV1);
1

(XV2)Px2 := MV(XV2);

if s > 0 then pardo
call NDBS(s-1,a,b);

end;

s-1 call NDBS(s-1,a+2 ,b);

s-1 call NDBS(s-l,a,b+2);

call NDBS(s-l,a+2s-l,b+2s-1);
odpar;

This procedure is of the same complexity as the
reduction process and we see the time bound for
the complete solution is of complexity
O(n+rlog(n)).

CONCLUSION
The finite element machine was designed to

solve finite element problems. While the most
obvious application is to adapt iterative
schemes, it has been show in the preceding sec
tions that the architecture is rich enough to
support the implementation of a direct solver
that was also originally designed for finite ele
ment problems. The thrust of the preceding argu
ments has been to demonstrate that all interpro
cessor colllllllnication can be accounted for without
changing the complexity of the time bound based
on arithmetic operation counts. Furthermore we
have shown that by pipelining the multiprocessor
one can solve the system for several right hand
sides at little additional cost (Crlog(n)). But
concerning the applicability of such a system,
several important points should be raised.

While the algorithm is asymptotically very
fast as a parallel direct solver applicable to a
wide variety of problems, the size of the con
stant C may exceed the equivalent factor on a

method like SOR or other iterative schemes by a
factor of 10 or more. On the other hand, these
other methods require more processing to deter
mi.ne factors such as relaxation parameters in
order to run a their optimal rates. Furthermore,
it is not clear how the iterative schemes can be
effectively pipelined to solve a system for
several right hand sides without simply multiply
ing the time bound by r.

A second interesting point concerns the nu
merical properties of the algorithm as it is
presented here. The method is a blend of Givens
reductions and direct elimination. While one
would expect that this should work as well as
direct elimination alone , more work is needed to
verify this belief.

A third point of interest lies in the prob
lem of generating code for a large multiproces
sor. It is important to note that the procedures
described above do not represent the code
resident in any single processor. In fact, no
two processors will execute the same code se
quence. One approach to generating the code
would be to generate calls to locally resident
generic subroutines, such as the basic routines
for the Givens reduction described earlier.

ACKNOWLEDGEMENTS.
The author would like to gratefully acknowledge
many important suggestions and ideas of Ahmed
Sameh, as well as several enlightening discus
sions with Robert Voigt.

204

REFERENCES

[l] A. George, "Nested Dissection of a Regular
Finite Element Mesh", SIAM J. Numer. Anal.
10(1973)' pp.345-363. -- - -- --

[2] J. W. H. Liu, The Solution of Mesh Equations
~ !:!. Paralle-1-Computer, Dep~f Computer
Science, Univ. of Waterloo, Waterloo; On
tario, Report CS-78-19, 1978.

[3] H. T. Kung , C. E. Leiserson, "Algorithms
for VLSI Processor Arrays", C. Mead and L.
Conway, Introduction to VLSI Systems,
Adison-Wesley, Reading-;--- Ma-.-,-(1980). pp
271-292.

[4] R. Kuhn, Ph. D. Thesis, Dept. of Computer
Science, University of Illinois, 1980.

[5] A. H. Sameh, D. J. Kuck, "On Stable Parallel
Linear System Solvers", JACM 25 (Jan.,
1978), pp. 81-91.

[6] H. Jordan, A Special Purpose Architecture
for Finite Element Analysis , ICASE NASA
Langley Research Center, Hampton, Virginia,
ICASE Report no 78-9, (March, 1978).

[7] D. J. Kuck, The Structure .£i_ Computers and
Computations-,-Vol. 1, John Wiley & Sons,
Inc., New York, 1978.

[8] S. Hammerling, "A Note on Modifications to
the Givens Plane Rotation", ~· Inst. Math.
Appl. 13(1974), pp. 215-218.

[9] D. A. Calahan, Complexity of Vectorized
Solutions of Two-Dimensional Finite Element
Grids Systems Engineering----r:aiJoratory,
Univ. of Michigan, Technical Report 91,
(1975).

[10] A. George, W. G. Poole, Jr., R. G. Voigt,
Analysis of Dissection Algorithms for Vector
Computers, ICASE NASA Langley Research
Center, Hampton, Virginia, ICASE Report
no.76-17 (June, 1976), 58pp.

SOLVING LINEAR ALGEBRAIC EQUATIONS ON A MIMD COMPUTER

R. E. Lord, J. S. Kowalik, and S. P. Kumar
Department of Computer Science
Washington State University

Pullman, WA 99164

Abstract -- Two practical parallel algorithms
for solving systems of dense linear equations are
presented. They are based on Gaussian elimination
and Givens transformations. The algorithms are
numerically stable and have been tested on a MIMD
computer.

Introduction

The problem of solving a set of linear alge
braic equations is one of the central problems in
computational mathematics and computer science.
Excellent numerical methods solving this problem
on uniprocessor systems have been developed, and
many reliable and high quality codes are available
for different cases of linear systems. On the
other hand, the methods for solving linear equa
tions on parallel computers are still in the
conceptual stage, although some basic ideas have
already emerged. The current state of the art in
parallel numerical linear algebra is well de
scribed by Heller [3] and Sameh and Kuck [5] •

Our investigation of methods for solving
systems of dense linear equations on a MIMD
computer includes Gaussian elimination with
partial pivoting and Givens transformations. The
first algorithm is commonly used to solve square
systems of equations, the second produces orthog
nol decomposition used in several problems of
numerical analysis including linear least squares
problems. We focus our attention on the cases
where the number of available processors is
between 2 and O(n), n being the number of linear
equations. We take the view that it is not
presently realistic to assume that O(n2) proces
sors will be soon available to solve sizable sets
of equations. To verify our analytic results we
have used a parallel computer manufactured by
Denelcor Co. [6]. This computer, called HEP
(Heterogeneous Element Processor), is a MIMD
machine of the shared resource type as defined
by Flynn.

Gaussian Elimination

If we consider a step to be either a multi
plication and a subtraction, or a compare and
multiplication, then sequential programs for pro
ducing the LU decomposition of an nx n non-singu
lar matrix requires T1 = (n3/3) + O~n2) steps.
The parallel method using p = (n-1) processors
and partial pivoting requires Tp = O(n log n)
steps. Thus the efficiency of such method for
large n will be

E
p

1
O(log n) '

CH1569-3/80/0000-0205$00. 75 @ 1980 IEEE

205

Even if the cost of each processor in a parallel
system is substantially less than current proces
sor costs, this method will be economically un
feasible for n sufficiently large. We further
observe that parallel computers which are or soon
will be available will not provide n2 processors
for reasonable values of n. Thus, we restrict
our attention to the case where the number of
processors is in the range from 2 to O(n).

The algorithm which we present provides the
LU decomposition of an n x n non-singular matrix

A using from 1 to 1¥1 processors and has an

efficiency of 2/3 when P = fil.
Consider the sequential program for LU de

composition with partial pivoting given in Fig. 1.

Program LUDECOMP (A(n,n)).

For k + 1 to n-1 do

Find JI, such that

IA(t,k) I =max{IACk,k) I, ••. , IA(n,k) I>

PIV(k) + JI, {pivot row}

A(PIV(k),k) ++ A(k,k) >
c + l/A(k,k)

For i + k+l to n do

A(i,k) A(i,k)*c {elements of L}

For j + k+l to n do

A(PIV(k),j) ++ A(k,j) } For i = k+l to n do

lA(i,j) + A(i,j) -A(i,k)*A(k,j)

j
Tk, j > k

Fig. 1: Program for LU decomposition with
illustration of tasks.

In this program we shall consider a task to be
that code segment which works on a particular
column j for a particular value of k. We will
denote these tasks by J = {Tk I l~kSjSn, kSn-1}.

The precedence constraints imposed by the
sequential program are

<• = { (Tkj, TJI,) I j <JI, and k=m, or k<m}.
ID•

Thus, C "' (J,<•) is the task system which repre
sents the sequential program (Coffman, Denning
[l]). The range and domain of these tasks are:

{A(i, j) J k:Si:Sn}

{A(i,j) Jk:Si:Sn} LJ {A(i,k) Jk:Si:Sn}

and from this we can observe that, for example,

{Tk+l Tk+2 Tn} are all mutually noninter-k ' k , ••• , k
fering tasks and could be executed in parallel.
More specifically we observe that C' = (J,<•')
where <• ' is the transitive closure on the

relation x = {(T~, Ta) Jk<j5n} u {Ta' Ta+l) I k<j5n} is

a maximally parallel system equivalent to C. This
system is illustrated in Fig. 2.

/
I

Fig. 2: Maximally Parallel Task
System Equ-ivalent to C.

Given the task system C' we now determine_
the execution time of the tasks and from tliat
determine a schedule. We assume that one multiply
and one subtract, or one multiply and one compare
constitute a time step. Thus, neglecting any
overhead for loop control, the execution time

W(T~) for each of the tasks is given by:

!n+l-k if k = j

n-k if k < j.

Treating the task system C' together with W(Ta)
as a weighted graph we observe that the longest

1 2 2 3 3 path traverses the nodes: T1,T1,T2,T2 ,T3,---,
~-1 n n-l'Tn-l'' We will denote this path as s 1 and

the length of the path by L(s1).

n-1
n+l + 2 l j

j=2

Since the problem cannot be solved in time
shorter than this path length we developed a
schedule where the tasks constituting s 1 are
assigned to processor 1 and the remaining tasks

are assigned to r-¥-1 - 1 additional processors.
. I :1 3 4 4 s s

Processor 2 will execute the tasks T1,T1,T2,T2 ,T3,
n ••• ,T 2 and, more generally, processor j will
n- 2j-1 2 · 2j 2j+l n

execute the tasks T1 ,T1J,T2 ,T2 , •• ,Tn-Z(j-l)

and we will denote this as s j • Note that this is
not a path through the graph. Since this schedule
has length n2-1, the length of the longest path,
then this schedule is optimal for n/2 processors.
Using this schedule we note that:

s
lim __£.
n-+oo P

3
!L + O(n2)

lim -3----
n-+oo (n2-l)n/2

2
3

and this efficiency is achieved to within 2% for
relatively small n (n ~ 50) •

We now examine the question as to whether a
schedule of length n2-1 is achievable with p 5 n/2
processors. From the task system C as illustrated
in Fig. 2 we note that task TI is a predecessor to
all tasks and has an execution time of n steps.
Consequently, any schedule for this system will
have only one processor doing work during the

first n steps. Similarly, Tn 1 is the successor n-
of all tasks and thus during the last time step

n-1
only one processor can be doing work. Task Tn_2
has all tasks except {Tn-l }LJ {T~J l :S j ~ n-1} as

n-ln-1 J
predecessors, task Tn-l is a successor task and

for the tasks {T~J 1 ~ j ~ n-1} each is a successor
J

or predecessor of all other tasks in the set.
Thus, for any schedule from the time that T~:~
commences execution, no more than 2 processors can

n-j+l
be doing work. By similar argument, once Tn-j

commences execution no more than j processors can
be doing work. From this, we define the "compu
tational area" of any schedule C to be the product
of the number of processors and the schedule
length less the area where not all the processors

can be doing work. Since L(Tn-jj+l) = j and during
n-

206

each time interval of length 2j at most j proces
sors are working, we have:

p-1
CA (n2-l)p - (p-l)n - 2 l (p-j)j - (p-1)

j=2

(n2-l)p - (p-l)(n-1) - (p3-p)/3.

,,

The total amount of work (sum of the task weights)
for the task system C is TW = (n3/3) + (2n/3) - 1.
Thus, a lower bound on the number of processors
required to achieve a schedule of length n2-1 is
the smallest p for which CA ~ TW. For small even
values of n the minimum p values are:

2::; n s 8

10 S n :': 14

16 S n ::; 22

24 :': n S 28

30 ::; n S 34

36 S n

p

p

p

p

p

(n/2)

(n/2)-1

(n/2)-2

(n/2)-3

(n/2)-4

p ::; (n/2)-5

For large values of n let p an and determine a
such that

lim(CA/TW) 1
n-l<X>

Thus, an a to ~atisfy the above limit is a solu
tion to 3a - a = 1 and an approximate solution to
this is a= 0.34729. We note that this is only a
lower bound and we do not know if it is achievable
in general, however, for n = 10 we have found a
schedule of length n2-1 using (n/2)-1 processors
and for n = 16 a schedule using (n/2)-2 processors.

Should this lower bound be achievable then
the efficiency for large n and using an proces
sors would be

lim (S /p)
n->oo p

Acutal Performance

2 (n -l)an

!
3a

0.9598.

The achievable schedules previously discussed
were progrannned using HEP FORTRAN and were exe
cuted on the HEP parallel computer. Although the
prog.ram provided solutions to a set of linear
equations, we present timing only for the LU de
composition part of the solution so that it may
be compared with our predicted results. Due to
memory limitations of the machine to which we had
access, we could only run programs with n::; 35 and
lS p,S 8. Table 1 gives the achieved results
together with a comparison of the predicted
results.

Although the actual results are limited by
the restriction on the maximum value for n, we
feel that the agreement between actual and pre
dicted performance is sufficiently good to give
credibility to our model of the algorithm's per
formance and that the efficiencies are high
enough to support the conclusion that parallel
methods for solving linear equations are a viable
alternative to sequential methods.

Fast Givens Transformations

To solve the square system of equations AJS = Q
using the fast Givens transformations, due to
Gentleman [2], we proceed as follows:

207

(i) The matrix A is kept in the factorized

form A = nl/2B where D is a diagonal

matrix. Initially D = Inxn' B=A where

n is the number of equations.

(ii) Triangularize the matrix A by applying
Givens rotations to the augmente4 matrix
[A,b] and obtain the factors Q, D, Rand
~. ~uch that

Q[A,b] = Q[n112B,b] = n112 [R,b]' - - -
where R is upper triangular, Q is the
product of the orthogonal transforma
tions used in the triangularization, and
D is diagonal.

(iii) Solve the upper triangular system ~ = ~
by back substitution.

The sequential method of orthogonal triangu
larization of A, eliminates the subdiagonal non
zero elements of A one at a time. The elimina
tion process is performed sequentially by applying
Givens plane rotation to A in such a way that the
previously introduced zeros are not destroyed.
For each column j of A, n-j rotations are required.
This can be accomplished by algorithm 1:

for i+ 1 to n-1 do

for j + i + 1 to n do

GIVENS (i,j)

which reduces A to fi112R QA, where Q = P1, 2 ,

P1, 3 , •••• ,P 1,n•····•pn-l,n is the product of the

n(n-1)/2 Givens plane rotations. GIVENS (i,j) is
a subroutine which constructs and applies the
plane rotation P The matrix Pi . rotates the

i,J ,J
rows i and j and annihilates the element in the
(i,j)-th position. The entire process requires

~n3 +ln2 - 29 n arithmetic operations.
3 2 6

In a parallel implementation of the fast
Givens method more than one plane rotation could
be applied concurrently. Sameh and Kuck [S], and
Kowalik et al. [4] describe details of such .
schemes which assume tnat p = O(n2) processors are
available. The algorithm proposed in Kowalik et
al. [4] produces the orthogonal matrix Q = Q2n-3'

Q 4 •••• Q2Q1 where O = {P .. li<j = 1,2, ••• ,n,
2n- 1c i,J

i+j k+2}, k = 1,2, ••• ,2n-3, and Pi,j are
applied in parallel.

For the purpose of this analysis and imple
mentation we assume that the number of available
processors is p = (n-1)/2 where n is odd. We also
assume that every Givens rotation is performed
sequentially, however, more than one rotation
could be performed in parallel.

We derive now a parallel scheme to trian
gularize A from the sequential method given in
algorithm 1.

Let a task T~ in algorithm 1 be defined by T~
GIVENS(i,j) where GIVENS(i,j) performs the

following calculations:

1. ex -B(j ,i) /B(i,i)

2. s -(D(j)/D(i))*cx

3. y 1 - cxS

4. D(i) (l/y)D(i)

5. D(J) (1 /y) D (j)

6. B(i,Jl) B(i,Jl) + SB(j ,Jl)}
i::> Jl::> n

7. B(j ,Jl) B(j,Jl) + cxB(i,Jl)

Periodic rescaling of D and B to prevent under
flows and overflows, and row interchanges for
numerical stability are included in our imple
mentation of the Givens routine. The precedence
constraints on the set of these tasks

J {T~ll::>i::>n-1, i<j;5n}

imposed by algorithm 1 are given by

where * represents the transitive closure of
set. Thus the system C = (J,<•) is the task
system representing the sequential program.
range and domain of these tasks are:

(D (i), D (j) , B (i, Jl) ,B (j , Jl) Ii::> Jl ::> n)

the

The

(D(i),D(j),B(i,Jl),B(j,Jl) i:5 Jl:;:n).

i .
From this we can see that the tasks {T. I 1 < j < n,

J -
1.'.:i.'.:n-1, i+j = k+2, k = 1,2,. •• ,2n-3} are
mutually noninterfering tasks and can be executed
in parallel. Hence we obtain a maximally paral
lel task system c' = (J,<- '),where

I [(i i) (i i+l) I ·. l * <• = Tj'Tj+l U Tj'Tj l::>i:>n-2, i<j:>n-1

is equivalent to C.

This maximally parallel task system C' is
shown in Fig. 3. We now assume that one arith
metic operation constitutes a time step. Thus

the length of T~ is L(T~) = 4(n-i+l) + 7 steps.

The longest path in this maximally parallel task
_ { 1 1 1 2 n-1} d system is s 1 - T2,T3, ••• ,Tn,Tn•···•Tn , an

the total length of s 1 is

(4n+7)(n-1) + (4(n-1)+7) +

(4(n-2)+7) + •••• (4•2+7)

2 6n + Sn - 25 operations.

208

,;l Jl ~ _Cn=i\
~······~

Fig. 3: Maximally Parallel Task System C'.

To execute our task system with p = (n-1)/2
processors we have selected a scheduling scheme
called ZIGZAG, shown in Fig. 4. According to
this scheme the processors pk' k = 1,2, •• ,(n-l)/2
are assigned to the tasks as follows:

1 1 2 2 n-2 n-2 n-1
p1 executes: {T2,T3,T3 ,T4 , ••• ,Tn-l'Tn ,Tn }

p2 executes:

pn-l executes:

2

{ 1 1 2 2 n-4 n-4 n-3
T4,T5,T5,T6, ••• ,Tn-l'Tn ,Tn }

{ 1 1 2} T 1,T ,T •
n- n n

For this schedule the speedup and efficiency are:

Tl
4 3 2 4 3

s
3 n + O(n) 3n 2n

2 "' 6n2 9 p Tp 6n + O(n)

s 2n 2 4 E __£_ n
p p 9° n-1 9 • n-1

and for sufficiently large values of n, E 4/9
0.444... • p

Computational Results

The ZIGZAG scheme for orthogonal triangu
larization shown in Fig. 4 was programmed and
executed on the HEP parallel computer. Due to
the present memory limitations the program was
run for the values of n not exceeding n = 29.
Since for this machine 1 < p < 8, and we assumed
that p = (n-1)/2, the obtai;ed numerical results

Fig. 8: Parallel Zigzag Scheme for n = n-1 15, p 2 7.

up ton= 17 are useful to compare. The actual
and predicted speedups and efficiencies of the
algorithm for different values of n are shown in
Table 2. The differences between the predicted
and actual values of S and E are due to several

p p
factors: machine overhead, approximate count of
arithmetic operations involved in Givens rota
tions, and data dependent number of scaling
operations in the GIVENS routine which are not
included in the operations count.

Ref er enc es

[1] E.G. Coffman, Jr., and P.J. Denning, Opera
ting Systems Theory, Prentice Hall, (1973),
331 pp.

[2] W.M. Gentleman, "Least Squares Computation
by Givens Transformations without Square
Roots," _:!. Inst. Math. Applic. (Aug. 1973),
pp. 329-336.

209

[3] D. Heller, "A Survey of Parallel Algorithms
in Numerical Linear Algebra," SIAM Review
(Oct. 1978), pp. 740-777. -----

[4] J.S. Kowalik, S.P. Kumar, and E.R. Kamgnia,
"An Implementation of the Fast Givens Trans
formations on a MIMD Computer," (Wash. State
Univ., Computer Sci. Dept., Pullman, WA,
99164), (1980), unpublished manuscript.

[SJ A.H. Sameh and D.J. Kuck, "On Stable Linear
System Solvers," J. ACM (Jan. 1978), pp. 31-
91.

[6] B.J. Smith, "A Pipelined, Share Resource
MIMD Computer," International Conference on
Parallel Processing, Wayne State Univ.,
IEEE and ACM (Aug. 1978).

n=lO

n=l5

n=20

n=25

n=30

n=35

2

.833

.852

.888

.900

.921

.931

.934

.944

.942

.949

.948

.956

n

5

7

9

11

13

15

17

number of processors p

3 4 5 6 7

• 719 .642 .633

.739 .678 .685

.794 .740 .651 .618 .625

.815 .766 .679 .652 .681

.843 .774 .758 .670 .623

.863 .798 .789 .703 .656

.878 .830 .763 .755 .692

.896 .855 .739 .788 . 726

.892 .844 .818 .757 .744

.911 .863 .843 .783 • 777

.901 .862 .819 .790 .747

.918 ;000 .843 .827 • 779

Table 1: Actual and Predicted Efficiency.

p Tl T s E p p p

2 .0036 .0025
1.44 . 72

1. 40 .70

3 .0087 .0045
1. 93 .64

1. 83 .61

2.33 .58
4 .0168 • 0072

2.27 .57

.0286 .0105
2.72 .54

5
2.72 .54

6 .0448 .0146
3.07 .51

3.16 .52

7 .0660 .0194
3.34 .47
3.61 .51

8 .0927 .0256 3.62 .45
4.01 .so

A

p

A

p

A

p

A

p

A

p

A

p

A

p

Table 2: Actual and Predicted Speedup and Efficiency.
Time is measured in seconds.

210

8

.581

.633

.605

.640

.642

.675

• 710

.745

.741

.769

A

p

A

p

A

p

A

p

A

p

A

p

OPTIMAL INTEGRATED-CIRCUIT IMPLEMENTATION

OF TRIANGULAR MATRIX INVERSION t

Franco P. Preparata

Coordinated Science Laboratory
University of Illinois
URBANA, Illinois 61801
u.:s.A.

Abstract

We describe a class of integrated-
circui t implementations of algorithms for inverting
an n x n triangular matrix. These networks have
area A and time T, with an area x time2 product

2 4 . . . 2
AT = O(n ·.) for all values of T such that O(log n)

s Ts 0 (n). Since there is a simple reduction of
matrix multiplication to inversion of a triangular
matrix, and Savage [6] has given an AT2 = Q(n4)
lower-bound for n x n matrix multiplication, the
presented networks are asymptotically optimal in
the VLSI model.

Keywords : YI.SI, matrix inversion, triangular ·
matrices, area-time complexity, pipeline computation,
optimal networks.

I. Introduction

Increasing attention has been paid recen
tly to the design of networks for the direct imple
mentation of several interesting algorithms using
the integrate!l-circuit technology (VLSI) ; particu
lary, combinatorial and numerical problems have been
the target of these investigations [1-4].

Among numerical problems, several workers have
d~r~cted their attention to matrix computations
(1,2,s], and.as regards the design of networks,

have found that the mesh interconnection of compu
ting modules is particularly attuned to this class
of problems. leading to optimal realizations [s,6]
in the VLSI model [7 ,s].

tin this paper we consider the problem of
designing VLSI networks for inverting a non singular
triangular matrix. The design complies with speci
fications of the VLSI model of computation recently
proposed by Mead, Conway, and Thompson [7,8],
and further refined by Btent, Kung [3].

This work was partially supported by National
Science Foundation Grandt MCS-78-13642, and by the
Joint Services Electronics Program Contract NOOOl4-
79-C-0424, and by ERA 452 ''Al Khowarizmi 11 , Centre
National de la Recherche Scientifique, France.

211

CH1569-3/80/0000-0211$00.75 ~ 1980 IEEE

Jean Vuillemin

Laboratoire de Recherche en Informatique
Bit 490, Universite de Paris-Sud
91405 ORSAY
France

In this model, the network is a computation graph
consisting of nodes (processing modules) and wires.
Wires have unit width and are part'itionable into
two orthogonal sheaves. A data item takes a unit of
time to propa8ate along a wire from node to node

(processing time is thus absorbed into propagation
time). A . mathematically natur~l complexity metric
is the area x time2 product (AT), which embodies
a trade-off between production cost (chip area A)
and incremental cost (time T).

Within this model, Savage [6] lu!s recently
proved the following interesting result : any VLSI
design for the multiplication of two n x n matrices,
with chip area A and computation time T, must sa
tisfy the.5o~n~ AT2;:: C n4, for some constant C.
In [SJ the authors demonstrate the existence of
VLSI networks for multiplying n x n matrices with

2 (4 • • T •· th AT = 0 n) for any computation time in · e range
logzn. s Ts n. Note that an. AT2;:: C •n4 bound also
holds for the problem of inverting a non singular
n x n triangular matrix, since matrix multiplica
tion is reducible to it ; the straightfor ward re
duction is based on the fact that the inverse of
the 3n x 3n triangular matrix

[: A :] [:
-A

~] I is I

0 0

i.e., it contains an n x n block equal to the
product AB.

This paper is organized as follows : In
Section 2 we present a general scheme for inverting
an n.x n triangular matrix, and evaluate two net
work. implementations, corresponding respectively
to block-partitioning the matrix and choosing extre
me. values. for the block size in the allowable range.
These two .inverters are referred to as "recursive"
anrl "systolic" respectively ; with respect to the
AT2 measure, only the latter is optimal for T = O(n).
In Section 3 we ~how that the recursive and systolic
inverters c~n be combined to build networks, ~alle<l
'mixted11 inverters, which meet the optimal AT =Q(n4)

bound for all values of T such that O(log2n)STSO(n).

2.The general scheme for inverting a nonsingular
triangular matrix.

Let A be a nonsingular n x n triangular
matrix(!) to be thought of as an n/s x n/s matrix
whose elements are s x ·s blocks of the original
entries (s is a parameter in the range [1 ,n/2]) ;
let A .. be the (i,j) block of A(i,j=l,2 ,n/s)

l.J (-1) -I
and let A.. be the corresponding block of A .
Ir is strlfghtforward to verify that

(-1)
A ..

l.l.

(-1)
A ••

l.J

-I
A ••

l.l.
A ••

l.J

(-1) (-1) [1 [A.. ,A. . I]· A. I .
l.l. l.,J- i.+ ,J

for i~j · '

A. I • J- ,J

(-1)
A ••

JJ
(I)

This general formula will now be specialized to two
interesting cases.

2.1 Recursive inversion

The standard scheme for the parallel
inversion of a triangular matrix[9,10] corresponds
to specializing the general scheme to s=n/2.
In this case the inverse of

is (2)

This innnediately suggests a recursively defined net
work, containing two inverters of n/2 x n/2 tr~angu
lar matrices (to be used to compute A~ 1 and A- in

11 22
parallel) and a network for the parallel multipli-
cation of two n/2 x n/2 matrices(to be used to

-I -I
compute (A11 A12)A22 in the order shown by the

parenthesization). In figure I, we show a possible
layout for such a network. Each line shown carries
n2/4 operands in parallel and the shaded surfaces
are buffers of area (n2/4) ; the core of the
circuit are two multipliers of two (n/2) x (n/2)
matrices, of a type described in [SJ, and called
recursive multipliers. Each of these multipliers
h~s height and width respectively proportional to
n and computes a matrix·product in O(logn) time
units. Due to the recursive definition of the in-
verter,

(!)The entries of all matrices considered in this
paper are assumed to be drawn from a finite ring, so
that an elementary finte chip can be used for multi
plying and adding entries in constant area and time.

212

..-------- ----------------- ...;:
-•;}u~

UCUltSM llJLTIPI.111 mt1--•Ai1l

of aro j x f ucricH

acuasxvr: ICJLttPLl!&

I
I

I
I
I
I
I
I

I
I
I
I

~============::::::....~· '------- -------- ----------- - ___ ::t

Figure I. Layout of the recursive matrix
inverter ; shaded boxes are data
buffers.

a simple argument shows(2) that its height and
width are also respectively proportional to n2
also, the computation time is O((logn)2). Note
therefore that. for the matrix inverter being
described called recursive inverter - we have the
following properties :

(3)

Type A T AT2

Recursive
O(n4) 2 4 4

inverter O(log n) O(n log n)

Note that AT 2 is short 0£ the optimal Q(n4) by a
small order factor O(log n).

2.2. Systolic inversion

The next scheme to be described corres
ponds to the choice s=I in the general method. The
resulting network is a mesh of processors, each of
which feeds data in and out, each time performing
some computation, keeping a regular flow in the
network. Such.networks have been called systolic
by ~ung an Leiserson[I].

(2)
Recurrences defining height and width are of the

form· f(n)~f(n/2)+An2 for some constant A ; the so
lution satisfies f(n) ~ .!.t. A n.2 •

. 3

With our choice of s, block '\ik in (I)
(-1) (-1)

becomes entry ~k (and similarly Ahk becomes ~k).

The form of (I) suggests a computation method on
an n x n square mesh (figure 2). Only the upper
triangular positions in this mesh need contain
processing modules (i.e., denoting by M .. the

l.J
module in position (i,j), M .. is deployed only for

l.J
j~i). Modules are of two types with different com
putational capabilities : D-modules and M-modules,
placed respectively in diagonal and off-diagonal
positions.

.
•
'~
~:

I
•·

M-modules

Figure 2. Generalstructure of the systolic matrix
inverter (triangular mesh)

Each module contains an operand register
R, and input/output ports referred to by means of
the compass points N,E,S,and W; the instructions
executable in either type of module are shown com
pactly in figure 3.

N

c:::J
R

R + l/R ;
E + N + R.

D-modules

E

N

w

s
initialisation step

R+W.R;E+W
general step :

E

R R + W • S; E +W; N+S;
final step :

R+ - R.S; E+R; N+S;

M-modules

Figure 3. Input/output structures and instruction
sets of D-modules an M-modules.

Initially, each entry aij (i~j) is read into regis
ter R of module M, . ,

l.J

The first module to be activated is Mil•

which computes a{~l) = l/a11 in.R ,sends the result

to M12 and activates M22 . All D-modules perform the

same function upon activation : invert the aii

entry, broadcast it eastward to M .. 1 and activate i,i+

Mi+l,i+I"

As for

mulate the inner

off-diagonal modules, they accu
(-1)

product l a.k • ak. in their
"<k<"]. J

general step, and
]._ J (-1)

transform it to a ..
l.J

- l a~-1) .)
·<k . ik ~J]._ <J

-I . h . f" 1 x a .. in t eir ina step.
JJ

F h f h 1 t entrl."es (-I) or t e purpose o t e genera s ep, aik

are transmitted eastward along horizontal lines,

while entries ~j are transmitted northward along

verticals lines. A timing argument shows later that

ai~I) and ~j meet in Mij for k=i, ... ,j-1. Module

M·. is thus activated when it receives a.:1 on its l.J].].
west entry port and it proceeds with its initi~ti
zation step: sending a .. northward, passing a .. l.J].].
eastward,accumulating a.~I a .. his register R.and].]. l.J
entering its general step. During the general step,

M .. receives a.;1 and a.. on its W-and s~entry. ports;
l.J l.-' KJ

it dutifully passes them on·E-and N-ports accumula
ting R.:.R+aik-~ akj" It enters the final step when

it receives a.: 1 on its S-entry port ; next the S
JJ -I

input is passed northward, the result a .. kept in R
and also transmitted eastward. l.J

To ensure that timing is correct, we can
verify that

- Module M •. is activated at time
iJ

- M - modules M .. are in their general step
l.J

from time j+I to 2j-i-I ; their final
step occurs at time 2j-i.

entries a.-I and a . reside in M .. at the
ip PJ l.J

p - i+j step ;
-I

- entry ajj arrives from S in Mij at

time 2j-i.

For clarity, in figure 4(a) we illustrate
the timing of the computations : .Each module is
labelled with an integer which denotes the step
at which computation in that module is completed.
Also, in figure 4(b and c) we present snapshots
of the data participating in the horizontal and
vertical flow, respectively, at step 7. Clearly
the calculation of A- is completed in 2n-I
steps.

213

3 5 7
2 4 6

3 5 7
4 6

5 7
6

7

(a)

xxx
xx x xx x

xx "f x .. .xx xx • x x x x

(b) (c)

Figure 4 <a) : timing of comp·letion of computation
up to step 7.

(b): data (x) participating in horizontal
flow at step 7.

(c): data (x) participating in vertical
flow at step 7.

According to our original assumption
that both the area of the processing modules and
the time needed to execute any of the prescribed
operations be bounded by a constant, we have the
following :

Type A T AT2

'(4)
systolic O(n2) O(n) O(n4) inverter

i.e., the network is optimal for the AT2 measure.
The optimal behavior, however, ~s achieved only
for T = O(n). An interesting question is whether
it can be extended to a wider range of processing
times. This question: is addressed in the next
section.

3. Mixed networks

We now describe how to combine the recur
sive and systolic inverters described in ~he pre
ceding section in order to improve the· AT measure
for a wide range of the time parameter T.

The resulting networds -.to be called
mixed- have the following general structure. A
mixed netwo·rk is a systolic scheme, as. the one
described in 2.2, where the "operandii", rather
than being elementary entries, are blocks of s x s·
such entries. In the corresponding n'/s x n/s
triangular mesh (see figure 2), the modules must
now be d·esigned to process s x s blocks. The
layout of mixed networks is chosen as in f:igu'lre 5-,
where the modules themselves have been convertiently
assumed to have a rectangular shape on the chip
(else, we consider the smallest rectangle with
sides parallel to the coordinate axes which con
tains the module). From figure 5 it is clear that
while the dimensions (width and height) of the
M-module determine one dimension of the network
-say, its width-, the other dimension -say, its
height- is determined by the larger of the
corresponding values for the D- and M-modules.

214

Figure 5 : General layout O'f mixed networks.

We ean design a mixed inverter as fol
lows (Called Type-I mixed inverter :

(!) D-modules a:te recursive inverters, as
described in .Section 2. I ; they ha~re
width and height proportional to s2, and
computation time O(log2s).

(2) M-modules are recurS'ive matrix multipliers'
of the type shown in [5], as already us~d
to build the recursive inverter. They
can be placed on the chip so that their
width and height are both O(s2). Their
computation time is O(logs). The follo
wing point must be noted : a~though this
type of multiplier is completely pipeli
nable, i.e., it can c0mplete ans x s
matrix product at each step, we cannot
take advantage of the property since the

term A~:I) is available on the E-port of
1J

M .. only O(logs) time units after the 1J .
. . .. 'f A(-l) (". d d eastward transmission o i,j-l in ee

A.(-_ 1)= (-1) (-1) .
1J i<k<j Aik .. Aij ' i.e.'

1 . l" . A(-Jj A t the ml.l til.p ication i ,j-l • i-I ,j mus

be· completed before the final step of
module M. . may begin) •

iJ

Since the heights of the D- and M-modules' are of
the same order, the height of the network's is

o(E. x· s2) = O(ns), and the same holds' for the
s 2 2

width of the network. Thus, A= O(n s), and the
smallest containing rectangle is nearly a' square
with .both sides O(ns). As regards computation

time, the blocks A:~ (i = I, ••. ,n/s) are all
. . ii 2 . . .

computed in time O(log s), and, after this,
the mesh computation begins. We have shown in

Section 2.2 that the systolic-network completes its
computation in O(n/s) steps, whence the total
computation time is T = O(log2s +~logs), If the

s
we bounded the parameter s by s s n/logn we obtain

T = O(~ logs), and the performance of Type-I
s

networks is summarized as follows :.

Type A T AT2

Type-I mixed
O(n2s2) O(~ logs) 4 2 inverter O(n log s) s

for cons. SsS n/logn

The second kind of mixed networks
(Type-2 mixed inverter) is constructed as
follows

(!) D-modules are type-I mixed inverters
(for s x s matrices). According to
the preceding discussion, for any value
of a parameter r s s/logs, these modules
have height and width both O(sr) and
computation time O(log2r + ~ logr).

r
choosing r = s/logs ~ obtain heigh.t
O(s2/zogs), width O(s /logs), and time
O(log s),

(2) M-modules are pipelined matrix multiplier,
as introduced by Preparata and Vuillemin
~5]. It is shown in f5] that one such
multiplier can be designed with height
and width both O(s2/logs) and computa
tion time O(logs).

Again, the dimensions of both D-modules and
M-modules are O(s2/logs), whence :

A= o~(~ L) 2
) = o(ll_)· s logs 1 2 og s

With respect to computation time, we obtain the
same conclusions as for type-1 mixed inverters,
i.e.,

T = O(log2s +~logs),
s

Therefore we obtain

AT2 = o(n2.s22 (1 2 n 1)2) og s + s ogs

(
lo2g 2s· 2

O .E_!__. ns2 log2s.(l + ~ logs) 2) iols

215

Obviously, if s s n/logn we have
slogs< n, whence AT2 = O(n4), and the perfor
mance of the Type-2 mixed inverter is so
summarized :

Type A

Type-2 mixed 2 2
0 .E_!__

inverter

canst. s s

2 log s

2 < n/ (logn)

T AT2

0 (!!. logs)
s O(n4)

Since as s varies from a small constant
value to n/(logn)2 the computation time T varies
from O(n) to O~log2n). we can design networks
meeting the AT = O(n4) optimal bound for all T
such that 0(10g2n) ~ T < O(n). Identically, even
in totally unrestricted models of computation
-as the shared-memory-machine ~see, for example
[10]]- 0 (log2n) is the smallest known running
time for inverting a triangular matrix.

REFERENCES

I. H. T. Kung and C. E. Leiserson, "Algorithms
for VLSI processor arrays," Symposium on
Sparse Matrix Computations, Knoxville,
Tenn., Nov. 1978.

2. L.J, Guibas, H.T. Kung, and C.D. Thompson,
"Direct VLSI implementation of combinatorial
algorithms," Proc. Conference on VLSI Archi
tecture, Design, Fabrication, Calif. Inst.
of Techn., January 1979.

3. R.P. Brent and H.T. Kung, "The area-time
complexity of binary multiplication," Research
Report, Department of Computer Science,
Carnegie-Mellon University, Pittsburg, Penn.,
July 1979

4. C.D. Thompson, "Area-time complexity for
VLSI," Proc. of the !Ith Annual ACM Symposium
on the Theory of Computing (SIGACT),
pp. 81-88, May 1979.

5. F.P. Preparata and J, Vuillemin, "Area-time
optimal VLSI networks for multiplying
matrices", 14th Princeton Conference on
Information Sciences and Systems, March 1980.

6. J.E. Savage, "Area-time tradeoffs for matrix
multiplication and transitive closure in the
VLSI model," Proc. of the 17th Annual Allerton
Conference on Communications, Control, and
Computing, October 1979.

7, C. Mead and L. Conway, Introduction to VLSI
Systems, Addison-Wesley, Reading, Mass.,
1979.

8. C.D. Thompson, "A complexity theory for VLSI"
Ph.D. Thesis, Department of Computer Science,
Carnegie-Mellon Univ~rsity, Pittsburgh, Penn.,
September 1979.

9. D. Heller, "A Survey of parallel algorithms
in numerical linear algebra," Dept. of Comp.
Sci. Carnegie-Mellon University, Pittsburgh,
Pa., Feb. 1976.

10. L. Csanky, "Fast parallel matrix inversion
algorithms, SIAM J. Computing 5, 1976,
618-623.

216

VLSI COMPUTING STRUCTURES
FOR SOLVING LARGE-SCALE LINEAR SYSTEM OF EQUATIONS

Kai Hwang
School of Electrical Engineering
Purdue University
w. Lafayette, Indiana 47907

Abstract Gaussian elimination
for solving large-scale linear system of
algebraic equations is realized with pipe
lined VLSI cellular arithmetic networks.
VLSI arrays are proposed for L-U decom
position of a dense matrix with pivoting,
for triangularizing a given linear system
:! • .!. • !! for pipelined solution, for
obtaining the inverse of a triangular
matrix, and for matrix multiplication
used in solving a family of linear systems.
Modular network realizations of the pro
posed VLSI comPu.ting structures are
presented emphasizing practical packaging
constraints. Structural complexity,
expandability, speed analysis, memory and
I/O requirements of the proposed VLSI
architectures are also discussed.

!• INTRODUCTION

Finding fast, accurate, and cost
effective methods to solve a large· scale
Linear System !!!, Fguations (LSE), in the
f'orm ! • .!. = !!t has been highly demanded
for centuries by scientists and engineers.
Due to lengthy sequences of arithmetic
computations, most large LSEs are solved
on high-speed digital computers using
well-developed software packages such as
the ALGOL-60, FORTRAN, Extended ALGOL,
and PL/l programs described in Forsythe
and Meler 4 • Two major difficulties
arise in solving LSEs on general-purpose
digital computers by software programs.
(a) The mai.n memory is not large enough
to accommodate a very large system matrix
:!• Henceforth, many time-consuming I/O
transfers are needed in addition to the
CPU computation time. (b) With fixed word
length in digital computers, rounding
errors in algebraic processes if not
properly controlled may cause serious
loss of' accuracy leading to unreliable
solutions.

In order to alleviate these problems
presented by software means, the use of'
parallel computers (SIMD or MIMD machines)
for solving LSEs has been studied by
Csanky (3], Stone C20), Chen and Kuck (2J,
Orcutt (15], Sameh and Brent 18 , Sameh
and Ktack (19] , mad Kant and Kianara [lo].
The rapid advent of' .!!£% Large-Scale
Integratien (VLSI) technology has c~eated
a new architectural horizon in imple
menting parallel algorithms directly in
hardware 1),14,21 • This poHibility has

217

CH1569-3/80/0000-0217$00.75 () 1980 IEEE

Yen-Heng Cheng
Department of Computer
Engineering and Science
Tsinghua University
Peking, China

created a new research front on VLSI
computing structures, as reported in
Rem and Mead [.17J , Kung and Lei serson
(111 , Kung [12] , Foster and Kung (6] ,
anJ Horovitz 5 • In particular, Kung
and Leiserson have proposed the systolic
arrays for L-U decomposition without
pivoting [11] • Practical issues on packag
ing constraints, memory and I/O supports,
and modular implementations are still
open problems towards the eventual reali
zation of' VLSI computing structures.

In this paper, a new class of VLSI
cellular arithmetic arrays is presented
for solving LSE in a synchronous and
pipelined fachion. The proposed VLSI
architectures are structured different1y
~rom systo1ic arrays, even both using
similar building cel1s. Listed below are
numerical tasks to be realized with the
proposed VLSI co•puting structures.

(1). L-U Decomposition of a Matrix
with or without Pivoting ..

(2). System Triangularization and
Pipelined Soluti•n of LSEs.

(3). Matrix Inversion and Matrix
Multiplication.

The proposed VLSI arrays and networks
can be applied to any dense •atrices that
are nonaingular. All the processing cells
are kept busy all the tiae, Higher accu
racy and syste• stability can be achieved
with maximum column pivoting. The modu
larity of the proposed VLSI arrays offers
better expandability, aaintenance and
application flexibilities. Coaputational
procedures in Gaussian elimination with
and vi thout pi voting are described in
section 2. Followed are various VLSI
structures and their operational con
siderations. Finally, coaplexity, ex
pandability, speed, accuracy, memory and
I/O supports, and performances of' the
VLSI arithmetic devices are studied.

2. NUMBRICAL .COMPUTATIONS FOR SOLVING
LINEAR ALGEBRAIC STsTJiiS

An LSE is characterized by a pair
(,!,]!), where ! • (aij) is an n x n

matrix, ,!! • (b1 , i.2 , ••• , bn)T is a

columa vector, and n is the !.£!!!!: of' the

LSE. The probl- of' aelving an LSE of'
erder n i• to find a vector !. •

(x1 , x 2 , •••• xn)T which satisfies

,!·~·!? (1)

The solution x is 1ilnique, it and only if'
A is nonsingular. We shall consider only
strongly nonsingular systems, in which all
the diagona1 sublllatrices of .! are nonain•
gular.

For each nonsingular matrix A • (aiJ)

there exists aa inverse matrix !-l • (ciJ)
-1 ~ -1

of A such that A • A = A • A • I,
where I is the identity matrix. The solu
tion vector x can be obtained by leftmul-

- -1
tiplication both aides of Eq.l by ,!

~ = !-1 • !? (2)

-1 2 If' A is known, it requires n multipli-.
cations and n(n-1) additions to compute
the n components of ~· However, to find

the inverse A-l is quite complicated and
should be av;ided if unnecessary 4 •

Using the Gaussian elimination me
thod, one can systematically decompose !
into two triangular matrices & and g such
that

('.3)

where 1 = (Jij) is a lower triangular ma

trix with all diagonal elements equal to
1, and!;[= (uij) is an upper triangular

matrix with nonzero diagonal elements.
Such an 1-g dtcomposition is unique, if
and only if ! is strongly nonsingular. We
shall show the calculations of elements
~ij and uij along with the proposed VLSI

arrays.

The sequence of Gaussian eli111lnation
operations transforms the dense system
A • x = b into an equivalent triangular
LSE -characterized by

(4)

With this triangularized system, one can
compute the solution vector ~ by

~ = g-1 • (1-1 • !?) = g-1 • ~ (5)

-1 -1 The inverse matrices £ and & always
. exist, because !;[and 1 are nonsingular.

-1
We have expressed & • !? = .!:!• Equation 5

can be also obtained from Eq.2 by the fact

A-l = (L • u)-1 = u-1 • L-1 - - - - - .
The inversion of a triangular matrix

requires much less computations than that

218

of an arbitrary dense matrix. Ye shall
-1 show how to compute d • L • b and :z •

-1 - - - -
U • d directly wi.th VLSI hardware. Gaus-
sian elimination procedure automatically
produces the new coefficient vector ~ wi-

-1 thout an explicit evaluation of & . In
fact, if g • (uiJ) is known, the solution

given in Eq.5 involves the following re
cursive comp11tations.

x = d /u n n nn

for i = n-1, n-2 •••, 2, 1 (6)

This combined computation of ele
ments (uij) and (dJ) can be done direct-

ly by the same ensemble of VLSI array.
Gaussian elimination without pivoting (na
ture ordering of elimination) requires

n(n2-1)/'.3 operations to yield a triangu
lar LSE. An operation here implies a mul•
tiplication-additien pair. It takes n(n+l)
/2 operations to solve one triangular LSE
using the above recursions. Frequently,
one needs to compute a family of LSEa cha
racterized by the same ! matrix over dif
ferent coefficient vectors !?tc • (blk' b 2k,

T
••• , bnk) , for k•l,2, ••• ,m. The family

of LSEs ! • ~ = !?tc for k•l,2, ••• ,m re

quires to repeat similar computations m
times. We propoae to solve such family of
LSEs wi.th a pipelined VLSI multiplication
array in 2n operation cycles. In contrast,
to solve m LSEs of order n on a unJ.proces-

2 3 sor system requires to perform mn +(n -n)/3
operations sequentially.

J. 1-g DECOMPOSITlON Q! ! ~ MATRIX

Two VLSI processor arrays are pro
posed below to realize the Gaussian eli
mination method for L-U decomposition; one
corresponds to Gaussian elimination with
natural ordering (no pivoting), and the
other corresponds to with maximal column
pivoting. For clarity purpose, the decom•
position procedure is presented by an ex
ample LSE of' order n=4.

a11 a12 a13 a14

a21 a21 a23 a24
A = (1)

a31 a32 a33 a34

a41 a42 a43 a44

The two tri-gular matrices, & and y:, as
sume th• following f'orma.

1 0 0

121 1 0 0

L =
131 132 0

(8.a)

141 142 143 1

U11 u12 U13 U14

0 u22 U23 U24
.!:!. = 0 0 U33 U34

(8.b)

0 0 0 U44

The following recursions are embedded
in Gaussian elimination procedures without
pi Toting.

II

a ..
l]

2,3,4

3,4 (9)

The entries of' L and U matrices are
obtained in terms of'-these-three sets of'
recursively generated coefficients.

'; 1 = ai 1ta11 for 2,3,4

I I

.e.i2 = ai21a22 for i = 3,4 (10.a)
II II

.e.i3 = ai3 1a33 for i = 4

u1j = a1j for j 1,2,3,4
I

u2j = a2j for j = 2,3,4
11

(10.b)
u3j = a3j for j = 3,4

111

u4j = a4j for j = 4

The aboTe recursions require to re
peatedly perform Multiply, Di.Tide and .!!!!!::.
!£!!2! operations in nm4 iterative steps.
Two types of' arithmetic cells as shown in
Fig.l are required to perfOriii these basic
computations. One is the ~ £.!!! f'or addi-

219

tive multiplication specified by arithme
tic equations d • c + a * b, a • a and
b • b. The other type is called ~ .2!!! f'or
division specif'ied by g • e/f' and f' • f'.
Note that a small circle at the input or
output terminal of' an arithmetic cell
means an arithmetic negation, such as a
two's complement operation. No registers
are assumed within each cell. Instead, we
use latch registers between segments of
arithmetic cells.

A VLSI array f'or L-u decomposition
without piToting is shown in Fig•!• For a

2 general LSE of' order n, (n-1) M cells and
n-1 D cells are needed in the cellular ar
ray construction. In order to facilitate
synchronous pipelined operations, fast in
terface latches are used between Segments
(rows) of' arithmetic cells.

Input operands are f'ro• the elements
(aij) of' matrix !r feeding in one column

per each cycle as shown. The VLSI pipeline
has two-way traf'f'ic f'lows. Data streams
f'low first upward. After reaching the top
segment of' division cells, data streams
then f'low downward. Due to this two-way
pipelining, a number of dummy nwneric ze
ros and ones are interleaTed with the ma
trix elements (aij) in the input data

streams. The array outputs are elements
(uij), (lij) of' matrices ~ and & with also
some dummy interspaced zeros. The proper
timing of' segment delays is marked at the
side for each cycle of the pipeline. In
general, 3n-2 pipeline cycles are needed
to generate all the elements of' ~ and ~
matrices. Between successive applications
of' the two-way pipeline, start-up delays
of' n-1 cycles are needed to drain the pipe
line as shown by the f'irst three cycles
(t1 through t 3) in Fig.l.

Gaussian elimination with natural
order may result in serious accuracy
loss problem. For an example, the division
of' a product terms by a Tery small number
(Eqs. 9 and 10) may cause oTerflow beyond
the precision limit of' the machine. There
fore, we wish to choose the maximal diTi
aors, called piTot elements, in the elimi
nation process. The maximal piTotn, se
lected -ong all remaining rows and co
l~• of the matrix being triangularized,
will cause leaat loss of' accuracy. We im
plement the maximal columns piToting,
which searches f'or the maximal element on
ly among each remaining column. This is
especially conTenient, because the ele
ments of' A are fed into the pipeline by
column as-demonstrated in Fig.l.

A VLSI array is proposed in Fig. 2 for
L-U decomposition with maximal column pi
voting. This array is modified from the

array in Fig.l by adding additional pivot
selection logic. The ~ Indicator (E!,)
is a logic device which indicates the ma
ximal among a column of matrix elements.
The outputs of PI are Boolean values, •1•
signaling the location of the maximal co
lumn pivot and •o• for the rest elements.
The successive outputs of PI for j = 1,2,
3,4 are labeled by Iij for segments i a

1,2,3,4. The Pivot Exchange (PE) unit has
8 inputs, tour of which are the column
elements and .the other four are the cor
responding Boolean indicators (Iij) from

the outputs of the PI on the right of the
drawing. The PE will interchange at its
output the indicated pivot element with
the leftmost column element. The non-pivot
input elements are passed to the corre
sponding output lines unchanged. In other
words, the PE will always output the pivot
element at its leftmost output line. When
the original leftmost input is itself the
indicated pivot, no exchange will be made
and the PE will simply pass all its inputs
unchanged to the corresponding outputs.
Details of the pivoting logic can be found
in Ref.[9]. The input/output of the array
in Fig.2 is labeled in Table 1.

4. SYSTEM TR:r.ANGULARIZATION
A!,!? SOLUTION PIPELINE

Substituting Eq.3 into Eq.l, we ob
tain L • (U • x) • b. This actually re
prese;ts two t;iangUlar systems interlock
ing each other. The forward elimination
corresponds to the lower triangular system.

(11.a)

and the backward substitution corresponds
to the upper triangular system

(11.b)

· The solutions of these two triangular sys
tems will lead to the final solution vector
~· In this section, we wish not to compute

-1 -1 the inverses b and ~ to obtain the
solution vector ~·

Shown below is a VLSI array for tri
angularizing A into U and at the same time
obtaining the-new coefficient vector d and
L. Let us rewrite Eq.11.a for the exaiple
LSE of order 4.

0 0 d1

R.21 0 0 d2 b2

.i.31 R.32 0 d3 b3
(12)

R.41 R.42 l.43 d4 b4

We relabel the column vector (b1 , b 2 , b 3 ,

T
b4) = (a15, a 25 , a 35 , a 45). Using the

similar formulation of Eq.9, we can extend
the column index to ja5 to obtain the fol
lowing recursions with six additional
terms.

aij = aij - <a;1'a11> x a1j

for i = 2,3,4 and j = 2,3,4,5

11 I I I I

= aij - <a;2'a22> x a2j a ..
lJ

111

a ..
lJ

for i = 3,4 and j = 3,4,5

for i 4 and j = 4,5

(13)

The solutions of the forward tri
angular system (Eq.12) can be recursively
computed below using Eq.10.a and Eq.13.

d - b - a 1 - 1 - 15

(14)

(b3 - 131 • b1) - 132 • (b2 - R.21 . b,>

11

a35 - 132
.

a25 a35
11 I I 11 I

a45 - 143 • a35 a45

Note the similarity between the ex
pressions in Eq.14 and those for (uij) in

Eq.10.b. We can use an extended VLSI
structure to compute Eq.14 modified from
the previous L-U decomposition arrays
(Fig0 l). This array as detailed in Ref.
[9] can simultaneously generate the ele
ments of matrix U and of vector d without
explicitly computing the element; of in-

verse matrix L-1 • Such an array can di
rectly convert the original LSE into an
equivalent triangular system. The ele
ments ef matrix A and of vector b serve
as the inputs and elements of £ and vector
g are the outputs.

The solution of the upper triangular
system (Eq.11.b) has already recursively
specified in Eq.6 in terms of (dj) and

(uij). The VLSI array shown in Fig.3 is

specially designed to generate the solu
tion vector x of the LSE. In order to
connect the outputs of the triangula
rizing array directly to the inputs of
this LSE solver, some precautions must be
made to provide the necessary interface
delays to match the speed of: two data

220

l• MATRIX INVERSION !.!,!! MULTIPLJ:CATION

In application where repeated solu
tions o:t ! • ~ • ~ are needed over a
set o:t coe:t:ticient vector• ~ :tor k•l,2,

-1 ••• ,m, the use o:t the inverse matrix!
may become very attractive to generate
the set o:t solution vectors via the se-

-1 quence o:t computations ~ • ! • ~ :tor

k•l,2, ••• ,m. In thie eequenoe, the iDTeree
A-l need be computed only once. According
to Eq. 5, one c- reduce the problem (after
Gauesi- elimination) to ae :tollovss

-1 ()-1 •! -~· !-:•!! -~
-1 -1 (15)

• (!! • ~) • ~ :tor k•l,2, ••• ,m

We preeent below VLSI pipeline• :tor

:tiading the inveree matrix &-l • (•1j)

& • (fij) and the inverse matrix !!-l •

(v1 j) :trom !! • (uij). Baaed on the tri
angular :terms o:t & and !! speci:tied in Eq.

-1 -1 8, & and !! rill be also triangular
matrices.

0 0 0

1121 1 0 0
L-1 = <m; j) = (16.a)

1131 1132 1 0

1141 1142 1D43

v11 v12 V13 V14

0 v22 v23 v24
u-1 = (v ij) = 0

(16.b)
0 V33 V34

0 0 0 v44

Matrix multiplication i• perf'ormed
to obtain the inverse matrix A-~ U-1 • L-1

:trem !l-l and & -l. Let ~ be t;• ·...:s_ t co:

lumn vector who•• component• are all sere
except the k-th componeat, which ie one.

Th• column• o:t !(1 are eimply the reepec
ti ve eolutione o:t the :tolloring n LSEe.

!! • %ic • ~ :tor k•l,2, ••• ,n (17)

One c- write the n colwua vector•
%ic and ~ into a matrix :torm ae ! •

221

(%1 • %2• • • •' ~) and I • (!.1 • !.2• .. •' .!n),
where ! i• the identity matrix. Then the
:tamily o:t LSEs in Eq.17 can be rewritten
into the compact :f'olW U • Y = I. This im-

-1 - - -
plies that ! • !! • The :tolloving recur-
sive :toriaula is used to compute the ele-

ments (v1 j) o:t the inverse u-1 :trom a

given matrix!!• (uij).

v = ~1~ for k=1,2,•••,n
kk ukk

vij =-[i;. uik x vk.J·u-i1i for all j >
lt=1+1 J

(18)

For the LSE o:t order n.4, we have

vkk = 1/ukk for k=1,2,3,4

~12 = -<u12 x v22>lu11

v13 = -cu12 x v23 + u13 x V33)/~11

The VLSI array :tor :tinding the inverse
-1 L matrie L ie ehovn in Fig Similar ar-

ray can be obtained :tor :tinding u-1 :trom
!! ae detailed in [9] • -

We preeent next a VLSI pipelined ar
ray o:t M cell• :tor the multiplication o:t
two arbitrary deaee matrio••• Obviouely,
thie array can be ueed to compute the in-
veree matrix !-l by perf'orming the multiP-

-1 -1 lioation U • L • The array etructure
ie depiot;d by the -ltiplioation o:t two
l IC l 1141uare matrio••·

, where the product coefficients cij =
•
~ aik • ~j for all i and j.
k11I

(20)

The rectangular array design is shown
in Fig.5. The elements of matrices.! and!
are fed from the lower and upper input
lines in a pipelined faehion, one skewed
row or one skewed column at a time. Some
dummy zero inputs are interspaced with the
matrix elements. In general, to multiply
two n ~ n matrices requires n(2n - 1) mul
tiply cells (M cells). The start-up delay
corresponds to the longest path on this 81"

ray, which equals 2n-l clock periods. This
array differs from the systolic array [11]
in both interconnection structure and the
way inputs are applied and outputs are re
trieved. If one counts the start-up delays,
the time required to produce the last pro
duct term cnn (c33 in Fig.5) equals 4n-2

clock periods.

-1 For triangular matrices, such as !!
-1 6 and !:: specified in Eq.l , the full mul-

tiplication array must be used. This is
due to the fact that their product matrix
-1 -1 -1 ! = !! • !:: is, in general, a:n arbi-

trary dense matrix.

The collection of m column-vector
T

solutions :!it. = (xlk' x2k, ••• , xnk) for

k=l,2, ••• ,m specified in Eq.15 can be
generated in pipelined fashion by carrying
out the following matrix multiplication.

where

x11

x21

x=

xn1

X12

x22

xn2 x nm

(21)

(22)

222

(23)
B =

and !-l = (cij) is the inverse matrix of

! = (aij), generated by the multiplication

array of Fig • .5. When m "' n, one can simply
reuse the array of Fig.5 to compute the
solutien matrix ~. When m > n, the multi
plicatioa array must be expended in one
of the two dimensions, say adding more
rows.

Since the elements (cij} of the in-
-1 verse matrix A will be repeatedly used,

we have devised a special VLSI array for
carrying o.ut the multiplication specified
in Eq.21. This alternate array being re
ported in [9] is singly pipelined only in
the vertical direction. The (cij) entries

are fed through a fan-in demultiplexer and
distributed to all M cells. The column
elements of the matrix B are fed through
the vertical inputs, one skewed column at
a time via a fan-in multiplexer. After the

first solution ~l = (x11 ,x21 , ••• ,xn1)Tap

pears at the output end, one solution
vector will appear at each additional
cycle. The attractive part of this array
is that it is applicable to any number of
m LSEs in a pipelined fashion.

.§_. MODULAR NETWORKING OF VLSI
COMPUTING STRUCTURE-S~-

VLSI devices .must grow gradually. It
is by far constrained by chip density,
packaging area, and pin limitations. To
built a "very large" LSE solver, say of

order 103 or greater, on a monolithic Chip
depends on how these constraints can be
overcome. Extensive development efforts
are still need .. ed to develop VLSI modules,
which can be interconnected to form a net
work LSE solver. We propose below two con-
crete examples of such a networking ap
proach. The first example shows the modu
larization of rectangular VLSI computing
arrays and the second one for triangular
VLSI arrays.

A general LSE of order n requires
4n-2 I/O ports in Fig.1, each of which has
a wi_dth of w bi ts (equal to the operand
length). For large n and w, this implies
an exceedingly large nUJ11ber of external
leads on the VLSI chip. Obviously, the

projected IC packaging technology render•
such VLSI array• unrealistic. To alle'Yiate
this problem of' con•trained I/O lead•, a
fan-in demultiplexing and fan-out multip
lexing scheme is depicted in Fig.6 for
general VLSI computing •tructure with k••
para11el input• and r ~ a parallel out
put•. After the I/O multiplexing, rea•onab
ly small nuaber• of' k input• and r outputs
are allowed at the I/O ends. In order to
ensure proper ••rial-to-parallel and paral
lel-to-aerial conver•iona as de•on•trated,
at lea•t tvo clocks, c1 and c2 , are needed

per each VLSI de'Yice. The clock c1 is used

to control data in and out of' the input and
output register• respectively. The array
clock c2 has a period equal to km or r•

times that ef' the period p of' clock c1 • The

multiplicity ref'lects the degree of' multi
vay conversion logic used at the I/O ends.
c2 i• the array clock controlling all the
latch•• in the VLSI array. The timing rela
tionships of' the two clock signals are de
mPnatrated in the 1over half' of' Fia.6. The
actual numbers, k and r, of' inputs and oat
puts are determined by the chip packaging
requirement.

The rectangular VLSI array in Fig.l
can be partitioned into tvo types of' VLSI
module• aa ahown in Fig.7. U•ing th••• tvo
modu1e types, one can conatract an L-U de
compo ai tion networks of' arbitrary hi'h
orders. The 11111ltiply module, M(q ~ q) cor
r••pond• to a q-by-q subarray of multi~lT
cell• in Fig.1. The division Module, D\q),
correapond• to the top rov of divi•ion
cells in Fig.1. Multiple number of' di'Yi•ion
modules can be f'abricated on the same chip,
say q D(q) module• on a chip, which would
be comparable in complex! ty vi th one M (q
x q) module.

In Fig.7, four M(q x q) module• and
two D(q) modules are u••d to construct an
!:'"'!! decomposition network LU(2q + 1) for
an LSE of' order n • 2q + 1. Ia general, an
LU(n) network of' order n • peq + 1 require•

p2 M(q x q) modules and p D(q) modules. One
additional d9111Ultip1exer/mu1tip1exer pair
i• needed between the network modules and
the external memory •ystem, where the oper
ands and results auppo•• to reside.

The partition of triangular VLSI ar
rays into a network of' VLSI modules is ex
emplif'ied by a modular matrix inversion
scheme. The interconnection of' three tri
angular multiply modules T(q) and three
•quare multiply modules S(q x q) shown in
Fif.8 produces a matrix inversion network,
MI 3q) for co•puting the inverse matrix

!:-l • (mij) of a lover triangular matris

!: • (lij) of' order n • 3q.

223

In general, a •atrix inv•r•ion net
work MI(n) of' order n • p., re9uires p
T(q) •odulea and pe(p - 1) 2 S\q ~ q) mo
dules. Datail designs of' there VLSI mo
du1•• can be found in [9] •

.I• STRUCTURAL COMPLEXITY !!!!!
PERFORMANCE .A.KALYSIS

It ha• been predicted that by the
late 80'• it will be possible to fabricate

IC chips, each of' which contains 107 or

108 indiviaual tran•istors [14,17]. Nev
high-resolution lithographic techniques
have already demonstrated the feasibility
of' achieving •uch VLSI devices with NMOS
technology. The VLSI co•puting structures
require not only large number of' process
ing co11s and latch memory, but also large
number of' conducting paths for co•municat
ing information throughout the integrated
system. The length and organization of
th••• communication path• set a lover
bound on the chip area and time delay re
quired for system operations (17]. Fur
thermore, the I/O and packaging con
•traints of monolithic VLSI chip• has set
limitations to the applicability of VLSI
chip• in digital syst•• de•ign.

The structural complexity of' VLSI
computing structure• is estimated at the
logical level in terms of' the number of'
proce•sing cells used in a schematic ar
ray layout or in term• of' VLSI modules
used in a network construction. The poten
tial •peed of' a VLSI device is deter111ined
by the total clock periods needed for a
specific computation sequence. We 1-p the
path delays into the cell de1ays. The mul
tiply cell• (M cells) can each assume the
global cellu1ar structure of' carry-save
adders as in Hwang (7]. The division cells
(D cells) can assume the cellular struc
tures suggested by Cappa and Hamacher (lJ
and aiso those described in Hwang (8]. We
f'irmly be1ieve that the use of interface
latches instead of' register• in cells vil1
better f'acilitate the control of' pipelined
operations.

With the same word length, the M
cell• and D cells should have about equal
time delay, •ay4 time units per cell of
either type. It is now possible to achieve
24-bit-by-24-bit multiplication of' divi
sion with LSI bipolar cellular arrays in
less than 200 nanoseconds. The delay of'
the pivoting logic per each pipeline seg
ment in Fig.2 is denoted by b time units.
The interface latch delay i• negligible,
when compared with A or f) • Therefore, the
segment delay between tvo adjacent adja
cent latches, equals A + ~ or A depending
on whether pivoting is used or not. Thia
means that the internal array clock (c2
in Fig.2) of the pipeline may have a peri-

od p equal to A or A + S •
Consider an LSE o:f order n. The num

bers o:f arithmetic cells (either M or D
cells) required in each o:f the presented
VLSI arrays are eU1111Darized in Table 2. The
numbers o:f I/O terminals are also shown.
These I/O terminal counts re:ter to the
parallel inputs and parallel outputs to or
:from the internal VLSI. array be:tore using
the :tan-in and :tan-out conversion inte~
:faces as demonstrated in ~g.6. The start
!:!2 delays .:for draining the array pip9i'iii8s
and the !!!!, compute .!!!!!. are e~ressed in
terms o:f par-eters n • .4 • and ~ • The sum
o:t the start-up delay and the compute time
equals the ~ compute !!!!!, required to
complete the speci:tied sequence o:t compu
tations. In all cas••• the total compute
time o:t each o:t the proposed VLSI arithme
tic pipelines is linearly proportional to
the order n o:t the LSEs. This implies a

speedup :from 0.(n2) or 0 (n') operations
required in a serial computer to 0 (n)
steps using VLSI computing networks. For
large values o:t a, the speedup is rather
impressive.

The proposed VLSI arrays are expan
dable to allow modular growth. The L-U
decomposition arrays and the syatem tri
angularization array can be each expanded
by adding more rows o:f M cells at the bot
tom and extending the lengths o:f all rows
to the right. Without pivoting logic, auoh
extension can be done by using modules as
demonstrated in Section 6. With pivoting.
the array must be expanded into the third
dimension in order to achieve modulariza
tion. Pivoting will increase the accuracy
and stability o:t the solution to an LSEs.
This is an improvement ever the systolic
arrays. Any dense system with a •strongly•
nonsingular matrix ! can be solved by the
proposed VLSI networks.

The modular requirements :tor con
structing VLSI computing networks c1 .. on-
11trate a tradeo:ft between module sizes q
in M(q x q), D(q), and S(q X q), and the
network sizes n in LU(n) or MI{n). The
proper choice depends heavily on the VLSI
technology and packaging capability. We
have assumed the continuous supply o:f oper
ands either :from the main memory or :from
a cache m-ory. The operand -pply rate
may be slower than the array processing
rate. For utall matrix !• this p~blem can
be solved by using a large cache memory.
However, large data butter may increase
the cost o:f the computer syst .. signifi
cantly. The I/O inter:face structurematch8a
the speed o:f VLSI devices and that o:f me
mories :from .which the matrix or vector
elements are retrieved.

224

!!,. CONCLUSIONS

Ve have proposed a complete ••t o:t
VLSI arithmetic array and network archi
tectures :for implementing Gaussian elimi
nation method to solve LSEs. The L-U de
composition is realized in hardware with
and without pivoting. The t!'langulariza
tion and solution o:f a dense linear sys
tem are realized directly with hardware
arrays without explicitly :finding the in-

-1 verse matrix A • For -lving a :tamily o:t
LSEs characterized by the same matrix ,!,
we have proposed the matrix inversion and
multiplication arrays :for generating the
sequence o:t -1utien11 in a pipelined :fash
ion. Modular networking and e:t:ticient I/O
structures are also presented :tor VLSI
computing structures. Continued e:t:forts
are being exerted on the development o:f
bit-slice VLSI computing structures.

REFERENCES

[1] Cappa, M. and Hamacher, V. · C. , •An
Augmented Iterative Array :tor High
Speed Binary Di.viaion•, IEEE Trans.
Computera, Vol. C-22, Feb':"'i'9'75':"'"Pp.
172-175.

[2] Chen, s. c. and Kuck, D. J •• •Time and
Proceeser Bounda :tor Linear Recurrence
Systems•, !m J:!:!!B!.• Computer•• C-24,
1975, PP• 701-717.

[') Csaaky, L •• •Fast Parallel Matrix In
version Algori tbms•, SIAM :!.• Computing.
Vol. 5, 1976. PP• 618-62).

[4) Forsythe, G. and Moler, c. B •• Compu
~ Solution !! Linear Algebraic Srs-
1!!!.!• Prentice-Hall, Inc., Englewood
Cli:t:ts, N.J. 1967.

[5] Horowi t•, E. • •VLSI Arabi tecture :tor
Matrix Multiplications•, !3:2£• !B!'!•
.Q!!!!. !!! Parallel Processing, Aug.
1979, pp. 124-127.

[6]

[7]

[8)

[9)

Foster, M. J. and Kung, H. T., "The
Deaign .. o:t Special-purpose VLSI Chips•,
IEEE Computer Myasiae, Jan. 1980• PP•
2640.
Hwang, K. • •Global and Modular Two's
Complement Array Multipliers•, IEEE
!£!!!!!.• Computers, Vol. C-28, No:-4';
April 1979, PP•)00-,06.
Hwang., K •. ,. Computer Ari thlleti c Prin
ciples, Architecture, ,!!!!! Desiga, John
Wiley & Sons, Inc., New Tork, 1979,
Chapa. 6 and s.
Hwang, Ke and T. H. Cheng, •VLSI Ari
tlmetio Arrays ad Moclul.ar Networks ~or
Solving Large-Seal• Linear Syatem o:t
Equations•, TR-BEB0-4, Schoel .e:t E.E.,
Purd11e University, v. Lafayette, In
diana, March 1980.

l!-o]

[11J

Kant, R. M. and K:lmura, T., "Decentra-
1ized Para11•1 A1gori tlm• for Matrix
Computations", .!!!':!.!• !! ~ !:!!'.!!! !!!
!!!!!:!. §D.2• !!! Computer Architecture,
Pa1o A1to, CA, Apri1 1978, PP• 96-100.
Kung, H. T. and Leisereon, c. E., "Sys
to1io Arrays (for VLSI)•, in Spare !!!;-
~ !!!:!!.£• !21§., Duff', I. s. and
Stewart, G. w., Editors, Society for
Indust. and App1. Math., Phi1ade1phia,
Pa., 1979, PP• 256-282.

[12) Kung, n. T., "Let•• Design A1gor:l thlll•
for VLSI Systems", .!!!':!.!• Ca1 tech. £!.!!!•
!!.£!: Large ~ Integration, Ca1.
Inst. of Tech., Pasadena, Ca1if., Jan.
1979, pp. 65-90.

[14]

Kung, H. T., "The Structure of Para1-
1e1 A1gorithma" in Advance in ~
tars, Vo1. 19, (M. o. Yovits-;-ed.J,
Academic Presa, N. Y., 1980.
Mead, o. and Conway, L., Introduction
I!, l!d!!, Sxstems, A~d:ls~n-Wes1ey Pu~.
Co., Reading, Maas., 1980, Chap. 8.

Orcutt, s. E., 11Para11el Solution
Methods for Triangular Linear Systems
of Equations", Teoh. Rept. 77, Dig:l
ta1 System Lab., Stanford Electronics
Laba, Stanford University, 1972.

v. «•1;>

•

(17]

(18)

(19]

Uzo]

(21]

Ramamoorthy, c. v. and Li, H. F.,
"Pipeline Architecture•, ACM ComputinB
Survexs, Vo1. 9, No. 1, March 1977,
PP• 61-102.
Rem, M. and Mead, c. A., •cost and
Performance of VLSI Computing Struc
tures", IEEE J. of So1id-State Cir
cui ta, vor:-sc-14, APri'i 1979.' pp:
455-462.
Sameh, A. and Brent, R., "Solving
Tr:langu1ar Systems on a Parallel
Computer•, SIAM J. of Numerica1 Ana-
1ys:ls, Vo1. '14," io. b, Dec. 1977;
PP• 1101-1113.
Sameh, A. and Kuck, n., "On Stable
Parallel Linear System Solvers•, :!.•
2!, !9!;!, Vol. 25, No. 1, Jan. 1978,
PP• 81-91.
Stone, H. s., "An Efficient Paral1•1
A1gor:l thins for The Solution of a Tri
d:lagona1 Linear System of Equations•,
J. of ACM, Vo1. 20, No. 1, 1973, PP•
27-38.
Sutherland, I. E. and Mead, c. A.,
"Microelectronics and Computer Sci
ence", Scientific American, Vol. 237,
No. 3, Sept. 19771 PP• 210-228.
Wilkinson, J. H., Rounding Errors !.!!
Algebraic Processes, Englewood Cliffs,
N.J., 1963.

(Output SMclfled 1,. '-"• J,
u~J .r-lij ... •

I ... •
..
's,,

• . ..
• ... ,...._,. Cl

... • .,, • .. •
I . ., • "11o '1
•11 • .,, • ..
I .,, • • ., ... • • ...

{"'
. , . . , .

! • ''•J) .. '
•s • .,, ... •
t7 .,, ...

•

...
I

• I .,, •n
I I .,. ...

.
·-9-·

' • •If

. ..
• .,,
• ...
•

•

·~·
• lfa&lllil+<

.,,
• ...
•

...
•
'

J':lg.1 'VLSI Pipeli••- fer L-u Deoomposit:lea
Y:ltho•t Pi .. t:lng

.. •. •,

In tll

r,. r,.
t z, r& '• I. r, r,

(: C~1JI: •r•lfl•• 1. nH• "_..J

J':lg.2 VLSX Pip•1i•• for L-U Deooapes~t~oa
With C.lumn Pivoting

225

.. ,

'••

Tab1e 1: I/O Labe1ing of the L-U Deoom
po.si tion Pipe1ine in Fig. 2

Tine/Input r, I2 13 1, 1, r, r,
t 1 to t 6 0 0 0 I 0 0 0

'1 0 0 0 •11 1 21 •31 1 41

'e 0 0 0 I 0 0 0

., 0 0 •12 ,•22 •32 •i.·2 0

'10 0 0 0 I 0 0 0

'11 0 •13 •23 •n ··i 0 0

•12 0 0 0 I 0 0 0

•13 •1, •24 •1• ••• 0 I 0 0

Time/Output 01 Oz ol o, 05 06 o,

T II 0 0 0 "11 Pz1 •11 i.,
T 12 0 0 "12 I 0 0 0

T 13 0
"• l

0 "22 132 R•2 0

T 1• "1•
0 "ZJ I 0 ~ 0

T 15 0 "2• 0 "JJ '•i ~ 0

T 16 0 0 "l'
I 0 0 0

T 17 0 0 0 .,, 0 0 0

2 .,. ts

~ : . ~ y :-y ;~ ~.
:~::-··' g·~/f , '11

NC

c~
t t t t t

di. 0

0 0

dl a
0 0

d2 0

0 0

.. , .. ,,.
0 0

0 0

0 0

0

0

0

0

0

"21t
0

.. ,,
0

0

0

0

0

0

.. ,,.
0

"?J
0

"12
0

"u
0

"n
0

1

Fig.J Pipe1ined VLSI Array for So1ving a
Trian.gu1arized LSE

,,
'\3 '"42

•s 0 ,,
11J2 '"JI

'i 0 0

'2 '"21 0

0

' '"41

0

0

0

0

121

'z
0

&JI 0

0 1J2

'*' d

d••xb+c

's
0

'i.z o

0 ~

Fig.4 VLSI Pipe1iae For Matrix Inversion

226

0 ~ ~,,

"o 0

~I) ~JI

"22

"" "31
"21

0 0
'11 °

b •

• ,4 0.11 0

413

~t. 0

~J b •

4i2 0

4})

Fig.5 VLSI Array for Pipe1ined Mu1tip1ica
tion of Two J J Dense Matrices

c7

Fan-In D11PX with 2q+I Outputs

Extern•1 Inputs

Interconnection of Four M(q~q)
Modules and Tn D(q) Modules to Form
an L-U Decomposition Network LU(2q+l)
of order 2q+l

Chip
Boundary

r Outputs

• • •
~I

• • • .----L---..&.---~.&..- Cont ro I

• • • • • • •
• • • • • • •

A Genera Ii zed VLSI Comput·
ing Array with lrm Input'>
.md rr. Outputs

• • • • • • •

Llneo

,..L...L...1...--------..,_J.._ Control

Lines

k Inputs

kmp (or rsp} •I
~-----

c I JlJlfl· - ._ ·JUUlfl: - ._ 0l.I111Jl. - ::..
-I Pit-

Fig.6 I/O Multiplexing and Timing Control
of VLSI Computing Structures

227

P'ig.8

r
;: .
~ -.

~!

.r
... j:
-! •
>."I p
<~

ti ...
g~

'
.:.
l
.E

t~
I

~:: I

f:1ttert1ill Outp1.1ts

Interconnection of Three Square
Multiply Modules S(q ~ q) and Three
Triangular Modules T(q) to form .A.
Matrix Inversion Network MI(3q) of
order)q

.. - -. .
c 5. 5.. 5.. .!;

- - - -
I I I I
I< • i; • ~ oC ... "' ...

- ..
l I
J " ~ ~ -"'

"'
"' I I + i " .i i;

~ ~ i:

..

.!; j

- -
I I

~ .E

-
- 1

"' -I

~ s ...

c ..

'

c;

i
~

"'c

r
0

~· C'i. :i ow
!! 0 .. ,. - . p
~1
o-

r~
~"O ..
" c ._ .
"" ~~
a
p ·-. \()
;+
·-q
.: 'ti
<: ... -..
·- w

~ ·--
,,_ ·-.; ol

~ r=. c s; - s;~r ~
I

... r I I I .. ,.
~ 0 f; "'r= .. i: di:

i~ --
m • !! f:V 'i 5 ,.

.!:; .;. - ~~ .. !! c c
I ~ c ·- c • ~~ • 04 0 .. o ... 0 :!

~.;
. _ !:: ,. ., = 'A

ll .. c = ~!
... ... !! -;; - ..

~ 0 o.:. £-&-;: .. 'i ~::.
~lo! • •O

:i "" i..i _., -=- . .,_
:~ ~~ ·"' "''"' 0 c! l ... ~ c - ... 0 c .. c. a: cit " " .. j .! :: > c 1l. => -

,._ >- >- iS 0-; !l ~.

~ ' - - "' "' " ~,. j,. ... 0

..
N

•
~ ~I

SESSION 8: NONNUMERICAL ALGORITHMS AND APPLICATIONS

229

Simulation and Analysis in Deriving
Time and Storage Requirements

for a Parallel Alpha-Beta Algorithm

Selim G. Akl
David T. Barnard

Ralph J. Doran

Department of Computing and Information Science
Queen's University, Kingston, Ontario, Canada

Summary

Several recent papers have proposed
parallel adaptations of the sequential
alpha-beta algorithm [l, 2, 3, 6]. The
present paper derives time and storage
requirements for one such adaptation [l].
Alpha-beta search is fundamental to
artificial intelligence research as many
game playing programs employ it [4]. A
simulation of a multiprocessor is used to
derive timing requirements in terms of
nodes visited, nodes scored, and elapsed
time. The simulation environment in
cludes hardware processors and software
processes. Storage requirements for the
algorithm are derived analytically. The
tradeoff between time and storage "cost"
in the algorithm is demonstrated.

The basis for our parallel imple
mentation of the alpha-beta algorithm is
the following: assuming that the tree to
be searched is perfectly ordered, those
nodes that must be scored are (concur
rently) visited first. The algorithm is
designed to minimize the run time of the
search and to perform as many cutoffs as
possible, thereby minimizing the cost of
the search (total number of operations).

To achieve these goals a distinction
is made among the sons of a node. The
first son of a node is called the "left
son". The subtree containing the left
son is called the "left subtree" and the
process that searches this subtree is the
"left process". All other sons of a node
are called "right sons" and are contained
in "right subtrees" which are searched by
"right processes".

The left subtree of a node is
searched by a left process (which is
spawned by the parent node) until a final
value for the left son is backed up to
the parent node. To obtain this final
value, the left son's process spawns
processes (lefts and rights) to search
all of the left son's subtrees. Con
currently, a single, temporary value is
obtained for each of the right sons of
the parent node. These values are then
compared to the final value of the left
son and cutoffs are made where appro
priate.

CH1569-3/80/0000-0231$00.75 ~ 1980 IEEE
231

The temporary value for a right son
is obtained by the right son's process
spawning a process to search its left
subtree. This new process searches the
subtree, backs-up a value to the parent's
right son, and then dies. If after a
cutoff check the right subtree search
continues, then a process is generated to
search the second subtree of the right
son. This procedure continues until
either the subtree is exhaustively
searched or the search is cut off.

It is clear that, by applying the
above method, those nodes that must be
examined by the alpha-beta algorithm will
be visited first. This ensures that
needless work is not done; a cutoff check
is performed before processes are gene
rated to search subtrees that may be cut
off.

In a search with more processors
than running processes it may be possible
to minimize the runtime of the search by
generating processes to search the sons
of a right node concurrently using the
idle processors. This brute force
approach is not used since it conflicts
with the other aim of our design, namely
minimizing the cost of the search. The
cost of any tree search consists mainly
of the cost of updating the system in
moving from parent to son and in the cost
of evaluating or scoring a node. There
fore even though a processor (which could
be doing concurrent work) is idle, the
overall cost in operations is minimized
by not searching subtrees which may not
have to be searched.

There are seven main components of
the parallel alpha-beta algorithm:
Initialize, Hand~e, Score, Generate,
GenerateMoves, Apply, and Update.

1) Initialize reads in the original
board position (i.e., the configuration
for the root node of the search tree) and
the depth to which the tree will be
searched. Handle is then invoked to
create a process for the root.

2) Handle is a recursively-defined
process. It searches a node in a game

tree by calling either Score (for a leaf)
or Generate (for a non-leaf) and then
calling Update.

3) Score returns an integer repre
senting the value of a given board con
figuration.

4) Generate searches a subtree that
is not a leaf. It calls GenerateMoves to
produce a list of moves from the current
position. If the root of the subtree is
a left node, then Handle is invoked once
for each son. The processes thus created
run concurrently, and Generate waits
until they all terminate. If the root of
the subtree to be searched is a right
node, then the sons are searched in
sequence by calling Handle for one of
them, waiting for it to complete, and
performing a cutoff check before search
ing the next son. Apply is used to pro
duce board configurations for sons.

5) GenerateMoves produces all of the
legal moves from a board configuration.

6) Apply produces the board configu
ration that results when a given move is
made on a given board configuration.

7) Update waits until the parent's
score table is free and then copies the
value derived as a score for the current
subtree into the table, if applicable.

Since we did not have a multipro
cessor available on which to implement
our algorithm, the simulation language
GASP IV [5] was used to simulate physical
parallelism. As our model of computation
we use an MIMD computer. The machine we
intend has a number of asynchronous pro
cessors with a communication facility
provided by common memory or communica
tion lines. A processor can initiate
another processor, send a message to
another processor, or wait for a message
from another processor. Apart from these
interactions, processors proceed indepen
dently.

The simulated environment provides
multiple software processes and multiple
hardware processors. A process is created
for each node that is searched. The
number of processors is a parameter of the
program.

The implemented algorithm was experi
mented with to study the effects of paral
lelism on the cost of a tree search, this
cost being expressed in: 1) run time of
the tree search, 2) number of terminal
nodes scored, and 3) total number of non
terminal and terminal nodes visited.

A uniform tree of a given depth and

232

branch factor was generated and stored
prior to the search. The terminal nodes
of this tree were assigned scores chosen
from a particular probability distribu
tion. The principal continuation was
sought and the three measures of cost
recorded. Typical results of experiments
are shown in Figs. 1 and 2.

The curves in Fig. 1 show that the
run time decreases sharply with an in
creasing number of processors doing the
search. As expected, the total number of
nodes visited also increases with an in
creasing number of processors as can be
seen in Fig. 2.

To analyse the storage requirements
we first assume that an infinite number
of processors is available to search the
tree. During the first phase of the
algorithm, knowledge about the behaviour
of the sequential version is used to
explore several paths concurrently and
independently. During all the remaining
phases several subtrees are searched in
parallel, each subtree, however, being
searched sequentially.

Fig. 3 shows a uniform tree whose
depth and branch factor are both equal to
three. The paths explored in parallel
during the first phase are indicated by
heavy lines. Nodes explored during the
first phase are called "primary" nodes.
Formally,

1) the root is a primary left son,
2) a primary left son at ply k is

the left son of a primary left or
right son at ply k - 1, and

3) a primary right son at ply k is a
right son of a primary left son
at ply k - 1.

Following the first phase the tempo
rary score backed up at node 1 is compared
with the ones at nodes i and j; if the
former is smaller, then the subtrees of i
and j need not be considered at all.
Otherwise these two subtrees, shown cir
cled in Fig. 4, are searched in parallel
(each sequentially) during the second
phase.

When these two subtrees have been
fully searched the final score backed up
at node 1 is compared with the temporary
score at node m for a cutoff. If the
former is larger, the cutoff check is
successful and the unexplored subtrees of
m need not be considered. Otherwise, more
subtrees, shown circled in Fig. 5, are
searched in parallel (each sequentially)
during the third phase and so on.

At least one storage location is
needed to hold the temporary score of each
node being explored. When a node is dis-

carded from further consideration its
storage locations are reallocated to an
other unexplored node that the algorithm
decides to examine. Therefore it is
necessary to derive the maximum number of
nodes simultaneously explored at any time
during the search. This number is pre
cisely the number of primary nodes.

To see this note that any tree
searched sequentially during the subse
quent phases is rooted at a node that was
primary, that is to say explored during
the first phase. This subtree is iso
morphic to the leftmost subtree rooted at
the same primary node. The leftmost sub
tree has at least as many primary nodes
as a subtree searched in subseque~t
phases. Therefore the number of nodes
searched in parallel during the second
and later phases cannot exceed the number
of primary nodes. Let

l(k) number of primary left sons at
ply k, and

r(k) number of primary right sons at
ply k.

In Fig. 3, 1(3)=5 and r(3)=6. For a
uniform tree:

l(k) 1 (k-1) + r(k-1) k:<:l

r(k) 1 {k-1) * N k:<:l

1(0) 1 and r(O) = 0

where N stands for the branch factor minus
one. For a uniform tree of depth D, the
total number of primary nodes is therefore
given by

D
S = E l(k) + r(k)

k=O

and the storage requirements of the
algorithm are of O(S).

It is clear that our assumption
about the availability of an unlimited
number of processors can be relaxed. The
maximum number of processors the algorithm
will ever need to search a uniform tree
of depth D is

P = l(D) + r(D)

In Fig. 3, P=ll.

Even though P establishes an upper
bound it is still a very large number of
order ND/2, as one should have expected.
In practice a small number of processors
running in parallel is usually sufficient
to achieve a substantial reduction in the
running time of the sequential alpha-beta
algorithm. In fact, it was observed that
the run time cannot be decreased below a
certain level no matter how many more
processors are used in the search. The

number of processors p* which first
achieves this minimum run time was recog
nized as the "saturation point" of the
algorithm.

These remarks lead us to reconsider
our definition of primary nodes. The
actual number of primary nodes is in fact
determined by the number of processors
available. If p processors are used to
search a uniform tree of branch factor
N + 1, then the actual number of primary
nodes at level k is

233

min {l(k) + r(k), p}

and the total number of primary nodes for
a tree of depth D is

D
s(p) =. E min {l{k) + r(k), p}

k=O

Under these conditions the storage re
quirements of the algorithm are O(s(p)).
Note that S=s{P) and that for p~N+l, we
have

s(p) = 1 + pD

Combining the experimental timing
results with the analytical storage
results and making a typical "time versus
storage tradeoff" decision the optimum
number of processors to be used can be
determined. This is indicated by the
graphs in Figs. 6 and 7. The curve in
Fig. 6 is plotted empirically by varying
the number of processors searching uni
form trees of depth D and branch factor
N + 1. The curve in Fig. 7 is obtained
analytically using the expression for
s(p). The two curves are used to deter
mine p+, the optimum number of processors
matching the available resources.

References

[lJ s.G. Akl, D.T. Barnard, and R.J. Doran,
Design, Analysis, and Implementation
of a Parallel Alpha-Beta Algorithm,
Department of Computing & Information
Science, Queen's University, Kingston,
Ontario, Canada, Technical Report
80-98, (April, 1980) 51 pp.

[2] G.M. Baudet, The design and analysis
of algorithms for asynchronous multi
processors, Department of Computer
Science, Carnegie-Mellon University,
Pittsburgh, Technical Report CMU-CS-
78-116, (April, 1978) 182 pp.

[3] J.P. Fishburn, R.A. Finkel, and S.A.
Lawless, Two papers on alpha-beta
search, Department of Computer Sci.,
Univ. of Wisconsin-Madison, Technical
Report 375, (Dec. 1979) 30 pp.

[4] N.J. Nilsson, Principles of Artificial
Intelligence, Tioga, (1980) 476 pp.

[5] A.A.B. Pritsker, The GASP IV Simula
tion Language, John Wiley & Sons,
(1974) 451 pp.

[6] G.C. Stockman, A minimax algorithm
better than alpha-beta?, Artificial
Intelligence, Elsevier, (1976) pp.179-
196.

SERACH DEPTH

UNIFORM DISTRIBUTION Of TERMINAL NOOE SCORES

+ - BRANCH FACTOR • l

o - ~RANCH FACTOR • 2

• - ~RANCH FACTOR • 3

" ·- BRANCH fRCTOR • ~

• - BRANCH fRCTOR • S

: \:..__,._ _____ _
0 '--~~~--+-~~---~---~--.
ii.oo 11..00 s.oo iz.oa 16.00 20.00 Z"l.OD 2a.oo

cc
... 0
m~
:E.

"'= z -

NUMBER OF PROCESSORo USED TO SEARCH THE TREE

SEARCH DEPTH lj

UNlfORH DISTRIBUTION Of tERM!NRL NOOE SCORES

• - BRANCH FRCTDR • 2

• - BRANCH FACTOR • 3

v - BRANCH FACTOR • ~

• - BRANCH FACTOR • S

~-I-~-+~~--~~-+-'~--.~~-+~~.,._,.,.--:-!
;o.oo II.DO I.PO IZ.00 16.00 20.r.o 2ll.OO 21.00

NUMBER Of PADCESSDAS USED TD SEARCH THE TREE
Fig. 2 .

234

run
time

p+ P*

Fi2· 7

Fig~ 3

Fig. 5

p
Fig.6

s(p)

s(p-1}

• I
1
I
I
I

P+ p p

PARALLEL ALPHA-BETA SEARCH ON ARACHNE

John P. Fishburn
Raphael A. Finkel
Sharon A. Lawless

Computer Sciences Department
University of Wisconsin-Madison

Madison, Wisconsin 53706

Abstract

We present a distributed algorithm
for implementing q-~ search on a tree of
processors. Each processor is an in
dependent computer with its own memory
and is connected by communication lines
to each of its nearest neighbors. Meas
urements of the algorithm's performance
on the Arachne distributed operating
system are presented. A theoretical
model is developed that predicts speedup
with arbitrarily many processors.

1. INTRODUCTION

The q-~ search algorithm is central
to most programs that play games like
chess. It is now well-known [l] that an
important component of the playing skill
of such programs is the speed at which
the search is conducted. For a given
amount of computing time, a faster
search allows the program to "see"
farther into the future. In this paper
we present and analyze a parallel adap
tation of the q-~ algorithm. This adap
tation, which we will call the tree
splitting algorithm, speeds up the
search of a large tree of potential con
tinuations by dynamically assigning sub
tree searches for parallel execution.

In section 2, we summarize the q-~
algorithm. Section 3 reviews a parallei
implementation of the q-~ algorithm sug
gested by Baudet [2]. Section 4 formal
ly describes the tree-splitting algo
rithm. Section 5 presents performance
measurements for this algorithm taken on
a network of microprocessors. Section 6
discusses some possible optimizations
and variations of the algorithm. Sec
tion 7 derives the obtainable speedup
with k processors, as k tends towards oo.

2. THE ALPHA-BETA ALGORITHM

Consider a board position from a
game like chess or checkers. All possi
ble sequences of moves from this posi-

CH1569-3/80/000b-0235$00. 75 () 1980 IEEE

235

tion may be represented by a tree of po
sitions called the lookahead tree. The
nodes of the tree represent positions;
the children of a node are moves from
that node. The root node of the tree
usually represents the current position.
Since lookahead trees for most games are
usually too large to be searched even by
computer, they are usually truncated at
a certain level. Since we will later be
referring to a tree of processors, we
reserve the following notation for nodes
of lookahead trees: A node is often
called a position. A node's child is
its successor, and its parent is its
predecessor. If each non-terminal node
has n successors, we say that the tree
has degree n. The level of a node or
subtree is Tts distance from the root.

The q-~ algorithm is an optimiza
tion of the minimax algorithm, which we
will review first. The two players are
called max and min; at the root node, it
is max's-l:urn to move. The minimax al
gorithm proceeds as follows: First,
each leaf of the lookahead tree is as
signed a static value that reflects that
position's desirability. (High values
are desirable to max. In a game like
chess, the main component of the value
is usually the material balance between
the two sides.)

The interior nodes of the lookahead
tree may be given minimax values recur
sively: If it is max's turn to move at
node A, the value of A is the maximum of
A's successors' values. (If the game
were to proceed to node A, it would then
be max's turn to move. Max, being ra
tional, would choose the successor with
the maximum value, say M. Therefore,
the subtree rooted at A must have M as
its value, because M is the value of the
leaf node we would reach if the game
reached A.) Similarly, if it is min's
turn to move at a node, then the value
of that node is the minimum of these
values.

We will use a version of the
m1n1max procedure called negamax: When
it is max's turn to move at a terminal
node, the node is assigned the same
static value used in minimax. When it
is min's turn to move, the static value

assigned is the negative of what it
would be in the minimax case. The value
of a nonterminal node at any level is
defined to be the maximum of the nega
tives of the values of its successors.

The negamax algorithm can be cast
into an ad hoc Pascal-like language.
The followTng program is adapted from
Knuth [3]:

function negamax(p:position) :integer;
var m: integer;

i ,d : 1. .MAXCHILD; ,
succ : array[l •• MAXCHILD] of position;

begin
determine the successor positions

succ[l], ••• ,succ[d];
if d = 0 then { terminal node
negam~x := staticvalue(p)

else
begin { find maximum of child values }

m : = - oo;
for i := 1 to d do

m := max(m,- negamax(succ[i]);
negamax := m;

end
end.

The q-p algorithm evaluates the
lookahead tree without pursuing ir
relevant branches. Suppose we are in
vestigating the successors in a game of
chess, and the fiist move we look at is
a bishop move. After analyzing it, we
decide that it will gain us a pawn.
Next we consider a queen move. In con
sidering our opponent's replies to th~
queen move, we discover one that can ir
refutably capture the queen; she has
moved to a dangerous spot. We need not
investigate our opponent's remaining re
plies; in light of the worth of the
bishop move, the queen move is already
discredited.

The q-p search algorithm [3] for
malizes this notion:

function alphabeta(p : position;
q,p: integer): integer;

label DONE;
var. i ,d : 1. .MAXCHILD;

succ: array[l •• MAXCHILD] of position;
begin

determine the successor positions
S UC C [1] 1 • •• 1 S UC C [d) ;

if d = 0 then
alphabeta := staticvalue(p)

else
begin

for i := 1 to d do
begin

q := max(q, - alphabeta(succ[i],
-p,-q));

if q L p then goto DONE { cutoff
end;

DONE: alphabeta := q
end

end.

236

The function alphabeta obeys the
accuract property: For a given position
p, and or values of q and p such that q
< p,

if negamax(p) ~ q,
then alphabeta(p,q,p) ~ q

if negamax(p) L p,
then alphabeta(p,q,p) L p

if q < negamax(p) < p, then
alphabeta(p,q,p) = negamax(p)

The first and second cases above
are called failing low and failing high
respectively. In the third case, suc
cess, alphabeta accurately reports the
negamax value of the tree. Success is
assured if q = - co and p = oo. The pair
(q,p) is called the window for the
search.

To return to our example: When al
phabeta is called with p representing
the queen move, it is min's move. p is
the cutoff value generated by the bishop
move. The better the bishop move was
for max, the lower is 13. (Within the
routine alphabeta, high values for q and
p are good for the player whose move it
is. A high value for q indicates that a
good alternative for that player exists
somewhere in the tree. A low value for
p indicates that a good alternative ex
ists for the other player somewhere else
in the tree.) When the successor that
captures the queen is evaluated, q be
comes larger than p, and a cutoff oc
curs.

q-p pruning serves to reduce the
branching factor, which is the ratio
between the number of nodes searched in
a tree of height N and one of height
N-1, as N tends to oo. Both theory [3],
and practice [4] agree that with good
move ordering (investigating best moves
first), q~p pruning reduces the branch
ing factor from the degree of the looka
head tree nearly to the square root of
that degree. For a given amount of com
puting time, this reduction nearly dou
bles the depth of the lookahead tree.

When the algorithm is performed on
a serial computer, the value of one suc
cessor can be used to save work in
evaluating .its siblings later on.
Nevertheless, greater speed can be ob~
tained by conducting q~p ~earch in a
parallel fashion. We define the speedup
of a parallel algorithm over a serial
one to be the time required by the seri
al algorithm divided by the time for the
parallel algorithm. We will restrict
our attention to parallel computers
built as a tree of serial computers. A
node in this tree is a processor, a
parent is a mast~r, and a child is a
slave.

3. PARALLEL ASPIRATION.SEARCH

In order to introduce parallelism,
Baudet [2] rejects decomposition of the
lookahead tree in favor of a parallel
aspiration search, in which all slave
processors search the entire lookahead
tree, but with different ·initial q-~
windows. These windows are disjoint,
and in the simplest variant their union
covers the range from - oo to + oo. Since
each window is considerably smaller than
(- oo,+ oo), each processor can conduct
its search more quickly. When the pro
cessor whose window contains the true
m1n1max value of the tree finishes, it
reports this value, and move selection
is complete. Baudet analyzes several
variants of this algorithm under the as
sumption of randomly distributed termi
nal values, and concludes that the ob
tainable speedup is limited by a con
stant independent of the number of pro
cessors available. This maximum is es
tablished to be approximately 5 or 6.
Surprisingly, for k equal to 2 or 3,
Baudet's method yields more than k-way
speedup with k processors. Baudet
infers that the serial q-~ search algo
rithm is not optimal, and estimates that
a 15 to 25 percent speedup may be gained
by starting the search with a narrow
window.

Since a narrow window does not
speed up a successful search when moves
are ordered best-flrst, Baudet's method
yields no speedup under best-first move
ordering.

4. THE TREE-SPLITTING ALGORITHM

Another natural way to implement
the q-~ algorithm on parallel processors
divides the lookahead tree into its sub
trees at the top level, and queues them
for parallel assignment to a pool of
slave processors. The master processor,
as in the serial algorithm, maintains
the variable q as the maximum of the
negative of all subtree values. Each
slave processor computes the value of
its assigned subtree. The slave may use
either serial q-~ search or parallel q-~
search if it has slaves of its own.
When it finishes, it reports the value
computed to its master. As the master
receives responses from slaves, it nar
rows its window, and possibly tells
working slaves about the improved win
dow. When all subtrees have been
evaluated, the master is able to compute
the value of its position. A similar
approach is discussed in [7].

237

4.1 The Slave Algorithm

The slave algorithm runs at termi
nal nodes of the processor tree. We
will describe its interactions with its
master by means of messages. The algo
rithm is equally easily expressed in a
shared-memory or call-return form. The
slave receives EVALUATE messages from
its master, followed by any number of
associated UPDATE messages that narrow
its window. When an UPDATE message ar
rives, the slave adjusts its recursive
values of q and ~ to what they would
have been, had the search been started
with the smaller window. When the slave
has performed the search specified by
the EVALUATE command, it sends a VALUE
message back to its master, and then
waits for another EVALUATE message.

The algorithm calls five func
tions:

Staticvalue(position)
returns the static value of
"position".

Send(message)
sends the data in buffer "mes
sage" to process message.dest.

Receive(message)
receives a message sent to this
process, and places it in
buffer "message".

Catch(kind,future message,catcher)
arranges for all future mes
sages with message.kind
"kind" to be immediately routed
to buffer "message", bypassing
any receive. Catch returns im
mediately, allowing the caller
to proceed. Thereafter, when a
message with the indicated kind
arrives, the process is inter
rupted, and the routine "catch
er" is called. When "catcher"
returns, the process resumes.
Slaves use catch to receive UP
DATE messages without wasting
time polling for them.

Alphabeta(p)
was defined in section 2. The
variables q and ~ are global
arrays, not formal parameters,
in order to facilitate updating
their values in each recursive
call of alphabeta when an UP
DATE message arrives. The glo
bal variable "depth" represents
the level of p.

The slave algorithm:
program slave();
label DONE;
var message,updatemessage

record
pos : position;
q,~,value : integer;
kind : (EVALUATE,UPDATE,VALUE);
dest : process;

end;
pos : position;
c(;13 : airay[l •• MAXDEPTH] of integer;
depth : l •• MAXDEPTH;
tmp : integer;
succ : array[!. .MAXCHILD] of position;
i,d : l •• MAXCHILD;
mymaster : process;

procedure catcher;
{ called asynchronously by UPDATE

var scalc(,scal13,tmp : integer;
k : l •• MAXDEPTH;

begin
scale(:= updatemessage.c(;
seal~ := updatemessage.13;
for k := 1 to MAXDEPTH do
begin { update c(,i arrays }

c([k] := max(c([k ,scale();
13[k] := min(13[k] ,scalj3);
tmp := scale(;
scale(:= -scal13;
sca113 : = -tmp;

end
end;

begin
catch(UPDATE,updatemessage,catcher);
while true do
begin { 1 iteration per EVALUATE }
receive(message); { receive EVALUATE

pos := message.pos;
depth := l;
c([depth] := message.c(;
j3[depth] := message.13;
determine the children of pos

succ[l], ••• ,succ[dJ;
if d = 0 then

{ evaluate terminal position
message.value := staticvalue(pos);

else begin
for i := 1 to d do
begin { evaluate each successor

c([depth+l] := - 13[depth];
fl[depth+l] := - c([depth];
depth := depth+!;
tmp := - alphabeta(succ[i]);
depth := depth-!;
if tmp > c([depth] then

c([depth] := tmp;
if c([depth] L 13[depth] then
begin message.value := c([depth];

goto DONE; { cutoff occurs
end

end { for i := 1 to d do
end;

DONE: message.kind := VALUE;
message.dest := mymaster;
send(message);

end { while TRUE do
end. { program slave }

4.2 The Master Algorithm

The master algorithm runs on non
terminal nodes of the processor tree.
It receives EVALUATE and UPDATE messages
from its master and VALUE messages from

238

its slave nodes. After an EVALUATE mes
sage is received, the master generates
all successors of the position to be
evaiuated. Each slave is requested to
EVALUATE one of these positions; the
remaining positions are queued for ser
vice by slaves. Any UPDATE messages are
relayed to active slaves.

The master may take various actions
when it receives a VALUE message from a
slave. First, if the VALUE message
causes the current c(value to increase,
then -c(is sent as an updated 13 value to
all active slaves. Second, if c(has
been increased so that it becomes
greater than or equal to 13, then an c(-~
cutoff occurs. The nonpositive-width
window is sent to all active slaves,
quickly terminating them. Meanwhile,
the master empties its queue of waiting
successor positions. Third, if the
queue of unevaluated successor positions
is non-empty, the reporting slave is as
signed the next position from the queue.

When all successors have been
evaluated, the master sends a VALUE mes
sage to its master. In a game situa
tion, the algorithm at the root node
might serve as the user interface, and
would remember which move has the max
imum value.

Here is the master algorithm:

program master();
label INIT;
var message :

recprd
pos : position;
c(,13,value : integer;
kind : (EVALUATE,UPDATE,VALUE);
dest : process;

end;
pos : position;
succ : array[l •• MAXCHILD] of position;
succstat : array[l •• MAXCHILD] of

(ASSIGNED, UNASSIGNED);
i,d : l •• MAXCHILD;
slave : array[l •• MAXSLAVE] of process;
slavestat : array[l •• MAXSLAVE] of

(BUSY,FREE);
j : 1. .MAXSLAVE;
mymaster : process;
c(,13,tmp : integer;

begin
while true do
begin { 1 iteration per EVALUATE }

INIT: repeat { flush outdated UPDATES
receive(message); ·

until message.kind = EVALUATE;
pos := message.pos;
c(:= message.c(;
13 := message.13;
determine the successor positions

succ [l], ••• ,succ [d];
if d = 0 then
begin { terminal node }

message.value := staticvalue(pos);

message.kind := VALUE;
message.dest := mymaster;
send (message);
goto INIT;

end;
for j:= 1 to MAXSLAVE do

slavestat[j] := FREE;
for i := 1 to d do

succstat[i] := UNASSIGNED;
while there exists a FREE slave j

and an UNASSIGNED successor i do
begin { give initial assignments

message.pos := succ[i];
message.q := -p;
message.~ := -q;
message.kind := EVALUATE;
message.dest := slave[j];
send (message);
slavestat[j] := BUSY;
succstat[i] := ASSIGNED;

end;
while there exist BUSY slaves do
beg in

receive(message);
if message.kind UPDATE then
begin { forward UPDATE message

if (message.q > q) or
(message.p < ~) then

begin
q := max(q,message.q);
p := min(13,message.13);
message.q := -p;
message.~ := -q;
message.kind := UPDATE;
send(message) to all slaves;

end
if q L p then { cutoff

for i:=l to d do
succstat[i]

:= ASSIGNED;
end
else { message.kind = VALUE
begin

j := answering slave;
slavestat[j] := FREE;
tmp := -message.value;
if tmp > q then
begin { send new q-p window

q := tmp;
message.q := -p;
message.~ := -q;
message.kind := UPDATE;
send(message) to all slaves;

end;
if q L p then { cutoff

for i:=l to d do
succstat[i]

:= ASSIGNED;
if there remains a successor,

i, yet to be evaluated then
begin { reassign slave }

slavestat[j] := BUSY;
succstat[i]

:= ASSIGNED;
message.pos := succ[i];
message .q :.= -p;
message.~ := -q;
message.kind := EVALUATE;

239

message.dest := slave[j];
send (message);

end
end{ else message.kind = VALUE

end; { while there are BUSY slaves
message.value := q;
message.kind := VALUE;
message.dest := mymaster;
send (message);

end{ while TRUE do }
end. { program master }

4.3 Alpha Raising

As an optimization of the master
algorithm, the master running on the
root node may send a special q-p window
to a slave working on the last
unevaluated successor. This window is
(-q-1,-q) instead of the usual c-13,-q).
If that successor is not the best, then
the slave's search will fail high as
usual, but the minimal window speeds its
search. If that successor is best, then
the smaller window causes the search to
fail low, again terminating faster. In
either case, the root master determines
which successor is the best move, even
though its value may not be calculated.
By speeding the search of the last suc
cessor, the idle time of the other
slaves is reduced. (This narrow window
given to the root's last subtree search
can also be used in serial q-p search.)

We can generalize this technique in
the following way, called alpha raising:
Suppose that, among slaves-e!"valuat1ng
successors of the root, slave1 •s current
q value, q 1 , is lower than any other,
and that slave 2 has the second lowest q
value, say q • Update q to q -1,
speeding up ~lave 1 • If this up~ate
causes slave1 •s otherwise successful
search to fail low, then the reported
value is still lower than all others,
and that move is still discovered to be
best.

S. MEASUREMENTS OF THE ALGORITHM

Measurements of the performance of
the tree-splitting algorithm have been
taken on a network of LSI-11 microcom
puters running*under the Arachne operat
ing system [SJ • The game of checkers
was used to generate lookahead trees.

;--------------------------~-----~------
We have been forced to change the name

of. the Roscoe distributed opera.ting sys
tem, since Roscoe is a registered trade
mark of Applied Data Research, Incor
porated. The new name we have chosen is
Arachne; the operating system and
research continue unchanged.

Static evaluation was based on the
difference in a combination of material,
central board position for kings and ad
vancement for men. Moves were ordered
best-first according to their static
values. General q-raising was not em
ployed, except for the special case for
the last successor. A single LSI-11
machine searches lookahead trees at a
rate of about 100 unpruned nodes per
second. Inter-machine messages can be
sent at a rate of about 70 per second.

Since only 5 processors are
currently available i~ Arachne, it was
not possible to test processor trees of
depth greater than one directly. In
stead, a depth-one processor tree was
used to measure the speedup gained by
replacing a terminal slave processor
with a depth-one processor tree. When
this slave is at level n, we call the
measured speedup Y • y0 and y1 were
measured. The proce9ure tor measuring
Y made one simplifying assumption:
B~th a slave processor and a master pro
cessor below level zero can normally re
ceive UPDATE messages from their mas
ters. Due to the difficulty of dupli
cating the arrival times of these mes
sages, they were not included in either
the slave or the master-and-slaves case.
(The master still gave its terminal
slaves UPDATE messages.)

Ten board positions, B1 , ••• , B10 ,
were chosen for use in chese experi
ments. These positions actually arose
during a human-machine game; they span
the entire game. All lookahead trees
from these positions were expanded to a
depth of 8.

Two sets of experiments were per
formed. The two differed only in that
the first set used one master and two
slaves, while the second set used one
master and three slaves. Within each
experiment, Y0 was measured directly for
each B. by evaluating the tree both
serially and with the parallel algorithm
running on a depth-one processor tree.
Table 1 summarizes measurements of Y0 •

The ten board positions gave rise
to 84 successors, so 84 EVALUATE com
mands were given to slaves while y0 was
being measured. Times for both parallel
and serial evaluation were measured for
each command. The aggregate speedup for
a group of commands is the total time
tequired to execute them serially divid
ed by the total time required to execute
them in parallel. For each Bi' the ag
gregate speedup Y for its subtree
evaluations was co~puted. Table 2 sum
marizes measurements of Y1 •

240

Table 1: y0 for each Bi' i=l, ••• ,10

minimum
average
maximum
standard
deviation

2 slaves
1. 37
1.81
2.36

0.31

3 slaves
1.37
2.34
3.15

0.56

Table 2: Y1 for each Bi, i=l, ••• ,10

minimum
average
maximum
standard
deviation

2 slaves
1. 03
1.46
1. 77

0.22

3 slaves
1.38
1.96
2.60

0.38

Surprisingly, more than k-way
speedup was occasionally achieved with k
slaves: Three out of the ten Bi were
sped up by more than 2 with 2 slaves,
and two of those three were sped up by
more than 3 with 3 slaves. Of the 84
subtrees of the Bis' 4 were sped up by
more than 2 wich 2 slaves, and 9 were
sped up by more than 3 with 3 slaves; 2
of those achieved 6-way speedup. In
each such case, subtree evaluations fin
ished in a different order than they
were assigned. While one large subtree
was being evaluated by one slave, anoth
er smaller subtree was assigned and fin
ished. The large subtree's evaluation
then received an UPDATE message that
sped it up or even terminated it. In
fact, time-consuming searches are more
likely than short ones to receive these
messages. In particular, the search
that receives the final (-q-1,-q) window
is likely to be larger than average.

6. OPTIMIZATIONS

Since the tree-splitting algorithm
can be optimized in several ways, it
should be considered the simplest vari
ant of a family of tree-decomposing al
gorithms for q-~ search. As a first op
timization, since most of a master's
time is spent waiting for messages, that
time could be spent profitably doing
subtree searches. However, only the
deepest masters could hope to compete
with their slaves in conducting
searches. All other masters are by
themselves slower than their slaves be
cause their slaves have slaves below
them to help. However, more than half
of all masters control terminal slaves,
and greater speedup should be achieved

by running a slave algorithm along with
these masters on the same processors.
We might expect an additional 1.5-way
speedup from this technique.

A second optimization groups
several higher-level masters onto a sin
gle processor. For example, the 3
highest processors in a binary processor
tree could be replaced by 3 processes
running on a single processor.

Third, a master might evaluate a
position by assigning that position's
successor's successors to slaves, rather
than that position's successors.
Although this technique involves more
message-passing, some advantage might
result, because all of a master's slaves
would work on finishing the position's
first subtree before going on to the
second. The evaluation of the second
subtree would then receive the full
benefit of the beta value generated by
the first subtree. Furthermore, when
slaves become idle as one subtree is
finished, they can immediately be set to
work on the next subtree.

Since most game-playing programs
must make their move within a certain
time limit, any speedup in tree search
ability will generally be used to search
a deeper lookahead tree. If we have an
unlimited supply of processors to form
into a binary tree, we can obtain an un
limited speedup only if the search is
not limited in time. Otherwise we can
not, because we would eventually violate
our premise that the lookahead tree is
at least as deep as the processor tree.
A new layer on the processor tree does
not buy another full ply in the looka
head tree. For example, several speed
ups of 1.5 would be needed to search a
6-times larger chess lookahead tree, or
about one additional ply. The depth of
the processor tree would grow faster
than the depth of the tree it searches
and eventually would catch up. The only
way to avoid this limit is to increase
the fan-out of the processor tree. If
the fan-out is high enough that no suc
cessor need ever be queued for evalua
tion by a slave, then the size of the
maximum lookahead tree that can be
evaluated within the time limit is lim
ited only by the time required for
EVALUATE commands to propagate from the
root to the leaves. Long before this
limitation is reached, we would run out
of silicon for making the processors.

7. ANALYSIS OF SPEEDUP

We will now analyze the speedup
that can be gained in searching large
lookahead trees as the number of avail
able processors grows without bound.

241

For this purpose we introduce Palphabe
ta, a simplified version of the tree
splitting algorithm. This algorithm is
less efficient than the version already
discussed, but is more amenable to
analysis. Much of the analysis in this
section is a "parallelization" of
results in [3]. Indeed, when q = 0 and
f = 1, Theorem 1 and Corollary 1 reduce
to results given by [3].

As before, the processors will be
arranged in a uniform tree. Let f 2 1
be the fan-out of the processor tree
(uniform for all non-terminal nodes),
and let q 2 1 be its depth (uniform for
all terminal nodes). Let q + s be the
depth of the lookahead tree, where s 2
1. We assume that the lookahead tree
has a uniform degree and that this de
gree, df, is a multiple of f, where d is
2 2.

The f function calls specified in
the first line of the for-loop are in
tended to occur in parallel, activating
functions existing on each of the f
slaves. Unlike the tree-splitting algo
rithm, Palphabeta waits until all slaves
finish before assigning additional
tasks. Serial q-~ search is activated
on leaf slaves; Palphabeta is activated
on all others. Here is the simpler
parallel q-~ algorithm.

function Palphabeta(p
q, ~ : integer)

var i : integer;
function g : integer;
beg in

position
integer ;

determine the successors p 1 , ••• ,pdf"
begin

if depth(p 1) < q then
g := Palphabeta

else g := alphabeta;
for i := 1 to d do
beg in

q:=max(q, max -g(p-,-~ 1 -q));
(i-1) f<j< if J

if q ~ ~ then go-to DONE;
end;

DONE: Palphabeta:= q;
end;

end;

7.1 Worst-first ordering

q-~ search produces no cutoffs if,
whenever the call alphabeta(p,q,~) is
made, the following relation holds among
the successors p 1 , .•• ,pd:

q < -negamax(p1)< •.• < -negamax(pd)< ~·

We call this ordering worst first. If
no cutoffs occur, it---r5e"as~calcu
late the time necessary for Palphabeta
to finish. Assume that a processor can
generate f successors, send messages to

all of its f slaves and receive replies
in time P· (This figure counts message
overhead time but does not include com
putation time at the slaves.) Assume
also that the serial q-~ algorithm takes
time n to search a lookahead tree with n
terminal positions. Let a be the time
necessary for a processor a~ distance n
from the leaves to evaluate its assigned
position. A leaf processor executes the
serial algorithm to depth s. Thus we
have a 0 = (df)s. An interior processor
gives d batches of assignments to its
slaves, and each batch takes time p plus
the time for the slave processor to com
plete its calculation. Thus we have
an+l = d(p+an): ~he solution to this
recurrence relation is

= p(--~~:~-=-~-)
d - l

+

which is the total time for Palphabeta
to complete. Since the time for the
serial algorithm to examine the same
tree is (df)q+s, the sreedup for large s
is fq. There are (fq+ -1)/(f-l) proces
sors, roughly fq, so when no pruning oc
curs, the parallel algorithm yields
speedup that is roughly equal to the
number of processors used.

7.2 Best-first ordering

We will now investigate what hap
pens when the lookahead tree is ordered
best-first. We omit the proofs of
Theorems l and 2 in the interests of
conciseness. Full details may be found
in [6].

Definition: We will use the Dewey de
cimal system to name nodes in both pro
cessor trees and lookahead trees. The
root is named by the null string. The j
successors of a node whose name is
a 1 ••• ak. are named by a 1 ••• akl through
al ... akJ.

Definition: We say that the successors
of a position a 1 ••• an are in best-first
order if

negamax(a 1 ... an) = -negamax(a 1 ••• anl).

Definition: We say a position a 1 ••• a
1n the lookahead tree is (q,f)-cr1tica~
if ai is (q,f)-restricted for all even
values of i or for all odd values of i.
An entry ai is (q,f)-restricted if

l ~ i ~ q and 1 ~ ai ~ f

or if q < i and a i = 1.

Theorem 1: Consider a lookahead tree
for which the value of the root position
is not + oo and for which the successors

242

of every
er. The
phabeta
critical
tree.

position are in best-first ord
paral lel q-~ procedure Pal
examines exactly the (q,f)
positions of this lookahead

Corollary 1: If every position on lev
els 0,1, •• ~,q+s-l of a lookahead tree of
depth q+s satisfying the conditions of
Theorem 1 has exactly df successors, for
d some fixed constant, and for f the
constant appearing in Palphabeta, then
the parallel procedure Palphabeta (along
with alphabeta, which it calls), running
on a processor tree of fan-out f and
height q, examines exactly

flq/2J(df)l(q+s)/21 +

flq/2l(df)L(q+s)/2J _

fq terminal positions.

Proof: There are flq/ 2J(df)l(q+s)/21
sequences a ••• a+, with l<a·<df for
all i, such that ~.sis (q,f)-re§tricted
ffr; 2•11 ~ven)~7~+ues of i; there are
f q 1(df)L\q+s J such sequences with
ai (q,f)-restricted for all odd values
or i; and we subtract fq for the se
quences (l, •.• ,f}qls, that we counted
twice.

Q.E.D.
Theorem 2: Under the conditions of
Corollary 1, and assuming also that (1)
serial q-? search is performed in time
equal to the number of leaves visited,
and (2) in p units of time, a processor
can generate f successors of a position,
send a message to each of its f slaves,
and receive the f replies, then the to
tal time for Palphabeta to complete is

(df)Ls/2J + (df)ls/21 _ 1 +

h(q) [d(3p+(df)Ls/2J+(df)ls/2l)+p

-(df)Ls/2J_(df)ls/2ll _ pq,
if q is even;

(df)Ls/2J + (df)ls/21 _ 1 +

h (q-1) [d (3p+ (df) Ls/ 2J+ (df) ls/21) +p

-(df)Ls/2J_(df)ls/2ll _ pq

+d(q-l)/2[d(e+(df)Ls/2J>+p-<df)Ls/2J1 ,
if q is oda;

where the function h is defined by

h(q) = (dq/ 2 - l)/(d - 1).

Under conditions of best-first
search, the parallel q-p algorithm gives
O({k) speedup with k processors for

searching large lookahead trees.
Theorem 3 formalizes this result:

Theorem 3: Suppose that Palphabeta runs
on a processor tree of depth q L 1 and
fan-out f > 1. Suppose that the looka
head tree to be searched is arranged in
best-first order and is of degree df and
depth q+s, where d L 1. Denote by R the
time for alphabeta to search this tree,
and by P the time for Palphabeta to
search the tree. Then

LIM R/P = fq/ 2 •
s -> 00

Proof: The time for the serial algo
rithm is

(df)Lcs+q)/2J + (df)rcs+q)/21 _ 1 ,

from Corollary 1. If we divide this
quantity by the expression given by
Theorem 2 for P, and take the limit as s
goes to oo, we obtain the desired result.

Q.E.D.

7.3 Discussion

The measurements presented in sec
tion 5 fall within the range bounded by
the theoretically-predicted best-first
and worst-first speedups. If we take
Y Y to be the speedup that would be
g~v1n by a processor tree of depth two,
then the measured speedup for two,
three, four, and nine terminal proces
sors is 1.81, 2.34, 2.64, and 4.59
respectively. Theory predicts speedup
equal to the number of terminal proces
sors for worst-first ordering. Best
first speedup is predicted to be the
square root of the number of terminal
processors, or 1.41, 1.73, 2, and 3
respectively.

8. ACKNOWLEDGMENTS

The authors gratefully acknowledge
the help and ideas offered by Karl
Anderson, Will Leland, Marvin Solomon,

243

and Larry Travis.

9. REFERENCES

[l] Berliner, H.J., "A Chronology of
Computer Chess and its Literature,"
Artificial Intelligence, Vol. 10,
1978, (April, 1978), pp. 201-214.

[2] Baudet, G.M., The Design and
Analysis of AlgorTthms for Asyn
chronous MUltiprocessors,----Oepart
ment of Computer Science,
Carnegie-Mellon University Techni
cal Report, (April, 1978), 182 pp.

[3] Knuth, D.E., and Moore, R.W., "An
Analysis of Alpha~Beta Pruning,"
Artificial Intelligence, Vol. 6,
No. j_, (Winter, 1975), pp. 293-326.

[4] Samuel, A.L., "Some Studies in
Machine Learning Using the Game of
Checkers, II Recent Progress,"
IBM Journal of Research and
De"Velopment, (November, 1967), pp.
601-617.

[5] Solomon, M. H., Finkel, R. A., "The
Roscoe Distributed Operating Sys
tem," Seventh ACM Symposium on
Operating Systems Principles, (Dec.
1979).

[6] Fishburn, J.P., Finkel, R.A., and
Lawless, s.A., Two Papers on
Alpha-Beta Pruning; (Revised}
Department of Computer Science,
University of Wisconsin-Madison
Technical Report, (June 1980), 33
pp.

[7] Akl, S.G., Barnard, D.T., and Doran,
R.J., Searching Game Trees in
Parallel, Department--of Computing
and Information Science, Queen's
University Technical Report, (Nov.
1979), 36 pp.

TWO PARALLEL ALGORITHMS FOR SHORTEST
PATH PROBLEMS

Narsingh Deo
C. Y. Pang
R. E. Lord

Computer Science Department
Washington State University
Pullman, Washington 99164

ABSTRACT

After examining several dozen serial algorithms
and their variations for various shortest-path
problems, two algorithms were selected as good
candidates for parallelization on an MIMD-type
processor. These are: (1) Pape-D'Esopo version of
the Moore's algorithm for finding shortest paths
from one node to all others, and (2) Warshall-Floyd
algorithm for finding shortest paths between all
pairs of nodes. The techniques used in designing
the two parallel algorithms are fundamentally
different--one involves parallel processing with a
queue and is suited for sparse networks while the
other employs matrix methods and is suited for
dense networks. The correctness of these
algorithms is proved. Execution times are analyzed
and compared with actual execution times on the HEP
computer (an MIMD machine).

1. INTRODUCTION

Shortest-path problems are by far the most
fundamental and also the most commonly encountered
problems in the study of transportation and
communication networks. Often the repeated
determination of shortest paths and distances form
the core (inner loop) in many transporation planning
and utilization packages. Therefore, the search for
faster and faster shortest-path procedures
continues. After reviewing over 200 papers on
shortest-path algorithms and after classifying and
analyzing several dozen existing algorithms [5), two
points became evident to us (among other things):
(1) the shortest-path problems have almost reached
their theoretical bounds of speed if conventional
serial computers are to be used; and (2) certain
algorithms (which may be most suited for serial
mode) cannot be "parallelized" as readily as others.
For example, Dijkstra's algorithm [4, 7, 18) for
finding a shortest path between two nodes is not as
well suited for parallelization as the Bellman-Moore
[5, 14, 21) algorithm is.

We have selected two algorithms (for solving
two different shortest-path problems), which appear·
to us as the best candidates for parallelization, for a
detailed presentation in this paper. These are: (1)
Pape-D'Esopo version of the Moore's algorithm for

This work was supported by U.S. Department of
Transportation contract no. DOT-RC-92042 and by
NSF grant no. MCS78-25851.

244

CH1569-3/80/0000-0244$00.75 © 1980 IEEE

finding shortest paths from one node to all others
[14, 15) and (2) Warshall-Floyd [4, 10, 18)
algorithm for finding shortest paths between all
pairs of nodes. The techniques used in designing
the two parallel algorithm!i are fundamentally
different--one involves parallel processing with a
queue and is suited for sparse networks while the
other employs matrix methods and is suited for
dense networks.

We designed parallel versions of these two
algorithms, suited for an MIMD (multiple instruction
multiple data stream) [11) machine--keeping an eye,
in fact, on the characteristics of the specific MIMD
machine on which the designed parallel programs
were actually to be executed. For example, on this
machine the time required in creating a process is
greater than the time needed to lock or unlock a
resource.

In recent years, MIMD machines are not only
being built experimentally in university
laboratories, but they are being built in private
industries. The Heterogeneous Element Processor
(HEP) of DENELCOR Inc. [20), and the SMS 201 of
Siemens AG [12) are two examples of commercial
MIMD machines. Since the HEP was available to us,
we coded and executed our programs on the HEP
and performed the timing study on it.

Although a number of theoretical studies have
been reported on parallel processing of graphs [1,
8, 9, 13, 17, 19), very few of them have considered
the specific problems of shortest path problems and
none have actually designed, coded and executed a
parallel shortest-path algorithm on a real parallel
computer (particularly on an MIMD computer) to the
best of our knowledge. This study considers many
of the real nuts-and-bolts issues of parallelization of
existing algorithms, data structures, efficiencies
and speed-gains over the serial implementations.

In Section 2, we will give definitions relevant
to shortest paths on a network. In Section 3, we
design a parallel algorithm for finding sortest paths
from one specified node to all other nodes in a given
network. The proof of correctness of the algorithm
and the details of our model of computation are also
given in Section 3. In Section 4, we present the
second algorithm--for finding shortest paths
between all pairs of nodes in a given network. The
proof of its correctness and some empirical results
on execution time are also presented in Section 4.

2. SOME DEFINITIONS

The following are the definitions of some of the
important graph-theoretic terms used in this paper.
Definitions for the rest of the terms can be found in

any textbook on graph algorithms or networks [4,
18]. A directed graph G = (V, E) is an ordered
pair of finite sets: V of nodes, and E of arcs. We
will use NODES to denote the number of nodes in V.
We will also use {1, 2, ... , NODES} to denote the
elements of V. And arc a .in E is an ordered pair,
(u, v), of nodes. An arc a= (u, v) is said to start
at u and end at v. A network is a directed graph,
G, together with a real valued function, t, on the
set of arcs. For any arc a, t(a) is the arc length

of a. An arc length matrix has its (u, v) th entry
as f.(u, v) if the arc (u, v) exists. The entry is ..
if (u, v) does not exist. A path P is a finite
sequence of arcs p = ca, I a21 , , , I ak) I such that

ai starts where ai-l ends, for i = 2, ... , k. The

length d(P) of a path P is defined to be
d(P) = f.(a 1 + ••• + t(ak). If a.= (u. 1, u.), we

I I- I

will, in addition, use (u0, u1, ... , uk) to denote

P, and P is called a path from u0 to uk. A path

that starts and ends at the same node is called a
cycle. A cycle with negative path length is called a
negative cycle. P is a shortest path from u to v if
d(P) is minimum over the length of all paths from u
to v; the shortest distance from u to v is then
d(P). The one-to-al.I shortest path problem is the
problem of finding the shortest paths from a given
node, called the source, to all the other nodes, the
destinations. Tli"eail-to-all shortest path problem
is the problem of finding a shortest path for every
pair of nodes in the network.

3. A PARALLEL ALGORITHM FOR THE ONE-TO
ALL SHORTEST-PATH PROBLEM

A modification of Moore's algorithm [14) by
D'Esopo as reported in [16] was further developed
by Pape [15] into two very efficient codes for
finding shortest paths from a specified source node
to all other nodes in the given network. This Pape
D'Esopo-Moore algorithm, which we will ·refer to as
PDM algorithm, may be described in an Algol-like
language as follows:

Algorithm PDM

1 for all u # SOURCE do
2 D[u] := ·; -
3 D[SOURCE] := 0;
4 initialize Q to contain SOURCE only;
5 while Q is not empty do
6 begin -
7 delete Q's head node u;
8 for each arc (u, v) that starts at u do
9 ---if D[v] > D[u] + f.(u, v) then -

10 ~ -
11 . PLv] := u;
12 D[v] := D[u] + f.(u, v);
13 if v was never in Q then
14 -insert v at the tail of Q;
15 if v was in Q, but not currently then
16 -insert v at the head of Q --
17 end
18 end-

245

During the execution of Algorithm PDM, the
label D[u] is always updated to be the currently
known shortest distance from SOURCE to u, and
P[u] is always updated to be the predecessor node
of u on the currently known shortest path from
SOURCE to u. Since each insertion of a node u into
Q is preceded by a decrement of D[u], this
algorithm is guaranteed to terminate provided the
input network has no negative cycles.

To see that the D[u]'s do indeed converge to
the shortest distances, we first note that at
termination D[v] s D[u] + t(u, v) holds for every
arc (u, v). Suppose the node sequence (SOURCE =
u0, u1, ... , uk = u) is a path from SOURCE to u,

then its path length is given by

t(u0 , u1) + ••• + t(uk-l' uk)

~ (-D[u0] + D[u 1]) + ••• + (-D[uk_ 1] + D[uk])

= -D[SOURCE] + D[u] = D[u].

Thus, Dlu] is the shortest distance from
SOURCE to u, and the node sequence,

SOURCE : P[... P[u] ...], ... , P[P[u]],P[u],u

is the shortest path from SOURCE to use as obtained
by Algorithm PDM.

The experiments of Denardo and Fox [2), Dial,
Glover, Karney and Klingman [3], Pape [8], and
Vliet [11) show that on the average Algorithm PDM
is faster than almost every other shortest-path
algorithm, if the input network has a low arcs to
nodes ratio. We will, therefore, base our parallel
algorithm on Algorithm PDM.

Let us fix our model of parallel computation
before developing parallel algorithms. We will
assume that our computer can simultaneously
execute up to K processes. The communication
between the processes is done via a common memory.
The computer supports the operations: create,
lock, and unlock [pp. 77-78 of Ref. 2]. When a
process P 1 executes the statement "create process

P2," P2 will start execution and P1 will continue.

For a memory X, after process P 1 executes "lock

X," any other process that attempts to read, write,

or lock X will have to wait until P1 executes an

"unlock X." Our model of computation is a realistic
one; for the HEP computer can simultaneously
execute processes, it has a common memory for all
the processes, and it supports the operations
create, lock, and unlock efficiently.

For practical reasons, we will assume that
create, lock, and unlock take non-zero units of time
to execute. In designing our algorithm, we also
assume that create requires a longer execution time
than lock and u'nlock. This assumption is also
realistrc:-because create in the HEP machine using
the FORTRAN language is implemented with four
instructions, whereas only one machine instruction
is required for implementing lock or unlock.

An obvious way to utilize the concurrent
processing in Algorithm PDM would be to execute
the inner for loop (statements 8 to 17)

simultaneously. But this approach is Unprofitable
because the overhead for a create is high compared
to the execution of one pass of the loop. Moreover,
in this approach the maximum number of concurrent
processes utilized would be about four, if the input
is a typical road network (with outdegree = 4).
Therefore, we will avoid breaking the inner for loop
into different processes; instead we will distribute
the passes of the while loop (statements S to 18) to
different processes:-This will avoid excessive use
of create' s.

We will use only K-1 create's to obtain a total of
K concurrent processes----aTthe beginning .of the
algorithm, and use lock's and unlock's to take care
of the rest of therynchronization. During the
execution of the algorithm, the K processes--one
called MASTER and the others called WORKERs-
share the computation load, as long as there are
known tasks to be performed. Each process takes
approximately 1/K of the work load in the
initialization step. In the path-finding step, each
process repeatedly deletes a node, u, from Q, and
updates P[v]'s and D[v]'s for the successors, v's,
of u. In addition to a WORKER's tasks, the
MASTER is responsible for finishing the initialization
step and for synchronizing the initiation and
termination of the path-finding step. Our parallel
algorithm, which we will refer to as PPDM, is as
follows:

Algorithm PPDM (Parallel Pape-D'Esopo-Moore)

Process MASTER

1 MSYN := "yes"; WAIT := O; DONE := O;
2 for i := 2 step 1 until K do
3 Create process WORKER(i);
4 foru:= 1 step K until NODES do
s D[u] := .;:;-- -- -
6 Ll: ii WAIT< K - 1 then goto Ll;
7 D[SOURCE] := O;
8 initialize Q to contain SOURCE only;
9 L2: lock Q;

10 ii Q is empty then goto L3;
11 delete Q's head node u;
12 unlock Q;
13 MSYN := "no";
14 reach successor nodes of u (Block B);
lS MSYN :="yes'';
16 goto L2;
17 L3: if WAIT= K - 1 then goto L4;
18 unlock Q;
19 goto L2;
20 L4: DONE := 1;
21 unlock Q;
22 LS: ii DONE< K then goto LS

Process WORKER(i)

1 for u : = i step K until NODES do
2 -D[u] := oo;
3 L1: if MSYN := "yes" then goto L3;
4 fOck Q;
S .!£ Q in empty then goto L2;
6 delete Q's head node u;
7 unlock Q;
8 reach successor nodes of u (Block B);
9 goto L1;

246

10 L2:
11

unlock Q;
goto L 1;

12
13

L3: lock WAIT; WAIT:=WAIT+l; unlock WAIT;
L4: ii DONE > 0 then goto LS; ---

14
lS
16
17 LS:

Block B

1
2
3
4
s
6
7
8
9

10
11
12
13
14
lS
16
17
18

Note:

11

if MSYN = "yes" then goto L4:
lock WAIT; WAIT:=WAIT-1; unlock WAIT;
goto Ll; ---
lock DONE; DONE: =DONE+l; unlock DONE

for each arc (u, v) that starts at u do
begin

newdv := D[u] + .1'.(u, v);
lock D[v];
if D[v] s newdv then
- unlock D[v]
else-begin

P[v] := u;
D[v] := newdv;
unlock D[v];
lock Q;
if v was never in Q then
- insert v at the tailOfQ;
ii v was in Q, but is not currently then

insert v at the head of Q;
unlock Q en_d __

end

For Block B of the MASTER process,
statement 11 should be changed to:

MSYN :="yes"; lock Q; MYSN :="no";

In Algorithm PPDM, the local variables are
written in lower case letters, they are i, u, v, and
newdv. The variables MSYN, WAIT, and DONE are
the communication links between the MASTER and
the WORKERs. MSYN = "yes" signals the WORKERs
to let the MASTER check the Q first. WAIT. is the
number of WORKERs waiting for further command
from the MASTER (i.e. WAIT is the number of
WORKER processes which are executing statements
13 and 14). DONE is used by the MASTER to
broadcast the termination signal. This algorithm
requires the processes to keep on processing Block
B until Q is empty. Block B is equivalent to
statements 8 to 17 of Algorithm PDM. The locking
and unlocking of D[v] and Q are added in Block B
to ensure that Algorithm PPDM computes correctly.

Proof of correctness

We will now informally prove the correctness of
this algorithm. It is easy to see that the
initialization step is correct. For the path-finding
step, we will first state and prove six remarks to
show that the algorithm terminate~ for all networks
which have no negative cycles.

Remark 1: For any node v, ·O[v} is nonincreasing
with time.

Remark 2: Each finite D[vl represents the length
of a path from SOURCE to v.

Remark 3: Only a finite number of insertions are
made into Q.

Remark 4: Every execution of Block B always
terminates.

Remark 5: There exists a time, t 1, such that the

MASTER process will not execute Block
B and MSYN = "yes" for al I time after t, .

Remark 6: Algorithm PPDM terminates.

To see that D[v] is nonincreasing, one simply
observes that D[v] only changes when it is locked,
and the changes are always decrements. To see
that each finite entry D [v] represents a path
length, we use induction on the time sequence of the
change on the array D [•]. Let t 1 be the time

immediately after D[SOURCE] is initialized to zero,
and let ti+l be the time immediately after the first

change (or changes) in D[•] after t., for i = 1, 2, .
I

At time t 1, D[SOURCE] = 0 is the only entry of

D[•] with a finite value, and 0 is the path length of
the null path from SOURCE to SOURCE. Suppose
for all time t :5 t., each finite D[v] represents a path

I

length from source to v, and suppose D[v] is
changed immediately before ti+l. Assume that the

change in D[v] is caused as we fan out from u, and
that the value of D[u], at the time of its reading
statement 3 in Block B, is the path length of
(SOURCE: u0 , u1, ... , uj: u). At time ti+l'

D[v] is the path length of Cu0 , u1, ... , uj, v).

Thus, Remark 2 follows by induction.
To see that Remark 3 holds, we first notice

that each D[v] is bounded from below, because the
D[v]'s represent path lengths and the input
network has no negative cycles. Secondly, we
notice that there are only finitely many decrements
to the D[v]'s, because each decrement decreases a
D[v] by at least the minimum length difference
between two loopless paths. Thus Remark 3 follows,
since each insertion into Q implies a previous
decrement of a D [v J •

We will prove Remarks 4 and 5 together. To
prove Remark 4, it suffices to show that no
indefinite waits occur at Block B's statements 3, 4,
and 11. By Remark 3, we see that Block B can be
executed for only finitely many times. Thus every
waiting at statements 3 and 4 takes a finite time.
Because Q can be locked outside Block B, more
arguments are needed to show that no indefinite wait
occurs at Block B's "lock Q" statement (statement
11). We will prove -a-stronger result that no
indefinite wait can occur at any "lock Q" statement
in Algorithm PPDM. The MASTER always sets MSYN
to "yes" before it executes "lock Q", and when
MSYN is "yes" all WORKERs will be blocked from
entering statements 4 to 11 and Block B. Thus the
MASTER has no indefinite wait at "lock Q", and that
its executions of Block B take finite time. Before
we prove similar results for the WORKERs, we first
prove Remark 5. lt is easy to see that the loop of
the MASTER's statements 9 to 16 has no indefinite
wait. We claim that the loop of statements 9, 10, 17,
18, and 19 has no indefinite wait also, for if the
MASTER is waiting at statement 17, then MSYN

247

would have the value "yes", and consequently, only
finitely many short lockings of WAIT can occur at
the WORKERs' statement 12. Since indefinite wait
does not occur at the MASTER process, and there
are only finitely many insertions into Q, we conclude
that eventually the MASTER will never enter Block
B. We have just proved Remark 5. To finish the
proof of Remark 4, we assert that the WORKERs
have finite waiting time for executing the "lock Q"
statements. Suppose the converse is true~nd j
WORKERs are waiting indefinitely at the "lock Q"
statements (i.e. WORKER's statement 4 or Block B's
statement 11). By Remark 5, the MASTER will
eventually be looping at statements 9, 10, 17, 18,
and 19. Each time the MASTER executes "unlock Q",
statement 18, one of the j waiting WORKERs is
allowed to finish executing "lock Q", which is a
contradiction. --

To prove Remark 6, we first recall that every
execution of "lock Q" takes a finite waiting time.
From Remark 3, we see that Q will eventually be
empty and WORKER will not execute statements 6
to 9. By Remark 5, MSYN eventually has the value
"yes", therefore all WORKERs are directed to the
loop of statements 14 and 15. Consequently,
Algorithm PPDM terminates.

Now we prove the correctness of the outputs,
D[•], and P[•]. We use Dt[u] and Pt[u] to denote

the values of D[u] and P[u] at time t, and use z to
denote the termination time. We first claim that
D [v] :5 D [u] + 11.(u, v), for each arc (u, v).

z z
Suppose (u1, v1) is an arc of the input network.

Let a be the time of the last deletion of u1 from Q.

Consequently, Block B is executed for u1 after time

a. The processing of the arc (u 1, v 1) includes the

execution of either statements 5 and 6, or
statements 5, 8, 9, and 10. Let b be the time of the
execution of "unlock D [v 1 J ", at statement 6 or 10.

Since the last deletion of u1 occurs at a, it is easy

to see that D[u 1J stays constaht after time a.

Consequently, Dz[v1J :5 Db[v1J :5 Dz[u 1]. +

ll.(u 1,v1). Having proved D[v] :5 D[u] + 11.(u, v) for

all arcs (u, v), we conclude that the D[u]'s are the
shortest distances by the same argument that was
used for the proof of correctness of Algorithm PDM.

To prove thatfor each u,

(SOURCE: P [... P [u] ...], ... ,P [u], u) z z z

is a shortest path, it suffices to show that for each
v1, if u1 = P2 [v1J then D2 [v1J = D2 [d1J + 11.(u 1,

v 1), for it says that a shortest path from SOURCE

to u1 concatenated with (u 1, v1) forms a shortest

path from SOURCE to v 1 . Let time a and time b be

defined as before. It is easy to see that D[v1] is

decreased in that execution of Block B, and so
Db[v1] = D2 [u1] + l(u 1, v1). Finally, we see that

Dz[v1] = Db[v1], because any change of D[v1]

after time b implies a change in Pb[v1] = u1. This

completes the proof of correctness of Algorithm
PPDM.

Algorithm PDM and Algorithm PPDM were coded
to run on the HEP computer. The programs use
linked queue, which is used in Pape [15), and Dial,
Glover, Karner, and Klingman [6]. The input
network is stored in a linked list structure called
the forward star form, used also in [6]. Timing
experiments were performed with randomly
generated connected networ~s. Following the
characteristics of the Eastern Washington Highway
Network, the generated networks were assigned
exponentially distributed arc lengths and have
approximately 35% of nodes outdegree of one, 9% of
nodes outdegree of two, 40% of nodes outdegree of
three, and 16% of nodes an outdegree of four.
Highway networks usually have all two-way roads,
and so do generated networks. For each NODES =
10, 25, 50, 75, 100, we generated two networks.
For each network, we picked five source nodes.
Each of these 100 problems are solved with the
sequential Algorithm PDM, and the parallel version,
Algorithm PPDM, with the number of processors K =
1 to 8. Let TS denote the solution time for the

sequential algorithm, and T K denote the solution

time with the K-processor, parallel algorithm. For
each problem, the speed-up SK = T SIT K' and the

efficiencies, EK = SK/K, are computed. For fixed

NODES and K, the averages of .sK's and EK's are

plotted in Figure 1 and Figure 2, respectively. For
NODES = 75 and 100, we see that a speed-up of
approximately three is achieved with five
processors, and thus an approximate efficiency of
60%. However, regardless of the number of
processors used, we expect that Algorithm PPDM
has a constant upper bound on its speed-up,
because every process demands private use of the
Q.

4. A PARALLEL ALGORITHM FOR THE ALL-TO
ALL SHORTEST PATH PROBLEM

The best known algorithm for determining
shortest paths between all pairs of nodes is due to
Floyd [10], which in turn is based on an earlier
algorithm for transitive closure proposed by
Warshall [4].

The basic idea of the algorithm may be
expressed as follows:

Algorithm F

1 for k := 1 step 1 until NODES do
2 for i := 1 step 1 until NODES do
3 for j : = 1 step 1 until NODES do
4 lf D[i, j] > D[i, l<]+ D[k, j) then
5 D[i, j] := D[i, k] + D[k, j] ·

The matrix, D[•], is initialized to be the arc
length matrix. If the input network contains no

248

negative cycle element D[i, j] at the termination is
the shortest distance from u to v; because at the

end of the kth iteration, D[i, j] is updated to be the
shortest distance from i to j via paths that have
intermediate nodes which are contained in {1, 2, ..
. , k}. We will show that the inner loops of Floyd's
algorithm may be computed in parallel as follows:

Algorithm PF (Parallel Floyd)

1 for k := 1 step 1 until NODES do
2 for 1 s i, j s NODES do simultaneously
3 lf D[i, j] > D[i, k] + D[k, j) then
4 D[i, j] := D[i, k] + D[k, ;r-
To prove that Algorithm PF is correct, we use

the theory developed for controlling concurrent
processes in operating systems. In particular, we
use the definition and results in Chapter 2 of [2].

We first informally review some definitions. A

task system C = (t, <.) is a set of tasks, t = {T1,

T2, , Tn}, together with a precedence

relation, ~, where T "-" T' means that T must be
completed before T' begins. Any execution
sequence of C must obey the. precedence relation.
Each task T is associated with two subsets, the
domain DT and the range RT' of the memory cells.

When T starts it reads values from its domain, and
when T terminates it writes values into its range. T
and T' are non interfering if either T <t T', or T' <.

T, or RT n RT' = RT n OT' = OT n RT' = ~. Tasks
{T1, ... , Tn} are mutually noninterfering if

every pair of tasks T. and T. (i ; j) are
I J

noninterfering. We will use the following theorem
which is stated and proved in [2], pp. 39-40.

Theorem: Task systems consisting of mutually
noninterfering tasks are determinate.

The definition of determinancy of task systems
requires a long development, [2], pp. 35-38, which
we will not review here. For the purpose of proving
the correctness of the Algorithm PF, it suffices to
note that determinancy of a task system implies that
for the same initial memory state, any execution
sequence of the task system will end up with the
same final memory state. We will define a set of task
systems, and prove that each of them contains
mutually noninterfering tasks. Then, we will use
the above theorem to conclude that Algorithm F and
Algorithm PF compute identical results.

For each 1 s i, j, k s NODES, let Tk ..

denote the task

"for D[i, j] ~ D[i, k] + D[k, j] then
D[i, j):= D[i, k] + D[k, j]"-. -

. IJ

For each k = 1, ... , NODES, define task system
ck = (tk, o, where task set tk = n kii I 1 ~ i, ; s
NODES} and ~ is the null precedence relation, i.e.
no t.ask needs to precede any other task. We will
now show that each Ck contains mutually

rioninterfering tasks, and thus conclude that every

execution sequence of Ck produces the same result

as Algorithm F's execution sequence does. We will
use Mij to denote the memory cell for the variable

D[i, j]. M .. = M b if and only if i =a and j = b. We
IJ a

will use Dk .. and Rk .. to denote the domain and
IJ IJ

range of task Tk ...
IJ

Remark 7: (a) Dkij = {Mij' Mik' Mkj}

(b) Rkij c {Mij}

(c) If the input network has no
negative cycle, then Rkkj = Rkik =

P.

Parts (a) and (b) follow immediately from the
definitions of domain and range of a task. For
part le), T kkj contains the test "D[k, j] > D[k, k]

+ D[k, j]''. Since the network has no negative
cycle, D[k, k] is nonnegative. Thus the test result
is always false, and the content of Mkj will not be

changed. Rkkj = 0 follows. Similarly, Rkik = 0 also

follows.

Remark 8: If the input network has no
cycle, then tk contains

noninterfering tasks.

negative
mutually

Because there are no precedence constraints
between tasks in tk' we need to prove that

Rkij n Rkab = Rkij n Dkab = Dkij n Rkab = 0, for all
(i, j) 'I (a, b). Rk .. n Rk b c {M .. } n {Mb}= 0,

IJ a IJ a
because (i, j) 'I (a, b). Rk .. n Dk b c {M .. } n {M b'

IJ a IJ a
Mak' Mkb} = 0, for (i, j) i (a, b), j 'I k, and i 'I k.

Similarly Dkij n Rkab = 0. It follows that tk

contains mutually noninterfering tasks, for k = 1, .
. . , NODES. As noted before, this implies that
Algorithm PF is correct.

Algorithm PF is programmed to run on the HEP
computer. The number of processes created is
minimized in order to reduce the overhead (of the
create operation). The logic of our program
referred to as Algorithm HEPPF (HEP parallel Floyd)
is as follows:

Algorithm HEPPF

Process MASTER

1 SYN := 0;
2 for £ := 1 step 1 until K-1 do
3 create WORKER(TI;
4 execute WORKER(K)

Process WORKERUl

1 for k := 1 step 1 until NODES do
2 begin
3 for i : = step K ~~ NODES do
4 -[f D[i, k] < 00 !_hen.

5 for j : = 1 step 1 until NODES do
6 execute T kij;

7 lock SYN; SYN :=SYN + 1; unlock SYN;
8 L1: if SYN < K * k then go to L1 ---
9 end

Algorithm HEPPF was coded and run for the
experimental timing study. Experiments used
randomly generated 20-, 30-, and 40-node
networks. NODES x NODES arc length matrices
with different densities of non-infinity entries
distributed uniformly from 0 to 99 were generated.
The results of our timing study are shown in
Table 1. Let T K denote the experimental running

time of the algorithm with K processors. Let SK and

EK denote the speed-up, T 1/T K' and efficiency,

SK/K, respectively. The efficiency of this

algorithm for networks with 40, 30, and 20 nodes is
plotted in Figures 3, 4, and 5. It is evident that
the efficiency tends to be high when the number of
nodes in the network is a multiple of K, the number
of processors. For in such a case, each WORKER
process does exactly the same amount of work, but
in the case where K does not divide NODES exactly,
all WORKERs do not do the same amount of
processing. For example, for each K, WORKER(l)
performs NODES/K executions of statements 4 to
6, but WORKER(K) performs NODES/K executions
of statements 4 to 6. The WORKERs which finish
their work earlier must wait for all others, before
starting on the next iteration. Thus the theoretical
speed-up should be approximately
NODES/NODES/K. More precisely, if we let t 1
denote the time for executing one iteration of the for
loop in statement 3 of procedure of WORKER, and t 2
denote the time for executing statements 1, 8, 9,
and 10 once, then the theoretical speed-up is

T1 (NODES t 1 + t 2) NODES

TSK = T K = -n-_NO_~_E_S l~i --'t1~+-t.:::2_)_N_O_DE-S
NODES + t 2/t1

[NO~ESJ + t 2/t1

For our compiled code of Algorithm HEPPF, tz!t1 is

estimated to be approximately 1/(2NODES+1). Using
this estimate, the ratio

249

observed efficiency
theoretical efficiency

is calculated and plotted in Figure 6. From this plot
we observe that the overhead for the create and the
synchronization is relatively small when the input
network is dense.

5. CONCLUSION

Two parallel shortest-path algorithms are
designed and proved correct in this paper. They
were both programmed to run on the HEP computer.

For the first algorithm, i.e. Algorithm PPDM,
random highway-like sparse networks were
generated and used as inputs. We observed
empirically a speed-up of three when five processors
were employed, for networks with 75 or more nodes.
For the second algorithm, i.e. Algorithm HEP PF,
random arc-length matrices of order up to 40 were
generated and used as inputs. We found that the
efficiency is higher for larger and denser networks.
Thus we have clearly demonstrated theoretically as
well as empirically that parallel processing
techniques can be used profitably to speed up
determination of shortest paths in large networks.
We have also shown how this can be accomplished.

REFERENCES

[1]

[2]

[3]

[4]

[5]

(6)

[7]

[8]

[9]

[10)

[11]

E. Arjomandi, ~ Study of Parallelism in
Graph Theory, Doctoral thesis, Dept. of
Computer Science, Univ. of Toronto, 1975
(available as Technical Report No. 86).

E. G. Coffman, Jr. and P. J. Denning,
Operating Systems Theory, Prentice-Hall,
Englewood Cliffs, New Jersey, 1973.

E.V. Denardo and B. L. Fox, "Shortest
route methods: 1. reaching, pruning, and
buckets," Oper. Res., 27 (1979), pp. 161-
186.

N. Deo, Graph Theory with Applications to
Engineering and Computer Science,
Prentice-Hall, Englewood Cliffs, New
Jersey, 1974.

N. Deo and C. Y. Pang, Shortest Path
Algorithms: Taxonomy and Annota~
Tech. Report No. CS-80:057, Computer
Science Dept., Washington State Univ.,
Pullman, WA (March 1980).

R.B. Dial, F. Glover, D. Karney and D.
Klingman, "A computational analysis of
alternative algorithms and labeling
techniques for finding shortest path trees,"
Networks, 9 (1979), pp. 215-248.

E. Dijkstra, "A note on two problems in
connexion with graphs," Numerische
Mithematik, 1, (1959), pp. 269-271.

D. M. Eckstein, Parallel Processing Using
Depth-Frist and Breadth-First Search,
Doctoral thesis, Dept. of Computer Science,
Univ. of Iowa, Iowa City, Iowa, July 1977.

D. M. Eckstein and D. A. Alton, "Parallel
searching of non-sparse graphs," to appear
in SIAM ,h Comput.

R. W. Floyd, "Algorithm 97: shortest
path," Comm. ACM, 5 (1962), p. 345.

M. J. Flynn, "Very high-speed computing
systems," Proc. IEEE , 54 (1966), pp. 1901-
1909.

250

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

3.5

c.

~ 2.0 .,
~
"' 1.5

J. Gosch, "Computer processes multiple
instruction sets, multiple data streams,"
Electronics, (Oct. 1979), pp. 77-78.

D. S. Hirschberg, A. K. Chandra and D.
V. Sarwate, "Computing connected
components on parallel computers," Comm.
ACM, 22 (1979), pp. 461-464. --

E. F. Moore, "The shortest paths through a
maze," Proc. lnternat. ~ on Theory of
Switching, 1957, pp. 285-292.

U. Pape, "Implementation and efficiency of
Moore-algorithms for the shortest route
problems," Math. Programming, 7 (1974),
pp. 212-222.

M. Pollack and Wiebenson, "Solutions of the
shortest-route problem--a review," Oper.
Res., 8 (1960), pp. 224-230.

E. Reghbati (Arjomandi) and D. G. Corneil,
"Parallel computations in graph theory,"
SIAM J. Comput., 7 (May 1978), pp. 230-
236. -

E. Reingold, J. Nievergelt, and N. Dea,
Combinatorial Algorithms: Theor:i- and
Practice, Prentice-Hall, Englewood Cliffs,
New Jersey, 1977.

C. Savang, Parallel Algorithms for Graph
Theoretic Pl"Oblems, Ph.D. Thesis, Math.
Dept., Univ. of Illinois at Urbana
Champaign (Aug. 1977), Report ACT-4,
Coordinated Science Lab., Univ. of Illinois.

B. J. Smith, "A pipelined, shared resource
MIMD computer," lnternat. Conf. on Parallel
Processing, 1978. -- -

D. Van Vliet, "improved shortest path
algorithm for transportation networks,"
Transporation Bes., 12 (1978), pp. 7-20.

nodes

---::::======loo 75 _____ so

-::=...-------- 25

o.\L---+---!---'---~-~---=---~a
Number of processors ~

Figure 1. Avercige Speed-up

i ,.,
u
c ..
u
.....

i
~
c ..

·::;
:::

i ,.,
u
c ..

·::;
;;:

0.9

0.7

0.6

0.5

0.4

0.3

0.2
1

1.

o.e

0.9

0.8

2

2

3 4

100 nodes

~a
25

10
5 6 8
Number of processors ~

Figure 2. Average Efficiency

3 4

100% density

s 6 7 8
Number of processors ~

50%
25%

12.5%

Figure 3. Efficiency for 40-Node Networks

l 00% density

75%

50%
25%

2 3 4 s 6 8
Number of processors ~

Figure 4. Efficiency for 30-Node Networks

251

2

Figure 5.

i.O

i 0.95

~
UC
c: ClJ
w·~
·~ u
U·~
~-
.... "' OJ
.,,,-;;;
OJ u
>·~
"'OJ
Ill ...

J::l 0
0 OJ

..c:
I-

0.90

2

3 4 5 6 7 8

100% density

75%

50%

25%

Number of processors ~

Efficiency for 20-Node Networks

100% density

20 nodes, 50% density----.

3 4 5 6 7 8

Number of processors ~

Figure 6. Observed/Theoretical Efficiency

252

Table 1. Running time of Algorithm HEPPF (in secs).

Density

NODES = 40 100% 50% 25% 12.5%

Ill

1.24866 s.. 1 1. 30478 1.13903 0.88217 0
Ill 2 0.65522 0.63133 0.58283 0.46305 Ill
QJ 3 0.45726 0.44399 0.40812 0.32185 u
0 4 0.32989 0.32097 0.29727 0.25366 s..
0.. 5 0.26484 0.25992 0.24512 0.21071 6 0.23169 0.22906 0.21123 0.17719 0

ci
7 0.19889 0.19627 0.18433 0.15915

z: 8 0.16693 0.16594 0.15423 o. 13571

NODES = 30 100% 75% 50% 25%

Ill s.. 1 0.55024 0.53037 0.49828 0.45644 0
Ill 2 0.27684 0.27116 0.25537 0.23737 Ill
QJ 3 0.18544 0.18088 o. 17221 o. 15966 u
0 4 0. 14774 0.14519 0.13785 0.12816 s..

0.. 5 0.11213 0.11039 0.10760 0.09756 6 0.09417 0.09429 0.08958 0.08582 0

ci
7 0.09294 0.08973 0.08699 0.08280

z: 8 0.07550 0.07559 0.07361 0.06762

NODES = 20 100% 75% 50% 25%

Ill
s.. 1 o. 16299 0.15615 0.14249 o. 11844 0
Ill 2 0.08213 0.08028 0.07291 0.06457 Ill
QJ 3 0.05753 0.05683 0.05195 0.04626 u
0 4 0.04165 0.04086 0.03888 0.03528 s..
0.. 5 0.03348 0.03304 0.03118 0.02770 6 0.03317 0.03287 0.03016 0.02767 0

ci
7 0.02533 0.02541 0.02503 0.02292

z: 8 o. 02513 0.02479 0.02401 0.02166

253

A PARTITION ALGORITHM FOR PARALLEL AND DISTRIBUTED PROCESSING *

Shyue B. Wu and Ming T. Liu

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210

Summary

An efficient partition algorithm can be
applied to solve problems in assignment of tasks
and resources [5] as well as problems in
scheduling and control of distributed processes
[3]. Successful solutions to these problems can
increase system performance and reliability. This
paper presents an efficient partition algorithm
and discusses its use in solving the assignment
and scheduling problems for parallel and
distributed processing in large mu~ti

microcomputer systems.

A general case of the partition problem can
be stated as follows: given a graph, G=(V,L),
where V is a set of nodes and L is a set of links,
each associated with a positive number
representing the weight (which in turn represents
a communication or execution cost) of the link;
we are to partition the graph into K disjoint
nonempty subgraphs in such a way that the sum
(called partition cost) cif the weights of the
links which separate the subgraphs is minimized.

An efficient solution to the partition
problem for K=2 can be directly obtained from
using any of several available network flow
algorithms [1] [3]. However, for K>2, the problem
has been known to be NP-complete. With the
introduction of microcomputers, a distributed
system with more than two processors are more
common. Therefore, it is important to obtain an
efficient algorithm, applicable to K-processor
(K>2) systems, for the partition problem. We will
show how such an algorithm can be obtained from
the use of network flow algorithms.

In order to conform with terminology used in
network flow theory, we shall henceforth use the
terms networks and subnetworks rather than graphs
and subgraphs in this paper.

A K-cut of a network is a minimum set of
links, ~removal of Which separates the network
into K disjoint nonempty subnetworks. The.££!!.!. of
a K cut is the sum of the weights of the links in
the K_cut.

From the above, we can see that the partition
problem in general cases is equivalent to finding

* Research reported herein was supported in part
by the NSF under grant MCS-77-23496.

CH1569-3/80/0000-0254$00.75 ~ 1980 IEEE

an optimal K cut (i.e., a K cut whose
minimum amo;g all possible- K_cuts).
algorithm for the partition problem can be
as follows:

Partition Algorithm

i <-- 2;

cost is
Thus our

stated

Obtain a 2_cut of the given network by using a
network flow algorithm;

Do while (i < K);
Obtain a 2_cut of each of the two subnetworks

resulting from the cut previously selected
by using a network flow algorithm;

Pick up the cut whose cost is minimum among
all unselected 2_cuts obtained so far;

The i+l_cut is equivalent to the i_cut plus
the selected cut;

i <-- i+l;
End;

Our partition algorithm is efficient in the
sense that it uses a network flow algorithm only
in the order of K (O(K)) times. Our algorithm' is
also good in the sense that it yields a good
solution. The following two theorems are stated
to show that our algorithm results in a solution
with minimum cost if the given network is tree
like. The empirical results are also presented
below to show that our algorithm results in a
solution with near minimum cost in general cases.
For the proof of the theorems and the detail of
the performance studies, readers are referred to
[5].

TheoremJ.: For a tree-like network, if two nodes
are in the same subnetwork of an optimal K_cut
(K>2), then these two nodes are in the same
subnetwork of an optimal K-i_cut (l<=i<=K-2).

Theorem 2: For a tree-like network, any optimal
K-l_cut is a subset of an optimal K_cut.

Our partition algorithm has been programmed
for testing 720 randomly generated networks each
with six nodes. For each test network, we
·collected error percentage of an i_cut (E(i)),
which is defined by (SUBOPT OPT)/OPT, where
SUBOPT is the cost of the i_cut obtained by using
our algorithm and OPT is the cost of the optimal
i_cut obtained by an exhaustive enumeration
method.

The distribution of E(i) is given in Table 1,
where NOPT represents the number of networks with

254

an optimal solution (no error), 1% represents the
number of networks with an error between 0% and 1%
(0% < E(i) <= 1%), and so on. For example, 10 of
the 720 networks for which we obtained a 4_cut,
had solutions with errors between 3% and 4%.

Table 1: Distribution of Error Percentage

i-cut

3
4
5

NOPT 1%

696
655
581

0
7

42

2%

0
4

43

3%

4
13
11

4%

1
10
15

5%

0
13
14

MORE

19
18
14

From Table 1, we see that our partition
algorithm obtains an optimal solution about 90%
(1932/2160) of the time, and obtains a solution
with more than 5% of error only about 2.5%
(51/2160) of the time. The average E(i), which is
not shown in Table 1, is approximately in the
order of 10 ** -3 (0.1%). Thus we feel that our
partition algorithm is good enough for general
applications.

With the introduction of microcomputers,
there has been a great interest in constructing a
distributed system from a large number of
microcomputers [2]. In such a system, the memory
of each processor is restricted [2]. Therefore,
there is a need to distributed (or assign) system
software resources, such as modules of operating
systems, over (to) the processors in the system;
this is called resource assignment or resource
allocation.

In the following, we outline the use of our
algorithm to solve the resource assignment problem
in large multi-microcomputer systems [4], and
discuss the impact of the solution.

The resource assignment problem in large
multi-microcomputer systems can be stated as
follows: 1) given a module network, G=(M,R),
where M is a set of modules (or software
resources) and R is a set of links, each of which
(Rij) is associated with a link weight
representing the communication cost per unit
distance between two modules (Mi and Mj); 2)
given a system node network, G=(P,D), where P is a
set of processors and D is a set of links, each of
which (Dij) is associated with a link weight
representing the number of unit distance between
two processors (Pi and Pj); and 3) we are to find
a mapping function f : M --> P such that the total
cost given by El: Rij * D f(i)f(j) is minimized.

We can use the partition algorithm to obtain
a K_cut of a module network and that of a system
node network. The subnetworks of the module
network after the I<;_cut can then be assigned to
the corresponding subnetwork of the system node
network. Therefore, we can assign system software
resources to system nodes through the use of our
partition algorithm.

255

less
A better resource assignment

communication cost when
can result in

a set of software
resources are requested for service. Therefore, a
better resource assignment can eliminate
unnecessary message traffic in a system, thereby
minimizing interconnection limitation which arises
due to message traffic saturation. The minimiza
tion of interconnection limitation, in terms of
the number of nodes that can be interconnected and
the amount of message traffic that can be
supported, may make it possible to use large
multi-microcomputer systems for a variety of
applications [4] •

A better resource assignment can also make
the task assignment easier in large
multi-microcomputer systems. The task assignment
problem is how to assign program modules to system
nodes (processors) so as to minimize the total
execution and communication costs. In large
multi-microcomputer systems, each node may be
dedicated to provide a specific function. A task
requesting a specific resource is likely to be
assigned to the node providing this specific
resource. Therefore, the task assignment can be
easily achieved in this case.

For task assignment, if there is an
overloaded node, the program modules assigned to
this node can be reassigned to other nodes as long
as the extra cost introduced by the reassignment
is paid for. The decision of reassignment can be
made by using our algorithm to partition the
reassignment network [3] to see whether the
reassignment is worthwhile. Through the use of
reassignment of tasks, it is likely that
scheduling and control of distributed processes in
large multi-microcomputer systems can be improved.

References

1-. T. Y. Cheung, "Computational Comparison of
Eight Methods for the Maximum Flow Network
Problem," ACM Trans. on Math. Software, Vol.
6, No. 1,March 1980,PP~16.

2. J. K. Ousterhout, et al., "Medusa: An
Experiment in Distributed Operating System
Structure," Comm. ACM, Vol. 22, No. 2.,
February 1980, PP. 92-105.

3, H. s. Stone and S. H. Bokhari, "Control of
Distributed Processes," ComEuter, Vol. 11,
No. 7, July 1978, pp, 97-106.

4. s. B. Wu and M. T. Liu, "A Cluster
Structure as an Interconnection Network for
Large Multi-microcomputer Systems," submitted
for publication.

5. s. B. Wu and M. T. Liu, "Assignment of
Tasks and Resources for Distributed
Processing," Proc. COMPCON 80 Fall, September
1980, to appear.

SESSION 9: DATABASE ARCHITECTURE AND SOFTWARE I

257

A HIGHLY CONCURRENT TREE MACHINE

FOR DATABASE APPLICATIONS1

S. W.Song

Computer Science Department

carnegie-Mellon University

Pittsburgh, Pa. 15213

Abstract -- In this paper we describe a tree-structured

machine, suitable for VLSI implementation, that handles all the

frequently encountered database operations efficiently. N

elements are maintained on an N-processor version of the tree

machine.. We shall describe algorithms, based on a new

concept of associative search, for insertion and deletion of

elements in the tree. The tree machine can handle a large

class of searching problems. Insertion, deletion, queries, and

updates can all be processed in O(log N) time units. It is

especially suitable when a sequence of such operations is to

be processed in a pipelined fashion. 1/0 time dominates the

total time to execute more complex operations such as join of

two relations or sorting. Once data are in the machine, it takes

usually O(log N) time units for the first results to emerge.

Therefore it is very suitable for on-line systems where fast

response time is needed. Some major obstacles to be

overcome are discussed.

1. Introduction
Database managem:mt systems are concerned with the

task of providing fast retrieval, storage and update operations,

in response to users' requests. In recent years, database

systems have been growing in size and software systems to

manage them are becoming increasingly more sophisticated

and complex. Also, as demand for services increases, many

data processing installations have reached the point of

saturation. Backend database systems have been proposed

as a solution to the problem of overloaded installations. The

reader is referred to [1i'] tor a discussion on such systems.

1Thi& research was supported .in part by the Defense Advanced
Research Projects Agency under Contract F331;15·78·C·1551
(monitored by the Air Force Office of Scientific Research), in part by
the National Science Foundation under Grant MCS 78·236·76, and in
part by the Office of Naval Research under Contracts
N00014·76·C·0370 and N00014·80·C·0236. The author is
sup1>::>rted in part by Fur.dacao d" Ainparo a Pesquisa do Estado d t
Sao Pau!o under Grant 76/517, and in part by the Institute of
Mathematics and Statistics of the University of Sao Paulo, Brazil.

CH1569-3/80/0000-0259$00. 75 .© 1980 IEEE

Various design efforts of specialized hardware with novel

architectures to handle database problems have been carried

out [1], [7]. [14), [20), [25). There are abundant literature and

survey articles on these designs [11), [13), [22), (24).

Very Large Scale Integrated circuitry has been increasing in

speed and density at an amazing rate. The amount of

components on a single chip is claimed to reach several

millions by the end of this decade [18). This has aroused a

surge of interest in developing customized designs of

algorithms implementable on silicon. Leiserson [15) proposes

a systolic priority queue, a structure with the possible

operations of insertion, deletion and minimum extraction. The

rebound sorter of Chen et al. [8] handles sorting problems.

Bentley and Kung [3] present a design of a tree machine for

searching problems. Kung and Lehman [12) propose several

linear arrays of prcicessors capable of performing such

operations as intersection, join and duplicate removal. ThE*".e

designs provide efficient handling of specific tasks. 'n

database applications, some queries require the execution •lf

a sequence of database operations before the answer :.

obtained. It is therefore desirable to have a single

special-purpose device which can provide efficient solutions

to all basic database operations such as search, insertio;1,

deletion, updates, sort, join, union, etc. For this purpose we

have chosen the tree machine of Bentley and Kung [3], which

can solve all of the "decomposable searching problems" (4),

and attempted to extend it to handle other basic operations.

Tree-structured macnines have been proposed to haljldle

other types of problems. The designs by Berkling [5], Mago

[16), Sequin, Despain, and Patterson [21) and Wilner [26]!are

general-purpose computing devices. Hollaar [10] presenf a

desigA for merging sorted lists. Browning [6] consif ers

several applications as sorting and NP-complete problems.1

259

2. General System Configuration
In Figure 1 we show the tree machine acting as a back-end

machine to a host computer. Users' database manipulation

commands are passed on to the tree controller which, using

some auxiliary information, will locate where in the mass

storage the needed il"'formation reside. Data clustering is an

important issue and is discussed in [2]. It will then command

the 1/0 controller to transfer data fo the tree machine.

Loading of the tree machine will be the· bottleneck of the

system and will be discussed later in the section on

implementation issues. Once the tree machine is loaded, the

tree controller will issue commands to the tree machine to

carry out the required operations. The results output from the

tree machine will be returned to the host computer.

Host

Tree

Controller

Tree

Machine

---,
I
I

1/0

Controller

----- Data flow

- - - - Control

Mass Memory

Figure 1: A s.-stem configuration.

3. The Tree Machine
The tree machine has three kinds of nodes (see Figure 2):

0-nodes, 0-nodes, and A~nodes. Each one of a collection of

records resides in a 0-node, which is provided with some

logic 'to carry out a limited repertoire of instructions. The

0-nodes broadcast streams of instructions and/or data to the

0-nodes where they are executed in parallel. The 0-nodes

compute results which are then combined by the A-nodes to

produce the final rei;ult. Selection of records satisfying a

conjunction of conditions can easily be performed by

broadcasting the conditions to the D-nodes which can then

260

Input root node

Output root node

Figure 2: The tree machine.

decide which ones are to be selected. First we shall review the

insertion and deletion algorithms mentioned in [3], and

propose a new space allocation scheme. Then we shall

discuss how data flow in the 0-nodes and A-nodes should be

disciplined.

3.1. A New Space Allocation Scheme

One way of doing insertion is to maintain a count in each of

the 0-nodes, Each count in a 0-node specifies the number of

free 0-nodes which are its descendants. Each time a new

element is to be inserted, a 0-node will pass on the element to

the son which has free 0-nodes below (choosing an arbitrary

one if both are eligible•. Then it will update its own count by

decrementing it by one. Similarly, when an element contained

in a 0-node is deleted, some of the 0-nodes need to have

their counts updated. More specifically, these are all thn

0-riodes which lie on the path from the input root node to the

particular 0-node where deletion has occurred. This can be

done by proceeding backwards from the deleted node to the

input root node, adjusting the counts on its way up. O(l~g N)

steps are therefore necessary to adjust the counts, where N is

the total number of O·nodes of the tree. While this scheme·

has the advantage of being very general, it has the drawback

of requiring a storage for the count, as well as the associated

logic: needed for updates, in each of the 0-nodes.

Furthermore, since counts need to .be adjusted after a deletion

is made; it makes pipelining of arbitrary sequence of insertions

and deletiOns more difiii::ult.

We wish to dasign new insertion and deletion algorithms

with the following two objectives:

1. Arbitrary sequence of insertions and deletions can
be easily pipelined.

2. No counts nor associated logic for updates are to
be maintained in the 0-nodes.

We have found a way to achieve the above if the following

assumptions are made:

1. A single count is kept in the tree controller.

2. For each delete command issued by the tree
controller, there exists always one and only one
item in a 0-node which will be deleted.

Consider each 0-node as containing storage for two fields,

node.freeposition and node.content. If a 0-node is free, then

node.freeposition contains an integer from Oto N-1, where N is

the total number of D-nodes in the tree. Also, for simplicity of

notation, we write n1 for the D-node whose freeposition field

contains i, o :s; i :s; N-1. if a D-node is occupied then its

freeposition contains A. Node.content is the value of the item

stored in the 0-node which, for simplicity, will be assumed to

be an integer.

[Ji] FirstFree

Figure 3: An empty tree.

If the tree is empty (i.e., it stores the empty collection), we

assume that the free 0-nodes of the tree are n0 , n1, n2, ... ,

nN_1, in any order. (See Figure 3, where we have omitted the

bottom half of the tree machine.) We also assume that the tree

controller maintains an integer count called FirstFree, such

that the free 0-nodes are nFirstFree• nFirstFree+1• ... • nN·1·

FirstFree contains o if the tree is empty and contains N if the

tree is full.

3.1.1. Insertion

To insert an element X, the tree controller will generate an

insert instruction which has two parts, namely,

261

instruction.freeposition and instruction.content.

lnstruction.freeposition will indicate which 0-node is to be

removed from the pool of free D-nodes. The tree controller

assigns nFirstFree to be that node. Instruction.content

contains the value to be inserted. This is shown as follows.

instruction.freeposition: = FirstFree;
instruction.content:= X;
FirstFree : = FirstFree + 1

All that the 0-nodes need to do is merely to broadcast the

instruction to its two sons. Simultaneously, each of the

D-nodes will try to see if it has been selected as the node to

receive the element being inserted. Exactly one such node

will be found and this will mark itself as occupied after

redefining its content field. This is shown as follows. (Figure 4

shows the tree after 6 elements have been inserted to an

initially empty one.)

if node.freeposition = instruction.freeposition
then node.content : = instruction.content;

node.freeposition : = A

=occupied c:::::ii] FirstFree

Figure 4: After 6 insertions.

3.1.2. Deletion

We consider deletion of an element from the tree based on

the content of that element. Suppose that we wish to delete

the element X from the tree. Note that, by the assumption

mada before, always one and only one 0-node will be freed,

whenever a delete command is issued. This means that the

tree controller will know beforehand that one of the originally

occupied 0-nodes will be able to return to the pool of free

D-nodes, even though it does not know which one. Therefore,

the delete instruction issued by the controller will contain not

only the content X to guide the deletion, but also the value that

should be stored into the freeposition field of the freed node.

FirstFree : = Fir~tFree - 1;
instruction.freeposition : = FirstFree;.
instruction.content: = X

Again the Q..nodes need not to do anything more

complicated than merely broadcasting the instructions. Each

of the 0-nodes will attempt to match the content it has witli

the content in the instruction. Only one will find a match ant;!

that one will be immediately returned to the free pool by

redefining its freeposition field.

if node.content = instruction.content
then node.freeposition : = instq.1ction.freeposition;

node.content : = A '

Here we have used A to indicate the null content. Note that

the functions performed by the 0-node in the insert and delete

commands are symmetrical. We obtain one from the other by

merely interchanging the words content and freeposition.

Figure 5 shows what remains after two deletions have been

made to the example illustrated by Figure 4.

=occupied Q FirstFree

Figure 5: After 2 deletions.

3.1.3. Comments on the Algorithms

In the original insert :m scheme mentioned at the beginning

of this section, the element to be inserted is passed down the

tree through a path of 0-nodes until a free D-node is reached.

The selection of this path is guided by the Q..nodes which uscJ

their own count information as well as those of their sons. In

. the new scheme, the element being inserted does not follow

any particular path, but is merely broadcast to all the 0-nodes.

It takes advantage of the ability of content addressability of the

tree machine to do the selection of the free D-node. Also, in

the original deletion scheme, log N counts in the 0-nodes

need to be adjusted. Since we do not know which counts are

to be incremented until the deletion is done, pipelining was not

so easy to achieve. Here we have only two values to be

adjusted, namely, those of FirstFr.ee and of the freeposition

field of the deleted node. The interesting thing is that both

values can be determined at the. time the d?.lete command is

issued by the controller. The reader can easily see that

262

pipelining arbitrary sequence of deletes and inserts presents

no problem at all. In some sense, we have factored out the

counts and logic from the 0-nodes to the tree controller,

thereby reducing the space needed for its implementation. In

VLSI designs, there is often a trade-off between space and

time. In this case, however, the new space allocation scheme

has allowed us to reduce space requirements and at the same

time achieve a better performance.

3.1.4. Comments on the Restrictions

Some restrictions have been made in order to make the

proposed scheme applicable. In cases where a delete

command may find many elements or none qualified for

deletion, some more processing is required before the delete

command can be issued. First those elements qualified for

deletion should be selected and deletion can proceed using

fields which uniquely identify them. In some applications

deletion of a record is performed after some processing has

been done on the same record. Therefore its presence amorig

the collection of records is certain. Furthermore, if deletion is

based on a primary key, then the restrictions are met and the

scheme applies.

3.2. Disciplining the Data Flow

In operations where only one output is involved, new

commands can be issued to the machine while the results are

being handled at the A-nodes to be output. In other words,

pipelining is easily achieved. In some operations, howevE'r,

many results are produced in the D-nodes. These will

traverse through the A-nodes until they reach the output root

node. Given the funneling nature of the output binary tree

(i.e., the bottom part of the tree machine, as shown in Figure

2), the A-nodes should cooperate among themselves in order

to produce an orderly evacuation of the many results. We

shall provide some storage in each A-node. If its storage is

empty then the A-node will examine its two sons and take the

contents of a non-empty son. If both sons have information to

be transmitted, then it will select one according to some fixed

rule (such as always picking the leftmost, or selecting the one

with minimum value in some specified key).

Some of the result:> may have to be retained in the D-nodes

for quite a while before they are accepted by the A-nodes. In

order to protect these results from being destroyed by the

incoming stream of instruction or data, the broadcasting of

information in the 0-nodes should also be disciplined. This

can be done by the tree controller which can turn off the

pipeline and wait until the machine is flushed before starting

another operation. To perform one operation, however, such

as the full join, many tree machine instructions may be

required, and some of these may also produce multiple results

in the 0-nodes. While it is reasonable to turn off the pipeline

for different operations (such as a full join and a subsequent

union operation), it is too expensive to do so with machine

instructions performed within one operation. We now face a

problem of trying to retain whenever possible pipelining of

instructions, some of which may produce multiple results.

Flow of the stream of instructions or data will not be

continuous and intermittent pauses may sometimes be

necessary. This requires the full cooperation of all the

0-nodes and the tree controller. Each 0-node has storage to

hold the information to be broadcast. It will send this

information to its two sons only if both are empty, i.e., ready to

accept data. Each 0-node will examine its two sons. If both

are ready, then it will transfer its contents to its two sons and

declare itself ready. Similarly, the tree controller will only put

new information to be broadcast in the input root node if it is

ready. The 0-nodes can control the flow of information from

the layer of 0-nodes immediately above them by declaring

themselves ready only if their results, if any, have already been

taken out by the 4-nodes.

3.2.1. Observation 1

If any result formed in a 0-node is always readily taken out

without delay, then broadcasting items a1, a2, a3 , ... down the

tree will result in alternate empty layers of 0-nodes. With a

tree machine of N 0-nodes, (log N)/2 layers of 0-nodes will be

empty, as shown in Figure 6. Also, it takes log N steps for a11y

item a; (counted from the instant it enters the input root node)

to reach a 0-node.

3.2.2. Observation 2

Consider a situation as above. in which alternate layers of

0-nodes are empty. Suppose now the result computed in.

some of the 0-nodes ~annot be removed by the 4-nodes fo1 a

long time. This 0-node will therefore start to block the flow of

263.

~
1 1

Figure 6:Alternate empty layers of O·nodes.

information above it until all the 0-nodes on the path from the

input root node to it are filled (see Figure 7). Since alternate

layers of 0-nodes are originally empty, (log N)/2 more new

elements can still enter the tree before the path in question

becomes full. Each of these new elements enter the input root

node every other step. Therefore it takes log N steps to fill up

this path.

Figure 7: Blocking of flow,

3.2.3. Observation 3

If at a certain instant all the 0-nodes are empty (creation of

an "empty layer"), then this "empty layer" will be propagated

toward the top of the tree in log N time. (Also, if the creation of

an "empty layer" of 0-nodes occurs every other step in a total

of log N steps, then (log N)/2 alternate empty layers of

0-nodes will be created, as indicated in Observation 1.)

3.2.4. Observation 4

Since each 0-node broadcasts to its two sons only if both

-are'ready.-.ar.iy;item ai which enters the tree will reach all the

0-nooes,. though not necessarily at the same time. However,

the: items will visit a fixed · 0-node in the same order they

entered the input tree node.

4. Database Operations
First we briefly discuss the search problems. The reader is

referred to f 3] for details. Next we consider the sort and

remove-duplicates operations. The description of the join

operation will constitute the major part of this section. Finally,

the union and intersection operations will be briefly

mentioned. Other database operations (such as division) will

not be shown simply because they will not add anything new to

the presentation. If we associate one bit to each field of a

tuple and consider it to be valid only if the corresponding bit is

on, then projection can be done by manipulating the

appropriate bits.

4.1. Search Problems

By means of broadcasting, all the N D-nodes of the tree

machine can receive a message sent out from the input root

node in O(log N) time. A variety of search problems has been

considered in [3]. They also show that, with pipelining, M

operations can be performed in O(M + log N) time.

Furthermore, several selection operations can be pipelined,

such that the time will be linear in the total number of

conditions.

4.2. Sort and Remove-Duplicates

Sorting a collection of records on some specified key is

surprisingly easy in the tree machine. Recall that when tryi11g

to output multiple results stored in the D-nodes, the A-nodes

are instructed to accept data from a non-empty son. A

selection rule is used if both sons are non-empty. If we use the

rule of selecting the minimum value in a specified key, then the

output records will be sorted in ascending order. See an

example in Figure 8, where a simplified representation of the

bottom part of the tree machine is shown. The records reside

in arbitrary positions of the D-nodes. The example shows the

first steps to output the records in sorted order.

In log N steps, the minimum of the collection of elements

will emerge at the output root node. From then on, at every

other 'step the next element in increasing order will exit the

machine. (For simplicity, we have assumed enough datapath

to transmit a tuple in a single cycle. This is similarly assumoo

throughout the paper. In a realistic situation, the time

complexities should t:e multiplied by appropriate factors.)

264

\! X' 'y: \{
(b)~·

y~
(d) 5 1

~ (I) 5 2

Figure 8: Sorting.

Now it becomes clear how duplicate removal from a

collection of K records can be performed. The collection is

simply sorted. At the output the controller tests pairs of

consecutive elements for equality. For every pair of equal

elements it deletes one of the occurrences and this can be

done while the sorting is still going on. Therefore in essentially

2K steps we realize the duplicate removal operation.

4.3. The Join Operation

The join operation is performed on two relattons over a

specified attribute with common domain. The result of the join

is another relation. A tuple of the result relation is composed

by the concatenation of two tuples, one from each of the two

relations, with identical values in the common attribute.

4.3.1. Preliminary Assumptions

We assume that a D-node has storage to hold a relation

identification, a tuple and a tuple identification. While a tuple

may require quite an amount of storage, the tuple id may need

considerable less storage (log K bits if each of the K tuples of

a relation is associated to a different number from Oto K-1).

The controller is provided with a parallel associative store,

enough to hold log N entries. Each entry can hold a tuple and

its corresponding tuple id. This associative store will allow the

controller to retrieve a tuple content given its tuple id,

assuming the tuple is present in the storage.

4.3.2. Actions of Different Node Types

Suppose we want to perform a join operation of two

relations A and B, each with K tuples, over some given

attribute. For convenience of exposition, tuples of relations A

and B will be referred to as A-tuples and 8-tuples, respectively.

These tuples reside in arbitrary positions of the 0-nodes. See

Figure 9. To carry out the join operation, each of the three

types of nodes will execute its instructions until the joi11

operation is complete.

A= A-tuple
8 = 8-tuple

Figure 9: Two relations residing in the tree.

The 0-nodes are instructed simply to broadcast whatever

they receive to their sons, obeying the protocol established in

the previous section.

The D-nodes holding A-tuples are instructed to send a

copy of the tuple and its corresponding tuple id to the

A-nodes. Again, for ease of exposition, an A-tuple plus its

tuple id will be referred to as A-information. Once this is done,

its mission is considered accomplished. Any information

received from above will simply be ignored until the join

operation is complete.

Each· D-node holding a B-tuple is instructed to extract the

attribute value over which the join is being performed and

compare it with the incoming information, which include an

attribute value of an A-tuple, as well as its tuple id (see below).

In case of a match, a copy of the 8-tuple and the received

tuple id should be sent out to the A-nodes. (We shall refer to

these as 8-information.) This action is to be repeated for every

incoming information. As we have seen earlier, these

D-nodes can always hold the stream of information coming to

them by declaring themselves not ready to accept new data.

The A-nodes are instructed simply to pass on data toward

the output node of the tree. In case a .:\.-node finds both sons

with ·information to be transmitted, it will always give priority to

265

the 8-information.

4.3.3. Carrying Out a Join Operation

Starting from the situation as in Figure 9, all the D-nodes

holding A-tuples will try to send out their A-information to the

A-nodes. After log N steps, one of these A-information will

emerge at the output. And from then on, a new information

will emerge at every other step. If the output contains

A-information, the controller will store the tuple and its id in

the associative store. Furthermore, this tuple id plus the

attribute value over which the join is being done are redirected

to the circular input node of the tree, to be broadcast

downward. (We shall refer to these as a-information.) After

another log N steps, the first of these information will reach all

the D-nodes (see Figure 10).

Figure 10

A= A-tuple
8 = 8-tuple

A= A-information
a= a-information

D-nodes holding A-tuples will ignore this information,

without ever blocking its flow. D-nodes holding 8-tuples, as

they are instructed to, will try to match the two attribute values

(one extracted from the tuple it contains and the other from

the a-information it receives from above). In case of a match,

it will make a copy of the tuple 8 and send it out together with

the A-tuple's id (or 8-infonnation). This tuple id corresponds

to some A-tuple which should be concatenated to the 8-tuple

to form a result tuple.

These 8-inforrnation (many such may be formed) will start

descending the A-nodes, log N steps being necessary' for the

first of them to reach the output root node (see Figure 11). If

the output contains 8-information, the tree controller will

locate the A-tuple in the associative store, given its Id. Thus

the result tuple can readily be assembled.

F"igure 11

A= A-tuple
B = B-tuple

A= A-information

B= B-information
a ·= a-information

We now show that overflow will never occur, as more and

more A-information are added to the tree. The 0-nodes

holding A-tuples ignore any information broadcast to them and

will never block the downward flow. The 0-nodes holding

B-tuples may block the flow if, after a match, the B-information

it has produced for output is still waiting to be taken by the

.1-nodes below. Let c1 be the clock cycle in which the first

B-information is formed in one or more 0-nodes. In

subsequent clock cycles, more B-information may be

produced at the 0-nodes. Let c2 > c.1 be the nearest clock

cycle to c1 in which none of the D-nodes is holding any

B-information. Recall the B-information have priority over the

A-information to traverse among the .1-nodes. Once the first

of these B-information formed between c1 and c2 emerges at

the output root node, an A-information will have a chance to

get out only after all such B-information have been output.

However, the leader of these B-information will take log N

steps to reach the exit. During the same time, (log N)/2 of the

A-information will have emerged. These will not cause

overflow because, prior to c1, the flow in the 0-nodes has

been unrestricted and, by Observation 1, alternate layers of

0-nodes are empty. Therefore these A-information will be

appropriately accommodated without causing overflow. At c2 ,

none of the 0-node~ are holding any result to be output.

Therefore, by Observation 2, each time· this happens, an

"empty layer" of 0-nodes will be created and it tal<es log N

'266

cycles for the "empty layer" to propagate to the top. The next

A-information will have a chance to exit the tree after all the

8-information formed between c1 and. c2 have been output,

provided it has not been caught up by some other

B-information produced at still later cycles. The l8$t

8-information will take at least log N cycles to get to the exit,

therefore an empty input root node will have been created to

accommodate the next A-information. By a similar reasoning

and using Observation 4, we can show that each B-informatlon

which emerges from· the tree machine will find the needed

A-tuple in the associative storage.

The time necessary to perform the join can easily be

computed if we fix our attention at the output node of the tree.

From the instant the first A·information emerges at the output,

some information, either A or B, will come out every other step.

There are exactly K A-information to be output from the tree,

and each B-information will correspond to a result tuple.

Therefore it takes log N + 2(K + # of result tuples) steps to

realize the full join of two relations.

4.4. Union and Intersection

The union and intersection of two sets A and B of K

elements each can similarly be obtained. Briefly we describe

how the intersection can be performed. All tuples of one

relation are sent out ~o be compared simultaneously by all

tuples of the other rela .ion. The matches constitute the result

of intersection. Thus intersection can be obtained in

2 (K + IA n Bil steps and union in 2 IA u Bl steps.

5. Implementation Issues and Major
Problems

5.1. Chip Layouts

First we discuss how we· can place the different types of

nodes on chips. The two "mirrored" binary trees of Figure 12

(a) can first be "unmirrored" to the one as shown in Figure 12

(b), which is then laid out as in Figure 12 (c). This

space-economical layout has first. been suggested by Mead

and Rem (19]. In this layout, the amount of space is

proportional to the m .. mber of nodes on a chip. Using th~

layout as in Figure 12 (c), we place the 0-nodes on as few

number of Chips as allowed by the achievable Circuit density,

and then combine these chips together with chips containing

only 0-nodes and A-nodes.

(a) (b) (c)

Figure 12: Chip layout.

5.2. Loading the Tree Machine

Loading the tree machine constitutes the bottleneck of the

system and is the major problem to be solved. One solution is

to provide the capability of reading multiple tracks to load

subtrees in parallel, bypassing the input root node of the tree.

If such a solution is used, then the proposed space allocation

scheme will have to be modified accordingly. The solution

also calls for a considerable amount of communication paths

from the tree to the outside world. If many chips are needed to

implement a tree machine, the required amount of pins for

parallel loading will be readily available. If only a few chips are

needed, then this so!ution cannot be used. In this case, we

can perhaps construct several tree machines and overlap the

1/0 and computation proper. The number of such devices

depends on the desired response time as well as the various

timing characteristics.

5.3. Number of Chips Required

Let us estimate the number of chips to implement a tree

machine with a capacity of holding a cylinder of data. This is

motivated by the DSC design which assumes that a cylinder of

data can be searched in a complete revolution [1]. We choose

arbitrarily a tuple size of 64 bytes. With a cylinder capacity of

500,000 bytes, the tree machine will have 500,000/64, or

roughly 8,000 0-nodes. We have designed a prototype chip

implementing a simpler version of the tree machine where only

insertion, deletion and membership testing have been

considered [23]. Using that experience, we estimate that, for

the complete version, about 8 0-nodes can be put on one

chip. Therefore 8,000 0-nodes will require 1000 chips, which

is feasible with current technology. With the rapid increase in

circuit density, this number will become approximately 60

267

chips in four years and only 4 chips in about ten years.

Provided that the problems which arise with the increased

density (such as that of powering) can be solved, this

approach seems very promising to implement a large capacity

tree machine.

5.4. Problem Partitioning

We have assumed throughout this paper that all the related

data can be accommodated in the tree machine. This

assumption is certainly not realistic. Problem partitioning for

cases in which the problem size exceeds the device capacity

should also be studied.

6. Conclusion
We have proposed a design of a high-performance

tree-structured machine to handle the basic database

operations. The tree structure is very desirable for its

logarithmic path from the root to any leaf node. This makes

broadcasting of instructions a very convenient and

inexpensive operation. Also, being a structure of two

"mirrored" complete binary trees, one for input and one lor

output, the tree machine is especially suitable for pipelining of

instructions and data. In the tree machine, data reside in the

tree and different operations can be performed without having

to move data around. This is important for processing queries

which require the execution of a sequence of database

operations before the answer is obtained. If all these

operations can be performed at one single site, less 1/0 will be

required. Bentley and Kung [3] make an interesting

observation about the "computational structure" of the tree

machine: it has very small input and output channels, with

massive computation going on in between. Although much

search or other efforts are needed to process a query, the

answers frequently consist of only a few records. The tree

machine seems especially adequate for such operations.

The particular design we have proposed here is an attempt

to exploit the recent VLSI technology. One peculiar

characteristic in this technology is that logic is cheap but

communication costly. Also, by replicating one basic cell a

large number of time; on a chip, design costs are reduced.

This is why regularity and locality are such important

properties in VLSI design (see [9] for a detailed discussion).

Th~ tree machine possesses precisely these properties. There

are only three kinds of basic cells (or nodes), each 'Of which

interacting only with, a few neighbors in a very regular way.

This apptoach seems especially attractive in the near future

when circuit density continues to rise.

Acknowledgment

The author wishes to thank H. T; Kung and Jon Bentley for

their encouragement and inspiration provided to this research.

Helpful conversations with Izumi Kimura, Phil Lehman, Charles .

Leiserson, and Clark Thompson are gratefully acknowledged.

Thanks are also due to the referees who provided most

valuable comments and suggestions.

References

1. J. Banerjee, D, K. Hsiao, and K. Kannan, "DBC - A Database
Computer for Very Large Databases'', IEEE Trans. on
Computers 28, 6 (June, 1979), pp. 414-429.

2. J .. Banerjee, D. K. Hsiao, and J. Menon, The Clustering and
Security Mechanisms of a Database Computer, Computer
and Information Science Research Center, The Ohio State
University (April, 1979), 112 pp.

3. J. L. Bentley, and H. T· Kung, "A Tree Machine for
Searching Problems", in Proc. 1979 International
Conference on Parallel Processing, IEEE (August, 1979).

4. J. L. Bentley, and J. B. Saxe, "Decomposable Searching
Problems", lnforrr.ation Processing Letters 8, 5 (June,
1979).

5. K. J. Berkling, "A Computing Machine Based on Tree
Structures", IEEE 1'rans. on Computers 20, 4 (April, 1971).

6. S. A. Browning, "Computations on a Tree of Processors", in
Proc. of Caltech Cont. on Very Large Scale Integration,
Caltech (January, 1979), pp. 453-478.

7. H. Chang, "On Bubble Memories and Relational Data
Base", in Proc. 4th International Cont. Very Large Data
Bases, We.st Berlin (1978) .• pp. 207-229.

8. T. C. Chen, V. W. Lum, and C. Tung, "The Rebound Sorter:
An Efficient Sort Engine for Large Files", in Proc .. 4th Int.
.conf. on Very Large Data Bases (1978), pp. 312-318.

9. M. J. Foster, and H. T. Kung, "Design of Special-Purpose
VLSI Chips: Examples and Opinions'', Computer (January,
1980).

10. L.A. Hollaar, "A Specialized Merge Processor tor
Combining Sorted Lists", /I.CM Transactions on Database
Systems 3, 3 (September, 1978).

268

11. D.K. Hsiao, "Database Computers", in Advances in
Computers, Academic Press, Vol. 19 (1980).

12. H. T. Kung, and P. L. Lehman, "Systolic (VLSI) Arrays for
Relational Database Operations", ACM .SIGMOD
ln.ternational Conference. on Management of Data. (1980)~

13. G. G. Langdon Jr., "A Note on Associative Processors for
Database Management", ACM Trans. Database Systems
(June, 1978).

14. H. 0. Leilich, G. Stiege, and H. C. Zeidler, "A Search
Processor for Data Base Management Systems", in Proc.
4th Cont. on Very Large Data Bases (September, 1978), pp.
280-287.

15. C. E. Leiserson, "Systolic Priority Queues", in Proc. of the·
Caltech Cont. on Very Large Scale Integration, Caltech
(January, 1979), pp.199-214.

16. G. A. Mago, A Network of Microprocessors to Execute
~f]duction Languages, Department of Computer Science,
University of North Carolina (March, 1978), 114 pp. · ·

17 .. F. J. Maryanski, "Backend Database Systems", ACM
Computing Surveys 12, 1 (March, 1980), pp. 3-25.

18. C. Mead, and L. Conway, Introduction. to VLSI Systems,
Addison-Wesley Publishing Company (1980).

19. C. Mead, and M. Rem, "Cost and Performance of VLSI
Computing Structures", IEEE Journal of Solid State Circuits
SC-14, 2 (April, 1979).

20. S. A. Schuster, H. B. Nguyen, E. A. Ozkarahan, and K. C.
Smith, "RAP 2 - An Associative Processor for Databases
and Its Applications'', IEEE Trans. on Computers 28. 6
(June, 1979), pp. 446-458. ·

21. C. H. Sequin, A. M. Despain, and D. A. Patterson,
"Communication in X-tree, a Modular MultiproceSl.lor
System", in ACM 78 Proceedings.

22. S. W. Song, "Database Machines: a Taxonomy and
Appraisal", in preparation.

23. S.W. Song, "A Database Machine with Novel Space
Allocation Algorithms", in·. Proceedings of the MPC79
Multi-University Multiproject Chip Set Pwject, by A. Bell,
L. Conway, R. Lyon, and M. Newell (editors), Xerox
PARC/SSL (to appear).

24. S. Y. W. Su, "Cellular-Logic Devices: Concepts and
Applications", Computer (March, 1979), pp. 11-25.

25. S, Y. W. Su, L. H. Nguyen, A. Emam, and G.J. Lipovski,
"The Architectural Features and Implementation
Techniques of the Multicell CASSM", IEEE Trans. on
Computers 28, 6 (June, 1979), pp. 430-445.

26. W. Wilner, Recursive Machines, Xerox PARC SSL Internal
Memorandum (January, 1978), 24 pp.

A STUDY OF THE INTERCONNECTION OF KULTIPLE PROCESSORS
IN A DATA BASE ENVIRONMENT

lames R. Goodmant and Alvin M. Despain

Computer Science Department. University of California,
Berkeley, CA 9'720

.ABSTRACT

In the design of very large data base machines,
multiple processors can be employed effectively to in
creue performance. When massive amounts of data
must be moved, the topology of the processor inter
connections is important. To determine an appropri·
ate interconnection scheme, a simple model of a very
common but difficult data base operation is used to
determine an interconnection scheme. This is the el
imination of duplicate information in a collection of
data elements. In particular, five methods are con
i.idered which can perform the elimination of dupli
cates. These methods and their corresponding inter
connection topologies are analyzed and compared to
help determine a suitable multiprocessor topology
and computer architecture for a data base machine.
A hybrid architecture is shown to be near-optimal

Key words: database machine; computer network;
multiprocessor: computer architecture; relational
data base: computer system analysis.

1. INTRODUCTION
Data base management systems perform well today

largely through the use of sophisticated software struc
tures to enhance the retrieval of the desired information.
The price paid in terms of software complexity and
storage overhead is quite severe, and may become exces
sive for very large data bases. Unfortunately, there will
inevitably be some queries of considerable importance
which C?annot be performed in an at?ceptable length of
time because the proper structures do not exist in the
data organization, even though the information is
present. One approach is to build a special purpose
mat?hine for data base management systems (DBMS).

A great deal of interest has been generated recently
over the concept of a multiprocessor data base machine
and the topology that it should take. Since one of the
most significant ways that hardware can be used to
attack a problem is through parallelism, it is not surpris
ing that virtually all[l]-[12] of the recent proposals have
utilized this idea to a significant degree. One might ask
the following questions:

(1) What tasks performed by a DBMS C?an be im
proved by the use of parallel processors?

(2) How can multiple processors best be organized
to optimize the execution of those tasks?

1 Present address: Computer Scilmces Departmenl; Univend.t;r of
11'illcorudn, Kacliaon 1l'I 53706. ·

CH1569-3/80/0000-0269$00.75 ~ 1980 IEEE

It is instructive to consider the following problem:,
Given the telephone directory as a data base, determine
the name of the occupant at a known address. Although
the information is clearly present in the directory it can
not be readily retrieved. If this question were to be asked
frequently, the problem could be solved by producing an
index of addresses. It is not feasible to build such so
called secondary indices for all possible queries, since
those queries can become arbitrarily complicated. The
only general solution is to be prepared to search the
entire data base.

A number of generic operations on data bases can be
identified which can provide a great deal of insight into
the requirements for efficient data base support. In the
relational model, for l!!Xample, these operations might
include restrict.ion, project.ion, and equi-join, among oth
ers. In the implementation of these operations, some
more fundamental operations occur repeatedly. One of
the most expensive of these is the elimination of dupli
cates in a relation, performed every time a projection
occurs. An equivalent operation is performed in any data
base, however, and this procedure is certainly not unique
to the relational model. The elimination of duplicates is
so expensive that the user is often given the opportunity
to tell the system when it need not be done. We have
chosen to study this particular operation at some length.

2. THE EIJMINATION OF DUPLICATES
During an exhaustive search as well as during gen

eral set-oriented operations, a DBMS collapses the data
required by eliminating certain fields. Further reduction
of the data is then possible because the remaining fields
contain many duplicate entries. In the handling of a com
plex query this reduction in data is crucial and must be
performed several times.

In terms of our telephone directory model we can
consider the following operation:

List all of the street names present in the directory.
The stripping away of the names, street numbers, and
telephone numbers will leave the desired information, but
in a highly redundant form, since many people live on the
same street. The result may be thought of as a list of
numbers and the problem is to eliminate multiple
occurrences of a number.

We shall· assume that the number of elements N mak
ing up the list is large - too large to be reasonably sup
ported by a single processor. Duplicates can be elim
inated by exhaustive comparison or· by sorting, or by
some combination of the two. The advantage of the sort
ing approacA is this: direct comparison of all pairs of ele
ments in a list of length N requires 0 (N8) comparisons to

269

eliminate all duplicates. Sorting algorithms, on the other
hand, may require only1 0 {NlogN) comparisons . worst
case and may, depending on the order in the list, require
a substantially smaller number than that. Algorithms
exist, in fact, for sorting in 0 (N) operations[13]. How
ever, sorting implies the moving of a large amount of
data, more or less randomly. This is awkward, particu
larly if the elements to be sorted are in different proces
sors. Thus a tradeofi exists between the movement of
data and the number of comparisons, depending on the
approach chosen.

We shall compare the methods to follow in two ways:
the cost of computation C and the cost of communication
M. The computation will be meas4red crudely by estimat
ing the number of comparisons required. The interpro
cessor movement of data is measured by the sum of the
transmission of every element across every interproces
sor link. If an element must traverse three such links,
then three message element links must be counted.
Computation and communication costs will be deter
mined both for the total requirements and for the busiest
processor and link, respectively. This allows for analysis
based on either through-put requirements or response
time requirements, i.e. bandwidth or latency.

3. PARALLEL METHODS

Assume that a number of identical computers (P)
are connected so that they can communicate in a fairly
intimate way among themselves via messages. (P is
assumed to be a power of 2, except where noted). Sup
pose that a list of numbers of total length N, is seg
mented into P lists of equal length L = N /P and distri
buted over the P processors. In the general case, a wide
range of possible outcomes could result from the elimina
tion of duplicate elements, depending on the degree of
redundancy in the data base. In an attempt to establish
bounds on the size of the task, we shall consider the two
extreme cases:

(1) All elements a:re identical. For this case let C 1
be the total number of comparisons done in all
processors and M 1 be the total number of mes
sage element links. Also, define C lmox• the max
imum number of comparisons performed in any
one node, and M lma,., the maximum number of
messages transmitted over any one link.

(2) All elements are unique, i.e., there are no dupli
cates. In this case, let CN be the total number of
comparisons done in. all processors and let MN
be the total number of message element links.
Also, define CN mox• the maximum number of
comparisons performed in any one node, and
MN mox• the maximum number of messages
transmitted over any one link.

Identifying the duplicates in two ordered lists is
equivalent in complexity to merging the lists. For all
methods presented, it is assumed that each processor
first sorts and eliminates its own duplicates. Since this
requirement is the same for all methods, it has been
ignored. Thus, to merge two ordered lists of lengths Li
and L 2 requires L 1 + L 2 comparisons2. How can the

1Throughout this paper, unless otherwise specified, log means
log2.

2Knuth[14] shows.that the minimum possible for the worst case is
actually L1 + L2 - 1 if L1 and ~ are appro:ximately equal. We shall ignore
the constant term and assume that, in general, merging y lists, each of
length L, can be performed in yL logy comparisons, recognizing that
this simplification results in the assumption that merging two lists of
length one requires two compares.

duplicates be eliminated?
Consider how it might be done by first eliminating

duplicates within a list, then by comparing every pair of
lists. Somehow the lists must be transmitted in a regular
way so that all lists are compared against each other.
However, a method must avoid the problem of mutual
destruction of all duplicates. The following method does
this by assigning priorities to the processors:

METHOD 1: BROADCAST/ BUS ORGANIZATION

The P processors are ordered and connected to a
common bus. Each processor eliminates the du
plicates within its own list. The first processor
broadcasts its condensed list in sorted order to
the remaining processors quits. Each processor
which receives the list compares it against its own
elements and eliminates all elements 'that match
an element of the broadcast list. The remaining
processors sequentially broadcast their con
densed lists and quit. When all processors but the
last are finished, the duplicates have been elim-
inated. ·

This algorithm has the desirable property that the
message size shrinks as the duplicates are eliminated.
Thus the total length of the message units sent is the
length of the list of all elements with duplicates elim
inated less the number of unique elements in the last
processor. Obviously, this is the least possible communi
cation cost.

It solves the problem of saving exactly one copy of
each element by serializing the broadcasts. Note that
these broadcasts cannot be done in parallel, even if mul
tiple busses are available. As a result, the parallelism is
limited. On average, no more than half of the processors
are busy. Since each list is sorted before communication
begins, the removal of the duplicates can be done in one
pass for each broadcast. If there are no duplicates actu
ally present, then the total number of comparisons CN is
the sum of the number of comparisons

CN = 2L(P-1) + 2L(P -2) + · · · + 2L(l)

= 2LP(P -1)
2

= N(P - 1).

CNmo.r. = 2L(P -1) = 2(N -L).

Also

MN= (P-1)L =N -L,

MN mox = MN = N - L.

Here the broadcast of a message to many other proces
sors is counted as only one message sent. If there is only
one unique element, only that one element is sent, and
each of the other P - 1 processors compare it and elim
inate their copy:

C 1 = 2(P - 1), C 1me.r. = 2,

and

Ml= 1, Mlmaz = 1.

Of course, there will be some messages necessary to
notify other processors that no more elements are to be
sent, but this is considered overhead which, in general, is
small enough to ignore.

270

Another sort of priority can be introduced by allow
ing an additional processor to do the comparison of the
two or more lists and produce the result:

METHOD 2: TREE ORGANIZATION

Each processor, after eliminating its own dupli
cates, sends its list to its. parent in sorted order,
which merges the lists it receives, eliminating the
duplicates, and sends the result on to its parent.
This continues until the final list. is formed at the
root of the tree.

In this structure there are actually {yP-1)/(y-1)
processors connected as a tree, where y is the branching
factor of the tree and P is a power of y. P processors
are leaves, {P-1)/(y-1) are non-leaves. The P proces
sors at the leaves have direct access to the data. This
method requires more processors, nearly twice as many
as in the previous case. It is very effective if the number
of duplicates is large. However, if few duplicates exist,
the length of the list will increase, by nearly a factor of y
at each stage, increasing both the computation and the
worst case message traffic with each level up the tree.
Thus each succeeding step uses only 1/y as many pro
cessors, each of which must do y times as much compu
tation. For this case we calculate CN as follows:
There are log71 P levels {counting the root or the leaves,
but not both). There are y (P -1)/(y-1) links, one above
every node except the root. Numbering the levels in
ascending order starting with the leaves as 0,

level 1 contains P /y processors, each merging y
lists of length L, ·

level 2 contains P /y2 processors, each merging y
lists of length yL,

level j contains P (,Yi processors, each merging y
lists of length yi - L.

Assuming that. y lists of length L require yLlogy com
parisons3, we get for CN

or

p yLlogy + 1:y2Llogy +
y y

P log P + ---y 11 Llogy
lo&vP y

CN '= P·L· (log2y)(log71 P) = N log P.

CN mu is computed. for t.he top node, merging y lists of
length N /y. Again assuming that. y lists of length L
require y L logy comparisons,

N
CNmu: = y-logy = Nlogy.

y

The calculation of MN follows from the observation that
each element. goes from a leaf node to the root, i i.e.,
through log71 P links. Therefore,

N
MN= Nlog71 P = -1-logP.

ogy
Each of the top level links carries N /y elements, i.e.,

N
MNmu.= -. y·

This difficulty suggests that. the upper nodes might
require great.er power and larger memory. If all

3StricUy speaking, this Is an equality only If y Is a power of 2.
Comparison Is lnherenUy a binary operation, and a y-way merge can be
accomplished with only about logy comparisons per element using a
selection tree when y Is a power of 2. ·

elements are identical, no such congestion occurs. Each
non-leaf node receives y lists of length 1. If we assume
that merging y lists of length 1 requires ylogy opera
tions, then

p -1
Cl= --1-ylogy.

y -
Since each non-leaf node does the same number of opera
tions,

Cl = Cl = ylogy.
mu number of non-leaf nodes

Since exactly one element passes through each link,

M 1 = -1L(p - 1),
y -1

and

Mlmu = 1.

Consider the binary tree case {y = 2). Since the lists
were sorted before being sent to a parent all that is
required of the parent is a merge of ordered lists, a pro
cedure that increases only linearly with the length of the
list. Now suppose that. instead of sending the list to a
common parent, the two processors divide their elements
into two lists in a commonly agreed way and exchange
one of them. This leads to the first algorithm utilizing a
global sorting:

METHOD 3: BINARY MERGE/ n-CUBE
P processors are numbered in binary from left to
right, starting with 0. Each processor eliminates
its duplicates, leaving them in sorted order. The
range of values of the sort field is partitioned in a
universally agreed-upon way, (the obvious way, for
example, is to use the most significant bit of each
element), and each processor breaks its list into
two parts. It then sends one of the two lists to the
processor having the same address except for the
most significant bit as follows: If the most
significant bit of the address of the sending pro
cessor is a 1, it sends the first list. Otherwise, it.
sends the second list..

Aft.er merging the received list. with the retained
one and eliminating duplicates, each processor
repeats the process, but with the following
modification:

Each partition of the range of the sort field is
further sub-divided into two parts. If the
straight-forward way is used, then on step j, the
jth most significant bit of the address is used to
determine which list to send and to whom it will
be sent.

This process is repeated n = log P times, after
which the range is partitioned into P parts, and
one processor contains all the values for exactly
one partition. If the obvious partition was used,
all numbers are sorted into the proper list ac
cording to their n most significant bits.

The links required between the processors form
the n-dimensional structure known as the n
cube[15] and sometimes called hypercube.

This procedure requires only log P steps and does
not get more complex on subsequent steps - in fact it
gets shorter with the elimination of the redundant ele
ments. After each of the log P exchanges, all P proces
sors merge two lists of length L/2. Therefore,

271

CN =(log P)P·2[iJ1og2 = NlogP.

Symmetry arguments guarantee that CN mu and MN mu
are just CN /P and MN /P respectively. Assuming that
on each move, half the elements are moved4,

MN= logP N::; NlogP
2 2.

For the unique case, after exchange j, P /2i nodes have a
list of length 1 while the remainder have the empty list.

l~p
Cl= 2(1)log2 i,;, i = 2{P -1),

J=I 2

C lmu = 2(1)log 2(tog P) = 2logP.

During exchange j, P /2i elements are sent:

Ml= 12!':; = P -1
i=I C'

and M lmu = 1.
There is nothing magic about the binary process,

however. One could use a y-way sort arid divide the ele
ments into y lists, sending y - 1 off at each step. This
would require fewer steps, since

log11 P < log2P

for all values of y > 2,P > 1. Carrying this idea to its
extreme, we could work in base P, in which case only one
swap would occur. This results in the following method:

METHOD 4: P MERGE
Each processor orders its own list and, after elim
inating its own duplicates, partitions the list into
P separate lists in a consistent way for all proces
sors. Numbering these sublists from lowest seg
ment to highest, the jlh segµient is sent to the
jth processor. Each processor retains only that
sublist which it would send to itself, and merges it
and the P - 1 incoming sublists as they arrive.

This method again is near optimal in terms of the
transmission of information, at least for the case where
there are few duplicates. With no duplicates, each pro
cessor merges P lii;its, each of length L/P:

CN = pr;;logP] = NlogP.

CN
CNmu = P = log P.

Each processor sends L - L /P elements: 5

.MN = Pf - ;;] = N - L.

.MN N-L L
MN mu= _n_u_m_b_e-.r-o-J-Li-.nk-s = P{P - 1)/2 = 2P.

For the single unique element case, only one processor
receives anything: P - 1 lists of length 1.

C 1 = P { 1) log P = P log P, C lmax = C 1 = P log P,

.Ml= P - 1, .Mlmaz = 1.

Another extension of Method 2 is two build a network
which contains the interco~ections for one dimension of

·. 4 Jn the wont c~. when all elements are moved each time,
.MN= Nlog P.

&.MN = N; worat. case.

the .n-cube and has the capability to move the data
among processors so that each exchange can be accom
plished with immediate neighbors. It has been shown [16]
that both the shuffling of the data and the exchange can
be effected in paths through only one link each for the
network· known as the perfect shuflle. This leads to our
lai;t method.

.METHOD 5: BINARY .MERGE /PERFECT SHUFFLE
P processors are numbered in binary from left·to
right, starting with 0. Each processor has a link
to one neighbor whose address is the same except
for the least significant bit. This link is used to
implement the exchange. In addition, each pro
cessor has two .other links to the two processors
having the same address but shifted (end-around)
one position. Each of these links is used once for
each shuflle. Each processor eliminates its dupli
cates, leaving them in sorted order. Using the
agreed test, {again perhaps the. most significant
bit of each element), each processor partitions its
list into two smaller ones. It then exchanges one
list with its neighbor.

After merging the received list with the retained
one and eliminating duplicates, a shuflle is per
formed, i.e., each processor sends its entire list
over the link to the processor with the same ad
dress shifted one position, say, left.

This process is repeated logP - 1 times, after
which the range is partitioned into P parts and
each processor has all the values for exactly one
partition.

The computation involved here is the same as for the
n-cube structure, so CN and CN mu are precisely the
same as that case. Assuming again that on each move,
half the elements are moved, the communication involved
in Method 3 is again required, but additional communica
tion is incurred because of the shuffles. Each shuflle
involves sending all surviving elements through one link,
and since there are log P - 1 shuflles,

.MN= Nl~gP + N{logP -1) = 3Nl~gP -N.

Since more traffic goes over the shuflle links, the traffic
on the busiest link is

.MNID&ll = N(lo~ - 1} = L{logP -1).

For the unique case, again C 1 and C lmu are the same as
for Method 3. Again an additional communication cost is
incurred because of the shuflle. During shuflle j,
j = 1,2,3, · · · ,{logP - 1}, P /2i nodes transmit a list of
length 1, the remainder transmitting the empty list.
Thus the additional communication cost for the shuffles is

{lo~-1) p .
i,;, - =P -2,
i=I 2i

so the total communication cost is

.M 1 = p - 1 + p - 2 = 2P - 3.

The busiest link is the exch~nge link of one particular
processor which carries the unique element on every
,exchange. Thus,

.M lmu = log P.

272

(.. COMPARISON OF nm :MEmons
Table 1 compares the five methods under the

assumption that no duplicate data exists. Table 2 com
pares the five methods for the model where all elements
are identical. The parameters have been normalized for
the case of all unique elements by dividing by L, the
length of the list in each processor. For purposes of com
parison, the following assumptions have been made:

(1) Order is initially totally random, but the ele-
ments am evenly distributed among the proces
sors.

(2) The numbers are scattered randomly, i.e. evenly,
over their possible values.

The first assumption seems reasonable, though presum
ably it corresponds to some sort of worst case. The
second assumption, however, requires some justification.
Normally one would expect to find severe clustering of
the numbers resulting from the fact that they are nor
mally derived from natural language or other organized
sets of data. They can be randomized, however, by hash
ing the sort field. The sort order is changed, making the
end result of little use as a sorted list. This is not terribly
important in many cases, however, since the elimination
of duplicates is so often an intermediate result and it.s
ordering is not useful anyway.

A more serious problem is that if the bashing func
tion fails to randomize the data sufficiently, some nodes
may receive very large lists. This would imply that each
processor must have enough memory to bold ths entire
list, violating our assumptions. This problem can be
resolved, however, by aborting an operation as soon as an
overflow occurs, and substituting a more appropriate
hashing function.

The comparison of message traffic among processors
is not straightforward if the processors in the different
cases have different kinds or numbers of ports. One
might reasonably expect that processors with more ports
or faster ports would be more expensive, so that it is also
only fair to expect more performance from them. In the
above cases the processors vary widely in their 1/0 capa
bility, from a binary tree or the perfect shuffle, which
need only three ports per processor, to the complete
interconnection, which requires as many ports on each
processor as there are processors, less one. The bus
structure is even harder to compare, since although only
one port is specified, it nevertheless is obviously much
different than the port required by the other cases.

Despain[17] bas shown for a single chip computer
that power considerations limit the total I/O bandwidth of
the processors. Thus if the total bandwidth available is B
bits/ second, we can assume that each of K identical ports
can transmit a maximum of B/K bits per second. They
have also shown for the case where Q processors share a
bus that a processor using the bus can achieve a
bandwidth of only8 B/(Q-1) bits/second. A further result
is that reduced bandwidth is equivalent to an increase in
the average path length for a message, i e., for a given
set of message interchanges there exists an average path
length A, such that

A·Bg =B,

where Bg is the effective bandwidth through a port and B
is the total bandwidth available to a processor.

8rn the special case where the processors broadcast sequentially.
Jn the general case where all processors are vying for the bus, it ls much
worse, i.e. B/(Q - 1) 8.

If we assume that we can obtain a structure with
equivalent performance by reducing the number of ports
and increasing the number of intermediate nodes
traversed, we can define equivalence among the various
processors by multiplying the message traffic by the
average path length. Thus we define

MN =A·MN, MNmu=A·MNmu,

Ml =A·MlA, Mlmu =A·Mlmu.

Tables 1 and 2 show values for the effective path
length Aand Under these assumptions, the tree {method
2) and the perfect shuffie {method 5) have the least total
message traffic, regardless of the duplication factor,
though the binary merge with then-cube {method 3) bas
less message traffic if P is quite small~ Also, the optimal
value for y is 4, although the differences are small for
values of 2 to B. On the other hand, whEn the duplication
is low, the tree exhibits congestion near the root, and all
methods but the bus are superior to the tree with respect.
to the busiest link, increasingly so with larger values of
P. When the duplication is high, however, the binary tree
is exceedingly effective, with the busiest link not affected
even with increases in P. Clearly none of these struc
tures is best over our range of consideration.

Some of the methods are asynchronous. The P - 1
messages that each processor sends in method 4 need
not be sent. simultaneously. Each processor can begin
processing the second phase of the P-merge as soon as
one message has arrived. Thus communication and pro
cessing can be overlapped.

The binary merge {method 3) likewise can proceed
asynchronously, with each node having a list of other pro
cessors with which it must communicate sequentially.
Tbu,s, either of these methods can be implemented on a
general computer network where all nodes can communi
cate with all others. Both require many messages to
many different nodes, so it should be noted that efficient
communications are vital in the elimination of duplicates
using a sorting scheme.

It is interesting to observe in method 2 that if the
initial elimination of duplicates results in the elements
being sorted, then the processors above the bottom level
can proceed asynchronously in a pipeline fashion. Each
processor may begin processing as soon as it has

,received one element from each of its children. After
selecting the lowest value of those received, it can
immediately send this element on to its parent, and
remove it from its own list. Thus it is not at any time
required to store the complete lists, which may be grow
ing quite large. Of course the node at the top must do
something with the resulting list, and it might turn it
around and send it down the tree, where it can be sorted
on the way down, thus preserving a useful sort order.
Thus all the non-leaf nodes can be working simultane
ously, resulting in a higher degree of parallelism than
might otherwise be expected.

The model of method 2 uses up to twice as many pro
cessors as the other models. The difference in perfor
mance, however, is much greater than a factor of two.
The amount of computation is no more than for any other
method, so the processors on the average do only half as
much work. The total message traffic, on the other hand,
is much less than for any other method, for large values
of P. The important consideration here is how rapidly
the requirements grow as the number of processors
grows, and in this respect, a mere factor of two is quite
unimportant.

273

ICethocl
--. . . .

1 2 3 4 5
=·====== ======== •==========·== ========== ========= ======:=======

p 1IE...:.1_ p p p
No. of Proc. _____ 11._:J_ ____ -------- -------- ---------- -------- ------------

1
y(P -1) PlogP P(P-1} 3P

No. of links _____ 11..:J _____ _____ 2 _____ ____ 2 ____
------~------------- --------

CN/L P(P - 1) PlogP PlogP PlogP PlogP
-------- -------- ------------- ---------- -------- ------------

MN/L p - 1,. _E__logP PlogP p -1 3PlogP -P
---~O_!!JI _______ 2 2 -------- -------- ---------- -------- ------------

CN,,_/L 2(P -1) Plogy log P logP logP
-------- -------- ------------- ---------- -------- ------------

MN,,_/L p 1
p

1
2

log P - 1 - p y -------- -------- ------------- ---------- -------- ------------
A p -1 y + 1 log P p - 1 3 -------- -------- ------------- ---------- -------- ------------
MN/L (P - 1)2 (y + l)Plo P P{log P}2

(P -1)2 9Plos P -3P logy g 2 2 -------- -------- ------------- ---------- -------- -------·-----
MNmar/L (P - 1)2 JL±..1.p log P ~ 3(log P - 1)

y 2 p
-------- -------- ------------- ---------- -------- ------------

Table 1. Comparison of :five methods for eliminating duplicates assuming that no duplicates exist.
Method 1: Sequential broadcast. Method 2: y-branch tree. Method 3: Binary merge. Method 4: P
merge. Method 5: Perfect shufile. CN is the total number of comparisons done in all processors. MN
is the total number of message element links. CN max is the maximum number of comparisons done
in one J!!:!!.cessor. MN mu is the maximum number of message elements passin1 through any one
node. MN = MN· A is the total message traffic adjusted to compare processors with difl'erent
numbers of 1/0 ports. MN max= MNmu·A is the normalized measure of busiest link traffic. A is the
normalization factor for the variable number of ports required.

Method

1 2 3 5 ========= ======== ============== =========== ========= ========

No. of Proc.
p

No. of links 1

Cl 2(P - 1)

Ml 1

Clmax 2

Mlmax 1

A p -1

p -1

Mlmax p -1 ---------

.1IE.....:..l
_____ jj_-_l,_ ____ _

y(P - 1)
_____ j/_-_l,_ ____ _

ylogy (P-1)
y - 1 -------·-------

--1L-(p - 1)
---~:._1 _______ _

ylogy

1

y+l

y (y + l) (P - 1)
y - 1 --------------

y + 1 --------------

p p p

----------- --------- --------
P los P P(P-1) ~P

_____ g _____ ----~---- ___ g ___ _

2(P - 1) P log P 2(P - 1)

----------- --------- --------
p -1 p - 1 2P -3

2logP PlogP 2log P

1 1 log P

logP p -1 3

(P - l)log P (P - 1)2 6P -9

____ 1;:~_! ___ _ p - 1 --~l~[! __

Table 2. Comparison of five methods for eliminating duplicates assuming that all elements are identi
cal. Method 1: Sequential broadcast. Method 2: Tree. .Method 3: Binary merge. Method 4: p merge.
Method 5: Perfect Shuffle. C 1 is the total number of comparisons done in all processors. M 1 is the
total number of...m_essage element links. A is the normalization factor for the variable number of
ports required. M 1 = M l·A is the total message traffic adjusted to compare processors with difl'erent
numbers of 1/0 ports. M lmax = M lmu·A is the normalized measure of worst case link traffic.

274

Methods 3 and 4 require substantially more data
paths than any of the other methods. Clearly the P
merge is not feasible for large P if P(P - 1) dedicated
links are required. Even the PL(P /2) links required by
the biliary merge are hard to justify for large values of P.
This would mean log P liriks per node if dedicated links
were used.

A more serious problem is the lac.k of expandability
imposed by these structures. A processor may have only
a fixed number of ports, particularly if it is a single
integrated circuit. Methods 3 and 4 require an increase
in the number of ports as the number of processors
grows, so that if room is left for expansion, then some of
the available ports are unused, wasting available
resources.

The perfect shuffle seems to have many of the pro
perties needed here, though it is markedly inferior to the
binary tree iri the case of high duplication. It also has a
large enough liriear coefficient. for MN that its superiority
occurs only for large values of P. But it. poses some
unfortunate problems as well. It certainly cannot be
gracefully expanded, since it requires a power of two pro
cessors. Furthermore, the routing of messages in such a
structure is difficulty because of its lack of symmetry.

On the other hand, the sequential broadcast met.hod
takes substantially longer to execute than the other
methods. Also, if the duplication factor is low, it requires
far more comparisons than any other method and much
more communication bandwidth than any method except
the complete interconnection.

It is clear that the bus is inferior to the other
met.hods. However, the others all have short.comings
which are extremely serious. The question then arises -
is it possible to construct a net.work on which several of
the met.hods can be implemented so that the best
met.hod may be employed in a given situation?

Assuming that each processor in a structure has the
same number of ports, a significant. variation among
these structures is the portion of ports actually used.
The complete interconnection and the n-cube algo
rithms, for example, use every port. But the binary tree
uses less than two-thirds of the ports it has, since each
leaf node has two unused ports. It has been suggested
[16] that. this is desirable to allow a convenient. placement.
of 1/0 devices, a point that all structures must address
somehow. Thus a fairer comparison might require that
each structure have as many unused ports as it has pro
cessors. For methods 3, 4, and 5 this would be approxi
mately equivalent to increasing the value of A by 1.

An alternative approach, and one taken here, is to
connect the unused ports of such a structure in some
regular way. One possibility for the binary tree is to con
nect the leaves to form the perfect shuffle interconnec
tion (Fig. 1). The exchange can now be accomplished by
messages exchanged through the common parent.
Unfortunately, this doubles the traffic during the shuffle,
which is already the dominant. traffic for met.hod 5. A
better possibility exists.

5. X-TREE

A topology recently proposed in connection with X
TREE[16],[19] can implement any of the algorithms. The
structure, called hypertree, is the binary tree topology,
but with each node having one extra link connecting it in
a regular way to another node at the same level (Fig. 2).
The structure is particularly well-suited for communica
tions among leaf nodes which are nearest. neighbors in

the n-cube. Sirice the structure is a binary tree, obvi
ously method 2 {binary tree) can be implemented
directly on the structure. In addition, method 3 (n-cube}
can be implemented by using the leaf proce!!lsor1, passing
messages through intermediate nodes where necessary.
Furthermore, the structure has been shown to be well
suited for communication among all leaf nodes, so that
met.hod 4 could also be implemented conveniently.
Met.hod 5, the perfect. shuffle algorithm, could also be
implemented, though nothing is gained by the shume, so
it is essentially the same as met.hod 3. However, the
extra ports of the leaf nodes can be connected iri a per
fect. shuffie so that the horizontal links can be used for
the exchange (Fig. 3). With this addition, the structure
can perform the binary merge as well as the perfect
shume network except that the value of A is 4 instead of
3.

Tables 3 and 4 show the values for this model assum
ing the structure is used to implement methods 2, 3, 4,
and 5. The computations, of course, do not change, being
determined by the method and the corresponding logical
structure. Degradation occurs for the binary tree struc
ture because the multiplication fact.or A, is increased by
one to accommodate the additional link required for the
hypertree connection.

Method 3 is implemented using the extra links. It
has been shown[19] that for communication between any
pair of leaf nodes, an optimal path exists which goes no
more than half way up the tree. This guarantees that the
bottleneck which would occur in the simple binary tree if
few duplicates are present, will not occw;. or at least will
be much less serious, since a fact.or of v P more links are
available to handle the traffic over the most heavily used
path.

The best method to use varies greatly, depending on
the amount of duplication in the list, the number of pro
cessors, and the relative importance of tot.al traffic
versus busiest link traffic.

For the high duplication case, the simple binary tree
algorithm is always the best for the worst case link
traffic, though it is slightly iriferior to the binary merge
(n-cube) algorithm in total traffic. Note also that these
two met.hods have the lowest computational requirements
as well, under these conditions.

For the case of low duplication, the results are not so
clear-cut. Up to about 126 leaf nodes, methods 3 and 4
are best, with method 4 slightly preferable if total traffic
is the consideration, and met.hod 3 creating somewhat
less tot.al message traffic. Method 4 is generally superior
at 126 nodes.

Above 128 nodes, method 5, the perfect shuffle,
becomes the best method because of its at.tractive bal
anced link traffic. Met.hod 2, the binary tree algorithm,
has slightly less total traffic, but must be rejected
because of the excessive bottleneck occurring at the
root, both in link traffic and in computation.

6. CONCLUSIONS

The proposed structure is able to implement the
best algorithm for a given situation. Under our assump
tions, performance is nearly equal, and in some cases
superior, to the structure for which the algorithm was
originally proposed. The total message traffic, MNp/L is
actually improved, approximately by a factor of P /log P
for the algorithm using the complete interconnect.ion
{method 4), though the worst case link traffic for the
same model is increased by a factor of .JP for the case of
no duplicates. Since it is the met.hod of choice only for

275

N>
"'

Figure 2. Interconnection of Hypertree I.

Figure 1. Perfect :shuffle interconnection superimposed on the leaves of the binary tree.

" I

Figure 3. Perfect shuffle interconnection superimposed on the leaves of hyper~ree. Bottom
level hypertree links define exchange pairs, so the leaf nodes are numbered, from left to
right: 0, 2, l, 3, 4, 6, 5, 7.

CN /L

MN/L

CNmax/ L

MNmax/L

MN
L

MN mu/ L

2 3
======== ================

P log P P log P

PlogP Pl~gP(logP + 1)

P logP

p ..J2Pt
2 4

4P log P P log P (log P + 1)

2P ..J2Pt

Method

PlogP

4 17 5 - - -P + -P log pt
3 12 4

logP

16 17 - - -P + 5P log pt
3 3

2(P - 1)t _______)fl[_______ _

5

PlogP

3Plog P -P
2

log P

log P - 1

BP logP -4P

4(logP -1)

Table 3. Implementation of four methods for eliminatin1 duplicates aBBumin1 that no duplicates
exiat and uaing the "hypertree" structure with the perfect shume aa aholt'D in Fig. 3. There are 2P - 1
processors and 4P - 3 linlr:B. The normalization factor, A, iB 4. CN iB the total number of compari11-
on11 done in all processors. MN iB the total number of men111e element linlr:B. CN mu iB the mu
imum number of comparison& done in o~roceaaor. MN mu ia the muimum number of meaa111e
elements puBin1 throu1h any one node. MN = MNA iB the total mesaaae traffic adjusted to compare
proceBBors with different numbers of 1/0 ports. MN mu = MN muA iB the normalized worst cue link
traffic.

Cl

Ml

llethod

2 3
=======·= =====··====2====

2(P - 1) 2(P - 1)

2(P - 1) 2(P - 1) - log P

2 2logP

1 (logP)-1

B(P - 1) B(P - 1) - 4log P

=========m=•=====~=

PlogP

4 17 5 - --P + -P log Pt
3 12 4

PlogP

p -2

16 17 - - -P + 5P log pt
3 3

2(P - 1)

2P -3

2logP

logP

BP -12

!!Jrnu...__ _ ___ !____ -----~lQ.&..e______ _ _____ _j.1e:~1_______ __jlqg_e __

Table 4. Implementation of four methods for eliminatin1 duplicates aBBuminl that all elements are
identical and mrintr the "bypertreeN structure with perfect Bhume BB shown in Fig. 3. There are 2P - 1
proceuora and 4P - 3 link&. The normalization factor, A , iB 4. C 1 iB the total number of comparia
ona done in all proceilSora. M 1 is the total number of mesaqe element linka. M 1 = M 1A is the total
message traffic adjullted to compare proceBBors with different numbers of 1/0 port&.
M lmax = M lmu::A ill the narmalized worst calie link traffic.

t Thia fonnula is correct only where P is not a power at 4. If P is a power of 4 the formula is slightly clitferent.

277

values of P < 128 this would seem to be unimportant.

Method 3 shows some degradation in performance.
The worst case link traffic is increased, for the case of no
duplicates, by a factor of ../2P /log P, but for large
values of P the perfect shuffie algorithm predominates
anyway.

Methods 2 and 5 show only slight, linear degradation
due to the increase in the value of A resulting from the
unused links for that algorithm. Thus the proposed
structure is able to achieve the same order of perfor
mance as the best of the methods considered for virtually
all circumstances under our assumptions. If other
assumptions are made, a different conclusion could also
be drawn, as is evident from the results presented in
table 1.

The power of the tree structure is clear for the prob
lem of eliminating duplicates. However, the importance
of flexibility in choosing the. method is apparent. The
best structure is clearly one which can handle both
extreme cases (and thus presumably the cases in
between) reasonably well.

Before an architecture is chosen for a multiproces
sor data base machine, other typical data base opera
tions must be analyzed in a similar manner. Neverthe
less, the elimination of duplicates is an important data
base operation which provides significant insight into the
requirements for a data base computer. Other con
siderations as well undoubtedly will influence the choice.
For example, unlike some other models, the tree struc
ture is expandable without a modification to the proces
sor itself, which surely makes it more attractive if it is a
single component. Another issue is the fact that adjacent
processors may wish to communicate heavily at times.
The binary tree, with nodes having fewer ports, each with
more bandwidth, is clearly advantageous in this case.

The X-Tree "hypertree" interconnection with the per
fect shuffle interconnection among the leaves has been
shown to provide an attractive compromise of the models
considered. It gives essentially the same performance as
the best of the other structures over the range of condi
tions considered.

7. ACKNOWLEDGEMENTS
The authors are indebted to Clark Thompson for dis

cussions concerning the theoretical advantages of the
perfect shuffle approach.

The work has been sponsored in part by the Joint
Services Electronics Program, Contract F44620-76-c-0100
and by the Defense Advanced Research Projects Agency
(DoD), ARPA Order No. 3803, Monitored by Naval Elec
tronic System Command under Contract No. N00039-78-
G-0013-0004.

8. REFERENCES

[1] L. D. Healy, K. L. Doty, and G. J. Lipovski, "The archi
tecture of a context addresses segment sequential
storage," Fall Joint Comput. Conj., AFIPS Conj.
Proc. vol. 41. Montvale, N.J.: AFIPS Press, 1972, pp.
691-701.

[2] E. A. Ozkarahan, S. A. Schuster, and K. C Smith,
"RAP - Associative processor of database qianage
ment," AF I PS Conj. Proc., vol. 44, 1975, pp. 379-388.

[3] S. C. Lin, D. C. P. Smith, and J. M. Smith, "The design
of a rotating associative memory.for relational data
base applications," ACM Trans. Database Systems,

vol. 1,pp. 53-75, Mar. 1976.

[4] D. J. DeWitt, "DIRECT - A multiprocessor Organization
for supporting relational data base management sys
tems" Proc. Fifth Annual Symp. Comput. Arch., April
1978, pp. 182-189.

[5] Parhami, B., "A highly parallel computing system for
information retrieval," Proceedings of the Fall Joint
Computer Conference, pp. 681-690, 1972.

[6] Coulouris, G. F., Evans, J. M., and Mitchell, R. W.,
"Towards content-addressing in data bases," The
Computer Journal, vol. 15, no. 2, February, 1972.

[7] Minsky, N., "Rotating storage devices as partially
associative memories," Proceedings of the Fall Joint
Computer Conference, pp. 587-595, 1972.

[8] Edelberg, M.. and Schissler, L. R., "Intelligent
Memory," Proceedings of the National Computer
Conference, 1976, pp. 393-400.

[9] Madnick, S. E., "INFOPLEX - Hierarchical decomposi
tion of a large information management system
using a microprocessor complex," Proceeding of the
National Computer Conference, 1975, pp. 581-586.

[10] Anderson, G. A., and Ka.in, R. Y., "A content
addressed memory designed for data base applica
tions," Proceedings of the International Conference
on Parallel Processing, Aug. 1976, pp. 191-195.

[11] Banerjee, J., and Hsiao, D. K. "The Architecture of a
Database Computer - Part I: Concepts and Capabili
ties," Technical Report OSU - CISRC - TR - 76 - 1, The
Ohio State University, Columbus, Ohio, Sept. 76.

[12] McGregor, D. R., Thomson, R. G., and Dawson, W. N.,
"High performance hardware for database systems,"
Systems for Large Data Bases, North Holland Pub
lishing Company, 1976, pp. 103-116.

[13] D. E. Knuth, The Art of Computer Programming, vol.
3: Sorting and Searching, p. 99-102, Addison-Wesley,
1975.

[14] D. E. Knuth, op. cite., pp. 198-200.

[15] H. J. Segal, "Interconnection networks for SIMD
machines," Computer, vol. 12, No. 6, June 1979, p. 59.

(16] H. S. Stone, "Parallel Processing with the Perfect
Shuffle," IEEE Transactions on Computing, Vol. C-20,
No. 2, Feb. 1971, pp. 153-161.

[17] A. M. Despain, "A Study of Multicomputer Intercon
nection Structures," paper in preparation. Comput.
Sci. Div., Univ. of Calif., Berkeley, Dec. 1979.

(18] A. M. Despain, and D .. A. Patterson "X-TREE: A tree
structured multi-processor computer architecture",
Proc. Fifth Annual Symp. Comput. Arch., April 1978,
pp. 144-150.

(19} C.H. Sequin and J, R. Goodman "HYPERTREE: A mul
tiprociesshr interconnection topology," submitted to
Communications of tl:i~ ACM, 1979.

278

ON DATABASE-ORIENTED PERIPHERAL TRANSFORMATION
PROCESSOR SYSTEMS

Dieter Schutt
D Dv ST DB3
Siemens AG

8000 M1inchen 83, West Germany

Abstract -- The purpose of this paper is to
discuss specifications concerning peripheral
transformation processor (PTP) systems in a data
base environment.
A PTP can be seen as a link between a buffer
system and secondary storage media for parallel
transmission and intermediate manipulation of
(blocks of) data.
A PTP mainlY consists of a highly modular data
manipulation unit and a flexible control.
Built-in fault-tolerant capabilities of a PTP
system lead on1Y to slight performance degra
dation if faulty components are detected. Typical
PTP applications include update, simple associa
tive, and cryptographic operations.

3880-like storage control systems provide
the capabilities to operate and control several
independent data paths between processor(s) and
disk storage media. They do not allow however . . ' ' intermediate buffering and manipulation of data
required for reducing channel and main storage
activities in connection with database procedures.

The peripheral transformation processor
(PTP) to be discussed is an attempt to incorpo
rate certain functions of dedicated units into a
highly paralllel peripheral processor system. In
other words, a PTP is a special purpose function
architecture mainly for performance enhancement
of the corresponding overall system.
A PTP is by no means another database backend
machine [1,3,5,6,11,12,13], it could be seen as
an evolutionary step towards an intelligent,
database-oriented processing system.
A PTP has not been built yet.

Special-purpose data manipulation units
described in literature include manipulators for
bit-slice functions [7), alignment (scramble/
unscramble) networks for multidimensional memory
access (9] , encryption networks for improved data
security [BJ, associative or quasi-associative
search modules [2, 1O,11, 12] , and transformation/
translation units for database structure ope~a
tions [1].

A PTP architecture (see FigUre 1) must
satisfy the following requirements which are vital
to I/ O-intensi ve and robust database management.

1. The PTP interfaces to a disk storage system
and to a block 1.uffer system, allowing access
to different disks and buffers and to cylinder
slices of one disk at a time.
Thus a PTP operates parallel read-out,

CH1569-3/80/0000-0279$00,75 ~ 1980 IEEE

279

parallel write-in, and mixed read-out/write
in procedures.
(Clearly, the attachment of so-called electro
nic disk devices is desirable for future PTP
business),

2. The PTP data manipulation unit (DMU) contains
a network of substitution boxes which
satisfies the NBS data encryption standard
and allows multiple data streams as plaintext
input and encrypted/non-encrypted output.
A subKtitution box realizes a permutation on
{0,1} as well as the identity (bypass
feature),
A key register is included for modification
of the network [8] •

3, A more powerful substitution network provides
feedback capabilities for multi-phase data
manipulation and permits Boolean operations
between networks stages (DMU stage logic);

4. The PTP masking facility is a DMU component
which allows vertical and horizontal masking
of (blocks of) data,

5. The DMU compare logic is restricted to
operation on a one-bit-per~word basis (fixed
bit location). Thus a PTP does not support
sophisticated time-consuming search proce
dures.

6. Because of the predominant modular structure
and the capability to divert multiple data
streams a PTP is well-suited for fault
tolerant data processing. Built-in fault
masking and self-repair functions result.in a
high PTP reliability.

7. ·Communication between PTP and host processes
is governed by a higher-level protocol
(probably ISO-level 4) in contrast to proto
cols which are concerned with standard
peripheral/main processor interactions.
In a: host-ba.ckend configuration a PTP does
not contribute directly to communication
between program execution system and database
computer system.

Note that requirements 1 to 7 necessitate a.
flexible PTP microstructure.

The operations listed below demonstrate PTP
capabilities concerning support of database
management functions:
- copying, i.e. dynamic peripheral duplication

of data
- combination of data from different resources

(e.g. coincidence or merge of index bit lists)

- composition of (blocks of) data from different
resources (e.g. combination of database keys
and data items or of primitive search results;
simple union operations)

- insertion/deletion of words within blocks of
data (e.g. for index list updates)

- differentiation of sets of data (e.g. before/
after images, basic/index data)

- projection, i.e. selection of certain data sub
blocks (domains)

[4]

[6]

[7]

References

J.Banerjee, D.K. Hsiao, and K. Kannan,
"DBC - A Database Computer for Very Large
Databases",
IEEE Transactions on Computers (June, 1979),
pp. 414-429

P. B. Berra and E. Oliver, "The Role of
Associative Array Processors in Data Base
Machine Architecture",
Computer, IEEE Magazine (March, 1979)
pp. 53-61

R.H. Canaday et al., "A Back-end Computer
for Data Base Management", Communications of
the ACM (October, 1974), pp. 575-582

E.F. Codd, "A Relational Model of Data for
Large Shared Data Banks", Communications of
the ACM (June, 1970), pp. 377-387

J. Cullinane et al. , Commercial Data
Management Processor Stua.y, Cullinane
Corporation, Wellesley, Mass., (December,
1975)' 76 pp.

D.J. De Witt, "DIRECT - A Multiprocess.or
Organization for Supporting Relational Data
base Management Systems", IEEE Transactions
on Computers (June, 1979), pp. 395-406

T. Feng, "Data Manipulating Functions in
Parallel Processors and Their Imple
mentations", IEEE Transactions on Computers
(March, 1974), pp. 309-318

[8] J.B. Kam and G. I. Davida, "Structured Design
of Substitution-Permutation Encryption
Networks", IEEE Transactions on Computers
(October, 1979), pp. 747-753

~]

[10]

D. Kuck> "A Survey of Parallel Machine
Organization and Programming", Computing
Surveys (March, 1977), pp. 29-59

H.O. Leilich, G. Stiege, and H. Zeidler, "A
Search Processor for Data Base Management
Systems", Proceedings of the Fourth Inter
national Conference on Very Large Data Bases,
West Berlin (September, 1978), pp. 280-287

28()

C.S. Lin, D.S. Smith, and J.M. Smith, "The
Design of a Rotating Associative Memory for
Relational Database Applications", ACM
Transactions on Database Applicatio;;-;;
(March, 1976), pp. 53-65

E.A. Ozkarahan, S.A. Schuster, and K. C.
Smith, "RAP - An Associative Processor for
Data Base Management", Proceedings AFIPS
National Computer Conference (1975),
pp. 379-387

S.Y. Su and G.J. Lipovski, "CASSM: A Celluls.r
System for Very Large Data Bases",
Proceedings of the International Conference
on Very Large Data Bases, Framingham
(September, 1975) pp. 456-472

Main Memory

Block
Buffer System

Data
Manipulation
Unit (DMU)

Secondary Storage Media
(e.g. Disks)

I Key Register!

DMU
Stage Logic

Masking
Facility

Compare
Logic

Error
Correction Unit

Central Processor

Control
Logic

I
I
I
I ___ J

Figure 1. PTP Block Diagram

SESSION 10: DATABASE ARCHITECTURE AND SOFTWARE II

281

STOCHASTICALLY CONFLICT-FREE DATA-BASE MEMORY SYSTEMS

David Klappholz
Division of Computer Science

Polytechnic Institute of New York
Brooklyn, New York 11201

Abstract -- A multiple module memory system is
termed stochastically conflict-free if its perform
ance is (statistically) guaranteed - regardless of
referencing behavior. A design for such systems
has been proposed. In the present paper we present
a formal analysis of its peformance.

1. Introduction

A parameterized design for a family of multiple
module memory systems will be termed "Stochastically
Conflict-Free" if for any desired effective band
width (i.e., post-conflict bandwidth), a. and for
any e < 1 and any E > 0, the design makes possible
the implementation of a system:

1. whose actual post-conflict bandwidth, a'
is a random variable - not as a result of any sta
tistical assumptions which might be made regarding
the (memory module destinations of the) access re
quests entering the system, but rather as a result
of an element of randomization deliberately intro
duced as a part of the design,

2. for which the probability that a' > ea is
itself within E of 1 regardless of the referencing
behaviors of the devices which input access re
quests - i.e., for every pattern of access requests
which might be input into the system.

Such a design is proposed in [l] where the Stochas
tic Conflict-Freedom of its performance is argued
informally.

The present paper presents formal analysis of
the performance of systems implemented according to
the design and operating in what.we will term data
base mode. That is, it begins the development of
a formal methodology for determining the values which
design parameters should take in order for a system
to meet specified performance criteria.

The type of system which we have in mind (pre
Stochastically Conflict-Free) is that of Figure 1.
It consists of some number M, of memory modules
accessed via an interconnection structure which
might, depending upon M (the number of memory mod
ules) and N (the number of ports) be as simple as a
single shared bus or as complex as a routing net
work [2]. Requests for access to words (records)
stored in the memory modules are entered into the
system by request-issuing devices, (processors,
query stations, etc.) each connected to one of the
N ports; access requests traverse the interconnec
tion structure to arrive at queues in front of the
appropriate memory modules, and each is serviced
once it reaches the head of its queue; finally, the
appropriate response to an access request is re
turned to the requesting device via the intercon
nection structure.

In Sections 2 and 3 we review a number of re
quired preliminary definitions. In Sections 4, 5,

CH1569-3/80/0000-0283$00.75 (£) 1980 IEEE

283

and 6 we motivate the proposed design, indicate its
range of applicability, and review those of its
details required for an understanding of the per
formance analysis presented in Section 7. Finally,
in Section 8 we present, very briefly because of
space limitations, a short design example.

2. Modes of Operation

We will distinguish two different modes of
operation of multiple-module memory systems, multi
processor mode and data-base mode, each mode
carrying with it its own design questions.

2.1 Multiprocessor Mode

The use of a multiple-module memory system as
a part of a multiprocessor (or MIMD parallel proc
ess) entails that the devices attached to the N
ports of Figure 1 are processors and that the M
modules of memory constitute that part of the
primary memory which is shared by all N processors.
In this case, the memory modules of Figure 1 would
probably· (today) be modules of semiconductor
memory.

The multiprocessor mode of operation is de
fined as follows: Initially each processor issues
a request for access to a word of memory. There
after, a processor will not issue an additional
request before it has received a response to its
previous request.

The total rate at which requests enter the
system is not fixed in advance, but is, rather,
self-regulating. On each cycle the number of new
requests entering the system is bounded from above
by the difference between N and the number of
processors which have not yet received responses
to their most recent requests.

2.2 Data-Base Mode

The use of a multiple-module memory system as
part of a data-base system entails that the de
vices attached to the N input ports of Figure 1
are query stations and that access requests are
for records rather than for individual words. In
this case, the memory modules of Figure 1 would
probably (today) be disks.

In the case of data-base systems one often
ignores the rates at which individual devices con
nected to the ports of Figure 1 issue access re
quests, concentrating rather on the ensemble rate
at which requests enter the system; this is reason
able· because in the case of data-base systems the
ensemble input rate ·is empirically observed to
frequently assume an almost constant value. This
value, probably as a result of users logging onto
and off the system in response to the quality of
service received, is often sustained for reasonably

long periods of time.

The data-base mode of operation will thus be
defined as the case of constant input rate. It is
this mode of operation with which we will:be con
cerned here.

'3. Memory Contention

It is, of· course, precisely the.fact that the
access request traffic appearing at the. memory
module queues of Figure 1 will not. be uniformly
spread across the queue·s that tells us that N mem
ory modules will not suffice to drive N times as
many processors as w:ill a sing.le memory module or
to support a constant input rate of N times the
response rate of a single meinory module.

This is precisely what is meant by memory con~
tention (conflict, interference); the degree to
which it affects the performance of a system is, of
course, dependent upon the degree of nonuniforrnity
of the memory referencing behaviors of the devices
connected to the N port~.

4. The Standard Statistical Assumptions

The following three statistical assumptions,
which we will refer to hereafter as the "standard
statistical assumptfons," have been used (see [3]
for example) as a: basis for the study of the effec
tive bandwidth to be expected from systems of the
type.depicted in Figure 1:

1. Each individual request for access to an
item stored in memory is to a memory module chosen
at random from a uniform distribution over all the
modules.

2. The (memory module) destinations of access
request input by different devices (attached to
ports of Figure 1) are statistically independent of
one another.

3. The (memory module) destinations of suc
cessive access requests input by the same device
are statistically independent of one another.

If these assumptions indeed hold for some par
ticular application, one would expect the effective
bandwidth of an M-module memory system.put to use
in that application not to fall very far short of
M times the bandwidth of a single module; the rea
soning is, speaking very crudely, that the Law of
Large Numbers would assure, in the long run, rea
sonable uniformity of spread of access request
traffic over modules of memory.

5. The Proposed Design

5.1 Design Strategy

The design proposed in [l] is intended to
allow the designer to bring the performance (effec
tive bandwidth) of a multiple-module memory system
as close as desired to what it would be if the
standard statistical assumptions held.

In cases, then, in which the standard statis
tical assumptions can be assumed to hold, the de
sign proposed in [l] would as we will see involve

an unnecessary additional expense. On the other
·hand, it has great potential for:

1. cases in which neither can the standard
assumptions be assumed to hold, nor are any other
statistical assumptions regarding referencing be
havior known or obtainable,

· 2. cases in which statistics regarding ref
erencing behavior, although known or obtainable
cannot be.made use of in systein design (hardware)
or organiZation (software) - because actually ob
taining such statistics, or using them, would be
impractical or infeasible.

Given, then, that the cases in which the de
sign will be of interest are those for which no
a priori statistical assumptions can be made re"."
garding the pattern of ac;cess requests entering
the system; we will not be able,, a priori, to view
those requests as random variables with some known
or knowable distribution's and' some known or know
able correlations to one another; rather we will
view them .as logical identifiers of items stored
in meniory and deliberately referenced by users
(request_;issuing devices) in whatever pattern
suits the needs of those users' particular reasons
for using the system.

5.2 Details· of the Design

The design itself consists of three points:

1. Deliberate (uniform) random allocation of
space to items when they are allocated space in
the modules of memory - each item deliberately
allocated space independently of all others.

This would be implemented through the use of
either software, or, more probably, hardware gen
eration of pseudo-random numbers. (In cases in
which referencing behavior cannot a priori be
assumed to be random (and independent in the way
indicated), but in which allocation can, this step
would, of course, be altogether unnecessary;)

2. 'Distribution of multiple modules of a
novel type of memory which we will call "repeti
tion filter memory" - RFM for short - over the
internal components of the multistage interconnec
tion structure (see Figure 1) proposed in [l].
(The exact nature of RFM will be detailed in Sec
tion 6.)

3. Increase in the number of ordinary memory
modules - hereafter referred to as "modules of
primary memory" beyond the number which would be
required to produce the desired effective band
width if memory conflict did not exist.

S.2.1 Consequences of the First Point

The first design point ensures that even in
the absence of any a priori assumptions regarding
referencing behavior every access request travers
ing the interconnection structure is to a module
of primary memory chosen at random from a uniform
distribution over all M modules. It does not, of
course, ensure that different access requests are
to modules chosen independently of one another;
indeed, different requests might deliberately be

284

addressed to the very same item, and therefore the
very same module.

The matter of how logical identifiers are
translated into physical addresses when memory has
been deliberately allocated at random is, by the
way, quite simple. Each request-issuing device
will have the highest level of file directory (or
translation table) stored locally; the rest of the
file directory (or translation table) will be
stored as items in modules of primary memory in
exactly the same way as are any other items. Ref
erences to items of the former type will, then, be
handled in the same Stochastically Conflict-Free
manner as will references to any other items.

5.2.2 Consequences of the Third Point

The third design point, taken in conjunction
with the first, ensures an increase in the expected
uniformity of spread of request traffic over mod
ules of primary memory regardless of the pattern
of logical identifiers entering the system - i.e.,
so long as not all these requests are to exactly
one and the same item.

5.2.3 Consequences of the Second Point

The effect of the second design point, whose
details we defer to Section 6, will be to enable
the designer to ensure that repeated requests to
any item, if they are closer together in time than
some chosen distance (say a distance of C-1 inter
vening requests, where C is itself a design param
eter) will result in all requests but the first
being serviced without actually being sent to the
module of primary memory in which the item resides.

This will, in turn, ensure, informally speak
ing, that, as suggested in [l], from the point of
view of actual effective bandwidth no pattern of
entering access requests could be worse than one
of the form b1 ,b2,b3, ... ,bc,b1,b2,b3, •.• ,bc, (re
peated indefinitely) where i 'I' j implies bi 1' bj.

The sense in which manipulation of the param
eter C allows the designer to bring the performance
of a system as close as desired to what it would
be if the standard statistical assumptions held
is that the assumptions are essentially to the
effect that there are no deliberate repetitions
(i.e., that C is infinite)

The extent to which this informal argument
translates into formal results is the subject of
Section 7.

6. Repetition Filter Memory

In the design proposed in [l], Mand N are
assumed to be large enough so that a complex rout
ing network is required as the interconnection
structure. As a further result of the assumed
magnitudes of M and N the RFM has to be modularized
to be capable of operating sufficiently fast.

In the present paper we will simplify matters
by turning our attention to systems of the type
depicted in Figure 2; i.e., we will assume that a

285

single module of RFM is sufficient, and that the
interconnection structure required is simple enough
to be ignored. We will further assume that the
RFM processes every request directed to it - i.e.,
every request entering the system in systems of
the type depicted in Figure 2 - instantaneously.

In the case to be considered here, i.e., the
case of multiple module data-base memory systems,
if the RFM is built of very fast technology and
the modules of primary memory are disks, then this
last assumption will, for all intents and purposes
be fully justified for values of M and N as high
as in the hundreds or even possibly in the thou
sands. For the case in which a complex intercon
nection structure is, on the other hand, required,
the analysis to be presented in Section 7 can be
taken as a partial analysis, concentrating on the
"access bandwidth" of the system of primary memory
modules rather than on the "communication band
width" of the interconnection structure or on the
effectiveness of a multiple-module (distributed)
RFM in filtering out repeated requests.

6.1 Basic Mode of Operation

The operation of RFM resembles, but is cer
tainly not identical to the operation of LRU cache
memory. (We must, however, caution the reader that
the reason for the introduction of this novel type
of memory in [l] bears no resemblance whatsoever
to the reason for which LRU cache is incorporated
into conventional memory systems.)

Let a1,a2,a3, •.• be a sequence of access re
quests entering the system; each ai is processed
by the RFM as follows:

i) If the item to which ai requests either
"read" or "write" access is already stored in the
RFM then the request is serviced there instanta
neously. In the case of a write access this means
that the new value to be taken by the item is re
corded into the RFM entry for the item, and an
acknowledgment is sent to the request-issuing de
vice. In the case of a read access the response
to the request-issuing device is a copy of the
item.

In neither case, of course, is the request
sent along to the module of primary memory in which
the item resides.

ii) If ai is a write request and the item in
question is not stored in the RFM, then the request
is still serviced instantaneously in the RFM. In
this case service consists of the creation of an
entry for the item - the new value taken from the
write request itself - and the sending of an ac
knowledgment to the request-issuing device.

Again, of course, the request is not sent
along to the module of primary memory in which the
item resides.

iii) In the remaining case, i.e., that of ai
being a read request for an item not stored in the
RFM, a "pre-arrival" entry is created for the item;
such an entry consists of the address of the item,
and that of the request-issuing device. (The type

of entry referred to in i and ii above will be
termed a "post-arrival" entry.)

At some later point in time the item itself
will reach the RFM - as a result of a response re
turning to the RFM from primary memory. At that
time all requests which resulted in the creation
of pre-arrival entries for the item will be in
stantaneously serviced. (In actuality they will
be serviced by the fast RFM between the arrival of
access requests to the much slower disk memory.)
Exactly one post-arrival entry for the item will
be created and will be the only entry for the item
retained in the RFM.

In order to be sure that the item will, in
fact, eventually reach the RFM from the module of
primary memory in which it resides, exactly one of
the requests which resulted in the creation of pre
arrival entries for it will be sent on the primary
memory - viz. the earliest one.

(N.B. as we have described the operation of RFM a
read request might be responded to with the value
of the item which was current at the time of the
request rather than with the very latest value.
The definition of the operation of RFM is easily
modified if this is not desired.)

6.2 Replacement Policy

The capacity of an RFM, i.e., the number of
(pre- and/or post-arrival) entries it has space
for is, of course, limited. Just as with an LRU
cache, an RFM will, when it has to in order to
make room for a new entry, throw away the least
recently referenced entry it holds. In the case
of RFM the definition of "recentness of use" is
that pre-arrival entries are never considered to
be "used" after they are created; i.e., they only
age. Post-arrival entries on the other hand can
be "refreshed" (viz.a-viz. recentness of use)
exactly as are ordinary LRU cache entries.

If a pre-arrival entry whose creating request
was not sent on to primary memory were ever simply
erased, the creating request would never be re
sponded to. "Throwing away" of such an entry thus
consists of not just erasing it, but also recon
stituting. the request and sending it to the appro
priate module of primary memory.

Finally, a post-arrival entry which has been
written into in the RFM is "written through" into
primary memory if and when it is thrown away.

6.3 Effect of RFM

We will assume, without loss of generality,
that although access requests may enter a system
from any of the N ports, no two requests enter at
exactly the same time; ;f..e., the sequence ar,az,a3:, •••
represents the system's input in temporal order.
We further introduce the following notation:

1. The M modules of primary memory will be
given addresses of l, ••. ,M.

2. Yi will be used to denote the address of
the module of primary memory to which a service

286

request is sent as a result of inputting ai; the
notation Yi = 0 will be used to indicate that in
putting ai causes no request to be sent to _e!!Y_
module of primary memory - as a result of the
filtering ~ffect of the RFM.

3. Y{ will be used to denote the set

{yi'Yi+2'' .• ,yi+j-1}

We will assume for the sake of simplicity
that no pre-arrival entry ever has to be thrown
away. (A pre-arrival entry has to be thrown away
only in the very low probability case that its
creating request landed in a very-much-higher
than-average memory module queue.) The effect of
the introduction of an RFM of capacity C = mM
entries (m an integer) taken together with the
consequences of the first design point is then
that without .e!!Y. a priori statistical assumptions
regarding the sequence a1,az,a3, ••. , for every
i = 1,2,3, ... if y,ze:Y~, then either

l. ---

1. y = 0 or z = 0 or both
or

2. y and z are random variables uniformly
distribured over {l, •.. ,M} and are independent
of one another.

7. Performance Analysis

We propose to analyze the performance of the
type of system under consideration over finite
periods of operation. The analysis will, thus,
include a precise indication of the length of time
a system will have to be in operation for the pre
dicted performance to be achieved.

We will assume that the system is to be run
at a rate of S = nM input requests per unit of
time, where n < 1 and the unit of time is the
amount of time-required by a single module of
memory to service one request and be prepared to
receive another. We will further assume that the
system is to be run for at least the amount of
time required to input C = mM requests. Our re
sults will apply as long as the system is in oper
ation for at least this length of time.

Suppose, then, that for some t we run the
system for a sequence of tC = tmM requests (for
tm/n > tm units of time) where t > 1 is, for the
sake of simplicity, taken to be an integer.

Let:

1, t = 1 be the time at which the first of
the tC requests enters the system.

2.' t = 't = tm/n be the time at which the
last of the tC requests enters the system.

3. t = -r 1 be a random variable representing
the time at which the request which is s.erviced
last has just been serviced.

4. S 1 . be a random variable which represents
the actual rate at which the system responds to
the tC requests, i.e., let S' = (T/-r 1)S = 0S.

We will pose the following question about the
performance of our data-base mode memory system:

Given any 6 < 1 what is the proba
bility P(6,S,t) that when the system
is run for tC or more requests, it
will fail to respond at an actual
rate of s' = as or greater?

P(6,S,t) can thus be thought of as the failure
probability, i.e., the probability that the system
will fail to perform at a level greater than or
equal to that specified by 6, S, and t.

For the purpose of our analysis we will be

concerned with sequences of random variables X~,
xh2, .•• ,Xh, where X~, i < i < tC, represents the

tc i -
contribution of ai to the number of access re
quests arriving at the h-th memory module,
1 .:::_ h .:::_ M, as a result of inputting a 1 , ..• ,ag,c·

If we restrict our attention to X~+l'X~+2 , ..• ,X~+C
for some j, j = O,C,2C, ... ,(t-l)C then if no two
of aj+l'aj+2, .•. ,aj+C are identical, then the

X~+i' 1 ::_ i .:::_ C, are independent and identically

distributed as follows:

prob{x~+· J l.
l/M

prob{x~+i = (M-1)/M

If, on the other hand, two of aj+l'aj+2, .•• ,

aj+C are identical, say aj+t = aj+s where

1 < t < s < C, then X~+ is identically zero; this
- - J s

is the case because the request for as will never

;:~~~r~h~tm~~~yb:o~~i~e;:dw~~~ho~st~:si~;~~
stream by the RFM.

Still restricting our attention to aj+l•
aj+2, .•. ,aj+C for some particular j,j =O,C,2C, ... ,

(t-l)C, we note that the expected number of hits
on the h-th memory module, 1 < h < M, i.e., the

h h h- - h
expectation of HJ. = X.+l + X.+2 + •.• + X. ,

J hJ J+C
which we will denote by E(Hj)' is less than or
equal to C/M = mM/M = m, reaching its maximum
value if and only if no two of aj+l'aj+2, ••. ,aj+C
are identical. (Note that in this case H~ is

J
binomially distributed with parameters C and l/M.)

Moreover, at the assumed rate of S = rJ1 re
quests per unit of time, the sequence of requests
aj+l'aj+2, ..• ,aj+C is input to the system in

mM/nM = m/n > m units of time - an amount of time
in which a single memory module can service
m/n > m requests.

We define, for each h, 1 .:::_ h .:::_ M, a random

variable S~ to represent the number of access re-
(J 1 . f . . quests resu ting rom inputting aj+l'aj+2, ..• ,

aj+c> reaching the h-th memory module in excess of
the number of requests that it can service in the

287

time required to input C requests into the system.
Formally, if we let a = l/n > 1, then the distri-

bution of s~ is as follows:

prob{s~ o} prob{H~ .:::_am}

prob{s~ = k} = prob{H~ =am+ k} fork> 0

h
Note that S. is not the number of requests

J
remaining in the queue in front of the h-th memory
module just after aj. ,aj 2 , ... ,a. C have been

. +l + J+
input - not even for j = 0 - but is rather the
total number of requests which have arrived at the
h-th memory module during the period of input of
aj+l'aj+2•···•aj+C; we have, as yet, said nothing

about when the requests that arrive at a module
actually arrive.

Finally, we define for each j, j =O,C,2C, ..• ,
(t-l)C, a random variable

max
l<h<M

(S~)
J

i.e., the "excess" at the "most heavily hit" memory
module. It is easy to see that

prob{s; = k} .:::_ M prob{s~ = k} (1)

I~ what follows we will need an approximation
of E(Sj)· Using (1) as well as a) the standard
derivation of the mean deviation for the binomial
distribution [4) pp. 176-177 and b) Stirling's
approximation [SJ p. 172 it is possible to show
that

r [~(m·-lJ+l]
(s*) ~ (a-1-aln a)m M M M

E . < ~e e
J '/L1fCX

(2)

We turn now to the question of the number of
requests remaining in the highest queue. Let the
time line of Figure 3 represent the t periods,
each of C input requests, (each of duration am
units of time) with which we are concerned.

Precise results regarding the distribution of
T / - T, which is the number of requests remaining
in the highest memory module queue at time t = T,

involve not only the excess numbers of arrivals to
the various modules during the t periods, but also
the precise times of arrival. Since such results
appear to be difficult to obtain, we will content
ourselves with considering the maximum value that
<1 - T could possibly attain for any given value of

* * * so+ Sc+ + 5 (t-l)c

We will, in effect, assume arrival times and
identities of "most heavily hit" memory modules
which, given any particular value for

S~ + S~ + ... + S~t-l)C will leave the greatest
possible number of unserviced requests in the
highest memory module queue at time t = T.

To wit, we will assume the following:

1. There is a memory module which is a (the)
most heavily hit module for all !l periods of input,
and this module receives a nonzero excess of re
quests during each period.

2. However many access requests arrive at
the most heavily hit memory module during each
period, they all arrive at the very end of the
period - i.e., too late for any of them to be
serviced during that period.

It should be clear that however many access re
quests arrive at the various memory modules over
the !l periods of interest, T 1 - T is maximum under
assumptions 1 and 2 above.

But under these assumptions we have that

* * *
T' -T =am+ s 0 +Sc+ .•• + s(Jl-·l)C

i.e., no requests are serviced during the first
period, the first am requests arriving during the
first period are all serviced during the second
period, and during each subsequent period exactly
am requests are serviced. The number of requests
which then remain in the queue in front of the most
heavily hit memory module is the sum of all the
excesses for the !l periods plus the first am re
quests which arrived during the first period, but
were not serviced then.

Thus we have

P(8,S,!l) .s_probJ *ct!lm* * > e) l am+a!lm+s 0 +Sc+ ... +s(!l-l)C

=prob f * ct!lm < e) (3)
l a(Hl)m+s0+s~+ ... +s(i-l)C

= probfs*+s*+ ... +s* . > ct!lm-a(!l+l)me}
L o c (i-nc e

(Note that from the second line of (3) we can see
that, according to our pessimistic approximation
we cannot hope to achieve an effective service
rate of s' es until Jl/(Jl+l) ..'.:. 6 - that is even

* * * if So+ Sc+ ... + s(Jl-l)C = O.)

Now, for any k > 0 (see [SJ, p. 242).

{ * * * } prob s 0 +Sc+ ... + s(.Q.-l)C > k

* * * E(So +Sc+ ... + s(Jl-l)C
<

rncsj)
k (4)

=--k-

< (!:.J ~ e(a-1-alna)m .e[n[m-~) +~)
kj /2TTct

Finally, from (3) and (4) we have

288

P(e,s,!l) <

Table 1 gives values of ct-1-ctlnct for some
possible values of a.

ct (ct-1-alnct)
1.1 -.0048412
1.2 -.01878587
1.3 -.04107354
1.4 -.07106113
1.5 -.10819766
1.6 -.15200581
1.7 -.20206803
1.8 -.2580160
1.9 -.31952238
2.0 -.38629436

Table 1

(5)

The values in the right-hand column of Table 1
indicate that for ct in the range under considera-

tion the factor e<a-l-alna)m in our very pessi
tic overapproximation of P(e,S,Jl) decreases ex
ponentially as m is increased. (Note that for

0 = e, e(a-l-ctlna)m = e-m, and for ct= ae, a> 1,

e(ct-1-alnct)m = e-bm where b > 1.)

8. A Numerical Example

Consider the design of a fairly large system,
i.e., one which we wish to drive at a peak rate of
1000 requests per unit time. Suppose that we de
sire an effective service rate of .99 or more of
the constant (peak) input rate after 100 request
cycles, and that we are willing to sustain the
cost of 1500 modules of memory to accomplish this.
(In an actual design study of course, ct need not
be chosen in advance; rather ct and m can be traded
of f against one another on the basis of the incre
mental cost of memory modules and the incremental
cost of RFM capacity.)

In the present example we have M = 1500,
ct = 1.5, e = .99, and !l = 100. A few quick compu
tations using (5) reveal that the following failure
probabilities can be achieved with the indicated
amounts, m, of RFM capacity per module of primary
memory:

m P(e S !l)

1000 2.8694 x 10-42

300 7.6093 x 10-19

250 4.6847 x 10-7

References

[l] Sullivan, H., Bashkow, T. R., Klappholz, D.,
and Cohn, L., CHOPP: Interim Status Report
1977, submitted for publication.

[2] Benes, v. E., Mathematical Theory of Connect
ing Networks and Telephone Traffic, Academic
Press, N.Y. 1965.

[3] Baskett, F. and Smith A. J., "Interference in
Multiprocessor Computer Systems with Inter
leaved Memory," Commun. Ass. Comput. Mach. ,
Vol. 19, No. 6 pp. 327-334, June, 1976.

[4] Upsensky, J. V., Introduction to Mathematical
Probability, McGraw-Hill, New York, 1937.

[5] Feller, W., An Introduction to Probability
Theory and its Applications, John Wiley and
Sons, Inc., New York, 1968.

MEMORY
MODULE

N PORTS

INTERCONNECTION
NETWORK

M MODULES

MEMORY
MODULE

MULTIPLE MODULE MEMORY SYSTEM
Figure 1

289

N PORTS

_j REPETITIONL __ 1
FILTER MEMORY I

MEMORY
MODULE

M MODULES

MEMORY
MODULE

SYSTEM WITH A SINGLE-MODULE REPETITION FILTER
Figure 2

INPUT

.. , "
INPUT

, , .
a(i-1)c+1·····aic

INPUT

i PERIODS OF C REQUESTS EACH
Figure 3

PANEL DISCUSSION:

DESIGNING HIGH PERFORMANCE COMPUTER SYSTEMS

291

A MANUFACTURER'S VIEWPOINT

Robert J. Malnati
Advanced Systems, Programs

Product Development, Major Systems Division
Sperry Univac

Roseville, Minnesota 55113

You might not be surprised to hear that s~ientif
ic processors will be successful products, but
the question is will they be successful enough?
Development money is costly, engineers are in
short supply and general commercial products are
selling well •

As manufacturers we capitalize on experience,
technology, manufacturability, human resources,
service operations, investment in software and
the general company processes that we know and
understand. This assures a smooth running oper
ation, a reasonable return on investment and
continued growth for our users. But, what about
attempting to develop an entirely new business
area where it may require deviation from the
norm? Many decisions concerning new business
ventures are made by relatively uninformed prod
uct planners and their technical staffs. These
decisions affect marketability, the market as a
whole, thousands of people (users and vendors
alike), and the expenditure of millions of dol
lars.

Now let's explore the character of this problem
and attempt to answer some questions: What does
"relatively uninformed" mean? What can we do to
improve this process? What can researchers do
to help?

Guiding forces of scientific data processing in
the past were Federal Government agencies, such
as NASA in orbit and reentry dynamics aud struc
tural analysis, the Air Forces in wind tunnel
simulation, and the Atomic Energy Commission in
nuclear modelling. The demand for better model
ling in energy conservation, the demand for bet
ter weather prediction, and the demand for ad
vances in technology assure "super computers" of
a continuously growing market. Today, a new
swell of attached scientific processor hardware
design activity is emerging out of the need for
high performance scientific processing at an ex
tremely low cost. Some single product vendors
are reaping the benefits from this economical
hardware. Even so, some of this market is not
fully satisfied by these vendor products due to
lack of software, support and capabilities for a
total systems approach.

Sperry Univac has been known for years as an in
dustry leader in scientific computing, and as
with any aggressive company, will continue to ex
ploit .this market. The logical question is, just
what is necessary to satisfy industry's appetite
in this fast growing and changing market? Great
er performance, to be sure; lower cost per compu
tation ••• yes, definitely; but industry users are
changing in other dimensions as well. Among

CH1569-3/80/0000-0293$00. 75 <&) 1980 IEEE

293

traditional high performance scientific demands,
users expect three primary things:

ease of use, the ability of a non-computer
scientist to use the system;

program compatibility, the ability to capit
alize on millions of dollars invested
through program development;

and high total system availability to pre
vent the loss of a half finished job.

Yes, the climate has changed, entry into this
market today does not have to be a head-on colli
sion with the "super computer" manufacturers. It
could fill an un-filled market requirement with a
more traditional entry for the well established
vendors.

The question remains, what other critical ingre
dients are necessary to lessen risks for large
computer manufacturers and provide motivation to
launch into new market areas such as scientific
vector processing? There are no simple or pat
answers, but careful and cautious strategic and
technical planning can minimize the investment
risk, establish the proper place in the market,
and prevent false starts in implementation. Even
with a carefully planned strategy, most new ven
tures are doomed to disaster. Is it any wonder
management is hesitant to enter into speculative
markets?

We as product planners search for better mechan
isms to provide a broader spectrum of feasibility
assurance. What we worry about is the lack of
knowledge and experience that could lead to mar
ginal gut-level trade-off decisions in design
that might cause the demise of the product.

In-house technical and feasibility studies, re
search and academic papers, and consultants are,
to be sure, heavy contributors to support this
critical decision-making process. Even with all
this design resource applied at the definition
point in the product development process, they
cannot provide all the facts necessary for a
proper trade-off decision. By default then, many
decisions that should be made on a clearly .tech
nical basis get supplemented by special consider
ations of strategy or policy. To illustrate
this, if we use CRAY-1 as an experience base,
this would imply that a free-standing executive
system (memory manager at least) should be used
in new or competitive designs. The question is
then, was this successful product a result of a
strategic decision by CRAY, or did it come from a
good solid technical base? Another alternative
is, if a vendor has general purpose host

capabilities, strategically it would be wise from
a development, support, and system configurabili
ty point-of-view to assign system management
functions or executive functions to the host. To
illustrate this, if we use 1100 Systems as an ex
perience base, the technical rationale for a sep
arate or free-standing executive gives way to the
strategic one that says: Sperry Univac is in the
business and has experience and know-how for
multiprocessor systems. This, therefore, means
one executive (one master) in the host that man
ages and schedules all resources, host processors,
all peripherals, real memory and I/O traffic.
Studies and experience thus far indicate this is
viable, but without peripherals (disks) directly
on the compute engine, how much peripheral and
input/output traffic can the system stand without
being brought to its knees?

There are still other ways to view these system
design decisions. User connnunities, it seems,
are beginning to demand an integrated system or
multiprocessor approach. Even those that once
demanded the specialized compute engine now are
demanding this compute power together with all
features and functionality afforded the general
purpose commercial user. They want the benefits
offered by a system with a full-blown operating
system, tried and proven (stable} executive,
FORTRAN/COBOL compilers, data management facili
ties, interactive capabilities, etc. With this
they get 10-20 years of system experience that
translate to availability. Conclusion? The
tightly coupled (multiprocessor) approach is a
good decision in terms of marketability. But
what about performance penalties in living with
constraints of coexisting with other processors
in a multiprocessor system? The question of het
erogeneous processor accesses to multiple memory
modules contains many unknowns and demands much
study. This challenge is typical of the trade
off facing the product developer.

Again, reflecting on some architectural basics
brings.to mind another critical area of getting
data to and from processors. The question is,
which is the most. optimal approach register-to
register or memory-to-memory, or some other?
Burroughs and CRAY differ in architectural con
cept; it would be beneficial to have some dia
logue on those differences. Where are the re
search studies to support that decision process?
It may even be interesting to perform them after
the fact. This is another example of a situation
where scientists and implementers could maintain
a close correspondence.

By necessity, detailed studies on a particular
idea, design approach or concept, result in anal
yses that show performance in a narrow spectrum.
For example: a certain method of combining 1024
processors will neatly handle partial differen
tial equations for a wind tunnel problem. Indus
try then attempts to interpret, extrapolate, and
guess how this problem would map on an architec
ture that covers a wider spectrum of applications.
By necessity, industry must cover a wide spectrum
of applications to increase quantities, amortize

cost, and in short, make a profit. Vendors do
not have time, money and resources to verify in
detail those guesses made in an attempt to make
the product more palatable to a general market.
True, industry has millions to invest in new
products, but budgets are always strained ••• there
is no luxury here, either.

The bottom line is that normal processes between
researchers and industry vendors do work well
much of the time. Researchers concentrate in
their specialty areas, while product designers
are responsible to evaluate, interpret, and sel
ect results that apply best to them. What is
needed is to improve upon this process? Gaps
between research and industry are too wide. Are
there other steps that may be taken? Is another
level of iteration possible wherein a decision
regarding product posture can be fed back to
research in order to further check validity? It
seems that if one facet of a major venture could
be better focused and coordinated, the energy
expended in developing better communication be
tween implementers and scientists would be well
worth the labor and trouble.

294

GENERAL PURPOSE SUPERCOMPUTERS

Burton J. Smith

Dene I cor, Inc.

Denver, Colorado 80205

Summary

There are two properties that are shared by
all supercomputers, namely, they are parallel and
fast. Unfortunately, these may be the only two
properties that supercomputers have in common.
There are three additional properties that are
necessary (although perhaps not sufficient) for a
supercomputer to be "general purpose". These
properties will be desirable for some super
computer users and irre:lievant for others, just as
the general purpose attriibutes of a more
classical computer system are.

First, a general purpose supercomputer should
be reasonably fast in its execution of any
algorithm that performs well on another machine.
The intent of this requirement is that any kind
of parallelism should be exploitable. Second,
a general purpose supercomputer should provide
a machine-independent programming environment;
that is, software should be no harder to transport
from a given computer system to a general purpose
supercomputer than to an ordinary general purpose
computer. Third, a general purpose supercomputer
should have storage heirarchy performance
consistent with its computational capabilities.
Such a computer should not be 1/0 bound to any
greater extent than an ordinary general purpose
computer is for a given class of problem.

These three requirements are more than just
a short list implying what is wrong with today's
supercomputers. They are the principal reasons
for the schism between the parallel processing
business and the mainstream of computing practice.
A supercomputer that satisfies these three
requirements could enjoy a market several orders
of magnitude larger than the current models do.
While there will always be a need for special
purpose parallel processors of all sizes and
capabilities, it will be the general purpose
super or not-so-super computers that dominate
the marketplace.

If general purpose supercomputers are to
become a reality, substantial progress is re
quired in three areas. First, MIMD and data
driven architectures offer the best hope for
exploiting many kinds of parallel ism, but these
architectures have few proponents outside the
academic community. In fact, no MIMD or data
driven supercomputer has ever been delivered
to a customer for trial. This situation will
improve in the next few years, but until it does
the design of these kinds of computers will not
be able to benefit from experience with practi
cal applications.

CH1569-3/80/0000-0295$00.75 ~ 1980 IEEE
295

The second area in which progress is re
quired is that of machine-independent program
ming. Two approaches are needed here:
parallelizing compilers for existing languages,
and new languages in which parallelism is more
easily detectable. Although there is some
experience in automatic vectorization of
FORTRAN, for example, it is only recently that
attempts have been made to find and exploit
other kinds of parallelism in existing languages.
It also seems clear that languages like FORTRAN
and COBOL will be in use for a long time to
come and will therefore need to perform well on
general purpose supercomputers. On the other
hand, the advantages to be gained in parallelism
by being able to express algorithms in functional
programming languages must not be discounted;
it is with these languages that the future of
very high speed general purpose computing lies.

Finally, the single most important techno
logical factor in general purpose supercomputer
development is mass storage bandwidth. The
failure of mass storage access times and data
rates to keep pace with the speed increases
realized by solid state technology are well
known. The effect of this deficiency has been
to severly constrain the range of application
of very high speed computers. A modest in
crease in mass storage bandwidth would have
far more impact than more substantial advances
in device speed or packaging density. In fact,
only an improvement in interconnection
technology would have as much impact on
computation in general.

SESSION 11: DISTRIBUTED PROCESSING II

297

HIERARCHICAL ANALYSIS OF A DISTRIBUTED EVALUATOR

Robert M. Keller

Gary Lindstrom

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

ABSTRACT

We outline the analysis of a distributed
evaluator for dll applicative language FGL
(Function Graph Language). Our goal is to show
that the least fixed point semantics of FGL are
fdtthfuily implemented by the hardware evaluator
envisioned in the Applicative Multi-Processor
System AHPS. Included in the analysis are a
formalization of demand-driven computation, th;-
1ntroduc tion of an intermediate graphic language
IGL to aid tn our proofs, and discussion of
pragmatic issues involved in the AMPS machine
language design.

INTRODUCTION

Programming languages for distributed computing
systems are receiving increased attention
currently, as are languages based on function
applicat1on. Distributed systems are of interest
because of a desire to exploit potential
concurrency in programs. Applicative languages
tend to reveal potential concurrency by
eliminating arbitrary sequencing within program
representations, and by circumscribing
side-effects. In addition, applicative languages
often allow programs to be written so that their
text closely resembles that of a correctness
specification, thereby easing verification.

Although the idea of using applicative languages
as a basis for concurrent programming has come
into vogue only recently, the reader should refer
to the prophetic paper [1] for an anticipation of
many of the relevant ideas currently being put
for tl1. Subsequent proposals, which share some
aspects of our own, include [2] through [7].

Sketched herein is an analysis (i.e. an informal
correctness proof) of an evaluator for an
applicat1ve language suitable for exploiting the
foar:ures of a d1stributed computing system. This
evaluator nas been proposed for use in the
Applicative Hulti-Processing System AMPS [8].
Such a proof would be of interest for several
reasons:

1. Tne evaluator has been implemented ([9]), so
tt .is desirable to certify its correctness.

'2. Although parts of s1milar proofs have been
sketcned, notably in [10] and [ll], tnese
proofs l1ave been for serial evaluators, and
are for models having fewer machine-level
details than the one presented here.

CH1569-3/80/0000-0299$00. 75 @ 1980 IEEE

299

3. A graphical approach to semantics seems to
us to be quite enlightening in comparison to
the one-dimensional representations largely
used here to fore.

4. We intend the present exposition as the
first step toward a more comprehensive proof
which also involves a storage manager.

The extrinsic language, called FGL (for Function
Graph Language), includes features deemed
relevant to highly concurrent distributed
evaluation. The hardware implementation we
consider includes a demand-driven data-flow
evaluator for effective support""C>f the data
structuring primitives of our language. The
implementation naturally provides for single
evaluation of common subexpressions and
parameters.

Locality considerations give rise to a two-level
evaluation strategy for the machine language
(ML): at the intra-processor level, a rather
rigid structure is imposed, in which each atomic
function is executed with bounded value fan-out
and communication delay for greatest efficiency.
At the inter-processor level it is infeasible to
place such a bound, as one function may well have
to send its result to others, the number and
locations of which are not determinable a priori.

Block storage allocation is used in ML for the
following reasons:

1. It enforces local icy of communication among
nodes wh1ch are logically closely related.

2. It permits economical use of address bits by
requiring only relative addresses within a
block.

3. It avoids the need for code relocation and
extensive dynamic binding.

4. Tuples of data values are stored as blocks,
or pieces of blocks, permitting fast
indexing.

5. Fewer interactions with the storage
allocator are required.

6. Blocks may be transmitted and initialized in
a "burst mode" of communication, rather than
·in a word-by-wor.d mode.

The proof that the distributed evaluator is
correct with respect to FGL's fixed-point
semantics is complicated by the two-level

block-oriented strategy. For this reason, we
have found it convenient to introduce a language
IGL intermediate between the extrinsic language
and that of the target machine. This language
allows the analysis to be naturally decomposed
into two levels (not corresponding to the levels
of evaluation), but does not appear explicitly in
the implementation.

We express the notion of demand and value flow in
IGL programs as a state-transition system (cf.
[12]), The states are marked IGL graphs, with
transitions expressed by a set of formal rules.
This system is the basis for the FGL evaluator.
The notion of the correctness of such an
evaluator with respect to FGL semantics is
presented. We then discuss the proof of
correctness of the IGL evaluator with respect to
ML.

The following diagram summarizes the levels of
the hierarchy and their functions.

Acronym Name Purpose

Programming FGL

IGL

ML

The
1.

Fune tion Graph
Language

Intermediate
Grapn Language

Machine
Language

Internal program
representation
for FGL

Physical program
execution

analysis may be outlined as follows:
IGL-->FGL mapping theorem: IGL defines the
correct result for FGL.

2. IGL partial correctness theorem: IGL can
produce the correct result.

3. ML-->IGL mapping theorem:
correct result for IGL.

ML defines the

4. IGL finite delay: ML provides a finite
delay property for IGL, so that "can" above
becomes "will".

5. Pragmatic aspects: Certain invariants
desired for implementation reasons hold for
ML executions.

FUNCTION GRAPH LANGUAGE

Our extrinsic language, FGL (Function Graph
Language) is Lisp-based [13], extended to include
non-strict atomic and programmer-defined
functions. This permits ease in dealing
semantically and pragmatically with unbounded
data structures, as discussed in [6] and
elsewhere. The components of such structures may
be distributed among physical processing elements
and concurrently constructed and transmuted,
using stream-like communication between computing
modules wnich are both physically and logically
distributed, Because of the functional nature of
FGL, logical aspects of the computation are

insensitive to delay in and among physical
elements.

The objects supported are not restricted to
streams of simp.le components, such as characters
or records, but also permit components which are
functions, other streams, and generally arbitrary
data objects. FGL allows treatment of functional
objects with full lambda-calculus generality
(14].

300

The cons operator of FGL permits an arbitrary
number of arguments, thus providing an efficient
and natural array capability. The usual car, cdr
selectors are generalized to an indexing selector
select. For simplicity, however, we will
primarily use car and cdr here; car selects the
first component of a tuple and cdr selects the
last, Other aspects of our generalization are
discussed in [15].

In this presentation, the set of data objects of
FGL will be

Objects Atoms U Tuples U Graphs U {error} U {? }

where
1. Atoms = Integers U Characters U {NIL}, where

Integers is the set of integers and
Characters is the set of characters of some
alphabet. We assume that NIL plays the role
of tne Boolean value false. Any atom other
tnan NIL and error may play the role of the
Boolean value true.

2. Tuples: A tuple is a sequence of N Objects,
for N an arbitrary natural number.

The limit of a sequenc.e (i.e. "tree") of
nested tup1es of objects, as nesting occurs
ad infinitum, is an object. For example,
the stream of odd prime numbers could be
represented as

(3, (5, (7, (11, (13, •••)))))

3. Graphs: We allow the enveloping of a graph,
as described in [16], and its use as a
function data object (i.e. as a "closure").

4. error: an error value which propagates
itself through each function which demands
it as an argument.

5. ?: the undefined object, i.e. the result of
a computation which has not yet (and might
never) produce any value.

A fully operational system might include
side-effect operators, but we prefer introducing
tnem within tne context of an applicative style,
in wnich the programmer is highly aware of their
use (i.e. their use wil 1 be permitted oni y on
tuples which are created as ex pl ic it ly
modihabl.i). Side-effect operators are not
included in tne model presented here, with the
exception of read and print, which are described
subsequently.

For the purposes of this exposition, a program in
FGL appears as either a "function graph" or as a
"set of equations" (22]. Each equation is
determrned by naming a FUNCTION being defined,
wnicn has zero or more formal parameters. The
function name is equated to the RESULT
expression, which involves names of defined
functions, names of atomic operators, formal
parameters, and imported values. Abbreviations
of multipiy-used values are provided by LET
expressions, which are also equations equating
the left-hand side identifier of a BE to the
rignt-hand side expression. The latter
expression may involve tne identifier on its own
left-hand side, as can the function being defined
involve itself. Finally, an IMPORTS declaration
allows values defined externally to a function
definit1on to be used inside the definition.
Algol-like lexical scoping is used, except that
imported values are declared implicitly.

When a value defined in a LET •••• BE •••• involves
itself, or wt1en a function f defined in terms of
a formal variable x involves the expression f(x),
or when a value is defined in terms of an
expression which involves the importation of the

value itself, we say that there is an
"applicative loop". Such lo<;>ps permit
implementation of data structures in terms of
themselves, thereby providing "for the generation
of infinite data structures without either the
obvious infinite recursion or use of side-effect
operators sucn as Lisp's rplaca. The latter
often nave the effect of destroying local
determinacy, a property useful in verifying
concurrent programs.
As an example of a textual representation of an
FGL program, consider the following:
FUNCTION oddprimes(limit)
LET primes be

cons(3, primesfrom(S))
RESULT primes
WHERE

FUNCTION primesfrom(n)
IMPORTS (primes, limit)
LET rest BE primesfrom(n+2)
RESULT if n > limit

WHERE

then nil()
else if relprime(primes)

then cons(n, rest)
else rest

FUNCTION relprime(stream)
IMPORTS n
LET first BE car(stream)
RESULT (square(first) > n

or ((not divides(first, n)
and relprime(cdr(stream)))

The program above generates the list of prime
numbers beginning with 3 and not exceeding the
value of the argument limit. It does so by
forming a sequence of numbers, a number being
included in the sequence only if it is prime.
The primality of the number is tested by using
lesser members in the sequence as trial divisors.

301

imported
values

imported.
value

(n)

Figure 1: FGL graph of the Odd-Primes Exa~ple.

An appiicative loop exists, in that primesfrom is
used to define the sequence primes, but also uses
that sequence as an imported value in its
definition. The or above is a sequential
function, in that it only demands arguments in
sequence as they are needed to determine the
value.
An expression in FGL is formally represented as a
directed graph, with the nodes being identified
with the operators in the expression. We think
of each arc in the graph as being a carrier .for
an FGL data object. A node defines an
input/output functional relationship between the
ultimate values on the arcs directed into the
node and the ultimate value on the arc directed
out. (We assume that each node has a single
outgoing arc for simplicity.) In the graphical
form of FGL, each functional equation may be
represented by a graph grammar production in
which the antecedent names the function being
defined, and the consequent presents the graph of
the defining expression.

The graphical form of the preceding program is
shown in Figure 1. The applicative loop which
results from the compilation of the textual FGL
program is evident there. Although in this

figure we represent imported values by direct
connections into the consequents of productions,
accurate treatment of scoping rules demands that
productions involving imports be replaced with
the concept of an enveloped graph, which may
eventually be presented as an argument to the
apply function [16]. To simplify the discussion,
we shall not consider this treatment here.

Certain atomic functions are provided, such as
the following:

add, and, divides, mult, etc. which have the
obvious interpretation,

cons groups its arguments into a tuple, even if
the arguments are not completely known at time of
application. That is,

cons(x1 , x 2 , •••• , xn) = (x1 , x 2 , •••• , xn)

where the right hand tuple exists independent of
what the x's might be.

select is defined by

select(i, (x1 , x2 , •••• , xn)) =xi

provided i #- ? • It is undefined if i = ? , but
when i #- ?, there is no requirement that xj #- ?,
for any j.

car and cdr are defined by

car (x1 , x2 , •••• , xn) x 1

cdr (x1 , x2 , •••• , xn) xn

which is consistent with the Lisp definition when
n = 2.

cond is the
(i.e. "if ••••

name of the conditional
then •••• else •••• ").

function

302

nil, returns the value NIL.

null, tests for the atom NIL.

Additionally, there are "pseudo-functions", such
as print, which has the side-effect of printing
its argument on some external device, and read
which has the side-effect of reading an external
device to determine its result. The use of such
functions can be completely avoided outside of
utility routines provided for input and output.

Additional auxiliary functions are provided for
extra evaluation control. Examples are seq,
which causes its arguments to be evaluated in
sequence, and par which causes its arguments to
be evaluated concurrently. (Strict functions
such as add, mult, etc. also have the latter
effect.)

Through the use of pre-compilation and removal of
certain recursions and common subexpressions, our
evaluator incurs no combinatorial explosion of
the type which would normally occur in circular
recursive evaluation of applicative loops. All
theorems proved rn [10] also hold for the FGL
evaluator. However, the fact that we compile

applicative loops without additional
provides a feature for yielding
executions for evaluations which

recurs ions
terminating

would be
non-terminating in other sys terns. For example,
we can state

Theorem: The FGL evaluator terminates on some
programs for which the evaluator of [l 0] fails
to terminate.

ro prove this, consider the program (which would
differ syntactically when presented to the
Friedman and Wise evaluator):
FUNCTION main
RESULT print f(O)
WHERE

FUNCTION f(x)
RESULT car f(x)

Tne Friedman and Wise ~valuator would recurse
infinitely, generating

print(car(car(car(car(•••)))))

The FGL evaluator stops (without
anything) when it dynamically and
"discovers" that f(x) is trying to
strict function of itself.

printing
implicitly
compute a

We do not present the fixed point semantics of
FGL here, instead referring the reader to [16].
However, we give a brief intuitive description of
these semantics. For a directed acyclic function
graph, the meaning can be understood simply from
the definitions of the functions assigned to each
node. That is, the output of each node is the
function prescribed for the node applied to the
input values of that node. Note that this makes
sense even if the graph is infinite, so long as
each path from each of the graph's inputs to its
output is finite.

In FGL, the program representations are always
finite, but these representations can be

understood by (but are not implemented by)
expanding the representations into acyclic graphs
which are sometimes infinite. Namely,

1. Each node having a function prescribed by a
production is effectively the same as
replacing that node with the consequent of
the product ion.

2. Each cycle in the graph can be "unwound" by
repeated "node-splitting" to obtain an
equivalent infinite acyclic graph.

The validity of this means of understanding
de pends on the fact that all FGL functions are
"continuous" over au appropriate Scott data-type
ordering. Although this fact is used later,
space does not permit further elaboration of its
meaning, and the essential ideas may be
understood wLthout it. The reader may refer to
[16] for further explanation.

Space limitations also preclude further
definition of "node-split1ng", but the idea ·is
reasonably intuitive. Further discussion may be
found in [16]. We henceforth understand by the
pnrase dag form of an FGL program the acyclic
graph aSdetermined above-.-The above description
is equivalent to the "least fixed point"

semantics of FGL programs, which is also
equivalent to the viewpoint of the program as a
system of equations. It also points out the
determinacy of FGL programs, i.e. that each
program represents a unique function.

The diagram of Figure 2 illustrates the scheme of
evaluation in the odd primes example of Figure I.
It snows the loop formed by using the sequence of
prLmes being generated to assist in their own
further generation, as well as concurrent
evaluation of primesfrom for different arguments.
The dag form r8sulting from unwinding tt1e cycle
is snown in Figure J.

Implicitly included in an evaluation such as the
on8 above is an arbitrary number of
"produc8r-consumer" relationships which the
evaluator must implement so that needed values
are produced and used consistently, independent
of system-wid8 interleaving. These evaluations
could be distributed among processing elements to
heighten concurrency and thereby reduce computing
time. The arbitrary fan-out of values, alluded
to earlier, is quite apparent in the diagram.

It should be noted that the definition of FGL
semantics is embodied lll the language, not the
evaluator. That is, its semantics are given
denotationally, by specifying the semantics of
each of the atomic functions. This is why we
prefer to use the term "lenient cons" instead of
saying that we have a "lazy evaluator" [11]. For
a denotationally-defined language, an evaluator
is either correct or is noc. Similarly, if one
wisnes a cons to have a different effect, this
amounts co a redefin.i.tion of cons, not a change
in the evaluator. We happen to prefer the
lenient version of cons as a standard, but our
results in no way rely on the presence of this
operator. We can also include other forms of
cons (with dJ.fferent names, of course). The main

303

consequents
of primesfrom

r- ------- -- - - - - -,

r-------l_------,
r ___ J ____ -,

I
I

I I L-----0------J
~-----0-----__ ,

Figure 2: Expansion of the Odd-Primes Example.

reason lenient cons is of interest here is
because it is the source of a need for "forward
chaining", to be discussed later.

A single equation, which defines the "top level"
function main, acts to drive the others, its
value being demanded externally by the system.
In a sense, it is the goal of the evaluator to
produce the "value" of main. For example, we
might .include the definition of oddprimes above
in tl1e following program, which reads a number,
then prints all odd primes not greater than that
number.

FUNCION main
RESULT printall(oddprimes(read()))
WHERE

FUNCTION printall(x)
RESULT if null x

then nil()
else seq(print car x,

printall cdr x)

The program above, when run on our evaluator,
will not produce a particularly high degree of
concurrency. However, it is a simple matter to
enhance its concurrency with the special
operator, par, which is functionally transparent

(it is the identity function on its first
argument), but which has the effect of
introducing additional demands for values.
the present example, we need only modify
definition of primes from, obtaining
following:
FUNCTION primesfrom(n)
IMPORTS (primes, limit)
LET rest BE primesfrom(n+2)
RESULT if n > limit

then nil()
else par(

if relprime(primes)
then cons(n, rest)
else rest,

rest
)

In
the
the

In this example, the sub-expression
primesfrom(n+2) is demanded concurrently with the
testing of relprime(n, primes), so that the
latter does not cause the generation of the
sequence of primes to be sequentialized. Since
common sub-expressions are identified as the same
value, the same value of primesfrom(n+2) will be
used in evaluating the if •••• then •••• else ••••
No recomputation will take place.

TARGET MACHINE LANGUAGE

As mentioned previously, our ultimate motivation
for the FGL evaluator is its realization on the
highly parallel machine architecture AMPS. While
the physical details of such a machine are not
relevant here, its language ML and execution
semantics are. Hence we include here a brief
sketch of these aspects.

The machine consists of a large number of
identi'Cal processing elements (PEs), each
possessing a p,ortion of a uniformly-addressed,
but physically, distributed, memory. The
fundamental observable action in a PE is a task,
involving bounded space and time behavior, such
,as the execution of an atomic function or the
propagation of a value instance or a demand.
Parallelism is achieved by exporting, to
neighboring processors, function application
tasks which have been spawned by strict
operators. Unlike the proposal of [7], no
"sergeant" tasks are generated for computations
which might not be required. However, the
programmer may include functions, such as par in
the preceding example, which cause such tasks to
be generated. Further , aspects of resource
control in FGL are discussed in [17].

Unlike FGL, not every interconnection of ML
operators is a valid program. For example, it is
possible to construct incorrect linkages.
However, the compiler insures that only val id ML
programs are generated from their FGL inputs. We
have insufficient space to include a presentation
of what is or is not valid in ML.

304

consequents
of pr1mesfrom ·-------- --- ----,

r-------l------,
T ____ j _____ I

·-------- -------,
r-------l------, I

T ___ J _____ I
I
I
I

I

I-

I I 1---0----I
I 1
I I ;-r--

:--

Figure 3: Dag form of the example in Figure 2.

Eacn programmer-defined function is represented
(in pure code) as a block encoding of its graph.
'foe code inside a block has roughly one word
corresponding to each node. A typical code word

contains tne name of the node's operator, local
(relative) addresses representing the node's
arguments, and space for local notifiers
(addresses used to tell which other nodes are to
be informed when the node's value is ready),

The action corresponding to application of an FGL
production is triggered as each instance of the
antecedent is demanded. This action entails the
allocation of a block into which the encoded
graph is copied, and the linking the arguments
and imports of that block with the block
containing the antecedent, in effect splicing the
graph represented by the code in place OT the
antecedent itself,

Eva1uation of a node entails overlaying the node
with its result, Of course, its notifiers are
first temporarily saved by the processor, as they
occupy some of tne space required by the result
itself. Here we see a contrast in that FGL
values are viewed as appearing on the arcs,
whereas ML values appear as transformed nodes. A
more important contrast is that FGL objects can
be infinite, whereas ML objects must each fit
into boundea space.

With these considerations in mind, the FGL model
must be refined toward the target machine
representation so that fixed word and block sizes
are possible. In particular:

1. Because of their disparity in size and
meaning, local addresses cannot be freely
c·onverted to glob al addresses and
vice-vi\!rsa. Instead, special operators are
provided at compile time to interface from
one block to another.

2. while arcs within a block have statically
bounded fan-out, global arcs can experience
unbounded fan-out (e.g. due to multiple
remote demands on a given tuple component's
vaiue).

3. In distributing values according to (2), the
ML evaluator snould not create new nodes
(words) to mediate dynamic fan-out, lest
storage management become more complicated.

4. The ML evaluator evaluates tasks using a
task list which is generally distributed
over the available processing elements.
This list is used to determine an ordering
of the application of transitions. Not all
properties of the ordering are important.
It only matters that once a transition rule
is eligible for application, it does
eventually get applied, This effect is
achieved by FIFO queuing in ML, and
finite-delay is the corresponding property
in IGL.

As remarked above,
relative addresses

ML code blocks use
to express the

small
local

305

connectivity within a function graph. Global
addresses are used to represent objects
referenceable across code block boundaries.
Tnese include references to function definitions
(pure code), function closures, function

applications (for passage of parameters, globals,
and result), and tuple values, In ML execution
diagrams, e.g. Figure 7 global addresses will be
represented by arcs with hyphenated lines.

The principal operators involving global
addresses are forward and fetch·. The operator
forward connects a local argument (e.g. a
function result value) to a global demander (e.g.
its place of application). The operator fetch
does the complementary action. It may be noted
in each step that global address arcs only
emanate from forward nodes, and that no new nodes
are created in any step. Thus the creation of
global pointers and the use of existing code
space is well-disciplined.

Task list: a

Block contents:

Task list: b, c

Block contents:

address operator "!'•rands notifiers
1 2 3

4
3

4

Figure 4: Example of execution in ML and the
corresponding IGL transition.

INTERMEDIATE GRAPHICAL LANGUAGE

In attempting to prove that ML is a valid
implementation of FGL, the 'disparity between the
two languages seems best approached by the
introduction of a third graphical language, IGL.
The data objects of lGL are close to those of
FGL, except that they use references, whereas FGL
avoids references in favor of objects with more
mathematical elegance.

The IGL objects are:
1. atoms, as in FGL

2. ? the undefined value . '
3. error, the error value

4. references, of one of two kinds:
a. tuprefs, references to tuples

b. coderefs, references to master copies of
code blocks

c. funrefs, references to function closures
(i.e. pairs consisting of a coderef and
a tuple of imported values)

S. tuples of IGL
only. (Tuples
not allowed.
references.)

objects of the above types
with tuples as components are

These must be provided by

Unlike FGL, IGL objects must be finite. There
are no limit objects. Instead, limit objects are
implicitly represented by fixed points of
equations, as will be described presently.

ML and IGL have the same data objects in common,
but ML is more restricted in the way it can
handle those objects, and includes the special
linkage operators mentioned in the previous
section. Another common characteristic between
ML and IGL is that both are viewed as replacing
the operator nodes with a value, whereas FGL is
viewed as producing a value on an arc. Hence, we
introduce the intermediate language to provide a
convenient link between a very mathematical
language on the one hand and a very pragmatic
language on the other. Table I summarizes the
differences between FGL, IGL, and ML. Like FGL,
each arc in an IGL graph determines (again, by
fixed point semantics) a data object. However,
we need to progress toward the operationally
defined ML. Hence we must at this point give an
alternate, operational, definition of IGL which
relates to its denotational definition in an
obvious way. Accordingly, we choose to think of
the nodes of an IGL graph as having values, which
are identifiable as the same values determined on
their (single) output arcs. Operationally, an
IGL node will ultimately be replaced with that
value if there is a demand for it. Another way
of viewing this replacement is that the function
in the IGL node is changed to a constant function
having that value.

FGL IGL

Tne precise operational behavior of our IGL
evaluator, as well as its correctness with
respect to the denotational semantics, will be
approached in terms of "marked IGL graphs", which
ref1ect demand and data flow in a manner similar
to ML.

A marked IGL graph is an IGL graph in which each
node is eitner marked *, for demanded or
unmarked. Marked IGL graphs are tne states of an
abstract state transition system (cf. [12]) which
models the flow of demand and values among nodes.
The transitions in this system are based on
transition rules for each of the node operators,
as determined by the type of these operators.

A d

p

0 0

0

Figure 5: Transitions between marked IGL graphs.

ML

Values manifest on arcs on arcs, or replacing nodes
replacing nodes

Infinite values allowed not allowed not allowed

Fan-out arbitrary bounded bounded

Linkages implicit in tuples and selectors tuples and selectors
productions converted to

fetches and forwards

Table I: Comparison of the three language levels

306

We list in Figure 5 some of the rules in terms of
mar1.<ings. An evaluator becomes completely
speci.hed when the transition rules are
accompanied by a specific order for their
appiication. However, in a distributed system,
this order wiil be difficult to control. Thus,
instead of giving a rigid order, we assume for
IGL only a finite-delay property: A rule cannot
remain applicable forever without being applied
by tne evaluator. This property is insured by
tl1e ML realization, as will be later sketched,

IGL TO FGL MAPPING

The use of IGL as a conceptual "implementation"
of FGL is achieved through the mathematical
devi.ce of a mapping from the data values and
operators of IGL to those of FGL. As mentioned
previously, tne main distinction to be drawn
between FGL and IGL lies in the data types.
Whereas tile FGL data types are based purely on
machematical structure, IGL introduces objects
which refer to parts of the graph to aid in the
progression toward ML.

Anocner aistinction between FGL and IGL of a more
technical nature is that the arguments and
imports to function objects in FGL are achieved
simply by splicing tne appropriate arcs together.
In IGL, this effect is created by packaging into
separate tuples tne arguments and imports, These
tuples reside in the applying block and the
environment block, respectively. Selectors are
used inside the applied block which accesses the
tuples,

We have already discussed how a unique FGL object
is determined on each arc of an FGL program,
given that each of its input arcs have been
assJ.gned values. In the context of such an input
assignment, if x is an arc, tnen we denote the
determined value by Fval(x). In a similar way, a
unique IGL object is determined on each arc of an
IGL program, and we denote this value by Ival(x).

Tne IGL program graph gives rise to a system of
FGL equations whose least fixed point defines,
for eacn IGL object x, a corresponding FGL object
n(x) as follows:

1. If xis?, error, or atom then h(x) = x.

2. If x is a tupref, referring to

(xl' x2' • • • • ' xn) '

then h(x) = cons(h(x1), h(x2), , h(xn)).

3. if x is a funref, then h(x) is tne function
grapn referenced by x, together witn bound
import arcs as determined by the tuple part
of the referenced closure.

Eacn arc of the FGL graph can be identified as a
unique arc of the IGL graph. Since IGL has
additi.onal operators for linkage, tne converse is
not true.

The link between the partial correctness of IGL
and that of FGL may now be stated in terms of an
equation involving the mapping h.

307

IGL-->FGL mapping theorem: For any arc x of an
FGL graph,

Fval(x) = h(Ival(x))

To prove this theorem, we need only obs.erve that
h is a homomorphism from the space of IGL
functions and domain to the corresponding FGL
space. Here we may rely on the dag forms of the
corresponding IGL and FGL programs. The
technique is essentially that explained by [18].
[11] presents a similar theorem, stated in terms
of a "semantic memory" instead of FGL arc values.

Since it is generally meaningless to speak of an
evaluator producing a full FGL object, we phrase
our definition of evaluator correctness in terms
of IGL objects, as follows:

IGL Partial Correctness Theorem: If q is a
state and x an arc marked demanded in q, and
Ival(x) ~ ?, then the IGL evaluator can reach a
state q' such that x is marked with its
corresponding IGL value.

To justify this theorem, we identify node x as
the node having x as its output arc, -COnsider
the corresponding dag structure of the IGL graph
with root node x, assuming now that Ival(x) ~ ? •
Then either node x is a constant function having
value Ival(x), or x produces Ival(x) based on the
values of its arguments. In the first case, one
transition rule gives us the desired result. In
the second case, the inductive assumption is that
tne arguments evaluate appropriately so that
ev al ua ting the function in node x gives the
desired result, Thus, the inductive conclusion
tells us that these arguments can be produced by
application of tne transition ~les. Therefore
application of one or more transition rules for
the root node will produce Ival(x).

Tne above use of induction is technically
justified from the continuity _of IGL operators.
Informally, this says that a finite value (e.g.
any IGL value) producible from an arbitrary
composition. of operators is also producible from
a finite truncation of that composition. For a
further discussion of such uses of continuity,
see [19], [20], or [16].

Gi~en this partial correctness, we have the
corollary that any finite piece of an IGL value
can be produced by an appropriate set of demands.
Simply affix to tne arc in question a
supplementary function graph of selectors which
evaluate to tnat piece formally, then apply the
above criterion to the output of the
supplementary graph.

By assuming that the underlying IGL evaluator has
tne finite-delay property, the "can" above
effectively becomes "will". This property is
provided in tne definition of ML. This approach
is necess~ry since there is no mechanism for
insuring the finite-delay property within IGL
ii:sel f.

In the next section, we appeal to ML to provide
the necessary infrastructure
correctness of the IGL evaluator,

for total

ML TO IGL MAPPING

As stated earlier, ML and IGL have the same data
objects, As the corresponding ML-->IGL mapping
is rather trivial, involving only replacement of
linkage operators by identities, it will not be
elaborated upon here. Furthermore, both IGL and
ML are evaluated by changing the operations of
their nodes into values. In ML however, we
pro'vide an implementation of demand/value
propagation symbolized by markings in IGL.

In IGL, the presence of a demand for a node's
value is indicated by marking the node with an
asterisk. It would be infeasible, in ML, to
search the memory for all demanded nodes each
time a new value is computed, Instead, ML
employs a task "list structure which contains
pointers to---:a11--nodes on the wavefront of
demand/value propagation (see Figure 6). The
wavefront may be thought of as initially
propagating in the direction opposite to the
argument arrows and being reflected in the
opposite direction when computed values are
encountered.

~wavefront

op * I propagating

propagating i
values

. ~

. t demand

Figure 6: Wavefront of demand/value propagation.
Nodes a and b are currently on the task list. a
will be evaluated and notify c; b will propagate
its demand to d and e.

For demanded nodes not on this wavefront, the
fact that the node has been demanded is recorded
by the presence of a notifier or a forward
pointer (see next section) in some other demanded
node. Thus, consider the following definition of
a set of nodes S:

1. Nodes on the task list which do not yet have
a value are in s,Ca)

308

2. If x is a node in $, and x contains a
notifier or forward pointer to node y, then
y is in s.

3. ~11 nodes in S are there because of one of
the above reasons.

Wavefront Leinma;
demanded nodes.

S consists of exactly the

The proof of the ·above lemma is by transi.tion
induction (cf, (12]) on the ML transition rules.
All initially demanded ML nodes are externally
placed on the task list. A case analysis of the
ML transition rules reveals that any newly
demanded node is put in S. Similarly, any node
which is replaced with its value cannot remain in
S, but nodes requiring that value are put in S.

We repeat that the finite-delay property for IGL
11\eans that every demanded node in a given sta.te,
if entitled to eventually receive a value
(because tne IGL output value of that node is not
?) , will receive a value. As is well known, FIFO
processing of nodes in a directed graph gives
rise to breadth-first visitation of the nodes,
i.e. tne wavefronteffect. By processing the
task last in FIFO order, it is clear ·that any
node in need of attention eventually receives
that attention. In particular., every node gets
attention wnen it is firs·t demanded,. and when it
is able to compute its vaiue,·

In the proposed AMPS architecture, the 'task list
is not monolitnic, but instead is distributed
among many processing elements. However, each of
the segments is processed in FIFO order, so the
same wavefront effect is obtained.

PRAGMATIC ASPECTS

Al though not requ.ired for correctness as stated,
parsimonious evaluation is also achieved. . That
is, each node is evaluated at most once, since
the. presence of a notifier inhibits potential
secondary demand propagation. This idea, applied
to tne cons operator, was called "suicidal
suspension" ill' [10]. It has also been used in
operating systems (e.g. the 'dynamic linking
mechanism of Multics) for some time. Our
evaluator· includes this technique for all
operators.

ML includes add icional operators apart from IGL,
namely the special operators used to control data
flow across block boundaries. Specifically,
whenev·er a selector in one block refers to a
tuple in anotner, tne selector is replaced with
tne special fetch operator which matches a
forward operator in the t;uple component. The
fetch operator contains the global address of the
forward. A demand of the fetch (which occurs

(a)Because of some redundancy in the evaluator,
a node could be on the task list and have a
value. For example, it could be notified by two
different nodes, and become evaluated before the
second notificai:ion "takes effect".

dutomdtlcdlly when tn2 selector is demanded) is
cnen propagated to tne forward, which propagates
cne demand to anocher operator local to its
biock. At t.1e same time, a forward pointer back
co che fetch is set co point to tne forward, so
tnac wnen tne demand is satisfied, the forward
will Know wnere to send the result. A
fetch/forward pair is also used co pass the
result of tne b1ock to its destination.

A possible alternative to forward cnaining is to
use "busy waiting". That is, the second and
subsequent fetches for the same value are simply
re-cycled back to the task list to be re-tried
again and again. This solution is viewed as
unacceptable, as tne wait can be arbitrarily
long.

As described tnus far, ttle ML fetch/ forward pairs
resemble idencii:y functions which carry out the
linkage needed to implement an arc crossing
b1ocks in IGL. However, a complication arises
wnen tnere is more than one demand on the same
component of a tuple. Tnis complication was not
mentioned in [10] wnere it does not occur because
evaluation is sequential, but neither was it
meni:ioned in [7]. The property asserted there of
tne existence of at most one reference to any
"suspension" seems infeasible for a parallel
evaluator, as we now discuss.

Since tne number of demands may, in principle, be
arbitrary, there is no fixed word size which can
accommodate sufficiently many forward pointers.
Hence a scheme called forward chaining is used.
rhis scheme maintains the invariant (provable by
transition induction) tnat at most one forward
pointer is ever stored in a given forward node.
Tnis is accomplished by having each additional
fecch to the same forward operator assume the
responsibility for forwarding to the location to
wnich the forward pointer pointed, while the
forward operator tnen points to tne most recent
fetch only. The handling of fetch and forward in
ML is demonstrated in Figure 7.

*

I
I
I
I
I
\

Al though there is no limit on the number of
(local) notifiers a node may entail, the number
actually needed in each case can be detected at
compile time. Hence it is possible for the
compiler co cascade extra identity operators in
sucn a way that the number of notifiers for each
node does not exceed the maximum pragmatically
al lowed.

CONCLUSIONS

We have descrioed some considerations wnicn arise
in tne evaluation of an applicative language in a
manner capable of exploiting a multiplicity of
pnysical processing elements. Tne present
exposition focuses on the analysis of a hardware
evaluator for tne AMPS system. In addition to
tne grapnically-represented extrinsic language
and macnine language, an intermediate graphical
language nas been introduced, to separate
questions of value flow from more pragmatic
issues of communication and demand flow.

Tne important aspects of this work tnus concern
tne distributed evaluator itself, the analysis
techniques, the graphical models, the
formalization of demand-driven computation and
accompanying correctness criterion, and further
tecnnical exposition of machine evaluation of
unbounded data objects.

We view this analysis as a step toward a proof
for a fuller system in which a reference-counting
storage manager is implemented (cf. [21]), as
well as ott1er language and pragmatic issues, such
as snared resource management and load control
[17].

*

(~,,..fwd --r--=-) ... _ ------ (1?~~)
Figure 7: Example of forward chaining in ML.

Hyphenated arcs denoted global addresses.

309

REFERENCES

[l) G. Brown. A new concept in programming. in
M. Greenberger (ed.) , Management and the
computer of ~ future, Wiley (1962) -. -

[2) S. Patil. An abstract parallel-processing
system. M.S, Thesis, MIT Dept. of Electrical
Engineering (June 196) ,

[3] L. L. Constantine. Control of sequence and
parallel ism modular programs. AFIPS Proc.,
409-414 (Spring 1968).

[4] L.G. Tesler and H.J. Enea. A
design for concurrent processes.
Proc., 403-408 (Spring 1968).

[5] D.A. Adams. A model for

language
AFIPS

parallel
computations. in Parailel processor systems,
technologies, and applications. Spartan
Books, 311-333 (190).

[6) W.H. Burge. Recursive programming
techniques. Addison-Wesley (195).

[7] D.P. Friedman and D.S. Wise. The impact of
applicative programming on multiprocessing.
IEEE Trans. on Computers, C-2, 4, 289-296
(April 198).

[8) R.M. Keller, G. Lindstrom, and s. Patil. A
loosely-coupled applicative multi-processing
system. AFIPS Proc. (June 199).

[9) R.M. Keller, B. Jayaraman, G. Lindstrom,
J.B. Marti, A.K. Nori, and D. Rose. FGL
Programmers' Guide. Unpublished manuscript,
University of Utah (March 1980).

[10) D.P. Friedman and D.S. Wise. CONS should
not evaluate its arguments. in Michael son and
Milner (eds.), Automata, Languages, and
Programming, 25-284, Edinburgh University
Press (196).

[11) P. Henderson and J.H. Morris, Jr. A lazy
evaluator. Proc. Third ACM Conference on
Principles of-prograiiiiii'ing Languages, 95-103
096).

[12) R.1'1. Keller.
parallel programs.
196).

Formal verification of
CACM, 19, , 31-384 (July

[13] J. McCarthy. Recursive functions of
symbolic expressions and their computation by
machine, I. CACM, 5, 2-3 (190).

[14] A. Cnurch.
lambda-conversion.
Press 0941).

The calculi of
Priiiceton University

[15] R.M. Keller. Divide and CONCer: Data
structuring for applicative multiprocessing
systems. to appear in Proc. 1980 Lisp
Conference.

[16) R.M. Keller.
function graphs.

Semantics and applications of
ManuscriPt(March 1980).

[17) B. Jayaraman and R.M. Keller. Resource
control in a demand-' driven data-flow model.
Proc. International Conference on Parallel
PrOCessing (Aug. 1980).

[18) C.A.R. Hoare.
representations,
(192).

Proof of correctness of data
Acta Informatica, 1, 21-281

[19) G. Kahn. The semantics of a simple
language for parallel programming. Proc.
IFIP '74, 41-45 094).

(20) J, St.oy. The Scott-Strachey approach ~
the mathematical semantics of programming
languages. MIT Press (19).

[21) A.K. Nori. A storage reclamation scheme
for AMPS. M.s-:- Thesis, Dept. of Computer
SCTence, University of Utah (Dec. 199).

[22] M. O'Donnell. Computing in systems
described by equations. Lecture Notes in
Computer Science, 58 (19),

This material is based upon work supported by the
National Science Foundation under grants MCS
77-09369 AOl and MCS 78-03832.

310

SPECIFICATION AND SYNTHESIS OF SYNCHRONIZERS

Krithivasan Ramamritham
Robert M. Keller

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

Abstract Presented is a specification
language for expressing properties required among
operations accessing shared resources in a
concurrent environment. Such constraints are
necessary in order to maintain the integrity of
resources. The language is founded on Temporal
Logic and possesses constructs for expressing, in
a natural manner, properties such as mutual
ex cl us ion of operation execution, priority among
operations, invariance of resource state, and
scheduling disciplines. Each of the above
properties is expressed independently of the
others resulting in modular specifications. An
algorithm is outlined for systematically
synthesizing code for a synchronizer from the
given specifications. Synthesis is achieved by
successive transformation of the specifications
into target language code. Feasibility of the
specification and synthesis technique is
demonstrated by applying it to a standard
synchronization problem.

INTRODUCTION

Two main approaches exist for the development of
any prov ably-correct software system. The first
involves construction of programs, followed by a
posteriori verification that the program meets
intended specifications. In this case, the
specifications themselves often provide a
descriptive role rather than a prescriptive one,
since there are many different sets of
specifications which can be met by a given
program. The second approach involves automatic
synthesis of a program directly from the
specification. Here the specifications must be
sufficiently prescriptive to enable a synthesis
to be carried out.

This material is based upon work supported
by the National Science Foundation under Grant
MCS-77-09369 A01.

CH1569-3/80/0000-0311$00. 75 © 1980 IEEE
3ll

The advantages of the synthetic approach are
therefore that the tedious task of a posteriori
verification is eliminated and the specification
is required to be sufficiently free of ambiguity.
The disadvantages are that synthesis algorithms
are difficult to deyise.. such algorithms
themselves must be verified (but this is a
one-time cost) , and the results of a synthesis
algorithm sometimes have less efficiency than
desired.

In this paper, we suggest some principles for
construction of a specification language and an
accompanying automatic program synthesis system
for synchronizer code. A system of this type
would accept specifications that characterize the
synchronization problem to be solved and
generates a program that conforms to the problem
description. The solution proposed uses temporal
logic as the basis for the semantics of the
synthesis system. Our approach consists of:

1) Designing a rich class of primitives and
constructs for a high-level language in which
synchronization properties can be expressed
unambiguously in a non-procedural form.

2) Devising a methodology for algorithmic
translation of specified properties into
appropriate target langua~e code for a
synchronizer.

The temporal approach to specification and
implementation of synchronization carries with it
the advantages of a unified approach. When we
refer to ordering of operations, scheduling
discipline etc., the underlying concept is
temporal ordering. Thus it is appropriate to
adopt a system of reasoning based on temporal
logic for expressing the semantics of
synchronization of concurrent processes.

Since the reliability of programs that share
reso.urces depends upon the correctness of the
underlying synchronizer, it is highly desirable
that the synchronizer construction be as reliable
as possible. Automating the synthesis of
synchronizers is proposed as a technique which
will aid in the development of reliable programs.

fhe Specification Language
The approach taken is to systematize and abstract
features of synchronization control into a set of
language constructs based on Temporal Logic which
provides an excellent natural tool to express
both invariant and -time-dependent properties of
software systems [15]. Current specification
techniques do not handle both types of properties
:is uniformly as the temporal approach does. Use
)f temporal constructs such as 'henceforth',
'eventually' and 'until', along with the
oonstructs derivable from them, result in
intuitive specifications for synchronization
problems.

The specification language satisfies the
following criteria:

It facilitates expression of the complete
semantics of a system of concurrent processes,
providing constructs for specifying constraints,
invariants and other behavioral aspects.
-- It is modular and easy to apply.

The language constructs are able to independently
express, properties such as scheduling
constraints, priority of operations, mutual
exclusion of operations, invariance of resource
state, absence of starvation and other relevant
properties. Each construct has an appropriate
formal temporal semantics. Language features such
as arrays of operations and macro notation can be
used to enhance the readability and succinctness
of the specifications.

Another aspect of synchronizer behavior desired
in the final implementatic;m of most schemes is
'fairness' • Our specification language prov ides
for expressing a fairness criterion appropriate
for the problem under consideration.

The Synthesis Algorithm
Given the specification of the desired behavior
of a synchronizer of operations, the second goal
is to · develop an algorithm for automatically
synthesizing a synchronizer in a prespecified
target language. The synthesis algorithm
successively transforms the specification
statements, applying appropriate
meaning-preserving transformation rules, each
step bringing the resulting statements closer to
the target language code. The transformation :j.s
complete when the derived statements can be
mapped directly into primitives of the target
language. Also, the resulting synchronizer will
display the desired fairness. By requiring the
derived statements to retain the semantics of the
top-level specification, the resulting
synchronizer need not be verified for
correctness. Instead, only the synthesizing
algorithm need be verified.

By providing a specification language based on
temporal logic, and a synthesis algorithm that
guarantees the validity of the specified
properties, this work will contribute towards
better specification techniques, and construction
of reliable software for concurrent systems.

312

The paper continues with a presentation of the
synchronization model. The specification language
and the synthesis algorithm are then developed.
Discussion of related work precedes concluding
remarks on the proposed approach.

THE SYNCHRONIZATION MODEL

To maintain the integrity of a shared resource,
an answer to the question, "Who is to access the
resource, when, and how?"-,-is essential. A
protection mechanism fS"" responsible for who
accesses the resource and how the resource -r8
accessed. On the other hand-;-the synchronizer is
responsible for when the access actually takes
place. In this paper, we shall be concerned with
the problems of synchronization.

A synchronizer, in our model, is a centralized
sequential process that guarantees disciplined
access to sha·red resources. Access to the shared
resource is through specific operations, the
execution of which is controlled by the
synchronizer. Constraints essential for
maintaining the integrity of the resource are
enforced by the synchronizer. Concurrent
processes access the shared resource by
requesting execution of any of the specified
operations. A request for an operation on a
shared resource is serviced by the synchronizer
after ensuring that the constraints are not
violated. A serviced request becomes active when
it is executed by either the synchronizer or, on
its behalf, by another process.

A requested operation may be thought of as being
in one of three states:

1. Active -- Currently executing.

2. Enabled Can be serviced without
infringing some constraint.

3. Disabled Cannot be serviced without
infringing some constraint.

Two or more processes are said to be in conflict
if they are simultaneously enabled-;- Conflict
resolution occurs when the synchronizer services
one of the enabled operations, based on a
specified scheduling discipline or priority.

The model assumes. that
1. Arrival of a request

recognition of its
synchronizer.

is synonymous
presence by

with
the

2. Once an operation is enabled, it will be
serviced after a finite amount of time,
unless it is meanwhile disabled by the
servicing of some other operation, as in the
case of conflict resolution in favor of some
other operation.

3. There may be a finite delay between
servicing a request and its subsequent
activation. The synchronizer services no
other operation until the serviced operation
becomes active.

4. An active process cannot be aborted or
interrupted by the synchronizer.

5. An operation remains active for a finite but
indefinite period of time, after which it is
said to have terminated.

These assumptions are formalized in the next
section after the introduction of the language
constructs. They do not introduce any major
restrictions on the class of synchronization
problems that can be solved, but are motivated by
a desire to achieve a suitable abstraction of the
notion of synchronization. Many specific
synchronization primitives fit this abstraction.

THE SPECIFICATION LANGUAGE

In our language, specifications are statements in
first-order predicate calculus augmented with
temporal operators, as introduced presently. The
underlying semantics of the language is based on
a computational model involving the notion of
events and conditions [1 O]. In this model, the
effect of concurrent execution of processes is
considered to be the enabling and disabling of
certain conditions during the execution process.
The choice of conditions reflects those aspects
of the system of parallel processes in which we
are interested, viz. synchronized access to
shared resources. Events do not appear in the
specifications, only conditions do.

We begin with a description of the primitives
used in the specification language.

Language Primitives
Every pending operation has four primitive
conditions associated with it having the
following semantics.

req(a)

start(a)

exec(a)

term(a)

There is a request for operation
'a'. This condition becomes True
when a concurrent process requests
operation 1 a' •

Operation 'a' is permitted to
execute (The permission is
irrevocable). This condition
becomes True when the synchronizer
services request 'a'.

Operation 'a' is executing now.
This condition is True when
operation 'a' is active.

Execution of operation 'a' has
terminated. This condition becomes
True when operation 'a' terminates.

We refer to each distinct typt of operation on a
shared resource as an opel"..ation C;llass. All
operations of' a particular type are sa:i.d to be
instances of that operat:i.on. class. In the above
d~finlti-ons, 'a 1 stands for a ·specific instance
of a particular operUion c1as$.

We will now introduce the
along with thelt ·semantics.

temporal C)perators
These are strongly

313

influenced by [1 2], [15] and [17].

[]C To be read 'always C'. This means,
condition C will remain true from
now on, i.e., C is true now and
throughout the future.

<>C To be read 'eventually C'. This
means, condition C will eventually
become true, i.e., C will be true
sometime in the future.

A UNTIL B To be read as "A remains true until
B becomes true•t: This means, if B
eventually becomes true, then A
remains true from now until B
becomes true; otherwise []A.

Statements that do not involve the temporal
operators are considered to be about the present,
or 'now'. In general, statements in the language
will involve the predicate logic ope[ba,tors:
V(or), &(and) -(not) and =>(implies) in
addition to the temporal logic operators.

Given below are the axioms and in[efence rules
that form the temporal logic system c • A and B
are arbitrary Temporal Logic formulas.

Axioms:
[]A => A & <>A & [][]A
<><>A => <>A
[](A=> B) => ([]A => []B)

A UNTIL B & -g UNTIL C => A UNTIL C
[](A=> B) <=> [](A=> (B UNTIL -A))

Inference Rules:
If A is a valid first-order logic formula

then I- A.
If i- A and i- (A => B) then l- B
If l- A then l- []A

Certain temporal operators are derived from these
primitives, and are introduced to enhance the
readability of the specification language. They
are,

P ONLYIF Q (P => Q) i.e., Pis true only if Q

is True.

P IFF Q (P => Q) & (Q => P).

P ONLYAFTER Q (-p UNTIL Q) i.e., P can
True only after Q does.

P AFTER Q [(-p UNTIL Q) & <>P] i.e.,
become True after Q,

(b)The operator precedence is
{V,&}, UNTIL, followed by:),

become

P will

{<>. []}'

(c)The choice of axioms and inference rules
listed here is based upon their utility in
subsequent sections. No claim is made for their
completeness.

P CAUSES Q (P => <>Q)
& ~ R ((R f, P) & (R f! Q) & (P =>
<>R) & (Q AFTER R)} i.e., P is the
sole cause for Q to become True.

where P and Q are arbitrary conditions.
The following are true for a particular operation
'a'.
req(a) => [req(a) UNTIL exec(a)J
start(a) ONLYIF req(a)
start{a) => [start(a) UNTIL exec(a)J
start(a) CAUSES [exec(a) & -start(a) & -req(a)]
start(a) => [\ibf!a -start(b) UNTIL -start{a)J
-exec{a) => [-exec(a) UNTIL start(a)]
exec(a) => [exec(a) UNTIL term(a)]
[term(a)&exec{a)] CAUSES [-term(a)&-exec(a)]

These statements are the axioms formalizing the
synchronization model.

Using the primitive conditions, we define the
following:

req(a) [cond] there exists a request for

req$A

exec$A

operation a satisfying 'cond' ,
i.e., 3a(req(a) & cond).

liasA req(a), i.e., there exists a
request of class A.

\fat.A exec(a), i.e., an operation of
class A is active.

The Specification Statements
The temporal operators defined earlier serve as
the building blocks for our specification
language. The semantics of the various
specification statements are given in terms of
these temporal operators.

While developing our specification language, and
the synthesis procedure, it will be instructive
to consider a typical synchronization problem
encountered in the context of operating systems.
Al though it is a simple example, it serves to
illustrate the important aspects of the approach.

The Limited Resources Problem: [8]. A fixed
number of similar resources is managed by an
operating system. User processes acquire a
resource by executing the operation 1 acquire' ,
and release the resource by the operation
'release'. The variable 'free' maintains the
number of available resources, while 'max' gives
the maximum number of resources in the pool.
'Release' is given priority over 'acquire'. ·

Operation variables The specification Language
possesses features that result in succinct
specifications. One of these, is the facility to
refer to a class of operations using a generic
operation name. Specifications involving this
operation name apply to all operations in that
class.

Specification OPERATIONS a:A;
S;

314

Semantics \fat.A (S);
where S is a specification statement involving

'a' and applies to each operation in class A.

Example OPERATION r: release;
a: acquire;

The above specification declares operation
variables for the limited resources problem,
where 'r' refers to any 'release' operation, and
'a' refers to any 'acquire' operation.

Resource state Information During the active
phase of an operation, the "state" of the shared
resource may be altered. For instance, 'acquire'
reduces the number of free resources. Scheduling
constraints often involve predicates on the
resource state. For instance, 'acquire' can be
serviced only if there are free resources. The
above discussion demonstrates the need for
expressing the synchronization constraints that
depend on resource state. This language
facilitates the specification of the following
aspects of the resource:

- The data structures that determine the
resource state.

- Initial resource state.

- The modification to resource
operations in each class, and

state by

- Invariance of resource state.

Example
RESOURCE STATE INFORMATION

STATE VARIABLES ARE
free : integer;
max : constant integer <- 10;

INITIALLY
Free<-max;

STATE CHANGES
Acqu1re: free<-free-1
Release: free<-free+1;

STATE INVARIANCE
O < free ~max;

These statements
information needed
resources.

specify resource
for a synchronizer

state
of 10

Scheduling Constraints Scheduling constraint
specifications express the explicit conditions
under which an operation can be "serviced". For
example,

Specification
cond1@req(op name) =>

[J(Start(op name) ONLYIF cond2};
cond3@req(op name)-=>

[J{Start(op_name) ONLYAFTER cond4};

For an operation 'p', cond1@req(p) refers to the
value of cond1 when the request for p arrives. In
general, cond1 and cond3 are conditions dependent
on resource state, or arguments to the requested
operation, or both. In the case of synchronized
opercitions, 'req(op name)' is a necessary
constituent of cond2.-If the 'cond1@req(op_name)'

clause is not specified, then it is true by
convention.

Example
SCHEDULING CONSTRAINT

[J{Start(a) ONLYIF Req(a)};
[]{Start(r) ONLYIF Req(r)};

These specify the requirement that release and
acquire operations should be serviced only if
requests exist for them.

Invariance The invariance specifications express
the constraints with regard to the resource
state, in the following manner:

Specification : STATE INVARIANCE I
Semantics [JI -
Example : STATE INVARIANCE 0 < free~ max;

Exclusion of Operations In
concurrency- is assumed to
ex cl us ion the exception. So
are to exclude each other,
specification so stating.

our specifications,
be the rule, and

when two operations
there has to be a

Exclusion among
Specification
Semantics

operations in different classes
A EXCLUDES B
[]-(exec$A & exec$B) ()
A,B£{operation classes} d

Exclusion among operations in a class
Specification : A's EXCLUDE- - --
Semantics : []-{exec(a1) & exec(a2)}

'1'a1,a2.E:A, A an operation class.

Total exclusion of all operations
specification EXCLUSION all
Semantics I EXCLUDES J & I's EXCLUDE

'1'1,J${operation class}.

Example
Acquire EXCLUDES Release;
Acquire's EXCLUDE;
Release's EXCLUDE; or equivalently,

EXCLUSION all;

Priority among Operations We classify priority
into the following two categories:
- Priority within requests of a particular

operation class, otherwise known as
intra class priority.

- Priority between different operation classes,
otherwise known as inter class priority.

In general, both inter class and intra class
priorities can depend on- resource state. This
dependence can be specified in this language
through the use of 'resource state predicates' •
A 'resource state predicate' is a predicate on
the state of the resource and is said to be True
if current resource state implies truth of the
predicate.

(d) {operation classes} stands for the set of
operation classes.

315

We will see how the priority statements ar•
specified, and give their temporal semantics.

Specification: INTRA CLASS PRIORITY
operation class:= -

resource state predicate: priority_rule
Informal semantics: -
If "C:- r: expr" is a intra class priority
specification, then 'ex pr' gives the priority
rule applicable to operations in class C when
the resource state satisfies 'r'.
Formal Semantics:
--y-;--{intra_class priority specification}

OP E: {operation class} ,
r s' {resource state predicate}
pr_rule is an-arithmetic expression that

evaluates to an integer.

(OP :- r : pr_rule)CI, 'lfop 1,op2sOP,
[]{[r & req(op 1) & req(op2J &

(expri 0 p1 < expri 0 p2)J =>

[Start(op 1) ONLYAFTER Start(op2)J)

where expria stands for the value of expr
evaluated in the context of req(a). This
specification expresses the. requirement that in
a given class, operations with lower priority
should start only after all other relevant
requests with higher priority have started.

In the absence of an intra class priority
statement, order of arrival- of requests
determines the priority of operations in each
class. This corresponds to an FCFS discipline.

Specification: INTER CLASS PRIORITY
resource state predicate-:

operation_class_b > operation_class_a
Informal Semantics:
Given an inter class priority statement
"r: B > A", if current resource state satisfies
r, then operations in class B have higher
priority than those in class A.
Formal Semantics:
~inter class priority specification}

r E: {res state predicate}
OP = {operation class}

'lfopc 1 ,opc2i:OP, \jrER,
(r : opc2 > opc 1)sI, Vop 1eopc 1, V°P~opc2 ,
{[][r & req(op 1J & req(op2)J

=> [Start(op 1) ONLYAFTER Start(op2)J)

As noted earlier, an operation (say p) is
enabled, if its becoming active will not infringe
specified scheduling constraints, mutual
exclusion and invariance. This is written as
'enabled(p)', and its negation 'disabled(p)'. In
the semantics above, priority was specified among
requested operations. However, there are cases
when only those operations which are enabled are
to be considered for priority. We refer to this
as 'priority among enabled operations'. In such
cases, an operation can start only after enabled
operations of higher priority have been serviced.
Formal semantics in this case is obtained by
substituting 'enabled(op)' for 'req(op)' in the
above specifications.

Example In the limited resource problem,
'release' operations are given higher priority
than 'acquire' operations. Because the number of
resources is limited, priority based on requests
may result in a deadlock. Hence we have

INTER CLASS PRIORITY AMONG ENABLED OPERATIONS
release > acquire-

Scheduling Discipline In case more than. one
operation is enabled, the synchronizer resolves
the conflict using the priority or scheduling
discipline specifications, and eventually
services one of the enabled operations.
Scheduling discipline statements specify "fair"
behavior of the synchronizer, or in practice,
what a user construes fairness to mean [16].
They effectively express behavior of the conflict
resolution strategy. We say that a scheduler is
fair if it conforms to the specified scheduling
discipline. Possible versions of scheduling
discipline are:

Scheduling Discipline O
An operation that is enabled is serviced, i.e.,

Enabled(op) => <>Start(op) (SDO)
If 'op' is such that it can be disabled before
the synchronizer recognizes that it is enabled,
then SDO will not be appropriate.

Scheduling Discipline 1
If we want to express- the fact that enabling of
an operation causes its start, then we have SD1,
defined as follows.

Enabled (op) CAUSES Start(op) (SD1)
This expresses the direct causality between
enabling of an operation and its starting.

Scheduling Discipline 2
If an operation is going to remain enabled till
it is serviced, then it will.be serviced, i.e.,

[enabled(op) & (enabled(op) until Start(op))]
=> <>Start(op) (SD2)

Scheduling Discipline 3
If an operation would otherwise be enabled
infinitely often, then the operation is serviced.

[enabled(op) & ({[]<>enabled(op)} UNTIL
Start(op))]

=> <>Start(op) (SD3)
This will be suitable for operations that are not
continuously enabled but are repeatedly enabled.

Scheduling Discipline 4
This type of fairness- is based on the order of
arrival of requests. The earliest to arrive will
always be chosen for service. Formally, the
expression

{[Req(op2) AFTER Req(op 1)J
=> [Start(op2) ONLYAFTER Start(op 1)J}

(SD4)
states that given that Request for op2 arrived
after that of op1 then op2 can be serviced
onlyafter op 1.

Whenever priority specifications are applied, the
following variation of SD2 is required.

316

{[enabled(op) & P] &
[(enabled(op) & P) UNTIL Start(op)]}

=> <>Start(op) (SD2P)

Here P is a condition which holds iff priority
specification is satisfied. This is necessitated
by the sequential model assumed for the
synchronizer and the fact that requests originate
in external processes.

Overall Specification of the Limited Resources
Problem Given below is the overall specification
for the Limited Resources problem. Note that the
specification for the problem is obtained by
conjoining individual specifications.

SYNCHRONIZER Limited Resources IS
OPERATION CLASSES acquire,release;
OPERATIONS a:acquire; r:release;
SCHEDULING CONSTRAINT
Start(a) ONLYIF Req(a);
Start(r) ONLYIF Req(r);

RESOURCE STATE INFORMATION
STATE VARIABLES ARE
free-: integer;
max : constant integer <- 10;

INITIALLY
free<-max;

STATE CHANGE
acquire: free<-free-1;
release: free<-free+1;

STATE INVARIANCE
O < free < max;

EXCLUSION all;
INTER CLASS PRIORITY AMONG ENABLED OPERATIONS

release > aCquire-; -
SCHEDULING DISCIPLINE SD2P;
END limited_resources;

This example illustrates the salient features of
the language. The fact that each distinct
property of the limited_resources problem was
specified independent of the rest attests to the
modularity, and extensibility of specifications
in the language. Using the top-level constructs,
we have been able to specify standard
synchronization problems including different
versions of readers-writers problems [4], and
disk-scheduler problems incorporating priority

[9].

THE SYNTHESIS ALGORITHM

Given the Top Level specification of required
synchronization, we propose a~. algorithm which
derives in stages, synchronization code (in a
prespecified target language) which will achieve
the required synchronization. Synthesis is
achieved by a series of transformations from the
top-level specifications until a stage is reached
when statements can be directly translated into
primitives in the target language. The
transformation is carried out in a
target-independent fashion until that stage. We
pursue the example of limited_resources
synchronization to exemplify the synthesis steps.
To keep this presentation managable, only
transformattons required for constructs in the

example will be discussed here.

Effecting Resource state changes
In this step, all changes to resource state by
the synchronized operations are "mirrored" within
the synchronizer in the following manner: For
each resource state variable, a "synchronizer
variable" local to the synchronizer is created
with the same type and initial value. The
synchronizer mirrors a resource state change
(effected by a serviced operation) by addition of
statements of the form

start(op) CAUSES caused action; (Rule1)
where caused action modifies 1 synchronizer
variables'. These modifications correspond to
resource state changes specified for operation
'op' when executed in exclusion. (e) The
semantics of caused action is obtained from the
'Resource state change' statements. All
specification statements that inv'olve resource
state variables are respecified in terms of the
synchronizer variables.

Example: Retaining the names of the resource
state variables as in the specifications but
making them local to the synchronizer, the
resource state changes will be mirrored by the
following statements derived using Rule1.

Start(a) CAUSES (free <- free-1);
Start(r) CAUSES (free <- free+1);

Every future resource state modification by a
serviced operation is faithfully reflected by the
synchronizer variables. Hence this step is a
meaning-preserving transformation.

The next step in the transformation process is to
derive necessary conditions for servicing a
request, i.e. starting an operation. These are
embedded in the Scheduling Constraint, Mutual
Exclusion, and Resource state Invariance
specifications. Deriving the necessary conditions
from these statements is the subject of the
following discussion.

Transforming the Mutual Exclusion Statement
The specification 1 A excludes B' is transformed
into

Start(a) =>
Start(b) =>

"'.Exec$B
-Exec$A (Rule2a)

where a is an operation in class A and b in B.

The case of exclusion of different instances of
the same operation class A translates to the
intermediate specification

Start(a) => -Exec$A (Rule 2b)

Since an operation in a class is serviced only if

(e) Since operations that change resource state
need execute in exclusion, this transformation is
appropriate.

no there are no active operations belonging to
classes which exclude it, mutual exclusion is
guaranteed.

Achieving Resource state invariance
Resource state changes as mirrored within the
synchronizer are 'caused' by the Start of an
operation. Invariance will be maintained by
ensuring that the invariant will not be falsified
by the action. This can be done by deriving a
precondition (e.g., by the backward substitution
technique of program verification [14]) for the
synchronizer action from the invariance
specification and, the semantics of changes to
the resource state by the operation. An
operation is enabled only when the precondition
is True. For example, if we had the following
specifications,

Start(op) ONLYIF Cond (op)
Start(op) CAUSES caused_action(op), and
Invariance : INV

then the .transformed specification will be

Start(op) ONLYIF cond(op) & precond (Rule3)

where 'precond 1 has to be true when start occurs
in order for the invariant to be true after the
"caused action". Thus Rule3 preserves specified
invariance of resource state.

Example: The precondition for release is derived
to be "free<max" and for acquire it is "free>O".
Using rule3 we arrive at the following
statements.

Start(r) => free<max & req(r);
Start(a) => free>O & req(a);

When invariance, scheduling constraint and mutual
exclusion statements have been transformed, we
can have for each synchronized operation 1 op' ,
statements of the form

<cond1>@req(op) =>
[]{Start(op) ONLYIF necessary_condition(op)};

<cond3>@req(op) =>
[]{Start(op) ONLYAFTER cond4};

Start(op)· CAUSES caused_action(op);

where necessary condition(op) is the conjunction
of all necessary conditions for 'op' to be
enabled. Scheduling discipline and priority
statements are inherited from the top-level
specifications.

Example: In the limited resources problem,
conjoining all necessary conditions for acquire
and release respectively, we derive the following

Start(a) => {-Exec$acquire & -Exec$Release &
free>O & req(a)};

Start(r) => {-Exec$acquire & -Exec$Release &
free<max & req(r)};

Start(a) CAUSES (free <- free-1);
Start(r) CAUSES (free <- free+1);

Priority and scheduling discipline specifications

317

3re yet to be transformed.

Transformation of Priority Specifications
Transformation of priority specifications brings
in the issue of manifestation of requests within
the synchronizer. This requires some insight
into the notion of implementation which is
presently introduced.

We assume that the target language possesses an
abstract data type called 'queue' with primitives
to enqueue elements onto and dequeue elements
from them. A queue 'element' is designated by a
queue name (say Q) qualified by an 'element
index' (say i), as in Q[iJ.

The attributes of an operation are :

op_name

op_class

nee cond

intracp

intercp

Name of the operation.

Operation class.

Conditions necessary for the
operation to be enabled.

Priority of the operation within
its operation class.

Priority of
respect to
classes.

the operation
operations in

with
other

Op'attr denotes the attribute 'attr' of operation
'op'. From the informal definition of
'enabled(op)' given earlier, enabled(op) iff
op'nec_cond.

Attributes of a queue are:

op_class

pr_rule

pr_class

len

The class(es) of operations that
can enqueue onto that queue.

The priority rule that applies to
all operations in the queue, if one
such rule exists.

Intercp value of the operations in
the queue if all have the same
inter class priority.

Number of elements in the queue.

Q'attr refers to attribute 'attr' of the queue
named 'Q'.

A queue element corresponds to a request for an
operation. Thus Q[i) and Q[i) 'nee cond refer,
respectively, to the operation aiid necessary
condition corresponding to the ith element in
Q. Given a queue Q, ie:Q stands for it{1 •• Q'len}
and Ope;Q, iff 3i€Q(Q[i]=op).

General Statement of Priority
Before we translate priority specifications, it
will be instructive to examine what is 'meant by
priority in general, and how the specifications
determine priority among operations. When we say
that an operation (say b) has higher priority
than another (say a), we mean that a can be
serviced only after b is serviced, i.e.,

318

[]{req(a) & req(b) & (a'pr < b'pr)
=> start(a) ONLYAFTER start(b)}

where op'pr is a pseudo attribute of 'op'
computed using op'intercp and op'intracp (as
shown below). This expression of priority can be
shown to be equivalent to

[]{start(b) ONLYIF -req(a)[a'pr > b'pr]}

The general semantics of priority is then,

[]{start(a) ONLYIF
-req(b)[b'pr > a'pr]} (P1)

[]{start(a) ONLYIF
-req(b)[enabled(b) & (b'pr > a'pr)]} (P2)

where P1 is applicable when priority is specified
among requested operations and P2 among enabled
operations.

Now we will discuss how op' pr is determined for
any operation op. The inter class priority
specification "r : opc2 > ope 111 has the following
semantics :

lf·Op1e:opc1. lfOP2e:OPC2·
{r & req(op 1) & req(op2) =>

op2 'intercp > op 11 intercp} (DEFN1)

The intra class
"opc 1 :- r : pr_rule"
semantics:

priority specification
has the following

1fop 1 ,op2 e:opc 1,
{[r & req(op 1) & req(op2) &

(pr-rulel 0 p1 > pr_rulei 0 p2)J =>

[op 11 intracp > op2 •intracp]} (DEFN2)

These follow directly from the definitions of
intracp and intercp. Also,

If (a'intercp > b'intercp) then (a'pr > b'pr).
If a'op class = b'op class and

(a'intracp > b'intracp) then (a'pr > b'pr).
(DEFN3)

As was noted earlier, since an operation's
intercp and intracp can vary with resource state
for any operation 'op', op' pr is also dependent
on resource state. Notice that '>' defines a
partial ordering among operations.

Now we proceed with the transformation of
priority specifications. Transformations will be
consistent with the specifications if:

1. There ex is ts a one-to-one mapping from
requested operations to elements in queues.
This is ensured by enqueuing each request
onto its "waiting-queue".

2. From each queue, always only a certain
"preferred" operation is serviced.

3. An operation is serviced only if it is
enabled.

4. When an operation is serviced, appropriate
(specified) actions are caused.

Systematic transformation rules exist for
priority specifications. These are based on

- The type of priority specified, viz. among

enabled or requested operations, or inter
class or intra class priority,

- The dependency of pr_rule on resource state,

- The behavior of necessary conditions of
operations, etc.

Space limitations preclude discussion of the
details of these transformation rules. Instead,
the translation required by the limited resource
problem will be explained in detail. The
following is true for this problem.

1. Priority applies among enabled operations
only.

2. All acquire (release) operations have the
same necessary conditions.

3. Order of arrival determines the priority
within each class.

1) Since intra class priority is not specified,
and all operations in a class have the same
necessary condition, a queue is designated for
each operation class and for each queue 'Q',

[](start(Q[i]) ONLYIF i:1}.

2) Since priority is specified among enabled
operations, inter class priority manifests itself
as follows:

[](start(Q[i]) ONLYIF
[VQ1(Q1'pr_class > Q'pr_class) disabled{Q)]}.

Here disabled(Q) stands for vope;Q(disabled(op)}
and enabled(q) for -disabled(q).

For the limited resources problem, we designate
'aq' and 'rq' to serve as the queues for acquire
and release respectively. The following four
pairs of statements result.

req(a) => a£aq;
req(r) => re:rq;

[](start(aq[i]) ONLYIF
i=1 & enabled(aq[i]) & disabled(rq)};

[]{start(rq[i]) ONLYIF
i=1 & enabled(rq[i])};

start(aq[i]) CAUSES (free<-free-1);
start(rq[i]) CAUSES (free<-free+1);

enabled(aq[i]) means [free<max & req(a) &
-exec$release & -exec$acquire]

enabled(rq[i]) means [O<free & req(r) &
-exec$release & -exec$acquire]

The above transformations ensure that
1. A request is enqueued onto a designated

queue depending on its class and necessary
conditions.

2. An element is serviced only if it is enabled
and there are no requests with higher
priority.

3. Servicing a request causes the required
action.

319

Hence the transformation above preserves the
semantics of the top-level specifications.

From an examination of the possible primitive
conditions, we observe that since at this stage
of the transformation, requests are manifest as
elements in queues, conditions of the form
req(a) [cond] will have to be expressed in terms
of conditions on elements in the queues. This is
achieved by knowing the relationship between
queues, operations, and their necessary
conditions.

Deriving Target Language Code
In an abstract sense, the synchronizer code
consists of the following types of statements:

- En queuing statements: These indicate how the
synchronizer responds to the arrival of
requests. After determining the class of the
request and the conditions that hold at the
time of arrival, the synchronizer determines
the queue onto which a request has to be
enqueued, Equivalently, the synchronized
processes may enqueue onto the appropriate
queue.

- Servicing statements: These involve the
conditions necessary for a request in a queue
to be serviced. After determining whether
these conditions hold, the synchronizer takes
actions tantamount to servicing a request.

Causal statements: These indicate the changes
to resource state, etc, that have to be
caused after an operation is serviced. After
servicing a request, the synchronizer effects
these changes.

These are the only categories of executable
statements that may be found in a synchronizer
other than initialization code.

The scheduling discipline specification expresses
the behavior that enabled operations should
possess in order to be serviced. Thus their
effect will have to be displayed by the choice
made by the synchronizer in serv1c1ng enabled
operations. They are, in turn, manifest in the
servicing statements. Space constraints prevent
detailed analysis of appropriateness of
scheduling disciplines here.

We proceed to see how
specification manifests
code constructed. We
Discipline is independent

scheduling discipline
in the synchronization
assume that Scheduling
of resource state.

If Scheduling Discipline specified is SDO-SD2,
then each operation class has a separate queue.
For each queue Q,
[]{3i enabled(Q[i]) & Vj 1<j<i disabled(j)

=> start(Q[i])}.

If SD3 is specified, all requests are enqueued
onto a single queue, and the first enabled
operation on the queue is serviced before the
rest, i.e.,
[](3i enabled(Q[i]) & vj 1ij<i disabled(Q[j])

=> start(Q[i])}.

enabled This transformation
operation can be
synchronizer.

is valid
disabled

if an
only by the

For SD4, a FCFS scheduling discipline is required
and hence all requests are ·enqueued onto a single
queue. The first element in the queue is always
serviced once it is enabled, i.e.,

[J{enabled(Q[1]) => start(Q[1])}.

If all operations in a class have the same
nee cond then all operations in a queue are
enabled or all are disabled. This can be used to
advantage as follows: If Scheduling Discipline
is specified as SDO-SD2 then each operation class
has a unique queue. For each queue Q,

[J{enabled(Q[1]) => start(Q[1])}.

In situations where priority specifications
apply, scheduling discipline SD2P will be in
effect which will be satisfied if the servicing
was done as in

[J{enabled(op) & cond on op=> start(op)},
where cond on op was the- condition derived from
priority specifications.

Realization of a synchronizer for the
Limited resources Problem
The preconditions for servicing operations are
first simplified thus:

[non-empty(aq) & free>O &.-exec$acquire &
-exec$release & disabled(rq)] =>

[non-empty(aq) & free>O & "'exec$acquire &
-exec$release & (empty(rq) V free=max)].

Mapping the result of the transformations derived
so far into the primitives of Sentinels, a
construct introduced in [11], we arrive at the
following Sentinel implementation of the
synchronizer.

Procedure Limited Resources (rq,aq queues);
max : constant integer := 10;
a count,r count,free : integer;
a-count::O; r count::O; free:= max;
Do while (True)
If non_empty(rq) & free<max & a count=O &

r count=O}
then begin

detach execute rq[1] count(r_count);
free : = free+ 1
end;

If {non empty(aq) & O<free & a count:O &
- r count=O & [free:max-V empty(rq)]}

then begin

end;

detach execute aq[1] count(a_count);
free : = free-1
end

rhis sentinel program is arrived at after the
~allowing translation from primitive conditions
ln the specification language to primitives in
sentinels.

Start(q[i]) -->detach execute q[i]
Exec(op) --> op count>O
Req(op) --> non-empty(op q)

~ach request has a -distinct -request queue in the
sentinel. Concurrent processes will enqueue

320

acquire requests onto aq, and release requests
onto rq as per the transformation rule for
priority.

Obviously, this sentinel will be grossly
inefficient since it is 'busy waiting' for one of
the necessary conditions to hold. Applying
techniques similar to Schmid [18] and Ford [5],
"\ore efficient· code can be generated. For
instance, when a primitive condition becomes
true, we need to evaluate only those necessary
conditions which are "influenced" by it. Means to
arrive at optimum code is one of the directions
on which we are currently working. This example
was presented only to give an example of the
structure of the resulting solution. By providing
rules to translate primitive conditions in the
specification language to primitives in
Serializers [1] and Monitors [9], we should be
able to synthesize code for Serializers and
Monitors.

RELATED WORK

There have been a variety of specification
languages based on regular expressions [19]. Of
them, Path Expressions [8] are perhaps the most
widely referenced. Numerous versions of Path
Expressions have since been published. Since
specifications are in the form of permitted
operation sequences, rather than exclusions,
invariants, etc., contrived path expressions may
result. Further, the notion of eventuality is not
expressible in path expressions.

Synthesis of synchronizers from specifications in
Grief's language [6] has been described by
Laventhal [13]. In that approach, properties
such as exclusion, priority, etc. are engineered
by suitable ordering specification for some 'key'
events pertaining to an operation. The language
seems to lack the expressiveness to specify
eventuality and synchronization properties
dependent on resource state. One of the drawbacks
of the synthesis algorithm is the necessity to
consider all possible orderings of event
expressions contained in the specifications in
order to determine the set of allowable
orderings.

Another work with a goal similar to ours is that
of Griffiths [7]. The problem description
supplied to her synthesizer consists of a
low-level specification of the problem. Calls to
synchronizing functions surround code that access
shared resources. Code for the synchronizing
functions is generated using the assertions that
precede and immediately follow the calls. Our
problem description is at a higher level in that
it specifies the problem and not a solution to
the problem.

A language and implementation for mutual
exclusion only has been proposed .by Brinch Hansen
and Staunstrup [3].

CONCLUSION
This presentation reflects some of our current
thinking with respect to specification languages
for concurrent systems and certain aspects of
synthesis of synchronization code for concurrent
programs. The previous sections elaborated our
present ideas with respect to the two broad
goals: Mechanisms for Specification, and
Synthesis of Synchronizers.

The specification language has constructs for
stating the set of properties that are normally
relevant to concurrent operations, namely
ordering, fairness, priority, exclusion (and by
default, concurrency), and invariance of resource
state. Temporal logic prov ides the framework to
express their semantics precisely. Some of the
positive features of this language, are evidenced
by the example used in the paper.

An important problem in specifying program
behavior is whether or not one can verify that
the specification itself is correct. This problem
is aggravated by the conceptual gap that normally
exists between the informal notion of what the
problem is expected to solve and the formal
specification technique. Hopefully, the
specification language we have proposed here will
help bridging this gap. We believe that the
approach taken here meets Bloom's criteria [2]
for a synchronization mechanism to be suitable
for the construction of well-structured software.
Development of a specification language that aids
programmers and at the same time is amenable to
automatic synthesis of programs has been our
prime concern here, not a formally complete
language.

With respect to the goal of automatically
constructing code for synchronization, we
presented an algorithm which derives
synchronization code through successive
transformation of specification statements. At
each stage, we gave qualitative reasoning for
correctness of the translation process. We
consider noteworthy its ability to synthesize
synchronizers with prespecified fairness. The
issue of formal validation of the synthesis
algorithm has been explored, but is beyond the
scope of this paper.

An important issue is the practicality of the
synthesis algorithm. One virtue of the present
technique is the direct correspondence between
specifications and their implementation. However,
this can also lead to construction of inefficient
programs. We have not approached this problem· in
any systematic way, since derivation of correct
programs has been our main concern so far. Al so,
not all steps in the synthesis fall under the
category of pattern directed translation. Rule 3
for instance, and simplification of necessary
conditions for servicing operations, require a
logical simplifier (albeit with limited
capabilities) built into the system. The
development herein provides the settine for a
more general automatic synthesis procedure, which
demands additional work before it becomes a
viable tool.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Atkinson, R.R. and Hewitt, C.E.
Specification and Proof Techniques for
serializers. IEEE Transactions on Software
Engineering SE-5"<Jan 1979), 10-2~
Bloom, f-:-Evaluating Synchronization
Mechanisms. Proceedings of the Seventh
Annual Symposium on Operating Systems
Principles, (Dec, 1979), pp. 24-32.
Brinch Hansen, P. and Staunstrup,
J. Specification
Mutual Exclusion.

and Implementation of

Software Enginering
IEEE Transactions on
---sf-4 (Sep 1978)";"

365-370.
Courtois, P.J., Heymans, F.
Concurrent Control with
'Writers'. Communications
(Oct 1971), 667-668.

and Parnas, D. L.
'Readers' and

of the ACM 14 ------
Ford, W. S. Implementation of a Generalized
Critical Region Construct. IEEE
Transactions on Software Engineering SE-4
(Nov 1978), 449-455.
Greif, I. A Language for Formal Problem
Specification. Communications of the ACM 20
(Dec 1977), 931-935. - - - -
Griffiths, P. SYN VER: A System for the
Automatic Synthesis and Verification of
Synchronization Processes. TR 22-74,
Harvard University, (1974).
Habermann, A.N. Path Expressions.
Carnegie-Mellon University, (June, 1975).
Hoare, C.A.R. Monitors: An Operating System
Structuring Concept. Communications of the
ACM.ll(Oct 1974), 540-557.
Holt, A. and Commoner, F. Events and
Condit ions. Record of the Project MAC
Conference on Concurrent Systems and
Parallel Computation, (June, 1970), pp.
3-52.

[11] Keller, R.M. Sentinels: A Concept for
Multiprocess Coordination. UUCS-78-104,
University of Utah, (June, 1978).

[12] Lamport, L. 'Sometime' is Sometimes 'Not
Never' . Proceedings of the Seventh Annual
Symposium on POPL, (Jan, 1980), pp. 174-185.

[13 J Laventhal, M. S. Synthesis of
synchronization code for data abstractionS:
Ph.D. Th., Massachusetrs- Institute of
Technology,(June 1978).

[14] Manna, Z. Mathematical Theory of
Computation. McGraw-Hill, (1974)-.--

[15] Pnueli, A. The Temporal Semantics of
Concurrent Programs. Lecture Notes in
Computer Science, (June, 1979), pp. 1-20.

[16] Pnueli, A. On the Temporal Ananysis of
Fairness. Proceedings of the Seventh Annual
Symposium on POPL, (Jan, 1980), pp. 163-173.

[17] Rescher, N. and Urquhart, A. Temporal Logic.
Springer-Verlag, (1971).

[18] Schmid, H.A. On the efficient
Implementation of Conditional Critical
Regions and the Construction of Monitors.
Acta Informatica~ (1976), 227-249.

[19 J Shaw, A. C. Software Specification LanguageS'
Based on Regular Expressions. Software'

321

Tools Workshop Conference, (May, 1979), pp.
1-39.

SESSION 12: INTERCONNECTIONS II

323

DATA BROADCASTING IN SIMD COMPUTERS*

** David Nassimi and Sartaj Sahni

University of Minnesota

Summary

An SIMD (Single Instruction stream, Multiple
Data stream) computer consists of some number, N,
of processing elements (PEs), Each PE(i), O:s:i:s:N-1,
has a local memory, The PEs communicate through an
interconnection network. Three models of SIMD com
puters are considered; these models differ only in
the way the PEs are interconnected [8]: 1) Mesh
Connected Computer (MCC) with N = n q PEs forming a
q-dimensional rixnx,,,xn mesh, Each PE is connected
to (at most) 2q nearest neighbors, 2) Cube Con
nected Computer (CCC) where each PE is connected to
log N other PEs. 3) Perfect Shuffle Computer (PSC)
with each PE connected to (at most) three other PEs.

Let D(i) be a data item contained in PE(i),
O:S:i:s:N-1, The data broadcasting problem for SIMD
computers can be posed in two different ways:

(i) Random Access Read (RAR)
In this. formulation, an index S(i) is con

tained in PE(i), O:s:i:s:N-1. PE(i) is to receive data
from PE(S(i)). If PE(i) is not to receive data
from any other PE, then S (i) =co,

(ii) Random Access Write (RAW)
Here,-;,;-index-w(~is -;ontained in PE(i).

Data from PE(i) is to be transmitted to PE(W(i)),
O:s:i<N, If W(i) ="' then data from PE (i) is not
transmitted to any PE.

Some applications of RARs and RAWs may be
found in [41 and [SJ.

The RAR form of the data broadcasting problem
has been studied by Thompson [6], He shows that
any RAR can be performed by making use of the
switch settings of a generalized-connection-network
(GCN) realizing the input-output mapping that cor
responds to the RAR, On an nxn MCC, his algorithm
requires no more than 13n-16 unit-routes (a unit
route is a data transfer between PEs that are adja
cent in the interconnection network) for any RAR.
On an N-PE CCC and PSC, his algorithm requires re
spectively 4logN - 3 and 8logN - 7 unit-routes,
None of these complexity figures includes the time
needed to determine the GCN switch settings. If
this time is included, the complexity of Thompson's
algorithm is determined by the complexity of the
GCN set-up algorithm. The best known parallel GCN
set-up algorithms (Nassimi and Sahni [Sl) have com-

4 .
plexity of O(n) on an nxn MCC, and O(log N) on both
CCCs and PSCs with N PEs.

In this paper, we present an algorithm for the

RAR problem which runs in O(q2n) time on a q-dimen

sional nxnx,,,xn MCC, and in O(log2N) time on an
N-PE PSC or CCC. Thus, the algorithm of this paper

* This research was supported in part by NSF grant
MCS 78-15455.

** Dr. Nassimi is now with the Department of Elec
trical Engineering and Computer Science, North
western University, Evanston, Illinois 60201.

CH1569-3/80/0000-0325$00. 75 © 1980 IEEE
325

is asymptotically faster than the Thompson-Nassimi
Sahni algorithm for CCCs and PSCs. For MCCs, we
expect our algorithm to be significantly faster than
the Thompson-Nassimi-Sahni algorithm as the algo.
rithm of this paper is significantly simpler and
has much less overhead,

The RAW problem can be solved using the sub
algori thms developed for the RAR problem. Let d
be the maximum number of data items to be written
into any one PE, The time complexity of the RAW

is O(q2n+ dqn) on a q-dimensional MCC, and
2

0 (log N + d log N) on an N-PE CCC or PSC.
RARs and RAWs are performed using certain

well defined steps, These are described below:
(i) SORT: In a sort, records are rearranged

so as to be in non-de~sing order of a specified
key. Let G(i) denote the record in PE(i), O:s:i<N.
Let H(i) be the key field of record G(i). H(i) is
also in PE(i). Following a sort, the records will
have been rearranged such that H(i) :S:H(i+ 1),
O:s:i<N - 1.

(ii) RANK: The rank of a selected record is
the number~selected records in PEs with a
smaller index. For example, assume we have 8 PEs
each containing one record. Let the key values
for these 8 records be (6, 4, 2, 2*, 6, 6*, 3*, 4*)
where an asterisk over a key value denotes a flag
or selected record. The ranks of the flagged re
cords are (-,-,-, O, -, 1, 2, 3).

(iii) CONCENTRATE: Let G(ir)' O:s:r:i:j, j:S:N.-1,

be a set of records with G(ir) initially in PE(ir).

Assume that the records have been ranked so that
H(ir)=r. A concentrate results in record G(ir)

being moved to PE(r), O:s:r:s:j.
(iv) DISTRIBUTE: Let G(i), 0 :s: i :S: j < N, be a

set of records with--G(i) initially in PE(i). Let
H (i), 0 :s: is j, be a set of destinations such that
H(i)<H(i+l), O:s:i<j. The purpose of a distri
E_~ is to route G(i) toPE(H(i)), O:s:i:s:j-:-ltis
easy to see that a distribute is the inverse of
a concentrate.

(v) GENERALIZ~: A generalize makes multiple
copies of records. The initial configuration is
record G (i) in PE (i), 0 :s: i :s: j < N. Each record
has a field H (high). The H values are such that
O:s:H(O)<H(l)<-:-.. <H(j)!!:N-1, and H(i)=co for
j < i< N, Generalize copies record G(i) into PEs
H(i-1)+1 through H(i), O:s:i:s:j (we assume, for
convenience, H(-1) =0),

Our RAR algorithm is best described by con
sidering an example (Figure 1), We have N=8 PEs
and S(0:7)=(2, 6, 2, oo, 5, 6, '°• 6), (Recall
that S (i) specifies the PE from which the data
for PE (i) is to be fetched, and S (i) = oo iff PE (i)
is to receive no data.) Let T(i) = i and
FLAG(i) = 1, 0 ~ i< N. Our RAR algorithm begins by
sorting the records G(i) = (S (i), T (i) ,FLAG(i)),
Records are sorted on S; T is used to resolve ties

(i.e. records with the same S value are ordered by
their T value). The sorting algorithm we shall use
is a comparison sort. We require that during the
sort whenever a comparison between G(i) and G(j) is
made, if S(i) =S(j) and T(i)< T(j) then FLAG(i) is
set to zero. As a result of this, following the
sort, FLAG(i) = 1 only for- records with distinct S
values. For records with the same S value, FLAG= 1
only for the record with highest T value, Lines
3-4 of Figure 1 give the result of the sort. The
S values with an asterisk above them correspond to
records with a FLAG of 1.

The next step is to rank the records with a
flag of 1. This results in the rank assignment of
line 5 (Figure 1). For PEs containing a record G
with FLAG= 1, we may define a new record G1 where
G' (i) = (R(i),U(i),S(i)), R(i) is the rank just de
termined, U(i) = i and S (i) is as in line 4 of
Figure 1. The G1 (i)s are concentrated to obtain
the configuration of lines 6 and 7. At this point,
we define a new record, G", for each PE containing
a G1 type record. G" (i) = (S (i), V (i)) where V (i)= i.
The newly defined G" type records are distributed
according to S to get line 8. Observe that now a
PE contains a G" type record iff its data is to be
transmitted to another PE. Let D(i) be the data
in PE(i) that is to be broadcast. The T, U and V
registers of each PE contain return addresses that
will now be used to broadcast the data.

First, the data to be broadcast is concentrat
ed using the ranks contained in the V registers
(line 9). Next, the data is generalized using the
values in the U registers as the corresponding H
values in the definition of generalize. This
yields the configuration of line 10. Finally, the
broadcast data is sorted using the T value in each
PE as the sort key. The result (line 11) is that
data has been broadcast to all PEs requesting data,
It should be easy to see that the algorithm just
described provides a correct solution to the RAR
problem.

The RAW problem is simpler to handle than the
RAR problem. When all the W(i)s that are not
equal to oo are distinct, the RAW problem may be
solved by first sorting the broadcast data into
non-decreasing order of W(i). This sort is fol
lowed by a distribute step in which the data being
broadcast is distributed according to the W values.
When the W(i)s are not distinct, the distribute
step will not be free of conflict. The conflict
is to be resolved in a manner that depends on what
is desired by the RAW. We consider two situations:

(i) If W(i1) = W(i2) = , •• = W(ir) "' if"' then

PE(i) is to receive only the data from PE(j) where
j = min (ik}.

l~k~r

(ii) If W(il-) = W(i2) =.,. = W(i) =if"' then
PE(i) is to receive data from all rrPEs.

The first situation is handled by beginning
with records G(i) = (W(i),T(i),D(i),FLAG(i)),
0 ~ i< N, where T(i) = i and FLAG(i) = 1. Records
are sorted by W(i) (using T(i) to break ties).
The sort is similar to the first SORT step of an
RAR except that FLAG(i) is set to zero if W(i)=W(j)
and T (i) > T (j). The sort is followed by a ranking
of the records. Define a new record
G' (i) = (W(i) ,D(i)) for each PE containing a record
with a FLAG of 1. The records G' are next concen-

326

trated using the ranks just computed, Finally,
the D(i)s of the concentrated records are distri
buted using the W fields. Thus, a RAW es.sentially
corresponds to lines 1 through 8 of Figure l,

Situation (ii) of an RAW can be handled in a
manner similar to situation (i), The details may
be found in [8] •

References

1. Batcher, K., "Sorting networks and their appli
cation," Proc.; AFIPS 1968 SJCC,, Vol. 32,
AFIPS press, Montvale, N.J., pp. 307-314,

2, Nassimi, D, and Sahni, S,, "Bitonic sort on a
mesh-connected parallel computer," IEEE Trans.
on Computers, C-2S, No. 1, Jan. 1979, pp, 2-7.

3, Nassimi, D. and Sahni, S,, 11 Paralle;t permuta
tion and sorting algorithms and a new general
ized-connection-network," Univ, of Minnesota,
TR #79-8, 1979. To appear in Journal of the
ACM.

4. Nassimi, D. and Sahni, s., "Finding connected
components and connected ones on a mesh-con
nected parallel computer," Univ, of Minnesota,
TR #79-18, 1979, To appear in SIAM Journal
of Computi~.

5, Nassimi, D. and Sahni, s., "Parallel algo
rithms to set-up the Benes permutation net
work," Univ. of Minnesota, TR 1f79-19, 1979.

6. Thompson, c., "Generalized connection net
works for parallel processor intercommunica
tion," IEEE Trans, on Computers, C-27, No. 12,
Dec. 1978, pp. 1119-1125.

7. Thompson, c. and Kung, H., "Sorting on a
mesh-connected parallel computer," CACM, Vol,
20, No. 4, 1977, pp, 263-271. --

8. Nassimi, D. and Sahni, s., "Data broadcasting
in SIMD computers," Univ, of Minnesota, TR
1fo79-17' 1979.

1. i = 0 1 2 3 4 5 7

s = 2

~ SORT l
T = 0 2 4 1 5 7 3 6

z.

3.

4. s = 2 2* 5* 6 6 6*

7. S= 2 5 6 ••••

B. DISTR~B~TE ~
CONCENTRATE~

90 GENERALIZE!(~~~
10. 1(2) 1(2) 1(5) t(6) 1(6) I(6) • •

t(tl(~) SORT

11.

Figure 1 RAR example

PACKET COMMUNICATION IN MULTISTAGE SHUFFLE-EXCHANGE NETWORKS *

Daniel M. Dias and J. Robert Jump
Department of Electrical Engineering

Rice University
Houston, TX 77001

Summary

This paper summarizes research we have done
on asynchronous packet communication in buffered,

2n input, Shuffle Exchange Networks with k
stages, 1 < k < n, (denoted by SEN(2,n,k)) shown
in fig. 1.- In-this asynchronous packet communi
cation environment the networks can deadlock.
The research reported here considers deadlock
detection, recovery and the performance of these
networks.

The single stage SEN(2,n,1) [2,3,7] and the
OMEGA network [4] (which, without "broadcast" at
switches, is essentially an SEN(2,n,n) without
the feedback links from stage n to stage 1) have
been studied for their permutation capability.
The performance of delta networks (which include
the SEN(2,n,n) with the feedback links from
stage n to stage 1 deleted) has been studied in
[1,6], for a packet communication environment.
Simulation results and bounds on network perfor
mance indicate that a range of performance can be
obtained by varying the number of stages and size
of buffers between stages of the network.

The environment we consider is one in which
input packets, containing both the data to be
transferred and the address of the network output
link to which the data is to be passed, arrive
asynchronously at SEN input links. The SEN uses
different bits of this destination address to
direct a packet as it advances through the stages
of the network [1-7]. The operation of (2 x 2)
switches in the SEN is modelled essentially as
follows [1]: A fixed maximum queue length of
waiting packets is allowed between stages. Each
switch handles an input packet at each input link
simultaneously. It takes time "t select" to
determine the successor node to which the packet
is to be sent. If that output is in use (i.e.
another input packet is in the process of being
passed to that output) it waits its turn for the
use of that output link (with equiprobable selec
tion of packets that request simultaneous passage
through the same switch output link). When the
selected output link becomes available, it delays
the data for another time interval "t_pass'' which
represents gate delay. At this time the data is
available at output lines of the link. A wait
state is now entered (if necessary) until a
buffer in the selected output queue becomes
available.

A packet incident on a switch is said to be
blocked if it encounters a full buffer at the
switch output link through which it must pass. A

i This work was supported by the National Science
.Foundation under grant DCR74-14283.

CH1569-3/$0/0000-0327$00.75 ~ 1980 IEEE

3Z7

deadlock is said to occur if a set of packets in
the SEN is permenantly blocked. A necessary and
sufficient condition for a deadlock is the
occurrence of a cycle of blocked packets. It can
be shown that the SEN can recover from a deadlock
by advancing each packet in a blocked cycle by
one stage.

Schemes for the detection of a deadlock have
been proposed. In these schemes, when a packet
is blocked, test packets are passed along the
blocked path to determine if a deadlock has
occurred. For an SEN(2,n,k) the longest possible

cycle length is 1 = (2n x k). Suppose that it
takes time t test for a test packet to pass
through a sWitch and suppose that a deadlock is
caused by a cycle of blocked packets of length m.
A deadlock detection scheme has been proposed
that does not require knowledge of t test and

which takes time (t_test.(m + mL - m2" - 1)) to
detect a deadlock. Another proposed scheme
depends on the knowledge of time t test and takes
time (2.t_test.L) to detect a deadlock.

Each cycle of blocked packets must pass
through a switch in stage 1 of an SEN(2,n,k)
(fig. 1). Thus; for deadlock recovery, it is suf
ficient to have an additional buffer at each
stage 1 switch, specifically for this purpose. It
then takes time (t recovery.k) to recover from a
detected deadlock - in an SEN(2,n,k), where
t recovery is of the same order of magnitude at
t:::J>ass. Alternatively, deadlock recovery can be
speeded up by having a "deadlock recovery buffer"
at each switch input and simultaneously a4vancing
all packets in a detected blocked cycle. The
deadlock recovery time, t recovery, for this case
is ·a constant of the same order of magnitude as
t_pass.

Event driven simulations of SEN(2,n,k),
1 .s_ k .s_ n, have been performed. These simula-

tions vary the number of input links (2n),
stages (k), buffer lengths between stages,
t_select, t_pass, t_test and t_recovery. Simula
tion results indicate the following:

(i)

(ii)

When single stage networks, with one buffer
between switches, are operated at very high
input rates, deadlocks occur very often
(approximately one deadlock for every 3
packets that enter the network).
The frequency of deadlock occurrence can be
dramatically reduced by

(a) increasing the number of stages in the
network. (The SEN(2,n,n) is deadlock
free),

(b) increasing the buffer size between
stages,

(c) controlling the input rate to the net
work.

(iii) A range of "maximum performance" can be
obtained by varying the number of stages in
the network. The upper limit of performance
of these networks is comparable to the same
size crossbar switch [1].

Typical simulation results for SEN(2,n,5),
1 < k < 5 are shown in fig. 2. Some of the
research in progress is as follows:

(i) The performance of the outlined schemes is
being com~ared with the synchronous tech
niq_ue in L5].

(ii) The performance of the networks with other
input packet flow control strategies is
being studied. (An example is to restrict
the number of packets in the network from
each source).

(iii) The multiplicity of paths from each network
input link to each network output link (as
opposed to the uniq_ue paths in delta net
works [1]) can be used to improve SEN relia
bility. This aspect is being investigated.

References
[1] Dias, D. M., Jump, J. R. , "Analysis and

Simulation of Buffered Del ta Networks",
Proceedings of the Workshop on Interconnec
tion Networks for Parallel and Distributed
PrOCessing , (April 80), pp.---s-4-92.

~
... • !!'
Ii ...
" z

denotes a (finite length)
Notation: • first-in-first-out buffer. D denotes a switch. that can pass a

packet from any input link to any
output link.

PS : denotes the Perfect Shuffle
permutation

!!a:...! A 2n input, k-stage Shuffle Exchange
Network (SEN(2,n,k)) for l ::; k ::; n •.

Notation:

~
::::
... • "' ... • 0
E
~

~rival time: Average interarrival time of packets
(exponentially distributed) after a buffer at a network
input link becomes available,
Thruput: Average number of packets put out by the network
in unit time •
maxtpl: Maximum thruput of a network for a given inter
arrival time.
maxtp2: Maximum thruput of a network at any inter-arrival
time,

Parameters:
t_select• o. t_pass• l.O. t_test• O.l. t_recovery• l.O.
m• length of deadlock cycle. L- 32k for an SEN(2,5,k).
Deadlock detection time• 0.1(111 + mL - 1112 - l).

~ Typical simulation results for an SBN(2,5,k),
l::; k::; 5.

[2]

[3]

[4]

[5]

[6]

[7]

Lang, T. , "Interconnections between Proces
sors and Memory Modules Using the Shuffle
Exchange Network", IEEE Transactions on Com
puters, Vol. C-25, ~ 5., (May 76) ,pp-.--
496-503.
Lang, T. , Stone, H. S. "A Shuffle-
Exchange Network with Simplified Control",
IEEE Transactions on Computers , Vol. C-25,
~1, (Jan. 76), pp. 55-65.
Lawrie, D. H. , "Access and Alignment of
Data in an Array Processor", IEEE Transac
tions on Computers , Vol C-24,~ 18, (Dec.
~pp:- 1145-1155.
Lawrie, D. H., Padua, D. A. "Analysis of
Message Switching with Shuffle-Exchanges in
Multiprocessors", Proceedings of the
Workshop on Interconnection Networks for
Parallel and Distributed Processing, (April
80), pp. 116-123.
Patel, J. H. , "Processor - Memory Intercon
nections for Multiprocessors", Proceedings
of the 6th Annual Symfosium on Computer
Architecture , IEEE,April 79), pp. 168-
177.
Stone, H. S. , "Parallel Processing with the
Perfect Shuffle", IEEE Transactions on Com
puters , Vol. Q_-20, No. ~. (Feb. 1.1), _EE.·
ill_-1§.!__.

1.0

0.8

fr
0.6

x
"' 0.4 e
' i 0.2
E

.r:. ...
0 4
lnter .. arrival time

Ftit. 2(a) Thruput/maxtpl vs •
inter-arrival time for an SEN(2,5,l) l,0
with a variable buffer size •

'0.6 Buffer
"' size fr 0,4

j ... 0.2
" !il' ...
.c: .. 0 4 12 16 20

Inter-arrival time

Fig. 2 (b) Thruput/maxtp2 vs. inter
arrival time for an SEN(2,5,l) with
variable buffer size.

328

1.

o.

o.

"' j
;:. 0.2

Paramater:
N=ber of

(k)

l L_=:::::=s
0 4 8 12 16

Inter-arrival time

Fig. 2(d) maxtpl/maxtp2 vs,
inter-arrival time for an
SBN(2,5,k), l S k S 5.

20

o.a

0.6

0 12 16
Inter-arrival time

Fig. 2(c) Thruput/maxtpl vs,
inter-arrival time for an
SBN(2,5,k), 1 S k S 5,

1.0

o.a

0.6

2 3

Number of stages (k)

Fig. 2(e) maxtp2 vs. k fOr
an SBN(2,5,k), l S k S 5.

20

A Layout for the Shuffle-Exchange Network

Dan Hoey
Charles E. Lciserson

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Abstract-'CT1is paper describes a technique for producing a
VLSI layout of the shuffle-exchange graph. It is based on the

layout procedure in [2] which lays out a graph by bisecting the

graph, recursively laying out the two halves, and then combining

the two sublayouts. The area of the layout is related to the number

of edges that must be cut to bisect the graph.

For the shuffle-exchange graph on n vertices, we present a

bisection schema for which the above procedure yields an

0(11 2/lg n) area layout when /1 = 2k and k is a power of two. The

bisection involves a mapping from vertices of the graph to

polynomials. and the polynomials are subsequently evaluated at

complex roots of unity. Incidental to this construction is a result on

the combinatorial problem of necklace enumeration.

1. Introduction

111e shuffle-exchange network has been shown to be an impor

tant communications structure for parallel processors. Stone [8]
describes algorithms which use this structure to solve several

problems. including tile computation of the discrete Fourier

transform and sorting bitonic sequences. 1be number ofcommuni

cations steps required by these algorithms is typically a polynomial

in the logarithm of the number of nodes in tile network, and the

nodes themselves need only perform relatively simple operations.

VLSI designers often try to minimize the area use.d by a circuit

subject to the requirements imposed by the fabrication technology
on the minimum feature sizes of the components [5]. In [9]
'Thompson develops lower bounds on the growth of circuit area

based on graph-theoretic properties of the communications struc

ture. He shows in particular tllat any layout of the shuffle

exchange network on n = 2k vertices must use at least fl(n 21k 2)

area. The arguments for Thompson's lower bounds are based on

tl1e minimum bisection width of a graph, which is the least number

of edges that must be removed to separate the graph into two

equal-sized subgraphs.

This research was supported in part by the Defense Advanced

Research Projects Agency (DoD), Arpa Order No. 3597, monitored

by the Air Force Avionics Laboratory under Contract

F33615-78-C-1551, the National Science Foundation under Grant

MCS 78-236-76, and tl1e Office of Naval Research under Contracts

N00014-76-C-0370 and N00014-80-C-0236. Charles E. Leiserson

receives support from a Fannie and John Hertz Foundation

fellowship.

CH1569-3/80/0000-0329$00.75 ~ 1980 IEEE

329

The concept of bisection widtl1 was extended by Lipton and

Taijan [3] to tl1at of a separator theorem for a class of graphs closed

under the subgraph relation. In essence, a separator theorem for a
class provides upper bounds on tl1e bisection widths of graphs in

tl1e class. Separator theorems allow the divide-and-conquer
paradigm to be exploited in the design efficient algorithms for

graph manipulation [4]. Recently, Leiserson [2] has used this

approach to design area-efficient VLSI layouts.

In this paper a theorem similar to a separator theorem is proven

for the shuffle-exchange graph on n = 2k vertices. We exhibit a
dissection that shows how the shuffle-exchange graph may be

bisected, how the resultant subgraphs may themselves be bisected,

and so fmth. We use this result to construct an 0(11 2/k) area layout

for the case when k is a power of two, thereby improving

Thompson's upper bound of0(n2/y'k). In our proof the vertices

of the shuffle-exchange graph are mapped to a polynomial space,

and then tile polynomials are mapped to the complex plane. This

construction also provides an asymptotic result on tile combina

torial problem of necklace enumeration.

1he next section formalizes tile notions of bisection and

dissection. Section 3 introduces the shuffle-exchange graph and

describes its relationship to polynomials. In Section 4 we construct

a bisection of the shuffle-exchange graph whose width is O(n/k),
and in Section 5 we extend tllis result to produce a dissection. In

Section 6, tile layout algorithm of [2] is applied to this dissection to

produce an 0(n 2!k) area layout for tl1e shuffle-exchange graph.

Section 7 concludes by comparing this result with other work in the

field.

2. Graph Dissection

In this section, we formalize concepts pertaining to the parti

tioning of a graph into smaller graphs by the removal of edges.

A bisection Sofa graph G = (V, E) into graphs G' = (V', E')
and G" = (V", E") is a disjoint partition of the vertices

V = V' u V" togctl1cr wiili a disjoint partition of the edges

E = E' u E" u Es such that the cardinalities of V' and V" differ by

at most one. The cardinality of Es is called the width of the

bisection, and the edges in Es are said to be removed by the

bisection. The graphs G' and G" are called the halves of the

bisection.

Of course, any graph can be bisected by removing all its edges,
but usually we are interested in removing as few edges as possible.
The minimum bisection width of a graph is the smallest number of
edges that must be removed to divide an n·vertex graph into a
r n/2}vertex graph and a L n12J-vertex graph. Unfortunately, the
problem of finding the minimum bisection width of an· arbitrary
graph is NP-complete [l).

It is sometimes the case that every graph in a class of graphs can
be bisected by the same general mechanism. We define a separator
for a class g of graphs to be a family '! of bisections such that '!
contains a bisection of every nontrivial graph G in g. Interesting
separators are those that exhibit the closure property. A separator 'J
for a class of graphs {I has this property if for any graph Ge CJ, the
halves G' and G" that are produced by a bisection of Gin 'J are also
in g. Any separator with the closure property whose associated
class contains a particular graph G is called a dissection of G.

A dissection '/of G may be thought of as a complete binary tree
that has G at the root, the halves of G from some bisection in '!as its
sons, and the halves of the halves as grandsons, and so forth to
trivial graphs at the leaves. If G has n vertices, then the subgraphs
at level j will have about nf2i vertices. Although there may be
other graphs in the class g associated with '!, at the very least g
must contain all of the graphs in the tree.

In [3) Lipton and Tarjan introduce separator theorems which use
ideas similar to those presented here. In their work, however, the
discussion is restricted to classes of graphs that are closed under the
subgraph relation. (A class y is closed under the subgraph relation
if every subgraph G' of a graph Ge g is also an element of<).) We
have departed from their approach because the results of this paper
rely on properties of the shuffle-exchange graph that do not hold
for all ofits subgraphs.

3. The St)uffle-Exchange Graph

The shufJle·exchange graph on n vertices is defined only when n
is a power of two. Each vertex of the n m 2k vertices can be
identified with an element of the Cartesian product

{O, l}k = { bk-l bk-2 • •• b0 I b1 e {O, l} }.

Each vertex 11 e {O, l}k is incident on an exchange edge (v, e(11)) and
two shujJle edges (11, u(v)) and (11, u·1(11)). where e and u are
permutations defined by

e(bk-1 bk-2 . •• bi bo) z bk-1 bk-2 • .. bi (1-bg), (1)

(2)

In the literature the vertices are usually identified with integers
from zero to n-1 represented in binary notation. The shuffle
permutation u is then the pennutation applied to a deck of n cards
by a perfect riffle shuffle, in which case u(m)"" 2m (mod n-1).
The exchange permutation e is the pennutation that exchanges
pairs of adjacent elements of the vertex set, so that e(m) .. m±l.

The shuffle-exchange graph is highly structured because of the
shuffle permutation. From equation (2) we see that u(v) can be
determined from v by rotating the indices of v to the left one
position. The shuffle permutation partitions {0, l}k into equiv·
alence classes known as necklaces [7], where two vertices are
equivalent whenever the indices of one are a cyclic permutation of
the indices of the other. Since rotation by k positions yields the
original vertex, the cardinality of a necklace cannot exceed k.

The properties that we shall use to dissect the shuffle-exchange
graph are expressed conveniently in terms of the characteristic
polynomial, which is defined for a vertex v • bk-1 • •• b0 E {O, l}.t
as

(3)

It should be apparent that p,(2) is precisely ·the vector v considered
as a binary number, as discussed above. The following lemma
shows the relationship between the characteristic polynomial and·
the shuffle and exchange pennutations.

Lemma 1: For all v E {0, l}.t,

p,(x) ± 1, (4)

(5)

where the congruence (5) is taken over the ring Z[x] of polynomials
with integer coefficients.

Proof. From the defining equations (1) and (2),

2 b0 - l,

The lemma follows from the fact that each b1 is either zero or
one. D

The cyclic structure of necklaces is exploited in Section 4 to
bisect the shuffle-exchange graph. This is done in such a way that
most of the necklaces in the graph arc bisected. When the number
of vertices in a necklace is even, it turns out that the half-necklaces
also have a cyclic structure. An m-cycle is defined to be an ordered
sequence (vo. 111, ••• , 11m-1) of m distinct vertices such that for
j= 1 •... , m-1,

330

P .. (x) a ·X p .. 1(.X) (mod :xm-1).
J r

(6)

The next lemma provides justification for calling such a sequence
an m·cycle.

Lemma 2: Let (v0, ••• , 11m_1) be an nt-cycle, Any sequence
(v1, •.• , vm+ v0, ••. , 111•1) formed by cyclically permuting
(v0, ••• , 11m-i) is also an m-cycle. If dis a divisor of m, then the
subsequence (110. ••• , 11d_1) is a cl-cycle.

Proof This lemma can be proved by manipulating the congru- + 2i ---------------~----~
ence (6) in the definition of an m-cycle. The congmence can be

iterated to yield

and since xm = 1 (mod xm-1), it follows that

x Pvm_1(x) = Pv 0(x) (mod xm-l).

Thus (6) holds between the first and last vertices as well as between

adjacent vertices. implying that the choice of a first vertex is

immaterial. To prove the second part of the lemma, observe that

congruence (6) modulo xm-1 must also hold modulo its divisor

xd-1. D

Congruence (5) shows that a necklace of k vertices is a k-cycle.

Lemma 2 establishes that when k is even, the necklace can be

bisected to yield two k/2-cycles.

4. Bisecting the Shuffle-Exchange Graph

The concepts developed in Section 3 are applied in this section

to construct a bisection of the shuffle-exchange graph on n = 2k

vertices. The constmction is obtained by evaluating the charac

teristic polynomials of the vertices at a complex kth root of unity,

inducing a mapping from {O, l}k to the complex plane. The

complex plane is then divided to induce a bisection of the shuffle

exchange graph. A corollary of this construction is an asymptotic

result on the number of necklaces.

Let w = e2"ilk be the piincipal primitive complex kth root of

unity, and consider the mapping v ,_. p,(w) from {0, l}k to the

complex plane. Figure 1 graphs the values of p,(w) fork= 5. The

vertices are labeled with Pv (2). The solid lines forming pentagons

concentric about the origin represent shuffle edges, and the

horizontal dotted arcs represent exchange edges.

Let us examine this figure in relation to Lemma 1. The

occurrence of regular k-gons of shuffle edges can be explained by

congruence (5). Since w is a root of xk-1. this congruence becomes

the equality Pu(.i(w) = w p,(w). Thuspu(vJ(w) is the point obtained

from Pv(w) by a counterclockwise rotation of 211ik radians about
the origin. The vertices in a necklace are mapped to k points

equally spaced on a circle about the origin, unless the entire

necklace is mapped to the origin. The fact that exchange edges are

horizontal can be explained by equation (4).in Lemma 1. If vertices

v and e(v) are incident on an exchange edge, then they are mapped

to complex numbers that have the same imaginary part and differ

by one in the real part

The bisection of the shuffle-exchange graph will be achieved by

partitioning the vertices based on the imaginary part of p,(w), with

tie-breaking when p,(w) is real. All edges that cross the real line

will be removed, and it will be shown that there are at most O(nlk)

of these. This bound is easily shown for edges whose incident

331

-2i
-2 -1 0 +l

Figure 1: The shuffle-exchange graph on 32 = 25 vertices

mapped to the complex plane by v1-> p,(w). Vertices are

labelled with p,(2). Dotted lines represent exchange edges,

and solid lines represent shuffle edges.

+2

vertices are not involved in the tie-breaking. Since there are n
vertices in the shuffle-exchange graph, there are at most nl k
regular k-gons of shuffle edges, and each of these k-gons crosses

the real line twice. Since exchange edges are horizontal, they never

cross the real line.

In order to define the bisection formally, we first partition the
nonzero complex numbers as ((;+ u ((;- where

((;+ { z E ((;I Im(z) > 0} U { x E IR Ix> 0 },
ic- { ZE ((;I Im(z) < 0} u { x E JR Ix< 0 }.

The halves G' and G" are defined by the regions to which vertices

of the shuffle-exchange graph are mapped. The vertices for which

p,(w) E ((;+ arc assigned to V' and those for which p,(w) E ic- are

assigned to V". The remaining vertices, those for which p,(w) = 0,

are distributed arbitrarily but equally between V' and V". Three

types of edges are placed in Es.

1. Exchange edges whose incident vertices are mapped to

real numbers.
2. Shuffle edges whose incident vertices are mapped to the

origin.

3. Shuffle edges between vertices v and v' such that

p,(w) E ((;+ andp/(w) E ic-.

It can be seen by inspection that Es is a superset of the set of edges

that connect V' to V11• Edges not in E's arc allocated to E' or E"
according as their incident vertices are in V' or V11•

To see that I V'I = I V"I. consider for any vertex v the vertex e(v)

obtained by complementing every index in the vector v. This

relationship can be restated in tenns of characteristic polynomials

. as

Pqv)(x) = (xk-1 + xk-2 + ... + l) - p,(x).

Because the sum of all kth roots of unity is zero, it follows that

p,(w) = -PccvJ(w). Therefore, the correspondence v +-+ C(v) is a

one-to-one correspondence between the vertices mapped to «::+ and

those mapped to c-. This proves that this partition is a bisection as

was claimed. The cardinality of Es is the width of the bisection and

is bounded by the following theorem.

Theorem 3: For any positive integer k, there is a bisections.of

the shuffle-exchange graph on n = 2k vertices such that the width of

Sis at most 6(nlk).

Proof. Let S be the bisection described above, and consider the

three types of edges that compose Es. We will bound each of the

three types by the quantity 2(n/k).

Each of the type 3 edges is a shuffle edge incident on vertices
mapped to nonzero complex numbers,. and each such vertex

belongs to a necklace of exactly k vertices which are mapped to

nonzero numbers. Since the total number of vertices in the shuffle

exchange graph is n, there. can be at most nl k such m.'Cklaces. The

shuffle edges in each of these necklaces· form a regular k-gon

centered at the origin, and thus only two of these edges can cross

the real line, in the sense of having one incident vertex mapped to

«::+ and the other to a::-. Thus there can be at most 2 (n/ k) type 3

edges.

The same argument can be used to bound the number of type 1

edges. There are at most 2(n/k) vertices mapped to nonzero real

numbers. Since every exchange edge whose incident vertices are

mapped to real numbers has at least one of these vertices mapped

to a nonzero real number, there can be no more than 2(nlk) type 1

edges.

Finally, the number of type 2 edges can be bounded by the

number of type I edges by observing that fqr each shuffle edge

(v, a(v)) whose incident vertices are mapped to the origin, the

exchange edge (a(v). e(a(v))) is a type 1 edge. D

We now pause to examine an interesting by-product of these

counting arguments, a result on the combinatorial problem of

necklace enumeration. A necklace is a string of k pearls, where

each pearl may be one of c colors. Two necklaces are considered

equivalent if one can be rotated to form the other, but not if they

are only reflections. It is well-known (7] that the number of

necklaces of k pearls in c colors is

(l/k) E ck'd tP<d>.
dlk

(7)

332

In this formula q,(d) is Euler's totient function, the number of

positive integers not exceeding d that are relatively prime to d.

Although it appears that the term for d = I in (7) might dominate

the summation, it is not apparent that the contribution of the other

terms is insignificant. However, the following corollary to Theorem

3 shows that this term is asymptotically dominant.

Corollary: The number of necklaces of {O, 1, ... , c-l}k lies
between ck/ k and ((c+l)/(c-1)) (ck/ k).

Proof. The definitions of the a and e permutations may be

extended to {0, l, ... , c-l}k as follows.

The characteristic polynomial is defined as before (notice that now

p,(c) is the vector v considered as a number expressed in base c

notation), and the argument of Theorem 3 can be adapted to show
that the function v H p,(w) maps at most 2ck/(c-l)k elements of

{O, 1, . . . , c-l}k to zero and that the remainder lie in necklaces of

k elements. D

5. Dissecting the Shuffle-Exchange Graph

In the previous section, we presented a bisection of the shuffle

exchange graph on n = 2k vertices. In this section we will show that

when k is even, the stmcture of the halves is similar to the structure

of the original shuffle-exchange graph. This similarity is captured

in the notion of an m-cyclic subgraph of the shuffle-exchange

graph, and it is shown that the halves arc k/2-cyclic subgraphs.

1he bisection from Thcotem 3 can be modified to bisect m-cyclic

subgraphs when m is even. Thus when k is a power of two, this

approach can be used iteratively to construct a complete dissection

of the shuffle-exchange graph.

An m-cyclic subgraph is a subgraph of the shuffle-exchange

graph whose vertices are partitioned into disjoint m-cycles. Vertices

not appearing in these m-cycles are also allowed, but such vertices

must be isolated, not incident on any edge in the subgraph. If a

shuffle edge (v, a(v)) appears as an edge of the m-cyclic subgraph, it

must occur between a!-ljacent vertices of one of the m-cycles, and

the exchange edge (a(v), e(a(v))) must be an edge of the m-cyclic

subgraph as well.

The reader should be warned that m-cyclic subgraphs are

nothing more than a vehicle for extending the bisection of the
shuffle-exchange graph to a dissection. The definition has been

carefully crafted so that the proof of Theorem 3 will apply to them

and so that their separator exhibits the closure property.

Lemma 4: When k is even, the halves G' and G" produced by

the bisection from Theorem 3 are k/2-cyclic subgraphs.

Proof. Without loss of generality, we show this for G' only.

The vertices that arc mapped to zero by v H Pv (w) have no incident

edges (arc isolated). but every other vertex of G' occurs in some
sequence (v 0, ••• , vk/2_1) that arose from cutting a necklace of k
vertices in half. Since any. necklace of k vertices is a k-cycle, and

k/2 divides k, Lemma 2 ensures that this sequence is a k/2-cycle.

Thus we have demonstrated the first requirement for G' to be an

k/2-cyclic subgraph: every vertex not in an m-cycle is isolated.

We must now show that if a shuffle edge (v, a(v)) appears as an

edge in G'. then it occurs between adjacent vertices of one of the

m-cycles, and furthermore, that then the exchange edge

(a(v), e(a(v))) is also in G'. It is clear that the first condition is

satisfied. The second condition can be demonstrated by observing

that both v and a(v) are mapped to «:;+. Since the point Pa(v)(w) can

be obtained from p.f.w) by a counterclockwise rotation of2wlk < '11

radians about the origin, it is impossible for a(v) to be mapped to

the real line. The set of removed edges Es contains only those

exchange edges whose incident vertices arc mapped to real points,

which means that (a(v), e(a(v))) must be in E'. D

When m is rvcn, the bisection from Theorem 3 can be

generalized to a bisection of an arbitrary m-cyclic subgraph. Let

"'m = e2"i1m and consider the function v H p.(wm). Since "'m is a

root of xm-1. the congruence (6) between adjacent vertices of

m-cycles becomes the equality Pv}wm) = WmPvi_1(wm). This means
that if any vertex of an m-cycle is mapped to a nonzero complex

number, all the m vertices of the m-cycle are mapped to distinct.

points evenly spaced on a circle about the origin. F,quation (5)

applies as before to show that vertices connected by an exchange

edge are mapped to complex numbers which differ by one.

Let G be an arbitrary m-cyclic subgraph of a shuffle-ex<:hange

graph on n = 2k vertices, and suppose that m. is even. In order to

construct a bisection of G, the vertices of the m-cycles of G are

assigned to V' or V" according as they are mapped by v·H Pv(wm)
to «:;+ or «:;-. The remaining vertices of Gare those vertices that are

mapped to the origin and those that are isolated. These may be
divided arbitrarily but equally between V' and V". As with the

bisection from 'Theorem 3, Es consists of three types of edges.

1. Exchange edges whose incident vertices are mapped to

real numbers.

2. Shuffle edges whose incident vertices are mapped to the
origin.

3. Shuffle edges between vertices v and v' such that

p.(wm} E «:;+ andp/(wm)·E «::-.

The remaining edges are assigned to E' or E" depending ·on
whether their incident vertices are in V' or V".

Unlike before, however, the correspondence v +-+ C:(v) cannot be

used to show that IV'I = IV"I. since v may be a vertex of G when
C:(v) is not. But because m is even, the equality

Pv/"'m) - -p•j+ml2(wm) holds for vertices vi and vj+m12 in the same
m-cycle, and the correspondence v +-+ vi+ml2 suffices to show that

this partition is a bisection. The following lemma provides a bound

for the width of the bisection.

333

Lemma 5: Let m be even, and let G be an m-cyclic subgraph on t
vertices. There is a bisection S that bisects G into m/2-cyclic

subgraphs and has width at most 6t Im.

Proof. Let S be the bisection just described. Its width can be

bounded by showing that there are at most 2tlm of each of the

three types of edges in /{s· This bound holds for type 3 edges

because there can be at most t Im disjoint m-cycles in G and no

more than two type 3 edges per m-cycle. Since each type 1 edge has

at least one incident vertex mapped to a nonzero real number, and

there are at most two such vertices per m-cycle, the bound holds for

these edges. Finally, for any type 2 e<;ige (v, a(v)), the edge

(a(v), e(a(v))) is a type 1 edge because G is an m-cyclic subgraph.

Thus there can be no more type 2 edges than type 1 edges, and the

bound on the width of the bisection is proved. It should be

remarked here that the definition of m-cyclic subgraphs was

specifically constructed in order to establish this correspondence
between type 1 and type 2 edges.

To prove that the halves of the bisection are m/2-cyclic

subgraphs, observe that the bisection S isolates those vertices that

are in m-cycles mapped to the origin, and splits the other m-cycles

into pairs of m/2-cycles. Since shuffle edges appear only between

adjacent vertices of m-cycles, this adjacency is preserved in the

m/2-cycles. The only exchange edges removed by the bisection are

those whose incident vertices are mapped to real numbers, and

hence the argument of Lemma 4 can be used to show that if
(v, a(v)) is in one of the halves, then (a(v), e(a(v))) is also in the

half. 0

We are now ready to combine this bisection with the bisection

from Theorem 3 into a dissection of the shuffle-exchange graph on

n = 2k vertices for the case when k is a power of two. Recall from

Section 2 that to dissect this graph, we need to find a class of

subgraphs that has a separator with the closure property. The next

theorem provides such a class.

Theorem 6: If k is a power of two, then there is a dissection 'Jn of
the shuffle-exchange graph on n = 2k vertices such that any

bisection in 'Jn which bisects an m-vertex graph has width at most

f,,(m) -
6nlk

0

ifm> n/k,

otherwise.
(8)

Proof Let On be the class of subgraphs consisting of i) the

shuffle-exchange graph itself, ii) its kf2i-cyclic subgraphs that have

nf2i vertices, for j = 1, ... , (lg k)-1, and iii) its subgraphs that

have no edges. Correspondingly, the separator'!. consists of i) the

bisection of the shuffle-exchange graph from Theorem 3, ii) the

bisections of its kf2i-cyclic subgraphs from Lemma 5, and iii)
arbitrary bisections of the totally disconnected subgraphs. To see

that the closure property holds for '!., we first observe that the

halves· of the shuffle-exchange graph are k/2-cyclic subgraphs with

n/2 vertices. For j = 1, ... , (lg k)-2, the halves of the kf2i-cyclic
subgraphs with nf2i vertices are kf2i+1-cyclic subgraphs with

nf2i+1 vertices. When j = (lg k)-1 the bisection from Lemma 5

uses the mapping v H p,(w2) to bisect 2ccyclic subgraphs. Since

w2 = -1, all vertices are mapped to real numbers, and thus the

halves consist entirely of isolated vertices.

'The bisection of the shuffie-exchange graph from Theorem 3
has width 6 (n/ k). For j = 1, ... , (Jg k)-1, the bisection from

Lemma 5 bisects a k/2j-cyclic subgraph of nl2j vertices with width

6(nl2j)!(kl2j) = 6(nlk). The totally disconnected graphs can be

bisected with zero width. D

6. Laying Out the Shuffle-Exchange Graph

Given a dissection of an arbitrary graph, the divide-and-conquer

technique of[2] can produce a VLSI layout whose area is related to

the bisection widths of the graphs in the dissection. 'The VLSI

model used is that of [9], and its important attributes are that wires

have a minimum width and that only a constant number may cross

at a point. In this section the results of Section 5 are applied to

produce an O(n 2/lg n) area VLSI layout for an n-vertex shuffie

exchange network.

The technique of[2] constructs a layout for a general graph G by
first bisecting G and laying out the halves recursively. The halves

are then placed side-by-side, and the edges that were removed to

bisect G are routed between the halves. The layout area can

therefore be described as a recurrence in the area of the halves and

the area required to route the edges removed by the bisection. This

tatter quantity is a function of the bisection widths in the dissection

of G because the length and width of the layout increase by a

constant amount for each edge routed.

The particulars of how the area recurrence arises from this

construction are described more fully in (2]: Some solutions to the

recurrence are also given in that paper, but the bisection width

bound f,,(m) from equation (8) fails to satisfy certain conditions that

are assumed for those solutions. Therefore, we give the area

recurrence from [2] without further justification, but present its

solution in detail.

Let A,,(m) be the area of the layout of an m-vcrtex graph in the

dissection of Theorem 6 (thus A,,(n) is the area of the original

shuffle-exchange graph). We express A.{m) in terms of f,,(m) from

equation (8). For the initial condition of the area recurrence, A,,(l)

is a constant, and for 1 < m ~ n,

(9)

Tue recurrence can be solved by taking the square root of both

sides and then substituting L/m) for v A.(m). For 1 < m ~ n this

yields

L/m) = v'2 L,f..m/2) + f,,(m).

Iterating this re4'.urrence and recalling that n = 2k, we have

334

L,,(n) = f,,(n) + v'2 f,,(n/2) + 21,,(n/4) + ...

+ v'2 k-1 f,,(2) + y'2 k f,,(l) + vn L.(1)

~ (6nlk)[1 + v'2 + ... + y'21&k]

+ Vn L.(l)

= (6nlk) [y'20gkJ+i - 1) I (VT - 1) l

+ Vn L.(l)

= 0((11/k) Vk)

= O(n/Vf).

(10)

The reason the sum of the powers of v'2 goes only as far as lg kin

line (10) is that f,,(m) is zero after this point. Since A,,(n) is the

square of L.(n), the area of the layout is O(n 2/ k).

This technique has been used in Figure 2 to lay out a shuffie

exchange network on 256 vertices. Only one fourth of the layout is

shown, and the dissection that was used differs slightly from the

one in Section 5. Instead of removing exchange edges, the arbitrary

divisions among vertices mapped to zero are chosen so that t(v) is

in the same component as v, and the two are placed together.

7. Conclusion

We have developed an extraordinary amount of machinery in

order to construct an O(n 2/k) area layout for the shuffle-exchange

graph on n = 2k vertices, and indeed, we have only been able to

show this upper bound for the case when k is a power of two. It

may be that this bound holds when k is not a power of cwo, but we

have not been able to prove this. For the time being, the best

general upper bound seems to be Thompson's O(n 21 Vk) bound

In any event, a gap remains between either of these upper

bounds and the best known lower bound of0(n 2/k 2) which is also

given by Thompson. This lower bound is proved in [9] by showing

that the minimum bisection width of the shuffie-cxchange graph

must be fl(n I k) and that the area of any graph layout must be at

least the square of the minimum bisection width of the graph.

'Thoorem 3 shows that this fl(n I k) lower bound for bisection of the

shuffle-exchange graph can be achieved, even though the dissection

based on this bisection does not achieve the O(n2/ k2) tower bound

for layout area. This is because the bisection width f,,(m) docs not

immediately decrease as m decreases from n. It may be that an

improved lower bound for the layout area will be based on the

notion of a minimum dissection, where the width of every bisection

in any dissection can be bounded from below.

On the other hand, it may be that an O(n 2/ k2) area layout does

exist for the shuffle-exchange graph, as does one for the cube
connected·cycles (CCC) network of Preparata and. Vuillemin [6].

The CCC is the graph that arises from a boolean hypercube of d
dimensions when each vertex is replaced by a cycle of d vertices.

Many of the problems that can be solved quickly using the shuffle·

exchange interconnection can also be solved quickly using the
CCC. But despite the fact that a smaller layout is known for the
CCC, descriptions of algorithms for the CCC tend to be more
complicated. The discovery of an 0(n 2 I k 2) area layout for the
shuffle-exchange graph would therefore favor the shuffle-exchange
graph as the network of choice and would allow the many
algorithms already designed for this network to be applied directly
in optimal VLSI implementations. But until such a layout is found
-if ever one is found-the CCC will continue to have the edge.

~ ~

42 43 ~

.- FE3 ~

l
~ ~

~ u
UJ= u
UJ ,-lb

126 127

l ~

In conclusion, we believe that characteristic polynomials provide
a useful way of viewing the shuffie·exchange network, and we
believe that this approach goes beyond the particular technical
results presented here. Characteristic polynomials unveil proper·
ties of the shuffie·exchange graph that are obscured by the cl~ssical
approach of relating the vertices to integers. We hope that the
mechanisms we have developed to relate the topology of a
particular graph to the algebra of polynomials will be exploited

further.

J
~ 14 15

52 53 Rd=
r
~

+-
• 74 ,.

~ ~

~ hl
l
~ ~
r

86 87
110 111

ii~ ~ M
Figure 2: One fourth of a shuffie·exchange network

335

References

[l) M. R. Garey, D. S. Johnson, and L. Stockmeyer, "Some
simplified polynomial complete problems," 6th Annual Sym
posium on Theory of Computing, ACM, (April, 1974), pp.

47-63.

[2) C. E. Leiserson, "Area-efficient graph layouts (for VLSI),"
21st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society, (October, 1980).

[3) R. J. Lipton and R. E. Tarjan, "A separator theorem for
planar graphs," A Conference on Theoretical Computer Sci
ence, University ofWaterloo, (August, 1977).

[4) R. J. Lipton and R. E. Tarjan, "Applications of a planar
separator theorem," 18th Annual Symposium on Foundations
of Computer Science, IEEE Computer Society, (October,
1977), pp. 162-170.

336

[SJ C. A. Mead and L.A. Conway. Introduction to VLSI Sys
tems. Addison-Wesley, (1980).

[6) F. P. Preparata and J. VuiUemin. The .cube-connected-cycles:
a versatile network for parallel computation, Technical Report
356, lnstitut de Recherche d'Informatique et d'Automatique,
(June, 1979).

[7) J. Riordan, An Introduction to Combinatorial Analysis. John
Wiley & Sons, Inc., (1958).

[8] H. S. Stone, "Parallel processing with the perfect shuffle,"
IEEE Transactions on Computers, C-20, 2, (February, 1971),
pp. 153-161.

[9) C. D. Thompson, A Complexity Theory for VLSI, Ph.D.
Thesis, Carnegie-Mellon University Computer Science De

partment, (1980).

TOWARD A GENERALIZATION OF TWO AND THREE-PASS
MULTISTAGE, BLOCKING INTERCONNECTION NETWORKS

Abraham Shimor and Smil Ruhman
The Weizmann Institute of Science
Department of Applied Mathematics

Rehovot, Israel

Abstract
Blocking, multistage networks can realize only a
fraction of the N! permutations (interconnections)
possible. The minimum number of passes required
to perform arbitrary permutations is an important
parameter of every network.

We define four distinct classes of networks capa
ble of performing any permutation in two passes,
the lowest limit possible. These classes stem
from a generalization of the Baseline network
(known to be a two-pass network) by three of its
main properties. Two of the classes are shown to
be populated and examples of each are given. Whe
ther the other two classes are empty is not clear,
but this question is shown to be linked to another
open question, namely the possibility of perform
ing all permutations in two passes on the shuffle
exchange network. Using the lowest known bound
for the shuffle-exchange, we define two classes
of three-pass networks and demonstrate the exist
ence of many members in each class. Finally, we
show that some of the better known networks be!ong
to the above classes. Beyond the results reported,
questions and areas for additional research are
identified.

I. Introduction
An important issue in the architecture of SIMD

arrays is the choice of a flexible connection net
work for interprocessor (or processor-memory) com
munication. The requirement of cost-effective
ness along with high performance led to conside
ration of blocking multistage interconnection net
works. Such a network of size N (N inputs x N
outputs) consists of log2N stages, each compris-

ing N/2 elementary 2 input x 2 output, two-state
switches. Each stage is preceded or followed by
a fixed wiring pattern that connects it to the
adjacent stage or to the outside. Clearly, the
maximum number of "admissible" permutations (re
alizablN in a single pass) on such networks is
r;; zlog2N

IN.. = 2 , a small part of the N ! arbi tra-
ry permutations that exist.

A nlilllber of networks have been suggested [l, 4,
5, 6], each characterized by its set of exactly

proof by emulation of Beizer's [9] network, and
a shorter algebraic proof based on the properties
of the Baseline network [l, 2].

The wide range cf networks proposed, and the
seemingly unique characteristics of some, suggest
the need for a general theory of blocking inter
connection networks. Siegel [6] and Wu and Feng
[l, 2] made significant contributions in this
direction. In view of the two-pass property of
the Baseline and the three-pass interim upper
bound of the ·shuffle exchange, we raise the fol
lowing questions:

(1) Are there other networks, different from
either the Baseline or the shuffle exchange,
which can perform arbitrary permutations in
two or three passes?

(2) Given a selected subset of up to ..!Ji permu
tations, is there a multistage, blocking net
work on which all the given permutations are
admissible, while any other permutations can
be realized in two or three passes?

In this paper we define several classes of two
and three pass networks and demonstrate the exist
ence of some of them. The second question re
mains open for the time being, but the treatment
of question one may serve as a framework for addi
tional research.

Notation
The number of input (output) lines of an inter-

connection network is denoted by N=2m, where m
is a positive integer. The input (and output)
lines are numbered sequentially from 0 to N-l.
This line number or address is denoted by a small
letter, a, b, c e: {O,l, ••• ,N-1} , ~·ho"" ·,.:.:i.ary

expansion is given by (am-1 1 am-2•···•ao) and whL:~
m-1 .

value is a= L a.2 1

i=O 1

Permutations (interconnections) are designated by
small letters p,q,s, where p(a) = b is a per
mutation that connects input line a to output
line b. Superscripts indicate repetitive appli
cation of the permutation, the superscript -1
denoting the inverse permutation. Specific per
mutations used in the paper are defined below.

(1) Identity: e(a) =a
(2) Bit reversal: p(a) = (ao,~1 1 ···•am-2'am-1>
(3) Bit reversal excluding a 0 :

r(a) = (a1,a2•···•am-2'am-l'a0)
(4) Perfect shuffle: cr(a) =

(am-2'am-3' • • • ,al,aO,am-1)

/;ti admissible permutations. For the sake of
flexibility, it is desirable to realize arbitrary
permutations on blocking networks, even if this
requires multiple passes. Wu and Feng [1, 2]
suggested the Baseline network which is capable
of realizing arbitrary permutations in two passes,
the minimum possible. Recently, Parker [8] has
proven that the shuffle-exchange network can per
form arbitrary permu·:::ations in. up to three passes,
though it is not known whether this is the mini
mum upper bound. The same results had been shown
by the authors [3] in two ways: a constructive A network and its set of admissible permutations

337

CH1569-3/80/0000-0337$00.75 ~ 1980 IEEE

will be denoted by a capital letter x,Y. Opera
tions on networks are defined below.

XY = {pq I p & x, q & Y}

x-1 = { p I p-1 e x }

sX = {sp I p & X} and Xs = {ps I p & X}

The group of all possible permutations on the in
tegers {O,l, ••• ,N-1} will be designated by S.
Two specific networks of central interest in this
paper are:

(1) The Baseline or Reverse Exchange network, B,
is defined in [l]. A sketch of B for N=B
is given in Fig. 1.

(2) The Shuffle Exchange network, n, in which
the wiring pattern preceding each stage is
described by a.

II. Two-pass networks

The Baseline interconnection network, B, in
troduced by WU and Feng [l, 2] exhibits some in
teresting properties.

(a) BB = S, indicating that any arbitrary per
mutation can be perfo:i:med in two passes
through the network.

(b) B = B-l , that is, p 1 e: B implies p~1& B.

(c) e t B , the identity permutation (e) is not
admissible on B, therefore B cannot contain
any subgroup of s.

Of these properties the first one has particular
significance from a practical point of view. Two
questions are likely to arise with respect to the
Baseline network and its characterisation by the
above properties:

(a) Is the Baseline network unique among block
ing multistage networks, or are there other
different networks capable of performing any
arbitrary permutation in two passes?

(b) Does the ability to perform any permutation
in two passes imply either or both of the
remaining properties?

In order to answer these questions, let us postu
late the existence of four classes of "Baseline
like" networks, 130 through 133 • X will be

used to represent a connection network, as well
as the set of admissible permutations on this
network.

llo {x S; -1 etx} xx = x = x ;

Ill {x S; x = -1 ee:X} xx x ;

ll2 {x xx S; x r x-1; e,e!X}

ll3 {x xx S; x;. x-\ e&X}

It is easily seen that these subsets

for every i r j; i,j e:[0,1,2,3]

(the empty set).

llo networks

are distinct:

Let X represent a connection network topo-

338

logically equivalent to B. Applying the defi
nition of topological equivalence introduced by
WU and Feng, this proposition implies that

-1 . -1
X = p1Bp2 or alternatively B = p1 x p 2

where p1 , p2 & S).

Let us concentrate on a particular subset of

the networks topologically equivalent to B; we

designate this subset as

I -1
llo {X x = P1BP1 ; P1 & s}

Lenuna 1 Ila is a subset of ao: flQS llo

~ For every x & llo

-1 -1 -1 -1 -1 -1
(1) X = (p1Bp1) = p1B Pl = p1Bp1

-1 -1 -1
(2) XX = (p1Bp1) (p1Bp1) = p1BBp1 s

-1
B =pl Xpl

x

(3) Suppose that e e: X , since
-1

this implies that p1 ep1 e & B which

leads to a contradiction, therefore

e t x Q.E.D.

Obviously B e: llo (p1 = e in this case),

therefore llo is not an empty set. Furthermore,

it is easily shown that llo contains additional

elements. Let us assume the opposite of this

proposition. This would imply that for every
-1

P1 e: S , p1Bp1 = B • Recalling the definition

of· a normal subgroup [7], the above means that B

is a normal subgroup of S and this leads to a

contradition, since (due to the fact that e t B)

B cannot be a subgroup of s.several examples of

llo class networks are described in Fig. 1.

132 networks

In [3] we have shown, that any arbitrary per

mutation p & S , can be decomposed into the form

P1rp2 = p , where p1 ,p2 e: n (i.e. they are ad

missible on the shuffle-exchange network) and the

permutation r (designated as R(m) in [3] is

defined as,

r(am-1•···•ao) = (a1,a2•···•am-l'ao)
Obviously r = r-l Alternatively we can state:

s = n r n Let E represent the network nr •

Lenuna 2: E & 132

Proof: (1) EE = QrQr = (QrQ)r = S

(2) E f E-l is proven by an example

given in Fig. 2. We express E and

E-l in terms of B, using the iden

tities given by Wu and Feng· in (l],

namely: n = Bp and n-1 = pB , to

gether with the identity r = op

Hence E = Bo-l and E-l OB .

(3) e t E , because if we assume the oppo

site, then the solution of the equa

tion e = qr , q e: n yields q = r ,

but it can be shown from Lawrie's

theorem 2 in (4) that rt Q . Q.E.D.

Similarly, we can show that
-1

E e: 13 2

Let us now define set 13 2 as:

Using the same method as was applied to 13 0 above,

it can be shown that 13 2 is a non-empty subset

of Several examples of s2-type networks

are described in Fig. 3.

131 and s3 networks

So far, no networks of these types have been
identified, but neither has the possibility of
their existence been disproved. Interestingly
this so far undecided question is related to
another unresolved problem: can any arbitrary
permutation be performed in two passes on the
shuffle-exchange network? The linkage between
these problems arises from the following specu
lation.

If it is possible to perform all the permuta
tions in two passes on the shuffle-exchange net-

WOrk, that iS QQ= s t then Q S 133 I

(1) nn = s
(2) n r n

(3) e e: n

Furthermore, all networks defined as

would belong to 13 3 :

s

since

339

III. Three-pass Networks

It has been shown (3, 8) that the shuffle

exchange network can perform any arbitrary permu

tation in three passes. Following the generali

zation of the two-pass property of the Baseline

network, the next logical step is to search for

a new class of networks capable of performing

any permutation in three passes. Let us desig

nate this class as T •

T {xj xxx = s}

Parker [8) showed that S = QpQ , and

p = w2 w1 so that w1 ,w2 e: n and w1n e: n •
In [3] we had given a different factorization of

p: p = r 4r 3 so that r 3 ,r4 e: n and

Likewise, we also showed in [3] that

where r = r 2r 1 such that r 1 ,r2 e: n and

defined below using a set of functions of the

are

form b.
].

where i
fi (a,bm-l'bm-2 1 ••• 1 bi+l'bi-l' 00 'bo)

0,1, ••• ,m-l . Also, k = (m-l)div 2

and ,e, = m div 2,

division.

where div represents integer

rl '!a.@a . i m-a.

b.= a.EDb .
i i m-i

a.
].

r '{

2 a.@a 1· l. m-

b.=
].

b.=
].

a.
].

if m even and i > k+l

or m odd and i > k

if O<i<k

if i = 0

or i=k+l and m is even

if m even and i>k+l

or m odd and i>k

otherwise

if m is even and i~,Q,

or m is odd and

if i<t

if m is odd and i=,Q,

if m is even and i~~

or m is odd and i~t+l

otherwise.

The subset of permutation ti= {pjnp=n ; p e: Q}

including permutation r 2 and r 4 , is worth some

attention.

+
Lelllllla 3: 0 is a subgroup of S •

Proof: (1) ti s;;. 0 therefore it is finite.
+

(2) Let p1 ,p2 £ 0

O(plp2) : (Opl)p2 = Op2 = Q

Hence

is closed under multiplication.

Q.E.D.

(It is possible to show the existence of a simi

lar subgroup n = {p I pO = O; p € O}; for

example, Parker's w1 permutation is an element
++ + 7 -t:

of ~l Furthermore, n = 0 0 H is also a

non-empty, non-trivial subgroup.)

The property associated with permutations in

n we call "right invariance", while ti is called

the "right invariant subgroup". The scope of

right invariance may be extended beyond the

shuffle-exchange network.

Corollary l.Any connection network X fulfilling

the following two conditions has an associated
+

right invariant subgroup, X: (1) e c X; (2)

there exists at least one permutation p 1 so

that p1 £ X and Xp1 = X.

Let •o represent a set of networks topologi

cally equivalent to the Baseline network B , de

fined by:

p}

•o networks

Let X € TO , then X = p1Bp2 where P1P2

We can express B in terms of X

Since BB = s , · we obtain

XpX = S (A similar expression, s = QpQ

led [3, 8] to the conclusion that th~ shuffle

exchange is a three-pass network.)

Lemma 4. All networks belonging to •o are three

pass networks, that is •o £ T •

~We shall prove that p can be decomposed

into a product of two permutations in the from

p = r4 rj so that rj,r4 £ x and xr4 £ x •

(1) Using the relationship between the Baseline

and shuffle-exchange networks [l] we can modify

the definition of X to X = P10pP2 Recalling

340

the deCQmposition of p for the shuffle-exchange

network (p = r 4r 3 where r 4 , r 3 E Q

or4 =0) we define: r4 = p1r 4pp2 and

rj = p1r 3pp2 • Obviously r4,rj EX •

(2) r4rj = (p1r 4pp2) Cp1r 3pp2) =

(pl((r4(P(P2P1llr3)p)p2) = P

(3) Let q' be an arbitrary permutation so that

q'EX For every such q' there exists a

permutation q such that

Since qr4 € Q for any q (because r4 E n I
hence q'r4 £ X for every q' E X • Q.E.D.

'l networks

The network E = Or E ~ 2is a two-pass network.

We now define a new set <1 containing networks

topologically equivalent to E (as well as to

B, since E = BPr) :

Tl = {x I x = p 1Ep2 ; p1p 2 = P2P1 = r}

-1 -1
From this definition, E = p 1 Xp2 Since

EE = s , we conclude that XrX = s.

Lemma 5. All the networks belonging to • 1 are

three-pass networks: •1=. • •
Proof. As indicated earlier for the shuffle

exchange, r can be decomposed into a product

of two permutations in the form r = r 2r 1 where

r 2 ,r1 E Q and Or2 = O

Following the proof of Lenuna 4, it can be shown

that the permutations r2 = p 1r 2rp2 and

ri = p1r 1rp2 have the properties: r2ri = r

r2,ri t x ; xr2 £ x. This proves the lenuna.

Q.E.D.

It is easily shown that the shuffle-exchange

network belongs to both •o and Tl :

e(Op)eBp= e&TO

e(Or)r = eEr

therefore 0 £ •o
hence 0 E •1 •

Hence •o n Tl 'I' • ; whether TO = Tl seems to

be a more difficult question. Other networks

belonging to •o may be found by the following

lemma.

Lemma 6. X CTQ

Proof. X ETQ

implies

implies x = P1BP2

p •

Hence -l -l -l -l
X = P2 B p

where

But

-l -l
pl P2 p,

-1 ~
therefore X E •o

Q.E.D.

Some examples of three-pass networks are given in

Fig. 4. The equations p1p 2 = p 2p1 = p and

P2P1 = r are worth some attention. They

can be transformed to a more useful form,
-l -1

p2pp2 = P and p 2rp2 = r

Let Gp and Gr represent the set of solu

tions to these equations respectively:

{ I -l
Gp P2 P2PP2 = P ; p 2 E S}

Gr = {p2 I p2rp;1 r ; p 2 E S}

Lemma

Proof.

G SS
p

and

Hence

7. Gp

(1)

and

and G
r

are subgroups in

Gp and Gr are finite, since

G Ss
r

Let ql,q2EGr Then

s.

p

By similar treatment of Gr we conclude that

both GP and Gr are closed with respect to

multiplication. Q.E.D.

We can establish a lower bound for-the number

of elements in these subgroups as follows:

The permutation p acts as the identity permuta

tion on those elements whose binary address is

symmetric (e.g. 01011010 + 01011010). For a

network of size N = 2m there are kp elements

with symmetric addresses, where

if m is even

kp

if m is odd

Therefore there are (k)! permutations which
p

act on the elements with symmetric addresses only,

341

leaving the other elements undisturbed. It should

be obvious that for any p 2 belonging to these

(k)! permutations, p 2p =p p 2 ; hence
p -1 -1

P2PP2 = PP2P2 = P·

Similarly, for p 2 E Gr

if m is even

if m is odd

while the number of possible permutations is

(k) !
r

Another interesting question is how different

are two unequal •o networks? More precisely,

let X, Y E •o and X ~ Y, what can we say about

D, the number of permutations in the set

{p I PEX and ptY} •

Lemma 8. For two unequal networks of size N

D is not less than /;lf ;N2

Proof. Since X ~ Y , there exists at least one

connection of two input lines to two output lines

which cannot be realized on Y , but can be reali

zed on X • Naturally Y cannot realize ~

permutation which includes this connection. On

the other hand, implementation of this specific

connection of pairs on x requires the setting

of no more than two exchange boxes (out of N/2)

in each of the m stages. The maximum number of

exchange boxes involved is therefore

the other ~ -2m free. Therefore

alize at least 2 (1' -2m) = ./Ji;N2

2m , leaving

X can re-

permutations

each of which contains the connection-pair which

cannot be realized on Y • Q.E.D.

Before we conclude our remarks on three-pass

networks, let us return to right-invariant permu

tations. So far, we only made use of selected

right-invariant permutations in proving the exis-

tence of classes , 0 and , 1 The practical

significance of rig~t- anf left-invariance lies

in the fact, that the permutations having this

property can be used to characterize classes of

+
permuations performable in two passes. If X is

the subset of right-invariant permutations on a

network X , then all the permutations in the set
+ +

XXXUXXX can be performed in two passes. For

example: B = Qp = nr4r 3 = nr3 (because r 4E0) -

the shuffle-exchange network can perform in two

passes all the permutations admissible on the

Baseline. In addition right- and left-invariance

may be used to recognize or prove admissibility

of a given permutation by its possible decomposi-

tion using the identity + x =xx • We proceed

with some additional lemmas concerning right-inva

riance. Identical statements hold for left-inva-

-1 -1 -1 -1
(l) s'si = qlplsp2q2qlpl slp2 q2

-1 -1
qlpl (ssl)p2 q2

-1 -1 -1 -1 because p2 q2q1p1 = P2 Pp1 = e

The above is true for any s ' E Y, therefore,

since xs1 = X we conclude that Ysi = Y or
I + sl e Y •

(2) Similarly, we can show that s2 e Y •

-: -1 -1 -1
(3) s~s; = F(sl)F(s2) = qlpl slp2 q2qlpl s2p2 ~2

-1 -1
qlpl (s1s2>P2 q2 = F(sls2) • Q.E.D.

riance. By the same method we can prove:

Lenuna 9. The set of permutations admissible on a

network belonging to To or T1 contains a right

invariant permutation subgroup.

Proof. The existence of a single right-invariant

permutation for each network type has already

been demonstrated: r4 in To and r2 in Tl

In order to satisfy the conditions stated in Co

rollary 1, we have t~ show, that all To and T1

type networks contain the identity perinutation.

Let XETO , hence X = p11lpp2 , where

P2P1 = P1P2 p. Assume qen such that
-1 -1

plqpp2 = e . Then q =Pl P2 P = e E Q. Similar-

ly for XETl Q.E.D.

Lemma 10. The right-invariant permutation sub

groups of all networks in To are isomorphic to

each other.

Proof. Let x,Y e To ,where x = p1npp2

P1P2 P2P1 P and y = q1Qpq2 ;

p

Since we are dealing with networks of the same

size, there is a one-to-one mapping between X
-1 -1

and Y: Y = F(X) = qlpl Xp2 q2

Let s,s1 ,s2 & x. Let s' ,si,s2 & Y, defined as

s' = F(s) s' F(s1)
1

, s' 2
F(s2) To prove

++ + + that ~y x is isomorphic to y) we must

F (s1) ,F (s2) eY
+

show that for any sl,s2 E X

F (s1)F (s2) = F(s1s 2) [7].

342

Lemma 11. The right-invariant permutation sub-

groups of networks in Tl

each other.

are isomorphic to

Since neTo and lleT1 , it follows directly

from the last two lemmas that there is the same

number of right-invariant permutations in any net

work belonging to To or Tl •

IV. Summary and suggestions for further research.

By generalizing the Baseline network, four di

stinct subclasses of two-pass interconnection

networks were defined. The existence of many

different networks in two of these subclasses was

proven and exemplified. It was also shown that

many different networks exist capable of perform

ing arbitrary permutations in no more than three

passes, thereby generalizing the property that had

been specifically proven (3, 8] for the shuffle

exchange network. Table 1 below shows that some

of the most widely known multistage blocking net

works are three pass networks.

We should emphasise several points about the

class of three-pass netwroks. When performing

arbitrary permutations in three passes, the middle

(second) pass realizes a constant permutation spe

cific to the network used but independent of the

overall permutation being implemented. Hence the

number of variable (permutation dependent) control

bits is equal to that of two-pass networks. Fur

thermore, a large set of permutations can be

implemented in less than three passes. Finally,

it should be remembered that any of the three-pass

networks (including the shuffle-exchange) may turn

out to be two-pass, since it was defined as capa

Lle of performing an arbitrary permutation in !!2_

~ than three passes.

Table 1. Classification of some well-known net-

works under individual switch control.

Network Relation Subclass Number of
to B or E passes

B, Baseline eBe So 2

n, Shuffle- eBp , eEr To :t1 3
exchane
(Omega)

-1 A A

c , Inverse eBp , eEr TO Tl 3
Indirect
Binary
n-Cube

-1 A A

F , Inverse eBP , eEr To TI 3
Flip net-
work

-1 A

n , Inverse PBe TO 3
SE (Inver-
se Omega)

c, Indirect pBe To 3
Binary
n-Cube

A

F, Flip pBe To 3
network

The methods used in this paper and the lemmas

proven lead to some additional interrelated ques

tions:

(1) How many different networks are there in each

of the subclasses So,S1,To and TI ?

(2) Are there two or three-pass netwoks not topo

logically equivalent to the Baseline network?

(3) Is every permutation admissible on some two or

three-pass network?

(4) Is it possible to synthesise a two or three

pass network of size N which admits an arbi

trary subset of S not exceeding IJ!f per

mutations?

(5) Are there iterative (single-stage recirculat

ing) networks other than Q and' n~l, ,, capable

of performing arb~trary permutations in two

or three passes?

343

REFERENCES

[l] Wu, c., and Feng, T., "The reverse exchange

interconnection network ",

1979 International Conf. on Parallel Pro

cessing, pp. 160-174.

[2] Wu, c., and Feng, T., "Routing techniques

for a class of multistage interconnection

networks", 1978 International Conference on

Parallel Processing, pp. 197-205.

[3] Shimer, A., and Ruhman, s., "Emulation of

universal interconnection networks with the

shuffle-exchange",

Report No. ASR2, Dept. of Applied Mathema-

tics, The Weizmann Institute of Science,

Rehovot, Israel, August 1979.

[4] Lawrie, D., "Access and alignment of data in

an array processor",

IEEE Trans. on Comput., Vol. C-24, No. 12,

Dec. 1975, pp. 1145-1175.

[5] Pease, M.C., "The indirect binary n-cube

microprocessor array",

IEEE Trans. on Comput., Vol. C-26, May 1977,

pp. 458-473.

[6] Siegel, H.J., "The universality of various

types of SIMD machine interconnection net

works", Fourth Annual Syrop. Computer Archi

tecture, Mar. 1977, pp. 70-79.

[7] Herstein, I.N., "Topics in algebra",

XEROX College Publishing, Lexington, MA. 1975.

[8] Parker, D.S., "Notes on shuffle/exchange

type switching networks",

IEEE Trans. on Comput., Vol. c-29, No. 3,

March 1980, pp. 213-222.

[9] Baizer, B., "The analysis and synthesis of

signal switching networks", Proc. of the

Symp. on Mathematical Theory of Automata,

New York, April 1962, Polytechnic Press of

the Polytech. Inst. off Brooklyn, pp. 563-576.

0
I
2
3
4
5
6
7

0
I
2
3
4
5
6
7

0
I
2
3
4
5
6
7

0
I
2
3
4
5
6
7

B
0 0
I I Table of Differences
2 2
3 3
4 4

Con- Network
5 5 nection Designation
6 6
7 7 B X1 X2 X3 X4

X1 =p Bpi'; P1 = (34)
0
I
2
3
4
5
6
7

o-o}
1-1

2-0}
3-1

3-0} 1-1

o--o}
2-1

N

N

N

N

y N N N

N y N N

y y y N

N y y y
0
I
2
3
4
5
6
7

N =connection not possible

Y =connection possible

X3 = r Br r.=(24)(35)
0
I
2
3
4
5
6
7

0
I
2
3
4
5
6
7

X4 =p3BP3; p3 = (0246) (1357)
-------- 0 0

I
2

I
2
3 3
4 4
5 5
6 6
7 7

/\

Exam Ries of /J_o type net works
{permutations are given in cycle format)

Figure 1

344

0
I
2
3
4
5
6
7

0
I
2
3
4
5
6
7

w _.,_
l.n

0
I

2
3

4
5

6
7

E=Bo-- 1

E -1
conflicts = 0- B

0 + ------
I

2
3

4~

5

6
7

0
I

2
3

4
5

6
7

0
I

2
3

4
5

6
7

An example proving +hat E 'f:. E -i

Figure 2

The connection

o-o} can be

I - 2 implemented

The connection

o-o}
cannot be

1- 2 implemented

(al

0
I
2
3
4
5
6
7

E-~o-B

(b) rE-1r = pBr = rO-Br;

0
I
2
3
4

5
6
7

0

i~! 6
7

EE=S

o-o}
1-2

1--2}
2-0

cannot be
implemented

c..Q.Illli21 be
implemented

r E- 1 r r E- 1 r = E-1 E-1 = S

o-o}
1-2

1-2}
2-0

~be
implemented
can be
implemented

(cl 0-- 1 E-1 0- = BO- 0--IE-10-0--IE-10- = E-1E-1=S

0
I

2
3
4
5
6
7

I\

0
I
2
3
4
5
6
7

o-o}
1-2

Examples of {32 type networks

Figure 3

can be
implemented

I\

X1 ETo pl =(0257) (14) (36) p2:(0752}
0 0
I I
2 2 THE CONNECTION
3 3

{~::~} ~be realized 4 4
5 5
6 6
7 7

I\

X2 ETo pl = (2 5 7) (14)(36) p2= (275)
0 0
I I
2 2
3 3

{6--.o} 4 4
1 --. 1 cannot be realized

5 5
6 6
7 7

/\

X 3 ET1 Pl= (0167) p2= (0761)(24)(35)
0 0
I I
2 2
3 3 {;=: ~} cannot be realized 4 4
5 5
6 6
7 7

/\

X4 ET1 Pl = (0167) l35) p2=(0761) (24)
0 0
I I
2 2
3 3
4 4 {;:;}can be realized
5 5
6 6
7 7

/\ I\

Examples of To and T1 type networks

Figure 4

346

MODELLING CONTROL STRATEGIES FOR ARTIFICIAL INTELLIGENCE APPLICATIONS

A. Giordana + P. Laface++ L. Saitta+
+Istituto di Scienza dell'Informazione

Universita di Torino

++
C.E.N.S.
Istituto di Elettrotecnica
Politecnico di Torino Corso Massimo D'Azeglio 42

10125 - TORINO (Italy)

Summary

Many problems in the domain of Artificial Intelli
gence (A.I.) require great computation power and
are suitable for parallel processing(i]· This
paper presents a modification of Hewitt's Actor
System [6··&], oriented to these problems, in parti
cular processing of data from the real world, such
as continuous speech or visual images. In these ca
ses various sources of errors affect the input data
and also the a-priori knowledge is ambiguous and
uncertain.
The described here model takes into account these
peculiarities, devoting particular attention to
the flow of messages and the scheduling philosophy.
In the last decade many efforts have been made to
ward the application of parallel processing to this
kind of problems;the use of traditional programm
ing techniques, which do not provide distributed
and non-deterministic control structures, leads to
complex implementations, unsuitable for formal des
cription and rich of ad hoc solutions.
The approach we propose is based on the analysis
of the specific characteristics of the said class
of problems, in particular:
- Uncertainty and great number of data to be pro

cessed.
- Intrinsic concurrent nature of the decision al

gorithms.
- Complexity of the control structure and therefo

re need of introducing non-deterministic construct.
- Type of computations to be executed, simple but

very frequent.
- Natural structuration of the data base and of the

informations utilized by the algorithms, which
are suitable to be distributed.

Last point, i.e. data base distribution, is one of
the most relevant factor in order to obtain a high
degree of parallelism (4,6J, The interest for paral
lel processing[~ 15Jis then quite obvious: many con
current tasks, performed by asynchronous processors,
will hopefully speed up the search of a solution.
In fact many alternatives may be followed at the
same time and results evaluated and compared. An
heuristic search strategy selects a subset of pos
sible alternatives, by taking into account informa
tion of various kind about the problem(~! This in
formation can be described by means of Knowledge
Sources (KSs), which will help in solving the pro
blem. To this aim, the KSs are hierarchically lin
ked together in such a way that the search for a

Corso Duca degli Abruzzi 24
10129 - TORINO (Italy)

solution may be performed at different levels of
analysis. Each KS can work at a given level, by
utilizing the results obtained by those working at
lower levels.The KSs cooperate to the emission of
hypotheses about solutions,according to the para
digm "Hypothesize and Test", i.e. each KS can emit
a partial hypothesis, which will then be verified
by the KS itself or by others(1J, This hypothesis
emission can be activated whether bottom-up (data
driven) or top-down (model driven}; bottom-up sti
mulation occurs when a nucleus of a hypothesis is
drawn directly from the data; top-down invocation
occurs when a KS calls another one at a lower le
vel to verify a part of the hypothesis; each KS can
also predict some part of the input data, when com
prehension was not satisfactory. Therefore in such
a system we have a continuous flow of information
in the two directions. Moreover the relations bet
ween the elements contained in a KS (i.e. 'concepts'
in a semantic network) are expressed by means of
AND/OR graphs. This KS organisation and hypothesis
formation process can be favorably implemented by
means of non deterministic constructs (i1,9J, In an OR
node of an AND/OR graph, for example,progress can
be evaluated on one basis of the first satisfacto
ry verification without waiting for all the other
components.
Various models of compvtation, based on the idea of
communicating processes, have been recently propo
sed [6,o/1 10]; in particular Hewitt's Actor System
has been developed as a general tool for modelling
A.I. control strategies.The model we propose deri
ves from the Actor System and has been designed ta
king into account the particular class of problems
descri~ed.Fundamental objects of the Actor System
are the Actors, potentially active pieces of know
ledge, communicating among themselves by means of
messages. In Hewitt's model, messages are also ac
tors, but here we will refer to actor-messages sim
ply as to messages.Messages contain data structures
and possibly descriptions of other actors to be cre
ated. The receipt of a message by an actor is an
Event; this activates the actor itself, which in
turn processes the message, updating its local know
ledge; moreover it may send new messages and even
tually create new actors. An actor activation must
always terminate; any other message arriving during
this phase, must wait for the end of the current ac
tivation. Interference between messages is resolved
by a fair arbiter.

347

CH1569-3/80/0000-0347$00.75 © 1980 IEEE

As the activation of an actor can depend upon the
random sequence of its events the Actor System in
cludes a potential non-determinism (within the ac
tor). This non-determinism can be favorably exploi
ted by the control strategies previously described.
Furthermore, the Actor System shows a dynamic and
flexible structure, in that actors can be created
and then removed from the system, when no longer ne
eded. This last feature is fundamental for us, be
cause it is impossible to have all the possible ins
tantiations of the KSs a priori. On the other hand,
other fundamental features for our applications are
not explicitely included in Hewitt's model. First
of all, in the Actor System the receipt of the mes
sages by an actor is controlled by a fair arbiter,
in order to avoid the starvation. In this way it is
not possible to·control the message flow outside the
actors and any scheduling strategy must then be in
cluded in the actor itself. On the contrary, in our
case processing of the most reliable hypotheses must
always be preferred to the other ones, when compe
ting with others for the same resource (e.g. the ac
tivation of the same actor). In fact the starvation
of a bad hypothesis is not relevant. Thus in the
said kind of applications, the direct implementation
according to the Actor System, leaves the job of de
signing all the scheduling strategy supports to the
user, complicating the programming task.
Another specific feature of our problem is the pre
sence of two flows of information, i.e. bottom-up
and top-down. As the flows may have not the same
weight in different situations, it is better to ha
ve two autonomous control policies. The fundamental
difference between our model and Hewitt's is. the po
licy of the message reception; in particular·:
- A set 'e of different classes of messages is defi

ned.
- When an actor sends a message (to another), it

assigns both a class identifier c e 'e and a prio
rity P•

- The actors receive the messages served by an arbi
ter which then orders and dispatches them accor

.ding to a user definible function fs(c,pm(c) ,Q)

where c is the class identifier, Pm(c) is the max
imum priority of the waiting messages of class c,
and Q is a parameter settable by the actor. In this
way it is possible to specify fs as function de
pending on Q in order to dynamically assign a pre
ference to the messages of a particular class.

If a unique class of messages is defined and the
same priority assigned to all the messages, the ori
ginal Actor System fair scheduling is obtained.
Fur.therm.ore, our model can be described in terms of
Hewitt's model. In fact, the so defined actor can
be considered as a compound of tl&IO A0 p and As actors,
where As is a Guardian[gJ, which fairly receives the
messages and then dispatches them to A0 p according
to the described function fs.

We will now describe the application of the compu
tation model to the control of the semantic knowled
ge source for a Speech Understanding System(111
The semantic networkltdconsists of a graph, whose
nodes represent concepts and whose arcs represent
compatibility conditions among concepts. The graph
is partitioned into subgraphs (Islands), which are,
in turn, sets of correlated concepts with direct
access to the input data. Fig. 1 shows the levelled
hierarchy of the nodes in the 8raph: at each level
the relationships among the nodes at the lower level
are expressed by means of AND/OR relations [3 J.
Fig. 1 shows also the implementation scheme of the
KS in terms of actors. Each o<node (a memory actor
which knows the AND/OR relations among a set of no
des at a lower level) is associated to a Controller
actor C<>< , that contains o< in its acquaintances.
(The acquaintances of an actor A are constituted by
the set of all other actors which are known by A).
The motivation for introducing C ..(is the following:
the same node may be called during a top-down pro
cess (by means of a message belonging to the class
Messages) or during a bottom-up process (by means
of a message belonging to the class Stimuli). An
actor A can communicate with actor B only if it cre
ates or is acquainted to B. In this case the two
previously mentioned strategies would proceed inde
pendently, without intercommunication and would du
plicate all actors called by both. On the contrary,
to realize an effective strategy of cooperation and
exchange of results, for each o< node, you introduce
the C .,,_ controller actor, which is globally known
and predefined at the time of system initialization.
Co(receives the calls to 0(and coordinates the cre
ation of the new actors, needed for developing the
two strategies. We notice that, because of the great
number of requests which, in general, Co(receives,
the controller may make a wide use of the facilities
introduced in the model: differentiation between
the bottom-up and top-down processes, flexibility
of the message receipt scheduling, consent to the
starvation of some request. In fact this is how the
controller hinders the proceeding of the bad hypo
the3es, thus limiting the number of computations to
be executed.
Finally, an Initializer actor manages the access to
the input data.
The actors described in Fig. 1 represent the a pri
ori knowledge of the system. But, when actual data
are processed, other actors will be dynamically ('F,~J,)
created. In fact, when a controller Co1, i:;eceives
a request for verifying a hypothesis, it develops,
by creating a Producer actor Po< , the AND/OR graph
contained in its acquaintances and produces the ne
cessary AND/OR actors. The latter, in turn, will
send (via IF actors) requests to the controllers of
lower nodes and so on. The answers will return to
Co(via the same path. When a Co(controller is

348

stimulated again, it will not repeat the verifica
tion process, but send the previously found results.
The experimental system based on this model is now
being implemented on a DEC-10 using SIMULA 61-,

References

[l] - R. Fennell, V. Lesser: "Parallelism in AI Pro
blem Solving - A case study of Hearsay II", IEEE
Trans. C-26, 98-111 (1977)

[2] - L. Kanal:"Problem Solving Models and Search
Strategies for Pattern Recognition", IEEE Trans.
PAMI-1, 193-201 (1979)
~N. Nilsson:"Problem Solving Methods in AI",
McGraw Hill, New York (1971)
[4] - P. Rovner, B. Nash-Webber, W. Woods:"Control
Concepts in a Speech Understanding System", IEEE
Trans. ASSP-23, 136-140 (1975)

Hierarchical organization of KSs.

349

[SJ - v. Lesser, L. Erman:"An experiment in Dis
tributed Interpretation", CMU-CS-79-120 (1979)

[6} - C. Hewitt: "Viewing Control Structures as
Pattern of Passing Messages", Artificial Intelli

gence, ~. 323-364 (1977)
(7] - R. Atkinson, C. Hewitt:"Synchronization in
Actor System", Proc. 4-th SIGPLAN-SIGAT Symposium,
Los Angeles, (1977)
[SJ - c. Hewitt, G. Attardi, H. Lieberman:"Speci
fying and Proving Properties of Guardians for Dis

tributed Systems", MIT Memo 505 (1979)
f9) - C. Hoare:"Cornmunicating sequential Processes"
Comm. ACM Q, 666-677 (1978)
[io]- P. Brinch Hansen:"Distributed Processes- A
concurrent Programming Concept", Comm. ACM Q,
934-941 (1978)

[llJ- M. Coppo, L. Saitta:"Semantic Support for a
Speech Understanding System", Proc. ICCS (Washing
ton, 1976), pp. 520-524

[12) - R. De Mori, S. Rivoira, A. Serra: "A Speech
Understadding System with Learning Capability",
Proc. IJCAI (Tbilisi, 1975), pp. 468-475

-~·;1;tf,:_;:;

Fig.2 -·Example of the expansion of an

OR node.

