
o~
z co
~=
J:ll~
:a-

~~ PROCEEDINGS
m:ZJ
r-Z OF THE

~g 1981 INTERNATIONAL CONFERENCE
nz .
m> ON
tnr-

~g PARALLEL PROCESSING
C)Z

.,, August25-28, 1981

m
ii: = :;· m
~z
;.... n =· m
I»
~
Q.

c....
CD
0
3
CD

:::il::ll
0 -::::r en -CD

~

ISSN 0190-3918
also listed under

PROCEEDINGS
OF THE

1981 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING

Ming T. Liu and Jerome Rothstein
Ohio State University

Editors

Papers presented on
August 25-28, 1981

Co-Sponsored by

Department of Computer and Information Science
OHIO STATE UNIVERSITY

Columbus, Ohio

and the

IEEE Catalog Number 81CH1634-5
Library of Congress Number 79~640377

IEEE Computer Society

In Cooperation with the

Association for Computing Machinery

IEEE Catalog No. 81CH1634-5
ISSN 0190-3918

International Conference on Parallel Processing.
Proceedings of the International Conference on Parallel

Processii1g. 1972-
cNew York, Institute of Electrical and Electronics Engi
neers; available from the IEEE Computer Society1

v. ill. 29 cm. annual.

Title varies slightly.
Conferences for 1972- co-sponsored by the Dept. of Elec-

trical and Computer Engineering, Wayne State University, Detroit,
and the IEEE Computer Society in cooperation with the Association
for Computing Machinery.

Key title: Proceedings of the International Conference on Parallel
Proeessing, ISSN 01~3918.

1. Parallel processing (Electronic co1nputers) I. Institute of
IDlectrlcal and 1'Jlectronics Engineers. II. Wayne State University,
Detroit. Dept. of I<::lectrical and Computer Engineering. III. ll<JJt1E
Computer Society. IV. Association for Computing Machinery. V.
'l'ltle.

Q.A.76.6.I 548a

Library of Congress

001.6'4

79

79-640377
MARC-S

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for pri
vate use of patrons those articles in this volume that carry a code at the bottom of
the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are
permitted to photocopy isolated articles for noncommercial classroom use without
fee. For other copying, reprint or republication permission, write to Director, Publish
ing Services, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copy
right © 1981 by The Institute of Electrical and Electronics Engineers, Inc.

IEEE Catalog Number 81CH1634-5
Library of Congress Number 79-640377
Computer Society Number 354
ISSN 0190-3918

Order from: IEEE Computer Society
Post Office Box 80452
Worldway Postal Center
Los Angeles, CA 90080

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

The Institute of Electrical and Electronics Engineers, Inc.

ii

I'
I

PREFACE

Tenth anniversaries are traditional occasions for reflecting on the past, evaluating
trends in the current situation, and speculating on the shape of things to come. The last ten
years have seen the growth and maturation of the International Conference on Parallel
Processing from a two-day invitational meeting of RADC contractors (1972) at which seventeen
papers on diverse aspects and applications of the Rome Air Development Center Associative
Processor (RADCAP) were presented, to a truly international meeting covering all phases of
parallel and distributed processing. There were 136 papers submitted to this conference, an
all-time record, compared to 117 in 1980, 93 in 1979 and 1978, and over 80 in 1977 and 1976.
The number of papers from abroad has also grown, being 34, 31, and 23 in 1981, 1980, and 1979
respectively, from 16, 10, and 10 countries. As in previous years, the high quality of the
papers submitted made final selection extremely difficult. We wish to thank the 214 referees,
including 87 non-authors, for their indispensable aid in selecting the 66 finalists for the 14
sessions of contributed papers. Each manuscript submitted was sent to three referees; only
their prompt and conscientious help, despite their other obligations, made it possible to have
the proceedings available on time.

An innovation this year, replacing the traditional keynote speech of the ceremonial
session the evening before regular sessions begin, is the panel of five invited speakers on the
history of parallel processing. Professor Tse-yun Feng organized it, for which we are most
grateful. He is acutely aware that much important history is inevitably hidden from those
participating in it, and therefore requests help from attendees and others, in compiling as
complete a record as possible. Now is the time to do it, before memories fade and pioneers
pass on.

Another innovation is the tutorial on parallel processing the day before the conference.
Such tutorials have become increasingly popular adjuncts of many meetings, and this one was set
~P in response to suggestions made by attendees of previous conferences. We hope it
establishes a new tradition of excellence.

A special issue of the IEEE Transactions on Computers on Parallel and Distributed
Processing is planned for December 1982. Professors Ming T. Liu and Jerome Rothstein are the
guest editors. Papers presented at this conference or modifications thereof will be considered
for inclusion as will others submitted by respondents to this and other calls for papers
appearing elsewhere. The closing date for submission of manuscripts is Jarroary 1, 1982. One·
hundred pages have been allocated to the special issue; we hope it will be of permanent
reference value.

The growth of interest in parallel and distributed processing in the last decade has been
explosive, and will doubtlessly continue unabated. This conference could easily have grown
very large, with parallel sessions and many more papers. However, the attendees have voted,
year after year, against departing from the traditions of no parallel sessions, emphasis on
attendance by active workers in the field, and of holding the conference far from the competing
attractions of a metropolitan or resort milieu. The opportunities for prolonged, intense,
personal interactions with established and upcoming researchers were felt to outweigh
disappointments like being put on a waiting list and not being able to attend because of the
rarity of cancellations. All this can change in the future, but only if·the attendees wish it
to.

We would like to thank Dean Donald D. Glower, College of Engineering, The Ohio State
University for his constant encouragement, and Professor Tse-yun Feng for his sage advice and
counsel about the endless details of managing this enterprise. The assistance of Professor
Chuan-lin Wu is also appreciated. Last, but not least, we appreciate the devoted assistance of
Jy-jine Lin in computerizing so much of the routine involved.

iii

Ming T. Liu and Jerome Rothstein
Technical Program Co-Chairmen

TABLE OF CONTENTS

Page

SESSION 1: HISTORY OF PARALLEL PROCESSING

Parallelism in Computing • 1
S. Fernbach

History of Parallel Processing at Goodyear Aerospace • • • • • • • • • • • • • • • • • • 5
W. C. Meilander

Centrally-Controlled Parallel Processors • 16
D. L. Slotnick

The History of Parallel Processing at Burroughs • 25
R. Stokes and R. Cantarella

Control Data 6600 and STAR-100 •
J.E. Thornton

SESSION 2: LANGUAGES AND COMPILERS

Programming Distributed Applications in Ada: A First Approach
S. A. Schuman, E. M. Clarke Jr., and C. N. Nikolaou

SALAD: A Distributed Compiler for Distributed Systems ••••••••
T. w. Christopher, O. El-Dessouki, M. Evens, H. Harr, H. Klawans,
P. Krystosek, R. Mirchandani, and Y. Tarhan

33

38

50

Measurements of an Optimizing Compiler for a Vector Computer • • • • • • • • • • • • • • 58
J.C. Knight and D. D. Dunlop

The Symbolic High-Level Language Programming of an MIMD Machine • • • • • • • • • • • • 61
D. Klappholz

A Parallel Heterarchical Machine for High Level Language Processing • • • • • • • • • • 64
A. Guzman

SESSION 3: DISTRIBUTED SYSTEMS AND NETWORKS

Distributed Processing Approach for the International Public Telegrams Message • • • • • 72
Switching System

J. T. Wang and Y. S. Lee

Multiterminal Reliability Analysis of Distributed Processing Systems • • , • , • • • • • 79
A. Grnarov and M. Gerla

Open Queueing Networks with Finite Capacity Queues • • • • • • • • • • • • • • • • • • • 87
A. A. Nilsson and T. Altiok

SESSION 4: NUMERICAL ALGORITHMS
---··~- -- --···-·-··'--"'--~--- ----····---··--·~-.-

Block Tridiagonal System Solution on Reconfigurable Array Computers •••••• , • , • , 92
R. N. Kapur and J. c. Browne

On Mapping Non-uniform P .D.E. Structures and Algorithms onto Uniform Array • • , • • • • 100
Architectures

D. Gannon

A Practical Algorithm for the Solution of Lower Triangular Systems on a P£1r.allel • • • • l06
Processing System

R. Montoye and D. Lawrie

v

A Pipelined Digital Architecture for Computing a Multi~dimensional Convolution •• • • • 109
K. Y. Liu

SESSION 5: ASSOCIATIVE PROCESSORS AND PROCESSING

Real-Time LISP Using Content Addressable Memory • 112
J. G. Bonar and s. P. Levitan

The M.A.P. Project - An Associative Processor for Speech Processing • • • • • • • • • • 120
V. Cordonnier and L. Moussu

Airborne Associative Processor (ASPRO)
J. M. Surprise

. 129

Modelling of Large-Scale Markov Chains with Associative Pipelining • • • • • • • • • • • 131
S. Y. Berkovich

SESSION 6: MULTIPROCESSOR ARCHITECTURES

Reconfiguration of Dynamic Architecture into Multicomputer Networks • • • • • • • • • • 133
S. P. Kartashev and s. I. Kartashev

Design of a General-Purpose Multiprocessor with Hierarchical Structure • • • • • • • • • 141
J. Sasidhar and K. G. Shin

SESSION 7: RECENT RESULTS I

A Block-Driven Data-Flow Processor
T. L. Chang and P. D. Fisher

. 151

Processor Allocation in Data Driven Systems - Two Approaches • • • • • • • • • • • • • • 156
K. J. Mundell, M. w. Linder, and s. E. Conry

Dataflow Approach to Discrete Simulation • .• 158
B. Jayaraman

Architecture of a Multiprocessor Using Data Flow at a Program Block Level • • • • • • • 160
M. Lecouffe

High Level Specification of Resource Sharing • 162
D. Leinbaugh

Exploitation of Concurrency by Virtual Elimination of Branch Instructions • • • • • • • 164
N. Magid, G. Tjaden, and H. Messinger

Experiment in Parallel Processing of a Large Scientific Code • • • • • • • • • • • • • • 166
I. Y. Bucher, B. L. Buzbee, and P. o. Frederickson

Iterators and Concurrency • 168
A. T. Berztiss

SESSION 8: NON-NUMERICAL ALGORITHMS

Optimal Parallel Algorithms for the Connected Component Problem • • • • • • • • • • • • 170
F. Y. Chin, J. Lam, and I. N. Chen

Speedup Bounds for Continuous System Simulation on a Homogeneous Multiprocessor • • • • 176
E. H. D'Hollander

Analytical Models to Explain Anomalous Behavior of Parallel Algorithms
B. w. Weide

183

Parallel Algorithms for the Minimum Spanning Tree Problem • • • • • • • • • • • • • • • 188
N. Deo and Y. B. Yoo

vi

1:
I

I

SESSION 2_:_ SPECIAL-PURPOSE PROCESSORS

Parallel Image Correlation • 190
L. J. Siegel, H.J. Siegel, and A. E. Feather

Parallel Computer Architectures for Image Processing • • • • • • • • • • • • • • • • • • 199
A. P. Reeves

Signal Processing with Systolic Arrays •••• • • • • • • • • • • • • • 207
R. w. Priester, H. J. Whitehouse, K. Bromley, and J. B. Clary

Parallel Processing of the Kalman Filter • • • • • • • • • • • • • • • • 216
A. Andrews

SESSION 10: INTERCONNECTION NETWORKS

On the Rearrangeability of a (2logN-l) Stage Permutation Network •••••• • • • • • • 221
K. Y. Lee

Performance and Implementation of 4x4 Switching Nodes in an Interconnection • • • • • • 229
Network for PASM

R. J. McMillen, G. B. Adams III, and H. J. Siegel

On Non-equivalent Multistage Interconnection Networks •••••••••
D. P. Agrawal and s. c. Kim

234

Interconnection Topologies for Fault-Tolerant Parallel and Distributed Architectures • • 238
D. K. Pradhan

Fault Diagnosis and Design of Fault-Tolerant Concentrators • • • • • • • • • • • • • • • 243
S. Sowrirajan and S. M. Reddy

SESSION 11: VLSI ARCHITECTURES

An Algorithm for Efficient Layouts of Parallel Suffix Solutions ••••
A. Bilgory and D. D. Gajski

245

Pin Limitations and VLSI Interconnection Networks • • • • • • • • • • • • • • • • • • • 253
M. A. Franklin and D. F. Wann

Linear Recurrence Systems for VLSI: The Configurable, Highly Parallel Approach • • • • • 259
D. B. Gannon and L. Snyder

Embedding a Tree in the Nearest Neighbor Array • 261
A. Mukhopadhyay and R. K. Guha

A Constructive Approach to Fault Tolerance in VLSI-based Systems • • • • • • • • • • • • 264
S. E. Butner

SESSION 12: ARRAY PROCESSORS AND PROCESSING

Synchronous Nets for Single Instruction Stream - Multiple Data Stream Computers • • • • 266
A. J. Krygiel

Minimization of Interprocessor Communication for Parallel Computation • • • • • • • • • 274
K. B. Irani and K. W. Chen

SESSION 13: Recent Results II

Parallel Hashing Hardware for Text Scanning Applications • • • • • • • • • • • • • • • • 282
F. J. Burkowski

A Parallel Processor Electronic Target Signal Generator for Electro-Optical Seekers • • 287
T. N. Long, J. T. Randolph, and M. J. Sinclair

vii

Design of a Mixed Voice/Data Computer Network for Packet-Switching Communication • • • • 289
J. D. Kao, J. T. Wang, T. S. Kuo, and G. C. Chow

A New Type of MIMD-Organized Multiprocessor Handling Two-Stage Parallelism by Means • • 292
of a Dynamically Configurable Architecture

R. Buhrer

Parallel Processing in Computer Communications • 294
A. Faro and G. Messina

Process Synchronization in the Parallel SIMULA Machine • • • • • • • • • • • • • • • • • 297
M. P. Papazoglou, P. I. Georgiadis, and D. G. Maritsas

Architecture of the First Vector Computer of China • • • • • • • • • • • • • • • • • • • 300
q. S. Gao and X. Zhang

MAX: An Algorithm for Finding Maximum in an Array Processor with'a Global Bus • • • • • 302
S. H. Bokhari

A Practical Parallel Algorithm for Reporting Intersections of Rectangles • • • • • • • • 304
A. L. Chow

SESSION 14: PERFORMANCE EVALUATION

Cache Effectiveness in Multiprocessor Systems with Pipelined Parallel Memories • • • • • 306
F. A. Briggs and M. Dubois

A Performance Model for Multiprocessors with Private Cache Memories • • • • • • • • • • 314
J. H. Patel

An Analysis on a New Memory System for Conflict-free Access • • • • • • • • • • • • • • 318
Y. K. Tzu, S. T. Yang, and C. H. Yue

Modeling of Shared-Resource Systems Using the Central-Server Queueing Model • • • • • • 325
N. C. Strole and P. N. Marinos

Approximate Models for Multiple Bus Multiprocessor Systems • • • • • • • • • • • • • • • 329
M. A. Marsan and M. Gerla

SESSION 15: SCHEDULING

The Analysis of a Decentralized Control Algorithm for Job Scheduling Utilizing • • • • • 333
Bayesian Decision Theory

J. A. Stankovic

Coordinating Large Numbers of Processors • ~ • • 341
A. Gottlieb, B. D. Lubachevsky, and L. Rudolph

Parallel Scheduling Algorithms
E. Dekel and s. Sahni

350

Optimal Load Balancing Strategies for a Multiple Processor System • • • • • • • • • • • 352
L. M. Ni and K. Hwang

Task Assig11111ent in Distributed Multiprocessor Systems • • • • • • • • • • • • • • • • • 358
v. Lo and J. w. s. Liu

viii

AUTHOR INDEX

ADAMS III, G.B. 229 KUO, T.S. 289
AGRAWAL, D.P. 234 LAM, J. 170
ALTIOK, T. 87 LAWRIE, D.H. 106
ANDREWS, A. 216 LECOUFFE, M.P. 160
BERKOVICH, S. Y. 131 LEE, K.Y. 221
BERZTISS, A.T. 168 LEE, Y.S. 72
BILGORY, A. 245 LEINBAUGH, D 162
BOKHARI, S.H. 302 LEVITAN, S.P. 112
BONAR, J.G. 112 LINDER, M.W. 156
BRIGGS, F. A. 306 LIU, J.w.s. 358
BROMLEY, K. 207 LIU, K.Y. 109
BROWNE, J.C. 92 LO, V 358
BUCHER, I. Y. 166 LONG, T.N. 287
BURRER, R. 292 LUBACHEVSKY, B.D. 341
BURKOWSKI, F.J. 282 MAGID, N. 164
BUTNER, S.E. 264 MARINOS, P.N. 325
BUZBEE, B.L. 166 MARITSAS, D.G. 297
CANTARELLA, R. 25 MARSAN, M.A. 329
CHANG, T.L. 151 MCMILLEN, R. J. 229
CHEN, I.N. 170 MEILANDER, W.C. 5
CHEN, K.W. 274 MESSINA, G. 294
CHIN, F.Y. 170 MESSINGER, H. 164
CHOW, A.L. 304 MIRCHANDANI, R. 50
CHOW, G.C. 289 MONTOYE, R.K. 106
CHRISTOPHER, T. 50 MOUSSU, L. 120
CLARKE, JR., E.M. 38 MUKHOPADHYAY, A. 261
CLARY, J.B. 207 MUNDELL, K.J. 156
CONRY,S.E. 156 NI, L.M. 352
CORDONNIER, v. 120 NILSSON, A.A. 87
DEKEL, E. 350 NIKOLAOU, C.N. 38
DEO, N. 188 PAPAZOGLOU, M.P. 297
D'HOLLANDER, E.H. 176 PATEL, J.H. 314
DUBOIS, M. 306 PRADHAN, D.K. 238
DUNLOP, D .D. 58 PRIESTER, R.W. 207
EL-DESSOUKI 50 RANDOLPH, J.T. 287
EVENS, M. 43 REDDY, S.M. 243
FARO, A. 294 REEVES, A.P. 199
FEATHER, A.E. 190 RUDOLPH, L. 341
FERNBACH, S. 1 SAHNI, S. 350
FISHER, P.D. 151 SASIDHAR, J. 141
FRANKLIN, M.A. 253 SCHUMAN, S.A. 38
FREDERICKSON, P.O. 166 SHIN, K.G. 141
GAJSKI, D.D. 245 SIEGEL, H.J. 190,229
GANNON, D. 100,259 SIEGEL, L.J. 190
GAO, Q.S. 300 SINCLAIR, M.J. 287
GEORGIADIS, P.I. 297 SLOTNICK, D.L. 16
GERLA, M. 79,329 SNYDER, L. 259
GOTTLIEB, A. 341 SOWRIRAJAN, S. 243
GRNAROV, A. 79 STANKOVIC, J.A. 333
GURA, R.K. 261 STOKES, R. 25
GUZMAN, A. 64 STROLE, N.C. 325
HARR, H. 50 SURPRISE, J.M. 129
HWANG, K. 352 TARRAN, Y. 50
IRANI, K.B. 274 THORNTON, J.E. 33
JAYARAMAN, B. 158 TJADEN, G 164
KAO, J .D. 289 TZU, Y.K. 318
KAPUR, R.N. 92 WANG, J.T. 72,289
KARTASHEV, S.I. 133 WANN, D.F. 253
KARTASHEV, S .P. 133 WEIDE, B.W. 183
KIM, S.C. 234 WHITEHOUSE, H.J. 207
KLAWANS, H. 50 YANG, S.T. 318
KLAPPHOLZ, D. 61 YOO, Y.B. 188
KNIGHT, J.C. 58 YUE, C.H. 318
KRYGIEL, A.J. 266 ZHANG, X. 300
KRYSTOSEK, P. 50

ix

M.A. Abidi
W.B. Ackerman
s. Afshar
D. Agrawal
A. Andrews
Arv ind
J.L. Baer
E.E. Balkovick
B.W. Ballard
U. Banerjee
J .A. Bannister
T.P. Barnwell
K.E. Batcher
H.K. Berg
T.S. Berk
S. Y. Berkovich
B Berra
A. T. Berztiss
B. Bhargava
L. Bic
A. Bilgory
J.G. Bonar
F .A. Briggs
M.E. Brown
R.E. Bryant
F.J. Burkowski
S.E. Butner
P. Chan
K.M. Chandy
T.L. Chang
I.N. Chen
K.w. Chen
F. Chin
J.C. Chou
w. Chou
A. Chow
Y.c. Chow
T.W. Christopher
W.W. Chu
H. Chang
E.M. Clarke, Jr.
D. Cohen
S. E. Conry
F.C. Crow
K. Culik
D. Degroot
E. Dekel
N. Deo
N. Dimopoulos
P.J. Drongowski
M. Dubois
D.D. Dunlop
R.L. Earle
C.S. Ellis

LIST OF REFEREES

M Evens
G.M. Fachs
K•M· Falavarjani
J. Fawcett
D. Fisher
B.E. Flinchbaugh
C C. Foster
C.R. Foulk
M.A. Franklin
P. Frederickson
M. Freeman
H.C. Fu
D. Fussell
L.W Fung
D.D. Gajski
D. Gannon
O.N. Garcia
H. Gerhauser
M. Gerla
B.K. Gilbert
M.J. Gonzalez, Jr.
R. Gordon
A. Gottlieb
P. Greene
J.P. Hayes
C.J.M. Hodges
L.A. Hollaar
P. Hsia
T.C. Hu
J.C. Huang
K. Hwang
K.B. Irani
R.C. Jaeger
R. Jain
B. Jayaraman
S.F. Jennings
A.K. Jones
H.F. Jordan
R.N. Kapur
S.P. Kartashev
J.L. Kennedy
D.S. Kerr
D. Klappholz
J.C. Knight
H. Kobayashi
H.S. Koch
u. Krieger
R. Kuhn
J, Kuo
A,J, La Salle
D.R. Lawrie
c.c. Lee
H. Lee
K.Y. Lee

x

D. Leinbaugh
S .P. Levitan
R. Lian
L. Lilien
S.L. Lillevic
J.J, Lin
M w. Linder
G.J. Lipovski
J.w.s. Liu
K.Y. Liu
T.S. Liu
V. Lo
T.N. Long
B.D. Lubachevsky
N. Magid
S. Makam
M. Malek
B. Malm
P.N. Marinos
R.c.o. Martins
R.J. McMillen
R.E. Merwin
J,H. Mirza
S, Mittal
C. Mohan
R.K. Montoye
W.W. Myre
A. Mukhopadhyay
K .J. Mundell
W. Murphy
V.P. Nelson
L,M. Ni
C,N. Nikolaou
A.A. Nilsson
E.D. Nugent
M,J, O'Donnell
W.F. Ogden
Y, Oh
A.E. Oldehoeft
E. Oliver
T. Ozsu
D.A. Padua
E.W. Page
J.H. Patel
D. Paulish
D.J. Pease
C.E. Perkins
D .K. Pradhan
F.P. Preparata
R.W. Priester
C.S. Raghavendra
C.V. Ramamoorthy
J, Ramanathan
C.C, Reames

s.M. Reddy
A.P. Reeves
H.K. Reghbati
L. Rudolph
S.K. Sahni
A. Sameh
D.R. Schaefer
S.A. Schuman
K.G. Shin
S.G. Shiva
H.J. Siegel
L.J. Siegel
D,P, Siewioriek
A. Silbershatz
M.L. Skinner
B.w. Smith
C.H. Smith
D.R. Smith
L. Snyder
S. S. Soo
S. Sowrirajan
J, Spragins
V,P, Srini
J .A. Stankovic
N.C. Strole
S. Su
C. Sunshine
J.M. Surprise
P.H. Swain
E. Swartzlander
A.Y. Teng
G.S. Tjaden
H.C. Torng
W.N. Toy
R.H. Travassos
S.K, Tripathi
D.P. Tsay
L, Uhr
L.D. Umbaugh
A.V. Veidenbaum
P.S. Wang
D.F. Wann
R.G. Wedig
Y, Wei
B.W. Weide
H.O. Welch
L.D. Wittie
M. Wolfe
C.L. Wu
S.S. Yau
P.C. Yew
M. Yuschik

PARALLELISM IN COMPUTING

Sidney Fernbach
Control Data Corporation

Livermore, California 94550

Abstract. The parallelism in computers is
reviewed from the early systems, such as the
Univac I to the present day systems. Some degree
of parallelism has always existed, sometimes for
reliability, at other times for improved perfor
mance. With the highly reliable components
currently in production, the main reason for
today's parallelism is to obtain as hi.gh a
performance as possible for the dollar.

There has always been a degree of parallel
ism in digital computers as we know them today.
At first it was for reliability purposes, later
to achieve greater performance as well as for
reliability.

The first commercially available computer was
the Univac I designed initially for Census Bureau
work. rt was designed as a decimal machine, hav
ing 6 bits to represent alphanumeric characters.
Because of the fact that ic used mercury delay
lines, the machine was highly serial, sending
bits down the delay lines one by one. On the
other hand, there was more duplication of curcuits
in Univac I than in most machines built since.
Checking was provided by automatic comparison
of results coming out of duplicate arithmetic
circuits. This of course was done for reliabil
ity purposes, there being 5600 vacuum tubes in the
system. Incidentally this structure was also true
of the BINAC which was conceived earlier than the
Univac.

Other computers of the same vintage, (late
40's and early 50's) used either relays, drums
or delay lin'es and were in the most part serial
in nature. When the electrostatic tube came into
use, soon thereafter, most machines were binary in
nature; fetching, storing and operating on words
in a parallel mode. The earliest of these seem to
have been the Bureau of Standards SEAC and MIT
Whirlwind. Others soon followed -- mostly the IAS
family of computers as well as some of interna
tional flavor such as those built in Manchester,
England. The commercial vendors quickly came out
with their version; IBM with the 701 and ERA with
the 1103. These were.36 bit binary computers.
For the most part these machines were highly
serial.

It was recognized even in the early 50's that
performance could be gained through more parallel
operations, but few designers or manufacturers
thought it important enough to go all out for
performance. Early machines were pushed strongly
by the Department of Defense for use in crypto
graphic work. Later the AEC, needing much high
er performance than that made available with the
701/704 or ll03/ll03A started to stir the pot with
specially built systems incorporating parallel
design. One of the first of these was the LARC.
A version of tbis was specified by the Lawrence
Livermore National Laboratory in early 1955.

0190-3918/81/0000/0001$00.75 © 1981 IEEE

1

It called for a number of processors sharing a
common memory. The initial specs were far more
demanding then those that ended up in the machine
that was finally built. They required both
binary and decimal arithmetic units, for example.
The final version was an all decimal machine
allowing for two CPU's and an I/O processor
to function concurrently. Unfortunately there
never was enough money in the budget to acquire
a 2 CPU system, although hardware allowances
were made for the addition of a second unit. The
two LARC's eventually built and delivered (in
1960) had but one CPU and the one I/O processor.
The memory of the system could have up to 39
independently addressable parts each of 2500
words for a total of 97,500 words. The delivered
systems had only 30,000 words. Input-output was
taken care of by the issuance of summary commands
to the processor unit. The CPU's alerted the I/O
Processor to their presence and also checked for
completion. Memory overlapping allowed for one
instruction to be executed while the operand
address was being transferred to/from memory
and the operand address of another instruction
was being indexed. The memory bus was time slot
ted so that systems had access to one or more of
the 8 time slots of 0.5 sec. each.

The main back-up memory in this system con
sisted of up to 24 magnetic drums which allowed
for 3 read and 2 write operations to take place
concurrently.

The IBM 7030 or STRETCH was designed and
built at the same time as LARC. It also incor
porates a great deal of parallelism. The most
interesting is the look-ahead feature. While
one instruction is being executed several more
may be fetched and interpreted. Unfortunately
branching, if it occurs, forces the look-ahead
to undo what it had already done.

Another interesting machine designed in the
50's was the Gamma 60, designed by Compagnie
des Machines Bull in Paris. This system con
sisted of a variable number of independent
and different processors, sharing common two-way
distribution busses. The processors did not have
to be identical; as a matter of fact there were
four different types. The Central Control Unit
had 2 major subunits, the Transfer Distributor
(TD) and the Program Distributor (PD). Priority
decisions were made in this unit, data transfer
requests being handled by the TD and instruction
requests by the PD.

Another interesting machine of the same
vintage was the RW-400 or Polymorphic Data
System. This was built by Ramo-Wooldrich
Computers. It used a large cross bar switch
to interconnect computer Modules/Buffer
Modules with peripheral device modules. One
of the computer modules acts as master and the

others as slaves. Any data from peripherals may be
requested, stored in a buffer module until needed
then moved directly to the requested computer
module.

The National Bureau of standards also built
a multi processor called PILOT. It had 3 process
ors, each different from the others. One process
or was the arithmetic unit, another the house
keeping unit and the third the I/O processor.

The LARC and STRETCH served the scientific
world well for a number of years, despite .the
fact that each had its problems and was delivered
late (1960-1961). By that time the transistor
generation was upon us and numerous highly capable
machines were on the market. None of them matched
the LARC and STRETCH in performance, but their
levels were gradually being reached. Some of
the features in these two systems crept into
others.

During this same period of time there were
non-general purpose commercial machines that were
also being built with parallel features, but I
am not going to discuss these here. For example,
FAA had a unique ·requirement for utmost reliabil
ity and hence multiple systems usually were built
~or this agency. Also the seismic industry had
great need for high performance "vector" type
of operations performed on Array Processors
attached to standard equipment.

The first big jump in performance by way of
concurrency after LARC/STRETCH was found in the
CDC 6600. This machine had 10 functional units
as well as 10 peripheral processors. Each
peripheral processor had its own memory for
programs and for buffer space. Each can interrupt
the central processor and monitor the central pro
gram address. Each PP takes one minor cycle (100
ns) or 1/10 of the major cycle as its slot to per
form one of its steps.

The functional units consist of 2 multiple,
2 add, 1 divide, 1 shift, 1 branch, 1 Boolean,
and 2 increment units which can be operating con
currently, each being initiated at the start of a
minor cycle.

The 7600 was a follow on the 6600 with high
er speed components. In organization it was very
similar. The chief difference was in the memory
organization, a high speed memory of 64K words
was backed up by a large 512K word slower memory.
Again parallelism came to the rescue. Eight word
"swords" could be read out of large core with one
instruction. There was also a high speed swap
that enabled communication between the two memor
ies to permit operations at high speeds. The 7600
was about 5 times the 6600 in performance. IBM
had less parallelism in its equivalent level mach
ines named 360/91(95) and 370/195.

Even as these machines were being designed
and built, there were other efforts to provide
even greater parallelism. Dan Slotnick, from
whom you will hear the historical background in
more detail and with more accuracy, had designed a

2

system he called SOLOMON. This was accomplished
while he was at Westinghouse, although the ideas
had been percolating in his mind while he was
still at IBM.

This system was to have 1000 processors,
each with its own memory operating in unison
at commands of a central instruction issuing
unit. They worked in lock-step fashion, such
that, when an add instruction came along, each
did its add using operands in its own memory,
concurrently with the others. Thus a factor
of 1000 could be achieved in performance over
a single processor (if all could be in operation
simultaneously). There was a lockout feature,
so that if 1000 pairs of operands were not
available, some processing elements would remain
idle. To handle certain types of mathematical
problems more effectively, each processor was
enabled to communicate with its 4 nearest
neighbors.

The Lawrence Livermore Laboratory initiated
attempts to have DOE·(then AEC) order a system
from Westinghouse. Unfortunately, when the
top management at Westinghouse learned how much
money IBM and Univac were supposed to have lost
on STRETCH and LARC, respectively, the corporation
got cold feet and backed out. LLL, being still
interested in the concept of parallel processors
tried to find other manufacturers to build a
system. IBM showed some interest and had one
of its excellent architects, Jim Pomerene design
a SOLOMON-like machine. It incorporated all the
latest technology IBM had come up with for the
360/90 system. Instead of 1000 processors,
only 32 were proposed, but these were each very
powerful units in their own right. This PNDC,
as it was called also never saw the light of day.
Other computer researchers and designers at IBM
decided that pipelined structures were better
than a parallel network of processors. They con
vinced the IBM management to give up PNDC. For
a time this seemed like the end of the road. DOE
(AEC), NSF, and ARPA representatives met to dis
cuss the situation and to decide whether it might
be possible to join forces in having a SOLOMON
like machine built. Before either AEC or NSF
could collect its resources, ARPA, with Ivan
Sutherland in the lead was off and running.
John Foster, who was head of D.D.R. and E. in
vited a group of "experts',' in to decide on
whether or not to fund such a computer. The
decision was "go". The resulting machine was
ILLIAC IV, originally intended for Dan Slotnick's
lab at the University of Illinois, but installed
upon completion at NASA/Ames in California in
stead. The initial intent in this system was to
have 256 processors, each with 2000 words of
memory. Because of rising costs, the number of
P.E.'s was reduced to 64.

One interesting feature of the ILLIAC IV
which does not usually get much attention is the
high performance disk associated with it. Early
in the actual operation of ILLIAC IV, it was found
that the 2000 word memory was too small, so the
disk-file subsystem actually was made the main8
memory. There were dual files, each with 5Xl0

1·

bits of storage capacity and each being to sustain
a data flow rate of 500 megabits/sec. Since the
data path to the array was 1 billion bits wide,
it was possible with proper synchronization to
obtain a very high band width interchange with
the processor memories. Used this way, the
Illiac IV, for certain problems demonstrated
performance not yet matched by more modern
computers.

When Illiac IV was contracted for and got
under way, it was considered an experimental ma
chine. The intent was to learn to use such a
system for solving large scale problems which kept
growing in size. Since there was the chance for
failure and since other concepts like "pipelining"
were being proposed, LLL with the consent of AEC
decided to try the alternate route of the pipe
lined machine. Again this was to be experimental.
A contract was negotiated between LLL and Control
Data Corporation which resulted in the STAR-100
computer system. Simultaneously, Texas Instru
ments which was involved in the early work on
Illiac IV became interested in building a
"pipelined" machine. With internal customers
initially, T.I., went ahead with the project that
resulted in the Advanced Scientific (or Seismic)
Computer (ASC). Both of these machines had
multiple pipe capabilities; the STAR relied
on external processors to handle I/O, the ASC had
its own peripheral processor. Pex•formance on
these machines for highly vectorized problems
was very good. Scalar capabilities were very
poor.

Overall impressions left with the computing
community concerning the vector computing systems
of the late 60's - early 70's were bad. Only
one Illiac IV, 4 STAR - lOO's, and 7 - T.I. -
ASC's were delivered. It wasn't until the late
70's that faith was restored in high performance
machines. Seymour Cray, now of Cray Research,
Inc., was able to build a high performance scalar
system thoroughly integrated with a vector system
into a beautiful package. Now, scalar problems
could run faster than on any other system, and if
any degree of vectorizatfon was possible, the
additional parallelism improved performance
substantially. Each, the scalar and vector
processor had functional parallelism as well.
Chaining of vector operations was also possible.

The realization of the need for scalar
processing did not go unnoted by CDC. A new
machine was designed to replace STAR-100. This
was done in two steps. The first, resulting
in Cyber 203 added a scalar unit to the two-pipe
vector system and at the same time replaced the
original core memory with a speeded-up semi-con
ductor memory. The second step resulting in the
Cyber 205, replaced the vector unit with a faster
LSI unit, now with up to 4 identical pipes.

Not to be outdone by the others, Burroughs
Corporation, who had built the Illiac IV now
decided to build a much superior version, named
the Burroughs Scientific Processor (BSP). This
machine was designed to have 16 processors. A new
algorithm was employed in this system to permit

3

access to memory with no conflict. This time the
memory was accessible to all processors. Two
levels of memory were employed; 524 K words of
parallel processor memory and 4 M words of file
memory. There were in addition to the central
processor, an I/O processor and maintenance
processor also. It was even possible to have two
BSP systems tied together with a system manager.
Actually the system manager was the front-end
standard B7800 computer system. In this pro
cessing system there was no real scalar processor;
one had to rely on the frontend. In this descrip
tion I have used the past tense, because as of
this time the BSP has been abandoned as a
product.

Burroughs is not quite out of the large
scale parallel processor design completely,
as yet. There is an on-going effort to design
a 1 Gigaflop machine for NASA/Ames to carry
out Navier-Stokes calculations. This machine
as described in ear~papers has 512 processors
working concurrently. This may change, of course
in this final year of preliminary design. Bur
roughs is competing with Control Data for this
NASA contract; the Control Data design is more
along the lines of the Cyber 200 series of
machines. Burroughs has had much more experience
in parallel systems. Besides the above mentioned
systems, the Corporation built a PEPE prototype.
This was a machine originally designed by the
Bell Telephone Laboratory for use in Ballistic
Missile Defense systems. Whether there will be
a follow-on to PEPE is hard to say at this time.
This was also a multiprocessor.

Other parallel processors have been designed
and built primarily for special purposes such as
image processing. One is currently being con
structed by Goodyear for NASA/Goddard. This is
a follow-on to a bit oriented machine called
the STARAN. ICL·in England also built a similar
machine with 4096 processors. This one is
called DAP - one is in operation at st. Mary's
College in London.

Because of the great strides made in
microprocessor development, performancewise as
well as costwise, there are any number of
attempts to assemble numerous microprocessors
in a multiprocessor system. As with most computer
concepts, multiprocessing is rather an old one.
Some early versions have already been mentioned.
Dual processors are commonplace, most manufac
turers having tried their hands at these at
some time.

The most ambitious attempts have been made
by Carnegie-Mellon University, first with its
C.MMP having 16 minicomputers tied toge~her
and later with its CM*, with 50 processors tied
together in a number of modules. The hardware
configurations are relatively easy to provide.
The software provided the rub. Good system
software and efficient algorithms for applications
are much harder to devise.

Other recent attempts to provide high
performance systems are those of CDC, Denelcor,

and the Lawrence Livermore Laboratory. CDC was
built and delivered and Advanced Flexible Process
or (AFP) made of the same LSI components used in
Cyber 205. This. system consists of 4 modules
each with variable functional units structured
in a ring type architecture. The initial system
was to be used for a special application and did
not need floating point. The Denelcor system,
also at this point in time designated in a 4
processor configuration is being constructed
for the Aberdeen Proving Ground to be used in
Ballistic Calculations.

The Livermore system called S-1 is being
sponsored by the U.S. Navy to be used for signal
processing. In this case 16 memories are being
tied to 16 processors by a cross-bar switch.

Whether the parallelism being put into a
multiprocessor is capable of being effectively
utilized has yet to be demonstrated. Certainly

4

the availability of a large number of processors
at low cost implies that many can remain idle if
the overall performance can be increased. It
seems plausible that the future designs should
incorporate "pipelined" processing in multi
processing elements.

As for the future, we seem not to be making
as much headway as we should. Kung and his
systolic approach, Dennis and Company and their
Data-Flow concepts seem to have much merit. It
is too early to say that we will see such systems
before the 90's -- but it seems unlikely. The
more ingenious young people in their experiments
with microprocessors no doubt will dream up
better ways of designing parallelism into
computers. Our main hope, however, is that
the problem designers and software experts will
help make it possible to take advantage of all
these concepts in the not too distant future.

HISTORY OF PARALLEL PROCESSING AT GOODYEAR AEROSPACE

W. C. Meilander
Digital Systems Marketing

Goodyear Aerospace Corporation
Akron, Ohio 44315

Abstract

Associative memories have been talked about
in scientific circles for a long time. This paper de
scribes some of the first efforts to bring that talk
into the realm of reality. At Goodyear Aerospace,
we continue to develop techniques for fabricating
and using associative memories. The techniques
used in associative memories are presented, and
the disadvantages of the methods used at any time
are discussed. The associative memory (AM) logic
ally leads to the associative processor (AP). Most
of the advantages of AM 1s are retained in AP 1s, and
many new capabilities are added. In fact, the AP
is becoming a very powerful tool in handling the
highly dynamic data bases of air surveillance and
command and control systems.

The associative processing effort is augmented
by the endeavors associated with the microcomputer
array processor (MAP) and the massively parallel
processor (MPP) . The MAP and MPP broaden the
capabilities of parallel processing into the fields of
electronic warfare and image processing.

Background

Vannevar Bush made a strong case for asso
ciative processors in 1945(1): "There is a growing
mountain of research. But there is increased evi
dence that we are being bogged down today as
specializatioi;i extends. The investigator is stag
gered by the findings and conclusions of thousands
of other workers - many of which he cannot find
time to grasp, much less to remember - as they
appear. Yet specialization becomes increasingly
necessary for progress, and the effort to bridge
between disciplines is correspondingly superficial. 11

Dr. Bush continues: 11 But there are signs of
change as new and powerful instrumentalities come
into use. 11 He then discusses many of the discov
eries made in the past few centuries that have led
to the increased activity of the 20th century. He
cites the importance of communication in the scien -
tific world with: 11 Mendel's concept of the laws of
genetics was lost to the world for a generation be
cause his publication did not reach the few who
were capable of grasping and extending it; and
this sort of thing is undoubtedly being repeated
all about us, as truly significant attainments become
lost in the mass of the inconsequential. 11

Dr. Bush considers the appliC'ation of machines
to "logical processes" with "formal logic used to be
a keen instrument in the hands of the teacher in
his trying of students' souls. 11 He then describes
approaches for selecting pertinent information from
the mass of data available. His discussion of 11 memex

0190-3918/81/0000/0005$00.75 © 1981 IEEE

5

instead ~f index 11 states: 11 0ur ineptitude in get
ting at the record is largely caused by the artifi
ciality of systems of indexing. When data of any
sort are placed in storage, they are filed alphabet
ically or numerically, and information is found
(when it is) by tracing it down from subclass to
subclass. It can be in only one place, unless dup
licates are used; one has to have rules as to which
path will locate it, and the rules are cumbersome.

. Having found one item, moreover, one has to emerge
from the system and re-enter on a new path.

11 The human mind does not work that way. It
operates by association. With one item in its grasp,
it snaps instantly to the next that is suggested by
the association of thoughts, in accordance with
some intricate web of trails carried by the cells of
the brain. It has other characteristics, of course;
trails that are not frequently followed are prone to
fade, items are not fully permanent, memory is
transitory. Yet the speed of action, the intricacy
of trails, the detail of mental pictures, is awe in
spiring beyond all else in nature.

11 Man cannot hope to fully duplicate this mental
process artificially, but he certainly ought to be
able to learn from it. 11

Early Effort

Many have agreed with Dr. Bush. Activity
has continued since 1945 to develop the concepts
espoused by him. These efforts, at best, only
scratch the surface of the thou~hts in Dr. Bush's
paper. Yet, they appear to offer relief from some
of the laborious indexing tasks that are bogging
down our present endeavors to retrieve relevant
data from an ever-increasing data base. An asso
ciative memory offers a system that allows retrieval
of related data from a memory based on the data
content in the memory. This can be understood
when it's realized that an associative memory can
directly implement a relational data base. In this
context, the machine appears to emulate capabilities
of the human mind.

Slade and McMahon d~~yribed a cryotron cata
log memory system in 1956l . This paper is gen
erally accepted as the earliest record of a hardware
approach to the problem of searching memory by
content instead of address. The Western Reserve
University (WRU) search selector, discussed below,
may be an earlier effort.

In 1958, Goodyear Aerospace - while working
with the concepts of associative memories - held a
number of discussions with Dr. Jim Perry and Dr.
Allen Kent. Perry and Kent were working with
the techniques of information retrieval at the School

of Library Sciences at Western Reserve University.
Their work covered one of the earliest associative
processors fabricated. The concepts of their ap
proach were presented in 1955. The machine de-'
veloped was called the WRU search selector. It
was designed to search a document da:ta base.

The search selector(3) (Figure 1) was design
ed and built by Perry in 1956. It was a relay ma
chine and used a Flexowriter tape reader to input
the data base to be searched.

Fig. 1 - Western Reserve's Search Selector

The data base was formed from information ab
stracted from documents by knowledgeable review
ers. Keywords of the abstract were encoded (often
by the same reviewers) via a dictionary into four
character groups. The encoded information along
with the document accession number was stored on
punched paper tape.

Queries were encoded using the same diction
ary. The queries were stored in the search selec
tor. Ten independent queries could be entered at
one time. The system provided for queries using
logical AND, OR, and EXCLUSIVE-OR operators
and combinations of these operators. The search
selector program was entered through the patch
cord system shown in Figure 1. After the query
was programmed, the punched paper tape data file
was passed through the system. Whenever a query
was satisfied, the document accession number was
read from the tape and typed along with the num
ber of the query. The machine was used for sev
eral years in searching a file of documents for mem
bers of the American Society of Metals. A General
Electric 225 computer replaced the WRU search
selector about 1960.

Why Associative Memories?

The concept of associative memories derived
from many different requirements. In the WRU

6

machine, it was used for evaluating a coded re
quest against a file of coded documents. In many
other cases, the requirement, similarly, stemmed
from the desire to search unordered data. At
Goodyear, efforts were underway to find a method
for focating items in memory on the basis of mem
ory contents. This early activity was prompted by
a desire to examine the present position of a large
number of simulated targets being updated through
a digital differential analyzer. The goal was to lo
cate and display each target at the proper time as
a simulated antenna scanned the space. The store
would be searched in the azimuth field for the cur
rent azimuth and the associated target range read
for display. The search needed to be completed in
a few microseconds. We wanted a faster approach
than software could provide.

Software Approaches

Software associative searches were performed
in sequential machines when the amount of data
stored was small. Breakthroughs in list processing
were achieved when such techniques as hash cod
ing, chained lists, and inverted files were imple
mented. These techniques eliminated the need for
laborious searches of unorganized data (unless the
field you were searching was not a key field) .
They also generated the complex file structures in
use today, with their attendant complex update
problems. The user does not realize the extent of
the management software, since these complex file
management structures are often a part of today's
operating system.

Hardware Approaches

The desire to break away from the limitations
of the sequential processor prompted much effort in
the early l 960's. At that time, hardware techniques
were advancing, and a variety of associative de
vices were suggested. Prominent among these were
cryotrons, tunnel diodes, magnetic cores, magnetic
films, and multiaperture magnetic devices.

In 1959, Goodyear Aerospace began using
multiaperture magnetic devices in associative mem
ories. Several problems existed in the application
of magnetic devices to associative memories:

1. A non-destructive method for evaluating
the storage state must exist. (When magnetic cores
are used for storage, a chosen word was destruc
tively read and rewritten. If one were to interro
gate an entire core memory, as is necessary in an
associative memory, all data must be read and re
written simultaneously, which would be impractical.)

2. A low signal~to-noise level exists when a
magnetic device is non-destructively interrogated
(pulses of short duration must be amplified and
distinguished from noise) •

3. High energy is required to change the de
vice state. This. is true of all ferrite storage sys
tems.

4. Switching times of the storage elements are
relatively slow compared with other devices such as
the cryotron. ·

I"

To evaluate multiaperture magnetic devices
for associative memories, transfluxors were pur
chased from RCA. Limitations of the transfluxor
led to the development of a multiaperture logic
element (MALE) (see Figure 2) and a model content
addressable memory using the MALE.

The MALE (4) provided for storage of data in
a word direction. A simultaneous exact match
search of all stored words in memory could be re
alized. The MALE could be interrogated non-de
structively and provided an EXCLUSIVE-OR oper
ation. Initially, a response store was set for each
word. The interrogation was made and reset the
searched word that did not match the.query word.
The words that remained matched the query. In
terrogation time of the MALE was about five micro
seconds. Limit searches in the MALE proceeded on
a bit serial basis (five microseconds per bit).
Greater than or less than search used the EXCLU
SIVE-OR logic, at the stored bit level, to test the
memory state for either greater than or less than
the input argument.

t
B

':' ':' ':'

LEG A B c D

RESET 11 i} 0 t ' ~ t i} 0 ' !!l RESETm t ..
"' d' t ii!
0

0 i} ' ' t ' RESETm t ' t ' SET11 0
~ ' !!l RESETm ' ..
"'

i} t ' t t ~
t t ' i!!t d' ' 0 t i}

RESETm ' ~ t 0

Fig. 2 - MALE Flux-State Diagram

Search Memory

The MALE was used to implement an associa
tive memory for evaluation with the U. S. Navy's
USQ-20. The search memory(S) (Figure 3) had
256 words with 30 bits per word. A block diagram
of the search memory is shown in Figure 4. The
machine instructions included write, erase, exact
match search, greater than search, less than search
and a number of optional instructions, no response
required, response required, mask, no mask,
count responders, etc. The memory was delivered
in 1963.

7

ADDRESS
SELECTION
MATRIX

Fig. 3 - Search Memory

MEMORY
JOBITS-
256 WORDS

+
RESPONSE
STORE

RESPONSE
RESOLVER

Fig. 4 - Search Memory Block Diagram

The MALE elements used in the NTDS search
memory were difficult to fabricate; thus, a search
was conducted for more readily available elements
to implement the EXCLUSIVE-OR function. As a
result, it was found that a conventional toroidal
core could be interrogated without destroying its
state.

BILOC

A toroid can be non-destructively interrogated
using cross field switching techniques (6, 7). How
ever, the high cross field current, low signal level,
and critical wire alignment mitigate !1-gainst good
performance. Apicella and Franks (8.) discovered
that applying a transverse bias field to the core
reduces problems.

The static bias field results in:

1. A reduction of core switching time to about
one-third of the unbiased switching time.

2. An order of magnitude increase in the
cross field non-destructive output voltage.

3. The ability to achieve a logical EXCLU
SIVE-OR function in the core.

Thus, a storage/logic element is produced
that (1) can store a state, (2) be non-destructively
interrogated, and (3) can provide a match or no
match comparison between the stored state and the
interrogation. That is, the Boolean expression
AB + AB produces zero output, and the expression
AB +AB produces a one output. A is the query
state, and B is the stored state.

This element, a biased logic core, was named
BILOC. BILOC required very fast rise time pulses
since the output voltage existed only during the
pulse rise (or fall) time. Pulse rise times of the
order of 20 nanoseconds and currents of about one
ampere were used. The transverse bias field was
of the order of 100 oersteds.

RADC Associative Memory

BILOC was used in implementing and deliver
ing an associative memory in 1966 to the Rome Air
Development Center. a The RADC associative mem
ory had 2048 words of storage. Each word was 48
bits long. The associative memory was coupled via
DMA to a CDC 1604B host computer. In operation,
data to be searched was moved from the 1604B to
the associative memory. The queries were then
moved from the 1604B to the associative memory
along with a response request. Results were trans
ferred from the associative memory to the host
1604B.

A comprehensive set of instructions provided
for conventional read/write of the memory and a
set of logical interrogations, which included:

1. Input interrogand, equal, not equal,
greater than, greater than or equal, less than,
less than or equal, next higher value, and next
lower value.

2. Find the maximum or minimum value.
3. Resolve instructions such as read first/

next responder address or data, count responders,
jump on no response (or its inverse).

4. Write next available location or write at
given address.

5. The capability of concatenating searches
to implement complex searches.

The RADC associative memory brought out
several facts. Among these were:

1. The desirability of dropping the parallel
search capability since only exact match searches
could use this feature.

2. The desirability of processing. selected
entries in memory. Since transferring them to the
host required time, the associative memory could

aContract AF30(602)-3549.

8

operate at only 35 percent of its capability because
of the necessity for input/output.

3. The desirability of a wide band I/0 path.
4. The desirability for an internal program

store to minimize I/0 with the host machine.

Associative Processing

These facts led to a goal at GAG; namely, to
achieve full parallel processing within the associa
tive memory. That is, make it a true associative
processor. The associative processor would accept
unprocessed data at its input and· produce pro
cessed results at the output, thus greatly reducing
the input/output requirements and making greater
use of the machine's capability.

However, the extremely high energy demands
for the simultaneous write of 2048 cores needed to
realize associative processing necessitated a search
for a storage medium that was more easily alter
able. The search led to plated wire. Plated wire
offered the features of relatively low interrogate
and write currents and was easily fabricated in our
laboratories. Goodyear Aerospace conducted plated
wire R&D from 1965 until 1969.

Plated Wire Associative Processor

In 1969, Goodyear Aerospace examined an air
interceptor processing task (9) and demonstrated a
plated wire associative processor00,11,12,13).
The machine used a bit. slice-oriented organization
(Figure 5). The bit slices could be interrogated
at a 100-nanosecond rate. Input was either to a
bit slice or to any 16-bit word location in the ar
ray. Output from a selected word in- the array was
bit serial. In addition to conventional read and
write operations, the array performed a large set
of search, logic, and arithmetic operations at high
speeds.

TO/FROM CONTROL UNIT
INTERROGATE
DRIVERS ------n------..

WORD 2

I I

I PLATED WIRE ARRAY:
I I

WORD 128

PARALLEL
INPUT/
OUTPUT

Fig. 5 - Bit Slice-Oriented Organization

Search operations are exact match with com
parand, mismatch with comparand, greater than
comparand, less than comparand, between limiting
comparands, search flag, maximum value, and
minimum vq.lue.

Logic operations are set response toggles,
reset response toggles, complement toggles, shift
response toggles, write flag from response, and
write common to selected words.

Arithmetic operations are add common argu
ment, subtract common argument, add memory
fields, subtract memory fields, multiply memory
fields, divide memory fields, multiply by common
argument, and divide by common argument.

The Knoxville Experiment. The plated wire
associative processor, under contract to Univac,
was programmed and installed at the Knoxville,
Tennessee, air traffic control terminal. Several
firsts were realized for this FAA installation. They
were: automatic track initiation and update on bea
con and primary radar reports, automatic turn de
tection, Mode C altitude tracking, air-to-air con
flict prediction, conflict resolution, and automated
voice advisory warning against other aircraft and
terrain.

The plated wire associative processor had
several drawbacks. Among these were the lack of
production wire for the memory, the small signal
output from the wire, and the requirement for bit
serial readout of data from the array.

Early Integrated Circuit Efforts

About 1970, LSI content addressable memories
(CAM) began to appear from companies that had
integrated circuit capability. These CAM's offered
advantages over plated wire such as low switching
current, high speed, and parallel readout. But
there were problems.

A study by Shore and Polkinghorn (14) con
sidered a word-parallel, bit-parallel LSI associative
processor" This cellular organization required
about 130 transistors at each bit of storage and
would provide parallel limit search and arithmetic
operations (this is in contrast with the serial oper
ations Goodyear Aerospace had been using). Later,
Shore concluded in a paper(15) entitled "Second
Thoughts on Parallel Processing" that parallel com
puters would be extremely expensive and could
never compete with the conventional processor.
His results seem correct when based on the cellu
lar organization he had earlier studied. The gen
eral conclusions reached in Shore's "Second
Thoughts" paper apparently assumed that all paral
lel processing hardware would require logic at the
bit level.

If processing hardware in a parallel machine
is implemented within storage at the bit level, then
system cost increases nearly linearly with the
amount of storage as Shore's paper indicates.
Further difficulties ensue because of the necessity
to access each stored bit in both the word and bit
direction. Figure 6 shows an organization for a
content addressable memory. The cost of imple
mentation was quite high. For example, wiring a
CAM using a typical CAM chip of 64 bits required
3b+2w+8c connections, where b is the number of
bits, w is the number of words, and c is the number

9

WRITE QUERY

SELECT RESPONSE

REGISTER REGISTER

READ REGISTER

Fig. 6 - Content Addressable Memory Organization

of chips needed. Then, making an array of 256
words by 256 bits would require 2304 leads. Good
year Aerospace concluded that this would be an
unsatisfactory approach. A search for a method to
use conventional memory devices in a bit or word
mode was realized in Batcher's invention of the MDA
memory and flip network (16•17) , These inven
tions had their genesis in Batcher's work on sorting
networks (18) .

Integrated Circuit Associative Processor

The MDA memory and flip network allowed con
ventional memory chips to be written in a word mode
and· read in a bit slice mode or vice versa. The in
ventions yielded an associative memory capability
with only slightly greater amounts of hardware than
a conventional memory. An associative processor
was easily realized with a simple bit serial process
ing element (PE), One PE configuration is shown
in Figure 7, The PE logic functions are given in
Table 1.

,--
1 ARRAY CONTROL

I
I
I
I
I
I
I
I
I
I

Fig, 7 - Associative Array Block Diagram

TABLE 1 - :LOGIC FUNCTIONS

COL Z4 ZS Z6 Z4 ZS 26 Z4 ZS Z6 Z4 ZS Z6 Z4 ZS 26

Common Register Bit= 1 16 17 18 19 K3X K3Y K4 K3X K3Y K4 K3X K3Y K4 K3X K3Y K4 K3X K3Y K4
Common Register Bit =O · ZO Z 1 ZZ Z3 O l 0 1 0 1 1 1 0 0 1 0

=f.'N.~~:~.~~~~··.9Kt =t: 'Ne\!i:~.~~¥~·:.9~ X :H:Ne~st'i't.~·o,£t :m::N' ;,;,;; ·:si:a:i~ o.n :tfr:ie~ Stat~.!lf':?
KZ lil\lt: 'ltXHf lt!,?f:,Jl llilll rn::tnftm lf:lli 1trt::an:rnr \Ji rm:m::&m:nr l\IJ

Logic Function NJ NK Kl

Exclusive OR Co·mplement F 0 0 0 0 x YQIF XQIF y XQIF YQIF XQIYF y XQIYF YGIF

Inclusive OR Complement F 0 0 0 x YvF XvF y XvF YvF XvYF y XvYF YvF

Logical AND 0 0 1 0 x YF XF y XF YF YXvXF y YXvXF YF

NO-Op 0 0 1 x y x y x y x y x y

Load Complement F 0 0 0 x F F y F F YXvYF y YxvYF F

NOT-Inclusive OR 0 0 1 x YF XF y XF YF VXvYXF y YXvYXF YF

AND Complement F 0 1 0 ·x YF XF y XF YF YxvXF y YxvXF YF

Clear to Zero 0 1 x 0 0 y 0 0 YX y YX 0

Input (F) 0 0 0 x F F y F F YXvYF y YXvYF F

Inclusive OR 0 0 x YvF XvF y XvF YvF XvYF y XvYF YvF

NOT AND Compjement F 0 0 x YvF XvF y XvF YvF YXvYFvYX y YxvYFvYX YvF

SET to One 0 x y XvY y XvY

Exclusive OR 0 0 x YQIF XQlF y XQlF YQlF XQlYF y XQlYF YQlF

NOT Inclusive OR Complement F 0 1 x YF XF y XF YF YXvYXF y YXvYXF YF

NOT AND 0 x YvF XvF y XvF YvF YXvYXvYF y YxvYXvYF jYvF

NEGATE x y x y x y YQIX y YQIX y

QI Exclusive OR

v Inclusive OR

Complementation

F :Bit from input netwo~k (Source determined by bits Z9c31 of Associative Instruction Format)

X :Old State of X - Response Store Register

Y :Old State of Y - Response Store Register

Design of a solid-state associative processor
began in 1971. The first ST ARAN system 0 9) was
completed in April 1972 and was demonstrated at
the International Air Exposition "Transpo 72" at
Dulles International Airport. A ST ARAN B system
is shown in Figure 8.

Fig. 8 - ST ARAN B System

The demonstration showed the capability of an
associative processor to handle the air traffic control
(ATC) processing requirement. Figure 9 shows the
program flow in the STARAN S-500 programmed to
operate with up to 500 aircraft tracks. In this sys
tem, digitized radar reports were received via data
link from an ARSR radar site. This was supplement-

10

ed by the generation of 250 simulated tracks based
on 250 four-leg flight plans entered into the machine.
The ATC operations performed are listed below.

1. Radar input processing
2. Primary 2D tracking
3. Secondary 2D tracking
4. Altitude tracking (Mode C)
5. Flight plan update
6. Target simulation
7. Maneuver detection
8. Conflict prediction
9. Conflict resolution

10. Automatic voice advisory
11. Keyboard processing
12. Full digital display processing

The system was set up and demonstrated with
live radar in six locations in the United States and
Canada. The demonstration could be speeded up,
in simulation, by a factor of 30 times. This yielded
effective performance as if:

• 7500 flight plans were updated per 10-second
scan

• The new flight plan position generated 7500
radar reports, which were used to update 7500
tracks

• 30 displays were being driven by the system.

In 1972, another R&D effort - a "real" rela
tional data base - was implemented in ST ARAN.
The system used a parallel head disc and retrieved
and ent~red data based on the content of the stor
ed data~ 20).

J:~~~,
DATA PATH

CONTROL PATH

SC SEQUENTIAL
EXECUTIVE

SC

CONTROL PROCESSOR

AP ASSOCIATIVE . : CONTROLLER
PROCESSOR

.., : TAPE
READER/PUNCH

ON-LINE SC
DEBUG AND
UTILITY
PACKAGE

• EXTERNAL DEVICE

I I
I I
I I

I •
DATA DATA
LINE RECEIVER

ASSEMBLY

LIVE DATA
INTERRUPT
HANDLER

SC SC
KEYBOARD
INTERRUPT
HANDLER

r-----------_J
I
I

L-------,
I
I
I
I
I
I

,---
' I

AP
TARGET
SIMULATION
ROUTINE

AVA SC

i.------...-9! AUTOMATIC
VOICE ADVISORY
DRIVER

DIGITALK
VOICE
UNIT •

I
I
I
I
I
I
I

L--------, L-------,
TRACKIN~pt-----~.------~1---------·~-+-~----

I
I
I
I
I
I
I

r-------:--
AP AP

CONFLICT CONFLICT
PREDICTION RESOLUTION

AVA AP

MESSAGE
SELECTOR

I I

L---------~----------~-----------~---------~

Fig. 9 - STARAN S-500 Program Flow

•

ST ARAN B installations were made at Rome
Air Development Center, Defense Mapping Agency,
Engineering Topographic Laboratories, Johnson
Space Flight Center, and Goodyear Aerospace.

(1) AWACS passive(24) and q,ctive(25) tracking,
(2) data base management(26J, and (3) image
processing(27,28,29).

STARAN E
Many applications were studied or were programmed.
Some of them are for the space environment; catalog
maintenance; detection and surveillance; weapons
support; object identification; and sensor systems
status(22,23). A number of suggestions about

STARAN B was followed by STARAN E in 1975.

ST ARAN B were incorporated in the ST ARAN E:
STARAN E provided improvement over the earlier
STARAN B in several areas (Table 2).

TABLE 2 - STARAN B/STARAN E COMPARISON

Item STARAN B STARAN E

Array page size 256x256 256x256

Max storage/array 1 page 64 pages

O. 008 Mbytes 0.5 Mbytes

Parallel I /0 data rates 80 Mbytes /sec 80 Mbytes /sec

Cycle steal No Yes

Host interface Slow Fast

Proc-to-memory bandwidth 80 Mbytes /sec 215 Mbytes/sec

Processing rate (ops/sec)

16-bit add 11. 5x10 6 15.4xl06

16-bit search 48. Oxl06 60. 6x106

11

Microcomputer Array Processor (MAP)

Goodyear Aerospace's activities in electronic
warfare led to a number of studies of parallel
processing for the EW requirement. These efforts
led to the MAP digital processing system designed
for electronic warfare applications. This system
is comprised of two major subsystems: a preproces
sor that is a digital tracking device and a multi
processor that is a programmable computer sub
system. The preprocessor compares each digitally
encoded radar pulse intercepted by the receiver
system against a file of emitters being tracked by
the preprocessor. Limit searches of frequency,
pulse width, and angle of arrival as well as PRI
tracking are used in the association process be
tween intercept and emitter. The current feasibil
ity model of the preprocessor is a microprogram
mable device that can process in excess of 300, 000
intercepts per second from several hundred emit
ters in real time. Expansion to several million in
tercepts per second from a thousand emitters is
possible.

The multiprocessor subsystem finds emitters
among the intercepts that fail association in the
preprocessor. This subsystem (Figure 10) con
sists of a number of independent processors that
concurrently work on the emitter establishment
problem. Each processor is a 32-bit programmable
computer with its own dedicated memory and a
capability to execute approximately four million
instructions a second. In addition to the dedicated
memory, each processor can communicate with
numerous banks of global memory. The various
global memory modules and their communication
structure serve to tie the individual processors
together in a symmetrical multiprocessor computer
architecture. The multiprocessor system is modu
lar and can contain as few as two and as many as

MICROPROCESSOR-I

PROGRAM
MEMORY

GLOBAL
MEMORY
BANK-1 BANK-2 BANK-i

Fig. 10 - MAP Architecture

12

eight processors coupled with from 1 to 16 banks
of global memory, A 32-million instructions per
second execution rate is achieved. Expansions
beyond these limits are possible if every proces
sor does not have to access every global memory
module. A four-processor system (with three
banks of global memory) was installed at Wright
Patterson AFB in 1979 for use by the Air Force
Avionics Laboratory. This system can execute
approximately 16 million instructions per second
and support a memory access rate of 20 million
words per second.

Airborne Surveillance

The capabilities of associative processing led
to a study of its potential in the airborne surveil
lance environment. The study showed that the
associative processor could augment a conventional
airborne processor. Many of the inherently paral
lel functions such as report correlation, tracking,
and display processing could be performed in the
associative processor. Processing throughput
could be increased by more than an order of mag
nitude.

A second study demonstrated the expected
benefits. This was accomplished by interfacing
a ST ARAN E to the host computer and by pro
gramming the machine to carry out many surveil
lance functions. A parallel effort was conducted
to develop a processing element chip. The chip
development was necessary to realize the associa
tive processor capability within the very limited
space (less than O. 5 cu ft) and power (less than
320 watts) • The chip, using CMOS I SOS tei;:hnol
ogy, was successfully fabricated by Rockwell
International and demonstrated 11 months after
the development was started.

Goodyear Aerospace is currently under con
tract from Grumman Aerospace to design and build
a number of prototype ASPRO units.

ASPRO Organization

A block diagram of ASPRo(21) is shown in
Figure 11. ASPRO is divided into five function
al subsystems:

1. Control memory contains both program
and buffer memory and is also connected to a host
computer to allow for data, control word, and
status transfer.

2. Program execution control is responsible
for maintaining the correct program flow by execu
ting program branches and returns as required
and establishes correct timing and interfocking of
the operation to be performed as defined by the
instructions.

3. Data path contains the working registers
and an arithmetic unit. All data to and from the
control memory and/or the array is passed through
this portion.

4. Array control identifies the array oper
ation to be performed and supplies correctly syn
chronized control signals to the array.

MEMORY

IUS A

ARRAY
CONTROL

DATA
CONTROL
MEMORY

ARRAY UNIT

MEMORY
IUS 8

Fig. 11 - Block Diagram of AS PRO

5. Array unit is made up of 17 array mod
ules. Sixteen modules of 128 words each make up
the 2048-word array. The spare module may be
switched in should one of the basic modules be
found in error. Each module includes a 128-word
by 4096-bit array of solid-state multidimensional
access (MDA) storage and 128 processing elements
(PE's).

The array consists of four basic components:
array memory, flip or permutation network, pro
cessing elements, and resolver. Access can be
made in either the bit or word direction, depend
ing on the mode bit of the instruction.

Massively Parallel Processor (MPP)

In December 1979, NASA Goddard awarded a
contract to Goodyear Aerospace to construct a
massively parallel processor (MPP) to be delivered
in the fourth quarter of 1982. The MPP was de
veloped for image processing satellite data. The
expected workload is between 109 and 1010 opera
tions per second.

The major components of MPP are shown in
Figure 12. The array unit (ARU) processes ar
rays of data at high speed and is controlled by the
array control unit (ACU), which also performs
scalar arithmetic. The program and data manage
ment unit (PDMU) controls the overall flow of data
and programs through the system and handles
certain ancillary tasks such as program develop
ment and diagnostics. Three staging memories
buffer and reorder data between the ARU, PDMU,
and external (host) computer.

13

STAGING
MEMORY

MAGNETIC
TAPE

ARRAY UNIT (ARU)

CONTROL

DISK

t STATUS

ALPHA
NUMERIC
TERMINAL

EXTERNAL COMPUTER

Fig. 12 - MPP Block Diagram

Array Unit

STAGING
MEMORY

LINE
PRINTER

Logically, the array unit (ARU) contains
16, 384 processing elements (PE's) organized as a
128 by 128 square. Physically, the ARU has an
extra 128 by 4 rectangle of PE's that is used to re
configure the ARU when a PE fault is detected.
The PE' s are bit-serial processors for efficiently
processing operands of any length. The ARU has
a very high processing speed (Table 3) • The
bandwidth between PE's and memory is 1. 6 x 1011
bits per second.

A study showed the desirability of making
edge-connectivity a programmable function. The
top bottom and right-left edges can either be con
nected or left open. A spiral mode connects the
16, 384 PE's together in one long linear array.

I/0 for the array is up to 160 Mbytes per
second and can be transferred through the ARU
I/O ports. Processing is interrupted for 100 nano
seconds for each bit plane of 16, 384 bits trans
ferred - less than one percent of the time. The
96 boards of the ARU are packaged in one cabinet.
Forced-air cooling is used.

Array Control Unit

Like the control units of other parallel pro
cessors, the array control unit (ACU) performs

TABLE 3 - SPEED OF TYPICAL OPERATIONS

Execution
Operations Speed*

Addition of Arrays

8-bit integers (9-bit sum) 6553
12-bit integers (13-bit sum) 4428
32-bit floating-point numbers 430

Multlpllcatlon of Arrays
(Element-by-Element)

8-bit integers (16-bit product) 1861
12-bit integers (24-bit product) 910
32-bit floating-point numbers 216

Multlpllcatlon of Array by Scalar

8-bit integers (16-bit product) 2340
12-bit integers (24-bit product) 1260
32-bit floating-point numbers 373

*Million operations per second

scalar arithmetic and controls the PE's. It has
three sections that operate in parallel: PE control,
I/0 control, and main control. PE controls per
forms all array arithmetic of the application pro
gram. I/0 control manages the flow of data in and
out of the ARU. Main control performs all scalar
arithmetic of the application program. This ar
rangement allows array arithmetic, scalar arith
metic, and input/output to be overlapped for mini
mum execution time.

Program and Data Management Unit

The program and data management unit
(PDMU) controls the overall flow of programs and
data in the system (Figure 12). Control is from an
alphanumeric terminal. The PDMU is a minicom
puter (DEC PDP-11) with custom interfaces to the
ACU memories and registers and to the staging
memories. The operating system is DEC's RSX
llM real-time multiprogramming system.

The PDMU also executes the MPP program
development software package. The package in
cludes a PE control assembler to develop array
processing routines for PE control, a main assem
bler to develop application programs executing in
main control, a linker to form load modules for the

14

ACU, and a control and debug module that loads
programs into the ACU, controls their execution,
and facilitates debugging. This package is written
in Fortran for easy movement to the host computer.

Staging Memories

The staging memories reside between the wide
I/O ports of the ARU and the PDMU. They also
have a port to an external (host) computer. Be
sides acting as buffers for ARU data being input
and output, the memories reorder arrays of data.

Arrays of data are transferred through the
ARU ports in bit-sequential order. That is, the
most (or least) significant bit of 16,384 elements
followed by the next bit of 16, 384 elements, follow
ed by the next bit of 16,384 elements, etc. Re
ordering is required to fit the normal order of sat
ellite imagery in the PDMU or the host. Thus the
staging memories are given a reordering capabil
ity.

The large multidimensional access staging
memory uses 1280 dynamic RAM circuits for data
storage and 384 RAM's for error-correcting-code
(ECC) storage (a 6-bit ECC is added to each 20-
bit word). Initially, the boards will be populated
with 16K bit RAM's for a capacity of 2. 5 Mbytes.
The memory can be programmed to input and out
put imagery in a wide variety of formats.

The Future

Current efforts in ASPRO, MPP, and MAP
will yield improved processing systems in those
areas where parallelism can be effectively applied.
The breadth of application seems quUe wide. A
number of users have effectively converted "clear
ly sequential processes" into parallel algorithms
for parallel solution.

We see smaller, more powerful parallel pro
cessors occupying less space and using less power
being developed in the near future. We see the
parallel processing technology as a most cost ef
fective tool for real-time command and control,
and other data base management tasks.

We haven't satisfied all the thoughts posed by
Dr. Bush, but a first step is readily implemented
in today's parallel processors. That step is the
virtual elimination of the elaborate indexing struc
ture required in today's processing systems.
We've reduced 11our ineptitude in getting at the
record • . . largely caused by the artificiality of
systems of indexing. 11

I·
I
I

References

(1) Bush, Vannevar: Science - The Endless
Frontier: A Report to the President, Govern
ment Printing Office, 1945, Office of Scientif
ic Research and Development.

(2) A. E. Slade and H. O. McMahon, "A Cryotron
Catalog Memory System, 11 Proc. EJCC, Volume
10, pp 115-120, December 1956.

(3) Allen Kent, "A Machine That Does Research,"
Harpers Magazine, April 1959, Vol 218, No.
1307, pp 67-71.

(4) G. T. Tuttle, "How to Quiz a Whole Memory
At Once," Electronics, Vol 36, pp 43-46,
Nov. 15, 1963.

(5) Russell G. Gall, "A Hardware-Integrated
GPC/Search Memory, Proc. FJCC, 1964.

(6) Tellman, R. M., IRE Transactions on Electron
ic Computers, Vol EC9, page 323 (1960).

(7) Winter, H. M., 1964 Proceedings of the Inter
magnetics Conference, page 8- 2-1.

(8) Apicella, A. and Franks, J. , 11 BILOC-A High
Speed NDRO One Core Per Bit Associative
Element, 11 Proceedings of Intermagnetics Con
ference, 1965.

(9) Costanzo, A., Garrett, J., "Application of
an Associative Processor to an Interceptor
Radar System, Proceedings of NAECON,
1969.

(10) W. C. Meilander, M. Bialer, and J. Garrett,
"A Mission Oriented Associative Processor
Using Plated Wire. 11 Chapter 7 of Parallel Pro
cessor Systems, Technologies and Applications,
SPARTAN Books, 1970; p 153.

{11) Fulmer, L. C. and Meilander, W. C., "A
Modular Plated Wire Associative Processor, 11

IEEE Computer Group Annual Conference,
1970.

(.12) Rudolph, J. A. , Fulmer, L. C. , Meilander,
W. C., "With Associative Memory, Speed
Limit is No Barrier," Electronics, June 22,
1970.

(13) Rudolph, J. A., Fulmer, L. C., Meilander,
W. C., "The Coming of Age of the Associa
tive Processor," Electronics, Feb. 15, 1971.

(14) Shore, J.E., and Polkinghorn, F. A., "A
Fast, Flexible, Highly Parallel Associative
Processor," Report 6961. Naval Research
Lab., Washington, D. C., Nov. 28, 1969.

(15) Shore, J. E., "Second Thoughts on Parallel
Processing, 11 Proc. 1972, IEEE, Inter con,
pp 358-359.

15

(16) Pat. No. 3,800,289 dated Mar. 26, 1974,
Multi-Dimensional Access Solid State Memory,
Kenneth E. Batcher.

(17) Pat. No. 3,812,467, May 21, 1974, Per
mutation Network, Kenneth E. Batcher.

(18) Batcher, K. E., "Sorting Networks and Their
Applications," Proceedings, The Spring Joint
Computer Conference, 1968.

(19) Batcher, K. E., "Flexible Parallel Processing
and STARAN, 11 Wescon, Sept. 1972.

(20) Moulder, Richard, "An Implementation of a
Data Management System on an Associative
Processor," Proceedings, National Computer
Conference, 1973.

(21) Smit, J. , "Architecture Descriptions for the
Massively Parallel Processor (MPP) and the
Airborne Associative Processor (ASPRO)
Very High Speed Computing Symposium."

(22) P. A. Gamelin, STARAN as a Space Compu
tation Center (SCC) Processing Alternative.
MITRE Report MTR 2836, June 1974.

(23) D. L. Baldauf, "Experiences with an Opera
tional Associative Processor". MITRE Report
MTR 2879, June 1974.

(24) Prentice, Brian W. , "Implementation of the
AWACS Passive Tracking Algorithms on a
Goodyear STARAN", International Parallel
Processing Conference, 1974, pp 250-270.

(25) Summers, Lt. Michael W. , An Assocative
Processor Application Study, RADC report
RADC-TR-75-318, January 1976.

(26) Creswell, C. T.; Peters, Carol; Young,
Brian R., "SACWARDANS ASSOCIATIVE
PROCESSOR STUDY, PRC Information
Sciences Co., RADC Report RADC-TR-74-
341, January 1975.

(27) Rohrbacher, Donald, and Potter, J. L.,
Image Processing with the STARAN Parallel
Computer, August 1977, pp 54-59.

(28) Gambino, Lawrence A., and Boulis, Roger L.,
"STARAN Complex" Defense Mapping Agency,
USARMY Engineer Topographic Laboratories".
Proc. 1975 Sagamore Computer Conference
on Parallel Processing.

(29) Sherwin Ruben, John Lyon, Rudolf Faiss
and Mathew Quinn Application of Parallel
Processings of the International Conference
on Parallel Processing, 1976.

CENTRALLY-CONTROLLED PARALLEL PROCESSORS*

D, L. Slotnick
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Abstract

The circ1.DD.stances surrounding the conception
and development of centrally-controlled array
processors are described. The period of time
involved is from 1953 to 1975. It brackets the
Westinghouse SOLOMON systems, their precursors and
the University of Illinois ILLIAC IV. Some
reflections on past and possible future interplay
between university and government laboratories on
the one hand and industry on the other are made at
the conclusion.

The First Stirrings

In June 1952, with a new bride and new
Masters degree in Mathematics, I took a job as a
programmer with the Electronic Computer Project at
The Institute for Advanced Study in Princeton. I
had no idea what a programmer was expected to do
but a school friend, Adolph Nussbaum, who was
already working there and bad arranged my
apparently successful interview with Herman (R.H.)
Goldstine, assured me that it was interesting and
honest work and I did need a job. I left
Princeton in February 1954 to return to school for
a Ph.D. and though my stay at the Institute had
been for only twenty months it played a
significant role in my development. First, it was
my initial contact with what became and remains my
profession and it was the place where my vision
broadened from the myopia of a young, partially
cooked mathematician to encompass my still
enduring interests in physical science and
technology. In particular, I had the good fortune
to learn the rudiments of logic and hardware
design from members of one of the most capable
engineering staffs ever assembled. I remember,
particularly, Leon Harmon, Hugh (Hewitt D,) Crane
and Julian Bigelow as tutors. It was also at
Princeton that I first thought of building a
parallel processor. The idea was stimulated by
the physical appearance of the magnetic drum that
was being built to augment the 1,024 word primary
memory of the IAS machine. The disposition of
heads and amplifiers over the drl.DD.'s 80 tracks (2
banks of 1,024,40-bit ·words) suggested to me the
notion of, fir~t, inverting the bit/word
relationship so that each track stored the
successive bits of a single word (in fact, of
several words) and, second, associating a ten tube
serial adder with each track so that in a single
drl.DD. revolution an operation could be executed on
the contents of the entire drum. The idea was to·
do, in parallel, an iterative step in a mesh
calculation. I remember, probably under the
influence of the 1,024 word Williams tube memory,
desiring to build a 1,024 track drl.DD. to represent

(a) *To appear in Annals of the History of Com
puting.

0190-3918/81/0000/0016$00.75 © 1981 IEEE

16

in this fashion a 32 by 32 mesh. I even had the
temerity to make it the subject of the only
conversation I had with van Ne1.DD.ann that didn't

concern itself with one of the mundane programming
chores that I occasionally did for him. He
considered the idea for perhaps half a minute when
he said that he thought it would require too many
tubes. It was not a devestating personal setback
because it had been the work of only a few
evenings and some casual conversation with Harmon
and Crane. I essentially considered final
judgement to have been rendered and didn't
seriously take up the idea again for roughly five
years. During those five years I completed a
Ph.D. degree (in applied math at what is now
called The Courant Institute in New York) spent a
year on a post-doc at Princeton (the University
this time) and succumbing to the lure of action
and regular meals took a job at IBM in
Poughkeepsie.

I don't recall the immediate stimulus to
taking up the idea again but know that it was
early in 1958 as a member of the Computer
Organization Department in the Research Labs.
This Department, under W.J. Lawless and M. Clayton
Andrews, was an environment that invited, in fact
demanded, far ranging frontier exploration. The
technological scene had by this time totally
turned over; from receiving tubes and CRT stores
to transistors and cores. My serial adder now
became a small circuit board and the PE memory a
core plane. I did some designs working on my own
and began to think more generally about how one
would need to modify algorithms to utilize
parallelism. These thoughts and a few .corridor
conversations with my friend and colleague John
Cocke resulted in my writing up [Cocke 1958].
This report describes, in some detail, including a
derivation of the O(log2n) speed up where n, the
degree of the polynomial, is assumed to be less
than the n1.DD.ber of processors. It also suggests
parallel algorithmic approaches to the solution of
ordinary and partial differential equations. My
efforts in parallel computation never amounted to
much at IBM and it was partly, but by no means
exclusively, for this reason that I left IBM in
June 1960 for wha~ was to be a strange but
important interlude lasting only 8 months at the
newly formed Baltimore Aerospace Division of an
old airplane manufacturer, Aeronca Manufacturing
Corporation. What lured me to Aeronca was the
promise that I could pursue my own ideas on
parallel computers, the well-chronicled IBM
frustration syndrome and a large raise in pay.

It would
role in the
was largely
working for

be wrong to
development
indirect.
Rex Rice

say that IBM p,layed no
of my ideas but the role
It was at IBM, while

on the design of a small

general-purpose computer, that I really learned
the trade. My debt to Rex is great, though when I
talked to him about parallel computers, although
he listened, it was not always overly patiently •.
He even witnessed some of my drawings but Rex,
then as always, to the great good fortune of the
computer field, had his own fish to fry- and I got
paid to help him fry his fish, not conversely.
Rex will appear again, in an important way, much
later in this story. Of the IBMers, Lawless alone
showed some interest in my ideas and was the
first, in 1959, to alert me to the work of Konrad
Zuse, which to my only mild embarassment I confess
I have still never looked at, who described a
drum-based equation solver (perhaps similar to the
machine I had thought about in Princeton) which is
described in [Zuse 1958]. Regretably, I am here
engaging in the dubious scholarly practice of
quoting a non-primary source, for the only work I
have even seen that refers to this Zuse paper (it
gives a 1 line description) is [Kuck 1978] and my
attempts to get the reference, it is in German,
from the 4 libraries in the U.S. which allegedly
possess it or from a colleague who is "looking for
his copy" have thus far been unsuccessful.

Now for Aeronca and the almost-real world.
Two people stand out from this interlude. One is
Dr. Gordon J.F. MacDonald, who as a visiting
scientist at the Goddard Institute for Space
Studies, then in Silver Spring, Md., gave me both
my first real encouragement and my first research
contract; both were important. Moreover, Gordon
understood critically and in precise detail what I
was · talking about. His support was thus
particularly meaningful. With the help of this
contract I did the first, fairly complete overall
design and detailed an enriched Processing Element
(PE) (I started calling them "elements" because
large numbers of "elements" seemed somehow easier
to take than large numbers of "units") to gate
level. As a consequence of this contract,
unforeseen to me, the government acquired a
permanent license which permitted me to continue
the work, under government sponsorship, after I

left Aeronca.

The second of the two people is Chuck
(Charles N.) Valenti. Chuck was the salesman who
was given the responsibility of trying to help
this innocent Ph.D. find an agency that would
recognize some sort of stake in my research.
Chuck had, particularly for a salesman, a rare
combination of attributes. He was a true believer
in the capitalist system, a patriot, very smart
and essentially honest. He .believed, and
convinced me, that if you couldn't sell it then it.
probably wasn't worth all that much. He also knew
the DOD like the back of his hand (it was Chuck
who first revealed to me, for example, that every
fourth door in the Pentagon was the entrance to a
men's room). Trailing Chuck around and giving my
pitch while he opened doors, watched, criticised
and schemed gave me my first glimpse of how things
worked in the complement of IBM, which I had
previously considered barely non-empty.

The reason I left Aeronca still strikes me as

17

amusing. The Technical Director, to whom I
reported, had singularly eclectic interests
comprehending the importing of spaghetti making
machines and marble, a housing development
corporation, ESP and a process developed by a
retired colonel in Pennsylvania for ridding crops
of all .manner of blights by simply placing, for
example, a leaf from a plant in the troubled field
on top of a very special box of the venerable
.c.olonel' s design. I was assigned the task of
investigating this phenomenon for possible
commercial exploitation. I examined the circuit
schematic and found that, among its many un~sual
features, it seemed to function without a power
supply and no detectable closed circuit. I
reported that I thought the whole business
preposterous nonsense and took the opportunity to
also express my dim view of ESP as a means of
secure battlefield · communication. Although I
wasn't fired on the spot the strain in the
situation grew worse rapidly and I soon left,
having arranged for a job with the n~arby Air Arm
Division of Westinghouse at Friendship Airport,
Maryland (all the names of nearly everything have
long since changed). It was at Westinghouse that
things finally began to take off and I will
discuss my four years there in some detail.

SOLOMON

I was hired by the Engineering Manager, Harry
B. Smith, a first-rate radar man and an excellent
manager. We agreed that I would be based in an
existing computer development group that had some
good people in it and some substantial
accomplishments to its credit- primarily in the
area of airborne analog computers. I was, from
the beginning, however, given the freedom and
wherewithal to pursue my own ideas. I followed up
some of the contacts Valenti and I had initiated
and quickly secured support from the Rome Air
Development Center (RADC) and the United States
Army Signal Corps Laboratory at Fort Monmouth, New
Jersey. The principals I dealt with were Al (Alan
A.) Barnum, Morris (A.) Knapp, and Bill (William)
Moore at Rome and Dave (David) Haratz, Milt (M.A.)
Lipton and Dr. Ed (Edward) Reilley at Fort
Monmouth. Within 3 or 4 months from the time I
joined Westinghouse I had started a small group
with 2 young engineers who were the first to work
with me on developing the SOLOMON design. They
were Carl (W.C.) Borek and Bob (Robert C.)
McReynolds. Carl, Bob and I then spent a most
productive and gratifying year working out the
design and some programming details which we
reported first in a Workshop on Computer
Organization [Slotnick 1963] held at Westinghouse,
under RADC and Westinghouse Sponsorship in October
1962. .Carl, Bob and I later presented a more
detailed design article [Slotnick 1962] at the
1962 Fall Joint Computer Conference which to our
surprise and pleasure won the first AFIPS Prize
and which, together with a companion report on
applications [Ball 1962], became the standard
citations for SOLOMON. A word about the name
SOLOMON before discussing the design; it was
suggested to me because of both the (wise as) King
Solomon connotation and his 1000 wives (servants,

in a ruder and simpler era). SOLOMON was designed
to have 1000 (OCTAL) Processing Elements (PE's).
I had no acronym in mind. Much later the tortured
Simultaneous Operation Linked Ordinal MOdular
'Network was devised by a creative salesman,~Jerry
McKindles with, I must shamefacedly confess, my
help. The final.design of SOLOMON (later, as we
shall see, to be called SOLOMON I) was reported· in
[Gregory 1963}. By then I had a group of · 12
engineers, under Jo.hn (J.G.) Gregory, who so
creatively and energetically supervised the later
Westinghouse design and development work. Some 'of
the others who figured prominently were Bill
(W.W.) Beydler, Art (A.B.) Carroll, Marv'(M.G.)
Graham, Ed (E.R.) Higgins, Jim (J.R.) Hudson, Bill
(W.R.) Leonard, George Shapiro, Dave (D.K.) Sloper
and Bob (R.M.) Trepp.

In discussing the design I will utilize
figures from both [Slotnick 1962} and [Gregory
1963}. The main ideas remained the same
throughout the SOLOMON and, in fact, the ILLIAC IV
program. These were of a PE array controlled from
a central source, as shown in Figure i. The
program store was associated with the central
control while operand storage was in the array as
shown in the Processing Element block diagram of
Figure 2. Each PE possessed a memory composed of
two core frames. The two-address system employed,
used a frame for each operand and wrote the result
over one of them. Operands could also be
broadcast from the central memory or come from
(and results go to) the 4 nearest neighbors of any
PE. This was essentially the drum design of the
Institute days with the drum tracks replaced by
the core frames. The connectivity was the same
but I added the ability to wrap around the extreme
rows and/or columns under program control. Also
new were the Geometric Control Registers, shown in
Figure 3, which permitted the selection of rows,
columns or row/column intersections by number. A
special buffer, the L-buffer did matching between
the conventionally organized word-oriented
processor of the central control unit and the
serial-by-bit PE's. That is, words were handled
in parallel (serial by word, or block of words)
between L-buffer and central control but serial by
bit (all the kth bits of a column of PE words)
between L-Buffer and array. The core frames were
assembled into stacks, as shown in Figure 4, which
shared address decoding and drivers. Thus, the
same address was selected for all the frames in a
stack. In ILLIAC IV the technology was by then,
as we'll see, able to permit independent PE memory
addresses.

What Carl Borek named Mode Logic was to
remain the main "local" (applicable to a PE, as
opposed to "global"-applicable to the whole array
via central control- terms I borrowed from
mathematics because they fit so well) logical
capability in all subsequent array computers.
Each PE had a 2 bit register in which a local
data-dependent "mode value" could be set. Each
instruction had a corresponding 4 bit field
specifying any subset of the 4 possible mode
states which were "allowed" to participate in that
instruction. That is, only PE's in one of the
mode states specified in the instruction coUld

18

change states during that instruction cycle. PE's
in an "off" mode state could still provide
operands to a neighbor if called upon to do so,
and thus could influence the state of an "on" PE
but an off PE could not itself change state. This
very simple, almost irreducible residue of local
control usually functions adequately as the
principle array conditional branch. Word length
was variable under the control of a setable
register. This was easy in a bit serial system
and necessary during this era of expensive memory.

The PE's were grouped into subarrays of 32x8.
A system could contain up to 8 subarrays (2,048
PE's). We did many design studies with
independent subarray controllers as we did with
numerous redundant (for reliability)
configurations of PE rows, columns and subarrays.
The optimistic 4 quadrant ILLIAC IV design
resulted from these efforts.

We never built a full-scale SOLOMON but did
build significant experimental models; a 3 by 3
model with complete PE's, a 10 by 10 model with a
somewhat different PE and numerous special
breadboards to measure electrical characteristics
in order to optimize signal distribution within
the array and between the array, the central
control and I/O units.

During 1962 and 1963 the PE evolved, with
continued integrated circuit evolution, from the
simple bit-serial element to a 24 bit element with
24 bit registers and byte-oriented PE arithmetic
hardware. We built experimental PE's which added
24 bit numbers. in 3. 4 µsecs and multiplied them in
less than 20 µsecs (using 10 mh circuits). Even
programmed floating point times became reasonably
respectable. The basic PE system module became
smaller (256 to 32 PE's) as the PE itself became
larger (1 to 24 bits). In ILLIAC IV this was to
become modules of 64, 64 bit floating point PE's.
For reasons soon to be clear the details of these
later SOLOMONS (by now called by us at
Westinghouse, SOLOMON II) were never published.
They can be found, however, in [Westinghouse
1964a] and [Westinghouse 1964b].

Problem analysis and programming tried
breathtakingly to keep pace over this thirty
months or so of evolution of designs and models
and simulations but except for some particular
problems in partial differential equations, matrix
inversion and a significant group in signal
processing, never really managed it. We convinced
ourselves early that the problem· space for which
this computer organization excelled was large
enough t.o justify development of the full-scale
machine, and, indeed, it nearly did. In
programming we designed some new language
constructs to overlay on a standard higher-level
language, such as DO TOGETHER, but these likewise
were to remain incompletely implemented.

At the beginning of 1964 RADC was pushing
hard and with apparent succ.ess for a DOD program
to build a full-scale SOLOMON but in March the
situation turned totally sour. Our principal DOD
Washi~gton sponsor drowned in a tragic accident

and the program's chief · opponent, an old-line
affiliate of an industrial competitor who was soon
to leave DOD under something of a cloud, acted
quickly to kill our chances, By this time I had
assembled a group of 100 or so mouths to feed,
about half of whom were working on SOLOMON (I had
taken on additional responsibilities) and had to
shift gears quickly to avert a total wipe-out.

Thus began the visits to the Atomic Energy
Commission's Lawrence Radiation Labs at Livermore,
California and Dr. Sid (Sidney) Fernbach. Sid
labored mightily to stave off a disaster at
Westinghouse. He wanted to see the technique
tried on a decent scale but failing to squeeze the
development cash out of Washington, he managed
only a contract offer to lease a system were
Westinghouse to develop it on its own funds and I
couldn't argue Westinghouse into accepting it.
The 6 months between the shut-off of most of our
DOD funds and the AEC's unacceptable contract
offer remain a frenzied blur with Sid's lasting
encouragement and friendship as its only redeeming
feature.

When the Group Vice-President at Westinghouse
turned the contract down I, of course, instantly
submitted my resignation which he turned aside in
a speech so full of understanding and concern that
I managed not to kill him. The Westinghouse
Baltimore executives acting with their typical
very considerable skill had me dismantle my group
and then offered me the job of manager of Advanced
Development, a group of 1,000 engineers plus a big
support operation, which included the offer of a
home for most of the people in my SOLOMON group.
I accepted it as a means to resettle my group. I
also tried for several months after the debac·le to
start my own company and raise the venture capital
to build a machine for Sid but I couldn't quite
pull it off although I had pledges for about three
quarters of the money when I took another turn.

I had gotten to know John (R.) Pasta, head of
the Computer Lab at the University of Illinois,
when he invited me to join an informal group that
met periodically to discuss directions in the
computer field. He knew what was happening to me
and encouraged me in many ways to reflect on the
abiding nature of intellectual achievement as
opposed to the transient goals I was becoming
obsessed with. The academic life looked good,
indeed, and after checking the other academic
possibilities I decided to join John at Illinois
because of their outstanding reputation in having
not only used but built machines and because of my
friendship and respect for John. In May of 1965 I
moved my family to Urbana.

The SOLOMON work had essentially come to an
end at Westinghouse a year before 1 left for
Illinois and that year was spent frantically and
unsuccessfully looking for ways to get it going
again while simultaneously taking on a tough new
job assignment. When I arrived in Illinois 1 was
anxious to do something else, in fact, anything

19

else. Ivan Sutherland, whom I had visited at
ARPA, where he headed the Information Processing
Techniques Group, called and asked to visit me
about a month or so after I came to Illinois.
Without really expecting anything to come out of
it other than a pleasant visit with a very bright
and genial colleague, I of course happily set it
up. As it turned out, what was on his mind was to
see if I would be interested in developing a big
parallel computer at Illinois. I thought about
it, talked with John Pasta who was more than
agreeable and, not without some "here we go again"
trepidation, I told Ivan yes.

Ivan wanted to start the project with a small
study phase but I absolutely refused. I wanted a
two million dollar payment at the outset and a
contract for a total of ten million. I did this
to make· sure that the ARPA committment was real
and had passed the highest levels of review. Ivan
agreed. I wrote the proposal and a few weeks
later we had our contract. John and I decided
with much regret that the days when a university
could design and fabricate a big machine, by
itself, were over and we decided that while we
would do the architectural design and most of the
software and applications work, we would rely on
industry for detail design and fabrication.

For nearly a year I gathered a nuclear staff
and worked to develop design specifications for a
study phase procurement to be followed by the
fabrication phase. I outlined the major
approaches in [Slotnick 1966] and we incorporated
them in a bid set. In August 1966, after many
months of intensive contacts with industry, three
8-month contracts were awarded to RCA, Burroughs
and UNIVAC. In April 1967 Burroughs was selected
to go on to do the final design and development.
The selection of Burroughs, while not quite by
default·, was hardly hotly-contested. Burroughs had
teamed with Texas Instruments, who were to·develop
the integrated circuits for the PE. even though
they were, at t~e same time, building their own
high-performance pipelined system. They (TI) had,
in fact, tried to interest us in abondoning the
parallel approach in favor of a pipeline. Control
Data also had a whack at this. But it seemed
pointless, from any point of view and, in fact
impossible from mine, to think of developing three
pipeline processors and no parallel processors.

The technical details of ILLIAC IV are quite
well known; the standard citation is [Barnes
1968]. I will thus concentrate here on those
surrounding circumstances and issues which most
influenced the program.

My original intention was to build a system
consisting of four subarrays (quadrants) of 64
PE's each; a PE now being a 12,000 gate floating
point (48 bit mantissa-16 bit exponent) processor.
The 4 quadrants could each operate independently;
the system thus acting as a 4 unit multiprocessor.
The system could also operate as 2-2quadrant units
or as a single 4 quadrant (256 PE) unit. Each PE,
moreover, could function as a single 64 bit
floating point element as 2 - 32 bit floating

point elements (24 bit mantissa- 8 bit exponent)
or as 8 8 bit character-oriented fixed point
elements; this last operating mode being directed
toward signal and image processing applications.
As we will see, by 1969 cost overruns made it
necessary to reduce the size of the system to the
single quadrant, described in [Slotnick 1971],
that was built. (It is a quaint observation that
the space still exist in the ILLIAC IV back panels
to plug in the connectors to the missing three
quadrants) The PE, however, underwent no
significant change in logical organization.

There were two main contributions to the
early overruns and consequent retrenchment. The
first was the inability of Texas Instruinents to
produce the 64 pin ECL packages around which we
had designed the PE. A great deal of inconclusive
mutual finger pointing went on between TI and
their suppliers but the upshot was the loss of
somewhat more than a year of time and, all related
and consequent expenses conside7ed; perhaps 4
million dollars. The second severe setback was
the inability of Burroughs to produce the magnetic
thin film PE memories. In time and dollars this
amounted to the loss of roughly an additional 2
million dollars and a year further delay.

We retreated from the 64 pin packages to
standard 16 pin dual in line packages. In so

doing, however, everything got bigger and more
expensive. A lot of the logic design was
salvageable as a consequence of making the 16 pin
packages logically derivative of the abondoned 64
pin packages but .board layout, back-panel wir :mg
and all system-level hardware had, of course, to
restart from scratch. The memory situation was
even messier. Burroughs had a large investment in
their thin films and didn't want to give up on
them even after my own and independent review had
concluded that they still represented an
intolerable development risk. Semiconductor
manufacturers were just beginning to gear up for
memory chip manufacture; the manufacturing means
were clearly at hand, or at least so it seemed to
me, but the chips were not. I made the painful
decision to drop films and go with semiconductors.
After making the rounds of all the possible
qualified suppliers I recommended the selection of
Fairchild Semiconductors, whose memory systems
operation was then h~aded by Rex Rice, under whom
in a former life I had, as I have already
discussed, learned the tricks of the trade. This
selection met with considerable opposition from
Burroughs and others. Such was the furor in fact,
that ARPA, convened a panel of independent experts
who carefully reviewed the situation and sustained
my decision. It turned out that when Fairchild
delivered their memory it was still the only
high-speed semiconductor memory being delivered
and that ILLIAC IV wa·s the first large system to
employ a semiconductor primary store.

By this time Ivan Sutherland had sought other
if not greener pastures and the combination of
Larry (Lawrence G.) Roberts and Bob (Robert)
Taylor had replaced him in the ARPA computer
operation. To Larry, without doubt, goes the

20

distinction (however dubious) of having shed the
second greatest amount of blood for ILLIAC IV.
Larry had several set of interests in the machine.
First there were the direct applications that had
been identified including numerical weather
prediction, sonar, radar and seismic signal
processing and the, by now, usual list of
computations that array computers do efficiently.
Larry also shared my sick attachment to really big
pieces of hardware. But in ILLIAC IV Larry also
had the interest of the father of computer
networks. Particularly, as the program's costs
escalated from my initial 10 million dollar guess
(the sometime alleged relationship to the Sonny
Liston-Cascius Clay (now Muhammed Ali) fight gate
receipts is neither totally true nor totally
apocryphal) to the more than 30 million it ended
up costing for one fourth of the initial system.
To justify these escalated costs the ultimate
availability of the machine to an ever larger
community of users became mandatory and ILLIAC IV
and the ARPANET became inseparably linked.

In 1969 the strains of running a million
dollar per month project within an academic
department were operating destructively. The
relations between John Pasta and me and between
ILLIAC IV and non-ILLIAC IV faculty generally had
degraded beyond the point of repair and the
project was made a free-standing Center in the
Graduate College of the university. It was a
terrible mess, due mostly to circumstances but in
no small part to me, and I regret to this day the
human hardships that resulted and the deep human
relationships that were destroyed.

By the beginning of 1970 the hardware program
had been marginally restabilized; the PE had been
redone with the new lower level T.I. integrated
circuits, PE memory chips were being delivered by
Fairchild, boards were being produced at a decent
rate, cabinets and cables existed and our internal
departmental conflicts were coming to a head on a
campus and in a country that was becoming unglued
by the Vietnam War. In May of 1970 both the U.S.
action in Cambodia and the Kent State shootings
took place and my generally conservative position
with regard to the war became untenable to me. I
informed the university administration and ARPA
that I thought it wrong for the ILLIAC IV to be
installed and operated on the campus and that if
it was I would play no part in it. The reaction
by campus administrators was consistent with all
my previous observations: They ranged from the
proposal that the future location of the machine
be decided by a binding student election, to
delivering the machine to a profit company to be
set up near campus and protected both by high
walls and armed guards. In the presence of
continuing demonstrations, frequently violent, by
as many as 6 or 7 thousand students which were
sharply focused at the project, these suggestions
by my "superiors" only supported my conviction.

Due mainly to the efforts of Dr. Hans Mark,
then Director of Ames, ARPA decided to ship the
machine to the NASA Ames Research Center in
Moffett Field, California, announcing their

I,
I

decision on 29 January 1971, In April 1972
Burroughs delivered the system to Ames. It was
plagued by a variety of serious hardware problems.
Some of the early circuit batches failed both at
high rates and in modes troublesome to detect.
Moreover, huge numbers of back-panel connections
and of terminating resistors were equally bad.
Although some successful runs were made as early
as 1973, the machine wasn't running reliably until
1975. The story of ILLIAC at Ames is, however,
not mine to tell.

The story of the ILLIAC IV hardware is,
however, only a part of the ILLIAC IV. story and
perhaps not the most important part• From ·1965
on, as a result of the ILLIAC IV program, first
the Urbana campus and subsequently many other
university, government and industrial laboratories
have undertaken the analysis of the relations
between computer architecture, algorithms, both
numerical and non-numerical, and their expression
in programming languages. The problems posed so
long ago in [Cocke 1958] have begun to receive the
attention that I believe they merit. Moreover, as
I will presently discuss, parallel computation (or
pipelined computation with which it shares many of
its benefits and burdens) will not be the sole
beneficiary of this attention. My own opinion is
that the greatest advances in the efficient use of
new architectures will accrue from research in
numerical algorithms and that the benefits yielded
by new languages will continue to primarily
benefit the sanity and €fficiency of the
programmer and be of only secondary concern to the
programee.

This orientation certainly influenced my
priorities in running the ILLIAC IV program.
While I think the ILLIAC IV language development
work of Dave (David J.) Kuck and Duncan (H.)
Lawrie has had lasting value and has influenced
many other researchers, my main concern remains
with the part of the problem solution process
that, though cognizant of the machine logical
structure, goes on before the programming starts.
The research of Ahmed Sameh, whose distinguished
career also started with ILLIAC IV, exemplifies
this position, We have discussed these matters at
some length in [Slotnick 1978].

It is time, in concluding this section, for
the pleasurable business of acknowledging some of
the ILLIAC IV principals. It is also a risky
business because there are doubtless some I'll
forget and others I'd just like to forget. I've
already mentioned Kuck, who launched the language
and application programming efforts and the one
man gang Duncan Lawrie who produced GLYPNIR, which
for ten years was the only working ILLIAC IV
higher-level language, and did it by himself as a
lowly graduate assistant. · I've also mentioned
Sameh who essentially initiated, and remains a
principal contributor to, the field of parallel
algorithms for calculations in linear algebra.
Bob (Robert S.) Northcote made contributions in
software as did a group of some of the brightest
kids (many of whom now as middle-aged men remain
among my friends and collaborators~ I've ever

21

known, including Pete (Peter A.) Alsberg, Gary
(G.) Grossman, Dave (David M.) Grothe, Nelson
Machado, Jimmy (James M.) Madden and Jim (James
E.) Stevens.

On the hardware side there was the constant
support of the many-sided Art Carroll and Dave
(David E,) Mcintyre. Masao Kate's energy and
skill was an inspiration to all of us. For
several of the early years Dick (Richard M,) Brown
helped hold things together and there was always,
at the center of the storm, Frieda Anderson. At
Burroughs (E.) Gary Clarke, with whom I share 20
years of richly varied memories, started things
off and remained the Godfather, the only one I
could always talk to was Vern (Vernon Z.) Smith
who also knew the best jokes. Dick (Richard A.)
Stokes and George (H,) Barnes did creative
technical work. At T.I. Harvey (H.C.) Cragon and
Joe Watson led my good list and (J.) Fred Bucy was
on it. I also had another list.

Reflections

I have a bit more to say about parallel
computers. First, one of the most interesting
directions remains insufficiently explored. In
[Slotnick 1970] I outlined the simple notion of
associating with each track of a rotating store
some minimal logic capacity, much like the SOLOMON
I PE. The resulting system I called a logic per
track disk in evident generalization of the head
per track disk. Such a system could, like my drum
of old, search or process the complete contents of
a rotating store every revolution and thus
function as a calculating, and/or associative
store. Figure 5 shows the general idea. The PE
logic which looks at the tracks (I used a pair, in
strict analogy to the SOLOMON frames and 2-address
scheme) is just a simple serial bit stream (pair)·
processor with mode and routing logic. Nowadays
one would want to include a few characters of RAM
in the PE instead of the revolvers that were then
appropriate. One could also think of replacing
the disk tracks altogether by CCD's or bubbles.
The optimal parameters of a modern serial memory
hierarchy for such a system would depend strongly
on the overall system size and application scope.
My student Stu (Stewart A.) Schuster and his
Toronto colleagues continued this line of
investigation, which they described in a sequence
of publications starting with [Qzkarahan 1975],
but only some small scale models have thus far
been built.

SOLOMON-like machines have been built by !CL
[Parkinson 1976] and others. Even now, the MPP
[Fung 1977] currently being built is a larger (128
by 128) machine of this same general class. It
remains to be seen whether parallel machines with
floating point PE's are a dead end. I don't,
however, consider the que·stion to be of the first
importance for reasons I will presently get to.

I believe it has value to reflect on the
aetiology of some of the major problems that
occurred during the ILLIAC IV development. First
and foremost, trying to provide technical

leadership as well as administrative direction to
a program of this magnitude from a base in a.
traditional academic unit or from anywhere on any:
university campus made all the sense of trying to
build a battleship in a bathtub. We had neither
the facilities nor personnel to manage from a
distance .and .even if we did, our temperaments, as
inte:LLect:uar~w ·driven monomaniacs, demanded being
in the middle of every significant decision and
altogether too many insignificant ones. It was
only at great personal cost that, several years
into the program, I disciplined myself to the
slightly lesser of the evils: more global
management.

We also took on too much. Some of the
'battles were unnecessary. I obsessively wanted
every bit of speed we could get from any source.
My hindsight is clear, I should have used more
comfortable technology; our role there was not
indispensable. By sacrificing a factor of roughly
3 in circuit speed it's possible we could have
built a more reliable multi-quadrant system in
less time, for no more money and with a comparable
overall performance level. This same concern for
the last drop of performance hurt us as well in
the secondary (parallel disk) and tertiary (laser)
stores. But this is all looking backward which
violates my nature. I would rather conclude by
looking ahead, at new directions suggested by
current technology, with the benefit of these
experiences.

Let me ~ay first that it will probably be
qµite a while before even every Cub Scout Troop
much less every household has its own design
automation system with direct links to its
companion, computer-controlled electron beam
lithography VLSI fabrication system. In the
interim such systems will remain the possessions
of a relative handful of manufacturers. These
manufacturers will use them to manufacture only
those systems for which they believe there is a
sizable market. This is counterpoised to the
first twenty years of the computer era; when the
relatively simply attainable state-of-the.;;.art
development capabilities were shared by industry
with both university and government labs. The
result is that technology which intrinsica1ly has
the capability to launch an Unparalleled era of
system experimentation shows little sign of
fulfilling this potentiality. While no single
university can afford the many millions of dollars
reqµired to create and operate a facility that
would be capable of turning out strange and
occasionally wonderful prototypes, it would not be
too much for an appropriately backed consortium.
The technology is nearly at hand to permit serious
experimentation with dozens of new and promising
computing structures. It is with this in mind
that I earlier said it didn't really matter
whether centrally-controlled arrays. with floating
point PE's are or aren't a dead end. There can,
in the near future, be many special-purpose
systems developed to solve this or that particular
class of large-scale computational problems; on a
bad afternoon I can think of a dozen myself. The
question is only whether the capabi1ity will

22

become a reality. We must ask ourselves would we
have charcoal-broiled steaks today had Prometheus
given fire only to the Chrysler Corporation.

I don't want to finish without an explicit
statement of my view of the field's evolutionary
potential. First, to think of supplanting the
primary role of the conventionally organized
(Babbage-von Neumann) computer is nonsense. It
is, literally, an epoch-making concept. What can,
however, take place is the evolution of large
systems (and I, of course, have reference only to
large systems) to comprehend entire families of
special- purpose "peripheral devices" in a way not
different.in principle than the way they now
comprehend their library of programs,

References

Ball, J.R., Bollinger, R.C., Jeeves, T.A.,
McReynolds, R.C., and Shaffer, D.R., 1962, "On the
Use of the SOLOMON Parallel-Processing Computer",
Proa. 1962 Fall Joint Computer Conference.

Barnes, G.H., Brown, R.M., Kat6, M., Kuck, D.J.,
Slotnick, D.L., and Stokes, R.A. 1968, "The ILLIAC
IV Computer", IEEE Trans·. E!!_ Electronic Computers,
17, August 1968 also in Bell, G. and Newell, A.,
"Computer Structures: Readings and Examples",
McGraw-Hill, 1971.

Cocke, John and Slotnick, D.L., 1958, "Th.e Use of
Parallelism iri Ndmerical Oal~lati"Oiis;-r;-- IBM
Research Memorandum RC-55, July 21, 1958.

Fung, Lai-Wo, 1977, ''A Massively Parallel
Processor", Proc. of the ~ Sympesium .£!!. High
Speed Computer and Algorithm Organization, April
1977.

Gregory, John, and McReynolds, R.C,, 1963, "The
SOLOMON Computer", IEEE Transactions on Electrottic
Computers, Vol. EC-U,-No. 5, Dec~ 1963.

Kuck, ~· J., ,_1978, _"The Str.ucture .2f ComJ>!ter s !!!2,
Computations", Volume 1, p. 263, Wiley, 1978.

Ozkarahan, E.A., Scbuster, S.A., and Smith, K.C.,
1975, "RAP-An Associative Processor for Data Base
Ma'nagSlllent", ~· National Computer Conference,
1975.

Par'kinsort, Delnriis, 1976, . 11Co111putet's by the.
Thousand", !!!_Scientist, 11, June 1976~

Slotnick, D.L., 1966, "™ lV DeSipt
guestions•Preli11linary List'; File No. 693'; Dept. of
Computer Science, Univ. ·of Illinois, Apt'il, 1966.

Slotnick, I>.L., 1970, •1tog:l.c per Track DaV'ices" in
Alt, F.L. and l!'eiberger 1 w.r. (Editors), 11Advitiai!s
.!!!, Comf5!ters-", Vol. 10, Academi~, 1970.

'Slotnick, t>.L., 1971, "The Fastest
Scientific Amerjcan M4gazing, Vol.
Feb. 1971.

Co111J)uttt",
224, No. 2;

Slotnick, D,L,, Borek; c.\4. and McReyno1ds 1 R,C, 1

\962, "The SOLOMON Computet11 , Proc. 1962 F'all

~Computer Conference, also in Swartzlander,
E.A. Jr. (Editor) "Computer Design Development
Principal Papers", Hayden, 1976.

Slotnick, D.L., Borek, C.W. and McReynolds, R.C.,
1963, "The SOLOMON Computer-A Preliminary Report",
~· 1962 Workshop on Computer Organization, A.A.
Barnum and M.A. Knapp, editors, Spartan, 1963.

Slotnick, D. L., and Sameh, Ahmed, 1978, "Numerical
Calculation and Computer Design", Computers and
Mathematics with Applications, Vol. 4, No. ~
1978.

Westinghouse Defense and Space Center, 1964a,
Computer and Data Systems Technology Group, Final
Contract Report AF 30(602) 3417, "Multiple
Processing Techniques", Submitted to RADC,
Griffiss AFB, N.Y., 10 April 1964.

Westinghouse Defense and Space Center, 1964b,
Aerospace Division, "Proposal for Parallel Network
Processor", Negotiation No. J0417, for Univ. of
Cal. Lawrence Radiation Lab, 14 August 1964.

Zuse, K. "Die Feldrechenmaschine", 1958,
Mathematik, Technik, Wirtschaft-Mittelungen, Vol.
4, ?P• 213-220, 1958.

B
!

B
!
B
!

G
!
B

CENTRAL CONTROL

G
!

G
!

G
!

G
!

[~]

BRANCHING LEVEL

G
!

G
!

G
!

G
!

B

PROGRAM
STORAGE

B
!

B
!

G
!

B
!

G

B
!

G
!

B
!

B
!

B
Figure .!.· PE Array Under Central Control

Buffer
Control -r----------i

MATRIX
SWITCH

1

IN

CENTRAL

CONTROL

FRAME
1

~ -1---11-, • • • • I
I
I a:

C1 I

c2---~

Bi .-J:: ·_· U- J
.----._ 11.

SWITCH : 1 FRAME -
2 • I 2

r
FRAME

SELECT

SWITCH

MATRIX __,...EJ Read

'-----'~ Write

Buffer 1 t
Control -'------------1

,------------------------------------ -
1 CENTRAL CONTROL - - - - - -,

~M_o~e _C~n~r~I _ _ Cv Cw Cx Cy Cz 1 ----------i---- ------------------~

To ~--+---+--+-_::}
-...._..,_ _ _.~---+---I---_., N3 Neighbors

MODE
CONTROL

CARRY

LOGIC

r---1 N4

1Control1
I Signals 1

---~-=-r _J

N2 N3
N1 N4

'----_,.--../

From Neighbors

Figure 1• Processing Element (PE) Block Diagram

23

PE SEQUENCER I
-------------------{-----------------H2~-

D D

D
t

D-G-D
t

D

D D

TO L-BUFFER

MEMORY

COLUMN SELECT REG. Figure i• PE Memory Organization

Figure l• PE Network Organization

T

I .. -- ...
EAD/WRITE +-+IR/Wf+--------------.

HEAD ~

M
- -,

I I
I SECTOR 1 ADD
I ADDRESS .-- - - +·
I SELECT I
\ I
L-----"

READ
AMP

READ
HEAD

t
~

! TiiAci< \

I -LOCAL -~ I - - - - -,
I DATA 1 I LOCAL :
I BUFFER I"' - - - • I DATA i <I - - -
I ADDRESS 1 I BUFFER 1

~ ~~L="._T _j ~ - - - - _J
A I
I I

L-_. L--------

R/W
AMP

TO LOCAL ELEMENTS

..._ __ _ TO CENTRAL
ELEMENTS

SET

MODE REGISTER

I I I
...1 ..! _ _J

.--------..

c
m
r
> -<

"' m lNCTIBIT - ,- ,- ,

TRACK PROCESS - SWITCHING
:~~~g~ UNIT DELAY

•
I

---------------------...1

'----· TO 1/0 BUFFER

Figure i• Logic Per Track System

24

Cl> u
ROUTING

LOGIC

IQ
N1
N2

NP

FROM
N1

N2

NP

..
21
0
> c
()
>
"'

THE HISTORY OF PARALLEL PROCESSING
AT BURROUGHS

Richard Stokes and Robert Cantarella
Federal and Special Systems Group

Burroughs Corporation
Paoli, PA 19301

Introduction

Parallel processing in the context of the
Burroughs experience has been synonomous with
the development of the "supercomputer". While it
is accurate to claim that, throughout the
Burroughs standard product line, the application
of parallel processing design is in ample evidence,
the main stream of the work on supercomputers is
centered in the Federal and Special Systems
Group, Paoli, Pa. For almost two decades, the
challenge of the parallel machine has been actively
pursued without interruption. In that time a series
of major systems have been developed, starting
with ILLIAC IV, then PEPE, followed by BSP; and
this paper describes the historical events in the
development of these systems. A new parallel
design currently under study for NASA called the
Flow Model Processor (FMP) is not discussed here.

These machines as a group represent some of
the most ambitious undertakings in the industry
(Table 1). With the exception of the FMP, all have
been completed in a fully working sense, and all
substantially met their original design objectives.

As a group they are certainly a tribute to the
designers whose skills harnessed enormous quan
tities of logic and memory circuits in concerted
processing functions. Their contribution to com
puter science has been made, but perhaps not fully
realized. The design rationale of these machines as
a machine class (SIMD) provides the only
demonstrable performance response for that class
of large scientific applications that have vec
torizable programs.

This 19-year history is intended as a synopsis
of the plans, events and results of three major
engineering experiences at the Burroughs Great
Valley Laboratories. Unfortunately history, like
art, is seen through the mind of the beholder and
where serious omissions or errors occur they are
certainly not intentional. The lessons learned and
the experience derived from these endeavors are
continuing to serve our engineering staff in the
development of the FMP.

0190-3918/81/0000/0025$00.75 © 1981 IEEE

25

Table 1. Comparison of Parallel Processor Capabilities

~ ~ _!!g_

Data Wo-rd Size 32 bits 64 bits 48 bits

Instruction 32 bits 32 bits 24-48 bits
Word Size

Backing Store In host Paged to PE N-Mos RAM

Memory Cycle 100 ns 250 ns 160 ns

Number of Up to 28~ 64 16
Processing Elements

Processing Element 32-bit floating 66-bit floating 48-bit floating
point accumu- point accumu- point memory
lator oriented lator oriented oriented.

Microprogrammed Yes Yes Yes

Processing Element Linear array 4 nearest Cross Bar
Connections neighbors

Parallel Operation Yes Yes Yes
Within Arithmetic Unit

Associative Yes Pseudo No
Addressing

High Order Language PFOR GLYPNIR FORTRAN

Processing Speed
300 ns~ 500 ns~ 2 Add 160

Multiply 1.9 us 700 ns ' 320

1. Time for one PE; all PEs may operate in parallel
2. Two operatiOns may complete in this time
3. May be computed as N2 times 0.85 s, where each operand is assumed to

consist of N bits.

ILLIAC IV

The ILLIAC IV computer was a product of the
mid-sixties, its original goals reflecting the prevail
ing optimism in the country and particularly in the
young computer industry. It was the era of the
"main frame houses" that continued to
demonstrate Groche's Law with regular ease.

. ·~'

Illiac IV Installed at NASA Ames Research Center,
Mountain View, California

The seeds of the ILLIAC IV program evolved
from a project called Solomon developed at the
Westinghouse Corporation in Baltimore,
Maryland. The circumstance that marked the of
ficial beginning of the ILLIAC IV program was the
move by Dr. Daniel Slotnick, a Solomon principal,
from Westinghouse to the University of Illinois
and the subsequent designation of that institution
as the prime contractor by the Advanced Research
Projects Agency of the Department of Defense.

The program plan was to have the University
develop the system software and subcontract the
hardware development on the basis of a com
petitive proposal. Study definition contracts
awarded to Burroughs, Control Data Corporation
and RCA resulted in three proposals in which
Burroughs was awarded the hardware develop
ment contract in 1967.

The central objective of the system was 109

operations per second. This, of course, placed con
siderable emphasis on hardware component
speeds and parallel architectural design [1]. The
proposed system contained 4 independent
quadrants of 64 Processing Elements (PE) each, for
a total of 256 PE's. Each PE contained an
arithmetic element and a data memory and was in
terconnected to other PE's which were a distance
of ± 8 and ± 1 in designated value. Thus in a 8 x 8
array, a nearest neighbor connection pattern was
realized.

Each quadrant was driven by a Control Unit
decoding a single instruction stream and broad
casting the microstep for array instruction execu
tion. The Control Unit has a program memory and
a separate station for executing CV instructions
concurrently with array instruction. ILLIAC IV
was a classical SIMD design.

The Hardware

The key components of the system design
were: plainer thin film memories and multichip
ECL logic circuit packages. Later events were to
show that both choices were not realizable in the
final system.

Thin film memories had been in development
in Burroughs and elsewhere for several years prior
to the start of ILLIAC IV. Thin film was con
sidered the performance successor technology to
magnetic cores and Burroughs ·was actively en
gaged in the process of moving this technology
from the laboratory into production. ·Two factors
conspired to preclude this expectation before pro
duction was realized: the tenacity of magnetic

26

ILLIAC IV Backplane

cores and the pace of semiconductor memories.
When this situation became apparent, thin films
were discontinued, as a product and, in turn, for
ILLIAC IV.

Upon the demise of thin film memory at
Burroughs, a contract was awarded to Fairchild
Semiconductor for the PE memory system using a
64-bit bipolar component. This contract was one of
the more successful projects of ILLIAC IV, calling
for the design and production of 70 memory units,
each with a capacity of 4K words. Considering the
tight schedule and the new technology, many
things that might have gone wrong ·did not: the
memories were delivered on schedule and to
specification.

The total capacity of 250K words, limited by
cabinet volume, was a performance disadvantage
for the growing application programs that were
run on the system.

As part of the Burroughs proposal, Texas
Instrument Corporation, acting as a subcontractor
to Burroughs, agreed to provide the Processing
Elements (PE) of the system, fully assembled and
tested. A PE was a 64-bit floating point. arithmetic
[2]. The design was based upon a multichip package
in which four (up chips) were mounted on a common
substrate and interconnected by wire bonding. The
circuit packages, 24-pin ceramic, were to be con
nected on a multilayer printed circuit board, one
per PE.

The published reason for the termination of
the multichip development by the contractor was
low production yield. The design process contained
the fundamental weakness of the mliltichip ap
proach by postponing testing to a complexity level
not justified by the value added and not repairable.

The fall-back position was the use of the more

conventional 14-pin DIP packaged ECL on smaller,
2-signal-layer, printed circuit boards, connected by
a wired backplane. The logic circuits used were the
TI2500 circuit family, implying that the fault of the
initial design was the package scheme.

The foregoing component problems were the
major ones and contributed to schedule delays and
cost increases for redesign. In time, the program
scope had to be reduced from four to one quadrant
(256 PE's to 64 PE's) where the 109 operations per
second would not be possible.

The Software

The system software development was the
responsibility of the University of Illinois, which
undertook the development of a new Algol-like
compiler called TRANQUIL [3]. In addition, an
assembly language development called GLYPNIR
[4] commenced at about the same time.

TRANQUIL was, of course, a major undertak
ing dealing with a parallel structure unlike any
previous experience in compiler design. It con
tained language extensions to allow the users to
identify parallel (vector) constructs and to manage
the conditional states of the PE array. A
preliminary version of TRANQUIL was completed
and compared against the available GLYPNIR for
object code performance.

The results were disappointing but not
necessarily unreasonable for the early stage of the
compiler. TRANQUIL, however, was discontinued
and GLYPNIR became the principal language for
programming ILLIAC IV. Later, after the system
was installed at NASA Ames, another language
emerged called CFDL (Computational Fluid
Dynamic Language). CFDL was based on Fortran ·
and supported the principal applications for that
agency.

The Completion

The ILLIAC IV system was shipped to NASA
Ames in April 1972 and was accepted by the
customer that December. The selection of the
NASA site in lieu of the original one at the Univer
sity of Illinois was due in part to the campus unrest
of that era and the possible target the system
presented. The system has been operational now
for almost a decade and is considered an effective
and productive resource in the mission of that
agency.

To the people who designed and built the
ILLIAC IV, it was Cf:'.rtainly a triumph of skill and

27

ILLIAC IV Control Unit

determination. The size and complexity of the
system (250 thousand, dual, in-line components) is a
challenge by today's standard. ILLIAC IV also
made its contribution to the science:

a) It demonstrated that a SIMD architec
ture could be used effectively on some
important applications.

b) It showed that a system of that size and
complexity could be used productively
and reliably.

c) It made the user community "vector con
scious" and motivated the work toward
vectorizing compilers and the inclusion
of vector operations in later product
designs.

A major drawback to a wider use of ILLIAC
IV was the evolution in user environment. Modern
compilers and operating systems removed the user
from the hardware details of programming. The
programming pioneering days were coming to a
close.

PEPE (Parallel Element Processing Ensemble)

The history of PEPE development discloses a
number of different corporations that contributed
in varying measure to the final delivered product.
PEPE as an architectural concept began in the
mid-sixties at Bell Laboratories, New Jersey,
under the auspices of the Army Ballistic Missile
Defense Agency (ABMDA). An early prototype
was assembled there at the time AT&T decided to
divest itself of military development contracts. As
a result, the System Development Corporation

took charge of PEPE and, in turn, engaged
Honeywell in support of the hardware design.

In March, 1973 Burroughs was awarded a con
tract by SDC to build a revised and enhanced ver
sion of PEPE for ABMDA, Huntsville, Alabama.
The system Burroughs was contracted to build was
specified in detail, focusing primarily on the prob
lem of radar data processing for missile defense
systems.

The execution of the contract by Burroughs is
considered an industry paragon and Burroughs
was singled out for an outstanding performance
award by the U.S. Army for this achievement. The
completed PEPE system was shipped from Bur
roughs Great Valley Laboratories, Paoli, Pa. to
Huntsville in May 1970 and accepted by the
customer by November of that year. The only
significant change from the original contract was
the reduction of the number of processing
elements from 36 to 11 due to a program funding
reduction.

The Design

The PEPE design is considered special pur
pose because it is driven by the single application
of radar target correlation and tracking. This ap
plication naturally lends itself to parallel process
ing since the processing functions are identical for
multiple target returns and predictions. The
PEPE is really three distinct linear arrays, each of
which performs the parallel functions of correla
tion, tracking, and radar control, respectively. A
Processing Element . is a single orthogonal slice of
these hardware elements, including a common
memory and incorporating each of the three
functions.

Another important aspect of the PEPE ap
plication is that there is no requirement for inter
PE communication. This permits the PE's to
associate in a loosely coupled "ensemble," with a
significant reliability advantage as a result. Multi
ple failures in PE would degrade but not fail the
system. The system was packaged with 36 PEs in a
cabinet and a maximum of 288 PEs was permitted.

The logic component family used in PEPE was
the Motorola lOK ECL Family. MECL lOK was a
mix of MSI and SSI completely packaged in
ceramic DIPs. The memory was a lK bipolar RAM
produced by Fairchild Inc. The novel design .of the
printed circuit boards featured a combination of
printed wiring and wrapped post wiring that
avoided the problems of multilayer boards. This
design, called the composite board, was used suc
cessfully on the BSP.

28

The Epilog

The PEPE system was interfaced with a CDC
7600 host system in the Huntsville complex and
used to develop application programs. Later the
system was shipped to McDonnell-Douglas,
Huntington Beach, California for its intensive
benchmark testing. These activities are Classified
and the results cannot be published here. It can be
reported, however, that the hardware performed
exceedingly well and the system was returned to
Huntsville.

The PEPE contribution might have been more
formidable if the world political climate had war
ranted it so it may be assumed that it fulfilled a
vital need. From an engineering viewpoint, it was
simply a job well done.

PEPE Cabinet, Front View

BSP (Burroughs Scientific Processor)

The Burroughs Scientific Processor (BSP) was
the result of an effort to develop a standard prod
uct supercomputer that would serve the scientific
user community with massive computational re
quirements. This application requires machines
with special architectures that can perform at
levels beyond those achievable by circuit speed
alone.

Fortunately, the programs often exhibit an in
ternal structure in which the same operator can be
applied to arrays or vectors of data. This had led to
the development of several SIMD supercomputers
of either an arithmetic pipelined or parallel pro
cessor design (e.g. ASC, STAR, and ILLIAC IV [1]).
Both techniques had resulted in vector computers

PEPE Backplane

whose effective computational rates on suitable ap
plications were one to two orders of magnitude
greater than that of serial processors constructed
of equivalent speed circuitry.

The generality of these machines was limited
by restraints on the application programs. Due to
pipeline start-up time, very long vectors of data
were often required. A small scalar content could
seriously degrade performance levels. Finally,
they were difficult to program, often requiring
assembly language coding and memory residency
analysis in order that the speed of the machine be
fully realized.

For . these and other reasons, the only
machines that had achieved commercial success by
the early 1970's were the CDC 6600 and 7600
series which achieved their performance levels
primarily by the use of very high speed circuitry
and multiple function arithmetic processors.

Given the recently completed ILLIAC IV pro
gram and ongoing PEPE program, Burroughs had
developed expertise in parallel processing which
could be applied to developing a commercial super
computer. ·This, coupled with the Corporation's
desire to field a FORTRAN processor to comple
ment the product line and provide a test bed for a

29

new generation of high speed current-mode logic
(BCML), provided the impetus for the
development.

Although the BSP was not commercially suc
cessful, prototype and production models of the
BSP were built, made operational, and in fact, met
most of their design goals. The state of the com
puting art was advanced in several areas.

Design Goals

The beginnings of the program can be traced
to a feasibility study on repackaging ILLIAC IV
which was conducted in 1972. A survey of the user
community clearly showed that a more refined,
easier to use machine was required. This led to the
development of the set of design goals listed
below.

Standard Product. The BSP was to be a stan
dard product. This implied that it was to conform
to the corporate standards "for manufacturability,
testibility, reliability, maintainability, high level
language programmability, ease of use and cost. It
would be developed and manufactured by a stan
dard M&E (Manufacturing and Engineering) plant.
Corporate standard hardware technology was to
be employed, providing a volume basis for material
costs and manufacturing tooling.

Attached Processor. The BSP was to be at
tached to a large scale commercial computer
system such as the B 7700. This provided the
capability to extend the FORTRAN performance
of these machines and provided the user with ac
cess to the sophisticated system software
developed for commercial large systems.

Technology Driver. The Corporation was cur
rently engaged in the development of a high speed
current mode logic family and its associated liquid
cooled packaging technology, intended for use in
Burroughs commercial plants. The BSP was to be a
driver for this program. Thus it would provide
schedule pressure on the components plants in ad
vance of commercial requirements and be a test
bed to shake down the technology.

Programmability. The BSP was to be effi
ciently programmable exclusively in a high order
language. In practice, this meant that FORTRAN
was the obvious choice. Any extensions were to be
application oriented and machine independent. A
vectorizer was to be provided as a means of effi
ciently executing existing codes.

Ease of Use. The machine was to be easy to
use. This was motivated by users' desire to
minimize the ·cost of developing and maintaining

application codes.
Performance. The BSP was to be capable of

sustaining 20 to 40 MOPS on typical application
codes in weather forecasting, nuclear reactor
design, structural analysis, and other similar
fields. This was to be measured on such standard
benchmarks as the Livermore Loops.

In order to achieve these goals, several key
technical problems had to be solved.

Scalar Problem. Some means had to be found
to minimize the impact of scalar processing. This
had been a bottleneck in then-current designs.

Pipeline Start-up and Short Vector Perform
ance. A method had to be found for ameliorating
the effect of pipe-start-up time so that high
performance could be achieved on relatively short
vectors.

Memory Conflicts and Residency. A memory
structure had to be devised that would minimize
the effect of memory conflicts which occurred
when elements of operand vectors resided in the
same memory bank. This structure could not re
quire the user programmer to exhaustively study
the application and specify special residency
requirements.

Automatic Bit Vector Control. Bit vector con
trol for data_ dependent branching and sparse vec
tor operations had to be built into the machine and
made easy to use.

Generalized Parallel Processing. The parallel
processor had to be generalized so that it could be
effectively employed in more applications.
Research in parallel processing had resulted in
many parallel algorithms for speeding up opera
tions previously thought to be serial (e.g. linear
recurrences [8]).

Balanced 1/0 Structure. High performance
secondary store was required and had to be ac
cessible without excessive operating system
overhead.

Self-checking and Fault Tolerance. Extensive
self-checking and fault tolerant mechanisms were
to be built into the machine so that high reliability
and trustworthiness could be achieved. This was to
be done without seriously degrading the perform
ance of the system.

Architectural Design

The solution of these problems was under
taken during the preparation of the PDA (Product
Development Authorization - an internal pro
posal). This effort was completed in June, 1974.

30

The first issue to be decided was whether a
pipelined or parallel processing approach would be
taken. The latter was chosen because of the ease of
implementing many of the sophisticated
algorithms which had been discovered and the ex
pertise which had developed during the ILLIAC
IV program. Finally, the iterative nature of
parallel processors made them more suitable for
VLSI implementation in the future.

Once this had been decided, the memory con
flict problem was then attacked. Although many
skewing techniques were known for minimizing
conflicts, none had the generality and uniformity
that was desired. The result of this effort was a
scheme (9] which offered conflict-free access to any
linear vector whose skip distance was not a multi
ple of the prime number of memory banks. Even
more importantly, the memory mapping was ap
plication independent.

The use of microprogramming was explored
as a method of simplifying the programming of the
machine and as a means of directly executing many
common FORTRAN constructs such as nested DO
loops with embedded assignment statements. This
resulted in the development of the template con
cept, which allowed the overlapping of vector
operations within the temporal pipeline of the
parallel processor and solved the pipeline start-up
problem. (Parallel processors do exhibit another

BSP Cabinet

start-up phenomenon in that full speed is not
achieved until the vectors are at least as long as
the width of the array.)

The scalar problem was attacked with an eye
to minimizing the number of scalar operations and
overlapping their execution with that of the
parallel processor rather than relying solely upon
raw circuit speed. Scalar operations were reduced
by the application of parallel algorithms,
automating memory indexing and parallel pro
cessor control operations in hardware, and off
loading I/0 operations to a smart controller.

The remaining problems were solved in an ex
hilerating rush of discovery that culminated in a
design which is remarkably similar to the final
design documented in C. Jensen's paper [6]. The
one major difference is that there were 67 slower
dynamic memory banks which fetched vectors of
length 64. The 16 arithmetic processors then ex
ecuted the operation in 4 steps. Thus, the machine
reached full speed at vectors of length 64. This
allowed the use of low cost main memory.

BSP Demonstrating Class 6 Qualification

Detailed Design

In the detailed design phase of the program
(June, 1974 to August, 1976) the implementation of
the concepts developed during the proposal was
pursued. It had not been clear that the alignment
network and automatic indexing hardware could
be built out of a reasonable number of IC's or that
there would not ·be a combinatorial explosion of
microcode. These problems were overcome and the
design had successfully incorporated the features
of the architecture.

The applications group had found that length
of vectors in many codes were shorter than 64. It

31

would be desirable to improve the short vector
performance of the machine. The advent of low
cost high speed static NMOS memories such as the
2147 made it possible to do this. The number of
memory modules was reduced to 17 and the
memory cycle time speeded up by a factor of 4.
This allowed the parallel processor to come up to
speed at vector lengths of 16 while providing the
additional benefit of simplifying the design.

This had the result of throwing the design into
imbalance. The scalar processor had to prepare
descriptors four times as fast as before. The scalar
unit had to be speeded up in order to fully take ad
vantage of the faster parallel processor.

The Turning Point

A related sequence of events occurring in
1977 had a large effect on the program. It had been
observed that the scalar unit was, itself, functional
ly complete and could be offered as a lower cost At
tached FORTRAN Processor (AFP). This product
appeared to be relatively free and was adopted.
However, it resulted in two releases, two sets of
software, the development of a DISK version of
the I/0 system, and an interface to the B 6800. This
represented a significant additional workload on
the project.

The BCML development was very late and did
not meet the original performance goals. A pro
posal to implement the first machine in the proven
hardware of the PEPE system was rejected
because the objective of driving the technology
was deemed essential.

It was becoming clear that the performance of
the scalar unit would not support application pro
grams that did not contain a sufficiently high con
tent of vector operations. The design of the scalar
unit was straightforward, to minimize the overall
development risks to the program. The perfor
mance on the Livermore Logics benchmarks (a
scalar-vector mix) reinforced our strategy, but a·
broader product approach would require a
performance enhancement of the unit. At this
point, with limited time and resources, it was felt
the problem could be addressed in a subsequent
product upgrade after the production start of the
present design.

Making It Work

The machine was debugged during 1977 to
1980. There were many problems to overcome. In
itially, late deliveries of circuits delayed the pro-

gram. When sufficient quantities were available,
the hardware was built and put into system test.

The hardware technology was completely
new, from the circuits to all three levels of packag
ing. In addition, the emerging CCD technology was
to be employed for a second level store. Given the
number of new items, it perhaps is not surprising
that some design problems surfaced.

The first design of the sockets exhibited loose
contacts, the proms speeds drifted, and there was
a damaging latent fault in the zinc pillow blocks.
These blocks were screwed in to hold the PWB
assembly together and were under high pressure.
They exhibited a cold flow phenomenon which
caused the screws to slowly pull out. The
assemblies were literally pulling themselves apart.
A third of the machine had to be reworked in the
midst of debugging. The CCD devices exhibited a
high soft failure rate and were difficult to
manufacture.

These problems were overcome and the pro
duction hardware was fully qualified, very reliable,
and exceptionally stable. There were practically
no electrical intermittents reported. The CCD
memory was replaced by a dynamic RAM system.
While this process of shaking down the hardware
technology fulfilled one of the main objectives of
the program, it delayed getting the machine into
the marketplace at a critical time when CRAY was
making deliveries for almost 2 years.

The software set was new and fully featured.
The maturization of this amount of software took a
long time and prevented us from routinely running
customer benchmarks. This was aggravated by the
temporary loss of all 7700's for customer
shipments, which resulted in no system manager
to debug the deliverable software (the alternate,
but different, 6800 software was used instead).
Nonetheless, by 1979, limited benchmarks could be
run to measure the performance characteristics of
the system.

Performance Measurement and Marketing. In
the codes that were tested, the design lived up to
its promise as an excellent vector processor. The
livermore loops ran at over 20 MOPS. In general,
most comparisons showed that the machine was
equivalent in performance to the CRAY I for many
vectorizable codes. This was true even though the
short vector performance of the parallel processor
was only being partially realized and the hardware
components were considerably slOwer.

32

Although the large main memory and fast
secondary store was an advantage in large prob
lems, users preferrecl the CRAY due to the
guaranteed performance levels that could be
achieved on existing non-vectorized and scalar
codes.

Conclusion. The cancellation of the BCML and
. CCD programs, the attendant cost increases, the
loss of an appropriate marketing window, and the
lack of a dominant scalar speed led to the cancella
tion of the product. The design proved that it was
possible to configure a parallel processor which
was competitive in vector applications and con
siderably more general than those that had been
designed in the past. This drive for generality is
expected to continue into the next generation of
MIMD architectures.

References

(1) Barnes, G. et al. "ILLIAC IV Arithmetic Ele
ment," IEEE Transactions on Computers
(August 1968), Vol. C 17, No. 8, pp. 746-757.

(2) Davis, R. L. "ILLIAC IV Arithmetic Element,"
IEEE Transactions on Computers (September
1969), Vol. C-18, pp. 800-816.

(3) Abel, N, et al. "TRANQUIL - A Language for
an Array Processing Computer," Proceedings
AFIPS Joint Computer Con-
ference , Vol. 34, pp. 57-73~

(4) Lawrie, D. "GLYPNIR - A Programming
Language for ILLIAC IV," Communications of
ACM (March 1975), Vol. 18, No. 3, pp. 157-164.

(5) Stokes, R. A. "Burroughs Scientific
Processor," Proceedings of the Symposium on
High Speed Computation , University
of Illinois.

(6) Jensen, C. "Taking 'Another Approach to
Supercomputing," Datamation (February
1978), pp. 159-172.

(7) Kuck, D. J. "A Survey of Parallel Machine
Organization and Programming," ACM Com
puting Surveys (March 1977), Vol. 9, No. l, p. 29.

(8) Chen, S. C. and Kuck, D. "Time and Parallel
Processor Bounds for Linear Recurrence
Systems," IEEE Transactions on Computers
(July 1975), Vol. C 14, No. 7, pp. 701-717.

(9) Lawrie, D. "Access and Alignment of Data in
an Array Processor," IEE Transactions on
Computers (December 1975), Vol. C 24, No. 12,
pp. 1145-1155.

i·

CONTROL DATA 6600 AND STAR-100

James E. Thornton
Network Systems Corporation

Brooklyn Park, Minnesota 55428

Abstract This paper reviews
some of the starting point assumptions
and considerations for two design pro
jects at Control Data Corporation; namely
the CDC 6600 and CDC STAR-100. Each of
these has had follow-on computer families,
CYBER 70/170/700 for the former and
CYBER 203/205 for the latter. Both pro
jects were very ambitious and plowed new
ground in the use of parallelism in large
scale computer design.

The CDC 6600

The design of the CDC 6600 began in
1960 [1]. The first transistor computers
had just been delivered to the field that
year. Ideas having to do with parallel
processing were presented at a short
course conference at UCLA in which STRETCH,
LARC, ATLAS, ILLIAC-II and GAMMA 60 were
examined. These machines were in develop
ment in the United States, England and

PERIPHERAL AND
CONTROL PROCESSORS

12 INPUT

OUTPUT CHANNELS

France. Each attempted to exploit ways
to reduce the idle activity within parts
of the computer waiting for other parts
to complete a sequential action. Since
access to memory was often the biggest
delay of this kind, many of the ideas had
to do with relieving this burden. An
example was the "instruction lookahead"
of STRETCH.

In 1960 it had already become apparent
(as it has grown more important over the
years) that brute force circuit perfor
mance or parallel operation were the two
main approaches to any advanced computer
[2]. The 6600 project attempted a fast
version of the building block circuit in
use at the time only to fail early on in
the project. This resulted in a restart
with a more complex packaging and cooling
scheme providing a significantly higher
density of parts. Discrete transistors
were used since integrated circuit
families had not become available.

CENTRAL PROCESSOR

24
OPERATING

REGISTERS

ADD

MULTIPLY

MULTIPLY

DIVIDE

LONG ADD

SHIFT

BOOLEAN

INCR[MENT

'-----..i INCREMENT

BRANCH

Figure 1. Block diagram of 6600

33

0190-3918/81/0000/0033$00.75 © 1981 IEEE

OPERANDS

(60-BIT)

XO

r+ XI

X2
OPERANDS

XJ

X4 ._
X5 l--

RE SUL TS .- X6

ADDRESSES (18-BIT) ~ X7

AO

r-1 Al

OPERAND A2
CENTRAL AJ 10 FUNCTIONAL
MEMORY ADDRESSES

A4 1 UNITS
L- A5

RESULT ...- A6
INSTRUCTION r ADDRESSES L- A7 INCREMENT

(18-BIT) REGISTERS

80

Bl

82 1- INSTRUCTION
83 STACK

84 (UP TO 8 WORDS
85 60-BIT)
86

87
~ 1--

INSTRUCTIONS t

Figure 2. Central processor operating registers

The first area of parallel operation
began as a· separation of input/output op
erations from the CPU, (Figure 1). It
was felt that independent small processors
with direct access to central memory
could be dynamically assigned to control
peripheral devices and transfer data
between each device ancl central memory.
These peripheral processing units (PPUs)
would contend with each other for the
channels to the devices and for the access
to central memory. In the latter, the
PPUs would also contend with the CPU for
access to central memory. With the excep
tion of this latter factor, the PPUs
could be designed separately from the CPU
and represented a very convenient separa
tion of design duties for the design team.
The resulting design was an innovative
"barrel" of registers together with a
single arithmetic unit implementing ten
small processors each having its own
memory. Later implementations in follow
on CYBER products included physically
independent PPUs as integrated circuit
versions were introduced.

In the CPU additional areas of par
allel operation were applied to instruc
tion lookahead, multiple working registers
and functional units. See Figure 2.
Taking the registers first, the idea of
inserting registers between the execution
logic and central memory provided a means
to optimize and overlap read and write
references to central memory. At the

34

beginning of the execution of a CPU pro
gram (or at a restart following interrup
tion) a single simultaneous exchange is·
made of the contents of the 24 registers
and a prepared location in central memory.
This action provided very rapid exchange
of jobs (or operating system routines)
enhancing the ability to support multi
programming.

During execution of the CPU program
instructions are fetched from central
memory into an instruction stack capable
of containing 8 60-bit words, see Figure3.
Each new instruction word is immediately
fed to the functional units from execution
but is also :retained and "pushed up" for
possible re-use in certain loop routines
or the like without the further require
ment of fetching from central memory. In
certain follow-on CYBER products of lower
performance the instruction stack was not
utilized nor were separate functional
units. The instruction stack was a
principal important ingredient in estab
lishing a high degree of concurrent
operation in the functional units.

A further important ingredient in
supporting concurrent operation in the
functional units was a control unit called
the SCOREBOARD [3]. In essence, this unit
kept track of reservations of the working
registers allowing functional units to
reserve each register it needed for either

INSTRUCTION

STACK

8 60-BIT

WORDS

t
t
t
t
t
t
t

[INSTRUCTION J
REGISTERS

FROM CENTRAL MEMORY

BUFFER ;EGISTER

Figure 3. 6600 Instruction stack operation

reading out or writing into the register.
Instructions could be "issued" to a func
tional unit in order, cotild be executed
out of order, but would return results to
registers in order. As a result, no
functional unit would block the issuance
of instructions unless a unit was busy
or a register reservation could not be
made.

Optimization of short program loops
in the instruction stack could produce
dramatic overlap of functions. Alsosimply
the implicit use of this control technique
and the existence of ten functional units
provided a degree of natural concurrency.

From a design point of view each func
tional unit was specially designed to
execute its narrow group of instructions
interfacing only to the registers and
minimal control signals. As a result
several of the units achieved very high
performance avoiding "impediments" of
sharing logic with other functions. Later
CYBER products incorporated further
"pipeline" arithmetic design to such
functional units.

Two principal criticisms were leveled
at the CDC 6600. The first was that it
was not a time sharing machine. This
criticism has been hotly contested and
arose from the lack of interrupt on the
PPUs and the lack of virtual memory for
memory management. A second criticism was
the lack of variable length string arith
metic and instructions for character
handling and decimal numbers. Software
routines to accomplish these requirements
proved slow in relation to the IBM 360 for
example. For scientific and binary

35

oriented computing though, this machine
was superior for its day and for many
years even to today.

The CDC STAR-100

Control Data began this project in
response to a request for proposal (RFP)
from Lawrence Livermore Laboratory (LLL).
Preceding this were requests for informa
tion (RFI) and other interaction with the
LLL people as to the possibility of CDC
being the manufacturer of an ILLIAC IV
type of machine. Management response to
that suggestion was negative. Also our
techn1cal response was that we had a
different id~a. The essenc~ of this
different idea was to build on our growing
knowledge of "pipeline" architecture in
response to the requirement.

The CDC 7600 (follow-on to the CDC
6600) utilized an improved functional
arithmetic unit design which allowed each
unit to be entered with new input operands
well before previous operands were pro
cessed and results obtained. This added
pipelining of the execution units along
with the instruction stack and control
brought additional concurrency to the
machine. It was felt that this could be
enhanced further by explicit pipeline
instructions for the CDC STAR-100.

During 1965 and 1966 Control Data
faced significant competitive pressure
from IBM in particular and was attempting
to expand the role of the CDC 6600 into
commercial (non-scientific) markets.
Principal competitive factors were the
lack of variable length byte oriented

instructions, decimal arithmetic and
virtual memory. Interal strategies in CDC
were pressing for new machines stressing
these properties. Thus the STAR-100 pro
ject moved to respond. The variable
length and 8-bit byte STRING oriented
instructions were a some.what natural fit
with the idea of ARRAY instructions
utilizing highly parallel pipeline execu
tion. The name STAR-100 was formed from
STRING and ARRAY with the objective of
100 million operations per second. STRING
operations were assumed to be executed in
a separate functional unit and thus were
not considered an impediment to the high
performance end of the machine.

Moving to the eight-bit world from
the octal and six-bit environment was a
major learning experience and further
complicated by a shift from one's comple
ment to two's complement representation
of binary numbers. But the fundamental
new area of design was the processing of
vectors and arrays through pipeline
arithmetic.

WRITE BUS

Banks
FANOUT

0- 3 3 0

4- 7 4

8-11 8

12-15 12

16-19
16

128
20-23 20

24-27 24

28-31 31 28

128 Bits
Memory x 8

(4 Million Bytes)

The CDC STAR-100 computer was
structured around a 4-million to 8-million
byte high-bandwidth magnetic core memory.
Instructions specify operations on vari
able length streams of data allowing full
use of the memory bandwidth and the
arithmetic pipelines [4]. In streaming
mode the system has the capability of
producing 100 million 32-bit floating
point results per second. See Figure 4.
Memory has 32 interleaved banks, each
bank containing 2048 512-bit words (for
the 4-million byte capacity). The memory
was an outgrowth of previous extended core
storage (ECS) systems built for the CDC
6600. The long word length and relatively
slow cycle of 1.28 microseconds with
interleaved banks was suitable for
streaming use. Working registers in
local storage include 256 sixty-four bit
general registers. Operands could enter
the multiple pipeline arithmetic either
from the general registers or from
central memory; similarly, results could
return to the general registers or
central memory.

Bits

WRITE
·BUFFER

READ
BUFFER

INSTRUCTION
STACK & CONTROL

VECTOR

I
I MULTI

PURPOSE

FLOATING POINT
ADD PIPE

REGISTER
DIVIDE

-,
I
I

I
I

I

Figure 4. STAR-100 Memory-Pipeline data paths

36

Vector instructions perform operations
on ordered scalars. Such instructions are
64 bits in length and contain the instruc
tion code and three pairs of eight-bit
designators. These designators provide the
means to support a three address environ
ment. In general two input streams and
one result stream are defined. for the two
input streams each pair of designators
defines working registers (of the 256
general registers) which contain the base
address, vector length and an offset to
the base address. Length and off set are
also held in defined working registers
together with the base address of a
control vector. The control vector is a
bit string in which each unique bit is
associated with the storing of each result
element in the result stream. A bit in
the control vector can prohibit the storing
of a result element, thus providing for
certain masking and boundary controls.

Thus a single explicit instruction can
direct the execution of many floating
point operations in a highly organized
fashion. In practice, the preparation and
synchronization of the three streams was
very complicated and required a longer
"start up" period than had been expected.
As a result, the CDC STAR-100 was more
efficient the longer the vectors were.
Also with a slow central memory, scalar
operations were not competitive although
offset somewhat by the high speed general
registers.

Both projects suffered delays with the
CDC STAR-100 being the longer and
several years in duration. Problems with

37

6600 occurred very early and cost only
about a year. Problems with the STAR-100
occurred very late in the planned schedule
and resulted in an extended delay. Both
projects were exceedingly aggressive
and far reaching. The properties of the
CDC 6600 have enabled a long lasting
product line. The properties of the
CDC STAR-100 are only now being exploited
in the CYBER-200 machines.

References

[1] Thornton, J.E., "The CDC 6600 Pro
ject," Annals of the History of
Computing, October 1980, Volume 2,
Number 4, PP• 338-348.

[2] Thornton, J.E., "Parallel Operation
In the Control Data 6600," October
1964. AFIPS Proceedings FJCC, pt 2
Volume 26, pp. 33-40.

[3] Kuck, D.J., "The Structure of
Computers and Computation," 1978,
Volume 1, pp. 312, 328.

[4] Hintz, R.G. and Tate, D.P., "Control
Data STAR-100 Processor Design,"
September 1972, COMPCON 72 Pro
ceedings, pp.1-4.

PROGRAMMING DISTRIBUTED
APPLICATIONS IN ADA:

A FIRST APPROACHl

by

Stephen A. Schuman
Massachusetts Computer Associates, Inc.

Wakefield, Mass. 01880

and

Edmund M. Clarke, Jr.
Christos N. Nikolaou

Center for Research in Computing Technology
Harvard University

Abstract -- This paper addresses the problem
of programming distributed systems within the
framework of the Ada language, which provides
primitives for interprocess communication based
upon the model of Communicating Sequential Proc
esses. We first discuss our basic assumptions
concerning the underlying target configuration,
the physical communication medium which is to sup
port that application and pattern of the logical
communication within the application proper. We
then develop a first approach for constructing
such applications using the separate compilation
facilities of Ada. Finally, we consider two pos
sible protocols for implementing the requisite
distributed interprocess communication, referred
to as the Remote Entry Call and the Remote Proce
dure Call, respectively.

1. Introduction

This paper addresses the problem of program
ming distributed applications within the framework
of the Ada language (3,2,5). our ambitions here
are confined to outlining a first approach in this
area, whence a number of significant issues asso
ciated with the construction of such software are,
of necessity, deferred. We begin in Section 2 by
setting forth the basic assumptions which underly
the overall approach described herein. Section 3
is concerned with establishing an appropriate com
pile-time framework, within which the programming
of an application destined for a multi-processor
target configuration can be carried out in much
the same way as one intended for a uni-processor
target. In the final section, we turn to the
development of protocols to support the requisite
"interprocessor procedure call" capability, so
that the applications of interest can then be

1At Massachusetts Computer Associates, Inc., this
research was supported in part by the U.S. Army
CORADCOM, through the Scientific Services Program
under Delivery Order No. 1704 from Battelle Colum
bus Laboratories.

At Harvard University, this research was supported
in part by NSF Grant MCS-7908365 and by Contract
N00039078-G-0020 with the Naval Electronics Systems
Command.

0190-3918/81/0000/0038$00.75 © 1981 IEEE

38

programmed without further regard to the distribu
ted nature of the underlying target configuration.
Two successive versions of such a protocol are
defined. These are referred to as the Remote Entry
Call and Remote Procedure Call, respectively.

2. Basic Assumptions

This section outlines our basic assumptions
concerning the nature of the distributed applica
tion systems to be programmed in Ada. Abstractly,
we wish to conceive of some given target configur
ation, onto which a certain application is ulti
mately to be mapped, as a network of communicating
"Ada Virtual Machines" (AVMs). Every such config
uration may therefore be characterized in first
instance by an undirected graph, as depicted for
example in Fig. 2-1:

FIGURE 2-11 A network of communicating Ada Virtual Machines.

The individual nodes of a particular network.
correspond to fully independent (autonomous) proc
essors, each of which is capable of e.xecuting a
complete Ada program. Accordingly, afo Ada Virtual
Machine is to be viewed as an idealized singZe
proaessor environment that directly implements the
run-time facilities required to support the seman
tics of the full Ada language. Thus the concept
of an AVM embodies an abstract object machine for
which Ada source programs might conventionally be
compiled (but disregarding all dependencies upon
a specific hardware architecture and/or host oper
ating system)i concretely, it may be thought of as
providing its own address space, scheduler and
real-time clock, together with a certain set of

external interrupts, low-level device interfaces,
etc. We refer to this environment as a "virtual"
(rather than "actual"} machine so as to also eli
minate considerations arising from the fact that
several such machines might sometimes be multipro
grammed on the same physical processor (e.g., in
the context of an Underlying time-sharing system} •

The connecting edges appearing in a given
network represent possible paths of bidirectional
communication between distinct processor nodes.
(Non-connecting edges, like those shown in Fig.
2-1, are meant to suggest additional paths of com
munication, for instance with various devices
attached to the individual virtual machines; how
ever, interactions with purely local resources of
this sort are of no direct interest here, and so
will not be further discussed.} The connectivity
of such a network is assumed to be sufficient for
supporting' the intended pattern of interprocessor
communication, meaning that each edge corresponds
to a path whereby both the requisite data and any
appropriate control signals can be physically
transmitted between the two connected nodes; more
over, the bandwidth of these connections is pre
sumed to be adequate for the application at hand.

We shall assume that the target configuration
for any specific application is always statically
defined--i.e., that the number of virtual (and
even actual} processors is established once and
for all, and that the necessary paths of communi
cation exist from the outset. The primary stipu
lation which we impose is that all interactions
between separate nodes of the network thereby
defined must be achieved by explicit communication
across these more or less "thin wire" connections.
In other words, we preclude interactions based
upon the existence of shared memory or any form
of centralized control. This implies that the
application in question must be formulated from
the beginning as a distributed system. The issue
we wish to address is how one might go about pro
gramming such applications in Ada, so as to be
able to effectively map those programs onto the
given multiprocessor configuration.

Ada provides an adequate basis for program
ming systems of communicating sequential processes
[l],and for supporting synchronous communication
between these processes. Once some desired pat
tern of logical communication has been established
(for example, that depicted in Fig. 2-2), there
is no particular difficulty involved in formula
ting the specifications and subsequent definitions
for the corresponding caller and server processes
(or subsystems}. Insofar as the resultant pro
gram is destined to be executed on a single proc
essor configuration (as represented by the Ada
Virtual Machine considered here} , the job is
effectiv~ly done once all of the separate compi
lation units comprised by that program have been
successfully compiled (since an AVM is assumed to
be capable of directly executing any complete Ada
program, regardless of its textual decomposition} •

However, when the target configuration is a
network of interconnected AVMs (e.g., Fig. 2-3),
then it is far less obvious how to proceed. The

39

Q(. ..)

P(. •.) R(.. •)

FIGURE 2-2: Example Applioation, in terma of Communicating Sequential Proceaseu

Example Target Configuration, in terms of interconnected Ilda Virtual 1111.chines

effect that we should like to achieve is to be able
to essentially "superimpose" the intended pattern
of communication upon the underlying network (as
suggested by Fig. 2-4), thereby preserving the
overall logical structure of the application.
While the ability to do so presupposes that the
application in question was formulated as a distd
buted system in the first place (i.e., based solely
upon communicating sequential processes}, it
should then be possible to map that structure onto
any appropriate ~arget configuration, whether cen
tralized or distributed. This is the premise of
the approach outlined in the present paper.

0(•.•)

P(,. .) R(.. ,)

·~,

Superpoaition of Example Application upon the giYen Target Configuration

3. overall Framework

In this section, we shall outline a basic ap
proach to constructing a distributed application,
such as that depicted in Fig. 2-4, by making exten
sive use of the separate compilation facilities in
Ada (and also of the related capabilities for
generic program units). The framework to be devel
oped here must be regarded as simply a first
approach to the problem whence many practical
aspects associated with building distributed soft
ware will have to be glossed over (or neglected
entirely) in the present context. (In particular,
we shall be concerned solely with constructing a
definition for the steady-state operation of a
given application, even though it is well known
that the issues involved in startup and shutdown
of a distributed system are far more difficult to
address.) This approach nonetheless provides a
number of important insights into the nature of
the problem itself.

The package declaration that follows shows,
in skeleton form, an initial specification for the
application as a whole:

package Config is

type NODE is (NNl, NN2, ••• , NN$n);
Node Names

type NSET is array (NODE) of BOOLEAN;
Set of Nodes

package Node$1 is end;

package Node$h is

type OPER is (OP$1, OP$2, ••• , OP$k);
Op Codes for Remote Services

-- other type definitions •••

Host: constant NODE := NN$h;
Conn: constant NSET := (••• =>True,

others=> False);
-- other constant declarations •••

generic
Site: in NODE;

package Service is
procedure P$1 (•••);

procedure P$k (••.•) ;
end Service;

end Node$h;

package Node$n is ••• end;

end Config;

In order to formulate such definitions, we have
adopted the (purely lexical) convention of writing
names with an embedded dollar sign, so as to be
able to refer to unique identifiers as if they were
elements of a set distinguished by means of sub
scripts. For instance, the declaration of the enu
meration type NODE is meant to suggest a range of

40

values NN1 , NN2 , ••• , NNn, whereas in practice the
individual values would correspond to application
specific mnemonic names (e.g •. , NNh might be writ
ten as the Ada identifier "FileServer"). Also,
P$1, ••• , P$k denote the particular procedural
services which that individual node provides.

This first specification consists primarily of
package specifications for the constituent nodes
of the overall configuration. The logical inter
face of each separate node comprises, in addition
to various type and constant declarations, the
declaration for a generic pack.age Service, which
will ultimately be instantiated within the defi
nition of other (caller) nodes.

The associated body for the package Config,
shown below, serves to establish the overall con
ventions which are common to all nodes. As such,
it is primarily concerned with defining the under
lying communications interface, by which informa
tion will be physically interchanged between dis
tinct (virtual) machines within the configuration.
These conventions are embodied firstly in a series
of data type definitions, including:

- XREC, corresponding to a ''transaction record"
that contains at least an indication of the
respective source and destination nodes for
each transmission, as well as an encodement
of the particular "operation code" for that
particular transmission;

~ XMIT, corresponding to a complete transmis
sion, as delivered to or received from a
local communications interface, which
includes both an XREC component and an asso
ciated buffer (whereby argument or result
data may be forwarded).

Two different types of transmission are dis
tinguished at the communications level, namely
Transmit Call (XC) and Transmit Response (XR),
and the corresponding subtypes of XMIT are also
defined (CALL and RESP, respectively).

Finally, the a.ctual communications interface
is specified in the form of two distinct generic
packages, ChnDriver and ChnServer. Each of these
have a number of generic parameters, in particular,
an operation Request and an operation Deliver
which will be bound in the context of their sub
sequent instantiations in order to carry out the
necessary acquisition and disposition of trans
missions over the underlying medium. This inter
face is assumed to take full responsibility for
setting and using the Orig and Dest Fields of the
transaction record part of such transmissions.
The details of these interfaces will not be fur
ther specified here.

with Medium;
package body Conf ig is

function Card(N:in NSET) return INTEGER range
0 •• NODE'POS(NODE'LAST)+l ••• ;

subtype OPID is INTEGER range o ..••• ;
-- Max Op Code

type XREC is record
Orig, Dest: NODE;

Code: OPID;

end record;

type BUFF is
type XTYP is (XC, XR);

type XMIT(T: XTYP) is record
X: XREC;
B: BUFF;

end record;

subtype CALL is XMIT(XC);
subtype RESP is XMIT(XR);

generic
From, To: in NODE;
with procedure Request(C: in out CALL);
with procedure Deliver(R: in RESP);

package ChnDriver;

generic
From: in·NSET;
To in NODE;
with procedure Request(R: in out RESP);
.with procedure Deliver(C: in CALL);

package ChnServer;

package body ChnDriver is use Medium; ... en~;
package body

••• end;
ChnServer is use Medium;

package body Node$1 is separate;

package body Node$n is separate;

end Config;

We now introduce analogous definitions for
each separate node of our distributed conf igura
tion (the outline for that representing the Node$h
is shown below). In this instance, however, such
a step no longer constitutes an "extra" level of
abstraction; rather, it is essential -- for this
is the first place in which we permit actual in
stantiations (of code or data), since we have only
now reached a level that corresponds to some phy
sical machine environment.

The definition of such a shell serves to
establish what might be construed as an "Applica
tion Virtual Machine," in terms of which the con
stituent subsystems of the actual application
(e.g., the modules A$1 ••• A$m) may then be pro
grammed without further regard to the distributed
nature of the underlying target configuration.
This definition serves to provide:

41

- An indication of the target environment for
this particular node (pragma SYSTEM);

- The specification of the application modules
to be hosted within this node (the package
declarations for A$1 ••• A$m);

A mapping of the remotely callable services
provided by this node onto the operations
defined by those modules (e.g., renaming of
P$i);

- Definition of both sides of the higher-level
protocol required to support such remote
calls, namely the driver side (the body of
the generia package Service) and the server
side (the body of the non-generic package
Support);

- Finally, instantiations of the remote serv
ices needed to impZement the application
modules of this node (package Node$u,
Node$v, etc.).

separate (Config)
package body Node$h is

pragma SYSTEM(•••);

-- Specify local application modules:

package A$1 is
procedure Q$1(•••);

procedure Q$f(•••);
end A$1

package A$m is
procedure Q$1(.••);

procedure Q$g(•.•);
end A$m;

-- Local (re)definition of services:

procedure P$i(•••) renames A$a.Q$b;

-- Support services called remotely:

package Support;
package body Support is -- Server side cif Protocol

end Support;

package body se;rvice is -- Driver side of Protocol

end Service;

-- Provide services needed locally:

package Node$u is new Config.Node$u.Service
(Site=> Host);

package Node$v is new Config.Node$v.Service
(Site=> Host);

package body A$1 is separate;

package body A$m is separate;

end Node$h;

Within the framework of this shell, the appli
cation modules would again be defined as separately
compiled subunits:

separate (Config.Node$h)
package body A$1 is

••• Node$u.P$i(•.•)

end A$1;

separate (Config.Node$h)
package body A$m is

••. Node$v.P$j(•••)

end A$m;

The approach outlined above effectively makes
use of the Ada "Program Library" to establish the
context in which individual components of a distri
buted application may be defined in terms of a
purely procedural interface to services which are
nonetheless hosted on different nodes of a distri
buted target configuration. The possible proto
cols by which such an "interprocessor procedure
call" capability might be realized are the subject
of Section 4 of this paper.

It must be pointed out, however, that the
usage of the Ada separate compilation facilities
described above, while legitimate in every respect,
may nonetheless cause a potent~al problem in the
context of overly "naive" implementations of those
facilities. Specifically, the issue arises in
conjunction with circular dependencies (wherein
Node1 calls Node2 1 and so must instantiate its
Service package which is defined in the body of
Node2 , and vice versa) • Whereas this, too, coul.d
be "programmed around" (at the cost of considerable
effort and obscurity), in this instance it would
seem preferable to wait for more mature implemen
tations.

4. Possible Protocols

In this section, we shall be concerned with
possible protocols by which the desired interproc
essor procedure call capability might be implemen
ted for a particular distributed application.
Thus, at this point, we shall elaborate upon actual
definitions for the driver side (which serves to
map such calls onto the communications interface)
and the server side (which acts to carry out such
calls on behalf of any remote caller); these imple
mentations correspond to the bodies of the packages
Service and Support, respectively, which are
defined within the body for the node wherein those
remotely callable services are to be hosted.

42

For purposes of exposition, we shall consider
only one instance of such a definition, that asso
ciated with the virtual machine Node$h (which
makes available the operations P$1 ••• P$k) and,
moreover, we shall sketch out the detailed imple
mentation for only one of the operations in ques
tion, identified throughout as P$i. This involves
no loss of generality, since the structure for all
other operations and nodes is essentially the
same. Accordingly, the overall goal for the imple
mentations that will be described here is to pro
vide the capability suggested by Fig. 4-1, namely
to permit application processes such as Al' A2,
B ••• c, residing on separate (virtual) machines, to
invoke the operation Pi hosted by Nodeh (corre
sponding to yet another such virtual machine) as
though by a simple (local) procedure call.

-.

-,

To simplify the presentation, we shall assume
that the operation of interest has the following
specification:

procedure P$i (Al:in TAl; ••. ;Ax:in TAx;
Rl:out TRl; .•• ;Ry:out TRy); where Aj stands out
for the jth input argument (of type TAj) and Rk
stands for the kth output result (of type TRk);
formal parameters of mode "in out" are thus pre
sumed to have been decomposed into separate input
and output objects. We note that some restric
tions must be imposed upon the types of parameters
in the present context. Specifically, it must be
possible to aopy the associated objects from one
machine to another, which apparently precludes
the passage.of task or "limited private" types
(for which assignment is. not defined). Similarly,
it must be possible to meaningfully refer to such
objects both locally and remotely, which precludes
the. passage of access types (except when declared
as "private").

In the subsections which follow, we shall
develop two alternative definitions for the
desired protocol, referred to as the Remote "Entry
Catt and the Remote Procedure Catt, respectively.

In the first (arid simpler) version, we impose
the property that, from each distinct caller node,
there is .at most one remote call to any given
operation in progress at a time. Such an imple
mentation would be appropriate, for example, in
cases where the operations to be invoked are known
to be entries (i.e., serviced in a purely

sequential fashion), whence there is no advantage
to be gained by forwarding more than one poten
tially concurrent call from some particular node
(since these would then have either to be buffered
within the communications medium or enqueued by
the corresponding server node).

The second version relaxes this restriction,
allowing a (bounded) number of calls on the same
operation to proceed concurrently from within each
separate caller node. This somewhat more compli
cated strategy might be adopted in situations
where there is some optimization to be achieved
(on the server side) by recognizing new calls
before all previous ones have been completely serv
iced (as for instance in the context of a disk
scheduler).

It must be stressed that there is no semantic
distinction between these alternative implementa
tion strategies. The choice affects only system
throughput and thus the overall performance of the
application in question; it should therefore be
made on that basis alone.

We shall now proceed to develop Ada defini
tions for these two alternative protocols,
expressed primarily in terms of the synchronous
communication primitives embodied in the tasking
facilities of that language. Each of the imple
mentations to be described consists of the driver
side (the body of the generic package Service,
which is to be instantiated within one or more
remote caller nodes), and the corresponding server
side (the body of the package Support, which
resides within the Ada Virtual Machine that hosts
the operations in question).

4.1 The Remote Entry Call

As stated above, the first strategy is based
on the property that no more than one remote call
on each operation is in progress from the same node
at any given time, so as to avoid saturation of
the communications medium or overloading of the
corresponding server node. As such, this property
is necessarily established on the driver side of
the protocol defined below.

4 .1.1. Driver Side. The overall structure
and associated data-flow for the driver side are
depicted in Fig. 4-2. Calls on the operation P$i,
originating from application tasks Ta ••• Tz are
fielded by an Agent which is specific to that oper
ation (AGTi); this latter acts to acquire the input
arguments for each individual call (Al. •• Ax) and to
subsequently deliver the corresponding output
results (Rl ••• Ry). These two separate transactions
for every operation hosted by Nodeh (P$1 ••• P$k) are
dispatched via distinct processes, the Driver Call
Handler (DCH) and the Driver Response Handler (DRH),
which respectively act to forward calls and
retrieve responses from the Local Channel Driver
(LCD) for Nodeh· These handlers are formulated as
independent (concurrent) processes so that the
order in which LCD requests calls or delivers
responses will not be unnecessarily constrained by
this protocol.

43

E~ ,,
(Call Hudler)

•c 1 I; ""
""' 1··'1 (Reep Hlllnller)

The outline of (generic) package body for the
driver side is shown below:

package body Service is
Driver Side, defined in Config.Node$h:

task DCH is
entry ReqCall(C: in out CALL);
entry DC$1 (••.) ;

entry DC$i(Al: in TAl;

entry DC$k (•••) ;
end;

task DRH is
entry DelResp(R: in RESP);
entry RR$1 (•••) ;

entry RR$i($1: out Trl;

entry RR$k (•••) ;
end;

package LCD is new ChnDriver(
From => Site, To => Host,
Request => DCH.ReqCall,
Deliver=> DRH.DelResp);

package D$1 is ••• end;

package D$i is

Ax: in TAx);

Ry: out TRy) ;

procedure P(Al: in TAl; ••• ;Ax: in TAx;
Rl: out TRl; ••• ;Ry: out TRy);

procedure PutArg(B: in out BUFF;
Al: in TAl: ••• ;Ax: in TAx);

procedure GetRes(B: in BUFF; Rl: out TRl;
••• ;Ry: out TRy);

end D$i;

package D$k is •• end;

procedure P$1 (•••) renames D$1.P;

procedure P$k (•••) renames D$k.P;

••• +bodies of DCH, DRH, D$1, ••• , D$k

end Service;

The handler processes DCH and DRH are directly
specified in terms of Ada ·tasks, with entries to
be called by the channel driver and by the agents

for the remote operations to be invoked. LCD is
obtained by instantiation of the generic defini
tion associated with the overall configuration.
For each operation, there is then a corresponding
Driver package, D$1 ••• D$k, which provides an oper
ation P to be called by an application process
(as P$i) along with operations for moving argu
ments into and results out of the actual transmis
sion buffers.

The definition of the :Driver Call Handler is
as follows:

task body DCH is
begin

loop
accept ReqCall(C: in out CALL) do

select

or

or

accept DC$1(•••) do ••• end;

accept DC$i(Al:in TAl; ••• ; Ax:in TAx) do
c.x.code := OPER'POS(OP$i);
D$i.PutArg(C.B, Al, ••• , Ax);

end DC$i;

accept DC$k(•••) do ••• end;
end select;

end ReqCall;
end loop;

end DCH;

Each time the channel driver requests a call
(entry ReqCall), DCH makes a (non-deterministic)
choice among the Agents waiting to deliver a call
for one particular operation (entry DC$i), where
upon it sets the OpCode of the transaction record
for that CALL and transfers the arguments into the
associated data buffer.

The definition of the Server Response Handler
shows the other side of this interface with the
Local Channel Driver for Nodeh:

task body DRH is
begin

loop
accept DelResp(R: in RESP) do

case OPER'VAL(R.X.Code) is
when OP$1 => ••• ;

when OP$i =>
accept RR$i(R1: out TRl, ••• ,

Ry: out TRy) do
D$i.GetRes(R.B, Rl, ••• , Ry);

end RR$i;

when OP$k
end case;

end belResp;
end loop;

end DRH;

Each time LCD delivers a response (entry DelResp),
DRH decodes the Opcode appearing inthe transaction
record of that RESP and then accepts the pending
response request from the agent for that operation
(entry RR$i), transferring the corresponding result
data.

44

The outline of the body for a Driver package
is shown below:

package body D$i is

task AGT is
entry Exec(Al: in TAl; ••• ;Ax; in TAx;

Rl: out TRl; .•• ; Ry: out TRy);
end;

procedure P(Al: in TAl; ••• ;Ax: in TAx;
Rl: out TRl; ••• ; Ry: out TRy)

renames AGT.Exec;

procedure PutArg(•.•) is
procedure GetRes(•••) is

• • • + body of AGT

end D$i;

end;
end;

The (sole) Agent for the operation P$i is simply
defined as a task having an entry Exec (with the
same signature), and the operation is renamed to
be a call to this entry (which is sufficient to
ensure the desired property--that calls from the
application tasks of each node will be serviced
sequentially). In addition, the low-level opera
tions PutArg and GetRes are defined herein (pre
sumably in terms of representation specifications
and/or untyped conversions).

Finally the body of the agent task for P$i is
defined as follows:

task body AGT is
begin

loop
accept Exec(Al:in TAl; ••• ;Ax:in TAx;

Rl:out TRl; ••• ;Ry:out TRy) do
DCH.DC$i(Al, ••• , Ax);
DRH.RR$i(Rl, ••• , Ry);

end Exec;
end loop;

end AGT;

For each successive external call to the entry
Exec (while the calling process is held in rendez
vous), the Agent first delivers the call to DCH
and then requests the response from DRH. Because
these transactions take place within the rendez
vous itself, arguments and results need only be
copied once (via the operations PutArg and GetRes)
upon actual transmission.

4.1.2. The Server Side. The server side of
the Remote Entry Call protocol is essentially sym
metric to the driver side. The overall structure
and associated data-flow for this side are shown
in Fig. 4-3. The Local Channel Server (LCS) for
wards incoming calls from connected nodes to the
Server Call Handler (SCH), and transmits the cor
responding responses as dispatched by the Server
Response Handler (SRH). As before, these handlers
are formulated as independent processes (so as not
to constrain the order of transactions with the
underlying conununications medium) and play a purely
intermediary role. The actual calls to a locally
supported operation P$i are performed by one of a

j,

8CH

CC.lltlllndW"I

.... --·

l'IWRI: 4-ls DI/mall strueture MCI o.t....f'1aif cm thm serwr Side for the a.ote E'ld:Ey

call PmtDtioJ..

number of Surrogate processes (SGTi), which act as
stand-ins for the original calling processes within
some other node. Thus, there exist rrruZtipZe surro
gates for each remotely callable operation, which
serve both to "buffer" incoming calls and outgoing
responses (along with their associated transaction
records) as well as to invoke the actual operation
in question (as provided by one of the application
modules Al ••• Am supported by Nodeh}.

The implementation of the server side for
Nodeh is defined in the (non-generic) package body
Support, shown in outline form below:

package body Support is
-- Server Side, defined in Config.Node$h;

task SCH is
entry DelCall(C: in CALL);
entry RC$1(•••);

entry RC$i(XR: out XREC; Al: out TAl; ••. ;
Ax: out TAX);

entry RC$k (••.) ;
end;

task SRH is
entry ReqResp (R: in out RESP) ;
entry DR$1(.•.);

entry DR$i(XR: in XREC; Rl: in TRl; ••• ;
Ry: in TRy);

entry nR$k c ••. > 1

end;

package LCS is new ChnServer(
From => Conn, To => Host,
Deliver=> SCH.DelCall,
Request=> SRH.ReqResp);

package S$1 is ... end;

package S$i is
procedure GetArg(B: in BUFF; Al: out TAI; ••. ,

Ax: out TAX);
procedure PutRes(B: in out BUFF;

Rl: in TRI; •.• ; Ry: in TRy);
end S$i;

package S$k is end;

.•. +bodies of SCH, SRH, S$1, .•• , S$k

end Support;

The handler processes are again directly specified
as Ada tasks (SCH and S~H) and the communications

45

interface is obtained by generic instantiation of
the definition ChnServer for the overall configur
ation. As on the driver side, separate Server
packages S$1 •.• S$k are introduced here for each
individual operation P$1 ••• P$k that can be called
remotely.

The definition of the Server Call Handler is
as follows:

task body SCH is
begin

loop
accept DelCall(C: in CALL) do

case OPER'VAL(C.X.Code) is
when OP$1 = .•. ,

accept RC$i(XR:out XREC; Al:out TAI; .•• ;
Ax:out TAx) do

XR := C.X;
S$i.PutArg(C.B, Al, .•• ,Ax);

end RC$i;

when OP$k
end case;

end DelCall;
end loop;

end SCH;

Upon delivery of a new call from LCS (entry Del
Call), SCH switches on the Opcode and accepts a
request for a call to the specified operation
(entry RC$i) from the naxt of the (possibly many)
Surrogates which are queued up on the corresponding
entry. This dispatching consists simply of copy
ing the transaction record contained within this
particular cALL and transferring the associated
arguments (via the operation PutArg provided by
S$i).

The definition of the Server Response Handler
is like that of the Call Handler on the driver
side:

task body SRH is
begin

loop
accept ReqResp(R: in out RESP) do

select

or

or

accept DR$1(•••) do ••• end;

accept DR$i(XR: in XREC; Rl: in TR!; ••• ;
Ry: in TRy) do

R.X := XR;
PutRes(R.B, Rl, ••• , Ry);

end DR$i;

accept DR$k(•.•) do ••• end;
end select;

end ReqResp;
end loop;

end SRH;

Each time LCS requests a new response (entry
ReqResp), SRH makes an arbitrary choice among pen
ding responses ready to be delivered for any oper
ation (entries DR$1 ••• DR$k), whereupon the original

transaction record and corresponding output results
are copied into the RESP, to be transmitted back
to the node from which that particular call ori
ginated.

The definition of a Server package S$i has
the following form:

package body S$i is

subtype SID is NATURAL range 1. .Card (Conn) ;

task type SGT;

ST: array (SID) of SGT; -- surrogate tasks

procedure GetArg(•••) is end;
procedure PutRes(•••) is end;

••• +body of SGT

end S$i;

The Surrogates for the operation P$i are introduced
as an array of tasks, the range of which is set
to the cardinality of the incoming connections
(which would be the maximum number needed if
every connected node did indeed call the operation
in question). The operations GetArg and PutRes
are presumably the inverses of PutArg and GetRes,
which were present on the driver side.

Finally, each individual surrogate for P$i is
defined as follows:

task body SGT is
XR: XREC;
Al: TAl

Ax: TAx;
Rl: TRl;

Ry: TRy;
begin

loop
SCH.RC$i(XR, Al, ••• , Ax);
Node$h.P$i(Al, ••• , Ax, Rl, ••• ,
SRH.DR$i(XR1 Rl, ••• , Ry);

end loop;
end SGT;

Ry);

In a cyclic fashion they simply request a call
from SCH, invoke the local operation provided by
Nodeh, and deliver the corresponding response
(along with the original transaction record) to be
dispatched by SRH. Once again, because the dis
patching is handled within a rendezvous, informa
tion is copied directly between the individual
Surrogates and an incoming CALL or outgoing RESP.

It should be noted that no special precautions
are taken on the server side to ensure the basic
property of the Remote Entry Call protocol (at most
one call in progress to each operation from any
given node); this is solely a concern on the driver
side. The servers simply invoke the local opera
tions in question. If these have been specified
as entries, then those calls will indeed be serv
iced sequentially; otherwise they will proceed con
currently.

46

What is of significance ori the server side,
however, is the fact that there are exactly as
many Surrogates for each operation as there are
Agents in total (distributed among the possible
caller nodes). This property, referred to as Zoad
baZanaing, is fundamental to the solutions devel
oped here, in that it ensures that this protocol
does not require any additional storage capacity
within the underlying connnunications medium, nor
any other form of buffering than that provided by
the Surrogates themselves. This same property also
guarantees that the communications interface will
never be unduly tied up (since there will always
be an available Surrogate ready to proceed).

4.2 The Remote Procedure Call

In this section, we develop an alternative to
the Remote Entry Call protocol, wherein we allow
a (bounded) number of calls to the same operation
to be in progress concurrently within a given
caller node (while still maintaining the overall
load balancing that characterized our first solu
tion) • This somewhat more general strategy is
described as a modification to the approach devel
oped initially.

The point of departure for this strategy is
to slightly extend the initial specification for
the application as a whole:

package Config is

type NODE is (NN$1, NN$2, ••• , NN$n);
type NSET is array (NODE) of BOOLEAN;
subtype CONC is INTEGER range O ••••• ;

-- Max Concurrency
package Node$1 is ••• end;

package Node$h is

type OPER is (OP$1, OP$2, ••• , OP$k);
type MPLX is array (OPER) of CONC;
-- other type definitions

Host: constant NODE := NN$h;
Conn: constant NSET := (... =>

Load: constant MPLX := ... ,
-- other constant declarations

generic
Site: in NODE;
usag. in MPLX;

package Service is
procedure P$1 (•••);

procedure P$k (•••);
end Service;

end Node$h;

package Node$n is ••• end;

end Config;

True,
=>

others
False);

The changes are wholly concerned with this added
(potential) concurrency:

- A subtype CONC is introduced, whereby the
maximum degree of concurrency anywhere
within the system is specified;

- Within the package specifying each Nodeh, a
type MPLX is defined, values of which indi
cate a degree of concurrency on an opera
tion-by-operation basis;

- A constant load (of type MPLX) is defined
for each Nodeh, whereby the limits on the
overall concurrency (from all callers) are
established for every such node;

- An additional generic parameter Usag (of
type MPLX) is introduced for the Service
package, so that the degree of concurrency
for individual caller nodes may be set upon
subsequent instantiation.

Minor modifications are also introduced into
the body of the package Config, wherein the over
all communications conventions are established:

with Medium;
package body Config is

subtype OPID is INTEGER range o ...•• ;
subtype RCID is CONC range l •• CONC'LAST;

type XREC is record
Orig, Dest: NODE;

Code: OPID;
Iden: RCID;

end record;

type BUFF is
type XTYP is (XC, XR)
type XMIT(T: XTYP) is record

X: XREC;
B: BUFF;

end record;
subtype CALL is XMIT(XC);
subtype RESP is XMIT(XR);

generic
From, To: in NODE;
with procedure Request(C: in out CALL);
with procedure Deliver(R: in RESP);

package ChnDriver;

generic
From: in NSET;
To in NODE;
with procedure Request(R: in out RESP);
with procedure Deliver(C: in CALL);

package ChnServer;

package body ChnDriver ;is ••• use Medium; ••• end;

package body ChnServer is ••• useMediUill; ••• end;

package body Node$1 is separate;

package body Node$n is separate;
end Config;

47

The changes are to .define an additional subtype
RCID, which will serve to identify a particular
remote call originating from a given node (since
the Opcode alone will no longer be sufficient for
this purpose), and to add a new component Iden
(of type RCID) to all transaction records.

The only changes within the definitions of the
separate nodes of the application would be to sui
tably set the generic parameter Usag upon each
instantiation of the package Service:

separate (Conf ig)
package body Node$h is

pragma SYSTEM(•••);

--- Specify local application modules:

package A$1 is
procedure Q$1(•••);

procedure Q$f(•••);
end A$1

package A$m is
procedure Q$1(•••);

procedure Q$g(•••);
end A$m;

-- Local (re)definition of services:

procedure P$i(•••) renames A$a.Q$b;

-- Support services called remotely:

package Support;
package body Support is --Server side of Protocol

end Support;

package body Service is -- Driver side of Protocol

end Service;

-- Provide services needed locally:

package Node$u is new Config.Node$u.Service
(Site=> Host, Usag => •••);

package Node$v is new Config.Node$v.Service
(Site=> Host, Usag => •••);

package body A$1 is separate;

package body A$m is separate;
end Node$h;

4.2.l. The Driver Side. The changes on the
driver side in going from the Remote Entry Call to
the Remote Procedure Call are concerned with keep
ing track of the identity of calls in progress.
At the first level, this involves adding and addi
tional ID parameter to the DC$i entries of the
Driver Call Handler (DCH), and of introducing a
Post Response procedure (PR) to each of the Dri·;·er
packages D$1 ••• D$k:

package body Service is
-- Driver.Side, defined in Config.Node$h:

task DCH is
entry ReqCall(C: in out CALL);
entry DC$1(•••);

entry DC$i(ID: in RCID; Al: in TAl; ••• ,

entry DC$k(•••) ;
end;

task DRH is
entry DelResp(R: in RESP);
entry RR$1 (•••) ;

Ax: in TAx);

entry RR$i(Rl: out TRl; Ry: out TRy) ;

entry RR$k(•••);
end;

package LCD is new ChnDriver(
From => Site, To => Host,
Request => DCH.ReqCall,
Deliver=> DRH.DelResp);

package D$1 is ••• end;

package D$i is
procedure P(Al: in TAl; ••• ;Ax: in TAx;

Rl: out TRl; ••• ;Ry: out TRy)
procedure PutArg(B: in out BUFF;

Al: in TAl: ••. ;Ax: in TAx);
procedure GetRes(B: in BUFF; Rl: out TRl; ••• ;

Ry: out TRy);
procedure PR(ID: in RCID)

end D$i;

package D$k is •• end;

procedure P$1 (•••) renames D$1.P;

procedure P$k (•••) renames D$k.P;

••• +bodies of DCH, DRH, D$1, ••. , D$k

end Service;

The definition of DCH is then modified to store
the identity of each call as part of the transac
tion record which it forwards:

task body DCH is
begin

loop
accept ReqCall(C: in out CALL) do

select

or

or

accept DC$1(•••) do ••• end;

accept DC$i(ID:in RCID; Al:in TAl; ••• ;
Ax:in TAx) do

C.X.Code. := OPER'POS{OP$i);
C.X.Iden := ID;
D$i.PutArg(C.B, Al, .•• , Ax);

end DC$i;

48

accept DC$k(•••) do ••• end;
end select;

end ReqCall;
end loop;

end DCH;

The corresponding modifications to DRH involve
its passing that identity to the appropriate PR
procedure prior to accepting a request to dispose
of each incoming response:

task body DRH is
begin

loop
accept DelResp(R: in RESP) do

case OPER'VAL(R.X.Code) is
when OP$1 => ••• ,

when OP$i =>
D$i.PR(R.X.Iden);
accept RR$i (Rl: out TRl, ·• •. ,

Ry: out
D$i.GetRes(R.B, Rl, ••• , Ry);

end RR$i;

when OP$k =>
end case;

end DelResp;
end loop;

end DRH;

TRy) do

Within a Driver package D$i, tl:e modifications
consist primarily of introducing a multiplicity
of Agents for the same operation (whereas there
was only one heretofore). As shown on the next
page, this is accomplished by defining an array of
agent tasks (AT), the range of which is esta
blished by the Usag generic parameters. Thus, the
index in this array (of type AID) will serve to
uniquely identify a particular call-in-progress
for the operation P$i. At the same time, addi
tional entries have to be provided for the AGT
task: these are Init (whereby an Agent acquires
its own identity) and Done (whereby it may be no
tified that the response for the call it is car
rying out has been received). The procedure PR
is essentially a call to this latter entry. A
further task, the Agent Manager (AM) is now needed
to establish the initial correspondence between
the original call (from some application process)
and the particular agent which will perform that
transaction. This correspondence is created by
the procedure P, which is called (concurrently) by
every application process seeking to invoke the
remote operation P$i.

package body D$i is

subtype AID is RCID range l •• usag(OP$i);

task type AGT is
entry Init(A; in AID);
entry Exec(Al: in TAl; ••• ;Ax: in TAx;

entry Done;
end;

Rl: out TRl; ••• ; Ry: out TRy);

AT: array(AID) of AGT;

task AM is
entry Ready(A: out AID);
entry Avail(ID: in AID);

end;

procedure P(Al: in TAl; ••• ;Ax: in TAx;

A: AID;
begin

AM.Ready(A);

Rl: out TR!; ••• ; Ry: out TRy) is

AT(A) .Exec (Al, ••• ,Ax, Rl, ••• ,Ry);
end;

procedure PutArg(•••) is end;
procedure GetRes(•••) is end;

procedure PR(ID: in RCID) is
begin

AT(AID; (ID)).Done;
end;

• • • + bodies of AGT, AM

end D$i;

The initialization and actual allocation of agents
is handled by the Agent Manager:

task body AM is
begin

for A in AID loop
AT(A) .Init(A);

end loop;
-- main cycle:

loop
accept Ready(A: out AID) do

accept Avail(ID: in AID) do
A := ID;

end;
end;

end loop;
end AM;

Each of the agent tasks of the array AT is then
defined as follows:

task body AGT is
ID: AID;

begin
accept Init (A: in AID) do

ID := A;
end;

-- main cycle:
loop

AM.Avail(ID);
accept Exec(Al:in TAl; ••• ;Ax:in TAx;

Rl:out TRl; ••• ;Ry:out TRy) do
DCH.DC$i(ID, Al, ••• , Ax);
accept Done;
DRH.RR$i(Rl, .•. , Ry);

end Exec;
end loop;

end AGT;

After initialization an Agent enters its main cycle,
wherein it first makes itself available to AM prior
to accepting the resultant call via its entry Exec.
Within the corresponding rendezvous, it delivers
its own identity to SCH along with the arguments

49

for the call in progress, it then awaits notifica
tion (via the entry Done) that the response for
that particular call has been received before pro
ceeding to request the results on behalf of the
original caller.

4.2.2. The Server Side. In passing from the
Remote Entry Call to the Remote Procedure Call
protocol, essentially no modifications are
required on the server .side (since this latter
already provided for some degree of concurrency,
insofar as it had to handle incoming calls from
more than one caller node). The only provision
that must be made is to possibly increase the num
ber of Surrogates for each operation P$i, which
would be specified within the corresponding Server
package S$i as follows:

subtype SID is CONC range ! •• Load (OP$i);
thereby fixing the number of elements in the array
of surrogate tasks. This will presumably preserve
the overall load balancing (number of Surrogates =
total number of Agents, for each operation Pi) upon
which both of the protocols developed in this sec
tion have been based.

6. Conclusion

This paper has addressed the problem of pro
gramming distributed applications in Ada and out
lined a first approach in this area. Essentially
two aspects have been considered: the provision
of a suitable compile-time framework for defining
such applications in the first place (which was
achieved by exploiting the possibilities of the
separate compilation facilities in Ada); and the
support of a suitable "interprocessor procedure
call" protocol, whereby the application itself
could then be programmed without further regard to
the distributed nature of the underlying hardware
configuration (a capability which was defined in
terms of the multi-tasking facilities of Ada).
Several such protoaols were in fact developed here,
beginning with the relatively simple Remote Entry
Call, which was then extended to yield the Remote
Procedure Call strategy. In [4] we further exten
ded this approach so as to take into account the
unreliability of the transmission medium in ques
tion, while still assuming that the nodes within
the overall configuration were perfectly reliable.

References

[l] Hoare, C.A.R., Communicating Sequential Proc
esses, CACM, August 1978, Vol. 21, 8.

[2] Ichbiah, J.D. et al., Rationale for the Design
of the ADA Programming Language, SIGPLAN No
tices, June 1979, Vol. 14, 6, B.

[3] -- Reference Manual for the ADA programming
language, U.S. Dept. of Defense, July 1980.

[4] Schuman, S.A., Clarke, E.M., Nikolaou, C.N.,
Programming Distributed Applications in ADA:
A First Approach, Massachusetts Computer Asso
ciates, Inc., CADD-8103-3102.

[5] Schuman, S.A., Tutorial on ADA Tasking, Vol.I:
Basic Interprocess Communication, Massachusetts
Computer ~ssociates, Inc., CADD-8103-3101.

SALAD - A DISTRIBUTED COMPILER FOR DISTRIBUTED SYSTEMS*

T. Christopher, O. El-Dessouki, M. Evens,
H. Harr, H. Klawans, P. Krystosek, R. Mirchandani, Y. Tarhan
Computer Science Department, Illinois Institute of Technology

Chicago,.Illinois 60616

Abstract -- A procedural single assignment
language, SALAD, is presented, and its implemen
tation on a distributed, multicomputer system is
discussed. A procedure is executed not by a
single task, but by a collection of cooperating
tasks (threads of control) that share the pro
cedure's activation record and synchronize with
event variables and semaphores. Procedure calls
and returns are handled with message passing,
permitting the called procedures to be executed
on remote machines. SALAD i.ncludes state-main
taining objects, e.g. queues, which violate the
spirit of single assignment languages, but pro
vide more usual multitasking facilities. Not
only is a SALAD program to be able to run distri
buted over a computer network, but the compiler
itself is to be able to execute on such a system.
The compiler tries to optimize both the code for
SALAD procedures and the distribution of the code
over the network.

Introduction

The proliferation of distributed comput~ng
systems has intensified the software crisis. The
development of distributed hardware has far out
stripped the development of the necessary soft
ware. We are primarily concerned with systems
composed of microcomputers connected in a net
work. There is a strong need for compilers which
can both run on a distributed system and generate
code for that same system. The development of
compilers for such systems presents two novel
problems: distributed compiler organization and
distributed code generation. Since different
components of the compiler will run on separate
microcomputers it must be organized into small
modules which can function independently and ex
change information only by messages. This com
piler must also be capable of generating distri
buted code. First it must partition the code
into clusters of tasks small enough to fit on the
separate computers of the distributed system.
Then run time routines are added to control the
run time system, to handle error conditions, and
to make each cluster capable of standing alone.
Finally, the compiler inserts message-passing
primitives in each cluster to provide the
exchange of values between the clusters at run
time. The problem of automatic partitioning is

*This research was supported by the National
Science Foundation under grant MCS-80-04114.

0190-3918/81/0000/0050$00.75 © 1981 IEEE

50

a central issue in the design of these new com
pilers, but the problems of partitioning conven
tional general-purpose programming languages are
tremendously complex. Single-assignment lan
guages (languages in which no variable is assign
ed a value more than once) seem to be much
easier to handle. This paper describes the de
sign and the implementation of a simple but non
trivial single assignment language (SALAD). The
compiler is organized as a pipeline of small
modules each of which can reside on a separate
microcomputer; ft includes a crude partitioning
module which divides the intermediate code into
self-contained clusters which are then converted
into separate load modules for separate com
puters.

There is a strong relationship between our
work and current work on dataflow computers
[l, 2]. In fact, we are motivated by the belief
that it is possible to obtain the advantages of
data-flow architecture without the expense of
specialized hardware. There are important dif
ferences, however, in our methods. We have not
simply progranrned microcomputers to behave like
data-flow computer components. Instead we have
encoded data-flow operations as multiple com
municating processes.

Our model of a distributed computing system
is a collection of many independent computers
with no shared memory, so that all conrnunication
is by means of messages only. Why assume that
there is no shared memory? While systems exist
with multiple processors accessing a conrnon
memory, systems without shared memory are easier
and cheaper to build, since they can be produced
by adding communication channels to existing
machines. When those with shared memory systems
want to link them together, they will be sub
ject to these constraints as well. Furthermore,
compilers designed fo~ systems without common
memory can be made to run on shared memory
systems, but the reverse is not true.

Our interest in the twin problems of dis
tributed compiler organization and the genera
tion of distributed code began with the TECHNEC
project, a very successful project which was
funded by the National Science Foundation
(NSF-MCS76-01310). TECHNEC, the Illinois
Institute of Technology Network Computer, is a
ring network of LSI/ll's [3, 4]. It was design
ed to support Greene's experiments in heuristic
control [5]. The first step was a distributed
operating system [6, 7]. We have also designed
and implemented a ·demon language for TECHNEC,
but the current implementation is not truly a

I

I
I·

distributed compiler, it is a cross-compiler run
ning on the PRIME 400 but generating code for
TECHNEC. Demons do, however, present particu
larly exciting problems in the desiqn of the run
time environment.

Our first true distributed compiler was the
DYNAMO compiler [8] and [9]. This language was
chosen because we needed a continuous simulation
language for work on robotics and we were fasci
nated with the challenge of simulating parallel
processes on a network of parallel processors.
This compiler was designed from the beginning to
run on our distributed system and to generate
automatically partitioned code for that system.

We have experimented with four different
partitioning algorithms for this compiler [10,
11]. DYNAMO is a nonprocedural language with no
explicit control structures; this makes it rela
tively easy to partition. It can even be viewed
as a single assignment language, although it does
not resemble pure LISP and those applicative
languages which are usually called single assign~
ment languages [12, 13]. He felt that the next
step toward our goal of eventually developing
mechanisms for conventional programming languages
ought to be a compiler for a language that com
bines the constraints of a single assignment
language with procedures, ex pl i cit control s truc
tures, and at least some multiple data structures.
Since we did not know of such a language we de
cided to design one ourselves; the result is
SALAD.

Descrietion of the Language SALAD

A program consists of a collection of pro
cedures. (See Figure 1 for grammar.) A proce
dure declaration consists of ·a header line, zero
or more declaration lines, one or more command
lines, and:an END line. The procedure header is
of the form

PROC outputs = procedure-name inputs
where either outputs or inputs may be a single
identifier or a list of identifiers in
parentheses.

The declarations in SALAD are optional. If
an identifier is not declared, it may be of any
type, and its type may be different on different
executions of the procedure. If a name is de
clared, the code will check that the type of the
value assigned to it is correct at run time. The
form of a declaration is an identifier or a list
of identifiers in parentheses followed by a colon
followed by the name of the type they are being
declared to be.

There are three primitive types in SALAD:
integer, real and Boolean. There are two pure
structured types: strings and tuples. A string
is a seouence of characters. Once created, it
cannot be modified. There is no theoretical limit
on the length of a character string.

51

proc ::= prochd declare* command+ END newline
prochd ::= PROC lhs = procid lhs newline
declare::= lhs : type newline
type is one of INTEGER, REAL, BOOLEAN, TUPLE,

STRING, FILE, QUEUE, ANY
command::= lhs = rhs newline
l hs : : = id
lhs : := (idlist
idlist · ·= id
idlist : := id , idlist
rhs : := e3
rhs ::=IF id THEN e3 ELSE e3
e3 ::= e2
e3 : := op e2
e2 ::=el
e2 (ellist
e2 ()
ellist ::=el
el list : := el , el list
el : := id
el : : = constant

Figure 1. SALAD Grammar.

A tuple is a sequence of values. Each value
in a tuple may be of any type. As with strings,
once created, a tuple cannot be modified. Tuples
play a central role in the SALAD language.

There are two kinds of executable statements
in SALAD: simple assignments and conditional
assignments. Simple assignments have the form

lhs = rhs
The left hand side, lhs, can be either a single
identifier or a list of identifiers in paren
theses. If the'lhs is a sinole identifier, then
the value produced by the rhs may be of any type.
If, however, the lhs is of the form (idl, id2,
.•• , idn) then the value of the rhs must be a
tuple of length n. Each element of the tuple is
assigned to the corresponding identifier in the
lhs.

If the rhs is a single identifier, then its
value is used. If the rhs is a list of identi
fiers (idl, id2, ..• , idm), then the value of the
rhs is a tuple of length m with the value of
identifier idj in position j.

The right hand side could also be an opera
tor or function applied to either a single iden
tifier or a list of identifiers in parentheses.
The single identifier form, F A, causes the
function F to be applied to A's value. The
form F (Al, A2, .•• , An) causes function F to
be applied to a tuple with the values of the
identifiers Al through An.

A conditional assignment has the form

lhs = IF b THEN rhsl ELSE rhs2
where b is an identifier that will have a
Boolean value at run time, and lhs and rhsl and
rhs2 have the forms discussed immediately above
for simple assignment statements.

a = IF B THEN c ELSE d
requires B be a Boolean-valued identifier. If
B is true, the statement behaves as if it were

a = c
If, however, B is false, then the statement
behaves as if it were written

a = d

The simple and conditional assignment state
ments are required to obey the single assignment
nature of the language. An identifier may appear
only once in a lhs within a procedure. An iden
tifier in the inputs section of a procedure
header may not appear in the lhs of any assign
ment in the procedure.

Like conditional assignments, procedure
calls may be defined by substitution rules. The
definition of procedure calls in SALAD is very
similar to the copy rule for Algol 60 procedures.
Given the procedure definition

PROC plhs = procid prhs
body
END

and the call of the procedure
clhs = procid crhs

the call behaves as if it had been written
prhs' = crhs
body'
clhs = plhs'

where the prime(') indicates that all the iden
tifiers are renamed uniquely to avoid conflict
with the identifiers in use at the place of call.

There are two other data types in SALAD that
have not been mentioned before. They violate the
spirit of single assignment languages in that
they maintain an internal state, can be modified,
and are not pure values.

One of the two types is FILE. Since files
encapsulate the interface to the outside, state
maintaining world, they must be forgiven for be
ing that way themselves. The other type is QUEUE.
Queues are the objects used for synchronization.
Any kind of object may be added to a queue. An
attempt to remove an object from an empty queue
will cause a delay until an object becomes pre
sent. There is no such thing as a full queue.
Queues are generally handled in FIFO order, but
simultaneous attempts to add or remove items from
a queue will be serviced in an unspecified order.

The operations on queues are as follows:

52

q = QUEUE ()
ql = PUT(q,val)
(q2, vall) = GET ql

The operation q = QUEUE () creates a new
queue object and return a pointer to it in q.
The operation ql = PUT(q, val) puts the value of
val in the queue pointed to by q and returns a
new pointer to q in ql.
The operation (q2, vall) = GET ql removes an item
from the queue pointed to by ql and returns that
value as vall. It also returns another pointer
to the queue in q2.
The reason for returning new pointers to a queue
1 s to permit sequencing of queue operations in the
calling program. For example,

q = QUEUE ()
ql = PUT (q,a)
q2 = PUT (ql,b)
(q3, c) = GET q2
(q4, d) = GET q3

will accomplish much the same as
q = QUEUE ()
(ql, q2, q3, q4) = (q, q, q, q)
(c, d) = (a, b)

However,
q = QUEUE ()
ql = PUT (q,a)
q2 = PUT(q,b)
(q3, c) = GET q
(q4, d) = GET q

will not necessarily accomplish the same thing.
Sometimes it will behave as the example above;
sometimes it will do the assignment

(c,d)=(b,a)

Calls and Messages

Since the network hardware we envision has
no shared memory, the implementation must use
message passing to pass data and coordinate the
execution. Procedures are called by sending a
call message. The results of a procedure call
are returned in a return message. If a procedure
needs to examine a tuple located on another ma
chine, it sends a message requesting a copy of
the tuple. Operations on state-main~aining ob
jects, files and queues, are handled via a mes
sage to the computer where the object is located.

Node Structure

The software structure on each computer con
sists of the programs for the procedures located
on that computer; tables used by the system;
input queues for receipt of messages from the
computers connected to this one; output queues to

,,,

the connected computers; an "available operations
queue" containing call messages for procedures
that could be involked here; and a heap, or dyna
mic storage area, that contains tuples, strings,
queues, and local storage for active procedures.

Activation Records and Threads of Control

An "activation record" contains the local
storage for a procedure. In a conventional lan
guage, a single process, or task, would have a
stack of activation records. Every procedure
call would push an activation record on the stack.
Every return would pop one off. Our implementa
tion does just the reverse. There are not multi
ple activation records per task. There are
multiple tasks, which we call threads, per acti
vation record.

Each thread is associated with a thread
control block which contains only 1) a pointer to
the activation record the thread is associated
with, 2) the address of the next ins true ti on the
thread is to execute, and 3) a link field so the
thread control block can be placed on queues.

The system in each separate computer in the
network maintains a run queue of threads. A
piece of code, the dispatcher, removes the first
thread control block from the run queue, loads a
register with the activation record pointer, and
jumps to the next instruction the thread is to
execute.

A simple form of coordination between
threads uses "event variables." An event vari'
able is initialized to require a particular num
ber of "s i gna 1 s" before the event occurs. Only
a single thread may wait on an event variable.
If the event has not yet occurred, the waiting
thread is suspended until it does occur. If the
event has already occurred, the thread continues
executing. Another thread may signal the event
variable. If the signal is the last one required
before the event occurs, and another thread is
waiting for the event, the waitinq thread is
linked on the run queue.

We have implemented the synchronization
primitives in PDP-11 assembly language. To wait
on an event variable requires at most five
instructions, whether or not the thread executing
the wait must be suspended. To signal an event
variable without waking up a thread requires only
two instructions. If a signal wakes up a thread,
that thread must be linked on the run queue.
Linking a thread on the run queue requires less
than a dozen instructions.

The system also provides semaphores, which
in addition to the usual synchronization and
mutual exclusion functions, are used to permit
control of the degree of concurrency at run time.
This is mentioned again below in the section on
optimizations the compiler can perform.
See Figure 2.

53

THREAD CONTROL BLOCK
LNK : link field
PC : program counter field
FP : frame pointer field
EVENT VARIABLE
CNT : count field
THRP : thread pointer (to THCB of Waiting Thread)
READY QUEUE
RQLCK lock byte on ready queue (init 1)
RQlST : pointer to head of ready queue
RQLST : pointer to end of ready queue
READY LIST MANIPULATION
dispatch: -- Just a normal label
while RQlST = NULL do diddle
seize rq
if RQTST = NULL then
{release rq

goto dispatch}
else
{T := RQlST

RQlST := RQlST@.LNK
release rq
FP REG:= T@.FP
JUMP T@.PC@}

procedure readyl (t)
{ t@.LNK := NULL
seize rq
if RQTST = NULL then
{ RQlST := t
RQLST :=t}

else
{ RQLST@.LNK := t
RQLST := t}

release rq}
return -

end readyl
SIGNAL OPERATION ON EVENT VARIABLE
signalevent s
-- is translated into

deer s.CNT
if zero then
readyl (s. THRP)

WAIT OPERATION ON EVENT VARIABLE s BY THREAD t
waitevent s

-- by a thread with thread with
thread control block t

-- is translated into
t.PC := @L
s.THRP :=@t
deer s.CNT
if positive then

goto dispatch
L:
INITIALIZE EVENT VARIABLE
initevent s,c

-- is translated into
s.CNT := c+l
Figure 2. Threads and Events

Distributed Garbage Collection

Tuples, strings, queues and files are dyna
mically created during the course of the program.
Their bodies occupy memory on the heap on the

computer they were created on. When they are no
longer needed, the storage they occupy must be
reclaimed for other uses. Tuples and strings
cannot be created with cycles of containment, e.g.
if tuple A is created with tuple B as a com
ponent, then since B was created first, it can
not contain A as a component. Moreover, B
cannot be modified to contain A. At most, a
copy, C, of B can be created with a component
changed to be A.

Thus, the containment graphs for tuples are
directed, acyclic graphs, and reference count
storage reclamation is adequate. The state-main
taining objects, files and queues, might cause
problems.

Files do not, in fact, cause problems since
neither files nor queues nor tuples containing
files or queues may be written into them. Queues
may cause problems; a queue can be placed into
itself, e.g.:

q = QUEUE ()
ql = PUT (q,q)

It is, therefore, possible to creat circularly
linked, inaccessible structures which will not be
reclaimed with a reference count scheme.

Such structures are likely to be rare. So
we are considering implementing a reference count
storage management algorithm. We do have, in
addition, a·full garbage collection algorithm
that will mark all accessible structures and re
claim those that are inaccessible. It works in
two phases: 1) it marks all accessible struc
tures by having each computer mark those that are
accessible locally and send messages to the com
puters containing those that are remote; after
all computers have finished the mark phase.
2) it has each computer reclaim the unused stor
age in its own heap.

We have no plans to make the garbage collec
tion algorithm run concurrently with normal
processing. There are thoughts that a single
computer can do some local garbage collection
independently of the others. Objects on the heap
can be marked when pointers to them are sent to
other computers in messages. Unmarked objects
are only pointed to locally, if at all, and can
be collected by the computer on which they are
contained.

Structure of the Compiler

The compiler for SALAD is composed of four
sections. The first section translates from the
source language into intermediate code. The se
cond section optimizes the intermediate code and
translates procedures into parallel cooperating
threads of control. The third section allocates
the procedures to separate computers. The fourth
section converts into assembly-like code which it
optimizes and assembles. Each section is com
posed of several phases which can be run as sepa
rate passes or, in some cases, as a pipeline.

54

Code optimization and allocation are described
in more detail below.

Translating Procedures into Parallel Threads

When control enters a procedure it is exe
cuting a single, main thread associated with the
procedure. The main thread creates the other
threads in the procedure to execute concurrently
with it. See. Figure 3a for a collection of
procedures and Figure 3b for an example of the
code that could be generated for that collection.

Figure 3a below:

PROC C = F N
C = Fl (1,1,N)
END
PROC D = Fl(I,J,M)
Tl = +(I,J)
Bl = GT(Tl,M)
D = IF Bl THEN I ELSE F2(1,J,M)
END
PROC E • F2(X,Y,Z)
T2 = *(Y,2)
T3 = +(X,Y)
T4 = Fl(X,T2,Z)
T5 • Fl(T3,T2,Z)
E= *(T4,T5)
END
Figure 3a. SALAD code for factorial Function F.

The compiler must partition the operations
in a procedure into a collection of threads.
There are two main rules for placing operations
into threads: 1) Two operations may be placed
in the same thread only if one is dependent on
data from the other; 2) The operations must be
placed in the thread in the order they must be
executed. The first rule is to prevent one
operation that could be executed from being de
layed waiting for completion of an operation
that does not have to precede it. The second
rule is obvious.

If an operation, A, in one thread requires
as input a name computed by a operation, B, in
another thread, the first thread must wait on a
event variable, EA, before executing A, and the
other thread must signal EA after finishing
operation B.

The compiler performs the following optimi
zations on threads where applicable:

1) Recursion removal -- a tail-end recur
sive call to the procedure that includes the call
can sometimes be replaced with an assignment to
the input parameters and a jump back to the
beginning.

2) Code incorporation -- ~·procedure called
in only one place may be incorporated into the
place of the call. Recursion removal, by elim
inating a place of call may make more code incor
poration possible, which may in turn permit fur
ther recursion removal. Also, small, non-recur-

I

sive procedures may be incorporated into several
places of call.

3) Within the constraints mentioned above
about the placement of operations in threads of
control, the compiler tries to minimize the
number of threads generated for a procedure. The
constraint that two operations may be placed in
the same thread only if there is a data depend
ency between them makes the minimization of the
number of the threads an NP-hard problem: it
can be shown equivalent to graph coloring.

4) It will often be possible to eliminate
some event variables and signals. In particular,
an operation A that defines a value used by
operation B need not signal an event for B if
there is an operation C that uses a value sup
plied by A and supplies data to B.

5) For those procedures where it is permis
sible, the compiler will generate code that will
choose at run time whether to execute only one
operation in the procedure at a time or to exe
cute with as much concurrency as possible. He
hope this code will keep the system from becoming
swamped by concurrent operations. The trick is
to protect. the activation record with a semaphore
and let the threads compete for it. See Figure 4
for a picture of the desired behaviour.

6) "Sending off" tail-end calls -- Some
times it is possible for a procedure call as the
last operation of a procedure A to tell the
called procedure to return its values to the
caller of A, not to A itself. After sending
off this call, A's activation record may be
deleted.

The Partitioning Module

The purpose of the partitioning module is to
specify how the code should be partitioned and
assigned to the different computers of the net
work in order to achieve load balancing, while
minimizing the communication overhead. The out
put from the partitioning module includes not
only code clusters but enough information about
runtime data flow so that the code generation
routines can produce runtime modules capable of
standing alone on separate computers and communi
cating via messages.

The basic requirements for partitioning
module design are considered to be:

1. The module can be incorporated as an
integral part of a pipelined compiler i.e. it
should accept information concerning source pro
gram in the form of a stream of messages each of
them containing information regarding one source
statement. The messages arrive one at a time.
The format of the messages and thei.r contents
should be compatible with the output of the front
end of the compiler. The last stage of the par
titioning module should produce groups of state
ments of intermediate language (partially com-

55

piled code) compatible with the input language of
the back end stage(s) of the compiler.

2. The partitioning module can run on the
same network computer for which the distributed
compiler is designed. So the same limitations on
the size of every compiler phase apply to the
partitioning module also. However, the parti
tioning niodule may consist of a number of phases
distributed over the network and cooperating to
gether to perform the function of that module.
In this case, the general requirements for dis
tributed software apply also to the distributed
partitioning e.g. minimizing the communication
overhead and balancing the network load.

Figure 3b below:
; code for F
Fmain: send off call Fl(l,l,N)

termTnate
:code for Fl's main thread
Flmain: Tl = +(I,J)

Bl = GT(Tl,M)
if not Bl goto Ll
return I

Ll: (X,Y,Z) = (I,J,M)
;code for F2's main thread, incorporated into Fl
F2main: Choose concurrency CS

;inTtialize semaphore CS
; to 1 or infinity

initevent el,l
initevent e2,l
fork F2T2, F2ThCB2
waitsema CS
T2 = *(Y,2)
signalevent el
T4 = Fl(X,T2,Z)
signalsema CS
waitevent e2
waitsema CS
E =*(T4,T5)
return E

;code for F2's other thread, T2
F2T2: waitsema CS

T3 = +(X,Y)
signalsema CS
waitevent el
waitsema CS
TS • Fl(T3,T2,Z)
signalevent e2
signalsema CS
die

Figure 3b. Translation of code for factorial into
optimized pseudo-code.

In our design, the partitioning module (PM)
is composed of three phases:

Phase I: Data structure builder

Phase II: Partitioner

Phase III: Allocator

The data.structure building phase serves as
a functioning part of the front end pipe during

compile time, i.e. it processes one statement at
a time. It builds a standard representation of
programs using such things as data dependency
among statements. The kind of data structure
built during this phase will be discussed in de
tai 1 in the fo 11 owing paragraphs. Transforming
known programming constructs to this standard
representation is a major part of this research
and will be discussed in detail in the next
sections. The partitioner and the al locator dea 1
with the repr~sentation of the whole program. in
two separate passes. They must collect global
infonnation about dependency among statements and
interactions among various parts of the program
in order to segment that program and insert com
munication primitives in it. For example, when
a program is partitioned into several nodes of
the system, a value may be needed in a node other
than the one in which it is calculated. The
allocator must detect such a situation and pro
vide for the sending and receiving of the re
quired value. Since a node will probably be
receiving va 1 ues for many vari ab 1 es, the name of
the variable must be included with the value so
that the receiving node can identify it. The
data structure builder stores the program repre
sentation on a file for the partitioner to oper
ate on it in a new pass. The graphs which are
used as standard representation for programs are
described elsewhere [14, 15].

The partitioning problem can be divided into
two basic strategies: verticle vs. horizontal
partitioning. Imagine you have program listing
and you draw horizontal lines on it. All the
code between a pair of lines is placed in the
same computer. This we call horizontal parti
tioning.

The easiest place to draw these lines is at
subroutine boundaries. An entire subroutine is
placed in a single computer. A subroutine is
called by the arrival of a message providing its
parameters, and it sends back a message when it's
done. Since we assume parallelism is provided,
or at least permitted, by the language being
implemented, there may be several calls to the
subroutine concurrently. Thus the activation
record for the subroutine is allocated on a heap,
rather than a stack, because the calls will not
obey a strict LIFO discipline.

If the horizontal lines cut through the
midst of subroutines, then when the flow of con
trol reaches such a cut the activation record
must be sent to the computer containing the next
section of code. Note that addresses must have a
computer name associated with them, and fetches
or stores of anything other than components of
the activation record require (potentially) mes
sage passing. Note also that an activation re
cord cannot be sent to another computer while
there is a reference to one of its components
outstanding.

As an alternative to horizontal partitioning,
imagine you take a program listing and draw
vertical lines on it making several columns be-

56

side the program. Each column represents a dif
ferent computer. Beside the statements you make
check marks in one or more of the columns. A
check mark in a column beside a statement indi
cates that the statement is to be placed in the
computer the column represents. The statements
of the program have been partitioned among the
several computers so that the computers work in
parallel on the program, sending messages to each
other when a value is computed in one that is
needed in the other. Some statements may be re
presented in all of the computers, e.g. loop
control. Each computer contains a part of the
activation record of the routine being executed.
We call this vertical partitioning.

The partitioning heuristics developed for
the DYNAMO compiler assigned each statement to
precisely one computer. We noticed that in de
signing the DYNAMO compiler as a large distri
buted program we found that the high corrmunication
overhead made it more efficient to repeat some
portions of the code in several different com
puters.

For the SALAD compiler we have developed a
simple divide-and conquer style algorithm, where
a procedure divides a problem into several small
er problems and calls itself recursively and in
parallel for each. To get any speed-up from this,
copies of the procedure must be located in
several computers.

Our past work on partitioning has assumed
that all partitioning should be done at compile
time. Now that we have copies of some procedures
in several computers, it seems that we may be
able to baiance the ioad better by delaying unt~l
run time the decision of where to execute a
particular procedure call.

Future Plans

The obvious next step is further experiments
with the partitioning of SALAD. We would like to
write at least some part of the SALAD compiler in
SALAD and compare the compiler output with what
we have done by hand. In the long run more
theoretical work on the partitioning is certainly
necessary. In the next year we hope to design a
distributed partitioning compiler for a subset of
Pas ca 1.

References

[1] Arvind, "A Dataflow Architecture with
Tagged Tokens," Laboratory for Computer
Science; MIT, June, 1980.

'

[2] J. Dennis and D. Misunas, "A Preliminary
Architecture for a Basic Data-flow
Processor," Proc. 2nd Annua 1 S os i um
on Computer Architecture, December,
1974), pp. 126-132.

I
I

[3] W. Huen, P. Greene, R. Hochsprung, and O. El
Dessouki, "A Network Computer for
Distributed Processing, COMPCON, (Fall,
1977), pp. 326-330.

[4] W. Huen, P. Greene, R. Hochsprunq, and 0.
El-Dessouki, "TECHNEC, a Network
Computer for Distributed Task Control,"
Proceedings of the First Rocky Mountain
Symposium on Microcomputers: Systems,
Software, and Architecture. Fort
Collins, Colorado. 1977.

[5] P. Greene, "Strategies for Heterarchical
Control," Computer Science Dept.,
Illinois Institute of Technology,
Chicago, 1978.

[6] T. Christopher, 0. E1-0essouki, M. Evens,
P. Greene, A. Hazra, W. Huen, A.
Rastogi, R. Robinson, W. Wojciecowski,
"Uniprograrrming a network Computer,"
Proceedings Eighth International
Conference on Parallel Processing,

(August, 1978}, pp. 132-138.

[7] T. Christopher, "The Operating System for
TECHNEC" , COMPSAC, November 1979.

[8] W. Huen, o. El-Dessouki, E. Huske, and M.
Evens, "A Pipelined DYNAMO Compiler,
"Proceedings of the Seventh
International Conference on Parallel
Computing. Traverse City, Michigan.
1977.

Computer 2 Computer 1

[9] M. Evens, E. Huske, J. Pomes, 0. El
Dessouki, c. Gerlach, M. Samanta,
W. Huen, "Synchronization Issues in
Network Comp11 ers," Proc. 2nd
Annual Rocky Mountain Srtfosium on
Mi crocom uters·, Fort Co ns,
Co ora o, ugust, 1978), pp. 358-397.

[10] O. El-Dessouki, and W. Huen, 1977.
"Automatic Partitioning for a Network
Computer," Technical Report 77-6,
Computer Science Department, Illinois
Institute of Technology.

[11] J. Emrich, PartitioninT Heuristics.
M. s. Thesis, I1 inois Institute of
Technology, 1978.

[12] J. McCarthy, "Recursive Functions of
Symbolic Expressions and their
Computation by Machine," CACM
3, 4, (April, 1960) pp. 184-195.

[13] J. Backus, "Can Programming Be Liberated
From the von Neumann Style?

[14] o.

A Functional Style and its Algebra
of Proqrams," CACM, 21, 8,
(August, 1978) .W. 613-641.

El-Dessouki, program Partitioning and
Load Balancing on Network Computers,
Ph.D. Dissertation, Computer Science
Department, Illinois Institute of
Technology. Chicago, December, 1978/
pp. 160.

[15] o. El-Dessouki, W. Huen, and M. Evens,
"Towards a Partitioning Compiler for
a Distributed Computing System."
Journal of Digital Systems,

vol. IV, iSsue 4, 1981.

Computer 3

Circles -- activation records
Straight lines -- procedure calls
Curved lines -- density at which system chooses sequential execution

Figure 4. Procedure call tree resulting from dynamic choice of degree
of concurrency.

57

MEASUREMENTS OF AN OPTIMIZING COMPILER
FOR A VECTOR COMPUTER

John c. Knight
NASA Langley Research Center

Hampton, Virginia, 20606

Summary

The Control Data Corporation STAR-100 is a
very-high performance vector processor[!]. A
language known as SL/l [2] that is oriented to
scientific applications programming and which
allows good program structure was designed and
implemented by the authors for the STAR-100, and
is now being used for many applications. SL/l is
also used with the CDC CYBER-203 but the work
reported here. was done using the STAR-100. In
this paper we discuss the optimizations performed
by the SL/l compiler and report a series of
measurements of the effects of these
optimizations. The advent of vector processors
and vector oriented languages such as SL/l
produces a new environment for scientific
computation. Programs written for vector
computers will be sufficiently different from
their scalar counterparts that the effects of
optimization in a compiler may be different. The
primary optimizations of interest in the SL/l
compiler are common subexpression elimination, the
movement of invariant code out of loops, and the
elimination of unecessary vector temporaries. In
order to get some information about the effect of
optimizing pTograms written in a vector language,
the performance of the optimizer in the SL/l
compiler was measured.

There are two hardware characteristics of the
STAR-100 which are of importance in optimization.
First, the hardware supports vector instructions
with vector lengths between zero and 65,535, and
the execution time of a vector instruction is
proportional to its length after an initial
start-up delay. For floating point addition, the
longest vector instruction requires approximately
one and one third milliseconds while the shortest
requires only approximately three microseconds; a
ratio of about 400 to one. Under ideal
circumstances, a scalar floating point addition
requires only 0.16 microseconds; a ratio of almost
10,000 to one compared to the longest vector
instruction but only about 20 to one compared to
the shortest. These ratios are important because
the optimization techniques to be discussed are
only applied to scalar operations. Vector
operations are always included in SL/l programs
explicitly by programmers and there is usually
nothing redundant that can be removed. Similarly,
vector instructions are rarely inside loops in
which they are invariant.

The second hardware
importance is the set of
registers. Variables which

characteristic of
256 general purpose

are used frequently

*Work performed under NASA contract number
NASl-14900 while the author was with Computer
Sciences Corporation, Hampton, Virginia.

0190-3918/81/0000/0058$00.75 © 1981 IEEE

58

Douglas D. Dunlop•
Department of Computer Science

University of Maryland
College Park, Maryland, 20742

can be stored in registers permanently [3], and
the values of common subexpressions which appear
in separate parts of a program can reside in
registers between uses.

The SL/l language structure is modelled after
SIMPL T [4]. Variables can be declared as
scalars, vectors, or arrays. Arrays of scalars
are not allowed and all array elements must be
vectors. A matrix is therefore represented by a
one dimensional array of vectors, and for a given
matrix, the user may interpret these vectors as
rows or columns.

As well as basic vector arithmetic, the
STAR-100 hardware provides a variety of
sophisticated macro operations. For example,
forming the inner product of two vectors is a
single machine instruction, as is the evaluation
of a polynomial for a vector of coefficients and a
vector of arguments. All of these macro
instructions are available in SL/l as special
operators which can be used freely in building
expressions. The compiler makes no attempt to
recognize implicit vector operations in loops
containing scalar computations since the language
provides access to all the hardware vector
facilites.

Key elements of the language are
and vector referencing notations.

the array
Variables

declared as vectors or aL'Tet.yt; can be indexed in
the normal way yielding a vector in the array case
and a scalar in the vector case. It is also
possible to select a range of elements, known as a
subvector, from a vector variable or array element
using notations which specify the index of the
first element and length, or the indices of the
first and last elements.

The SL/l compiler is organised into three
phases. The first phase translates the given SL/l
module into a series of quadruples (quads). The
second phase optimizes the quads, and the third
phase translates these optimized quads into a
relocatable object module. In the rest of this
paper, the term quad is used to mean an operator
of the intermediate form and all (possibly zero)
of its associated operands.

There are two important characteristics of
the quadruple intermediate form. First the
sequence contains quads which represent the
control structure of the program in terms of the
control statements of the language. This enables
the optimizer to detect explicit program loops and
control flow very easily. Secondly, some
high-level operations such as ind.exing and forming
subvectors translate into sequences of low-level
quads which represent single instructions. This
enables the optimizer to detect redundant
computations in these high-level operations.

For common-subexpression analysis and code
motion, the design of the optimizer is similar to
the quad improver described by Hecht [5].

SL/l allows arbitrarily complex vector
expressions. This may result in the creation of
temporary vectors, and these vector temporaries
may be of different lengths. Building a temporary
necessitates the execution of several scalar
instructions to allocate space in virtual memory
and increases the program's working set size by
the size of the vector temporary. The compiler
attempts to minimize the number of vector
temporaries required to evaluate an expression in
order to reduce this overhead. One technique
employed is to use a single vector temporary in
place of a number of equal length vector
temporaries whose life spans are disjoint. This
technique is a generalization of the algorithm
described by Dantzig and Reynolds [6] which has
been shown to minimize the necessary number of
temporaries. A second technique is used only when
the expression constitutes the right hand side in
a vector assignment. In this case the compiler
attempts to use the left hand side variable in
place of one of the vector temporaries.

Five SL/l programs which were considered
typical were measured by an instrumented version
of the SL/l compiler. Table 1 shows the total
number of quads and words of machine code with and
without all optimizations, and the length of each
program in lines. On average 27% of the quads,
and 28% of the machine code were removed.

TABLE 1 - Overall Quad and Code Reductions

Program Number

1 2 3 4 5

Source Lines 255 691 986 603 1647

Quads Without Opt. 641 2894 1910 1665 3741
Quads With Opt. 491 1710 1688 1196 2516
Reduction 23.4% 40.9% 11.6% 28.2% 32.7%

Code Without Opt. 554 3567 2638 1835 3680
Code With Opt. 462 2168 2229 1079 2656
Reduction 16.6% 39.2% 15.5% 41.2% 27.8%

Several quad operations had a relatively high
probability of being redundant. Sixty-four
percent of the scalar addition quads and 57% of
the subvector quads were removed by common
subexpression elimination. An optimizer which
considered only these two quad operations would
detect 86% of the total number of redundant quad
operations for the five sample programs.

Table 2 shows the static frequency of
occurrence of certain SL/l statements. Assignment
represents at least 74% of the total number of
executable statements and the average proportion
is 85%. As well as occurring in large numbers,
assignment statements occur in groups and large
basic blocks tended to dominate. Table 3 shows
the largest basic block observed for each program
and the proportion of each program which was made
up of basic blocks which were ten or more lines
long.

59

TABLE 2 - Statement Frequencies

Program Number

2 3 4 5

Assignment 115
Procedure Call 9
IF Statement 13
FOR Statement 7
WHILE/REPEAT Statements 2
GO TO Statement 2

TABLE 3 - Basic

Largest (In Lines)
Ten or More Lines

19
40%

357 357
3 34
1 11

19 12
0 6
0 1

Block Sizes

Proi:iram

2

110
70%

3

139
77%

244
8
7
7
0
0

Number

4

176
88%

757
69
26

5
1
2

5

293
66%

From Tables 2 and 3 it can be seen that
relatively little use is made of control
structures. A simpler optimizer is possible if
common subexpression analysis is performed only
across basic blocks. The SL/l optimizer was
modified to operate in this way and the five
sample programs were recompiled. Table 4 shows
the total number of quads and words of machine
code with this less powerful optimization and with
no optimization.

TABLE 4 - Quad and Code Reductions

Program Number

2 3 4 5

Quads Without Opt. 641 2894 1910 1665 3741
Quads With Opt. 537 1710 1767 1200 2617
Reduction 16.2% 40.9% 7.5% 27.9% 30.0%

Code Without Op~. 554 3567 2638 1835 3680
Code With Opt. 491 2168 2320 1082 2721
Reduction 11.4% 39.2% 12.1% 41.0% 26.1%

The effectiveness of eliminating unnecessary
vector temporaries was measured and the results
are shown in Table 5. The average reduction in
code volume is 10.3%. These measurements were
made without common subexpression elimination. By
comparing Table 5 with Table 1 it can be seen that
in terms of code volume reduction, eliminating
unnecessary vector temporaries made a large
contribution to the total optimizer's performance
on three of the sample programs.

TABLE 5 - Vector Temporary Elimination

Code Without
Code With
Reduction

Program Number

1 2

554 3567
549 3061

Q.9% 14.2%

3 4

2638 1835
2384 137.2
9.6% 25.2%

5

3680
3623
1.5%

Table 6 shows the measurements of code motion
on the sample programs. No candidate quad was
found to be invariant inside two or more nested
loops in any of the programs. The performance of
code motion is rather poor due partly to the
caution which is exercised in selecting operations
to move, and partly to the relatively small
numbers of explicit program loops.

TABLE 6 - C.Ode Motion Effect

Program Number

1 2 3 4 5

Total Quads 491 1710 1688 1196 2516
Quads Considered 60 74 230 50 31
Quads Moved 10 7 194 2 20

For the majority of users, the most important
benefit from optimization is the reduction in
program execution time which it is expected to
produce. The five SL/l programs used in this
study were each executed with no optimization and
with full optimization using data supplied by the
programmer and regarded as typical. The
percentage reductions in execution times produced
by the optimizations were:

Program Number
1 2 3 4 5

1.0% 28.87% 1.79% 3.6% 0.4%

Except for program 2, these reductions are hardly
of any value. Notice that program 2 also
experienced the largest quad volume reduction,
The reason for these poor results is that the
optimizer removes scalar operations only and the
five programs were heavily vectorized; their
execution times were dominated by very long
duration vector instructions. The execution of
10,000 scalar instructions must be prevented in
order to have an effect comparable in execution
time with a single vector instruction operating on
long vectors. The performance of the optimizer in
the critical area of execution time is thus very
dependent on the vector lengths used and the
degree of vectorization of the program.

In order to assess the effect of different
vector lengths on optimizer performance, program 1
was executed with vectors ranging in length from
64 to 16,128. The. percentage reduction in
execution time for the various vector lengths
resulting from use of the optimizer are:

Length Reduction Length Reduction

64 31.0% 5888 3.0%
128 26.0% 7168 2.5%
256 25.0% 8448 3.6%
320 20.0% 9278 2.2%
640 17.0% 11008 1.7%
768 15.6% 12288 1.8%

2048 10.2% 13568 0.7%
3328 5.0% 14848 1.3%
4608 3.7% 16128 1.0%

60

For very short vectors, the optimizer's
performance is considerably better than with long
vectors.

In the SL/l optimizer, a very small subset of
the quad operators was responsible for most of the
code removal, and analysis of common
subexpressions across control structures and code
motion both proved relatively ineffective. In
addition, the ratio of instruction execution times
means that the effects of optimization are
extremely program dependent and in terms of
execution time, optimization was of almost no
benefit in many cases because of the dominance of
long vector instructions. This problem is
significantly worse with the CYBER-203 where the
instruction execution time ratio is much higher.
The CRAY-1 [7), on the other hand, has a maximum
vector length of 64 and the instruction execution
time ratio is orders of magnitude less than that
of the STAR-100 and CYBER-203. The optimizations
attempted by the SL/l compiler would probably be
much more effective on programs which are executed
on the CRAY-1.

optimizer is
vector-oriented

STAR-100.

A very simple
appropriate · for
machines like the

References

probably most
languages on

1. CDC STAR-100 Hardware Reference ~.
CDC Publication Number 60256000, Control
Data Corporation, Minneapolis, Minnesota.

2. SL/l Language Reference~. Analysis
and C.Omputation Division, NASA Langley
Research Center, Hampton, Virginia 23665.

3. Dunlop, D. D., J. C. Knight, "Register
Allocation in the SL/ 1 compiler",
Proceedings of .A Workshop fill ~
Processors, Los Alamos, New Mexico, 1978.

4. Basili, V. R. , A. J. Turner, "Simpl T, .!.
Structured Programming Language",
C.Omputer Note CN-14.1, University of
Maryland, College Park, Maryland.

5. Hecht, M. s., "Data Flow Analysis of
Computer Programs", American Elsevier,
New York, N. Y.

6. Dantzig, G. B., G. Reynolds, "Optimal
Assignment 2£ C.Omputer Storage]!y fhil.!l
Decomposition of Partiall_J .Ordered ~",
Report No ORC-66-6, University of
California at Berkeley, o. R. Center,
March 1966.

7. Cray-1 S Series Hardware Reference
Manual, CRAY ~ation No HR-0808, CRAY
~ch Inc., Mendota Heights,
Minnesota.

I'

THE SYMBOLIC, HIGH-LEVEL LANGUAGE PROGRAMMING OF AN MIMD MACHINE

David. Klappholz
Department of EE/CS

Polytechnic Institute of New York
Brooklyn, NY 11201

1. Introduction

The present work is concerned with the high
level language programming of a large-scale,
tightly-coupled, speedup-oriented MIMD machine of
the type proposed in [l] or [2].

We will assume a high level language which
differs from traditional high level languages only
in that it contains constructs for:

dynamic (run-time) spawning of parallel
processes

run-time communication between processes

dynamic (run-time) identification of one
process by another for the purpose of estab
lishing communication.

What we have in mind for the first of these
constructs is something on the order of a SPAWN
statement of the following type:

SPAWN <name of code> (<parameter l>, .•• , <parameter k>)

What we have in mind for the second of these
constructs is statements of the following type:

a) WRITE BUFFER <buffer name> FROM
<private variable>

b) READ BUFFER <buffer name> INTO
<private variable>

where <buffer name> is the identifier of a shared
variable.

We will be concerned with:.

i) showing that if direct interprocess com
munication is limited to communication be
tween processes which bear the parent-child
relationship, with all other communication
constructed indirectly from parent-child
communications, then the speedup promised
by parallelism will, in general, be
vitiated

ii) proposing a construct for the dynamic (run
time) identification of an arbitrary process
by another process for the purpose of
establishing communication.

2. Parent-Child Communication

We define the "spawning tree" of a system of
cooperating sequential processes to be that graph:

•whose-nodes represent the processes

0190-3918/81/0000/0061$00.75 © 1981 IEEE

61

• whose directed arcs represent the spawning re
lation. I.e., a directed arc from node A to
node B represents the fact that A spawned B.

Different systems of cooperating processes
will, of course, have their own idiosyncratic
communication patterns. In order to get a handle
on the general case, we will assume a random pat
tern of necessary communication. I.e., we will
assume that wherever a process might "sit" on the
spawning tree:

each time a process needs to communicate with
another process it will choose the latter
process at random from a uniform distribution
over all the processes (including itself for
the sake of simplicity) in the system of
cooperating processes

different communications from the same (source)
process will be directed at destination proc
esses chosen independently of one another

different (source) processes will choose the
destinations of their communications inde
pendently of one another.

These assumptions, are, in one important
sense, very optimistic. That is, in the long run
they ensure uniformity of spread of the total vol
ume of communication traffic over the set of all
pairs of processes rather than possibly skewing
that same total volume of traffic. What we will
see, however, is that the spawning tree, because
of its structure, will still form a very ineffi
cient base for carrying communications; i.e., we
will see that uniformity of traffic over the set
of all pairs of processes when superimposed on the
hierarchical structure of the spawning tree creates
intolerable speedup-vitiating bottle-necking.

To start, then, let us take as our unit of
time the time within which a process - on the aver
age - sends a communication to some (randomly
chosen) process. To simplify matters, and without
loss of generality, we will assume that each proc
ess sends exactly one communication to some process
during each unit of time.

We will assume, then, that once per unit of
time each node (process) of a full binary (spawn
ing) tree containing N = 2m - 1 nodes will generate
one communication addressed to some node chosen at
random from among all N nodes. For each arc, a, of
the tree we will be interested in the amount of
traffic, Ta• - i.e., the number of communications -
generated during one unit of time and destined to
traverse the arc a at some ~oint in its journey
from its source to its destination. More precisely we
will be interested in E(Ta), the expectation of Ta.

Now a full binary tree with N = 2m - 1 nodes
is, of course, of depth d = m - 1. For some JI, then,
1 <JI, < m-1, let the arc a be JI, levels up from the
l;;_ffiodes of the tree as in Figure 1. If we let:

then:

thus

or

a be the number of nodes in the subtree t1,
of Figure 1 (including the root node of t1)

b be the number of nodes in that part of the
tree of Figure 1 (clearly not a subtree)
labeled t2 (i.e., all the nodes of the entire
tree except those in ti)

T~p be the number of communications (gener
ated during one unit of time) destined to
traverse a in the upward direction

T~own be the number of communications (gener
ated during one unit of time) destined to
traverse a in the downward direction

E [T~P)
But a 2)1, - 1,
have:

E [T~p)

•

ab E[T~own) = a+b =

and b = 2m - 1 - a = 2m - 2)1,. We

(2)1,-1) (2m-2JI,)

2m-l

d = m - 1
levels of

arcs

(FULL BINARY SPAWNING TREE OF DEPTH d)

Figure 1

2(2)1,-1) (2m-2JI,)

2m-1

If we now let a be either of the arcs for
which JI,= m - 1, i.e., either of the arcs directly
emanating from the root of the full binary tree we
see that

What this means is that, subject to our opti
mistic statistical assumptions, each period during

62

which every process generates one communication
causes the process at the root of the tree to per
form O(N) units of work sequentially. (The root
process is, after all, as are all the processes, a
sequential process, and it is expected to have to
handle (N-l)(2m-l12m-l_1) communications.) .What
this means, among other things, is that an N
process system of parallel processes is not ex
pected to terminate in less than O(N) time.

3. Process Identification

Given, then, that in general implementing an
arbitrary inter-process communication as a sequence
of parent-child communications leads to intolerable
loss of speedup, it is necessary for communicating
processes to be able to directly identify one an
other for the purpose of establishing direct com
munication.

In the simplest case, i.e., that of two spe
cific processes which are known at compile-time
(actually, at the time the program is written) to
have to communicate with one another, there is no
problem. For example, suppose that procedures
PROCA and PROCB are each to be activated exactly
once, and that the one activation of PROCA is to
communicate to the one activation of PROCB a re
sult which the former will compute and store in its
private variable RESULTA; the programmer need
simply invent a buffer name, say BUFFAB, and a name
for a private variable, say RESULTFROMA, and then
write the code for PROCA and PROCB as in Figure 2.

PROCEDURE PROCA;
SHARED BUFFAB;

RES UL TA:
WRITE BUFFER BUFFAB FROM RESULTA;

PROCEDURE PROCB;
SHARED BUFFAB;

READ BUFFER BUFFAB INTO RESULTFROMA;

(EXAMPLE OF COMMUNICATION CODE WHEN COMMUNICATION
PATTERN IS KNOWN EXPLICITLY AT TIME OF PROGRAM

WRITING)

Figure 2

Suppose, though, that the situation is more
complicated, i.e., suppose that for the application
of interest, processes must dynamically - i.e., on
the basis of results which they will compute rather
than on the basis of criteria explicitly known at
compile time - "develop the need" to communicate

I'

with one another. How, in this case, are proce~
dures to be coded in such way that processes which
"develop the need" may establish a means of com
munication with one another?

For the purpose of enabling such communica
tion, we propose constructs for the dynamic crea
tion of variable names. To wit, the notion of a
schematic variable ~ is defined as follows:

<schematic variable name>:: =(<schema>)
<schema>:: <character> I

<arithmetic expression>

<schema>< schema>;

Note that in the above definition of <schema>,
<arithmetic expression> denotes an arithmetic ex
pression each of whose characters is underlined.

The semantics of schematic variable names is
as follows:

an underlined arithmetic expression is to be
evaluated, and the numeric value translated
into tpe character string representing that
value

a character not underlined represents itself.

Thus, for example, if

WRITE BUFFER (JOE/I**2/J+8)FROM <private-variable>

is executed at a time at which I has the value 5
and J has the value 3, then the statement which
will effectively be executed will be

WRITE BUFFER (JOE/25/ll)FROM <private-variable>

The manner in which processes which dynam
ically develop the need to communicate establish a
means of communication is clear. Before the intro
duction of dynamically~created names two processes
communicates with one another if and only if one
executes a statement of the form READ BUFFER
<buff er-name l> INTO <private-variable l>, the
other executes a statement of the form WRITE BUFFER
<buffer-name 2> FROM <private-variable 2> and~~~
<buffer-name l> happens to be identical to~
<buffer-name 2>. This is still of course true,
but now the name of the buff er may itself be com
puted at run time.

The specific details of the proposed construct
for the dynamic creation of buffer names, however,
is not the important point. Rather, what is of
consequence is that once large-scale, tightly
coupled, speedup-oriented MIMD computation becomes
a widespread reality, algorithms will be developed
which will require the dynamic establishment of
connnunication on the basis of computed results.
This will be the case, for example, in the solution
of PDE's over dynamically varying grid structures
and in such AI applications as natural language
understanding. In such applications, some means
for the dynamic creation of buff er names or some
alternative means for the dynamic identification
of one process by another will be of critical
importance.

63

References

[l] Sullivan, H. and Bashkow, T. R., "A Large
Scale Homogeneous, Fully Distributed Parallel
Machine, I" in Proc. Fourth Annual Symposium
on Computer Architecture, March, 1977.

[2] Klappholz, D., "An Improved Design for a
Stochastically Conflict-Free Memory/Inter
connection System," in Proc. Fourteenth
Asilomar Conference on Circuits, Systems, and
Computers, Nov., 1980.

A PARALLEL HETERARCHICAL MACHINE
FOR HIGH LEVEL LANGUAGE PROCESSING

Ado 1 fo Guzman

Computing Systems Dept. ,I IMAS
National University of Mexico

Apdo. Postal 20-726
Mexico 20, D.F.

Abstract

A computer architecture is presented that
processes in parallel programs written in high lev
el languages capable of being expressed in the
lambda notation (applicative languages).

Internally, it is a collection of weakly-cou
pled general purpose processors, without a hierar
chy among them. Each processor evaluates a part of
a program, thus permiting asynchronous computation.

The architecture here exposed has been devel
oped for the Lisp language, although other appl i
cat ive languages are also possible. The hardware
implements the function calls, argument passing
and sequencing of tasks. Each processor is a Z-80
microprocessor that is programmed to execute the
Lisp primitive operations.

The AHR machine operates as a slave of a
general purpose minicomputer. This avoids doing
1/0 in the AHR machine. In addition, all interac
tions with the user(s) are done by the normal
operating systems of the mini.

The machine is being built at the Computing
Systems Dept. (llMAS).

I. lntroduct ion and Project Status

This paper presents the architecture of a
parallel general purpose computer that has Lisp as
its main programming language. It is built of
several dozens of microprocessors (Z-80's), each
of them executing a part of the program.

Goals

The goals of the Project AHR (Arqultecturas
Heterarquicas Reconf igdrables) are:

'' To explore new ways to perform parallel proces
sing.

*To have a machine in which it will be possible
to develop parallel processing languages and
software

"' To have a tool for students to learn and practi·ce
parallel concepts in hardware and software.

Project Status

Version 0 [3] of the machine has been de
signed and simulated. This produced Version 1 [12)
which was simulated using SIMULA. Results of the
simulation are not to be found here, but in [8, 9,

0190-3918/81/0000/0064$00.75 © 1981 IEEE

64

12] instead.

We are building Version 1 of the machine, ex
pected to be operational [5) in 1981. Subsequently,
a faster version will be built, possibly incorpo
rating changes and ideas sprung from our experience
with the first machine .. Finally, this fast version
will be used to try to attain the goals mentioned
above.

About six people full time are involved in
the project.

The expected uses of the machine also include
picture processing, finite element methods, engi
neering calculations, and distributed processing.

Main Features

The AHR machine has the following character-
istics:

* general purpose.
*parallel processor.
* heterarchical. It means that there is no

hierarchy among the processors; there is no
11master 11 processor, or controller. All the
processors are at the same level.

*asynchronous operation.
* it has Lisp as its main programming language.
"'processors do not communicate directly

among themselves. They only "leave work"
for.somebody else to do it.

* no input/output. This is handled by a mini
computer to which the AHR machine is
atta~hed. ·

* nooperating system (software). Most of the
Lisp operations, as well as the garbage
collector, are written in Z-80 machine
language

* the AHR machine works as a slave of a gen
eral purpose computer (a mini or micro).

* gradually expandible. More microprocessors
can be added as additional computing power
is needed. [9]

Functional Notation

The AHR machine obtains its parallel ism by
parallel evaluation of the arguments of functions.
For instance, in f(a,b, g(u,g(x,b))), first x and
b are evaluated; then g of them, in parallel with
u; then g of the result, in parallel with a and b.
That is, evaluation occurs from bottom up, or from
the inside to the outside of the expression. This
is in accordance with the rule for evaluation of a

function: "to evaluate a function, the arguments
have to be already evaluated".

Recursion is handled [3] by substituting the
function name ("FACTORIAL") by its function defi
nition (LAMBDA (N) (IF (EQ N 0) 1. ..)) when eval
uating it.

The machine works with pure Lisp, without
SETQ's, GOTO's, Label's, RPLACA.

I I. The Parts of the AHR Machine

In this section the constituent~ of the ma
chine are described; section II I explains how the
machine works. Refer to figure 2.

Passive Memory

This memory holds lists and atoms; it holds
partial results and parts of programs that are
not being executed at the moment.

Originally, the programs to be executed re
side here, and they are copied to the grill for
their execution. As new data structures are built
as partial results of the evaluation, they come to
the passive memory to reside.

The Gr i 11

This memory holds the programs that are being
executed. A program, once in the grill, is being
transformed into results, as the result of its
evaluation.

Programs reside in the gril 1 in the form of
nodes, as figure 1 illustrates. Each node is
pointed at by its sons (its arguments), and its
nane field contains the number of nonevaluated
arguments. Nodes with nane = 0 are ready for eval
uation.

The Lisp Processors

These active units are microprocessors (about
several dozens of Z-80's) that obtain from the
grill nodes ready for evaluation, and, after eval
uation, return results (s-express ions) to the grill.
Each Lisp processor knows how to execute every
Lisp primitive. Each of them works asynchronously,
without communicating with other processors.

The processors obtain new work to be done
from the distributor, through the high speed bus.
This work comes as a node ready to be evaluated.

Only nodes with nane = 0 come up to the Lisp
processors for evaluation. So, for instance,
(CAR '(ABC)') will evaluate to A. The node
(CAR '(A B C)') has become the result A. The Lisp
processor has to do, after evaluation, the follow
ing things:

1.- Insert the new result A in the cell (in
the grill) pointed to by the node (CAR
'(A B C)'). That is, insert such result in
a slot of the father of the evaluated
node (see such slots in figure 1).

65

2.- Release the grill space occupied by node (CAR
I (A B c) I) •

3.- Substract 1 to the nane of the father.
4.- If the new nane (of the father) is zero, in

scribe the father in the fifo: the father is
now ready for evaluation.

VAR 0

"X"

(LIST (CONS (CAR A)

(CDR B)

VAR 0

"Y"

x
y

LIST l 3

VAR l 0 VAR] 0

"A"

Figure 1
NODES IN THE GRILL

Above, the L,U.,p exp!te.J.>hion to be
evaluated. Below, how U ,u., h~uc.
tMed into node.J.>, eac.h node bung
a 6unc.tion Olt a v~able. Eac.h node
-0how-0 a n.wnb~: ill nane, on numb~
06 non-evaluated angument-0. When a
node hM a nane 06 z~o, U mean-0
tha;t Mch node ,u., neady 6on eval
uation.

Empty wond-0 ane -0lot-0 wh~e the
Jte.J.>ui.t.6 06 evaluation will be iM~
ted. Fon iMtanc.e, the ne.J.>ul.t.6 06
(CVR B) will be iM~ed in the -0lot
man/zed"*".

"B"

These steps are initiated by the processor
simply by signaling to the distributor that the
processor has finished, and that its results
should be handled in mode "normal end" (burocracia
de sal ida, in Spanish [12]); the distributor
itself performs the requested steps.

Notice that in this form nobody has to search
the grill looking for nodes with nane=O, because
as soon as they appear, they are inserted into the
tail of the fifo.

The Lisp processors have access to the pas
sive memory (where lists and atoms reside), and to
the variable memory, where we have the values of
variables.

A Lisp processor is either busy (evaluating
a node) for it is ready to accept more work (an-
other node). --

The high speed bus

Connecting each Lisp processor with the dis
tributor is a high speed bus that goes into the
private memory of each processor. The new node
that the distributor throws is inserted (through
the high speed bus) into the memory of the selec
ted processor. Then, the processor is signaled to
proceed.

The slow speed bus

This bus runs from the i/o processor (the
mini or micro to which the AHR machine is connect
ed) to each bos. It is not shown in the diagrams,
nor it is explained furthermore in this article
(See [5)). Through this bus each processor is
loaded with programs, prior to starting the ma
chine. Also, in the debugging stage, the slow bus
is used to pass statistical information to the i/o
processor. The slow speed bus is not used during
normal execution of Lisp programs.

Variable Memory

This merr.oiy contains pairs of (variable,value),
and it is organized as a tree, or a collection of
a-lists, where each pair (variable,value) points
to older pairs. It is accessed by the Lisp proces
sors, and it is augmented (a branch of the tree
grows) after each LAMBDA binding.

Since the evaluations are,made in parallel,
the a-lists could grow in parallel, too. For in
stance, consider the following expression

BODYO: (I ist ((Jambda(X) BODY1) 3) ((Jambda(X)
BODY2) 4)).

Then, if when evaluating BODYO the a-list ls

ALISTO: ((X,A) (Y ,B) (Z,9))

Then, when evaluating BODY1, the a-list is

ALIST1: ((X,3) (X,A) (Y ,B) (Z,9));

and when evaluating BODY2, the a-list is

ALIST2: ((X,4) (X,A) (Y,B) (Z,9)).

But since the evaluation of BODY1 and BODY2
can be carried in parallel (by two different Lisp
processors), this means that AL I ST1 and ALI ST2
coexrst at the same time in variable memory, but
B0Iff1 points to ALIST1 and BODY2 points to ALIST2.
So, each processor has its "appropriate" a-I ist to
work with.

66

Both ALISTl and ALIST2 share ((X,A) (Y,B)
(Z,9)) between them. That is, they "share" ALISTO.
ALISTO grew in two directions, like a tree, giving
rise to ALIST1 and ALIST2 simultaneously. This
explains the affirmation that "the variable mem
ory contains a tree of a-1 ists".

The Distributor

This piece of hardware communicates the grill
with the Lisp processors. The distributor keeps
in the fifo (a memory) an array of nodes ready to
be evaluated; these nodes are thrown, one in each
cycle of the distributor,. to the Lisp processors
that are ready to accept new work. An arbiter
decides which Lisp processor obtains the node; an
exchange is done (through the high speed bus)
between that Lisp processor and the distributor,
the processor accepting the node and releasing the
result of the previous evaluation, The distributor
stores the result in the grill, in the address
indicated within the result. Generally, this re
sult is stored in a slot of the node which is fa
ther of the node just evaluated.

An overall view of the machine is shown in
figure 2.

t/ll 1
ix:

0 0 t/l E-ttll
VAR!ABLE t/l 2

ix:
µ:i t/l 0

MEMORY t) E-t ::> t/l

t50~ IXl t/l g n . µ:i
p., t/l 0 t)

µ:i µ:i 0

n-1 µ:i ix:
p., p., p., t/l t/l
H -~ ..:i L I

.,_, v•
t!> H
H..:l

n ::tl

D
µ:i
0
0 z

PASS!VE
MEMORY

F!FO

GR!LL

FIGURE 2

THE AHR MACHINE

U~ p p!r.O C.e.6Mlt 2 .i1i Jr.eadfj to a.c.c.ep:t mOJr.e
wo1tk.. The c:LU:OUbu-toJr. 6e:tc.hu a. node (to
be eva.lua.:ted) 6Jtom :the M6o a.nd -0enci6 il.
to p1r.oc.e-0-001r. 2, whii.e a.c.c.ep;ti.n.g :the 1r.e
-0u.U.!. 06 :the p1r.ev.loU6 evalua.:t.lon pe1r.601r.med
blJ -0u.c.h p1r.oc.u1i01t. Tha.:t 1r.e-0uU .l-6 -0to1r.ed
.ln :the g!UU, .lYl a. plac.e .lnd.lc.a.:ted .lYl :the

du.tlnation. addlr.u.6 06 the 11.uuU.
Suc.h exc.han.ge 06 n.ew wo11.k.-

p1tev-lou..6 11.uuU -l.6 pe1t60J1med at
eac.h c.1Jc1.e o 6 the d-l.6.:t:Jr1.but01t.

V eM-lo n. 2 o 6 the AHR ma.c.h-ln.e
IAl.ill ga-ln. .6 peed ove.Jt VeM-lon. 1,
ma-lnl.y by bmd.ln.g a 6Mte.Jt d-l.6.:t:Jr1.
but01t.

The Ulip p1toc.U.60M ailio have
ac.c.U.6 (c.on.n.ec..tlom n.ot .bhown.) to
the valt-lable an.d pM-6-lve memo!t-lu.

The Fifa.

The fife is a first il'J-first out memory that holds
pointers to nodes (in the the grill) ready to be
evaluated. The distributor fetches such nodes
through the head of the fifo, while new nodes to
be evaluated are inserted through its tail [5].

The arbiter.

If several Lisp processors become ready to accept
more work, the arbiter (a hardware) selects one of
them, which will receive the node thrown by the
distributor.

If every processor is busy, the cycle of the
distributor is wasted, since no processor accepts
the node that the distributor is offering.

The 1/0 Processor

It has been said that the AHR machine can be
seen as a peripheral of a general purpose mini
computer. But this mini can also be considered as
a peripheral of the AHR machine; we thus talk of
such mini as the 1/0 processor.

Input/output will be described in next sec-
ti on.

I II. How The Machine Works

The user uses a terminal of the m1n1 or mi
cro (i/o processor) which is master of the AHR rra
chine. He uses a common editor, disks and the
normal operating system of the mini. When he is
ready to run a program, he loads it from disk into
a part of the address space of the mini which is
really the passive memory of the AHR machine (see
figure 3 . In this way, the program is loaded (al
ready as 1 ist cells) in the passive memory. A sig
nal from the i/o processor to the AHR machine
signifies that Lisp execution should begin. Togeth
er with this signal an address is passed, indicat
ing where in passive memory resides the program to
be evaluated.

67

MINICOMPUTER
(I/O PROCESSOR)

FIGURE 3
"THE AHR MACHINE AS A SLAVE"

The Al:IR C.Q!l:IPuteJr.. ii:.. -4hown. <1A OJtO:theJr..
peJt,ly.:h etW.l o 6 a. gen.ell.al pWtp06 e
ml1U.c.ompute11.. The a.ddlr.u.6 .6 pa.c.e o 6
:the mln.-l c.ompltiJ:. u :the pa.6.6 -lve memo.IUJ
06 AHR, :th1tough a. movable window 06 4k.
a.ddlr.06-6 e6 •

Starting

It is assumed that each Lisp processor already
has its programs loaded in its private memory.

When the AHR machine receives the "start"
signal, the distributor throws a node (called the
RUN node) to some Lisp processor. This node points
to the program which will start.

The program (in passive memory) is copied (i.
e., transformed from its passive-memory representa
tion, which is in list notation, to its grill-rep
resentation, which is composed of nodes) by more
and more Lisp processors (the more leaves or
branches a program has, the more processors help to
copy it. Each processor copies a branch of the
program)into the grill. Nodes with nane=O are
inserted by the Lisp processors into the fifo, so
that some other Lisp processors wi 11 execute them.

Finally, the program has been copied into the grill.
Notice that at the same time of copying, some rodes
with nane=O could have been evaluated by some
other Lisp processors.

Evaluation

When a Lisp processor is idle, it signals to
the distributor, meaning that it is _ready to ac
cept more work.

The distributor chooses (with the help of an
arbiter) one of several idle processors, and
through the. high speed bus it injects a new node
[taken from the gri 11 through the head of the fifo]
into its private memory. It then s i gna 1 s such
processor to start.

The Lisp processor "discovers" the node in
its own memory, with al 1 the arguments al ready
evaluated. The Lisp processor proceeds to perform
the evaluation that the node demands. Suppose it
is LIST, and its arguments are (AB), Mand N. It
then has to address the passive mem·roy in the mode
"give a new eel 111 • Such eel I is given by a eel I
dispatcher (hardware attached to passive memory).
Three new cells have to be requested. Then the
Lisp processor forms the result: ((A B) M N). For
this, it has to store pointers to (AB), to Mand
to N, into passive memory, .in the new cells al
ready obtained. Then, it stores the result (which
is a pointer to passive memory) into a special
place ("results place") of its private memory. It
has finished. It signals to the distributor that
it is ready to accept more work. The distributor
will insert new work (another node with nane=O)
into the private memory of the processor, but it
will also collect (through the high speed bus;
see figure 2)from the "results place" in private
memory, the result ((AB) MN). The distributor
will store this result into a slot in a node in
the gri 11, The ~ddress in the gril 1 of this slot
was known to the (LI Si (A B) M N) node, because
each norle points to its father. Thus, the rlistri
butorhas no problem in finding where to store the
result: such address is found also in the "results
place", together with the result ((AB) MN).

The distributor has to do one more thing: it
has to substract one from the nane of the father
(which has just received the result ((AB) MN).
And if such nane becomes zero, then a pointer to
the father is inserted by the distributor into the
fifo through its tail.

One last thing: the distributor has to free
the cell of the node (LIST (AB) MN), so that
this grill space could be reused (10],

The distributor is very fast compared with
the speed of the Lisp processor. This will be even
more true if we code "Comp! icated11 Lisp functions
(such as MEMBER OF FACTORIAL) in Z-80 machine lan
guage, instead of "simple" Lisp functions, such as
COR.

Due to such difference .in speed, the distrib~
utor can keep many Lisp processors working; if the
distributor is 100 times faster than the (average~

68

Lisp function, it could keep 100 Lisp processors
functioning. It pays to make a fast distributor.

Finally, the whole program has been converted
into a single result (let us say, a I ist) deposit
ed in passive memory. The AHR machine now signals
the mini (or i/o processor), giving it also the
address in passive memory where the result lays.
The mini now accesses the passive memory as if it
were part of its own memory (remembe·r, their ad
dress spaces overlap), and proceeds to the (serial)
printing process.

Execution has finished.

IV. Hardware Considerations

Lisp Processors

The first version of the machine will have 5
Lisp processors, and the i/o processor is another
Z-80. Each Lisp processor will have 4K bytes of
private memory, where a pure-Lisp interpreter will
reside [8] •

The maximum number of Lisp processors is 64.
It could be increased further, but a new arbiter
needs to be designed in that case.

The high speed bus

The distributor inserts a node (7 words of 32
bits) into the private address space of the select
ed Lisp processor, through the high speed bus. It
does this in 0.5 microseconds. The high speed bus
runs from the distributor to all Lisp processors.
It carries nodes and re5uJts.

The low speed bus

A 16 bi·ts low speed bus; 8 ()f tl'lem Indicate
which Lisp processor is addressed, the other 8

·bits carry data. It runs from the i/o processor to
the Lisp processors.

An additional use of the low speed bus is to
broadcast to the Lisp processors the number of a
program that needs to be stopped or aborted.

Passive Memory

It consists of up to 220 Words of 22 bits; it
contains the input ports, list space, output ports
and atom space.

Version 1 will have only 64K words.

Access time is 150 nanoseconds, It has a parity
bit,

The Gri 11

It consists of up to 219words of 32 .bits. It
is divided logi·cal ly In nodes, each with 7 words.

Version 1 will have BK words. Access time is
55 nanoseconds. The grill contains the nodes that

are about to be evaluated.

Var.iable Memory

It consists of up to 219 words of 32 bits.
This memory contains names of variables and their
values at a given time. The variable memory contains
also real numbers, in its lower half. In its upper
half it has "environments", which are lists of
cells of 5 words each.

Version 1 will have 16K words. Access time is
150 nanoseconds.

The Distributor

The distributor passes nodes from the grill
to the Lisp processors, and stores in the grill
the results coming from the Lisp processors. There
are two versions of the distributor.

First versi<DTI of the distributor:

This first version [10] is implemented through a
Z-80, using a program that performs all the func
tions of the distributor. It runs slowly, in the
sense that distributes nodes at low speed. It is
further described in Section V-Software conside
rations.

Second version: fast distributor:

Not yet bui 1 t, it wi 11 become part of version 1 of
the machine. It will be built either from bit-slice
microprocessors, of from PAL's.

The fifo

Of a maximum size of 219 words of 19 bits, it con
tains pointers to the nodes in the grill. Version
1 wi 11 be of 4K words. I ts access time is 55 nano
seconds,

The arbiter

There are really three arbiters, for passive memory,
variable memory and for the grill.

Each arbiter takes 400 nanoseconds to respond,
and it may handle up to 64 processors. Each proces
sor has a fixed priority, varying from 1 to 64.
Each processor has a different (unique) priority.
The assignment of priorities to processor really
does not matter, since all of them are equal (they
are able to perform exactly the same tasks). Of
course, if there are too may processors, those with
lowest priorities will never obtain work (nodes) to
do.

The 1/0 Processor

It is actually built around a z-80 that works
as a general purpose computer. Its main functions
are:

* to talk to the users; to read their input and
to print their results.

* to store user files in its disk.
*to initialize the AHR machine.
* to load into passive memroy, through the

window, the programs loaded from disk.

69

*To begin garbage collection.
* To end garbage collection.
*Actually, the garbage collector runs in the

i /o processor.

V. Software Considerations

The Lisp Interpreter

A Lisp interpreter runs in each Lisp proces
sor. It interprets pure Lisp (only evaluations;
no setq's, rplacd's or other operators). The
garbage collection is not done, at this moment,
by the Lisp processors.

For the first version, the Lisp interpreter
will do argument checking of the Lisp functions.
This will reamin as an option in the second ver
sion of the AHR machine.

The Garbage Collector

For the first version of the machine, it will
be a "normal" serial garbage collector, running
in the i/o processor. While it works, the Lisp
processors remain idle. For the second version, it
will be a parallel incremental garbage collector,
running in the Lisp processors.

Garbage collection is done for passive memory
(1 ist cells) and for the real numbers region of
variable memory (where it compactifies memory).
In the "environments" zone of variable memory and
in the grill (nodes), there is no need to recol
lect garbage, because used space, as soon as it
is abandoned in these two places, it is inserted
(by hardware) into a list of free environment
cells (for variable memory) or into a 1 ist of
free nodes (for the grill).

The Dlstributor (First Version)

This is a piece of soft)rlare [10] running in
a Z-80, that emulates all the fuDctions that the
"rea 111 (hardware) di str i bu tor performs. It is
slow in this sense, but it is flexible and helps
in the debugging of the AHR machine; it may be
run "step by step" to see the flow of information.
It also keeps statistics of use of hardware and
software.

Editing

Editing of Lisp programs is done outside the
AHR machine, using the operating system and editor
of the i/o processor. After editing, the program
is filed on disk. From here, a loader (running
in the i/o processor) converts it into list cells
and brings the program to passive memory. See
figure 3,

Performance of the Machine

No figures can be given at this time, since
the AHR machine is not yet completed.

New Advances as of June 1981.

The hardware is now working; the software is.

about to be completed.

VI. Related Work and Machines

Greenblatt's Lisp Machine

This is a single processor machine (14] b1:1ilt
for, high speed Lisp computations. It does not pre
tend to be an experiment in parallel hardware; it
gains its speed and power from careful design of
the software and machine architecture, as well as
from the experience of the builders with the Lisp
language.

Para! lei Usp Machine

The machine [7] is a loosely coupled multi
processor for applicative languages such as Lisp.
It is the machine most closely resembling ours, in
its application.

Data Flow Machines

These machines [13] resemble the AHR archi
tecture in that data is directed through "boxes"
that process them~ The flow of executions is
controlled, I Ike in our design, by what previous
results are ready (available). The cited article
describes a machine that uses different colors of
tokens to mark "this result", "previous result",
and so on •.

Zmob

A collection of z-BO's around a conveyor belt,
this machine [11] may be applied to image pro
cessing and nume.rical calculations. Each micro
processor has its own private memory. They do not
have direct access to a common memory (as AHR
does), but behind one of the micros, a huge central
memory or mass memory may reside.

PM4

This is a machine [2] suitable for iamge
processing. It is a dynamically reconfigurable
multimicroprocessor-based machine. It can be par
titioned into several groups of processors which
may be assigned! to execute multiple independent
SIMD processes and' MIMD processes.

The Language "L" for Image Processing

"L" is a language suitable for processing of
images. It is mentioned here because it may be im
plemented in a parallel machine [4), such as the
AHR computer. The language is described elsewhere
[1], It was ·designed mainly as a
result of our experience in picture processing of
multispectral images [6]. "L" has not been im
plemented.

VI I. Conclusions

The architecture of the AHR computer shows
that it is possible to build a multiprocessor o.f
the MI MD type, whe.re each processor does not
exp 1 i<;: it 1 y communicate with other processors. t.n'

7<J'

The AH"R. design, a p·rocessor does not know how
many other processors are there, or what they
are doing. It is not possible to address a pro
cessor: "here I have a message for processor
number 4." ·

The construction of new software has been
kept low by connecting the machine to a general
purpose computer, thus being able to use already
available operating systems for time sharing,
text editors and loaders.

Once the machine is built, experimentation
will begin in the design of parallel languages
and ways to express "powerful" commands in
heterarchical fashion. Also, if the amount of
access to memories for each processor is low, it
may be possible to place each micro in a remote
place, thus achieving some class of distributed
computing. That is, a micro can process local
work {through Basic, for instance) as well as
remote (Lisp) work.

Finally, the AHR machine shows how it is
poss,ible to design a heterarchical system, where
none of the processors tells the others what to
do, in what order to do it, or what resources
are available to whom.

Acknowledgements

The AHR machine is being built by the members
of the AHR Project, to whom l express my apprecia
tion for their time, effort and enthusiasm.

Work herein described has been partially
supported by Grant 1632 from CONACYT, the National
Counci I for Science' and Technology (Mexico).

References

1. Barrera, R., Guzman, A., Jinich, A., and
Radhakrishnan, T. Design of a high level lan
guage for image processing. 1979, Technical
Report PR-78"22, HMAS, +latfona\ Univ. of
Mexico.

2. Briggs, F.A., Fu, K.S., Hwang, K., and Patel,
J.H. PM4: a reconfigurable multiprocessor
system for pattern recognition and image pro
cessing. 1979. Technical report TH-EE-79-11.
School of Electr. Eng., Purdue University {USA)

3. Guzman, A., and Segov,ia, R. A para! lei recon
figurable LISP machine. 1976. Proceedings of
the International Conference on Information
Sciences and Systems. Univ. of Patras, Greece.
207-211.

4. Guzman, A. Heterarchical architectures for
parallel processing of digital images. 1979'.
Technical report AHR-79-3, I IMAS,. National
University of Mexico.

5. Guzman, A., Lyons, L., et al, The AHR Comput.er:
construct.ion of a multiprocessor whh USP as
its main language. (in Spani'sh)'. 1980. Techn•ical
report AHR-80-10. HMA'S, Natio.r:ial University
of MexJco •.

I

I

I
I

6. Guzman, A., Seco, R., and Sanchez, V. Computer
Analysis of LANDSAT images for crop identifica
tion in Mexico. 1976. Proceedings of the Inter
national Conference on Information Sciences and
Systems. University of Patras, Greece. 361-366.

7. Keller, R.M., Lindstrom, G., and Patil, S. A
loosely-coupled applicative multi-processing
system. AFIPS 1979 Conference Proceedings, Vol:
48, 613-622.

8. Norkin, K., and Gomez, D. A new description for
data transformations in the AHR computer. 1979.
Technical report AHR-79-4, llMAS, National
University of Mexico.

9. Norkin, K., and Rosenblueth, D. Towards opti
mization in AHR. Technical report AHR-79-5,
I IMAS, National Univ. of Mexico. 1979

10. Penarrieta, L. Error detection in the AHR
computer. (In Spanish). 1980. Technical report
AHR-80-9. I IMAS, National Univesity of Mexico.

11. Rieger, C., Bane, J., and Trigg, R. ZMOB: a
highly parallel multiprocessor. 1980. Technical
report TR-911, Dept. of Comp. Science, Univ. of
Maryl and (USA).

12. Rosenblueth, D., and Velarde, C. The AHR ma
chine for parallel processing: lst stage.
(In Spanish). 1979. Technical Report AHR-79-2,
I IMAS, National University of Mexico.

13. Watson, Ian, and Gurd, John. A prototype data
flow computer with token labeling. AFIPS 1979
Conference Proceedings, 48, 623-628.

14. Weinreb, C., and Moon, D. Lisp machine manual.
1979. M.l.T.A.I. Laboratory, Cambridge, Mass.
(USA)

71

DISTRIBUTED PROCESSING APPROACH FOR THE INTERNATIONAL PUBLIC TELEGRAMS
MESSAGE SWITCHING SYSTEM

Jin-tuu Wang
Yen-son Lee

International Teleconmunications Administration
Taipei, Taiwan, Republic of China

Abstract -- International Telecommunications
Adminstration {ITA) in Taipei, Taiwan, Republic
of China, recently has completed the application
software development for its International Tele
gram Automatic Processing System {ITAPS). This
system adopts an in-house computer network archi
tecture that includes four closely coupled mini
computers and more than two dozens of micropro
cessors. Two of the minis serve as the front-
end communication processors and others as the
host message switching processors. These minis
are interconnected using the SDLC protocol. The
microprocessors are connected to the front of the
communication processors using the RS-232C proto
col to handle Telex signalling for those telegrams
to be delivered/accepted to/from the Telex net
work. The ITAPS is configured to provide full
redundancy so that the hot-standby processors
will take over the on-line task should any failure
occur in the on-line system. One of the special
characteristics of the ITAPS is to print-out
Chinese address information automatically on the
received international telegrams to facilitate
messenger's delivery. Besides hardware architec
ture of the system, this paper also describes the
functional characteristics of the system, software
design and the integrating testing result. This
system is one of the large scale software develop
ment projects that are carried on in this country.

Introduction

The recent advent of minicomputer technology
prompted the prevailing applications of using
minicomputer systems for various types of tran
saction processing [1,2,3 J. Message switching
is one of such applications to automize the handl
ing of message records. Although CCITT has set
certain recommendations for these type of services,
such as F.31 message format, various systems very
often differ from one another due to different
operational requirements of record -carriers.
The International Telecoimnunicati:ons Administration
{ITA) has called an international open tender for
the international telegram message switching
system in 1974, however, the bid was unsuccessful
because none of the venders could propose a system
that could meet the user's operational require
ments. Furthermore,;a non-standard project always
requires tremendous man-hours to write the specific
application software in order to meet these re
quirements, and the cost for developing such a
non-standard software package is always very high.
After few times of unsuccessful open tender on the
turn-key basis, ITA decided to develop the nece
ssary application software to meet its own oper
ational requirements. A system appended with on-
1 ine handling of Chinese address information and

0190-3918/81/0000/0072$00.75 © 1981 IEEE

72

with inter-connection to the Telex network is pro
bably not available in the market. Therefore,
it is worthwhile to develop such a non-standard
system by yourselves not .only to meet your own
requirements but also to gain some practical
experiences in the field of software engineering
technology.

Hardware Architecture

Fig. 1 shows the hardware configuration of
!TAPS. Two GA-16/440 minicomputers with 112 KW
core memory and Memory Management System {MMS)
serve as the host message switching processors,
while two GA-16/440 minicomputers with 64 KW core
memory and Memory Parity and Protection {MPP)
option serve as the front-end corrmunication pro
cessors. These four processors are connected
with SDLC links in such a way that each host has
a front-end processor through a link and is the
standby of the other on-line host.

In order to facilitate automatic delivery/
acceptance of incoming/outgoing telegrams to/from
the Telex subscribers, Z-80 microprocessors are
used to handle Telex signalling information with
the Telex exchange. Each microprocessor is de
signed to handle four trunks of call setup and
clear down signalling to/from the Telex exchange
using 2K-byte EPROM and 256-byte RAM. These
intelligent hardware interface boards were designed
and manufactured locally to response to the CCITT
No. 2 signalling protocol. Therefore, they serve
as the protocol converters between the CCITT No. 2
and the RS-232C protocols.

All the peripheral devices are attached to
the message switching host processors. These
peripheral devices include 2 head-per-tracks
(drums), 4 moving head disks, 8 magnetic tape
drives, 2 card readers, 2 line printers and 2 CRT
terminals as console. 16 CRT terminals are atta
ched to the on-line host processor for manual
assistance of the intercepted messages while 10
CRT terminals are connected in distance through
modem to facilitate telegram entering directly
from ITA branch offices. These CRT terminals are·
always connected to the on-line processors through
Automatic Bus Transfer Unit (ABTU). The function
of the head-per-track is to serve as the transit
storage for each telegram entering the system,
while that of the moving head disk is to serve as
the short-term journaling of telegrams for later
retrieval and as the storage space for operational
files and programs. The magnetic tape drives are
for the long-term journaling of telegrams, automa
tic ticketing of outgoing telegrams, system and
file backup. The card reader and line pri-nter are
for system software development. The head-per
tracks are all connected to the on-line host
through ABTU while moving head disks are connected
to the dual port disk formatters and can be

accessed by either host processor. The magnetic
tape drives, card reader and line printer are all
dedicatedly connected to each host processor.

All the communication lines are connected to
the ITAPS communication processors via two types
of asynchronous communication multiplexors, one
for the slow speed trunk-lines or teletype ter
minals, and the other to the modems for the re
mote CRTs. The former is the GA-1595 multiple
xors that provides 64 lines PIO capability to
input/output message character and line status
one at a time after interrupt request. The latter
is the GA-1535 multiplexors that provide 16 lines
OMA capability to input/output message characters,
line or page depending on the operational mode of
CRT terminal. These multiplexors generate three
types of interrupt to the communication processor,
namely, the input buffer full, the output buffer
empty and the status change of line so that the
CPU can serve the respective type of interrupt to
input, output character or sense the status of
lines. The 1595 multiplexors are further connec
ted to two types of line adaptors, one is the
current loop line adaptors that provide neutral
current loop interfaces to trunk-lines, the other
is the RS-232C line adaptors that provide EIA in
terface to trunk-lines for the Telex exchange.
Portion of the current loop line adaptors are con
nected to a neutral/bipolar current converter for
those lines that are in bipolar characteristics.
Four serial-type graphic printers are connected
via RS-232C line adaptor to the 1535 multiplexor
for printing Chinese address information on the
received telegrams. A line monitor and patch
panel is also installed to provide signal monitor
ing, line cross-patching, and trunk line interfa
cing for all the low speed lines and trunks.

Major Functions and Special Characteristics

The major functions of the ITAPS are to per
form a store-and-forward message switching which
automatically processes and routes both interna
tional incoming/outgoing telegrams to/from this
country, stores the processed telegrams for later
retrieval, and provides traffic relevant reports.
Remote and local CRT positions are also provided
to facilitate direct editing of outgoing telegrams
at branch offices and manual assistance of the
intercepted telegrams at the telegraph operation
center (see Fig. 2). Detail functions are descri
bed as fo 11 ows:

Automatic Classification of Incoming Telegrams

For the incoming telegrams, the ITAPS auto
matically classifies the telegrams into ten deli
very classes. Four major classes are: (1) to be
delivered through the Telex network; (2) to be
delivered by messengers, (3) to be routed to the
domestic network, and (4) to be printed on the
local teletype terminals.

By using the cable address in the received
telegram as keyword, the ITAPS looks up the Telex
number and the Automatic Answer Back (AAB) from
the database, if there is any, and gives the num
ber to the microprocessor interface for automatic
dial-out. If the circuit connection is success-

73

ful, the communication front-end processor will
send "WHO ARE YOU" (Figure D) signal to the
connected Telex terminal for obtaining an Automa
tic Answer Back Code. If a complete match occured
between the returned AAB and that gotten out from
the database, the ITAPS sends out the incoming
telegrams to the Telex subscriber who has regis
tered using this cable address. If a Telex num
ber is not found under this cable address, the
ITAPS looks up the Chinese address information in
another file. This file consists of over 20,000
records, each of which contains the Chinese
address of the telegram recipient in terms of
Chinese character internal codes. Each one-word
internal code is then translated into its binary
graphic pattern. A group of these binary graphic
patterns, lead by a graphic control code, are then
sent down to a graphic printer which will print
the Chinese address information including the
company's full name and address in front of the
English (ASCII) telegrams (see Fig. 3).

For those telegrams routed to the domestic
network, the city name on the telegrams will be
verified against the city-name file. It will be
routed to the respective line based on the infor
mation from the file. Local Teletype terminals
include "Full Address" positions, "Service Tele
grams" positions, "Inter-office Communication"
positions, and the "Intercept" positions for the
abnormal telegrams that require manual assistance.

Automatic Editing and Routing of Outgoing Telegrams

For the outgoing telegrams, the ITAPS accepts
the telegrams from the following four major sour
ces: (1) ITA's branch offices can send telegrams
either by Teletype keyboard/paper tape reader, or
by remote CRTs; (2) Telex subscribers can send
public telegrams using simple format; (3) ITA's
Telegram Operation Center can send telegrams
either by Teletypes keyboard/paper tape reader, or
by local CRTs; (4) domestic network can handover
its international outgoing telegrams to ITAPS.

Telex subscribers can dial up "923" reques
ting a direct connection to the !TAPS through
the microprocessor interface. If there is buffer
available in the Communication Processor, the
!TAPS, after obtaining subscriber's ID, will send
"GO AHEAD CABLE". The subscriber then send his/
her prepared paper tape or type in telegrams.
After receiving End of Message (NNNN), the !TAPS
will again verify the same ID to make sure that
the same circuit has been connected throughout
the entire period of telegram transmission. If a
match occurred in the verification, the sending
subscriber is then given a receipt number on which
a later inquiry of the telegram may be made. For
the convenience of the customers, the telegrams
sent by the Telex subscribers are in simple format.
The !TAPS will edit the simple format into the
CCITT F.31 format by automatically filling in the
numbering line, pilot line, word count, destina
tion indicator, and origin indicator, etc. to
become an internationally compatible interchange
format. Based on the destination indicators or
geographical indicator, the telegram is then routed
onto the required destination international trunks.

For those telegrams sent from ITA's branch

offices, there is no dialing-up procedure needed,
instead, the prepared paper tape can be sent
directly from Teletype paper tape reader or key
board into the !TAPS, or telegrams can be edited
on the CRT screen and sent to !TAPS by a single
key action. The remote CRTs are connected to
the Communication Processor through modems using
asynchronous RS-232C protocol at 1200 bauds.
Telegrams may also be input to the ITAPS using
local CRTs which are directly connected to the
Message Switching Processor using asynchronous
protocol at 9600 bauds.

Journaling and Retrieval of Telegrams

Telegrams input/output into/from !TAPS are
properly recorded or journaled into the short
term input/output journal file in the moving head
disks. Input journal file contains telegrams that
are originally input into the system with their
arrival time stamps and system numbers from which
the respective telegram can be retrieved. Output
journal file contains telegrams that may have been
automatically edited into the F.31 format or man
nually corrected some erroneous fields in the
message header, together with their leaving time
stamps, system numbers and other information ex
tracted from the telegram header. For retrieval
and report-printing purpose, many inverted files
are built at the time of output journaling such
as DELINV (delivery number), ICPINV/OCPINV (Input/
Output Circuit Prefix), TIMINV (Time), TIGINV (Te
legram ID Group) to facilitate multi-directional
retrieval from other keys. The on-line retrieval
commands can ·be entered from 5-unit Teletypes
locally and remotely, and from local CRTs.

Two 80-megbyte disks are installed to allow
telegrams in two days to be journaled, while mag
netic tapes are used to transcribe telegrams for
long-term filing. The retrieval of telegrams from
magnetic tape can be made off-line.

System Switchover and Recovery

ITAPS is designed to have dual configuration.
During normal operation one system serves as on-
1 ine and the other as hot-standby. The on-line
system does all work including telegram reception,
assembly, storing, analysis, routing, dispatching
and disassembly while the standby system does only
the telegram reception and assembly. The on-line
message processor continously sends information
to the standby message processor ordering it to
release those buffers whose contents have been
safely written (stored) into the transit storage
by the on-line Message Processor. Also, in the
on-line system, a snapshot program periodically
saves system operational data and tables onto the
drum. (head-per-track) snapshot area including the
current queue transactions, data and tables in
common area. If the on-line system fails, or
either side receives a switchover command, the
hot-standby system will immediately loads the
last snapshot area into its core memory, changes
its own processor state to on-line, and then take
over the on-line task without having to load the
on-line programs from the system disk. During
normal operation, the same set of real-time pro-

74

grams are running or stationary both in the on-line
and in the standby system respectively, but the
input processing program is running in on-line
state or in standby state depending on whether the
respective processor is in which state. This
arrangement allows fast switchover action to be
taken place.

After the switchover, the standby processor
backs up its processing starting from the last
snapshot of the system which preserves all the
necessary information to start over from the last
mile-stone record. Such arrangement will guarantee
that no telegram message or character will be lost
during the switchover transition.

The system can also be restarted using a
restart procedure LJ(RESTART) to recover all the
necessary data which have been saved in the snap
shot area.

A Chinese Computer System for File Building

One of the requirements of ITAPS is to print
Chinese address information on the received tele
grams to facilitate messenger's delivery. This
requirement motivated the invention of a Chinese
computer system for file building purpose. This
system uses an ordinary graphic CRT terminal
to input and display the selected Chinese characters.
This is accomplished by assigning key positions for
Chinese character roots and any Chinese character
can be defined according to the normal writing
sequence as a one-dimensional spelling sequence of
its constituent roots. Such a system can be built
in a general purpose computer system as part of
the file handling process. Besides building cable
address file with Chinese address information, the
system can be used for general purpose Chinese
information storage and retrieval purposes. The
special char~ct~ristics of the input method are
described as follows:

1. Use ordinary small CRT keyboard without
special interface,

2. The number of roots approaches theoretical
optimum value, which means minimum average key
strokes, speedy operation and high uniqueness of
the selected characters.

3. The arrangement of roots is on the one
hand according to the statistical occurent fre
quency of roots, which makes the average operation
speed faster; and on the other hand according to
the connotational meaning of root to key-position
alphabets, thus to facilitate beginners' memorizing.

4. Spelling sequence can be defined dynami
cally by users, thus make the selection operation
more flexible and multi-directional, for exam
ple, normal character being selected from the
abbreviated writing sequence; multiplication of
a number and a root to denote the repetition of the
same root; subtraction of roots can be performed
for similar roots.

5. Processing program is very simple, within
2K words, and the additions of spelling sequences
and character patterns are independant of the
processing program.

6. It may also be used for English, Japanese,
Korean and other ideographic languages.

Local and Remote CRTs

Local positions are installed at the Telegraph
Operation Center to manually assist the system for
the handling of the intercepted telegrams either
having format, routing, spelling errors, or un
identifiable name or field in the telegram header,
owing to which the telegrams cannot be properly
routed or delivered. After human intervention for
the proper correction, these intercepted telegrams
will be routed to their proper destination or be
diverted to a specified printer for further ana
lysis.

The functions of the local CRTs are categori
zed by pressing the different function keys. These
functions keys are built-in to each CRT in the
right hand neighboring of the normal keyboard area.
Each of them can trigger a pre-defined process in
the CRT Processing Module.

Another block of key area further right hand
side of the special function keys allows operator
to edit the telegram in a page mode. By "page"
mode, it means that the purchased CRTs have a
local buffer and the limited intelligence to allow
operator editing telegrams locally or without inter
vening the host computer, thus leaving the host
computer with more CPU time to process other on-
1 ine tasks.

The remote CRTs have limited functional capa
bilities. The use of function keys are limited to
send out a newly-edited telegram and to log-in and
log-off.

Operational Commands and Reports

Various user's designed commands can be en
tered at the console CRTs, local CRTs, and the
remote Teletype positions either to control or
regulate the system operation, or to obtain the
current operational status of the system. Commands
entered from console CRTs are honored by the
Executive of the Operating System while those
entered from local CRTs and the 5-unit-code TTYs
are interpreted and executed by a user's designed
command interpreter and its associated subroutines
working in the foreground environment.

The command entered from the remote TTY posi
tions resemble those used in the network access
operation because they are relayed by the Communi
cation Processor to the Message Switching Processor
for the proper responses. Each command response
must be returned to the respective TTY that has
issued the command. The technique used is in fact
a "packet switching" type transmission of both
command and the response. These commands can be used
to obain operational reports or retrieve telegrams.

Software Design and the Parallel Running Result

The design of the application software for
ITAPS uses the top-down and modular concepts C4J.
Each module has its pre-defined functions and the
related mudules have their interfaces. In Message
Switching Processor, there are Dispatching Module,
Input Processing Module, Message Analysis and Route
Selection Module, Output Processing Module, CRT
Processing Module, Telex Editing Module, Journaling

75

Module, and Command Processing Module. These
modules are assigned different priority level
according to the degree of urgency of each module.
The main interfaces are previded using the "admin
nistrative block" appended to the first sector of
each telegram in the transit storage, and the
interface tables in high core common area.
Transactions are passed around in core memory
using the self-implemented queue manager. There
are two types of queue, one is the cyclic type
FIFO queue and the other is the multi-line multi
priority queue for output processing module. The
same approach is also carried on in the Communica
tion Processor in which three receiving modules
and three transmitting modules are implemented
except without using the drum transit storage as
the interface among modules, instead, the packet
buffers being used as such. The receiving modules
include Input Interrupt Handling Routing, Input
Processing Program, and SDLC Output Interrupt
Handling Routine. The transmitting modules include
SDLC Input Interrupt Handling Routing, Output
Processing Program, and the Output Interrupt
Handling Routines (see Fig. 4).

The software for the communication lines,
such as the SDLC, CRT multiplexor, low speed
multiplexor, and RS-232C multiplexor, is imple
mented inside the Input Output System (IOS) as
Handling Routines (Handlers) which is device
dependant and user-oriented portion of programs
linking closely to the respective drivers.

ITAPS has passed various phases of testing
including the modular testing, integrating testing,
functional verification testing, and the stability
testing. Up to now (June 1981), the system has
been running as the parallel running with the
manual processing system for more than ten weeks.
During the testing period, the real traffic as
well as the simulated traffic are both applied to
the system. For the modular testing and the inte
grating testing, the simulated traffic helped
prove the correctness of the normal processing
path of each module, while for the functional
verification testing, stability testing and paral
lel running, the real traffic helped prove the
correct treatment of the abnormal cases. The
overall availability of the system within the
parallel running period is above 99.9%.

This system is one of the large scale software
development project in this country. This is one
way of achieving self-reliance in the brain-inten
sive industry in this country.

References

[lJ Philips, Message Data Switching System --
DS 714, Engineering Consideration, 1973.

[21. Rockwell International, C900/180 Message
Switching System, Product Description, 1974.

[3J Kokusai Denshin Denwa, Co. Ltd., The Telegraph
Automation System -- TAS, Mar. 1973.

[4J James Martin, Programming Real-time Computer
System, Prentice-Hall, Inc. Englewood Cliffs,
New Jersey, 1973.

Input Lines

L I N E M 0 N I T 0 R

TLXSIH

r----'
I AND

Lines

Line Switches

P A T C H P A N E L

TLXSIH

Telex Signalling
Interface Hard
ware Z-80 ,(JP

Remote
CRTs for
Branch
Offices

Graphic
Printers for
Chinese Addr. Telex Signalling

Interface Hard
ware Z-80 ft.IP

Long-term
Journaling
& Ticket-

ing
Disk
Storage
Module

Multiplexors

Communication
Processor (CP)

GA-16/440 MPP 64 KW

SDLC

Link

Multiplexors

Local CRTs for
Manual Assistance Communication

Processor (CP)
GA-16/440 MPP 64KW

---+---. Automatic
Bus
Transfer

L-1----+--' Unit

SDLC

Link

Message Switching
Processor (MP)

1------1 Message Switching
t----S-D-LC_L_i-nk--X-2-----1 Processor (MP)

GA-16/440 MMS 112 KW....,_ __ __, ..-----tGA-16/440 MMS 112 KW

System
Disk &
Files

Disk Formatter

Short-term
Journaling Transit

Storage &Snapshot

Fig. 1. Hardware Configuration of the !TAPS.

76

Disk Formatter

Short-term
Journaling

System
Disk &
Files

Disk
Storage
Module

International International
,_,.,,---,------Telegraph Telegraph

Hot Standby

Up,/\ 1'
Link/ V

Terrestrial • ~ Terrestrial
Link v

F
T

Earth
Station

11Rj' Tel"

Telex
Switch-

ing Subscribers
System

x 10000

ASR
TTYs ~'''"'h Offioe TTY'

Operation Rooms

Incoming
Trunks

: X32

:X16

: x 8

Telex Intercept : X 8

Incoming Intercept X 8

Service Positions

Manual Assistance
CRT Positions

On-line

I T A P S

International

Telegrams

Automatic

Processing

System

Outgoing Trunk __ _,

X32

v
F

T

u,, IT

----Domestic
x 4 Message

1-1----swi tch
ing Sys.

Ordinary & Urgent

x 4
Letter

Full Address

SVC Tlg X2

Intercept Tlg. X 2

Interce t 'f=::::i
Tlgm X2(0UT li_
Intercept Tlgm X 4 ~
(Telex) If ~~

XQ MSG X 2

Earth Station

RO
TTYs

Fig. 2 Functional Block Diagram of ITAPS.

ZCZC 00022 GCN031
CNTP CO DPHX 010
MUENCHEN TELEPHONED FROM PLANEGG .10 .14 .1322

SHIHFONG
TAIPEI

RYL 7/4/80 BLUE COLOR 0. K. QUANTITY AS USUAL ORDER

ROESCHIMP

COL 7111./80 BLUE

77

Fig. 3. Chinese Address Information

Is Automatically Printed on the

Received International Telegrams

to Facilitate Messenger's Delivery.

Input
Lines

Message
Switching
Processor

(MP)

Conmunication Processor (CP)

Input
Inter
rupt

Handl
ing
Rtn

SDLC

To Local CRT

Fig. 4. Software Configuration of !TAPS.

78

Output
Queue

I
I
I

....._...._~Output

Lines

CONTROL II

HI
Multi
Queue

CONTROL IV

I,

MULTITERMIN AL RELIABILITY AN AL YSIS
OF DISTRIBUTED PROCESSING SYSTEMS*

Aksenti Grnarov and Mario Gerla
Computer Science Department

University of California
Los Angeles, California 90024

Abstract -- Distributed processing system reliability has been
measured in the past in terms of point-to-point terminal reliabil
ity, or more recently, in terms of the 'survivability index' or
'team behavior.' While the first approach leads to oversimplified
models, the latter approaches imply excessive computational
effort. A novel, computationally more attractive measure based
on multiterminal reliability is proposed. The measure is the pro
bability of true value of a Boolean expression whose terms denote
the existence of connections between subsets of resources. The
expression is relatively straightforward to derive, and reflects
fairly accurately the survivability of distributed systems with
redundant processor, data base and communications resources.
Moreover, the probability of such Boolean expression to be true
can be computed using a very efficient algorithm. This paper
describes the algorithm in some detail, and applies it to the relia
bility evaluation of a simple distributed file system.

1. Introduction

Distributed processing has become increasingly popular in recent
years, mainly because of the advancement in computer network
technology and the falling cost of hardware, particularly of
microprocessors. Intrinsic advantages of distributed processing
include high throughput due to parallel operation, modular growth,
fault resilience and load leveling.

In a distributed processing system (DPS), computing facilities and
communications subnetwork are interdependent of each other.
Therefore, a failure of a particular DPS computer site will have a
negative effect on the overall DP system. Similarly, failure of the
communication subsystem will lead to overall performance degrada
tion.

Recently, considerable attempts have been made to systematically
investigate the survival attributes of distributed processing systems
which are subject to failures or losses of processing or communica
tion cQmponents. Two main approaches to DPS survivability
evaluation have emerged:

a) In [MER 80] the term survivability index is used as a perfor
mance parameter of a DDP (distributed data processing) system.
An objective function is defined to provide a measure of survivabil
ity in terms of node and link failure probabilities, data file distribu
tion, and weighting factors for network nodes and computer pro
grams. This objective function allows the comparison of alternative
data file distributions and network architectures. Criteria can be
included such as the addition or deletion of communication links,
allocation of programs to nodes, duplication of data sets, etc.

0190-3918/81/000Q/0079$00.75 © 1981 IEEE

79

Constraints can be introduced which limit the number and size of
files and programs that can be stored at a node. The main disad
vantage of the survivability index is its computational complexity,
which makes it practical only to DDP systems with, say, less than
20 nodes or links.

b) The second approach is a 'team' approach in which the overall
system performance is related to both the operability and the com
munication connectivity of its 'member' components [HIL 801.
The performance index, defined axiomatically on the connectivity
state space of the graph, captures the essentials of the 'team effect'
and allows survivability cost/performance trade-offs of alternate
network architectures. The basic advantage of the team approach is
that performance degradation beyond the connected/ disconnected
state is measured. One disadvantage of the approach is that of being
restricted to the homogeneous case and of ignoring other important
details of real DPS's.

In this paper we propose a novel measure of DPS survivability,
namely multiterminal reliability. We recall that in a communications
network terminal reliability relative to node pair (i,j) is the proba
bility that node i is connected to node j. We extend this notion to
DPS's by defining the multiterminal reliability as follows:

Definition 1. The m.ultiterminal reliability of a DPS consisting of a
set of nodes (p,rocessors) V=I,2, ... ,N is defined as

PS =Prob c,1J1 EEl1 c,2J2 EEl2 EE!k-1 c,k,Jk (1)

where:

C1j,Jj denotes the existence of connections between all the
nodes of the subset Ij and all the no.des of subset Jj

and

EE!j has a meaning of OR or AND.

The choice of the subsets I 1,J1,. .. ,fk,Jk as well as the interpretation
of the operator EB1 (j =I,··· ,K-1) depend on the event (task)
whose survivability is being evaluated. Priority between operators
is determined by parentheses in the same way as in standard logical
expressions.

* This research was supported by the Office of Naval Research
under contract N00014-79-C-0866. Aksenti Grnarov is currently
on leave from the University of Skopje, Yugoslavia.

As an example, let us assume that the successful completion of a
given task requires node A to communicate with node B or node C;
and node D and E to communicate with node F and G. The mul
titerminal reliability of such task is given by

Pm =Prob (C1i.li OR C1i.1;) AND C13,13

where 11 = {A}, 11 ={B), 12 = {C), 13 = {D,E) and 13 = {F,G).

The general definition of multiterminal reliability can be specialized
to characterize the survivability of the following systems:

(A) Distributed Data Base System: For given link and computer
center reliabilities, determine the reliability of a specific file alloca
tion including redundant copies.

(B) Teamwork: Given link and processing node reliability, deter
mine what distribution of the members will result in highest proba
bility of a connection.

(C) Distributed Data Processing System: Given link and processing
node reliability and (redundant) distribution of programs and data,
determine the probability of successfully completing a specific appli
cation.

(D) Computer-Communication Network: Given link and node relia
bility, determine the probability of the network becoming parti
tioned.

Note that in all the above applications, system (or application) sur
vivability is best characterized by some multiterminal reliability
measure. In fact, terminal reliabilities alone could not be used to
compute systems survivability because of the dependencies existing
between the various events.

In this paper, an efficient algorithm for multiterminal reliability
analysis is presented. The algorithm can be applied to oriented and
non-oriented graph models of DPS's and can produce numerical
results as well as symbolic reliability expressions.

The paper is organized in five sections. In Section 2, the applica
tion of Boolean algebra to multiterminal reliability is considered.
Derivation of the algorithm is presented in Section 3. An example
for determination of the multiterminal reliability is given in Section
4 . Some comments and concluding remarks are presented in the
final section.

2. Boolean Algebra Approach

For reliability analysis a DPS is usually represented by a probabilis
tic graph G(V,E) where V=l,2, ... ,N and E = a1,a2, ... ,aE are
respectively the set of nodes (representing the processing nodes)
and the set of directed or undirected arcs representing the com
munication links. To every DPS component i (processing node or
link), a stochastic variable Y; can be associated. The weight
assigned to the ;th component represents the component reliability

P; = Pr(y; = 1)

i.e., the probability of the existence of the ;th component. Vari
ables are supposed to be statistically independent.

There are two basic approaches for computing terminal reliability
[FRA 741. The first appi'Oach considers elementary events and the
terminal reliability of a connection from source s to termination t,
by definition, is given by

PSI= r. P.
F(e)-1

where Pe is probability which corresponds to the event e and
F(e)=l means that the eve11~ is favorable, i.e., it inc:;ludes a path

80

from s tot.

The second approach considers larger events corresponding to the
simple paths between terminal nodes. These events however are
no longer disjoint and the terminal reliability is given by the proba
bility of the union of the events corresponding to the existence of
the paths.

The complexity of these approaches is caused in the first case by
the large number of elementary events (of the order 2n where n =
the number of elements which can fail) and in the second case by
the difficult computation of the sum of the probabilities of nondis
joint events (the number of joint probabilities to be computed is of
the order 2m where m = the number of paths between node pairs).

Fratta and Montanari [FRA 74] chose to represent the connection
between nodes s and t by a Boolean function. This Boolean func
tion is defined in such a way that a value of 0 or 1 is associated
with each event according to whether or not it is favorable (i.e., the
connection C8 1 exists). Since the Boolean function corresponding
to the connection C8 , 1 is unique, this means that the connection
C8 1 can be completely defined by its Boolean function. Represent
ing a connection by its Boolean function, the problem of terminal
reliability can be stated as follows: Given a Boolean function Fsr•
find . a minimal covering consisting of nonoverlapping implicants.
Once the desired Boolean form is obtained, the arithmetic expres
sion giving the terminal reliability is computed by means of the fol
lowing correspondences

X; P;

X; q; = 1 - P;

Boolean sum arithmetic sum
Boolean product arithmetic product

A drawback of the algorithms based on the manipulation of impli
cants is the iterative application of certain Boolean operations and
the fact that the Boolean function changes at every step (and may
be ch.ii11SJ,-). The Boolean function n1ay be sin1plified usir.ig one of
the following techniques: absorption law, prime implicant form,
irredundant form or minimal form. Any one of these procedures
however requires a considerable computational effort. Therefore, it
can be concluded that these algorithms are applicable only to net
works of small size.

Recently, efficient algorithms based on the application of Boolean
algebra to terminal reliability computation and symbolic reliability
analysis were proposed in [GRN 79) and [GRN 80a) respectively.
The algorithms are based on the representation of simple paths by
'cubes' Onstead of prime implicants), on the definition of a new
operation for manipulating the cubes, and on the interpretation of
resulting cubes in such a way that Boolean and arithmetic reduction
are combined.

The proposed algorithm for multiterminal reliability analysis is
based on the derivation of a Boolean function for multiterminal
connectivity and the extension of the algorithm presented in [GRN
80b) to handle both multiterminal reliability computation and sym
bolic multiterminal reliability analysis.

3. Derivation of the Algorithm

Before presenting the algorithm for multiterminal reliability
analysis, it is useful to recall the definition of the path identifier
from [GRN 79):

Definition 2. The path identifier !Pk for the path wk is defined as a
string of n binary variables

[pk= X1X2 ... X; ... Xn

where

x;=I if the i1h component of the DPS is included
in the path 11" k

X; = x otherwise

and n is the number of DPS components that can fail, i.e:

n = N in the case of perfect links and imperfect nodes

n = E in the case of perfect nodes and imperfect links

n = N+E in the case of imperfect links and nodes.

As an example, let us consider a four node, five link DPS given in
Figure I, in which nodes are perfectly reliable and links are subject
to failures. The sets of path identifiers for the connections Cs.A
and Cs. T are given in Table I and Table 2 respectively.

TABLE 1

PATH IP

S x1A lxxxx
S x3B x5A xxlxl
S x3B x4T x2A xll Ix

TABLE 2

PATH IP

S x1A x2T 1 lxxx
S x1A x5B x4T lxxl I
S x3B x4T xxllx
S x3B x5A x2T xi I xi

Figure 1. Example of DPS

Boolean functions corresponding to Cs A and Cs, T given by their
Karnaugh maps, are shown in Figure 2. '

Instead of the cumbersome determination of elementary (or com
posite) events which correspond to a multiterminal connection, the
multiterminal reliability can be determined from the Boolean func
tion representing the connection. Moreover, the corresponding
Boolean function can be obtained from path identifiers (Boolean

81

X1X2 X1X2

X3X4 00 01 11 10 X3X4 00 01 11 IO

00 1 I 00 I I I
01 I 01 Tll
11 I II I I
10 I 10 I I

X5 = 0 X5 =I

Fs,a

X1X2 X1X2

X3X4 00 01 11 10 X3X4 00 01 11 10

00 00 I I
01 01 I I I I I
11 11 [l I I 11
10 10 I I I

X5 = 0 X5 = I

FS,I

Figure 2. Karnaugh Map Representation of the Connections

Cs.A and Cs,T

I

functions) representing terminal connections. For example, the
Boolean function corresponding to the multiterminal connection

Cmor = Cs.A OR Cs,T

can be obtained as

Fmor = Fs,A U Fs,T

where U is the logical operation union. Karnaugh map of F,,,0 ,. is
shown in Figure 3.

X1X2 X1X2

X3X4 00 01 11 10 X3X4 00 01 11 10

00 j~T 1·r ii 00 I I r:·T-: ~ 01 II 1: I I 1 1 01

11 1r 1-r1 .. :1· I I ~ 11 r-i~f ·i-~ I I 1
..,_ - -- '

l_~J (_1 ____ 1 _ _.~_1 ____ 1_, 10 I I I: 10

X5 = 0 X5 = 1

Fs,a

Figure 3. Karnaugh map representation of the connection

Cmor = Cs,A OR Cs,T

Covering the Karnaugh map with disjoint cubes, we can obtain F,,,0 ,.

as

Fmor= Xj + X1X3X5 + X1X3X4X5

i.e., multiterminal reliability is given by

pmor =PI + q1P31'5 + q1p3p4q5

Analogously, the Boolean function corresponding to the multitermi
nal connection

Cmand = Cs,A AND Cs,T

can be obtained as

Fmand - Fs,A A Fs, T

where A is the logical operation intersection.

According to the Karnaugh map representation (Figure 4), Fmand is
given by

X1X2

X3X4 00 01 11 10

00

01

11

10

I l

t..1 __
X5 = 0

X1X2

X3X4 00 01 11 10

X5 = l

Fs,t

Figure 4. Kamaugh Map Representation of the connection
Cmand = Cs,a AND Cs,t

the following set of cubes

IP= (IIxxx,xxlll,lxxll,xllxl,xlllx,lxllx)

Applying the algorithm REL [ORN 80b] we obtain that the mul
titerminal reliability is given by

pmand "".' P1P2 + P3P4P50-p1p2)

+ P1P4P5Q2Q3 + Q1P2P3Q4P5 + Q1P2P3P4

Since the logical operations union and intersection satisfy the com
mutative and associative laws, previous results can be generalized
as follows.

1)

2)

Multi terminal connection of OR
(T=t1, t2, · · ·, tk) is equal to

Cs,T type

cs,T = cs,11 OR CS;/2 OR ... OR cs,lk

and the corresponding Boolean function Fs,T can be
obtained as

Multiterminal connection of AND type Cs,T
(T = (t1,t2, ... , tk)) is equal to

Cs,T = Cs, 11 AND Cs, 12 AND · · ·AND Cs,tk

and the AND-Algorithm for the determination of Fs,T of type OR
and AND respectively. Both algorithms are based on the applica
tion of the intersection operation [MIL 651. Since the path
identifiers have only symbols x and l as components, the intersec
tion operation can be modified as follows:

Definition 3: The intersection operation between two cubes, say
c' = a 1a 2 · · · ar· ··an and cs= b1b2 · · · b; · · · bn, is defined as

c' A cs= [(a1 A b1),(a2 A b2),.,., (a; A b;, .. . , (an A bn)]

where the coordinate A operation is given by

A
l

x
l

x x

It can be seen that the intersection operation between two cubes
c' and cs produce a cube which is common to both c' and cs. If
c' A cs = c' this means that the cube c' is completely included in
the cube cs. The modified intersection operation produces a cube
which has only symbols x and 1 as coordinates, so the modified
intersection operation can be applied again and again. Also, the pre
vious fact allows us to apply the REL-Algorithm on the set of cubes
obtained by the application of the modified intersection operation.

Let us suppose that the cubes corresponding to connections
Cs T and C5 T are stored in lists £ 1 and £ 2 of length k 1 and k 2 1. 1 2, 2

respectively. Let c/ denote the /h element of the list L;.

The OR-Algorithm for the computation of Fs,T follows:

OR - A I g o r i t h m

STEP I.

for i from l to k 1 do

STEP 2.

for j from 1 to k2 do
begin

c = ci A ci ; if c = cf then
begin·

delete cj from list L 1 ;
end

else if c = ci then delete ci from list L 2 ;

end

Store undeleted elements from the lists £ 1 and £ 2 as new list
L1

and the corresponding Boolean function Fs T can be END
obtained as '

Fs,T = Fs,11 A Fs,12 A A Fs,1k

In the case when all nodes from the set S have connections of the
same type with all nodes from the set T, multiterminal connection
can be written as Cs,T·

4. Determination of Fs.T

The determination of Fs T by Boolean expression manipulation or·
by determination of elementary events is a cumbersome and time
consuming task. Hence, these methods are limited to DPS's that
are very small in size.

However, since path identifiers can be interpreted as cubes, the
Boolean function Fs T can be more efficiently obtained by manipu
lating path identifier~. In the sequel we present the OR-Algorithm

82

As an example, the OR - algorithm is applied to the determination
of Fs T = Fs a U Fs 1 for the DPS given in Figure I. The lists
L1 and £ 2 ar~ '

L1 L2

cl lxxxx cj llxxx

c[xxlxl ci lxxl i
c[xlllx cj xxllx

cf xllxl

STEP 1:

STEP 1: cl A cJ=cJ delete cj

cl A cf=Cf delete cf

cl A ci ;Ccl ;eel

cl A cf ;Ccl ;Ccf
c[A ci ;Cc[;Ccj
c[A cf =cf delete cf
c[A ci=c[delete c[

STEP 2:

L1

cl lxxxx
c[xxlxl

c[xxllx

It can be seen that the OR - Algorithm produces a list with minimal
number of elements which are cubes of the largest possible size.
The same result could have been obtained from the identification
of disjoint cubes directly in Fig. 3. Our method allows for the
efficient generation of all disjoint cubes necessary for reliability
analysis [GRN 791. Next, we introduce the AND algorithm.

AND - A I g o r i t h m

STEP 1.
for i from 1 to k 1 do

begin
for j from 1 to k 2 do

c/+2 = ci A c~ ;
for k from 1 to krl do

end

begin
m = k+l
while . c/<+2 ;C c;\2 A cfi2 and
m~k2 do

begin
c = c/<+2 A c;'!t.2 ;
if c = elf' then delete er
from list L;
m= m+l

end
if m ~ k 2 then delete c/<+2 from
list Li+l

end

STEP 2

END

Store undeleted elements from lists L3, ... , Lk1+2

as a new list L 1

As an example, the AND-Algorithm is applied to the determination
of Fs,T = Fs,a A Fs,t for the DPS in Fig. 1.

83

STEP 1.
i = 1

Step 1.1

cl =cl A cj = llxxx

cj =cl A cf = lxxll
L3 = cj =cl A ci = lxllx

cf =cl A cf = lllxl

Step 1.2

cl A cj ;C cJ ;e cj

cl A cj ;e cj ;C er
cl A cf= cf delete cf

j'1m L3 = lxxll
lxllx

i = 2

Step 1.1

cJ = lllxl

c] = lxlll
L4= c) = xxlll

ct= xllxl

Step 1.2

{xxl 11
L4 = xllxl

i = 3

Step 1.1

llllx
11111

Ls= xlllx
xllll

Step 1.2

Ls= xlllx

STEP 2.

L1
cl llxxx

Cf lxxll

cf lxllx

cf xxlll

Cf xl lxl

cf xlllx

It can be seen that the AND - Algorithm also produces a list with
minimal number of elements which are cubes of the largest possi
ble size.

In the general case, the Boolean function corresponding to the con
nection Cs T where S=(si s2 ... ,sk) and T = (ti t2 ... ,tm), can be
obtained u'sing the multiter~inal Algorithm (m' $-Algorithm)
described below:

mEB-Algorithm

STEP 1:

Find the path identifiers for terminal connection si, ti and store
them in the list Li ; i-1.

STEP 2:

Sort the path identifier in Li according to increasing number of
sy~bols 1 (i.e. increasing path length);

STEP 3:

if i < k continue. Otherwise go to step 5

STEP 4:

for J =Ji,. .. , m (Ji =2 if i = 1, otherwise Ji= 1)

Step 4.1

END

Find the path identifiers for terminal connection s;, tj and
store them in the list L 2

Step 4.2
Sort the path identifiers in L 2 according to the increasing
number of symbols "l"

Step 4.3
Perform EB -Algorithm on the lists Li and L 2

Step 4.4
i < i+l; go to step 2.

In the algorithm, EB denotes OR or AND depending on the connec
tion type. The sorting of the lists allows faster execution of the
algorithm (starting with the largest cubes results in earlier deletion
of covered cubes, i.e., faster reduction of the lists during the execu
tion of Step 4.3).

Based on the previous results we can propose the following algo
rithm for multiterminal reliability analysis:

MUREL - A l g o r i t h m

STEP 1:

STEP 2:

Derive the multiterminal connection expression
corresponding to the event which has to be analyzed.

Determine the Boolean function corresponding to the
multiterminal connection by repetitive application of

84

STEP 3:
the m EB - Algorithm.

Apply the REL -Algorithm to obtain the multiterminal
reliability expression or value.

Regarding the computational complexity of the MUREL-Algorithm,
the following observations can be made:

i)

ii)

iii)

The EB -Algorithm can be implemented using only logical
operations which generally belong to the class of the fastest
instructions in a computer system.

The m EB -Algorithm produces a minimal set of maximal
cubes (i.e., minimal irredundant form of the Bo&tean f1.1~
tion).

The REL-Algorithm is the fastest algorithm for the deter
mination of the reliability expression or for the reliability
computation from the set of cubes (path identifiers).

From the above considerations we conclude that the proposed algo
rithm can be applied to DPS of significantly larger size than was
possible with other existing techniques.

In the following section, the algorithm is illustrated with an applica
tion to a small distributed system.

5. Example of Application of the Algorithm

As an example of the application of the algorithm we compute the
survivability index for the simple DPS system shown in Figure 5
(the example is taken from [MER 80}). Assignment of files and
programs to nodes is shown in figure 5.

FA:
PMS:
FN1:

FN2:

.I

FA: 3, 5, 7
PMS: PM3, PM4
FN3: 2, 4
FN4: 3, 4

1, 2 x6 FA:
PM1, PM2 i.--------1 PMS:

1, 2, 3 FN5:
2, 3 FN6:

,FA:
PMS:
FN8:

5, 3, 4
PM8
1, 2, 6, 7

FN7:

Figure 5. Four Node DDP

4, 6, 7
PM5, PM6, PM7
1, 5, 4
6, 2
7, 1, 3

FA denotes the set of files available at a given node, FN; denotes
the files needed to execute program PM; and PMS designates tie
set of programs to be executed at tha.t node.

I:
I

Let us assume that for a given application, we are interested in the
survivability of program PM3. Likewise, for another application,
we need both programs PM3 and PM8 to be operational. We
separately analyze these two cases using as a measure for surviva
bility the multiterminal reliability (probability of program execu
tion). The two problems can be stated as follows:

Given: node and link reliability, and file and program assign
ments to nodes.

Find: The survivability of:
1) Program PM3

2) Both programs PM3 and PM8 .

Survivability of PM3

The survivability PM3 is equal to the multiterminal reliability of
connection

Cm3 = C 2,11 OR C2,12

where 11 = {l,3l and 12 = {l,4) The connections C 2,11 and C 2,12

are equal to

Paths and corresponding path identifiers for the connections
C2,1 , C2,3 and C2,4 are shown in Figure 6.

C2,1
paths Fi,1

X1X5X2 l lxxlxxx

C2,3
paths F2,3

X1X5X2X6XJ lllxllxx
X1X5X2X7~Xg llxllxll

C2,4
paths F2,4

X1X5X2X7X4 llxllxlx
X1X5X2X6X3XgX4 llllllxl

Figure 6. Path and Path Identifiers Representing Connections
C2,1,C2,3, and C2,4

Applying the AND - Algorithm on F2 1 and F2 3, and F2 1 and F2 4
we obtain ' ' ' '

F2,11
11 lxl lxx
llxllxll

F2,12
llxllxlx
1111 llxl

85

Applying the OR - algorithm on F2,11 and F2,12 we obtain

Fm3

lllxllxx
llxllxlx

Applying the REL - Algorithm on Fm3 we obtain

P m3 = P1P2P3P4P5P6 + P1P2P4P5P7(1 - P3P6)

Assuming P; = .95 Vi, we have: Pm3 = .85

5.2. Survivability of both PM3 and PMs

The survivability of PM8 is equal to the multiterminal reliability of
connection

Cms = C4,13

where 13 = {1,3). The connection C4,13 is equal to

C4,13 = C4,1 AND C4,3

Paths and corresponding path identifiers for the connections
C4,1 and C4,3 are shown in Figure 7.

C4,1
paths F4,I

X4X7X1 lxxlxxlx

X4XgX3X6XJ lxl lxlxl

c4,3
paths F4,3

X4XsX3 xxllxxxl

X4X7X1X6XJ 1 xll xll x

Figure 7. Paths and Path identifiers for Connections
C4,1 and C4,3

Applying the AND - Algorithm on F4,1 and F4,3 we obtain
Fms

lxl lxxll
lxllxllx
lxllxlxl

Applying the AND - Algorithm on F m3 and F m8 we obtain
Fm

lllllllx
llllllxl
lllllxll

Applying the REL - Algorithm on Fm we obtain

pm= P1P2P3P4P5P6P1 + P1P2P3P4P5P6Q1Ps + P1P2P3P4P5Q6P1Ps

Assuming P;=0.95 'vi, we have: Pm = 0.778

6. Conclusion

In the paper, the multiterminal reliability is introduced as a meas
ure of DPS survivability and the MUREL-Algorithm for multiter
minal reliability analysis of DPS.is proposed. First, the event under
study is expressed in terms of its multiterminal connection. Then
the m El1 -Algorithm is used to translate the multiterminal connec
tion into a Boolean function involving all the relevant system com
ponents. Finally, the multiterminal reliability is obtained from the
Boolean function by application of the REL-Algorithm.

Preliminary computational complexity considerations show that the
MUREL-Algorithqi permits the survivability analysis of DPS of
considerably larger size than using currently available techniques.

[GRN 79]

[GRN 80a]

[GRN 80b]

[HIL 80]

[MER 80]

[MIL 65]

References

A. Grnarov, L. Kleinrock, M. Gerla, "A New
Algorithm for Network Reliability Computation",
Computer Networking Symposium, Gaithersburg,
Maryland, December 1979.

A. Grnarov, L. Kleinrock, M. Gerla, "A New
Algorithm for Symbolic Reliability Analysis of
Computer Communication Networks", Pacific
Telecommunications Coriference, Honolulu, Hawaii,
January 1980.

A. Grnarov, L. Kleinrock, M. Gerla, "A New
Algorithm for Reliability Analysis of Computer
Communication Networks", UCLA Computer Sci
ence Quarterly, Spring 1980.

G. Hilborn, "Measures for Distributed Processing
Network Survivability, Proceedings of the 1980
National Computer Conference, May 1980.

R. E. Merwin, M. Mirhakak, "Derivation and use
of a survivability criterion for DDP systems",
Proceedings of the 1980 National Computer Corifer
ence, May 1980.

R. Miller, Switching Theory, Volume I: Combina
tional Circuits, New York, Wiley, 1965.

1·

86

OPEN QUEUEING NETWORKS WITH FINITE CAPACITY QUEUES*

A. A. Nilsson and T. Altiok
North Carolina State University
Raleigh, North Carolina 27650

Abstract -- This paper discusses the problem
of blocking in open exponential queueing networks.
It is pointed out that such networks can be viewed
as queueing network models of message-switched
data communication networks with local flow- or
congestion-control. Analysis is done by perform
ing a node-by-node decomposition, and it is argued
that an "off-line" analysis can be made, where the
main problem is to analyze a single-server finite
capacity queueing system with Markovian arrivals
and a Coxian service time distribution. The
method is applied to a number of example networks
and evaluated by comparing the results obtained
with those results obtained through exact analysis,
simulation, or other approximate methods. We find
that the method provides a good approximation
procedure for obtaining system performance measures
such as blocking-probabilities, throughput rates,
etc.

Introduction

An open queueing network is a collection of
nodes or servers that offer some form of service
to customers in the network. A customer may enter
the network at some node, receive service, and
then immediately go to another node for additional
service or he may leave the network. At any given
time the number of customers in the network is a
stochastic variable. In this paper we concentrate
on exponential queueing networks where at any time
the number of customers in a node may not exceed a
certain number. This implies that customers
currently not in that node and who want to go to
that node are prohibited from doing so and will be
held in their current nodes until the congestion
is resolved. The interest in such a queueing net
work model was generated by an interest in gaining
a better knowledge with regard to the influence of
local flow control in a message- or packet-switched
data communication network. Therefore, we prefer
to present the detailed queueing network model
through the terminology of data communication net
works.

Flow control or congestion control in data
communication networks are protocols that regulate
the traffic flow input to the network or a switch
node. The reason for introducing such control
mechanisms is to try to minimize the impact of
possible congestion and overflow due to the conten
tion of a smaller number of resources by a large
number of users [GERL 80]. Often fl ow control
strategies are characterized as global control and
local control. The global control refers to a

* This work was supported by National Science
foundation Grant No. ECS 77-24110.

0190-3918/81/0000/0087$00.75 © 1981 IEEE

87

control of the number of messages currently out
standing in the network between end users. The
local control refers to a limit placed upon the
number of messages currently residing in one node
of the network. The impact of global flow control
is fairly well understood, and there exists a
number of excellent publications dealing with this
subject, see the references in [GERL 80]. The
local control strategy is much more difficult to
analyze and very few results can be found in the
existing literature. Some very useful results can
however be found in [PENN 75]. We intend to
present an approximate method that allows us to
better understand the impact of a local flow
control mechanism. For simplicity we will assume
a network operating with a fixed routing algo
rithm. Consequently, it is possible to identify
a number of fixed source-destination paths in the
network. We will analyze a path consisting of M
nodes that the messages have to pass through from
the source to the destination. We will assume
that the local control allows a maximum number Ni
of messages in node i of our path.

The local control implies that a message
arriving to the head of the queue in node i when
there are Ni+l messages in node i+l, i.e., node
i+l is filled to its capacity, is blocked and has
to wait until one of the messages in node i+l is
transmitted. When the blocking is resolved, the
message can be transmitted immediately. In order
to evaluate such a scheme, we need to analyze a
queueing network model consisting of M finite
capacity queues in tandem.

The tandem network of finite capacity queues
is extremely difficult to analyze except for
certain trivial cases. It is however always
possible to use a numerical procedure in order to
find interesting quantities. This is accomplished
by generating a Markovian system possibly by
approximating the arrival process and service
process by Coxian processes [KLEI 75]. A Coxian
arrival process is a stochastic process where the
interarrival time distribution is Coxian and
successive interarrival times are independent.

The numerical method has certain advantages,
but it very quickly becomes impractical if the
number of states in the Markov chain is large.

A purely analytical approach is very diffi
cult again due to the fact that the. dimensionality
of the state-space is often too large.

Consequently, an approximate method that
allows us to obtain almost accurate results for
the steady-state probabilities and associated
quantities such as network throughput and message
delay seems to be a viable alternative.

Approximate analyses of exponential queueing
networks of the type we are interested in have
appeared in the existing literature. The classi
cal paper by Hunt [HUNT 56] provides the first
introduction to this difficult problem. More
recent papers are those by Hillier, et. al.,
[HILL 67] that concentr.ates on finding the network
throughput, and the paper by Takahashi, et. al.,
[TAKA 80] in which an approximative method based
upon an M/M/l queueing model with adjusted arrival
rates and effective service rates is given. In
the next section we will present a method that we
believe and also show to be better and more effec
tive than other existing methods.

Approximate Analysis

Our queueing model of the logical link with
local control is a tandem network with finite
capacity queues. The service time distribution in
the i:th node is exponential with parameter µi and
the arrival process to the queueing network is
Poissonian with rate A. The capacity in the i:th
node is Ni messages; included in this is the
message currently under transmission if any and
the messages waiting to be transmitted. We also
assume that messages arriving to node 1 when the
node is filled to its capacity are lost from the
system and the last node, node M, cannot have any
blocked messages.

Let nk = the number of messages in node k and
define ak = P{nk = Nk} as the "blocking" proba
bility for the k:th node. Clearly if a1 is known,
the total throughput for the tandem link is
A(i -,a1j, since we do not aiiow messages to be
lost or destroyed once they have been given access
to the tandem link. This being the case, it
follows that the throughput for each finite queue
in the tandem is A(l - a1).

The idea behind our approximation is to
decouple the tandem network into M individual
queues with arrival rates and service times given
such that the analyses of the individual queues,
an off-line analysis, will give relatively accu
rate results for the total queueing model. The
approach we follow is to define a new service time
distribution and an effective arrival rate.

The service time distribution for the i:th
node is found by observing that as long as the
following node is not filled to capacity the
service time is exponential with parameter µi. If
the i+l:st node is filled to capacity, the effec
tive service time of the message at the head of
the queue in node i is taken to be the sum of two
independent exponential random variables with rates
JJi+l and µi respectively. The probability for the
latter event is ai+l' The service time distribu
tion can thus be represented as a two-stage Coxian
distribution, see Figure 1.

88

Figure 1: Service Mechanism for the i:th Node

In the above service time representation we
have ignored the cases where subsequent nodes,
i.e., nodes i+2, i+3, also are filled to capacity.

The arrival rate to the i:th node in the off
line analysis is set to

(1)

The i:th node is a finite capacity single-server
queueing system and according to our assumptions
a fraction l - a. of the arriving messages will

l
be served by this queue. By using the arrival
rate as defined in (1) we ensure that the through
put obtained by the off-line analysis of the node
is the correct one, namely A{l - a1). We approxi-
mate the arrival process to the node with a
Poisson process with the correct arrival rate.
Each off-line single-server queue is now analyzed
as an M/COX2/l finite capacity queue.

An M/COXK/l finite capacity queue can be
analyzed by defining a Markov chain [MARI 80] with
a state-space given by the number of customers, n,
in the queue and the service stage j in which the
customer in service, if any, is currently
residing. The steady-state probability of this
event is denoted by p{n,j) and the following
balance equation can easily be written down.

K K
l (1-rj)µj p{n,j) =Al p{n-1,j) (2)

j=l j=l

whereµ. is the exponential service rate in the
J

j:th service stage, and rj the Coxian branching
probability. K is the number of stages in the
Coxian distribution.

The conditional throughput of an M/COX-K/1
finite capacity system can be expressed as
[MARI 80] K

.~ 1 (1-rj)µj p{n,j)
v(n) = J- (3)

p(n)

where
K

p(n) l p{n,j)
j=l

(4)

provided that n r O. Using (3) the balance equa
tion can be written as

v(n)p(n) = Ap(n-1) . (5)

For a two-stage Coxian distribution the condi
tional throughput v(n) can be determined
recursively by the following formulas [MARI 80]:

v(n)

v(N)

and
v(l)

A µ1(1-r1)+µ 1µ2

A+µ 1+µ 2-v(n-l)

µ1+µ 2-v(N-l)

A µl(l-rl)+µlµ2

A+µ2+rlµl

l < n < N (6)

n = N (7)

n = l (8)

where N is the system capacity. Using (6), (7),
and (8) we easily find p(n).

In our off-line analysis every node except
the last node is modelled as an M/COX-2/l finite
capacity queue. The last node is modelled as an
M/M/l finite capacity queue. This last queue is
easily analyzed, and we find that

(9)

where

p =
A(l-a1)

µM{l-aM)
(10)

The blocking probabilities a1, a2, ... , aM
are not known but can be computed iteratively by
using the following observation. If ai+l is
known, ai can be computed, for i = M-1, M-2, ... ,1.
aM is by our construction a function of a1 and by
choosing an initial value for a1 the blocking
probabilities can be computed iteratively to any
desired accuracy.

Numerical Examples

In this section we present numerical examples
in which we compare the results by the approximate
method to exact results if such are available or
to other approximate methods or to results
obtained by simulation.

In the first simple example we consider a
tandem network consisting of two exponential
servers each with the same service rate µ and each
with the same finite capacity Ni= 1, Figure 2.
The exact results for the blocking probabilities
are easily obtained by solving the Markov chain
problem that can be formulated. In Table I we
compare the exact and approximate blocking proba
bilities for different values of the ratio A/µ.

89

Figure 2: Network For Example l

We note that the blocking probabilities in
node 1 are consistently overestimated and the
blocking probabilities in node 2 underestimated.
Subsequent examples will show that this is always
the case. The reason for this behavior is that we
approximate the arrival process to the nodes with
a Poisson process. This is not a serious problem,
since it implies that the approximative method
gives a lower bound for the network throughput.

Table I: Comparison of the Exact and Approximate
Results for the Blocking Probabilities
in Example 1

A/µ P(n1=1) P(n2=1)

Exact Approximate Exact Approximate

0.2 0.178 0.189 0.164 0.162
0.3 o. 251 0.269 0.225 0.220
0.4 0.314 0.336 0.275 0.266
0.5 0.369 0.394 0.316 0.303
0.6 0.416 0.446 0.350 0.334
0.7 0.458 0.488 0.380 0.359
0.8 0.494 0.525 0.405 0.380
0.9 0.527 0.557 0.426 0.399

In our second example we investigate a three
node tandem queue where the first server is
always kept busy, i.e., an overload situation.
Obviously of interest here is to find the blocking
probabilities of the second and third queue. In
order to be able to make a comparison between
exact results obtained from a Markovian analysis
and the approximate method, we again select a
fairly simple system with node capacities equal
to one message, Figure 3.

Figure 3: Tandem Network For Example 2

In Table II we show how the exact and approximate
methods compare for different values of µ1, µ2,
and µ3.

Table II: Comparison of the Exact and Approximate
Results for Blocking Probabilities in
Example 2

Parameters
Blocking

µl µ2 µ3 Probabilities Exact Approximate

1. 1 1. 2 1.3 P(n2=1) 0.754 0.776
P(n3=1) 0.517 0.494

1.2 1.4 1.6 P(n2=1) 0.723 0.735
P(n3=1) 0.484 0.460

1.3 1.6 1.9 P(n2=1) 0.697 0.704
P(n3=1) 0.458 0.435

With minor modifications the approximate
method can also be used in a network with random
routing. In order to test the robustness of our
method, we have used it on a simple sample net
work, see Figure 4.

Figure 4: Three-node Network for Example 3

After completion of service at node 1, a
message is routed to node 2 with probability a12

independent of the current state of the network
and with probability a13 to node 3, (a12+a13=1).

The reason for choosing this network is that
it was used in [TAKA 80] to illustrate another
approximate method .for analyzing queueing networks
with blocking. In Table III we compare the
results for the blocking probability at node 1
obtained by an exact Markovian analysis, the
approximate analysis due to Takahashi, et. al.,
and the method presented in this paper.

Our fourth and final example brings us to a
data communication network with local control and
also external traffic imposed on the tandem link.
In order to be able to compare our results with
others we choose exactly the same configuration
as the one chosen in [PENN 75]. We assume
accordingly that the external traffic is only
allowed to use one server in the tandem network
and then leave the tandem, see Figure 5

Figure 5: Queueing Network Model of a Path
According to the Model Used in
[PENN 75]

We use a similar approach as in [PENN 75] to
account for the external traffic. We do however
use our method for computing the blocking proba
bilities and the loading factor. The loading
factor is by definition in [PENN 75] the frac
tional increase in queueing time suffered by
external messages due to the presence of link

Table III: Comparison Between Exact and Approximate Methods for Computing the
Blocking Probability (PB1) at node 1 (a12 = a13 = 0.5)

Arrival Service Takahashi Our
Rates Rates Capacities Exact Approximate Method

:>..l µl µ2 µ3 Nl N2 N3 PBl PB1 PB1

l.O 1.0 1.1 1.2 1 1 1 0.560 0.587 0.566
1.0 1.0 1.3 1.6 1 1 1 0.537 0.563 0.543
1.0 1.0 1.5 2.0 1 1 1 0.525 0.549 0.530
1.0 1.0 1.7 2.4 1 1 l 0.517 0.540 0.522
1. 0- 1.0 2.0 3.0 1 1 1 o. 511 0.531 0.514

90

messages averaged over all external messages. The
effect of local control as a function of the node
capacities can be shown by plotting the loading
factor as a function of blocking probability as in
Figure 9, in [PENN 75]. We show in Figure 6 the
loading versus blocking probability. If we had
superimposed the curve presented in [PENN 75] in
our diagram, the result would have been an almost
overlap. Due to the fact that we do not have
access to simulation data for this example, we
cannot make a judgement about how accurate the
method is. The previous examples have however
shown that the method presented in this paper is
more accurate than other approximate methods.

Conclusion

We have presented an approximate method for
the analysis of open exponential queueing networks
with finite capacity. It has been demonstrated
through several examples that the method produces
results that are quite accurate. In particular
we showed that the impact of local flow control in
message-switched data communication networks can
be analyzed by this method. We have in this paper
constrained ourselves to open exponential queueing
networks. The results obtained are certainly use
ful, but we would like to be able to extend them
to more general networks. This is possible as
long as the arrival processes can be modelled with

LOADING

1.0

0.5

0.1 0.2 0.3 0.4

Coxian interarrival times and the service time
distribution with a Coxian distribution. Note
that the Poisson arrival process is a special case
of a renewal input process with Coxian inter
arrival time distribution. The resulting "off-
1 ine" queueing system can then be modelled as a
finite capacity queue with Coxian input and out
put. Further work in this area is currently being
carried out. The main obstacle, however, is to
check the accuracy of the result, since no exact
results seem to be available and simulation
results are scarce.

References
GERL 80 Gerla, M. and L. Kleinrock, "Flow Con

trol: A Comparative Survey," IEEE Trans.
on Comm., COM-28, 1980, pp. 553-574.

HILL 67 Hillier, F. S. and R. W. Boling, "Finite
Queues in Series With Exponential or
Erlang Service Times - A Numerical
Approach," Oper. Res., Vol. 15, 1967,
pp. 286-303. .

HUNT 56 Hunt, G. C., "Sequential Arrays of Wait
ing Lines," Oper. Res., Vol. 4, 1956,
pp. 674, 683.

KLEI 75 Kleinrock, L., Queuein S stems, Vol. I:
Theory, Wiley-Interscience New York ,
1975.

MARI 80 Marie, R., "Calculating Equilibrium
Probabilities for >.(n)/Ck/l/N Queues,"
Proc. of Performance 80, International
Symposium on Computer Performance
Modelling, Measurement and Evaluation,
May 28-30, 1980, pp. 117-125.

PENN 75 Pennotti, M. C. and M. Schwartz, "Con
gestion Control in Store and Forward
Tandem Links," IEEE Trans. on Comm.,
COM-23, 1975, pp. 1434-1443.

TAKA 80 Takahashi, Y., H. Miyahara, and T.

• (l,1,1)

0.5

Hasegawa, "An Approximation Method for
Open Restricted Queueing Networks," Oper.
Res., Vol. 28, 1980, pp. 594-602.

Figure 6: Local Control: Loading Versus Blocking Probability

91

BLOCK TRIDIAGONAL SYSTEM.SOLUTION ON RECONFIGURABLE ARRAY COMPUTERS

by
RAJAN N. KAPUR

DEPT. OF ELECT. ENGG.
JAMES C. BROWNE

DEPT. OF COMPUT. SCI.,

THE UNIVERSITY OF TEXAS AT AUSTIN,

TEXAS, 78712.

ABSTRACT

Reconfigurable array computer architectures
give the application designer power to define an
execution architecture or architectures and an
interaction geometry appropriate to the
computational architecture of the algorithm under
consideration. Accurate estimation of execution
times for reconfigurable architectures requires
determination of appropriate computational
structures for the algorithm and analysis of the
cost of interprocess data movement,
synchronization delays and reconfiguration faults
as well as actual execution time for the algorithm
in the architecture selected. This paper reports
such a formulation of an algorithm whose
instruction count has previously been well
characterized, even/odd elimination of block
tridiagonal linear systems. The algorithm
naturally decomposes into three steps each of
which requires a different computational structure
and displays a different natural degree of
parallelism. It gives a speed up linear in the
number of processors when degrees of parallelism
appropriate to each step are employed. Data
movement synchronization
fault costs are found to be
computation costs.

1.0 INTRODUCTION

and reconfiguration
about 10% of the

The practical formulation of parallel
algorithms is limited by the interconnection
geometry of the multi-processor architecture which
is to host the computation. Any fixed geometry of
processor interconnection limits the class of
algorithms which can be implemented. A full cross
bar network removes all restrictions on algorithm
formulation, but is prohibitively expensive for
even a moderately large number of processing
elements. A common memory architecture will
suffer performance degradation from interference
as the number of processors becomes large. The
solution to this dilemma is being sought with the
development of reconfigurable interconnection
networks to link arrays of processing elements
(processors and memories). A variety of
reconfigurable network architectures have been
proposed [LIP77,SIE79]. The common elements of
these interconnection networks include:

1. implementation costs which grow at a rate
of n log n where n is the number of
elements to be connected [GOK73].

2. the ability to establish resource

0190-3918/81/0000/0092$00.75 © 1981 IEEE

92

partitions which execute independently
except for interactions through specified
communication and data channels.

3. the ability to implement a wide spectrum
of interconnection geometry.

The availability of such reconfigurable
architectures opens new dimensions for the
formulation of parallel algorithms. The
arrangement of computations can be based upon the
structure of the algorithm rather than upon a
specific available . architecture. Resource
partitions can be tailored to the computation and
data movement requirement of the algorithm. The
importance of problem specific interconnection
geometry is noted by Gentleman [GEN78]. He
demonstrates that fixed geometries can easily lead
to data movements dominating execution time for
matrix multiplication and matrix inversion.

Problems can be formulated as sets of tasks
or sequences of sets of tasks (MIMD/SIMD mode of
computation) rather than merely sequences of tasks
as is the case on the uni-processor. Each task
set may have a different degree of parallelism
and/or a different interconnection geometry.

The execution time of an algorithm on a
parallel computational structure depends not only
upon the operation count of the computation, but
also the time required for data movement and the
time lost to synchronization delays. For an
algorithm or process with disjoint phases which
require different computational structures to give
an optimal execution time for each phase, then the
time for reconfiguration of the architecture must
be included in the total execution time. This
paper defines an algorithm for the odd/even
elimination of block tridiagonal systems on a
reconfigurable array computer. The algorithm is
resolved into three distinct steps, each of which
uses a different degree of parallelism and has a
different interconnection geometry. This
formulation displays advantages for the use of
reconfigurable array systems with SIMD computers
assigned to blocks for the odd-even algorithm.
These are

1. Each SIMD machine operates independently,
therefore independent pivoting is
possible.

2. Each SIMD machine can be tailored to the
size of the block it is handling so that
synchronization waits are minimized.

3. The synchronized nature of the shared
data access is well suited to
intercommunication mechanisms
characteristic
computers.

of reconfigurable

2.0 RECONFIGURATION

This section defines and describes the
concepts of an MIMD/SIMD execution mode for
reconfigurable arrays of processing elements and
describes the modes of data movements which
characterize reconfigurable network architecture
computer systems.

2. 1 MIMD/SIMD

Reconfigurable computers are generally
implemented as arrays of processor modules and
memory modules with a modular interconnection
network. This definition of reconfiguration is
quite different from the instruction set level
reconfiguration as in the Burrough's B1700 [ORG78,
RAU78]. The interconnection network can establish
resource partitions consisting of a subset of
processor modules and memory modules. A partition
can be configured to implement SISD or SIMD modes
of operation (figure 1). A job then consists of a
number of partitions (a task is a partition)
interconnected according to the data flow of the
job. Processors within a partition are under
lock-step control of one instruction stream;
processors from different partitions are under the
control of different instruction streams.

2.2 Communication And Synchronization

Two distinct kinds of data transfer
requirements arise from the MIMD/SIMD mode of
operation. Data transfers between partitions are
needed both with a computation structure and
between the structures of different phases or
stages. A synchronization mechanism is needed to
control the data transfers. Additionally SIMD
machines implemented as arrays of processor
modules must deal with the problem of data
alignment. Consider as an illustration row and
column access of matrices. In a pipeline vector
processor, e.g. [HIN72,WAT72,RUS78], it is
possible to organize data in interleaved memories
so that row and column access can be performed
equally efficiently. The ILLIAC IV [BAR68] on the
other hand is considerably harder to program for
simultaneous row and column access for two
reasons:

1. the physically distributed nature of the
sources and targets of data.

2. a static and limited linkage network.

The Burroughs BSP [BUR77] avoids this problem
by the brute force solution of using a cross point
interconnection network between processor and
memory modules.

We give here an outline of the pertinent
features of the communication subsystem
[PRE79,SEJ81] in TRAC, a representative
reconfigurable computer and show how they provide
capability for the movement of data both within
and between SIMD partitions.

TRAC provides two kinds of physical channels
for communication: packets and shared memories.

93

Packets are continuous streams of bytes and are
memory-to-memory transfers. A data vector and a
realignment vector are specified. Packet movement
through the network is used to create a realigned
result vector.

The concept of shared memory in resource
partitioned architectures such as TRAC is not the
same as in multiple processors sharing access to a
common physical memory address space such as C.MMP
[WUL72]. In these latter architectures sharing is
on a cycle by cycle basis with a possibility of
interference when more than one processor
endeavors to access a given memory module.
Synchronization mechanisms for access to memory
are commonly implemented in software or firmware.
The execution of these sychronization mechanisms
consumes memory bandwidth and themselves interfere
with the performance of the sharing resources
(e.g. the spin-lock mechanism as described in
[OLE78]). In reconfigurable network architectures
such as TRAC, sharing may be combined with
synchronization by altering the interconnection
network to move a physical memory module from one
task address space to a different task address
space. TRAC accomplishes this extended sharing
concept by a hardware configuration with a shared
module at the root of a tree whose leaves are
processors (figure 2). To obtain a shared memory
a processor must execute an ACQUIRE instruction.
The processor blocks if the module has already
been acquired by another processor. Retry effects
only the acquisition circuitry, not access by
other processors.

3.0 BLOCK TRIDIAGONAL SYSTEMS

Block tridiagonal systems of linear equations
occur frequently in scientific computations, often
forming the core of more complicated problems.
Numerical methods for the solution of such systems
are well understood and techniques tailored to the
solution of such systems on pipelined
supercomputers have been studied extensively
[TRA76,MAD75,HEL77].

The linear system is represented as Ax=v with

r b(1) c<n r
I a(2) b(2) c(2) I
I a(3) b(3) c(3) I
I I

A = I I
I I
I a(N-1) b(N-1) c(N-1) I
I a(N) b(N) I

= (a(j) ,b(j) ,c(j))
N

where b(i) is a nix ni matrix and a(1) = 0 and
c(N) = 0.

The odd/even elimination method (and the
odd/even reduction method which can be regarded as

a compact version of the former) is widely
regarded as an efficient direct method for the
case where the n. x n. blocks are small enough to
be stored explicftly fHEL77].

Consider odd/even elimination as described in
Heller [HEL77], section 4: pick three consecutive
block equations from Ax= v, A= (a(j),b(j),c(j))N

a(k-1)x(k-2) + b(k-1)x(k-1) + c(k-1)x(k) = v(k-1)
••••••.•••.••••••.••••••••.••• (k-1)
a(k)x(k-1) + b(k)x(k) +c(k)x(k+1) = v(k)
•••••••••••••••••••••••••••••• (k)
a(k+1)x(k) + b(k+1)x(k+1) + c(k+1)x(k+2) = v(k+1)
•••••••••...••••.••••••••••••• (k+ 1)

If we multiply equ~tion k-1 by -a(k)b-1(k-1),
equation k+1 by-c(k)b- (k+1), and add, the result
is:

-1
(-a(k)b (k-1)a(k-1))x(k-2)

-1 -1
+ (b (k) - a(k)b (k-1)c(k-1)

-1
- c(k)b (k+1)a(k+1))x(k)

-1
+ (-c(k)b (k+1)c(k+1))x(k+2)

-1
= (v(k) - a(k)b (k-1)v(k-1)

-1
-c(k)b (k+1)v(k+1)).

For k=1 or N there are only two equations
involved and the modifications should be obvious.
This operation eliminates the odd unknowns for k
even and the even unknowns for k odd. By
collecting the new equations into the block
pentaaiagonal system 11.cx =v.2, (with ll. aeri.ned a:;
H.1) it is seen that row elimination has preserved
the fact that the matrix has only three non zero
block diagonals, but they are further apart. A
similar set of operations is applied combining
equations k-2, k and k+2 in H.2 to produce
H.3x=v.3 system. This process is repeated until
only one block diagonal remains (or in the case of
semi direct methods, some accuracy criteria are
fulfilled). The initial coefficient matrix H.1
contains 3N-2 non zero blocks while the final
matrix consists of N non zero blocks along the
main diagonal.

Solving the N blocks independently gives the
required solution.

Figure 3 shows the effect of 5 steps of
elimination on a 16x16 block tridiagonal system.

4.0 DATAFLOW AND IMPLEMENTATION

In this section we will look at the dataflow
characteristics of odd/even algorithlns. The
computational aspects, such as operation counts
are well understood; the communication geometry is
studied herein and found to be regular and simple.

_1 Computationally, instead of determining
b (i) explicitly, LU factorization of b(i) is
generally resorted to:
compute LU factors of b(k), (1<=k<=N)

94

solve b(k) [a(k) c(k) v(k)] =
- [-a(k)-c(k) v(k) , 1<=k<=N

b(k).2 <-- b(k).1 - a(k).1 c(k-1) - c(k).1 ~(k+1)
• •••••••••• 1 <=k<=N

v(k).2 <-- v(k).1 - a(k).1 v(k-1) - c(k).1 ~(k+1)
••••••••••• 1<=k<=N

a(k).2 <-- a(k).1 a(k-1) , 3<=k<=N
c(k).2 <-- c(k).1 ~(k+1) , 1<=k<=N-2

4.1 Intertask Dataflow

The sequence of actions that results in the
computation of H.i+1 from H.i is referred to as a
stage: in this case each stage is shown to
consist of three steps and the steps further
consist of substeps.~~-

Consider the input dataflow for computing H.2
and v.2. In the first step, the first substep
results in the LU factorization of b(k) ; this is
then used in the next substep for computing a(k),
c(k) and v(k). N way parallelism is displayed in
this step-:-

In the second step the computation of
a(k).i+1and c(k).i+1 requires a(k).i, a(k-1).i and
c(k).i, c(k+1).i respectively; b(k).i+1 and
v(k).i+1 -require data from the (k-1), (k) and
(k+1)th row equations. Binary operations are
performed on the blocks pairwise access to
blocks is sufficent giving rise to upto (N/2) way
parallelism.

Figure 4a shows the interconnection geometry
needed for the second step for an 8x8 system. The
blocks are stored in separately accessible shared
memories one block row per shared memory. The
diagram to the right u! vut: -8x8 tridiagonal system
is the inter connection pattern with circles
representing processors and squares shared
memories. The edges represent potential links
that are activated as 4 separate patterns as shown
further to the right. The new blocks computed at
the end of substep 2 are shown in curly brackets
between the patterns of substep 2 and 3 ; the
remaining new blocks are completed at the end of
substep 4.

The crucial observation 'here
the datasets are shared across
sharing is conflict free within a
connection pattern cycles through
2-pole 3 position switch.

is that while
processors, the

sub step. The
the states of a

H.2 is a pentadiagonal matrix the
application of an inverse perfect shuffle [ST071]
partitions this matrix into two tridiagonal
matrices, one consisting of the odd numbered
coefficient blocks and the other of even numbered
ones (Figure 4b).

If the matrix A contains N=2**m blocks then
the dataflow geometry for the next step 2 is
represented by a graph that is a proper subset of
the graph used in the earlier step 2 (Figure 5).
This inclusion property is seen in every step 2
until the block diagonal is computed.

Thus we use the precisely same dataflow
template in the generation of every H.i+1 from H.i
; three steps with different connection geometries
are needed a direct connection, a 2-pole

I

3-position switch based connection followed by an
inverse perfect shuffle.

A number of proposed reconfigurable computers
can implement these and other communication
behavior quite efficiently. Note that if we were
tto hardwire the interconnect pattern we would be
using a special purpose machine of limited
applicability to other problems (Eg. the shuffle
exchange network [ST071] in high performance FFT
boxes).

An implementation based on the use of shared
memory in TRAC is now sketched briefly. The
processors are scheduled as SIMD partitions with
width commensurate with the block size under
consideration. The shared datasets are stored in
shared memory modules - each circle of figure 4 is
realized as an array of shared memories of width
conformal with the processor width. The time to
switch the 2-pole 3-position based switch is a
critical parameter in the performance of the
algorithm. On the basis of a 10 microsecond
acquire time for an unacquired module this
parameter is estimated at between 50 and 100
microseconds for TRAC.

4.2 Performance Estimation

The mode of operation described in the
previous subsection consists of asynchronously
executing processes which synchronize periodically
to transfer data. Operations on different blocks
may require different computation times. There
may be, for example, different search times for
the choice of pivot rows. Thus for a performance
model to accurately represent this kind of
behavior, it must be based on non deterministic
time parameters.

We will now present a niave analysis based on
average time parameters as a first step towards
developing a performance model of reconfigurable
computer operation.

The time for data movement depends upon the
width of the processors and the width of the
arithmetic. We choose a definite configuration to
illustrate the magnitude of the communication
costs. A 16 bit wide SISD partition will be
assigned to each block. (If blocks are of uneven
size a more powerful partition could be assigned
to larger blocks.) Arithmetic will be on floating
point numbers with 64-bit mantissas and 8-bit
exponents.

Let the system be 16x16 blocks and each block
be 8x8 (total matrix dimension 128x128). Each 8x8
block requires about 600 words of storage. A
block row consisting of three 8x8 non zero blocks
and a 8x1 vector requires about 2000 words of
storage.

The following notation is used for
representing operation times:
T.fpa: floating point addition
T.fpm: floating point multiply/divide
T.xfer: memory to memory transfer time for one

word.
T.swi: acquisition and setup time to obtain

shared memory.
The evaluation of H.5 from H.1 proceeds in 4

stages with each stage evaluating H.i+1 form H.i.

95

The first step of a stage consists of the LU
factorization of b which is used to evaluate a,c
and v. The second step consists of three substeps
that- correspond to the three positions of the
2-pole, 3-position switch. The final step
performs the inverse perfect shuffle to position
data for the next stage. From the discussion of
the previous subsection it is evident that the
first and last step display 16 way parallelism and
the second step 8 way parallelism.

H.5 is finally solved as 16 uncoupled linear
systems to obtain the required solution.

We
represent
connected
contains

will use the
the state

to datasets
a(k) ,b(k) ,c(k)

notation Pi(k,l,m ••) to
where partition Pi is

k,l,m.. and dataset k
and v(k). This is the

timing for the implementation with shared memory.
The results of this analysis are discussed at the
end of the section and can be directly skipped to
without loss of continuity.

STAGE 1:Compute H.2 from H.1

Step 1:
Configuration: Pa(1), Pb(2), •••• , Pp(16)
Setup time ~· T .swi.

Substep 1.1
Computation:

Compute time
Substep 1.2
Computation:

Pa:
Pb:

b(1)
b(2)

Pp: b (16)

(LU decomposition)

200*T.fpm + 200*T.fpa

Pa: a(1), c(1), v(1)
Pb: ~(2), ~(2), v(2)

Pn: a(16), c(16), v(16)
Compute time- 1200*T.fpm + 1200*T.fpa-

Step 2
Substep 2.1
Configuration: Pa(1), Pc(2,3), Pe(4,5)

Po(14, 15)
Setup Time.-.. 2*T .swi

Substep 2.2
Configuration: Pa(1,2), Pc(3,4), Pe(5,6),

• •••••• ,Po(15, 16)
Setup time ,.,, 2*T. swi.

Computation: Pa:

Pc:

b(1) .2, a(1) .2,
c(1).2, v(1).2
b(3) .2, a(3) .2,
c(3) .2, v(3) .2

Compute time- 2000*T.fpm + 2000*T.fpa

Substep 2.3
Configuration: Pa(1,2), Pc(3,4), Pe(5,6)

• , Po(15, 16)
Setup time ,.. O*T ~ swi

Substep 2.4
Configuration: Pa(2,3), Pc(4,5), Pe(6,7),

••••••• , Po(16)
Setup Time: "' 2*T.swi

Computation: Pa:

Pc:

b(2) .2, a(2) .2,
c(2) .2, v(2) .2
b(4).2, a(4).2,
c(4) .2, v(4) .2

Compute Time.., 2000*T. fpm + 2000*T. fpa
Step 3

Substep 3. 1
Configuration: Pa(1),

Pe(5),
PiC9),
Pm(13),

Setup time..., T.swi

Pb(2),
Pf(6),
Pj(10),
Pn(14),

Pc(3),
Pg(7),
Pk(11),
Po(15),

Pd (4),
Ph(8)'
Pl(12),
Pp(16)

Computation: Transfer source dataset contents
to local buffer.

Compute time - 2000*T.xfer

Substep 3.2
Configuration: Pa(1),

Pe(3),
Pi(5),
Pl(14),

Setup time.,.,, T.swi

Pb(9),
Pf(11),
Pj(13),
Pm(7)'

Pc(2),
Pg(4),
Pk(6),
Pn(15),

Pd(10),
Ph(12),
Pp(16),
Po(8)

Computation: Copy local buffer contents to
target dataset.

Compute time - 2000*T .xfer

The important concern is the ratio of direct
computation time to the sum of the total non
computation time (this consists of the various
T .swi, T .xfer, synchronization times etc.)'. Let
us make reasonable assumption that the ratio of
execution time for T.xferlT.fpalT.fpmlT.swi are
1110l100l1000 and let T.xfer be one microsecond.
Estimate the set-up time for T.fpa,T.fpm and
T.xfer be equal to the arithmetic execution time.

For the shared memory implementation the
total direct computation time is 1034 milliseconds
(ms), total reconfiguration time is 9 ms and data
transfer time is 8 ms. Thus, if synchronization
time is zero, then the overhead associated with
mapping the odd/even elimination to a parallel
basis is about 17/1034 or about 2%.
Synchronization delays result solely from the
differences in processing time for each block.
For uniform size blocks, processing time
differences between blocks will result from
differing effort for pivot selection. This should
not exceed 1%. Reconfigurable architectures can
assign processing partitions with power
proportional to block size. (SISD partitions with
a factor of 8 variation in power for 64-bit
floating point numbers can be constructed on
TRAC.) Thus synchronization delays should be not
more than 10% of direct execution time. Using
this as an upper bound the total overhead cost in
this formulation is approximately 12%.

96

4.3 Intratask Dataflow

The use of an SISD partition for each block
avoids the problem of alternate row/column
addressing. Row and column accessing is necessary
because the block matrices a(k) and c(k) are
involved in both pre multiplication and post
multiplication. The use of SIMD partitions would
introduce efficiences in the computational part of
the formulation. Data distribution, would however
become more complex. Packet movement would be
used to realign data between pre- and
post-multiplication stages. This problem will be
approached in a subsequent publication.

5.0 CONCLUSIONS

Reconfigurable array computers have been
proposed as a candidate architecture for the VLSI
implementation of supercomputers. A crucial
motivation is that such machines provide a
programmable .rather than a fixed geometry
communication subsystem. The ability to adapt
communication geometry to the requirements of the
algorithm is supposed to minimize
non-computational execution costs on parallel
architectures. A parallel formulation of odd/even
elimination of block tridiagonal systems is used
to illustrate the effectiveness of
reconfigurability. The mechanisms of TRAC which
are representative of such architectures are used
in the formulation. Data movement,
reconfiguration and synchronization costs are
found to be small with respect to direct
computation costs.

The development cf parallel. algorith.~s fc~

reconfigurable architectures is shown to be
tractable. This analysis of a parallel
formulation of odd/even algorithms is intended to
display a paradigm for the formulation of
algorithms on reconfigurable array computers.

6.0 ACKNOWLEDGEMENT

We wish to thank Nancy Eatman for preparing
the diagrams for this paper and Ashok Adiga for
the text processing code that was used in the
preparation of this manuscript.

This research was funded by
MCS-77-15968.

7.0 REFERENCES

NSF Grant

[BAR68] Barnes G. H., etal, 'The Illiac IV
Computer', IEEE Trans on Comput, Vol C-17, 1968,
pp. 746-757

[BUR77] Burroughs, 'BSP: Overview, Perspective,
Architecture' , ·1977

[GEN78] Gentleman, W.M., 'Some Complexity Results
for Matrix Computations on Parallel Processors 1 ,

JACM 25, 112-115 (1978)

[GOK73] Goke R. L. and Lipovski G. J., 'A
Banyan Network for Partitioning Multiprocessor
Systems', 1st Symp on Comput Arch 1973, pp. 21-28

[HEL77] Heller D., 'Direct and Iterative methods
for Block Tri Diagonal Linear Systems', PhD
dissertation, CS Dept, CMU, Pittsburgh, 1977

[HIN72] Hintz R. G. and Tate
Data STAR-100 Design', 6th
Conf, COMPCON 1972, pp. 1-4

D. P., 'Control
Ann IEEE Comput Soc

[LIP77] Lipovski G. J. and Tripathi A. R., 'A
Reconfigurable Varistructured Array Processor',
Proc Intl Par Proc Conf, 1977,pp. 165-174.

[MAD75] Madsen, N. and Rodrigue, G., 1 A
Comparison of Direct Methods for Tridiagonal
System Solution on the STAR-100', Lawrence
Livermore Laboratory, 1975

[OLE78] Oleinick, P.,
Evaluation of Parallel
PhD Dissertation, Dept.
Nov. 1978

'The Implementation and
Algorithms on the C.mmp',
of Comput. Sci., CMU,

[ORG78] Organick E. and Hinds, J.A.,
'Architecture and Programming of the B1700/B1800
Series', (North Holland, Amsterdam, 1978)

[PRE79] Premkumar U. V., etal, 'Interprocessor
Communication in TRAC', 1st Intl Conf on Disti
Comput and Systems, 1979, pp. 51-62

[RAU78] Raucher, T.M. and Aggarwal a, A.K.,
'Dynamic Problem Oriented Redefinition of Computer

Architecture via Microprogramming', IEEE TC C-29,
1006-1014 (1978)

[RUS78] Russel R. B., 'The Cray-1
System', CACM, Vol 21-1, Jan 1978, pp.

Computer
63-72

[SEJ80] Sejnowski M. C., etal, 'An Overview of
the Texas Reconfigurable Array Computer', AFIPS
NCC 1980, pp. 631-642

[SEJ81] Sejnowski, M.C., 'Packet
TRAC', MA Report, Comput.
Austin, May '81.

Architecture
Sci. Dept.,

of
UT,

[SIE79] Siegel H. J., etal,
School of Electrical
University, W.Lafayette, IN.

'PASM' TR.EE-79-40,
Engineering, Purdue

47907, Aug. 1979

[ST071] Stone H. S., 'Parallel Processing with
the Perfect Shuffle', IEEE Trans on Comput, Vol
C-20, 1971, pp. 153-161

[TRA76] Traub J. F., etal. 'Accelerated
Iterative Methods for the Solution of Tridiagonal
Systems on Parallel Computers', JACM, Vol 23,
1976, pp. 636-654

[WAT72] Watson W. J., 'The TI ASC- A Highly
Modular and Flexible Supercomputer Architecture! 1 ,

AFIPS FJCC, Vol 41, 1972, pp. 221-228

[WUL72] Wulf W. and Bell C.
m1n1 processor', AFIPS
765-777

G., 1 C.mmp- A Multi
FJCC, Dec 1972, pp.

•PROCESSOR MODULES •

SIMD PARTITION
INTERCONNECTION NETWORK

• MEMORY MODULES.

FIGURE 1: PARTITION ON A RECONFIGURABLE ARRAY COMPUTER

97

A B

POTENTIAL LINKS

A B

ACTIVE CHAIN TO 'A'

FIGURE 2 : SHARED MEMORY

FIGURE 3: 5 STEPS IN THE ELIMINATION OF A 16xl6 SYSTEM
(FROM HELLER [HEL77] pp. 39)

98

A B

ACTIVE CHAIN TO 'B'

xl x2

xl x2 x3

x2 x3 x4

x3 x4 xS

x4 xS x6

xS x6 x7

x6 x7 xf,

x7 xE

FIGURE 4A: INTERCONNECTION FOR STAGE 1 STEP 2 OF 8x8 TRIDIAGONAL SYSTEM

xl x3 xl x3

x2 x4 xl x3 xS

xl x3 xS x3 xS x7

x2 x4 x6 xS x7

x3 xS x7 x2 x4

x4 x6 x8 x2 x4 x6

xS x7 x4 x6 x8

x6 x8 x6 x8

FIGURE 4B: INVERSE PERFECT SHUFFLE TO FORM 2 TRIDIAGONAL SYSTEMS

xl x3

xl x3 xS

x3 xS x7

xS x7

x2 x4

x2 x4 x6

x4 x6 x8

x6 x8

FIGURE 5: INTERCONNECTION FOR STAGE 2 STEP 2 OF 8x8 TRIDIAGONAL SYSTEM

99

ON :MAPPING NON-UNJFORM P.D;E. STRUCTURES AND ALGORITMHS
ONTO UNIFORM ARRAY ARCHITECTURES.

by Dennis Gannon'
Department of Computer Sciences, Purdue University

West Lafayette, Indiana.

ABSTRACT_ Adaptive algorithms for solving partial
differential equation are studied as a means of provid
ing improved speed-up when, in limited processor
situations, traditional "uniform" grid parallel
methods arc inefficient. The difficulty with these
methods is that the non-uniform data structures may
not be well suited to parallel architectures designed
for array and vector problems. In this paper the
data-flow problems associated· with a class of Multi
Grid algorithms arc studied. It is shown that, in spite
of non-uillform grid structures, a SIMD machine with
an O network connection provides a good environment
for adaptive computation. Time estimates that
include interprocessor communications are derived

1. INTRODUCTION
While most studies in parallel computation are

based on algorithms designed around regular data
arrangements like arrays and vectors, many important
applications are more efficiently treated with some
form of irregular or non-uniform adaptive structures.
A simple example is the improvements in serial
efficiency obtained for large sparse matrix problems
by using linked lists and list algorithms rather than
large two dimensional arrays. A second example is
given . by adaptive methods for solving partial
differential equations. One of the fastest parallel algo
rithm (Sameh, Chen, and Kuck [9]) for solving the Pois
son problem

v2u = ;:~ + :~ = f (x,y)

requires a uniform n by n grid defined on a rectangular
domain Das shown in figure 1.

1 Research supported by the National Science Founda
tion Grant MCS-8109512.

With p 2 processors this method requires
O((n/p)2Log(n)) time to solve for the unknown u at
each of the n 2 grid points given the "data" f at each
point. When p =n this algorithm is the best known, but
when n is much larger than p one may wish to con
sider other methods. In many cases, the data f
represents very localized activity that can be
optimally approximated on a irregular grid as illus
trated in figure 2.

Figure 1. Uniform Grid

The advantage of this "adaptive" grid is that its granu
larity is fine only where needed and the overall number
of node points is greatly reduced.

The savings generated by these techniques extend
to parallel computation only if the architecture is rich
enough to permit a programming of the algorithm so
that the irregular processor communications do not
add to theoretical complexity of the method. There

Figure 2. Non-uniform Grid Adaptive Solution.

100

0190-3918/81/0000/0100$00.75 © 1981 IEEE

are two approaches to solving this problem. For rela
tively small numbers of processing elements, one
attractive solution is to use data flow machines where
regularity of structure is of smaller significance than
volume of computation. In the case of sparse matrix
problems recent work includes the experiments by
Lord, Kowalik, and Kumar [6] with the HEP architec
ture. For the P.D.E. problem described above Rhein
boldt and Zave [11] have shown that the adaptive
approach can be decomposed at the process level in a
manner suitable for limited processor data flow com
putation.

For more structured, highly parallel computation,
the solution is to endow a regular SIMD or MIMD pro-

. cessor array with a connection network capable of
accomodating the irregular data requests generated
by these adaptive algorithms. Indeed, most designs
for architectures devoted to solving partial differential
equations, such as the Flow Model Processor (FMP)
proposed by Burroughs for NASA, are large multipro
cessors equipped with a highly structured interconnec
tion switch. The natural question is if adaptive compu
tation can be shown to produce a real parallel speed
up, then which interconnection method provides the
most efficient implementation?

In the following paragraphs we illustrate that the
problem of computing the solution to the partial
differential equation on the adaptive grid can be
"mapped" naturally onto a SIMD architecture consist
ing of an array of p 2 processors and p 2 memory
modules interconnected by the well known n switch (a
key component of the Burroughs FMP). Furthermore,
when applicable, the method can run as fast as

O(le 3lag (p))

including inter processor communication where le is
the number of levels of grid "refinement". In the
optimal setting a uniform grid of size n by n
corresponds to a value of le = O(log (n/ p) which, for
the sake of comparison, yields an asymptotic estimate
of

O(log 3 (n ~log (p))
p

2. Grid Relaxations and the Mapping Problem.

The mapping problem can be formally defined as
follows. Let. x, i=l,,N be the set of nodes at which we
seek solution values u. to the PDE given the data/,.
Let CG represent the the directed data fl.ow graph of
the algorithm. That is, the nodes of CG correspond to
binary operations and the edges represent the flow of
data between computations. A program of the algo
rithm for a ?-processor parallel machine M is a
decomposition of CG into disjoint sets of nodes
!CGt, i=l..Tj each of size I CG,. l~P such that i'f
(:z:,y)e:CG is an edge and :z:e:CG, and ye:CG1 then i < j.
If we assume the machine is equipped with an inter
connection switch capable of some set parallel data
transfers between processors, then the mapping prob
lem is that of choosing a set of processor assignments
!f,:C~ ... M, i=l..Tj that minimize the the number of
switch settings required between the T computation
stages.

101

Frequently the algorithm dictates the appropriate
switch to give an optimal result to the mapping prob
lem. For example, Grosch [4] has observe.d that a
large class of P.D.E. techniques can be mapped onto a
p by p array of processors interconnected by the fol
lowing three level network. At the first level let each
processor be connected to its nearest neighbor in a
square mesh lattice. The second level connects each
column of p processors with a shufile connection, and
the third level connects each row with a shufile.
Because separable partial differential equations can be
easily solved by combinations of Fourier transforms
and odd-even reductions aligned along rows and along
columns,this Perfect Shuffle, Nearest Neighbor (PSNN)
network is well suited for most uniform grid algorithms
like the Sameh-Kuck poisson solver described above.

By analyzing the data-fl.ow of the basic com
ponents of an algorithm for self adaptive P.D.E. compu
tation we shall see how to extend the PSNN network to
an more complex interconnection switch appropriate
for the irregular adaptive grids. The resulting network
is then shown to be equivalent to the 0 switch of Lawrie
[5].

The algorithm studied here is a parallel version of
an adaptive Multi-grid method designed by Yan Rosen
dale [10]. The method is based, in part, on the work of
Brandt [1] who has studied both parallel and serial
implementations of the Multi-Grid idea. The guiding
principle of these algorithms is to use a sequence of
grids, each finer than its predecessor, to accelerate
the convergence of more standard iterative "relaxa
tion" schemes. In the adaptive algorithm, the
sequence of grid structures is defined by constructing
a nested sequence of subdomains of the problem
domain D.

D = D0 ::> D 1 ::> D 2 :>Di.

A uniform subgrid ~ is placed over each domain D, so
that G., refines G,_ 1 by quartering certain rectangles.
Figure 3 illustrates a simple three level refinement.
From the sequence of uniform grids !Gt. i=O .. le! the
algorithm works on the sequence of composite grids

i
~ = U Gi. for i=O .. le to obtain succesively better

lo=O
approximations to the solution starting from an exact
solution on the coarsest grid G0 . To simplify the
description of the algorithm and its programming we
shall assume we have P = p 2 processors withp a power
of 2 and that each subgrid G, is a rectangle of dimen
sion le by l with both le and l being ~ p. (A more gen
eral algorithm is derivable without modifying the
connection network constructed below, but the added
detail provides little illumination of the basic result.)

The algorithm (described completely in the next
section) is built on 3 basic operations, injection, pro
jection, relaxation, which provide both the setting and
a solution to the mapping problem.
2.1 Injection.

Given a piecewise linear solution uC'"l on gri!! Gi.
there exists a natural interpolate u (lo+!) on grid Gi.+i·
The injection operation is this interpolation process
denoted by

u(i.+l) := lnjea (uC'"l, G,., Grc+1).

The computation to be carried out is simple. The
values of u(lo) define uCi.+l) at the nodes of all subgrids

tFF ff
+ +

+I+ +
1L

J7_f

'l Gi

Figure 3. Level Decomposition of Adaptive Refinement.
of Gi.+ 1 except the last fine grid Gi.+1- At the nodes of
Gi.+1 that correspond to nodes of the coarser subgrid
C,., the value of u(k+i) is well defined by u(k). The
remaining nodes of G(k+l) are created by the quarter
section of rectangles of Gk and therefore the value of
uCl<+l) is determined by the average of the values at
the corners of the quartersected square. The logical
choice for mapping the grid structure is to assume for
the moment that the p 2 processors are configured as a
square array interconnected by a. square mesh net
work. In this way each subgrid can be mapped into the

processor array, and the various stages of the data
flow graph can be viewed as processes interacting
between the various subgrids. In this setting, the
interpolation operator can be seen as taking vaiues
from subgrid C,. to valu'es in Gi.+ 1• The interconnection
switch should map the nodes of Gi.+ 1 that lie in the
embedding of C,. to the embedding of Gi.+ 1. This is
most readily understood by considering a one-column
or one-row slice. In figure 4 the one dimensional view
shows C,. along the bottom

Figure 4. Subgrid Expansion.

row of processors. The same set of processors are
shown along the top row but this time representing the
embedding of Gi.+i· The lines connecting the two
represent the identification of equivalent nodes in
Gi.+i· Call the process of making this identification
"subgrid expansion". In this one dimensional case, a
connection network that provides the required map
ping is a bidirectional omega switch on p processors
Op. This switch is constructed from log2(p) shuffle-

102

exchange operations. Figure 5 illustrates its perfor
mance on the case shown in Figure 4.

LEMMA 2.1. Let x 1, •• , xP denote the sequence of p pro.:.
cessors and let x,.. , .• ,x,.. +t , t s;p I 2 denote the indices
of a subgrid, then the Op network can map the subse
quence to any even or odd subsequence of x 1, •• ,xP.

PROOF. This result follows from the equivalence of
O and the Batcher bitonic merge network (see for
e~ample the thesis of Parker [B]). To use this
equivalence, one need only construct the appropriate
bitonic sequence that, when merged, maps the subse
quence to the appropriate place. Suppose x,... must
map to x 11 . It follows that x,.. +t ... x 11 +21 for l s;t .. Define
the remainder of the bitonic sequence by mappmg the
remaining processors xci.+smod(p)) for s=t+l, .. p-1
according to

x(k+smod(p)) -> x 11 +23 fory+2s s;p

and

X(k+s ma<t(p)) -> X2p-1-y-2s for Y +2s > p.

The effect is to extend the increasing subsequence to a
permutation consisting of one increasing set of indices
and one decreasing set.

Figure 5. Subgrid Expansion via Op Shuffle-Exchange.

To carry out the complete two dimensional
subgrid expansion observe that it suffices to "expand"
first along rows and then along columns. Furthermore,
the averaging computation can be carried out by data
transmissions along the square nearest neighbor net
work assumed to underlay the embedding of Gi.+ 1. In
other words, each node in Gi.+ 1 not lying on Ci. is either
the bisector of an edge or the center of a square in C,..
By first transmitting values along edges from those
nodes in Ci. n Ci. +l one can compute values along
bisected edges. As illustrated in figure 6, a second
broadcast pass is sufficient to propagate values to
determine uU•+l) at those node in C,.+1 forming the
centers of squares in Ci.. Summarizing we have

Proposition 2.1. Let 20P be the network composed of
p Op switch networks aligned along rows and con
nected to an identical set of Op networks along the
columns of a p by p processor array. ll we assume
data transmission through an 0 network can be done
in one major clock cycle the time for the subgrid
expansion is two cycles. With the addition of a
nearest neighbor connection capable of broadcasts
this combined 20p-NN network permits the injec
operator to be completed in a time of 4~ clock cycles.
(A more strict interpretation of the Op switch as a
log (p) cycle device and the NN network capable of
only parallel horizontal and parallel vertical data
transmissions yields a time bound of 2log (p)+ B).

2.2 Projection.

Given a function tU•+l) corresponding to the data
for an elliptic P.D.E. problem on G,. +l the projection
operator determines a_function f (k) corresponding to
a reduced problem on Gk. The operator, denoted by

f (k) := proj (! (lc+I)' G,.+l• ~)

has been interpreted by various authors to mean vari
ous things, but Nicolaides [7] has shown that the

i~T~1-Q

1 2 ll
.__2~~~ 2___.

1 2 \1
~ l-4t~11

2 1
{.

-2~·~2___.

;--~~~~~1 1---.i.,__,__J;

Figure 6. Local Data Flow for lnjec.

103

correct interpretation is that of the transpose of the
injection operator. If we permit Op to be bidirectional,
the projection operator requires the same data flow
patterns as does injection only reversed.

2.3 Relaxation.

At each node x 3 of a grid G the differential equa
tion can be replaced by a difference equation

I; a.iui = f s
i<-S,

where ui is the approximate solution value at xi, s. is
the set of nodes of G serving as vertices of squares
containing x. as a vertex, and a•i are the coefficients
of the finite difference approximation (the exact form
of which will be of no concern here). The classic
parallel relaxation step starts with an approximate
solution u. to the difference equations above an com
putes an improved solution u'. by a formula of the
form

for some constant A known as the relaxation factor.
The parallel complexity of this computation is depen
dant on the structure ·of the set s.. For the non
uniform grids described above s. can take two forms
as shown in figure 7.

Figure 7. Si Structures.

In the simplest form x. is not on the boundary of two
subgrids. In this case the nearest neighbor network is
adequate to provide all data transmission. In the other
case the node is on the boundary of subgrid Ci. and the
computation should be split with a partial result
po.ssed between C,. and Gi.-1 via the 20p network. More
formally, let

s •. 1c = (xi E: s. such that xi E:Gi.)
and let intGi. denote the nodes in the interior of Ci. and

ext Ci. = Ci. - int Ci.+ 1

The relaxation procedure becomes

Proc Relax(u', u, ~);
begin

For l : = k downto 0 do
begin

For ea.ch node :r:8 e:e:r:tGz pardo
x

'IJ.18 ;:Us+ -!?-{/8 - ~ D.sJUj);
0..a jESa,1

For ea.ch :r:8 e:Gi f\Gi-i pardo
u'8 := proj (u', Ci, Gi-1);

end;
end;

The exact amount of computation required
depends on the form of the finite difference operator.
Using the definition of S given above and the strict
interpretation of 0 network timing the bound is
approximately (k + l)(log (p)+ 16)

2..t- Network Equivalence.
By analyzing the data flow of the basic grid opera

tors we have constructed a network 20p-NN which
can be viewed as an extension of the PS-NN connection
introduced earlier. We now show

Proposition 2.2. By numbering the P = p 2 processors
by columns, the networks 20p and Op are equivalent.
Furthermore, The Nearest Neighbor connections (NN)
can each be routed in one pass of the Op network. In
terms of the time required to route an item of data
through the network and complete one multiply and
add operation 1-' processors interconnected by a
bidirectional Op have the upper bounds

1. lnjec (.,.,.) in 9 Op-compute stages.·
2. Projt(.,.,.) in 9 Op-compute stages.

. 3. Rela.:r:(u' ,u,G"') in 17k Op-compute stages.
Proof. Number the processor in row i and column

j as :r:Hp(J-ll· To prove the stated network equivalence
we again exploit the equivalence of the Batcher Merge
network B(P) to Op. The former can be described as
log (P) stages with the k 11" stage defined by the proces
sor connections

B1;(P): :r:, <---> :r:l+Pl2k' k=l, . .,P/2

used to execute P 12 compare-exchange steps in
parallel. Observe that for l=i+p(j-1) we have :r:1 is
mapped to the processor. with index

l + .E._= i+p(j-1) + E_
2"' 2"'

= i + p(j-1+}?

which for k :s: log (p) rep re sen ts the index of B,., (p) in
row i. Fork >log (p), we have

l + p . + p (. 1)
~= 1. 21c-1ouCPJ + P 1-

which represents B1c-1og(p)(p) in column j. Hence the
log (P) stages of B(PJ can be decomposed into the
log (p) stages of B (p) organized along rows followed by
the same number of stages of B (p) organized along

104

columns.

In other words,

Op = B(P) = 2B(p) = 20p

To complete the mapping of 20,.-NN to Op observe
that the nearest neighbor network connection in
column order has "horizontal shift" equivalent to "shift
by p or -p; and "vertical shift" is the same as a shift
by 1 or -1. But each of the latter uniform shifts are
well known to be executable with the 0 connection (see
[5]). The set of upper bounds follow from the bounds
derived earlier by replacing 2log (p) and each unit
time NN data move with one Op transmission ..

S. JIULTI-GRID ANALYSIS:.
A parallel version of the "locally refined" Multi

Grid algorithm of van Rosendale is given by an iterative
application of the recursive procedure below.

Proc MG(u, f, k);
begin

1 for i : = 1 to t do
begin

Relax(u' , u, ~); u : = u' :
end;

ifk > 0 then
begin

2 fori := 1 toN1c pardo
f';. := ! - ~ °'tj'ILJ;

JES,

3 /(14-1) := proj (!' ;Gt, Gr.-1):

4 :M:G(u',/{1c-1>,k-l};
5 u :=u +lnjec(u' .~-1 , G,.):
6 for i := t + 1 to .M do

begin
Relax(u',u, ~); u :=u';

end;
7 end else solve exacUy on G0

·end;

begin
(•main•)

6 u := e:r:a.ct solution on G0 ;

k := inde:r: of finest grid;
9 fori:=ltokdo

end.

begin
u := lnjec(u, G.. G\+1):
MG(u, f, i);

end;

The number N1c is the total number of nodes in~.
and the loop bounds t and M in lines 1 and 6 are con
stants depending only o.n the partial differential equa
tion in a manner discussed below. By starting with an
exact solution of the finite difference equations on grid
G0 (obtained for example, by the Sameh-Chen-Kuck
fast Poisson solver) the method produces a· sequence
of approximate solutions for each grid Ci for l = 1..k.
The running time for this algorithm is derived as fol
lows. Let T1c be the time for one call to MG(., .,k) in
terms of network communication-computation steps,

where in this section we assume one pass through the
0 switch is log (P) steps and the computation step as
unity. From our previous analysis we obtain the
recurrence relation

T1c := t((k+l)(log(P)+16)) + S + (Log(P)+6)

+ T1c-1 + (log(P)+6) + {M-t)((k+l)(log(P)+16))

where the summands on the· right come from lines 1
through 6 of the program and the residual computa
tion (time S) is similar to lnjec. Solving the
recurrence gives

Mk 2 .
T1c = =z--tog (P) + O(klog (P))

The main block calls MG(•) as indicated above and
resulting in a total time of O(Mk 3 log (P))

In order to arrive at an upper bound on the time
required to compute a "final" solution, one must ask
when an approximate solution to a set of finite
difference '\quations that approximate a PDE is an ade
quate approximation to a true solution to the PDE. For
a given grid structure G,. let t1c denote the difference
(in the mean square sense) between the true solution
of the partial differential equation and the exact solu
tion to the differential equation. Simply stated, the
main result of the numerical analysis [10] is that there
exists a constant C independent of G,. such that if M >
C then the difference between the approximate solu
tion produced by the MG algorithm and the true solu
tion of the PDE is less than 2t. To compare two
methods we must compare the computation time to
produce solutions of comparable accuracy. While the
comparison of this version of parallel Multi-Grid to the
fast Poisson solver is the currently the subject of
several numerical experiments that will be reported on
later, it is possible to give a rudimentary analysis of
expected performance.

Under optimal conditions on the initial data f and
the PDE being solved, the truncation error t1c is for a
non-uniform grid G,. is comparable to a n by n uni
form grid when k = c (log (n Ip)) for a small constant
c s 2. In such favorable circumstances we expect per
formance of

O(k 3Log (P)) = O(log 3(n/ p)log (P))

which compares well with the bound of
O((n/ p)2Log (P)) for a fast Poisson solver on the uni
form grid.

105

REFERENCES

[1] A. Brandt, "Multigrid Solvers on Parallel Com
puters", !CASE NASA Langley Research Center,
Hampton, Vi. Report No. 60-23, 1980.

[2] A. Brandt, N .• Dinar, "Multigrid Solutions to
Elliptic Flow Problems", Numerical Methods
for Partial Differential Equations, S. V. Parter
ed., Academic Press, 1979, pp.53-146.

[3] D. B. Gannon, "Self Adaptive Methods for Para
bolic Partial Differential Equations", Depart
ment of Computer Science, University of Illi
nois, Urbana, UIUCDCS-R-60-1020, 1960.

[4] C. Grosch, "The Effect of the Data Transfer
Pattern of an Array Computer on the
Efficiency of Some Algorithms for the Tri
Diagonal and Poisson Problem'', Array Archi
tectures for Computing In the 80's and 90's,
ICASE Workshop, April 1980, Hampton, Vir-
ginia.

[5] D. H. Lawrie, "Access and Alignment of Data in
an Array Processor," IEEE Trans. on Comput
ers, Vol. C-24, No. 12, pp. 1145-1155, Dec. 1975.

[6] R. E. Lord, J. S. Kowalik, and S. P. Kumar,
"Solving Linear Algebraic Equations on a MIMD
Computer," Proceedings of the 1980 Interna
tional Conference on Parallel Processing, 205-
210, IEEE 1980.

[7] R. A. Nicolaides, "On the £ 2 convergence of an
algorithm for solving finite element equa
tions," Math. Comp. 31. 1977, 892-906.

[8] D. S. Parker, Jr. "Studies in Conjugation:
Huffman Tree Construction, Nonlinear
Recurrences, and Permutation Networks,"
Department of Computer Science, University
of Illinois, Urbana, UIUCDCS-R-78-930, 1978.

[9] A. H. Sameh, S. C. Chen, and D. J. Kuck, "Paral
lel Poisson and Biharmonic Solvers", Comput
ing 17 (1976), 219-230.

[10] J. R. Van Rosendale, "Rapid Solution of Finite
Element Equations on Locally Refined Grids by
Multi-Level Methods", Department of Computer
Science, University of Illinois, UIUCDCS-R-80-
1021, Urbana, Illinois, 1980.

[11] P. Zave, W. Rheinholdt, "Design of an Adaptive,
Parallel Finite-Element System", ACM Trans.
on Math. Software, vol. 5(1), 1979, pp.1-17.

A PRACTICAL ALGORITHM FOR THE SOLUTION OF LOWER TRIANGULAR SYSTEMS ON A PARALLEL PROCESSING SYSTEM

Robert K. Montoye and Duncan H. Lawrie

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

ABSTRACT
An algorithm is presented for a more efficient

and implementable solution .of lower triangular sys
tems on a parallel (SIMD) computer. Additionally,
this algorithm has been mapped to a hypothetical
machine with as many memory units as processors, an
Q alignment network, and a control unit that can
generate P-ordered memory addresses. Assuming that
L is a unit lower triangular system of order N, the
system can be solved in T arithmetic operations:

using P = tf processors,
if r < l, T = O(N 2-r)
if t c; r < 3, T = O(Nl-r/3xlog2/3(N)),

The data is directly accessible in the evalua
tion step and can be moved to a location where all
required data for the inversion step can be
accessed. The memory/processor connections are Q

passable and .the processor/memory connections are
-1 Q passable. Preliminary error results of a FOR-

TRAN simulation indicate correlation between this
and the serial algorithm for both stable and
unstable problems.

! •. Introduction
This paper shall discuss the limited processor

solution of unit lower triangular systems:
(Lxx = f with L of order N),

Time (T) is measured in terms of the number of
operations .that can be performed using up to P pro
cessors performing a single operation on different
data and is proportional to the time required for a
system to execute the algorithm considering both
access and alignment penalties.

In previous papers on this topic:
Chen & Kuck's [ChKu74] "product form" proved:

L x x = f could be computed with
3 - 2

P = O(N) T = O(log (N)), (1)
Hyfial & Kung [HyKu74] used this with problem par
titioning to show that using P = ~ processors,

3 1-r/3 2 with 2 c; r c; 3 T = O(N x(log (N)))
with r < l · T = O(N2-rxlog(N)), <2>

Also of interes7t is the results of "colU111n sweep"
or direct forward substitution method [Kuck76]:

P = O(N) T = O(N) (3)

This research was supported in part by:
National Science Foundation grant MCS-81-00512

and Dept. Energy grant US DOE DE-AC02-81ER10822

0190-3918/81/0000/0106$00.75 © 1981 IEEE

To produce a limited processor algorithm, the
system is partilioned into s=N/w blocks of width w:

r Li .xx. = f. l(i(s
j=l ,J -J -J.

i-1
This has the form Li,i x .!.i-j:lLi,jx.!.j 1 c; i c; s.

.!.j and .!.j are w element vectors and Li,j is wxw.

TL 1 1 l.!.1 I If 1 I
IL2' 1 L2 2 l.!.2 I l!.2 I
1 •• ! .. e:. l··I l··I
!Li 1 L. 2 L. . x l,!_i I lfi I
1 .. : • . !! .. !:! l··I l··I
11s,l Ls,2 Ls,i Ls,s 1 , l~I Ifs!

Figure 1 - Hyfial & Kung s Partitioning
The partitioned system can be solved by seri

ally producing each new fi = .!_i-Li,j x 1-j' then

solving the recurrence for .!.i using w= ~/ = pl/3

and the "product form" [ChKu74] producing (2).

106

Considering that the product !yrm is performed
by explicit calculation of .!.i =Li ix!_i, inversion

~ '
(which adds an O(log~(N)) delay) can be performed
for all L. i in parallel, increasing the utiliza-

i, 2
tion by moving the O(log (N)) term outside the loop
on s. The evaluation phase is then a matrix multi
plication, producing an O(log(N)) delay.

a)

b)

c)

-1
Solve for all the Li i in parallel ;
DO i = l,s -l '

.!.i=Li i ><!_i •
DO j i+l,s (* in parallel *)

END;
.!_j=.!_j-L j 'i x.!.i ;

END;
-1

The s Li ,i can be produced by products of

their constituent elementary matrices in:
3

Tc;(sxw) + O(log2(w)).
2xP

The resulting system can be solved in:
2-r T c; 2xs xlog(wf + O(N) •

Choosing w3= (Nr/3 xlog1 2~N)) produces:
if r < 2• T = O(N) (4)

if~ r < 3, T = O(Nl-r/3Xlog2' 3(N))
which compares favorably with (2) above.
Additionally, its limiting cases are:

N3
the results of (1) at P = (10g4(N)) and

the results of (3) at P = O(N).

I
I

~· Storage Scheme
The data for the problem is modeled as a two

dimensional array stored across the P memories in
column major order. Thus elements within a column
are in consecutive memories and elements in adja
cent rows are in memories that differ by the column
length. The processor assignment will be described
in this same light. Assuming A is dimensioned
A(N,N), any two elements A(R ,C) and A(~,~), are
both accesible if and only if: a

((C -Cb)x N + (R -~)) mod P ~ O.
A sufficientacondition isathat:

J (C -C) x N + (R -~) J < P
as X and X + 6 ilks€ be diffe~en~ mod P if J61 < P,
Any set of elements whose linearized distance
between all pairs is less than P is accessble.

l• Alignment Network
The net.!"prks used for data alignment (Q for

input and Q for output) have been extensively
studied in [Lawr75], [Wen 77], [Yew 81]. The
results needed in terms of the source-destination
pairs that will pass a given network of P input and
output ports will be listed here.
1) A mapping will pass an Q network if for all

i,j: (si - sj) mod P .;_ 1 (di - dj) mod P,
2) A mapping will pass an Q network if for all

i,j: (si - sj) mod P > (di - dj) mod P,
3) Both networks are partitionable.

If the source and destination loJations are
partitioned into blocks of size 2 , the map
ping is passable if both the mapping within
each partition is passable and the mapping of
the partitions in the system is passable.

~· Matrix Multiplication
The matrix-matrix multiplication operator per

forms all the arithmetic for the algorithm. This
operator can be scheduled to maximize efficiency
and minimize memory and alignment conflicts. The
matrix multiplication of A (a: by ~) x B (~ by y)
producing C (a: by y) requires the summation of a
dot product of length ~ for each element of C, If
a:, ~ and y are all powers of two and ~~'I• the
operation can be aligned using the Q and Q net
work. Further details are in [Mont81],

5. Parallel Inverse Calculation
Inversion is accomplished using the identity

from [Hous64] that the inverse of a unit lower tri
angular system is expressable as a product of the
inverses of its constituent elementary tmatrices.

M = M = I - (L - I) xe
-1 i i,i i

L = Mn-lXMn_2XMn_ 3x ••• x ••• xM3XM2XM 1
There are s such systems of order w to be

inverted. Each system will be fanned in with a
binary tree similar to the technique used by Sameh
& Brent [SaBr77] in which each level CO of the
tree doubles the number of elementary matrices in

.R. one product (2) and halves the number of products

(2log(w)-.R.) being formed. Each elementary matrix
product involves the multiplication of a matrix of

.R.-1 .R.-1 size w by 2 by a square matrix of size 2 and

the addition of a (w by 2.R.-l) matrix to the result.
To efficiently implement this operation, the
matrices to be inverted are extracted to a (w by N)

array. This allows the data for the inversion tp
be accessed in at most two passes.

Step .R. should take

T.R. .; 2f(sx(2logw-;)x(wx2.R.-l)l + log(2.R.).

The time to solve for all inverses is
log(w) sxw3 2

T .; I: T .R. .; 2xp + O(log (w))

6. Sol~ffts·the Partitioned System
After the inverses have been computed, the

next w elements of the x-vector can be solved and
the rest of the f-vector can be updated in two
matrix multiplications: _1

x. = L. ixfi
-J. i, -

is a matrix (w by w) vector (w by 1) product.
w2

Assuming that P >-"=--, T = 2 + log(w).
The most processor 1.ntensive step of:

f . = fj-L. . xxi
-J - J,l. -

is a matrix (N by w) vector (w by 1) product:
rwxNl This should take: T .; 21 p- + log(w).

The total over all s, 2-r
T . .; 2s x (2 + log(w)) + 2xN

Since both the inverted submatrices and the
matrix for updating are stored in column major
order in partitions of their own dimension, they
are accessible and alignable.

107

1..• Total Solution Time

By choosing w = P 113 x log113 (N), the unit
lower triangular system with L of order N can be
solved using P = ~ processors in time:
if r (t• T = O(N 2-r)
if ~ r (3, T = O(Nl-r/3xlog2/ 3N)
using the algorithm previously discussed. The fol
lowing graph compares Hyfial & Kung' s algorithm,
product form with folding [Kuck76], and the current
algorithm for N 500 with processing time = 2,
alignment time= 1, and memory time = 1,

6121121121.

5121121121.

4000.
T
I M 5121121121.
E

21210121.

11211210.

121.

[HyKu74]+ \

Current +
Algorithm

\
\

Folded
Product

Form

112112111211 11212 11215 11214 11215 106 107

PROCESSORS
Figure 2 - Comparison between various algorithms.

a_. Numerical Experiments
A program that simulated the arithmetic

involved in this algorithm was written in FORTRAN.
The array indices on the most parallel steps were
linear combinations of 5 do-loop indices in paral
lel (indicating that a control unit that could gen
erate P-ordered vectors of depth 5 could produce

the results shown here). The results are obtained
by comparing double precision serial solutions with
the results derived with this algorithm. The par
tition width was reduced to w=l at P=N to force
"column sweep" [Kuck76l, known to be computation
ally equivalent to the serial algorithm, to allow
comparison with serial algorithms.

The graphs that follow are generated in the
following manner. Using a specific lower triangu
lar matrix, an x-vector is generated using a uni
form distribution (±1). The matrix is multiplied
by this vector to produce an f vector. The differ
ence between the solution generated using the pre
vious algorithm and double precision column sweep
is the error. This value is plotted for N = 64,
comparing single precision column sweep (using w =
1, P = 64), inverting matrices of size 8 with P =
256, inverting matrices of size 16 with P = 1024,
and inverting matrices of size 64 with P = 16384.
The number of digits of accuracy is then
-log1o(relative error). The number of digits of
accuracy is then averaged for each element for 25
cases of random x--values with the same matrix. The
first matrix represents the 3-term recurrence of
the Chebyshev polynomial T(x) for x=2.

D
I
G
I
T
s
0
F

p
R
E
c
I
s
I
0
N

16 xi = fi + 4 x xi-1 - xi-2"
14
12
10

8
6
4
2
0

-2
-4

0
1 l2l

20

-- P=64,w=l
---- P=256,w=8
++++ P=l024,w=l6
-- P=l6384,w=64

40
3l2l

COMPONENT

60
5l2l 70

Figure 3 - Comparison of errors for unstable matrix.

The second example is the solution to:
xi= fi - l.9xxi-l + 0.9xxi_2•

It is a well-conditioned problem as its character
istic roots lie within the unit circle.

14
D
I 12 G
I 1 l2l T
s
0

8
F 6 -- P=61f,w=l
p ---- P=256,w=8
R 4 ++++ P=l024,w=l6
E
c 2 -- P=l6384,w=64
I
s

0 I
0 l2l 2l2l 40 6l2l
N 1 l2l !>121 50 70

COMPONENT
Figure 4 - Comparison of errors· for a stable matrix.

9. Conclusion

The method of problem partitioning (first
appearing in [HyKu74)) has substantial potential
when the additional parallelism that such a method
allows is exploited. The parallel inverse calcula-

108

tion places the O(log2 (N)) delay associated with
matrix inversion outside of the seriality of solv
ing the partitioned system. This allows:
a) The dominance of the O(N 2-r) term for P<N 3/ 2•

b) The selection of wider partitions

w = P 113xlog2 / 3 (N) and as a result:

T = O(Nl-r/3 xlog2 / 3 (N)).

This technique should allow more practical
solution of larger general unit lower triangular
systems with limited processors. However, of
greater concern is the fact that the alorithm can
be implemented on a parallel processing system with
as many memories as processors and an efficient
alignment network connecting them. Additionally,
the control requires only generation of P-ordered
vectors for memory accesses and lockstep (SIMD)
processing. A data storage scheme that allows the
algorithm to be executed and data accessed in the
same order of time as the theoretical result, by
using a scratch data area to store the matrices to
be inverted, has been shown. Finally, a small set
of experimental error results have been shown to be
close to the serial results. In conclusion, a
practical, limited processor algorithm for .the
solution of unit lower triangular matrices has been
demonstrated.

lQ_• References
[ChKu75) Chen, S. C. and Kuck, D. J., "Time and

Processor Bounds for Linear Recurrence
Systems," IEEE Transactions on Computers,
Vol. C-24 (1975), pp.701-717.

[Hous64) Householder, A. S. , The Theory of
Matrices in Numerical Analysis,
Blaisdell,NeW-York,1964.

[HyKu74) Hyfial, L. and H. T. Kung, "Parallel
Algorithms for Solving Triangular Linear
Systems with Small Parallelism," CDS
Report, Carnegie-Mellon University,
Pittsburgh, December, 1974.

[Kuck76) Kuck, D. J., "Parallel Processing of
Ordinary Programs," in Advances in Com
puters, M. Rubinoff and M. C. Youvits
eds., Academic Press, New York, 119-179,
1976. November, 1975.

[Lawr75) Lawrie, D. H., "Access and Alignment of
Data in an Array Processor," IEEE Tran
sactions on Computers, Vol. C-24, No~
1975, PP• 1145-1155.

[Mont81) Montoye, R. K., "Simulation of the Solu
tion of Recurrence on a Parallel Process
ing System," M.S. Thesis, May, 1981.

[SaBr77) Sameh, A. H. and R. P. Brent, "Solving
Triangular Systems on a Parallel Com
puter," SIAM Journal of Numerical
Analysis, Vol. 14 116 December 1977,
pp.1101-1113.

[Wen 76) Wen, K. Y., "Interprocessor Connections
-Capabilities, Exploitation, and Effec
tiveness," PhD Thesis, University of
Illinois, October, 1976.

[Yew 81) Yew, P. C., "On the Design of Intercon
nection Networks for Parallel and Mul
tiprocessor Systems," PhD Thesis, Univer
sity of Illinois, May 1981.

A PIPELINED DIGITAL ARCHITECTURE FOR COMPUTING
A MULTI-DIMENSIONAL CONVOLUTION*

K. Y. Liu
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA. 91109

Summary

Two-dimensional (2-D) cyclic convolutions
have found many applications such as image pro
cessing [l] and synthetic aperture radar (SAR)
processing [2], etc. The major problem when one
uses the conventional FFT technique to compute the
2-D convolutions is that complicated matrix trans
pose operation must be performed. To alleviate
this problem, several authors [3], [4] have sug
gested that efficient algorithms using polynomial
transforms can be used to compute a 2-D convolu
tion. Recently Reed et al. [5] extended the
results given in [3], [4] and developed an effi
cient algorithm using the radix-2 fast polynomial
transform (FPT), the fast Fourier transform (FFT),
and the Chinese Remainder Theorem (CRT) to compute
a 2-D cyclic convolution. This FPT-FFT-CRT algo
rithm requires fewer multiplications and about the
same number of additions as the conventional FFT
approach for computing a 2-D convolution. In [6],
the author and Reed et al. proposed a parallel,
pipeline architecture to implement this new algo
rithm for real-time SAR processing application.

In this paper, the work in [5], [6] is further
extended to derive a pipelined digital architecture
composed of modular FPT, FFT, and CRT computational
units for efficiently computing a 2-D convolution.
The extension of this machine concept to ef f i
ciently compute a multi-dimensional cyclic convolu
tion is also presented in this paper.

Let at1 ,t2 and bt1 ,t 2 be two d1 x dz arrays,

where 0 :':_ti:':_ di - 1 for i = 1,2. Then the Z-D
cyclic convolution of at1 ,tz and btl,tz can be

expressed as a one-dimensional polynomial convo
lution [3]

C (Z)
nl

for 0 :':_ n1 :':_ d1 - 1, where (n1 - t1) denotes the
residue of (n1 - t 1) modulo d1 .

*This paper presents one phase of research
conducted at the Jet Propulsion Laboratory,
California Institute of Technology under Con
tract No. NAS?-100 sponsored by the National
Aeronautics and Space Administration.

0190-3918/81/0000/0109$00.75 © 1981 IEEE

109

In (1) the polynomial Cu1 (t), At 1 (Z) and
B(nl-tl)(Z) are of the form

A (Z)
tl

u dz =

a product of

dz-1

=I:
t 2=0
m dz

Z , then one can express Z -

(Zdz/z + 1) and(Zdz/z - 1).

(Z)

1 as

Since these two factors are relatively prime, by
the Chinese Remainder Theorem (CRT) for polynomial
[7], the polynomial congruences

and

C(l)(Z)
1 - C (Z) mod

nl

c(l) (Z) = c (Z) mod (/z;z - 1)
Z n 1

have a unique solution

C (Z)
nl

cil) (Z) (- t) (z dz;z - 1)

+ c?)<z) (l) (/212 + 1)

mod (zd2 - 1)

(3a)

(3b)

(4)

Thus we have decomposed a dz-point 1-D polynomial
convolution into two dz;z-point 1-D polynomial
convolutions. Note that in (4) the arithmetic
required to compute Cn1(Z) from C1(l) (Z) and
Cz(l)(Z) requires only cyclic shifts and additions.

dz/zApplying the same technique to the factor
(Z - 1) yields the following congruences

cii)(Z) _ ci1)(Z) mod (zd214 + r) (5a)

ci;) (Z) = cil) (Z) mod (z dz/ 4 - 1) (5b)

which can be solved by an equation similar to (4).

If one uses the transformation Z = w1u1 given in
[4], where wi is a dz/zth root of -1, on C1 (1) (Z),
then (3a) can be expressed as

ci1) (ul) = ci1) (wlul) = cnl(wlul) mod (u:zn - 1)

Thus cil)(u1) can be computed similar to the case
given for Cz(l)(Z). c1 (l)(z) can be obta~ned by
the inverse transformation u1 = w1-lz on c1 (l)(u1).
Thus we have decomposed a dz-point 1-D polynomial
convolution into four dz/4-point 1-D polynomial
convolutions.

If one repeats the above procedures, then one
can decompose a dz-point 1-D polynomial convolution
into zi, dz/zi-point 1-D polynomial convolutions,
where i is the level of decomposition. Thus in the
computation of a Z-D convolution, the input poly
nomial At1 (Z) is decomposed into zi polynomials
At.(l)(z) by moduloing the appropriate polynomials.
EaEh of these polynomials is then convolved with the
corresponding polymial B(n1-t1)(i)(z) obtained like
wise from B(n1-t1)(Z). The results of these poly
nomial convolutions are then combined using the
Chinese Remainder Theorem to form the final result
Cn1 (Z). Since the above technique uses 1-D poly
nomial convolutions of identical size, modular
polyiiomial convolution and Chinese Remainder
Theorem computational circuits can be used as basic
building blocks to implement a Z-D convolution sys
tem. Moreover, since the computation of these 1-D
polynomial convolutions are independent, these con
volutions cru; be done in parallel.

Theoretically, one can decompose a long Z-D
convolution into many small and identical poly
nomial convolutions. However, fast algorithms may
not exist when computing a small polynomial convo
lution of arbitrary size. It was shown in [4] - [6]
that when dz =; zm and d1 = zm-r+l for some r, 1 < r

_::. m, a fast polynomial transform can be used to
compute the 1-D polynomial convolutions. Thus when
the decomposition level is equal to k, where 1 < k

_::. r, one can use the fast algorithm presented
above involving FPT and FFT to compute the zk,
dz!zk-point polynomial convolutions. Of course,
when k = r, one can use 1-D polynomial convolutions
of the smallest size to compute a d1 x dz-point Z-D
convolution.

As an example the computational flow diagram
of a dl x dz-point Z-D convolution, where d1 =
zm-r+l and dz = zm with r = Z, is shown in Fig. 1.
Note that the maximum possible decomposition level
r = Z is used. Hence this Z-D convolution is
decomposed into 4, dz;4-point polynomial convolu
tions, where each of the polynomial convolutions
is computed using the fast algorithm discussed
above. A pipelined architecture to implement this
example is shown in Fig. Z. A detailed description
of this architecture is given as follows.

110

In Fig. Z the input data is coming in serial
word-by-word alo~g the dz direction, i.e., consecu
tive dz words are considered as one line along the
dz dimensiun in a d1xdz array. The input is con
trolled by a switch. During the first half of the
dZ points, the switch is in position 1. During the
second half of the dz points, the switch is switched
to position Z. Thus the second half of the dz-point
data is added and subtracted with the first half of
the dz-point data to perform the polynomial modulo

(zdZ/Z - 1) and (Zdz;z + 1) operations required by
the first level of the convolution decomposition.
The same technique is applied to the two branches
of the second level of the convolution decomposi
tion except now a delay of d2/4 is needed to per-

form the mod1ilo (Zcl2/ 4 - 1) and (Zdz/4 + 1) opera
tions. Also at proper branch of the second level
of the convolution decomposition, multiplication
by w1,11,:(, where ,11,1 = 1,2, •.• , d2/2, is performed
on the input data to perform the transformation
Z = w1xu1. The output of the second level decom
position is fed into the 1-D polynomial convolu
tion which consists of a pipelined FPT [6], a pipe
lined FFT [l], a multiplier, an inverse FFT, and
a pipelined inverse FPT. The constant filter
coefficients Bt1 (k)(z) is read out from a table

and multiplied with the FFT outputs.

The Chinese Remainder Theorem (CRT) computa
tional units shown in Fig. Z to compute an equation
of the form given in (4) can easily be implemented
by delay lines and adders. From Fig. 2 one can
see that a FFT butterfly type of circuit [l] and
serial memories can be used as the basic building
blocks to implement the system. With the advent
of VLSI technology, such building blocks can easily
be implemented on VLSI chips.

The about technique and architecture for com
puting a 2-D convolution can easily be generalized
to compute a multi-dimensional convo'lution of
dimension greater than 2. Let the' input data be
d1 x dZ x -- x dn arrays, Then it can be shown
that a fast algorithm similar to the FPT-FFT-CRT
algorithm discussed above exists if d1, d2 ,
dn satisfy the following condition:

m
2 ' dn-1

where 1 < ri _::. mi for i 1,2, ... ,n-1.

References

[l] L.R. Rabiner and B. Gold, Theory and Applica
tion of Digital Signal Processing, Prentice
Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[2] C. Wu, "A Digital System to Produce Imagery
from SAR Data," AIAA Systems Design Driven by
Sensors Conf., Pasadena, California, Oct. 18-
20, 1976.

[3] H.J. Nussbaumer, and P. Quandalle, "Computa
tion of Convolutions and Discrete Fourier
Transforms by Polynomial Transforms." IBM
J. Res. Develop., Vol. 22, No. 2, Mar. 1978.

[4] B. Arambepola, and P.J.W. Rayner, "Efficient
Transforms for Multi-dimensional Convolutions."
Electronic Letters, 15 March 1979, Vol. 15,
No. 6, pp. 189-190.

[SJ T.K. Truong, I.S. Reed, R. Lipes, and C. Wu,
"On the Application of a Fast Polynomial
Transform and the Chinese Remainder Theorem
to Compute a Two-Dimensional Convolution."

[6]

IEEE Trans. Acoust., Speech, Signal Processing,
Feb., 1980.

I.S. Reed, T.K. Truong, and K.Y. Liu, "A
Parallel, Pipeline Architecture of the Fast
Polynomial Transform for a Real-Time Synthetic
Aperture Radar Processor," Proc. of Interna
tional Computer Symposium, .Dec. 18, 1980,
Taipei, Taiwan, Republic of China, pp. 1028-
1042.

[7] E.R. Berlekamp, Algebraic Coding Theory,
McGraw-Hill Book Company, New York, 1968.

B D=A+B

d-/ I
MOD(Z 2 -1)

d2-1 n
OUTPUT • C (Z) • t C Z 2

n1 n2 =0 "1,"2

W.R. T. •WITH RESPECT TO

CRT

CHINESE REMAINDER
THEOREM
COMPUTATION
CIRCUIT

d-/4 - POINT
DEIAY LINE

d-/4
DELAY LINE

CRT

B (l)(U)
., 1

1-D POLY
CONVOLUTION
w. r. t. u1

INPUT DATA IN POLYNOMIAL FORM

A11(Z)

1-D PDLY
CONVOLUTION
w,r.t. Z

MOD

/:12_,

CRT

CRT

CHINESE REMAINDER

w. r.t
=WlTHRESPKT

TO

THEORM (CRT) COMPUTATION

u1 =w1-1z

TRANSFOR
MATION

2-D CONVOLUTION
RESULT
C (ZJ .,

Figure 1. Flow Diagram of a dl x dz, Z-D
Convolution with dz = zm and
d1 = zm-r+l, where r=2

INVERSE
FPT
w.r.t.V2

INVERSE
FPT
w. r. t. Z

PIPELINED
FPT
w.r.t. Z

PIPELINED
FPT
w. r. t. u2

PIPELINED
FFT

PIPELINED
INVERSE
FFT

PIPELINED
INVERSE FFT ON 14----'
COEFF. OF POLY,

PIPELINED
INVERSE
FFT

PIPELINED
INVERSE
FFT

PIPELINED
FFT

PIPELINED
FFT

Figure 2. Detailed Implementation of a Pipelined Fast Polynomial Tree for
Computing a d1 x d2., 2-D Convolution with d1 = 2m-r+l and dz = 2m,
where r=2

111

REAL-TIME LISP USING CONTENT ADDRESSABLE MEMORY *

Jeffrey G. Bonar and Steven P. Levitan
Department of Computer and Information Science

University of Massachusetts
Amherst, Massachusetts 01003

Abstract -- The dynamic data structures of
LISP require periodic garbage collection,
prohibiting the use of most LISP implementations
for real-time applications. We propose a scheme
for implementing a real""'.time LISP system which
uses Content Addressable Memory (CAM) to allow
incremental garbage collection. In our scheme,
all basic LISP operations, notably including
retrieving a free cell for CONS, the list building
function, and retrieving a current name-value
binding, can be implemented with four or fewer CAM
searches and very little other computation.
Furthermore, CAMs are well suited for sufficiently
inexpensive implementation with VLSI technology.
our system is not suitable if a virtual memory
environment i-s-needed, and becomes considerably
more complex with CDR-coding. We are currently
implementing a version of our scheme on a
microcomputer.

Introduction

There are many real-time tasks which lend
themselves to Artificial Intelligence (AI)
solutions. Examples include assembly line robots,
rapid transit system controllers, many complex
scheduling tasks, and intelligent assistants for
interactive devices. Such systems will most
likely be designed and tested in LISP. The
flexibility and expressibility of LISP have made
it the "work-horse" language of the AI community.
Can the prototype systems, still written in LISP,
then be transferred to the final "production
model"? We feel they can, but not with a standard
LISP implementation.

The dynamic data structures of LISP require
the use of "garbage collection" to reclaim memory
as the data structures of the program grow and
shrink. Garbage collection is typically done in a
two phase process of first tracing and marking all
active data, and then collecting all unmarked
data. Depending on the size of the memory this
operation can cause serious delays in processing.
These delays can occur any time the program needs
a new free cell. In particular they could occur
during time-critical applications. An alternative
space management scheme, reference counting, is
unacceptable because it allows unbounded delays
whenever a cell is released to the free list.
This is because all successors of the released
cell could becomegarbage and would have to be put

* Support for this work was partially provided by
the Army Research Office under grant
DAAG29-79-G-0046.

0190-3918/81/0000/0112$00.75 © 1981 IEEE

112

on the free list at the same time. For these
reasons a standard LISP implementation is not
considered acceptable for real-time environments.

In this paper we discuss a real-time LISP
implementation. Various LISP machines (e.g.
Greenblatt [7] and De'utsch [4]) although
usually presented as personal computing tools -
have shown that special purpose processors can
vastly increase the speed and utility of LISP
prograns. our paper shows how special purpose
associative memory can be used to gain additional
benefits.

Following Baker [2] we define a real-time
list processing system as having "the property
that the time required by each of the elementary
operations is bounded by a constant independent of
the number of cells in use". Baker's real-time
LISP system involves incrementally compactifying
and. linearizing active cells by moving them
between two memory partitions while leaving the
garbage behind. Wadler [11] analyzes and
summarizes a real-time scheme involving two
processes running in parallel: the mutator is the
application program while the collector keeps the
free-list from becoming empty.

our scheme uses specialized hardware, Content
Addressable Memory (CAM), to create a very fast
real-time LISP system, using a very simple set of
algorithms. This speed and simplicity, which are
the advantages of our scheme, are due directly to
our use of CAM to examine all cells in memory in
parallel.

We begin with a discussion of
presenting our real-time LISP
limitations are discussed. Finally,
our implementation of this scheme.

Content Addressable Memory

General Description

CAM. After
scheme, its

we discuss

Content Addressable Memory (CAM) is memory
organized such that each word can compare its
contents, rather than its address as in random
access memory (RAM), with a value broadcast by the
central processor [5]. This comparison process is
done by all CAM words simultaneously. The
processor can then interrogate the CAM to discover
which words, if any, match the broadcast value.

Each word of a CAM memory has an associated
responder bit (see figure 1). This single bit is
reset if the contents of the word do not match the
broadcast value, held in a register called the

f
... -...

"' --...
=-

COMPRRRND

MRSK

Cf/Hff/IT

fl/J/Jl?f55!18Lf

llEll/JI? r

RESPONDER
19ITS

\.___________.
...._-----I 19ITS WIDE _____-...-

SOME-NOIE D
1511

Figure .l:.. CAM Organization

cornparand. All responder bits are typically OR'ed
together and their disjunction is available to the
processor as the signal SOME-NONE. Using
SOME-NONE the processor can determine if there are
any words that match tne comparand. Additionally,
a function to count the number of responders is
often provided.

Another function the responder bits provide
to the processor is to allow it to select a single
responder if more than one exists. This is done
by daisy-chaining the responder bits such that
when the signal SELECT-FIRST is generated by the
processor only the first responder in the chain
remains set and all the others are reset. The
processor can also perform the function SET-ALL
which sets all the responder bits true. This is
usually done before the comparand is broadcast to
the memory.

Along with the com par and the processor al so
broadcasts a mask value. This is used by the
words of the CAM to determine which bits of the
word are to participate. For bits in the word
where the mask bit is not set, no comparison takes
place. The full operation is:

for all Words J
~-for all Bits I in Word J

~- Responder bit[J] <
Responder bit[JJ

and -
((Mask_bit[I]

and
-CAM_bit[I,J]

or not Mask bit[IJ
)-

Com par and_ bit[I J

Note that this operation takes place in all
in parallel.

words·

113

The processor can also perform the operations
READ-RESPONDERS and WRITE-RESPONDERS. These allow
the processor to read the contents of and change
the contents of all words whose responder bits are
set. This operation is often implemented to be
under the control of the mask. Finally it is
often convenient to allow the processor to access
the CAM as a regular RAM and allow reading and
writing of single words .

Suitability For Very Large Scale
(VLSI)

Integration

CAM is wel 1 suited to VLSI implementation •
Foster [6 J and Mead and Conway [1 OJ both discuss
the practical design of a VLSI CAM circuit. Two
~f the most important criteria for determining if
a circuit can be implemented efficiently in VLSI
are the regularity of circuit components and the
number of input/output pins necessary [10). CAM,
like RAM, has an inherently regular sub-structure:
the word.

To minimize the pinout (the number of
input/output pins needed) several techniques can
be used. First both the comparand and the mask
values can be broadcast to the CAM in a bit serial
protocol. This would mean that comparisons are
done one bit at a time across all words in
parallel. Bit serial operation would slow down
the comparisons somewhat, but only on the order of
the number of bi ts in a word. (a)

To minimize pinout further, the data in, data
out, and address lines of the circuit can be
multiplexed onto the same pins of the package.
This technique has been used successfully for
other types Of VLSI circuits, for example, the
Zilog Z8000 microprocessor. Minimizing the number
of pins (and output drivers) would significantly
reduce the cost of the circuit and increase the
area available for storage.

The cost of CAM has been estimated to be 1.5
to 3 times the cost of an equivalent size RAM [6].
Memory sizes up to 64k of 32 bit words per circuit
are not inconceivable [10). Printed circuit cards
containing 4k bytes of CAM have been on the market
since 1978 [8].

Finally, CAM architectures lend themselves to
a solution of the yield problem for VLSI. The
problem is that a single fl aw in one pl ace of a
VLSI circuit will cause the whole circuit to be
unusable. As the physical area of VLSI circuits
increases, so does the the probability of a flaw
ruining a given circuit [10). Since CAM
operations, unlike RAM operations, do not depend
upon where in memory a particular value is stored,
it would be possible to disable flawed words of a
CAM circuit, after testing, and still use the
resulting (smaller) memory.

(a) The time per bit would be on the order of 10
nano-seconds. Therefore, even with bit serial
operation, with reasonable word lengths, the time
for a CAM operation would be on the order of the
time for a ;np.cbi?"e instruction.

For most applications CAM words are quite
long. The Semionics CAM, for example, has 256
bytes (2048 bi ts) per word [8 l. This allows
entire records of data to fit in one word. A
record might contain an employee's name, address,
telephone number, pay rate, regular hours,
overtime hours, etc. This would allow searching
on any field of the record to retrieve it.
Although there are standard techniques for
spreading records across two or more CAM words,
this slows the search considerably [6].

An ideal CAM for LISP has much shorter words
since it is desirable to have only one LISP cell
per CAM word. We discuss several types of LISP
cells below. Here we concentrate our discussion
on list cells which have seven fields: Flags,
Garbage, Cell type, Left, Left_ type, Right and
Right_type. -

The Flags field is used for complex CAM
searches involving logical disjunction and
conjunction of different match criteria [6]. The
bi ts in the Flags field are used as "temporary
storage" for the responder bit of each word. The
Flags field could be replaced by several auxiliary
responder bits for each word and CAM operations to
logically combine them [6] [8].

The Garbage field need be only
indicating if the cell were "free".
bit we compl~tely dispense with the
found in most LISP implementations.

one bit,
Using this
Free 1 ist

The Cell type field indicates if the cell is
a list cell, a string cell, or any one of a number
of other types. We discuss this in detail later.
The Cell type will facilitate any desired strength
of typing and also allow cells of different types
to share the same memory space (without
partitioning) and the same garbage collecting
scheme.

The Left type and Right type fields will also
en force typing. They allow us to pack short
integers, bit strings, and pointers to machine
1 anguage code into the cell. In addition they
simplify the garbage collect process by allowing
us to test whether a given Left or Right is a
pointer.

The Left and Right fields would, as usual, be
large enough to point to any other cell in memory.
That is, a memory with 2**n CAM words (cells)
would require n-bit Left and Right fields.

The CAM operations that need to be supported
are SET-ALL, MATCH, SELECT-FIRST, SOME-NONE,
READ-RESPONDERS, WRITE-RESPONDERS, READ, and WRITE
as outlined above. The COUNT-RESPONDERS is not
necessary. Additionally, for the name-value
binding scheme outlined below, a FIND-GREATEST
function would be helpful.

114

Real-Time Li st Processing with CAM

The Algorithm on~ Simplified LISP CAM

We begin the description of our algorithm
using a CAM in which each word contains one
simplified LISP cell with only three fields: Left
(CAR) ~md Right (CDR), which both point to another
LISP cell, and a Ga~bage bit (see figure 2).

GRRBRGE
v

I I LEFT RIGHT

Figure ~ Simplified CAM LISP Cell

The key observation about garbage collection with
such a cell is that we can find if there are any
pointers to a given cell with two CAM operations:
a CAM search of the Left fields and a CAM search
of the Right fields, of all cells in memory.

Any practical implementation would use CAM
words to hold several different kinds of cells.
In particular, our implementation uses special
cell types to allow garbage collection of strings,
name-value bindings, and the primitives of the
GRASPER graph processing language [9]. We discuss
how these special cells are handled after
12resenting the simplified one cell type algorithm.

When a free cell is needed, a CAM search is
done for a cell whose Garbage bit is set. This is
done by the Supply free cell routine in figure 3
(which appears at the-end of the paper). One of
these cells is selected with the SELECT-FIRST
operation. This cell, call it C, is returned as
the needed free cell. It is still necessary,
however, to propagate "garbageness" to the
sub-structures of this cell. This is done by the
Potentially make garbage routine in figure 3. We
do this by first-CAM searching the Left and Right
fields of all other cells for equality to C.Left.
If there are no responders to this search
(SOME-NONE has value NONE), then the cell pointed
to by C.Left is garbage and we set its garbage
bit. If C.Left = NIL, then the search need not be
done. We handle C. Right in an identical way. The
algorithm requires that all cells be initialized
with their Garbage bits set and their Left and
Right fields set to NIL.

A piece of list structure potentially becomes
garbage when one of possibly many pointers to it
is deleted. This can occur in several ways during
the execution of a program. The functions REPLACA
and REPLACD explicitly delete pqinters from the
left (CAR) and right (CDR) fields of list cells.
The function SET (assignment) also deletes the
pointer to a variable's old value. These
functions all call the routine
Potentially make garbage on the the pointer they
are deleting. This routine determines whether to
set the Garbage bit of the head cell of the

structure pointed to. All sub-structure will be
handled if that head cell is made garbage and when
it is actually reused.

Circular lists cannot be garbage collected in
our regular scheme because there is always a
pointer to any cell in the circle. They can be
accommodated, however, either by requiring the
user to release them explicitly, or by simulating
them with a "lazy evaluation" scheme (see Allen
[1] for details on lazy evaluation).

Extensions For Other Cell Types

Our scheme is easily adapted to other kinds
of dynamic data structures. Here we will discuss
an implementation for strings. Remember that, as
discussed earlier, our LISP list cell actually has
seven fields. The simplified cell is augmented
with a Type field for the cell and for the Left

.and Right fields. These fields are necessary for
the algorithm, but also allow us to enforce
typing. Typically, typing is done by putting all
of one kind of data together so that address alone
can be used to determine type. In our scheme, if
a field is of type T, it may only point to a cell·
of type T.

Strings are made up of linked lists of cells
(see figure 4). String cells, like any other cell
type, must be fit into the existing size CAM word
and must have Type, Garbage, and Flags fields •.
They also have several bytes of character data and
also Next, a Cell ptr implicitly of type string.
The implicit typing-saves space in the cell and it
does not cause a problem, since string cells can
point only to string cells.

GARBAGE

CELL TYPE NEXT

51 STRING R E A L

52 Jm:;:Jl I T I I i M I E lNULLl q
S Y S T E

LI LI5T

CELL TYPE A FLAGS LEFT
· ~~ TYPE

GARBAGE
tha string "REAL-n~E" (Sl) and• list cell.CL!)
whose CAR points to a string beginning "SYSTE".

Figure i!, Exa.11ple !?!. £!1.1 LISP Strings

Unlike a list, when the head of a string
becomes garbage, the entire string is known to be
garbage. Potential "garbageness" need only be
propagated down the Next field link and the
Other_ptrs_to operation need not be done,

For example, in figure 4, assume that cell L1
is made garbage, When the cell is chosen to be
reused, we attempt to propagate "garbageness" to
L1.Left, If there are no other pointers to cell

115

S3 the string "SYSTE ••• " becomes garbage, S3 is
marked garbage and when it is reused no other CAM
searches need be done.

Atoms are also implemented as special cells.
In addition to the Flag, Cell type, and Garbage
fields, atoms have a Value field and Value type
field, pointing to the atom's static binding~ and
a Print_name field implicitly of type string (that
is, pointing to a cell of type string).

_! Truly Associative "A-List"

In LISP each function cal 1 creates a set of
name-value bindings which exist during the
execution of the function and disappear at its
completion. This is roughly equivalent to the
formal to actual parameter bindings in other
programming languages. Traditional binding
schemes use one or more lists to associate names
with values, A list used this way is called an
A-List for Association-List (see Allen [1] for
more details).

In our scheme the A-list, like the Free list,
does not exist. Instead the bindings are held in
a set of distinguished cells, existing anywhere in
CAM. When entering a new environment, we
increment an environment counter and create a set
of CAM cells to hold the names bound in th~t
environment, their values, and the new environment
number. Now we can ask the question above as a
single compound CAM search for a name-value
binding within an environment, and retrieve the
current binding directly. Since the current value
of a name might not be in the most current
environment, we need to search for the greatest
environment number for that name.

When an environment is exited, a pair of CAM
operations is executed, Fir st a search for al 1
environment cells with the current environment
number, followed by a WRITE-RESPONDERS operation
to make all these cells garbage. Since no other.
cell will poin't to these binding cells, even if
some do point to their descendants, they can all
be turned into garbage in one operation.

Figure 5 summarizes all the cell
discussed in this section.

types

Garbage, Flags, and Cell_type fields occur in each cell.

List Left, Left type, Right, Right type
Atom Print_r.ame-(implicitly of type string)

Value, Value type
String Character_1,-:.,Character_r., Next (implicitly

of type string)
Environment Environment_r.1JDber, Name (implicitly of

type atom), Value, Value_ type

Other Issues

CDR-Coding

Many recent LISP implementations use
CDR-coding, compact encodings of list
representations which take advantage of
statistical regularity in list structures (see
Bobrow and Clark [3] for a summary and discussion
of these schemes). A CAM augmented LISP with
CDR-coded cells is easy to imagine, though it
would require considerable extra time and
complexity in the implementation of the basic LISP
operations. Finding all pointers to a given cell
would, in general, require a CAM search for each
possible interpretation of a cell pointer field.

Given decreasing hardware costs, we did not
feel it necessary to compromise the simplicity and
speed of our algorithms. In particular,
CDR-coding offers no solutions to our primary goal
of real-time operation since it reduces space
rather than time needs.

Virtual Memory

Our scheme does not support virtual memory.
In general, it would be impossible to perform the
test Other_ptrs_to on a given cell without paging
every active page of the virtual memory into CAM.
The application programs we envision for our
system can al ways be tested in advance to
determine their space needs. More CAM cells can
al ways be added without a time penalty.

Our Implementation

We are currently implementing the LISP system
discussed above using a Z80-based microcomputer
and BOK bytes of CAM. The CAM, Semionics
Recognition Memory (REM) [8], is organized as 320
256-byte words (called "super words" in the
company literature). We do not need such long
words and have cut the memory into vertical
slices, yielding 32 LISP cells per word. Although
this means that many of our CAM operations will
have to be repeated 32 times in the worst case
(once for each vertical slice), the system runs at
an acceptable speed. The real-time properties of
our system remain intact.

The project is a pilot study to examine two
issues. First we wish to show that even with
relatively slow CAM (bit serial searches on the
order of 1 micro-second per bit) which is not
organized to our needs, we can build a real-time,
self-contained LISP system.

Second, the graph processing language GRASPER
uses many associative operations which can be
supported by CAM. (b) GRASPER objects have the

(b) GRASPER is used to represent and operate on
semantic nets, augmented tran si ti on networks
(ATNs), HEARSAY-II style blackboards, and other
associative data structures used by AI projects at
the University of Massachusetts.

116

same dynamic allocation needs as other LISP
objects. We will embed a subset of the GRASPER
language into our LISP system using the cell
typing conventions already discussed. We expect
to show the advantages of a CAM based GRASPER
system as part of a feasibility study for the
design and implementation of a state of the art
CAM on our VAX 11/780.

Conclusions

We have presented a scheme for implementing a
real-time LISP system by using Content Addressable
Memories for storage of the basic LISP cells. Not
only does our scheme perform all elementary
operations in real-time, it al so has the following
other advantages:

1. All cells are available for use, in
contrast to other real-time schemes.

2. Retrieving the correct value for a name
can be be done truly associatively,
always requiring only two CAM operations.

3. Strings and other dynamic data types can
be elegantly and efficiently integrated
into the basic scheme without
partitioning memory.

4. CAM is eminently suited to modern VLSI
implementation techniques.

Our scheme does have 1 imitations, however:

1. Circular lists cannot easily be garbage
collected.

2. Our scheme does not lend itself to a
virtual memory environment.

We believe that even given the above
limitations, our scheme is an attractive
alternative for self-contained, dedicated systems.
It is usable in a real-time environment and all
basic LISP operations perform extremely quickly.
We believe that tested AI systems written in LISP
could be transferred to a CAM-augmented LISP
machine without costly redesign and without
recoding in a standard systems programming
language (e.g. assembly language or Ada). In
this way we hope our scheme will aid in the
creation of simpler yet more powerful
computer-controlled systems.

Acknowledgements

We would like to thank Caxton Foster for his
weal th of knowledge about CAMs and "hardware
solutions". Raj Wall is working with us to
implement the system. our interactions with him
have been very valuable. John Lowrance provided
us with much information about the basic
implementation and operation of LISP and GRASPER.
We would also like to thank Jeff Conklin, Dan
Corkill, Elliot Soloway, Bev Woolf, and the
referees for their careful reading of earlier
drafts.

References

[1) John Allen, Anatomy of LISP, McGraw-Hill
Book Company, (1978), pp. --;li9-153.

[2] Henry G. Baker, "List Processing in Real
Time on a Serial Computer," Communications
of the ACM, (April, 1978), pp. 280-294.

[3] Daniel G. Bobrow, and Douglas W. Clark,
"Compact Encodings of List Structure," ACM
Transactions on Programming Languages and
Systems, (October, 1979), pp.266-286.

[4] L.P. Deutsch, "A LISP Machine With Very
Compact Programs," Proceedings 3rd I JC AI,
Stanford, California, (1973), pp. 697-703.

[5] Caxton C. Foster, Computer Architecture,
second edition, Van Nostrand Reinhold Co.,
(1976).

[6] Caxton C. Foster,
Parallel Processors,
Co., (1976 •

Content Addressable
Van Nostrand Reinhold

[7] R. Greenblatt, LISP Machine Progress
Report, AI Lab-.~- M.I.T., Cambridge,
Massachusetts, memo 444, (August, 1977) •

[8 J Sydney Lamb, "An Add-In Recognition Memory
For S-100 Bus Microcomputers-Parts 1,2, and
3, 11 Computer Design,(August-October, 1978).

[9] John D. Lowrance, GRASPER 1.0 Reference
Manual, Department of Computer and
Information Science, University of
Massachusetts, Amherst, Massachusetts,
Report 78-20, (December, 1978).

[1 OJ Carver Mead, and Lynn Conway, Introduction
to VLSI Systems, Addison-Wesley Publishing
Co. ,CT§80).

[11) Philip L. Wadler, "An Analysis of an
Algorithm for Real Time Garbage Collection,"
Communications of the ACM, (September,
1976). pp. 491-500.-

117

Figure 1:. Algorithlll ~ £!!! Aupented .bill Garbage
Collection

function Supply free cell : Cell ptr;
(* called by CON~ to find a cell it can use

to build a list structure with. In addition
this function does the incremental garbage collect •)

var Free cell, Temp : Call ptr;
begin - -
search for first Free cell from Cell
---wii'ereCell[Free cell] .Garba'ge

do beain -
if Cell[Free cell].Left <> Nil ptr
- then begin -

--Teiii'P:= Cell[Free cell] .Left;
Cell[Free celll.r.e"ft :=Nil ptr;

(* These two make sure a check for other
pointers = Cell[Free cell] .Left will
not respond to that field itself •)

Potentially make garbage ('remp)
(• propagate-"garbageness" •)

end• -·
if Cell[Free cell].Right <> ~il ptr
~begin -

Temp := Cell[Free cell].Right;
Cell[Free cell]. Right := Nil ptr;

<• These tw:> make sure a-check for other
pointers= Cell[Free cell].Right will
not respond to that field itself •)

Potentially make garbage (Temp)
(* propagate-"garbageness" •)

end;
return Free_cell
encr-

else System error ("Cell space full")
~;-- -

procedure Potentially make garbage (C : Cell ptr);

~CJ.Garbage - - (C)-Cell[·- ~ Other_ptrs_to
end;

function Other_ptrs_to (C : Cell_ptr)
.!!!:_Responder : Cellptr;

ooolean;

begin
search for Responder from Cell

.=!!:!.;

where not Cell[Responder].Garbage
and Cell[Responder] .Left = C

do return "true
else-search"fO'r Responder from Cell
-- --- Where not Cell(Responder] .Garbage

~ Cell[Responder].Right = C
do return true
erse return false

118

(continue• on the next page.,.)

(••• figure 3 continued)

procedure Init_CAM;

var Responder : Cell_ptr;
begin
search for Responder from Cell
-where true --

end· --·

do begin
Cell[Responder].Garbage :=true·
Cell[Responder].Left := Nil""°iitr:
Cell[Responder].Right :: Nif-pt;
end

Notational Conventions
The CAM is seen as an "associative" array of records, where
each record represents the data in one CAM cell. Standard
indexing into the array allows us to treat the CAM as RAM.
From the above we have two data types:

Cell_ptr = 1 •• Num_cells;

Cell = associative array [Cell ptr]
of record-- -
~ Garbage : boolean;

Left, Right : Cell ptr
end -

The b'asic CAM operation is:

search for [first] <index variable into CAM>
--rroi<CAMar;:ay name>
~e <boolean expression>
O'O"<Statements>
else <statements>

The <index variable> is available '1ithin the do <statements>
to syntactically represent all cells that meet the search
criteria. Tilis <index variable> is a_ free variable ranging
over all possible values, that is, indexing all cells in the
CAt4 array. For each CAM cell Where the <boolean expression>
is satisfied, the do <statements> are executed. Tue do
<statements> are perfCir:11ed in parallel for these cells. Iii
the case of "search for first", the index variable gets set
to the value of'""E'Fie"first--;:esp:,nder. In the case that no
cells satisfy the <boolean expression>, the else
<statements> are executed. Typical CAMS do not support ~
generality implied by this construct. In particular,
arbitrarily complex <boolean expressions> will take N CAi~

searches, where N is the n1.111ber of disjuncts in a
disjunctive-normal-form version of the <boolean expression>,
and do <statements> are limited to assignments to the cells
indexed by the <index variable>. Other operations can be
supported either by more intelligent CAM cells or by a
micro-coded CAM controller. Our algoritn11s use the
construct in ways easily implemented in CAM.

119

ABSTRACT

THE M.A.P. PROJECT
AN ASSOCIATIVE PROCESSOR

FOR SPEECH PROCESSING

*
V. CORDONNIER - L. MOUSSU

University of Lille
(FRANCE)

*

MAP is an associative multiprocessor of medium
size. It has been designed for experimentation in
pattern recognition area - especially speech reco
gnition. The machine is composed of sixteen micro
programmable processors. At'the microprogram level,
every processor is autonomous and can perform its
task without receiving any external command. At
the collective level, control is assumed by an
extra master processor. This processor is concer
ned with Input-Output and common orders distribu
tion. The architecture presents special accomoda
tions for synchronization between processors. Some
of them are driven by an associative arrangement.
The total instruction rate is 68 MIPS, allowing a
real time processing of the speech.

INTRODUCTION

The architecture of a multiprocessor machine
must optimize, both data and instruction flows.
Often, these two goals appear to contradict each
other. However some facilities may occur when the~
se flows are driven with a good regularity or re
petition of simple pattern. Particularly, when a
unique model of control distribution and data ma
nipulation may be taken as a general representa
tion of the behaviour of the processors, the ar
chitecture may be designed according to it (for
example - vector computing with SIMD architecture).

In the most general case it is quite impossi
ble to find out such a model and, accordingly, to
obtain a satisfying balance between two cons~
traints :

- availability of a flexible control scheme
for parallelism able to support distributed algo
rithms

- realization of a fast and simple communica
tion tool between processors.

The first goal implies the design of indepen
dant and autonomous processors but, conversely,
represents a difficulty for getting an easy solu
tion for the second one. Communications have to be
localy controled by each processor according to a
communication protocol. Then, data transfers, are
complicated and slow.

So, when studying a special purpose architec
ture the first step is to point out the regular
properties of the application involving facilities
in control distribution and data.

0190-3918/81/0000/0120$00.75 © 1981 IEEE

120

Pattern recognition applied to voice analysis
has two typical characteristics :

Input data flow is strictly sequential and
periodic

- The amount of data to be held at a time is
not very large and may be easily ordered.

THE SPEECH RECOGNITION CONTEXT

The most usual way to drive a speech recogni
tion process is to use a mathematical representa
tion derivated from signal processing models [11].

The aim of the project is to use an associa
tive model related with a data base organization
[4].

Speech processing may use as an input unit, a
channel analyser. It is composed of sixteen input
filters distributed along the voice spectrum. At
every sampling period, a filter issues a digital
value in proportion to the quantity of energy re
ceived in the channel.

According to the noise and the limits of pre
cision, one value may be represented by a binary
positive number of height bits. Then a sample is
a 16 bytes vector or a 128 bits word. Period may
be taken between 10 and 50 ms.

The input data flow may be looked as a two
dimensions array in a timefrequency diagram (fig.
1). [9][10].

At the phonetic level, the element to be
identified is named "phonem" and represents a ty
pical sound produced by the speaker. [12][13].

A phonem stretches itself in the two direc
tions time and frequency -as a fuzzy pattern- it
seems to be possible to recognize such a pattern
by comparison with models which have been stored
in an associative memory [2][8]. Unfortunatly the
direct comparison is impossible and it is neces
sary to extract from the input flow some charac
teristic informations such as :

- mean value
- peak location
- ratios in upper and lower frequencies
- measurement of relief

etc ...

Theseinformations come out from an horizontal
(time) or vertical (frequency) or mixed analysis
[3].

Using these informations, a process must fol
low various tracks among the stored patterns used
as references. It has to compute a dynamic score
for each of them and to decide :

- rejection of a baq candidate
- acceptance of one or several good

candidates ,(a choice will be done
at the upper lever referring to syn
tax or semantics)

I·

- pursuing the operation with the following
samples

- activate new candidates.

Although MAP is designed for experimentationrather
than for exploitation, the previous considerations
seem to be general and lead the organization of
storage. The informations used as references are
sets of samples. These sets are organized in file&
Some files are time indexed and represent phonems.
Some files are type indexed and gather all the
samples which have similar properties or measure
ments (fig. 2).

A reference sample located in the date memo
ry may belong to several files and the associative
process will have to follow various links before
idntifying a phonem. Consequently this memory must
present the following characteristics :

- basic items_ are samples (128 bits)
- there is a need for a fast (parallel)

access to one sample.
- facilities must be provided for multifiles

description (linkage).

It is obvious that a multiprocessor is adequate for
such a processing [5], [6] ,[7] including :

- parallel computing in order to extract
significant informations from unknown sam
ples.

- parallel access to models of patterns.
- comparisons between vectors and measure-

ment of distances.

GENERAL DESCRIPTION OF MAP

The processing model derived from this appli
cation may be described by the flow of fig. 3.

MAP has been designed from this model with
two control levels. It is composed of sixteen 8
bit microprocessors. The Low Level Control (LLC)
is local to the PE.and brings facilities for auto
nomous processing. The High Level Control (HLC) is
unique and has to drive, organize and synchronize
collective activities.

At the High Level a single control unit
issues general commands that are identified at the
same time by the PEs. A general command is initia
ted when the former one has been achieved by all
the processors. From this point of view, the machi
ne seems to have an SIMD architecture with a se
quential running of the program.

At the Low Level, a specific program is loca
ted in the control memory of each processor. So
every processor is able to perform its own and par
ticular part of the task. A processor must take
into account :

- its own location
its status (resulting from previous opera
tions)

- informations produced by neighbours.

121

Two buses allow communications between HLC
and LLC. The command bus is provided for distri
buting general commands or common data in paral
lel. The control bus is organized in a polling
selecting manner and driven by the HLC processor.
By this means the HLC processor may observe clo
sely the activity of the PEs and pick out final
results.

Every processor may access two routing re
gisters. The first one -128 bits- may be shifted
to the right along all the sixteen PEs. The other
one -136 bits- may be shifted to the left via the
HLC processor. Routing operations are controled
by the processors themselves. Two neighbour pro
cessors or a consecutive set of processors may
request a partial use of these buses for local
communications.

The storage is divided in two parts : one
processor possesses its own control memory. Accor
ding to the characteristics of the chip - 8 x 300-
this control memory is a 4K - 16bits RAM- . During
processing, this memory cannot be altered and is
used as a ROM.

Data memory is organiz2d in a 128 bits wide
- 16 K words store. Every slice of 8 bits is de~
dicated to one processor. There are 9 adresses
producers : every pair of processors PLUS the HLC
processor may access the data memory through a
priority encoder. This unit is provided for con
flicts management but, most of the time, these
conflicts may be avoided by synchronization at the
LLC.

They are mainly two types of informations to
be stored in the data memory :

- voice samples represented by sixteen orde
red bytes

- linking informations, that is to say,
addresses represented by 8 double bytes.
One word of memory contains 8 links, thus
a sample described by this word may belong
to 8 different files.

As these linking informations are used to cons
truct complex data structures between reference
samples, the data memory is seen as a special pur
pose, read only, data base with a fastened access
and a limited capacity.

THE PROCESSING ELEMENT

In spite of an appearance of choice, they
were not a great amount of possibilities for the
microprocessor of a processing element

- a custom designed processor was rejected
because of the delays

- rapidity is a major argument
- ability for microprogramming is important
- data manipulations are considered to be more

interesting than computing possibilities

The typical architecture of 8 x 300 from Signetics

seemed to present the best characteristics for
these criterions. [l]

A processing element is composed with :

- CPU : 8 x 300 - 250 ns for one instruc-
tion

- three registers for memory control
- four registers for routing
- two registers for exchanges with the con-

trol and command buses
- two registers for sorting
- two registers for synchronization

four 16 K bits static RAMS arranged in
4 K - 16 bits store.

All the program is loaded into the RAM before
starting, though a special loading bus. This pro
gram is composed of

- a general command analyser
- various sequences corresponding to the

commands. The maximum number of sequences
is 255. They are initiated by HLC

- synchronization and communication proce
dures.

During a sequence a processor is able to
access the data memory, to exchange informations
with its neighbours, to receive and send informa
tions from or to the HLC processor, to present and
accept synchronization demands and, of course 1to
perform local computations. A macro-assembler bring
facilities for writing the sequences in parallel.

Fig. 4 show the architecture of a PE and fig.
5 is a simplified representation of the program ·
organization.

In order to increase the performances of col
lective operation. a wired sorting unit has been
added to the processors. This unit gives at any
time the maximal value among those presented in
parallel by all the processors. This SORTER is a
tree and returns to all the processors the number
of the winner.

It takes three instructions (750 ns) before
getting the results of a sorting operation :

MORE VALUE TO RSORT
COMPARE WINNER'S CODE TO LOCAL CODE
JUMP IF NOT EQUAL

Many general purpose sequences have already
been written, let us give some examples (I is one
ins.truction or 250 ns) :

- compute the mean value rounded in
one byte (12 I)

- compute the location of gravity center
(16 I)

- compute the moment of inertia with regard
to a processor (28 I)

- find the best ressemblance between a
given sample and a file of l references
with distance 1

122

16
d = l

1
Ix. - r. j + { 5 + 10 l). I

l l

find the best ressemblance with distance

16
d = l Vx~ - r~ + (5 + 18 l). I

1

The general control processor is also a 8 x 300
module. Over and above the communications with the
PES it has a private memory used as a general
control store. This memory is shared in a multi
access arrangement with a conventional processor.
Because of the low rate of the inputs and outputs,
a microprocessor is sufficient, then the HLC pro
cessor has only to search and distribute general
commands.

This host processor also has two extra roles

- load the PES programs before executing
a program

- compile new programs to be loaded from
macro-assembler to 8 x 300 machine lan
guage.

Fig. 6 shows the architecture of the whole system.

THE SYNCHRONIZATION UNIT.

Because it is the most important part of the
distributed control, the synchronization unit will
be described in detail.

There are two occasions where processors must
execute in a synchronous way

at the end of a LLC sequence in order to
obtain a new general command from the HLC
processor

- before communications, sorting operations
or memory accesses.

All the processors must have exactly the same
behaviour during the operations because all of them
are working at the same level. For this matter the
synchronization is designed according to an asso
ciative model.

The first family of synchronization tools is
applied to well delimited sets of processors. For
one given set each processor K has two flags

- a DK Flag used as an output device
(demand of synchronization in the set)

- a CK Flag used as an input device
(command of synchronization for the who
le set).

The logical relationship between these flags
is easily realized with a unique AND circuit :

Dn K = 1,n

Synchronization occurs when each of the PES of the
set execute the same sequence of instructions

SET DK = TRUE

WAIT : WHILE CK = FALSE GOTO WAIT

NEXT

As a common clock drives all of them, the proces
sors are going to execute the NEXT labeled ins~.
truction at the same time. This operation is pos
sible because the 8 x 300 processor is able to
perform in one instruction the test of CK and the
corresponding jump.

Tools have been wired for the following sets :

Sets of two PES

(P1P2)(P3P4) ••. (P15P0) Flag D2

Set of four ' (POP1P2P3} .• (P12p13p14pl5)Flag D3

Set of sixteen (POP1 (Pl4p15) : Flag D4

Set of seventeen (P0P1 .•.....•.. P14P15 plus the
HLC processor) : Flag D5
this latter set is particularly used before get
ting a new ge~eral command.

Another manner to obtain synchronization bet
ween groups of processors consists of a dynamic
construction of the group. The interest of such
a tool is to allow synchronization by observing
the results of processing rather than the location
of processors. This is necessary within an asso
ciative process when processors may issue some
specific result, the value of which is significant
for driving cooperation between them. Namely a
subset of the network may request a synchroniza
tion because every processor of that subset holds
a typical result while all the others do not.

For that purpose, a processor may display one
of the heigt names (0 to 7).

Names 0 and 1 have special meaning
0 the choice of a synchronization name has

not yet been done
1 no synchronization required

2,7 effective synchronization names.

The management of these names is realized accor~
ding to the following rules :

(a) if there exist, at least, one synchroniza
tion name equal to 0 no synchronization is
possible

(b) in order to allow other groups to synchro
nize, a processor must display its choice
(~ 0) as soon as it is in position to do

(c) displaying a name is not realy a request for
synchronization ; the request is represented
by an extra D flag. (D6}

(d) among the processors that have displayed the
same name, and AND circuit is dynamicaly
provided and delivers the C command when all

123

the D flags have been switched on ..

Realization is quite simple and entirely sta
tic. First a gate is provided in order to take in
charge the (a) rule.

As there are six names, each bf them is con
troled by one AND gate. Every gate is control.ed
by all processors through a network driven by na-.
mes. This network must decide whether one name 1 for
one processor, is active or not.

Fig. 7 presents an illustration of some usual
cases of synchronization.

CONCLUSION

It is easier to design a special purpose pro
cessor than a general purpose one. The behaviour
of programs is more closely identified and a spe
cific model of instructions and data flow may be
established. Accordingly, the architecture is more
sophisticated and the performanc'e increased.

In the MAP project these considerations gave
the possibility to take advantage of two points :

- the main data structure is a fixed vector.
- the control may be separated in a high

(general) and a low (local) level.

The former point imposed to realize a very
flexible synchronization system between proces
sors. Such a system brings a great facility for
writing parallel programs.

This study was supported by CNET, the French
administration for Research in Telephone and Tele
communication area. The machine in now under test
and must be operationnal in a few weeks.

BIBLIOGRAPHY

[l] SIGNETICS - 8:JC 300 reference manual -
8T32 reference manual.

[2] S.S. YAU, H.S. FUNG - Associative processor
architecture : A survey. Computing
surveys Vol. 9, n° 1, March 77,
pp 3-27 ...

[3] C.A. FINNILA, H.H. LOVE - The associative linear
array processor. IEEE Transactions on
computers, Vol. 26, Feb 77, pp 112-125.

[4] D.C.P. SMITH, J.M. SMITH - Relational data base
machines. Computer, vol. 12, march 79,
pp 28-38.

[5] P.J. SADOWSKI - Exploiting parallelism in a re
lational associative processor. 4th
Workshoo on Computer Architecture for
non numeric processing, ACM Syracuse
University, Aug. 78, pp 99-109.

[6] J.R.CARLBERG - A paged hardware associative
memory. David W. Taylor Naval Ship

Research and Development Center
BETHESDA MARYLAND, Aug. 77.

[7] A.D. FALKOFF - Algorithms for parallel search
memories. Journal of the ACM 9, 4,
Oct. 62, pp 488-511.

[8] S.S. YAU, C.C. YANG - Pattern recognition by
using an associative memory. IEEE
Transactions on computers 15, n° 6,
Dec. 66, pp 944-947.

[[9] H.F. SILVERMAN, N.R. DIXON - The Modular Acous
tic processor, IEEE Transactions on
Acoustics speech and signal proces
sing 25, n° 5, Oct. 77, p 367.

[lO]L. MOUSSU - Modele fonctionnel de memoire as~
sociative ; application au traite
ment de la parole. These 3eme cycle
Feb. 81.

[ll]J.L. FLANAGAN - Speech analysis, synthesis and
perception. Springer Verlag, NY.
1972.

[12]R. de MORI - Recent advances in automatic
speech recognition. Int. Journal
Conference on pattern recognition
KYOTO, Apr. 78.

[13]P. QUINTON - Contribution a la reconnaissance
automatique de la parole. Utilisa
tion de methodes heuristiques pour
la reconnaissance des phrases.
These d 1Etat, Rennes 1980.

124

I

FREQUENCY
Spectr.al Analy~is

o~

FIGURE 1

Peak Value Uppqr Freq. Lower Freq.
I I

I B I
I
I
I
I
I
I

I _.I
\
' .. '

p I
I I I

.... '
I I

•, : ,)
' ,

... "i
I "" I
I (I

Ut-1 --..;.•-,.....,,;-•......a!-11
.... "><"" •, "

>"
•' ',

'Nt-----l--,o--1,1--e-...... ---~ -
I I _...-•
-...,. I

........ , -,, _.,.
..,.•.-''

1'' I '""'I
z,___..._.~·---...... ~· -

FIGURE 2 DATA ORGANIZATION

THE TIME-FREQUENCY ARRAY.

FIGURE 3

125

Local
Status

CONTROL DISTRIBUTION

ROUTING SYNCHRONIZATION SORT ROUTING

LIN RIN ROUT

RSTAT RCOM
COMMON BUS FOR CONTROL AND COMMAND --- --

CONTROL PROCESSOR LOCAL BUS MEMORY
4K x 16 8 x 300

=:-- =-~

MIN MOUT MADR

-------- - ------
DATA MEMORY

ONE BYTE SLICE. 16K
- --- ---- -------

' FIGURE 4: THE ARCHITECTURE OF A PROCESSING ELEMENT.

],_

I GENERAL COMMAND J ANALYSIS

~
w :::ill: """* i :ilt_

PROC 1 PROC2 PROC J PROCK PROC 255
LOCAL

PROCESS IN(LOCAL
SYNCHRO. PROCESSING

-------- COMMUN I CAT 1--------

LOCAL SYNCHRO

'" PROCESSING LOCAL
PROCESSING

1 -..11•j__l_ lle: J
f COMMON SYNCHRONIZATION J

T

FIGURE 5 : THE CONTROL FLOW CHART FOR ONE PROCESSING ELEMENT.

126

i,

PO

PO

P1

P2

P3

s

VOICE
INPUT

P1 P2

I/O
CONTRO

OMA
HLC

MEMORY

. PROCES OR

8085
CPU

VECTORIZED DATA MEMORY 16k x 128 bit

FIGURE 6 : GENERAL ARCHITECTURE OF M.A.P.

Pj

sync/name 2

FIGURE ?A : SYNCHRONIZATION FIGURE ?B : SYNCHRONIZATION BY NAME.
SYNC(NAME 2) FOR Pi AND Pj. BY LOCATION. SYNC(PO,Pl,P2,P3)

127

C 0 M M E N T S

SYNCHRONIZATION
BY LOCATION

SYNC(PO,Pl)

SYNC{PO,Pl,P2,P3}

SYNCHRONIZATION
BY NAME.

SYNC{N2) for PO,P2

SYNC{Nl} for Pl,P3

SYNC(N3) for Pl,P4

SYNCHRONIZATION
BY LOCATION FOR
ALL PROCESSORS.

SYNC{ALL}

r-----------

Busy proc :

lddle Proc:

Sync. firing •

PO

s2

n2

s4

time

P1 P2 P3 PA PS

S1 s2

s2

s~--- -----'j I I I
I I I I I I I
I I I I
I I I I
I I I n2 I n1 no

n1
n1

n3

s4

---• s.4 __ -. ---~

FIGURE 8: EXAMPLE OF THE SYNCHRONIZATION PROCESS.

128

I·

' I'

AIRBORNE ASSOCIATIVE PROCESSOR (ASPRO)

Jon M. Surprise
Program Manager, Digital Technology Department

Goodyear Aerospace Corporation
1210 Massillon Road
Akron, Ohio 44315

Introduction

Under company sponsored Research and Develop
ment programs and subsequently under Navy Contracts
00019-78-C-0598 and 00019-79-C-0563, Goodyear
Aerospace Corporation performed extensive tradeoff
studies based on experience with STARAN™, to
demonstrate the advantages of associative pro
cessing for airborne surveillance. Two advantages
are: the simplicity of the software for managing
the surveillance data base, and the high inherent
processing speed of ASPRO. The necessary small
size (0.35 ft3) and low power (330W.) are realized
using custom CMOS VLSI and multichip CMOS random
access memory. The ASPRO processor, now in final
development, will augment the existing data pro
cessor aboard the Navy's Grunnnan E-2C aircraft.
Its combination of content-addressability, multi
dimensional access (MDA) memory, and parallel
processing provide a powerful architecture for
real-time processing applications.

Architecture

The basic architecture of ASPRO is shown in
Figure 1.

MEMORY
BUS A

DATA CONTROL
MEMORY

ARRAY
CONTROL

INSTR PROGRAM
i---~ EXECUTION

CONTROL

CONTROL

ARRAY UNIT

DATA
MEMORY
BUS B

DATA

CONTROL REG. ____ &

AR ITH.

DATA

Figure 1. Block Diagram of ASPRO

ASPRO is divided into five functional sub
systems:

Control Memory. This subsystem is made up of three
types of storage: (1) buffer memory, (2) program
memory, and (3) read-only memory (ROM).

The buffer memory provides storage for input
and output data for the ASPRO. It consists of two
identical modules, each capable of storing 8192
words of 32 bits each. Each buffer memory module

TM
Goodyear Aerospace Corporation

0190-3918/81/0000/0129$00.75 © 1981 IEEE

129

has three access ports. Two of the access ports
are connected to the two memory buses of an
external computer. The third port is connected to
the ASPRO's internal bus system.

The program memory, which is loaded through
the buffer, provides storage for the ASPRO machine
instructions. Its one access port is connected to
the ASPRO bus system.

The ROM provides nonvolatile program storage
for certain essential operations including pro
gram load and basic built-in test routines.

Program Execution Control. This unit controls
execution of instructions stored in program memory.
Four index registers are provided, as i's a sub
routine stack capable of acconnnodating 15 levels
of subroutines. Conditional branches to any
location in program memory can be executed. To
maximize performance, fetch of the next instruction
is initiated at the earliest possible stage of the
current instruction such that it overlaps the
current instruction execution.

Register and Arithmetic. This section contains
the working registers, sequential arithmetic unit,
and buses required for data transfer and control
exclusive of the array. The logic in this unit
consists of twenty-four 16-bit registers, two 32-
bit registers, and a 16-bit arithmetic logic unit
(ALU) interconnected by a bus system. The 32-bit
memory bus is connected to one port of the common
register and to the 32-bit instruction register.

Data to and from the array unit flows through
the register and arithmetic logic. The 32-bit
bidirectional array data bus is split into an
array input and an array output bus by the inter
face logic. All data transferred to and from the
array are buffered by the common register.

Sixteen general 16-bit registers and eight
specific 16-bit registers are accessed via a
16-bit data bus. The general registers are loaded
from the ALU output and can be used for either ALU
input argument. The specific registers are
dedicated to array operations to hold array
addresses and loop counts.

The arithmetic logic unit (ALU) permits con
ventional arithmetic and logic operations to be
performed upon data presented to the working
registers. It can perform seven arithmetic and
nine logic operations on two 16-bit operands.
Multiplexers at the ALU inputs provide the
capability to select various pairs of source
operands.

Array Control. This unit provides the timing
and control to execute the specified array
operation. Basic array operations include Read
Array, Write Array Masked/Unmasked from Connnon or
Array Register, and Output to Connnon Register.
When reading from the array, array control sets

up control lines to perform one of 16 possible
Boolean operations between array data and the
Processing Element registers. J.ogical sequences
of these operations permit a wide variety of
associative functions to be performed on the array
data.

Array Unit. The multidimensional access (MDA)
array unit consists of four basic components:
array memory, flip (permutation) network, pro
cessing elements, and response-store resolver. It
is partitioned into 17 array modules. Sixteen
modules of 128 words each make up the 2048-word
array. Each word is 4096 bits in length. The
seventeenth 128 word module is a spare which
may be switched in if one of the basic modules
fails. Each module comprises a 128-word by
4096-bit array of solid-state MDA storage and
128 processing elements (PE's).

The 2048 words of 4096 bits each provide a
total of 8 megabits of data storage. Format
of the 4096 bits is under total software control.
Operand lengths can be 1 to 256 bits. The MDA
storage organization provides access in either
the bit or word direction, a technique proven in
the STARANTM associative processor from which
ASPRO has evolved. The flip network and associa
ted address logic permits MDA using conventional
RAM. This, in conjunction with the response store
and resolver permits parallel processing and
content-addressability without sacrificing normal
word-mode input-output.

The array includes 2048 PE's. Each PE
contains 3 single-bit registers, and can: buffer
data from or to array memory, execute all logical
operations on two single-bit operands, condition
ally inhibit a write instruction, and provide
the response store function for search operations.
Associative array input and output is 32 bits via
the conunon data bus. The array is partitioned to
provide for reduction in required volume and
power by the efficient use of custom VLSI circuit
ry. CMOS/SOS technology has been used for the
PE VLSI integrated circuit design because of its
low power and high speed.

Software

A significant amount of system software is
being provided to allow users to develop applica
tion programs. Software tools include: assembler,
linker, loader, librarian, subroutine library, a
debug package and diagnostics. Most of the system
software is written in a high order language for
portability, enabling program development on a
variety of general purpose computers.

The assembler is a conventional two-pass
assembler which supports structured modular pro
granuning. The mnemonics are separable into two
sets. One set is for the sequential control
portion of ASPRO and is much like the instruction
set for conventional sequential computers. The
second set is for the associative memory and
consists of double and triple address arithmetic
and logical operations.

130

The output of the assembler is an object
module which can be combined with other object
modules via the linker and librarian into a load
module. The load module, when loaded into the
ASPRO can be interactively debugged with the
debug package. The debugger allows the user to
stop the program at any program location, dump
registers or memory contents, change those
contents and then continue the program. In the
trace mode, selected registers and memory can be
dumped automatically after every instruction is
executed. These and other features of the ASPRO
debugger provide the user with a powerful de
bugging tool.

Two types of diagnostics are being developed
for ASPRO: an on-line self-test program which is
executed periodically to assure operational in
tegrity and off-line diagnostics to isolate faults
to a specific section of hardware.

Performance

The relative processing time for ASPRO in a
radar tracking application is significantly less
than a conventional processor when the number
of tracks increases from several hundred to
several thousand.

Table I is a simplified comparison of pro
cessing time for some typical operations on a data
base of 2000 items.

Table I. Performance Comparison

OPERATION ON AS PRO CONVENTIONAL
2000 ITEMS ASSOCIATIVE COMPUTER

PROCESSOR

SINGLE-BIT SEARCH 0.5 µSEC 1000 µSEC

16-BIT ARITHMETIC 32 µSEC 3000 µSEC
OPERATION

Conclusions

The ASPRO processor is a dense, low-power,
high performance processor. This parallel pro
cessing system is designed to replace or augment
existing, conventional airborne data processing
systems. ASPRO's simple software and high-speed
search and processing capabilities provide a
unique, cost-effective solution to real-time
signal processing.

References

[l] K. E. Batcher, The Multidimensional-Access
Memory in STARAN, IEEE Transactions on
Computers, February, 1977, Vol. C-26, pp.
174-177.

[2] B. W. Prentice, Implementation of the AWACS
Passive Tracking Algorithms on a Goodyear
STARAN, Proceedings of the Sagamore Computer
Conference, August, 1974, pp. 250-269.

[3] E. E. Eddey and W. C. Meilander, Application
of an Associative Processor to Aircraft
Tracking; Ibid pp. 417-430.

MODELLING OF LARGE-SCALE MARKOV CHAINS
WITH ASSOCIATIVE PIPELINING

Simon Ya. Berkovich

The George Washington University
Department of Electrical Engineering

and Computer Science
Washington, D.C. 20052, USA

Summary

The scope of various applications of the
associative or content-addressable processors
(see, e.g.[l]) is extended to random walk modelling.
The main problem in this modelling is to provide a
random choice among a set of alternatives. Let
us consider n alternatives with probabilities P .•
The choice of an alternative with correspondingl
probability can be presented as a hit by a random
number R in the range (0-1) of one of the intervals
(So - Sl)' (Sl - s2), (s2 - s3), ... , (Sn-1 - Sn)'
where

. s = 1
n

This procedure can be organized as a search among
the numbers s 0 , s1 , s2 , ••. S _1 for that which
is the largest smaller than R. rinsing an associa
tive memory of ternary elements the intervals
(S. 1 - S.) can be presented in such a way that
this searBh will be performed with one memory call
[2]. (The third state of the ternary associative
element (-M) provides matching signals for both
"O" and 111 11 interrogations, and it can be imple
mented either with special hardware or with soft
ware using two bit combinations in binary
associative memory.)

We will illustrate this method by an example
(Fig. 1). Suppose we have four alternatives with
the probabilities 2/16, ~16, 6/16 and 3/16. The
total random number range 0000 < R < 1111 can be
covered, for example, by the following ternary
combinations:

1 OOOM 2/16

2 OOlM 5/16
OlOM
0110

3 0111 6/16
lOMM
1100

4 1101 3/16
lllM

Such a representation is a subject of minimi
zation (cf. Fig. l,a). The alternatives 1, 2, 3
and 4 will be accessed with the probabilities 2/16,
5/16, 6/16 and 3/16, respectively, because the
chances for a random number R to match to one of
these intervals is proportional to its length,
i.e., 2, 5, 6 and 3.

The transition matrix of a discrete Markov

131

0190-3918/81/0000/0131$00.75 © 1981 IEEE

chain, p .. , can be stored in a format: (i, V, j),
where i i~ a starting state, V - a ternary combi
nation corresponding to the choice of the j state.
The interrogation of the associative memory by
(i, R) will result in a random choice of "j" with
the probability P. , i.e., "a transition i->j". The
process of Markovl~hain modelling is a succession
of such transitions.

The associative pipelines as suggested in[3]
have actually the same algorithmic capabilities as
associative processors, but· the pipelines are more
efficient in implementation and suitable for pro
cessing of large volumes of information. The
uniform cells of the associative pipeline realize
in succession the transformations isomorphic to
that realized by the associative processor in
parallel. The random choices are made in the pipe
line cells by picking-up the numbers of the alter
natives from the passing word-stream when the
ternary combinations corresponding to their proba
bilities match the provided random numbers. All
cells operate on the word-stream concurrently with
the shi~ in time according to the propagation
delay. The associative pipeline can easily perform
the first-match selection for the multiple respon
ses, so the necessary intervals for random choice
can be constructed simpler using overlapping
ternary combinations with partial screening of the
successors. This is illustrated in Fig. l,b.
There are two possibilities for selection alterna
tives# 1, three.possibilities for# 4, six possi
bilities for # 3, and five for # 2. It does not
matter that the alternatives are not presented by
contiguous segments; if R is uniformly distributed,
the chances of the selection of the alternatives
will correspond to their probabilities, i.e.,
1 - 2/16, # 2 - 5/16, # 3 - 6/16 and # 4 - 3/16.
It should be emphasized that the choice of the
alternative is performed in each cell independently
and is determined by its own random number R only.

The basic unit of the computer system for
modelling Markov chains is presented in Fig. 2.

The output of the pipeline cell is connected
to its command register to extract information
from the word-stream. The possibility of the con
trol of the computing process through the word
stream is an attractive property of the associative
pipelining, which can be efficiently used in
different problems as, for example, considered in
[4]. The word-stream is a mixture of transition
matrix elements in one format and control computer
messages in another format. The mode of operation
is specified by tag bits, which also serve as a lock

to permit some operations on a given word and to
prevent further access to this word in other cells.

1.

2.

3.

4.

The basic operations are the following:

Initialization - a random walking point should
be set into a certain initial position.

Transition - moving from a given state i to
one of the states j according to the
probabilities (Pij).

Random number supply - a~er each transition
the random number R must be changed to deter
mine the choice of the next alternative.

Sensing - the results of random walking should
be returned to the word-stream and processed
by the control computer; two types of Markov
chains are usually considered: with and
without absorbing states, the results of the
modelling are some characteristics of the
random walks to absorbing states in the first
case, or of the equilibrium distribution in
the second case.

The suggested technique is a typical example
of the organization of the computing processes

R #

itsi
2/16 M 1

6/16
M M

3/16 M M

5/16
2 3

a

3
Tii
M

M

4

with associative pipelining. Not bound by storage
limitations, it can be efficiently applied to the
investigation of very large stochastic models in
system analysis and computational physics.

References

1. C. C. Foster, Corttertt Addressable Parallel
Processors. Van Nostrand Reinhold Co., 1976.

2. S. Ya. Berkovich and Yu. Ya. Kochin, "Search
for Numbers that are Nearest to a Given
Number," Automation and Remote Control, V. 36,
No. 1, pp. 343-345 (1975).

3. S. Ya. Berkovich, "An Outline of the Computer
System with Associative Pipelining," Proceed
ings of the 1980 International Confe,ence on
Parallel Processing, pp. 47-48.

4. J.M. Pullen, An Architecture for a Database
Computer Using Associative Pipelining, D. Sc.
Dissertation, The George Washington University,
1981.

R # R #

2 0 1 1 1 2 1 0 0 1 4
16
0

0

1

b

Fig. 1 Random choice with the associative

Transition
Matrix

processor (a)

M
1-"'----t.i u

i
p 1-----..i

1

and pipeline (b).

Associative pipeline

Control
Computer

Fig. 2 Basic computing unit

132

RECONFIGURATION OF DYNAMIC ARCHITECTURE INTO MULTICOMPUTER NETWORKS

Svetlana P. Kartashev
University of Nebraska-Lincoln,

and

Steven I. Kartashev
Dynamic Computer Architecture, Inc.

ABSTRACT -- ThM papeJL c.an6ideM Jtec.avt6}.gUM.
.tian 06 dyvtam.tc. Mc.IU.tectu!tu in.ta muU:.lc.ampU-teJL
vte.twaJtk-6 .that c.avt M.6 ume !Uvtg.6 , tJr..ee.t. , and .t..taM
c.an6}.gUM..tian6.

Rec.an6}.gUM..tion al.ga!U.thm.6 intJr..aduc.ed Me
ane-.t..tep al.ga!U.thm.6 peJL6aJtmed c.anc.WVten.tly by ill
ne.twOJtk node.t. Jteque.t..ted 60Jt Jtec.avt6}.gUM..tian. The
.time 06 .thM .t..tep }..6 .the .time :ta ex.ec.U-te a ane
bd .t.hi6:t avtd mod Z add{;t[avt. The.t.e ttec.ovt6}.guJta
.tion6 c.an be ac.c.ompfuhed w.Uh .t.peua.l .t.hi6:t
Jteg}..6:teM c.illed .t.hi6;t-Jteg}..6:tett.6 w.Uh va!Uable
bia.6 (SRVBJ }.ntJr..aduc.ed }.n;to eac.h vte.twoJtk node, N,
:that .t..totte :the po.t.A_.tion c.ade 06 :thM node. Upovt
Jtec.eip:t 06 :the ttec.on6igUM..tiovt in6.tltuc.;t}.ovt, eac.h
.t.uc.h Jteg}..6:teJL gevteJLa:te.t. :the pa.6}..tion c.ode 06 :the
ne.two!tk vtode, N*, w.Uh whic.h vtode N mM:t u:tab
fu h a data path c.on6}..6.ten;t w.Uh :the oveJLill vte:t
wo!tk c.on6}.gUM..tiovt (tJr..ee, .t.:ta.Jt, att !Uvtg J.

l. INTRODUCTION

As was shown in the literature [l-3], a
dynamic architecture may increase a system
throughput using the following adaptations to
algorithms:

l) Adaptation of the resources to instruc
tion and data parallelism, and

2) Reconfiguration of the resources into
multicomputer, multiprocessor, array, and pipe
line architectures.

A multicomputer adaptation to algorithms is
generally understood as:

a) The architectural capability to parti
tion resources into a variable number of dynamic
computers with changeable word sizes, and

b) The capability of multicomputer archi
tecture to function as a multicomputer network
characterized by different topological configura
tions among its computers.

Since various techniques that implement the
a) property of dynamic architectures were studied
in [2-5], this paper concerns itself with recon
figuration of dynamic architecture into a multi
computer network.

2. APPLICATION OF MULTICOMPUTER NETWORKS

A multicomputer network is characterized by
different vte.two!tk .t.tJr..uctuJtu formed by network
computers, otherwise called ne.two!tk vtade.t.. As
was shown in the literature [6-12], the most con
venient network structures are rings, trees,
stars, binary cubes, closely connected graphs,
and mixed structures that involve various combina
tions of the above mentioned structures.

Rings, cubes, and strongly connected graphs
are useful for computational algorithms in which
each computer node performs computations only and
assigns no computations to other nodes.

0190-3918/81/0000/0133$00.75 © 1981 IEEE

133

Trees and stars are useful for both computa
tional and control algorithms. Trees and stars
are described by two types of nodes--leave.t. and
vtovt-leave.t.--where a leaf is generally understood
as a node of the lowest level, i = 0, and a non
leaf node has level i > O. A node(s) of the
highest level, i = L, is called a Jtoo:t .

A tree or a star may have one or several
roots describing a corporate structure with one
or several directors, respectively. The differ
ence between a star and a tree is in the number
of nodes of a lower level that are adjacent with
a node of level i. In a tree, this number does
not exceed one for a root, and two for each node
that is neither root nor leaf. For a star, each
non-leaf node of level i may have more than two
adjacent nodes of a lower level.

If a tree or star has one root it is called
a ovte-Jtao:t tJr..ee or a one-Jtoo:t .t.:ta.Jt; if it has
several roots, it is called a muU:.lple Jtoo.t tJr..ee
or a muU:.lple ttoo:t .t.:ta.Jt.

3. REQUIREMENTS FOR A MULTICOMPUTER NETWORK

In order to provide a multicomputer network
with very high flexibility and reduce the amount
of data to be transferred among its nodes, any
network must be provided with the following
characteristics.

Cl. Minimal Reconfiguration Time. This is
understood as the minimal time required by the
network to reconfigure itself into any of the net
work structures indicated above.

C2. Multifunctional Node. This is under
stood as the capability of each node, N, to be
connected into any network structure (ring,
strongly connected graph, cube, tree, or star).
Within a tree or a star a multifunctional node
should be capable of functioning as a root (single
or multiple), leaf, or a non-leaf node. As a
result, a programmer will be able to minimize
idle resources not involved in a particular compu
tation and to eliminate traffic bottlenecks
created in particular portions of a network due
to overcentralization of information flow from
the root(s) to other nodes.

C3. Variable Word Sizes of a Network Node.
To increase the network fl exi bil i ty each network
node must be provided with the capability to
change its word size. This will minimize the
amount of resource interconnected into a particu
lar network configuration, and allows computation
of additional programs using the same resources.
The advantages of such computations are coinci
dent with those performed by dynamic architec-

tures in general. These are treated extensively
in [2-5]. ·

A multicomputer network that is provided
with properties Cl, C2, and C3, and performs
reconfigurations into the network structures
described above, can be organized using the DC
group described in [l-3].

4. CONTRIBUTION TO THE STATE-OF-THE-ART

This paper studies reconfiguration of dyna
mic architecture into rings, trees, and stars.
Reconfiguration algorithms developed are based on
the theory of shift-register sequences as follows.

A network node N activates a data path with
its immediate successor, N*, in the given network
structure when N generates the position code of
N* [2, 3]. This activation may be done with the
use of shift-register and special constant B
brought with the reconfiguration instruction to
all network nodes that are requested for recon-
figuration. ·

4.1. Rule of Succession during Reconfiguration

To activate each data exchange that can be
either PE-ME*, PE-PE*, ME-PE*, or ME-ME*, it is
sufficient for the processor element, PE, belong
ing to computer element, CE, identified with net
work node N to generate the position code of the
CE* identified with the network node N* that
contains a second element of the exchanging pair
(ME* or PE*). This will be denoted as transition
N-+ N* meanin_g that: a) N will generate position
code of N*, b) N will establish a given data path
between N and N*, and c) the data path activated
by N can be made bidirectional--either from N to
N* or from N* to N--and it can be one of the four
types considered above (PE-ME*, PE-PE*, ME-ME*, or
ME-PE*).

(Here for simplicity it is assumed that each
node N is equivalent to one CE. An extension of
the results accomplished to a dynamic computer,
C(k), assembled of k CE can be done very easily
by assigning the same position code to all its
CE' s.)

To minimize the time of reconfiguration, it
is reasonable to assume that for each network
structure, such rule of succession, N-+ N* should
be maintained during reconfiguration for which
each node N has a minimal number of successors N*
in this structure. Then it will take the minimal
reconfiguration time to establish all the data
paths between N and each of its successors, N*.

While for rings, the rule of minimal number
of successors is trivial, for trees and stars it
req~ires that the succession be maintained in the
direction from leaves to root(s). Namely for
each N-+ N*, the level of N is lower than N*.

If all these paths are established concur
rently, the entire network reconfiguration takes
time T of activating only one network transition,
N -+ N*, and can be performed with a one-step re
configuration algorithm performed concurrently by
all network nodes.

4.2. Application of Shift-Register Theory

In this paper, trees, stars, and rings will

134

be generated with the use of shift-register
theory. I ts app l i ca ti on proceeds along the. fo 1-
1 owing lines. ·

Assume that each network node N i. s provided
with a special shift-register of length n which
stores its position code N, where n is the size
of the code (Fig. 1). Suppose that in the given
network structure to be assumed, node N should be

network
node U

network
node N*

toSELchannel

FIGURE 1

Shift-Register with Variable Bias B = 0111

Fl=l

FBG

succeeded by node N* via PE-PE*, PE-ME*, ME-ME*,
or ME-PE* data path. Then for each type of com
munication between N and N*, node N generates
position code N* using a left-shifted shift
register that generates N* as follows:

N* = l[N] ® B (l)

where l[N] is one-bit shift of N to the left and
B is an n-bit reconfiguration constant brought
with the reconfiguration instruction to all net
work nodes that are requested for reconfigura
tion. Reconfiguration constant B will be called
blcu and the shift-register of Fig. l is called
a J.>Mfi,t-1r.egb.iteJL w,i;th va1Uable blcu (SRVB).

In Fig. 1 , N = ll 01 = 13, B = 01 ll = 7.
This gives N* = l[ll Ol] ® 0111 = 1011 ® 01 ll =
1100. Therefore network node N13 generates posi-
tion code N* = 1100 = 12 of its successor in the
given network structure. This code will then
activate a given data path between nodes N13 and
N*

12 .The gate FBG in Fig. l is called a 6eedbaQk
ga.:te. Introduction of the FBG gate allows a
shift-register, SRVB, to.perform two types of
shifts: a) Ql/r.Qui.cvt l[NJ1, when 6eedbaQk lnpu.t

FI= l; and b) non-Ql/r.Qui.aJt l[N]0, when FI= O.
As will be shown later, if FI= l, concur

rent shift-registers of network nodes generate
rings; if FI = 0, they generate trees, where the
meaning of FI is brought to each node with the
reconfiguration instruction.

However, different network structures depend
not only on the value of bias B, and feedback
input FI, but also on the type of the SRVB acti
vated in each node.

To this end SRVB can be J.>lngle and QompoJ.>Lte.
A J.>lngle SRVB has a unique feedback gate FBG,
which connects its MSB with LSB. A QompoJ.>Lte
SRVB is formed from k (k > l) single shift-regis
ters each having a unique feedback gate, FBGi.

Feedback Path Feedback Path

N*=47

FIGURE 2

Composite SRVB

For instance, Fig. 2 shows a composite shift
register with three feedback gates, FBG1, FBG2,

FBG3.Generally, in a shift-register with variable
bias, each bit can broadcast its value via one
of two alternative paths: a) a unique ~h,lfit-pa,th
when it is shifted left to the next more signifi
cant bit, and b) a unique 6eedbaQk pa-th; when it
is sent right to some less significant bit.

Activation of either a shift or a feedback
path for each bit can be made by a special recon
figuration code RC stored in the reconfiguration
instruction that performs reconfiguration into a
given network structure. This instruction also
brings to each node the same bias B that forms
position code of the CE* identified with node N*
that succeeds node N in a given network structure.
The same bias B received by PE of node N is con-

FIGURE 3

Network Structure Generated by
Composite SRVB of Fig. 2

135

ceived of as an address of the instruction stored
in local ME that initiates a subroutine of com
munication between node N and N*.

For instance, if the reconfiguration instruc
tion stores bias B = 010111 and reconfigures the
shift-register, SRVB, of each network node N into
a composite one shown in Fig. 2, then the network
structure formed is shown in Fig. 3. As seen, it
consists of a 6-root star and a 2-root star.

For instance, composite shift register parti
tions N = 60 = 111100, into b5b4b3 = 111; b2b1 =
10; b0 = 0. Bias B = 010111 is also partitioned
into B5B4B3 = 010; B2B1 = 11; and B0 = l. There
fore the composite shift register generates the
following successor N* of node N60 : a5a4a3 =
1[111]1 ®010=111®010=101; a2a1 = l[lo]0 ©
11 = 00 ® 11 = 11 ; a0 = l [0]0 ® 1 = 0 ® l = 1 ,
giving N* = 101111 = 47.

Similarly, one can obtain any other single
successor N* of the given node N. As follows,
reconfiguration into the structure of Fig. 3
is performed during the time of one 1-bit shift
and mod 2 addi ti.on executed concurrently by a 11
the network nodes that receive the same bias B =
010111 and the same reconfiguration code RC that
reconfigures each SRVB into the composite register
shown in Fig. 2.

4.3. Contribution to the Ongoing Research

The contribution of this paper. to current
state-of-the-art on network reconfiguration is
two-fold: l) It devises original, simple, and
elegant techniques on network reconfiguration into
the structures that proved to be convenient for a
large class of computational and control algo
rithms. The time for such reconfigurations
approaches the theoretically minimal boundary.
2) It further expands a shift-register theory
described in [13-17] as follows.

In the literature the shift-register studied
is shown in Fig. 4. Here each circle marked with
Bi means connection if Bi = l and disconnection
if B. = O. Thus B = (B 1, ... , B0) is conceived

i n-
of as the same bias as was introduced above for
the shift-register SRVB. The difference between
these two registers is: Fig. 4 shows a LtneOJL

Current
State H

FIGURE 4

Linear Shift-Register

-0h,i,6t-1Le9)Ate.Jt which broadcasts to each mod 2
adder the meaning of its MSB provided Bi = l. In
the linear shift-register each next state N*
generated can be obtained via matrix multiplica
tion N* = N•A where N is a current state stored
in bits bn-l' bn_ 2, ... , b0, and A is the c.an.on.l
cai.. 4h,i,M-1Le9)Ate.Jt ma;tJU.x given below:

A =

Bn-1 Bn-2 Bh-3
l 0 0
0 1 0
0 0 1

0
0

0
0

0
0

1
0

0
1

0
0

For instance, if bias B = 1011 and the cur
rent state N = 1100, then the next state N* to be
generated by a linear shift-register is N* = 1100•

1011
1000
0100 = 0011. Find the next state N* generated
0010

by the SRVB storing the same N and B (assume that
gate FBG is set since for linear shift-register
its MSB is also fed back to the LSB): N* =
1[1100]1 ®1011 = 1001®1011 = 0010. As follows
linear shift-register and SRVB generate different
next states for the same current state N and bias
B inasmuch as in SRVB each mod 2 adder receives
bit Bi rather than MSB of the register if Bi = l
as is the case for the linear shift-register. As
a result, different structures of trees, stars,
and rings are generated by these two types of
shift-registers. In particular, a fundamental
property of a linear shift register is that it
always generates next state N* = 0000 if a cur
rent state N = 0000, i.e., 0 always generates a
cycle of period l since N* = O•A = 0. On the
other hand, SRVB maps 0 onto bi as B, i . e. , if N
= O, it is succeeded by N* = B. This means that
if bias B r 0, then 0 is a node of a network
structure other than cycle of period 1.

For the linear shift-register this is funda
mentally impossible. For instance, for the
single circular SRVB receiving B = 0111, 0
belongs to the following ring of period 8:
{0,7.9,4,15,8,6,ll}. If this shift-register
stores N = 0101, it generates another ring of

136

period 8: {5,13,12,14,10,2,3,l}. Indeed, if
N = 5, it is succeeded by N* = 1[0101] ® 0111 =
1010© 0111 = 1101 = 13, etc. This network struc
ture cannot be obtained with 4-bit linear shift
registers no matter what bias B is selected, since
linear shift-registers always map 0 onto 0. Thus,
the remaining 15 nodes cannot be formed into 2
rings of period 8 each since this will require 16
nodes.

Hence, the network structures generated by
SRVB and linear shift-registers are not equiva
lent. Furthermore, a fundamental drawback of a
linear shift-register is that the techniques for
finding the network structures that can be gener
.ated are·very laborious and complex, since they
are based on finding the periods of polynomials
over Galois field [13-16]. The complexity of
these techniques grow exponentially with an
increase in n, the number of bits in a shift
register. However, for complex multicomputer
networks having a large number of nodes the size
n of a code that identifies each node may become
significant (n = 10 and more). Thus it becomes
prohibitively difficult to utilize elegant
.results of linear shift-register theory in order
to tabulate different cycles and trees that may
be generated in an n-dimensional binary space
with the use of linear shift registers. As for
stars, linear shift-registers can generate no
stars by definition.

On the other hand, all the network struc
tures generated by SRVB (single and composite)
can be described with very simple formulas that
can be used by the programmer performing various
reconfigurations in the multicomputer networks.

As will be shown in this paper, complexity
of the techniques remain constant and does not
depend on n, the size of the position code N.
Thus, these techniques are applicable to complex
multicomputer networks, inasmuch as they allow
obtaining simple and fast reconfiguration
algorithms and simple descriptions of various
network structures that can be generated in the
network.

The only area of equivalence among linear
shift-register and shift-register with variable
bias is when bias B = 0. If B = 0, both registers
generate either the same binary tree with the
root R = 0, or both are transfonned into a c.Vr.cu
£.a.t.tng -0h,i,6t-1Le9)Ate.Jt whose structure has been
extensively studied in the literature [16].

5. NETWORK RECONFIGURATION

If an application program needs a new net
work structure for execution of its tasks, it
contains global or local modification of the
reconfiguration instruction, RIN, where a global
modification establishes the same type of data
exchange for all network transitions, N + N*,
whereas a local modification of RIN allows dif
ferent data exchanges for various network transi
tions. RIN can be executed in an array or even
in a single CE. It stores the following codes:
l) Code RR of requested resource which determines
whether or not a requested resource is ready for
reconfiguration. 2) Reconfiguration code, RC,
that reconfigures the shift-register, SRVB, of
each requested network node N, into the type that

generates the required network structure. 3) The
bias B, which allows each shift-register, SRVB,
reconfigured by the RC code to generate position
code N* that succeeds N in the given network
structure. 4) Program user code, NP, that is
used in the priority analysis, aimed at determin
ing the priority of the program to perform net
work reconfiguration. 5) For global modification
of the RIN instruction it stores the code of
exchange, COE, provided all requested nodes will
maintain the same type of exchange (PE-ME*,
PE-PE*, ME-ME*, or ME-PE*). Each CE that
receives reconfiguration code RC, bias B, and
code of exchange, COE, performs the following
steps.

Step 1. It sends RC to its shift-register,
SRVB, to reconfigure it into the type (single or
composite), that generates the required network
structure. The bias B is sent to this SRVB to
generate the position code of the network node N*
that succeeds N in this network structure.

Step Z. The bias B is used as the base
address of the task that begins execution in the
network structure. As a rule, bias B stores a
jump instruction which performs jump to another
location of the local memory, ME.

Step 3. For the global modification of the
RIN instruction, the code of exchange, COE acti
vates a needed data path between network nodes N
and N*, where N* was formed during Step 1.

Such an organization of RIN allows very fast
reconfigurations into the network structures
which proved to be very efficient for computation.
The time of these reconfigurations approaches the
absolute minimum due to the following reasons:
a) Concurrent 1-step reconfiguration algorithms
in which the entire network reconfiguration is
made in one step by all network nodes during the
time of 1-bit shift and mod 2 addition. b)
Minimal time required to establish each data path
between two network nodes, N and N*.

6. TYPES OF SHIFT-REGISTERS

This section will introduce the techniques
for describing various types of shift-registers,
SRVB.

6.1. Arithmetic Formats

Each composite SRVB will be described with
an aJLi.Xhme.:tic 0011.mat; AF= [k1, k2, ... , k],
where ki is the size of each single shift-~egis
ter contained in SRVB. Obviously n = k1 + k2 +
... + k where n is the size of the SRVB.

Si~ce each single shift-register of the
arithmetic format AF may perform ei.ther circular
shift provided that the feedback input FI = l or
non-circular shift provided FI = O, the arithme
tic format AF may be divided into the following
categories: a) CiJtcui.aJL AF , when all its single
shift-registers perform cir~ular shifts; b) ·
Non-cUr.cui.aJL AF0, when all its single shift-regis-
ters perform non-circular shifts; c) Mixed AF10 ,
when single shift-registers described by it per
form circular and non-circular shifts.

It will be convenient to represent mixed
AF10 as a combination of circ~lar and non-circu-
lar AF, i.e., AF10 = AF1 x AF0, where AF1
includes all circular single shift-registers and
AF0 inclu~es all n?n-circular ones.

For instance if A10 = [30, 41, 51, 20], then
A1 = [4, 5] and A0 = [3, 2], i.e., A10 = A1 x A0.

6.2. Reconfiguration Code

Reconfiguration of the SRVB into any given
arithmetic format will be performed with the re
configuration code, RC. RC is stored in the
reconfiguration instruction and described as
follows:

It is (2n-l)-bit code where n is the size of
each SRVB. It consists of (n-1) 2-bit zones, Zi,
each including two bits, Si and Fi, and one 1-bit
zones, z0 including only one bit, F0. Thus RC =
(Zn- l ' zn-2' ... ' zl ' ZO) .

Each zone Z. encodes, respectively, feedback
i

and shifting paths for the two bits bi and bi-l
of the SRVB, where bi is more significant than
bi-l (Fig. 5).

Feedback from b0

Feedback from b1

Feedback from b2

Feedback from b3

FIGURE 5

Shift and Feedback Paths in 4-bit SRVB

137

For each zone, Zi = (FiSi)' the values of Fi
and S. show what type of path is activated for

i
every pair of consecutive bits, bi and bi-l' If
Fi = l, bit bi receives circular feedback informa
tion; and it receives no shift information from
the next less significant bit, b. 1. If F. = 0,

i - 1
bit bi receives either no feedback, or it is non-
circular feedback (for trees and stars).

Bit Si = l of zone Zi stands for left shift
from bi-l to bi and Si = 0 stands for no shift
from b. 1 . Therefore, together F., S. show what

i- 1 i
type of path is activated between b. and b. 1 ;

1 1-
shift path (S. = l, F. = 0) or feedback path to

1 i
bi and no shift from b1. 1, S. = 0, F. = o v l.

- l i
Since S. = l means that bits b. and b.

i 1 i-1
belong to the same shift register and S. = O

1
means that they belong to two different shi.ft re-
gisters, each Si is sent to activate a new feed-
back p.ath initiated in b. 1. Likewise, each S.

1- i
is sent to the feedback path initiated in b.

i
either to maintain it if S. = l or block unwanted
transfer of b. to less

i
register if Si = O.

i
significant bits of shift

Example. In Fig. 15, if s3 = l , bits b3 and
b2 belong to the same shift register and s3 = l
maintains the feedback path initiated in b3. At
the same time.53 = 0 blocks b2 from initiating its
own feedback path.

If s3 = 0, b.l and b2 belong to two shift
registers. Thus s3 = l initiates a new feedback
path from b2 and s3 = 0 blocks unwanted transfers
of b3 to other less significant bits, etc. As
follows, selection of the RC code can be formal
ized and described with a very simple algorithm
that is not introduced in this paper.

7. SINGLE NETWORK STRUCTURES

The objective of this section is to outline
the ways for solving the following problem:

Given bias B and an arithmetic format AF =
[k1, k2, ... , kp]. Find the network structure
that is generated.

The solution of this problem will allow a
programmer to select bias B and reconfiguration
code RC and obtain a 11 the network structures
that a re needed.

Before attacking a general case of arbitrary
AF consider the so-called ~ingle ne.XwoAk ~:tJLuQ
~UA~ produced by single shift-registers, i.e.,
those identified by AF= [n].

These can be of two types: rings and trees,
specified by circular and non-circular arithmetic
formats, respectively. Rings will be described
first.

7. l. Single Ring Structures

A ~ingle !ting ~:tJLu~UAe, SRS, is a set of

138

rings that is generated by single shift-registers
available in network nodes. To define SRS means
to define the following:

a) A set of periods, SP = {T}, where T is
the period of a ring generated in the SRS, and

b) The number D(T) of rings having the
same period, T.

Therefore, we define SRS as: SRS =
{D(T) :TsSP}.

7.1.l. Set of Periods for Single Ring Structure
. The set ?f periods, SP, is completely speci

fied by the bias B: namely, how many ones are in
B--odd or even. Before introducing this result we
will make some definitions.

13y the weight, W, of the bi as B we mean the
number of ones it has. We say that bias B is even
if its weight is an even number and B is odd if
its weight is an odd number.

Let son be a set of divisors for number n
and so2 = so2 - SD where (-) is understood as n n n
a set subtraction.
~ For instance, for n = 6, so6 = {6,3,2,1} and
so6 = SD _- so3 = {6, 3, 2, l} - {3, 1} = {6, 2}. As
follows fop may be specified only if p is even.
With this in mind let us introduce one theorem
that specifies the set of ring periods, SP, for
single ring structures.

Given: Circular single arithmetic format
AF1 = [n] and Bias B fed to each shift-register.

TheoAem 1. If bias Bis even, then SP=
SD ; if bias B is odd, then SP = SD2 = SD2 -n n n
SD . (2)

n Example. For the SRVB in Fig. 6, specified
with arithmetic format AF1 = [31], bias B = 001
is odd, since its weight W = l is an odd number.
Thus a set of periods SP = so2•3 = SD6 = SD6 -
so3 = {6,2}. If the same shift-register is fed
with an even bias (B = 000, 011, 110, 101) then
the set of ring periods, SP= so3 = {3,l} (Fig. 7).

7.1.2. Number of Rings with the Same Period
As was seen, the set of ring periods, SP, can

be found very easily. It is either SD or 502 n n
for AF1 = [n]. Similar simplicity is associated
with Uie formulas that f.ind D(T), the number of
rings having period T, where Tis a member of SP.

TheoAem 2. In a single circular shift-regis
ter, AF1 = [n], fed with an even bias B, for any

period, Ts SP, 2T = ~ T' ·D(T') (3)
T' E: SOT

As follows from (3), this formula is recur
sive since for any ring period, T, one can find
the number, D(T), of rings with period T, only
after finding D(T') for all divisors T' of T.

Example. Given AF1 = [6] fed with an even
bias, B.

Using Theorem l, one obtains that the set of
its ring periods is SP= so6 = {6,3,2,l}. Using

Theorem 2, apply the recursive procedure for \ind
ing D(T) for any TE: SP. Start with T = l, 2 =

I,

I

a. 0 FI=l

b.o
4 3

2

0
FIGURE 6

1
a. Single SRVB with AFl = [3] and B = 001

b. Single Ring Structure
Generated by This SRVB

l • D(l); D(l) = 2; for T = 2, 22 = l • D(l) + 2 • D(2)
and D(l) is a known value. 22 = 2 + 2·0(2); 0(2)
= (4-2)/2 = l; for T = 3, 23 = l·D(l) + 3·0(3)
and 0(3) = (8-2)/3 = 2; for T = 6, 26 = l•D(l) +

2·D(2) + 30(3) + 6•D(6) and D(6) = (26-l·D(l)-2·
D(2)-3·D(3))/6 = (26-2-2·1-3•2)/6 = (64-2-2-6)/6
=9. Thus we found that the single ring structure,
·SRS, generated by this shift-register is: SRS =
{2(1) 'l (2) ,2(3) ,9(6) }.
. Similar simplicity is associated with find
ing t~e numbers of rings with period T generated
by shift-registers receiving an odd bias B.
Since the set of ring periods, SP = SD = SD 2n 2n
son' where n is the size of shift-register, then
we may establish the following Theorem 3.

Theo~em 3. In a single circular shift-regis
ter, AF1 = [n], fed with an odd bias B, for any

ring period T E SD
2n

2T/ 2 = 2=" T' •D(T') (4)

T' E SOT
This is also a recursive formula since one

can find D(T) only after finding D(T') for all
periods, T' E SOT. The recursive process starts
with D(T) where T = 2s ands~ l, because for T =

s -2 , SD s = SD s - SD s-1 contains only one member
s . 2 - 2 s2

2,i.e.,SD ={2}.
2s

Example. Given shift-register with circular
arithmetic format AF1 = {6}, fed with an odd bias
B. Using Theorem l, one obtains that the set of
its ring periods SP = SD = so12 - SD =

12 6

139

a.

N =

N* ""

b. 1 7 0 5 4 3

00 vv
FIGURE 7

Single Ring Stru~ture Generated by the
SRVB 11ith AF= [3] Receiving B = 101

FI=l

{12,6,4,3,2,l} - {6,3,2,l} = {12,4}. Using
Theorem 3, one first finds D(T) for T = 4 as 4·
0(4) = 22 giving D(4) = l; next 12·0(12) + 4·
0(4) = 26 = 64 and 0(12) = (26-4·0(4))/12 =
(64-4)/12 = 5. Thus, single rin~ structure, SRS,
generated by this shift-register is: SRS = {1(4),
5(12)}

7.2. Single Tree Structure

As was indicated above a single shift-regis
ter with non-cjrcular arithmetic format generates
a single-rooted binary tree (Fig. 8). We will
call a single-rooted binary tree generated by a
single non-circular SRVB with arithmetic format
AF = [n] a ~ingle :Ulee ~tJw.ctWLe, STS.

O As was shown above, to minimize the time of
reconfiguration, an adopted direction of succes
sion is from the leaves to the root, R, which
then succeeds itself by forming a cycle of
period l.

For tabulation purposes, we will use the
following symbols for different single tree struc
tures: if STS is generated by non-circular shift
register with arithmetic format AF0 = [n], then

.....
STS = [n,l], shows that the tree is single and
has n levels, and the root R succeeds itself by

.....
forming a cycle of length l, i.e., l.

For instance, the STS of Fig. 8 is described

as STS = {3, l}, since this tree is single, it
has three levels, and its root, R = 7, forms a

cycle of length l, i.e., l, because 1[111]0 ® 001
= 110 ® 001 = 111.

a.

b.

N =

N* =

FIGURE 8

STS Generated by the [3] Shift-Register
0

7. 2. 1. Technique tor l!'indinfJ Root fo;r; SingJ.e Tree
structures, STS

Since in a one-rooted tree root, R, may store
important information that needs to be transferred
to other nodes (such as deacti. vati on of some tree
nodes from computation, or other managerial infor
mation), it is desirable to provide a programmer
with simple techniques for finding root analyti
cally. The problem that is to be solved is:
Given non-circular arithmetic format AF = [n] 0 and
bias B. Find root R. This problem is solved in
the following Theorem 4.

Theo4em 4. In a shift-register SRVB speci
fied with non-circular arithmetic format AF =

· i i+l i+2 n~l
[nJ0,letCL(b.)=2<B2 <B2 <B ... <B2.

1 1 0 l
(For instance for AF0 = ~4], CL(b) = 2 ~ 2 ~
22 (±)23; CL(bl~ = 21 (±)2 (±)2\ CL~b2) = 2 (±)2;
and CL(b3) = 2 .) Let Bias B be B = b. <B b. <B

11 12
... <B b ..

lp
Then the root R is: R = CL(b.) <B

11
CL (b.) <B . . . <B CL (b.) .

12 lp
Example. For the arithmetic format AF0 =

[4], let bias B = l <B 4 <B 8 = 1101. Find CL(1)
l <B 2 (±) 4 (±) 8, CL(4) = 4 (±) 8 and CL(8) = 8. Then
root R is: R = CL(1) <B CL(4) <B CL(8) = l <B 2 <B ~
3H <B ~ <B ~ <B 8 = 1 <B 2 <B 8 = 1011. Indeed, R is
succeeded by the following N* = l[R] 0 <BB =
l[lOll]o<BllOl = OllO<BllOl = 1011, i.e., N* =
Rand it forms cycle of length 1.

Therefore using Theorem 4, a programmer may
find a root before hand and assign it with tasks
that perform many useful functions in the network.

140

[l]

[2]

References

C. R. Vick, S. P. Kartashev, and S. I.
Kartashev, "Adaptable Architectures for
Supersystems," Compu.te4, November, 1980,
pp. 17-35.
S. I. Kartashev and S. P. Kartashev, "Prob
lems of Designing Supersystems with Dynamic
Architectures," IEEE TltaYl.6a.ctioYL6 on Compu
.teJl.6, vol. C-29, December, 1980, pp. 1114-
1132.

[3] S. P. Kartashev and S. I. Kartashev, "Per
formance of Reconfigurable Busses for Dynamic
Architectures," P4oc.eedlng.6 06 the Fbui.t
1n.te4na;t{,onal Con6e4enc.e on Vlo.:tJii.bu.ted
Computing Sy.t..tem.6, Huntsville, Alabama, 1979,
pp. 261-273.

[4] S. I. Kartashev and S. P. Kartashev, "A
Multicomputer System with Dynamic Architec
ture," IEEE TMYL6a.ctiom on Compu.teA.6, vol.
C-28, no. 10, October, 1979, pp. 704-721.

[5] S. I. Kartashev and S. P. Kartashev, "Dynamic
Architectures: Problems and Solutions,"
Compu.te4, July, 1978, pp. 26-40.

[6] R. J. McMillan and H. J. Siegel, "The Hybrid
Cube Network," Pnoc.eedlng.6 06 .the Vlo.:tJii.bu.ted
Va.ta Requlo-Ltlon, Computing, and Con.t4ol
Sympo.t.ium, 1980, pp. 11-22.

[7] M. C. Pease, "The Indirect Binary n-Cube
Microprocessor Array,'1 IEEE TMYL6a.ction.6 on
Compu.teA.6, vol. C-26, no. 5, May, 1977, pp.
458-473.

[8] Y. Paxer and M. Bozyigit, "Variable Topology
Multi computer," P4oc.eedlng.6 06 .the Sec.and
EuJLom.Lcto Sympo.t.ium on MLctopMc.eMing and
Mictop4og4ammi.ng, Venice, 1976, pp. 141-149.

[9] L. D. Wittie and A. M. van Tilborg, "MICROS,
A Distributed Operating System for MICRONET,
A Reconfigurable Network Computer," IEEE
TMma.ctiom on Compu.teJl.6, vol. C-29,
December, 1980, pp. 1133-1144.

[10] A. Despain and D. Patterson, "X-Tree: A
Tree Structured Multi-Processor Computer
Architecture," P4oc.eedlng.6 F-l6.th Annual
Sympo.t.ium on Compu.te4 Mc.WectuJLe, 1978,
pp. 144-150.

[11] A. Goyal and G. J. Lipovski, "Reconfigurable
Hi erarchi ca 1 Rings," Pnoc.eedlng.6 06 .the Vlo
.:tJii.bu.ted Va.ta Ac.qulo-Ltlon, Computing, and
Con.t4ol Sympo.t.ium, 1980, pp. 3-10.

[12] D. DeGroot and M. Malik, "Resource Allocation
for Macropipelines," Pnoc.eedlng.6 06 .the Vlo
.:tJii.bu.ted Va.ta. Ac.qulo-Ltlon, Computing, and
Con.t4ol Sympo.t.ium, 1980, pp. 23-27.

[13] B. Elspas, "The Theory of Autonomous Linear
Sequential Networks," IRE TMn.6a.ctiom on
Cl4c.u.lt Theo4q, January, 1959, pp. 45-60.

[14] N. Zierler, "Linear Recurring Sequences,"
J. Siam, 7(1), 1965, pp. 31-48.

[15] W. H. Kautz (ed.), Llnea.4 Sequentlal Sw.l:tc.h
ing Ci4c.ui.to, Holden-Day, 1965.

[16] S. W. Golomb, Shi6.t Reglo.te4 Sequenc.e.t.,
Holden-Day, 1967.

[17] T. L. Booth, Sequential Ma.c.hine.t. a.nd Au.toma..ta.
TheMy, 1967.

[,

DESIGN OF A GENERAL-PURPOSE MULTIPROCESSOR
WITH HIERARCHICAL STRUCTURE

J. Sasidhar and Kang G. Shin
Electrical, Computer, and Systems Engineering Department

Re:nsselaer Polytechnic Institute
Troy, New York, 12181

Abtract -- In this paper we consider the ae ...
sign of a Hierarchical Multiprocessor (HMp) for
general-purpose applications. The main attribute
of the HMp is the simplicity of the interconnection
network. The HMp consists of clusters of proc
essors connected hierarchically for both data
processing and da~a distribution.

There are two levels of interprocessor
camnunications in the HMp, an implementation of
which is ·developed on the basis of the monitor
concpet. Using queueing network mddels, the per
formance falloffs due to shared hardware is also
analyzed, and the optimum number of processors
in each cluster is then determined.

1. INTRODUCTION

In the past few years multiprocessor architec
tures have gained considerable attention due to the
availability of the powerful but inexpensive micro
processors and memories in the computing aren.a.
The question that still remains to be answered sat
isfactorily is whether the microprocessor can be
utilized as a building block for large general-pur
pose computer systems, thereby achieving a higher
performance/price ratio as canpared to traditional
uniprocessor architectures. A survey of existing
multiprocessor organizations can be found in [l].
The unsolved issues associated with multiprocessors
are also well discussed in [2].

The proposed architecture called the hierarch
ical multiprocessor (HMp) has been considerably
influenced by both the Cm* architecture at Carnegie
Mellon University and the Hierarchical Multicomputer
Organization at State University of New York,
Stony Brook.

The central idea in Cm* [1,3,4] is the group
ing of processors into clusters and the concept of
a task force [5,12] which is ideal for a cluster
organization. The main drawback in Cm* however is
the integration of the I/O units into the system.
The I/O units are made dependent on individual pro
cessors which results in an unstructured operating
system and gives rise to reliability and utiliza
tion problems. This to same extent has been solved
by the Hierarchical Multicomputer Organization [6,7]

This work is part~ally supported by the National
Institute of Justice, U.S. Department of Justice,
under Contract J-LEAA-014-78, and the National
Science Foundati.on under Grani; hl,G,...7911347,

141

0190-3918/81/0000/0141$00.75 © 1981 IEEE

where the idea of separating the control and data
moving functions has been suggested. In the pro
posed architecture this idea has been extended to
include the users interface to the system.

The HMp has been designed to minimize the
interconnection canplexity of the system and uses
only a few types of f'Unctional units as building
blocks for the system. The aim of the design
has been to create a general purpose multiproc
essor with no restriction on the types of algo
rithms which it can exploit.

This paper is organized as follows. Section
2 discusses the HMp architecture ·Of the multi
processor in same detail. Section 3 describes
the structure of the kernels necessary to imple
ment monitor primitives. [9,10] for synchronizaticn
purposes. Finally Section 4 deals with the per
formance falloffs due to shared hardware re
sources and analyzes the performance of the sys
tem in terms of the processing rate. Conclusion
follows in Section 5.

2. ARCHITECTURE

2.1 Over-view

A multiprocessor should be able to exploit
the explicit or implicit parallelism given by an
algorithm. This is possible only if the number
of steps in each parallel path is greater than a
fixed minimum so as to of'fset the cammunication
overhead existing between interacting tasks.
Thus the extent of exploitable parallelism de
pends on the c0Dm1unication overhead between inter
acting processes. The hardware interconnection
which has the lowest associated communication
overhead is the shared memory concept. The re
striction of this approach is that the cammunica
tion overhead increases as the number of proc
essors in the system increases.

To circumvent this problem, a system with
two levels of communication is developed. At the
first level of cammunication the communication
time is kept to a minimum and independent of the
total number of processors in the system. At
the second level of canmunication the canmunica
tion time is aacrificed for extensibility and
hardware interconnection costs. The processors
in this architecture are grouped into clusters.

The significance of this approach becomes
more evident when we examine the property of
process locality [2]; which states that inter- ·

action within a defined group of processes is
frequent, whereas interaction between different
groups is infrequent. If processes are allocated
to processors such that the processes of the same
group reside in any single cluster, then the
communication overhead would correspond to that of
a closely coupled system.

The HMp consists of two hierarchies, namely
the processing hierarchy and the data distribu
tion hierarchy. The data distribution hierarchy
handles the file management functions and the
processing hierarchy handles the processing func
tions. To differentiate the processors in the
processing hierarchy from those of the data
distribution hierarchy, the former are referred to
as the P-processors and the latter as the D-pro
cessors.

The processing hierarcpy consists of pro
cessing modules grouped into clusters which are
then organized in a hierarchical fashion. Associ
ated with each cluster of processors in the pro
cessing hierarchy is a parent processor which is
part of the cluster one level higher in the hier
archy. Each cluster in the processing hierarchy
has associated with it a D-processor. The D-proc
essors of the system with the secoodary memory from
the data distribution hierarchy. The cluster
organization is presented first and then the
system organization is described in sane detail.

2.2 Cluster Organization

The cluster consists of processing modules
which have a sibling relationship to e.ach other
and they share a common memory by means of a time
shared common bus (Fig. 1). Conflicts of access
to the common bus are resolved by the bus arbiter,
and the handshaking required for gaining control
of the bus is done by the switch, which is a
subsystem of each processing module. Each proc
essing module in the cluster consists of a proc
essor, local memory, a swtich, a DMA interface
to the D-processor and serial links to its child
and parent processing modules.

2.2.1 The Switch. The processor does not
distinguish between accesses to common memory and
its local memory. It is the responsiblity of
the switch to recognize a nonlocal reference and
initiate the necessary handshaking to perform
the memory access. To access common memory, the
switch has to gain control of the common bus by
handshaking with the arbiter. The switch has
been given the capability of buffering a single
data word which has to be read from or written
into the canmon memory. Also for ease of imple
menting process synchronization primitives the
switch has been given the capability of requesting
the control of the bus at two levels, depending
upon the status of the switch (Section 3 will deal
with this in some detail). This status. is explicit
ly set by the processor and is alterable only by
the processor.

2.2.2 The Bus Arbiter. The bus arbiter is
moderately ccmplex since it can grant control of
the bus at two levels and there are certain rules

142

it has to follow in e>rder to preserve the integ
rity of the interprocess synchronization primi
tives (This will be discussed later). The arbiter
provides a round robin service to requesting
processors to ensure that all requests will be
honored in due time. Each of the switches has
two individual request lines to the arbiter for
requesting control of the bus at the two levels,
and correspondingly there are two grant lines
to each switch.

2.2.3 The Control lliinks. Since the cotrol
links are serial in nature, we need additional
processing at both ends of the link for buffer
ing a message, generating interrupts and setting
up flags at the ccmpletion of a message transfer.
A parent processor can interrupt its child
processor through the serial control link at two
levels: one level is maskable and the other is
nonmaskable. An interrupt at any of the two
levels will cause the child to execute a message
receiving routine which is a part of the kernel
software. In normal operation a parent interrupts
its child at the maskable level. This implies
that if the child is inside the kernel, the inter
rupt will remain pending until the child exits
from the kernel. But if the parent has reason
to believe that a malfunction has occurred, it
interrupts at the nonmaskable level. The child
on the other hand can interrupt its parent through
the serial control link only at the maskable level.
This ensures that the parent can still function
with a faulty child processor.

2. 2. 4 The DMA Interface.. The DMA interface
transfers blocks of code/data to and from the
local memory of the D-processor associated with
the cluster and the local memories of the process
ing modules. The DMA interface is also used in
setting up code/data in the common memory of a
cluster. To start a block transfer, the parent
processor of the cluster gives the order to the
D-processor including the identity of the file,
processor number, starting address, the length
of the block and the direction of transfer. The
D-processor then sets the address registers
and the word count register of the DMA interface
and initiates the transfer. On completing the
transfer the DMA interface informs the D-processor
which in turn informs the parent processor of
the cluster.

2.3 Data Distribution Hierarch.y

For each of the clusters in the processing
hierarchy there is an associated D-processor
which handles the transfer of code/data into or
out of the cluster. Since most of the processing
is done a:t the bottom level of the processing
hierarchy, most of the file transfers in the sys
tem will be handled by the associated leaf D
processors. Thus we need high ca:pability data
links between the secondary storage units and
the bottom level D-Processors of the data dis
tribution hierarchy. To perform the file manage:,..
ment functions of the system, the D-processors
need to exchange short control messages between
themselves. The D-processors are interconnected
hierarchically by mean~ of serial links and since

at times there will be file transfers on these
links, a packet switching cammunication system
has to be implemented.

All the human interfaces to the system are
connected to the data distribution hierarchy and
so it acts as the source of all tasks which need
processing power fran the processing hierarchy.
New processes enter the processing hierarchy via
the serial control links interconnecting the two
hierarchies and the results enter the data dis
tribution hierarchy in the same wey. The D-proc ..
essors act as canmand message interpreters in the
same sense as the 'shell' of the UNIX system (11]
and create processes which execute the cammand
message in the processing hierarchy.

2. 4 Root Cluster Organization

The two hierarchies of the system namely the
processing hierarchy and data distribution hier
archy are merged at the top by a root cluster
whose organization is slightly different frcm
that of the other clusters in the system (Fig. 2) ·
The root cluster consists of both P-process ors
and D-processors sharing a canmon memory. The
processing hierarchy is attached to the P-proc
essors of the root cluster and the data distribu
tion hierarchy is connected to the D-processors
of the root cluster.

Tasks of the operating system executing in
the root cluster can oversee both the processing
and the data distribution hierarchies. Typ;i·call,y
these tasks would consist of cooperating parallel
processes and since the processors in the root are
tightly coupled, it leads to an efficient imple
mentation.

3. SYNCHRONIZATION AND INTERPROCESS
CG1MUNICATION

For any multiprocessor architecture it is
essential to have an efficient implementation of
the synchronization and interprocess communication
primitives. Microprocessor architectures being
introduced at present have capabilities to support
two execution modes, features for memory pro
tection and hardware support for task switching.
These hardware supports simplify the implementa
tion of efficient primitives.

3.1 General Approaches

Synchronization and interprocess canmunica
tion can be implemented by using any of the follow
ing mechanisms: semaphores, mailboxes, mess age
queues or monitors. Each of these mechanisms is
logically equivalent to the other.

From a so~ware point of view, monitors [5]
are an ideal solution since they help in specify
ing the precedence relationships in a structured
fashion. Monitors consist of shared data and
procedures which operate on the shared data. A
process can operate on the shared data only
through the procedures of the monitor and not
directly. Since only one process can be inside
the monitor at any time operations on the shared

143

data are mutually exclusive. The primitives re
quired to support monitors are: entering a moni
tor, exiting a mcnitor, signalling a condition
and waiting for a condition (10].

Since we have interprocess cammunications at
two levels: 1) between processors in the same
cluster and 2) processors in different clusters,
we will first discuss the implementation of the
primitives at the cluster level and then at the
system level.

3.2 Synchronization at the Cluster Level

To be as general as possible we assume that
there can be more than one process assigned to a
single processor at any time and that the imple
mentation should handle both static and dynamic
creation of tasks,

To limit the loading on the central resources
of the cluster (i.e. the canmon memory, the
ccmmon bus and the parent processor), we decided
to define two kernels; the proces.sor kernel (call
ed the P-kernel) and the cluster kernel (called
the C-kernel). The P-kernel resides in each
processor and mm.nages .the processes residing in
that processor·. The C-kernel handles the monitors
of all processes residing in that cluster and is
located in the common memory of that cluster.
Since the kernels handle the system queues, they
themselves should not be interrupted to assure
that no race conditions develop. This is easy
to implement for the P-kernel since on entering
the kernel it can disable all interrupts (includ
ing the interrupts from the parent processor).
But mutual exclusiveness for the C-kernel has to
be implemented by using additional hardware.
This mutual exclusiveness is taken care of by the
arbiter and is discussed later.

The C-kernel provides mutual exclusiveness
of the monitors by associating with each monitor
a flag which records whether the monitor is busy
or not. Thus the C-kernel provides a means of
having more than one monitor busy at the same
time. The C-kernel maintains the queues for
processes waiting to enter a monitor and queues
for each condition, The P-kernel queues contain
the full status of the processes necessary to re
start the processes whereas the queues in the C
kernel contain only minimal information to
identify the processes. This is to ensure that
the loading on the central resources is as minimum
as possible.

The tasks running in the processors of the
cluster are in the user mode, and execution of
any of the synchronization primitives causes a
trap to the P-kernel of the processor. The
P-kernel saves the status of the user process and
then tries to enter the C-kernel and waits if
busy until it is free. This does not load the
central resources but only idles the processor.
Once the C-kernel is free, the P-kernel enters
it and performs the operations corresponding to
the desired primitive operation. It should be
again stressed that the C-kernel can be entered
only through the P-kernel and not directly by the

user processes. The operations done ai'ter enter
ing the C-kernel for the case of one primitive is
discussed and the rest are similar.

Exiting from a monitor: The C-kernel checks
the queue associated with the monitor and if there
is no process waiting to use the monitor, it resets
the monitor flag and exists to the p-kernel. If
hwoever, there is a process waiting, it sends

B-request line.

The arbiter provides mututal exclusion of
the C-kernel by asserting C-grant to only one
of the processors which has its C-request line
asserted and ignores all other requests for the
C-kernel until the corresponding processor exits
from the C-kernel. The arbiter can give master
ship of the bus to a processor with only its B
request line asserted even though there is an-the identification of the waiting process to the

parent processor (to be woken up) and then exits
without resetting the monitor flag. The P-kernel
then passes control back to the user process.

. other processor in the C-kernel. This does

When the parent processor receives the message
for waking up a process, it iuterrupts the processor

which has that process in its wait oueue, and thus
we have a "positive wakeup of the process" [8].
The parent processor does not require to keep
track of where the process is residing since the
message frcxn the C-kernel cmtains both the
identification of the process and the physical pro
cessor in which it is residing.

For the case of dynamic creation of processes,
the technique used is quite similar. Execution
of a FORK statement by a user process causes a
trap into the P-kernel and the P-kernel then re
quests the parent processor to create the re
quired number of processes. It is understood that
any datJ.a to be shared has initially been stored
in the canmon memory of the cluster when the task
itself was allocated. Once the Parent process or
acknowledges the message, the P-kernel gives con
trol back to the user process.

3.2.1 Functions of the Arbiter. Function
of the arbiter are:

1. to give mastership of the bus to a requesting
process or, and

2. to keep track of the cmdition of the C-kernel
(i. e busy or not) and thus provide mutual
exclusion of the C-kernel.

Each process or can request use of the bus at two
levels, one for using the C-keQ'Ile 1 and the other
for using code/data outside the C-kernel (i.e.
the monitor procedures). This is implemented by
using an independent set of two request and two
grant lines for each processor.

If the processor wants to enter the C-kernel,
it sets a status bit in the switch of the pro
cessor module. The switch then asserts the C
reG.ruest line and if the C-kernel is not in use,
the arbiter asserts the C-grant line. The switch
then sets a flag indicating to the processor that
it can now proceed to use the C-kernel. Then for
each access to the camnon memory the switch
asserts the B-request and performs the memory ac
cess ai'ter the arbiter asserts the B-grant line.
Once the processor exits from the C-kernel, it
resets the status bit in the switch which causes
the switch to deassert the C-request line, If the
processor wants to access code/data which is out
side the C-kernel, then the processor does not
set the status bit in the switch. For each access
to the canmcn memory the switch only asserts the

144

not create race conditions but does improve the
utilization and availability of the time shared
bus. Thus the arbiter provides a round robin ser
vice for the use of the bus (by asserting B-grant)
and a round robin service for the use of the C
Aernel (by asserting C-grant).

3.3 Synchronization at the System Level

We have so far discussed the implementation
of the inter-process synchronization primitives
at the cluster level. There can be two approaches
for implementing these primitives at the system
level. One approach would be to have processes
residing in different clusters canmunicate via
messages. This involves the complexity of having
two types of communication primitives, one at the
cluster level and the other at the system level.
It suffers from the fact that the architecture
is not transparent to the systems programmer.

The second approach is to implement the syn
chronizaticn primitives at the sy1Jtem level by· us
ing the monitor concept. This provides transp aren
cy· and makes it easier-for the system programmer to
implement the system i'l oftw are. Since monitor pro
cedures access only data local to the monitor,
all interactions between the calling process and
the monitor procedure is m.ade vi a arguments . Thus
execution of a monitor procedure whose physical
location is in another cluster can be implemented
via messages. The monitor procedures will physi ...
cally reside at a common ancestor cluster of the
two clusters in which the camnuni eating processes
are present.

The basic kernel of the operating system which
handles the processes and the inter-process camnuni
cation is described below. This kernel code is
replicated in all the P-processors of the HMp.
The basic kernel consists of essentially two levels.
The first level consists of the P-kernel and the
C-kernel. The second level consists of the mes
sage handler which implements the primitives neces
sary for a process to switch processors. A process
can execute a monitor procedure whose physical
location is in another cluster by migrating to that
cluster. The message handler can create, destroy
or wake up processes residing in the processor.
This is necessary for implementing the monitor
primitives and also serves to implement the concept
of coscheduling the task force [12].

Above this basic kernel, a distributed operat
ing system such as Medusa [12] can be implemented.
Medusa consists of a set of disjoint utilities
(each of which is a task force) which communicate

via messages using a structure called pipes [11].
This structure can be implemented by using the
monitor primitives made available by the message
handler.

4. PERFORMANCE ANALYSIS

Since the present organization consists of
two levels; we first determine the performance
of a single cluster treating it as a single
unit. Using these results we evaluate the per
formance of the entire system. In this analysis,
performance refers on]y to the throughput of the
system and not to any other factors.

4.1 Performance of a Single Cluster

The resources which are shared by the pro
cessors of a single cluster are the time shared
coll1lllon bus, the canmon memory, the D-processor
and the parent processor. Interference in shar
ing these resources results in a decrease in the
performance of each processor.

The reason for analyzing the cluster is to
determine the optimum number of processors for
a cluster and to find the limiting value of
performance due entirely to hardware constraints.
We are at present not considering the performance
falloffs due to software precedence relationships
which do affect the final figure of performance.

The performance of a cluster of processors is
being evaluated by using queueing network models.
The first queueing network models the perform
ance falloffs due to common memory interference.
The second queueing network models the perform
ance falloffs due to the parent processor and the
D-processor of the cluster.

4.1.1 Common Memo Interference. Let us
define the memory cycle time (Mc as the time
taken to read or write a single word into common
memory once the switch has mastership of the time
shared common bus. Let us also define the access
interval time (Ai) as the time interval between
two consecutive accesses to memory by a pro
cessor. The accesses can be either for code or
data. Even though there is a variation in the
access interval times we assume for simplicity
that it has a constant value [13].

Let us further denote the integer value
[Ai/Mc] by m. The greater the value of m, the
less the interference due to the shared re
source and thus greater is the performance of the
processors in the cluster. If the common memory
is implemented in bipolar technology and the pro
cessors in MOS technology then the value of m is
usually in the range 3 to 10 and thus can be used
as a design parameter. Using bipolar memories
for the common memory is reasonable since the
memory requirements for shared information is
small.

To analyze the interference in accessing the
common memory, we should have an under st anding
of the nature of the stochastic process which
describes the accesses to common memory by each

145

processor. Reviewing the use of common memory we
find that the coll1lllon memory is used only for moni
tor procedures, and their associated data and
control mechanisms. When a processor starts exe
cuting a monitor procedure, all memory accesses
will be to the common memory since both code and
data will reside in the common memory. Thus
successive accesses to common memory by the same
processor cannot be modeled as independent random
variables.

If a processor executes any of the monitor
primitives, it begins executing the code of the
C-kernel and then, depending upon the type of
monitor primitives desired and the state of the
desired monitor, one of the following actions
takes place.

1. Processor starts to execute the monitor pro
cedure.

2. It wakes up a process residing in another
processor to execute the monitor procedure.

3. It waits for another process to signal it and
at that time it continues to execute the
monitor procedure.

4. It does not execute the monitor procedure nor
does it wake up another process to execute
the monitor procedure,

Examining the above cases we find that for
the first two cases the monitor procedure is
executed either by the same processor or by an
other ill1lllediate]y following the execution of the
C-kernel. In the last two cases the monitor
procedures are not executed, and the next time
the processor accesses the common memory it would
execute the C-kernel. Once a monitor procedure
is being executed, the processor has to execute
one of the monitor primitives to exit from the
monitor. The above four cases can be condensed to
the following two cases.

1. The processor executes the C-kernel, then the
monitor procedure and finally the C-kernel;
each one immediately after the other.

2. The processor executes the C-kernel and then
starts executing code from its local memory
and then the C-kernel when it canes across a
monitor primitive.

Both of these cases can be represented by one uni
fied model which is as follows: the processor
first executes the C-kernel and then a monitor
procedure and then code from its local memory and
then finally the C-kernel again.

4.1.2 Closed Queueing Network Model. We
can model the memory contention problem as a closed
queueing network model with appropriate service
times and scheduling policies. The resource being
shared is the common memory and the service time
it provides can be measured in terms of the number
of common memory accesses.

The number of canmon memory accesses needed to
execute a portion of a monitor procedure sand
wiched between two consecutive monitor primitives

can be treated as a random variable with an ex-·
ponential distribution. The number of local
memory accesses between two monitor calls can
also be treated as a random variable with an
exponential distribution. The nunber of CCllllilon
memory accesses needed to execute the monitor
primitive by means of the C-kernel is assumed
to have an exponential distribution. Even
though the actual distribution3 might not corre
spond to our assumptions, queueing models are
general]y robust and do give good results.

The queueing network consists of three nodes
two of which consist of parallel servers and the
third a single server (Fig. 4). The first node
consists of n servers where n is the number
of processors in the cluster. The service time
for these servers corresponds to the distribution
of the number of local memory accesses between
two consecutive monitor calls. Node 1 is of
type-D [15] since the customers are delSiYed inde
pendently of other c1istaners at this service
center.

The common memory can be tre.ated as m vir
tual parallel servers since effectively there
can be m common memory accesses in time period
Ai. Also note that we cannot give more than one
common memory access to a processor in a given
time period Ai (Fig. 5). Of them virtual
servers of the common memory one server services
the C-kernel queue which is Node 2 of the queue
ing network. The rest of the m- 1 virtual servers
service th~ monitor queue and form Node 3 of the
queueing network.

In the actual system however, the server
servicing the C-kernel queue would service cus
tomers in the monitor queue if there are no
customers in the C-kernel queue. Therefore the
performance characteristics obtained by this
queueing network model gives the lower bound of
the actual performance. The upper bound of the
performance can be easily obtained by having an
additional parallel server at Node 3.

The scheduling policy used for Node 2 and
Node 3 of the queueing network is FCFS. In the
actual system the type of scheduling used to
service the monitor queue is round robin. As
we are only interested in the mean values of the
waiting time and the mean queue lengths, we can
assume an FCFS service mechanism. As long as
the scheduling is independent of the service re
quirements of a customer, the mean values do not
change [14] .

The anal.ytical solution of the queueing net
work was carried out by the recursive algorithm
in [15]. The results shown in Fig. 6 correspond
to mean value service times indicated below
(values normalized by the mean number of local
memory accesses needed to execute a block of
local code sandwiched between two consecutive
monitor calls):

1. Mean m.mtber of common memory accesses needed
for executing the c..:.kernel: Case 1: 2. 5%;
Case 2: 5%.

146

2, Mean number. of comma:i memory accesses
needed for executing monitor code ·
sandwiched between two monitor primitives:
Case 1: 10%; Case 2: 20%.

The results give the lower and upper bounds
of the performance of the cluster with common
memory interference for m 3 and m = 4.

4.1.3 Parent Processor Interference. To
evaluate the type and frequency of demands placed
on the parent processor, let us consider its func
tions. The parent processor basically consists
of a message handler and other user or system
processes. The message handler handles all in
coming messages from the child processors, the
D-processor and the parent of the processor it
self. There are three types of messages which
can occur and their description follows.

The first type is a synchronization request
between processes residing in the same cluster.
The amount of processing time needed to process
this type of message is small but their frequency
of occurrence is high. The parent processor
should be very responsive to these requests since
any delay would entail a decrease in the perform
ance of the cluster.

The second type of message is a request for
execution of a monitor procedure residing in the
parent processor cluster. This entails the
creation of a process by the message handler by
inserting its description in the ready queue of
the P-kernel. The created process then needs
processing time to execute the monitor. Then the
message handler has to reconvert the process into
a message form and send it back to the child
processor. The frequency of occurrence of these
type of messages is small but the processing time
needed is higher in relation to the messages of
the first type.

The third type of message is a request for
the transfer of code/data into or out of the lo
cal memories of the child processor. This messag=
should be redirected to the D-processor and once
the transfer is over the reply from the D
processor should be sent to· the child processor.
The frequency of occurrence of these type of
messages is low and the processing time needed
is also low.

4.1.4 Queueing Model. We can now treat the
system as a closed queueing network model with the
parent processor and the D-processor as servers
with the processors in the cluster and the parent
of the processor itself as the customers (Fig. 7).
The processors are assumed to have a think time
which is exponentially distributed.· After each
think period a processor sends a message to the
parent processor which acts as the server. The
message can be of any type and it is placed in
the message queue. The service time requirements
for customers in the message queue are assumed to
be exponential. This service time includes the
time taken to read the message from the hardware
buffer; perform the synchronization or create a
new process by entering it in the run queue of
the kernel.

i
I

The customers coming out of the first server
Gan take three paths where each path has an assign
ed probability. The three cases are as follows:

1. If the customer needs no further processing,
then it returns to the processor from which
it originated (P21).

2. If further processing is required, then the
customer is put back in the message queue
which is serviced by the parent processor
(P22)

3. If further processing is required from the
data processor, then it is put in the data
queue. After it receives service from the
data processor, it is put back in the
message queue (P23).

Both the queues in the model namely the
message queue, and the data queue are served in a
FCFS discipline. Synchronization messages are
being given higher priority in the queueing
model since additional processing needed by a
message is being postponed until the backlog
of messages have been serviced.

P22 with the average service time for
customers in the message queue determines the
total service time requirements for messages
which need execution of monitor procedures. The
service time for customers in the data queue is
the total time the system takes to transfer the
code/data to or from the primary memory. This
service time is also assumed to have an exponen
tial distribution.

The analytical solution of the queueing net
work was again obtained by the recursive algo
rithm in [15]. The results shown in Fig. 8.
correspond to the following mean value service
times (the values are normalized by the service
time for executing code residing in the cluster,
sandwiched between two consecutive calls to the
parent processor):

1. Mean service time taken by the parent processcr
to perform a synchronization request: 2.5%

2. Mean service time for the D-processor to
transfer code/data in and out of the cluster
processor's private memory: 20%

The routing probabilities for the closed queueing
network was taken as follows:

1. Case 1: P2l=0.8, P22=0.l, P23=0.l

2. Case 2: P21=0.I, P22=0.2, F23=0.l

4.2 The System Performance

From the analysis so far carried out we have
to arrive at the figure for the optimum number of
processors in each cluster. Since m, the figure
of merit of the canmon memory can be varied within

147

a reasonable range; it can be varied such that
the parent processor becomes the critical shared
resource of the cluster,

Assuming that we desire at least 90% of the
ideal performance (i.e. when there is no inter
ference), we came up with the figure of 15 pro
cessors from the performance curves of the parent
processor (Case 1). Since the parent processor
is also a resource for the grandparent of the
cluster, the optimum number of processors for
the cluster would be equal to 14.

From this optimum number of processors and
the curves for the performance falloffs due to
the common memory interference we can determine
the desired value of m, such that the critical
resource is still the parent processor. For m
equal to 3 and the number of processors equal to
14 we have the performance due to common memory
interference as 91% of the ideal case for Case 1.

The performance falloff when both the shared
resources are present can be taken as the sum of
the individual performance falloffs as a first
approximation. Therefore the performance of the
cluster with both the shared resources present
will be 81% (=100-(100-90)-(100-91) of the ideal
performance. Since the number of processors in
the cluster is 14, the net cluster performance
will be equivalent to that of 12 processors
(14*81%).

Assuming that most of the actual processing
takes place in the leaf clusters, the total sys
tem performance can be written as the product
of the cluster performance (net performance) and
the number of leaf clusters in the processing
hierarchy of the computer system. The above
analysis assumes that the P-processors at the
higher levels are busy synchronizing and perform
ing other communication tasks.

5. CONCLUSION

We have presented the architecture of the
HMp, the synchronization primitives and finally
the performance of the system based on these
primitives. Our future work will concentrate on
the interesting aspects brought up by this archi
tecture, some of which are given below.

The HMp has an upper bound on the number of
levels it can have. This depends on the higher
level processors becoming the bottlenecks in the
system. This is thus related to the number and
locality of the inter-cluster messages which
further depends on the operating system structure.

The effects of software precedence has to be
introduced into our queueing models for determin
ing the actual performance falloffs. This will
be useful in determining the effects of both so~
ware and hardware constraints in the system. We
know by intuition that the figure for the optimum
number of processors in each cluster will increase,
when these effects are taken into account.

The files in the secondary memory should be
distributed such that the time to access them
from any point in the processing hierarchy is a
minimum. The modelling of such a system will in
volve the actual hardware being used and the band
width of the interconnections in the data distri
bution hierarchy.

[l]

[2]

[3]

REFERENCES

P. H. Enslow, "Multiprocessor Organization -
A Survey," Computing Surveys, Vol. 9, No. 1,
March 1977, pp. 103-129.

S. H. Fuller, J. K. Ousterhout, L. Raskin,
P. L. Rubinfeld, P. J. Sindhu and R. J. Swan,
"Multi-Microprocessors: An Overview and Work
ing Example," Proc. IEEE, Vol 66, No. 2,
Feb. 1978, pp. 216-228.

R. J. Swan, S. H. Fuller and D. P. Siewiork,
"Cm* - A Modular Multi-microprocessor,"
AFIPS Conference Proceedings, Vol 46, 1977
National Computer Conference, pp. 637-644.

[4] R. J. Swan, A. Bechtolsheim, K. Lai and
J. K. Ousterhout, "The Implementation of Cm*
Multi-microprocessor," AFIPS Conference
Proceedings, Vol 46,' 1977 National Computer
Conference, pp. 645-655.

[5] A. K. Jones, R. J. Chansler, I. Durham,_P.

[6]

[7]

P. Feiler and K. Schwars, "Software Manage
ment of Cm* - A Distributed Multiprocessor,"
AFIPS Conference Proceedings, Vol 46, 1977
National Computer Conference, pp. 657-663.

J. A. Harris and D. R. Smith, "Hierarchical
Multiprocessor Organization," Conf. Proc.
4th Ann. Symp. Computer Architecture,
March 1977, pp. 41-48.

R. B. Kieburtz, "A Hierarchical Multi
computer for Problem Solving by Decomposi
tion," Proc. 1st Int'l Conf. Distributed
Computing Systems, Oct. 1979, pp. 63-71.

[8] H. K. Reghbati and V. C. Hamacher, "Hardware
Support for Concurrent programming in
Loosely Coupled Multiprocess ors, 11 Conf. Proc.
5th Ann. Symp. Computer Architecture,
April 1978.

[9] C. A. R. Hoare, irMonitors: An Operating Sys
tem Structuring Concept," CACM Vol. 17,
No. 10, 1974, pp. 549-557.

[10] R. C. Holt et al., Structured Concurrent
Programming, Addison Wesley, 1978.

[11] D. M. Ritchie and K. Thompson. "The UNIX
Time-Sharing System Comm. , " ACM, Vol. 17,
No. 7, July 1974, pp. 365~375.

[12] J. K. Ousterhout, D. A. Scelza and
P. S. Sindhu, "Medusa: An Experiment in
Distributed Operating System Structure,"
Proc. 7th Ann. Symp. Operating Systems
Principles, Nov. 1979, pp. 115-126.

[13] D, P._ Bhandark ''Sane Performance Issues in
Multiprocessor System Design," IEEE Trans.
Computers, Vol. C-26, No. 5, May 1977,
pp. 506-511.

[14] L. Kleinrock, Queueing Systems, Vol. 1 & 2,
John Wiley and Sons, 1975.

[15] M. Reiser, S. S. Lavenberg, ''Mean Value
Analysis of Closed Multichain Queueing Net
works," JACM, Vol. 27, No. 2, April 1980,
pp. 313-322.

Control Links to
Parent Processor

Common Bus

To Parent To Parent &
of Cluster Child D-Processors

p Processor

s - Local Switch

A - Arbiter

MC - Common Memory

ML - Local Memory

DP - D-Processor

c - Serial
Communication

Interface

Figure 1. Cluster Organization.

148

'
\:

RC - ROOT CLUSTER

C - CLUSTER

DP - D-Processor

SM - SECONDARY M»>!ORY

EXECUTION OF
LOCAL CODE

tin:

Figure 3. Common Memory Reference Pattern.

Node l Node 3

Figure 2. System Hierarchies.

Cluster Processors Virtual Servers

Case 1: No. of Requesting Processors < m

t
Common
Memory

Not Used For
Two Cycles

1: Access to C-Kernel by Processor 1.

2,3: Access to Monitors by Processors 2,3.

Case 2: No. of Requesting Processors > m .

1: Access to C-Kernel by Processor 1.

2-6: Access to Monitors by Processors 2 to 6.

149

Figure 4. Queueing Model for Common Memory

-time

Figure 5. Individual Access
to Cammon Memory

20

18

2

m = 4

m = 3

Case 1

Case 2

6 8 10 12 14 16 18 20

No. of Processors in Cluster

Figure 6. Common Memory Interference.

Cluster Processors

Case 1

Case 2

20

18

ro
~ 16 g
ro v 14 Q
0
~

"' +' 12
" v

<-I

"' 10 .;:;
"' "' 8 "' " 0

0 6

"'
4

2

2 6 8 10 12 14 16 18 2 0

No. of Processors in Cluster

Figure 8. Parent Processor Interference.

G - Grandparent

PP - Parent Processor

DP - Data Processor

Figure 7. Queueing Model for Parent Processor.

150

A BLOCK-DRIVEN DATA-FLOW PROCESSOR*

By

T.L. Chang, Student Member, IEEE

and
P. David Fisher, Senior Member, IEEE

Department of Electrical Engineering
and Systems Science

Michigan State University
East Lansing, Michigan 48824

Summary

A highly distributed data-flow processor
based on block-driven principles is described.
Being block-driven, data-flow programs can be
executed in functional blocks. As a result, data
transfers can be effectively separated into
different levels of communication paths. Through
the use of a structured computer architecture and
a hierarchical data-transfer mechanism within the
tree network, this data-flow processor provides
programmable communication paths for fast data
transfer while at the same time achieving very
high levels of concurrency.

Introduction

In a data-driven computing system, the in
structions of a data-flow program are normally
stored in the instruction memory cells; an in
struction cell will be fired whenever the required
data are available [1:. 2]. Based on a variety of
forms of parallel routing and parallel computation,
a large number of such instructions can be exe
cuted simultaneously. However, due to data depen
dencies, this data-driven approach requires streams
of data to be routed back to the instruction memory
cells. These data then trigger newly addressed
instruction cells. Based on the trend that data
transfers are becoming more and more costly when
compared to the cost of a unit of computing power,
there is a critical need for data-flow structures
having efficient data transfer paths [3,4]. Con
sidering the constraint of data dependencies to
data-flow instructions, this constraint varies from
one instruction to another. Some instructions re
quire one data item from the previous execution and
some require two. An instruction with one depen
dent data item can be executed immediately after
the previous operation is completed. However, the
execution of an instruction with two dependent data
items has to wait until both data items are ready.
This results in a different degree of efficiency
for transferring these two types of data. A num
ber of data-flow machines, which have been pro
posed recently or which have already been devel
oped, have paid little attention to this problem.

*This research was supported in part by the
National Science Foundation under Grant
No. MCS79-09216.

0190-3918/81/0000/0151$00.75 © 1981 IEEE

151

In these machines, data items are transferred on
a fixed-length data path basis. As a result, the
problem of intercell communication overhead has
limited their potential to only a handful of
applications [1,2,5].

In an effort to overcome the communication
overhead problem, a block-driven approach is ex
plored. By contrast to the "data-driven", the
"block-driven" can be best described as the group
firing of instructions which belong to a group of
composite computations. The result of this group
firing is that data paths can be effectively sepa
rated. Data transfers among the already executed
instructions and the succeeding instruction cells
within the same group will have shorter paths
compared to those outside the group.

The purpose of this paper is three-fold:
First, we describe the block-driven principle and
discuss its potential advantages: second, we
introduce an hourglass computing model to f acili
tate different levels of data transfer, and by
this model, develop a block-driven data-flow
computer architecture; and finally, we present a
push-pull data-transfer mechanism.

Block-Driven Data-Flow Principle

The flow of data and control in data-flow
programs represent fundamentally a random motion
phenomenon. And the requirement for transferring
this tremendous number of data links and control
signals has made the design of parallel processors
extremely complex. Although a large number of
algorithms have been designed to make applicative
programs more suitable for parallel computations,
they have been proved to be efficient only when
they are executed in specialized array processors
[6,7,8]. Like the structured programming techni
que being widely applied to the software design,
the idea of structural, compound function compu
tations has been gaining a great deal of support
recently [9,10]. The block-driven approach is
developed here to exploit as much of the structure
of data-flow programs and machines as possible.
In what follows, we will describe this approach.
Two important computational steps in data-flow
programs are the branch computation and the joint
computation. Branch computations involve a se
quence of chain computations with the constraint

that each succeeding computation requires one data
item from its previous computation. In other
words, a computation branch is represented by a
mathematical expression of the form

fn(an,fn-1 (an-1, (-•f2(a2,fl (al,aO))••)

in which the f;'s denote the elementary arithmetic
function(+,-,~,/) and the a.'s are data. A joint
computation is defined as a ~air of branch compu
tations which are linked together by a computation
node at their ends. A data-flow graph containing
two computation branches at a joint is shown in
Figure 1. By such linkage, we can form a number
of joint computations into a cluster of functional
cells or a computational block. Each functional
cell is made up of a group of composite instruc
tions and a number of data operands. Data items
which are used to initiate the firing of a func
tional cell are called global data.

In a block-driven computer system, the firing
of an instruction cell in the data-flow program is
subject to the firing of a functional cell with
which this instruction is associated; and the fir
ing of a functional cell is subject to the group
firing of a computational block. Through this
process, a large number of independent functions
can be executed in parallel. Further, complex
algorithms can be easily decomposed and thereby
effectively executed.

Joint Computation

One important issue of having data-flow pro
grams executed by the block-driven process is con
cerned with the manner in which a computation is
executed locally. To deal with this, we propose a
simple and effective processing pair for branch
computations. The processing pair consists of a
pair of local supervisors and a pair of FLP comput
ing modules connected in a ring configuration (see
Figure 2). Data-flow instructions on a pair of
branches are executed on an interleaved basis. An
example of this interleaved computation is illus
trated in Figure 3. The advantages of this ap
proach are: first, the succeeding instructions
can be driven by local data with an address field
of minimum bits; second, reliability can be greatly
improved by connecting the processing elements
in this manner.

Hourglass Data-Flow Computing Model

In an attempt to exploit the potential advan
tages of this block-driven principle, a novel
hourglass computing model was developed (see
Figure 4). The hourglass is loaded with a pair of
"double mirrored" trees and has the computing
power elements at one end, the instruction memory
cells at the other, and hierarchical tree
structured data paths in between. Based on the
block-driven principle, a block of fired func
tional cells pass through a pipe of instruction
buffer units to the block control master, where
the functional cells are distributed, and the
separated computational branches are executed
locally on an interleaved basis in a pair of

152

processing elements. Data flow within the hour
glass is guided, primarily depending on whether
data are global or local in type, either into
transmission paths or reflection paths. The length
of the transmission paths is fixed; therefore,
there is no preference for all global data trans
fers. The reflection paths are varied, ranging
from the shortest paths, which are localized in
the processing pair, to the logarithmic paths
within the buffering tree. This hourglass model
has highly concurrent activities at both ends,
while global data, which link the functional
cells, are trickling in between.

Block-Driven Computer Architecture

Various tree-structured computing machines
have been proposed [11,12]. The tree machines
have very high levels of concurrency and are well
suited for implementation with current VLSI
technology [11,12,13]. Based on our hourglass
model, we propose a data-flow tree machine. It
contains two kinds of trees: one is called the
buffering tree and the other is the distributing
tree (see Figure 5). In what follows, we will
briefly describe the structures of these two
trees and the associated functional units.

Buffering Tree--The buffering tree is an n
level binary network capable of computing 2n FLP
operations concurrently and transferring the
results efficiently. It consists of 2n-l nodes
and one root node. Each one of these nodes is a
controlling buffer, at which each visiting data
item will either be buffered down or be trans
ferred out. This choice is based on a number of
conditions which will be discussed later. Also
associated with each leaf node is a pair of local
supervisor and processing element where FLP
operations are performed. The buffering tree has
two primary roles: first, it is an interconnec
tion network to the 2n processing elements;
second, it is a buffering channel between the pro
cessing elements and the instruction memory cells.

Data movements within the buffering tree are
based on a two-phase push-pull mechanism. While
capable of being pushed forward and pulled back
ward, local data can be precisely moved from one
leaf node to another in a few number of push-pull
cycles. Global data, which use the buffering tree
as the channel, can be pushed forward through the
network and off via the root node in n push
cycles.

Distributing Tree--The distributing tree is
an m-level pipelined binary switching network.
It provides the basic mechanism of routing streams
of globally independent data to a set of function
al cells. There are 2m functional cells and data
operands tied to the lowest level leaf nodes of
the tree. Through the use of an m-bit address
header, data items can be routed to their desti
nation cells. As data items enter the .root node,
they are pipelined through this m-level distrib
uting tree.

I

As a data item is passed from one node to
the lower level node, the select bit in the
address header is deleted. As a result, the m
bit header is eliminated from a data item when
the routings are concluded.

Block Control Master--The major role of
the block control master is to provide the tree
machine with concurrent joint computations.
The master communicates with all the local leaf
supervisors. The master acknowledges when the
tree machine is released from one block of
computations. Then a following computational
block will be sequenced and be distributed over
the local leaf supervisors, and a joint
computation will be executed.

Instruction Buff er--The instruction buff er
unit is used for the queueing of blocks of
functional cells which are fired and ready to be
executed and is built with intelligent FIFO buffer
memories.

Push-Pull Data Transfer Mechanism

Because there are two types of data to be
transferred in the same network, each node of the
buffering network--a controlling buffer--is de
signed to work on a two-phase basis. In the push
mode, d·ata are pushed forward from the lower
level nodes to the higher-level nodes; whereas,
in the pull mode, data are pulled backward in an
opposite way. Each data item is tagged with a
destination address field and a one-bit data type
header. The width of the address is determined by
the tree height--the higher the tree height, the
wider the field. Specifically, a locally depen
dent data item has a relative displacement ad
dress and a one-bit direction header, while a
globally independent data item has an absolute
address. The relative displacement address is
determined by the distance in which the two commu
nicating leaf nodes are apart and by the relative
position in which the two nodes are located (see
Figure 6). Data to be pushed forward or pulled
backward depend on a one-bit mode control by
ORing the one-bit data type header and selected
bits in the address field. With a tree height
of n, this mode control at the ith level,
Mi, is given by

n-1
Mi= a0u(kyi ak), 0 ..::_ i ..::_ n-1,

where the notation U stands for the logic OR
operation. If the mode control is "l", data will
be pushed forward; otherwise, they will be buffer
ed at the node at which they last visited and be
ready to be pulled backward.

Global data, which carry a "l" in the data
type header a , will allow themselves to be pushed
forward throu~h the buffering network. However,
local data, which carry a "O" in the data type
header, can never be pushed forward beyond the
root level, because the mode control at the root
level is always "O" for these data. Data which
have already been buffered down to a node at some
level will be pulled backward by one of the two

153

son nodes. The decision is determined by a left
right control--LRi--at that level, with

l..::_i..::_n-1,

where a is the direction header which determines
whethernthe data to be directed to their right or
to their left. If the left-right control is "l",
the data will be pulled backward by the right son
node, and if it is "O", they will be pulled back
ward by the left son node. A three-level buffer
ing tree is illustrated in Figure 7.

Discussion

The block-driven data-flow processor describ
ed executes clusters of data-flow instructions in
a block of locally tree-structured processing
elements. Two classes of data communication paths
exist. The first communicates global data among
blocks of the locally tree-structured processing
elements. The second communicates local data
among processing elements within a block. Maximum
throughput occurs when the ratio of the local data
communication rates within a block is much-much
greater than the global data communication rates
for the data channels bringing operands into or
taking results from a block. So, the granularity
of the tasks performed within the structured
blocks determines the overall system performance
for a fixed number of blocks and processing ele
ments. We are currently assessing the complexity
of this data-flow structure in the context of its
application to both vector processing and discrete
time filtering.

[l]

[2]

[3]

[4]

[5]

[6]

References

D.P. Misunas and J.B. Dennis, "A Computer
Architecture for Highly Parallel Signal
Processing," Proceedings of the ACM 1974
National Conference, ACM, N.Y. (Nov. 1974),
pp. 402-409.

I. Watson and J. Gurd, "A Prototype Data
Flow Computer with Token Labeling," AFIPS
Conf. Proc., Nat'l Comput. Conf., (June
1979), pp. 623-638.

C.H. Sequin, "Single-Chip Computers, The
New VLSI Building Blocks," Proc. Caltech
Conf. on VLSI, (Jan. 1979), pp. 435-445.

D.A. Patterson and C.H. Sequin, "Design
Considerations for Single-Chip Computers
of the Future," IEEE Trans. on Computers,
Vol. C-29, (Feb. 1980), pp. 108-116.

A.L. Davis, "A Data-Driven Machine Archi
tecture Suitable for VLSI Implementation,"
Proc. Caltech Conf. on VLSI, (Jan. 1979),
pp. 479-494.

H.S. Stone, "An Efficient Parallel Algorithm
for the Solution of a Tridiagonal Linear
System of Equations," ACM Journal, Vol. 20,
No. 1, (Jan. 1973), pp. 27-38.

[7] H.T. Kung, "The Structure of Parallel
Algorithms," Advances in Computers, Vol. 19,
ed. by M.C. Yovits, Academic Press (1980),
pp. 65-112.

[8] H.T. Kung, "Let's Design Algorithms for VLSI
Systems," Proc. Caltech Conf. on VLSI,
(Jan. 1979), pp. 65-90.

[9] D.D. Gajski, D.J. Kuck, and D.A. Padua,
"Dependence Driven Computation," Digest
of Papers, IEEE Compcon Spring 81, (Feb.
1981), pp. 168-172.

[10] Arvind, "Decomposing a Program for Multiple
Processor Systems," Proc. 1980 Int'l Conf.
on Parallel Processing, (Aug. 1980),
pp. 7-11.

[11] S.W. Song, "A Highly Concurrent Tree Ma
chine for Database Applications," Proc. 1980
Int'l Conf. on Parallel Processing, (Aug.
1980), pp. 259-268.

[12] A.M. Despain and D.A. Patterson, "X-Tree:

[13]

A Tree Structured Multi-Processor Computer
Architecture," Proc. Fifth Symp. on Comp.
Arch., (April 1978), pp. 144-151.

E. Horowitz and A. Zorat, "The Binary Tree
as an Interconnection Network: Applications
to Multiprocessor Systems and VLSI," Proc.
Workshop on Interconnection Networks ~
Parallel and Distributed Processing, (April
1980), PP• 1-10.

Figure 1. A joint computation data-flow graph
h (f,g) r

154

Figure 2. The ring configuration:
CM: computing module and
LS: local supervisor.

,.

•1

••

Figure 3a.

x • ta<•2•f1t•1••o>I

Y • 112<b2•9'1<b1,bo.JI

I • h(x,yl

An example of a
joint computation.

•2~ .,
1

-

Figure 3b. Steps in an interleaved
computation.

..

O .-st.-1"-lldf Tr••
• MiUerl"'ilTrd
I l•tl'*IO'* ... ,
t ... la•trDCHIM
• a 10.t•

Figure 4. The hourglass computing model.

i'

Block
Control

Master

data

global
data

local
data

Local
Proceasinq

Pairs ·
Functional

cells

Dis tr ibuti nq ,...._...,.___,..,
Tree

~}

~}

Figure 5. Block-driven data-flow architecture

"n

address

• • •

absolute
address

relative
displacement

address
0

a0 : data type header

a = 1
0

"m-a1 : absolute address, m .::_ 11

a ·= o
0

a : directj on header
n

a11_ 1-a1 : relatl.ve dJsplaccrncnt address

Figure 6. Data address syntax.

Figure 7. A three-level buffering tree

155

Processor Allocation in Data Driven Systems - Two Approaches

by

K.J. Mundell, M.W. Linder and S.E. Conry
Electrical and Computer Engineering Department

Clarkson College of Technology
Potsdam, New York 13676

Summary

The topics of data driven computer and pro
gram organization have attracted considerable
attention in recent years. A number of
architectures have been proposed and several pro-

· totype machines are now either operational or are
being built[l-8]. In addition, various groups
have developed languages based on principles com
patible with data driven execution[8-13]. In this
paper we describe two approaches to the problem of
associating operations in a program with the pro
cessors which will execute them. The goal is to
reduce the time required for program execution by
making judicious processor allocations.

In this paper we are concerned with a class
of programs written in a textual-form single
assignment language. The fundamental control
structures assumed are: BEGIN-END, WHILE-DO, and
IF-THEN-ELSE. We assume that the parallelism is
implicit, rather than explicitly expressed by a
COBEGIN-COEND type construct. (The assumptions
outlined here are completely consistent with those
inherent in most, if not all, of the single
assignment languages that have been developed.)
The data driven rule for execution implies that
unless there is a direct data dependency of one
operation on another, two operations can be done
in parallel (provided other architectural con
straints of the system are met). Thus an opera
tion can be performed at any time after all of its
operands are available, independent of any ex
ternal timing constraints.

An optimal assignment of operators in a pro
gram to functional units is one which minimizes
execution time. In a data flow system, there are
two factors contributing to the overall execution
time of a program: the computation time associated
with each operation and the time required for
transmission of res~lts to the appropriate
destinations for use as operands. It is not
difficult to show that the problem of obtaining
optimal allocations is NP-complete, hence the cost
of doing so is prohibitive.

For this reason, the goals of our processor
allocation schemes are threefold. First, an
allocated program should take advantage of as much
of the inherent concurrency as possible. Second
ly, since we believe that communication delays can
have a significant effect on execution time, the
time lost to interprocessor communication should
be reduced wherever possible. Finally, the amount
of analysis at runtime needed to perform any
necessary dynamic allocation should be minimized.

0190-3918/81/0000/0156$00.75 © 1981 IEEE

156

Thus we attempt to allocate as completely as
possible prior to runtime.

The problem of allocating operations in a
program to functional units in a data driven
machine can be divided into two phases. The first
of these involves reducing the magnitude of the
problem by decomposing the program into smaller
portions that are easier to analyze for alloca
tion. The second phase deals with actually per
forming the allocation. In the paragraphs which
follow, we desc.ribe two sets of algorithms for
solving the problem. Each has been implemented in
PASCAL and data has been gathered with respect to
its efficacy and complexity.

Our first approach to the problem of resource
allocation in data flow systems involves decompos
ing a program written in a block structured single
assignment language into smaller segments accord
ing to the level of nesting associated with a
block and analyzing each "local" subprogram to de
termine the implicit parallelism and any inherent
sequential restrictions. The statements in each
program segment are· then assigned to processors,
and the results of the "local" allocation are pro
pagated for use in allocating operations in its
containing block.

As was previously mentioned, an algorithm for
performing this analysis and allocation has been
developed and implemented in PASCAL. Its im
plementation is a family of mutually recursive
routines which accomplish the decomposition, pro
ducing lists of statements that can be done in
parallel. These groups of "parallel" statements
are then analyzed to determine what data de
pendencies exist between them. A processor
allocation for each block is then produced and re
turned for use in obtaining a global allocation.

In this approach, allocation within each
level of nesting is performed just after that
segment has been analyzed. Two criteria are used
in determining which processor should perform a
given operation. If several statements are con
strained to be executed sequentially, they are
assigned to the same processor, that pro-cessor be
ing the one with the smallest number of statements
already assigned to it.

A second approach
allocation has also
approach also involves
smaller segments, but

to the problem of processor
been investigated. This

decomposing a program into
in this case the decomposi-

tion takes a different form. Each block is first
analyzed in order to determine the global
sequential restrictions. In finding these re
strictions, a data dependency graph is constructed
which exposes the dependencies that imply
sequential restrictions. Given this graph, an
allocation is obtained by traversing the graph and
taking two factors into consideration at each
stage: which operations have their operands avail
able and the amount of communication overhead that
would be involved in allocating a statement to a
given processor. Algorithms for allocation com
patible with this approach have also been designed
and implemented in PASCAL. These algorithms are
iterative in nature, whereas those me~tioned pre
viously are highly recursive.

It is not difficult to see that each of the
two approaches outlined in this paper produces
allocations that are, in general, not optimal. An
analysis of the algorithms developed to implement
the first approach mentioned reveals that a bound

on the worst case time complexity is O(N2) where N
is the number of statements in the program. It

can also be shown that O(N2) behavior cannot be
achieved, since not .§.11 of the pathologically
difficult conditions can arise at once. In order
to obtain the obvious improvement (over the
optimal case) in the time required to produce an
allocation, this approach sacrifices optimaiity.
Not all of the inherent concurrency is exposed, so
it is not possible to use all of this concurrency
in determining the processor assignment.

The second approach also provides a way of
obtaining processor allocations quickly. The
worst case complexity of this algorithm (as it has

been implemented) is also bounded by O(N2), though
we believe the average case will exhibit
O(N log N) performance. It is evident that these
algorithms, too, restrict the inherent parallelism
in constructing the data dependency graph. This
(potentially) adds some sequential restrictions,
so that the allocations produced cannot, in
general, be optimal.

Each of these implemented algorithms has its
advantages and disadvantages. On small programs,
with varying numbers of processors in the
simulated system, each appears to produce very
good results. The process of gathering more
statistical data is, of course, an ongoing one.
Research is also proceeding on the allocation pro
blem in the context of an expanded set of
linguistic constructs.

157

IV. References

1. J .E Rumbaugh, "A Data Flow Multiprocessor",
IEEE .IlinL. Com.puters. Vol. C-26, No. 2,
Feb. 1977, pp. 138-146.

2. I. Watson and J. Gurd, "A Prototype Data Flow
Computer with Token Labeling", AFIPS Conf.
Proc •• 1979 NCC, New York, June 1979,
pp. 623-628.

3. A. Davis, "A Data Flow Evaluation System
Based on the Concept of Recursive Locality",
AFIPS Conf. Proc •• Vol. 48, 1979 NCC, New
York, June 1979, pp. 1079-1086.

4.

5.

6.

7.

8.

9.

10.

11.

R.M. Keller, G. Lindstrom, and S.S. Patil, "A
Loosely-Coupled Applicative Multiprocessing
System", MID Conf. Proc., Vol. 48, 1979
NCC, New York, June 1979, pp. 613622.

J.B. Dennis and D.P. Misunas, "A Preliminary
Architecture for a Basic Data Flow
Processor", Proc. Second Annual ~
Computer Architecture. Houston, Texas, Jan.
1975, pp. 126132.

A. Plas, D. Compte, O. Gelly, and J.C. Syre,
"LAU System Architecture: A Parallel Data
Driven Processor Based on Single Assignment",
~ 1976 Int. QQnf.. On Parallel Process
ing, P.H. Enslow, ed., August 1976,
pp. 293-303.

J.B. Dennis, "Data Flow
Computer. Vol. 13, No.
pp. 48-56.

Supercomputers",
11 , Nov. 1980 ,

Arvind, K.P. Gostelow, and W. Plouffe, "An
Asynchronous Programming Language and Comput
ing Machine", Department of Information and
Computer Science, TR 114a, University of
California at Irvine, Dec. 1978.

W.B. Ackerman, "Data Flow
Conf. Proc. • Vo 1. 48,
June 1979.

Languages", AFIPS
1979 NCC, New York,

J. McGraw, "Data Flow Computing: Software
Development", IEEE Trans. Computers. Vol.
C-29, No. 12, Dec. 1980, pp.1095-1103.

G. Darrieu and J.C. Syre, "Extension of the
LAU System: Global Specification of
Synchronization in a Data Driven Language",
~ Workshop .Qll ~Driven Languages and
Machines. J.C. Syre, ed., Toulouse, France,
Feb. 1979.

12. K. Boekelheide, "A High Level, Graphical,
Data Driven Language", ~Workshop on Data
Driven Languages and Machines. J.C. Syre,
ed., Toulouse, France, Feb. 1979.

13. A. Davis, "DDNs - A LOJol Level Programming
Schema for Fully Distributed Systems", ~
Workshop .Qll : ~ ~ Languages and
Machines. J.C~ Syre, ed., Toulouse, France,
Feb. 1979.

DATAFLOW APPROACH TO DISCRETE SIMULATION

Bharadwaj Jayaraman

Department of Computer Science
University of North Carolina

Chapel Hill, North Carolina 27514

Summary

Discrete simulation is the technique of

simulating the dynamic behavior of a system at

discrete points in time. Languages for discrete

simulation, such as GPSS, SIMULA, etc., are based

on a sequential and centralized scheduler of

events; however, greater concurrency can be

achieved by a distributed approach, as proposed

in [1] , [2] and [4]. In this paper, we explore

this idea in the context of a dataflow model [3]

for two main reasons: 1) The interconnection and

flow of entities in a simulation model, such as

in GPSS, closely resemble the flow of streams

between operators in a dataflow graph. 2)

Dataflow models exploit both pipelined and

horizontal concurrency; hence, unrelated or

concurrent events can be executed asynchronously

and concurrently

In our dataflow simulation model, each data value

is tagged with a positive integer, called a time

tag. A stream of such tagged data values always

has time tags in monotonically increasing or

chronological order. Streams may be finite or

infinite (As in most data-flow models, the size

of an input stream to any operator is assumed to

be unbounded). The time tag of a data value

represents the local time of some temporary

entity in the simulation model. The processing

of a data value by an operator is called an event

and begins at the local time of the operator.

The completion of an event can, but need not

always, increase the local time of an operator.

The concept of local time is introduced since

there is no global clock and no centralized

scheduler of events in our dataflow simulation

model.

0190-3918/81/0000/0158$00.75 © 1981 IEEE

We present some primitive operators for dataflow

simulation, and discuss the problem of correct

simulation of events. The choice of operators is

motivated by a need to consider the dynamic

aspects of simulation, rather the functional

properties of the entities. Since the dynamic

behavior of our dataflow simulation model is

determined mainly by the flow of streams, the

operators of interest are various functions on

streams. Typical operators from this set are:

If D is an untagged stream of
nonnegative integers (d 1, ct 2 •••)
and s is a tagged stream (<v 1 , t 1>,
<v2· t2>, •••) then s• is a tagged
stream (<v 1 ,t• 1>. <v2 ,t• 2>, •••)
where t' i = di + max (t' i-1, ti) , and
t' 0 = o.

~
S''

merge

s

B is a untagged stream of bit
values, and S, s•, S" are tagged
streams. If the first bit value in
B is 1 therl"the first data value in
S is gated out to s• else the first
data value in S is gated out to
s".

S is the result of sorting s• and
s•• based upon their time tags.

158

We assume two

creating and

operators, source and

destroying tagged

sink, for

streams

respectively. The delay operator models a

single-server queueing system, in which the

stream D represents the service times for the

objects in s. The choice operator is used for

splitting up a stream; its control stream B will

usually be generated by some probability

distribution. The merge operator produces an

output stream that is in chronological order;

hence, it needs a tagged data value on both its

inputs before it produces an output. As a

consequence, it may be assumed that the merge

operator is determinate, i.e. will produce the

same output stream given the same pair of input

streams.

There are basically two types of dataflow

simulation graphs: acyclic (figure 1) and cyclic

(figures 2 and 3). Two types of cyclic graphs

may al so be distinguished: simple (figure 2) and

shared (figure 3), depending on whether or not a

merge operator is shared between two cycles.

Cyclic graphs represent the notion of feedback in

the simulation model and therefore are the more

interesting case. Deadlock occurs in cyclic

graphs due to a circular dependency between the

output of a merge operator and its input.

However, using information from other merge and

delay operators in a cycle, it is possible to

break deadlocks in a distributed fashion. In

comparison, acyclic graphs do not require any

additional mechanism for their correct operation.

We now summarize a method for breaking deadlocks

in simple cycles. Four phases may be identified

in the execution of a simple cycle: TEST, START,

EXECUTE, and RE-TEST. During the TEST phase, a

test message is sent around the cycle, by a

pre-determined merge operator in the cycle,

polling information from each delay and merge

operator, in order to determine which merge

operator must break the deadlock.

phase, the merge operator chosen

deadlock is sent a start message.

In the START

to break the

The EXECUTE

phase represents operation of the cycle after the

deadlock has been broken. Special exit messages

are sent around the cycle, by each choice

operator in the cycle, to determine when the last

data value leaves the cycle, i.e. to detect the

recurrence of deadlock. The RE-TEST phase begins

when some choice operator detects the recurrence

of deadlock and sends the pre-determined merge of

the cycle a re-test message. The receipt of this

message re-initiates the TEST phase all over

again.

Assuming M1 ••• Mn are n merge operators in the

cycle, di is the composite delay of all delay

operators between Mi and Mi+ 1, loci is the local

159

time of this composite delay operator, and t 1 is

the time tag of the first data value of the input

arc of Mi that is not in the cycle, then the

merge operator Mj chosen to break the deadlock is

such that Sj ,n has the minimum value over all

s 1 ,n ••• Sn ,n, where

S. k = if k < j then t. else J, J
dk + max(lock, sj,k-1)

The deadlock is broken by sending the data value

tj along the output of Mj•

An ex tension of the above method can be used for

breaking deadlocks in shared cycles, but is

omitted here due to shortage of space. Work is

in progress in formalizing the algorithm for this

extension.

References

[1] R.E. Bryant, Simulation on a Distributed
System, Computation structures Group, MIT,
Memo 182, (July, 1979).

[2] K.M. Chandy and J. Misra, Distributed Simu
lation: a case Study in Design and Verifi
cation of Distributed Systems, IEEE Trans
actions on Software Engineering-;-(September
1979), PP-440-452.

[3] J.B. Dennis. First version of a dataflow
procedure language, In G. Goos and J. Hart
manis (eds.), Lecture Notes in Computer
Science, Springer-Verlag--:-19f4:-pp 362-376.

[4] J. D. Peacock, J. W. Wong, and E. Manning,
Distributed Simulation Using a Network
of Microcomputers, Computer Networks,

(February, 1979), pp 44-55.

ARCHITECTURE OF A MULTIPROCESSOR USING
DATA FLOW AT A PROGRAM BLOCK LEVEL

Marie-Paule LECOUFFE

E.R.A. CNRS 771

U.E.R. d'I.E.E.A. - Informatique

Universite de LILLE I

F. 59655 VILLENEUVE D'ASCQ CEDEX

Summary

Data flow architectures bring a great contri
bution about the parallelism exploitation because
they are able to detect, at execution time, ins
tructions which are executable concurrently. Howe
wer, most of the time, parallelism is exploited at
program instruction level [l-3]. That implies a
considerable flow of communication in the system
because instructions, and sometimes their operand~
are communicated separatly.

To minimize the flow of information, it may
seem useful to exploit the parallelism at the le
vel of a set of instructions, by grouping the ob
jects used by these instructions and these instruc
tions into an indivisible set that is called a
"block". The communication between such sets is re
duced to input a.nd output parameters. So, a block
forms a module which contains all the information
which are necessary for its execution.

In this paper is described MAUD(a), a system
based on the subdivision of programs into blocks
and a data driven execution [4]. A program for
MAUD is a set of blocks. Blocks are composed of a
set of instructions and of the objects they use.
A block can be viewed as a generalized primitive
applied to input obj~cts (1-objecX.6) which are
calculated by other blocks, and providing output
objects (0-objecX.6) which will be used as 1-objecX.6
by other blocks. Blocks are built before the pro
cessing by the system.

Communication between blocks is conducted so
lely by means of 1-objecX.6 and 0-objecX.6. A eom
muniea.tion nrune is associated to I-objecX.6 and
0-objecX.6 it does not point out an explicit me
mory cell ; it is used only to point out values.

The single assignement rule is applied to the
eommuniea.tion nrune;.. at the block level. It allows
the natural expression of dependencies existing
between the blocks of a program, and therefore the
expression of parallelism at execution time. More
over, it allows the use of a data flow control for
the execution of a program : a block is ready for
execution when all its I-objecX.6, which are 0-ob
jecX.6 of other blocks, have been propagated to
this block. Such a block is an exeeu..table blaek.
If one or several of its 1-objecX.6 have not been

(a) : MAUD Machine d '~ssignation '.:'.nique _!Ynamique.

0190-3918/81/0000/0160$00.75 © 1981 IEEE

160

assigned values, the block is called a wa,i,t,Lng
bloek. Exeeu.table bloe/u, may be executed concur
rently.

Two special operations used during block exe
cution have been defined : (i) an exeebloek ope
ration, which allows the execution of a block, a
model of this block existing in a library. It has
certain similarities to a procedure call (it is
an exeeut-Lan hequv..t for a block which must exist
in the library) and to a FORK operation (the exe
cution of the requested block may run concurrently
with the execution of the block which made the re
quest) ; (ii) a wa);t operation which allows the
calling block to wait 0-objecX.6 calculated by the
exeebloek operations. The execution of the block
which performs a wa);t operation is then suspended,
and this block is transformed into a wa,i,t,Lng
bloek, waiting for the objects which appeared in
the wa);t operation. Thus, the execution processor
becomes free.

The use of exeebloek and wa.Lt operations gi
ves a dynamic characteristic to the executi.on of
a program because of the addition of a number of
blocks which are executable concurrently during
the program execution. An example of the utiliza
tion of these operations can be found in [5].

The multiprocessor is composed of :
- a ~et 06 exeeu,t.fon pJz.oeUMM P. whose

function is the execution of a block ;leach pro
cessor has a local memory and is able to execute
a block in an autonomous way. The blocks are not
dedicated to the ,processors. As soon as a proces
sor is idle because it has just executed a wa);t
operation or because the block execution is over
it searches a new executable block, if there is
one left.

- an updating pJz.oeu~ah, UPD, which updates
the wa,i,t,Lng bloe/u, with 0-objecX.6 produced by the
execution processors at the end of block execu
tion, and which finds out the wa,i,t,Lng bloe/u with
all the 1-objecX.6 assigned in order to transform
them into exeeutable bloelu.

- a buA,.ed~ phoeu~a~, BUILDER, whose func
tion is to build a block using the exeeut-Lon he
quu~ produced by the execution processors when
they perform exeebloek operations. It manages the
library of blocks.

There is no direct communication path between
the processors. The wa,i,t,Lng bloe/u, and the 0-ob
jecX.6 are sent to the UPD processor, and the exe
eut-Lon heque;..~ to the BUILDER processor. But they

are sent through shared memories
- an A-memohy, which holds· the wa.ltlng

bloc.lu. ;
- an S-memohy, which holds the 0-objec.t.6 pro

duced by the execution processors at the end of
the block execution

- a V-memohy, which holds the exec.ut,(,on he
queA.t.6 produced by the execution processors when
they perform an exec.block operation.

- an.X-memohy holds the exec.~able bloc.lu..

A functional description of MAUD is shown in
Fig. 1. An example of the execution of a program
in MAUD can be found in [6].

An implementation of MAUD has been studied.
The processors are realized with conventional mi
croprocessors, except the UPD processor which is a
very specialized one, because it must be very fast
while not necessarily very powerful, and it must
be able to have associative accesses to A-memory
and S-memory.

Memories have two functions : storage of the
various objects of MAUD, and communication. For
the realization, it has been chosen to use a uni
que memory shared by all the processors : it is a
ring of circulating memory. That allows simulta
neous accesses for reading and writing by all the
processors, and it is easy to have associative ac
cess for the UPD processor. The ring is divided
into logical sectors of the same size called slots.
Every slot can hold any kind of objects, but only
one at a time ; exec.ut,(,on hequeA.t.6 and 0-objec.t.6
circulate temporarily (no more than one lap) ;
waltlng bloc.lu. and exec.td;able bloc.lu. are kept cir
culating in the ring until the former become exe
cutable blocks and the latter are picked out from
the ring by a free processor. A MANAGER processor
is necessary to regulate the load of the ring, i.e.
to put some blocks temporarily out of the ring
when the number of empty slots gets too small, and
to put them back inside when the number of empty
slots is increasing. In fact, no new processor is
needed, this function may be realized by the UPD
processor or the BUILDER processor.

In order to justify this choice, a simulation
of the system with the above characteristics of
hardware implementation has been done. The obtai
ned results for a simplified version of the system
makes it clear that the gain in the processing
speed is important compared to a conventional mo
noprocessor system, if the block execution time is
not too short compared to the duration of a com
plete lap of the ring. Yet, tli'is condition is not
necessary because it is possible to have dynamic
reconfigurations of the ring allowing the reduc
tion of the access time [7].

161

References ,

[1J J.B. Dennis, "The va!UetA.eA o5 dMa Mow c.om
p~e.JlJ.J ", 1st International Conference on dis
tributed computinf systems (Oct, 79).

[2] A. Plas and al, " LAU f.iyhtem Mc.We~e : a
pMa.Uel dMa dJUven phoc.eAMh bMed on hin
gle Mf.iignment", 1976 International Conferen
ce on parallel processing (Aug, 76).

[3] P.C. Treleaven and al, "a c.onc.UJVtent Mc.Wec.
tMe and a ~ng-bMed implementation", 6th
International symposium on computer architec
ture (April, 79).

[4] M.P. Lecouffe, "Etude et deQJ.nition d'un mo
dele de mac.fUne paJr.a.Uele d~gee pM le,o don
nee,o ", These de 3eme cycle, Universite de
Lille i, (July, 79).

[5] M.P. Lecouffe, "MAUV : a dimamic. hlngRe Mhi
gnment f.>Uf.iter"", Computers and Digital Techni
ques, (April, 79), Vol. 2, n° 2.

[6 J M. P. Lecouffe, "Vynamic. ~oc.eMing with f.il.ngle
Mhignme.nt Ma phogham bloc.k levd", Work
shop on data driven languages and machines,
(Feb, 79).

[7] B. Petitprez, "A Mexible ~c.ulating memMy
fioh c.ommun.J.c.ation in a mu.e:ti.phoc.eAf.ioh", Euro
micro Congress, (Sept, 80).

D
execution
requests

\

\

x
executable 1----------..

blocks

output
i objects

\---.
; A

LIBRARY

Fig. 1 MAUD

'I waiting
, blocks

' ""' ·-~.................... :

~)---J
Functional description.

HIGH LEVEL SPECIFICATION OF RESOURCE SHARING

Dennis W. Leinbaugh
Computer and Information Science Research Center
The Ohio,State University, Columbus, Ohio, 43210

Summary

A high level specification language is des
cribed making it possible to very concisely specify
the orderly sharing of a protected resource [l].
The rules and policies dictating resource usage
are specified separately and clearly making it
easy to write, understand, and change them. Since
the specifications themselves are enforced; no
errors in resource sharing are introduced in pro
gramming the enforcement of them.

Many schemes have been proposed and developed
to aid in resource sharing. Hoare's monitors and
Hewitt's serializers were designed primarily to
enforce cooperation among users sharing resources.
These schemes provide primitives and language
structures which make it relatively easy to
write code to enforce the necessary rules and
desired policies upori resource sharing.

This work describes how to directly specify
the resource sharing rules needed and policies
wanted. The code to enforce these rules and
policies can then be automatically generated from
the high level specification provided. The advan
tages are clear. Since the rules and policies are
specified directly, it is known exactly what they
are and that they are enforced.

Ramamritham and Keller [2] concurrently with
and independent of this work attacked the same
problem, Their specification language is at a
different level. State variables are conceptually
different and the implementation schemes are
entirely different for the two systems.

Request messages for a protected resource are
sent to its scheduling module. This module uses
the high level specifications provided to determine
what requests and when requests are sent to for
service. These specifications are:

•description of the requests,
•resource constraints,
•ordering policy,
•postponement policy, and
·expedite policy.

The description of the requests defines the
fields in request messages that will be used by
the resource scheduler to aid in scheduling them,
The resource modules that provide the service for
each type of request are also specified as well as
the updates which the performance of these requests
cause to the state variables.

The resource constraints consist of defining
those states in which the resource continues to
correctly service requests. These states are des
cribed in terms of the values of state variables
and the requests that can simultaneously be ser
viced by the resource, A request is acceptable to
the resource if its inclusion for service would

0190-3918/81/0000/0162$00.75 © 1981 IEEE

162

result in a state described by the resource con
straints, State variables are defined local to the
resource scheduler and reflect the actual state of
the resource.

The ordering policies specify the usual
policy used to decide what request should receive
service next. Among the requests acceptable to
the resource, the ordering policy determines which
actually begins service. In case of ties, the
older request is granted service. The ordering
policy is specified in terms of priorities between
request types, ordering based upon some value in
the request, or some other standard ordering
scheme (e.g., elevator algorithm).

The main purpose of the ordering policies
is to achieve efficiency in resource use or ef fi
ciency in the processes which use the resource.
Efficiency considerations alone, however, can
lead to very poor service or no service for some
requests. The postponement and expedite policies
are used to modify the ordering policies to avoid
extremely poor service.

The postponement policies specify under what
conditions newly arrived requests are not to be
considered for selection even if they would be
acceptable to the resource and no other waiting
requests are acceptable. If, however, there are
no waiting requests then postponed requests may
be selected for service. A request can only be
postponed when it initially arrives and then only
until the postponed condition for it becomes
false. The postponement conditions may involve
the current resource state and a consideration of
other waiting requests.

The expedite policies specify under what
conditions the ordering policies are to be vio
lated and a non-postponed request is selected to
be the next request in line for service. No
other requests are allowed ahead of a request
chosen by expedite,

The postponement policy should be used to
hold back requests which might otherwise cause
starvation of any of several requests waiting for
service. The expedite policy should be used to
identify a request being starved and make it
next for service.

Figure 1 illustrates the scheduling strategy,
A process requests service by sending a request
message to the Scheduling Module. The Scheduling
Module implements the resource sharing specific
tions, forwarding the request to the Protected
Resource Module when it is to be performed, When
service is complete, the process receives a re
sponse message, Requests can only reside as post
poned requests, ordered requests, expedited
requests, or requests being serviced. The un-

new request arrivals SCHEDULING MODULE
postpon~-d-i_t_o_n_s--------------------------~----------.

false

ORDERED
REQUESTS

postponed

conditions
true

expedite conditions

ordering true

POSTPONED
REQUESTS

resource constraints

~,d,~-"
no ordered requests
no expedited requests
resource constraints

increase uncertainty
in state variables

decrease uncertaint
in state variables

I.---'
MODULE

response to
completed requests

Figure 1: Overall Scheduling Strategy

certainty in state variable values increases when
a request begins service and decreases when ser
vice is complete. This handling of state variables
is faithful to what the scheduling module can know
of actions of the resource module allowing for
natural specifications of resource constraints.

Figure 2 is a specification of the classical
producer/consumer problem. The resource can hold
up to 10 items. An insert request message to the
insert routine adds another item into the re
source and a remove request message removes an
item from it. At most one insert request and one
remove request can be serviced at the same time.
The maximum number of items that can be placed in
the resource is 10 and the minimum number is O.
To use the constraints, the preconditions for each
type of request are derived. For the case of an
insert request, the preconditions are less than 10
items already saved and no insert request receiv
ing service. The number of items is kept track of

DECLARE STATE VARIABLES #items INITIALLY 0

REQUEST DECLARATIONS
REQUEST FIELDS

insert HAS
remove HAS

PROCESSING

type
item

CHARACTER(!)
CHARACTER(99)

type 'I'
type = 'R'

insert PROCESSED BY insert-routine
UPON SERVICE #items := #items + 1

remove PROCESSED BY remove-routine
UPON SERVICE #items := #items - 1

RESOURCE CONSTRAINTS
insert.ACTIVE < 1 AND remove.ACTIVE < 1
AND o < #items AND #items < 10

Figure 2. A Producer/Consumer Problem

163

in the scheduling module through the use of the
local state variable #items. The PROCESSING
clause indicates that during service of an insert
request, the number of items is increased by 1
and during service of a remove request, the number
of items decreases by 1. There is, however, un
certainty as to exactly when these changes occur.
#items is kept as a range of possible values. For
example, if there were 9 items and both a remove
and insert request were receiving service, #items
is the range [8,10]. If the remove request com
pletes first the range becomes [8,9] and when the
insert request subsequently completes the range
becomes [9,9].

Figure 3 is a high level specification for
sharing a moving head disk. ORDERING specifies
both a primary and secondary ordering policy. If
there is more than one request for a disk address,
then the write requests are done before the read
requests for that address. The elevator algorithm
insures that no addresses (at the ends) are ig
nored. The only way a request can wait forever is
if new requests for the s·ame address keep receiv
ing service. The POSTPONE prevents this by not
allowing these newly arrived requests to be con
sidered for service until the disk has moved off
the address they are requesting
(THISREQUEST.addr = ACTIVE.addr).

REQUEST DECLARATIONS

REQUEST FIELDS type
addr
data

CHARACTER(!)
CHARACTER(6)
CHARACTER(SOS)

read HAS
write HAS

type 'R'
type = 'W'

PROCESSING
PROCESSED BY disk-driver-routine

RESOURCE CONSTRAINTS
read.ACTIVE + write.ACTIVE < 1

ORDERING PRIMARY BY ELEVATOR ON addr
SECONDARY write BEFORE read

POSTPONE read IF THISREQUEST.addr
write IF THISREQUEST.addr

ACTIVE.addr
ACTIVE.addr

Figure 3: Moving-Head Disk Scheduler

References

[1] D. W. Leinbaugh, "High Level Specification
and Implementation of Resource Sharing,"
The Ohio State University, (Feb., 1981),
Technical Reprot OSU-CISRC-TR-81-3.

[2] K. Ramamritham and R. M. Keller, "Specifica
tion and Synthesis of Synchronizers," Proc.
1980 International Conference on Parallel
Processing, (Aug., 1980), pp. 311-321.

Exploitation of Concurrency by Virtual
Elimination of Branch Instructions

N. Magid G. Tjaden H. Messinger
Dataproducts Corporation
Wallingford, CT 06492

Cox Cable Communications
Atlanta, GA 30346

Illinois Institute of Technology
Chicago, IL 60616

Summary

This paper introduces a technique for the
virtual elimination of conditional branch instruc
tions during program execution. The technique,
called Multiple Path Exploration (MPE), aims
at increasing the potential concurrency between
program instructions by, automatically and dynami
cally, removing procedural dependencies.

There are basically two types of dependencies
~etween .instruct.ions: Data Dependency, when one
instruction requires data from a previous instruc
t ion i and Procedural Dependency, due to the
specification of the instructions sequence. There
is a procedural dependency between a branch
instruction and the instructions following it in
sequence. Conditional branch instructions cause a
wait until the condition is resolved before the
next instruction in the sequence is determined,
thus imposing severe limitations on the attempts
to detect and exploit concurrency.

In order to eliminate the procedural dependency
caused by the presence of a conditional branch
instruction in a program, the execution must pro
ceed simultaneously down the two possible paths
emanating from the branch. To bypass x condition
al branch instructions, as many as 2x paths must
be processed simultaneously.

Instead of bypassing all conditional branch in
structions of a program simultaneously, only a
subset consisting of a fixed number, m, of bran
c~es may be bypassed at any given time. Out of
2 paths, only one path will remain valid, while
all the others may be discarded. Another set of
(2m) paths, generated from the valid path are
explored next. This process continues until the
program is completely executed.

Branch instructions are grouped into sets.
Each set represents a Branch Level (Fig. 1). Each
path is uniquely identified by a Path Code. A
Branch Code identifies each instruction with at
least one path. The concepts of Branch Level,
Path Code, and Branch Code provide tools to
automate the process of generating and discarding
of branch paths dynamically during program execu
tion.

Further performance improvement can be achieved
if the instructions of each path are not executed
in a strictly sequential order. This becomes pos
sible if there is a mechanism associated with
every path, which detects data independent instruc·
tions. The Ordering Matrix technique is suitable
for the detection of data independent instruc
tions, especially in the absence of branch in
structions [1], [2]. The Ordering Matrix (M) for
a sequence of N instructions is an N x N Boolean
matrix such that:

164

0190-3918/81/0000/0164$00.75 © 1981 IEEE

0

Iff instructions Ii & Ij
are dependent.

Otherwise

The presence of branch instructions in gener
al, and backward branches in particular, have
complicated algorithms to detect data independ
ence and limited the amount of concurrency
detected [2] • Their absence within each path
enables the detection of more concurrency using
less complex algorithms [1].

Foster and Rieman [3] found that a speed-up
in program execution by a factor of 51 may
theoretically be achieved if all conditional
branches are bypassed. Using the MPE technique,
the speed-up factor is expected to be as shown in
Fig. 2 as a function of the number of branch
levels m (and consequentially the number of
streams N) [1]. A speed-up factor of more than 5
may be achieved for the case of m = 4, where 16
paths are processed simultaneously by different
instruction streams.

The MPE technique may be implemented using
a Multiple Instruction Stream, Multiple Data
Stream Organization as shown in Fig. 3. The
private data memory is used to enable the dis
carding of invalid paths. An execution speed of
15 MIPS may be obtainable. The architecture of
Fig. 3 is discussed in detail in reference [1].

The proliferation of VLSI and microcomputer
technology is expected to make the implementation
of such a highly parallel system organization
cost-effective in the future.

·References

[1] N.F. Magid, High Speed Computer Systems As
A Result of Concurrent Execution of Sequen
tial Instructions, Ph.D. dissertation,
Illinois Institute of Technology, Chicago,
Illinois, (1980).

[2] G.s. Tjaden and M.J. Flynn, "Representation
of Concurrency With Ordering Matrices•,
IEEE Trans. on Computers (August 1973) , pp.
752-761.

[3] E.M. Riseman and c.c. Foster, "The Inhibi
tion of Potential Parallelism by Conditional
Jumps", IEEE Trans. of Computers, Vol.
C-21, (Dec. 1972),pp. 1405-1411.

6 ---""".
I==·--·

Figure 1.

-~

?::~""

~=
~-;;

Branch Lnel l

Branch Tree

i. --·: ---l='='
- ~ --

3::·-E -
--~-

±- .. cot I
E

2~' -- I
- ~ ::::r::. - ~:.:

2 B l6 32 64 128 256 N

Figure 2. Speed-up Factor vs. Number of Streams

Instruction
Butter

Proceeaor

Ia8tructioa Me•or7

PriTate
Data Memor'J'

Figure 3. System Block Diagram

165

Shared
Data Memor1

EXPERIMENT IN PARALLEL PROCESSING
A LARGE SCIENTIFIC CODE

Ingrid Y. ·Bucher, Bill L. Buzbee, and
Paul O. Frederickson

Computer Research and Applications Group
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Summary

We wish to report results of a successful
initial experiment in our study of the
usefulness of multiple processor architectures
for large scientific computations.

It is believed that a hundredfold increase in
computational speed will be required over the
next decade in order to meet a variety of
scientific needs1 . The prospects of speeding
up a single processor mainframe by a factor
greater than ten beyond the fastest machines
available today, seem rather dim. It follows
that parallel processing is necessary in order
to meet the needs of the scientific community.

Using current technology, interprocessor
communication, via either direct communication
lines or common memory, is a significant
factor to be considered in the design of an
algorithm to fit on a parallel architecture.
Our guiding philosophy is to divide current
computational problems into relatively large
tasks with a high degree of independence, thus
minimizing the need for interprocessor
communication. To avoid common memory
contention we are looking at parallel
architectures in which each processor is
equipped with a reasonable amount of private
memory. In that framework we wish to consider
the usefulness of a variety of interconnection
schemes.

Our initial experiment involved formulating a
particle-in-cell f:limulation of a plasma2 for
a simple star graph architecture with a UNIVAC
1110 at the hub P0 of the star and up to
eight Floating Point System 120B array
processors at the other vertices Pi. Each
of the nodes Pi was equipped with at least
48k words of memory, but there was no fast
access common memory available in this system.

Figure la illustrates the main computations
within one time-step of our model algorithm as
carried out on a monoprocessor. Our
adaptation of this algorithm to fit on the
architecture described above is shown in
Figure lb. As indicated in the figure, the
potential ¢ is computed for n cells from the
charge distribution c by processor P0 • n
values of ¢ are subsequently transmitted to

0190-3918/81/0000/0166$00.75 © 1981 IEEE

166

processors Pi, i=l, ••• ,8. The computation
of the field E from the potential cj> is carried
out by each of the processors Pi in
parallel, in order to reduce the data transfer
from 2n to n items (for a 2-dimensional
problem). Each processor Pi then moves its
share of mi particles through the electro
magnetic field, a step which constitutes the

Compute Potential
, - ll'(C)

n

Compute E • -v I'

2n

Push m parlic les
through field E.
Discrellze charge
Cal n points

n

Fig. la

~

Compute Potential
, - ll'(C)

Fig. lb

major contribution to the computational
process, and computes their contribution Ci
to the total charge distribution c. As final
steps, n values of Ci have to be transmitted
from each processor Pi to processor P0

where they are summed to yield the charge
distribution C for the next time-step.

The multiprocessor used in our experiment is
located at the Naval Ocean Systems Center in
San Diego. In a fairly typical run, we moved
m = 32,400 particles, distributed evenly over
six array processors, in an n=l8xl8 size
grid. Each time step required 0.54 s. Of
this 0.265 s was spent solving Poisson's
equation in the host at a rate of 0. 2
MFLOPS/s. Each array processor Pi pushed
5400 particles in 0 .13 s at a rate of 5. 7
MFLOPS/s3. The remaining time, 0 .145 s, was
spent in initiating data transfers to and from
the array processors and transmitting the
data, most of it being system overhead.

It is fairly obvious that the time spent on
solving Poisson's equation could have been
reduced to less than 0.01 s by moving the
process from the relatively slow host to the
array processors. Our experience shows that
to speed up interprocessor communications an
operating system that allows for parallel data
transfers with a minimum of system overhead,
or efficient access to common memory, is
highly desirable.

We conclude that in spite of the limitations
of the system used, significant speedups via
parallel computation are achievable for
particle-in-cell plasma simulation and related
problems.

We thank the staff of the simulation facility
of the Naval Ocean Systems Center for their
assistance in using their system, particularly
Bob Dukelow, John Mayr, and Ron Dahlseid.

References:
(1)

B.L. Buzbee, W.J. Worlton, G. Michael, G.
Rodrigue, DOE Research in Utilization of High
Performance Computers, Los Alamos Scientific
Laboratory Report, LA-8609-MS, December 1980.

(2)
R.L. Morse, c.w. Nielson,
Three-Dimensional Numerical
Beam Plasmas, Phys. Rev.
(1969).

(3)

One- , Two- , and
Simulation of Two
Letters 23, 1087

I.Y. Bucher, P.O. Frederickson, Experience
with a Multiprocessor Based on Eight FPS 120B
Array Processors, Los Alamos National
Laboratory Report LA-UR-81-1082, March 1981.

167

ITERATORS AND CONCURRENCY

A. T. Berztiss
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

We propose a modest parallel execution facility
for essentially sequential programs, particularly
appropriate for very small computers. It consists
of three approaches. First, iterators are re
garded as a major programming tool. We discuss
parallel composition of iterators, and use of
iterators as a means for buffered access to ele
ments of composite data structures. Second,
Dijkstra's guarded colllllland set is given a new
interpretation: all actions for which guards are
true may be performed in parallel. Third, we con
sider the partitioning of iteration sequences into
segments that may then be executed in parallel.

Empirical studies of computer programs have
shown that most processing time is spent in exe
cuting loops, and that most loops are concerned
with providing orderly access to elements of com
posite data structures [1] - [3]. Our aim here is
present mechanisms for achieving limited parallel
ism in the execution of for-loops, and we do so in
the context of data abstraction.

We shall use iterators coupled to for-loops.
Iterators are provided in CLU [4] and Alphard [5],
and their purpose is to deliver the elements of a
composite data structure in the p~rticular sequ
ence determined by the specification of the itera
tor. This achieves separation of the traversal of
a data structure from the computations carried out
on the objects delivered by the iterator in the
course of the traversal. Iterators can therefore
be made part of an abstract data tll'e· We have
introduced controlled iteration [6J. This genera
lization in the usage of iterators enables the
same for loop to invoke more than one iterator,
and the iterators coupled to a given for loop to
be synchronized. The form of a for loop with con
trolled iteration is

for Jl,J2, ••• ,Jn loop
loop body;

end loop;
loop tail;

~for;

This construct is described in [6], and familiari
ty with this reference is being assumed.

Because iterators can appear only in a specific
context, namely the for loop, a single stack suf
fices for runtime contro~ (as long as the itera
tors are nonrecursive and do not invoke other
iterators): On reaching a for statement, create a
vector of n activation records, one for each of
the Jl, J2, ••• , Jn, where it is assumed that an
activation record contains space for all temporary
locations needed by the corresponding iterator.
The vector of activation records is treated as a
single unit until it is discarded as a single

0190-3918/81/0000/0168$00.75 © 1981 IEEE

unit on reaching the end for. Iterators are a
special type of coroutilleS:-but they have advan
tages over general coroutines. This has been dis
cussed in [6]. Here we note that it is the con
fining of iterators to for loops that permits look
ahead and buffering in the implementation of an
iterator.

As regards difficulty of program proofs, our
generalized for loop occupies an intermediate
position between a conventional for loop and a
while loop. Because one can interpret iterators
as coroutines, our generalized for loop can be
translated in a mechanical manner to a while loop
that contains coroutine calls. At the very worst,
then, the proof rules of the while loop can be put
to use. Most instances, however, advantage can be
taken of the fact that the generalized for loop is
rather closer to the conventional for loop than
to the while loop.

The use of controlled iteration implies that
some decisions are made within the loop body.
Consequently the entire loop body may be an if
statement. We now introduce a change of notation
for the if statement:

becomes

if Bl then Sl;
elsif B2 then S2;

elsif Bn then Sn;
end if;

cond Bl:
B2:

Sl 0
S2 0

Bn:
end· cond;

Sn

The latter has been made to resemble Dijkstra's
guarded colllllland set [7]. It then suggests new
interpretations. When the conditional is inter
preted as equivalent to the if statement we call
it a sequential conditional. Dijkstra's inter
pretation is that any Si that corresponds to a
true Bi may be executed, but this interpretation
can be carried further: All Si for which guards
Bi are true may be executed concurrently. The
conditional then becomes a concurrent conditional
with the following informal semantics:

168

a. All Bi are evaluated before the execution of
any Si begins.

b. All Si following true Bi are executed fully,
or, if any such Si contains an exit, up to
the exit, and if an exit has been encoun
tered, exit from the loop body takes place
after all this has been done.

Example: Determine whether or not a given key
is present in a linear list that is being simul
taneously traversed from both ends. Here we can
have concurrent advances in the list, and con
current evaluation of the Boolean expressions
(guards).

for X in FILE. UP
-- Y in FILE.DOWN loop

cond
X.KEY
X.KEY
Y.KEY

end cond;
end loop;

Y.KEY exit 0
GIVEN_KEY: exit 0
GIVEN_KEY: exit

if X.KEY = GIVEN_KEY or Y.KEY = GIVEN_KEY then
PUT("Given key is in the list");

else
--PUT("Given key not found in the list");
end if;

end for;-

We now consider partitioned iteration sequences
in the context of matrix multiplication: Matrix C
is to receive the product of matrices A and B, and
it is assumed that C has already been initiated to
zeros. In conventional Ada syntax this can be
written as follows:

for I in A'FIRST •• A'LAST loop
for K in A1FIRST(2) •• A'LAST(2) loop
for Jin B'FIRST(2) •• B'LAST(2) loop

C(I,J):= C(I,J) + A(I,K)*B(K,J);
end loop;

end loop;
end loop;

Here matrix C is built up one row at a time. In
building up a row in C, the corresponding row in A
is traversed just once, but B is traversed in its
entirety. What matters is that in generating a
particular row of C only the one corresponding row
of A is needed, i.e., the traversal of A can be
partitioned into independent traversals of its
rows. Consequently we now consider matrix A as a
set of vectors (rows of the matrix). The matrix·
multiplication code is reformulated to make use of
the separation of the matrix into a set of vectors
to induce parallelism. It is the declaration of
the data structure as a set before the for loop is
entered that enables the system to recognize the
opportunity for concurrency. The loop itself con
tains no indication to this effect.

for X in ROWSETA. TRA loop
I:= C'FIRST(2);
for controlled A in X.FORWARD,
- B in MATB.ROWWISE(ENDROW) loop

C(X.ROWNO,I):= C(X.ROWNO,I) + A.VAL*B.VAL;
I := I+l;
if ENDROW then

promote A;
I:= C1 FIRST(2);

end if;
end loop; end for;

end loop; end for;

Here we have three iterators: (i) Iterator TRA
delivers a complete row of the matrix. It is
understood that the object denoted by ROWSETA
functions as a set of vectors. The guise of this
matrix as a set permits parallelism. The body of
the outer loop can be executed concurrently by as

169

many processors as there are rows in the matrix.
An attribute of the row delivered by TRA is the
index of this row in reference to the matrix as a
two-dimensional array (ROWNO). It establishes
correspondence between the rows of the input
matrix and of C. (ii) FORWARD delivers the ele
ments of the row supplied by TRA. (iii) ROWWISE
is associated with the second input matrix in its
guise as a proper matrix (MATB). It delivers ele
ments of MATB one by one in roworder. Parameter
ENDROW associated with ROWWISE is normally false,
but it becomes true for any pass through the loop
in which an element that terminates a row in MATB
is being accessed.

One problem that remains is the synchronization
of components of several partitioned iteration
sequences. Such is the case when matrices A and C
are both regarded as sets of row vectors. Then it
has to be ensured that the row in C generated
using a particular row in A properly corresponds
to this row in A (for example, that the row gene
rated using the second row of A becomes in fact
the second row of C). Iterators are used to en
force the required correspondence. If the same
iterator ranges over two sets, then an ordering of
the elements of the sets into sequences has to be
assumed, and corresponding elements from the
sequences are assigned to the same instance of
execution of the loop body.

Note that our purpose has not been to solve
general concurrency and synchronization problems.
Nevertheless, as regards the execution of such
programs as are currently executed on very small
computers, use of our mechanisms can lead to
substantial reduction in execution time by en
abling the computational load to be spread over
several processors.

References

[1] D.E. Knuth, "An Empirical Study of Fortran
Programs", Software--Practice and Experience
.! (1971), pp. 105-133.

[2] T.W. Pratt, "Control Computations and the
Design of Loop Control Structures", IEEE
Trans. Software Eng. SE-4 (1978), pp-:-Bf-89.

[3] D. Grune, "Statistics of Algol 68 Programs",
SIGPLAN Notices (ACM) 14, 7 (July 1979),
pp. 38-46.

[4] B. Liskov, A. Snyder, R. Atkinson, and
C. Schaffert, "Abstraction Mechanisms in CLU",
Comm. ACM 20, 8 (Aug. 1977), pp. 564-576.

[5] M. Shaw, W. Wulf, and R. London, "Abstraction
and Verification in Alphard: Defining and
Specifying Iteration and Generators", Comm.
ACM 20, 8 (Aug. 1977), pp. 553-563.

[6] A.T. Berztiss, "Data Abstraction, Controlled
Iteration, and Communicating Processes," Proc.
ACM Annual Conf., Nashville, TN, 1980, pp.
197-203.

[7] E.W. Dijkstra, "Guarded Commands, Nondetermi
nacy, and Formal Derivation of Programs",
Comm. ACM 18, 8 (Aug. 1975), pp. 453-457.

OPTIMAL PARALLEL ALGORITHMS FOR THE CONNECTED COMPONENT PROBLEM'{a)

Francis Y. Chin

John Lam

I-Ngo Chen

Department of Computing Science
University of Alberta

Edmonton, Alberta T6G 2HI

Abstract -- In this paper, we study a parallel
al.gorithm for computing the connected components
of an undirected graph, using the Single Instruc
tion Stream-Multiple Data Stream model. We as
sume that the processors have access to a common
memory and that no memory or data alignment time
penalties are incurred. We derive a general time
bound for a parallel algorithm which uses K pro
cessors for finding the connected components of
an undirected graph. In particular, an O(log2n)
time bound can be achieved using only
K = n rn/Jog2nl processors. This res.ult is op
timal in the sense that the speedup ratio is
linear with the number of processors used. The
algorithm can also·be modified to solve a whole
class of graph problems with the same time bound
and fewer processors than previous parallel
methods.

I. INTRODUCTION

The dramatic drop in the cost of computers en
courages the use of parallel computers. Parallel
computers are capable of performing several in
dependent operations concurrently. In the fol
lowing discussion, we assume that (1) processors
share the same memory; (2) each processor can
perform any arithmetic, Boolean or logical opera
tions in one time unit, and all instructions ex
ecuted in parallel are identical (Single Instruc
tion Stream-Multiple Data Stream [7]); (3) sim
ultaneous read operations on the same location
are allowed, but not simultaneous write opera
tions; (4) no memory or data alignment time .pen
alties [15] are incurred.

Para I lei algorithms for sorting and numerical
applications have received substantial attention
recently [l,9,ll,17,23]. Much work has been done
on the development of efficient parallel graph
algorithms [5,6,8, 10, 12, 14, 18, 19]. A para I lei
algorithm which uses n2 processors to find the
connected components of an undirected graph with
n vertices in O(log2n) time was proposed in [10].
Recently, it has been shown by Hirschberg et al.
[12] that an O(log2n) time bound can also be
achieved using only n rn/log nl processors. In
this paper, we present a modified version of this

(a) This research was supported in part by
Natural Science and Engineering Research
Council Grant NSERC-A4319 and A7133.

0190-3918/81/0000/0170$00.75 © 1981 IEEE

170

algorithm which requires O(n2/K + log2n) time if
only K processors are available. In. particular,
the O(log2n~ time bound can be achieved with on~
ly n rn/log nl processors. This modified algor
ithm is optima·) in the sense that the speedup
ratio [21] is linear with the number of proces~
sors used. Furthermore, we demonstrate that
this algorithm can be used to solve a class of
graph problems with the same time and processor
bounds in a forthcoming paper [4].

Section 2 presents definitions used in this
paper. Section 3 studies the modified algorithm
and derives its time and processor bounds. Sec
tion 4 su1T111arizes these results and discusses
further research possibilities.

II. DEFINITIONS

An undirected graph G = (V,E) consists of a
finite, non-empty set V of n vertices and a set
E of unordered pairs of vertices called edges.
We represent G·by its adjacency matrix A, which
is an nxn sy1T111etric Boolean matr"f'i<W'iiere
A(i ,j) = I if and only if (i ,j) E: E •. G is con
nected. if there exists a path between everypair
of distinct vertices in V. A connected compo
~ of G is a maximal connected subgraph of G.

If TK is the time required by a parallel al
gorithm using K ~ l processors, the speedup rat
io of the K-processor computation over the cor
responding uniprocessor computation (taking time
TJ) is defined as SK= T1/TK.

Throughout the paper, log n denoted rlog2nl •

I I I. CONNECTED COMPONENTS OF AN UNDIRECTED GRAPH - -- --
Figure I shows the algorithm MOD,CONNECT for

finding the connected components of an undirect
ed graph. The actions of algorithm MOD.CONNECT
can be described brief I y as fo 11 ows. Each ver
tex belongs to exactly one connected component.
Array D is used to specify the connected compo~
nent for each vertex, thus D(i) = D(j) if and
only if vertices i and j belong to the same
component. Step I initializes the arrays D and
Flag whose function will be discussed later.
During the first iteration, step 2b selects the
smallest numbered vertex among all the vertices
incident upon vertex i and assigns it to C(i).
Step 3 eliminates the isolated vertices. Steps

Algorithm MOD. CONNECT

Input: The nxn adjacency matrix A for an un
directed graph.

Output: The vector D of length n such that D(i)
equals the smallest-numbered vertex in
the connected component to which i be
longs.

Comment: Each of the following steps is executed
in parallel for all i, 0,; i <nor for
all iES. The assignments in the various
steps are considered to be done simulta
neously for al I i.
The vector Flag of length n such that
Flag(i) =I indicates vertex i is a
current supervertex. Current supervert
ices are stored in set S.

for all i, 0 ,;i <n do comment: Initialization
-D(i) <--i

Flag(i)<--1
do step 2 through 8 for log n iterations
comment: Uniform SmaT'Test Incident Node
Selection

2a S<--{il Flag(i) =I} comment: D(i) i for iES
2b for al I iES do

3

4
5

6a
6b

?a

?b

?c
8

-C(i) <-- Mfn{.J I A(i,j) I}
jES
if none then i

comment: ElTriiinate thE!"isolated supervertices
for all iES do
-if C(i) =l then Flag(i) +O
comment: Path Compression
for all iES do D(i) <--C(i)
for log n interations do
-for all iES do C(i)<--C(C(i))
forall iES do D(i)<-- Min{C(i), D(C(i))}
for al I i, O""?°i <n do D(i) <--D(D(i))
comment: Clean Up \i)y column contraction)
for al I iES do
-for all jS s.t. j=D(j) do

-A(i,j) <--OR{i\(i,k) D[k)=j}
kES

for a 11 j ES s. t. j=D (j) do
-for all iES s.t. i=D(Tf do

-A(i,j) +OR {A(k,j) IDfk)=i}
KES

for all iES do A(i,i) <--0
fur all iES do J.i. D(i)>' then Flag (i)<--0

Figure l Algorithm MOD.CONNECT

4-6 perform path compression and merge vertices
which are known to be in the same connected com
ponent into a single "supervertex". Steps 7 and
8 eliminate the merged vertices and store all the
information about their edges into the super
vertices. In succeeding iterations, S contains
the indices of the supervertices and the whole
process is repeated on the graph represented by
the adjacency matrix A restricted on S. Super
vertices are merged to form super-supervertices,

171

and so on. This merging process is repeated log
n times until each connected component is repre
sented by a single vertex. Array D contains the
information about which vertices are in the same
component and step 6b updates D(i) for all i,
i.e. updates the supervertex into which i is
merged. The main difference between algorithm
MOD.CONNECT and algorithm CONNECT in [12] is the
introduction of the vector Flag of length n, the
set S and the clean-up steps (steps 7 and 8) in
algorithm MOD.CONNECT. Flag(i) =I indicates
that vertex i is a supervertex. Flag(i) = 0 in
dicates that vertex i has been merged into a
supervertex or is an isolated supervertex and
should not be used in subsequent iterations.
Thus only those vertices with Flag(i) = l (or in
S) are involved in any given iteration.

In order to visualize how the algorithm works,
an informal description of the set Sand the ar
rays A,D, Flag and C during each iteration are
given as follows:

"Flag" - a boolean vector of length n.
Flag (i) = I iff vertex i is a super
vertex representing the group of vert
ices being merged to it. Vertex i is
always the smallest numbered vertex of
the supervertices.

11S" - contains the indices of the supervert-
ices.

"D" - a vector of length n. D(i) specifies the
supervertex into which vertex i is
merged.

"C" - a vector of length n. C(i) specifies the
smallest supervertex to which super
vertex is adjacent.

"A" - an n x n symetric boolean matrix. Usu-
ally we are only interested in the re
stricted A over the current S.
A(i .j) = I if and only if there is an
edge connecting supervertex i and super
vertex j .

Algorithm MOD.CONNECT is a modified version of
the algorithm CONNECT given in [12], a more de
tailed proof for the correctness of the algorithm
can be found there.

Since the number of flagged vertices (the num
ber of elements in S) is reduced by a factor of
at least two after each iteration, we shall show
that by the technique of problem decomposition
[13] the same time bound O(log2n) can still be
achieved by using less than n In/log nl proces
sors.

The reduction on the number of processors is
based on the fact that certain operations have to
be performed on the set S of the supervertices
and not on all the vertices. However, in order
for the processors to set themselves up so as
they know which vertices are in Sand be selected

to perform the various operations, an array, say
Q; can be set up such that Q(O) ,Q(I), • • • ,
Q(M-1) represents the elements ins, where m=ISI.
Q(j) for j runs from I tom would be used to re
place the condition "for all iE:s 11 in the a.lgor
ithm. The array Q and m can be updated at each
iteration in O(Jog n) steps by applying the fast
parallel sorting algorithm described in [11,17]
on the array Flag. Thus, step 2a in algorithm
MOD.CONNECT can be replaced by calling the sort
ing procedure in [11,17] as

2a SORT(FLAG,.Q,n)

Procedure SORT sorts the input binary array Flag
in time O(log n) with n processors, returns array
Q with the property that Flag (Q(j)) = I for
0 $j <m and 0 elsewhere, where m is the number of
1 's In Flag (i.e. m = ISi). Besides the above
changes, steps 2(b) and 7 are required to be con
sidered accordingly based on array Q.

The following lemmas are useful in proving our
results.

Lemma ·1: Given n elements fao,a1, ••• , an-I }and K
processors, A(n) = ao*a1*···*an-I can be computed
in T time units, where * is any associative bin
ary operation and

rn/K l - I + log K if ln/2J>K
T =

log n if Ln/2J$K

Proof: If K~ ln/2 .J, it has been shown that A(n)
can be computed in log n time units by the tech
nique of recur.,sive doubling [9,22]. If K <ln/2'J
we partition {ao,a1, ••• ,an-j} into K groups,
each of rn/K l elements, except that the last
group has r = n - (K-J)rn/Kl elements. Assign
one processor to each group and then compute the
groups in parallel. This takes fo/Kl ·I time
units. These K results, one from each group, are
then combined in parallel by the K processors,
which takes another Jog K time units. Hence, the
total time requirement is rn/Kl - I +Jog K time
units.

[]
Lemma 2: Let the n elements be partitioned into
p sets and assume K processors available. The p
products, one for each set, can be computed in at
most T time units, where T is the same as given
in Lemma I and * is an associative binary opera
tion.

Proof: Align the p sets of elements as shown in
Figure 2 and partition the elements into K groups
as in the proof of Lemma I.

set I set 2 set 3

iL .. x Ix ..• x I x5<~· ... x I x~~~~-:-:xrx

<-k->l<-k->1<--k-->l<----k----> I
gr. I 2 3 . 4

where k = rn/Kl elements
r = n - (K-1) rn/Kl elements

Sj;!t,.,p
--.--;;><-'-> x 1xxx ••• x

l<•-r-->
K

Figure 2: Partition of p sets into K groups

172

Assign one processor to each of the K groups to
compute the products in that group. If all the
elements in a group belong to· the same set, one
answer will result from that group. If the ele
ments in a group belong to several sets, say b
sets, then b answers, one for each set, will be
obtained. If b >2, at least b - 2 answers are
final products and at most 2 answers in each
group wi 11 be combined with answers in other
groups to g.ive a final product (the first and
last groups each .contribute at most one answer and
the final product). For instance, (see Figure 2)
groups I and 2 have one answer, group 3 has 2 an
swers and group 4 has 3 answers, one of them. be
ing a final product. It is obvious that no more
than rn/Kl - I time units are needed for comput
ing answers in each group.

Let us assume that ni answers will be combined
to give the produce of set i. (In figure 2,
n1 = 3, n2 = 2, and n3 =I.) Assign Lni/2J
processors to each set to compute the product of
that set. Since E8=1r (ni-l)/2]$K, the total
number of pnocesso~s required will be less than K.
Each set will take another log ni $Jog K time
units to obtain the final product. Thus the tot
al time requirement is still no more than T as
given in Lemma I.

[]

Lemmas I and 2 give an upper bound on the paral
lel time complexity for computing a product of n
elements and products of sets of n elements. As
a matter of fact, it can be shown easily that this
bound is at most one time unit from optimal [16].
Since the "Min" operation in step 2b and the "OR"
operation in step 7 are associative binary opera
tions, Lemmas I and 2 give an upper bound on the
total number of time units spent in these steps.

Lemma 3: Given nK processors, step 2b in algor
ithm MOD.CONNECT takes at most O(n/K+log nlog K)
time if I $K<[n/2Jand O(log2n) time if
K ~ ln/2 J

Proof: As mentioned earlier or from [10,12],
further iterations of steps 2-7 merge supervert~
ices. Step 8 eliminates those merged vertices
which are no longer supervert ices. It is proved
in [12] that the number of supervertices (flagged
elements) i.e. ISi, in each connected component
decreased by a factor of at least two after each
iteration until the connected component is repre
sented by a single supervertex. Moreover, if the
whole connected component has merged to a single
supervertex (i.e. the supervertex will be isolat
ed), that supervertex will not be considered in
the _succeeding iterations since tis flag is set to
zero at step 3 in the iteration at which it be
comes isolated. Thus, we have n flagged elements
at the first iteration (i.e. m=n) and have at most
L n/2iJ flagged elements after i iterations. At
step 2, in order to compute al I C(i), K processors
are assigned to each i to compute the minimum val
ue among at mostlSI elements. Since "Min" is an
associative binary operation, we can apply Lemma I
to eva I uate the time comp I ex i ty.

The program for step 2b can be described as
fol lows:

2b The following steps are performed in paral
lel for 0 ~i< m,O:>;j<K, since m ~. the max
imum number of processors is nK. It is as
sumed that M=fm/Kl. m=ISI and
S = {Q(O),Q,(l), ••• ,Q(m-J)} after step 2a.

(I)

(2)

(3)

(4)

for k<--- 0 until M-1 do
-for all ~do

-if (A(Q(i)-;Q(jM+k))=I AND
-Flag (Q(jM+k))=I) then

Temp(i,jM+k) <--,-.Q(jM+k)
else Temp(i ,jM+k) <--- y

for k<--1 until M-1 do
-for al 1---r;r- do

-Temp(i ,jM)<-- min{Temp(i ,jM),
Temp(i ,jM+k) }

for k<-- 0 until (log K)-1 do
-for all ~do -

-Temp(i ,jM)<-- min {Temp(i ,jM),
Temp(i, ((j+2k)mod K)M)}

for all i do
-if Temp{T,O) = y then C(Q(i)) <--Q(i)

else C(Q(i))<--Temp(i,O)

In the above program, y stands for any number
exceeding n-1 . In step (I), the e I ements whose
minimum is to be computed are stored in the array
Temp. In step (2) the minimum values for all the
groups (the number of groups~ K and the size of
each group~ M) are found in time O(m/K) via seq
uential search and all these groups are processed
in parallel. Then, the overall minimum of the
K minima is found (step (3)) in time O(log K)
using at most mK processors at each step. The
details for the time complexity are as follows:

Case I: I~ K< fn/21, since JS I is reduced
least half after each iteration, IS I is at
2K after t = log n - flog Kl iterations.
we have the following time bound, T.

by at
most
Thus,

T=E~:b(~Ln/ZkJ)/Kl -l+logK)+E~~i n-I Jog(n/2k)

~r2n/KU + tlog K + (log K)2
~O(n/K + Jog nlog K)

Case 2: K ~Ln/2J, we have
--1-og n-1 (k (2)
T =EK=O log n/2) = O Jog n

[]

Lemma 4: Given nK processors, step 7 in a~gor
ithm MOD.CONNECT takes at most O(n/K + log n)
time units if I ~K<Ln/2J and O(log2n) if
K ~Ln/2J.

Proof: After sets of supervertices are merged in
steps 4-6, the adjacency information among the
supervertices is updated in step 7. Basically,
step 7a puts an arc from vertex i to new super
vertex j (i.e., A(i,j)=I) if there is an edge
between i and a vertex merged into j. Step 7b
puts an arc from supervertex i to supervertex j

173

if there is an arc to j from a vertex merged in
to i. In step 7a or 7b those columns or rows in
the adjacency matrix A corresponding to those
vertices which are merged to supervertex j or i,
are "OR"ed together to give the new column j or
row i. Since 110R11 is an associate binary opera
tion, Lemma 2 can be applied to derive the time
bound for step 7. There are m rows in A which
correspond to S and these rows of elements are
handled in parallel. As in step 2b, K proces
sors are assigned to each row i to compute
A(i,j) in step 7.

Since the application of Lemma 2 assumes that
the elements in the same set are grouped togeth
er, we have to apply the parallel sort algorithm
in [12,17] on array D. As a consequence, all
the elements which have the same value in the
array Dare grouped together by the following
procedure ca 11

SORT (D·FLAG,Q,m)

The input array is the inner product of the ar
rays D and Flag (i.e. the i 1 th element equals
D(i) if Flag(i)=l otherwise 0) .. Array Flag is
used such that only those elements corresponding
to the supervertices are considered. Since the
information corresponding to the isolated super
vertices need not be merged with any other super
vertices, their corresponding Flag values have
been assigned to 0 in step 3 and they will ef
fectively be ignored. Procedure SORT basically
arranges the supervertices according to their
values in D and all those elements with Flag(i)=
0 are put at the end of the I ist. After the pro
cedure call, array Q has the property that
D(Q(j))~ D(Q(i)) if j >i and Flag(j)=Flag(i)=J.
The program for step 7a (s imi l·arly for step 7b)
can be described as follows:

7a The following steps are performed in parallel
for 0 si <m, 0 ~j <K. Since m ~n, the max
imum number of processors required is nK.

(I)

(2)

(3)

(4)

It is also assumed that M=fm/Kl.

SORT(D·Flag,Q , m)

for all j do Temp(j)<-- Q(jM)

for k<-- I until M-1 do
-for all ~do -

-if D(Temp(rn=D(Q(jM+k) AND
ITag(Q(jM+k))=I then
A (Q(i) , Temp (j)) <--OR{A (Q(i) , Temp (j)) ,

A (Q(i) , Q(j M+k))}
else Temp(j)<-- Q(jM+k)

for al 1 i ,j do
-if D(TempT}))=D(Q((j+J)M)) AND

ITag(Q((j+J)M))=I then
A(Q(i), Temp(j))<--ORfA(Q(i), Temp(j)),

A (Q(i) , Q((j+ 1) M))}

(5) for k<--0 unti.1 (log K)-1 do
--for al I i ,j do . -

.-.if D (Temp(j)) = D(Temp(((j+2k) mod
""""K)M)) then A(Q(i), Temp(j))<--OR

{A(Q(i},Temp (j)),
A(Q(i),Q(((j+2k)mod .K)M))}

(6) for all i,J do A(Temp(j),Q(i))<-
"""'A"("Q(i),Temp(JT)

As in the proof of Lemma 2, the elements are
partitioned into K groups each of which has M
elements. In step (I) the elements are stably
sorted such that all the elements with the same
value in D (the same D-value) are grouped to
gether (this refers to those elements which will
later be merged together). The first element in
each group is assigned to the array Temp in step
(2). The columns of A with the same D-value in
each group are "OR"ed together sequentially in
step (3). The resultant column is stored at
A(*,Temp(j)), where Temp(j) always remembers the
index of the first column in the j 'th group among
all the columns which have the same D-value.' In
step (4), the two resultant columns which have the
same D-value in two adjacent groups are "0R' 1ed to
gether. In step (5), a 11 the resu I tant co I umns
with the same D-values are "OR"ed together and the
final resultant column is stored in the smallest
indexed resultant column. Si.nee step (I) evokes
a stable sort [I I, 16], it is easy to show that the
smallest numbered column, say j, has the property
that j = D(j), (i.e. it will become the supervert
ex in the later iterations).

During the first iteration, the K processors of
one row must deal with n elements; and for each
succeeding iteration, the number of elements to
be dealt with by the K processors is at most half
of the number in the previous iteration. Thus,
using Lemma 2 and applying the same kind of analy
sis as in the proof of Lemma 3, we derive the time
bound T as stated in the lemma.

[]

Theorem: Algorithm MOD.CONNECT finds the connec
ted components of an undirected graph with n vert
ices in time O(n/K + log2n) using nK processors
where K<": I.

Proof: The time and processor requirements are as
fol lows:

Step Total Time Processors

I ::;K <fn/Z] K :<: fn/21

0 (I) 0(1) n
2a O(log2n) O(log2n) n
2b 0 (n/K+(I og n)

(log K)) 0 (I og2n) nK
3 O(log n) O(log n) n
4 O(log~n) O(log n) n
5 0(log n) O(log2n) n
6 O(log n) O(log2n) n
7 O(n/K+log2n)O(log2n) nK
8 0(log n) O(log n) n

Thus, nK processors suffice to determine the

174

connected components of an undirected graph' with
n vertices in time O(n/K + log2n).

[]

As a by-product of our main theorem, we have
the following result.

Corollary: Given nfn/log2nl processors, algori
thm MOD.CONNECT determines the connected compon
ents of an undirected graph with n vertices in
time O(log2n)

This method uses the least number of processors
yet to find the connected components of an un
directed graph in time O(log2n). The previous
method [12] needs nfn/log nl processors to ach
ieve the same time bound. It can be shown eas i I y
that if K =I, i.e. n pro~essors are available,
algorithm MOD.CONNECT takes O(n) time. If less
than n processors are available (i.e. K <I), each
para I lei step wi 11 be repeated fl/Kl times and
the total required time will be O(rn/Kl), As a
matter of fact, this algorithm takes O(n2) time
with I processor (i.e. K = l/n) and also, this
algorithm is optimal in the sense that the .speed
up ratio is I inear with the number of processors
available as long as the total number of proces
sors is no more than n fn/log 2nl .

IV. CONCLUSION

We have proposed algorithm MOD.CONNECT to find
the connected components of an undirected graph
and have derived a time bound for the algorithm
using a fixed number of available processors. We
can also show that several related problems can
be solved in the same time and processor bounds
[4]. In particular, these problems can be solved
in O(log2n) time using nfn/log2nl processors.
This method is superior to the previous methods
[19,20] because it uses the least number of pro
cessors for the same time bound. The technique
employed in our algorithm is a kind of problem
decomposition which is similar to what is used in
[19] for finding the miminum element in an array
of n elements. It exploits the property that the
problem size is reduced by at least half after
each iteration and thus the processor requirement
can be reduced by a factor of log n over existing
algorithms. However, other problems, such as
finding the transitive closure of an asymmetric
Boolean matrix and the strongly connected compon
ents of a directed graph, can be shown to be re
ducible to the matrix multiplication pSoblem
[3,18], whose time complexity is O(n2. l]og n/k)
using K ::;n2.81/Jog n processors with Sk=O(K/log n)
Since the size of the problem remains constant
after each iteration, the idea of reducing the
number of processors by a factor of log n is not
directly applicable. It remains an open problem
to determine whether there exist algorithms for
these problems whose speedup ratios are I inear
with respe~t to the number of processors avail
able.

ACKNOWLEDGEMENTS

The authors wish to thank one of the referees
for correcting one mistake in this paper and the
referees of our other paper [4] in particular for
their constructive comments and correcting several
errors in our original manuscript.

V. REFERENCES

[1] Baud et G. and D. Stevenson, "Optima 1 Sorting
Algorithms for Parallel Computers, 11 IEEE
Trans. £!!_ Computers, Vo 1 . C-27, Jan. T9'7S',
pp:1l1i-8 7 •

[2] Berge C. and Chouila-Houri,·A., Programming,
Games and Transportation Networks, Wiley,
T9b5,"" P:-1 79 .

[3] Chandra A.K., "Maximal Para I lei ism in Matrix
Multiplication, "IBM Research Report, RC 6193
1976. - --

[4] Chin F., J. Lam and I. Chen, "Efficient Par
allel Algorithms for Some Graph Problems,"
Technical Report, University of Alberta,
(Submitted to CACM).

[5] Csanky L., "On the Parallel Complexity of
Some Computational Problems," Ph.D. Disserta
tion, Comp. Sci. Division, U. of California,
Berkeley, 1974.

[6] Eckstein D.M. and D.A. Al ton, "Para] lel Graph
Processing Using Depth~Firs·t Search," Conf.
£!!_Theoretical Comp. ~·· U. of Waterloo,
1977, pp.21-29.

[7] Flynn M., "Some Computer Organizations and
Their Effectiveness, "~Trans. on lomput
~· Vol. C-2), Sept. 1972, pp. 941f='9 0.

[8] Golaschlager L.M., "Synchronous Para! lei
Computation," Ph.D. Dissertation, TR 114,
Dept. of Comp. Sci., U. of Toronto, 1977.

[9] Heller D., "A Survey of Parallel Algorithms
in Numerical Linear Algebra," SIAM Review,
Vol. 20, Oct. 1978, pp.740-777.

[JO] Hirschberg, D.S., "Para I lei Algorithms for
the Transitive Closure and the Connected
Component Problems," Proc. of 8th Annual ACM
Symposium on Theory ofCOmputinQ, ~ -
pp. 55-57. ----

[11] Hirschberg D.S., "Fast Paral lei Sorting Al
gorithms," CACM, Vol. 21, Aug. 1978,
pp.657-661.--

[12] Hirschberg, D.S., A.K. Chandra and D.V.
Sarwate, "Computing Connected Components on
Parallel Computers," CACM, Vol 22, Aug. 1979,
pp.461-464 --

175

[13] Hyafi I L. and H.T. Kung, "Para I lel Algor
ithms for Solving Trfangular Linear Systems
with Small Parallel ism, 11 Dept. of Comp.
Sci., Carnegie-Mellon U., Pittsburgh, Pa.,
1974.

[14] Ja'Ja', J. and J. Simon, ''Parallel Algor
ithms in Graph Theory - Planity Testing"
T.R. Penn State University, June 1980.

[15] Kuck D.J., "A Survey of Parallel Machine
Organization and Programming," ACM Comput
~ Surveys, V.ol. 9, March 1977, pp.29-59.

[16] Munro I. and M. Paterson, "Optimal Algor
ithms for Paral lei Polynomial Evaluation,"
~. Vo I . 7, Apr i 1 1973, pp. 189-198.

[17] Preparata F.P., "New Parallel-So.rting
Schemes," IEEE Trans. on Computers, Vol. C-
27, July 1978, pj):b°b9-b]3.

[18) Reghbati E. and D.G. Corneil, "Parallel
Computations in Graph Theory, "SIAM J.
Computing, V.ol. 7, May 1978, pp.230-237.

[19] Savage,C.D., "Parallel Algorithms for Graph
Theoretical Problems," Ph.D. Dissertation,
R-784, Dept. of Math., U. of Illinois,
Urbana, 1977.

[20] Savage, C.D. and J. Ja'Ja', "Fast, Effic
ient Parallel Algorithms for Some Graph
Problems," Technical Report, Penn State
University, 1980.

[21] Stone H.S., "Problems of Parallel Computa
tion," Complexity of Sequential and Paral
lel Numerical Algorithm, Academic Press,
1973, pp.1-16.

[22] Stone H.S., "An Efficient Para! lei Algori.
thm for a Tridiagonal Linear System," JACM,
Vol. 20, Jan. 1973, pp.27-38. --

[23] Thompson C. and H.T. Kung, "Sorting on a
Mesh-Connected Para! lei Computer," CACM,
Vol. 20, Apri I 1977, pp.263-270. --

SPEEDUP BOUNDS FOR CONTINUOUS SYSTEM SIMULATION
ON A HOMOGENEOUS MULTIPROCESSOR

E.H. D'Hollander
State University of Ghent

Department of Applied Mathematics
Coupure Links 533

B-9000 Ghent, BELGIUM

Abstract -- This paper explores the benifits
and the bounds of multiprocessors for the simula
tion of continuous systems. Different types of
parallelism are defined describing the stepwise
refinement of a problem into parallel executable
tasks. Invariant simulation systems have a great
parallelism in time, due to their periodic execu
tion for each integration step. When a problem can
be partitioned into tasks which are independently
scheduled, it has natural parallelism. A problem
structure having precedence constraints among
tasks exhibits functional parallelism and finally
a task which further is split-up in atomic opera
tions exploits the operator parallelism. For each
of these forms the processor utilization and speed
up bounds are analysed with respect to the struc
tural characteristics of the simulation problem.

I. Introduction

The idea to apply multiprocessor systems in
the domain of continuous system simulation is mo
tivated mainly by the following considerations.
First, the need for fast simulation power is re
cognized in many applications, but it is most
stressed in the field of interactive simulation
and in real time systems. Second, most digital
simulation is cpu-bound, since numerical integra
tion of a complex set of differential equations
is calculation-intensive. Because of the heavy
cpu-load, the use of several processing units is
likely to produce a faster solution. However, the
final speedup is bound by the processor-system as
well as the problem characteristics. The aim of
the following sections will be to focus on the
problem dependent characteristics which influence
the potential speedup on a MIMD-machine. After a
general problem formulation in section 2, the dif
ferent types of parallelism will be defined in
section 3. In section 4 the problem-dependent fac
tors, limiting the unconstrained use of parallelism
are discussed and some useful bounds on cpu-utili
zation will be derived. Attention is given to the
architectural aspects where they might constitute
a potential bottleneck.

2. Problem Definition

A simulation model S, is described by the
following set (Fig. 2.1)

- the time, t ;
- the input-set, x ;
- the state variables, .9.. ;

- the output-variables, y ;
- the derivative functions, i ;
- the output functions, g.

We consider a general TI;:ultiprocessor MP, con
sisting of :

- n identical processors
- m memory-modules ;

0190-3918/81/-0000/0176$00.75 © 1981 IEEE

176

- an interconnection system I, which describes
the coupling between processors and memories.
A multiprocessor is coded by the software P,

yielding a programmed computer system, K :

K = {n,m,I,P} (2.1)

When a computer system K solves the simulation
problem S, the code for executing S is partition
ed and allocated to the different processors by
the mapping 11

P = 11(S) (2.2)

A programmed multiprocessorsystem K, has an exe
cution time, te which is function of

- the machine dependent characteristics, n,m,I;
- the implementation of the problem, 11(8) :

te = F [n,m,I; 11(S)] (2.3)

The minimization of te therefore depends on
machine- and on problem-characteristics. Whereas
the architectural aspects have received ample
considerations in the literature, especially for
the possible interconnection structures, this
paper contributes to the equally important parti
tioning problem. From the results obtained, it
should be possible to select the proper n, m and
I, in order to tailor the multiprocessor to the
type of problems it will solve.

t--::>

Fig. 2.1. The continuous system S

3. Types of parallelism

3. 1. !'.~I!i!i~~i~L~!~E~

--.-;,. z=~<s>

{ t ·~·.9..·Y.f,~}

The partitioning, P 11(S) proceeds in two
distinct steps (Fig. 3.1).

s ---? c = {J,<-} ----? p

Fig. 3.1. Simulation system (S), Task system (C)
and Processor-coding (P)

In the first pass 111, the model S is transformed
into a task system C = {J, <· }. A task system con
sists of a set of tasks, J = {T.} subject to an
ordering<·. This ordering indi~ates the·prece
dence constraints governing the execution of J.
A task Ti, operating on the results of task Tj,
requires the prior termination of Ti before task
Tj can initiate. This execution ordering is

denoted by T. <• T .• In the second step Tiz, the
task system 1 C is ~cheduled and programmed on the
available processors, by the coding P. This im
plies compilation and downloading of the tasks Ti,
together with the necessary synchronization primi
tives. The scheduling strategy has to take into
account the precedence constraints of the task
system, the duration of each task, and eventually
the parallelism within a task Ti• Given an un
supervised scheduling algorithm, step TI 2 is total
ly transparent to the user, whereas normally a
limited user-assisted partitioning occurs in step
TI1· Since the number of processors n, is only in
troduced in the unsupervised partitioning step nz
this approach permits a graceful degradation.

3.2. ~!E!11~1!~~-!~_!!~~
Whenever a simulation problem S has a deter

ministic structure, its task system will be iden
tical for each time step. Consequently, the sche
duling and compilation is the same for all inte
gration steps and needs to be done only once.
On the other hand, if the structure of the problem
varies according to state changes during execution,
the parallel implementation requires a reschedul
ing of the task system, in order to account for
any variations in the ordering <· , the duration
times or the task set J. The influence of these
structure-variations is estimated by the 'paral
lelism in time'. The time-parallelism is defined
as the average number of integration steps during
which the problem structure is fixed. A high pa
rallelism in time justifies an elaborated optimi
zation of the scheduling strategy.

3.3. ~!!~E!1_£!E!11~1!~~

Each integration step of a set of differen
tial equations requires successively :

1) the numerical integration of the state vec
tor (~)

2) the calculation of the derivative functions
!!. = f(~.~.t).

The corresponding set of tasks J, generally can
be partitioned into several subsets Bj of tasks
Ti, which do not interact during the execution of

~~n!:~~=::~!~na~~e~~t!·:~ ~a~ ;u~B~~!c:!~~~~~Bj}
without synchronization. This form of parallelism
is termed 'natural', and it is quantified by the
number of subsets in B • Many simulation systems
exhibit a natural parallelism, since they can
split up in logically'independent subsystems.
A prominent example of natural parallelism is
given by the independent state equations (Fig.2.1).
First all state variables can be integrated in
parallel. Then the state vector is communicated to
the different processors and finally each deriva
tive function is evaluated. simultaneously [7] .

3.4. ~~~£!!2~!1_£!E!11~1!~~
When there exists precedence constraints be

tween the tasks of a simulation system or subsys
tem, the ordering relation<• is not empty. The
parallelism which respects this ordering <· is
termed 'functional'. It is not possible to extract
this functional parallelism immediately from the
problem description S, or during phase Til• where

177

the task system C is created. It has to be recog
nized in the phase Tiz, and the partitioning algo
rithm has to take into account the absolute prio
rities between executing tasks, the task duration
times and the communication- and synchronization
overhead. Typically this parallelism is applied
to the parallel execution of derivative function
calculations.

3.5. 2E~E!!2E_E!E!11~1!~~
A fourth form of parallelism, also occuring

in the partitioning phase Tiz, arises when a task
T., is further split up, in order to increase
p~rallel execution. The operator parallelism gives
rise to two sµbf orms : the micro- and the macro
operator-paral lel ism, depending on its effect on
the structure of the whole task system C. In the
micro-form, the task T. is searched for parallel
executable basic-opera~ors, such as multiplication
and addition ; the structure of the task system is
then changed only locally [17], [18], [19] • The
macro-form has a profound effect on the global
task system structure. There the splitting of ope
rator Ti results in a split-up of the whole task
system. This happens for certain parallel integra
tion algorithms, e.g. when the integration formu
las allow the system to be evaluated simultaneous
ly for two consecutive timesteps [7],[21],[23]

4. Problem-dependent performance bounds

4.1. !t~-i~E2E!!~£~_£f_!!~~:!~Y!Ei!~!-~~~!~~~
Clearly the major advantage of most simula

tion systems with respect to parallel processing,
is the repetitive execution of the same calcula
tions during each timestep. Ideally this requires
that task duration times and problem structure
(i.e. the precedence constraints) remain invariant
during the whole integration interval. The condi
tion of a time-invariant structure, however, can
be relaxed to include continuous systems which
switch over during execution time between a limit
ed number of alternating structures. In this case
all possible structures are partitioned in advance
and downloaded into the different processor-memo
ries. In this way the jump to a new structure, even
as a result of a state-change in the model, can be
realized with minimal overhead, similar to a sub
routine-call in sequential processing. However,
this method fails in two cases. First the 'context
switching' becomes predominant whenever the model
rapidly alternates between several different struc
tures, i.e. when the time-parallelism is low.
Second, the number of possible structures grows
exponentially with the number of 'switchpoints'
in the model: these are· the points where a selec
tion is made between alternate functions to evalu
ate (compare with the switches in an analog block
scheme). Few analytical results exist on the in
fluence of variable task duration times. Several
simulation results, however, seem to indicate that
slight variations on the estimated task length
have only a marginal effect on the scheduling effi
ciency. [1]. Task lengths can be estimated at com
pile time from the duration of the individual in
structions (20].

4.2. ~!:!!2~!i£_E~Eti!i2!!i!!&-~1&2Ei!hm!_!£E_!!~!!:!E~1
~~2-!!:!~£!i2~~1-E~E~11~1i!~
The general assignment problem can be stated

as follows. We are given :
I) a task system C = {J,<•} in which

J = {TJ••••• TN} equals a set of tasks and
<· is the partial ordering relation :
Ti <· Tj denotes that T_; cannot start execu
tion prior to the compl~tion of Ti ;

2) a weighting function a(Ti), representing the
execution time : 'i = a(Ti)

3) a fixed number of identical processors, n.

The objective is to find a partition A1, ••• ,
An of J, such that the largest execution time on
any processor

t max max { l T.

Vi ,.eA. J
J i

is minimized, subject to the precedence con
straints, <•.

(4.1)

It is well known that for general values of n
and m, this problem is NP-complete [14),[22].
Therefore considerable attention has been given
to the development of fast heuristics, yielding
suboptimal results [I] , [5] , [9] • The general
problem formulation above, involves the detection
of natural parallelism(<·= 0) as well as func
tional parallelism (<· /< O). In the .following
paragraphs, two colillllon heuristics for this parti
tioning problem will be analyzed.

Natural Earallelism (<• = 0). In this case,
the tasks are independent. Intuitively it seems
useful to assign the longest tasks first. In this
way the smaller tasks are reserved for the end, ·
and can be used to reduce the irregularities of
the distribution. This leads to the 'Longest Pro
cess Time' algorithm [4] :

I) arrange the tasks in a list, in decreasing
order of execution times ;

2) assign each task from this list consecutive-
ly to the first available processor.

This is a so-called 'list-algorithm'. The list al
gorithms differ only in the way a list of tasks is
arranged. In contrast to an optimal search by
enumerative techniques, the LPT-algorithm is rela
tively efficient. The sorting of the list takes
0 [N.log(N)] steps, and the assignment phase re
quires 0 [N(n-1)/2] operations. For large N and
constant number of processors n, the algorithm is
of order 0 [N. log(N)] •

Functional parallelism (<• /< 0). The ordering
relation <• , governing the execution priority of
the tasks, is represented by a task graph. This is
the tupple [J, a(T), <·] and consists of vertices
denoting tasks, and edges denoting the precedence
constraints. Again a list algorithm is applied for
the automatic scheduling •. In order to account for
the precedence relations however, the weight of a
task Ti is measured by its level. A task Ti has
level R-, when the longest path from that task to
a terminal task requires R, time-units. Consequent
ly, R-(Ti) is the minimal time needed to .. terminate
the execution of the task graph, from the beginn
ing of task Ti. It is intuitively appealing to

178

assign the highest priority of execution to the
tasks with highest level, i.e. to those tasks
with the largest workload ahead. This leads to
the following 'level algorithm', which originates
from the optimization of assembly lines [13] :

I) arrange the tasks by decreasing.levels;
2) whenever a processor becomes free, assign

that task of which all predecessors are
executed, and which has the highest level
of the remaining tasks. Ties are arbitrari
ly resolved.

The workload of this algorithm depends on the num
ber of tasks N, the average number of predecessors
of each task, Npred, and the number of processors
n ; for moderate valuzs of Npred and n, however,
the algorithm is 0 [N /2].

4.3. ~2!:!~2!_2~-EE2£~!!2.E_!:!!iE~~!!2!!-~~2-!E~~2!:!E
It is not a rule that a multiprocessor of n

identical processors will perform n times faster
than a single process9r. Although several archi
tectures bear this potential, even the best equip
ped systems will be more or less seriously limit
ed by the constraints of the problem. It is the
aim of this section to derive the lower and upper
bounds of processor utilization with respect to
the problem characteristics. Several authors have
demonstrated the suboptimality of the LPT- and
level-algorithms [I I], [13], [15]. Here we concen
trate on the suboptimality conditions for the
processor utilization taking into account algo-· -
rithmic-, problem- and processor-characteristics.
We define the following performance measures.
The effective execution time te, is the process
ing time of the longest operating processor.
The minimal execution time tmin• of any problem
on an n-processor system is :

tmin = E/n (4.2)

with E = l •· the total workload of the task sys-
tem. V. i

i

The processor utilization U is defined as the
average fraction of time that the processors are
busy during te :

U = tmin/te (4.3)

The speeduE S of a n-processor system over a uni
processor is S = U.n.

UEper bounds. The· effective calculation time
of a task system is bound below both by the long
est chain of tasks to be executed serially and by
the number of processors n, i.e. the degree of
hardware parallelism. When there are no precedence
constraints and we do not allow pre-emption, one
has

t . .max {T , E/n}
e,min max

for<· = O

with T the longest task duration. In the case
of pre~~ence constraints, the effective execution
time is bounded below by t.he longest path in the
task graph. According to the previous definition,
this is the highest task-level L

t . = max {L, E/n} for <• /< 0 e,min

For obvious reasons it is assumed that the number

of tasks exceeds the number of
N ;;.. n. Define the average task
Then the processor utilization
the following upper bounds

U = min max

s min
max

and

u min max

s min max

{--E __
n. T max

{-E-
T '

n}
max

{_!__
n.L '

I}

{!.__
L '

n }

I}

processors, i.e.
length T = E/N.
and speedup have

for <- = 0 (4.4)

for <- # 0 (4 .5)

Lower bounds. First we consider the indepen
dent task system(<• = O). Denote by ti the start
ing time of task T .. The minimal execution time
train given by (4.2i) requires that all processors
remain active during the interval [O,tmin].
In each of the list-algorithms, the last task TN
is started on the first available processor,
at tN. Thus, till tN all processors are busy exe
cuting the previous N-1 tasks, yielding an upper
bound for tN :

N-1
t .;;; (l Ti)/n (4.6)
N i-1

Let Tt , ._ .. , Tt be the last tasks executed on
1 n

each of the n processors. These tasks start ulti-
mately at tN. From that moment the execution will
not last longer than the maximal duration of these
n tasks, 't with 'i max 't .

,max ,max j=I ,n j

This gives an upper bound for the execution time
of each list-algorithm : t .;;; tN + T, __ • Taking e _,,,max
into account inequalities (4.6) and (4.2),
tmin > tN and the execution time of the LPT-sche
dule is bounded by

tLPT < tmin + 't,max (4. 7)

demonstrating that the LPT-schedule always termi-
nates within T, of the absolute minimal exe-_,,,max
cution time. With topt;;.. tmin• equation (4.7) also
yields a suboptimality bound for the algorithm :

tLPT ..,. + '9-,max
"" (4.8)

topt topt

This bound is comparable with the Graham bound
[I I]

tLPT .,;;; !!_ _
topt 3 3n

Both bounds are represented in Fig. 4.1, for large
values of n (n > JO) and with the normalization
'• =I. This figure illustrates that for .. ,max
t t > 3n/(n-J) '• , equation (4.8) gives a op _,,,max
lower bound. Moreover, (4.7) can be written as

tLPT n. 't,max
-- .,;;; I + --~---
t min N. T

(4. 9)

179

When the number of tasks N, grows indefinitely,
and the mean task length T" exceeds an arbitrary
value E > 0, (4.9) yields li~ tLPT = tmin·

h f h P 1 . N-+iuf . ll T ere ore, t e L T-a gorithm is asymptotica y
optimal.

tLPT
topt

+. 1 8E+01

+. 1 4E+01

+ • 1 0 E + 01 +-__,,___--+--+-~-+--+--+--__,,___--+--+ top t
+. 1 0E+01 +. 50E+01 +, 90E+01

Fig. 4.1. Comparison of the execution-time bounds
for independent-task systems (<·= 0),
scheduled by the LPT-algorithm

With U = tmin / tqpt' the lower bound for
the processor utilization is given by the inverse
of the upper limit in (4.9) and

s . min
n.'t,max

Umin.n = n/ {I + --E~--

for <- = 0.

For the general case where<·# O, the long
est path, L, defines the minimal execution time
te,min• which is indep~ndent of the number of pro
cessors n. Whep there is no bound on the number
of processors, all other tasks can run concurrent
ly with the longest chain tasks, yielding a total
execution time L. In the worst case, however,
due to precedence constraints, no tasks can be
executed in parallel with the longest path. In
order to be consistent with the definition of
longest path, this requires that the remaining
tasks can be executed in zero time, by an even
partitioning over an infinite number of processors.
This collection of remaining tasks is called an
'impulse task'. Consider a task system having a
total task duration E = I, and a longest path L .;;;1.
In the worst case, this problem requires the exe
cution of an impulse-task of 1-L time units, after
the execution of the longest path. Since an impul
se-task can be divided evenly over n processors,
this gives an additional workload of a = (1-L)/n
time units (Fig. 4,2). The total execution time
is te = L + a. With tmin = l/n, the processor uti
lization of the worst case, U = tmin/te, gives the
lower bound

Umin"' I/ [I+ (n-l)L].

This lower bound is also related to the mean width

0 L L+ o

Fig. 4.2. Worst case task system subject to prece
dence constraints (<•f O)

of the task graph, W, which is defined as follows.
Suppose the task graph is executed on an unlimited
number of processors. At each instance of time, t,
t E [O,L], there are w(t) processors active,
w(t) equals the number of parallel executed tasks
at time t, and is conveniently called the width of
the task graph. The mean width, W, is now defined:

w f1 w(t) dt
L 0

The integral value represents the total active
processor time, which clearly equals the total
task duration time E, so W = E/L and consequently
with E = 1,

u . min 1 I [1 + (n-1) /W] •

This is the best possible bound, since one always
can construct a taskgraph with longest path L,
giving minimal utilization on n processors.
The lower bound for speedup becomes :

S . = n/ [1 + n- l]
min W for<· f 0

4 • 4 . !'.!!!!!E~E.::!1E_~!!!U:2!!!!!!!:!!!i£~~i2!!
The degree of parallelism and the degree of

communication are strongly interconnected. There
fore, the interconnection network - mainly used
for traffic between processors and memories -
should be tuned to the type of parallelism which
is .exploited. Parallel program execution can be
static or dynamic. Analytical and simulation stu
dies [3],[12] have demonstrated that simultaneous
execution of programs in an n processor, n memory
system, coupled through a crossbar switch, can re
sult in a significant loss of efficiency when pro
cessors randomly access memories other than their
preferred memories for the execution of instruc
tions. Parallel continuous system simulation, how
ever, mainly involves the repetitive execution of
static programs which are assigned permanently to
the same processors. Therefore, the programs can
be stored in private memories, one for each pro
cessor. Using private memories for program execu
tion, the total bandwith of the interconnection
system becomes available for data communication.
Memory access can be scheduled or arrive at random.
Some authors suggest the scheduling of tasks of a
highly structured taskgraph could take into ac
count the possibly hierarchically structured com
munication paths, in order to program highly

180

interactive tasks on 'nearby.I-processors [2] .
However, for general simulation problems this
complicates unnecessarily the scheduling algorithm.
Indeed, communication conflicts should be more an
exception than a rule, so their minimization
through a well-balanced partitioning will normal
ly have only a marginal effect. In fact, the hard
ware interconnections have to provide the requir
ed support for the statistically expected traffic
load within reasonable efficiency bounds. There
fore, a homogeneous multiprocessor system with
a non-hierarchical bus-structure is considered.
In order to estimate the impact of the intercon
nection structure, a single bus-structure queu-
ing model is considered as an example (Fig. 4.3).

Q

Fig. 4.3. Queuing model of an n-processor,
1 shared memory architecture

The model consists of n identical processors, re
questing information from the shared data-memory,
which is the server. The service time I/µ, depends
on the number of variables which are written into
or read from the memory. These are the numbers of
input variables of a task plus one output variable
i.e. typically 0 - 10 memory cycles. The system
is self regulating (closed loop), since request
ing processors in the queue become non-active un
til they receive service. Since a processor re
quests service at the end of each task, the mean
request-interarrival time, 1/\ equals the mean
task-execution time. Assuming exponential service
and interarrival times, this queuing model yields
an estimate for the effective response time R,
which is function of\ andµ [16]

(4. 10)

with

the probability that the shared memory stays idle,
and

p = average communication time per task
mean task duration

The impact of bus conflicts on the effective
speedup of n parallel operating processors is
given by the efficiency factor

1/\ + 1 /µ (l+p) (1-p0)

nbus = 1 /\ + R n.p

and which is shown in Fig. 4.4 for various values
of n.

n • 2

+. 80E+00

n • 5

+. 40E+0

n = lO

n • 20

+. 0 0 E + 0 0'+---+--+---+---+--+---+-~~-+-+--+
+, 00E+00 +. 20E+00 +. 40E+00

Fig. 4.4. Bus efficiency in function of inter
task communication (p) and number of
processors (n)

The figure illustrates that low values of p (<.I)
reduce the influence of bus-conflicts. In order to
hold the queueing time below 10%, (nbus > .9),
critical values of p are given in table I.

n Per

s .16
10 .09
20 .OS

Table I. Maximal p-values for nbus > .9

From this table a rule of thumb, p.n < 1 can be
derived. This inequality stresses the bounds for
parallel task execution in a one-bus interconnec
tion structure. Moreover the result is robust with
respect to varying distributions of arrival and
service times as is shown analytically [16] and
by simulation [6] . From the rule it is possible
to predict quantitatively the communication per
formance of a task system on a single bus-multi
processor in terms of the average duration and
mean communication time of a task. The bound es
pecially applies to micro-operator-parallelism,
since the duration time of basic operators such
as addition and multiplication may be of the same
order as the data-transfer time. Unfortunately,
few publications take into account this communica
tion overhead, which may well exceed the effective
calculation time [8] • It is noted that an m-port
memory or m multiple memories interconnected by
a crossbar reduce the bus-conflicts significantly,
provided the memory accesses are spread equally
over all communication paths by an appropriate
partitioning of the shared variables over the
available memories. Using the queuing network
theory of Gordon and Newell [10] for exponential
distributions one finds a similar result:p.ri/m·<
[6] . In order to estimate the relative influence
of communication and precedence constraints, we
consider a unit task with longest path L = .OS,

181

or mean taskgraph width W = 20. The speedup is
the inverse of the execution time of a unit task.
The maximal and minimal bounds on a single bus,
n-processor system are shown in Fig. 4.S, using
the values p = 0 (no communication overhead),
p = .02S and p = .OS. Apparently bus conflicts
cause a serious efficiency loss when n > l/p.
The maximal speedup is 20, ideally achieved with
20 processors. Interestingly however, in the
worst case a doubling of the processors allows
the speedup to become 12, i.e. 60% of its maximum,
provided the connection system is not saturated
(p = <.02S).

•.2oe:+-02

+, LSC+-02

•. !OE/02..

+.SOE"Ol

•.QQE:"OO
+.00£"()0 "· l0E+02 •.~QEl-Q2

!!

Fig. 4.S. Ideal and worst case performance of a
taskgraph with mean width W = 20
(longest path L = .OS) on n processors,
1 shared memory.
Upper line : maximal speedup S.
Lower lines : minimal speedup S with
no (p = O), moderate (p = .02S) and
high (p = .OS) bus traffic.

S. Conclusion

Continuous simulation constitutes a fruitful
application to parallel processing techniques,
mainly because of its invariant and repetitive
tasksystem, i.e. its parallel structure in time.
The state equations are independent tasks that
can be distributed evenly over the available pro
cessors by a simple, efficient and asymptotically
optimal LPT-scheduling algorithm. More parallelism
can be gained in building up a tasksystem of the
derivative functions, thereby introducing prece
dence constraints between tasks. This functional
parallelism can be scheduled transparently to the
user by a numerically simple, yet powerful level
algorithm. Minimal and maximal speedup bounds
have been derived in function of the longest path
L, or equivalently the mean task graph width W.
Further refinement of tasks into basic operators
raises the problem of communication overhead.
Queuing analysis of a single bus interconnection
between processors and a shared data memory .re
veals that the duration of the average task should
exceed n times its communication time, where n
equals the number of active processors. This re
sult can be generalized for other interconnection
structures by the theory of closed queuing net-

works.

References

[I] Adam, T.L., Chandy, K.M. and Dickinson J R
"A comparison of list schedules for pa;aliei'
processing systems", Colllill. ACM 17, 12, 1974,
pp. 68S-690.

[2] Arvind and Bryant, R.E., "Parallel Computers
for Partial Differential Equations", Proc.
Sc. Conf. Inf. Exch. Meeting Livermore--
California, 9, 1979, pp. 94-102. '

[3] Bhandarkar, D.P., "Some performance issues
in multiprocessor system design", IEEE Trans.
Comp. 26, S, 1977, pp. S06-Sll.

[4] ~offmann, E.G. Jr. and Denning, P.J., "Operat
ing Systems Theory", Prentice Hall, 1973.

[SJ Coffmann, E.G. Jr., Leung, J.Y-T. and Slutz,
D., "On the optimality of first-fit and level
algorithms for parallel machine assignment
and sequencing", Int. Conf. Par. Proc.,
Ed. J.L. Baer, 8, 1977, pp. 9S-99.

[6] D'Hollander, E.H., "Multiprocessors for Con
tinuous System Simulation", PhD. thesis,
State University of Ghent, Belgium, 1980.

[7] Franklin, M.A., "Parallel solution of ordi
nary differential equations", IEEE Trans.
Comp. 27, 1978, pp. 948-960.

[8 l Gentleman, W.M., "Some complexity results for
matrix computation on parallel processors",
J.ACM 2S, I, 1978, pp. 112-JJS.

[9 l Gonzalez, M.J., "Deterministic processor
scheduling", Computing Surveys 9, 9, 1977,
pp. 173-204.

[JO] Gordon, W.J. and Newell, G.F. "Closed Queu
ing Systems with Exponential Servers", .2E..:_
Res. IS, 1967, pp. 2S4-26S.

[I I] Graham, R.L., "Bounds on multiprocessing
timing anomalies", SIAM J. Appl. Math. 17,
2, 1969, pp. 416-429.

[12] Hoogendoorn, C.H., "A general model for me
mory interference in multiprocessors",
IEEE Trans. Comp. 26, 1977, pp. 998-JOOS

[13] Hu, T.C., "Parallel sequencing and assembly
line problems", Op. Res. 9, 6, 1961, pp.841-
848.

182

[14] Karp, R.M., "Reducibility among combinatori
al problems", Complexity of computer compu
tation, Plenum Press, N.Y., 1972, pp.8S-104.

[IS I Kaufman, M.T., "An almost optimal algorithm
for the assembly line scheduling problem",
IEEE Trans. Comp. 23, II, 1974, pp.1169-1174.

[16] Kleinrock, L., "Queuing Theory II", John
Wiley and Sons, 1977.

[17] Kuck, D. and Muraoka, Y., "Bounds on the pa
rallel evaluation of arithmetic expressions
using associativity and distributivity"
Acta Informatica 3, 1974, pp. 203-216. '

[18] Kuck, D., "A survey of parallel machine or
ganization and programming", Computing Sur
veys 9, I, 1977, pp. 29-S9.

[19] Muller, D.E. and Preparata, F.P., "Restruc
turing of arithmetic expressions for parallel
evaluation", J .ACM 23, 1976, pp. S34-543.

[20] Rodeheffer, T.L., Hibbard, P.G., "Automatic
exploitation of parallelism on a homogeneous
asynchronous multiprocessor", Intl. Conf.
Par. Proc., 1980, pp. IS-16.

[21] Shampine, L.F. and Watts, H.A., "Block Im
plicit one-step methods", Math. Comp. 23,
1969, pp. 731-740.

[22] Ullman, J.D., "Polynomial complete schedul
ing problem'', 4th Symp. Operat. System Prin
ciples, 1973, pp. 96-101.

[23] Worland, P.B., "Parallel methods for the
numerical solution of ordinary differential
equations", IEEE Trans. Comp. 2S 1976
pp. I04S-1048. ' '

ANALYTICAL MODELS TO EXPLAIN ANOMALOUS
BEHAVIOR OF PARALLEL ALGORITHMS

Bruce W. Weide
Department of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

Abstract -- A probabilistic model of a class
of parallel programs is used to investigate the
counterintuitive behavior observed for some
parallel algorithms. Two main points are made:
(1) It may, in general, be beneficial to consider
using more logical processes than physical pro
cessors in a parallel algorithm; and (2) Results
from order statistics are useful tools in analyz
ing parallel systems.

1. Introduction

Certain strange phenomena have been reported
recently regarding the behavior of parallel
algorithms on real multiprocessors, such as C.mmp
and Cm* [2,6,8,10], and an interesting problem is
the development of models and analytical tech
niques to explain them [8,9]. Our goal here is to
develop a realistic probabilistic model for
describing how members of a class of "decompos
able" problems behave when solved by certain
parallel algorithms. Our contribution is not
simply in the explanation of observed phenomena,
but also in the introduction of order statistics
,as an analytical tool not ordinarily used in
performance evaluation of computer systems.

Anomalous problems that have been reported
in the literature can be classified into two
categories. On the one hand are problems that
are solved in parallel by decomposing them into
a number of subproblems, the successful comple
tion of ~ one of which solves the original
problem. For instance, suppose it is necessary
to search a table for the occurrence of an item
known to be in the table somewhere. One possible
algorithm is to search the positions of the table
in random order. A search by n such processes,
operating independently and in parallel, can
be conducted, and the first process that finds
the item is the one that determines the total
running time,

Such an algorithm could, in theory at least,
exhibit the following strange behavior. With one
processor, the average solution time is T1 ; with

n processors and n independent processes, the
average solution time is T ; and T < T1/n. In n n
other words, n processors can exhibit a speed-up
of the average time that is more than a factor
of n.

A plausible explanation of such an
apparently unlikely phenomenon is that the al
gorithm's runnin~ time is a random variable,

Research supported in part by the National
Science Foundation, MCS-79-12688.

0190-3918/81/0000/0183$00.75 © 1981 IEEE

183

having a distribution F(x), for which the
expected value of the minimum of n observa
tions is less than l/n times the expected value
of a single observation. For instance,

F(x) = x0, O < x < 1, 0 < o < 1/2, has the
required property-for all n > 2. This phenom
enon is described in more detail in [8]. It
should be noted that while such behavior is
theoretically possible, we know of no practical
algorithms for which it has been observed.

We consider here a different problem, where
the decomposition is into a number of subproblems,
the successful completion of all of which is
required to solve the origina-Y-Problem. An
example (in fact, the one that motivated develop
ment of the model proposed here) is a discrete
optimization problem, such as integer programming,
in which the space of possible solutions is
partitioned into n disjoint subsets that are
searched in parallel for the optimum feasible
solution. The curious behavior here seems more
believable than that described above, but still
not entirely intuitive. It has been observed
that average running times can sometimes be
reduced by partitioning into more subproblems
than there are processors, and by sharing the
processors among the active subproblem-solving
processes [8].

In late 1975, when the C.mmp multiprocessor
at Carnegie-Mellon University [10] was configured
with 5 PDP-ll's sharing access to a single large
memory, experiments with a parallel implementa
tion of an implicit enumeration algorithm for
0/1 integer programming were conducted. In this
problem, the goal is to

minimize: c0 +
n

subject to: j~l aijxj ~bi' 1 < i < m

x.E{O,l}, 1 ~ j < n.
J

A complete enumeration of the 2n possible
solution vectors can be avoided by making use
of "branch-and-bound" techniques, but the
general approach still looks much like a tree
search: "branch" on x1 , say, and solve the two
subproblems (each with n-1 variabl~s) in which,
respectively, x1 is replaced by 0 and by 1 in the

original problem. The subproblems are smaller
instances of the same type problem, and can be
solved by further division. If r variables r
are chosen initially for branching, there are 2
subproblems, each with n-r variables, and they
can be solved independently and in parallel. In
practice, it improves the solution time if

certain global information (a bound on the
objective function value) is shared, but there
is no requirement for any interaction except for
one final comparison of the subproblem•s optimum
solution value with the best solution found so
far for another subproblem.

The experiments on C.mmp were not intended
to determine how much speed-up could be obtained
by parallel decomposition, but rather to exer
cise the C.llllllp hardware and software in the
system's early days of operation. Consequently,
few precise timing runs were made. The limited
experience offered by the parallel integer
progralllllling algorithm and the timings observed
for it indicated, however, that even with only
5 processors, the average solution times tended
to fall as the number of subproblems solved in
parallel increased well beyond 5.

Figure 1 shows the behavior observed for a
typical 20 variable, 20 constraint problem.
Several runs were made with the r initial
branching variables chosen at random, for r
from 0 to 4, and the solution times averaged.
The fact that average solution times tended to
fall, even with 8, 16, and 32 subproblems being
solved in parallel on only 5 processors, led to
speculation regarding the underlying reasons for
this phenomenon and to development of the analyt
ical model described below.

Explanation of this behavior in a fairly
realistic model, accounting even for overhead
associated with processor sharing, is the purpose
of this paper. Section 2 describes the hardware,
scheduling, and problem models. Section 3
presents the analysis of the ideal (no over
head) case, and Section 4 extends it to include

30

20

10

0

I
I
lk

01
I

5 processors

d
10
I 0

I
I

10 20

n, Numb-er of Processes

30

FIGURE 1 - Average execution times for a
typical 0/1 integer progralllllling
problem on C.nnnp system

0

184

scheduling overhead. We conclude in Section 5
with a brief discussion of possible. applications
and future directions.

2. The Model

A simple multiprocessor model is that shown
in Figure 2. The k identical processors operate
asynchronously and in parallel, and communicate
via a shared memory. For simplicity we assume
there is no contention for this memory (an
assumption that is entirely reasonable for cer
tain hardware configurations and reference pro
perties), and that no overhead is involved in
locking shared data for exclusive access. In
short, each processor operates as fast as if it
alone were executing without the other k-1 pro
cessors. This assumption is necessary -to make
the model at all tractable; analysis of conten
tion effects is a difficult problem in its own
right. In addition, we assume that the problem
we are solving accounts for the entire computing
load on the system; more about this later.

A schedulable entity is called a process.
In our model, each subproblem solution is
computed by a separate process, and each process
is either active (i.e., not completed) or
inactive. Whenever there are at most as many
active processes as processors, each process is
bound to one processor, and no scheduling is
necessary. If there are more active processes
than processors, scheduling is by processor
sharing, which means that each process effec
tively has only a fraction of a processor's
computing power. For instance, with k pro
cessors running n > k active processes, the
computation of each process progresses at k/n
times the rate it would progress if -it had its
own dedicated processor.

In Section 3, the analysis assumes that
there is no overhead associated with processor
sharing; in Section 4, we relax this restric
tion. It should be noted, however, that if the
system is shared with other tasks, if our job
is allocated a fixed percentage of the system
resources, and if the system-wide scheduling
policy is processor sharing, then the results of
Section 3 hold~ though t~e_y ~ not account
for overhead. This is true because all running
times are multiplied by the same constant,

k-port Shared Memory

(no contention)

FIGURE 2 - k-processor model with shared memory

namely, the reciprocal of the fraction allo
cated to our job, since processor sharing takes
place even when our job has fewer active pro
cesses than processors. Section 4, then, is
necessary only because a dedicated multi
processor system could refrain from processor
sharing at that point, so the overhead would be
paid only during a part of the computation.

The most controversial (i.e., unrealistic)
aspect of our model is the problem model. We
assume the problem to be solved can be decom
posed into a number of subproblems, for para
llel solution, with the following properties:

(1) The time required by the algorithm to
solve a random instance of the problem on a
single processor is a random variable X having
the distribution F(x). We assume that F(x) = 0
for x < 0 since processing times are non-nega
tive, and that µ = E(X) is finite.

(2) The problem can be solved by solving
all of any finite number n of subproblems, each
~which is of the same type as the original
problem, but is probabilistically smaller (in
solution time) by a factor of n. Therefore, the
solution time for each subproblem on a single
processor is a random variable having the
distribution F(nx).

(3) The subproblem solution times are
independent of each other and independent of the
solution time of the original problem.

Property (2) seems questionable at first
glance, but is in fact quite reasonable, espe
cially for many numerical linear algebra pro
blems, sparse matrix manipulations, discrete
optimization problems, and queries in large
data bases, for instance. Property (3) is
unreasonable in most cases, but this is the
price we must pay for the ability to get ana
lytical results. Actually, the subproblem
solution times may be almost independent if n
is very large, or may truly be independent if
randomness is induced by the algorithm itself
[8].

The problem to be considered here is how to
determine n such that the expected solution time
on k processors is minimized. Each subproblem
is allocated one process, and the total solution
time is the elapsed time to completion of the
last process that finishes, since all sub
problems must be solved in order to solve the
original problem. Although in the model n can
be arbitrarily large, presumably any real
problem can be subdivided only so far before
the assumptions fail. A conclusion such as
"make n as large as possible" means "make n
as large as possible such that the assump-
tions (1) through (3) above are satisfied".

3. "No Overhead" Analysis

Let Tk(n) be the total solution time on k

processors when the problem is divided into n
subproblems; let Xj be the jth smallest of n :n
independent random variables from the distribu-

185

tion F(x); and let µj :n = E(Xj.:n) h Define Yj :n

to be the solution time of the jt subproblem if
each subproblem (process) had its own processor.
Then E(Yj:n) = µj:n/n because of property (2) in

the problem model. Finally, let S. be the
J

elapsed time to completion of the jth sub-
problem using processor sharing on k processors.
Throughout this analysis we assume n > k, since
it is clear that it is always worthwhile to have
at least k subproblems.

an
In order to solve the problem, we must find

expression for Tk(n). By definition, Tk(n) =

s .
n

Furthermore, note that s1 = (n/k)Yl:n (since

there are n active processes before time s1 and

each has k/n effective processors) and that

S. = S. l + (Y. -Y. l ·)(n-j+l)/k'
J J- J :n J- :n

for 2 2_ j ~ n-k. This follows from the fact that
between the completion of the j-1st and jth sub
problems, there are n-j+l active processes.
Solving the recurrence we find that

(I) rt~k y
8n-k = yn-k:n + 1 k j~l j :n

After time S k there are at most k pro
cesses still acti~e, so each has its own pro
cessor and there is no sharing. The time
remaining until all finish is simply
yn:n - yn-k:n' so

· n-k
Tk(n) = Sn= Yn·.n + (l/k) .E1 Y. • J= J :n

Taking expectations of both sides gives

n-k
E(Tk(n)) = µn:n/n + (l/k) j~l µj:n/n

which can be rewritten as

E(Tk(n)) = µ/k +

n

µn:n/n - (l/k) j=n~k+l µj:n/n.

Note that µ/k is the best value of E(Tk(n))

we could hope for, and that the expression above
exceeds this by only

n
j=n~k+l (µn:n-µj:n)/(kn),

which for most distributions F tends rapidly to
zero as n increases. For example, for the expo
nential distribution

k
E(Tk(n)) = µ(l/k + (i~2 (1/i))/n);

and for the uniform distribution

E(Tk(n)) = µ(l/k+(k-l)/(2n(n+l))).

It is clear that for a fixed number of pro
cessors k > 2, each of these is a decreasing
function of n. What we need to show is that the
same is true regardless of the underlying distri
bution F. In order to do this, we form
6E(Tk(n)) = E(Tk(n)) - E(Tk(n-1)), and then inves-

tigate its behavi~r for various values of n > k,
This will allow· us to determine for what values
of n the expected total solution time is in
creasing and for which it is decreasing. If
6E(Tk(n)) < 0 then it is better to have n sub-

problems than n-1; otherwise, it is better to
have only n-1.

Forming .the expression for 6E (Tk (n)) , then

applying an identity from order statistics [4]

(n-k) µk:n + kµk+l:n = nµk:n-1

to get all variables in terms of expected values
of order statistics from a sample of size n,
and finally simplifying_ the sums, gives the sur
prisingly simple expression

6E(Tk(n)) = (µn-k:n - µn-l:n)/(n(n-1))

for n > k. Since µn-k:n 2_ µn-i:n for any distri

bution, 6E(Tk(n)) 2_ 0 for all n > k. In fact,

unless k = 1 or the distribution F is degenerate
and all problems have identical solution times,
6E(Tk(n)) < O, which means that we should make

n as large as possible to minimize the expected
total solution time.

4. Accounting for Overhead

As users of real multiprocessor systems such
as C.mmp wel~ know, processor sharing is not
implemented without overhead. Nevertheless,
experiments on that system with parallel solution
of integer programming problems led naturally to
the model used and to the conclusion reached in
Section 3. In this section, we explore the
effects of overhead on tractability of the model
and see why it is not a serious problem.

Fortunately, it is possible for our model
to account for the overhead in a simple manner.
An approximation to processor sharing is achieved
by allowing each process to run for a small
length of time (a "quantum") using round-
robin scheduling of the active processes. The
overhead is associated with "context swapping"
from one process to the next. If we define c
to be the ratio of the context swapping time to
the quantum size, the total overhead incurred
is cSn-k' and

T~(n) = Sn + cSn-k

for n > k. This follows from the fact that
sharing is necessary only so long as there are
more thank active processes (see Section 2).

Proceeding in a fashion similar to that
used above we find

µn-k:n - µn-l:n) I (n(n-l))

where µO:n = 0 by definition.
It is clear that we cannot make the same

strong statement that we should always create

186

as many subproblems as possible, regardless of
c and F(x). Obviously, for large values of c
we should avoid creating more processes than
we have processors in order to avoid processor
sharing. What is not so obvious is how to
compute the optimum number of processes we
should create for given c and F.

It turns out that it is helpful to define
a new quantity oj:n = µn-j+l:n - µn-j:n
which is the expected value of the difference

between the jth and· j+lst largest (not smallest,
as before) of n random variables from the
distribution F. Writing 6E(Tk(n)) in terms of
on:n' we have

6E(Tk(n)) . (c(k+l) ok+l:n -

k

j __ E2 o.) I (n(n-1))
J :n

where on:n = µl:n' This means that

6E(Tk(n)) < 0 iff
k

c < (l/(k+l)) ng2 (oj:n/ok+l:n).

For certain forms of the distribution F
there exist simple expressions for oj:n'

allowing us to compute 6E(Tk(n)) explicitly for

certain cases. For
distribution oj:n

example, for the exponential
µ/j and for the uniform

distribution a.
J!n

2µ/(n+l). Therefore,

6E(Tk(n)) < 0 iff
k

c < ig2 (l/i)

6E(Tk(n)) < 0 iff

c < (k-1)'/ (k+l)

(exponential)

(uniform),

Since these conditions are independent of n,
we may still reach the (rather strong) con
clusion that if c satisfies the appropriate
condition above then we should create as many
subproblems as possible. If c is too large,
then we should create exactly k subproblems.
These conditions on c are extremely weak, since
the value of c for a real system might be on t_he
order of a few percent, while c < 1/3 suffices
here even for only two processors.

For most other distributions, no such
closed-form expressions for oj:n are available.

However, we can divide the possible values of n
into three mutually exclusive and exhaustive
ranges:

(1) 1 < n < k: 6E(Tk(n)) < 0 always

(2) n k+l: 6E(Tk(n)) < 0 iff

c < (µk:k+l-µl:k+l)/((k+l)µl:k+i)

(3) n > k+l: 6E(Tk(n)) < 0 iff
k

c < (l/k+l)) n~2 (5j:n/6k+l:n).

It is noteworthy that for n > k+l, the
critical value of c (call it C) depends only on
ratios of differences between expected values of
order statistics. These ratios are, of course,
distribution dependent, but are independent of
location and scale parameters. Thus, if the
distribution F is a gamma distribution, for
instance, we can calculate the values of C for
n > k+l without knowledge of the actual mean
and variance for F.

For the sake of argument, let us assume that
the distribution of problem solution times is
adequately represented by a gamma distribution.
Tabulating the critical values for this distri
bution, we find that c < 1/4 is a sufficient
condition for 6E(Tk(n)) < 0 for all k ~ 2 and

n > k+l. Since c should be much smaller· than
that for a real system, we will assume that this
condition is satisfied.

Now the only question is whether
6E(Tk(k+l)) < 0. If it is, then we should

create as many subproblems as possible. If it
is not, then we need to know whether the increase
in solution time at n = k+l can be offset by the
known decreases thereafter. The second problem
is easy, since E(Tk(n)) + µ(l+c)/k as n + oo,

Therefore, creating as many subproblems as
possible is better than creating just k sub
problems iff c < µk:k/µ - 1. This apparently

makes the answer to the former problem irrele
vant, for if 6E(Tk(k+l)) < 0 we would certainly

have c < µk:k/µ - 1. Hence, we can conclude that
if the ratio c of overhead to quantum size
is at most 1/4, then the expected total solu
tion time is minimized by letting n = k when
ever c ~ µk:k/µ - 1, and by making n as large

as possible if c < µk:k/µ - 1.

The value of µ really only determines the
time unit and may therefore be set to 1 without
loss of generality. In this case, µk:k = v2zk:k'

where zk:k is the expected value of the largest

of k random variables from a gamma distribution

with parameter l/V2 • The coefficient of varia
tion of this distribution is V. In order to
determine in practice how many subproblems to
create we could estimate c and V from experi
mental data, look up zk:k in a table of expected

values of order statistics [7], and decide on the
basis of the criterion above.

5. Conclusions

Order statistics are a natural for analysis
of many parallel algorithms, since total running
times depend on those of the minimum or maximum
running times of subproblem solutions. It is
only reasonable that computer science should make

187

good use of the large body of knowledge statis
ticians have already compiled regarding their
behavior.

Other scheduling models lead to interesting
problems. Coffman and Denning [3] note that,
in general, processor sharing may be better or
worse than.a simple list schedule (in which the
n processes queue up to the k processors, and
when one finishes another begins). While it is
possible to construct examples where each is
superior, which is better on the average?
Analysis of list schedules seems to require
use of renewal theory rather than classical
queueing theory. In any event, we feel we
have made a good case for further exploration
of the application of statistical methods to
performance models of parallel algorithms.

6. References

[l] M. Abramowitz and I. A. Stegun, eds.,
Handbook of Mathematical Functions,
Dover Publications, New York (1965).

[2] G. Baudet, The Design and Analysis of
Algorithms for Asynchronous Mutli
processors, Department of Computer
Science, Carnegie-Mellon University,
Ph.D. Thesis, (April 1978).

[3] E. G. Coffman and P. J. Denning,
Operating Systems Theory, Prentice
Hall (1973).

[4] H. A. David, Order Statistics, Wiley,
(1970).

[5] E. J. Gumbel, Statistics of Extremes,
Columbia University Press, (1958).

[6] A. K. Jones and P. Schwarz, "Experience
Using Multiprocessor Systems -- a
Status Report," Comp. Surv. 12,
(June 1980), pp. 121-125.

[7] E. s. Pearson and H. 0. Hartley,
eds., Biometrika Tables for Statis
ticians, Cambridge University Press,
(1972).

[8] B. W. Weide, Statistical Methods in
Algorithm Design and Analysis,
Department of Computer Science,
Carnegie-Mellon University,
CMU-CS-78-142 (August 1978).

[9] M. V. Wilkes, "Beyond Today's Computers,"
Information Processing 77, (1977),
pp. 1-5.

[10] W. A. Wulf and C. G. Bell, "C.mmp --
A Multi-mini-processor," Proc. FJCC 72,
(1972), pp. 765-777.

PARALLEL ALGORITHMS FOR THE MINIMUM
SPANNING TREE PROBLEM

Narsingh Deo and Year Back Yoo
Computer Science Department
Washington State University
Pullman, Washington 99164

Summary

Sequential algor_ithms for minimum spanning
tree (MST) fall into three categories--all using
greedy strategies. They are: (1) Prim-Dijkstra
nearest-neighbor method, (2) Kruskal's lightest
edge-first method, and (3) Sollin's lightest-edge
from-each-vertex method. In this paper we study
the parallelizability of these algorithms.

Recently some research effort has been
reported on parallel algorithms for solving the
MST problem [1], [4], [5]. Savage [4] proposed a
parallel MST algorithm based on Sollin's, which
runs in O(log2 n) time on a parallel machine with
O(n2/log n) processors (where n is the number of
vertices in the graph). Bentley [1] has given a
parallel version of Prim-Dijkstra .algorithm which
runs in O(n log n) on a special-purpose parallel
computer, called the tree machine.

In this paper, we design three parallel MST
algorithms under the assumption that (i) the
number of available processors is no more than n
and that (ii) available machine is an MIMD-type
general-purpose parallel computer.

PRIM-DIJKSTRA ALGORITHM: With weight matrix as
the data structure used, sequential Prim-Dijkstra
algorithm h~s a time complexity of O(n2). We
parallelize this algorithm with p processes as
follows: P processes are created. Each process
takes n/p vertices and finds its nearest vertex
in parallel. The processes are synchronized, and
the nearest vertex is found. Then another set of
p processes are created for updating. The pro
cesses are synchronized again and one iteration is
complete. This parallel algorithm requires the
same number of total iterations as the sequential
one, but the work is divided among p processes.
If we choose p = li1 , the time complexity becomes
O(n1· 5). This performance compares well with
Bentley's O(n log n} time on n/log n - processor
tree machine [1]. Both have processor-time pro-
duct of O(n2). This also compares well with
Savage's processor-time product of O(n2 log n)
[4]. The parallel Prim-Dijkstra algorithm may be
described in an Algol-like language as follows:

Process MAIN
T:- 0;
for i:= 1 ton do
begin NEARTfJ:=l; DIST[i]:= W[l,i] end;
NEAR[l]:= O; (*Start with vertex 1 ~
while ITI < n-1 do (* edges in MST is n-1 *}

0190-3918/81/0000/0188$00.75 © 1981 IEEE

188

begin
Vmin:= 00 ; syn:= O; (* syn : semaphore *)
for i := 1 to p do create TASKl(i);
while syn <p dowait;
T:= Tu (jj,NEAR[jj]); NEAR[jj]:=O; syn:=O;
for i:= 1 top do create TASK2(i);
while syn <p dowait;

end; -

Process TASKl(j}
ii:= 1;
for i := j to n ~ p do .

if NEAR[i] > 0 and DISTiiJ < DIST[ii]
- then i i : = i ;

lock Vmin;
----rt DISTiii] < Vmin then

begin jj:= ii; Vmin:= DIST[ii] end;
unlock Vmin;
lock syn; syn:= syn + 1; unlock syn;

Process TASK2(j}
for i := j to n ~ p do
begin k:= NEAR[i];

if k > O and W[i,k] > W[i,jj] then
begin NEAR[i] := jj; DIST[i] := W[i ,jj] end

end;
lock syn; syn:= syn + 1; unlock syn;

KRUSKAL'S ALGORITHM: With a heap as the data
·structure used, the time complexity of Kruskal 's
algorithm is O(m log m}, where mis the number of
edges. One way to parallelize Kruskal 's algorithm
is to use two processes, Producer and Consumer,
which run asynchronously. A circular queue, Q,
is used as a message buffer. The two processes
operate as follows:

Producer maintains a min-heap and sends the
top item, which is the next lightest edge to be
considered, to Q. If Q is full, Producer waits
until Consumer takes out an item from Q. As long
as Q is not full, Producer continuously produces
the next lightest edges and sends them one by one
to the rear of Q.

Consumer takes out items continuously one by
one from the front of Q as long as Q is not empty.
Then it examines whether or not the current edge
creates a cycle. If not, Consumer adds the edge
to MST, combining the two subtrees.

Heap adjusting step cannot be done in paral
lel because of the inherent precedence constraint.
Therefore, the complexity still remains
O(m log m). Furthermore, the degree of parallel
ism is at most two. These limitations make
parallel version of Kruskal 's algorithm .less
attractive. This version is given below:

Process MAIN
T:= f/l; syn:= O; num:= O;
make initial heap;
create PRODUCER;
call CONSUMER;

Process PRODUCER
last:= m; rear:= O;
while CONSUMER is live do
begin -

if Q is full then wait;
rear:= (rear+Tflilod b; (* b = Jbufferl *)
send top item of the heap to the rear of Q;
lock num; num:= num + 1; unlock num;
move last item of the heap to the .top;
last:= last - 1;
call HEAP(l,last) (*Adjust heap*)

end;

Process CONSUMER
while ITI < n-1 do
begin

if Q is empty then wait;
front:= (front~mod b;
u,v,w := Q[front];
lock num; num:= num - 1; unlock num;
rl:= FIND(u); rl:= FIND(v-y;---
if rl <> r2 then (* (u,v) is in MST *)
begin T:= T UTiJ,v); call UNION(rl,r2); end

end;

SOLLIN'S ALGORITHM: Sollin's algorithm [5]can be
parallelized as follows: The lightest edges inci
dent on each vertex are selected simultaneously.
If the resulting forest does not form a spanning
tree, the same procedure is applied to the forests
until only one tree is formed. In the worst case
this algorithm will require log n iterations with
n processes. Each iteration requires O(n2/p)
units of time if p processors are available.
Therefore time complexity becomes O(n2/p log n).
Processor-time product is O(n2 log n) which is the
same as that of Savage's. A large transportation
network is often in the form of a grid in which
the degree of each vertex is four or less. Such
a graph if stored in the forward star form would
require at most three comparisons per vertex to
find the lightest edge incident on it (rather than
n-1). In that case the time complexity of this
algorithm will be 0(3n/p log n). A detailed
description of the parallel Sollin's algorithm is
given below:

Process MAIN
T:= f/l;
while JTI < n-1 do
begin

syn:= O; Vmin:= oo;
for i:= 1 top do create TASK(i);
while syn ~P dowait;
for 1 : = 1 to n do
begin

if Vmin[i] <> oo do
begin

rl:= FIND(Vi [i]); r2:= FIND(Vj [iJ);
if rl <> r2 then
begin --

189

T:=T u (Vi(iJ,Vj[iJ); call UNION(rl,r2)
end --

end
end

end;

Process TASK(ii)
for i:= ii ton .Qt_ p do
for j:= 1 ton do
begin - -

rl:= FIND(i); r2:= FIND(j);
if rl <> r2 then
begin --

1 ock Vmi n [rl] ;
----:rt' W[i,j] < Vmin[rl] then

begin
Vi[rl]:=i; Vj[rl]:=j; Vmin[rl]:= W[i,j]

end;
unTOCk Vmin[rl] en_d __

end;
lock syn; syn:= syn + 1; unlock syn;

REMARKS and CONCLUSION: A parallel version of
Cheriton and Tarjan's O(m log log n) algorithm
turns out to be Sollin's. The reason is that
Cheriton and Tarjan's algorithm was derived from
Sollin's [2], [5].

Sollin's algorithm is easily parallelized;
Kruskal's is not. Prim-Dijkstra algorithm falls
in between the two.

These parallel algorithms have been coded in
HEP Fortran and an empirical study is underway
for comparing their average case performances.
Details are given in (3].

References

fl] J.L. Bentley, "A parallel algorithm for con
structing minimum spanning trees", J. of
Algorithms (Jan. 1980), pp. 51-59.

[2] D. Cheri ton and R.E. Tarjan, "Finding minimum
spanning trees", SIAM J. Comput. (Dec. 1976),
pp. 724-742.

[3] N. Deo and Y.B. Yoo, Parallel algorithms for
the minimum.spanning tree problem, Computer
Science Department, Washington State Univer
sity, CS-81-072 (Mar. 1981), 20 pp.

£41 c. Savage, Parallel algorithms for graph
theoretic problems, Ph.D. Thesis, Mathematics
Dept., Univ. of Illinois at Urbana-Champaign,
Report ACT-4 (Aug. 1977).

[5] M. Sellin, An algorithm attributed to
Sellin, in Introduction to the Design and
Analysis of Al~orithms, S.E. Goodman and
S.T. Hedetniem1, Section 5.5, McGraw-Hill,
(1977).

This work was supported by U.S. Dept. of Transpor
tation contract #DOT-RC-92042 and .bY NSF grant
#MCS78-25851.

PARALLEL IMAGE CORRELATION

Leah J. Siegel, Howard Jay Siegel, and Arthur E. Feather

Purdue University
School of Electrical Engineering

~est Lafayette, IN 47907

Abstract -- Image correlation is representative
of a wide variety of window-based image processing
tasks. The way in which multimicroprocessor sys
tems Ce.g., PASM) can use SIMO parallelism to per
form image correlation is examined. Two fundamen
tal algorithm strategies are explored. The "time
I space I interprocessor-transfer" complexities of
the two algorithm approaches are analyzed in order
to quantify the differences resulting from the two
strategies. For both approaches, the asymptotic
time complexity of the N-processor SIMO algorithms
is C1/N)-th that of the corresponding serial algo-
ri thms.

1. INTRODUCTION

Image correlation is a widely used procedure in
many areas of image and picture processing. This
process, also known as template matching, is used
in some forms of edge detection l:UJ, or in image
registration, to match pieces of two pictures to
one another l:12J. In digital photogrammetry, im
age correlation is used to find the corresponding
points of two images of a stereomodel. In this
application, image sizes are typically at least
4096 by 4096 with match areas on the order of 64
by 64.

Because image correlation requires comparing
portions of two images in a large number of rela
tive positions, it is an extremely time consuming
process. The time required to complete these cal
culations can be reduced by exploiting the paral
lelism inherent in tne task., The way in which
multimicroprocessor systems (e.g., PASM l:16J) can
use "SIMO" parallel ism to perform this task is ex
amined here.

The SIMO (single instruction stream - multiple
data stream) l:8,20J machine model used here con
sists of a control unit, interconnection network,
and N PEs (processing elements), where each PE is
a processor-memory pair l:15J. In an SIMD machine

of size N = 2n, the PEs are addressed (numbered)
from u to N-1. In proposed systems, N is as large
as 1024 [16] to 16,384 [11J. The control unit
broadcasts an instruction to all PEs, and all ac
tive (enabled) processors simultaneously execute
the instruction, each on data in its own memory.
The interconnection network provides inter-PE com
munication. SIMO oarallelism has been shown to

This work was supported by the Air Force Office of
Scientific Research, Air Force Systems Command,
USAF, under Grant No. AFOSR-78-3581, and by the
Defense Mapping Agency, monitored by the U.S. Air
Force Rome Air Development Center Information Sci
ences Division under Contract No. F30602-78-C-0025
through the University of Michigan. The United
States Government is authorized to reproduce and
distribute reprints for Governmental purposes not
withstanding any copyright notation hereon.

0190-3918/81/0000/0190$00.75 © 1981 IEEE

190

yield significant reductions in computation time
for image and speech processing tasks
[e.g., 9, 14, 18]. Here, window-based · image pro
cessing tasks are considered.

rn the complexity analyses that follow, it is
assumed that each required parallel inter-PE data
move can be done in one transfer step. This will
be true if the interconnection network used is a
multistage network such as: (a) one employing the
generalized cube topology with individual box con
trol (17J Ce.g., omega [10J, n-cube [11J); Cb>
the data manipulator network [6J; or Cc) the
augmented data manipulator [17J. This is because
each required transfer is either a type of ex
change (cube connection [15J) or a "uniform shift"
Ci.e., from PE to PE i+k mod N,
0 < i < N, k fixed).

-Only those SIMD machine features needed for the
algorithms that fol low have been described. The
model is intended to provide a general framework
in which SIMD algorithms can be developed. In
section 6, the performance of the algorithms using
an alternative model will be discussed.

The oojectives of this study are as follows:
1. To demonstrate the applicability of the SIMD

mode of parallelism to a class of image pro
cessing tasks. The operations performed in
image correlation are representative of the
types of data manipulations needed for a wide
variety of window-based image processing
tasks.

2. To explore two fundamental parallel algorithm
strategies. In one approach, all of the data
that will be needed by a Pf is transferred to
the PE and processed there. In the other,
each PE performs all possible operations on
its local data, generating partial results
which are then transferred to the PE in which
they are needed.

~. To analyze and compare the computational re
quirements of the alternative algorithms. !n
serial algorithms, there is often a tradeoff
betw.een computation t'i.me and space. In paral
lel algorithms, the tradeoff may be a function
of three parameters: computation time, space,
and inter-PE communications.

In the next section, image correlation is de
fined. In the subsequent sections, parallel algo
rithms for image correlation are presented and
analyzed.

2. IMAGE CORRELATION

A. Definition and Serial Algorithms

An image is represented by a two-dimensional
array where each element ("pixel"> has an unsigned
integer value representing the "gray level" of the
pixel. Image correlation involves determining the

I

I.
I

pos1t1on at which a relatively small match area
best matches a portion of an input image. Corre
lation measures are used to measure the degree of
similarity or disagreement between the match area
and an equivalent size area on the input image.
Let the symbols x and y denote single elements of
arrays X and Y, where X is the match image and Y
is an area of the input image which has the same
dimensions as X. Let M be the number of elements
in the match area X. Two representative correla
tion measures are:

SXY = EXY - EX Ey/M

RXY = SXY/(SXX*SYY>(1/Z)

Correlation measure SXY is the covariance of
the match area with a portion of the input area.
Large positive values indicate similarity, while
Large negative values indicate similarity between
a positive and a negative image. Values near zero
indicate Little or no similarity. Correlation
measure RXY is the Linear correlation coefficient
of statistics. This measure is a normalized ver
sion of SXY, with values ranging between +1 and
-1. A value of +1 indicates exact similarity
while values near zero indicate Little similarity.
In general, a correlation value will be computed
for every possible position where the match area
will fit on the input image. The match position
where the correlation measure is maximized
corresponds to the best placement of the match
area on the image.

The computation time for image correlation is
dominated by the time to compute the EXy, EY, and

(for measure RXY) the Ey 2 values for all possible

match positions. The Ex and Ex2 values involve
only the match area elements, and need to be com
puted (or precomputed) only once.

The way in which data elements are combined to
obtain the Exy values is similar to operations
performed in a variety of important image process
ing tasks, including convolution and filtering.
For an input image having R rows and C columns and
a match area having r rows and c columns, there
are CR-r+1)(C-c+1) match positions. Serial compu
tation of the Exy terms over the entire image,
performed by simply sliding the match area over
the image and calculating the value of Exy for
each overlap position, requires CR-r+1)(C-c+1)rc
multiplications and CR-r+1)(C-c+1)(rc-1) addi
tions.

In computing the Exy values, each match posi
tion generates a new set of terms to be summed.
No terms from one match position can be reused in
a different match position. In computing the EY

and EY2 values, two (or more) input image elements
summed for one match position may also be summed
for another match position. The algorithms con-

sidered for calculating the EY and EY2 values
therefore attempt to avoid "redundant" operations,
e.g., performing a sum for one match position
which has already been performed for another. The

operations performed in computing the EY and EY 2
values, i.e., the summing of elements under a win
dow where the window moves over an image, are typ
ical of operations required for a variety of image

191

processing tasks. These include image smoothing,
edge enhancement, and convolution using a rec
tangular window.

Consider the following serial (uniprocessor)
algorithm for computing the Ey's, i.e., summing
the pixel values in each match area. This algo
rithm will be used as a basis for parallel algo
rithms.

Assume that for input image I, the position of
the match area is defined by the coordinates of
the input image pixel covered by the upper Left
corner of the match area. Let "colsum" be a vec
tor of Length C, where

k+r-1
colsum(j) 1: ICi,j)

i=k

where k is the row coordinate of the current posi
tion of the match area, and 0 < j < C. Let SUM be
an R-r+1 by C-c+1 array, where-SUMCi,j) is the sum
of pixels of I for the match area position Ci,j),
0 < i < R-r+1, 0 < j < C-c+1.

-The algorithm Ts shown in Fig. 1. First, col
sum is initialized for row 0 of the image. The
colsum values for columns 0 to c-1 are summed to
compute SUMC0,0). SUMCO,j) for 1 < j < C-c+1 is
computed from SUMCO,j-1) by - subtracting
colsumCj-1) and adding colsum(j+c-1). A similar
strategy is used to compute SUMCi,j) for
1 < i < C-c+1 and 1 < j < R-r+1. To do this, each
coTsum(j) is first updated by subtracting I(i-1,j)
and adding I(i+r-1,j), 0 < j < R-r+1.

The complexity of this serial algorithm, in
terms of additions, is

4RC - Re - 3Cr + re + SC + 3R - 2c - 3r + 4.

(For simplicity, the additions required for Loop
counting and indexing have not been included. In
the SIMD algorithms, these would be performed in

I* initialize values of colsum */
for j = 0 to C-1 do
-colsum(Jl = I<O,-i>

for i = 1 t6 r-1 do
-colsum(Jl = coTSum(j) + I<i,j)

I* compute SUM<O,jl for 0 < < c-<c-1) */
SUM(0,0) = colsum(O) -
for j = 1 to c-1 do
-SUM<O,O)= SUMCO,Ol + colsum(j)
for j = 1 to C-(c-1) do
-SUM<O,j)= SUM<D,j-=-'i) - colsum(j-1) + colsum(j+c-1)
/* compute SUM(i,j) for 1 < i < R-(r-1)

and 0 < j < C-(c-1)) * 7
for i = 1-to R-(r-1) do
-/* compUte SUM(i,O)and update associated

colsum values *I
for j = U to c-1 do
-colsum(j) = coTSum(j) - l(i-1,j) + I<i+r-1,J)
SUM(i,0) = colsum(D)
for j = 1 to c-1 do
-SUM(i,O)= SUMTI,ul + colsum(j)
I* compute SUM(i,J) ana update associated colsum

values for 1 < j < C-(c-1)) */
for i = 1 to c-<c-1) do
-colsum(j+c-1) = coTSum(j+c-1) - l(i-1,j+c-1)

+ l(i+r-1,j+c-1)
SUM(i,j) = SUM(i,j-1) - colsum(j-1)

+ colsum(j+c-1)

Fig. 1: Serial algorithm to compute EY terms.

the control unit, and could be overlapped with the
PE operations.> This algorithm moves the match
area along the rows of the input image. Depending
on c, R, c, and r the algorithm complexity may be
Less by moving along columns. ·

Computation of the i:y2•s is similar. In this

case, the y2 values subtracted from the colsum's
in the update process Csee Fig. 1) must be saved
when they are first calculated. This increases
the space required for the algorithm by re. The
arithmetic complexity is increased by RC multipli
cations.

If the Exy, EY and Ey2 values for a given match
position are computed together, the correlation
measure for that match position can be calculated,
and is saved only if it is the current maximum
over the correlation measure values computed so

far. Thus, the Ixy, Ey, and tr2 values for each
position do not have to be saved.

~- Parallel Image Correlation

In section 3, a parallel algorithm for comput

ing the EX and Ex2 values is given. In sections 4

and S, parallel algorithms for the Exy, Ey and Ey2
computations are presented. For the Exy, Iy and

tr 2 operations, two algorithm strategies are ex
plored. For both, the input image data will be
divided among the PEs, and each PE will compute
the values of the correlation measure for a por
tion of the input image. In the first, "complete
sums" approach, all of the data which will be
needed for the computations performed in a given
PE is transferred into that PE. All subsequent
operations can then be performed locally, so that
each PE computes the "complete sums" for a set of
match positions. In the second, "partial sums"
approach, each PE performs as much of the computa
tions as possible using its own data, then
transfers partial results to the PE in which they
are needed.

In order to distribute the input image, the N
PEs of the system are Logically configured as an
NR by NC rectangular grid, on which the R by C im
age is superimposed. Thus, with the possible ex
ception of the rightmost column and bottommost row
of PEs, each PE holds an R' by C' subimage, where
R' = rR/NR1 and C' = rc/NC1. This is shown in
Fig. 2. The values for NR and NC will be chosen
to minimize execution time of the algorithms, and
will be discussed in section 4.A.

CAn alternative to these approaches is to as
sume that the SIMD machine has the capability to
Load the image ·data into several PEs simultaneous
ly. With this capacity, an element of the input
array which is needed in several PEs could be
Loaded into the appropriate PEs (with Little or.no
cost) simultaneously. This would eliminate the
need for inter-PE transfers. However, the memory
management necessary to place each image point in
the appropriate Location in each PE may be signi
ficantly more complex than the memory management
needed to Load the PE memories with disjoint sub
images. This approach' will require an "intelli
gent" memory management system and more storage in
each PE, and will not be considered here.)

192

R
pixels

PE 0

PE NC

PE N-NC

PE 1 f'E NC-1

PE NC +1 PE 2NC-1

p~:els { c:J
c pi°rels

...............
C'

pixels

PE N-1

Fig. 2. Data assignment of R by C image to N PEs.

In the algorithms to compute the Exy, Ey and

Ey 2 values, it will initially be assumed that the

results calculated Ci .e., the Exy, Ey and E/
values) are saved. For the calculation of RXY and
SXY, this will not be necessary, as will be
described in subsections 4.C and S.C. However, so

that each of the Exy, Ey, and Ey2 algorithms can
be applied to other related computations, in the
presentations it will be assumed that the results
for the whole image are to be stored.

3. EX AND Ex2 COMPUTATION

The EX and Ex2 values may be precomputed and
stored with the match area, or computed in a
straightforward manner in parallel before calcu-

lating the txy, Ey, and Ey2 values. Simply assign
to each PE MIN of the match area pixels. Each PE

first computes x2 for all the elements it holds.

It then sums its x values and sums its x2 values.

ALL of these Local Ex and Local Ex2 sums are then
combined using a recursive doubling approach E19J.
Each even numbered PE J sends its Local Ex result
to PE J+1. Simultaneously, each odd numbered PE

J+1 sends its local Ex2 to PE J. The odd numbered
PEs add the received data to their local Ex and
then compute the whole Ex using recursive dou
bling, with the result saved in each odd numbered
PE. Similarly, the even numbered PEs compute tx2•
These two recursive doublings can occur simultane
ously. The odd and even PEs then exchange

results, so that each PE contains both Ex and Ex2•
This requires M/N multiplications, n+C2M/N)-2 ad
ditions, and n+1 inter-PE data transfers. CA
serial algorithm will require M multiplications

and 2M-2 additions.) Each PE will store EX and EX2
for later use.

4. COMPLETE SUMS APPROACH

A. ~ Computation

In the complete sums approach, each PE will
compute the correlation measure for overlap posi-

C'

~

T
PE J

I PE J+l
c

R' ""\ r,.- -~ r <

+ ' PE J+NC PE J+l+NC

Fig. 3. Example of overlap position requiring
data transfers. The shaded pixel represents the
"beginning" of the overlap position. The arrows
indicate the directions of the data transfers.
(Proportions of match area to a PE's subimage are
not necessarily to scale.)

tions which "begin" in the PE Ci.e., tor which the
upper Left corner of the match area overlaps a
point of the PE's subimage). Each PE will there
fore compute the correlation measure for R'C'
match positions. The computations will be per
formed simultaneously in all PEs. For match posi
tions where the portion of the input image is not
fully contained in a single PE CFig. 3), the need
ed points will be transferred before the computa
tions are performed. Such transfers will occur
simultaneously for all PEs, so that at the same
time that a pixel is being transferred, for exam
ple, from PE J+1 to PE J, the corresponding pixel
is being transferred from PE J+2 to PE J+1, from
PE J+3 to PE J+2, and so on.

Depending on the size relationships between r
and R' or c and C', the transferred elements may
come from PEs adjacent to PE J, or from several
Levels of adjacent PEs. If, for example, the
match area dimension in one direction is Large in
comparison to the dimension of the portion of the
input area stored in each PE, the matches will ex
tend over several PE areas in that direction. PE
J will transfer some y values a distance greater
than one, and will receive some y values from a
distance greater than one. Without Loss of gen
erality, in the subsequent discussions, it will be
assumed that elements are needed only from adja
cent PEs.

When computing the &xy values, all PEs will use
the same match area element simultaneously, so
that element can be broadcast to all PEs from the
control unit. Alternatively, if PE memory space
is available, the match area, which is typically
small, can be held in each PE's memory. The time
to perform the broadcast from the control unit
versus the memory fetch from the PE memory will be
implementation dependent. In the space analyses
that follow, it will be assumed that the match
area values are broadcast from the control unit.

Complete~ !!£.li.il SUllS

111ult steps R'C'rc R'C'rc

add steps R •c' <rc-1 l R'C' Crc-1)

transfer R'(c""1)+C'Cr-1) R'Cc-1)+C'Cr-1)
steps +Cr-1)(c-1) +Cr-1Hc-1)

space ZR •c '+c2c-2) Cr-1)+1 2R'C I

Table 1: Complexity of complete sums and partial sums
algorithms for computing IXY terms.

Computation of all of the &xy terms will be ac
complished in the time required to compute the &XY
terms for the R' by C' subimage held in a single
PE. These times are summarized in the first
column of Table 1. Storage will be required for
the PE's portion of the input image CR'C' ele
ments), for the computed &xy values CR'C' ele
ments>, and for the input image elements
transferred to the PE in order to provide all of
the data needed for the PE's match positions. The
number of transferred elements is
Cc-1)R' + Cr-1)C' - Cr-1>Cc-1>; however, it is not
necessary to store all of these values at the same
time. Consider the extra storage needed for non
local y values by a typical ("non-edge") PE J.
The analysis is divided into two cases. It will
show that at any point in time at most
C2c-2)Cr-1)+1 Locations are required.

First, consider when the match area (upper Left
corner) is positioned in row i, 0 < i < R'-r Csee
Fig. 4). Cc-1>r Locations are required- for non
local y data, for the y data for columns 0 to c-2
of rows i to r+i-1 of PE J+1's subimage. The &xy
values can be calculated by moving the match area
from position C0,0) to C0,1) to ••• CO,C'-1), then
from C1,0) to C1,1) to ••• <1,C'-1), and finally
from CR'-r,0) to CR'-r,1), to CR'-r,C'-1).

Next consider when the match area is po
sitioned in row i, R'-r < i < R' Csee Fig. 4>. In
this case, at most C2c-2>Cr-1)+1 Locations are re
quired for non-Local y data. For these match po-

193

R' • • •

0

R'-1

0 1

c I

•••

•
•

C'-1

•

•
• • •

+ +
C'-c C'-1

Fig. 4. Indexing in a PE's subimage.

R 1 -r

R'-1

sitions the match area will move along columns in
stead of rows, from CR'-r+1,C'-1) to CR'-r+2,C'-1>
to ••• CR'-1,C'-1>, then from CR'-r+1,C'-2) to
CR'-r+2,C'-2) to CR'-1,C'-2>, ••• finally
from CR'-r+1,0) to CR'-r+2,0) to CR'-1,0).
For match positions Ci,j), where R'-r < i < R',
and j is fixed at a value in the range
0 < j < C'-c, the non-Local y data needed are rows
0 to r=(R•-i)-1 of columns j to j+c-1 of PE J+NC's
subimage. For match positions Ci,j), where
R'-r < i < R',. and j is fixed at a value in the
rang~ C'-c < j < C', the non-Local y data needed
are rows i to R'-1 of columns 0 to c-CC'-j>-1 of
PE J+1's subimage, rows 0 to r-CR'-i>-1 of columns
j to C'-1 of PE J+NC's subimage, and rows 0 to
r-CR'-i)-1 of columns 0 to c-CC'-j)-1 of PE
J+NC+1's subimage. The maximum non-Local y
storage needed for this range of and j is
C2c-2) C r-1 >+1.

For given c, r, c, R, and N, the number of ar
ithmetic operations required for the algorithm is
minimized by minimizing Ip= R'C'. By choosing
Ip= RC/N, i.e., by dividing the input equally
among the PEs, this minimum is attained. The
number of transfer steps ~ill be minimized by the
values of C' and R' for which the expression

Cr-1)C' + Cc-1)R'

is minimized. Minimizing with respect to R' gives

R' = CCr-1)*Ip/Cc-1>>C1/ 2)

subject to the constraints that R' and Ip/R' be
integers. It will follow that

C' = CCc-1)*Ip/Cr-1>>C1l 2>.

In the special case where c = r, the image should
be distributed such that

c•·= R' = IpC112>,

that is, each PE should contain a square subimage.

B. .Jli... and r:/ Computation

The complete sums algorithms to compute EY and

zy 2 values wi LL be based on the serial Ey and Ei
algorithms, with each PE operating on an
CR'+r-1>CC'+c-1) subimage.

Consider computing zy and zy2 in a typical
("non-edge") PE J. A total of
Cr-1)C'+Cc-1)R'+rc-1 y values must be transferred
into the PE from adjacent PEs, as discussed in the
previous subsection. The transfers are as shown
in Fig. 3. However, it is not necessary to store
all of these if data is transferred only when it
is first needed. This is explained below in two
cases. It will be shown that at most Cc-1)r Loca
tions will be required at any point in time.

When the match area is positioned in row i of
the PE's subimage, 0 < i < R'-r, Cc-1>r storage
Locations are required for non-Local y data, for
the y data for columns 0 to c-2 of rows i to r+i-1
of PE J+1's subimage.

When the match area is positioned in row i
of the PE's subimage, R'-r < i < R', at most

194

Cc-1>Cr-2) Locations are required for non-Local y
data. Most y data can be incorporated .into the
current zy being computed and the appropriate
"colsum" vector Location when it is transferred
into a PE. The only y data that needs to be saved
is that which will be needed for Later "colsum"
updates. Specifically, this is rows R'-r+1 to
R'-2 of columns 0 to c-2 of PE J+1.

Using these data storage strategies, the EY and

.!)'2 values for each match position can be calcu
lated as described in the serial algorithms (for a
CC'+c-1)CR'+r-1> image). The complexities for the

d 2 · • · L f zy an zy computations are given in co umn one o
Tables 2 and 3 respectively.

Complete Su!"s ~~

add steps 4R'C'+3R'c+C'r 4R'C'+R'c+3C'r
-R '+C '+re -3R'-~C'+rc

-r -.ir-c+3

transfer R' <c-1 >+c' (r-1 > R' Cc-1)+C 1 (r-1)
steps +Cr-1)(c-1) +Cr-1)(c-1>

space ZR 'C '+CC '+c-1) 2R'C '+C'
+(c-1)r

Table 2: Complexity of complete sums and partial sums
algorithms for computing EY terms.

Comple:e Sums !mi!!.!!:!!!.
mult steps CR'+r-1) CC'+c-1) R'C'

add steps 4R'C'+3R'c+c•r 4R'C 1+R'c+3C'r
-R '+C '+re -3R •-sc •+re

-r -3r-c+3

transfer R' Cc-1)+C 1 Cr-1) R'Cc-1)+C'Cr-1>
steps Hr-1 >Cc-1) .+Cr-1 > Cc-1 >

space 2R'C '+CC'+c-1) Cr+1) 2R'C'+C'Cr+1>

Table 3: Complexity of complete sums and partial su.s

algorithms for computing ti terms ..

C. RXY and SXY Computation

To compute RXY Cor SXY) the previously
described operations are interleaved so that the

Exy, Ey, Ey2, and RXY CSXY) values for one match
position are computed before the match area is
moved to a new position. The maximum RXY CSXY)
value and its match position coordinates are
saved. The computation of RXY is described; the
SXY computation is a subset of those operations.

Consider the computation performed in a typical
("non-edge") PE J. In order to combine the algo
rithms of subsections 4~A and 4.B, the Exy algo
rithm must be slightly modified. The match area
will move over the image in the way that was
described in the zy algorithm, that is, from posi
tion CO,O> to C0,1> to CO,C'-1>, then from
C1,0> to C1,1> to ••• C1,C'~1>, ••• finally from
CR'-1,0) to CR'-1,1) to CR'-1,C'-1). The
worst case for space is for 0 < i < R'-r, when

rCC'+c-1) space is needed for y2 v:Lue~ and rCc-1)
for y values (plus "colsums" and the original im
age). Less space is needed when R'-r < i < R be-
cause space is not needed for non-Local y2 values.

Column one of Table 4 summarizes the total
time, transfers, and space used. The time is a

summation· of that for computing Exy, IY, and EY2
for every match position. The transfers are for

11ult steps

add steps

transfer
steps

space

Complete Sums !.!!:.!.:!.!.!. ~

those for EXY and tl those for txy and ty2

those for Exy, ty, and tl those for txy, ty, and ti
R'(c-1)+C'(r-1) 3[R'(c-1)+C'(r-1)

+Cr-1 Hc-1) +(r-1)(c-1)]

R •c '+CC •+c-1 > < r+2>+r<c-1 > R 'C •+rC3C '+2c-2>

Table 4: Complexity of complete sums and partial sums algorith•IS for
computin~ RXY. In addition to the above, each approach uses 2
subtract1ons~ 3 multiplications, 2 divisions, and 1 square
root o~erat1on for each of the R'C' match positions in order
to co11bine terms. Both methods also require O(n) additional
transfers for deter11ining the maximum RXY value (and its coor
dinates in the input image) over all PEs.

the non-local y data needed. The space is for the
PE's own subimage, the non-local y storage
described above, and the extra storage used for

intermediate results in calculating ty and ty2•
Once each PE has found its own maximum RXY

value, recursive doubling C19J can be used to find
the overall maximum and its location. This will
require OCn> additional inter-PE transfers.

5. PARTIAL SUMS APPROACH

A. ~Computation

The partial sums procedure for computing the
ixy values consists of three steps. The first
step is the generation of partial sums by perform
ing all parts of the calculation that can be done
using the data within each PE. In the second
step, the results of the partial sums generation
are transferred so that each PE contains all of
the partial sums needed to form the txy terms. In
the last step, the final sums are developed within
each PE by combining the appropriate partial sums.
The details for this procedure follow. It is as
sumed that the match area elements are either
broadcast from the control unit or stored in each
PE's memory, as was discussed in subsection 4.A.

In the first step of the algorithm, each PE,
independently of the others, computes the "partial
sums" of match point-image point products that can
be computed with its own data. This can be visu
alized by sliding the match area M over the image
area in each PE, as shown in Fig. 5. At each
match area-image area position from Fig. 5, a
"partial sum" is generated. For each location
where an image point and match point overlap in a
given position, the product of the image and the
match points is calculated; all the products for
that match area-image area position are then
summed. The partial sum terms generated by this
procedure can be viewed as forming a CR'+r-1) by
CC '+c-1) array called "psum." In Fig. 5, the e le
ment of "psum" into which the partial sum is
stored is given for each of the example overlap
positions. A match position will again be num
bered by the input subimage coordinates Ci,j) of
the upper left corner of the match area. Since
the match area may not be contained in the input
image area however, the ranges of i and j differ
from those in the serial and complete sums algo
rithms. If the upper left corner of the input su
bimage is considered to be position CO,O>,
-r < i < R' and -c < j < C'. The number of par
tial sums that must be computed in each PE is
Cr+R'-1>Cc+C'-1>. To develop these terms, every

195

c

• • •

psum(R'-1,-c+l)

••• •

psoJm(-r+l ,-c+l)

• •

l
~ psum(-r+l,C'-1)

M-psum(i,j)

• • •

psum(R'-1,C'-1)

Fig. 5. Overlap positions in the partial sums ap
proach, and the terms of the partial sums Cpsum>
array calculated.

element of the match area M will be multiplied by
every element of the input area in the PE. There
fore the number of multiplications required is
rcR'C'. The number of additions required is equal
to the number of multiplications minus the number
of terms generated, or rcR'C' - Cr+R'-1>Cc+C'-1>.

Once the partial sums have been computed in
dependently in the PEs, it is necessary to combine
the results from other PEs to build the complete
sums. Using the criterion that the upper left
corner element of the match area must be present
in a partial sum for it to remain in a PE, the
terms in the rightmost C' columns and bottommost
R' rows of t,he "psum" array are kept in the PE,
and are labeled "KEEP" in Fig. 6. Those elements
"above" the kept area are transferred to PEs
"above" this PE. Similarly, those elements "to
the left" of the kept area are transferred to PEs
"to the left," and the terms on the upper left are
transferred to PEs diagonally above and to the
left. As in the complete sums approach, the dis
tance which elements will be transferred depends
on the size relationships between r and R' and c
and C'. The number of interprocessor transfers
which will be required is equal to the total num
ber of "psum" terms generated minus the number of
terms kept <which is the number of image area
points originally in each PE). Thus, the number
of transfers required is Cr+R'-1>Cc+C'-1> - R'C'.

In the final step of this method, the partial
sums transferred are combined with the partial
sums that were kept to yield the final sums txy.
The number of additions required to complete these
calculations is equal to the number of partial sum
terms that were transferred.

Rather than implementing the partial sums
method as three separate steps, less space is re
quired if the three steps for a given match pdsi
tion are executed in sequence. As soon as a

r-1 t

R' KEEP R'

C'

Fig. 6. Partition and direction of transfer of
elements of partial sums array.

non-"kept" partial sum is computed, it can be
transferred to its destination PE and saved in the
memory location which will eventually hold the txy
term of which it is a part. The execution time
remains the same, and the only storage that is
needed in each PE is two R'C' element arrays, one
for the input image and one for the ixy values.

B. J:L and EY2 Computation

The partial sums algorithms for computing the
2 EY and EY values are similar in strategy to the

partial sums method for computing the txy values.·

Each PE computes EY or tY2 terms for all match po
sitions or portions of match positions for the R'
by C' subimage which it contains. The partial

sums EY and ty2 algorithms are based on the serial

EY and ti algorithms. As in the serial algo
rithms, a C'-element vector "colsum" is used to
save the column sums computed so far. After pro
cessing of row k, -r < k < R',

k~1 ICi ,j > -r < k < 0
i=O

k+r-1
colsum(j) = E ICi,j) 0 < k < R'-r

i=k
R'-1
E ICi ,j) R'-r < k < R'
i=k

where 0 < j < C'. Unlike the serial and complete
sums algorithms, for each row, the leftmost sum
consists of a single column sum, and for
-c+1 < j < O, the sum for position Ci,j) is com
puted by adding colsum(j+c-1) to the sum for po
sition Ci,j-1). Similarly, for C'-c < j < C',
the sum for position Ci,j) is obtained by sub
tracting colsum(j-1) from the sum for position
Ci,j~1). The sums (and colsums> for the topmost
and bottommost c rows are computed in an analogous
manner. In the "center" of each PE's subimage,
the operations performed are identical to those in

196

the serial and complete sums algorithms. The num
ber of additions performed to generate the partial
sums in each PE will be 4R'C' + 2C'r ~ 2R' - 4C' -
2r + 2. As for the partial sums Exy algorithm,
the results which must be transferred are those in
the non-"KEEP" area in Fig. 6. Each of these ele
ments is added to a "kept" partial sum in the ap
propriate PE. The complexities of the partial

sums EY and ty2 algorithms are summarized in
column two of Tables 2 and 3.

C. SXY .!!:!£ RXY Computation

As described for the complete sums method in
subsection 4.C, for image correlation measures RXY

or SXY, the tXY, tY, and i/ computations will be
interleaved· so that all three are computed .for a
given match position before the match area is
moved to a new position. The computation of RXY
is described.

The modifications required for the RXY computa
tion involve the storage for partial (incomplete)

txy, tY, and tY2 sums. In the algorithms
described, a non-"kept" partial sum was
transferred from the PE in which it was computed
to its destination PE, and stored in the memory

location for the txy (or ty or ty2> of which it
was a part. For the complete RXY computation,
space is not needed for all of a PE's local

txy, ty, and t/ values. Provisions must there
fore be made for the incomplete sums. The pro
cedure will be based on the EY algorithm. It will
be explained in terms of three cases (ranges of
match positions>. It will be shown that at most
2CCC'+c-1>Cr-1)+c-1J locations are required to
hold incomplete sums at any point in time.

Consider first a match position which is fully
contained in the PE's subimage, i.e., position
Ci,j) wher• 0 < i < R'-r and 0 < j < c•-c. The

txy, iy, and ;;2 :omputations ca; be-interleaved,
and RXY for the position can be computed. For the
same i range, when j exceeds c•-c, Ci.e.,
C'-c < j < C') two partial sums must be combined
to produce the complete sum for each of

2 txy, ty, and EY • After computing the txy partial
sum for position Ci,C'-c+k>, 1 < k < c, each PE
can compute the partial sum for position Ci,-c+k>
and transfer its value to the left, where the to
tal txy sum for position Ci,C'-c+k> is then com
pleted. By postponing computation of txy for po
sition Ci,-c+k) until it is needed, no extra space
is required for row i's incomplete txy values. A
comparable savings in space cannot be realized in

the ty and EY2 computations, since the computation
of these partial results cannot be postponed
<without doing additional summations>. Except for

the topmost and leftmost edges, the ty <and ty2>
sum for each match position is computed in terms
of the sum for a previous match position, so (1)
some previous results must be saved, and (2) the
order in which the sums are computed cannot be al
tered or interrupted. The partial sum for posi
tion Ci,-c+k), 1 < k < c, must be computed and
saved unt i l it -can be combined with the pa rt i al
sum for position Ci,C'-c+k>. The same c-1 loca-

tions can be used for each row i in the range.
Thus, c-1 locations are needed to save partial i:y

results, and c-1 locations for partial i:y2 results
for match positions Ci,j) where U ~ i ~ R'-r and
-c+1 < j < a.

Similarly, for partial match positions along
the top of the PE's subimage, where the row index
is -r+k, 1 ~ k < r, computation of partial i:xy
sums can be postponed until they are needea, but

the partial i:y and i:y 2 sums must be computed and

saved until the corresponding Ey and Ey 2 sums for
row R'-r+k have been calculated. Here, separate
storage locations are needed for each row i,
-r < i < O, and column j, -c < j < C'. Therefore,

for each of i:y and i:y 2, CC'+c-1)Cr-1) additional
locations will be needed.

The partial sums complexity for computing RXY
is summarized in Table 4. The time is a summation

of that for computing i:xy, i:y, and i:y 2 for every
match position. The transfers are for the
non-"kept" partial sums. The space is for the

PE's own subimage, the incomplete i:y and EY 2
values which must be saved until they can be com
pleted, and the intermediate results in calculat-

ing i:y and i:r2.
As in the complete sums method, recursive dou

bling can be used to obtain the position of max
imum correlation over all of the PEs.

6. CONCLUSIONS

Tables 1 through 4 contrast quantitatively the
complete and partial sums approaches to the opera
tions involved in image correlation. In order to
more readily compare the two approaches, let
R' = C' =I' and r = c = M'. The results are
shown in Table 5.

As can be seen from the table, for each of the
. d. "d l 2 in ivi ua i:xy, i:y, and i:y algorithms, the com-
plete sums approach requires more space and/or ar
ithmetic operations than the partial sums ap
proach. However, when these algorithms are inter
leaved to compute and Locate the maximum RXY
value, the complete sums method requires more ar
ithmetic operations, but fewer inter-PE transfers
and less space. Which method is faster will
therefore depend on the relative time to perform
arithmetic operations versus transfers. For exam
ple, if the time to perform a transfer equals the
time to perform a multiplication, then the com
plete sums method will be faster. If inter-PE
transfers can be overlapped with arithmetic opera
tions, then the partial sums method will be fas
ter. Thus, in order to determine which approach
will be faster on a particular system, the exact
timings for these operations must be considered.

The difference in the space required for the
two approaches is not Large. However, if the PE
memories are small, or, for the RXY computation
if C' is large, the space difference may be a fac~
tor in selecting an algorithm.

Some basic differences resulting from the two
algorithm strategies are evidenced in the RXY com
plexities. In the complete sums approach, two PEs
hold and operate on some of the same image ele-

197

Ac-Ap

Iy a1 1+3M'-3

:i:i 8I '+3M'-3

RXY 16I '+6M'-6

Mc-Mp

21 1M1 -21 1

+(M') 2-2M'+1

Tp-Tc

21 'M'-21' 2C2I 'M'-21 I

+CM 1) 2-2M'+1 +CM 1 >2-2M'+1)

Space
Di fterence

Sc-Sp=

2(M 1 >2-4M'+3

Sp-Sc=2I 'M •

-2I '-2M'+2

Table 5: Comparison of the complete sums and partial sums approaches,
using the following notation:
R'=C'=l'
r = c = M1

Ap = adds for partial sums approach
Ac = adds for complete sums approach
Tp = inter-PE transfers for partial sums approach
Tc = inter-PE transfers for complete sums approach
fl\p =multiplies for partial sums approach
Mc= multiplies for complete sums approach
Sp = space for partial sums approach
Sc = space for complete sums approach

ments. As a result, redundant arithmetic opera

tions are performed in the i:y and i:y 2 computa
tions, i.e., the sum <or product) of the same two
elements is sometimes performed in two PEs. These
redundant operations are not performed in the par
tial sums algorithms. On the other hand, the par
tial sums method requires more transfers. Each
non-Local y value needed by a PE is transferred in
only once in the complete sums approach and three

2 times <as part of partial i:y, i:y , and i:xy terms)
in the partial sums approach.

The SIMD machine model used assumed a multi
stage network which can perform each required data
transfer in a single step. Consider instead an
SIMD machine where the PEs are connected in a
nearest neighbor pattern, i.e., PE i is connected
t PE . +1 . 1 . +N1 /2 d . N1 /2 (. . o i , i- , 1 , an i- arithmetic mod
N). Examples of such machines are the Illiac IV
[4J, OAP [7J, CLIP4 [5J, and MPP [3J. In analyz
ing the two algorithm approaches, the number of
transfer steps must be increased. Assuming
NC NR N1 /2 h . b = = , t e nearest neigh or connection
scheme requires 1 transfer step to do each of the
PE i to PE i+1, i-1, i+NC, and i-NC transfers, and
2 transfer steps to do each of the PE i to PE
i+NC+1, i+NC-1, i-NC+1, and i-NC-1 transfers.
Furthermore, if the match area extends over more
than two PEs, additional multiple data transfer
steps will be needed. (Even though two transfers
are required for some steps, typically each
transfer in a nearest neighbor network will be
faster than a transfer through a multistage net
work.) The results in Tables 1 to 5 can therefore
be applied to nearest neighbor connected systems
by modifying the transfer step counts as
described. <The number of transfers for recursive
doubling will also be increased.)

In the SIMD machine model in section 1, it was
assumed that each processor was associated with a
Local memory to form a PE. Consider a different
organization where the processors are separate
from the memories, and the interconnection network
is used to connect the processors to the memories.
Inter-processor communications can be accomplished
by writing into and reading from the shared
memory. STARAN is an SIMD machine organized in

this way [1,2J. Since all memory accesses go
through the interconnection network, there are no
explicit inter-processor data transfers (assuming
a network such as one of those mentioned in sec
tion 1 were used). Thus, with such an organiza
tion, the partial sums approach is faster than the
complete sums approach. Cin the STARAN machine,
the interconnection network is not flexible enough
to allow the processors to access the appropriate
memories in all cases <e~g., processor i to memory
i+NC+1). In these cases, an additional pass
through the network will be required to align the
data.>

The SIMD algorithms presented demonstrate how
SIMD parallelism can be used to reduce the execu
tion time of computationally intensive image pro
cessing tasks. For the image correlation algo
rithms, the asymptotic complexity for arithmetic
operations is reduced from OCRCrc) for the serial
algorithm to OCRCrc/N) for the N-PE parallel algo
rithms. The overhead of inter-PE communications
incurred has asymptotic complexity OCC'r+R'c+rc).

In summary, SIMD algorithms to perform the
window-based operations needed for image correla
tion have been explored. Two fundamental algo
rithm strategies were presented, and their time
space-transfer complexities were compared.
Through studies and analyses such as this, more
can be Learned about both the art of parallel pro
gramming and the ways in which parallelism can be
exploited in image processing.

Acknowledgment: The authors thank George B. Adams
III for his comments.

REFERENCES

[1J K. Batcher, "The flip networ.k in STARAN,"
1976 Int. Conf. Parallel Processing, Aug.
"f976, pp. 65-71.

[2J K~ Batcher, "The multidimensional access
memory in STARAN," IEEE Trans. Comp., Vol.
C-26, Feb. 1977, pp. 174-177.

[3J K. Batcher, "MPP-a massively parallel pro-
cessor," 1979 Int. Conf. Parallel
Processing, Aug. 197~p. 24cr;--

[4J W. Bouknight, et al., "The Illiac IV sys
tem," Proc. IEEE, Vol. 60, Apr. 1972, pp.
369-388.

[5J M. J. B. Duff, "CLIP4: a Large sea Le in
tegrated circuit array parallel processor,"
3rd Int. Joint Conf. Pattern Recognition,
1976:-i)p. 729-73r-

[6J T. Feng., "Data manipulating functions in
parallel processors and their implementa
tions,"~ Trans. Comp., Vol. C-23, Mar.
1974, pp. 309-318.

198

[7J P. M. Flanders, "Efficient high speed com
puting with the distributed array proces
sor," ~· .Q!!. High Speed Computer and
Algorithm Organization, Apr. 1977, pp.
113-128.

[8J M. Flynn, "Very high-speed computing sys
tems," Proc. IEEE, Vol. 54, Dec. 1966, pp.
1901-1909.

[9J A. J. Krygiel, "An implementation of the Ha
damard transform on the STARAN associative
array processor," 1976 Int. Conf. Parallel
Processing Aug. 1976, p:-3°4. ~~

[10J D. Lawrie; "Access and alignment of data in
an array processor,".IEEE .!.!::!!:!!·Comp., Vol.
C-24, Dec. 1975, pp. 1145-1155.

[11J M. Pease, "The indirect binary n-cube mi
croprocessor array," IEEE Tra.ns. Comp., Vol.
C-26, May 1977, pp. 458-473.

[12J w. K. Pratt, "Correlation techniques of im
age registration," IEEE Trans. Aerospace
Electronic Systems, Vol. AES-10, May 1974,
pp. 353-358.

[13J A. Rosenfeld, M. Thurston, "Edge and curve
detection for visual scene analysis," IEEE
Trans. Comp., Vol. C-20, May 1971, Pi):-
562-569.

[14J s. Ruben, et al., "Application of a parallel
processing computer in LACIE," 1976 Int.
Conf. Parallel Processing, Aug. 1976, -PP.
24-32.

[15J H. J. Siegel, "A model of SIMD machines and
a comparison of various interconnection net
works," ~Trans. Comp., Vol. c-28, Dec.
1979, pp. 907-917.

[16J H. J. Siegel, et al., "PASM: A partitionable
SIMD/MIMD system for image processing and
pattern recognition," IEEE Trans. Comp., to
appear.

[17J H. J. Siegel, S. D. Smith, "Study of multis
tage SIMD interconnection networks," 5th
~- Comp. Arch., Apr. 1978, pp. 223-229-. -

[18J L. J. Siegel, H. J. Siegel, R. Safranek, M.
Yoder, "SIMD algorithms to perform Linear
predictive coding for speech processing ap
plications," 1980 Int. Conf. Parallel
Processing, Aug. 1980, pp. 193-196.

[19J H. Stone, "Parallel computers," in
Introduction to Computer Architecture, H.
Stone, ed., S.R.A., Chicago, IL, 1975.

[20J K. J. Thurber, Large Scale Computer
Architecture: Parallel and Associative
Processors, Hayden Book Co.,"lfc>chelle Park,
N.J., 1976.

PARALLEL COMPUTER ARCHITECTURES
FOR IMAGE PROCESSING

Anthony P. Reeves
School of Electrical Engineering

Purdue lkliversity
West Lafayette, Indiana 47907

Abstract -- Image processing problems frequently
involve large structured arrays of data and a need
for very rapid computation. Special parallel pro
cessing schemes have evolved over the last 20 years
to deal with these problems. In this paper the na
ture of image processing tasks are outlined and the
parallel computer architectures which have been
developed for these tasks are reviewed. Most of
these special architectures may be loosely classi
fied as either SIMD or pipeline structures although
some MIMD structures have been designed for high
level image analysis.

In recent years several Multiple SIMD CMSIMD)
schemes have been proposed as suitable architec
tures for image processing. The fundamental prob
lems of developing an effective MSIMD system are
discussed . and a simple SIMD/MIMD computational
model for comparison with such systems is proposed.

Introduction
Image processing frequently involves very large

regular data structures and a need for very high
speed computation. Through the brief history of
digital image processing, special parallel process
ing architectures have been proposed and implement
ed, see [1] and [44J.

In this paper we will consider architectures
which deal with images in the most conventional
format, namely a large two dimensional matrix of
brightness values called pixels. This format is
applicable to many applications. For example, in
the industrial environment computer robot vision
and part inspection may involve real-time video
data as small as 256 x 256 pixels with only 6-bits
of information for each pixel. Military applica
tions involving FLIR and optical video imagery may
involve similar sized data. At the large end of
the scale, remotely sensed imagery from the LANDSAT
satellite may involve images of 4000 x 4000 of 8
bit pixels and several spectral bands of informa
tion. Aerial photographs may also be digitized to
4000 x 4000 or larger. In the biomedical area
there are many instances of imagery, mainly from
microscope sides, at all levels of size, color, and
resolution.

The nature of image processing problems may be
divided into two characteristic classes: low level
image processing and image analysis. In low level
image processing, the output usually has a similar
matrix size to the input. The processing may in
volve algorithms for restoration, noise removal,
geometric correction or simple feature extraction
such as edge detection, or feature enhancement.
Such tasks are well suited to an SIMD computer
structure and most special image processing
hardware systems are of this form.

The image analysis involves classifying segments
or features of the image into known classes. This

199

0190-3918/81/0000/0199$00.75 © 1981 IEEE

may involve combining a set of segments or features
to create a total composite object. The techniques
involved here are usually termed pattern recogni
tion or artificial intelligence. For these cases,
the image is no longer considered as a large matrix
of pixels. Segments of the image are represented
by more convenient data structures such as a set of
parametric measures or a labeled relation graphs.
Classification algorithms frequently involve a set
of sequential searches for pattern matching which
may be conducted independently in parallel. Such
tasks, which involve many independent operations on
a common data base, are ·well suited to a MIMD
parallel structure.

There has been much work at both extremes of im
age processing; many low level image processing al
gorithms have been developed as have many pattern
recognition techniques. However, the interface
between these two areas is less well understood.
This grey area involves deciding which features are
to be extracted by the low level image processing
and in what format they should be presented to the
image analysis section. A related problem is how
the image analysis algorithm may interrogate the
original low level data to obtain further informa
tion when necessary.

The areas of image processing are outlined in
Fig. 1. SIMD processors are well suited to most
low level algorithms and can also perform many sim
ple feature extraction operations. In some cases
they may be effectively utilized for some statisti
cal classification techniques. MIMD processors are
not very effici~ntly organized for low level image
processing since much hardware is devoted to indi
vidual control units and reliable asynchronous data
communication between processor units. There is
also a problem with sharing near neighbor data
between the processor units. Some feature extrac
tion algorithms, especially those serial in nature,
such as contour following, are well suited to the
MIMD structure. Classification schemes especially
those involving syntactic methods are very well
suited to the MIMD structure

An initial problem in designing a complete
parallel image processing system is to decide which
basic machine architecture to use: SIMD, or MIMD.

low level interface pattern
image (image recognition

processing features)

SIMD------------ - - - - - ·
MIMD

Fig. The main stages of Image Processing.

Some researchers have proposed a combined MSIMD
system as a possible solution. These schemes en
able a group of independent SIMD processors to be
assigned to a task. One problem in designing such
systems is to ensure that the worst features of
both systems, i.e., the expense and inefficiency of
the MIMD data communication and control, and the
inflexibility of the homogeneous SIMD structure are
not both present in the combination. In this paper
a simpler computational model is proposed which may
be used as a benchmark for the efficiency of more
complex designs.

Historically, a fundamental bottleneck in pro
cessing capability has been perceived with the low
Level image processing task. Many SIMD and pipe
L ine architectures have been developed for Low lev
el image processing applications, whereas special
architectures for high Level image analysis have
received less attention. Most of the Low Level ar
chitectures have the characteristic that a single
operation is automatically applied to alt elements
of the image matrix in a fixed amount of time.
These architectures may be divided into three
types: Ca) Parallel Binary Array Processor Cb)
pipeline processor and Cc) special function units.

In the following sections of this paper the ar
chitectures which have been developed for low Level
image processing are reviewed with emphasis on more
recent designs. Then the features of proposed
MSIMD schemes for image processing applications
will be discussed.

Parallel Binary Array Processors
Binary Array ProcessorS"'""E'11J operate in the sin

gle instruction stream-multiple data stream (SIMD)
mode with a matrix of identical processing elements
CPE's). The whole image or a consecutive block of
the image is distributed through the PE's and pro
cessed in parallel. ALL data paths within a PE are
only one bit wide and each PE is connected to PE's
adjacent to it.

The main features of the BAP scheme result from
the bit-serial architecture of the PE's and near
neighbor interconnection scheme. The bit-serial
architecture allows flexible data formats and makes
the BAP very efficient with respect to memory and
processing resource utilization. Many image pro
cessing algorithms require that data within Local
areas of each pixel is to be combined; the near
neighbor interconnection scheme enables these algo
rithms to be efficiently implemented.

In 1959 Unger C6,7J proposed a parallel BAP
machine with a matrix of PE's for image processing
applications; many of Unger' s ideas have been in
corporated into Later BAP designs. One of the
first hardware BAP systems was the SOLOMON computer
[8J which was built by Slotnick at Westinghouse.
Another Landmark parallel BAP was Illiac III [9J on
which development started in 1963 by McCormick but
which was never completed. Early parallel BAP
development was hampered by the very high cost of
the parallel hardware. Both SOLOMON and Illiac III
were designed to have a 32 x 32 PE matrix size.

With the advent of Large scale integration the
construction of much Larger BAP's has become feasi
ble. Since the Illiac III design a sequence of
BAPs called CLIP have been developed by Duff [10J.
The most recent version, CLIP4, is an operational,
LSI, 96 x 96 parallel BAP.

200

The features of current BAP designs will be dis
cussed by describing two diverse architectures.
These are: the BASE system which is being developed
in a small prototype form at Purdue University
[11, 12J and the MPP [16J.

The BASE PE is shown in Fig. 2. It consists of

tlNF
Near
Neighbor
function

Boolean
Processor

R

Fig. 2 The BASE PE Organization

three main components: a Boolean processor which
can implement any three input Boolean function, a
1-bit wide Local memory and a Near Neighbor func
tion processor CNNF>. In general, the operands A,
B and C would be held in 1-bit registers which
could receive data from the Local memory on a com
mon bus L i ne •

The NNF receives data from the 8 near neighbor
PE's as shown in Fig. 3 and realizes the following
function

8
F = V Cg; AN.)

i=1 ,

Where {g1 ••• g8} is an 8-bit control vector. A hex

agonal near neighborhood may also be selected.
There are three fundamental instruction types

for BAP's [11J: Boolean, simple near neighbor and
recursive near neighbor. Boolean instructions are
used for Logical and arithmetic operations within
the Local memory; the NNF is not used. The BASE

Fig. 3 Data interconnections between a BASE PE
and its 8 adjacent PE's

Boolean processor can implement any of the 256
three input Boolean functions as specified by an
8-bit control vector. A 2-input Boolean function
could be adequate for Boolean instructions; howev
er, the 3-input function is much more efficient for
arithmetic operations and is also necessary for re
cursive near neighbor instructions. Arithmetic may
be achieved with conventional bit-serial algorithms
or, in some cases, functions may be more efficient
ly implemented with a specially optimized instruc
tion sequence [13J.

Simple near neighbor instructions specify that
one operand comes from a near neighbor PE or a
selected subset of near neighbors. An ORed subset
of near neighbors is useful in some binary image
algorithms. For example, the perimeters of all ob
jects in a binary image may be obtained with one of
these instructions.

Recursive instructions are implemented on only a
few BAP's. In this instruction the near neighbor
output is taken from R rather than A in Fig. 1. A
signal may propagate through a connected sequence
of PE's in a single recursive instruction. This
asynchronous operation may be several times faster
than an equivalent sequence of simple near neighbor
instructions depending upon the technology and de
tailed design of the processor. Recursive near
neighbor instructions are useful for horizontal ar
ithmetic, which treats the rows of the PE matrix as
a set of data items, and some two dimensional
binary topology operations.

A prototype BASE system, called BASE-8, is
currently being developed at Purdue l.hiversity
[12J. It is constructed with Schottky TTL and in
volves 64 PE's arranged in an 8 x 8 matrix. The PE
matrix can automatically scan a Larger matrix size
processing it in consecutive 8 x 8 blocks.

A general block diagram for a Large scale BAP
system is shown in Fig. 4. The data processing is
achieved by the array of PE's which simultaneously
process a submatrix of an image. The total image
is processed as a sequence of these submatrices.

Auxi 1 lary Store
(Disk, Tape,etc.)

Host
Computer

Control ___

--- Unit

1/0 Buffer
Memory

PE Array

Fig. 4 Binary Array Processor System

201

Data is input to and output from the PE array via
the I/0 buffer memory which communicates the data
to image peripherals and conventional computer bulk
storage devices. With the current LSI systems each
bit plane is input along one edge of the PE array
one column on each clock cycle. Each row of the PE
array acts as a shift register. When the complete
bit plane has been input it is stored in the Local
memory in one clock eye.le. When input data is in
the form of a stream of pixels it must be converted
to the bit-plane format. Instructions to the PE
array are issued by a single high speed micropro
grammed controller. The whole system synchroniza
tion is maintained by a conventional host computer
which issues macro instructions to the controller.
Some feature information may be extracted from the
PE array by the global information extraction
mechanism.

The most usual mechanism is an OR function over
all PE's which indicates if any PE has a one ele
ment. This is useful for terminating Loops and for
detecting the presence of objects. For applica
tions which require more feature extraction, such
as shape analysis, a more powerful scheme is desir
able. One scheme is to count the number of bits
set in the bit plane which is implemented on BASE-8
and could be efficiently implemented on LSI BAP
systems t14J.

The MPP was designed by NASA [15J with the pri
mary function of analyzing LANDSAT satellite data.
The system has been redesigned by Goodyear
Aerospace [16J who are contracted to build a
hardware MPP by mid 1982. The PE array consists of
16384 PE's organized in a 128 x 128 matrix. A spe
cial LSI CMOS/SOS chip has been designed which con
tains 8 PE's without their Local memory in a 2 x 4
submatrix. In the initial version each PE will
have 1024 bits of Local memory; however, the design
includes provisions for up to 16k bits per PE for
when such memory chips become available. The clock
cycle time for the array is 100 ns.

A simplified MPP PE is shown in Fig. 5. The em
phasis with this design is fast arithmetic computa
tion rather than binary near neighbor operations.
The NN select unit enables a bit plane to be shift
ed in one of the four cardinal directions in one
instruction. The Boolean processor implements all
16 possible Boolean functions between the P regis
ter and the value on the data bus; in this case P
is an accumulator. For arithmetic operations a
dynamically reconfigurable, variable Length shift
register with a maximum Length of 30-bits and a
full adder are available. This organization is
faster than the BASE scheme especially where multi-N.g S NN

~ Select

Boolean

Processor

To ~N
PEs

t~·bi t Shi ft register

Loca I Memory

Fig. 5 Simplified MPP PE Organization

plication is involved; in this case the shift re
gister is used for circulating the partial product.

The MPP is very fast for 8.;.bit pixel operations;
it can execute 6.5 billion additions per second or
1.8 billion multiplications per second. For 32-bit
floating point data the MPP can execute 430 mill ion
additions per second or 210 million multiplications
per second. The integer addition is optimal for
the given processor memory bandwidth, the multi pl;
cation could be made faster. It is anticipated
that with VLSI technology faster multiplication and
other processing functions will be included in PE
designs and PE a.rrays will become larger [17,18J.
A spedal programming language called Parallel Pas
cal has been developed for the MPP and other BAP's
[19J. A compiler for this language is currently
being developed and a tra~slator is available which
allows Parallel Pascal programs to be run on con
ventional Pascal systems.

Other parallel bit serial processors have also
been used for image processing. The STARAN associ
ative processor [41J has been used for LANDSAT im
age analysis [42J. It can perform similar opera
tions to a BAP except that it can only process a
row or a column of the image at a time in parallel.
The distributed array processor CDAP) [40J is a BAP
implemented with a 64 x64 PE matrix which was not
designed specifically for image processing. A LSI
chip has been developed for it which contains 4
PE's without local memory and is based on the un
committed logic array (ULA) approach. Low level
image processing tasks have been implemented on the
DAP [39J.

Pipeline Processors
The basic organization of a pipeline processor

for image processing is shown in Fig. 6. Image

Auxi 1 lary
Store

Buffer
Store

Host
Computer

,__ _ _,Stage I

Instruction bus

Stage 2 Stage K

Fig. 6 Computer Organization for Pipelined
Image Processing

data is passed in raster scan format from the
buffer memory into a pipeline of processing stages.
The function of each stage is specified by the host
computer through the instruction bus. Once set up,
a processing stage performs the same operation on
every element of the data sequentially. There is
an initial set-up delay while data is input to the
pipeline before the first result appears at the
last stage then a result is generated with each
clock cycle. Therefore completely processing an

n x n image requires the set-up time plus n2 clock
cycles.

One main advantage of this architecture is that
no input data reformatting is necessary. In fact
the input to the first stage could be taken direct
ly from the output of a TV camera. Other advan
tages are the very simple data interconnections
between processing stages and, since an instruction
resides in a stage for many clock cycles, a high
speed control unit is not required.

202

A pipeline stage can implement near neighbor
processing functions by means of two shift regis
ters as shown in the near neighbor processing· unit
CNNPU) in Fig. 7~ Raster formatted data is input
at register N1 and. is then shifted through the

shift registers and near neighbor registers until
it reaches N5• To process an image with a row of n

elements the shift registers are set to length n•3.
Then an input data element wi LL be at register P
after n+1 clock eye Les and its near neighbor values
will be available in registers N1° 00N8• A small
amount of additional logic is required to maintain
the correct values of near neighbors at the edge of
the image. A simple near neighbor function may be
implemented by a near neighbor function unit con
nected to the nine registers as shown in Fig. 7.
The set-up time for this NNPU is n+2 clock cycles.

raster scan

Input data ---

n-3 element shift register

n-3 element shift register

Fig. 7 Organization for a pipelined near
neighbor processing unit (NNPU)

One of the most ambitious pipeline image proces
sors which embodies these concepts is the cytocom
puter developed by Sternberg at the Environmental
Research Institute of Michigan [20J. Currently a
prototype cytocomputer is operational which in
volves two pipelines: one contains 80 binary
stages and the other contains 25 grey level stages.
The data connections between the stages are 8 bits
wide. The binary stage can compute a binary func
tion on the near neighbors of one of the inputs and
combine the result of this with the other 7 bits.
All 29 near neighbor functions are implemented by
means of a table-look-up memory which generates 8
outputs. A select unit selects 8 bits from the
8-bit input data and the 8-bit near neighbor func
tion and these are mapped by means of a 256-word
8-bit table-look-up memory to the 8 outputs for the
stage. For·the grey level stages the architecture
is similar to the NNPU; in this case all shift re
gisters are 8-bits wide and the near neighbor func
tion involves 8-bit arithmetic operations. The
8-outputs are also mapped through. a 256-word
table-look-up memory.

An LSI version of the cytocomputer is currently
being developed. ' It will consist of up to 550
stages; each stage is capable of both binary and
gray level functions. A special LSI CMOS/SOS chip
is being developed which will contain one cytocom
puter stage.

Eskenazi and Wil f have developed a simple pipe
lined processor system for real-time image analysis
at the Jet Propulsion Laboratories [22J.. The sys
tem is designed to produce partial object boun
daries from raw image data and involves three dif
ferent processing stages, each of which operates on
a 3 x 3 local neighborhood.

The cytocomputer structure is an effective
mechanism for very Low Level image processing
(e.g., image filtering operations>. Lougheed and
McCubbrey have made a comparison between the cyto
computer and other parallel structures for some
very Low Level image processing tasks [21J. Howev
er, it is not clear how such a structure can easily
combine more than one image in an operation or per
form functions such as geometric correction.

These Limitations are due to the Limited 8-bit
Linear interconnection scheme of the pipeline. It
would be possible to have a more complex pipeline
involving stages that could deal with more than one
8-bit input. However, the cost of implementing a
more flexible interconnection scheme would be very
high.

The FLIP system [23] consists of 16 special pro
cessors with two input ports and one output port
(they do not contain a 3 x 3 Local window function
Like the cytocomputer). These may be reconfigured
into any interconnection arrangement by software.
Interconnections are achieved by 16 interprocessor
buses and 16 buses from the I/O control unit and
buffer store. Each processor is capable of execut
ing a simple sequential algorithm on each input
pixel; it contains 256 words of program store and
50 bytes of data store. The processor intercommun
ication is achieved by asynchronous handshaking, so
that the whole system will function correctly when
the processors require different processing times
for each pixel. The multiple input ports from the
buffer memory enables a pixel and selected near
neighbor values to be input to the processors
simultaneously.

Special Function Units
The organization of the third architecture type,

special function units, is illustrated in Fig. 8.

Auxiliary
Store

Host
Computer

Fast data Store

Fig. 8 Special Function Processor System

Each special function unit CSFU) is a direct
hardware implementation of an image processing al
gorithm, or in some cases it may implement a set of
related functions. SFU's may contain some Local
memory and program control. A system usually con
sists of a set of SFU's and a fast image memory
connected together by a high speed bus. The image
data is processed serially by a SFU, which may be
pipelined, and image results are returned to the
fast memory.

Early near neighbor processors were based on
this scheme [2-5J. For some current medium speed
SFU systems see also [26,37,43,44]. Current sys
tems usually involve bit-parallel data and may in
volve SFU's which process several pixels simultane
ously.

An important image processing operation is con
volution with a small predefined matrix. Many im
age processing functions such as convolution and

203

the DFT may be defined by an inner product opera
tion. The inner product computer (!PC) [24-25J is
a special function unit for rapidly computing the
inner product operation. For two vectors A and B
the inner product is defined by

A possible design for an IPC is shown in ~g. 9; it

18

Fig. 9 An inner product computer design

involves n multipliers to compute the vector ele
ment products and a tree of n-1 adders to sum the
results. In practice the design may be pipelined
to achieve very high speed; moreover the Logic is
simple to design and Lay out. The bandwidth of the
system may be exactly matched for integer operands.
In the example, 2 4-element 8-bit vectors result in
an inner product of 18 bits.

A possible organization for an IPC system is
shown in Fig. 10. Weights are stored in the

Auxiliary
Store

weight
address

Cata
Memory

Fig. 10 An IPC computer organization
for Image Processing

memories M1•••Mn and data is shifted from the data

store into the shift register s1•••sn

To convolve on n-element kernel function with an
image the n-kernel values are first Loaded into the
n-memories then the image data is shifted into the
shift register S. After the set-up time for the
IPC a new data item will be input and a result will
be output with each clock cycle. If a two dimen
sional convolution is required then delay shift re
gisters could be added to S as shown in Fig. 7.
The set-up time would be increased but the follow
ing execution time would still be equal to the num
ber of results.

General transform operations such as the
Discrete Fourier Transform CDFT) may be achieved by
Loading the M memories with all the transform coef-

ficients and the S registers with the data to be
transformed.· The addresses of the memories are
stepped through sequential Ly and a result is gen
erated with each clock pulse after the set-up time
of the IPC. A complex DFT can be achieved on an
IPC for real numbers with four inner product opera
tions [24J.

The parallel pattern processor CPPP) [26] in
volves an 8 input IPC with buffer memory for seven
Lines which can implement an 8 x 8 convolution
function. The Dynamic Spatial Reconstructor E24J
for very high speed tomographic reconstructions in
volves a very fast IPC based on sub-nanosecond ECL
technology.

In some cases the SPU may contain several SIMD
PE's which operate on different pixels [1,5,43] For
example, the FIP processor in the PICAP II system
[43J contains 4 programmable PE's which can execute
a small convolution or a programmed sequence of
near neighbor operations on 4 pixels simultaneous
ly. Several rows of the image are rapidly accessi
ble in a Local buffer memory.

Initial research has be.en done on implementing
image processing functions with charge coupled dev
ices CCCD's>. . This technology processes unique
features such as: low power delay product C0.1 pico
Joules>, very high packing density, and simple ana
log signal processing implementation. Moreover,
since image sensors can be made with CCD's the pos
sibility of including some Low Level processing on
the same substrate as the sensor exists (smart sen
sors).

Several test chips have been developed for com
puting Local functions such as edge detection, con
volution filtering, median filtering and adaptive
thresholding E30-32J. These test chips require
data to be input in analog form from external CCD
shift registers. Real-time processing of a video
signal C7.5 MHz) is possible; however only about
6-bits of precision can be maintained with the ana
log processing.

For high speed parallel processing a planar (fo
cal plane) processing concept has been proposed.
In this scheme, data from a CCD matrix is shifted
into a set of processors connected to one edge of
the matrix. The outputs of the processors are con
nected to one edge of a result matrix into which
the results are shifted. These proposals include a
single substrate design for simple processing func
tions [31J and a multi-chip system for more complex
processing E32J.

CCDs have also been proposed for on-board Satel
L ite classification of LANDSAT remotely sensed data
[33J. This proposal is based on the concept of a
CCD IPC device.

Characteristics of Low Level Architectures
In summary, some Of the features of the current

parallel architectures for image processing are as
follows. For ver.y high performance the BAP ap
proach may be used; the parallelism may be in
creased until there are as many PE's as pixels
without any fundamental problems. Once there are
as many PE's as pixels, the PE's with bit-parallel
rather than bit-serial operations may be considered
for even higher performance. For very low level
image processing the pipeline approach may offer a
simpler solution than the BAP system. Both BAP and
pipeline systems are very suitable for VLSI imple-

204

mentation since they involve a large number of
identieal modules. Furthermore, all chip intercon
nections are very short. Therefore, no seal fog
problems should be experienced when the number of
processing units is increased. For medium speed
applications the special function approach is pos
sible. Higher speed may be achieved by using a
wider high speed bus and redesigning the functional
units to have several SIMD PE's. Some current sys
tems would be difficult to extend in this way.
Scaling problems may be experienced when the size
of a system is expanded since the Length of the bus
may need to be extended and data interconnections
'may be more complex. In certain applications ei
ther very high speed Logic or CCD technology may be
appropriate.

Most current pipeline and special funttion units
are based on 8 bit-wide data paths. This precision
is adequate for representing most image data, but
partial results may easily require more informa
tion. The BAP approach is not limited to a fixed
pixel size and can easily deal with floating point
,data.

MIMD and MSIMD schemes
There has been much interest in recent years in

developing multiple instruction stream--multiple
data st'ream CMIMD) parallel processors. Such a
computer may be constructed with a set of indepen
dent processors executing different programs, whieh
can communicate with each other and share some
memory resources. An organization for this type of
computer is shown in Fig. 11. The processors usu-

Shared Memory

Interconnection network

Processor
1

Processor
2 • • •

Processor
N

Fig. 11 A MIMD Processing Organization

ally have some local memory but also have access to
a common shared memory. The interconnection net
work which connects the processors to the shared
memory presents a significant.design problem espe
cially when a large number of processors are in
volved. A crossbar switch scheme would allow any
processor to access any shared memory module. How
ever, it is usually too costly to implement. A
limited permutation network is usually more practi
cal. However, significant delays in accessing data
from the shared memory may occur due to the longer
path length through the network and blocking. The
availability of cheap microprocessors has made the
construction of these computers feasible. However,
fundamental research problems still exist as to the
best methods to interconnect the processors and
dynamically distribute the processing tasks between
them.

The main advantage of the MIMD scheme over the

I

II
i

SIMD scheme occurs with high Level image under
standing tasks~ For example, it would be possible
to assign a set of processors to analyze a set of
segmented objects where each processor deals with a
single object. Alternatively several processors
could be set to analyze a single object where each
processor may realize a different analysis algo
rithm. Low Level near neighbor algorithms are usu
ally more easily implemented with the SIMD scheme.

There have been proposals for MIMD and MSIMD ar
chitectures which are intended for image processing
applications [27,28,29,35,36]. Two microprocessor
based MIMD designs are currently being researched
at Purdue University. One scheme, the Partition
able SIMD/MIMD system CPASM) [27,28] involves 1024
microprocessors and 16 control units. The proces
sors are interconnected with a Limited, synchronous
interconnection network. PASM may be dynamically
reconfigured into a set of different size, indepen
dent SIMD systems to suit the requirements of a
processing task. Up to 16 independent SIMD systems
may be possible at one time, each controlled by one
control unit. The number of processors ·allocated
to a control unit may be dynamically varied; at one
extreme a single control unit may control all 1024
processors in which case it behaves Like a single
SIMD system. There is no general shared memory in
the PASM system, rather data is shared through in
terprocessor data connectors.

In the second scheme, the Purdue multi-mode mul
timicroprocessor [29] about 128 microprocessor are
considered. Each microprocessor has its own con
trol unit and Local memory so it is a true MIMD
system. In early designs an interprocessor mechan
ism for synchronizing a set of processors in an
SIMD mode was proposed however this is not con
sidered important in the current design. Block
data transfers are made between the Local processor
memories and the shared memory; most processor data
accesses are made to their Local memory. With this
scheme a simple processor interconnection network
can be used and the delay in establishing a path
from a processor to a shared memory module is
offset by transferring more than one data word. In
this sense, the processor Local memories may be
considered to be more Like cache memories.

In both the above systems high speed Low Level
image processing is achieved by distributing the
task amongst as many available processing units as
possib Le. The hardware util izC!tion for these tasks
is not as good as the special architectures previ
ously discussed since only one control unit is
necessary and multiple control units are a feature
of an MIMD system.

The following simple SIMD/MIMD model is proposed
which may offer better hardware utilization. This
simple model is outlined in Fig. 12. A sing Le SIMD
processor is used for Low Level image processing
and a separate MIMD processor is used for image
analysis. The size of each processor would be ini
tially configured to be adequate for the anticipat
ed work Load. In Large applications, or when high
reliability is necessary a Loosely coupled network
of several SIMD and MIMD processors could be used.

In the general scheme shown in Fig. 12, no
specific architecture details are specified such as
the nature of the interconnection network or method

205

Host

Raw data I ,..-----------~
input I Modular shared Memory

Result
Output I L.-~~~~~~~.:_~_J

~~11~0~1 r---:--:-:-:~~~--:---.------,.. __ _J
Buffer I L---,-1-nt_•_rc_on_n_•c~t-I o_n _"_•~tw_or_k ___ .J-----,

I
Auxiliary I

Store I
I~_,__-

Host
Computer

PUn Auxi 1 iary
Store

SIMD Processor HIHD Processor

Fig. 12 SIMD/MIMD computational model

of I/O interfacing. The host of the MIMD system
may be simply an I/O channel if there is a distri
buted operating system. The main advantage of the
general structure is that the best features of both
the SIMD and MIMD systems are easily attained.

The data flow for Low Level image processing and
image analysis are frequently quite different. In
the proposed system the SIMD processor would be op
timi zed for Low Level image processing and the MIMD
system would be optimized for image analysis. The
organization of the MIMD system would be much
simpler than the MSIMD system since it would not
have to deal with the SIMD data flow. SFU's may be
added to the MIMD processors to assist with well
defined image analysis tasks.

There are two possible cases when the MSIMD sys
tem might have an advantage over the proposed sys
tem: Ca> if the ratio of Low Level image process
ing to image analysis was very unpredictable and
Cb) if the SIMD low level image processing re
quired the processing of many, very small, sub im
ages. The ratio of processing types in case Ca)
would have to have a very great variability before
the extra expense of the MSIMD system would be war
ranted. For case Cb>, Large SIMD systems may be
partitioned by means of masks so that an identical
algorithm may be executed simultaneously on a set
of sub images. Therefore, a reduction in efficien
cy of the single SIMD system would only occur if
the algorithm for the sub images were very dif
ferent from each other. There would be very Little
reduction in efficiency if the Low level image pro
cessing was realized with a pipeline structure.

Conclusions
Image Processing tasks may be divided into two

areas: Low level image processing and image
analysis. Historically,the low Level image pro
cessing problem has received the most attention and
several viable parallel computer architectures have
been developed for this task. Some of these archi
tectures have been reviewed and their characteris
tics are summarized in section V. Current parallel
architectures are very efficient for implementing
current Low Level image processing algorithms and
they are suitable for VLSI implementation.

several MSIMD architectures have been proposed
in the Literature for image processing. A
SIMD/MIMD system has been proposed in this paper
which is simpler to organize than the MSIMD scheme
and will be more efficient for well defined image
processing tasks.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

-References
K. Preston, Jr., M. J. 6. Duff, s. Levialdi, P. E.
Norgren and J-I, Toriwaki, "Basics of Cellular Log
ic with Some Applications in Medical Image Process
ing," Proceedings of the IEEE, Vol. 67, No. 5, May
(1979) 1326-856.
s. 6. Gray, "Local
Two Dimensions,"
(1971> 551-569.

Properties of Binary Images in
IEEE Trans. on Computers, May

M. J. E. Golay,
Transforms," IEEE

"Hexagonal
Trans. on

Parallel Pattern
Computers, August

(1969) 733-740.
K. Preston, "·Feature Extraction by Golay Hexagonal
Transforms," IEEE Trans. on Computers, September
(1971) 1007-1014.
d. Kruse, "A Parallel Processing Machine," IEEE
Trans. on Computers, December (1973) 1057-1087.
S. H. Unger, "A Computer Oriented Toward Spatial
Problems," Proc. of the IRE, October (1958)
1744-1750.
S. H. Unger, "Pattern Detection and Recognition,"
Proc. of the IRE, (1959) 1737-1752.
D. L. Slotnick, w. C. Borek and R. C. McReynolds,
"The SOLOMON Computer," Proceedings of the Fall
Joint Computer Conference, (1962) 97-107.
B. H. McCormick, "The Illinois Pattern Recognition
Computer ILLIAC llI," IEEE Trans. on Computers, De
cember <1963) 791-813.
M. J. 8. Duff, "CL1P4:
Circuit Array Parallel
al Joint Conference on
728-732.

A Large Scale Integrated
Processor," 3rd lnternation
Pattern Recognition, <1976)

A. P. Reeves, "A Systematically i>esigned 8inary Ar
ray Processor," IEEE Trans. on Computers, April
(1980) 278-287.
A. P. Reeves and R. Rindfuss, "The dASE 8 Binary
Array Processor," Proceedings of the IEEE Confer
ence on Pattern Recognition and Image processing,
(1979) 250-255.
A. P. Reeves and J. D. Bruner, "Efficient Function
Implementation for Bit-Serial Parallel Processors,"
.IEEE Trans. on Computers Vol. C29, No. 9 (1980)
841-844.
A. P. Reeves,
tion Methods
Graphics and
159-169.

"On Efficient Global Feature Extrac
for Parallel Processors" Computer
Image Processing, Vol. 14 (1980)

L. W. Fung, "A Massively Parallel Processing Com
puter," High-Speed Computer and Algorithm Organi za
tion, D. J. Kuck et. al. Ed. New York Academic,
(1977) 203-204.
K. E. Batcher, "Design of a Massively Parallel Pro
cessor," IEEE Trans. on Computers Vol. C-29, No. 9
(1980) 836-840.
A. P. Reeves, "A \/LSI 13inary Array Processor
Design," submitted to IEEE Trans. on Computers also
in PUrdue technical report TR-EE 80-.:S2.
A. P. Reeves, "The Anatomy of VLSI tlinary Array
Processors," Workshop on New Computer Architectures
and Image Processing, Ischia, Italy, 1980.
A. P. Reeves, J. D. Bruner and M. S. Poret, "The
Programming Language Parallel Pascal," Proceedings
of the 1980 International Conference on Parallel
Processing, August 26-29 C198U) 5-6.
S. R. Sternberg, "Parallel Architectures for Image
Processing," Proceedings of the 3rd International
IEEE COMPSAC, Chicago, (1979) 712-717.
~. M. Lougheed and D. L. Mc Cuobrey, "Tne Cytocom
puter: A Practical Pipelined Image Processor,"
Proceedings of the 7th Annual International Sympo~
sium on computer Architecture, La Boule, France,
May 6-8 . (1980) 271-277.
R. Eskenazi, and J. Pl. Wilf, "Low level Processing
for real-time Image Analysis," Proceedings of the
COMPSAC 79 confere"nce, Chicago, Illinois, 1fovember
6-8, (1979) 340-343.
K. Luetjen, P. Gemmar, and H. Ischen, "FLIP - A
Flexible Multi processor System for Image Process
ing", Proceedings of the 5th International Confer
ence on Pattern Recognition, (1980) 326-328.

206

24. E. E. Swartzlander, Jr., a. K. Gilbert arid I. S.
Reed, "Inner Product Computers," IEEE Trans. on
Computers, Vol. C-27, No. 1, January <1978) 21-31.

25. J. II. 8lankenbaker, "Comments on Inner Product Com
puters," IEEE Trans. on Computers, Vol. C-28, No.
12, December (1979) 944.

26 •. K-I Mori, M. Kidode, H. Shinoda and A. Asada,
"Design of local pattern processor for image pro
cessing," National Computer Conference_ 1978
(1025-1031).

27. H. J. Siegel, F. Kemmerer, and M. Washburn, "Paral
lel l'lemory System for a Partitionable MIMD/SIMD
Machine," Proceedings of the 1979 International
Conference on Parallel Processing, August (1979)
212-221.

28. H. J. Siegel, P. T. Mueller, Jr. and H. E. Smalley
Jr., "Control of a Partitionable Microprocessor
System," Proceedings of the . 1978 International
Conference on Parallel Processing, August (1978)
9-17.

29. F. A. Briggs, K-S Fu, K. Hwang and J. Patel,

"PM4--A reconfigurable multi processor system for
pattern recognition and image processing," AFIPS
Conference Proceedings, llol. 48, 255-265.

30. G. R. Nudd, "Image Understanding architectures,"
National Computer Conference (1980), 377-390.

31. 6. R. Nudd, F. A. Nygaard, G. D. Thurmond and S. D.
Fouse, "A CCD Image Processor for Smart Sensor Ap
plications," Proceedings of Photographic and In
strumentation Engineers Symposium, San Diego, Au
gust <1978).

32. T. J. Willett and G. Tisdale, "Hardware Implementa
tion of a smart Sensor: A preview." ARPA Image
Understanding Workshop, May (1978) 1-8.

33. w. E. Snyder, C. Husson and H. F. Senz, "Satellite
Pattern Classification using charge Transfer Dev
ices," Pattern Recognition and Image Processing
Conference (1979), 246-249.

34. G. H. Granlund, "GOP: A Fast and Flexible Proces
sor for Image Analysis", Proceedings of the 5tti
International Conference on Pattern Recognition,
<1980), 489-492.

35. K. s. Fu, "Special· Computer Architectures for Pat
tern Recognition and Image Processing - An Over
view", National Computer Conference, \/ol. 47,
(1978), 1003-1013.

36. P. H. Swain, H.J. Siegel, and J. El-Achkar, "Mul
tiprocessor Implementation of Image Pattern Recog
nition - A General Approach", Proceedings of the
5th International Conference on Pattern Recogni
tion", C'l 980), 309-317.

31. 6. Kruse, "Experience with a Picture Processor in
Pattern Recognition Processing", National Computer
Conference, Vol. 47, (1978), 1015-1024.

38. J. Keng and K.S. Fu, "A Special Computer Architec
ture for Image Processing", Proceedings of the 1978
Pattern Recognition and Image Processing Confer
ence, Chicago, <1978),· 287-290.

39. P. Marks, "Low-Level Vi.sion Using an Array Proces
sor", Computer Graphics and Image Processing,"
<1980), llol. 14, 281-292.

40. S. F. Readdaway, "The DAP Approach", Infotech State
of the Art R,eport on Supercomputers, Vol. 2,
(1979), 836-840.

41. K. E. Batcher, "STARAN Parallel Processor System
Hardware", Proceedings of the National Computing
Conference, (1974), 405-410.

4i!.. J. L. Potter, "The STARAN Architecture and its Ap
plication to Image Processing and Pattern Recogni
tion Algorithms", Proceedings of tne National Com
puter Conference, Vol. 47, (1978), 1041-1047.

43. B. Kruse, 6. Gudmundsson, and D. Antonsson, "FIP -
The PICAP II Filter Processor", Proceedings of the
5th International Conference on Pattern Recogni
tion, (1980), 404-487.

44. D. Sherdell, "A Low Level Architecture for a Real
Time Computer llision System", Proceedings of the
5th International Conference on Pattern Recogni
tion, (1980), 290-295.

i

I

I

SIGNAL PROCESSING WITH SYSTOLIC ARRAYs<a,b)

R. W. Priester H.J. Whitehouse
Systems and Measurements Division

Research Triangle Institute
Research Triangle Park, NC 27709

Naval Ocean Systems Center
Catalina Boulevard

San Diego, CA 92152

K. Bromley
Naval Ocean Systems Center

Catalina Boulevard
San Diego, CA 92152

Abstract -- This paper discusses the
application of systolic array processors to
signal processing problems that are amenable to
a matrix formulation. Systolic arrays are
formed by providing nearest-neighbor inter
connections between a large number of elemental
processors to form either a one - or two-dimen
sional array. With the possible exception of
boundary elements each processing element per
forms identical computations in synchronism
with other elements in the array. A number of
important problems for which systolic arrays
hold potential are mentioned and the systolic
array processor definition, in a number of its
forms, is reviewed. When applied to strongly
band-limited matrices, systolic array
processors can be characterized as highly
efficient from the standpoint of both hardware
utilization and algorithm time. However, as
the bandwidth becomes large this high per
formance is degraded. In an effort to overcome
performance degradation, this paper introduces
and evaluates a data transformation which, when
applied to an n x n dense matrix, results in an
improved banded structure with attendant hard
ware savings. An interesting feature of this
transform is its invariance properties with
respect to the ordering of output. time
sequences and algorithm execution time.
Another interesting aspect is its relation to
the classical Gauss-Seidel's method of
iteration.

It is shown that systolic array
processors possess some efficient testability
features which can be exploited concurrently.
These are briefly summarized.

1.0 Introduction

This paper discusses the application of
systolic array architectures to signal
processing problems.

Introduced by Kung [l], systolic array
architectures provide the capability for

(a)The work reported in this paper was
sponsored by the Naval Ocean Systems Center,
San Diego, CA, under contract
N66001-80-C-0118 with the Research Triangle
Institute.

(b)This paper was presented at the Tactical
Airborne Distributed Computing and Networks
Conference (AGARD), held in Roros, Norway,
22-26 June, 1981.

0190-3918/81/0000/0207$00.75 © 1981 IEEE

207

J. B. Clary
Systems and Measurements Division

Research Triangle Institute
Research Triangle Park, NC 27709

realizing a number of important matrix
operations. In addition to achieving a high
computation rate by means of pipelining and
concurrent computation, the architecture is a
good candidate for implementation with VLSI
(very large scale integration) technology. If
the matrices processed are characterized by a
narrow bandwidth, excellent hardware
utilization efficiency can be achieved.
However, in those cases .where the ~trix .
bandwidth becomes appreciable, for instance in
the case of square densely-populated matrices,
hardware utilization efficiency is degraded
significantly. This paper addresses the
problem of using systolic arrays to process
matrices whose structure is less constrained.
A simple but effective data transform which can
in some instances significantly improve
hardware utilization efficiency is introduced
and developed.

The paper is organized as follows.
Section 2.0 presents a brief and general dis
cussion of several problem areas where the
systolic array architecture is of interest.
Section 3.0 outlines the main features of the
systolic array architecture and only summarizes
the extensive treatment given in [1,2]; this
section is included only for purposes of
completeness of presentation. The PRT (partial
row translation) data transform is introduced
and developed in detail in Section 4.0.
Section 4.0 also quantitatively compares the
efficiency of the original systolic array
processor with that which results from applying
the PRT transform. These results provide a
means for deciding when PRT is advantageous.
Matrix inversion is the topic of Section 5.0
while Section 6.0 briefly outlines an efficient
technique that is useful for testing some
systolic array matrix processors.

2.0 Matrix Operations in Signal Processing
Applications

Matrix operations represent a significant
portion of the computational burden encountered
in many signal processing applications.
Adaptive filtering, data compression, beam
forming, and cross-ambiguity calculation .
represent problem areas where stable matrix
analysis techniques are of current interest.
In terms of resources required for system

implementation, these problems can be classi
fied as memory intensive and computation
intensive. Construction of systems capable of
providing the computations required for
analysis of the above problems must provide for
such operations as matrix multiplication,
inversion, addition and various decompositions.

For example, in least squares approxima
tion problems, one might encounter matrix
multiplication, matrix inversion, and/or
singular value decomposition. The computa
tional approach used in a particular instance
depends upon the numerical stability properties
of the problem at hand. For instance, if the
order of. a particular problem. is sufficiently
small, the Gauss normal equations might be
solved by performing ·a straightforward matrix
inversion. However, in the solution of
ill-conditioned systems commonly encountered in
large-scale problems, achieving a meaningful
solution might require application of singular
value decomposition computations.

In [3] Speiser and Whitehouse discussed
the signal processing problems mentioned above
and considered the applicability of competing
architectures such as transversal filters,
array processors, bus-organized multiprocessors
and systolic array architectures. Of these,
the most promising architecture is that of the
systolic array which has the potential to
support real-time implementation of the
algorithms required in order to address those
problem areas mentioned in this section.

3.0 The Systolic Array Architecture

In the interest of a self-contained
presentation, the systolic array architecture
will be outlined and illustrated in this
section. A thorough, comprehensive treatment
can be found in [l] or in [2]. The systolic
array architecture is founded almost exclu
sively upon a single computational element--the
inner product step processor--which implements
the relation

k+l k
Y "' ak+l • xk+l + Y ;

k = 0 , 1 , 2 , •• ,. , n-1 . (1)

Systolic array processors are constructed by
appropriately interconnecting a group of inner
product step processors. In the systolic array
architecture, only nearest-neighbor processor
communication is permitted. For purposes of
data communication and computation, each inner
product step processor is equipped with three
data registers: Ry (for y), Ra (for ak)
and Rx (for Xk)· tach register has two
connections - one for input, the other for
output. Kung [l] defined two types of inner
product step processors which are illustrated
in Fig. 1. These elemental processors can be
connected in a number of ways which provide the
capabil.ity to pe.rform various matrix operations
such as matrix multiplication, L-U
decomposition of symmetric positive-definite
matrices, and the solution of triangular linear
systems of equations.

208

A basic unit of time measure for both
types of processors shown in Fig. 1 is defined
as follows: (a) the processor loads inputs
yk, xk and ak, into !J• Rx· and Ra
respectively, (b) yk+ is com~uted
according to (1), and (c) yk 1 , xk, and
ak are output.

As an example, a systolic array
matrix-vector processor will be configured to
form the product

y = Ax

using a linearly connected
processors. The relations
implemented are as follows

k+l
Yi ai, k+l • xk+l
k = 0 , 1 , 2 , ••• , n-1

0
Y. = 0

i:

group of Type
which must be·

k
+ yi;

i = 1, 2, •.. , n.

(2)

1

(3)

Fig. 2 illustrates the systolic array of
processors, the element data arrangements and
flow required to evaluate (2) for the case
where A is an n x n matrix with bandwidth
w = p + q - 1 = 4. Definition of p and q are
as follows:

p max(j-i+l), aij ; 0 for j > i
q = max(i-j+l), aij ; 0 for j ~ i.

The Yi enter the array from the right as zero
and accumulate so as to form the inner product
of the ith row of A with vector x which moves
to the right after being input from the left.
As the x and y vectors move through the array
in the manner noted, A is shifted downward such
that elements along the main diagonal pass
through P2. In general elements of A above
and parallel to the main diagonal pass through
processors to the left of P2. Similarly
elements of A below and parallel to the main
diagonal pass through processors to the right
of P2. A detailed example illustrating the
operation of this systolic array matrix-vector
processor will be· presented in Section 4.0.

Generalization of the linearly-connected
systolic array to a two-dimensional
orthogonally-connected structure enables the
evaluation of matrix-matrix products. A
systolic array for evaluating

C =AB (4)

where all matrices are n x n is shown in
Fig. 3. Matrix A is input to the systolic
array in exactly the same way as described
earlier for the matrix-vector processor while
coll.Dllns of B are input, with appropriate
spatial shift to allow for A's time delay, into
successive rows of the array. If B contains a
large number of columns this impleme.ntation can
be inefficient even for stronly banded

I'

I

I:

matrices. Kung (1) overcame this problem by
devising the hexagonal-connected systolic array
which is based upon the type 2 processor of
Fig. 1. An example of this processor is
presented in Fig. 3(b) for the case (4) when A,
B and C are strongly banded. Note the
direction of flow orientation of A, B and C.
Entries in C are accumulated as it is shifted
upward from the bottom of the array, where the
Cij enter with zero value.

Using the array structures presented
above, Kung (1) was able to realize two addi
tional important matrix operations. Due to
space limitations, these only will be mentioned
here. A triangle equation solver can be con
structed using a linearly connected array of
inner product step processors; however, it is
necessary to introduce a new processor capable
of division. The resulting processor solves a
nonsingular triangular system of linear
equations by back-substitution. Similarly, by
adding special elements on the upper portion of
the periphery of the hexagonal array (Fig. 3b),
Kung (1) showed that one can obtain the
following matrix decomposition

A = LU

where A is a symmetric, positive definite
matrix,
L is lower triangular having ls on the
main diagonal, and
U is upper triangular.

Therefore, this processor, when coupled with
the triangle equation solver, can be used to
solve a fairly general class of simultaneous
equations.

Table 1 summarizes the hardware require
ments and algorithm execution time steps for
the family of systolic array processors defined
by Kung. When considered from the standpoint
of hardware uniformity, a surprising degree of
capability is realized by the systolic array
architecture. For the case of strongly banded
matrix structures, this architecture is
efficient in terms of both the quantity of
hardware used and in hardware utilization
efficiency. However, if square dense matrices
or matrices of more general structure are con
sidered, hardware utilization efficiency can be
degraded considerably. This problem is
addressed in the remainder of this paper where
methods for improving implementation efficiency
are introduced and studied.

4.0 Definition and Development of the PRT
Transform

In this section the PRT (partial row
translation) transform will be defined and some
of the benefits available from its application
in connection with systolic arrays will be
presented. It will be shown to improve hard
ware utilization efficiency and in addition
provide a hardware savings in the case of
square dense matrices.

Definition of the PRT Transform

Consider the matrix-vector multiplication

209

problem stated in (2) with A constrained to be
n x n and densely populated. Express A as a
strictly subdiagonal part, A1 (i.e. with no
diagonal elements) juxtaposed with Au, the
upper triangular part of A which contains the
main diagonal elements of A. This may be
expressed as follows

A =
(5)

Applying the PRT transform to (5) provides

'PRT {>~>~,:] (6)

That is, APRT is obtained from A simply be
translating (i-1) elements in row i to the
right n positions within the row for i = 2, 3,
... , n. In the resulting n • (2n - 1) array,
all elements not specified by Au and the
displaced A1 are set to zero. Now, applying
the PRT transform to (2) yields, the equivalent
expression

y A x
PRT PRT (7)

where xp = (x1, x2, ... , Xn-1). It
is noted that the PRT converts a square array
into a nonsquare array with enhanced banded
structure. The transform necessitates
augmenting x with a partial copy, xp. A
detailed example where A is 4 • 4 is detailed
in Fig. 4. Four processors are used and the
required number of time steps is eleven. These
quantities compare favorably with Kung's
systolic array which would use seven processors
and also eleven time steps. For n large, it
follows that the PRT transform saves about n/2
inner product step processors with no increase
in execution time. If the original systolic
array were designed such that immediately upon
processing element ann• the values of y
contained in the array could be unloaded, a
time advantage would result for this processor
configuration. The corresponding PRT based
array, while saving about one-half the number
of processors, would incur only about a 50%
increase in execution time.

The PRT transform readily extends to the
problem of evaluating the product of two square
matrices as expressed in (4). It can be shown
that the resulting systolic array for this
problem is identical to that of Fig. 3a. The
only difference occurs in the way A and B are
input to the array. The PRT is applied to A
which saves about n2/2 processors and the
columns of B, input on the left side of the
array are partially repeated as prescribed in
(7). Due to the large number of connections
which would be required to immediately unload
this two dimensional array, the PRT configured
processor will evaluate the matrix-matrix
product without any time penalty compared with
the original systolic array.

Although they will not be discussed here,

the PRT transform can be advantageously applied
to some problems where nonsquare matrices are
encountered.

Quantitative Assessment of the PRT Transform

The remainder of this section will be
devoted to a quantitative comparison of the
performance of the sytolic array processor
proposed by Kung [l) (hereafter called original
and denoted in certain instances by the
subscript orig) with that of the PRT based
structure (henceforth called alternate and
denoted by subscript alt). The comparisons to
be made will be based upon the following three
figures of merit:

(a)

(b)

(c)

Processor utilization efficiency
'1orig and '1alt·
Space-Time product (ST)orig and
(ST)alt when.
S = number of inner product step
processors
T = number of algorithm time steps.
Overall figure of merit F = '7/(ST),
Q = Fa1tfForig·

In the comparisons which follow, no penalty or
cost is assigned to implementing the PRT trans
form. Also it is assumed that n is large.

First consider the matrix-vector problem
which is shown for both processor configura
tions in Fig. 5. Adjacent to each processor
configuration expressions for 11, S, and Tare
given. '7 is defined as the ratio of active
area to the total area as shown in the figure.
Simply stated it is an approximate measure of
the proportion of algorithm time for which
computations are performed. Only square
matrices are considered here with bandwidth
w = p + q - 1. Note also that the comparisons
made here assume processor initialization as
illustrated.

Fig. 6 presents plots of as a function
of the normalized bandwidth parameters y = p/n
and x = q/n. This figure is drawn under the
assumption that the array of the original
configuration may be unloaded immediately after
element ann has been processed. Alter-
nately, Fig. 7 presents the same information
except that immediate unloading of the original
configuration is not allowed. The results show
that the capability to immediately unload the
array is important when x, y ---1.0. Note that
the original configuration provides excellent
efficiency for x and y both small, that is, for
strongly banded matrices; however, as
x, y -LO the alternate form is superior.

Now consider a comparison on the basis of
(ST) product. Solving the relation
(ST) 0 rig = (ST)alt provides the
result plotted in Fig. 8. When the· pair (x,y)
lie above the curve, the alternate configura
tion provides a smaller (ST) product.

Generally it will be desirable to maximize
the quantity F = '7/(ST) for a given problem.
Therefore, Fig. 9 shows a plot of
Q = Fa1tfForig versus y with x a
parameter. Given x and y for a particular

210

problem these results clearly indicate the
preferred processor configuration.

Attention is now directed to the matrix
multiplication problem where it is required to
evaluate C = AB when both A and B are n x n
dense matrices. For the sake of simplicity,
the general case of banded matrices will not be
treated in this comparison. Three systolic·
array configurations will be considered.

(a) A PRT-based orthogonally-connected
processor

(b) The orthogonally-connected processor
shown in Fig. 3(a).

(c) The hex-connected processo:i; presented
in Fig. 3(b).

The quantities of interest for comparing these
three configurations (subsequently referred to
as configuration (a), (b) and (c)) are
tabulated in Table 2. (Note in Table 2 that
the double subscript on Q is interpreted to
mean Qab = Fa/Fb where a and b refer
to the configurations listed above). From
these results the PRT-based systolic array is
seen to offer significant performance
advantages with respect to configurations (b)
and (c) under the conditions specified.

5.0 Applications of Systolic Arrays to Matrix
Inversion

This section will consider both explicit
and implicit methods for solving a given con
sistent set of linear equations. By explicit
it is meant that the inverse matrix is made
available to the user while implicit is used to
imply that only the solution vector is deter
mined and made available.

The hexagonally connected systolic array
mentioned earlier can be used to explicitly
invert a given symmetric, positive-definite
matrix. The approach is discussed by Speiser
and Whitehouse [3) and can be summarized as
follows. First the L-U decomposition of the
given matrix is formed using the hex-connected
systolic array. Then using n appropriately
interconnected triangle equa~ion solvers,
L-1 can be computed. In this step the
input to t.he array of triangle equation
solvers, i.e. the known input vectors taken
collectively, forms the, identity matrix.
u-1 is computed in a similar manner, and
finally the inverse matrix is obtained by
taking the matrix product u-11-l.
All of these steps can be implemented using
systolic arrays.

Implicit matrix inversion can be performed
in several ways, the most direct consisting of
L-U decomposition followed by two executions
using a triangle equation solver. That is,
given

Ax=
LUx=
Ly

b:
b:
b:

A and b known
LU decomposition step
solve for y using triangle equation
solver.

Ux y: solve for x using triangle equation
solver

This method, while it does not explicitly pro
vide A-1 is generally more accurate than
the explicit method which computes
x =A-lb= u-1 L-lb [4]. Other
implicit techniques such as Jacobi's method,
Gauss- Seidel's method and the successive
overrelaxation (SOR) method [5] can be realized
with systolic arrays. Implementation of
Gauss-Seidel's method is interesting because it
is closely related to the PRT transform.
Consider the equation Ax = b. Factoring A into
the form A = D(L + I + U) where L and U are
strictly lower and upper triangular matrices
respectively (i.e., their main diagonal
elements are zero) and D is a diagonal matrix
D = diag (aii), aii; O, i = 1, 2,
.•. , n. Jacobi's method of iteration can be
written in terms of these definitions as
follows

k+l k k
xi (-Lix - Uix) + b/aii'
i = 1, 2, ... , n (8)

where Li and Ui denote the ith rows of L
and U respectively. Implementation of (8)
using either the original or alternate forms
for systolic array matrix-vector multiplication
is straightforward, only requiring insertion of
zeros along the main diagonal and evaluation of
the terms bi/aii outside the array as an
auxiliary computation. The equations defining
Gauss-Seidel's method are as follows [5]

k+l
x.

l.

i = 1, 2, ... , n. (9)

Here the notation is identical to that in (8)
except that in the term Lixk+l,
xk+l represents only a partially filled
vector (xf+l, x~+l, ..• ,
xf~l • 0, ...) which is "built
up" as the computation proceeds. Gauss
Seidel' s iteration can be implemented in
systolic array form by using the PRT transform.
This is illustrated in Fig. 10 which shows that
the diagonal elements hav~ been omitted and the
terms bi/aii are evaluated outside the
array. Assuming that the computation is
started with an initial estimate xk, it can
be observed from Fig. 10 that x}+l
will be output and available for processing by
the strictly subdiagonal elements L. (For a
detailed example of this property see Fig. 4
and note that in the present case
x}+l = Yl• is output at time step 5.
Note also that this value of Yl is required
in time step 6 for processing by a21•
which in the present case is L2). Since U
always processes a backdated estimate, it can
be seen that the PRT transform, or some
equivalent method, must be applied in order to
realize Gauss-Seidel's method using systolic
arrays. That is, unless the elements of L can
be moved to the input side of the array where
the xf+l are input, the pipelining
effect of the array prohibits implementing
Gauss-Seidel's method. Therefore, the original

211

form of the systolic array cannot, without
modification, be used to implement Gauss
Seidel' s iterative method.

Note from Fig. 10 that Gauss-Seidel's
implementation can provide extremely efficient
utilization of processor capability. Processor
utilization efficiency, starting at 83%, mono
tically increases toward 100% as the number of
iterations increase. Although not discussed
earlier when matrix-vector processors were con
sidered, a form similar to that shown in Fig.
10 can be obtained for the problem y = Ax where
A is n x m with n ~ m. For this case, input
vector x is simply repeated the required number
of times while the PRT transform is applied to
successive m x m partitions of A .

The SOR method of solution by iteration is
very similar to Gauss-Seidel's method, the most
important distinction being that the systolic
~rray in this case computes the residual error
which is then weighed by a relaxation parameter
appropriately chosen to accelerate convergence
[5].

6.0 Concurrent Testing of Systolic Array
Processors

Utilization of any functional device in
realizing important system features ultimately
leads to questions regarding reliability and
maintainability properties. In this section
interesting methods for externally testing
systolic arrays for proper operation will be
considered. It is not practical to consider
reliability features here; therefore, only
issues related to maintainability, namely
testability, will be considered. Only external
methods for testing will be explored.

Consider the systolic array for performing
a matrix-vector product originally proposed by
Kung [l]. Given the way in which the matrix
rows pass through the processor array, a rather
simple external test for proper operation of
the array would be to augment the given matrix
by adding two'check rows--one at the top and
another at the bottom. This is illustrated in
Fig. 11 where the two additional rows must be
identical in order to facilitate the check.
Note from Fig. 11 that if no Xi = 0 and no
augmentation element is zero, each processor
will be checked in the process of performing
the matrix-vector product. The test is very
simple since it requires only that Yl be
compared for equality with Yn+2·

Two additional processors are required to
realize this test. It is interesting to
examine the cost required to implement this
check in terms of added hardware and algorithm
execution time. Let S represent the hardware
required to realize a processor in the array
and t denote the time interval required for
each shift in passing the matrix through the
processor. For an n x n dense matrix and using
the product S (computation time) as a measure
of resources used, then the efficiency is given
by:

'T/ =
(S • 2nt) without test
[S(2n+2)t] with test
1 - 2/n

For n large, it follows that this is a very
efficient test in terms of required resources.

With respect to test effectiveness,
however, questions follow with regard to fault
coverage. If x is known to be dense and the
augmentation does not use zero elements, the
test will be good for detecting hard failures.
However, transient failures represent a problem
for this approach.

, The test method just described can be
applied to matrix-matrix processors, although
comparison of more quantities must be made. It
also follows that this approach is applicable
to the PRT transform. Note for this case from
Fig. 11, however, that for about n time steps
no checks on the computation are performed.
This can be overcome by additional augmenta
tions, appropriately interspersed, in the
original matrix.

7.0 Conclusion

Systolic arrays represent a potentially
important means for implementing computations
involving large-scale matrices. The realiza
tion of a general matrix-oriented computing
capability that is founded upon a few standard
modules using VLSI technology is appealing.
However; as emphasized in [2, Sec. 8.2],
minimization of wiring requirements (communica
tion costs) is a central problem in this
technology. The PRT transform introduced in
this paper can significantly reduce these costs
for some problems. Of particular importance is
the fact that these savings can be realized in
some cases without increasing algorithm time.

It has been shown that for n x n banded
matrices the PRT-based systolic array and that
originally proposed by Kung [l] are complimen
tary in the sense that when one is efficient,
the other form tends toward lower efficiency.
The PRT transform does not alter the original
systolic array hardware definition. The
time-ordered outputs are invariant under this
transform - the only changes appearing in the

Q. K+I

YK+I YK

x
K+I

Q.
K+I

(a)

Fig. 1. Two Types of Inner Product Step
Processors: (a) Type 1, (b) Type 2.

212

order of accumulation of intermediate values
before they are output at the array port(s).

Solution of linear, simultaneous equations
by iteration methods using systolic arrays
results in an interesting interpretation of the
PRT transform. The PRT or some equivalent
transform appears necessary in order to apply
systolic arrays to Gauss-Seidel's method or to
the SOR method.

A simple, efficient - though somewhat
limited - testing technique was introduced for
performing external concurrent tests on
systolic arrays. This topic, as well as the
others considered in this paper, is worthy of
further study.

References

[l] H. T. Kung and C. E. Leiserson, "Systolic
Arrays for (VLSI)," Department of Computer
Science, Carnegie-Mellon University,
Pittsburgh, PA., April, 1978, (Last
Revised December 1978).

[2] C. Mead and L. Conway, Introduction to
VLSI Systems, Addison-Wesley, 1980.
Section 3 of Chapter 8 closely follows
[l], although the terminology systolic
array is not used.

[3] J, M. Speiser and H. J. Whitehouse,
"Architectures for Real-Time Matrix
Operations," GOMAC (Government
Microcircuit Applications Conference),
1980 Digest of Papers, pp. 21-26.

[4] A. H. Sameh, "Numerical Parallel
Algorithms -- A Survey," in High Speed
Computer and Algorithm Organization, eds.
Kuck, Lawrie, and Sameh, Academic Press,
N.Y., 1977.

[S] G. Dahlquist and A. Bjorck, Numerical
Methods, Prentice-Hall, Inc., Englewood
Cliffs, N.J;, 1974.

K+I
y

x
K+I

ROllS ~ ,

3,
' '

2,
' '

........
'a

a,.,
1, '• -.... a,

--.......
'a•

......

~

'~"
Fig. 2. Systolic Array Processor Configured

to Form Matrix-Vector Product.

Cl.,

APRT ci ..

Cl,. o..,

Cl,, o. .. "

Cl11 a..
........

o.,. (l,, "-
AL

........
Cl,. o.,, >

(l13 11., /
/

o.,, /
/

/
/

y y=O
x

Fig. 4. Detailed Example of PRT Transform and
Linearly Connected Systolic Array to
Compute y = Ax.

213

(a)

lli\TRIX A

MATRIX C

(b)

llATRIX B

--2 ---'---1

\
\
\\

\\ROWS
\ 1

'2

ROWS

Fig. 3. Systolic Arrays to Compute Matrix
Product C = AB: (a) Orthogonally
Connected, (b) Hexagonally Connected.

p

.---,.1
I I
~- IT
I T

2n

ORIGINAL FORM

2-(1 - xl 2 - (1 - yj2
'1J • (2 + y) (x + y)

T = 2n + p, without i nmedi ate
unloading

l T • 2n, with inmediate unloading

s = p + q

Active Area
'T/ • Tota 1 Area

Y • p/n

x = q/n

l
3n T

1 I

ALTERNATE FORM

2 - (1 - x)2 - (1 - y)2
'1J = 3

T = 3n

S • n

~· ACTIVE AREA

r- -,
I I TOTAL AREA
~---'

Fig. 5. Performance Comparison of Original
with Alternate Systolic Array for
Matrix-Vector Problem with Square
Banded Matrix.

1.B

0.

e. 6
y

e. 4

e. 2

e.
e.e e. 2 0. 4 e. 6 B.8 1. 0

x

Fig. 8. Values of x,y which Satisfy
(ST) 0 rig = (ST)alt Without
Immediate Unloading.

214

l.B · .. x•O
•• ---.. -- Or1g1 nal

0. ~·:::::.J::::::::'"--..,,-;: Alternate

e. .,,

Fig. 6. Processor Utilization Efficiency
Assuming Immediate Unloading.

1.ll .. X•O

: >i::::,,_
·-----.. Otitg1na1
-- Alternate

ll.2 B.4 ll.6 ll.8 1.B
y

Fig. 7. Processor Utilization Efficiency
Without Immediate Unloading.

3. e X• l,

y

Fig, 9. Figure of Merit Q = FaltfF0 rig
Without Immediate Unloading.

Fig. 10.

OUTPUT

)(K+3 {
X K+2 {
X K+l {

Three Iterations of Gauss-Seidel's
Method with Initial Estimate xk
(External Computations Performed in
Block Z).

- THESE ROllS Allill!ENT llll'llT MATRIX

TEST lMPLIMl!NTATICll• Cof!PAliE 11 MITM 1o+t FOR EQUAi.iTV

Fig. 11. Concurrent Testing of Systolic Array
Matrix-Vector Processor by Augmentation
Method.

215

Table 1. Summary of Systolic Array Hardware and
Algorithm Execution Time Requirements

for Some Matrix Problems.

Systolic No. of
Array Problem Processors Algorithm
Confi~uration Solved Reguired Time

Linearly Matrix- w 2n+w
Connected Vector
Array Mult.

Linearly Sol. of w 2n+w
Connected Triangular
Array System

Orthogonally Matrix- nM 3n+M
Connected Matrix
Array Mult.

Hexagonally Matrix- WAWB 3n+M
Connected Matrix
Array Mult.

Modified L-U De- pq 3n+m
Hexagonally composition
Connected A= LU
Array

Note: (a) Matrices are assumed n x n with
bandwidths w = p+q-1. Subscripted
w denotes bandwidth of indicated
matrix.

(b) Matrix-Matrix Multiplication either
C AB or C' • B'A'.

(c) M min(wA•WB), m = min(p,q).

Table 2. Comparison of Systolic Array
Configurations for Matrix-Matrix
Multiplication (all matrices n x n).

Quantity of Configuration
Interest (a) (b) (c)

T Sn Sn 4n

s n2 zn2 4n2

11 2/3 1/2 1/8

Qab ~ 2. 7

Qac ~ 17

Note: Tables l and 2 do not reflect processor
inactivity (see (2, Sec. 8.3]). If
these effects are considered and the
lower bound on S is used for configura
tion (c) {see (2, p.305)) one obtains:
Qab ~ 2.7 and Qac ~ 8.

PARALLEL PROCESSING OF THE KALMAN FILTER

Angus Andrews
Science Center

Rockwell International Corporation
Thousand Oaks, California 91360

AbstPa.at - This paper presents a pipelined
mechanization for a multiprocessor system to
implement the Kalman filter equations for adding
process noise and updating the estimates after
observations. These parallel algorithms use the
UDL decomposition of the covariance matrix of
estimation uncertainty. Parallelism can be used
within the pipeline to further increase processing
speed. The fastest method for the n-state filter
requires O(log n) add-times per scalar update.
Serial methods require O(n 2) multiply-add-times
per update.

Introduction

The Kalman filter is an optimal linear esti
mator that was introduced by R.E. Kalman in
1960 [l]. It provides a real-time mechanization
for estimating the n-dimensional state vector x
of a discrete-time linear gaussian system

(1)

given m-dimensional observation vectors

(2)

and the covariance matrices Qk, Rk of the gaussian
processes {uk}, {vk}. The estimate x is updated
by the following well known formulas:

xk := xk + Kk(zk - Hkxk)

Kk := PkHI(HkPkHI + Rk)-1

pk:= (I - KkHk)Pk

xk+l := ~k+lxk

pk+l := ~k+lpk~I+,

(3)

(4)

(5)

(6)

(7)

where Pk is the covariance of estimation uncer
tainty. Update of the estimate following an
observation is mechanized by Eqs. (3-5), and
propagation of the estimate in time is mechanized
by Eqs. (6-7). Although these equations describe
the theoretically optimum linear estimator, they
are not necessarily well suited to numerical
implementation in finite precision. Sch.lee [2]
and others have observed numerical instability of
these equations, and much of the subsequent work
by Joseph [3], Schmidt [4], and others has been
directed toward more accurate and efficient
algorithms for mechanizing these equations.

0190-3918/81/0000/0216$00.75 © 1981 IEEE

Potter [5] introduced the idea of using a
squa:Pe Poot of the covariance matrlx in the
algorithmic implementation. This is a matrix

S = P~ such that P = SST . (8)

The advances in "square-root" filtering up to
1971 have been surrmarized by Kaminski, et at. [6].
Subsequently, Agee and Turner [7], Carlson [8],
and Bierman [9] have introduced.strictly algo~
ri thmi c approaches to square-root fi 1 teri ng. This
paper shows how a variation of the Bierman algo
rithm can be implemented in a pipeline architec
ture, and how the same architecture can be used
for adding the "process noise" covariance Qk of
Eq. (7), using the Agee-Turner algorithm.

Observation Update

The Kalman filter is a recursive algorithm
for updating the estimate. Equations (3-7) must
be implemented at each recursion step. Agee and
Turner introduced the idea of using a recursive
algorithm for implementing Eqs. (3~7) as well.
They also introduced the idea of using a UDL (or
LDU) decomposition of the covariance matrix in
place of the square root decomposition. This is
a decomposition of the sort

P = UDUT (9)

where D is a diagonal matrix and U is an upper
triangular matrix with l's along its main
diagonal. This factorization does not require
taking scalar square roots. Bierman derived a
recursive algorithm for implementing Eqs. (3-5)
in terms of U and D, rather than P. It 'assumes
that the covariance matrix R of measurement
uncertainty is a diagonal matrix. This form can
always be obtained from the UDL decomposition
of R. If

is such a decomposition, then for T = r 1 the
alternate observation z:= Tz with alternate
observation sensitivity matrix H:= TH has a

{10)

. diagonal covariance matrix of observation uncer
tainty R:= ~. When R is diagonal, each component
of z can be processed' serially as an independent
scalar observation. It is this feature that
allows the update equations to be pipelined.

216

The following is a variation of the Bierman
algorithm. It performs the update mechanization
on U, D, and x, given z, H, and R.

for j:=l step 1 until m do
begin

y:=z(j);
w :=R(j ,j);
for k:=l step until n do
begin

s :=H(j ,k);
y:=y-s*x(k);
for i :=l step l until k-1

s:=s+U(i,k)*H(j,i);
d:=s*D(k,k);
K' (k,j) :=d
a :=w;
w:=w+s*d·
c:=-s/a;'
D(k,k) :=D(k,k)*a/w;
for i:=l step l until k-1
begin

u:=U(i,k);
U (i , k) : = u+c * K' (i , j) ;
K' (i ,j) :=K' (i ,j)+u*d

end
end;
y:=w/y;
for i:=l step l until n do

x(i) :=x(i)+y*K'(i ,j)
end;

(11)

(12)
do

(13)
(14)
(15)

(16)
(17)
(18)

do

(19)
(20)

(21)

(22)

The reader is referred to Bierman's book for
a proof of the validity of the algorithm.
Bierman's algorithm performs Eqs. (12-13) in
separate loops. The modification nests the
do-loops so that all computations sweep from left
to right across the columns of U and D. These
computations involve only one column of U at a
time, and this feature allows one to pipeline the
process. While the pth column of U is being
updated with information from the qth rows of
R, H, and z, the (p-l)th column of U can be
updated with information from the (q-l)th rows
of R, H, and z. Simultaneously, the (p-2)th
column of U can be updated with information from
the (q-2)th rows of R, H, and z, and so forth.
This data flow is illustrated by Figure l, which
shows how the different data from R, H, z, U, D,
and x comes together for arithmetic operations in
the above algorithm.

Figure l is not meant to imply a particular
~ultiprocessor architecture, but merely to
illustrate the relative data flow as viewed from
the matrix U. The diagonal of the matrix D is
shown replacing the main diagonal of U. During
the arithmetic processing, the transposed rows of
H flow through successive columns of U from left
to right, along with the partially computed
columns of the unweighted Kalman gain matrix K'.
'.he associated scaling coefficients ware computed
in the flow down the diagonal. By adjoining the
estimated state x and scalar observation z on the
right of the U-D matrix, one can perform the fol
low\Q9 equivalent form of Eq. (3) in the last
column:

217

where

x := x + K' D (z - Hx) w

0 0

0

0

(23)

(24)

and w1, w2, ···, wm is the order of arrival of
weighting coefficients in the last (x) column.

The data flow in Figure l suggests a pipe-
1 ine mechanization in which the data in the
columns of U, D, and x remain within the pipeline
and the rows of R, H, and z flow through the
pipeline. This arrangement seems a practical
one, because U, D, and x are the "permanent"
variables of the Kalman filter and R, H, and z
are only temporary data. Also, U and Dare
usually considered "nuisance" parameters in that
they are necessary for the processing but other
wise of no interest. Therefore, they can remain
within the pipeline without need of access from
outside. The estimate x is available at the end
of the pipeline.

In this pipeline mechanization, the essen
tial pipeline processor element is associated
with a column of the U-D matrix or x. The arith
metic processes involving a column of Figure l
must be completed before the results are avail- ·
able for the next column. The order of execution
of arithmetic computations involving a row of H
and a column of the U-D matrix or x is given in
Table l. This mechanization could be implemented
by using one processor for each square in Fig
ure l, much like the "systolic" processor arrays
of H.T. Kung [10]. The required data flow
between processors in each column is shown by the
vertical arrows in Figure 1. Such a mechaniza
tion would not make efficient use of the proc
essors, however. It would require n process
times to implement Eq. (12), and n process-times
for thew-coefficient in Eq. (22) to make its
way to x(l). Therefore, it would require O(n)
processors to perform O(n) arithmetic operations
in O(n) time, and the average processor utiliza
tion factor would be O(n- 1).

The arithmetic processor utilization can be
improved to 0(1/log n) and the update execution
time shortened to O(log n) by using an array
processor to form the dot products of Eqs. (ll-13).
All multiplies can be done simultaneously, and
n binary adds can be performed in log2n add-times.
Al1 other arithmetic operations do not depend
upon n. The fastest serial methods for the
observation update require O(n 2) multiplies and
adds, for either the square-root [9] or conven
tional [3] methods.

Rl'll'I •... , R33,R22,R11

H1'1t,. .. , H31,H21,H11

Ztt ,. .. , Z3 ,Zz .Z1

Figure 1. Relative Data Flow in Observation Update

Table l. Execution Order

Order of Equation Numbers
Execution Columns 1-n Column (n+l)

1 13 11-12
2 14-17 21
3 18-20 22

Filling the pipeline requires O(log j) arith
metic operations for computations in the jth
column. Filling n columns then requires

0 (t log j) = O(nlogn)
J=l

(25)

arithmetic operation times. Therefore, when one
adds the time required for filling and clearing
the pipeline, processing m independent scalar
observations requires O((n+m)log n) arithmetic
operation times.

Adding Process Noise

The variate uk of Eq. (1) is called "process
noise." The Kalman filter uses the covariance
matrix Q of process noise in Eq. (7). Following
an argument similar to that used for R, one can
assume that Q is a diagonal matrix. (If it were
not, then the factorization of Eq. (10) would
lead to an equivalent formulation with Q:= ~
diagonal and G:= GT.) In that case,

218

T p T
GQG = :E q .g .g.

j=l J J J
(26)

where qj is the jth diagonal element of Q, gj is
the jth column of G, and p is the coJumn dimen
sion of G. Therefore, it suffices to be able to
perform the operation

p := p + qggT (27}

in terms of U and D. This is done by the follow
ing algorithm, due to Agee and Turner [7]:

for j:=l step 1 until p do
begin

e:=Q(j,j);
for k:=n step -1 until 1 do
begin

d:=D{k,k);
D(k,k):=d+e*b{k,j)t2; (28)
for i:=k-1 step -1 until 1 do
begin

G(i ,j) :=G(i ,j)
-G(k,j)*U(i,k); (29)

U(i ,k) :=U(i ,k)
+e*G{i,j)*G(k,j)/D(k 1 k) (30)

end;
e:=e*d/D(k,k) (31)

end
end;

The data flow for this algorithm is illustrated
by Figure 2, which shows how the data from u, D,
G, and Q come together for arithmetic Operations.
The arithmetic operations of Eqs. (29-30) are to

Figure 2. Relative Data Flow for
Adding Process Noise

GtJ

Gv

G3J

OJJ

be performed in the off-diagonal rectangles, and
those of Eqs. (28,31) in the diagonal ~ect~ngles.
This process allows the same type of pipeline
structure as the update, but with the direction
of data flow reversed.

In this case, there are O(n) arithmetic
operations required in the longest column o!
Figure 2, but they can be performed almost in
parallel. The exception is that the factors.
G(k,j) and e*G(k,j)/D(k,k) must be ~omputed in
the diagonal squares before process~ng can start
in the off-diagonal squares. Assuming that these
data can be broadcast to the off-diagonal squares,
the processing in the long~st colum~ cou~d be
completed in 0(1) arithmetic operation times.
Therefore, the minimum time required to add
process noise covariance and clear the pipeline
is O(n+p) operation times.

Remarks

One can show that it requires O(n 2/log n)
arithmetic processor elements (APE) to attain the
ultimate observation update speed in a multi
processor system. Updating the jtn column o! t~e
U and D matrices requires O{j) adds and mult1pl1es.
Therefore, O(n 2) adds and multiplies are required
throughout the pipeline for.updating the n co1-
umns, and performing these in opog :;) operation
times (the ultimate speed) requires O(n 2/log n)
APEs.

The time update is probably the greatest
computational problem for general Kalman !ilter.
The state dynamical equations (6-7) contain terms
for deterministic (<P) and nondeterministic (Q)
dynamics. This paper has considered only the .
latter. The several serial solution methods which
have been proposed for the triangular square root
time update are mostly borrowed from square root

219

least squares methods, such as Cholesky dec?mposi
tion [ll] modified Gram-Schmidt orthogonaliza
tion [4,12], and Householder [13] and Givens [14]
transformations. Unfortunately, these presuppose
formation of the product <PU, which requires O(n 3)

arithmetic operations. The square root algo
rithms of Morf and Kailath [15] satisfy
Eqs. (4,5,7) simultaneously, and only presuppose
the products HL, <PL for

(32)

It is often the case that Lk can be maintained
with column dimension a<< n, which would reduce
the number of arithmetic operations to
O((m+n)na) prior to triangularization. (These
methods require that <P, H, R, G, and Q be con
stant, however.) Therefore, the fastest known
parallel update with O(n 2/log n) APEs woul~ be
expected to require at least O(a log n) arith
metic operation times for the time and observa
tion update.

[l]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

References

Kalman, R.E., "A New Approach to Linear
Filtering and Prediction Problems," Journal
of Basic Engineering, Vol. 820, March 1960,
pp. 35-45.

Schlee, F., Standish, C., and Toda, N.,
"Divergence in the Kalman Filter," AIAA
Journal, Vol. 5, No. 6, June 1967,
pp. 1114-1120.

Joseph, P.O., "Space Control Systems -
Attitude, Rendezvous and Docking," Lecture
Notes, UCLA Engineering Extension,
Los Angeles, California, 1964.

Schmidt, S.F., "Computational Techniques in
Kalman Filtering," NATO AGARDograph No. 139,
February 1970, pp. 65-86.

Battin, R.H., Astronautical Guidance,
McGraw-Hill, 1964, pp. 338-340.

Kaminski, P.G., Bryson, A.E., and
Schmidt, S.F., "Discrete Square .. r~oot
Fi Hering: A Survey of Current Tecfini ques,"
IEEE Transactions on Automatic Control,
Vol. AC-16, No. 6, December 1971,
pp. 727-735.

Agee, vLS. and Turner,. R:H., "T~i~ngular .
Decomposition of a Pos1t1ve Def1n1te Matrix
Plus a Symmetric Dyad with Applications to
Kalman Filtering," U.S. Army, White Sands
Missile Test Range, Technical Report
No. 38, October 1972.

Carlson, N.A., "Fast Triangular Formulation
of the Square Root Filter," AIAA ,Journal,
Vol. 11, No. 5, September 1973,
pp. 1259-1265.

[9] Bierman, G.J., Faato:rization Methods foP Dis
aPete Sequential Estimation, Academic Press,
New York, 1977.

[10] Mead, M. and Conway, L., IntPoduation to VLSI
Systems, Addison-Wesley, 1980.

[11] Benoit, "Note sur une methode de resolution
des equations normales provenant de 1 'appli
cation de la methode des moindres carres a
un systeme d'equations lineares en nombre
inferieur a celui des inconnues," Bulletin
Geodesique, Toulouse, 1923, pp. 67-75.

[12] Bjorck, A., "Solving Least Squares Problems
by Gram-Schmidt Orthogonalization," BIT,
Vol. 17, 1967, pp. 1-21.

220

[13] Businger, P. and Golub, G.H., "Linear
Least Squares Solution by Householder
Transformations," Mathematics of Computa
tion, Vol. 20, 1966, pp. 5-12.

[14] Gentleman, W.M., "Least Squares
Computations by Givens Transformations
Without Square Roots," Journal of the
Institute for Mathematics and Its
Applications, Vol. 12, 1973, pp. 329-336.

[15] Morf, M. and Kailath, T., "Square-Root
Algorithms for Least-Squares Estimation,"
IEEE Transactions on Automatic Control,
Vol. AC-20, No. 4, August 1975,
pp. 487-497.

1,

I

ON THE REARRANGEABILITY OF A (2log N-1) STAGE
PERMUTATION NETWORK*

Kyungsook Yoon Lee
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract

Both the rearrangeability proof and the
control algorithm are well known for the Benes
network which is intrinsically symmetric. How
ever, there has been little progress fo.r the case
of nonsymmetric networks of similar hardware
requirement.
We provide a proof on the rearrangeability of a
(2log N-1) stage network. Our proof does not
depend on the symmetry of the network and can be
applied to nonsymmetric as well as symmetric
networks. We develop a global approach, one
advantage of which is that it leads naturally to
the idea of the rearrangeability proof and a
control algorithm. For ease of understanding and

presentation, the reduced n n-1 is chosen to show
-l N N

the proof method. The nN -passable permutations

are first characterized and the bit control
algorithm emerges as the 'natural' control
algorithm for such permutations. By a simple

-1
reinterpretation into nN of the nN -passable

condition, unique control algorithm for the re
duced nN to transform an arbitrary permutation

into an n;1-passable permutation is obtained.

The hardware requirement of the reduced

~~l is (Nlog N-N+l) switches which is the lower

bound for rearrangeable networks. Though our
algorithm has the same time complexity of
O(Nlog N) for single control and 0(2N) for multi
ple control as the looping algorithm of the Benes
network, it is simpler because calculations of
inverse mappings are not required and it is easier
to understand because the switches are set stage
by stage.

1. Introduction

An interconnection network is rearrangeable
if its permitted states realize every assignment
of input points to output points [Bene64]. Our
primary concern here is N = 2n input/output inter
connection network used as a permutation
network.

The Benes binary network (we will simply
call it the Benes network hereafter), a member of
Clos' three-stage networks [Clos53], is a rear
rangeable permutation network with a well-defined
control algorithm [OpTs71], and it requires near
optimum hardware [Waks68], [Joel68]. While the

* This work was supported in part by the National
Science Foundation under Grant No. US NSF MCS80-
01561, and in part by the Univ. of California
under Grant No. US DOE SBC UCAL 5498609.

0190-3918/81/0000/0221$00.75 © 1981 IEEE

221

Benes network was proven to be a rearrangeable
network long ago [Bene64], very little has been
known about the rearrangeability of other multi
stage networks of the same hardware complexity.
The topological difference--symmetry in the Benes
network and nonsymmetry in the multistage
networks, symmetry meaning that the left half and
the right half of a network are the mirror images
of each other--may well be the main reason. The
Slepian-Duguid theorem [Bene65], [Bene75] on
which the rearrangeability of the Benes network
is founded, inherently applies only to symmetric
networks.

In this paper, we provide a new method to
understand and prove the rearrangeability or the
universality [Sieg77] of (2log N-1) stage net
works. In this method the first (log N-1) stages
(FH) and the last log N stages (LH) of the net
work are controlled by two different control
algorithms. All the permutations realizable on
LH are characterized in terms of residue classes
regarding the input permutation as on ordered set.
The LH is controlled by the usual destination tag
method [Lawr76], [Pate79]. To transform an
arbitrary permutation into a LR-passable permuta
tion, FH is controlled by a proper residue class
partitioning. Though we shall use a symmetric

-1
network nNnN in the proof for ease of under-

standing and presentation, it is emphasized that
the proof does not depend on the symmetry of
the network.

Definitions and notations are given in

Section 2. The ~1-passable condition is derived

in Section 3. In Section 4, the omega network~

[Lawr76] with its last switching stage removed (we
will call it the reduced nN)' is shown to be able

to transform any permutation into an n;1-passable

permutation.. The reduced ~~l control algorithm

and more hardware redundancy are discussed in
Section 5 and finally, in Section 6, the conclu
sion and the extension are described.

2. Notations and Definitions

Def. A Complete Residue System modulo m, CRS
(mod m), is a set of m intergers which con
tains exactly one representative of each
residue class mod m.

Def. A Complete Residue Partition, CRP is a parti
tion of a CRS(mod 2m) into two CRS(mod m).

For a given CRS(mod 2m) there are 2(m-l) different
CRP's.

We consider a N input and N output (N = 2n)
interconnection network consisting of finite
number of switching stages and fixed connections.
In this paper, we study only the case where each
switching stage is N/2 of (2X2) switching
elements. We can represent a n-stage network v as

V = COEOClEl • •• C(n-l)E(n-l)Cn
•

where C denotes a fixed connection and E denotes
a switching stage and the superscript i specifies
the i-th stage.
In particular, the inverse omega network [Lawr 76]
-1
~ can be represented as

~l = E0u E1u ••• E(n-l)u

where U is an unshuffle.

We shall use Ai to denote an ordered set of N in

put numbers, (a~, ... , a~N-l))' whic~ is the input

permutation of the switching stage E1 • An ~;1 is

shown in Fig. 1. Throughout the paper we will be
interested in the CRS properties of various par
titions of Ai.

Def.
i i

A0 k={ak}' O<k<2n
•

i _ i u i (n-j)
Aj,k-A(j-l), 2k A(j-l),(2+1)' O<k<2 , l<j.'.:_n

(See Fig. 2 for the pictorial representation of

these partitions for n=3.) Thus {A~,kl0.'.:_k<2(n-j)}

forms a 2(n-j_)-partition of Ai= {a~j0.'.:_k<2n}. By
the definition,

A~,k= ~{A~j-s),(2 sk+Jl.)IO.'.:_Jl.<2s} , 0.'.:_s.'.:_j. (1)

In particular,

Ai = U {Ai I 2 (n-i+ l) k<Jl.<2 (n-i+ l)(k+ 1)}. (2)
(n-i) ,k JI, l,JI, -

By A= {x,y} = {p,q}(mod m), we mean that A consists
of two elements x and y, congruent to p and q
(mod m) respectively.

The relation between Ai and A(i+l) is decid

ed by the effects of E and U. By A (i+l) = AiEU,

we mean that A(i+l) is obtained from Ai permuted

by E and then by U. If A(i+l)=AiEU= (AiE)U,
i i i i

then {a2k E, a 2k+l E} = {a2k' a 2k+l}

(a (i+l) a (i+l)) = (a1 E i E)
k (k+2 <n-1)) 2k • a2k+l

(i+l) (i+l) i i (n-1)
and so {ak '\+2 (n-l)}={a2k,a2k+l},O~k<2 (3)

An example of this relation for n = 3 is given in
Fig, 3.

Thus,

then

if A(i+l)=A1 EU, O<i<n,

i - (i+l) u (i+l)
Aj ,k -A(j-1) ,k A(j-1)' (k+2(n-j))

O ~ k < 2 (n-j)

(4)

222

(Fig. 4 shows the relation for n = 3.) So,

i { (i+s) I s}
Aj,k=~ A(j-s),(k+Jl.• 2(n-j)) O_::Jl.<2 , (5)

0 < k < 2 (n-j)

In particular,

Ai CAO
j ,k (i+j) ,k

(6)

. 0 0 0 0
An input sequence A =(a0 ,a1 , ••• a(N-l)) is

-1 n
Def.

an ~ -passable permutation if ak = k,
n 0 -1 0 .'.:_ k .'.:_ N, when A = A ~ .

The ~1-control algorithm is as follows:

each switch setting in the i-th stage is con
trolled by the i-th bit of the upper input in
binary representation. If the control bit is 0,
then the switch is set straight. If the control
bit is 1, then the switch is set cross (Fig. 5).

-1 Refer to Fig. 6 for an example of ~8 -control

algorithm for the destination permutation (7,2,4,
1,3,6,0,5).

3. -1
~ -Passability

In this section, we shall prove Theorem 1 on

~1-passability through Lennna 1 and Lemma 2.

Lemma 1 describes a characteristic of the ~l
-1

control algorithm. The ~ -control algorithm

works by sorting bits--if certain input condi
tions are satisfied, the lower i bits of the in
put numners to the i-th switching stage Ei are in
ascending order, and moreover, the (i+l)-th bits
of two numbers that share a switch are distinct.
An example of Lemma 1 is shown in Fig. 6 for n=3.

Lennna 1

If A~ k is a CRS(mod 2j), l~<n, O<k<2(n-j)
J.

and A (i+l) = AiEiU, i 0.'.:_i<n, where E is controlled
-1 by the ~ -control algorithm, then Ai k=::{p,p+2i}

'
(mod 2(i+l)) for any A1i k C Ai(-·) ,0.'.:_p<2i ,

, n i ,p
l<i<n.

Proof By induction of i.
i -{ i} (i+l) Suppose that A1 i= q,q+2 (mod 2)

i i ' (i+l) (i+l)
for any Al,JI. C A(n-i) ,q' Let A l,k CA(n-(i+l)),p·

Then 2(n-(i+l)-l),p<k<2(n-(i+l)-l),(p+l) '

0.'.:_p<2(i+l). -

O<k<2(n-Z)

2(n-(i+l)-l),p<2(n-2)' and so p<2i.

I

Case 2

(i+l) - i • i i • i
A l,k - {a2(2k) E ' a2(2k+l) E }

2 (n-i-1) •p 2 2k, (2k+l) < 2 (n-i-1) • (p+l)

i Ai CAi d
Therefore, Al,2k' 1,(2k+l) (n-i),p an

i i - i (i+l)
so A1 , 2k, A1 ,(2k+l)={p,p+2 }(mod 2).

i L i L (i+l)
Thus, a 2 (2k) •E =a2 (2k+l) •E =p (mod 2)

(since p<2i). However, they must be dis-
(i+2) . (i+l) c (i

tinct, (mod 2), since A l,k Al,Zk

U Ai) Ai ,.... AO b (6) and
l,(2k+l) = 2,k~ (i+2),k y

0 . (i+2)
A(i+Z),k is a CRS(mod 2). Hence,

A(i+l)={ +2(i_l)}(mod 2<i+2»
1,k - p,p

2 (n-2)<k<Z(n-l)

2(n-2)~2n-(i+l)-l. (p+l), and so 2i<p<2(i+l).

(i+l)_{ i .,i i •Ei}
A l,k - a2(2k')+l E ' a2(2k'+l)+l '

where 2k' = 2k - 2 (n-l).

2 cn-i-l). (p-2i)gk', (2k'+l)<2 <n-i-l)

i
·(p-2 +1)

i Ai CAi
Al,2k'' 1,(2k'+l) (n-l),(p-2i)

i i - ' 2i } Therefore, A1 , 2k' , A1 , (Zk'+l)=tp- ,p

(mod 2(i+l)).

i i _ i Ei --
Thus, a2(2k')+i·E =a2(2k'+l)+l 0 =

p(mod 2(i+l)), (since p-2i<2i and

2i_<p<2(i+l)). A . A(i+l)UAi)-
gam l,k l,(2k'+l) -

i 0 0
A2 ,k' CA(i+Z),k' and as A(i+2),k' is a

CRS(mod 2(i+2)),

A(i+l) = { +2(i+l)}(d 2(i+2)) •
l,k - p,p mo

Since it can be shown i.n the same way as above
1 - 2 1 1

that Al,k={p,p+2} (mod 2) for any Al,kCA(n-l),p'

02p<2 as the induction basis, the lemma is
proved. Q.E.D.

Lemma 2 states that for any input sequence

that is f:l-1-passable, the lower i bits of the in
put numbers are in ascending order and the (i+l)
th bits of two numbers that share a switch are
distinct for all the intermediate stages i. This
indicates together with Lemma 1 that the f:lNl_

control algorithm the 'natural' control
algorithm for f:lNl-passable permutations.

Lemma 2

If a~=k, 02k<2n and Ai=A(i+l)E(i-l)U, then

regardless of a particular switch seting of Ei,
i -{ i} (i+l) i i

A1 k = p, p+2 (mod 2) for any A1 k CA(_.) ,
' i , n i ,p

02P<2 and l<i<n.

223

Proof By induction of i.
(n-1) { n

Note that A l,k = ak, an }
k+2(n-l)

{k, k+2 (n-l)} = {k, k+2 (n-l)} (mod 2n).

(i+l) - { (i+l)
Suppose that A l,£ = q,q+2 }

(mod 2(i+2)) for any A(i+l)CA(i+:)
1,£ n-(i+l),q

Let

Ai CAi . . Then 2(n-i--l)"P2k<2(n-i-1)-(p+l),
l,k (n-i) ,p

i i i i } { (i+l (i+l) }
02_p<2 . Now A1 k={a2k,a(2k+l) = ak ,a (-l) ,

' k+2 n
(i+l) A(i+l) d a(i+l) ~ A(i+l)

ak £ l,,Q, an (l) ~ (Z) where
k+2 n- 1,£+2 n-

,Q, is given by k £ {2£,2£+1}. Since 2(n-(i+l)-l).

p<~<2 (n-(i+l)-l).(p+l), 2 (n-(i+l)-l~(p+2 i)<,Q, +

2<n-2)<2(n-(i+l)-l) ··(p+2i+l)' therefore A <I:~) c

A (i+l) A (i+l) CA (i+l) ·
(n-(i+l) ,p) ' l, H 2 (n-2) n-(i+l), (p+2i)

Hence, by the induction hypothesis,

A(~:~)=: {p,p+2 (i+l)} (mod 2 (i+2» and

A(i+l) (_2) =:{p+2\p+2i+2(i+l1(mod 2(i+2)),
1, (£+2 n)

and So (i+l) _ (d 2 (i+l)) d (iH)
ak = p mo an a (-l) -

(k+2 n)

p+2i(mod 2(i+l)).

Thus, A~,k = {p,p+2i}(mod 2(i+l))
Q.E.D.

Theorem 1 ----- n-1 b'l' "N -passa i ity:

An input sequence 0 0 0 0
A= (a0 ,a1 , ... ,aN-J!, is

a CRS(mod 2j), l_:':_j<n and f;JN-1-passable iff A? k is
r •) J '

O<k<2 \n-J .
-1

Proof If: Ue u,se the f:lN -control algorithm for

· h tt · Then by Lemma 1, A (n-l)={a (n-l} switc se. ings. l,k · 2k '

(1) (n 1) (n-1) n
n- i~rk k+2 - } O<k<2 • Hence, (ak,

a(2k+l)J 1 ' '

an)=(a(n-1) •E(n-1) (n-1) •E(n-l))=(k
(1) 21 ar,zk+l) ' k+2 n-~ K

k+2 (n-l)), 02_k<2 (n-l). Thus a~=k, O<k<2n and the
-1

output sequence is~ -passable. Only if: By

, . 'i+ll i
Lemma 2, AJ:,k={p,p+2i}(mod z' ')for any Al,k C

. i 0 1
AJ. ') , O<n<2 and l<i<n-2. Consider A1 k={ak. (n-i ,p ~ - ,

1 1 1 1 1
a (-l)}' and ak t:A1 Q,, a (il-l)SA (n-2>

k+2 n ' k+2 1, (H2 -')

with JI, given by k £ {2£,2R,+l}. Then 0<£<2(n-2)
(n-1), 1 1 l

(since k<2 J and A1 , Q, C A(n-l), 0 , A1 ,x, -
{ } 2 ,1d Al , C l
0,2 (mod 2) , 1, (£+2~n-2)) A(u-1),1,

A1 (-Z) = {l,1+2}(mod 2 2).
1, (HZ n)

Thus a~= O(mod 2), a1 (-l) = l(mod 2)
(k+2 n)

and A~,k is a CRS(mod 2). For j>l, A~,k
U{A (j-l) I O<,Q,<2 (j-l) p (,Q,) = kH• 2 (n-j) O<k<2 (n-j)
,Q, l,p(,Q,) - ' ' - •

Since 2(n-(j-l)-l) •,Q,2_p(,Q,)<2(n-(j-l)-l) • (,Q,+l) '

(j-1) c (j-1) (j-1) -{ (j-1)} j
Al,p(,Q,) An-(j-l) ,,Q, and Al,p(,Q,,= ,Q,,,Q,+2 (mod 2).
It follows that A9 k for j>l is a CRS(mod 2j).

J, Q.E.D.
As an example of Theorem 1, consider a permu

tation, (3,4,5,6,7,8,9,10,ll,12,13,14,15,0,l,2),
which is an uniform shift of distance 3. It is
-1

~16-passable because

(3,4,5,6,7,8,9,10, 11,12,13,14,15,0,l,2)

a CRS(mod 8) a CRS(mod 8)

._,_ __ __, '-..,---.,...--! '-------' I.--~---'
both CRS(mod 4) both CRS(mod 4)

~L._JJ___JL_J L_J L__J L__J !___l
all> CRS(mod 2)

The switch settings for the same permutation for
n=3 is shown in Fig. 7. As another example of
Theorem 1, a shuffle permutation (0,8,1,9,2,10,3,
ll,4,12,5,13,6,14,7,15) is not ~l~-passable be
cause

(0,8,l,9,2,10,3,11, 4,12,5,13,6,14,7,15)

I -1 I * a CRS(mod 8) * a CRS(mod 8)

Usually network passability has been defined
in terms of the bit relations between the source
tags and the destination tags--a tag meaning the
binary representation of a number [Lawr76],
[Peas77], [YeLa80]. In Theorem 1 the ~-1-passable
condition for an input permutation is given in
terms of CRS, which is an easier tool to deal
with. We can see easily that certain permutations,
identity and uniform shift, are rj-1-passable while
certain permutationsi shuffle, unshuffle and bit
reversal, are not ~- -passable. Clearly, identity
permutation satisfies the CRS properties of
Theorem 1 and the uniform shift preserves the CRS
properties; while shuffle, unshuffle and bit
reversal violate the CRS properties inherently.
As another example of the application of Theorem 1,
the percentage of rlNl-pa~sable permutations among
N! permutations can be easily calculated by
Theorem 1 and the use of combinatorics.

Def. The ~1-passable, condition for an input
. Ao < o o o). . h Ao permutation .= a 0 ,a1 , ... aN-l is t ~t j ,k

is a CRS (mod' 2J), for 12j~n and O~k<2J.

The ri;1-passable condition which is defined over

the original input sequence Ao, can be transformed
into a condition for intermediate input sequences

i A in the following way.

Let

224

i i (n-i)
bk ,Q, = a (-i) , O~k<2 , 1 <i <n •

' (kH•2 n)

Thus B~'s, in addition to

2(n-i) _partition of Ai.

Ai ' "d h . k s, provi e anot er
i,

However, in contrast to
i Bi Ai,k' elements of k are scattered all over Ai

(see Fig. 8).

Lemma 3

-1
The ~ -passable con~ition is equivalent to

the condition that each B~ is a CRS(mod 2i),

0 < k < 2 (n-i) 1 < i < n.
- '

Proof
0 i i

By (5). Ai k = u {A (-1) I O<,Q,<2 }
' ,Q, 0, (k+Jl.•2 n)

Q.E.D.

4. Rearrangeability of the R~duced ~n;l

We show that any input permutation can be
-1

transformed into an ~ -passable
the reduced ~ network. We only

direction of input and output in

sider it as ~ with input An and

permutation via
reverse the
-1
~ , and con-

0 output A • This

enables us to use all the relations derived in
the previous section without any change. Now

i Bk's are natural partitions for~ as can be seen

in the relations
i i (i+l) (i+l) i

(b2k,,Q,'b(2k+l),Jl.)E= (bk,,Q, • bk,(Q.+2i))' O~Jl.<2'

i i (i+l) (" 1) (8)
B2k U B(2k+l) =Bk , O~k<2n- i+ , O~i<n ,

which follows from (7) and the unshuffle effects.
If we consider the inverse of E as an ~ control,

then (8) leads us to the needed control for the
reduced ~ in virtue of Theorem 1 and Lemma 3.

Let a denote a shuffle permutation [Ston71].

Def. An exchange permutation Ei is defined by:

if Ai=(A(i+l)o)Ei and if every B~i+l) is a

CRS(mod 2(i+l)), then every B~ is a

CRS(mod 2i).

Now {Ei!O<i<n} is the one and only control we

have been looking for by the following theorem.

Theorem 2

{Ei!O<i<n} is the one and only kind of

control to transform an arbitrary permutation,
n n n n . -1

A = (a0 ,a1 , ••• ,~_1) into an ~ -passable

0 0 0 0
A = Ca0,a1 , ••. ,aN-l) via the. reduced permutation

~·

I

I'
I

Proof

Since Bn =An
0 .

is always a CRS(mod 2n), by the
J..

definition of ER'
i

it follows that each Bk'

O..::_k<2(n-i), ~~i..::_n is a CRS(mod 2i) when Ai=A(i+l)
0 0 0 0 .

Hence, by Lemma 3, A = (a0 ,a1 , .•• ,aN-l) is

-1
an ~ -passable permutation. Conversely, any such

i
control must be ER at stage i by Theorem 1, Lemma

3 and (8). The fact that O<i<n, not O<i<n, in

Theorem 2, means that ri;1-passable con~ition is

satisfied already for Al. Thus, the switches of
the last stage of ~ are redundant leaving us with
the reduced 0. •

""N Q.E.D.

We now show that Ei is always realizable by a
R .

set of switches. The relatio~ (8) ~tates that E~
should be able to

a CRS(mod 2(i+l))
partition B~k U B~k+l when it is

. i
into two CRS(mod zi), BZk and

B~k+l by partitioning proper (b~k,i'b~k+l,i) at

each switch element. Thus the following Lemma
ensures the realization of Ek·
Lemma 4

Ci-1) I Consider (ak,bk)' O..::_k<2 , {ak,bk O..::_k<

(i-1)} i 2 =a CRS (mod 2) • Then there is a permuta-
tion E such that {ak E,bk E}= {ak,bk} for each k

(i.e., E is an ex.change permutation) and such that

{ak E[O..::_k<2(i-l)} is a CRS(mod 2(i-l)).

Proof
- (i-1)

By construction. Let ak =pk (mod 2) ,

bk :::qk(mod 2(i-l)), 0_2.k<2(i-l) Every number

(i-1) .
between 0 and (2 -1) occurs twice among pk's
and qk's. Rearrange the pairs into groups in such
a way that, in each group with more than one pair,
any two adjacent pairs have a number in common and
the first and the last pairs have a number in
common. In such a group, if the common number of
the 1st and the 2nd pairs occurs in the same posi~
tion of eacg pair, then exchange positions of the,
two numbers of the seconf pair. By repeating this
process between the second and the third pairs and
so on, we obtain (pk,qk)'s, such that (pk,qk) =

{ ' '} Ok2(i-l) d pk,qk , ..::_ < an all

Set (ak•E,bk•E) = ((ak,bk)

pk's are distinct.

if pk= pk '

(bk,ak) otherwise.

Then by construction,

a •E=p'(mod 2(i-l» O<k<2(i-l)
k k ' -

and {ak•EJ0_2.k<2(i-l)} is a CRS(mod 2(i-l)).
Q.E.D.

Note that in the exchange processes in the above
proof one pair of numbers does not need an
exchange, indicating the redundancy of a switch in

225

i
each CRP of ER. An example of Lemma 4 is given

in Fig. 9 and an example showing the transforma
-1 tion of a non-n8 -passable permutation into an

-1 n8 -passable permutation is shown in Fig. 10.

In conclusion, the concatenation of the
-1 -1

reduced ~ and ~ , called the reduced ~~ is

a (2log N-1) stage rearrangeable network.

Theorem 3

The reduced
network.

Proof

is a rearrangeable

By Theorem 1 and Theorem 2.
Q.E.D.

s. -1
The Reduced ~~ -Control Algorithm

and Redundancy

In this section, we summarize the reduced

~n;1-control algorithm which has been described

in the previous sections. We shall call a binary
tree of CRP's a CRPT. A CRPT is a full binary
tree of (n-1) levels whose root node is a CRP
partitioning a CRS(mod zn) and the two sons of a
node are two CRP's partitioning two CRS's pro-

duced by the parent node. Observe that E(i-l) in
R

the previous section corresponds to the i-th level
of a CRPT.

-1
The reduced ~~ -control algorithm.

1. The reduced ~ is controlled by a CRPT.

2. n;;1 is controlled by the n;1-control

algorithm (Sec. 2).
-1 An example of the reduced n16n16-control algorithm

is shown in Fig. 11 for the bit reversal permu
tation.

We discussed earlier, in the proof of Theorem
2, the redundancy of the last switching stage of
~ by which we obtained the reduced ~· Further
redundancy in switches was mentioned after Lemma
4.
The number of the CRP's needed for the reduced

~n;1-control algorithm is,
-1

No. of CRP's for the reduced~~ =

1+2+ .•• +2 (n-Z) = 2 (n-l) -1 = (N/2-1)
Thus the number of necessary switches in the

-1
reduced ~~ is,

No. of switches in the reduced QNn~1

(2n-l) •N/2 - (N/2-1) = (Nlog N-N+l)
This is exactly the same as the number of switches
required for the reduced Benes network [Waks68],
[Joel68] which is a lower bound for rearrangeable
networks.

The control by a CRPT requires O(Nlog N)
-1 time steps, and the ~ -control requires O(log N)

time steps. Therefore, the time complexity of
-1 .

the reduced~~ -control algorithm is O(Nlog N).

When more hardware is available for control, the
CRP's on the same level of a CRPT can be done in
parallel reducing the CRPT control time and thus
the overall control time to O(N+N/2+ ••. +2)=0(2N).
These control time complexities are in the same
order of magnitude as those of the looping
algorithms for the Benes network [OpTs71]. But
our algorithm is simpler as inverse mappings are
not needed, and it is eas.ier to understand as the
switches are set stage by stage.

A characteristic of a CRPT control is that
any fixed connection at the beginning of a re
arrangeable network is redundant. Therefore, the

first shuffle of the reduced ~~l can be removed

and the resultant network is still rearrangeable.

6. Conclusion and Extension

Employing a new global approach a proof of
-1 the rearrangeability of the reduced ~nN was

given. The proof method can be used for non
symmetric as well as symmetric networks. We have
succeeded in constructing a rearrangeable network
with the same .hardware requirement as the reduced
Benes network. A control algorithm with the same
control time complexity as that of Opf erman and
Tsao-Wu's looping algorithm was described. Our
control algorithm is simpler because calculations
of the inverse mappings are not required, and it
is easier to understand because the switches are
set stage by stage.

We have considered only the N=2n case with
(2x2) switches in this paper. An immediate gener
alization may be to the N=pn case with (pxp)
switches for p>2 [Lee]. Another extension is
being investigated on the proof of the rearrange
ability for the networks resulting from concate
nation of two delta networks [Pate79] based on
the CRPT related equivalence relation [Lee].

We could have used the known network equiva
lence relations to obtain many rearrangeable
networks with the minimum hardware requirement
[Lee]. Some networks surely will be nonsym-

metric (for ex. Bn-1). One of the networks that
can be obtained in this way is the reduced npn.
Parker showed that npn is rearrangeable [Park80]
without giving a control algorithm. Now we have a
control algorithm for the (2log N-1) stage reduced
npn where the reduced n is controlled by a
modified CRPT and the second n is controlled by a
single bit control algorithm.

Even the Benes network can be thought of as
another (2log N-1) multistage network, and if we
use a similar approach, we get a new Benes network
control algorithm [Lee). Thus, the notion of

symmetry and recursiveness which differentiated
the Benes network from other multistage networks
disappears and they can be treated as a family of
rearrangeable permutations networks with the
minimum hardware requirement.

Now the bottleneck of the control algorithm
lies in the set partitioning problem. If we can
find a fast set partitioning algorithm, the
network control time can be greatly reduced.
Also, the non-uniqueness of the CRP might be use
ful for fault-tolerant network designs.

Acknowledgment

The author would like to express sincere
gratitude to Professor David J. Kuck for his
encouragement and guidance.

References

[Bene64] V. E. Benes, "Permutation Groups, Com
plexes, and Rearrangeable Connecting
Networks," Bell System Tech. Journal,
Vol. 43, No. 4, pp. 1619-1640, July
1964.

[Bene65] V. E. Benes, Mathematical Theory of
Connecting Networks and Telephone
Traffic, Academic Press, NY, 1965.

226

[Bene75] V. E. Benes, "Proving the Rearrange
ability of Connecting Networks by
Group Calculations," Bell System Tech.
Journal, Vol. 54, No. 2, pp. 421-434,
Feb. 1975.

[Clos53] C. Clos, "A Study of Non-Blocking
Switching Networks," Bell System Tech.
Journal, Vo. 32, No. 2, pp. 406-424,
March 1953.

[Joel68] A. E. Joel, "On Permutation Sw:i.tching
Networks," Bell System Tech. Journal,
Vol. 47, No. S, pp. 813-822, May-June
1968.

[Lawr76] D. H. Lawrie, "Access and Alignment of
Data in an Array Processor," IEEE
Trans. on Computers, Vol. C-25, No. 12,
pp. 1145-1155, Dec. 1976.

[Lee K. Y. Lee, Ph.D. Thesis, in preparation.

[OpTs71] D. C. Opferman and N. T. Tsao-Wu, "On a
Class of Rearrangeable Switching
Networks, Part I: Control Algorithm,"
Bell System Tech. Journal, Vol. 50,
No. 5, pp. 1579-1600, May-June 1971.

[Park80] D. S. Parker, "Notes on Shuffle/Exchange
Type Switching Networks," IEEE Trans.
on Computers, Vol. C-29, No. 3, pp.
213-222, March 1980.

[Pate79] J. H. Patel, "Processor-Memory Inter
connections for Multiprocessors,"
Prof. 6th Annual Symp. on Computer

I

I
I.
i

[Peas77]

[Sieg77]

[Ston71]

[Waks68]

[WuFe79]

[YeLa80]

Architecture, New York, NY, pp. 168-
177, April 1979.

M. C. Pease, "The Indirect Binary n-Cube
Microprocessor Array," IEEE Trans. on
Computers, Vol. C-26, No. 5, pp. 458-
473, May 1977.

H. J. Siegel, "The Universality of
Various Types of SIMD Machine Inter
connection Networks," Proc. 4th Annual
Symp. on Computer Architecture, pp.
70-79, March 1977.

H. S. Stone, "Parallel Processing with
the Perfect Shuffle," IEEE Trans. on
Computers, Vol. C-20, pp. 153-161,
Feb. 1971.

A. Waksman, "A Permutation Network,"
Journal of ~he ACM, Vol. 15, No. 1,
pp. 159-163, Jan. 1968.

C. L. Wu and T-y. Feng, "The Reverse
Exchange Interconnection Network,"
Proc. of the Int'l. Conf. on Parallel
Processing, pp. 160-174, 1979.

P-C. Yew and D. H. Lawrie, "An Easily
Controlled Network for Frequently Used
Permutations," Proc. of the Workshop
on Interconnection Networks, Lafayette,
IN, pp. 72-73, April 1980.

Ai Ei

I A~.o -+ a~ "' 2

={]= : A~ ,0
+

I_ A~,l -+ a~ = S

A~,0 +

I

I i i 7 I A~,2 -+ a2 ,,.

l_A~,l + =[)=
A~,O

,_ A0,3 -+ a~ = 1

1
-+ a~ = 0

[''. '
I A~,4 ={]=

-+ a~ = 3
A~,l +

_ Ao,s

rA~,6 .,_ a~ = 6 ___J-1=
- Al,3 I i

+ a~ "" 4
l__J -

1_ AO, 7

A~,O

Fig. 2 • Partitions of Ai, A~,k for n=3, O.:::_j_.:_n,

Fig. 3 • Effect of an Unshuffle

{a6i+l) • a;;i+l)} = {a~, ai}

A~ ,0

OQ--Fl-oo

11-H-~11

Fig. S • The bit of the upper
input number to a controls
the swit;ch setting for the i-th
stage E1 • The control bits are
underlined.

A (i+l) E(i+l)

"Fig. 4 . Example of Formulae (4)

227

N
N
00

:2 I

I
"' l'3

+
i o o:-1 0 0 0

-{ !
~,~ "' "' u

~-1
l'3

f !
"' l'3 l 0

1 l 1

Fig. 7 . An Example of Theorem 1 for n:8. An uniform shift of distance 3,

(3,4,5,6, 7 ,0,1,2), is ng1-passable. (Control bits are underlined.)

A3 02
'R

AZ E; A1 ED
R

7:-----; 7 7 :----, 7 _____ 7 ~

AO

7 ' '
31 ! 3 0 ' 0 2 I

~--I---
!-- - -- J

0 ,... - - - l

S'

l-

3r---,

41

6 r - - - ,

'- - •• .1

Fig. 10. An Example of Theorem 2: an arbitrary permutation can be

transfonned to meet the ~1-passable condition via the reduced !JN.

A3 :: (7 ,5,0,1,3,4,6,2) is not n;1-passable but AO= (7 ,2,0,5,3,4,6,1)

is. (Redundant switches are drawn in dotted lines.)

Ai

~ "'" [n:
-------+ ~ ,, [:1 i,1

0
_

xx

Bi
0

Bi
1

':,<--'>_, [1~i= I

Fig. 8 . Two different ways of a 2 (n-i) -partitioning of Ai.

EJ
R

,2 ,1
R

Bi
2 (n-i) -1

Residue Class
mod(4)

Residue Class
mod(4)

(3)

(1)

(3)

(0)

(0)

(1)

(2)

(2)

I El 7(3)

5 (l)

3+4(0)

4 3(3)

o~Hll
1 0(0)

6~6(2)
2 2(2J

Fig. 9 • An Example of Lemma 4: a CRP
can be always realized on a set of switchos,
(Circled numbers show the order of the
switch settings. Input CRS(mod 8) "."
{7,5,3,4,0,1,6,2} is partitioned to two
CRS(mod 4)', (7,4,1,6) and (5,3,0,2l.)

Fig. 11. Bit Reversal on n16nt~· The reduced n16nt~ is drawn in solid lines.

(+ indicates control bits and heavy lin'es show a CRS partitioning.)

PERFORMANCE AND IMPLEMENTATION OF 4x4 SWITCHING NODES
IN AN INTERCONNECTION NETWORK FOR PASM

Robert J. McMillen, George B. Adams III, and Howard Jay Siegel
School of Electrical Engineering, Purdue University

West Lafayette, IN 47907

Abstract
Design issues for the multistage Generalized

Cube network are discussed in this paper. An
analysis of the merits of 2-input/2-output inter
change boxes versus 4-input/4-output crossbars for
interconnection network implementation is made.
The cost and performance of each network for the
two switching node alternatives are examined.
Discussion of the suitability of each approach for
VLSI implementation is included. It is shown that
in a packet switching environment, 4x4 crossbars
outperform, and are Less expensive to implement
than the four interchange boxes they replace.

I. INTRODUCTION
The choice of interconnection network is a cen

tral issue in the design of large-scale,
multimicroprocessor-based distributed and parallel
systems. The Ballistic Missile Defense CBMD)
Agency is designing a test bed for evaluating such
systems as they may apply to BMD tasks [8]. PASM
is a multimicroprocessor system being designed at
Purdue University for a variety of image process
ing and pattern recognition problems [16]. In
both cases a highly flexible network is needed for
communication among processors and memories.

The Generalized Cube network has a cube-type
topology and is constructed from 2-input/2-output
crossbars or interchange boxes [17]. A more gen
eral form of interchange box is an a-input/a
output Ca x a) switching node. A relative of the
Generalized Cube network can be constructed from
a x a switching nodes using cube-type connections
between stages. Many papers in the literature
discuss using larger than 2x2 interchange boxes
for implementing multistage cube-type networks [2,
7, 10, 11, 12, 18J. In the following, design op
tions for 4x4 switching nodes are considered. The
performances of two designs are evaluated and
their implementation in discrete Logic (e.g., TTL>
and VLSI is considered. It will be shown that a
4x4 crossbar performs better and costs less than
four 2x2 crossbars in a packet switching environ
ment.

The Logical structure of the Generalized Cube
network is defined in Section II to provide a

This work was supported by the Ballistic Missile
Defense Agency under grant number DASG60-80-C-0022
and the Air Force Office of Scientific Research,
Air Force Systems Command, USAF, under
AFOSR-78-3581. The United States Government is
authorized to reproduce and distribute reprints
for Government purposes nonwithstanding any copy
right notation hereon. The views, opinions,
and/or findings contained in this report are those
of the author(s) and should not be construed as an
official Department of the Army position, policy,
or decision, unless so designated by other offi
cial documentation.

0190-3918/81/0000/0229$00.75 © 1981 IEEE

229

framework for discussing modifications. In Sec
tion III, the performance of two network implemen
tations are compared. Implementation considera
tions are presented in Section IV. For further
details of all this material see [14J.

II. DEFINITIONS
A partitionable SIMD/MIMD system is a parallel

processing system which can be structured as one
or more independent SIMD and/or MIMD machines [4]
of varying sizes. PASM is a partitionable
SIMD/MIMD system for image processing and pattern
recognition [16J. The BMD testbed should have the
flexibility to perform as a partitionable
SIMD/MIMD machine. The cube network described
here can function efficiently in such an environ
ment.

The Generalized Cube network (Fig. 1) is a mul
tistage cube-type network topology which was in
troduced in C17J. It has been shown that this to
pology is equivalent to that used by the omega
[7J, indirect binary n-cube [11J, STARAN [1J, and
SW-banyan CF=S=2> [6J networks [17, 20J. An N
input/output Generalized Cube topology has
~ = log2N stages, where each stage consists of a

set of N lines connected to N/2 interchange boxes.
Each interchange box is a 2-input/2-output device.
The labels of the input/output CI/0) Lines enter
ing the upper and Lower inputs-of an interchange
box are used as the labels for the upper and lower
outputs, respectively. The Labels are the in
tegers from 0 to N-1. Each interchange box can be
set to one of four states as shown in Fig. 1. The
connections in this network are based on the cube
interconnection functions [13J. Stage i of the
generalized cube topology pairs I/O Lines that
differ only in the i-th bit position.

The name cube network will be used to refer to
the network consisting of the Generalized Cube to
pology and four-state interchange boxes. Each in
terchange box will be controlled independently
through the use of routing tags [7, 15J.

STAGE 2

Figure 1 Ca):
Cb):

(a)

STRAIGHT :U
EXCHANGE =B=

UPPER -fr
BROADCAST ~

LOWER -U
BROADCAST -H-

(b)

Generalized Cube topology for N=8.
Four states of an interchange box.

It is assumed that processors and memories are
paired to form processing elements CPE's). The
network is configured such that PE i is~connected
to input i and output i, O~i<N. The packet
switching mode, in which packets move from stage
to stage in the network as paths between stages
become available, is assumed. They do not require
that their entire path be established prior to
entering the network. A packet consists of a
routing tag and a number of data items. Packet
switching in multistage networks has been dis
cussed in (3, 19J.

The primary goal here is to investigate the
cost-effectiveness of constructing multistage cube
networks from 4x4 crossbars versus 2x2 crossbars
(interchange boxes). Since a single 2x2 inter
change box is not functionally comparable to a 4x4
crossbar Ci.e., it can only handle two items at a
time instead of four>, the 4x4 crossbar is com
pared with a 4x4 composition of four 2x2 inter
change boxes. This configuration is called a
composite node and is shown in Fig. 2. A network
constructed from properly connected (to be speci
fied later) composite nodes is identical to a cube
network constructed from 2x2 interchange boxes.
The external connections of the crossbar (Fig. 3)
are identical to those of the composite node, so
it can be directly substituted for a 4x4 composite
node.

Many options for the implementation of 2x2 in
terchange boxes were discussed in C9J. To avoid
repetition, one of the configurations discussed in
that paper will be assumed here. It is assumed
that packet switching is implemented and that an
entire packet is transferred between adjacent
stages during one network clock cycle. Further
more, the size of each input queue in a ~witching
node is assumed to be an integral multiple of the
packet size. The packet size is thus not res
tricted to be any particular number of words.

R-REQ.UEST G-GRANT

Figure 2: A 4x4 composite node constructed from
four 2x2 interchange boxes.

230

III. PERFORMANCE ANALYSIS
The 4x4 crossbar node and composite node will

be compared in their performance at both a local
and global level. On a local level blocking
within a node is examined. On the global level,
the permuting ability of two networks constructed
from the respective 4x4 switching nodes is com
pared.

Consider the local level. Let level of a
composite node be the two interchange boxes con
nected to the inputs of the node and level 2 be
the two interchange boxes connected~he-out
puts. The composite node can perform 16 permuta
tion connections (each box either straight or ex
change) and the crossbar node can perform all 4!
possible permutation connections.

For those permutations where there is no con
flict in either node, the messages traverse the
composite node in twice the time required by those
in the crossbar node due to the two levels of in
terchange boxes. When conflicts occur in the
crossbar node, the delay due to waiting diminishes
the speedup achieved.

Consider situations where there are conflicts
in a switch node. For this analysis it is assumed
that the destination of any message is a uniformly
distributed random variable. Also, it is assumed
that each message has only one destination (i.e.,
no broadcasting). Both the composite node and the
4x4 crossbar node have four inputs and four out-

puts so there are 44=256 distinct patterns in
which messages may need to be routed through the
boxes. Since the destinations are assumed to be
random and uniformly distributed, the distinct
data patterns of routing are all equally likely.
Assuming four simultaneous inputs is somewhat of a
worst case, since in MIMD mode this would be con-

0

o--+-<---+->--- MUX

4 4 4 4

2 2 2

RO -------
GO -------

CONTROL UN IT

R-REQ.UEST G-GRANT

Figure 3: A 4x4 crossbar node.

RO
GO
RI
Gl
R2
G2
R3
G3

[,

sidered heavy loading and in SIMD mode destina
tions are not random but structured and chosen to
avoid conflicts. The node is assumed initially
empty.

Consider the 4x4 crossbar node. Let r be the
maximum number of messages desiring any given out
put of the 4x4 crossbar node. The total time re
quired for all four messages to pass through the
node is r. PCr=1> = 24/256, PCr=2> = 180/256,
PCr=3) = 48/256, and PCr=4> = 4/256. The expected
time to pass all four messages through the
crossbar node is given by:
4
E i •PCr=i> = 2.125 network clock cycles.
i=1
That is, given that four messages arrive at an
empty crossbar node simultaneously, on the average
it will take 2.125 network clock cycles for the
node to empty.

Now consider the composite node. The following
notation will be used in the ensuing equations,
where i=1 or 2:

PCiU) = PCno conflict level i, upper box> = 1/2;
P(il) = P(no conflict level i, lower box) = 1/2;
PCiX) = 1/2, where X = U or L; and
P(i) = P(no conflict in level i) = 1/4.

Now consider the probabilities of different
amounts of time, t, to pass four input messages
through the composite node. The m1n1mum time pos
sible is 2 network clock cycles because there are
two levels.
P(t=2) = P(1U) •PC1U •PC2U) •PC2U = 1/16.

For a total time of 3 network clock cycles
there are 5 cases to consider. First assume no
conflicts occ~r in level 1.
P<'t=3, case 1> = PC1)-C1-PC2)) = 3/16.

Next, assume exactly one level 1 interchange
box has a conflict. P(t=3, case 2) =
[(1-PC1U)) •PC1U+PC1U) -C1-PC1L))J •PC2X) = 1/4.

For case 3, there is one conflict at each lev
el, but the maximum delay is 3 cycles.
P(t=3, case 3) = [(1-PC1U)) •PC1U+PC1U)•(1-PC1L))J

• (1-P(2X))•(1/2)•P(2X) = 1/16.
The first factor is the probability that exactly
one box at level 1 has a conflict. The next fac
tor is the probability that the first message from
the level 1 box which had a conflict, call this
message M, also has a conflict at level 2. The
C1/2) is the probability that M'will be chosen to
pass through the level 2 box first. The Last fac
tor is the probability that the two delayed mes
sages do not conflict.

Case 4 assumes that there is a conflict in both
level 1 boxes and that both Level 2 boxes receive
messages (this happens half the time there are two
conflicts in Level 1).
PCt=3, case 4) = (1/2)-C1-PC1U))•(1-PC1U) = 1/8.

Finally, assume conflict in both level 1 boxes
but only one level 2 box receives messages and
there is no conflict for either pair that passes
through: P(t=3>, case 5) =
(1 /2) • (1-P (1 U)) -C1-P (1 U) •p C2X>-P C2X) = 1 /32.
The probability that all messages pass through the
composite node in 3 network clock cycles is
PCt=3) = 3/16 + 1/4 + 1/16 + 1/8 + 1/32 = 21/32.

For a time of 4, there are four cases to con
sider. The first case is where there is one con
flict at each level. There are two ways to obtain
a time of 4 from this situation: (1) the delayed

231

message enters a non-empty queue in level 2 and
(2) the delayed message enters an empty queue but
conflicts with the other remaining message:
PCt=4, case 1> = [(1-PC1U)) •PC1U+PC1U>-C1-PC1U>J
•[(1 /2) -C1-P C2X))+ C1 /2) "<1-P C2X)) "C1-P C2X))J=3/16.

Now assume conflict in both level 1 boxes and
that only one level 2 box receives messages (this
happens half the time there are two conflicts in
level 1). Given this occurs, there are three ways
Ceases 2, 3, and 4) a time of 4 occurs. In case
2, the first two messages reaching the box in lev
el 2 confl.ict, but there are no subsequent con
flicts:
PCt=4, case 2) = C1/2)-C1-PC1U))-C1-PC1L))•
C1-PC2X)) •P(2X) = 1/32.

In case 3, the first pair of messages do not
conflict but the second pair do:
PCt=4, case 3) = C1/2)-C1-PC1U))-C1-P(1L))•
PC2X)-C1-PC2X)) = 1/32. .

In case 4, the first and second pair of mes
sages conflict. When the second pair conflicts,
one queue will contain two messages. For a time
cf 4 the queue with two items must be selected to
resolve the second conflict and a third conflict
must not occur.
PCt=4,case 4) = C1 /2) -C1-P C1 U)) -<1-P (1 L))
-C1-P C2X)) -C1-P C2X)) -C1 /2) •P C2X) = 1 /128.
The probability of a time of 4 is:
P(t=4) = 3/16 + 1/32 + 1/32 + 1/128 = 33/128.

The time of 5 happens when either of the two
conditions of case 4 for a time of 4 are not met.
P(t=5) = (1/2)-C1-PC1U»-C1-PC1U>-C1-PC2X))
•[(1/2H1-PC2X))+C1/2)(1-PC2X))(1-PC2X))J = 3/128.

The expected time for all four messages to pass
through the composite node is:

5
E i • P<t=i> = 3.242 network clock cycles.
i=2
This time is 53% longer than the 2.125 network
clock cycles expected with the crossbar node.

Consider the global level. To construct a net
work from m/2 stages of N/4 4x4 switching nodes,
assume all connection lines in the network are la
beled in base 4 and that the stages are numbered
Cm/2)-1,•••,1,0 (from input to output). At stage
i, the four input lines to a node are those that
differ only in the i-th position of their base 4
representation. The line with a 0 in the i-th po
sition connects to the top input, 2 to the next
input, to the next input, and 3 to the bottom
input. The output lines of the 4x4 switching
nodes have the same labels as the input lines, but
in increasing order, i.e., the top output line la
bel has a 0 in the i-th position, next 1, next 2,
and the bottom 3. When composite nodes are used,
making connections in the above manner creates a
cube network. When crossbars nodes are used, a
network is created whose capabilities are a super
set of those of the cube network.

A composite node network consists of Nm/2 in-

terchange boxes, allowing 2Nm/2 permutations. As
suming m is even, a 4x4 crossbar node network con-

si sts of Nm/8 nodes, permitting C4!)Nm/8 permuta
tions. If m is odd and one stage is constructed
by 4x4 crossbar nodes limited to act as a 2x2

nodes, then 2N 12 C4!)N<rn-1>18 permutations are pos
sible.

IV. IMPLEMENTATION
To control the network, the destination tags

defined in [7] are used. Let the destination ad
dress D be represented in binary as dm_1 •••d1d0•
A switching node in stage i examines bits d2i+1
and d2i. For the composite node, the first level

interchange boxes examine only bit d2i+1 and the
second level interchange boxes examine only bit
d2i. If the bit examined is O, the upper output

link of the interchange box is selected and if the
bit is 1, the lower link is selected. For the
crossbar node, both bits are examined simultane
ously. Together they are considered a single base
four digit which corresponds to one of the outputs
labeled 0 through 3.

To add a broadcast capability, an nt-bit broad
cast mask is appended [15]. Let the mask B be
represented in binary as bm_1 •••b1b0• A switching

node in stage i now examines b2i+1, b2i, d2i+1 and
d2i. For the composite node, first level inter

change boxes examine bits with index 2i+1 and
second level boxes examine bits with index 2i. If
the broadcast mask bit is O, the destination tag
bit is interpreted as before. If the mask bit is
1, the destination bit is ignored and both output
links of the interchange box are selected. For
the crossbar node the four bits are all examined
simultaneously. They are interpreted so as to es
tablish the same connections as those that would
be obtained in the composite node. Five kinds of
broadcasts are defined for either type of 4x4
switching node.

Hardware Without Broadcast Capability .
For simplicity, designs for the composite node

and the crossbar node initially will be developed
assuming no broadcast capability. Then, those
portions of the designs affected by inclusion of a
broadcast capability will be modified and com
pared.

In the following analysis, hardware complexity
is measured in terms of logic gate count and chip
count. The gate counts are used as a first ap
proximation to compare VLSI implementations.
Designs using this technology must also consider
wiring complexity [5]. The chip counts are used
to compare discrete logic (e.g. TTL) implementa
tions, assuming standard gate-per-chip packaging.

Examining Figs. 2 and 3, the first difference
noted is that the crossbar node requires half as
many queues as the composite node. Depending on
the actual queue size, a considerable savings in
logic may be realized in the implementation of the
crossbar node. To compare multiplexer require
ments, typical implementations of 2-to-1 and
4-to-1 multiplexers were examined [14]. Eight
2-to-1 multiplexers require 20% more gates <re
gardless of path width> than four 4-to-1 multi
plexers. The chip counts are equal. Since the
number of external connections for data and con~
trol lines is the same for both designs, any
buffering/signal conditioning logic will be com
parable. In a VLSI design, this implies identical
pin counts.

Thus far the crossbar node appears to be the
better choice. It is however, decidedly more com-

232

plicated to arbitrate the requests of four packets
simultaneously <as opposed to two> while assuring
each packet equal access to each output link on
the average. To determine whether one 4x4 control
unit is actually more complex than four 2x2 con
trol units, the functional components of the con
trol units are considered.

The control unit of a 2x2 interchange box con
tains two sets of queue control logic, input re
quest arbitration CIRA> logic, output request ar
bitration CORA) logic, and timing~ The control
unit for a 4x4 crossbar node contains four sets of
queue control logic. The remaining components are
the functional equivalents of those for the 2x2
interchange box. The most obvious difference
between the two designs is that four 2x2 control
units contain twice as many sets of queue control
logic as one 4x4 control unit.

One set of queue control logic contains two re
gisters which store pointers, one to the front and
one to the back of its associated queue. If the
queue is Q words long, log2G bits are required for

each register.
The IRA logic is quite simple. If a request is

made for ·the i-th input, Ci=0,1 for the 2x2;
i=0,1,2,3 for the 4x4), it will be granted if the
i-th queue is not full. Once again, four 2x2 con
trol units require twice as much IRA logic as one
4x4 control unit.

The timing logic is identical
Three clock phases are
request/grant/transfer protocol
<see [9]).

in both cases.
generated. A

is implemented

None of the logic discussed thus far is affect
ed by the inclusion of a broadcast capability.
Thus, its analysis is equally applicable to the
next subsection, which includes broadcast capabil
ities.

The most important and by far the most complex
component of the control unit is the ORA logic.
It is responsible for examining the routing tag
bits and generating signals to set the multi
plexers and make requests. It must also examine
the grant signals and generate control signals for
the "increment front pointer" input of each set of
queue control logic. The complexity of this logic
arises from arbitrating conflicting requests for
access to the output ports.

To compare the ORA logic, equations are derived
for all its output signals as a function of the
tag bits and grant signals C14J. The total CNAND)
gate count for 4 sets 2x2 of control unit logic is
104 gates. This corresponds to 24 chips. The
control unit for the 4x4 crossbar node requires
124 gates. There is a 19% increase in the number
of gates required by the crossbar node. In a
discrete logic design, the chip count is 32. This
is a 33% increase over the 24 chips required in
the composite node.

The excess in ORA logic can be compensated for,
since a 4x4 crossbar node requires half the queue
control and IRA logic of a 4x4 composite node.
From the equations derived, 20 extra gates or
eight extra chips are required for the 4x4
crossbar ORA logic. Assuming one of the eight
sets of queue control and IRA logic in a composite
node will require more than 5 gates or 2 chips,
the 4x4 crossbar node is actually less expensive
to build. Despite the higher wiring complexity of

the 4x4 crossbar node, the total design effort is
comparable to that required by the 4x4 composite
node.

Hardware With Broadcast Capability
Adding a broadcast capability requires the ORA

Logic to examine the broadcast mask bits in addi
t~on to the routing tag bits. The revised equa
tions for the 2x2 control unit require 33 gates
which multiplied by 4 is 156. This is equivalent
to 48 chips. A broadcasting capability costs 52
gates or 24 chips beyond the requirements for a
4x4 composite node without it. More detai Ls can
be found in [14].

The circuitry needed to add the same broadcast
capability to 4x4 crossbar nodes as was added to
the composite nodes requires 233 gates, a 49% in
crease over the 156 required for the composite
node. The chip count is 74, a 54% increase over
48. In this case it is Likely that one of the
eight sets of queue control and IRA Logic will re
quire more than 20 gates or 7 chips. If not, the
savings in queue gates will compensate for the
difference. Again the crossbar node is Less ex
pensive than a composite node where both have the
same broadcast capability.

V. CONCLUSIONS
At a Local Level, the crossbar node is always

faster at passing four messages that arrive simul
taneously than the composite node. If the connec
tion requests do not conflict in the composite
the crossbar is twice as fast. When the connec~
tion requests of the messages form a permutation
which the composite node cannot pass without con
flict, it takes 3 times Longer for all messages to
exit the composite node. Assuming each message
chooses :ach output with equal probability, on the
average 1t takes approximately 53% more time for
all messages to pass through the composite node
than through the crossbar node.

The ORA ~ogic is the only Logic requiring more
hardware in a crossbar node than in a composite
node. Otherwise, a crossbar node requires half as
much queue control and IRA Logic, and half as many
queues. The multiplexer Logic is Less than or
comparable to that needed by the composite node.
The net result is that when packet switching is
implemented, the 4x4 crossbar node requires Less
hardware and significantly out-performs a compo
site node.

If circuit switching is implemented, no queues
or their associated control Logic are required.
In this case, the crossbar node does contain more
hardware. However, it offers a significant im
provement in connectivity/permuting ability. If
the switching nodes are implemented as VLSI chips
since both nodes require the same number of pins:
the gate/pin ratio is improved with a crossbar im
plementation. Only in the case where circuit
switching is implemented in discrete Logic is
further consideration required. Without a broad
cast capability (which is Less important in a cir
cuit switching environment), there is only a small
difference in the chip count.

In summary, the implementation of cube-type
networks using 2x2 and 4x4 crossbars were com
pared. It was shown that for packet switching the
4x4 crossbar is a more cost-effective approach.

233

2

3

4

REFERENCES
K. Batcher, "The flip network in STARAN," 1976
Int. Conf. Parallel Processing, pp. 65-71,
Aug • 19'76':""
L. Ciminiera, A. Serra, "Modular interconnec
tion networks with asynchronous control " 14th
Hawaii .!!'.!!· Conf. System Sciences: -PP:-
210-218, Jan. 1981.
D. Dias, J. Jump, "Packet communication in
multi stage shuffle-exchange networks," 1980
.!!'.!!· Conf. Parallel Processing, pp. 327-328,
Aug. 1980.
M. Flynn, "Very high-speed computing systems,"
Proc. IEEE, Vol. 54, pp. 1901-1909, Dec. 1966.

5 M. Franklin, "VLSI performance comparison of
banyan and crossbar communications networks,"
Workshop on Interconnection Networks for
Parallel and Distributed Processing, pp.

6
20-18. Apr. 1980.
G. Goke, G. J. Lipovski, "Banyan networks for
partitioning multiprocessor systems," 1st
Symp. Comp. Arch., pp. 21-28, Dec. 1973.

7 D. Lawrie, "Access and alignment of data in an

8

9

10

11

12

13

14

15

16

17

array processor," IEEE Trans. Comp. Vol.
C-24, pp. 1145-1155, Dec. 1975. -- '
W. McDonald, J. Williams, "The advanced data
processing test bed," Compsac, pp. 346-351,
Mar. 1978.
R. J. McMillen, H. J. Siegel, "The hybrid cube
network," Distributed Data Acquisition
Computing and Control Symp., pp. 11-22, Dec.:
1980. --
J. Patel, "Processor-memory interconnections
for multiprocessors," 6th Symp. Comp. Arch.,
pp, 168-177, Apr. 1979. -- --
M. Pease, "The indirect binary n-cube mi
croprocessor array," IEEE Trans. Comp., Vol.
C-26, pp. 458-473, May 1977.-- --
U. Premkumar, et al., "Design and implementa
tion of the banyan interconnection network in
TRAC," .!:!.££, pp. 643-653, June 1980.
H. J. Siegel, "A model of SIMD machines and a
comparison of various interconnection net-
works," IEEE Trans. Comp., Vol. C-28 pp.
907-917, Dec. 1979. -- '
H. J. Siegel, et al., Parallel/Distributed
Multimicroprocessor Systems for Ballistic
Missile Defense, Purdue, EE School, TR-EE
81-12, June 1981.
H. J. Siegel, R. J. McMillen, "The cube net
work as a distributed processing test bed
switch," 2nd Int. Conf. Distributed Computing
Systems, pp. 377-387, Apr. 1981.
H. J. Siegel, et al., "PASM: A partitionable
SIMD/MIMD system for image processing and pat-
tern recognition," IEEE Trans. Comp., to ap
pear.
H. J. Siegel, s. D. Smith, "Study of multi s
tage SIMD interconnection networks," 5th Symp.
Comp. Arch., pp. 223-229, Apr. 1978. ----

18 S. D. Smith, "LSI design considerations for
multistage interconnection networks for paral
lel processing systems," 14th Hawaii Int.
Conf. System Sciences, pp. 219-227, Jan. 1981.

19 A. Tripathi, G. J. Lipovski, "Packet switching

20

banyan networks," 6th Symp. Comp. Arch., pp.
160-167, Apr. 1979. -- --
C. Wu, T. Feng, "On a class of multi stage in
terconnection networks," IEEE Trans. Comp.,
Vol. C-29, pp. 694-702, Aug:-T9°80-.-- --

ON NON-EQUlVALENT MULTlSTAGE lNTERCONNECTlON NETWORKS

Dharma P. Agrawal and Sung-Chun Kim

Electrical and Computer Engineering
Wayne State University ·

Detroit, Michigan 48202

Abstract

This paper presents a systematic way of
findin.g whether Multistage lnterconnection (Ml)
Networks with log2N stages and implemented with
2x2 Switching Elements (SEs) are non-equivalent
or not. The basic strategy is to employ a graph
theoretic approach to model the MI networks in
the form of the directed graph and use non-iso
morphic properties of the loops or cycles in cor
responding undirected graphs. The distance con
cept of a binary tree is utilized to ensure the
full connectivity requirements of the MI net
works.

I. Introduction

Various MI networks described in the litera
ture [7] are topologically equivalent to each
other [1-3,7] as the SEs of the networks are con
nected in such a way that they possess a "buddy"
property [4]. This means that the outputs of two
SEs at stage i are connected as inputs to only
two SEs at the (i+l)th stage and thereby a uni
formity is provided in the network. Patel [5]
has stated that probably there are only two non
equivalent 8x8 networks and named these as delta
networks. For finding non-equivalent networks,
we considered several alternatives and the use of
graph theory looked to be more promising.

II. Graph Model of the MI Network

We are concerned with N-input N-output net
work (N=2n) utilizing 2x2 SE and having n stages
connected in such a way that it provides full
connectivity, i.e., any input terminals can be
connected to any one of the output terminals.
Fig. 1-a shows the SE and its two possible
states and Fig. 1-b shows the proposed graph
model of Fig. 1-a with the directions indicating
flow of data. Note that the control line is to
tally eliminated in graph representation of the
SE. Note that contrary to the topology describ
ing rules [7], the SE with link patterns as shown
in Fig. 1-c is modeled and treated just like the
one shown in Fig. 1-b. The MI network can now be
modeled as a directed graph by assigning nodes to
each SE and input/output terminals, and providing
connection links between nodes of various stages.
This leads to the graph model of the Omega Net
work of Fig. 2-a as shown in Fig. 2-b.

It is also worth noting that the part of the
graph (or subgraph) representing the connections
between two stages are bipartite [6] in nature
and the input/output terminals of Fig. 2-b can be
excluded without losing any topology information
thereby making the analysis much simpler. The
reduced graph is shown in Fig. 2-c. Separating

0190-3918/81/0000/0234$00.75 © 1981 IEEE

234

each N-node bipartite subgraphs leads to exactly
(n-1) such subgraphs and such subgraphs are shown
in Fig. 2-d.

III. Single Level Partitioning of Stages

With the proposed graph model, the non-equi
valence between possible MI networks is trans
formed to non-isomorphism of bipartite subgraphs.
Theorem 1: There exist at least one closed loop
(cycle) in a bipartite subgraph of the MI net
work.
Proof. From Section II each bipartite subgraph
consists of N/2 nodes in each set with N edges,
each node of one set is connected to two nodes of
another set, and there has to be at least one un
directed closed path. Q.E.D.
Corollary 1: All the paths in the bipartite
graph form the closed loops.
Proof. This is obvious from the characteristics
of bipartite graph with each node of degree 2 and
total number of edges is the same as number of
nodes. Q.E.D.
Corollary 2: The number of paths, j, constitut
ing a loop is determined by the relation j=4+2•i,
where i = 0,1,2, ... ,(N/2-4), (N/2-2) and i gives
the integer value satisfying corollary 1 and the
loop will be defined as jP-L.
Proof. Follows from Corollary 1. Q.E.D.
--For instance, the bipartite subgraph of 23

inputs MI network has only two possible kinds of
loop structure and these 4P-L and 8P-L are shown
in Fig. 3-a. For the case of 24 inputs/outputs
network it is possible to make i equal to 0,1,2,
3,4,6 and these loops correspond to 4P-L, 6P-L,
8P-L, lOP-L, 12P-L, and 16 P-L as shown in Fig.
3-b.
Theorem 2: Among all possible bipartite sub
graphs of the MI networks, the subgraphs are not
isomorphic to each other if f the number and type
of loops are not exactly the same.
Proof. Obviously, the loops consisting of dif
ferent number of paths are non-isomorphic due to
their own unique structure. If the number and
type of loops are exactly the same in two bipar
tite subgraphs, then they can be shown to be iso
morphic by changing their positions to correspond
to each other. Q.E.D.

It may be noted that all the MI networks
having same number of and type of loops may not
be isomorphic and will be considered in Theoreiil"6
of section V.
Example 1: Two different loops for the bipartite
subgraphs of 8 x 8 network result into two dif
ferent topologies of Fig. 3-a (Theorem 2)
[2(4P-L) means two 4P-L].
Example 2: For the case of 16 x 16 network, six
different kinds of loops are possible and we can
obtain 7 different topologies as illustrated in

I·
I

I

Fig. 3-b.

IV. Isomorphism of MI Network

Theorem 3: Reordering the positions of the nodes
in the same stage of the MI network does not af
fect the loop structure within each bipartite
subgraph.
Proof. It is obvious from the graph theory [6]
that reordering of a graph will provide another
graph which will be isomorphic to the first
graph. Hence, loop structure remains the same.
Q.E.D.
Theorem 4: All possible combinations of the
graphs resulting from grouping and joining of two
or more non-isomorphic bipartite subgraphs are
also non-isomorphic.
Proof. A network with one specific topology
created by combination of some bipartite sub
graphs provides its own unique combined loop
structure and according to Theorem 3, a graph
guarantees the uniqueness of the loops. Q.E.D.

V. ~Analysis

Let us modify the bipartite graphs of Fig.
2-d in the form of planner graphs as shown in
Fig. 4-a while its loop structure is maintained.
The next step is to connect the nodes of two
adj a cent levels. This is done on the assumption
that output nodes of the loops at the first level
are at the input nodes at the second level.
Hence, if we assume 4 and 4' etc. are not separ
ate but the same nodes then we obtain the graph
of Fig. 2-c back. These overlappings of nodes
are indicated by a simple line connecting nodes 4
and 4'. Following the same procedure, it can be
shown that 8x8 Baseline Network [7] will have the
same loop diagrams as shown in Fig. 4-b and only
difference will be numbering of nodes.

This synthesis procedure could be used to
define the composite graph of all posr.ible MI
networks which are not isomorphic to each other.
This could be done starting from the non-isomor
phic loop structures and interpolate the un
numbered nodes of various stages with restric
tions to satisfy full connectivity requirements.

Connecting the Squared Loops

A. Draw the loop structures and mark alternate
nodes for inputs by '·' and the rest for the
outputs by 'x' . The output nodes of the
first level are to be overlapped or merged
with the input nodes of the next level and
this process is to be performed for all
levels in such a way that full connectivity
is provided by the resulting network (Fig.
4-b). The basic requirement is to form a
binary tree from each input node [3] and
hence in Fig. 4-b the output nodes of level
1 are connecte.d to input nodes of level 2 in
such a way that the minimum distance between
input nodes in loop of level 2 to be at
least 2 times the distance between the cor
responding output nodes of level 1. If
we have many levels, then the minimum dis
tance to get the full connectivity has to be

235

4x (2£- l _ l), where Q is the level number of
the loops. The distance between different
loops of the same level is regarded as in
finite.

Theorem 5: The above design procedure provides
full connectivity in the resultant MI network.
Proof. The proof is obvious from the tree forma
tion procedure [3]. Q.E.D.

B. If each level consists of more than 2 loops,
then different topology of connecting
schemes for a given set of loops might
exist. For instance, from Section IV, 3
different topologies are possbile for 8x8
network. But according to Theorem 5, we see
that only two topologies of [2(4P-L);
2(4P-L)] and [2(4P-L);8P-L] provide full
connectivity (Figs. 4-b and 4-c) and the
third [8P-L;8P-L) of Fig. 4-e fails to sat
isfy the distance requirements.

Theorem 6: For a given specific structure of the
loops, it is possible that different alternative
connections of loops might provide more than one
non-isomorphic graph and hence non-equivalent
networks.
Proof. The proof of Theorem 6 will be given
using an example to show that there are many
possible ways of connecting the loops at two
adjacent levels. Take an example of Fig. 5-a
which consists of four 4P-L in every level. To
see the ways of connecting scheme explicitly, we
represent each (4P-L) loop by a Macro node as
shown in Fig. 5-a. This modified structure has
already been covered in Fig. 4 ancl the two non
isomorphic schemes are shown in Fig. 5-b, leading
to two different connections as in Fig. 5-c. The
actual graphs resulting from the loop diagrams of
Fig. 5-c showing two different topologies are
illustrated in Fig. 5-d. Q.E.D.

VI. Construction Algorithm of the MI Networks

a.

b.

For each level, select the loops with
each loop consisting of j nodes and
edges where j = 4 + 2·i for i = 0,1,
2, ... ,(N/2-4), (N/2-2).

In each loop, assign alternate nodes as
for inputs and outputs.

c. Connect adjacent levels of loop diagram
such that they satisfy Theorem 5 and
assign numbers to all the nodes.

d. Obtain the graph model of the MI net
work by merging each adjacent levels of
the loop diagram.

e. Convert it to the normal diagram show
ing 2x2 SEs. Choose any model of the
SE from Figs. 1-a or 1-c to be used.

VII. Concluding Remarks

In this paper, we presented a systematic
methodology for determining non-equivalence of MI
networks and designing such networks. It is our
firm belief that the novel approach introduced in
this paper provides a better perspective of the

non-equivalent MI networks.

References

[1] M.A. Abidi and D.P. Agrawal, "On Con
flict-free Permutations in Multistage Inter
connection Networks," Journal of Digital
Systems, Vol. V, No. 2, Summer 1980, pp.
115-134.

[2] M.A. Abidi and D.P. Agrawal, "Two Single
Pass Permutation in Multistage Interconnec
tion Networks," Proc. 1980 Conf. Infor. Sci.
and Sys., March 26-28, 1980, pp. 516-522.

[3] D.P. Agrawal, "Graph Theoretic Analysis and
Design of Multistage Interconnection Net
works," communicated for publication.

[4] D.M. Dias and J.R. Jump, "Analysis and
Simulation of Buffered Delta Networks," IEEE
Trans. Comp. , April 1981, pp. 273-282.

[5] J.H. Patel, "Processor-Memory Interconnec
tions for Multiprocessor, 11 Proc. 6th Ann.
Com. Arch. Conf., April 1979, pp. 168-177.

[6] S. Sahni, "Mathematical Concepts in Science
and Engineering," Report, University of
Minnesota, Sept. 1980.

[7] C.L. Wu and T. Feng, "On a Class of Multi
stage Interconnection Networks," IEEE Trans.
Comp., Aug. 1980, pp. 694-702.

Control
c

x1~1
x2-LY2

S.E Parallel
Connection

Cross
Connection

Fig. 1-a Switching Element and its two possible states.

Fig. 1-b Graph model
of S.E.

Fig .1-c Alternate Positioning

of input/output link.

Number
of loops in
a bipartite

Structure
of single
bipartite
graph

l Loop

16P-L 4P-L &
12P-L

a
b

c
d

e
f

g
h

a

b

c

d

e

Fig. 2-a 8 x 8 Omega network : ri8 .

A
-....:~~.....:;.,.--_,..--.-:~ B

c
D

E
F

G
H

Fig. 2-b Graph model of Omega network. Fig. 2-c Simplified
Omega network~

0 4' 8

:s·-~
32 ... 2

fig. 2-d Two single

bipartite graphs.

2 Loops

6P-L &
lOP-L

BP-L 2(4P-L)

Fig.3-a Two kinds of bipartite
graph of 8 x 8 Ml network.

3 Loops

2 (8P-L) 4P-L &
2(6P-L)

2(4P-L)&
SP-L

4 Loops

4(4P-L)

Fig. 3 -b Seven kinds of bipartite graph of i6 x 16 MI network.

236

0 4 4' 8

DD
5 2 9 6'
l 6 5' 10

DD Fig. 4-a Modified bipartite graphs
marked by '•' and 'x' as

input and output nodes

ta El El
LO L4 L8

El 8 EI
~ g a

3 11 7'

El liil a respectively. 2(4P-L) 2(4P-L)

- • Rooted tree from

' 0.

Fig. 4-b Full connectivity is satisfied in this
connection. The distance between input
4 and 5, for example, is greater than 3.

2(4P-L) 8P-L
ng. 4-c loop structure of 2(4P-L) ;BP-L.

Fig. 4-d One example of graph which
has loop structure of Fig. 4-c.

A 5 y

8

B

BP-~ 8P-L
Fig. 4-e Loop structure which does not meet full connectivity.

237

4(4P-L) 4(4P-L) 4(4P-L)

{.
LO L4 L8
0 0 0

Ll LS L9
0 0 0

L2 L6 LlO
0 0 0

L3 L7 Lll
0 0 0

Macro node structure
2(4P-L) 8P-L

Fig. 5-a Loop structure of Fig. 5-b Macro loop diagram
4(4P-L) ;4(4P-L) ;4(4P-L).

Fig. 5-d
Fig 5-c Turo different ways of

connecting loops.

16 24

Graph models resulted from
Fig. 5-c. They are non-equi
valent.

INTERCONNECTION TOPOLOGIES FOR FAULT-TOLERANT
PARALLEL AND DISTRIBUTED ARCHITECTURES

by

Dhiraj K. Pradhan*

School of Engineering
Oakland University

Rochester, Michigan 48063

ABSTRACT

Communication architectures are presented,
suited for the design of fault-tolerant parallel
and distributed processors. Attractive features
of these communication topologies include small
internode distances, low interconnection complex
ity, ease of message routing, modularity, fault
tolerance, and reconfigurability.

I . INTRODUCTION

A key component of parallel/distributed pro
cessor architecture is the interconnection struc
ture used for communication between processors,
memories, etc. This paper presents a new class of
interconnection topologies which combine some of
the interesting features of the existing struc
tures, like the loop [l], the binary tree [2], and
regular networks [3]. The following elaborates on
some of the important features of the proposed
interconnection structures:

(i) suitability for parallel processor
design: in.terconnectio11 patterns - such as bin-
ary tree [2], perfect shuffle [4], Inverse perfect
shuffle [4], uniform shift [4] - are embedded in
our structure. Thus, the topology presented here
is well-suited for various parallel algorithms
which are used for sorting, FFT, matrix manipula
tions [4]. Also, other algorithms which are based
on principles of 11divide and conquer" or recursion
can be well-executed because of the imbedded bin
ary tree structures.

Furthermore, our interconnection structures
are amenable to parallel processor design In VLSI
because of the simplicity of the layout and the
low degree of interconnection.

(ii) suitability for distributed processor
design : the proposed topo 1 og i es have sma 11
internode distances, ease of message routing and
modularity. Thus, they satisfy some of the key
requirements to be useful as communication archi
tectures for distributed systems [5].

(iii) fault-tolerance! fault-tolerance Is
becoming an increasingly important attribute of
computer systems. The topologies given here are
fault-tolerant against both node and link failures.
Also these topologies possess relatively short re
dundant paths. Consequently, fault recovery and
reconfiguration can easily be achieved without
significant degradation.

This paper is organized into the following
sections. Section l I develops certain notations
and definitions. Section I I I presents the pro
posed topologies. Also included here are certain
related results and routing algorithms. Next in

*Research reported supported by AFOSR 80-0217

0190-3918/81/0000/0238$00.75 © 1981 IEEE

238

Section IV fault-tolerance, reconfigurability and
modularity of the topologies are studied. Follow
ing this, techniques that modify the topologies
are presented which achieve greater fault-tolerance.

I I. NOTATIONS AND DEFINITIONS

An interconnection topology will be repre
sented as an undirected graph, G, with n nodes,
{0,1,2,. . .,(n-1)}.

An edge, e(i,j), in G represents a bidirec
tional data link between i and j.

A pair of nodes, i and j, are neighbors of
each other if there is an edge, e(i ,j), in G.

The degree, d(i), of node i is the number of
neighborsClfi.

Let d =min {d(i) !O_:s,i.'.S,(n-1)} represent the
minimum of the degrees of nodes in G.
---Let D = max {d (i) I 0.$.i.$.(n-l)}, represent the
maximum of the degrees of nodes in G.

Let k(i ,j) represent the distance between
nodes i and j. The distance, k(i ,j), is equal to
the number of edges in the shortest path between
i and j. If there are no paths between i and j,
then k(i,j) will be assumed to be oo,

Let k =max {k(i ,j) IO<i,j <(n-1)} represent
the diameter and be the maximum i nternode distance
in G-.----

Let ke represent the maximum of the diameters
of all graphs that can be obtained from G by re
moving some e nodes from G. This ke wi 11 be re
ferred to as thee-diameter of G.

Thus, ke can be view~d as a measure of the
worst case propagation delay when e (faulty) nodes
are removed from G.

Let c denote the node connectivity of G.
Thus, c represents the minimum number of nodes
which when removed from G, will disconnect G.
Obviously, c~d and kc= 00 •

Thus, (c-1) wi 11 be referred to as the fault
to l erance of G,

Consider G, shown below. Here, d=2, D=3,
k=2, k1=3 and c=2.

d(5)=3 d(2)=3

d(4)=2 d(3)=2

I I I . INTERCONNECT I ON TOPOLOGIES

This section presents two different classes
of system topologies. Although both classes have
certain similarities, they are significantly dif
ferent in structure, and each class will be shown
to possess certain distinct advantages over the
other.
System Topology I (ST- I)

A pair of nodes, i and j, are neighbors if
they satisfy any of the following relationships:

(a) j i+l mod n
(b) j i-1 mod n
(c) j 2 i mod n
(d) 2j mod n

System Topology I I (ST-11)
Nodes i and j are neighbors if they satisfy

any of the following relationships:
(a) 2j mod n
(b) 2 i mod n
(c) 2j+l mod n
(d) j 2i+l mod n

Fig. l and Fig. 2 i 1 lustrate a 12-node ST- I and a
ST-11, respectively.

The ST-I represents a superimposition onto a
basic loop structure. However, when compared to
that basic loop structure, the ST-I will be seen
to have significantly smaller internode distances;
also, it is not vulnerable to single point fail
ures.

The second topology, ST-I I, (a generaliza
tion of Pradhan-Reddy [6]), has better internode
distances than ST-I in the absence of any faults.
On the other hand with a single node failure ST-I
has the potential to achieve better internode dis
tances than ST-I I. Furthermore, ST-I enjoys cer
tain implementational and functional advantages
over the ST-I I because of the following:

In the ST- I, uni ike in the ST-11, two nodes
that have consecutive logical addresses are neigh
bors; and thus, are adjacent to each other. Con
sequently, at least half of the links in the ST-I
can be short and laid out on a single plane. So,
data exchanges between i and i+l (which consti
tute a major portion of the overall communication)
can be done rapidly.

The following notations are used throughout
this paper:
Notations: (i) [x] denotes the smallest integer
that is greater than or equal to x.

(ii) log x denotes [lo92x].
(iii) all arithmetic operations used

in respresenting node numbers are modulo-n opera
tions.

The following theorems provide certain char
acterizations of ST-I and ST-I I.
Theorem 1: In ST-1, if n=odd and n2:_5, then:

(i) node 0 has degree 2
(ii) nodes 1, 2, (n-1) and (n-2) have

(i i i)
Theorem 2:

(i)
(i i)

degree 3 0

all other nodes have degree 4
In ST-I, if n=even and n>8, then:
the nodes 1 and (n-1) have degree 2
all other odd nodes and the node 0
have degree 3

(iii) nodes 2, (n-2)(and n/3, 2n/3 if 3
divides n) have degree 4

(iv) all other even nodes have degree 5 o

Fig. 1. ST-I for n=12

Fig. 2. ST-I I for n=l2

239

Theorem 3:
(i)
(i i)

are

(i i i)

In ST-I I, for n~8:
the nodes 0 and (n-1) have degree 2
the nodes of degree 3

I (n/3), (2n/3), (n-3)/3, (2n-3)/3,
if 3 divides n

(n-1)/3, (2n-2)/3, if 3 divides (n-1)
(n-2)/3, (2n-1)/3, if 3 divides (n-2)
all other nodes have degree 4 o

_Theorem 4: In ST-I for all n,n~S, the total
number of data links ={(2n-4) if 6 divides n

(2n-3) otherwise o

The9rem 5: In ST- I I

number of data links

Thus, both ST-I
number of data links
connection.

for all n, n~8, the total
={(2n-4) if 3 divides n

(2n-3) otherwise o
and ST- I I require a smal 1
and have low degree of inter-

The following develops message routing stra
tegies and upperbounds on path lengths in ST-I and
ST- I I.

Message routing
The following develops a distributed routing

algorithm for ST-I. Analogous procedures for
ST-I I can easily be formulated.

First a technique is developed to construct
a path from a given source node, i to a destina
tion node j. With this technique, a message rout
ing algorithm is developed. This algorithm uses
certain tag (control) bits. These bits are gener
ated at the source and carried by the message.
Each intermediate node use these tag bits to de
termine the next node in the path. Minor modi
fications of the tag bits are carried out by the
intermediate nodes. As will be seen the routing
procedure is very simple and requires only a small
number of tag bits which are easily generated.
Thus, the communication overhead can be fairly low.

Definition: Let m, m~O, be the least integer for
which: 1

(j - i 2m-) mod n _::: 2m-l.
Obviously there always exists such an m where
m ..'.5. log n. 1
Let p = (j - i 2m-) mod n.

m-1 m-2
Let p = pm_ 12 + pm_ 22 + ... + p12 +Po

in radix-2 (binary).
The fol lowing procedure constructs a path

from i to j in ST-1.

Path Construction Procedure, Pl, for ST-I:
The following procedure is described by using

a pointer, x, which travels through the path from
to j.

The value of x during each iteration repre-
sents successive nodes in the path.

SI: Let x=i and h=m

S2: Repeat following while h_?'..l:

Let h=h-1, if ph=O. Then let the new value

of x=2x. On the other hand, if ph=l, then first

let x=(x+l), and next, x=Zx.

S3: Finally, if p0=1, then let x=(x+l), and

stop else stop.

240

The following two observations may be made:
(i) the final value of x at the end of the

procedure is (12m-l+ p) which is equal ~o j, the
destination node.

(ii) the path length is, at most, (2m-l).

Routing Strategy:
Each message may be formatted, as shown in

Fig. 3. The message has two tag bit fields, a.
and B, which consist of m and log m bits.

I a. I B IDestinat·ionl Address Message
·~:::::::::::::::::::::-1-:;..._,_,::;=;~::::::::::::=:::....._~~

m logm m

Fig. 3. Message Format

Th d • (. . 2m-1) e source no e, 1, computes p = J - 1

mod n. Then a. and Bare initialized to p and
(m-1), respectively. Thus, at the start, a. = p
oc:;.qc:;.m-1 and B = (m-1) . q q

When a message arrives at node y, the follow
ing steps are carried out. The source node also
uses the following procedure to route the message
to the next node.

Step l: if the destination address is y, then
the message is removed; otherwise Step 2 is per
formed.

~: if a.8 = O, then let B = B - 1, and the
message is forwarded to node 2y next.

On the other hand, if a.B = 1, then first let
a.s = O (change a.s to 0) and forward the message
to the node, (y+ 1) . (Thus, if a.8 = 1 then the
message is effectively forwarded to 2(y+I) via
(y+ I)).

Thus, the above procedure is simple and
requires only(m + log m)bits - a small number
compared to the number of nodes n since m = log n.
However, it should be noted that above procedure
does not always result in routing the message
through the shortest path.
Example 1: Let i = 3, j = 9. Consider routing
from3 to 9 in ST-I in Fig. 1 where n=l2.

The least m that satisfies,
(j - i 2m-l) mod n ..'.5. 2m-1, ism= 2.

Thus, p = 3 and hence, a.= p =(ll)and
B = m- J: 1 in binary. (Initially a.1=a.0 =1.)

Hence, it can be computed that the message
will go to node 9 via nodes 4 and 8. The tag bits
at each node are shown in the following Table.

node at arrival at departure
a. B a. B

3 11 01 l

4 01 01 0

8 01 0 00 0

9 00 0

The following theorems are direct conse
quences for the routing procedures for ST-I and
ST- I I.

Theorem 6: For ST-I, the diameter, k, is bounded
from above by

k..:S.2(1ogn) -1. D

Theorem 7: For ST-I I, the diameter, k, is bounded
from above by

IV.

k _:::. log n. 0

FAULT-TOLERANCE AND RECONFIGURABILITY

This section formulates results regarding the
fault-tolerant capacity of the ST-I and ST-I I.
Techniques are also developed that reconfigure the
paths in the event of a fault. The proposed re
configuration will be shown to cause only a mini
mal degradation of the path lengths.

Al though the fault-tolerance of the ST-I is
self-evident, (because of its embedded loop struc
ture) the effect of a fault on path l~ngths is not
obvious. In the case of the ST-11, neither the
fault-tolerance nor the effect of fault is readily
apparent. The results of this section will pro
vide some insight into these aspects.

The following describes a routing strategy
for ST-1 that can be used to bypass any faulty
node with only a resulting minimal increase in the
path length.
Routing procedure for ST-I with faulty node, t

From the routing procedure developed earlier
for the ST-I, the following observations may be
made:

(i) Any intermediate node, t, in a message path
may receive the message from only two of its neigh
bors: the node (t-1) or (t/2).

(ii) There are only two possible neighbors oft to
which the message may be forwarded from t; these
are 2t and (2t+l).

In the following, we show a technique for
sendi1ng the message from {(t-1) or (t/2)}to{(t+l)
and 2t}without going through t. Consider the
following paths where 3.S.t.S.n-1:

t-l-+2t-2-+2t-l-+2t-+-2t+l-+2t+2 - t+l

t/2-+-t/2+1-+-t+2 ..-t+l-+2t+2--..2t+l - 2t

It may be noted that the above paths are of
length 6 and do not pass through t. Thus, if the
message is routed through one of these alternate
paths, then there will be a net increase of only
4 in the path length.

Fort= 0,1,2, (n-1), (n-2), a set of paths
of length, at most, 6 can also be constructed that
allow for sending the message from {(t-1), (t/2)}
to {(t+l), 2t} without going through t.

For example, let t = 2. In this case, (t-1)=
(t/2)= 1, (t+l)= 3 and 2t = 4. Consider the fol
lowing path for n = even:

1 -+ 0 -+ n/2 -+ n/2+ 1 -+ n/2+2 -+ 4 -+ 3

Thus, the node, 2, can be bypassed with a longer
path.

The following is an immediate consequence of
the above observations:

Theorem 8: The 1-diameter, k1, of ST-I is bounded
from above by: kl .::_ 2(1og n) +3 o

241

Thus, k1 is comparable to k.

Now we will develop a routing procedure for
ST-I I. This procedure is significantly different
from that given for ST-I, and is based as the
following Lemmas:

Lemma 1: For any node, i, in ST-11, there is a
path between 0 and i of length, at most, log n,
where each intermediate node, y, in the path is
strictly less than i, y<i. o

Lemma 2: For any node, i, in ST-11, there is a
path between i and (n-1) of length, at most,
log n, where each intermediate node, y, in the
path is strictly greater than i, y>i. o

Lemma 3: There are two node disjoint paths be
tween 0 and (n-1) in ST-11, of length, at most,
log n. o

A message routing algorithm that can be used
in the event of a fault can be formulated by using
the following path construction procedure P2 .

Notations: (i) Let O+x (x+O) represent a path,
from 0 to x (x to 0), that satisfy Lemma 1.

(ii) Let (n-l)+x (x.r(n-1)) represent
a path from (n-1) to x (x to (n-1)), that satisfy
Lemma 2.

(iii) Let oX(n-1) ((n-1)Xo) represent
a path of length, at most, log n from 0 to (n-1)
((n-1) to 0), that do not pass through the node,
y. Lemma 3 guarantees the existence of such paths.

Path Construction Procedure, P2, for ST-II with
Faulty Node t

i :-Source j :-Destination
t=O

Case 11
p(t):

Case 111
(a)

p (t) :

(b)

p (t):

(c)

. p (t):

(d)

p (t):

i+(n-l)+j

t=(n-1)
i+O+j

tilO and til(n-1)
t>i and t<j

i+O!(n-1)+ j

t>i and t>j

i+O+j

t< i and t<j

i+(n-1)+ j

t<i and t>j

i+(n-1)+O j

The paths satisfying Lemmas 1, 2 and 3 can
be constructed by using procedures that are simil
ar to those given in Pl. Therefore, a routing
strategy like the one formulated for ST-I, using
tag bits, can also be developed here for ST-I I.
It may be noted that for ST-I I, in the event of a
fault, there is a potential for "bottleneck" be
cause each message has to be forwarded through 0
or (n-1). The following Theorem is immediate from
the above path construction procedure.

Theorem 9: The I-diameter, ki of ST-I I is bounded
from above by

k 1 .::_ 3 (1 og n) -1 D

The following discusses possible modifica
tions of ST-I and ST-II for greater fault-toler
ance. It wi 11 be seen that the addition of a
single link can make these 2-fault-tolerant; i.e.,
any two (faulty) nodes can be removed.

Since d=2, for ST-I, II and d,2:.c, in order
to increase the connectivity, c, one has
to increase d. There are only two nodes of de
gree 2; therefore, one can increase d by simply
adding a l ink that connects these two nodes. In
the following, w~ show that the fault-tolerance
is also increased with the addition of this extra
1 ink.

I (MST- I)
Add link e 0,2 to ST-I if n=odd

e(l,n-1) to ST-I if n=even

Modified S stem To olo 11 (MST-1'1
Add link e 0,n-1 to ST-II.

By adding the link e(l ,11) to Fig. land
e(0,11) to Fig. 2 one can obtain a 12 node MST-I
and MST-II respectively.

Theorem 10: The connectivity, c, of MST-I is 3 o

Theorem 11: The connectivity, c, of MST-II is 3
and k2 .:S. 2m, when n = 2m. o

MODULARITY
Modularity is an attribute of interconnection

structures that refers to the ease with which in
cremental changes can be made.

The following illustrates a general technique
for extending ST-I and ST-II, without significant
ly altering the existing system.

Let G be an existing ST with n nodes. If it
is required that an additional n' node may be ad
ded, the following scheme may be used:

First, a new BST, G', is constructed using n'
nodes. The nodes, 0 and (n-1) in G, are connected
to O' and (n'-1) in G, respectively.

This will not increase the D of either G or
G' since nodes 0 and (n-1) have a degree of, at
most, 3, in both ST-I and ST-I I.

The diameter (I-diameter) of the composite
system will be the sum of the diameters (I-diamet
ers) of G and G'.

Subsequently, if it is required that a furth
er set of n" nodes is to be added, the following
scheme may be used:

Construct a new ST G", with n" nodes. Then
this is inserted between nodes 0 and O' by con
necting 0 and (n"-1) , O" and 0' sho•,in in
Fig. 4.

The diameters will now again be the sum of
the diameters of G, G' and G". This latter pro
cess obviously can be repeated as many times as
it may be required.

REMARKS:
l . (a) Given any node, y, one can reach nodes 2y
and (2y+l) in, at most, two steps. Thus, data
exchanges that correspond to a binary tree can be
implemented easily for any node as a loot node.

(b) One can reach both (y/2) and (2y) from any
node, y, in one step. Therefore, data exchange
patterns that correspond to perfect shuffle and
inverse perfect shuffle [4] can be implemented

242

easily.

(c) Given enough buffer capacity at each
node data exchange patterns that correspond to
any arbitrary permutation can be implemented in
order log n (O(log n)) steps.

Thus, from (a), (b) and (c), one may infer
that the topologies are suited for fast implemen
tation of various parallel processing algorithms.

2. Some of the key requirements for a topology
to be suited for distributed processor intercon
nection is that it should possess a low degree of
interconnection complexity, small internode dis
tances, ease of routing and modularity. All of
these requirements are satisfied by our topolog
ies.

3. One of the other attractive features of the
proposed topologies is that they are not only
fault-tolerant but also easily reconfigurable.
4. Problems currently under investigation in
clude formulation of good routing strategy that
will allow for bypassing two faulty nodes without
excessive degradation. (It would be of graph
theoretical significance to derive a bound on
the minimum number of edges required to achieve
a specified k , for n and D.)

e

G Fig. 4 Modular Extension G'

REFERENCES

[1J M.T. Liu et al, "System Design of the Dis
tributed Double-loop Computer Network," Proc.
of 1st International Conference on DistrY:-
buted Computing System, Huntsville,
Alabama, Oct. 1979.

[2] A.M. Despain and D.A. Patterson, "X-Tree, A
Tree Structure Multi-processor Computer
Architecture," Proc. 1980 Comp. Arch. Conf.

[3] K. J. Thurber and G. M. Masson, "Distributed
Processor Communication Architecture,"
Lexington Books, Massachusetts, 1980.

[4] H.S. Stone, "Parallel Computers," in Intro
duction to Computer Architectures, Science
Research Associates, 1980.

(5] H. Frank and l.T. Frisch, "Planning Computer
Commun i cation Networks'' in Computer Commun i -
cation Networks, Prentice Hall, 1973.

[6] D.K. Pradhan and S.M. Reddy, "A Fault
tolerant Communication Architecture for
Distributed Systems," Proc. of FTCS-11,
IEEE Publications, June 1981.

l,1

FAULT DIAGNOSIS AND DESIGN OF FAULT-TOLERANT CONCENTRATORS

S. Sowrirajan and S. M. Reddy
Division of Electrical and Computer Engineering

The University of Iowa
Iowa City, Iowa 52242

Summary

Switching networks may be classified as con
nectors, concentrators. partitioners and expand
ers [l]. A concentrator is a contact switching
network that provides a number of potential users
(connected to its inputs) with access to a smaller
number of eguivalent resources (connected to its
outputs) [2J. In a concentrator the outputs to
which the inputs are to be connected cannot be
specified a priori. A concentrator can be repre
sented by the triplet (I,0,r). where I is the set
of inputs, O is the set of outputs and r is the
crosspoint placement relation between I and O.
The capacity of a concentrator is said to be C if
any k inputs, k $ c. can be connected to some k
outputs simultaneously.

Definition 1: (n,m) = (n) = (nj 1 1 • A binomial m n-m .m.
(n,m) concentrator is a concentrator having (n,m)
inputs, n outputs such that each input is connect
ed to a unique choice of m out of n outputs by
crosspoints. The capacity of binomial (n,m) con
centrator is shown to be min{m+2,n} [3]. A
binomial (4,2) concentrator is shown in Fig. 1.

Fault-Model of the Crosspoints:
Typically, in a crosspoint network a cross

point is connected between an input line and output
line as shown in Fig. 2. The crosspoint has two
states under normal operation namely open and
closed [4,5].

Definition 2: A crosspoint is said to be faulty
if it is permanently in one of the two states
namely, close and open. A crosspoint is said to
be "stuck-at-close" (s-a-c) if it is permanently
in the closed state and it is said to be "stuck
at-open" (s-a-o) if it is permanently in the open
state. This is shown in Fig. 3.

Single Fault-Diagnosis in a Binomial (n.m)
Concentrator:

A binomial (n,m) concentrator has (n,m}·m
crosspoints and n outputs. Hence at most n cross
poi nts can be tested for a single s-a-o fault at
any one instant - one crosspoint per output.
Hence the optimal number of test sets to diagnose
a single s-a-o fault is (n,m) ~ = (n-1,m-l}. The
Theorem l says that such a test set can be ob
tained for a binomial (n,m) concentrator.

Definition 3: Let U = (A;: iEI) be a family of
subsets of a set E. Suppose that it is possible
to select one element xi from each set Ai in such
a way that ,the elements Xi, iEI, so selected are
distinct. Then the set {xi: Xj t Xj ¥ i, jEI and
i t j} of these elements is called a transversal
of U.

0190-3918/81/0000/0243$00.75 © 1981 IEEE

243

Definition 4: Let Bi= {j: j is an input such
that there exists a crosspoint (j,i) and i is an
output}; l ~ i $ n. Since there are (n-1 ,m-1)
crosspoints on each output line IBil = (n-1 ,m-1),
l $ i $ n. where IXI is the cardinality of set X.

Definiti~n 5: A tra~sversal Tj is said to be
ordered 1f and only if TJ· = (x1 .• x2 .•...• x ,J ,J 1 .J
,xn J.) where x1 .. EB., l < j < (n-1 ,m-1) and ' ,J 1 ,_ -
l < i < n.

Definition 6: Two ordered transversals Ti and Tj
are disjoint if and only if xk,i t xk,j• \¥k)
l $ k $ n.

Theorem l: (n-1,m-l) mutually disjoint ordered
transversals T1 , ... ,T(n-l ,m-l) on the family
(Bi: i E {l , n}) of subsets of inputs exist and
can be calculated. For a proof see [7].

Procedure to Dia nose Sin le Fault in a Binomial
n,m Concentrator:

~: Set all the crosspoints to state open and
apply a l to all the inputs. If there is an out
put such that a l is received on this output then
there is a s-a-c faulty crosspoint on this output
line and do Step 2; else go to Step 3.

Step 2: Test each crosspoint on this output line;
stop.

Step 3: At instant j, l $ j $ (n-1 ,m-1) test the
crosspoints E Tj for s-a-o fault. If a s-a-o
fault is dia9nosed at instant j then stop; else if
j = (n-1 .m-1 J then there is no faulty crosspoint;
else j+j+l and go to Step 3.

Procedure to Dia nose Multi le Faults in a Bi
nomial n,m Concentrator:

Step 3 in the above procedure is to be modi
fied to take into account s-a-c faulty crosspoints
on output lines x1.x2 •...• xk. If the crosspoint
(y,x) is s-a-c and if y ET! for some j. l $ j $

(n-1,m-l). then while tesdng crosspoints E Tj. the
output x will receive a 1 and hence the crosspoint
(Yt,xl such that Yt E Tj cannot be tested for s-a-o
fault. This fact is taken into consideration to
obtain the test sets. For more detail see [7].

Capacity of the Binomial (n,m) Concentrator in the
Presence of a Single Fault:

Theorem 2: Let the crosspoint (a,b) be faulty.
Then the capacity of the binomial (n.m) concen
trator in the presence of a faulty cnosspoint
(a,b), denoted by C(a,b)' is equal to (C-1) under
the assumption that m+2 $ n. For a proof see [7].

Capacity of the Binomial (n,m) Concentrator in
the Presence of k Faults:

Theorem 3: The capacity, Ck, of the binomial
(n,m) concentrator with k < m faults <: (C-k) where
C is the capacity of the fault free binomial (n,m)
concentrator under the assumption that m+2 $ n.
For a proof see [7].

It can be shown that there exists a fault
pattern of k crosspoints such that Ck = C-k.

The above two theorems give us a methodology
to design a k fault tolerant, m+k :;: n, binomial
concentrator. A binomial (n,m+k) concentrator
has a capacity ~ (C-k) if k or less faults occur
where C is the capacity of binomial (n,m) concen
trator. The number of inputs is. however (n,m+k).
The number of inputs can be increased to m•(n,m+k)
without affecting the capacity of the concentrator
with k faults.

Definition 7: An (m,0) concentrator is a concen
trator with m inputs x1,x2, ... ,x~ and one output
y1 such that there exist crosspo1nts (xi,y1),
l:;:i:;:m.

Definition 8 [6]: An (m,O) x (n,m) concentrator
fas m·(n,m) inputs and n outputs such that each
crosspoint in the (m,O) concentrator is replaced
by the binomial (n,m) concentrator.

Theorem 4: An (m,O) x (n,m+k), m+k ::; n, concen
trator in the presence of k faults has a capacity
;:;: C, where C is the capacity of the binomial (n,m)
concentrator. For a proof see [7].

244

References

[l] G.M. Masson, et al., "A Sampler of Circuit
Switching Systems," Computer. Vol. 12, No. 6,
pp. 32-48, June 1979.

[2] N. Pippenger, "On the Complexity of Strictly
Nonblocking Concentration Networks," IEEE
Trans. Comm., Vol. 22, 1974, pp. 1890-1892.

[3] G.M. Masson, "Binomial Switching Networks for
Concentration and Distribution," IEEE Trans.
Comm., Vol. 25, 1977, pp. 873-883.

[4] M. Rubin and C. E. Haller, "Communication
Switching Systems," Reinhold Publishing
Corporation, N.Y., 1966. ·

[5] K.M. So and J.J. Narraway, "Fault-Detection
in Switching Networks," Proc. 20th Midwest
Symp. Circuits Syst., Texas Tech. University,
TX, pp. 552-556, Aug. 1977.

[6] S. Nakamura and G.M. Masson, "Higher Order
Composite Concentrators," Proc. of the 1980
Conf. on Information Sciences and Systems,
Princeton, pp. 531-535.

[7] S. Sowrirajan, "Fault Diagnosis and Tolerance
in Connection Networks", Ph.D. thesis in
preparation.

2
Inputs

3 4 5 6

Outputs
r---T---+---ll<---1'---*--3

Fig. 1

x - crosspoint
(D-bi nomi a 1 concentrator

Input line, x

--+-~---Output line, y
(x, y)

'--c . rosspomt

Fig. 2 A typical crosspoint

Input Output
E3

Input Output
LZI

a) Stuck-at-close bl Stuck-at-open

Fig. 3 Fault-model of a crosspoint

* AN ALGORITHM FOR EFFICIENT LAYOUTS OF PARALLEL SUFFIX SOLUTIONS

Avinoam Bilgory and Daniel D. Gajski

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

Abstract

The suffix problem has appeared in solutions
of recurrence systems for parallel and pipelined
machines and more recently in the design of gate
and silicon compilers. In this paper we present an
algorithm that generates parallel suffix solutions
with minimum cost and size for a given length, time
delay, availability of initial values and fanout.
This algorithm generates a minimal solution for any
length n and depth range from r1og2nl to n.

l• Introduction

The suffix problem has appeared in solutions
of recurrence systems for p.arallel and multiproces
sor machines [Gajs81] and in design of gate and
silicon compilers [GaBL81], [Kris81], and [LaFi80].
Many operations on a register-transfer level (addi
tion, comparison, prioritization etc.) can be sim
ply described by Boolean recurrence systems. The
solution of the suffix problem is the single most
important part of the more general solution of
recurrence problems, which can be trivially
extended to the solutions of fixed-length problems
solved by finite-state transducers [LaFi80]. In
this paper we give a new algorithm for generating
area and time efficient parallel solutions for the
suffix problem.

The solution of the recurrence system of
length n and order 1, denoted by R<n,1>, is

for all i, l(i(n, and given x0 • Furthermore,

xi = fi(xi-1)

fi(fi-1 (xi-2)) = (fiofi-l)(xi-2)

= (fiofi_1o ••• of2of 1)(x0)

fi,(xo)

where the symbol o denotes the composition of func
tions. Thus, the solution of every recurrence sys
tem can be decomposed into two subproblems:

This work was supported in part by the National
Science Foundation under grant No. US NSF MCSS0-
01561.

245

0190-3918/81/0000/0245$00.75 © 1981 IEEE

(a) Suffix problem: the computation of the func
tional composition fi, = fiofi_ 1o ••• of2of 1 for
all i, l(i(n, and

(b) Functional evaluation: the computation of
xi= fi,(x0) for all i, l(i(n.

Subproblem (a) can be solved by a tree-like
network, consisting of identical nodes, called
Functional-Composition Cells (FCCs). Each FCC
takes two functions fi and fj as inputs and gen-

erates their composition fiofj.

Subproblem (b) is solved by n identical nodes,
called Functional-Evaluation Cells (FECs). Each
FEC takes a function fi, and its argument x0 as

inputs and generates fi,(x0).

Detailed treatment of recurrences can be found
in [BiGa81].

More abstractly, the suffix problem can be
defined for any semigroup <S,o>: given
sn,sn_1,. .. ,s1,s0ES, compute each of the products

pk= skosk_1o ••• os1os 0 for all k, Q(k(n.

Each suffix-problem solution can be
represented by a directed acyclic oriented graph.
Each node of in-degree 2, called a product node,
represents a product of its two inputs. The input
nodes have in-degree 0 and are labeled with an ele
ment siES. The output nodes (the nodes that

represent the solution of the suffix problem) have
in-degree 1 and are labeled with an element pi ES.

Hence, each node in the graph represents either an
element from S or a product of some elements from
S, which is itself an element from S. Two dif
ferent graphs for the suffix problem of length 9
are shown in Figure 1. The numbers along the right
side of the graphs denote levels, which correspond
to time steps.

We will introduce several complexity measures
used to characterize any suffix graph G. The size
of G, s(G), is the number of product nodes in G,
while the depth of G, d(G), is defined as the max
imum number of product nodes on any directed path
in G. Thus, d (G) equals the maximum level. The
depth of G is proportional to the time delay
through G. For the two graphs G1 and G2 shown in

Figure 1, s(G 1)=17 and s(G 2)=15 while the depths of

G1 and G2 are d(G 1)=d(G2)=4. The cost ci, of a

pi ES, is the number of product nodes on the path

from si to pi. The cost of G, c(G), is defined as

Pa P7 p6 P5 P4 P3 P2 P1 Po

(a)

P3P7P6P5P4P3P2 lPo

(b)

Figure .!.· Two graphs for suffix problem of
length 9 and depth 4. (a) G1• (b) G2•

max ci, O<:i<:n. If the nodes are laid out ,in a

two-dimensional array such that each node drives
only nodes in the same row to the left and in the
same column below, then the silicon area occupied
by the layout of G is linearly proportional to the
product nxc(G). In our example, c(G 1)=4 and

c(G 2)=3. The fanout of G, f(G), is the maxilllllm

out-degree of any node in G. So, f(G 1)=6 and

f(G 2)=5. The last parameter that characterizes the

suffix graph G is the initial-value-availability of
G, e(G), which is the minilllllm number of levels
after which s 0 can be used as an input to a product

node. s 0 is ·the first element and corresponds to

the initial value of the recurrence system. For
example, the initial value for parallel adders is
the value of the input carry. This value may not
be available at the same time as the rest of input
values. For the two . suffix graphs in Figure 1,
e(G 1)=e(G2)=2. In comparison of the two different

graphs shown in Figure 1, the solution represented
by G2 requires less area of silicon, less power,

and has smaller time delay then the solution
represented by G1• Furthermore, the fanout in G2
is smaller then in G1• This will eventually result

in better performance in the implementation of G2 •

Many papers considered problems related to the
suffix problem but never proposed algorithms based
on suffix-problem solutions. Brent and Kung
[BrKu79], considering a regular layout for parallel
binary adders, proposed a suffix solution with
depth 2log2n and size 2n-2-log2n with fanout f=2.

Ladner and Fischer [LaFi80] were the first to
define the suffix problem, although they call it a
prefix problem. They developed an algorithm for
constructing suffix solutions with minilllllm size for
the given length n of the suffix problem and the
depth of the solution. However, their algorithm
works only for depth . r1og2n 1 (d (2r1og2n1 • The

solutions for lengths that are not an integer power
of 2 are not optimal. They did not consider either
the cost of the suffix-solution layouts or the
fanouts of their solutions, although they have
given an upper bound on fanout.

In this paper we present ~ different algorithm
that generates suffix solutions with minimum cost
and size for a given length n, depth d, initial
value-availability e, and fanout f. Our algorithm
generates a minimal solution for any integer n.
Furthermore, the depth range is extended to include
all depths from r1og2nl to n. The solution with

depth n really represents a serial solution with
size n and cost 1. In the case of binary adders
this solution corresponds to a ripple-carry adder.

The complete algorithm consists of two parts
and it is presented in the following two sections.
In Section 2 we present Algorithm 1, which gen
erates a minimum-cost solution for any given
length, depth, initial-value-availability, and
fanout. In Section 3 we present Algorithm 2, which
takes the solution generated by Algorithm 1 and
minimizes its size by using only local optimiza
tions. Comments on our approach and description of
some open problems are given in Section 4.
Finally, in Section 5 we show that for all practi
cal values of n our algorithm, in comparison with
the Ladner-Fischer algorithm, generates suffix
solutions with smaller sizes.

2. An Algorithm to Construct the Minimum-Cost Graph

A graph that produces the solution for a suf
fix with length n+l, given the constraints d
(depth), e (level after which s 0 is available), and

f (fanout) is denoted by G<n,d,e,f>. Figure 2
shows G<S,4,2,S>. Figure 2-a has the following
interpretation. Every vertical line is called a
column. Each product node is represented by a
number and is driven from two other nodes. One
driving node is always above the driven node, in
the same column, while the other driving node is
located in some column to the right of the node and
is called the right-driving node. Each group of
nodes driven from the same right-driving node is
connected by a horizontal line. The right-driving
node is located in the column to the right of the
group and one level above it, and their connection
is represented by a diagonal line. The graph can
be laid out in a number of rows that is equal to
the cost c. The number that stands for a: node
indicates the number o.f the layout row that the
node belongs to. Figure 2-b shows the relative
locations of the nodes in the layout. Connections
are not shown, but each ,node drives only nodes to
its left in the same row, or below it in the same
column. Figure 2-c shows a binary matrix represen•
tation of the graph. The presence of a node is'
represented by 1 and absence of a node by Q. Each
column can be interpreted as a binary number. Let
the uppermost row correspond to the least signifi
cant bit. Then the matrix can be represented by a
series of numbers, as shown in Figure 2-d. Note
that the series is strictly increasing from right
to left. Figure 2 and Figure 1-b are different
representations of the same graph.

To motivate the algorithm, let us look at the
k k-1

graph G<2 -1, k,O, 2 +1> which is generated recur-
sively in an obvious manner. This graph may b~

represented by th.e series <2k -1, 2k -2, • •• , 3, 2, 1.>.

246

! ! ! ! ! ! ! 0

[~ fl

! ! I! ! I! ! /! 0 1 0 1 0
! 2 1 ! 2
!/! ! ! I! ! 0 0 0

! 2 ! 2-2 ! ! 2
! /! ! ! ! ! !/ 0 0 0 1 1 1
2 ! ! ! 3-3-3-3 3
! ! ! ! /! 1 1 1 0 0 0
3-3-3-3 ! ! 4
! ! ! ! ! !

(c)
(a)

1 <12,10,9,8,7,6,5,4>
2 2
3 3

2 2 2 2
3 3 3 3 3 3 (d)

(b)

Figure 1· Graph G<S,4,2,5>.
(a) Connections scheme. (b) Layout.

(c) Binary matrix representation.
(d) Series representation.

Figure 3 shows this graph for k=4, namely,
G<l5,4,0,9>. Note that k is the lower bound for
the depth of the solution for the suffix-problem of

k k-1 length 2 , given e=O and f=2 +l.

/~ 14- 13 12 If 10 9 8 '1 6 "!i 4 3 2.
! ! ! ! ! ! ! ! ~ ! ! ! ! ! 0
!/! !/! !/! !/! !/! !/! !/! !/
1!2!2!3 2!3!3!4
! ! I! ! ! ! I!
2-2 ! ! 3-3
! ! ! !/! ! !
3-3-3-3 ! ! !

! ! I! ! ! ! /!
3-3 ! ! 4-4 2
! ! ! ! I~
4-4-4-4 3

! ! ! ! ! ! ! ! /!
4-4-4-4-4-4-4-4 ! ! ! ! ! 4

! ! ! ! ! ! ! ! ! ! ! !

Figure 1.• Graph G<l5,4,0,9>.

Three important observations can now be made:

(a} Column eliminations. 2P-1 columns, O<p<k,
can be eliminated from the right side of the graph
as well as any number of columns from the left side
of the graph. The remaining graph still represents
a suffix problem solution. For example, eliminat
ing columns 1, 2, and 3 from the right side and
columns 14 and 15 from the left side changes the
graph G<l5,4,0,9> to G<l0,4,2,7>. More important,
certain columns can also be eliminated from the
middle of the graph, as a result of the following
Lemma 1.

~1:.
In G<n,d,e,f>, column j, n>j>l, can be elim-

inated if cj+l <c j. The remaining graph is

G<n•l,d,e,f'>, f'<f. 0

!!.22t
Let sj,i denote sJ°sj~lo., .osi+l09i for arty

i,j, n>j>i>O. From the construction of
k k-1 G<2 -l~k,0,2 +l> shown previously, it is obvious

that any section of two consecutive columns (j+l ,j)
wilt generally look s:f.milat .. to that shown :tn Figure
4. That is, thare i• no node in cc:>1uliln j+l above
node A, and if there is a node belOW' node A itt
eoluliln j+l, then there is also a node on the same
level in .col.ullin j, .and viu versa. There cannot be

a node in column j on the level right below node B.
Also, j>x>y.

247

j+l j

sj+ul sj
I

+
B

A s
. s j,x

j+l,x I I
s +---+s

j+l,yt I j,y

+---+ I
l

pj

Figure i. General two-column section of
k k-1 the graph G<2 -1,k,0,2 +l>.

The transformation shown in Figure 5 can now
be carried out, resulting in the elimination of
column j. Figure 5-a shows a portion of three con
secutive columns (j+l,j,j-1), where cj+l<cj. In

Figure 5-b, the uppermost node of column j+l is
disconnected from node U and connected to node V
(in fact, every node in column k, k>j, driven by
node U will now be driven by node V). Column j is
renamed j' and every column k and input node sk'

n>k>j, are renamed k-1 and sk-l' respectively. The

lowest node in each renamed column k, n-l>k>j, pro
duces now pk. The lowest node in the new column j

produces pj as does the lowest node in column j'.

Column j' no longer contains any right-driving
node, so it can be eliminated, resulting in the
section shown in Figure 5-c. Column n has been
left untouched, and since c1=1, column 1 cannot be

eliminated. Therefore d and e remain unchanged.
The fanout may only be reduced. 0

j+l j j-1 j j' j-1 j j-1

sj+l

L~L
sj sj sj-1 sj sj-1

W~.·
1
I

tsj-!,ll
s" lsJ," I I I ;,. I

u' 'v u' 'v 'v

1s;+1,y· I I ,si-y I lsj,y

t . . +. tsj~u +s. i! fsj-1,.e tsj.i! t•r-•,i! I J+l,i! 18.i·· I J• I
I I I I I I I
1 ~ 1 i J J J

Pj+l p
j pj-1 pj Pj-1 pj Pj-1

(a) (c)

(a)
Figure 1• Elimination of column j.

Original section. (b) Change of connection.
(c) Transformed section.

Since the graph portion shown in Figure 5-c
preserves the properties of the general two-column
portion shown in Figure 4, the transformation can
be executed iteratively on the transformed graph.

In particular, columns having the largest
number of nodes can be eliminated. For example,
columns 3, 7, and 11 in G<l5,4,0,9> have this pro
perty and can be eliminated from the graph. Note

that after applying Lemma 1 on G<2k-1,k,0,2k-l+l>
k 2 -k-1 times, the graph is reduced to G<k,k,0,2>.

(b) Segments. Each column has one FEC as the
lowest node and zero or more FCCs above it. The
graph is divided into d-e contiguous segments,
according to the level where the FEC is located.
Segment t contains columns that have their FECs on
level t. In G<l5,4,0,9> there are four segments:
1, 2, 3, and 4. In segment t, the FCCs occupy the

t-1 first levels: there are (t~l)-1 columns with

no FCC, (t~l}=t-1 columns with one FCC in each and

in general there are (t~l) columns with i FCCs.

(c) Fanout. The leftmost FEC in each segment
serves as a right-driving nod~ for all the FECs of
the next segment to its left. Therefore, the big
gest FEC fanout equals the number of columns in the
largest segment plus one. For example, the biggest
fanout in G<l5,4,0,9> is 9. Each FCC drives only
nodes in the segment it belongs to, so the biggest
FCC fanout is always less then the biggest FEC
fanout. Therefore, if we do -not allow the fanout
of the leftmost FEC in each segment to exceed f
when constructing the graph, the fanout of every,
other node is automatically taken care of,

The minimum cost solution for G<n,d,e,f> will
be denoted Gc<n,d,e,f>, We will now present a sim-

ple but neither time-efficient nor space-efficient
algorithm to construct Gc<n,d,e,f>, A more sophis-

ticated algorithm that generates the same graph but
takes linear time and constant space is given in
the Appendix.

At any moment, n' denotes the number of
columns in the graph, nt denotes the number of

columns in each segment t, jt denotes the column

with the maximum cost in segment t, and j denotes
the column with the maximum cost in the graph (if
more then one column qualifies for jt or j, any of
them will do).

Algorithm !.
d d-1 1. Construct the graph G<2 -1,d,0,2 +1>.

If n'<n, stop. Gc<n,d,e,f> is not realizable.

Else continue to the next step.

2. If e>O, eliminate columns 1 through 2e-l.

If n'<n, stop. Gc<n,d,e,f> is not realizable.

Else continue to the next step.

3. For each segment t do
while nt>f-1 do eliminate column jt'
If n'<n, stop. Gc<n,d,e,f> is not realizable.

If n'-n, stop. The current graph is Gc<n,d,e,f>,
Else continue to the next step.

4. While n' >n do eliminate column j. C

Example: construct Gc<B,4,2,5>.

1. Construct G<l5,4,0,9> (see Figure 3).

2. Eliminate columns 1 through 3,

3. Eliminate columns 15, 14, 13, and 11
in segment 4.

We are now :Left with 8 columns. Therefore the
graph is Gc<B,4,2,5>, as shown in Figure 2. 0

As d approaches n, the algorithm becomes more
inefficient in terms of space and time. However,
if we compute in advance the maximum column cost
and how many such columns are in each segment, then
the graph can be constructed column by column. An
efficient algorithm that exploits this idea has
been devised, so that it takes time proportional to
n. The details are given in the Appendix.

For the graph Gc<n,d,e,n+l>, a simple formula

that implicitly gives the cost can be derived,
using elementary combinatorial considerations. The
cost is the smallest c that satisfies Inequality 1:

i~l <(~)-(~)> > n (1)

Theorem.l

The cost of G <2k ,k+2,k+l,2k+l> is rk/21+1. D
c

Proof

According to Algorithm 1, we execute the fol
lowing steps:

k+2 k+l
l. Construct G<2 -l,k+2,0,2 +l>.

k+l 2. Eliminate columns l through 2 -1.
k+l 3. This step is not executed, since f=2 +l.

~l k 4, The graph has now 2 columns, from which 2
columns have to be eliminated (in fact, the

k+l k+l current graph is G <2 ,k+2,k+l,2 +l>). The
c (k+l) number of columns having the cost i+l is i ,

k+l(k+l) k+l (k+l) (k+l) O<i<k+l. Since E i •2 and i = k-i+l ,
i=O k

O<i<k+l, after the elimination of 2 columns the
maximum cost of the remaining columns is k/2 + 1
for an even value of k or (k+l)/2+1 for an odd
k value. O

Theorem 1 implies the following important
consequence. Obviously the cost of

G <2k,k+l,k,2k+l> (the graph with the minimum depth
c k k

for n=2 , e-k, and f•2 +l) is k+l. Then by allow-
ing the depth d (as well as e) to be greater by
just one, the cost is reduced to about half (refer
also to Table 1-a, Section 5).

Figure 6 shows two graphs generated by Algo
rithm 1.

248

I

I.

! ! ! ! ! ! ! ! ! ! ! ! ! 0
! !/ ! ! I! ! /! ! / ! ! I! ! /!
! 2 ! 1 ! 1 ! 2 1 ! 2
! I! !/! ! ! ! /! ! ! /! !
2 1 ! ! 2-2 ! 2-2 ! ! 2

! ! I! ! ! ! I! ! ! ! ! ! ! !/
! 2 2-2-2 ! ! ! ! 3-3-3-3 3
! I! ! ! ! I ! ! ! !/! I
2 ! ! 3-3-3-3-3-3-3 4
! ! ! /!
3-3-3-3- ! ! 5
! ! ! ! ! !

(a)

!
! ! I! !/! ! I! ! /! !/ !/! ! I! ! /! ! /! !/! !/
! 2 1 ! 2 2 ! 3 1 ! 2 2 ! 3 2 ! 3
! I! ! !/! ! ! ! /! ! ! I! ! ! ! I! ! ! I!
2 2-2 ! ! 3-3 2-2 ! ! 3-3 ! 3-3 !

! /! ! ! ! ! ! I! ! ! ! ! /! ! ! ! ! !
2 ! ! 3-3-3-3 3-3-3-3 ! ! ! ! 4-4-4-
! ! ! ! /! ! ! ! ! ! ! ! ! ! ! ! ! ! /!
3-3-3-3 ! ! ! ! ! ! 4-4-4-4-4-4-4-4
! ! ! ! ! ! ! ! ! ! I!
4-4-4-4-4-4-4-4-4-4-4-4 ! !
! ! ! ! ! ! ! ! ! ! ! ! ! !

(b)

Figure ~· Minimum-cost graphs.
(a) Gc<16,5,2,8>. (b) Gc<24,5,2,13>.

0

2
I

3

4

5

l• An Algorithm to Construct the Minimum-Size Graph

This algorithm operates on a graph Gc<n,d,e,f>

generated by Algorithm 1 and generates a minimum
size graph, denoted as Gs<n,d,e,f>. The algorithm

performs local optimization on Ge <n,d,e,f> by try

ing to reduce the number of nodes wherever possi
ble. Figure 7 illustrates how local optimization
is accomplished. Figure 7-a shows a section of the
graph Gc<64,7,6,65> (columns 24 to 32). The nodes

surrounded by the dashed box are deleted, and new
nodes, surrounded by a full box, are introduced as
shown in Figure 7-b. This transformation, called
the local-optimization step, reduces the number of
nodes in the graph while preserving the suffix
solution pk, O<k<64. This .~an be shown by reason-

ing similar to that utilized in Lemma 1. A local
optimization step can be applied once more on the
nodes surrounded by the dashed box in Figure 7-b.
The final result is shown in Figure 7-c.

Note that right-driving-nodes may not be
deleted, because of their connections to the nodes
driven by them. Thus, the nodes are classified
into two groups: (a) fixed nodes, which are the
right-driving nodes, and (b) .BQ!!_-fixed nodes, which
are all the other nodes. Fixed nodes are circled
in figure 7.

Figure 8 illustrates the general local
optimization step. The nodes shown in Figure 8-a,
except for node F, are non-fixed. There may be
nodes on levels vu+l to vd-1, but if there is a

node on level v, vd<v<vu in column j, k>j>i, then

there must be a node on level v in each column j,
and these nodes are non-fixed, also. There are no
nodes on level vd+l in this section. Figure 8-b

shows the section after the local-optimization

249

! ! ! f ! ! ! !
!/! !/! !/! !/! !/
2!@!3!@!3
! ! I! ! ! ! I! !
3-3 ! ! ~4 ! ! 4-
! ! ! ! /, ! ! ! !
4-4-4-4 ! ! ! ! @
! ! ! ! ! ! ! ! /!
5I5-:5:-5-:5~5.5-:51 !
! :, ! ! ! ! ! d !

@>16-6-6-6·6·6·6L6-
/ ! 1-1-r-rTrr,

0

2

3

4

5

! ! ! ! ! ! !
! /! ! /! ! I! !/
2 ! @ ! 3 ! @
! ! I! I I ! I!
3-f3j ! ; $-4 !
! :11 ! ! ! /, !
4i.~-4-4 ! ! !
! ! ! ! ! ! !
5- ! - ! - ! - ! - ! - ! -
! ! ! ! ! ! !

@}!-!-!-!-! ... !-
/! ! ! ! ! ! !

0
!/
3

4- 2
I

@- 3
/!

4
I

-@- 5
/!

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

-7-7-7-7-7-7•7-7-7-

6 !
!
16-6-6-6-6-6-~ ! 6
! ! ! ! ! ! . !

7 -7-7-7-7-7-7-7-7-7-
! ! ! ! ! ! ! ! ! ! ! ! !

(a)

! ! ! ! ! ! ! ! ! 0
!/! !/! !/! !/! !/
2!@!3!0>!3
! ! I! ! ! ! /. !
3- ! ! ! ~4 ! ! 4- 2
! ! ! ! I, ! ! ! !
4- ! ffe4 ! ! ! ! @- 3
! ! I. ! ! ! ! !/!
5-BI-!-!-!-!-!-! ! 4
! ! ! ! ! ! ! ! !

@}!-!-!-!-!-!-!@- 5
I! ! ! I ! ! ! ! I!

! 6-6-6-6-6•6-6 ! 6
! ! ! ! ! ! ! ! !

-7-7-7-7-7-7-7-7-7- 7
! ! ! ! ! ! ! ! !

(c)

! ! ! ! !

(b)

7

Figure]_. Local-optimization of columns 24 to 32
of Gc<64,7,6,65>. (a) Original section.

(b) Section after first local-optimization step.
(c) Section after second local-optimization step.

step. The nodes on levels vu through vd in columns

i+l through k are deleted and new non-fixed nodes
are introduced on level v d + 1 in these columns.

Node A is marked as fixed, since it now drives the
group of new nodes. The effect of the transforma
tion is the reduction of the size of the graph. We
are now ready to state the algorithm.

k i k i
T ' T ' I I
I F I

I
v

I lu
I I I
I I Al

t t t t i i::+l
I I I I I I I

' ' ~ ' ' ' ' ' (a) (b)

Figure.!!.• General local-optimization step.
(a) Section before step. (b) Section after step.

Algorithm 1
1. Mark fixed nodes.

2. Scan the graph and perform the
optimization step wherever possible.

local
e

Notes: (a) The cost of the graph is not changed.

(b) f is the upper bound for Gs <n,d,e,f>.

There may or may not be any node with fanout
equal to f.

Step 2 of this algorithm is somewhat · vague,
since the local-optimization step can replace any
number of rows of non-fixed riodes with one row of
new non-fixed nodes. However, if we restrict our
selves to replacing only two rows at each local
optimization step, we can limit the scanning to
each individual column independently, as follows.
The column is scanned from bottom to top. If a
triple of levels {va,vb,vc}, v8 =vb+l, vb>vc can be

found such that non-fixed nodes are located on lev
els vb and v c and the levels between vb and v c as

well as level v a are empty, then these two nodes

are deleted and a new non-fixed node is introduced
on level v • The net effect of this local-

s
optimization step is the reduction of the number of
nodes by one. Local-optimization steps are carried
out iteratively on the column until no such
sequence is found. Figure 9 demonstrates the
local-optimization done on column 31 of
Gc<64,7,6,65> (compare it to Figure 7).

Figure .2.• Local-optimization on a graph column.

Figure 10 shows the graphs of Figure 6 after
applying local-optimization on each column.

! ! ! ! ! ! ! ! ! ! ! ! ! ! 0
! ! /! ! ! /! ! I! ! /! ! /! ! /!
! 2 ! 1 1 ! 2 1 ! 2
! /! !/! ! ! ! I! ! ! /! !

! 2 1 ! ! 2-! 2- ! ! ! 2
! /! !, ! ! I! ! ! ! ! ! !/
2 2- ! - ! ! ! ! 3-!-3-3 3

! I! ! ! ! ! ! ! ! ! I! ! I!
2 ! ! 3- ! - ! -3- ! -3-3 3 4
! ! ! ! I! ! ! I! ! /!
3-3-3-3-3 3-3 ! 3 5
! ! ! ! ! ! ! ! ! ! ! !

(a)

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! /! ! I! ! /! ! /! ! I! ! /! ! /! ! I! ! /! !/ !/
! 2 1 ! 2 2 ! 3 1 ! 2 ! 2 ! 3 2 3
! I! ! ! /! ! ! ! I! ! !/! ! ! ! I! /!
2 2-! ! ! 3-3

! /! ! ! ! ! ! I!
2 ! ! 3-!-3-3

2-2 ! ! 3- !
! ! ! ! /! ! !
3- ! ... ! ... ! ! ! !

3-

4- -4-
! ! ! ! I! ! I! ! ! ! ! ! ! ! ! ! ! ! /! I!
3-3-3-3 ! 3 ! ! ! ! ! 4-!-!-!-4-!-4-4
! ! ! ! ! ! ! ! ! ! ! /! ! ! ! /! ! /!
4-4-4-4-4-4•4-4-4-4-4-4 ! 4-4-4 4 !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

(b)

Figure lQ.• Minimum-size graphs.
(a) Gs<l6,S,2,8>. (b) Gs<24,5,2,13>.

I

0

2

3

4

5

!.• Comments and Open Problems

The local-optimization step can replace any
number of rows of non-fixed nodes with one row of
non-fixed nodes. By choosing a different number of
rows to be replaced in each local-optimization step
we may end up with graphs of different sizes. Gen
erally, the size reduction is greater as the cost
of the graph grows. It is an open problem on how
to choose the right number of rows to be replaced
in each section during a local-optimization step,
in order to achieve a smaller-sized graph. Also,
Algorithm 2 operates on the· graph generated by
Algorithm 1, which eliminates columns according to
their cost. If another strategy for eliminating
columns is used by Algorithm 1, it may result in a
smaller-sized graph generated by Algorithm 2.
Another open problem is finding the expressions for
the size of Gc<n,d,e,f> and Gs<n,d,e,f>.

Figure 11-a shows a structure of a 16-bit
adder generated by a silicon compiler using Algo
ri.thm 1. Each square is a cell that represents a
node. Rows 2, 3, and 4 from the top form
Gc<l6,5,2,8> (compare it to Figure 6-a). In Figure

11-b, Algorithm 2 was used, so these three rows
form Gs <16, 5, 2, 8> (compare it to Figure 10-a). 4

cells have been saved, but additional connecting
lines which enter cells A, B, C, and D are intro
duced. For details of the cell functions and lay
outs see [GaBL81].

250

(a)

(b)

Figure .!.!.• Structure of a 16-bit adder.
(a} Using Gc<l6,5,2 1 8>. (b) Using Gs<l6,5,2,8>.

Algorithm 1 accepts the depth d as a parameter
and generates the minimum-cost graph. A similar
algorithm can be easily devised that accepts the
cost c as a parameter and generates the minimum
depth graph, denoted as Gd<n,c,e,f>. Gd<n,c,e,f>

is realizable for every n, c, e, and f. For the
graph Gd<n,c,e,n+l>, the depth is the smallest d

that satisfies Inequality 1.

1• Results and Comparison

In order to be able to compare our algorithms
with the Ladner-Fischer algorithm, we will restrict
ourselves to the graphs Ge <n,d,d-1,n+l> and

Gs<n,d,d-1,n+l>, where n is an integer power of 2.

-In these graphs, all the FECs occupy level d.

Table 1-a shows the cost of Ge <n,d,d-1,n+l>.

The cost approaches 2 as d approaches n, for n>2.
Table 1-b shows the sizes of these graphs. Table
1-c shows the sizes of these graphs after applying
local-optimization on each column independently, as
described at the end of Section 3. Table 1-d shows
the sizes of the graphs generated by the Ladner
Fischer algorithm. This algorithm covers only the
range log2n+l (d (2log2n+l, whereas our algorithm

covers the full range log2n+l (d (n. For all

practical cases, Gs<n,d,d-1,n+l> has a smaller size

then the graph generated by the Ladner-Fischer
algorithm and sometimes even Gc<n,d,d-1,n+l> has a

smaller size (especially when d approaches n).

n\d

16
32
64

128
256

n\d

10 11 12 13 14 IS 16 17

(a)

10 11 12 13 14 15 16 17

4 7
8 - - 20 18 17 16 15

16 - 48 41 40 39 38 37 36 35 34 33 32 31
32 - - 112 98 90 86 85 84 83 82 81 80 79 78
64 - 256 218 209 199 188 179 178 177 176 175 174

128 - 576 500 455 444 432 419 405 390 374 366
256 - 1280 1093 1036 968 931 917 902 886 869

n\d

I
2
4
8

16
32
64

128
256

n\d

4
8

16
32
64

125
256

(b)

10 11 12 13 14 15 16 17

7
- - 20 18 17 16 15 - 47 41 40 39 38 37 36 35 34 33 32 31 - - 106 88 87 86 85 84 83 82 81 80 79 78

- 232 198 182 181 180 179 178 177 176 175 174 - - 497 415 399 372 371 370 369 368 367 366 - - 1049 897 802 800 766 753 752 751 750

(c)

10 II 12 13 14 15 16 17

8 8 - - 20 19 19 19
- 47 43 42 42 42 - - 106 94 90 89 89 89

- 232 201 189 185 184 184 184 - - 497 423 392 380 376 375 375 375
- 1048 880 806 775 763 759 758 758 758

(d)

Table 1. Cost and size of suffix-graphs.
~~-(a) Cost of Gc<n,d,d-1,n+l>.

(b) Size of Gc<n,d,d-1,n+l>.

(c) Size of Gs<n,d,d-1,n+l>.

(d) Size of graphs generated by
the Ladner-Fischer algorithm.

References

[BiGa81] Bilgory, A. and Gajski, D. D., "Automatic
Cell Generation for Recurrence Struc
tures," 18th Design Automation Confer
ence, 1981.

[BrKu79] Brent, R. P. and Kung, H. T., "A Regular
Layout for Parallel Adders," Tech.
Report, CM!J-CS-79-131, Dept. of Computer
Science, Carnegie-Mellon Univ., June
1979.

[GaBL81] Gajski, D. D., Bilgory, A. and Luhukay,
J., "Algorithmic Layout of Gate Macros,"
Proc. 2nd Caltech conf. on VLSI, January
1981.

[Gajs81] Gajski, D. D., "An Algorithm for Solving
Linear Recurrence Systems on Parallel and
Pipelined Machines," IEEE Trans. on
f.2!!2.•, Vol. C-30, No. 3, March 1981.

[Kris81] Krishnan, M. s., "A Structured Approach
to VLSI Layout Design," Proc. 2nd Caltech
conf. on VLSI, January 1981.

[LaFi80] Ladner, R. E. and Fischer, M. J., "Paral
lel Prefix Computation," J...• ACM, Vol. 27,
October 1980, PP• 831-838.

Appendix

We present here an efficient algorithm to con
struct Gc<n,d,e,f>. First, we will introduce nota-

tions for the algorithm. The word "current" means
"at the moment of execution", as opposed to
"final", which means "after completion of the algo
rithm". The parameters n, d, e, and f have been
defined in Section 1. Some notations have slightly
different meaning in each part of the algorithm.
References to the algorithm parts are made where
confusion might be caused.

c - Cost of cur.rent graph (part a);
Cost of final graph (part b).

t - Segment number.
ct - Cost of current segment t (equals the

maximum cost of a column that belongs
to segment t) (part a);
Cost of final segment t (part b).

c~ - Maximum cost of column to be added to
segment t.

q - Maximum number of columns each having cost c
that current segment t may have if the fanout
is unlimited.

An Number of columns still to be added to
current graph.

Af Number of columns still to be added to
current segment t.

nt - Number of columns in current segment t.

mt - Number of columns with cost ct in current
segment t (part a);
Number of columns with cost ct in final
segment t (part b).

st - Status of current segment t:
open: nt <f-1 (columns may be added to

current segment t);

251

Closed: nt=f-1 (segment t is full or

maximum fanout has been reached).
f' - Current fanout of the leftmost FEC in

segment t-1.
j - Column number.
b - Binary number representing column j.
u(b) - Position of the least significant 1 in b

(l.s.b. is in position 0).
w(b) - Position of the most significant 1 in b

(l.s.b. is in position 0).
z(b) - Cost of column represented by b

(equals number of l's in b).

Algorithm l'

Part 1!_: Evaluation of ct and mt for each

segment t in the graph.

{ initialization }
for t + e+l to d do
begin

nt + 1
st + open

end
t.n + n
c + 0

{ main loop }
repeat

c + c+l
t + e
repeat

t + t+l
.ll st =open then

t-1 begin {)
q + c-1

end

if q•O then st
else

+ closed

begin
t.f + f-n

t
ct + c
if q<M and q<t.n then
begin

end

nt + nt+q
mt + q
t.n + t.n-q

else if t.f<q<t.n ..Q.!'. M<t.n<q then
begin

end

st + closed
mt +.t.f
t.n + t.n-t.f

else { t.n<q<t.f or t.n<t.f<q }
begin

mt + t.n
t.n + 0

until t.n=O ..Q.!'. t=d
until t.n•O or t.n has not been changed

Part .!!,: Graph generation.

t + e
f' + f
for j + 1 to n do
begin

if f'•f then
begin

t + t+l
b + 2t-1
generate column j
f' + 2

c~ + ct
end
else
begin

if z(b)=c' then b + b+2u(b)
t--

if w(b)>t-1 then
begin

t + t+l
b + 2t-l
generate column j
f' + 2
c' + c

end t t
else
begin

generate column j
f' + f'+l
if z(b)=c' then
begin t

mt+ mt-1
.ll mt •O then

begi: + b-2u(b)

c' + c'-1
end t t

else b + b+l

The statements "generate column j" in part b
of the algorithm mean "use the binary number b as
column j in the binary matrix representation of
Ge <n,d,e,f>". We have shown how to perform local

optimization on each column independently, so if
"generate column j" is replaced by "generate and
local-optimize column j ", the algorithm will pro
duce Gs<n,d,e,f>.

252

I

I

i,,

PIN LIMITATIONS AND VLSI INTERCONNECTION NETWORKS*

Mark A. Franklin and Donald F. Wann
Department of Electrical Engineering

Washington University
St. Louis, Missouri 63130

Abstract: Multiple processor interconnection net
works can be characterized as having N' inputs and
N' outputs, each B' bits wide. Construction of
large networks requires partitioning of the N' *N'*B'
network into a collection of N*N switch modules of
data size B (B < B') each implemented on a single
chip and interconnecting them with a specific
interchip network type T'. The major constraint
in the VLSI environment is the pin limitation, Np,
of the individual modules; these are allocated
between data and control lines, Q. This paper
presents a methodology for selecting the optimum
values for N and B given values of the parameters,
N', B', T', Q, and N. Models for both the banyan
and crossbar networks are developed and arrange
ments yielding minimum number of chips, average
delay through the network, and product of number of
chips and delay, are presented. A bit slice
approach (B = 1) produces the optimum arrangement
for the crossbar, while for the banyan the optimum
is achieved with multiple bits per module.

Introduction

Over the past few years a v<iriety of physically
local, closely coupled multiple processor systems
have been proposed (1,2,3,4). One key issue in
the design of such systems concerns the communica
tions network used by these multiprocessor systems.
Various studies have focused on the functional
properties of such networks (i.e., what permuta
tations are possible, what control algorithms are
needed, etc.), on their complexity, and to some
extent on performance issues (S, 6, 7, 8, 9).
In most cases network complexity has been measured
by the number of elementary switching components
needed by a network of a given size and type, while
performance has been determined by the average
number of elementary switching components through
which a message must pass (i.e. average delay).
Recently work has begun on examining complexity and
performance questions in the context of VLSI imple
mentation of such interconnection networks.
Franklin (10) has compared two networks,crossbarand
banyan, operating in a circuit switched mode in
terms of their space (area) and time (delay)
requirements. The networks were assumed to be

'implemented as complete modules on a single VLSI
chip.

Closer examination of VLSI network implementa
tion problems shows that pin limitations, rather
than chip area or logical component limitations,
are a major constraint in designing very large
interconnection networks. Consider, for instance,
a network with N' inputs, M' outputs and with each
output being B' bits wide (N'*M'*B'). The number

*This work was supported in part by NSF Grant MCS-
78-20731 and ONR Contract N0014~8o-c-0761.

0190-3918/81/0000/0253$00.75 © 1981 IEEE

253

of required pin connections (ignoring power,
ground and general control) for a single chip
implementation is given by B'(N'+M'). For a
square network of size twelve with B'=l6, the num
ber of pins required would thus be 384; much
larger than common commercially available integra
ted circuit carriers. Given that pins are
typically placed on 100 mil centers along the
periphery of the package, the total number of pins
is limited mainly by the increase in the physical
length of the package. For this pin placement
and the 384 pin example, a 19.2 inch dual-in-line
package would be required.

In this paper we focus on two of the more
obvious solutions to this pin limitation problem.
The first approach is to implement a large network
(N' *N') requiring many pins as a interconnected
set of smaller subnetworks (N*N) where each of
the smaller networks can be contained on a single
chip in which the chip pin constraints are met.

The second approach is to slice the network
so that one creates a set of network planes, each
plane handling one or more bits (e.g., B bits) of
the B' wide datapath. This is commonly done in
memory designs. A potential problem arises in
this approach due to the difficulty in synchroni
zing the multiple planes. This is discussed in
reference 11.

The remainder of this paper deals with deter
mining the "best" combination of datapath slice B
and chip network size N given:

1. N': An overall network siz~ (N <= N'),

2. B': A data path width (B <= B'),

3. T : An intrachip network type (e.g.,
the interconnection network imple
mented within the N*N chip might be
a crossbar).

4. T': An interchip network type (e.g.,
the interconnection network imple
mented between the N*N chips to
achieve the overall N'*N' network
might be an Omega network).

5. N p
The maximum number of pins allowed
on a chip.

The number of pins on a chip
allocated to power, ground, and
control.

"Best" in this context, refers to both chip count
and bandwidth of the overall N'*N' network.
Figures 1, 2 and 3 illustrate a general N'*N'
network, and a possible decomposition of a sample
16*16 network. In the next section basic models

for this problem are presented and used to deter
mine the B and N combinations which minimize the
total chip count, the overall network delay and an
overall performance measure using the product of
chip count and time delay.

The Basic Model

The basic model consists of two parts. The
first relates to the chip count while the second
concerns network time delay. For brevity, only
square fully connected networks (i.e. there is a
path from each input port to each output port) are
considered. Note that certain input/output paths
may have a connnon subpath and this may result in
messages being temporarily blocked.

Let us refer to the N*N*B chip as a switch
module; a number of these modules will be inter
connected to realize the N' network. This paper
considers two types of interchip networks (T'):
the incremental crossbar, CB, and the banyan BA
(12,13,14). While there are many ways of design
ing a crossbar network (e.g., demultiplexer/multi
plexer configuration, switched multiple busses,
etc), the incremental crossbar design (Figure 4)
can be expanded on a unit basis by adding basic
switch modules in a row-column arrangement. This
modularity property permits flexible expansion
while retaining the nonblocking and full connection
properties of the crossbar. A price is paid for
these properties in terms of number of switches
and pins required on a switch module. Wh.ile the
number of switches required per switch module may
not be a serious constraint with VLSI technology,
the problem of pin constraints is severe. For the
incremental crossbar, the modularity property
requires 4NB data pins to implement a N*N*B switch
module while the banyan, a blocking network,
requires 2NB data pins.

To make global comparisons similar and to
eliminate blocking at the switch module level, this
paper examines1cases in which the switch modules
are constructed using an incremental crossbar arch
itecture (T =CB). Two types of module inter
connections are examined; the crossbar and the
banyan (T' =CB or T' =BA).

Chip Count Model

As illustrated in Figure 4, the number of
N*N*B chips required to implement an N'*N'*B'
incremental crossbar network is given by:

[1)

The banyan network is one of the class of
blocking networks whose logical component complex
ity grows as O(N log N) rather than O(N**2). As
illustrated in Figure 5, the number of N*N*B chips
needed to implement as N'*N'*B' banyan network is
given by:

The first term in this expression is the number of
bit slices or network planes that are required.
The second term represents the number of chips at
each level (row), while the third term is the num
ber of levels.

254

Time Delay Model

A model giving the average time for a signal
to propagate through a network must include the
time to travers.e each of the chips, the time to
propagate from chip to chip, and since the bit
slice approach separates the bits in a data word,
the additional time that is needed to make certain
that all the data bits have completed their move
ment through the N'*N'*B' network.

The average delay associated with a basic
switch module will be designated as D b since
these modules have a crossbar constru~~ion. Path
setup delays (i.e., time to set switches in their
desired positions) are not considered here. The
delay of a pin driver and associated interconnec
tion wires between modules (i.e. the intermodule
delay) is denoted by Di • The intermodule delays
for the CB and BA netwo1Pks are different and will
be denoted as Di b and D. b • Additional syn
chronization der~§ introd~~ea by the designer to
assure that all data bits have traversed the net
work will be represented by Ds ncb and Ds nba"

For the CB network the av~rage delayycan be
determined by examining Figure 4. Note that this
represents one of rB 1 /Bl planes. Assume that each
switch module, implemented on a single chip,
represents an N*N CB network. The pin drivers for
each module are also located on the chip. For
this arrangement the number of modules in an
average path is fN'/Nl and each intermodule path
has the same delay D. h" Therefore the average
network delay D'cb igm~iven by:

D' = fN' /Nl D . + fN' /~1 D + D [3] cb · cb imcb synch

Note that a circuit switched design is assumed
here with no pipelining between modules.

For the BA network the number of switch
modules and the number of intermodule connections
is log~,N'. Here, because of the connection topo
logy, £he intermodule paths are not constant in
length. The average delay, D'b , through such a
network (assuming no delay penalty for blocking)
is given by: [4)

DI = l1og N 'l D + rlog N ·l D + D ba l" N cb 1- N imba synba

Pin Constraints

For a square N*N*B chip with Nk pi~s alloca
ted to power, ground and control, tlie pin con
straint is given by:

Np >= KBN + Nk [5]

where K = 4 for the CB network and K = 2 for the
BA network. The equality will be used since it is
advantageous to utilize as many available pins as
possible. Two cases may be considered. Case 1 is
the situation where the number of data pins is
much larger than Nk (i.e., KBN >> Nk) and thus
equation 5 becomes:

N = rp/KBJ [6]

This is typical of a clocked system where a small
number of clock lines are needed to synchronize
all the data lines.

Case 2 encompasses the situation where N is
not neglible and there is a control line over~ead
associated with the data paths~ Assuming that the
number of control lines is proportional to the num
ber of ports, N, on an individual chip (i.e. Nk=QN
where Q is a constant), N can be expressed as:

N lN/(K~~ f7J

This would be the appropriate model if network
chips communicated with each other in an asyn
chronous manner and the control line overhead
consisted of request/acknowledge pairs (Q = 2).

Chip Count Minimization

For large networks with large datapath widths
and chios with a large number of oins the ceiling
'.and floor functions can be removed fr~rn [1] and
[2], and [6] and [7]. Then N . and Nba

can be approximated as continuous funct~ons.Assume
that all available pins are used and consider Case
1 where N is given by equation 6. Substituting eq
uation 6 with K = 4 and K = 2 respectively into
continuous versions of equations 1 and 2 yields:

Ncbl 16BB'(N**2)/N **2 p KcbB I8J

Nb al
2B'N'log N' ~a

N (logN -log2B) iogN - log2B 19'1
p p p

For a given pin constraint N , and overall network
requirements N' and B', Kb Rnd ~ are constants.
Minimizing N 1 and Nb for this ~ase requires
that B be mifi~mized. ~e smallest datapath width
possible is B ~ 1, hence with this model N should
be selected to be N /K. This result corresponds
to memory chip desi~n where the slice width is gen-·
erally taken as one bit. Note however, that this
was obtained with a continuous approximation to eq
uations 1 and 2; while B = 1 yields a minimum num
ber of chips in most cases, there are situations
where other values of B are better. For instance,
with a BA network with Np = 60, N' = 128 and B'=l6,
a B = 1 solution yields Nbal = 160, while a B = 2
solution yields Nh 1 = l4ij.

For case 2 wfi~re Nk is not negligible equation
7 is used for N and substituted back into the con
tinuous versions of {I] and {2] to give:

Ncb2 (4B-+-Q)2B'N'2 Kcb (4B+Q)2

BN 2 16B
p

~a(2~)
2B(logN - log(2~))

p

{10]

fll]

The derivatives of N b2 and Nba2 with respect to B
can now be taken, ana fhe values of B and N which
minimize the chip count obtained.

For the case of T' a CB, the number of chips
N b2 is minimized when B = Q/4. Thus for a request
/icRnowledge pair associated with each chip data
path (Q ... 2), B would be selected as 1. While this
is true for almost all cases considered, the conti~
nuous model approximation should be checked when N'
is less than 64 or B' is less than 16 (e.g., For N'
= 32 N = 75 Q = 2 and B' = 16· B = 1 yields N .

p ' ' cb2

255

= 144: B = 2 yields Ncb2 = 128).
For the case of · T' a BA network, an equa

tion can be derived for obtaining the optimum B
and N and indicates that the continuous model does
not yield optimum values in many situations.
For instance, for N = 90, N' = 512, Q = 2 and B'=
16, a search procedRre working directly with equa
tion 2 gives an optimum B = 4 and yields Nba2 =
684. Note that using B = 1 in this case results
in N = 1152. This is not unusual, and in most
case'l!a~N < 140) where Q > 2, a choice of B = 1
will be Ronoptimal. -

Equations 1 and 2 were solved using optimal
values of N and B. and the chip count was obtaired
as a function of the parameters N , N' and network
type T'. Figure 6 illRstrates how the
total number of chips varies as a function of the
network size. Plots for two different values of
N and Q are also given. For a given N', N and Q ·
tRe BA requires fewer chips than the CB imp~emenc;f
tion and the curves agree with the observation th.a:
the crossbar grows as O(N'**2) while the banyan
grows as O(N'LogN'). As expected, increasing Q or
N requires a larger number of chips for both the
bRnyan and the crossbar. Although not shown expli
citly in these graphs, the optimum value of B is 1
for the crossbar (N > 64}, while for the banyan
the optimum B rangeR from 1 to 4 (Np_::. 64).

Network Delay Minimization

Next we determine expressions for the delays,
D b' D , and D and incorporate these into equa
tions 3111and 4 t~Y1!ompute the average delay through
the two networks.

Crossbar Network

The value of D has been developed by Frank
lin ()0) using NMOsc§oR gates for construction of
the crossbar module and is given as:

Deb = Nl2.5mfT + T(1+2.25acb)] = NA0 [12)

The parameters are defined in Table 1 which also
gives some typical values. The equation assumes a
circuit switched CB·, and uniformly distributed ad
dressing of module output ports. The first term in
the brackets represents the delay through an indiv
ual switch within a 111odule, while the second term
is the delay between switches in a module.

The delay encountered when a signal goes off
the chip, propagates along an interconnecting path
and enters another switch module is D. b" A buf
fer (e.g., a series of inverters) musfmge included
within the switch module to allow the minimum size
transistor to drive the 111odule pin and associated
load with111inimum delay. The buffer delay is det
ermined by the gate capacitance of the minimum si:e
transistor, the number of stages in the buffer, tl:e
capacitance of the pin being driven, thecapacitance.
along the interconnecting path, and the capacitance
of the l:eceiving module pin. This delay is minimi
zed when exponentially sized cascaded inverters aie
used (14). The delay in this case is:

Dimcb = Teloge8cb [13)

where scb is the ratio of the buffer load capaci-

lance to the buffer input transistor gateaipacitance.
The transistor gate capacitance, C , is the capaci
tance per unit area times the gategarea of the min
imum transistor. To determine the load capacitance
assume that the driving and receiving pin capaci
tances are equal and each has a value of C . • Fu~
ther postulate that the modules for the CBP~~ll be
placed on a circuit board and interconnected via
printed circuit copper paths. Given the planar to
pology of the CB, the spacing between modules will
generally be less than one inch. Pin capacitance
will dominate in this case and Scb =(2C i +c t) /Cg'
"' 2C i /C • P n pa If

Pff:e ~ynchronization delay depends upon the sp~
cific design technique used to determine that all
bits have traversed the network. Assuming selftined
design strategy, a reasonable design practice is to
include a tolerance or guard region that is propor
tional to the average delay time. The average delay
can thus be expressed as:

D'cb = Kl r N' /N l (Deb + Dimcb) {14]

where K = 1 + K , and Db and Di b are given in
[12] am\ [13). &umericaf studies 1tcave shown that
for the CB with Q = 0 the continuous form of !14]
usually gives the same results as the discrete form.
Therefore we shall replace fN' /Nl N by N'. Finally,
using equation 7 with K = 4 gives:

!15]

To minimize D' b , 4B + Q should be minimized. With
Q = 0, this mecans that D' . is minimized when B = 1.
Notice that D' b is direcl:11.y proportional to N', md
decreases to ac minimum value as the number of pins
N increases. Consider next the typical parameter
v!hues given in Table 1. For N large (i.e. >= 64),
Q = 0 and B = 1, the average de¥ay can be approxima
ted as:

D'cb "' 6. 2N' nsec

Banyan Network

!16]

The average delay through the BA network is giv
en by equation 4. The value of D . is known from
[12) and we assign a value to D c\hat is propor-·
tional to the average path dela~!\:hrough the net
work. The only remaining quantity to determine is
the value for Djmb • The development follows that
presented for tne eB. ·rn this case however the sep
aration between switch modules in the BA is not con-
stant, and C will vary according to the banyan
level. Sincga~Re number of levels required for a
specific configuration is not known a priori, the
inclusion of a variable for C h complicates the
delay computation. The last ¥~~el has the longest
path (S inches) and therefore the maximum capaci
tance. The capacitance of a typical printed circu:it
path is approximately 1 pf /inch thus the delay in
driving this longest path is:

D. b = Te log ((2C i +S)/C)
im a e p n g !17]

By decreasing the pin driver area as the banyan lev
el decreases this value applies to all levels.

256

The average delay through the banyan network can na.r
be expressed as: [18)

D'BA "' Kl flogNN'l [NA0 + Te loge ((2Cpin+S)/Cg)]

The continuous version of this equation is a poor ap
proximation to the discrete version, thus only the
discrete will be used. Using the values from Table
1 the banyan delay can be expressed as:

D1 BA = 6.17flogNN'l(N + 1.78) [19]

The discrete relations for the CB and the BA
delays were solved using optimal values of N and B,
and the delays obtained as a function of parameters
N ,N' and network type T'. The banyan delay is con
sllstently smaller than the crossbar for networks of
reasonable ·Size.

Chip Count-Time Product Minimization

The chip count-time product P, can be obtained
by multiplying the appropriate equations given pre
viously. Earlier discussion indicated that for rea
sonable size networks, both chip count and delay
were minimized in the CB case with B = 1. Consecpen
tly the product is also minimized with this choice
(for N' > 64, B' > 16).

For-the BA, the situation is more complex and a
computer search for the optimum B and N values must
undertaken. Consider the case of Q = 0 and N' =512
Table 2 shows the values of N,B which optimize the
number of chips, the delay, and chip count-time pr<r
duct. The B and N values required for minimizing P
fall betwee11 those needed for minimization of the
chip count and delay measures by themselves. The
count minimization is achieved by attempting to
place as large a network as possible on a given ch~
Delay minimization is achieved by balancing the de
lays associated with the module network and the de
lays associated with increasing the number of levels
in the overall network. In this case placing as
large a network on a chip as possible is not the
best strategy from a delay point of view. Note that
this analysis does not consider delays associated
with network blocking which can have a significant
effect in a saturated network.

Values for N and B which minimized P were ob
tained for both network types over a range of N', N
and Q values (Figure 7). As expected P increases p
with increasing N' and increasing Q, and decreases
with increasing N • Once again the banyan does bet
ter than the crosgbar on this overall performance
measure.

Sur0ma:ry· and Conclusions

This paper concerned the design of multiple pr<r
cessor interconnection networks. Models for both
the banyan and crossbar networks (T') were develo{l!d
and arrangements yielding minimum: number of chips,
average delay through the network, and product of
number of chips and delay, were presented. The re
sults show that for the crossbar a bit slice apiroan
(H = l} produces the optimum arrangement, while for
the banyan the optimum is achieved with multiple lits
per module. The impact of the number of control

lines on chip count, delay and product were also
modelled.

The analysis presented made a number of assunp
tions whose effects are being further investigated.
In particular the role of blocking in the banyan
case, the potential gain which would accrue from a
pipelined design, and the problem of synchroniz!t:ion
between network planes is being studied.

Parameter Symbol Uni.ts Typical
Value

minimum feature size A. min 2 3 um2
minimum gate area A . =4X (um) 36
gate capacitance mie pf 1.4*10-2
switch module pin cap. c g .pf 5 pin
transit time ·r nsec 0.5
NOR gate logic levels
per crossgate m 2

NOR gate fanout f 2
Metal path cap. to

transistor gate cap.
ratio (switch module) a CB 0.1

guard region K 0.1
multiplier s

printed circuit c path pf !pf/inch
path cap.

length of longest BA s inches 12
path

TABLE 1: TIME DELAY PARAMETERS

N B CHIP DELAY CDP3
COUNT (nsecy (*10)

N = 60
p COUNT MINIMIZATION 30 1 576 392

DELAY MINIMIZATION 5 6 1236 168
PRODUCT MINIMIZATION 10 3 936 218

N = 90
p COUNT MINIMIZATION 45 1 384 578

DELAY MINIMIZATION 5 8 824 168
PRODUCT MINIMIZATION 11 4 564 237

N = 120
p COUNT MINIMIZATION 60 1 288 763

DELAY MINIMIZATION 5 11 824 168
PRODUCT MINIMIZATION 10 6 468 218

TABLE 2: BANYAN NETWORK MINIMIZATION RESULTS
(N' = 512, Q = O, B' = 16)
(CDP: Count Delay Product)

References

226
207
204

222
138
133

220
138
102

1. Swan, R.J., et. al., "Cm*-A Modular Multi-Micro
processor", Proc. NCC (1977).

2. Dennis, J.B., and Misunas, D.P., "A preliminary
architecture for a basic data-flow processor",
Proc. 2nd Ann. Symp. on Comp. Arch. (Pee. 1974).

3. Sejnowski, M.C., et. al., "An overview of the
Texas Reconfigurable Computer", Proc. AFIPS
Nat. Comp. Conf. (1980) .

4. Sullivan, H. and Baskow, T.R., "A Large Scale,
Homogeneous, Fully Distributed Parallel Mtchine

257

r", Proc. 4th Ann. Symp. on Computer Architec
ture (March 1977).

5. Benes, Y.E., Mathematical Theory of Connecting
Networks and Telephone Traffic, Academic Pres~
New York (1965).

6. Siegel, H .• J.; McMillen, R.J., and Mueller, P.T.,
Jr., "A Survey of interconnection methods for
reconfigurable parallel processing systems",
Proc. 1979 Nat. Comp. Conf. (June 1979).

7. Anderson, G.A., and Jensen, E.D., "Computer
interconnection structures: taxonomy, charac
teristics, and examples", ACM Comp. Sur. 7, 4
(Dec. 1975).

8. Thurber, K.J., "Interconnection networks - a
survey and assessment", Nat. Comp. Conf. (May
1974).

9. Franklin, M.A.; Kahn, S.A. and Stucki, M.J.,
"Design Issues in the Development of a Modular
Multiprocessor Communications Network", Proc.
of the Annual Symposium on Comp. Architecture
(April 1979).

10. Franklin, M.A., "VLSI Performance Comparison of
Banyan and Crossbar Communications Networks",
IEEE Trans. on Comp. C-30,4 (April 1981).

11. Franklin, M."A. and Wann, D.F., "Word Inconsis
tency in Partitioned VLSI Interconnection Net
works", Center for Computer Systems Design,
Washington University., St. Louis, Internal Re
port #81-101 (May 1981).

12. Goke, L.R. and Lipoviski, G.J., "Banyan Netwcrks
for Partitioning Multiprocessor Systems", The
First Ann. Symp. on Comp. Arch., University of
Florida, Gainesville, Florida (1973).

13. Lawrie, D.H., ''Access and Alignment of Data in
an Array .. Processor", IEEE Trans. on Comp. , Vol.
c--24, No. 12 (Dec. 1975).

14. Pease, M.C., "The indirect binary n-cube micro
processor array", IEEE Trans; Comp. C-26, 5 (May
1977).

15. Mead, C. and Conway, L., Introduction to VLSI
·systems, Addison-Wesley Pub. Co. Reading, MA
(J980}.

•

•
•

• • •

INTERCONNECTION

NETWORK

8'
BllS

FIGURE 1: AN N'*N' NETWORK

. 32 PINS.

~

FIGURE 3: A FOlR PlANE

16"16*8 NETWORK

"" V1
00

xo xl x2 X3 X4 X5 X6 X7 Xe X9 X10 xll Xl2 X13 X14 XlS

4•4 4•4 4•4 4•4

4•4 4•4 4•4 4•4

Yo yl Y2 Y3 Y4 Y5 y6 Y7 Ye Y9 Y10 Yu Y12 Y13 Y14 Y15

FIGURE 2: DECOMPOSITION OF A 16•16•8 NETllORK USING lf•4•2

18

16

14

!£ 12
zo
§ 10

8

6.

NETNORK CHI PS (ONE PLANE OF FOUR SHOWN, CONTROL

AND POWER PINS NOT SHOWN),

I

r

L~~~-r-~.-----.-~-.-
64 128 256 512 1024 2048

N'

FIGl.RE 6: Ml'BER OF Oi!PS, Ha-i!PS' VERSUS Nrn«:lRK SIZE N'

INPUTS

OUTPUTS

OUTPUTS

FIGURE 4: AN 8*8"1 JNCRB'ENTAL CROSSBAR

CXM'OSED OF 2"2"1 mlll.ES

flGURE 5: AN 8•8•1 NETWORK COMPOSED OF
2•2•1 CHIP COMPONENTS ARRANQED
IN A BANYAN CONFIGURATION

10

9

8

c..
07

§
6

5

4

\cB

ll .. 60
ct-~

}BA
ll .,&O
~
~

ct-0 llti

L1·-.-~--~~-..-~~---~....-~-
64 128 256 512 1024 2048

N'

FIGURE 7: PERFORl'\llNCE MEASURE. P, VERSUS NElWORK SIZE N'

IJNEAR RECURRENCE SYSTEMS FOR VLSI:
THE CONF1GURABLE, HIGHLY PARALLEL APPROACH.

Dennis Gannon 1

Lawrence Snyder 2

Department of Computer Sciences, Purdue University
West Lafayette, Indiana 47907.

SUMMARY

1. CHiP Overview.
Recently, much VLSI based parallel processing

research has focused on algorithmically specialized
processors, highly parallel computers with fixed,
etched-in-silicon interconnection structures tailored
to a particular algorithm or small class of algorithms
[4,7,11] and many others. While these processors are
highly successful at exploiting locality, the inflexibility
of the rigid interconnection structure is a liability for
problems outside their area of specialization.

Among the more notable attempts to study a sili
con based general purpose parallel computing system
is the Cube Connected Cycle work of Preparata and
Vuillemin [BJ and designs that may be based on the
optimal area embeddings of the shuffle-exchange
graph [5]. By providing an interconnection network of
nearly universal permuting power these systems host a
number of important algorithms with the property
that if the cost of signal propagation along long lines is
ignored the asymptotic complexity of the program is
the same as that of the algorithm with all communica
tion costs eliminated. The price for such a universal
network is paid in two ways: the surface area of silicon
grows rapidly, O(n2/ log 2n), for an n processor device,
and the lack of local uniformity makes it difficult to
partition the system into a small number of easily
packaged units.

A second approach to general purpose parallel
computing is being followed in the design of a
Configurable, Highly Parallel (CHiP) computer [9]. The
motivating goals are to exploit locality (i.e. permitting
easy implementation of pipelined systolic processes as
well as simple decomposability into reproducible com
ponents) and, at the same time, provide algorithmic
fiexiblility.

The CHiP architecture has the following set of
components.
1. A regular array of simple microprocessing ele

ments (PEs) each with a small but reasonable
amount of local memory.

2. A front end controller.
3. A switch lattice.
The switch lattice is a regular structure composed of
progammable switches connected by data paths (see
Figure 1 for an example). The PEs are connected to
the lattice at regular intervals. The difference
bet:ween programming the CHiP computer and a
machine based on a universal connection network lies
in the programming of th.e switches. With the network

1 Research supporeted by NSF grant MCS-8109512.
2 Supported in part by the Office of Navel Research
contracts N00014-80-K-OB16 and N00014-81-K-0360
Spec. Res. Op. Task SR0-100.

0190-3918/81/0000/0259$00.75 © 1981 IEEE

259

the programmer seeks to decompose the data flow of
his algorithm into a sequence of stages realizable by
the network (i.e. a sequence of convolutions or
shuffles). With the CHiP array the idea is to decom
pose the data flow graph into a sequence of simple sub
graphs that can be embedded into the switch lattice in
a manner that optimizes some parameter such as
locality.

Figure 1. CHiP lattice. PEs shown as
squares, switches as circles.

Each switch is equipped with a small amount of
local memory capable of storing several local
configurations. A particular configuration setting
enables a switch to connect two or more of its incident
data paths directly and statically3. The controller can
realize a new global interconnection by a system of sig
nal broadcasts directing each switch to select the next
setting stored in its local memory.

2. A Programming Example: Linear Recurrences.
Linear recurrences arise so frequently as sub

processes of other algorithms that they are an
important benchmark for exhibiting the speed and
versatility of a multiprocessor. Following Sameh and
Chen [1], and Kuck [6] we observe [12] that any linear
recurrence of order q can be put in the form

Xi = c, + B,X,_1 i = 2, .. .,n

given B,, Ci, i = 1, .. .,n and X 1 where each B;, is a q by
q matrix and each C. and Xi are column vectors of size
q. Gajski [3] has observed that if we define a semi
group under the composition rule

(C;., B;,) "(Cj, B1) = (C;,+B;,C;. B,B;)

then the recurrence relation problem is equivalent to

3 That is, the lattice uses circuit switching rather than
packet switching.

first computing the products

" D1;1. = II (c •. Bs) i = 2, ... ,n k < i
•=i

and then evaluating

Xi = ~ + B;.Xi i = 2, .. . ,n

where (C,, B;.) =Du. With n a power of 2 the standard
computational flow graph of the required Du takes the
form shown if Figure 2.

(Cl' Bl)

(C2' B2)
012=8

(C3' B3) l 013

(C4, B4) 0 34----+ 014 --i
(CS' BS)

(C6' 86) ,,.oSo

(C7 , B7 J

<ca• Bal

Figure 2. Recurrence Computation Graph.

Because standard systolic matrix multiplication
algorithms are easy to implement on a mesh structure
embedded in the CHiP, the programming for q· > 1 is a
straight forward generalization of the first -ot"der case
described below. While it is clear that the flow graph
above can be embedded directly into a CHiP lattice of
dimension n by log(n), this approach has two draw
backs: (1) for the evaluation of a single recurrence
relation the PE utilization is low and (2) the last stage
requires a data broadcast along a channel of length
that grows linearly in n.

A more careful programming of the switch lattice
can improve this situation. Collapse the flow graph by
rows and assign each row of the computation to a sin
gle PE. In this approach the program consists of
log (n) stages where at stage i processor Pik with
j,. = 2'-1 + k2', k = 1, ... ,n/2' will broadcast D-sk to
processors Pi,,+t t = 1, .. ,2'. The main problem is to
assign the logical processors to the physical PEs 'in a
n112 by n11 2 CHiP lattice. While many solutions are
possible one method that makes good use of locality

QJ--0 0---{!]

ITl-0 ~
~ @:H:ill.

@I-@ llil-{ill

D
D
D
D

ODDO

~
Figure 3. Switch Lattice Settings For n = 16.

260

and has a straight forward control structure is shown
in Figure 3. The processors are numbered in the'
"shufiled-row-major" indexing of Thompson and Kung
[11).

The broadcasts in each stage are completed with
"hyper-H" fan-out trees in which no edge is of length
greater than n 112 / 2. If one assumes that the propaga
tion time of an nMOS signal is linear in the distance
traveled then the time. to complete the recurrence
computations will be of the forµi clog (n) + dn 11 2 for
constants c and d with d « c . In the special case that
the recurrtince relation represents binary addition the
lower bounds of Chazelle and Monier [2] show that the
scheme above is optimal in area and time. Further
more, if initially the data resides outside the CHiP
array then the l/O complexity is bounded by the n 112

perimeter ·size. Consequently, one has an asymptotic
match between computation and 1/0 complexity.

3. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[BJ

[9]

[10]

[11]

S. C. Chen, D. J. Kuck, and A. H. Sameh, "Prac
tical Parallel Band Triangular System Solvers",
ACM 1'ra.ns. on Ma.th Software, Sept 1979, pp.
270-277.
B. Chazelle and L. Monier, "A Model of Compu
tation for VLSI with Related Complexity
Results'', STOC, ACM, Milwaukee, 1981. pp.318-
~~ . .

D. D. Gajski, "Solving Banded Triangular Sys
tems on Pipelined Machines", Proceedings of
the Int'l Conf. on Parallel Computation, IEEE,
1979.

L. J. Guibas, H. T. Kung, C. D. Thompson,
"Direct VLSI Implementation of Combinatorial
Algorithms", Proc. Conference on VLSI Archi
tecture, ·oesign, and Fabrication, Calif. Inst. of
Techn., Jan 1979.
D. Kleitman, F. T. Leighton, M. Lepley, G. L.
Miller, "New Layouts for the Shufile-Exchange
Graph", STOC, ACM, Milwaukee 1981, pp.278-
292.
D. J. Kuck, The Structure of Computers and
Computations, Vol. 1, John Wiley lie Sons, Inc.,
New York, 1978.
H. T. Kung, C. E. Leiserson, "Algorithms for
VLSI Processor Arrays", C. Mead and L. Con
way, Introduction to VLSI Sytems, Addison
Wesley, Reading, Ma., (1980) pp. 271-292.
F. P. Preparata, J. Vuillemin, "The Cube
Connected-Cycles: A Versatile Network For
Parallel Computation", Proceedings of the
20th. Annual Conference on the Foundations of
Computer Science, pp.140-147, 1979.
L. Snyder, Introduction to the Configura.ble,
Highly Parallel Computer, Dept. of Computer
Sciences Purdue University; Technical Report
CSD-TR-351, May 1981.
L. Snyder, D. Gannon, "Linear Recurrence Sys
tems for VLSI: The Configurable, Highly Paral
lel Approach.", in preparation, 1981 ..

C. D. Thompson and H. T. Kung, "Sorting on a
Mesh-Connected Parallel Computer", CACM,
v.20, no 4, pp.263-270, 1977.

EMBEDDING A TREE IN THE NEAREST NEIGHBOR ARRAY

Amar Mukhopadhyay and Ratan K. Guha
Department of Computer Science
University of Central Florida

Orlando, Florida 32816

Introduction

The binary tree is an important interconnec
tion structure for hierarchically organized par
allel machines. With the advent of VLSI, consid
erable interest has been generated in dirct hard
ware implementation of a tree. However, the
parameters for VLSI are quite different from those
used in traditional design. Since a large amount
of ciruitry must be packed in a chip, the total
area of the chip is an important design parameter.
The cost of communication rather than computation
is also a major factor in VLSI design. This cost
is reflected not only in the area occupied by the
interconnection paths within the chip but also by
the requirement of providing additional communica
tion channels with the external world via the
input/output pins, which cannot be arbitrarily
large for VLSI chips. For example, in the so
called "H" layout (Mead and Rem, 1979) of a tree,
a large fraction of the leaf nodes are within the
chip and communication to the external world needs
additional area. This also increases the signal
propagation time between any two nodes to O(lil)
rather than being the natural O(logn) value for a
tree, since the nodes at higher levels of the tree
use longer and longer wires for interconnection.
Another important design parameter for VLSI design
is known as the "regularization factor" (Lattin,
1979) which measures the regularity of the embedd
ed structures in the chip. Intuitively, it means
that the number of "templates" of interconnection
and "cells" for computation should be kept as
small as possible in defining the layout of the
chip.

In this paper we consider the problem of lay
ing out a complete binary tree with n leaves on a
chip and show that for practical size trees in
which the nodes correspond to processors and the
connection between two nodes correspond to commun
ication paths between the processors, the proposed
solutions represent the best known area efficient
layout with maximum availability of the leaf and
root nodes at the boundary and low communication
cost. We show that this could be done on a near
est neighbor array with three basic connection
templates. The problem of laying out a tree on a
plane of minimal area has recently been researched
extensively [Leiserson (1979), Valiant (1981),
Browning (1980), Locanthi (1980), Brent and Kung
(1979) and Krishnan (1981)).

The Model of the Silicon Surf ace

The proposed model of the two dimensional
surface has the following attributes: first, each
processor takes a unit area on the surface; second
the processors are connected in the nearest neighbor
array using the interconnection templates, as
shown in Figure l(a), (b) and (c) and their rota
tions by 90°, 180° and 270°, where Po is the parent
processor and P1 and P2 are its sons.· In templates
(a) and (b), the parent processor is directly

0190-3918/81/0000/0261$00.75 © 1981 IEEE

261

connected to both its sons and we will say that
the communication between them will be provided
by implicit wiring. The necessary area devoted
for this purpose is some fraction of the unit
area located at the interface. In template (c),
the Po is directly connected to P2 which in turn
is directly connected to P1. Po and P1 are con
nected to each other via P2 •

Each processor has two or three sets of in
ternal and/or external ports. Any information
sent to P2 by Po must be retransmitted to P1 if
the information was directed to both P1 and P2 or
P1 only. Any information sent by P1 to P2 is al
ways transmitted to Po by adding a bit to it so
that Po knows that P1 is transmitting to Po.
When Po is transmitting information to its sons,
it should indicate which son is supposed to re~
ceive it. When Po receives information from one
of its sons, it should check who sent the infor
mation. Finally, if a wire is used to communi
cate between processors, the width of the wire
will be l/f, when f~l. Such wiring will be call
ed explicit wiring, as shown in Figure 2 between
processors X and Y.

The model differs from the previously studied
models in distinguishing between the explicit and
implicit wiring and also in not assuming that a
wire has unit width. The communication between
Po and P1 in template (c) requires more time com
pared to time taken for direct communication,
which has to be taken into account in synchroniz
ing the computations performed by the tree. The
implementation of the necessary protocols seems
straightforward in terms of both additional hard
ware and software.

An alternate communication geometry will
consist of 8-neighbor array interconnection in
which each processor can directly communicate with
four nearest neighbors and four nearest diagonal
neighbors, as shown in Figure 7. The regions
shaded at the boundaries of the cells denote the
areas devoted to build communication channels
between cells.

The "Ideal" Tree Layout

In this section, we prove a result of aca
demic interest which apparently contradicts the
result obtained by Brent and Kung (1979). Assume
that each processor needs the same area indepen
dent of its shape and that the communication be
tween the parent node and its sons takes place by
implicit wiring. Then, a binary tree can be laid
out in annular zones of an expanding circle or
square, as shown in Figures 3(a) and 3(b), respec
tively. Let ri denote the radius of the ith cir
cle or the side of the ith square. Then, obvi·-,
ously, we have the relation

ri-ri-1 = 2 <ri-1-ri_2)

Thus,
r. = ./2i-1, i = 1, 2, .•.

l

Thus, a k-level tree with n = zk-1 nodes can be
laid out in an area of exactly n units with all
the leaf nodes being accessible at the boundary.
With increasing n, the boundary processors have

thinner and more elongated shapes compared to
those near the center. This inhomogeneity in
shape makes the scheme practically unrealizable
and constitutes the key point of difference be
tween our result and that obtained by Brent and
Ktmg where the "aspect-ratio" of each processor is
assumed to be 1.

The Proposed Layout Scheme

Even if we can live with the arbitrary aspect
ratio of the "ideal layout," the realities of pin
limitations will restrict layouts of trees beyond
depth k= 9 or n = 511 in the most optimistic case.
Current packaging techniques allow a maximum of
about 120 pins on a chip. A factor of 4 increase
puts an upper bound of about 500 pins on a chip.
Thus, if we assume that all communication to a
processor chip should take place via a single.pin,
serial port in a "message-switching" mode, the
maximum size of the tree will be limited to n = 511.
However, if accessibility to leaf nodes is not a
requirement, bigger size trees could be laid out
by restricting the communication through the root
node with the penalty of slow communication.

The layout algorithm will consist of special
cases for n = 3, 7, 16, 31 and 63 and a general al
gorithm for n?o127. The layouts for n = 3, 7, 16 and
31 are shown in Figure 4. Note the trees can be
laid out using only implicit wiring and all the
leaf nodes and the root node are accessible at the
boundary. For n = 63, the tree can be laid out in
almost an implicit wired form, as shown in Figure
5, which needs 16f explicit wiring and an addi
tional 24f units of area over the densely packed
layout, with all leaf nodes and the root node made
accessible at the boundary. For n = 127, 255 and
511 above, the floor plans are obtained by follow
ing the general layout algorithm as described be
low and illustrated in Figure 6 for the tree WXYZ
with nk = 2L1 from the pair of trees ABCD and EFGH,
each with nk-l = 2k-L1 which will form the two
subtrees of the root r of the tree. Assume that
each of the sides AB, CD, EF and GH contains Ck-l
external connections; ea.ch of AD and EH contains
rk-1 external connections; the external conections
on the sides BC and FG include connection for the
root and contain rk-1+1 external connections and
are denoted by rf_1•

1. The sides BC and FG of the subtrees are
aligned so that the connection to their roots
can be connected to the root node r of the
tree.

2. The connection of r to the roots of the sub
trees partitions the external connections at
BC and FG into two classes, each having an
equal number rk-1(2 connections: those that
can be routed upwards for external connection
and those that can be directed downward for
external connection. The connection to the
root node r can be brought out either to
downward or upward direction.

In the resulting tree WXYZ, the side YZ con
tains the external connections for the root r.
The external connections for XY and WZ are given by

ck= rk-1

262

The external connections for WX and YZ are re
spectively given by

rk = 2Ck-l+rk-1

rk = 2Ck-l+rk-1+1

If the length of a side of the subtrees (viz.
length of BC) is h, the total area A of the lay
out can be expressed as

k k-1 A(2 -1) = 2A(s -l)+hf (rk_1+1)

and total average length of explicit wiring W can
be expressed as

k k-1 '
W(2 -1) = 2W(2 -l)+rk-l/2i(frk-l+h+2f)+h/2

A comparison of the propos~d layout with those
obtained by "H" method or Krishnan' s method in
terms of total area, explicit wiring cost, signal
propagation time and accessibility will be in
cluded in a detailed paper under preparation.

Acknowledgement

The work is sponsored by a National Science
Foundation Grant MCS-8005096.

References

Brent, R.P., and Ktmg, H.T. "On the Area of Binary
Tree Layouts." Technical Report TR-CS-79-07,
Department of Computer Science, Australian
National University, July 1979. (Also published
as a technical report of Carnegie-Mellon Univ.)

Browning, S.A. "The Tree Machine:
current Computing Environment."
tation, Computer Science Dept.,
Institute of Technology, 1980.

A Highly Con
Ph, D. Disser

California

Krishnan, M.S. "A Structured Approach to VLSI
Layout Design" presented at the 2nd Cal Tech
conference on Very Large Scale Integration
Technology, January 1981.

Lattin, W.W. "VLSI Design Methodology: The Prob
lems of the 80's for Microprocessor Designs."
Proc. 1st Cal Tech Conference on VLSI, Jan. 79.

Leiserson, C.E. "Area-Efficient Graph Layouts."
Dept. of Computer Science Technical Report,
Carnegie-Mellon University, August 1979.

Locanthi, B.N. "The Homogeneous Machine." Ph.D.
Thesis, California Institute of Technology,
January 1980.

Mead, C.A., and 'Rem, A. "Cost and Performance of
VLSI Computing Structure." IEEE Journal of Solid
State Circuits, SC-14, 2, April 1979: 455-462.

Valiant, L.G. "Universability Consideration in
VLSI Circuits." IEEE Transcript on Computers.
C-30, No. 2, February 1981: 135.

I
',·

Figure 1 ·

Figure 3(a)

Figure 4 Ca)

n = 3

Figure 4 (b)

n= 7

Figure 4 (c)

~
bJ

Figure 2

Figure 3 (b)

I
I I
I I

!------------------------..!

------------ -----------..

'-------------------------'

n = 16

Figure 4 (d)

n=31

Figure 4 (e)

Figure 5

Figure 6

Figure 7

263

A Constructive Approach to Fault Tolerance
in VLSI-Based Systems

Steven E. Butner

Center for Reliable Computing
Computer Systems lu1boratory

Departments ofElectrical Engineering and Computer Science
Stanford University

Stanford, California 94305

Summary

As technology advances, the trend has developed not only for
more functionality per system but also for more hardware.
Demands for higher levels of performance and throughput are
also present These demands are pushing hard on centralized von
Neumann computer .architectures which are already optimized to
near their ultimate physical limits. Solutions in such architectures
take the form of increasingly exotic high-technology components
and structures. This makes the incorporation of redundant
elements necessary for enhanced reliability ~ver more costly.

As the quantity of circuitry per system increases, the
probability of failure also rises. Use of newly-developed materials
and devices (e.g. GaAs, Josephson effects) as well as the
continuing micro-miniturization of existing technologies is
making the typical gate less reliable. In order to maintain
acceptable levels of reliability, major computer suppliers are
designing redundancy into their equipment. For example, the
IBM 370/168 uses parity-prediction in the adder, as well as parity
protection on all data paths. Error detection and correction
circuitry makes up over 15% of the 370/168. Because of the
considerable cost of this additional circuitry, it is. clear that overall
system reliability has become a very ,important issue.

Thus, two opposing forces are acting on computer designers.
The demands for ever higher performance and functionality are
causing more exotic and expensive circuitry. At the same time,
the use of more circuits per syste.m is causing overall system
reliability to decrease. Centralized architectures are being forced
into becoming either less reliable or more costly. It is now time to.
consider other solutions.

There are two potential avenues of approach to the problem,
use of non-centralized architectures and adaptation of reliability
~nhancement techniques. This paper explores the issues of a
combined approach using a distributed architecture and a
modified fault-masking method. The objective is to find a
realistic, effective solution to the conflicting design demands
while retaining acceptable levels of reliability and cost

As an alternative to the centralization-induced bottlenecks of
· von Neumann machines and a possible avoidance of difficulties

with SIMD and MIMD fomts, an·architecture known as data flow
was intrqduced [7, 3, 5). The data flow model of computation
utilizes a directed graph to· depict the transformations and
dependencies of the user program. It features an activation-by·
availability execution model which can exploit virtually all
concurrency in the user problem. 11tc architecture lends itself to
a totally distributed implementation with many copies of the basic
processing elements sharing the load. As such, each individual
element can be much simpler. Performance is no longer the single
dominating design issue since additional throughput can be
achieved at the system level by adding more parallel units.

Such an architecture provides exactly the sort of relief that is
needed for designing reliable, yet cost-effective digital systems.
By solving the performance problem at the architecture level, we
make room for addressing the issues' of reliability at the package
level. Based on ideas from data flow, we offer a design style that

0190-3918/81/0000/0264$00.75 © 1981 IEEE
264

can be used to construct reliable and practical sribsystems.
There are several effective techniques for enhancing the

reliability of digital systems . A commonly-used fault-masking
technique is triple modular redundancy [8). Because of costly
triplication, TMR (as depicted in Figure 1) is normally too
expensive to consider for most applications. . By using a
distributed architecture, we can consider adaptations of this fault
masking technique which can be practical and cost-effective even
for modest reliability requirements.

Voter Outputs

Triplicated Modules

Fignre 1: Triple Modular Redundancy (TMR) of a
Byte-Sliced Module

In this work ·we use TMR, but make a basic trade-off of time
for space. We do not require triplication of all circuitry. Rather,
we advocate slicing the simplex form of the system to create n
identical byte-wide slices. Triple redundancy is then achieved by
multiplexing inputs to the slices in time (as shown in Figure 2).
The price paid for our trade-off is up to a factor of 3 in time. We
remark, however, that the presence of asynchronous portions of a
design may allow a significant fraction of this time penalty to be
overlapped. Thereby, we get the full fault-masking capability of
TMR without the high cost of triplication. The majority of the
system redundancy is in the time domain.

Inputs Sliced Module Voter Outputs

j 1111··~ I :
Fignre 2: ITR Implementation

Because we have eliminated physical triplication of the
module, there is considerably less equipment in tlte system (as
compared with TMR). Less equipment means less circuitry to fail.
Because they arc simpler, tlte sliced circuit~ should individually
be more reliable. We show in [2] that the reliability and

availability of our fault-masking scheme are potentially superior
to those of TMR.

In [2) we define several basic elements and rules of
composition for constructing a fault-tolerant digital subsystem.
Throughout this work, as in TMR systems, a single fault model is
assumed. The basic building blocks are slice elements (with
arbitrary unidirectional carries). trans~ormation elements, and
memories. The subject of fault tolerant memory design is not
addressed. Use of a Hamming SECDED code or equivalent is
assumed.

For sliced (S·)elements we use triple time redundancy, TTR, a
generaliwtion of a method used in [6). In three suc.cessive TTR
steps, a pump circuit prese'nts sets of inputs to each slice. Each set
is rotated by one byte width. Thus, a slice produces its own
output and that of the two immediately previous slices. Use of
pipelining allows overlap of some TTR overhead. A sequential
majority voter element is used at the end of pipelines to restore
correctness in the presence of arbitrary single slice failures.
Specialized elements for subsetting, splitting, joining, and
(de)multiplexing S-element streams are defined in [2]. Some of
these elements perform necessary rearrangements of outputs
during TTR phases cp2 and cp3.

For so-called transformation (T·)clcments (i.e. unsliceable,
full-width functions), the problem of preserving correctness in the
presence of single faults is somewhat more difficult It has been
shown [l) that by utilizing the regular structure of PLAs
concurrent error detection can be accomplished. This immediate
error detection capability, (along with simple duplication) can be
used to render a T-elcment single fault-tolerant. Such elements
form the basis for reliable finite state machines.

A fault-tolerant clock scheme [4) is used in our system. In this
scheme three independent oscillators are voted by three majority
voters. The voter outputs are fed back to the oscillators for
synchronization and also are distributed to interleaved slices so
that a failure in a voter ·will be maskable via our normal slice
voting methods.

Since some specialized S-elements must recognize the TTR
phase currently active, we provide paths in all elements for clock
tokens. The presence of a logical one at a pipeline ~tage and
particular clock token line specifics the phase currently active in
that element. This technique has built-in redundancy which can
be monitored if desired, i.e. at most one of the three token lines
may be asserted in a given S-element at any instant

The series of pipelined S-clements between a pump element
and a voter is called, inclusively, a segment. Each segment is
strictly synchronous with flow conu·olled by the voter module.
Each voter has an ENABLE line by which its successor controls the
outflow of data. Whenever the successor is not ready the ENABLE
line is held felse. This causes the voter to continue sequencing
u~til. cp3. and then stop the .pip.cli~e. The signal to stop ~e
p1pelmc IS sent back to the p1pelme s predecessor element as its
ENABLE line. Thus, data in a segment can "pack up" when the
voter outtlow becomes blocked. 'Jbe travelling clock tokens keep
track oflogical phase in our system.

The pipeline control in splitters, join elements, and
(de)multiplexers is straightforward. e.g. the predecessor ENABLE
line in a splitter (a one-to-many structure) is the result of an AND
of its incoming predecessor ENABLE lines. Details for all clement
types and a complete design example arc presented in [2).

The example subsystem is a simplified processing element for
the cell block data flow architecture [5]. A four word instruction
packet in TTR form is assumed for input Two result packets are
produced. 'The design is a multi-pipeline aggregate comfortably
supporting instruction packet rates in excess of 1 MIP. The time
limitation in our example is the speed achievable in the packet
trlmsferring S-elements. A crude estimate of the space overhead
a~ compared with a non-fault-tolerant design is 200%. 'lbe timing
and packaging issues are studied and presented in [2]. Due to lack
of space, we refer the reader to the report

265

A computation of the reliability of our fault-masking
technique has been performed. Figure 3 gives comparative plots
of reliability versus normalized time for simplex, TMR, and TTR
systems. 'lbe computation is based upon a constant module
failure rate (Poisson) model where p == e-At. For n identical,
independent slices, this eorresponds to a slice failure rate of Al'n.
Since the slices are roughly twice as complex as an unsliced
simplex system, we use p = e-2At/n.

1.0

.-. O.B 'i? ., ..
" 0
::i

0.6 ~
~

~
i;J 0.4

~
i:i:::

Normalized time (At)

Figure 3: Comparative Reliability ofTTR, TMR and Simplex

The technique compares favorably with TMR systems, both in
terms of cost and reliability enhancement. As in any fault tolerant
system. there are critical regions upon which the reliability of the
entire subsystem depend. In our technique, these regions are the
storage nodes of voters and the parallel portions of the
interconnect. These represent a small portion of the overall chip
area and can be rendered rnore reliable through the use of
conservative design layout rules.

This work was supported in part by the National Science
Foundation under grant MCS-7904864. Advice given by
Professor E. J. McCluskey is gratefully acknowledged.
Discussions with D. Hao, R. K. Iyer, A. Kanuma, and J. Khakbaz
were also helpful.

References

[l] Avizienis, A. & Wang, S. L., "The Design of Totally Self
Chccking CircuiL~ Using Programmable Logic Arrays",
Proceedings of JTCS- 9 (June 1979) pp.17 3-180

[2] Butner, S. E., "Triple Time Redundancy, Fault-Masking in
Byte-Sliced Systems", Dept of Electrical Engr., Stanford,
TR #CRC-81-2, (June 1981).

[3] Chamberlin, D. D., "Parallel Implementation of a Single
Assignment Language", PhD th., Stanford, (Jan.1971).

[4) Davies, D. & Wakerly, J. F .. "Synchronization & Matching
in Redundant Systems", IEEE Transactions on Computers
C-27, (June 1978), 531-539.

[5] Dennis. J. B. & Misunas, D. P., "A Preliminary Architecture
for a Basic Data-Flow Processor", Symposium on
Computer Arch, (Feb 1975). pp.126-132.

[6) Leung, C. K. C. & Dennis, J. B., "Design of a Fault
Tolcrant Packet Communication Computer Architecture",
MIT-TR, (Feb 1980).

[7] Tesler, L. G. & Enea, 11. J., "A Language Design for
Concurrent Processes", NCC, (Spring 1968), pp. 403-408.

[8) VonNeumann, J.. "Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components'', in
Au10mata Studies. Sharon & McCarthy, Eds., Princeton
Univ Press. 1956, pp.43-98

SYNCHRONOUS NETS FOR SINGLE INSTRUCTION STREAM -
MULTIPLE DATA STREAM COMPUTERS

Annette J, Krygiel
Defense Mapping Agency
Washington, D.C. 20305

Abstract -- Synchronous Nets, or S Nets, are
developed as a modeling tool particularized for
describing processes on Single Instruction
Stream - Multiple Data Stream (SIMD) computers.
S Nets are a modification .of Petri Nets, using
transitions and places to model events and con
ditions. However, S Nets introduce vector-mask
places to model the conditions of the array
resources of SIMD machines. These places are
distinguished from scalar places which model the
scalar resources. S Nets also introduce a new
kind of transition. One type correlates with the
Petri Net transition, but the mask firing transi
tion is particularized to the SIMD environment,
modeling the inherent capability of a computation
executing on a SIMD machine to alter the partici
pation of the vector aggregates in successor
events.

Introduction

This paper is concerned· with the problem of
mapping algorithms onto certain classes of paral
lel processors to exploit parallelism in the
algorithm to the maximum extent supportable by
the machine on which it is to be implemented.
The approach taken is one of providing a tool -
a graph-based modeling system called Synchronous
Nets or S Nets -- to describe such an implementa
tion.

SIMD Architectures

The processors of interest are of the single
instruction stream-multiple data stream (SIMD)
architectures as described by Flynn [l] who
distinguishes four classes:

Single instruction stream - single data
stream (SISD)

Single instruction stream - multiple
data stream (SIMD)

Multiple instruction stream - single
data stream (MISD)

Multiple instruction stream - multiple
data stream (MIMD)

Figure 1 illustrates an SIMD architecture,
which typically consists of a control unit with
its own memory, and (possibly) some limited pro
cessing capability; an array or vector unit con
sisting of N Processing Elements (PEs). and at
least N memories (PEMs); and an interconnection
network for interprocessor communication. Asso
ciated with each PE is some indicator (mask) for
signaling participation or non-participation in

0190-3918/81/0000/0266$00.75 © 1981 IEEE

266

instructions, In implementation, usually a con
ventional sequential machine is attached to the
control unit, i.e. a mini-host.

A Multiple-SIMD (MSIMD) architecture is con
figured as two or more independent SIMD machines,
each with its own control unit, array unit, etc.,
and with one interconnection network. These SIMD
components have the ability to perform synchron
ously, and using the same instruction stream or
different instruction streams. Such an architec
ture is illustrated by Figure 2.

SIMD machines are considered "special pur
pose." They perform sp.ectacularly on problems to
which they are well suited [2, 3, ·4, 5]. To
derive high performance, the application should
have a high degree of parallelism, with the
algorithm consistent with the topology of the
machine. Unfortunately there are no simple means
to gauge this desired isomorphism. Modeling is
one approach that can be employed. S Nets were
specifically developed to accomplish and facili
tate this, and are a modification of Petri Nets
[6, 7, 8, 9] supplying constructs particularized
to SIMD (and MSIMD) architectures.

Definition of Synchronous Nets

System Overview

A Synchronous Net, or S Net, is a directed
graph with a marking and a set of descriptors
[10]. The vertices of the graph are vector-mask
places, scalar places, and transitions. Scalar
places and vector-mask places are connected with
arcs to transitions and vice versa. A marking
associates a non-negative integer with each
scalar place, and associates a tuple of non
negative integers with each vector-mask place.
The non-negative number is called the number of
tokens. Descriptors are associated with each
transition and characterize the behavior of the
transition.

As with Petri Nets S N.ets use transitions to
model events and places to model conditions with
arcs representing the paths allowed for passage
of control. Analogous to Petri Nets S Nets
exhibit dynamic behavior resulting from the firing
of transitions. The firing of a transition models
the occurrence of an event; tokens in a place can
model the holding of a co.ndition.

The key differences between Petri Nets and
S Nets are the S Net innovations o~ vector-mask
places and mask firing transitions. Vector-mask
places model aggregates of logically associated
and homogeneous conditions whose initial and

i·

ceasing events are synchronized, i.e., the condi~
tions of a set of array processors. These aggre~
gates are further characterized by the fact that
the marking of some members of the aggregate may
be relevant to the firing of a successor transi~
tion while others may not. This characteristic
can model the participation or non-participation
of some elements of the array processor in sub
sequent events.

Unique to S Nets is the concept of two kinds
of transition firings -- one of which ~ the mask
firing ~ provides for alternatives in the
markings of the aggregates. This enables
modeling of changes in the participation or non
participation of the elements of an array pro
cessor as it proceeds from event to event.
These alternatives are formalized by descriptors
associated with each transition.

S Net Graphs

S Nets will be defined in terms of sets.
The element of a set will be designated within
{ }. The CARDINALITY of any set shall be
designated I I and refers to the number of
elements in the set, i.e., Isl represents the
number of elements in S. For example,

if S = {s1 , s:z•· .• sj}, then Isl j.

Also important in the S Net definition is the
notion of tuples denoted by < > and consisting
of ordered components. The cardinality of a
tuple is also designated I j, but it is more
appropriately called its DIMENSIONALITY.

An S Net Graph will be a quadruple (T,S,U,
A), with an initial marking Ko and a set of
transition descriptors D, where:

T = A finite set of transitions
{ tl. t2 •••• t IT I } •

S A finite set of scalar places
{sl, sz····slsl}.

U A finite set of vector-mask places
{<V1, M1>, <V2, Mz>, ••• <vlul' Mlul>}.

A = A finite set of directed arcs
{a1 , a2, ••• alAI}, such that

AC (PxT) U (TxP), where P = U U S and P is
called the set of places.

Thus the elements of A are of the form <p , tk>
or <tj• pk>, so that an arc either connecis a
place to a transition or a transition to a
place.

The set U is defined as a subset of VxM,
where:

V = A finite set of elements called vector places
{Vl, v2, ••• VIVI}; each element of V, desig-

nated Vi, is a tuple containing some number

267

of ordered components, i.e.,
Vi= <vil' vi2 , ••• vip>, p > 1, and jvil does

necessarily equal lvjl when if j, but

IVI = iul.

M = A finite set of elements called masks
{M1 , M2 , ••• MIMI}~ each element of M,

designated M!' is a tuple containing some
number.of oraered components, i.e.,

Mi= <mil' mi2 , ••• miq>' q > 1, and jMil does

not necessarily equal jMjl when if j,

but IMI = iul.

If P is U \.J S, and A is as defined, the
triple (P,T,A) is a bipartite directed graph
since all nodes can be partitioned into two sets,
transitions and places, such that each arc
directed FROM an element of one set is directed
TO an element of the other set, and vice versa.
Therefore arcs from(to) a vector-mask place or a
scalar place are always directed to(from) a
transition.

In the S Net Graph, transitions are repre

sented by I , the scalar places are represented

by ~ , and the vector-mask places by

&D . Within that last symbol, the vector

symbol Vi is 0 and the mask symbol Mi is
6

[8] or D The dimensionality of vi

or !vii in 0 is portrayed as 0
6 @

The dimensionality of M. is not noted on
the graph, but is specified In the formal
designation of Mi components, i.e.,

<mil•mi2••••mijMil>.

denoted as ~

Arcs are

Given the S Net shown in Figure 3, we shall
delineate the graph of the S Net as follows:

T

s

v

{t1• tz. t3, t4, ts• t6}

{sl, sz, s3}

{Vl, Vz, V3, V4}

vl <vll' v12' Vll

v2 <v21' v22' v23>

V3 <v31' V32' V33>

v =
4 <v41' v42' v43 >

M {Ml' M2, M3, M4}

Ml <m11• m12' m13>

M2 <m21' m22' m23>

M3 <m31• m32• m33>

M4 <m41' m42' m43>

u = {<Vl' Ml>, <V2, M2>' <V3, M3>' <V4, M4>}

A {<s1, ti>, <t1, <Vl' Ml>>, <<V1, Ml>, t2>,

<t2' <V2, Mz>>, <<Vz, Mz>, t3>, <t3, s2>,

<t1, <V3, M3>>, <<V3, M3>, t4>, <t4, <V4,

M4>>, <<V4, M4>' t3>' <s2' ts» <ts, sl>,

<sz, t6>, <t6, s3>}

S Net Structure

Analogously to a Petri Net, the structure
of an S Net is defined so as to make clear the
relationship of places and transitions. The
INPUT PLACES of a transition I(t) are all scalar
places and vector-mask places directed immedi
ately TO the transition. The OUTPUT PLACES of a
transition O(t) are all scalar places and vector
mask places directed immediately FROM the
transition.

Markings

The infinite set of non-negative integers
{O, 1, ••• } is designated N; the set of Boolean
numbers {O, 1} is designated B; the set {O} is
designated Z. Also the r-fold Cartesian pro
ducts are defined:

Nr = NxNx ••• N; each member is of the form
<Nl' N2,.,.Nr>

Br= BxBx ••• B; each member is of the form
<Bl' B2, ••• Br>

Zr= ZxZx ••• Z; each member is of the form
<O, 0, ••• 0>

where Ni and Bi, are elements of N and B,
respectively.

A MARKING is a function K where
!vii

K: S + N; Vi + N for all Vi E V;

Mi+ BIMd for all Mi EM.

268

The marking associates a non-negative integer
with each scalar place ~ K(s) for each s E S ~
and two vectors of non-negative integers with
each vector-mask place, one of those associated
vectors being· a Boolean vector.~ K(Vi) for each
Vi E V and KCMt) for each Mi E M. ·

A marking ·for an S Net must specify all three
components.

An INITIAL MARKING Ko is defined as the first
marking of the S Net. ·

A MASK MARKING for·a mask Mi is a function K
!Mil

such that Mi + B

The set of possible mask markings for any Mi is
W(Mi) and denotes the co-domain of a mask marking,

consisting of designated tuples of BIMil, or if

appropriate, the entire product set BIMil.

Notation for Markings. The convention
adopted to show markings will be that of (and
< >. The former is used to distinguish the
marking of a single element or component, and the
latter is used when more than one element or com
ponent. is involved, thereby denoting an ordering
with respect to markings of elements or
components.

As an example, markings for places s1 , s 2, s3
are designated K(s1) = (O); K(s2) = (O);

K(s3) = (O).

If V = {v1 , v2}, and if v1 = <v11 , v12 , v13>,

then K: v1 + z3 is equivalent to:

K{V1) = <O, O, O>; alternately K(v11) (O);

K(v12) = (O); K(v13) = (O). Similarly, for

M1 = <m11, m12 , mil• a marking K(M1) = <1, O, O>

designates that K(m11) = (1), K(m12) = (O),

K(m13) = (0).

Graphic Portrayal of Markings. Markings are
illustrated with the presence of tokens. Dots in
any place rep.resent tokens. Tokens in masks may,
alternatively, be represented by Boolean symbols
for legibility.

The symbol for Mi shows a token in

mil and miZ" This is synonomous to the symbol

.
0

Using·the S Net example of Figure 3, Figure 4
illustrates a marking where masks are marked with
tokens but vector places are not marked with

I
I

I

tokens. This example assumes the initial marking
is:

Ko<s1) (1); K0(s2) • (O); K0 (s3) = (O)

KoCV1> Ka<V2>= Ko(V3) = Ko(V4) = <O, O, O>

KO(Ml) = Ko(M2) = <l, 0, O>

Ka(M3) <l, 1, l>

KoCM4> <O, 0, l>

An assignment of tokens to a vector place Vi may
leave some of the component places marked with
tokens and others empty, i.e., all elements vij

of Vi may not have tokens. Since the !vii may be

large, graphic designation of which components
are marked must necessarily be limited. For

0
® example, a portrays a vi with three

components; then 9 indicates that two
@

vij £ vi are marked. Synonomous are the symbols

0 and
0 9

~
! However only

@ @

conveys that two vij are marked but does not
distinguish the individual elements, nor does it
indicate how many tokens are in each marked vij"
However S Nets use vector-mask places to model
conditions resulting from and leading to events,
and Vi is always expressed graphically in con
junction with Mi. It is Mi which will be used
graphically to enhance comprehension of which vij
are marked ~ at least in markings resulting from
an execution of the S Net.

Rules for Execution

The graph and structure of S Nets have been
addressed in previous Sections. Now discussed is
the dynamic behavior of S Nets.

Enabled Transitions. A scalar place is
HOLDING if it has at least one token in it. A
vector-mask place <Vi, Mi> is HOLDING if:

at least one K(mij) = (1), j = 1, 2, ••• !vii'
_a_nd_ vij £ Vi has a non-zero marking for all
those j for which mij £ Mi has a non-zero marking.

A holding for a vector-mask place is in con
trast to a marking of that place. Whereas a
marking associates some set of integers with
vector-mask places, a holding for a vector-mask
place REQUIRES that the components of Vi be
marked with tokens everywhere that their
associated Mi components are marked with tokens.

269

A transition t is ENABLED also called FIRABLE
under the following conditions: t is ENABLED if
all scalar places in I(t) are holding and all
vector-mask places in I(t) are holding.

Firing Transitions. A FIRING is a function
of a transition which has for its domain and range
the marking of the input places and output
places of the transiti.on.. There is a firing
associated with every enabled transition t. When
a transition t is enabled, its firing function is
defined at a given marking ~ of the S Net, and

the firing yields Kn+l• a new marking.

Transition Types. A TRANSITION TYPE speci
fies the firing capabilities of the transition
either simple or mask firing ~ designated SFT and
MFT respectively.

Transition Descriptors. A TRANSITION
DESCRIPTOR D[t] specifies the transition type,
either SFT or MFT, and for every vector-mask out
put place <Vi• Mi> of the transition, specifies
W(Mi), the set of markings for Mi. Descriptors
for a transition t with vector-mask output places
<Vi• Mi>, <Vj' Mj>, ••• <Vr, Mr> are specified:

D[t] = [type; K(Mi) £ W(Mi),

K(Mj) £ W(Mj), ••• K(~) £ W(Mr)J.

Rules for a Simple Firing. A SIMPLE FIRING
associated with an enabled transition t is such
that:

For every scalar input place s, then

For every scalar output place s, then

For every vector-mask input place <Vi, Mi>'

then: for vij £ Vv j = 1, 2, ••• !vii,

Kn+l (vij) = Kn(vij) - 1 for those j for

which mij £ Mi has a non-zero marking; and for

mij £ Mi'

Kn+l(mij) = Kn(mij) for all j.

For every vector-mask output place <Vi, Mi>'

then: for v ij £ Vi, j = 1, 2 , ••• IV i I ,

Kn+l (vij) = Kn (vij) + 1 for those j for

which mij E Mi has a non-zero marking; and for

mij E Mi,

Kn (mij) for.all j.

As seen from the firing rules, SFTs do not alter
their input or output masks.

Rules for a Mask Firing. A MASK FIRING is
associated with an enabled transition t that
has at least one <Vi' Mi> output place, and
is such that:

For every scalar input place s, then

For every scalar output place s, then

For every vector-mask input place <Vi, Mi>,

then: for vij e: vi, j = 1, 2, ••• 1vi1.

~+1 (vij) = Kn (vij) - 1 for those j for

which mij e: Mi has a non-zero marking; and for
~j e: Mi,

~+1 (mij) = ~ (mij) for all j.

For every vector-mask output place <Vi, Mi>,

then for Mi,

~+l (Mi) e: W(Mi), where W(Mi) is specified

by the transition descriptor D[t], and ~+l(Mi)
is non-deterministically chosen.

For every vector-mask output place <Vi, Mi>,

then for vij e: vi, j = 1, 2, ••• !vii•

Kn+l (vij) = ~ ,<vij) + 1 for those j for

which mij e: Mi has a non-zero marking, i.e.,

where Ku+l (mij) = (1).

The assignment of a Boolean vector to Mi by MFT
is a mapping of Mi INTO W(Mi), where the domain
is Mi and the co-domain consists of the elements

INTO
of W(Mi), i.e., Mi -- W(Mi).

By the firing rules, firings remove tokens
from places and add tokens to other places, and
in the case of the mask· firing mark the masks of
the vector-mask output places. It should be
noted that the number of tokens subtracted by a
transition firing does not necessarily equal the
number that it adds.

Transitions and Their Descriptors. As seen
from the firing definitions, SFTs on firing do
not change the K(Mi) of their <Vi, ~> input and
output places. The transition descriptor is
noted simply as D[t] = [SFT; _].

For MFTs, the lw(Mi)I ~ 1 for all output
masks, and since these markings are determined
by the transition firing and not the initial
marking, the set of markings must be listed

270

in the transition descriptor, i,e.,

D[t] = [MFT; K(Mi) e: {< >, < > ••• }]

Example of Mask Firing Transitions. Figure
5 through Figure 8 show MFTs in an S Net and
illustrate their graphic portrayal and behavior.
Given an initial marking and descriptors:

Ko<s1) (1): Ko<sz) = (O); Ka<s3) (O)

KoCV1) Ko(Vz) = <O, O, O>

D[t1] [MFT; K(M1) e: {<1, 0, O>, <O, 0, l>}]

D[tz] [MFT; K(M2) e: {<1, o, O>, <O, 0, l> }]

D[t3) D[t4J = D[t5] = [SFT;_)

Figure 5 reflects the initial marking and
shows that t 1 is enabled. Transition t 1 has one
output mask and jw(M1)I = 2, both elements of
which are shown, on the graph. When transition t 1
fires, the results are shown in Figure 6. The
marking assigned to Mi by t 1 was <l, 0, O> which
is designated in D[t1] and is shown on the graph
as one member of the set W(M1). (At the time of
firing the mask marking that is chosen by the
transition is arbitrary.) After t 1 fires, v11
receives one token since mi1 is marked with a
token, and a token is removed from s1 •

The v11 token enables t 2 since m11 also holds
a token, so that the firing of tz can commence.
If t2 fires changing the marking K(M2) to
<1, 0, O>, and if ,the firing sequence t 1 , t 2 , t3,
t 4 is assumed, then Figure 7 illustrates the
marking after t 4 has fired. In Figure 7 a token
is again in s1 ; K(M1) is <1, 0, O> from the
previous firing of t ; K(M2) is <1, O, O> as
marked from the prevtous firing of t 2 ; K(V1) is
<O, 0, O> since the token in v11 placed there
as a result of the first t 1 firing was removed at
the firing of t 2• K(V2) is <O, O, O> since the
token in v 21 placed there after the firing of t 2
was removed at the firing of t 3 •

Where Figure 7 shows t 1 enabled, Figure 8
shows the results after the second firing of t 1 •
Here K(M1) = <O, 0, 1>, a marking alternative also
described in D[t1]. (The selection of the marking
is a~bitrary, ana could have been <l, 0, O>
again.) Given K(M1) = <O, O, l>, by firing defi-
nition v13 now receives a token. Since m13 also
holds a token, t 2 is enabled, and so on.

To analyze an algoritlnn, a sequence of S Net
transition firings can be examined. The sequence
resolves conflict, or indeterminacies in computa
tional flmi, in that a particular order of firings
is assumed. (Conflict is typified in Figures 5
through 8 by t 4 and t 5 which share an input place;

when one token resides in the place, only one
transition can fire and which transition fires is
indeterminate [6, 7, 8, 9, 10)). Analogously,
in modeling a specific computation, the indeter
minacy of mask selection by MFTs is not trouble~·
some by assuming an order of mask selections.

S NET APPLICATION

To apply S Nets it is necessary to relate
the model to the actual algorithm. An INTERPRE
TATION of an S Net is an assignment of labels to
the transitions and/or places of the Net to
indicate for the transition the event that
it models and for the place the condition that
it models.

Consider the example of summing the rows of
a 4x4 matrix A, multiplying the sum by a 4xl
vector B, and storing results in the first column
of A. The FORTRAN description is:

DO 200 I = 1, 4
DO 100 J = 1, 3

100 A(I, 1) A(I, 1) + A(I, J+l)
200 A(I, 1) = A(I, 1) * B(I)

Assume an 8 PE SIMD machine is available. A
data storage scheme for the vectors is depicted
in Figure 9, which indicates that PE0 has the
first row of A in its PEM, PE1 has the second row,
etc. With parallel hardware available, the four
row sums can be formed simultaneously. This is
shown in the S Net model of Figure 10 which is
marked to reflect a holding of condition after
a t 2 firing. The S Net uses vector-mask places
to model conditions in array resources and
scalar places to model conditions in scalar re
sources. The masks of the vector-mask places
model control over the participation of the array
resources.

Transition t 2 models the event which adds
the Jth column of matrix A to the first column
of matrix A. Places s 4 and s5 model the condi
tions resulting from the test of J. Assuming a
sequence of firings such that t4 and ts have con
flict resolved by the status of loop index J,
when t 4 fires, all rows have been summed; then
t 7 models a parallel multiplication of all four
sums by the appropriate element of vector B. The
utilization of the array resources is a by
product of this S Net execution, i.e., the mark
ing on the vector-mask output place resulting
from the t 2 firing is depicted on Figure 10 as
4/8. Both the parallelism achieved by the array
resource (4) and the utilization with respect to
the maximum parallelism supportable by the array
hardware (8) becomes apparent. Also, the marking
of the mask suggests some additional management
activity required of the vector resource and is
specific as to which PEs will participate -- PE0
through PE3.

With every execution of the array events
modeled by SFTs t 2 and t 7 , PE0 through PE3 always
participate. However if the problem context is
changed to require the alternative of using PE4

271

through PE7 in a different iteration of the com
putation, these array events are more aptly
modeled by MFTs, i.e.,

[MFT; K(M1) E {<14, 04>, <04 , 14>})

[MFT; K(M2) E {<14 , o4> <o4 , 14>})

For analysis, an assumption would then be made
about the order of selection of the masks, i.e.,
<14, o4>, then <04, 14>. This capability for
alternatioiliSreadily distinguishable on the
graph, contributing more detail for analysis.

More exposition of the modeling capability of
S Nets, particularly the properties of concur
rency and conflict, is supplied in [10) as are
additional (and less simple) examples. SIMD
algorithms can be modeled with Petri Nets, but
with increased modeling complexity. S Nets are
distinct from Petri Nets in the notions of vector
mask places and mask firing transitions. Many
Petri Net places are created in lieu of a single
vector-mask place. It requires many Petri Net
transitions in forward conflict to model the more
concise mask firing transition [10].

The richer detail of S Nets is illustrated by
modeling Flynn •·s classes of architectures shown
in Figure 11. Because of the availability of
vector-mask places in addition to scalar places,
the multiplicity of the data stream can now be
depicted; also scalar and vector activity can be
distinguished. The SIMD architecture is readily
distinguished from SISD by the added detail of
vector-mask places. The MIMD-2 architecture which
allows both scalar and vector concurrency, is
distinguishable from the MIMD-3 architecture which
allows concurrent SIMD resources (MSIMD). Both
are clearly different from the MIMD-1 architecture
of conventional distributed processors.

SUMMARY

In this paper, Synchronous Nets, or S Nets,
have been formally defined, S Nets are a modifi
cation of Petri Nets, specifically developed to
provide richer detail for modeling the SIMD en
vironment. It is possible to model SIMD computa
tions with Petri Nets but at the expense of in
creased modeling complexity. However, the rela
tionship of S Nets and Petri Nets is explored
elsewhere [10).

[1)

[2]

[3]

REFERENCES

Flynn, Michael J., "Very High-Speed Computing
Systems", Proceedin&s of the IEEE, Volume 54,
No. 12, December 1966; pp. 1901-1909.

Thurber, Dennis J., and Wald, L. D., "Associ
ative and Parallel Processors", Computing
Survexs, Volume 7, No. 4, December 1975,
pp. 215-255.

Ruben, Sherwin, et al., "Application of a
Parallel Processing Computer in LACIE",
Proceedings of the 1976 International
Conference on Parallel Processing, pp. 24-32.

[4] Krygiel, Annette J., "An Implementation of
the HADAMARD Transform on the STARAN Associ
ative Array Processor", Proc. 1976 Inter
national Conference on Parallel Processing,
p. 34.

[5] Daley, J. S., and Underwood., B. D., "Short
Term Weather Prediction on ILLIAC IV", Proc.
1975 Sagamore Computer Conference on ~~
Parallel Processing, p. 240.

[6] Petri, Carl A., "Kommunikation mit Automa
ten", Translation by C. F. Greene, Supple
ment 1 to RADC-TR-65-337, Vol 1, RADC,
Griffiss AFB, New York, 1962.

[7]

[8]

Holt, A. W., et al, "Information System
Theory Project", Applied Data Research, Inc.,
RADC-TR-68-305, Rome Air Development Center,
Griffiss AFB, New York, September 1968.

Holt, A. W., and Commoner, Frederic, "Events
and Conditions", Applied Data Research, Inc.,
New York, 1979.

[9] Peterson, James L., "Petri Nets", Computing
Surveys, Volume 9, pp. 223-252.

[10] Krygiel, Annette J., "Synchronous Nets for
Single Instruction Stream - Multiple Data
Stream Computers", D. Sc Dissertation, Sever
Institute of Technology, Washington Univer
sity, St. Louis, MO, May 1980.

Figure 1

(1,0,0)
(qo,1~

l:.1

Figure 6

BOST

PEMu-1

INTERCONNECTION HETWOllX

SIMD Architecture

Figure 2

MSIMD'
Architecture

'EHa

S1

Figure 3

272

S1

Figure 4

<1,o.c»
(o,o,I)

t,

Figure 5

INTERCONNECTION NETWORK.

An S Net

An S Net With Mi Marked

PEl)._l

I.

(l,o,<$ (1,0,0)
(qo,1) (oo,i>

: --t,-~
V, 1\11 \/2

Figure 7

Figure 8 MFTs t 1 and t2 at K5

Figure 10

SISD Architecture

SDD> Architecture

Figure 11

t

ACI,l)s A(l,1)
+A(I,J)

1
MASKo j

J_
PEo J
__[

!g:!~
A(l,3)
A(l,4)
B(l)

I
Figure 9

S Net Model for Row Sum

MISD Architecture

MIMD-1 Architec_ture

CONTROL ~-·
SCALAR

PROCESSOR

I
MASK1 t MASK2 J MASK_J_ L MASK7

1 1 1 ... J_
PE 1 : L PE2 J PE3 L p~
__[J_ J_ ... J_

A(2,l) A(3,l) A(4,l) EMPTY
A(2,2) A(3,2) A(4,2)
A(2,3) A(3,3) A(4,3) ...
A(2,4) A(3,4) A(4,4)
8(2) 8(3) 8(4)

I
INTERCONNECTION NETWORK

Data Storage Scheme for Row Sum

MIMD-2 Architecture

MUID-3 Architecture

S Nets Depicting Mac1 •. me Architectures

273

J

J

MINIMIZATION OF INTERPROCESSOR COMMUNICATION FOR PARALLEL COMPUTATION

Keki B. Irani

Department of Electrical
and Computer Engineering

The University of Michigan
Ann Arbor, MI. 48109

ABSTRACT -- This paper is concerned with m1n1m1z
ing the delay due to data communication during the
execution of a parallel algorithm on an SIMD com
put.er with a two-way circular unit-shift intercon
nection network. Algorithms are developed which
determine, for a given parallel algorithm, the
order of computation of a parallel arithmetic ex
pression, the alignment of operands for every bi
nary operation, and the mapping and remapping of
data into physical memories so that the commmnica
tion cost is minimized. The proposed techniques
are applicable to array variables with special
types of index functions.

1 • INTRODUCTION

The total execution time of a parallel
algorithm on a multiprocessor system can be broken
down into the actual computation time and the time
of interprocessor data communication. On an SIMD
(Single-Instruction stream, Multiple-Data stream)

machine, the computation time is usually dependent
only on the number of processing elements, and the
communication time is dependent on several factors
such as the interconnection network and the
storage scheme for data. Previous analyses
[1,2,8] have shown that the data communication can
be a major cause of degradation of the performance
of the algorithm. In this paper, we study the
minimization of the communication cost for a class
of parallel algorithms and interconnection
networks, which will be described shortly.

A restricted version of this minimzation
problem is considered in [11], where it is called
the mapping problem, and the emphasis is on the
effect of data storage schemes on the
communication time. Some further exploitation of
the prob I em is reported in [6]. In section 2, the
minimization problem ·is formally defined. In
section 3, we provide algorithms for reordering of
computation in order to minimize commun.ication
delay. In section 4, we provide algorithms first
for static mapping of data and then for data
remapping for further improvement of communication
delay. Proofs for the optimality of these
algorithms are to be found in [5].

2. Il:!I MINIMIZATION PROBLEM

Since this minimization problem deals with both
software (algorithms) and hardware (interconnec
tion network) of the SIMD system, a few parameters
from both parts are needed for formally defining

0190-3918/81/0000/0274$00.75 © 1981 IEEE

Kuo-Wei Chen

Program in Computer, Information
and Control Engineering

274

The University of Michigan
Ann Arbor, MI. 48109

the problem [6]. In what follows,
number of both logical memories
memories. These parameters are:

N denotes the
and phys i ca I

i. The index
logical memories
component a; of a

set {0,1,2, ••• ,N-l}m of the
m of the algorithm. Each

vector A is assumed to be stored
in logical memory mi.

ii. A sequence of logical data transfers that
satisfies the communication requirement of the
algorithm. Each logical transfer Pvv is a partial
function, for the alignment of data u and v. It
maps the index set {0,1, ••• N-l}m into itself.

iii. The index set {0,1, ••• ,N-l}M of
physical memories.

the

iv. The set Q of interconnection functions
{q1 ,q1 , ••• ,qk} that defines the interconnection
network. Each qi is a bijection on the index set
{0,1, ••• ,N-l}M, and designates the transfer that
can be physically effected in one routing step.

v. The distance function D, associated with
the interconnection network, on the set of all
partial functions on {0,1, ••• ,N-l}M. The value of
this function on a partial function is the minimum
number of routing steps needed by the network to
realize that partial function.

vi. A mapping, or, storage scheme, Fv for
vector v of the algorithm is a bijection from
{0,1, ••• ,N-l}m onto {0,1 •••• ,N-l}M.

Let Fu and Fv be the mapping functions for
variables u and v. respectively, and let Puv be a
logical transfer for aligning u and v. Suppose Pu~
aligns u and v by moving u to v. Then at the
logical level, Puv corresponds to moving the ele
ment u(f01(i)) from logical memory mF.;•m to

At the physical level, however, this

data movement is from memory M1,
is stored, to MF P F-' •

V UV u (i)

where u(Fij 1 (i))
Hence the cost of

such an alignment operation is D(fvPuvFu1l.

Instead of aligning the variable u with the
variable v, or v with u for a binary operation
involving u and v, suppose the variables are
aligned somewhere else. For example, suppose the
binary operation A(i + k1) + B(i + k1) is
performed in the processor (i + t) and the result
stored in the memory Mj+t· There is no Joss of

generality if the resulting vector is named
W(i + t). In other words, the mapping function Fw
is an identity function. The total cost of
communication in this case is the sum of the costs
of aligning u with wand aligning v with w. This
sum is given by D(PuwFU"1) + D(PvwF;1). For the
above example, we have PAw(i) = (i +(t -k1)) and
Pg (i) .. (i + (t-k2)). (The arithmetic on the
in~ices in this paper are all modulo N.)

The above result can be easily generalized to
a parallel expression S. Let v1 ,v2 ••• ,vk be the
variables in S and let E denote an expression tree
for S. Let w1 ,w2 ••• ,Wt be the internal nodes of E
where each Wj represents the partial result of
some binary operation on variables. and/or other
internal nodes. For a given expression tree E,
which specifies the order of computation of S, the
alignment of operands for every binary operation
must be determined from which the logical transfer
functions can be specified. Thus, for a statement
S, the communication cost is

vi : var i ab 1 e
(1 eaf node)

wj: partial
result (inter
nal node)

wj =PARENT (vi)

wi ,wj: internal
nodes

Wj=PARENT (w1.l

(1)

where PARENT(vi) denotes the parent node of Vj in
tree E.

Notice that for a given statement and a given
interconnection network, the total cost depends on
the mappings Fvi 's and the transfer functions

p 's and P,.,. w.' s. The transfer functions used
VIWj I 'J

in the cost calculation depend on the expression
tree itself (for an expression involving commuta
tive operations the expression tree is not unique)
as well as on the alignments of operands.

The complete
complete algorithm
fol lows:

minimization
can therefore

problem for
be stated

a
as:

Given a parallel algorithm with
{0,1, ••• ,N-l}m, an interconnection network with
{0,1, ••• ,N-l}M, and D, determine the following:

l. an expression tree, or, a computation ordering,
for every parallel assignment statement,

2. alignments of operands for binary operations,

3. a mapping function Fy for every variable v,
such that

state-
ments of
given al
gorithm

L D(pviw/;1')+ L D(pw1w/) (2)

Vj: variable w;,wj:internal
(leaf node) nodes

wj: part i a 1 Wj •PARENT (w;)
result (inter-
nal node)

Wj =PARENT (Vj)
is minimizei:I.

275

The general minimization problem is very
complex, and we shall restrict ourselves to the
following environment. The SIMD machine ·is
assumed to have a two-way circular unit-shift
network on N processing elements (PEs), where, for
notational simplicity, N is asGumed to be an even
integer, i.e., for this network, Q={q 1 ,q1 } and
q 1 (i)=(i+l), q (i)=(i-1). For convenience, this
network will be 2referred to in what follows as the
circular network. Also assumed is the fact that
the index functions of the array variables of the
algorithms are all of the form: i +constant. In
other words, we assume that the logical transfers
for the variables are all of the uniform-shift
type, i.e., for some variables u and v,
Puv (i) = (i +k) mod N, where k is an integer
constant. If an a 1 gor i thm uses both uni form-shift
type and other types of transfers, then we shall
consider the minimization problem for those
varialbes which are involved in only uniform-shift
type transfers. Special types of data permuta
tions, such as perfect shuffle permutation and bit
reversal in FFT, do exist. However, more often
than not, the variables are of the type considered
in this paper. From this and the fact that
practically every interconnection network contains
the circular connection, the techniques developed
here are widely applicable to many problems.

3. OPERAND ALIGNMENT A!'!Q COMPUTATION REORDERING

In this section, we shall develop techniques
for determining, for a given expression, a
sequence of logical data transfers. that satisfies
the communication requirement of an algorithm with
minimum cost. It is assumed that the mapping Fv
for every var~able v is an identity mapping. Thus
the cost fuhction (1) for a parallel expression
becomes

D (pv·w·) +
I J

vi: variable
(leaf node)

Wj: partial
result (inter
nal node)

wj =PARENT (v1)

wi,wj:internal
nodes

wj =PARENT (w1)

To minimize this cost, therefore, the
following parameters must be determined:

i. alignment of operands for every binary
operation in a parallel assignment statement(PAS),
and

ii. an ordering of computation of a PAS.

We shall assume that a compiler is available
which generates for PAS's, as intermediate code, a
sequence of three-address triples (see [3], for
example) on which our minimization is performed.
A typical PAS, for example, has the following
form:

A(i) = B(i+2) - C(i-3) * D(i+l) (OSiSN-1)
Our algorithm will determine, for example, where
the operations * and - should take place such that
the communication cost of evaluat.ing this PAS is
minimal. The logical data transfers, for example,

Pew and Pow• where W denotes the partial result,
can then be easily specified.

Some basic definitions are needed.

Definition l.:.. Let A(i+k) be a variable term in
some parallel assignment 'Statement, where k is an
integer constant and -(N/2-l)SkSN/2. Then the
displacement associated with this occurrence of
variable A is k.

On a circular network of N PEs, the
displacement k then refers to the PE that contains
the first element, A (k), of the vector A (i+k).
The displacement associated with the target
variable of a PAS is assumed to be 0, for
convenience. If it is not originally zero, an
adjustment can be made to the indices of the
variables in the PAS such that it becomes zero.
We shall use disp(v) to denote the displacement
associated with the operand v.

Definition£:. The alignment point(AP): For a bi
nary operation on two operands A(i+k1) and
B(i+k2), for all i, 0 sis N-1, if the operation
on the (i+k 1)th element of A ;snd (i+k~)t~ element
of B takes p 1 ace in the (i+AP)th PE, then AP is
the alignment point of that operation.

This value of AP is then the displacement
associated with the partial result. The AP of
such an operation node n in an expression tree E
is denoted by AP(n).

Example 1. F~r PAS A(i)=B(i+2)-C(i-3)*D(i+l), if
AP for the multiplication is 0, the~ elements of C
must be mov11ed from ith PE. to (i+3)r PE and those
of D from it PE to (i-1)5 t PE. •

Let k1 and k2 be two displacements. Then k1
and k2 are the boundary of two intervals on the
circular network. Let I (k 1 ,k1) denote the
interval with shorter length. Then it is easy to
see that for a single operation such as
A(i+k1)+B(i+k1), the communication cost is minimal
and equal to 11 (k, ,k1) I if AP e I (kl ,k1)' where
I 1 (k 1 ,k1) I denotes the length of I (k 1 ,k2). If,
however, this operation is a node in some expres
sion tree E containing more than one operation,
then the following result is more general.

Theorem l.:.. Let A(i+k 1) + B(i+k1) be an operation
in a~ expression tree E which is not the root of
E, and let x denote the alignment point for this
operation. Then a necessary condition for the
communication cost of evaluating E to be minimal
is

x e 1 (k 1 , k1) if 3 I 1 (k 1 , k1 > I <N,
or x e I (k 1 ,k1) U I ~ 1 -t,k1+t) otherwise,

where it is assumed that k1<k 1 and
t•N-2 I 1 (k, ,k1) I·
Outline of Proof. What needs to be shown is that
if x iS- iiO't""""Tn the above interval, then we can
always find another alignment point x', which lies
in the interval, such that the cost of aligning A
and B at x' plus the cost of moving the partial
result from x' to x is less than the cost of
aligning A and Bat x. •

Theorem 1 simpli,fies the minimization process
greatly because the alignment points are now
confined to lie in a small interval. Also, in
real problems the displacements are usually small,
compared with N, i.e., the value 311 (k 1 ,k.i)l is
less than N in most eases. We shall further
assume in what follows that 311 (k 1 ,k2) l<N for
every pair of displacements k1 and k1 • The
necessary condition in' , this case thus becomes
AP (n) e [k1 ,k1] for every oper'ation node n. (The
treatment of the general problem can be found in
[5] .)

Based on 'Theorem 1 and the above assumption,
we are now ab 1 e to ,further reduce the cost func
tion. Suppose o1 and o2 are the operands of some
binary operation which may be either variables or
partial results., Let w denote the result of this
operation and let k 1 = disp(o 1) and k~
disp(o1). Then since AP(w) e [k1 ,k2 l. on a
circular network, the communication cost is
D (p01w) + D (p02w) • I k 1 - k1 I• and the cost func-

276

tion for a PAS becomes

I AP (R) - AP (L) I + I AP (root of E) I •,

R,L:brother
nodes in E

(3)

where the term AP(root of
corresponds to a PAS; and
determined is the alignment
internal node of E.

E) is needed if E
what is to be

point for every

This problem is solved using the following
algorithm, where, for convenience, we define the
alignment point of a leaf node n with displace
ment k to be AP(n) = k, and write AP(n) e [k,k].

Algorithm l

I* Given E and disp(v) for every variable v in E,
this algorithm determines AP(w) for every internal
node w such that (3) is minimized. */
Traverse the expression tree E in postorder
At each node z,
I* Basic step */

if z is a' leaf node with dis,p(z)=k,
i . e. , AP (z) E [k, k]

then AP (z) • k;
I* Recursion step */

if z is an internal node with child nodes x and
y and AP(x) e [x1:x2J and AP(y) e [yl,y2],
and W = [xl,x2]()[yl,y2]

then
easel. W = t6

I* AP (z) is in the i nterva 1 "between"
the two intervals */

AP (x) = x2, AP (y) "' yl, and
AP(z) E [x2,yl] if x2<yl

AP(x) • xl, AP(y) • y2, and
AP(z) E [y2,xl] if y2<xl

case2. W >} t6
subcasel. IWl=l, i.e., W•{w} where

w=xl•y2 or w•x2•yl
AP (x) • AP (y) = AP (z) • w;

subcase2. IWI >1
AP (x) - AP (y) - AP (z) e W;

if z is the root of E and AP (z) e [z 1, z2] ,

then AP(z) = t where t e [zl,z2] and the
absolute value of t is minimum.

End of Algorithm l

Example 2. We apply Algorithm 1 to the following
PAS

A (i) "' B (i) + B (i+4) - C (i+3) - D (i+3).
"The alignment points obtained using Algorithm
are shown in Figure l (a). The communication cost
is 4 + 3 • 7. Compared with cost = 10 in Figure
l (b), which is obtained using a compiler without
such optimization, this shows a 30% improvement.•

Now note that in (3), the structure of the

cost 7
0 A(i)

0
B(i) B(i+4}

(a)

0
B(i)

(b)

Figure 1. Alignment points for a PAS.
expression tree, or the order of computation, is
to be preserved. This restriction is sometimes ne
cessary, especially in problems where computation
reordering may cause loss of significant digits,
overflow, or underflow, etc. However, if computa
tion reordering is permitted, then further im
provement in the communication cost may be pos
sible. This is discussed below.

We shall consider computation reordering based
on the commutativity and associativity of binary
operators. In other words, we shall perform compu
tation reordering only on subexpressions in which
all operations have the same precedence.

Let E denote the expression tree for a
parallel assignment statement. The precedence of
an internal node of E is the precedence of the
operator associated with that node.

Definition 3. A subtree T of E is called a p_sub
tree if all the internal nodes of T have the same
precedence and every leaf node of T is either a
variable, or an internal node of E which has a
different precedence.

The precedence of a p_subtree is the
precedence of the internal nodes of the p_subtree.

Definition 4. A maximal p_subtree of E is a p_sub
tree T of E such that the root of T is either the
root of E or the child of a node of different
precedence.

Thus a subexpression that corresponds to some
maximal p_subtree of E is the basic unit for the
consideration of computation reordering.

Example 3. In Figure 2, T1 and T3 are maximal
p_subtrees of the same precedence. T2 and T+ are
also maximal p_subtrees of the same precedence. •

277

Figure 2. An expression tree and its p_subtrees.

For any expression tree E, the reordering pro
cess consists of two phases, the analysis and the
synthesis. In the analysis phase, the following
tasks are performed:

1. Identify all maximal p_subtrees Tin E.

2. For each T, determine the interval in
which the optimal alignment point for the root of
T, after reordering, must lie.

3. Fix the AP for every node of E.

4. Determine the effective operation to be
applied to each variable in E (see below).

The maximal p_subtrees of E can be identified
by traversing E in the order of levels. During the
traversal, if the node being visited has a
precedence different from those already visited,
then it is the root of some new maximal p_subtree,
which is yet to be identified. For example, the
"divide" node in Figure 2 has precedence different
from that of addition, and is the root of
p_subtree T1 • This can be done using a recursive
routine, which. in addition to identifying the
maximal p_subtrees of E, shall also determine the
effective operation to be applied to each operand
on a maximal p_subtree. For example, for a subex
pression' A(i) - (B(i+2) - C(i-1)), the effective
operations for A, B, and C are, respectively, +,

and -.
After a maximal p_subtree T is identified,

the next task is to determine for T the new order
of computation for which the communication cost is
minimal. This is done by first determining the
alignment point for the root of T.· Suppose d 1,
d2 , ••• ,dk are the displacements for the operands
v1 ,v:a., •• ,vk, respectively, in T and d 12:d,_2:
•.. 2:dk. Then it can be shown [5] that the align-.
ment point for the root, AP(root of T) must lie in
the interval [dk,d 1] to ensure that the communi
cation cost is minimal. This continues until
AP (root of E) is obtained. Tree E wi 11 then be
traversed again for fixing the exact value of the
AP for the root of every maximal p_subtree T of E.

In the synthesis phase, new expressions are
generated for every maximal p_subtree T of E. Let
AP(root of E) = h e [dk,d 1], then the new order of
computation can be easily obtained. Following is

the rule for obtaining the new computation
for which the communication cost is always
to ld1 - dkl·

Case 1. dk = h. The new expression is
((••• (v1 ev2)e ••.)evk),

order
equal

where t denotes the effective operation.
The AP's of these operations are, respec
tively, d2 ,.;,dk.

Case 2. d1 = h. The new expression is
((••. (vktvk·I)e) ••.)tv1).

The AP's are dk·I' dk_2 , .. ,d 1 •

Case 3. d k < h < d 1 • Let t be such that
d t + I < h Sdt.

The new expression is
(••• (v1 tv1)t ... fvtl t ((•.• (vkevk·t)e •••)ivt+i>.

The AP's for the left half are
d2 ,d3 , •• ,dt• and for the right half are
dk·I •••• ,dt+I; and the AP for the root of
the new expression tree is h.

As an example, the PAS of Example 2 can be
reordered as

A(i) = ((B(i+4) - C(i+3)) - D(i+3)) + B(i),
for which the cost is only 4, 40% of the original
cost and almost half of the cost obtained from
using only Algorithm I.

Having determined the alignment point for
every operation in an expression, one can easily
specify the logical transfer functions that should
be applied to the operands, and the sequence of
logical transfers for the entire algorithm is
obtained. fn the next section, this sequence wi 11
be the data for obtaining the optimal mapping and
remapping for the variables in the algorithm.

4. DATA MAPPING AND REMAPPING

In [ll], two kinds of parallel' algorithms are
considered for applying data mapping. In one, the
algorithm is assumed to have only one logical
transfer. For example, the matrix transposHion
may be realized using only the perfect shuffle
permutation. For this type of algorithms, the
optimal mapping for the data can easily be
obtained [11, Theorem l]. In the second kind of
algorithms, the logical transfers of a givcin
variable are not all the same; for example, the
bitonic sort on a mesh-connected network uses
several different transfers. The minimization
prob 1 em for this type of a 1 gor i thms is usua 11 y
difficult. A technique used in [11] for the
bi tonic sort is to determine an optimal mapping
for the most expensive transfer, which is
certainly not always the lea,st expensive mapping.

In this section, we sh,an fi·rst study the
minimization problem for the second kind of
algorithms with the restriction that logical
transfers are all uniform shifts but may bave
different shift distances, and that the mapping is
static. In section 4.2, we discuss how to improve
the cost further by al lowing remapping o.f data
during the execution of the atgorlthm.

4.1 Static Mapping

The problem is the following: given a parallel
algorithm and a circular network, determine for
each variable of the aTgorithm a static mapping
such that the communication cost of operations
involving these variables is minimal. The logical
transfers are assumed to have been obtained using
the techniques of the previous section.

first formulate the cost function. Let Fi be
the mapping function for a variable vi and F; (k) =
(k + xi), where 0 s k s N-1 and Xj is to be
determined. The cost of evaluating a PAS can be
derived as follows. Let E be the expression
tree. Then, from section 3, the cost at the
logical level is simply

L I AP (R) - AP (L) I + I AP (root of E) I
R,L: brother
nodes in E

If non-identity mapping is allowed for variables,
then the cost of any alignment operation involving
a variable becomes dependent on the mapping
function for the variable. For partial results,
however, the cost is a function of only their
associated alignment points.

The cost of an alignment operation involving
a variable is illustrated in Figure 3. The
elements of vi, vi (k+AP(i)), originally stored in
memory Fi (k+AP (i)) , wi 11 now be moved to memory
(k+AP(PARENT(i))) where the partial result shall
reside. So the cost of this operation is

IF i (k+AP (i)) - (k+AP (PARENT (i))) I

!xi - (AP (PARENT (i)) - AP (i)) I·

Figure 3. An alignment operation.

To determf.ne the optimal mapping for vi, al I
such terms involving xi have to be collected. Let
ri denote the total number of logical transfers
involving vi, and let djk denote the value
AP(PAREttT(i)) -AP(i) in the kth transfer of vf.
Then the total cost due to variable vi can be
written a.s

I: 1x, - d,k1
k•l

whkh i.s minimized b)" setting

X; =median of {dfkl f~ k :Sr;}•

{4)

Exji!!!!Ple 4 •. Suppose the displa:cements assodated

I

with variable vi in an algorithm are

AP(i) = disp(i): 2 0 -1 0 -1
and the alignment points for the
involving vi are

AP (PARENT (i)): 0 2 2,
then the shift distances for Vj are

dik: -2 2 2 3
and the median of {dik} is 2.

operations

Then the cost using the mapping Fi (k) = (k + 2) is
6, while the cost using the identity mapping would
be 10, indicating a 40% improvement. •

It is easy to see that the improvement would
be high if the sequence of transfers is long and
the median is far from zero. If the median is
equal to zero, then the mapping is simply the
identity. It is also easy to note that if the
sequence is long, perhaps one can perform several
remapping during the execution of the algorithm so
that the communication cost is further reduced.
This data remapping is discussed below.

4.2 Remapping

In [10], remapping techniques are applied to
a class of parallel algorithms which are assumed
to be executed on an SIMD machine using a shuffle
shift interconnection network. Most of these
algorithms have logrithmic computation but higher
communication complexity. After remappi'ng, many of
the algorithms are balanced. This analysis again
indicates that software techniques are a more
flexible tool for providing better solution to the
improvement of the performance of parallel
algorithms. In this section, we study the
remapping problem under the assumed environment.

In general, the major task in the use of data
remapping is the determination of when and how to
perform a remapping so that the new cost, the com
munication cost plus the cost of remapping itself,
is less than the cost of using only static
mapping.

In what follows, we shall use L to denote the
sequence of all logical transfers of a variable v
that are required by the given parallel algorithm,
i.e., L=d 1 , d 2 , ... ,dk where di is the shift
distance for v in the ith transfer of v. A
remapping schedule for v is defined as a division
of the sequence L into subsequences, and within a
subsequence only a static mapping function for v
is used, and a remapping of the data must be
performed before a new subsequence which uses a
different mapping function starts. Clearly, the
mapping function for v within a subsequence should
be the optimal static mapping for v with respect
to this subsequence, which can be obtained using
the result of section 4.1. A remapping schedule
for v is said to be optimal if the total cost with
respect to this schedule is the least among all
possible schedules.

Let the interval defined by two consecutive
shift distances d;, di+I of L be denoted by lj,
i.e., lj l(di,di+r>· Let IL denote the

279

intersection of all intervals Ii, 1 :S
in L, i.e.,

:S IL 1-1 •

I = L

ILl-1

n
i=l

Ii'

where ILi denotes the number of elements in L.

Following are some of the properties of a
sequence L for which IL ¢ ¢.

Lemma l. Let IL= [a,b]. If a< b, then
median of L, is given by

a if d 1 :S a and d k :S a,

b

x, where x € [a,b], otherwise. •

If IL= [a,a], then it is easy to see that dM
a if ILi is odd, and, if ILi is even, both dM

and a must lie in the interval defined by the two
median numbers of L. In the latter case, we shall
set dM= a, so that in all cases dME IL.

In the following Lemmas, C(L,dM) denotes the
communication cost resulting from the static
mapping Fv (i) = (i + dM) for v with respect to L,
i.e.,

k

C(L,dM) = L ldM - d; I·

i = l

Let L' denote any subsequence of L having s
elements. Let cm denote the median of L'.

Lemma 2. Suppose IL¢~ and
usign Lemma l. If s is even,
to choose Cm such that

dM has been fixed
then it is pbssible

C {L 1 , cm) = C (L' , dM) ,

and if s is odd, then

Lemma 3. Let L j and Lj + 1 be two consecutive sub
sequences of L, where ILj l=sj and !Lj+i l=sj+t· Let

their medians be denoted and d jtl
I'll • re spec-

tively. Let Lj denote the concatenation of Lj and
Lj+I. If IL= [a,b] ¢ ~. then

Case i. sj, sj+l both even.

dj and dj+t can be chosen such that
Jn II\

j j+I t
C(lj,d111) +C(Lj+t'drrt) C(Lj,dr).

Case ii. sj odd, sj+I even.

j+I . h h dm can be cnosen sue t at

j j+I j I
C (Lj ,dm)+C (Lj+I ,dm)+idM - d111 1 = C (Lj ,dM).

Case iii. sj• sj+I both odd.
j < j j+1 j+I

If dm - dM (d111 O!: d~ , then d O!: d (d
S dM) • And m M "'

(j j+I j+1 j r
C Lj,dlll)+C(Lj+l'dm)+jdm -dml = C(Lj,dM).•

I. I j . j+I j In Lemma .. , d111 - dinl and ld111 - ~I are tht:
cost of remapping. This Lemma shows that if IL¢~,

·then no gain will be achieved by dividing L into
two subsequences. A generalization of this Lemma
is very useful and is given below.

Theorem 2. If IL ¢ ~. then no remapping schedule
!/!for v will result in a communication cost less
than C(L,dM). •

Theorem 2 implies that, as a first step, one
should determine a sequence of subsequences of L,
i.e., determine!/!="L 1 ,L2 , ••• ,Lt• such that every
L j is maximal in the sense that IL· ¢ ~ and the

I

inc 1 us ion of e·i ther two e 1 ements of L that precede
Lj (i ¢ 1) or the two elements that follow L· (i P.
t) will result in IL. =~.This can be ac~ieved
using Algorithm 2 below~

Algorithm l.

I* given sequence of logical transfers (or shift
distances) in L(l:k). F X(l:k), L X(l:k) store
start and end indices- of subsequences.
L_/'IEET(l:k), H_MEET(l:k) low and high bounds of
intersection i~terval for Lj· Q_X: index for the
number of the subsequence Lj. [ml,m2]: current
intersection interval. [tl,t2] = [L(i), L(i+l)]:
next interval to be processed. */

if ks 2 then stop; /*no remapping necessary*/
Q_X = 1; /*for L1 */
F_X(l) = 1; /*start with d 1 */
ml •min(L(l),L(2)); /*di =L(i) */
m2 = max(L(l),L(2)); /* [ml,m2] */
i .. 2; I* next interval is [l(2),L(3)] */.
Flag= '1'8; /*until [ml,m.;?l ~ (r-'*l
do while (i < k); /* L(2), L(3) , •• ,L(k) */

tl "' min (L (i) , L (i +1)) ; t2 = max (L (i) , L (i + 1)) ;
I* test if intersection is empty */
cal I CHK_MEET (ml ,m2, t 1, t2);
if ~Flag then do; /*end of this sebsequence */

L_X(Q_X) = i - l; /*index of last item*/
L_MEET(Q_X) =ml; /*intersection interval */
H_MEET(Q_X) = m2; /*of this subsequence */
Q_X = Q_X + 1; /*next subsequence*/
~-X(Q_X) = i; /*start of Lj+I */
J = ml;
ml=min(m2,L(i)); /*new starting [ml,m2] */
m2 = max (j, L (i)) ;
Flag .. '1'8;

end; I* of if then do; *I
else i = i + 1; /*just get next two items*/

end; I* of do while*/
I* for last subsequence */
L_X(Q_X) • i; L_MEET(Q_X) =ml; H_MEET(Q_X) = m2;

CHK_MEET: Procedure (ml,m2,t1 0t2);
I* compute intersection of [ml,m2] & [t1,t2] */
I* set Flag to '0'8 if it is empty*/
if ti > m2 I t2 < ml

then do; Flag • 'O'B; return; end;
if tl "' m2 then do; ml = tl; return; end;
if t2 • ml then do; m2 • t2; return; end;
ml • max (m 1 , t 1) ; m2 • mi n (m2, t2) ;

end CHK_MEET;

Inst of Algorithm l.

After ~btaining!/!using Algorithm 2, the next
step is to fix the median of every subsequence
L1. If !Lil is odd, then d~ is simply .the median
of Li; but if IL; I is even, then d~ can be any
value in the interval defined by the two median
elements of Lj. For convenience, we shall call
such an interval the median interval. Following is
the rule for determining the median of every Li
such that the resulting remapping schedule is
optimal.

Median Selection Rule

Given L = d., d1 , ••• ,dk, obtain!/!= L1 , L2 ,
Lt using Algorithm 2 •.

i. if Ill I= odd, then d~ = ~edian of L;.
ii. if L; =even and if the median interval of

L; is of the form [w,w], then d~"' w.
iii. for ev~ry i, Isis t,

if d~ !snot fixed by rule i or ii and
d~ e.[lo,hi], then

d~ = Jo if d:: 1 < lo

d~ = hi if d!:' > hi

End 2.f. Median Selection Rule

(Note that median intervals of any
consecutive subsequences never overlap.)

Example 5. Suppose for some variable v, L = I, 3,
4, 5, 6, 1, -2, -1, O. Applying Algorithm 2 to L,
we get !/!= L1 , L1 , L3, L4,, Ls , where Li"' 1,3,
L1= 4, L3• 5,6, L4 • l,_ L5= -2,-1,0. We can first
fix the following medians: d;.=4,. d!.•1, and
d!•-l. Then using the ~edian Selection Rule, we
obf)tin the medians: d~"=j, d~·5· It ls easy to
compute the following communication costs:

C(L,dM) = C(L,1) • 20, and

'5 • .
'E Id~ - d~+I I
i•2

•[(2+o)+O+(O+l)+O+(l+o+l)] + [1+1+4+2] = 13.

Thus, with remapping, the cost due to variable v
is further improved by more than 30%. •

Algorithm 2, along with the Median Selection
Rule, generates an optimal remapping schedule for
any sequence L. The optimality proof can be found
in [5].

Theorem 3. Algorithm 2 and Median Selection Rule
constitute an optimal algorithm for generating the
remapping schedule for any logical transfer
sequence. •

As another more practical example, consider

280

the Jacobi algorithm for computing the eigenvalues
of real symmetric matrices [13]. In the classical
Jacobi algorithm, a real symmetric matrix is
reduced to the diagonal form by a sequence of
elementary orthogonal transformations. In [9], the
algorithm is modified for parallel computation on
llliac IV machine. In this implementation, the
data broadcasting capability of the network is an
essential requirement. Otherwise, the data
communication cost would become very high and
outweigh the gain obtained from parallel
computation. In [4], the matrix multiplication by
diagonal scheme [12] is used to compute the
transformation, which requires no data
broadcasting, so the algorithm can be implemented
on a circular network. A further modification to
the algorithm is given in [7], which also uses the
multiplication by diagonal scheme. In both [4] and
[7], the transformation has the form ¢Ari-, where
A= [aij] is the given NxN matrix and¢"' [t ..] is
the transformation matrix which causes el~~ents
ai,i'tl and ai+i,i• i even, to be eliminated. From
the multiplication scheme, it is easy to see that
for both t;i and ti-l,i, i odd, the sequence of
logical data transfers required to complete every
computation of ¢A,pl is L = 0,0,1,2,3, ••• ,N-2.
Therefore, we can apply our algorithm to L and
obtain the following remapping schedule:

!/! = (0,0), (l), (2), (3), .•• ; (N-3,N-2).

In other words, these two data vectors are
remapped one PE down the circular network every
computation step (except for the first and last
subsequences). The communication cost using this
remapping is clearly O(N) per transformation,
while if only static mapping is used, the cost
would be O (N').

For this particualr example, although the
above remapping schedule may have been obtained by
carefully examining the multiplication scheme, or
by using the data buffering technique of [10],
with our method and Theorem 3, the optimality of
the schedule is guaranteed.

5. CONCLUSION

The problem of m1n1m1z1ng the communication
cost in the implementation of a parallel algorithm
on an SIMD computer is discussed. For a given
parallel algorithm, techniques have been developed
for determining the order of computation of an
expression, the alignment of operands for every
binary operation, the mapping of data to the
physical memories, and data remapping such that
the communication time is minimized. This
analysis, as well as other previous work, indicate
that software techniques are sometimes a more

·flexible tool for providing better solution to
the improvement of performance of parallel
algorithms than hardware, which is often limited
by the cost and complexity.

281

REFERENCES

[l] T. Agerwala, "Communication, computation, and
computer architecture," lnt'l Conf. on
Communication, June 1977, 209-215.

[2] T. Agerwala, B. Lint, "Communication in
parallel algorithms for Boolean matrix
multiplication," lnt'l Conf. on parallel
Processing, 1978.

[3] A. V. Aho, J. D. Ullman, Principles of
Compiler Design, Addison-Wesley, 1977.

[4] W. H. Bernhard, llliac IV codes for Jacobi and
Jacobi-like algorithms, Center for Advanced
Computation Doc. No. 19, Univ. of Illinois,
Nov, 1971.

[5] K. Chen, Ph.D. dissertation, in preparation.

[6] K. Chen, K.B. Irani, "Mapping problem and
graph numbering," in Proc. of the Workshop on
Interconnection Networks for parallel and
distributed processing, Apri 1 21-22, 1980,
41-46.

[7] K. Chen, K. B. Irani, "A Jacobi algorithm and
its implementation on parallel computers," in
Proc. of 18th Annual Allerton Conference on
Comm., Control, Computing, Oct. 1980.

[8] W.M. Gentleman, "Some complexity results for
matrix computation on parallel processors,"
JACM 25, l (1978), 112-115.

[9] D.J. Kuck, A.H. Sameh, "Parallel computation
of eigenvalues of real matrices," in
Information Processing 71 Proc. IFIP Congress
]l, VOL. I I , Nor th-Ho 11 and Pub 1. Co.,
Amsterdam, The Nether 1 ands, 1972,
pp. 1266-1272.

[10] R. H. Kuhn, Optimization and Interconnection
Complexity For: Parallel Processors, Single
Stage Networks, and Decision Trees, Dept. of
Comp. Sci • , Univ. of I 11 i no is, 1980.

[11] H.T. Kung, D. Stevenson, "A software
technique for reducing the routing time on a
parallel computer with a fixed
interconnnection network," in High Speed
Computer and Algorithm Organization,"
(D.J. Kuck et al. editors) Academic Press,
N.Y. 197].

[12] N. Madsen, G. Rodrigue and J. Karush, "Matrix
multiplication by diagonals on a vector/
parallel processor," Information Processing
Letters, vol. 5, June 1976, 41-45.

[13] J. H. Wilkinson, The Algebraic Eigenvalue
Problem, Claradon Press, Oxford, 1965.

PARALLEL HASHING HARDWARE
FOR

TEXT SCANNING APPLICATIONS

F. J. BURKOWSKI

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MANITOBA

WINNIPEG, MANITOBA, CANADA

ABSTRACT

This paper discusses the hardware design of
a term detection unit which is to be used in the
scanning of text emanating from a serial source
such as disk or bubble memory. This unit will
provide the highly parallel activity necessary
for the detection of any one of many terms (eg.
1024 terms) while accepting source text at a
transfer rate typical of disk technology, for
example, one megabyte per second. The design
incorporates a hardware-based hashing scheme
which allows the incoming text to be compared
with selected terms in a RAM which contains all
of the strings to be detected. Since the speed
of operation is such that any lengthy probe se
quence cannot be tolerated, the design involves
mechanisms which strive to provide a perfect
hash; perfect in the sense that a probe sequence
need not be used to overcome the collision prob
lem.

INTRODUCTION

In many text retrieval systems the data
base i.s comprised of a huge collection of docu
ments which are essentially unstructured in
their organization. Indexing facilities may be
rather limited in scope and hence not sufficient
to meet the requirements of queries which incor
porate arbitrary terms or keywords. Examples of
such data bases include newspaper repositories,
legal decisions, journal articles, military in
telligence reports, and even smaller data bases
for corporate offices (see [1]). Since an in
dexing procedure cannot effectively narrow down
the area to be searched, the retrieval strategy
may involve ·a serial scan of the entire data
base or some significant portion of it.

Typically, user enquiries are analyzed by
query translator software which extracts from
the user queries all of the various terms which
must be detected in the source text. For exam
ple, a typical query might be the concise ver
sion of a command such as: "Retrieve all docu
ments which contain any 3 of the following 6
terms: BRASS, TRUMPET, SACKBUT, CORNETT,
SERPENT, TENOR CURTAL". The query translator
passes a list of such terms to the term detec
tion unit which will s.can the source text and
determine the "document location" of each term
if it exists in the text. This information is
passed to query resolution software which will
determine whether the scanned document meets the
criteria imposed by any user query.

0190-3918/81/0000/0282$00.75 © 1981 IEEE

282

If a system is subject to enquiries from
many users then a typical scan may involve a
parallel search for hundreds of terms. This
search is to be accomplished while the source
text streams by at a rate determined by the disk
transfer rate of approximately one megabyte per
second. This type of search is best done by a
term detection unit which is specifically de
signed for such highly parallel activity. This
paper will discuss the hardware design of such a
term detection unit. By using a cost effective
and novel approach, the unit is capable of han
dling a great many terms~ If the reader is in
terested in other approaches he may consult [2]
or [3] wherein the author discusses the problems
associated with these applications and presents
a .survey of some of the architectures which are
of current interest.

TERM DETECTION HARDWARE

The term detector accepts a serial stream
of characters which are shifted into a serial
in parallel-out shift register SR capable of
holding k characters. Each shift operation
causes the input sequence to be shifted one
character position. The parallel-out lines of
SR provide input to a set of comparators which
are also fed by the data lines of a RAM with an
organization of M=2**m words each B*k bits wide.
In a text retrieval system, one might expect
values such as k=32 and M=256.

Using this approach a k character substring
of the source text can be compared with any one
of M words in the RAM. Each byte of RAM would
contain a 7 bit ASCII code and an additional bit
used to signify a "don't care" or unconditional
match character. '

Since we must effectively compare·all the M
terlils with the current source substring of k
characters in the time interval between shifts,
it is tempting to use an associative memory in
place of the RAM and comparator, but considering
the current prices of associative memory such a
solution is prohibitively expensive. Conse
quently, we retain the RAM and use in conjunc
tion with it a "mapping module" which accepts a
subset X of the data-out bits from the shift
register and computes H(X) an m-bit address
which will select from the RAM one term which is
to be compared with the source text in the shift
register (see Fig. 1). The mapping module will
be a high speed random access memory with ad
dress inputs determined by the X-lines and
data-out lines providing the m-bit H(X} value.

We now describe the strategy involved. If
the shift register does not contain a required
term then a comparison will be initiated with
some selected term in the RAM (from a practical
point of view, it does not matter which term is
chosen) and since a match is not detected the
shift activity simply resumes. If the shift
register contains a target term which matches
some term in the RAM, then we must ensure that
the RAM address of the matching term is equal to
the value H(X) generated by the mapping module
when the target term in the shift register is in
alignment with this selected term in the RAM.
This will give an active level on the equality
output of the comparator when the selected term
is compared with the contents of the shift reg
ister. The generation of the appropriate H(X)
value is relatively easy to derive unless the
number of terms is very large compared to the
number of X-lines. Note that a uniqueness prop
erty must be enforced. If we consider any tar
get term so situated in the shift register that
it is aligned with its matching term in the RAM,
the binary value produced on the X-lines must be
unique i.e. different from the X-line value of
any other target term in its aligned position.
In effect, H(X) must generate a perfect (no col
lision) hash function for the set of all target
terms in their aligned positions. The crucial
point of the design is that the attainment of
such a perfect hash is greatly enhanced by the
fact that there is often some freedom of choice
in selecting the x-value which is generated by
the aligned target term. This is true since
most terms will not be the full k characters in
length and consequently a term can usually adopt
one of many positions relative to the character
positions responsible for the definition of the
X-lines. Note that the appearance of a term
within its word of RAM is constrained to a posi
tion such that the aligned target must cover
those positions of the shift register which de
fine the X-lines.

In order to illustrate the above discussion
with an example, consider the following simpli
fied situation: Suppose a search is being done
for the following four terms, "MARS", "MARTIAN",
"STAR", "ARTIST". Also, suppose for the sake of
illustration, that there are 14 X-lines defined
as the middle two characters in the shift regis
ter. In actual practice, it is likely that we
would use fewer lines defined by more charac
ters, say the middle four character positions.
With these assumptions the X-line outputs for
"MARS" would be "MA", "AR" or "RS". The given
terms and their corresponding X-value candidates
may be portrayed by a bipartite graph as illus
trated in fig. 2. If it is possible to define
for this graph a maximal matching which covers
all the points in the "term se·t" then it is pos
sible to find the distinct X-line values that
will be needed. In fig. 2 one of the many maxi
mal matchings is represented by the heavy lines.
The algorithm which derives such a maximal
matching can be found in [4] (the Hungarian
method) and a faster version has been recently
presented in [5]. Note that the graph illus
trates a certain amount of competition for par-

283

ticular X-values such as "AR". As one might
expect, the overall competition for distinct X
values will be augmented if the number of terms
is increased and/or the number of X-lines is de
creased. Using the algorithms presented in [4]
or [5] a maximal matching can be extracted rap
idly since the graphs that arise in text scan
ning are rather easy to match. If the maximal
matching does not completely cover the term set
then the uncovered terms are rejected from the
batch and must wait for the batch being accumu
lated for the next scan of the data base.

Simulation studies have been carried out in
an effort to predict the severity of this rejec
tion problem. The following table presents the
results:

Bits Window Minimum Maximum Average
Out Size Number Number Number

h n Rejects Rejects Rejects

2 80 96 88.29
8 3 46 70 57.46

4 38 67 51.55

2 2 26 14.20
10 3 0 (78) 3 0.36

4 0 (20) 9 2.34

2 0 (8) 22 10.30
12 3 0 (82) 3 0.26

4 0 (54) 5 0.92

RAM Implementation M=256 100 trials

In this table h represents the number of
X-lines taken from the n middle characters of
the shift register. In each case 100 trials
were run with each trial involving a batch of
256 terms. For example, when 12 X-lines were
defined using the four low order bits from each
of the three character positions at the middle
of the shift register then for the 100 trials 82
ran with 0 rejection (perfect hashing for all
terms) while the other 18 required rejections
but not more than 3 terms were ever rejected.
The average number of rejections was 0.26 term.
Terms were randomly selected and varied in
length between 4 and 32 characters. The lengths
formed a normal distribution with an average of
8.5.

MINIMIZING THE REJECTION PROBLEM

In [6] simulation studies indicate that the
ASCII encoding of the source text is not neces
sarily the best choice.

Since the previous design works with low
order bits of each character, the characters re
sponsible for defining the X-lines may have the
same appearance since their X-line outputs are
identical. For example, the ASCII codes for the
four vowels "A", "E", "I", and "U" all end with
the bits "Ol" and hence, if the X-lines use only
two low order bits these frequently occurring

characters are not distinguished from one
another. The select ion algorithms for the pre
vious design would have a better performance (on
the average, fewer rejections per batch) if the
binary codes representing the characters were
distributed in such a way that the codes for
characters used most frequently (in English lan
guage source text) presented the most variety in
their low order bits. It can be demonstrated
that for certain values of n and h the average
reject ion rate can be cut in half by using this
more suitable encoding of the source text.

The above strategies are sufficient for
term detection units which handle 256 or fewer
terms. Unfortunately, if n and h are kept fix
ed, the rejection rate does not rise in a linear
fashion as the number of terms increases. For
example, a unit designed to handle 1024 terms
with h=12 and n=4 must suffer a-n average of
85.58 term rejections. This many rejections
could adversely affect many users on such a sys
tem. Various design techniques may be used in
an effort to minimize term rejection. The most
obvious approach is to increase h the number of
X-lines. However, since each additional bit
doubles the amount of RAM used in the mapping
module it may be more profitable to investigate
other approaches to the problem.

Perhaps the most effective alternative is a
design which tends to alleviate the constraint
imposed by the uniqueness requirement discussed
earlier. In fig. 3 and fig. 4 designs are pre
sented which allow two terms to share a common
X-value. I~ the first case an extra field in
the string RAM is used as a pointer to a second
term which may also be compared with the con
tents of the shift register. Thus, an extra
probe is done in a sequential fashion. Note
that in the time between shifts (one microse
cond) the following delay times are experienced:
the delay in the shift register (40 ns.), the
access time for the mapping module (lOO ns.),
the access time for two string RAM reads (400
ns.) and the propagation delay through the com
parators (60 ns.).

In fig. 4 an alternative scheme effectively
permits two parallel probes to be done simulta
neously. There is extra hardware, consisting of
two mapping modules and two sets of comparators
but the performance is faster.

In both of these schemes the rejection
problem is greatly alleviated as demonstrated by
the table below which presents the results of 50
trials each working with 1024 terms.

Perfect Hashitlg_ Extra Probe Allowed
h n min:max avg min:max avg

12 2 537:682 632.6 236:423 360.0
12 3 49:215 153.7 0:17 2.4
12 4 39:140 85.6 0:16 4.0

14 2 537:682 632.6 236:423 360.0
14 3 36:178 117 .1 0: 16 1.4
14 4 15:101 49.2 0:9 1.6

Term Rejections for Batches with 1024 Terms

284

FUTURE DIRECTIONS

The derivation of the required maximal
matching has been accomplished using graph theo
retic algorithms. which are guaranteed to produce
results in all cases even though the general
problem has a very high "worst case" complexity.
However, text scanning graphs are easy to match
and hence it would be well worthwhile to look
for alternate algorithms in an effort to satisfy
other objectives more important to the applica
tion, for example:

1. Since a user is effectively rejected if any
of his or her terms are rejected, it is more
important to have an algorithm which rejects
the minimum number of users. -------

2. In the design discussed above, all user
terms are collected and presented in a batch
to the term detector just prior to a com
plete scan of the data base, which may take
hours in some applications. Response time
for a user would be improved if his or her
terms could be presented to the term detec
t ion unit very soon after query translation,
perhaps when the disk head moves from the
current track to the next track, This dy
namic addition and deletion of user terms
would have a significant impact on the de
sign of the algorithm used to extract the
matching.

1.

REFERENCES

R, V. Dickinson, "The SDC
VLSI Based Text Retrieval
System", Compcon g,
pp.ll5-ll8.

Records Manager: A
and Communications

(Feb. 1981),

2. M. J. Foster and H, T. Kung, Design of Spe
cial-Purpose VLSI Chips: ExamprEiandOpin
ions, Tech, Rep. CMU-CS-79-147, Department
of Computer Science, Carnegie-Mellon Univer
sity.

3. L. A. Hollaar, "Text Retrieval Computers,"
Computer, (Mar., 1979), pp.40-50.

4, J. A. Bondy and U. S. Murty, Graph Theory
With Applications, . MacMillan Press Ltd.,
TI976), pp. 70-90.

5. J. Hopcroft and A. Karp, "An n**(5/2) Algor
ithm for Maximum Matchings in Bipartite
Graphs", SIAM J, Computing, (Feb., 1973),
pp. 225-2~

6, F. J. Burkowski, "Text Scanning Via Maximal
Matchings on Bipartite Graphs", To appear,

r-1

•
Hit
Line

MARS

•

' j

m Address lines
M x Bk . . H(X)

Random Access Memory ...
.

' , . . •
Comparators

j j j

' X-Lines
~ . Mapping
~ Module

. .
L

Shift Register SR F
J From Serial Storage

Figure 1. Term Detector with RAM Storage

MARTIAN STAR ARTIST

IA AN TA

Figure 2. Four Terms and the Corresponding

Bipartite Graph for n=2

285

IS ST

p ,. 8k
~ RAM

. .) . . J
,/

~
M x 8k

" RAM

\.. Pointer

' "I ""'\ Field m

rl
i i H(x)

Comparator

1 ~ "1
X - Lines _.i

Mapping

. . v . . Module

Shift Register SR l
From Serial Storage

Hit
Line

~

Figure 3. Term Detector with Am:iliary String RAM

Figure 4. Term Detector with Parallel Activity

286

A PARALLEL PROCESSOR ELECTRONIC TARGET SIGNAL GENERATOR
FOR ELECTRO-OPTICAL SEEKERS

T. N. Long, J. T. Randolph, and M. J. Sinclair
Engineering Experiment Station
Georgia Institute of Technology

Atlanta, Georgia 30332

Summary

The first phase of implementation of a
flexible, programmable, computer controlled
Electronic Target Signal Generator (ETSG) has
been completed. This scene generator will be
incorporated into hybrid closed-loop simulations
performed at the United States Army Missile
Command's Advanced Simulation Center in
Huntsville, Alabama. Using parallel processing
techniques, the ETSG can now generate real-time
signals equivalent to the two spectral channel
detector outputs of a Passive Optical Seeker
Technique (POST) seeker such as Stinger/POST. A
future phase of implementation will permit simu
lation of reticle type seekers such as Redeye or
Stinger. A total of six targets within the
field of view can now be simulated. Expansion
capabilities allow for a total of nineteen (19)
targets.

The Electronic Target Signal Generator
(ETSG) is a self-contained parallel processing
computer which, when given the proper initial
and dynamic inputs, generates an analog voltage
that simulates the detector output or outputs of
an electro-optical seeker. Simulated sources of
specified shape, size, spatial orientation, and
intensity gradients can be created and
controlled within the missile's field of view.
Simulation of a target/background/countermeasure
scenario can then be accomplished by selecting
various sources and combining them to represent
the various parts of the target signature. A
high level block diagr~m of the system is
illustrated in Figure 1.

During initialization, constants which
describe a particular seeker type and desired
source properties are entered through a color
graphics terminal. Using these inputs (Table
1), a reference Random Access Memory (RAM) block
is loaded for each source to avoid unnecessary
calculations during real-time source updates•
This loading is performed by an initialization
processor which is@a commercially available
Motorola EXORcisor R that contains a 6800
micro-processor, 48K-bytes of RAM, dual floppy
disks, and a serial interface. Source reference
RAM's are 64 x 64 blocks of eight-bit bipolar
memory which contain the highest resolution
"map" that the source can have during a mission.
Presently, two of the sources may be designated
as "complex", with three orthogonal views being
stored in RAM. This configuration, which can be
expanded to include all sources, permits fly
around during a simulation.

0190-3918/81/0000/0287$00.75 © 1981 IEEE

287

For each real-time update of an engagement,
a high-speed data transfer is initiated by the
digital computer which dictates source spatial
orientations. Upon completion of the transfer
to the ETSG, source central processing units
(CPUs) are halted and loaded with their respec
tive dynamic data (Table 1). These CPUs (one
per source) are also built around the 6800
microprocessor and use a 16 x 16-bit multiplier
to reduce computation time.

INITIALIZATION PARAMETERS

SEEKER
Type (POST or reticle)
Field of View Size
Blur Size
NEFD
SNR for Tracking
Scan Rate (reticle only)

FLARE
Intensity vs Time

ENVIRONMENT
Background
Atmospheric Attenuation

SOURCES
Shape
Size
Aspect Ratio
Intensity Gradient
Spectral Band
Intensity Polarity
Intensity Program
Maximum Range
Minimum Range

PULSE JAMMER
Repetition Rate
Sweep Time
Duty Cycle
Period

DYNAMIC PARAMETERS

Block Transfer Code Word
Range
Azimuth
Elevation

Aspect
Rotation
Flare and Jammer
Control

Table 1. Simulation Parameters

Each 64 x 6~byte reference RAM represents a
source at the range where it exactly fills the
field of view in at least one dimension. Also,
the RAM represents the source viewed with no
projection. Accordingly, a source with a non
zero aspect cosine will be smaller than its
reference. Because of these principles, any
source can be created simply by skipping points
in reference RAM as it is loaded into a memory
array which represents the image plane. The
source CPUs calculate these skip factors.

Upon completion of the parallel calculations
of the CPUs for each update., loader circuitry
begins loading one of two image-plane ''maps"
(64 x 6~byte blocks of twelve-bit ·bipolar
memory) in each channel. The maps are loaded
from the reference RAMs using the values calcu
lated and stored in the latches by the source

CPUs. As the sources are loaded into an image
plane map, the intensities from the reference
RAMs are contrasted with the background and
scaled for range (with atmospheric effects
included) by a floating-point multiplication.

As sources are being loaded into one of the
image-plane maps of a channel, points previously
loaded in the other map of that channel are
being summed for output in a method which
depends on the type of seeker being modeled. In
the POST (flying spot) system, a relatively
small window (3 x 3, 2 x 2, or 1 x 1 bytes) is
scanned in a pattern through the field of view.
The intensities of the points which fall within
the window are summed and output as a single
time sample during the sequential sampling. The
functions of the two image-plane maps in each
channel are swapped for each update so that one
map is always being filled while the other is
being scanned and sampled.

After the points have been summed, the
background level and detector noise are added
with the result being converted to an analog
signal and filtered to remove sampling noise.
This analog signal represents simulated detector
output.

Off-line diagnostics are performed by the
initialization processor. A significant problem
is encountered when using a 64K-byte machine to
address over 200K bytes of memory. This problem
is solved in· the ETSG by defining memory loca
tions DOOO through DFFF as a 4K-byte window to
the rest of the system. The initialization pro
cessor first writes an extended address word to
a latch which is decoded by each memory module
in the system. Being able to address all memory
provides an inherent diagnostic capability which

Initial
Input

System Memory
Blocks (Debug)

Initialization
CPU

Normalized
Source

Source Update CPUs
(19), Prioritizer,
Scaler, and Image
Plane Map Loader

Direct Memory

OR

Dyn_am_i_c __ Access Buffer 1-----' OR
Input

Display
Processor

Color
Graphics

can be realized with software to eventually
.develop a completely self-diagnostic machine.

When the ETSG begins dynamic processing, an
independent dedicated CPU takes control of the
display. This "display" CPU, which is also a
6800-based design, has three functions: 1) pro
cess incoming source coordinates with missile
roll angle to de-roll coordinates, 2) display
all sources at the de-rolled coordinates with a
different color for each source, and 3) perform
dynamic error checking on source ranges and
dynamic roll rate.

Present configuration of the ETSG provides
for two three-dimensional sources and four, two
dimensional sources • Future phases of implemen
tation will provide for nineteen three-
dimensional sources. Present ETSG configuration
provides rectilinear scanning of the field of
view. Future phases of implementation will pro
vide for reticle scanning which will require an
additional section of parallel processing due to
the increased number of bytes that must be con
volved from the image-plane map to generate
detector output.

References

(1) G. E. Riley and M. J. Sinclair, Electronic
Target Signal Generator (ETSG) Design and
Analysis, Engineering Experiment Station,
Georgia Institute of Technology, Final
Report No. fr-2186, May 1980, 54 PP•

(2) c. E. Barnett and T. N. lDng, Integration of
a Hybrid Simulation for a Small Air Defense
Missile, Engineering Experiment Station,
Georgia Institute of Technology, Final
Report No. fr-2333, April 1980, 23 PP•

Image
Plane
Map A

Image
Plane
Map B

Image
Plane
Map A

Image
Plane
Map B

Scan
Processor

Scan
Processor

Channel 1
Detector
Output

Channel 2
Detector
Output

Figure 1. ETSG Block Diagram

288

DESIGN OF A MIXED VOICE/DA TA COMPUTER NETWORK
FOR PACKET-SWITCHING COMMUNICATION

Jien-Deng Kao, iT!n-Tuu Wang, Te-Son Kuo, Ger-Chih Chow
Department of Electrical Engineering, National Taiwan University, Taipei, ROC

SUMMARY

In a four-wire telephone system, the channel utilization
is activated by voice only 38% in one direction during conver
sation interval. It is therefore possible to use the remaining
~pacity of silent period for Inserting and extracting data In
packets by using a microcomputer-based controller called
Mixed Voice and Data Processor (MVDP), which is one of the
nodes of MVD network (MVDNET), that plays as a value added
service of existing voice-grade telephone network.

The voice signal remains its analog form as well as its
real-time property and Is assigned with higher priority than
data traffic, which can besstored-and-forwarded by MVDP in
MVDNET.

'Ibe protocol, which is based on the ISO defined open
system interconnection and CC ITT recommendation X. 25, is
adopted to cope with the r.ecently growing up public packet
switching data communication.

'Ibis paper describes the design consideration of packet
switching MVDNET, laying emphasis on details of special
hardware components, adaptive routing algorithm and hiera
chical flow control structure.
I. INTRODUCTION

Wang and Liu have proposed a queueing model of a Mixed
Voice and Data (MVD) transmission system Cl) • The concept
arose on the basis of low efficiency of the sampled measur
ment of the activity records in satellite circuits for telephone
conversation, In which a channel is activated in one direction
for only 38. 8% of the time when It is busy (2) • Thus the rest
of the silent periods can be used for data communication.

Some analysis and simulation work have been done for the
proposed system (3), (4). An improved hardware realization
of Mixed Voice and Data Processor (MVDP) bas been imple
mented by G.C. Chow (5·) •

'Ibis paper describes the ·conside:rations in the design of
a Mixed Voice and Data Network (MVDNET), which consists of
MVDP nodes, as the communication processors to provide the
value added service for the existing telephone network.

In the MVDNET, the data flow in an MVDP node is kept in
a store-and-forward ope:ratlon, while the voice remains in its
real-time nature with higher priority to occupy the channels
than data packets. In this way, voice subscribers does not
know the existence of data packets and is not disturbed by data
packet either. The interrupted data packets then wait for the
next silent period or find another available channel by most
recently realeased (MRR) rule to reduce the chance of being
interrupted again. The methods to process the preempted data
packet may be preemtlve-repeat or preemtlve-resume.

Il. MVDNET Configu:ratlon

The data traffic following through the MVDNET is
gene:rated by data terminal equipments (DTEs). The sources
and sinks of information (sending and receiving terminals) are
attached to the MVDPs via local t:ransmission lines (local
loops), as shown in Flg.1.

In each MVDP, the process which decides to which
following MVDPs or DTEs should be sent is called the switch
module. The switch module makes the routing decision based

·on information it has on the status of the network. This routing
information may be divided into a local and a global part. The
local part is readily available at the current MVDP, whereas
the global part has to be collected from all the other nodes.
Collection of status information and preparation and distribu
tion of the global routing information. la performed by partial
centralized adaptive routing algorithm.

m. Hardware Description.

We first summarize the important features of the MVDP

0190-3918/81/0000/0289$00.75 © 1981 IEEE

289

Sending
Terminal J

r----..,
L _ :_}_-..J-1,!--M-v""'D=-='P

Console

Receiving
Terminals

Legends: "i : transit arrival rate from adj ocent MVDPs
}. : source arrival arrival rote from local DTE.
JJo: service rote of d ispotcher (CPU)
µ., µ,. .. µM : link output rotes
PM•t : MVDP to loc<;il DTEs output rote

Fig. I MODEL OF A STORE-AND-FORWARD MVDP

design:
(1) It keeps existing voice-g:rade (VG) telephone network in

analog form and considers voice signals as real -time
through traffic having higher priority than data packets;

()!) It retransmits the data packet (preemtive-repeat mode) or
residual part (preemtive-resume mode) whenever an inter
ference occurred due to the arrival of voice signals.

(3) It uses voice detectors to sense the channel activity status
and to interrupt the MVDP whenever there is a change of
status (voice arrival or termination).

(4) It uses data recognizers to distinguish data from voice at
the receiving side, therefore, they can be switched
accordingly by an analog switch that feeds the data signal
to modem.

(5) It uses multiple voice-grade channel to achieve higher data
throughput and provide flexible choice of data-packet
routing.

Among the hardware components, the important devices
different from other existing data networks are voice detector,
data recognizer and modified Modem. We will describe the
feature of such devices in the following sections.

3-1 Voice Detector
The voice detector is a very important device and is

difficult to be implemented due to its sensitivity. Its noise
rejection figures are directly related to the utilization of
voice-grade channels.

Fig. 2, shows the block diagram of the voice detector.
The Zero Crossing Rate (ZCR) detector is based on important
criteria to determine voice starting point from noise condition.
Usually, an unvoiced sound has high zero crossing rate and
low signal level, while white noise has both low ZCR and
signal level (7) • A low level detector Is used to decrease the
voice dector activity caused by the background noice with high
frequency and very low level. The Level Detector/Comparator
is a substitution of the rms detector to avoid the 10 ms delay
time of rms detector, and it has higher rejection of impulse
noise than rms detector.

Voice
Signal

In

Fig. 2

Detector
output

00ms-500ms
retri ggeroble

one shot

Voice Detector Block Diagram

3-2 Dita Recognizer
The purpose of this data recognizer Is to distinguish data

from voice signal by means of "signal pattern recognition
method" according to the frequency spectrilm and amplitude
distribution of voice and data carrier.

There are four criteria· to recognize data signal from
unregular analog voice signal:
(1) Dita carrier is one· frequency component of voice signal

which may trigger a normal voice detector.
(2) Dita signal is transmitted in high level amplitude and with

·much more energy than most of voice signals.
(3) The pure data carrier Is a signal tone signal. Its hamonic

distortion should be less than 5 percent.
(4) The frequency components outside the carrier bandwidth,

during the transmission of the pure carrier are 20 db to
40 db lower than inband signal. This criterion Is the
major role to recognize the existence of data signal. Fig.3
shows the implementation of Dita Recognizer using the
above mentioned four criteria.

3-3 Modified Modem
To achieve higher data rate, the modem Is designed using

the 4 phase PSK technique. An advantage of PSK modem is its
ultra-,low error rate.

Mixed ,
Voice/Data
Signal

Y~---
Band Pass

Fi lier
Detector

In band
Carner
D ec or

Data
Recognizer
Output

Out band
Signal

Detector

Fig. 3 Data Recognizer

IV. Communication protocols for MVDNET

Most important among the functions of the communication
protocols are error, flow and congestion control, and routing
strategies. In the MVDNET, there is a protocol hierarchy, as
shown In Table 1, its structure ls based on the seven levels
open system Interconnection defined by ISO (8) • For the sake
of public data packet transfer application In existing analog
telephone networks, Level 1 is CCITT X. 21 bis (9), while
Levels 2 and 3 are the corresponding levels of CCITT
X. 25 (6) • Transport level is supposed to ensure reliable
source DTE-to-sink DTE sequenced delivery; one candidate ls
TSS25 (10) • The Session layer deals with the establishment
of logical relationships between application entities, the main
tenanc.e of this relationship, and the handling of dialogue. The
Presentation level deals with data structuring. It contains a
set of protocols which depend on the type of data to be ex
changed. The Application layer deals with the user interface
functions which include all service facilities such as security,
multi-address working, service type, service offering, etc.

Table 1. MVDNET Protocol Hierarchy

Protocol level Function

7. Application Level The user/service interface.

6. Presentation Level Dita formatting features.

5. Session layer Logical relationships between
application entitles, etc.

4. Transport Service TSS 25, DTE-TO-DTE control.

3. Network Access Permanent or switched virtual
circuit

2. Link Level Asynchronous Balance Mode
of HDLC

1. Physical Level CCITT x.21 bis.

290

V. Buffer Management Policy

Buffer management· policy in subnet of MVDNET is based
on two rules:
(1) Output queue length limit.

(2) "Transit" traffic is assigned a higher priority than "New"
traffic.

Two-priority scheme. is proposed whereby transit traffic
(consists of packets that·have traveled over longer one ormore
hops) has a higher priority than new traffic as regards to the
buffer allocation. This is done by setting a limit on the number
of occupied buffers, beyond which new traffic is rejected and
transit traffic may be accepted. Let

B =the total number of buffers In an MVDP.
L = a threshold allocated value.
N = the number of outgoing links in a MVDP and b "'"' be

the maximun length of an output queue (where b m• x >
B/N).

M =the number of allocated buffers, ni of which are
utilized by link I, upon arrival of a packet route to
link i.

Under the constraints (a) o.:::;; ni $ b maz

the following decision rule is applied:

; (b) :E ni $ B,
i

(1) If L $ M < B and ni < b mu , than accept thetransit
packet, reject the new packet.

(2) If M < L a.nd ni < b max , then accept the arriving
packet.

VI. Adaptive Routing Algorithm

There are two-level routing policies in the subnet of
MVDNET i.e. path routing level and channel routing level
under selected link. Fig. 4 shows the routing levels. The path
routing level in MVDNET uses a database describing the net
work to generate a tree representing the minimum delaypaths
from a given root MVDP to every other network MVDPs. The
VG channel routing level of MVDNET selects a silent . VG
channel from the provided several Voice-:-grade (VG)channels
between MVDPs.

Path Routing Level

Fig. 4 Routing levels in MVDNET

6-1 Path routing level
The adaptive routing procedures (11) for path routing

level of MVDNET are d!'scribed as following:

Routing computation-The First Two Shortest Paths (FTSP)
Algorithm
(1) The basic FTSP algorithm uses a database describing

the network to generate two tree representing the first
two minimum delay paths from a given root node to
every other network node.

(2) To implement the primary and secondary tables
according to the first and secondary minimum path
trees respectively.

Routes in MVDNET are assigned on a single-path-per
Virtual Circuit (VC) basis. The assignment of a route to a
switched virtual circuit Is established temporarily or
permanently.

6.2 VG channel routing level
Between hop levels (MVDP-to-MVDP), several four-wire

voice grade channel are provided to improve the network
throughput and lower the delay time through the MVDP hop.

In order to embed digital data packets Into the silent of
VG channel, we present the voice detectors at transmitting side
to monitoring the VG channel status (talking or silent period)
(1) The interrupt evenis of voice arrival or terminating are

recorded into the VG channel status table.
(2) The channel number, in which the voice is terminating, is

push Into the most recently released (MRR) stack.
(3) If any packet is to be sent, then it takes a VG channel

number from MRR stack.
(4) After the packet has been sent, then check the VG channel

is still in silent state or not? If true, then push the
number of VG channel into MRR stack.

VII. Flow Control Policy

In MVDNET, the flow control is designed in hierachical
multilevel structure, and these levels are actually embedded
into corresponding levels of protocols.

7-1 Link level flow control
Link level flow control in MVDNET is carried out by the

HDLC protocol (6, 8) , in asynchronous balanced mode (ABM).
It operates in a local way that it monitors local queues and
buffer occupancies at each node and rejects transit (from
adjacent MVDPs) traffic at the node when some predefined
thresholds (e.g. maximum queue limits) are exceeds.

A physical network path is set up for each user session
and is released when the session is terminated. Sequeneing
and error control are provided at each step along the path. In
addition, it permits the application of selective flow control to
each individual VC stream. Packet buffers in MVDP are
dynamically allocated to vc•s based ~n demand (complete
sharing), but thresholds are set on individual VC allocations as
well as on overall buffer pool utilization.
7-2 Entry-to:..6xist Level flow control

In MVDNET, in which a fixed ·route is assigned to each
user session during setup time, the entry-to-exit flow control
is applied individually on each virtual circuit.

When the source DTE transmitting rate exceeds the sink
receiving rate, the flow control mechanism intervenes to slow
down inputs from the source DTE Into the entry MVDP. The
window size W must be large enough to permit each virtual
circuit to efficiently utilize the bandwidth available on the path.
7-3 Network access flow control

The network access scheme in MVDNET is similar to
input buffer limit proposed by Lam (12) • The different point
is that in the former case an new input packet from external
souce DTE is discarded if the total number of the packets in
the entry MVDP exceeds a given threshold, while in the Lam's
scheme an input packet is discarded when the number of input
packets exceeds a given threshold. Transit packets can freely
claim all the buffers. It is clear that the network access
control in MVDNET prevent congestion by favoring transit
traffic over input traffic.

7.4 Transport level flow control

The transport flow control Is based on a window mecha
nism as in LL, ETE levels. Namely, the receiver grants
transmission credits to the sender as soon as reassembly
buffers become free. Upon receiving a credit, the sender is
authorized to transmit a message of an agreed-upon length.
When reassembly buffer become full, no credits are returned
to the sender, thus temporarily stopping message transmis
sions.

vm. Conclusion

In this paper we have proposed a mixed voice and data
communication network (MVDNET) as a value added serviceof
existing VG telephone network by using the MVD processors
(MVDP) as packet switching nodes.

291

The analog voice signal, due to its real-time property, ls
assigned with higher priority than data traffic. The latter can
be stored-and-forwarded by the MVDP. Therefore most of
conventional computer network protocols, buffer management
policy, adaptive routing algorithm and flow control scheme are
suited for data transfer in MVDNET. The ISO defined hiera
chical structure of protocols is adopted .so as to cope with the
growing-up public packet-switching data communication.

Routing and flow control procedures have traditionally
been developed independently in packet networks, however, both
are brought together into useful cooperation in MVDNET, which
Is a virtual call network, where a path must be selected before
data transfer on a user connection begins. The routing
algorithm Is invoked first to determine whether primary route
of sufficient residual bandwidth is available, else test
secondary route next. If both paths are congested, the virtual
circuit connection is blocked immediately at the entry node by
the network access flow control level, thus preventing conges
tion rather than allowing it to occur and then attempting to
recover from it.

In the future design, the modem using coherent detection
may be used to obtain higher speed. Also, the CPU set may
use the bipolar microcomputer with memory that quick access
time. Thus, the MVDNET will become a high throughput, In
expensive and standardized network which provides improved
efficiency and reduced cost public packet-switching data com
munication service from existing VG telephone network.

REFERENCE
(1) Jln-Tuu Wang, Ming T. Liu, '!A Novel Model for a

Mixed Voice/Data (MVD) Transmission System for
Computer Communications", Proc. of International
Computer Symposium, Vol. I, Taipei, ROC, (Aug. 1975)
pp. 458-468.

(2) J. T. Wang, M. T. Liu, "Analysis and Simulation of the
Mixed Voice/Data Transmission System : for Computer
Communication" Conf. Record, 1976 NTC, Dalas, Texas.
USA. Vol. ill, pp. 42-3-1 to 42-3-5, (Dec. 1976).

(3) J. T. Wang, J. L. Lin "Queueing Model for the Mixed
Voice/Data Transmission System for Computer Com
munication", Proc. NCS, ROC, 1976, Taipei, Taiwan,
ROC, pp.3-12 to 3-19. (Dec. 1976).

(4) J. T. Wang, L.C. Tsai, T.S. Kuo, "The Optimum Channel
Selection strategy of the Mixed Voice/Data Transmis
sion System" Tech. Report. Ee Inst, National Taiwan
University, Taipei, Taiwan, ROC, (May 1977).

(5) G. C. Chow, "Advanced Realization of Mixed Voice and
Data Processor" Master Thesis, EE Inst, National
Taiwan University, Taipei, Taiwan, ROC, (May, 1980).

(6) CCITT, "Provisional Recommendation X.3, X.25,X.28,
and X. 29 on Packed-Switched Data Transmission
Services" ITU Geneva, Switzerland, (1978).

(7) B. S. Atal, L. R. Rabiner, '!A Pattern Recognition Ap
proach to Voiced-Unvoiced-Silence Recognition", IEEE.
Trans on ASSP, (June, 1976).

t 8) ISO/TC 97/SC16/N230, "Reference Model on Open
Systems Interconnection" International Standards Or
ganization, Pairs, (July 1979).

(9) CCITT, "Recommendation X.21 bis: Use on Public Data
Networks of Data Terminal Equipments (DTEs) which
are Designed for Interfacing to V-serles Modems,
Public Data Networlts", Orange Book, Vol. Vlll. 2, 6th
Planning Assembly Int. Telecom. Union, Geneva, (1977)
pp.57-69.

Clo) UK PO study Group 3, "A Transport Service, Data
Communication Protocol Unit", National Physical
Laboratory, London, (May 1979).

(11) J.M. McQuillan, I. Richer, E.C. Rosen "The New
Routing Algorithm for the ARPANET" IEEE Trans. on
Commu. Vol. Com-28, No.5, (May, 1980), pp. 711-719.

(12) S. Lam and M. Reiser, "Congestion control of store
and forward networks by buffer input limits," IEEE
Trans. on Commn., Vol. COM-27, No.1, (Jan.19·79).
PP.127-134.

A NEW TYPE OF MIMD- ORGANIZED MULTIPROCESSOR
HANDLING TWO- STAGE PARALLELISM BY MEANS OF A
DYNAMICALLY.CONFIGURABLE ARCHITECTURE

R. Biihrer

ETH (Swiss Federal Institute of Technology)
Zurich, Switzerland

Summary

At ETH, a new simulation package PSCSP (.E_ower
~eries _s:.ontinuous ~imulation .E_rogram) for the simu
lation of continuous systems is currently in the
final stage of development [1], [2]. The main at
tributes of its integration technique can be summa
rized as follows:

When applying the method of power series expan
sions to the integration of ordinary differential
equations, the right-hand sides of the equations
have to be decomposed into elementary expressions.
Using a set of library routines (FORMULAS) for
these expressions, the higher derivatives can be
evaluated analytically when calling all FORMULAS
repeatedly with increasing orders of expansion .

. The paralleiism has a two- stage nature: several
independent FORMULAS can be evaluated concurrent
ly (first level of parallelism) while most of
them feature an internal parallel structure
(second.level of parallelism) that can be ex
ploited simultaneously by a number of processors.

In order to acquire reliable information about
the maximum gain in speed of a parallel PSCSP com
pared with the sequential version, a multiprocessor
was built whose design and programming is consis
tent with the special nature of the encountered
parallelism. This processor, whose main parts are
outlined in figure 1, is based primarily on an
MIMD (multiple- instruction stream - multiple- data
stream) parallel computer concept [3] improved by a
new dynamically configurable architecture principle
[4]. In addition to a supervisor processor, whose
activities are input/ output, compilation tasks and
supervision of FORMULA- executions, a set of 16
execute processors (EP), loaded with identica~
so~ware, are used for execution of the FORMULAS.
Due to the individual activities of these EPs
within the same or different FORMULAS, the execu
tion of every FORMULA necessitates the creation of
cooperating EP- groups whose members are distri
buted arbitrarily. This is done by the job control
unit which generally serves as the EP- dispatching
logic. In order to handle the numerous data trans
fers between cooperating processors in an appro
priate way, a new interconnection memory intercom
was developed, whose great advantage is the fact
that a result provided by any of the EPs is made

0190-3918/81/0000/0292$00.75 © 1981 IEEE

292

immediately available to all other processors; i.e.
between any two processors data can be exchanged
simultaneously without any delay. This intercom
consists of a quadratic organized memory- matrix
C = (cij) (i,j = 1, ... 17) whereby processor k
(1 2_ k 2_ 17) duplicates its data into all ckj
(j = 1, ••. ,17) elements of its associated row.
Reading is possible in all Cik (i = 1, •.• ,17) ele
ments of its associated column. It can be shown
that possible data protection problems can be eli
minated if - in a restricted sense - data are only
duplicated into the matrix elements of those pro
cessors which are working on the same FORMULA.

Whenever the job control unit starts a group
of EPs, a configuration information is transmitted
to the intercom interfaces of each EP of that
group, allowing a transformation of jab- specific
address modes as "relative left (right)- or abso
lute within a group" into physical counterparts by
means of hardware. Additional logics such as the
result transfer unit (far direct- memory- access
result transfers from the EP region ta the super
visor processor region of the intercom) and a
serial link far deadstart and maintenance tasks
complete the system hardware.

Extensive performance measurements of the
system (which is fully operational since the
spring of this year) proved that the multiproces
sor allows an exact determination of the gain in
speed achieved by the parallel PSCSP. This is due
ta the fact that the system overheads can be sepa
rated precisely into technological overheads (re
sulting from hardware-comprom:Ises-such-as-the use
of standard LSI- 11 EPs instead of fast, flexible
microprocessors, or from the use of conventional
RAM- memories instead of dual- access memory chips
in the intercom, etc.) and principal overheads
based an the specific system-architecture:-rn-the
worst case these overheads turn out to be 27% and
10% respectively in relation ta ~n optimally pro
grammed sequential PSCSP- version. As shown in [4],
present- day hardware technology allows the reali
zation of a system whose technological overhead is
almost zero.

i
I 1
I

,------
1

I
I
I
I
I
I
I
I
L7 ____ _

Job Control Unit

Supervisor

(~~~c;1j~~"J

+0 111<1

Execute Execute
Processor Processor
(LS!11*) (LS!11*)

+2

Execute
Processor
(LS!11*)

Serial Link

+15

Execute
Processor
(LS!11*)

Moster Request
Bus

*) product of Digital Equipment Corporation MR: Master Request
RTU: Result Transfer Unit JMU: Job Mangement Unit
INT: Intercom Interface EPS: Execute Processor Start
SL: Serial Link Interface wl: write lines
SR: Supervisor Request rl: read lines
EPM: Execute Processor Monitoring k: 1024 words/ 16 bits

Figure 1 - Hardware of the Multiprocessor

References

[1] H.J. Halin, R. Buhrer, W. Halg, H. Benz,
B. Bron, H.J. Brundiers, A. Isacson and
M. Tadian, "The ETH multiprocessor project:
parallel simulation of continuous systems",
Simulation (October, 1980) pp. 109 - 123

[2] H.J. Halin, R. Bilhrer, W. Halg, "Software
Development for the ETH- Multiprocessor Pro
ject: Parallel Integration of Ordinary and
Partial Differential Equations", Proceedings
of the Second IMAGS (AICA) International Sym
posium on Computer Methods for Partial Diffe
rential Equations, (Lehigh University, Beth
lehem, Pennsylvania, 1977)

[3] M.J. Flynn, "Some Computer Organizations and
Their Effectiveness", .IEEE Transactions on
Computers, vol. C- 21, No. 9, (September 1972)
pp. 948 - 960

293

[4] R. Buhrer, "Hardware eines dynamisch konfi
gurierbaren Multiprozessors", PhD thesis,
Swiss Federal Institute of Technology,
Zurich, (to be published)

PARALLEL PRCCESSING IN COMPlJ'tER ~ICATIONS

A. Faro ·and G. Messina
Istituto Elettrotecnico
Universita di Catania

CATANIA, ITALY

Summry

The aim of this paper is to analyze, by sinula
tion, the advantages of parallel processing in c~
puter comrunications. In such a study the parame
ters of both the protocol and the hardware confi
guration characterizing the comrunication system
are taken into consideration. A sinulation model
is presented Mi.ich is to perform both the analysis
and the synthesis of the processes in such a com
nunication system. Finally, using this model, some
results on the parallelism obtainable inside a
transport protocol are shown.

Introduction

With the grand development of distributed pro
cessing systems, considerable efforts have been
rm.de in the experimental and theoretical field of
computer networks in order to obtain reliable and
correct interaction between users and applications
through a Comrunication Device (CD) (fig.1). As is
well known, such an interaction arises by means of
a message exchange following a suitable set of ru
les (protocol). Because of modularity and flexibi
lity reasons CD offers the users its service by a
set of protocols Mi.ich are hierarchically organiz
ed in layers; each protocol being performed by a
pair of Ccmmnication Processes (CPs) generally
running on remote computers. So besides the proto
col at the application layer, other protocols
at the lower levels exist in modern networks Ill
(fig.2).

Since each CP can perform its functions at the
same time as the functions performed by all the o
ther CPs, we are faced by the problem of determin
ing under Ml.at conditions parallel processing can
be useful in computer catrn.mications. Two rra.in so
lutions are possible to implement such CPs : irrpl!_
mentation inside rra.in frames or minicomputers and
irrplementation in a nul timicrocomputer environment.
Usually in the first solution different CPs are i!!!
plemented in the same rra.chine thus determining a
sequential processing of the functions performed
in the above nultilayer structure. On the contrary
the second solution rra.kes the implementation of
each CP on a single rra.chine possible and at reaso
nable costs, thus obtaining a parallel processing
Mi.ich uses a nultimicrocomputer structure.

The aim of this paper is to analyze, by sinula-

0190-3918/81/0000/0294$00.75 © 1981 IEEE

294

tion, the advantages of parallel processing in
computer cormunications. In such a study the para
meters of both the protocol and the hardware -con-:
figuration characterizing the ccmrunication sys
tem are taken into consideration. In particular

.sect.2 discusses the possibility of parallel pro
cessing in computer networks. In sect.2 a sinula
tion model is presented Ml.ich is to perform both
the analysis and the synthesis of the CPs in the
above nultilayer structure. Finally sect.4 first
analyzes how the hardware configurations can in
fluence the perforrra.nce of a transport protocol,
then it shows some results on the parallelism ob
tainable inside such a layer.

Parallel processing

As is well known the comrunication structure
of the computer networks is organized in a nulti
layer hierarchical architecture. Each layer con
sists of CPs and offers suitable services concern
ing the data transfer from one process to another
of the upper layer. The service offered by each
layer is obtained by means of messages exchanged
between the CPs inside the layer depending on
suitable comrunication protocols. In such net
works, the decomposition is not only applied to
partition the functions of the network into sub
functions to be performed by each layer I 11 , but
it is also used to study the internal structure
of the CPs inside the layers 121. For example a
CP can be partitioned into three rm.in subpro
cesses which rm.nage respectively the inforrm.tion
exchange with the upper layer (upper interface),
'.With the lower layer (lower interface) and with
the remote partner (protocol unit). Of course the
degree of decomposition depends on the purpose of
the study. For example in defining and validat
ing protocols and services, suitable decomposi
tion of the CPs rra.y be useful in sirrpifying the
problem. Similarly in irrplementing the CPs, one
can apply decomposition techniques within .'cer
tain limits in order to obtain a physical reali~
tion of such CPs with the desired modularity, fl!_
xibility and speed characteristics. This paper
deals with parallel processing and then we are in
terested in decomposition techniques and hardware/
software architectures MJ.ich al lows us to obtain
a suitable degree of parallelism. So we take into
special consideration the irrplementation of such
CPs and, possibly, of their parallel subprocesses
in nultimicrocomputer environment.

The nultimicrocorrputer structures for network
ing have been widely analyzed by the authors in
preceding papers 131, 141. Generally two solutions
are possible : the first consists of a structure
in \\hich a microboard performs a CP, on the other
hand in the second different CPs are implemented
in the same microboard. ln addition the micro
boards can interact by means of a shared memory
area \\hich can be obtained either from various me
mory chips or a single cO!llilon memory chip. Of
course a suitable analytical or sirrulation study
is necessary to evaluate in detail the influence
of the kind of implementation on the comnunication
structure performance (as for exanple the through
put, the delivery delay or the reliability). Due
to the corrplexity of such a problem a sinulation
based approach is proposed in the next section.

A sinulation model

A corrputer network consists of CPs \\hich are va
riously interconnected through comrunication chan-:=
nels. A CP can be schematized as a device with two
inputs, two outputs and a set of internal states
121. The inputs and the outputs of- a CP at the ·la~
yer N regard respectively the services offered .. by
the layer N and by the layer N-1. Messages conce~
ing respectively the protocol at the.layer N+l and
at the layer N.are erri>odied in such inputs and ou.!_
puts. The set of rules a CP follows in producing
all its outputs is called global procedure and de
pends on all its inputs and/or its internal states.
The global procedure can be subdivided in three
rmin subprocedures : P concerning the message ex
change with a remote CP at the same layer, Q and
U concernii:ig respectively the corrmmd exchange
with the adjacent CPs at the upper and lower lay
ers. In addition such subprocedures can be parti
tioned into two other subprocedures :
- Pr,~ and Ur \\hich are involved in the transmis
sion of the messages inside P,Q and U;
- PR,~ and UR \\hich are involved in the reception
of the message inside P,Q and U.
Two fundamental problems arise in rmnaging such an
internal structure : the first concerns the envi
ronrr~nt in \\hich the subprocedures of a CP are im
pl eme!'lt ed, the second regards the environment in
which the internal and interface buffers of a CP is
implemented. Thus we introduce a CP supervisor
which follows suitable rules in order to solve
such problems .151.

It is easy to understand that the si!ID.llation of
the comnunication structure is very corrplicated b~
cause of the numerous interacting CP s. Therefore
we propose a down-top approach \\hich allows the
n·etwork sinulation, layer by .layer,by using a re
current structure. Such a structure consists of
two CPs interacting through a lower level CD. In

295

this way it is possible to characterize the \\hole
connunication structure of the CD connecting the
end-user processes. Such an approach allows us not
only the analysis but also the synthesis by solv
ing the following general problem step by step :
- Given the carnunication device CD at the layer
N-1 (that is for exarrple the capacity, the delive
ry delay, the error probabi 1 it i es etc.) and the in
put traffic of CD at the layer N; -
- Optimize CD at the layer N (that is minimize the
delivery delay in interactive systems or rmximize
the capacity in batch systems or both in general
purpose systems etc.);
- Over all the possible protocols, interfaces and
hardware configurations.
An high interdependence exists between two adja
cent layers : the first concerns the non linearity
of the parameters relative to a CD which depend on
the working load coming from the upper layer; the
second arises \\hen the CPs of different layers are
irrplemented in the same environment. For this rea
son it is necessary to characterize each layer by
determining the performance depending on the work
ing load. In our model starting from the knowledge
of the delivery delay, the capacity and the error
probabilities at the first layer, we obtain the
same parameters for the CD at the second layer and
the processing rate and memory acces time depend
ing on the working load coming from the layer 3 and
so on. The processing rate is used to sinulate the
critical regions relative to the CPU while the me
mory access time is used to sinulate the critical
regions relative to the data structure. In fact a
CP runs according with the constraints with the lo
wer level CD relative to such critical regions.

Results

A sinulation program written in SIMILA has been
derived from the above model. The first re
sul ts regard an and-to-end layer provided with
window flow control and recovery implemented at
the upper level of a link layer. Three hardware
configurations are examined in this paper as shown
in fig.3. For each of the configurations, the
throughput, the delivery delay and the memory occ~
pation depending on the window size are shown in
fig.4. Similar diagrams can be drawn for all the
other protocol parameters (as for exarrple the time
outs and the message repetition nurrber in the rec~
very phase). This allows us to optimize such para
meters and to choose the best recovery and flow
control strategies and hardware configuration. Fu_E
ther irrprovments are obtainable with a parallel
transmission and reception of the protocol as
shown in fig.5. However a cost analysis rrust be
performed in this case to evaluate the advantage
of such a parallelism. The use of this program is
now planned to study the structure of a local net.

CD

Fig .1 - Interaction between user processes

(b)

M

CP.z.

M

T
0

0,!5 0.5

7 3 7

Fig.2 - Protocol layers in computer networks

Fig.3 - Various hardware configurations to im
plement transport and link processes (i.e. CP3
and CP2).

0,5

3 4 -{4 w
Fig.4 - Throughput (T), Delivery delay (D) and Buffer occupation versus window size relative to
the above hardware configurations. The diagrams are opportunely normalized.

T

0,5

7 14 w
Fig .5 - Throughput (T) versus window size re
lative to an hardware configuration with para.!_
lel transmission and reception (c).

296

References

I 11 ISO : Open System Architecture-· TC97SC16 ,80
121 G.Le Moli : The second theory of colloquies
Submitted to Computer Networks, 1980.
131 A.Faro,G.Messina : A microcomputer basedga
teway between computer networks - MIMI 81 Proc-:
San Diego 1981.
14 I G. Messina : Microcomputer based technologi
es for internetworking - IEEE ELECTRO ?roe.New
York 1981.
151 A. Faro : Simulation based design of proto
cols and interfaces in computer communications -
Summer Simulation Conf. Proc. Washington 1981.

PROCESS SYNCHRONIZATION IN THE PARALLEL SIMULA MACHINE

M.P.Papazoglou,P.I.Georgiadis and D.G.Maritsas
Digital Systems Laboratory,Department of Computers

N.R.C."Democritos"
Aghia Paraskevi Attikis

Athens - Greece

Abstract

A multiprocessor machine approach for paral
lely executing SIMULA programs has been recently
proposed by the authors. As the constituent parts
of the SIMULA programs at execution level are
"processes", parallelism in the SIMULA machine is
considered at process level. The aim of this paper
is to present the problems of processes synchro
nization which arise during the parallel evolution
of processes within the SIMULA multiprocessor ma
chine. The issue of mutual exclusion in critical
sections in such a system is discussed, and, ac
cording to the type of interprocess communication,
corresponding modes of process synchronization
are described. It is argued that semaphores and
semaphore-queues rather than monitors are the
most effective tools for coping with the synchro
nization phenomena in the Parallel SIMULA Machine.

Introduction

In a recent paper [l] we have presented the
basic principles concerning a parallel SIMULA
machine architecture. The SIMULA language was ana
lyzed, constructs were proposed for detecting pa
rallelism in SIMULA programs and rules were esta
blished to permit parallel execution of such pro
grams in a multiprocessor environment.

SIMULA is a specially designed language
which is particularly offered for describing and
efficiently simulating large scale systems. These
systems reveal significant potential parallelism,
which although reflected in the SIMULA programs,
remains unexploited by the implementation of the
language within a uniprocessor environment. In
contrast, a parallel SIMULA machine will provide
the capability of achieving faster processing ra
tes since any SIMULA program can proceed in pa
rallel within the host multiprocessor system. Pa
rallelism in the SIMULA machine is considered
at process level.

In this paper we discuss the process synchro
nization problems which arise during parallel evo
lution of processes within the SIMULA multiproces
sor machine. For reasons of presentation we out
line the main features of the parallel SIMULA
scheme which has been presented in [l].

The constituent parts of any SIMULA program
are called "classes" at program definition level,
and "processes" at execution level.SIMULA processes
might be disjoint, but generally they are inter
active. Process interaction is either affected by
means of various "communication commands" ((re)
activate, wait, hold, passivate, and cancel) issued
by the individual processes, or by sharing rela
tionships that extend over global data called "sys-

297

0190-3918/81/0000/0297$00.75 © 1981 IEEE

tern variables". System variables include procedu
res, arrays, simple variables, and references.

The parallel SIMULA scheme is based upon
a particular structure called the SIMULA Process
Interaction Structure (SPIS). The SPIS
caters to the parallel evolution of SIMULA pro
cesses by providing suitable information obtained
both at compile and run-time levels. The SPIS
employs a recognition mechanism, called the
"SIMULA Parallel Process Recognizer" (SPPR).This
recognition mechanism scans the SIMULA source
program text and produces two kinds of table
structures, the "System-Variables" -Table (SV
Table) and the "Class Templates" (CT's). The SV
Table contains all system variables which are ac
cessible in the various SIMULA classes, and hence
are manipulated by their dynamic instances known
as processes. A CT provides a detailed record of
actions of each particular class. Within each CT
there appear such information as the system va
riables accessed by the corresponding class, the
communication commands issued on behalf of this
class, and the classes possibly affected by these
commands. A CT also denotes identification of
classes on a producer/consumer basis, (P/C-classe~.
Since each SIMULA process originates from a parti
cular class, the information contained within a
Class-Template, potentially reflect the process'
interaction pattern and the P/C-process classifi
cation accordingly. It is important to establish
the interprocess communication pattern before de
ciding parallelism at execution time. To support
and maintain run-time information the "System
Sequencing Ser" (SQS) has been appropriately ex
tended (E-SQS) so as to accomodate additional re
cords on top of these used by the sequential SIMU
LA environment.

In order to ensure the correct evolution of
processes within the multiprocessor environment
an "Executive Algorithm" has been developed.This
executive algorithm imposes a proper communication
link between SPIS and the "Extended Run-time" sys
tem (E-RTS) needed to support SIMULA programs
during their parallel execution. The executive
algorithm is implemented by means of a "controller
processor" whose main functions are to dispatch
processes to processors, to deal with synchroniza
tion phenomena and prevent the occurence of dead
blocks.

The structure of the SPIS and the dispatching
rules that should apply for an efficient allocation
of SIMULA processes to processors have been already
presented in [l]. In the following we consider
process synchronization within the parallel SIMULA
machine.

SIMULA Process Synchronization

An attempt towards intervening within a SI
MULA program structure so as .to enable it to be
executed in a parallel fashion should be focused:

(i).on successfully manipulating the pattern of
pos·sible transfers of control through the consti
tuent SIMULA processes, and (ii) on implementing
proper sharing relationships on system variables
accessed by these SIMULA processes. This approach
should be implemented in a well defined manner so
as to allow deterministic behaviour on behalf of
the program and preserve integrity of system va
riables.

When SIMULA processes are executed in paral
lel the outcome of their actions depends on their
relative speed of execution. The speed of SIMULA
processes that run asynchronously is affected by
their frequency of interaction. To achieve success
ful cooperation there are specific interaction
points at which SIMULA processes.must synchronize
their actions. Therefore, a SIMULA process should
be prevented from proceeding beyond certain inter
action points that require some activity by other
processes.

In the parallel SIMULA scheme there exist
two types of syncronization problems: critical
sections and deadlock These problems affect the
evolution of processes and are due to the accessing
of system variables and to the issuing of SIMULA
communications commands. A specific procedure of
the "Executive Algorithm" called "SIMULA synchro
nizet" receives information from the SPIS con
cerning process interaction points, and applies
the required solution.

In a multiprocessor environment, SIMULA pro
cesses may refer to, and modify, system variables
within blocks of statements known as "critical
sections". In the parallel SIMULA structure, cri-,
tical sections consist of system variables instead
of physical resources, which is the usual approach
in the operating systems concept. Applying mutual
exclusion in critical sections achieves synchroni
zation of SIMULA processes, preserves integrity
and consistency of system variables and quarantees
program determinacy. Furthermore, deadlocks occur
when nested critical sections of system variables
are encountered. As stated by Hansen in [2], an
absolute hierarchical pattern of communication
established among processes will assure deadlock
elimination. In the E-SQS of the parallel SIMULA
scheme, hierarchies are "established according to
the unique event time associated with each process.
As a consequence, this hierarchical order prevents
deadlock occurence during the parallel evolution
of processes.

Mutual Exclusion in SIMULA Processes

In this section we consider the necessary
criteria for an efficient solution of the synchro
nization problems, and we investigate the funda
mental synchronizing modes which are handled by
the "SIMULA Synchronizing Procedure" (SSP). The
well known principles for an efficient solution of
synchronization problems have been adapted so as
to suit the parallel SIMULA :machine requirements.
These synchronizing principles are as follows:

298

(a) Only one process is permitted to be inside a
critical section at any time instance.

(b) When a process is inside a critical section
other processes trying to enter this section
will .be delayed.

(c) The priority rule used to determine which pro
cess will enter a critical section is based
upon the time hierarchy among processes. This
time hierarchy results from the event times
associated with each particular process as it
appears within the E-SQS. The process asso
ciated with the least event time will proceed
first.

~z~~~!~~!~!~g-~~~~~
The synchronization phenomena evoke runtime

action that is provided by the SIMULA synchronizing
procedure of the "Executive" algorithm. This algo
rithm deals with two fundamental synchronization
modes:
(i) the V-mode, specifically related to the syn-:.
chronization imposed by the critical sections,and

(ii) the C-mode, related to the synchronization
imposed by the SIMULA communication commands with
in the critical sections.

In the following we critically examine syn
chronizing cases representative of each synchroni
zation mode. All generalizations of these cases
are solved by employing identical synchronization
techniques. It is assumed that all of the processes
being considered have been allocated to, and run
on, a processor according to the dispatching rules
introduce4 in [l].

V-mode

Case (a): Let {P1 [x1 ,tp 1 J//P 2 [x 1 ,tp~}denote

any two SIMULA processes running in parallel,where
x'1 is their common system variable (i.e. a common
.critical section), and tp1 , tp2 their associated

event times respectively. Assuming that tp1.S..tp2 ,P1

establishes a higher priority of execution over Pz.
Regardless of the relative execution speeds con
cerning P1 and P2 , Pz should suspend its execution
action prior to entering its section, while P1 is
allowed to proceed inside its associated critical
section. When Pi leaves its critical section then
"SIMULA Synchronizing" procedure (SSP) of the exe
cutive will immediately signal the processor asso
ciated with Pz to resume its execution.

Case (b): Let two SIMULA processes {P1[x1•
xz;tp1J//Pz[x1 ,xz,tp2J}, run in parallel. Fig.l(a)

shows a possible arrangement of the processee.'"sys-,
tem variables" x 1 • xz and their associated critical
sections.

Pz is delayed (blocked) at the critical sta
tement which contains xz. Process P1 continues exe
cuting its critical section statements and leaves
its critical section at xz. At this point Pz resu
mes execution. It can be shown that the general
case of n-processes accessing K-system variables
can be approached in a similar fashion.

The synchronization between processes becanes
more complicated when processes start issuing SIMU
LA communication commands from inside their criti-

1·,

cal sections. In such situations a more elaborate
solution is required.

C-mode

Let {P1[x1 , t,tp1J//P2[x1,tp2J}, where t indi

cates any possible SIMULA communication command.It
is necessary to investigate the nature and the ef
fects caused by each individual command.

It is evident that P2 is delayed until P1
deals with the issued communication command. Ac
cording to the specific command, action is taken
as follows:

(a) Hold (T)-command: It advances the event time
of-Pi-by T, i.e. tp 1=tp 1+T. It follows that:

(i) If tp 1 _::tp2 , then P1 continues execution

while P2 still remains blocked expecting P1 to
leave its critical section.

(ii) If tp 1 > tp2 , then P2 resumes execution

while Pi is delayed until P2 permits resumption
of Pj at the proper time.

(b) ~~~~!~~!~· ~~!!_i~L• ~~~~~! (P1)-commands:

These commands cause removal of Pi from inside
the ESQS with a subsequent loss of its allo
cated processor [l]. Therefore, P2 resumes exe
cution and P1 will not be effectively involved
in the computation unless it is explicitly
called by some other active process at a later
simulation time instance.

(c) i~~L-~~!!~~!~-i~32-commands: Fig.l(b)shows the

situation where a process P3 is (re) called
back into the ESQS. In [l~ it is stated that
if a process P1 issues a "(re) activate" com
mand, process P3 is always a Consumer (C)
-process in relation to P1 wh:lch ;is a pJ'."oducer
(P)- process. In such a case pJ'."ocess P3 is)'."e
placing process P1 in its processor,because
processes belonging to the C-set of a P-process
all run under the same processor. The. follo;ving
subcases can emerge:

(i) Let tp 1 < tp 2 .:_ tp3 or tp 1 .:_ tp3 < tp 2 : in this

case these relations result from any non
immediate activation command [3]. As a result
Pi contunues being active, Pz is temporarily
delayed (blocked) while P3 does not claim P1's
processor as it exists in a suspended state in
side the ESQS. P3 will obtain P1's processor
only when P1 is removed from inside the E-SQS.
At that instance synchronization problems might
accrue between P3 and P2. They will naturally
fall into one of the described cases.

(ii) Let tp3=tp1 < tp2 : this relation is the

outcome of the execution of any immediate acti
vation command. As a result P1 still remains
inside the ESQS but its processor is allocated
to P3 which commences execution. P2 still re
mains blocked until a later instance at which
Pi leaves its critical section, thus permitting
unblocking of P2. This is expected to happen
after a possible loss of control on behalf of
P3 (e.g. P3 will be either terminated or passi
vated, or suspended through the appropriate
command).

299

The C-mode cases which were examined above,
can also be .generalized so as to include processes
accessing more than one system variable and
issuing more than one SIMULA communication command
from statements inside their critical sections.
All these generalized cases are approached in an
analogous way.

Synchronization problems are normally solved
by implementing various indivisible operations
on such structures as semaphores [4,5] and moni
tors [6,7].

There exist several reasons that discourage
the implementation of monitors in the synchroni
zing procedure of the "Executive" in the parallel
SIMULA machine. Each monitor in the operating
system theory is implemented to manipulate a phy
sical resource according to some scheduling rules.
In conventional systems the limited number of phy
sical resources usually makes possible the choice
of monitors. On the contrary the high and unpre
dictable rate of appearance of system variables
within SIMULA programs is not encouraging an effi
cient implementation based on the use of monitors.
Therefore semaphores and semaphore-queue.s :are con
sidered to be an effective tool to cater to the
solution of synchronization phenomena within the
parallel SIMULA Machine.

References

[l] P. I. Georgiadis ,M. P. Papazoglou,D .G .Maritsas,
"Towards a Parallel SIMULA Machine", Pro cs. of the
8th Annual Symp .Comp .Arch., (May ,1981), 263-278pp.

[2] P.B.Hansen, Operating System Principles, Pren
tice-Hall, (1973), 366 pp.

[3] W.R.Franta, The Process View of Simulation,
North Holland, (1979), 244 pp.

[4] E.W.Dijkstra, Cooperating Sequential Processe~
Dept.of Maths, Technological University of
Eidhoven, The Netherlands,EDW123,(1965),84 pp.

[5] A.N.Habermann, "Synchronization of Communica
ting Processes", CACM, (April,1972) ,pp.171-176.

[6] C.A.R.Hoare, "Monitors: an Operating System
structuring concept", CACM, (October, 1974),
pp.549-557.

[7] P.B.Hansen, The Architecture of Concurrent
Programs, Prentice-Hall, (1977), 317 pp.

P1f•t.X2,tp1J P2[x1,x2,\p

"'~7:. X2

'----~

(Cll

tpf
Cir)

SIMULATION
TIMf 1

FIG. l(a) V-mode synchronization,(case b),
l(b) C-mode synchronization,(case c).

Architecture of the First
Vector Computer of China

Gao Q.ing-Shi Zhang Xiang
Institute of Computing Technology ,Acadel!lia Sinica

Peking, China

The first vector computer of China will soon
be examined with computational test programs. It
is a large scale, high-speed, pipeline machine.
Most of devices were designed and produced i~
China. The main units of the system are all made
of domestic products. Architecture of the system
was proposed in 1.2ll[1, 2] • The designs of archi
tecture and system function were completed in
12.ll, and were examined by a national meeting in
121..2 [5] • In this system vector registers are ad
opted, and the vectors are treated in vertical
-horizontal processing fashion (i.e. segment by
segment fashion). Fig. 1 shows the vector compu
ter system organization. The system consists of
three parts: the vector computer, the peripheral
computer, and the peripheral devices.

Various units and their functions of the
vector computer are as follows:

1. ALU. It is a pipelined executing unit. It
performs various scalar and vector operations.
For most of the operations, it can accept a set
of new operands each clock period, meanwhile
issue one computation result.

2. R=--Vector Registers. There are twelve of
them:"R:i-R'ffo Every lti has 16 el em en ts of 64 bi ts
each. They supply the ALU with vector operands
and temporarily store the intermediate computa
tion results at high speed. They are the basic
tools that vector operation can be performed in
segment by segment fashion. Rie'Rj~"Rk is a vec
tor instruction, e represents one of the arith
metic-logic operations, Ki and "Rj supply the ALU
with two operand-vectors, the result-vector of
operation will be stored into Ric.

Any "Rj_ can be used as a scalar register when
it is not being used as a vector register. In
this case only a particular element of 1l'j_ is
used as the scalar register Ri•

3. S--High-speed Scalar Memory. It has 32 wor
ds of 64 bi ts each: S0 S31• In scalar program, S
serves as the backup of scalar registers. In
vector program, S holds the scalar values or
constants which participate in vector operations
with vectors.

4. Lookahead-Fetch-Vector-Buffers. There are
four of them. Each has 16 64-bit elements. They
are used to temporarily hold vectors which are
fetched in advance from main memory.

Post-Store-Vector-Buffers. There are two of
them. Each has 16_ 64-bit elements. They are used
to temporarily hold result-vectors which are
produced by ALU and waiting for being stored
into main memory.

Just as Y, lookahead and post vector buffers
may also be used as scalar buffers.

Lookahead and post buffers are generally
allo'cated automatically by hardware.

5.cr--operation-Control-Bit-Vectors. There are
eight of them:7o~~. Every iiti has 16 elements
of 1 bit each. They are used to record the sta
tus or resul t-characteri.stic of 16 element-oper-

300

0190-3918/81/0000/0300$00.75 © 1981 IEEE

ations of vectors. They are used to control 16
element~operations of vectors.

ol--Operation-Control-Bit-Scalars. There are
eight of them:clo""' ct.,. Every Oli has only 1 bit.
They are used to record the status or result
-characteristic of scalar operation. They are
used to control operations.

'ft and ci are very useful for raising the fle
xibility of vector processing and for enlarging
the range of parallel computation. Because of
them, the operations of global dependency "con
ditional branch according to the results of ALU
operation", which are very harmful to pipeline
processing, may be appreciably reduced.

6. MM--Main Memory. It consists of 16 magne
tic core memory modules. Memory addresses are
assigned mod 16. Every module has capacity of
32K 64-bit words. Access cycle time is less
than 16 clock periods.

7. r--Indirect-Address-Control-Vector-Regis
ters. There are four of them:i(.... ~. Every "Jt
has :!i elements of 22 bits each.

8. 'Y--Compress and Spread-Control-Bit-Vectors.
There are two of them:r:fo, ~ • Every 711 has 16
elements of 1 bit each.

9. b--Index Memory. It has capacity of 32
22-bi t words: bo"'b.,1•

~--Address Increments. There are twelve of
them:A 0 ...,A11 • Every Ai has 22 bits. They are used
to store address increment (or skip distance)
between two adjacent elements of a vector in MM.

1--Length-Store-Eelments. There are twenty
of them: 1if'l3,. Every l · has 22 bits. l are used
to store vector length (the number of elements
of a vector), loop count number, etc •• 1 and t:.
are the different parts of the same semiconduc
tor memory unit of 32 words.

Basic word size: 64 bits.
Main Memory capacity: 512K 64-bit words
MM Vector access maximum rate: 1 word every

clock tick.
ALU speed (clock cycle number needed for pro

ducing each computation result):
floating point add: 1 cycle {dependent opera

tion: 4 cycles)
floating point multiply: 2 cycles {dependent

operation: 5 cycles)
floating point divide: 8 cycles (dependent

operation: 12 cycles)
most of the other operation: 1 cycle

Main features {which, except 1,2 and 8, are
not available in CRAY-1 [4]):

1. Multi-Vector-Registers.
2. Vectors are treated in vertical-horizontal

processing fashion (i.e •. segment by segment
fashion).

3. When vectors are being treated in segment
by segment fashion, dividing vectors of arbi
trary length N into segments of 16 {or less)
elements each is automatically done by hardware.

There is a Vector-Segment-Length-Register l',
it controls the execution of vector instruction.
Every vector instruction executes the operations
of l' elements {l'.E;16). Besides, we have two
special control-type instructions: vector loop
starting instruction 11 [* " and vector loop

N.-i.i

I

I·

ending instruction 11 J!i 11 • Loop body, which is

between II c~ II and II]* II Will be executed
N=>li li '

f'N/16J times. The loop ends as soon as N
elements of vector have been processed.

The function of instruction 11 [~~i 11 is:

(1)N=>li; (2)min(li,16)=>1'; (3)li-l'=>li
The function of instruction 11]! 11 is:
if li=O, then loop ends; i
if li!o;O, then do:(1)min(li,16)~1'; (2)li-1'~1i;

(3)jump back to the beginning of the loop body
for continuing execution.

For example, program is:
!:50~1 i; F(U'; V, • • •)~"f; J! i

It will be processed in the 4 (f5o/161=4)
passes through the loop as follows:
the first pass, compute F(U0-r;• v0_ 1n • • •)¥0-IS

the second pass, compute F(u!6-3f• Vj6_3t, • • •)~,6-)1
the third pass,compute F(u3i-i.1•iiai-lf.?,'•••):>f31 -47

the fourth pass, compute F(~-"'' "1-~r, • • •)~f41_,.,
where Ui~j represents i-th element to j-th
element of vector u.

4. In this system ti-type vector, as the
basic object of vector operation, can have an
arbitrary beginning address D and an arbitrary
address increment_~ • That is, we can have
instruction ue1t~"Rk orRieRj=>it. and u is a A
-type vector, iis address vector is (D,D+A,D+2A,
D+3A, • • •), both D and ~ may be arbitrary.

When the row vector and the column vector of
a matrix are frequently used in the alternative
way, there is no need to transpose the matrix
many times, we only need to use the different
~-values, we can directly process the two kinds
o~directive vectors.

Multi-dimention array has more directive vec
tors. They also can be directly processed.

As memory space allocation is concerned, it
is best to select odd ~ for the most frequently
and the second most frequently used directive
vectors so as to attain the maximum access rate
for MM.

5. Infirect vector F (i.e. u[~]) is also a
basic object of vector operation. Every instru
ction can directly use p"U as its operand, or
store computation result into ~· That is, we
can have instruction (fU.e~'* llk or 'Kie"Rj=> ~
where,{!is an Indirect-Adaress-Control-Vector
-Register, U' is a common MM vector, if ~=(i0 ,
i 1 , i11,, • • •), then ~ represents a MM vector
(Uio • Ui1 • U ii • • • •) •

For example: If in computational expression
F(u,v, • • •)~ T, we do not need to compute all
the elements, we only need to compute a few
elements which satisfy a particular condition.
Let (!:be a vector consisting of the subscripts
of those elements that satisfy the particular
condition, then we only need to directly com
pute the following expression: F(jffi', ;w', • • •)'*?.

This feature is helpful for enlarging the
range of parallel computation.

6. Every instruction has the function of
compressing or spreading.

Spreading vector fYii is also a basic object
of vector operation. Every instruction can use
~as its operand, that is, we can have ins
truction ;ytteRj=> "'Rk·

301

.,,......
For exam_P2-e: Let 'Y=(1, o, O, o, 1, O, O, O, 1, o, o, o,

1,0,0,o), u=(uo,u1,u2,•••). Then as an operand
~ (' ryu= uo,O,o,o,u,,O,O,O,u2 ,0,0,0,u3 ,o,o,o).

Every instruction can compress the computa
tion result-vector under the control of rr and
store the compressed vector into MM.

For instance: Let ry be the same as before
an~,_(xR..' x,, • • •, x1s) is the computation result
of RieRj,then instruction Rie'Rj'*'Yit is executed
as follows: x0~u0 ,x,.*u 1 ,X.=>u2 ,x,~=>u_,

7. For the three register addresses i J. k of
t . . ~..,... ~ '' vec or in~t::iiction.Ri6Rj~Rk, no limit is set

to them. i,J can differ from k, and i,j can al
so be equal to k.

8. In adition to the features of highly pipe
lined ALU and interleaved 16 modules MM the
operations of the three main units--Instruction
Unit,.MM Unit and AL Unit--are asynchronously
and highly overlapped. Because of overlapping,
~he vector operation start-up time may be
ignored. In general, there is no time delay
between two successive vector-operations in ALU.

Reterences

Gao Q.i.ng-Shi, Zhang Xiang, Wano- Jia-Mo
"Principles of Pipline Vector Computer' of
Vertical-Horizontal Processing", Chinese
Journal of Computers, No.1,1978.

2 Gao ~ing-Shi, Zhang Xiang, et al.,
"The Main Shortcomings of ILLIAC-IV and Their
Improvements", technical report, Nov., 1973.

3 Gao ~ing-Shi, Zhang Xiang, et al.,
"Vector Computer of Vertical-Horizontal
Processing", technical report, July, 1975

4 F.Baskett and T.Keller,
"An Evaluation of the CRAY-1 Computer", High
Speed Com uter and Algorithm Organization,
D.J.Kuck et al eds. , Academic Press, 1977.

A
b

1
ALU

Lookahead
Buffer

Main Memory

Post
Buff er

Peripheral
Computer

Peripheral Equipment

Fig.1 Vector Computer System Organization

MAX:. AN ALGORITHM FOR FINDING MAXIMUM
IN AN ARRAY PROCESSOR WITH A GLOBAL BUS

Shahid H. Bokhari
Departm~nt of Electrical Engineering

University of Engineering & Technology, Lahore-31
Pakistan

Summary

The problem of finding the maximum of a set
of values stored one per processor on an.array of
processors is analyzed. The array has a time
shared global bus in addition to conventional
processor-processor links. It is shown that the
problem may be solved on an n X n array in

2/3 .
O(n) time using a two-phase algorithm tha:t uses
conventional links during the first phase and the
global bus during the second phase. Without a
global bus the problem takes O(n) time. Two types
of array interconnection patterns are considered:
the eight nearest-neighbor pattern and the four
nearest neighbor pattern. The analysis is shown
to apply to both cases. Extensions to q-dimension-

al arrays result in an O(nq/q+l) algorithm.

Global broadcast buses provide an attractive
method of increasing connectivity of array process
ors. Although past applications of broadcast bus
es have mostly been in the area of local computer -
networks, where they have been.used to interconn
ect processors that have occasional bursty commun
ications [7], improvements in technology now make
it viable to use them to interconnect a number of
processors that are cooperating in the parallel
solution of one problem. In particular, a global
bus may be combined with conventional processor
processor links in an array of processors to per
mit non-adjacent processors to communicate without
passing messages through intermediate processors.
This type of structure blurs the traditional
distinction between "tightly coupled" and "loosely
coupled" computers.

A practical example of such an arrangement is
the Finite Element Machine (FEM), [1] being devel
oped at NASA Langley Research Center. The proto
type array is made up of 36 microcomputers arrang
ed in a 6 X 6 grid. It is proposed to ultimately
construct a 1024 processor array. Each processor
is connected to its eight ... nearest-neighbors"
through direct processor-processor links. In add
ition there is a time-shared global bus to which
all processors are connected.

The direct links allow pairs of adjacent pro
cessors to communicate with each other and also
allow each processor to transmit a value to its
eight neighbors. These operations can be carried

This research was supported in part by NASA
Contract NASl-14472 while the author was resident
at the Institute for Computer Applications in
Science & Engineering (!CASE), NASA Langley
Research Center, Hampton, Virginia 23665, USA.

0190-3918/81/0000/0302$00.75 © 1981 IEEE

302

out in parallel. In contrast, the global bus
permits any two non-adjacent processors to comm
unicate and for any one processor to broadcast
its value to all other processors.

Since the bus is time-shared, only ~ pro
cessor may transmit a value on it at one time.
Thus, although the bus improves connectivity,
this is "time-shared" connectivity.

Efficient algorithms for array processors
must take into account the two types of connect
ivity available. Challenging problems arise when
developing such algorithms; consider for example
the Mapping Problem [5] in which the objective is
to minimize the usage of the time-shared global
bus.

This paper discusses the prblem of finding
the maximum of a set of values stored one per
processor [2]. At the outset each processor p
has a value V(p) and the problem is to find the
maximum of V(p) over all processors and to trans
mit this maximum value to every processor. This
problem can be solved for an n X n array in O(n)
time using a simple algorithm that uses only the
direct links. If only the global bus is used the

time required is O(n2). We have developed a two
phase algorithm that first uses the direct links
for a certain number of steps and then switches
over to the global bus. The overall time required

is O(n213) which is below the time required by
either of the.constituent algorithms. This seem
ingly paradoxical result is due to the optimal
selection of the switchover point. This algorithm
is a refinement of an algorithm proposed in [2].

Two types of arrays are analyzed in this
paper. The eight-nearest neighbor array is the
FEM discussed above. The four-nearest neighbor
array has an interconnection pattern similar to
that of Illiac-IV.

The purely local algorithm utilizes only
direct links and proceeds as follows. Each pro
cessor local broadcasts its own value to its 'a'
neighbors (a=8 for the FEM, 4 for the Illiac).
This causes the broadcasting processor's value to·
be placed in the input registers of all its neigh
bors [3], [4]. Each processor then reads all of
its input registers, updating its own value if the
received value is greater. The maximum value
spreads throughout the array in time proportional
to the diameter of the array, i.e. O(n) •.

The purely global algorithm utilizes only the
time-shared global bus. At the start of this al-·
gorithm each processor attempts to acquire the

bus. The bus is granted to an arbitrary process
or which uses it to broadcast its own value to all

2 n processors in the array. At subsequent steps
only those processors that have not yet had a
chance to do a global broadcast attempt to acquire
the bus. In the worst case this algorithm takes

O(n2) time since the processor containing the max
imum value may not get the bus until the very end.

We assume that a global broadcast takes t
units of time while a local broadcast takes a·t
units of time (where a is the number of neigh
bors). This closely approximates the behavior of
the FEM's hardware [l]- [4],

The two~phase algorithm that we have. develop
ed first utilizes the purely local ·.algorithm for
k steps and then switches over to the global algo
rithm. Processors that have never had their val
ues updated during the local phase are called
survivors. During the global phase only survivors
contend for the bus. If we denote by Sk the max-

imum number of survivors possible in an n X n
array after k steps of the purely local algorithm,
then the time required by the two-phase algorithm
is T = k·a·t + Sk·t.

The program that executes in each processor
is given below.

begin
survivor:=true;
(* begin local phase *)
for j:=l to k do

begin
local_broadcast(own_value);
for neighbor:=! to a do

begin

end;

local receive(neighbor,n value);
if o~_value(n_value th;n

begin
own value:=n value;
sunivor:=false;

end
else (* do nothing *)

end;

(* end local phase *)

(* begin global phase *)
while survivor do

begin
attempt global broadcast(own value);
if succ;ssful then survivor:-;;false
else

end;

begin
global receive(n value);
if own=value-' n.:_value then

begin
owu value:=n value;
survivor:=false;

end
els-e (* do nothing *)

end;

(* end global phase *)
end.

303

The function local broadcast(x) broadcasts
the value x to all neighbor's input registers.
local receive(x,y) reads the input register from
processor x into the variable y. Attempt_global_
broadcast(x) will initiate an attempt to acquire
the bus and broadcast value x. If this attempt is
successful, the boolean variable "successful" will
be set true. global receive(x) causes the cont
ents of the global input register to be moved to
x.

Expressions for Sk for both types of arrays
have been obtained in [6] • The optimal value
of k can be derived using these expressions to
obtain the minimum time to find maximum using the
two-phase algorithm. These are

Tmin (6n213-4)t for the Illiac type array and

Tmin (12(n/2) 2' 3-8)t for the FEM.

For n processors connected in a ring (plus a
global bus) the two phase algorithm finds max-

imum in O(n~) time. For a q-dimensional array

the time is O(nq/q+l). These cases are discussed
further in [6] •

Ill

[2]

[3]

[4]

[5]

[6]

[7]

References

H. F. Jordan. "A Special Purpose Architecture
for Finite Element Analysis," Proc. 1978 Int,
Conf. on Parallel Proc., (August, 1978),
pp. 263-266.

H. F. Jordan, M. llalabrin, and W. Calvert,
"A Comparison of Tliree Types of Multiprocess
or Algorithms," Proc. 1979 Int. Conf. on Par
allel Proc., (August, 1979), pp. 231-238.

H. F. Jordan, ed., The Finite Element Machine
Programmer's Reference Manual, Dept. of Elec.
Eng., Univ. of Colorado, Boulder, Report No.
CSDG-79-2, (August, 1979), 51 pp.

D. A. Podsiadlo and H. F. Jordan, Operating
System Support for the Finite Element Machine,
Dept. of Elec, Eng., Univ of Colorado,
Boulder, Report No. CSDG-81-2, (March,1981),
28 pp.

S. H. Bokhari, "On the Mapping Problem," IEEE
Trans. Computers, (March, 1981), pp. 207-214.

S. H. Bokhari, MAX: An Algorithm for finding
Maximum in an Array P.rocessor with a Global
Bus, Dept. of Elec. Eng., Univ. of Eng. &
Tech., Lahore, Pakistan, in preparation.

R. M. Metcalfe and D. P. Boggs, "Ethernet:
Distributed Packet Switching for Local
Computer Networks," C,ACM, (July, 1976), pp.
395-404. --

A PRACTICAL PARALLEL ALGORITHM FOR REPORTlNG INTERSECTIONS OF RECTANGLES

Anita L. Chow
Communication Products Technology Center

GTE Laboratories, Incorporated
Waltham, Massachusetts 02154

SUllBllary

Given a set of N rectangles with their sides
parallel to the coordinates axes, we ·are asked to
report all pairs of rectangles which intersect.
This problem has important applications in VLSI
circuitry design rule checking [1,4]. There
exists O(N log N + k) time algorithms [2] for
reporting all k intersecting pairs on a unipro
cessor machine. However, for large input size,
these results are not satisfactory. This concern
has motivated our investigation of the rectangle
problem using parallel computing machines to
produce a faster algorithm.

Two models of computation are used in this
paper. They are the shared memory model (SMM) [5]
and the cube-connected-cycles model (CCC) [6]
which can emulate a cube model. The validity of·
the SMM resides in uncovering the inherent data
dependence of a problem while the validity of the
CCC, which complies with the VLSI technological
constraints, is the development of practical
algorithms.

We can say that two rectangles intersect if
their edges intersect or if one rectangle en
closes the other entirely. Thus, we can solve
the problem in two intermediate steps: (l) re
porting the intersections of horizontal and
vertical line segments, and (2) two-dimensional
range searching.

First, we study the intersection problem of
a set V of n vertical line segm1mts and a set H
of m horizontal line segments. Let T(v) and B(v)
denote the y-coordinates of the top and bottom
endpoints of a vertical line segment v in set V.
We assume, for simplicity, the following: all
T(v) and B(v) are distinct integers in the inter
val [O, N - 1], where N = 2n is the number of
distinct y-coordinates of the endpoints, and N is
a power of 2. For the general case, the readers
are referred to [3).

A binary search tree lY of height log N can
be produced for the set V. At each level in lY,
the nodes are indexed from left to right, start
ing with the integer 0. The node N1(j), at height
i, represents an interval [j • 2 1 , (j + 1) 2 1)

and contains a list of edges v sorted in the
positive x-direction, where B(v) ~ j •2 1 and

This .work was done at the University of
Illinois at Urbana-Champaign and was sup
ported in part by the National Science
Foundation under Grant MCS 78-13642 and in
part by the Joint Service Electronics Pro
gram (U.S. Army, U.S. Navy and U.S. Air
Force) under Contract N00014-79-C-0424.

0190-3918/81/0000/0304$00.75 © 1981 IEEE

304

(j + 1) 2 1 ~ T(v), and v does not belong to any
ancestor of N1(j) in /Y. This data structure is
suitable for implementation on the SMM but not on
the CCC. Thus, we have to transform lY into a
data structure /Y' which can be implemented on
the CCC. ff' is a binary tree similar to [Y,
except with respect to the indexing of nodes.
The left-to-right sequence of node indexing at
any level of [Y' is the bit-reversal permutation
of the node indices at the corresponding level
of /Y. Note that node Nj(j) in /Y' contains the
same list of vertical line segments that are in
N1 (2 (j mod 2 i-1) + U/2 1•1 J) in /Y. lY' can be
represented as a collection 8 of arrays E log N ,

E log N ·1 , • • • E o, where E ; is the concate~ation
of the sorted lists of vertical lines associated
with node N((j), in the ascending order of j.
Associate with a vertical line v in E ; a node
number which is the node index j such that v
belongs to Ni (j} . Therefore, E 1 is a selected
list of vertical line segments sorted lexi
cographically by their nodes numbers and their
x-coordinates.

E log N , ••• , E 0 are determined one at a
time, in the given order. Let C1 be a list of
candidates for E 11 sorted by their potential node
numbers and then their x-coordinates. Initially,
potential node numbers of all segments are 0, and
Clog N is the set V sorted by x-coordinates.
From Clog N , we extract segments which cover the
vertical interval [O, N] to form E log N • In
C log N •1 , segment v has the potential node number
0, if O ~ B(v) ~ N/2, and the potential node
number 1 if N/2 ~ T(v) ~ N. Note that a segment
may have both numbers. We extract from the
remaining segments in C log N·, the list C' of
segments with potential node number O and. the
list C" of those with number 1. The concatena
tion of C' and C" forms C log N-1 • We repeat this
process for constructing successively E 109 N-l ,

••. , Eo.

To find intersecting pairs, we envision 8 as
a binary search tree. At level i we associate
with each horizontal line segment h a node number
#(h) indicating that h may intersect some verti
cal segment in node Ni (#(h)). It is obvious
that at the E log N (the root), #(h) = 0 for
all h. We maintain the set of horizontal seg
ments sorted by their node numbers and then
x-coordinates of their left~most endpoints, the
same manner as in E1 .. We can use a one-dimen
sional range searching algorithm [3] to report
all intersecting pairs at a level in 8. We then

(a) Extracting a selected subset of elements
from an ordered array means moving the sub
set to consecutive processors in an order
preserving fashion.

determine which node number in the next level
should be associated with each horizontal seg
ment. We continue this process which geomet
rically traces a unique path, possibly two, from
the root to a leaf.

The time complexity of this algorithm for re
porting all intersecting pairs of n vertical and m
horizontal line segments is O((log (n + m}} 2 + k'}
with 4n + 2m processors, where k' is the maximum
nUrnber of intersections per vertical line segment.

We now turn to the two-dimensional range
searching problem. A point s in the set S of n
points in the plane is represented by its coor
dinates X(s} and Y(s}. A two-dimensional range
search query q, in the set Q of m queries, asks
for all the points s in set S such that L(q} ~
X(s} ~ R(q} and B(q} ~ Y(s) ~ T(q). Here, we
assume the simple case: all X(s) are distinct
integers in the interval [O, n - 1] and n is a
power of 2. A binary search tree .Yi' similar to
ff can be produced for S .. Node N;(j) ~epresents
the vertical interval [j·2', (j + 1} 2' - 1] and
associated with it is a subset of points s, with
j•2; ~ Y(s) ~ (j + 1) 2; - 1, sorted by X(s}. In
a manner similar to transforming ff to ff ',
.Yi' is transformed to a data structure .Yi''. We
can then represent .Yi'' as a collection f1J' of
arrays, P log N , ••• , P0 • The array P; contains
the set S sorted lexicographically by their node
numbers and x-coordinates.

The construction of f1J' is similar to IJ :
the set S is first sorted by their x-coordinates.
The resulting array is P log N • We then determine
the node numbers for the next level and rearrange
the order of points according to their node
numbers.

To answer the set Q of queries, we use f1J' as
a binary search tree. Initially, we sort Q by
L(q). We extract, from Q, those q such that
B(q} ~ 0 and N - 1 ~ T(q). For those extracted
queries q, a point s with L(q) ~ X(s} ~ R(q),
must satisfy q. Therefore, we can use one
dimensional range searching to find all the
points in these extracted queries. For the
remaining queries, we determine their node number
in the similar manner as we determined those for
the horizontal line segments. We proceed until
all queries are answered.

The time complexity of two-dimensional range
searching algorithm is O((log (n + m)} 2 + k) with
n + 4m processors, where k is the maximum number
of inclusions per query.

The line segment intersection algorithm and
the two-dimensional range. searching algorithm are
combined to give an O((log N) 2 + k'} algorithm
for reporting all k intersecting pairs of N rect
angles with N processors, where k' (~ k) is the
maximum number of intersections per rectangle.
With the best known serial algorithm requiring
O(N log N + k} time, this algorithm yields a
speedup of O(N/log N} and an efficiency of
0(1/log N), which means that the algorithm is not
only fast, but involves relatively little waste

305

of processors. The formal descriptions and
analysis of these algorithms are contained
in [3].

In [3], it is shown that this method can be
generalized when we have N 1 + <X number of proces
sors, 0 < a ~ 1, to improve the time complexity
by a factor of a log N.

References

[1] H.S. Baird, "Fast Algorithms for LSI Artwork
Analysis," Design Automation & Fault-Tolerant
Computing (1978}, pp. 179-209.

[2] J.L. Bentley and D. Wood, An Optimal Worst
Case Algorithm for Reporting Intersection of
Rectangles, Computer Science Technical
Report, McMaster University (1979}.

[3] A.L. Chow, Parallel Algorithms for Geometric
Problems, Ph.D. Thesis, Department of Computer
Science, University of Illinois, Urbana,
Illinois (October, 1980).

[4] U. Lauther, "4-Dimensional Binary Search
Trees as a Means to Speed Up Associative
Searches in Design Rule Verification of
Integrated Circuits," Design Automation &
Fault-Tolerant Computing (1978}, pp. 241-247.

[5] D. Nassimi and S. Sahni, Parallel Permutation
and Sorting Algorithms and a New Generalized
Connection-Network, Computer Science Depart
ment, Technical Report 79-8, University of
Minnesota, Minneapolis, Minnesota (April,
1979).

[6] F .P. Preparata and J. Vuillemin, "The Cube
Connected-Cycles: A Versatile Network of
Parallel Computation," Proc. 20th Annual
IEEE Symp. on Foundations of Computer
Science (October, 1979}.

CACHE EFFECTIVE~ESS IN MULTIPROCESSOR SYSTEMS

WITH PIPELINED PARALLEL MEMORIES t

F~ye A. Briggs and Michel Dubois
School of Electrical Engineering

Purdue University ·
West Lafayette, IN 47907

Abstract -- A possible design alternative for
improving the performance of a multiprocessor
system is to insert a private cache between each
processor and the shared memory. The caches act
as high-speed buffers by reducing the memory ac
cess time, and they affect the delays caused by
memory conflicts. In this paper, we study the
effectiveness of caches in a multiprocessor sys
tem. The shared memory is pipelined and inter
leaved to improve the block transfer rate, and it
assumes an L-M organization, previously studied
under random word access. An approximate model
is developed to estimate the processor utiliza
tion and the speedup improvement provided by the
caches. These two parameters are essential to a
cost-effective design. An example of a design is
treated to illustrate the usefulness of this in
vestigation.

1. Introduction

In this paper, we present simulation results
and an approximate analytical model to evaluate
the performance of cache-based multiprocessors
with a shared memory CSM) as depicted in Figure
1. At the first level, each processor has a
private cache CPC). The second memory level
comprises the L-M memory organization, which con
sists of l lines· and m memory modules per line
CBRI 77]. A line is used to denote the address
bus within the SM. Associated with each line is
a Direct Memory Access CDMA> controller which re
ceives a cache request for a block transfer of
size b and issues b internal requests CIR) to
consecutive modules on the line. In this paper,
it is assumed that the interconnection network
between the private caches and shared memory
modules is a full crossbar.

In the architecture of Figure 1, there is a
data coherence problem in which several copies of
the same block may exist in different caches at
any given time. When a processor attempts to
write in a cache, all the copies in other caches
must be updated before the process is allowed to

Processors

Private
Cache

,-
'""'' ~HA DJ1A
"""''"V I ".t-1,0 (SH)

I I
I "om- M , I
f L ' L L.t-l .t-1,m-1 J

L-~---~-----------J
Figure 1. Cache-Based Multiprocessor System

0190-3918/81/0000/0306$00.75 © 1981 IEEE

306

proceed. Various stolutions to the cache coher
ence problem have been proposed [CEN 78, DUB
81al. In summary, the cache coherence problem is
solvable, and its impact on system performance
can be minimized by efficient data-sharing
mechanisms. In our study, the effect of the
overhead caused by the enforcement of cache
coherence is neglected. The program behavior in
a processor will be characterized by its cache
hit ratio, h, or miss ratio, 1-h. The determina
tion of the hit ratio of a program as a function
of cache size, set size and block size have been
investigated by several authors [STR 76, RAO 78].

Most studies to date evaluate the shared
memory conflict problem for random word access
[BRI 77]. We propose a model which is used to
evaluate the degree of memory conflicts in a mul
tiprocessor system with private caches. The
model permits us to determine the processor util
ization. Furthermore, we compare the effect of
the cache on the speedup of the multiprocessing
system. The performance of the system is a func
tion of the cache miss ratio, cache organization,
processor characteristics and the shared memory
characteristics and configuration.

The processor system consists of p identical
and synchronized processors. In each of these
processors, we assume that a machine cycle con
sists of an integer number, d, of cache cycles.
An instruction cycle usually consists of an in
teger number of machine cycles. Typical machine
cycles are instruction fetch, operand fetch and
execution cycle, which may involve register
register or memory-register references. It is
obvious that in some machine cycles of a proces
sor, no cache memory references will occur.
Therefore, let e be the probability that a memory
request is issued by a processor to the cache in
a machine cycle. Thus, the fraction of refer
ences made by the processor to the cache in each
cache cycle is x ~ e/d.

When the data requested by a processor is not
in its private cache, a miss occurs that causes
the cache controller to issue a shared memory re
quest for a block transfer. In particular, if a
read misi occurs, the block of shared memory
words containing the location specified is
transferred into the cache. We assume that no
read-through strategy is implemented. If the
cache is full, a cache replacement algorithm is
invoked to decide on which block frame to·free in
order to create space for the new block contain
ing the referenced data.

Cache management algorithms differ basically

in the method of resolving write misses. In a
write-through strategy, a processor always writes
directly in the shared memory, and possibly in
the cache if the block is present. Consequently,
a block is never copied to shared memory when a
block frame is freed. However, such a policy re
quires buffering of the write requests. Moreo
ver, the most efficient schemes to enforce cache
consistency [CEN 78] are based on a
write-back-write-allocate strategy. This policy
-:is--adopted----:in-this paper. For a write hit, the
data is written only in the cache. However, if a
write miss occurs, the write-allocate policy is
used to transfer the block containing the ad
dressed word to the cache. Hence in our model, a
read or write miss requires a block transfer to
the cache.

If a cache block frame which has not been
modified is to be replaced, it is overwritten
with the new block of data. However, a modified
block-frame that is to be replaced must be writ
ten to the shared memory (SM) before a block-read
from the SM is initiated. In this case, two con
secutive transfers are made between the cache and
SM. We denote the probability of a cache hit by
h and assume that each time a cache miss occurs,
a block-write to SM is required with a probabili
ty w, followed by a block-read from SM.

Two methods of organizing the cache for block
reads and writes are investigated. In one case,
it is assumed that the two consecutive block
transfers Cone block-write followed by one
block-read) are made between a processor and the
same SM Line. This assumption will be satisfied
if a set-associative cache is used in which all
the blOCks that map to the same set are stored on
the same SM Line. Hence, in this method a cache
miss requires the transfer of a 2b-word block
with a probability wand the transfer of a b-word
block with a probability 1-w.

A second method of organizing the cache as
sumes that the two consecutive block-write and
block-read -requests are considered independent
and hence have equal probability of referencing
any SM Line (assuming independent reference
model>. This assumption may be valid in a fully
associative cacne. The effect of making two--con=
secutive and independent block requests from a
processor is to increase the effective rate of
requests to the SM.

In our models, the hit ratio is given. Gen
erally, the hit ratio depends on the Locality
property of the program mix, the cache replace
ment policy, and the block, set and cache sizes.
Various studies have addressed this relationship.
In [LEH 80], a program is characterized by a sim
plified mathematical model based on its instruc
tion mix and the model is used to estimate the
hit ratio. Smith compares different cache re
placement policies [SMI 78]. Under the assump
tion of a Linear paging model, he shows that the
ratio of the miss ratios between the set associa
tive and the fully associative caches is

R (i ,N) = i . - 1 ~N
l -

for ~ 3,

where i is the set size <number of blocks in a
set) and N is the number of sets. This ratio is
always~ 1. It tends to 1 when Ni, the cache

307

capacity, increases without Limit. This rela
tionship should be considered when comparing the
set associative and fully associative caches from
our models. Finally, the hit ratio is also a
function of the cache and block sizes. Strecker
presents empirical results for the PDP-11 family
computers [STR 76]. In [RAO 78], an analytical
model is proposed. For a given cache size, the
hit ratio improves as the block size increases
from 1, due to the Locality of the references to
the cache. However, beyond a certain block size,
the hit ratio decreases. This is due to the de
crease in the usefulness of the extra words in a
block as the block size increases. For a given
block size, the hit ratio increases monotonically
with the cache size. If the hit ratio can be
determined empirically on a uniprocessor machine
[STR 76] or theoretically [RAO 78, LEH 80J, the
models given in this paper can then be applied to
evaluate the various performance indices. We
will assume that the cache size is adapted to ob
tain a given hit ratio.

For practical purposes, the absolute size of
the private cache would be expected to be Large
enough to accommodate at Least the "working set"
of the process so that the miss ratio, 1-h, is
small Cin the order of 0.1>. Furthermore, we as
sume that the block transfer time is also small
<Less than 64 cache cycles>. Under these condi
tions, it is not necessary to perform a task
switch on a cache miss to another runable pro
cess. Therefore, in this paper we shall assume
that, on a cache miss, the processor enters a
wait state while waiting for service of the
desired block request, and into a sequence of
transfer states while the block is being ser
viced. If a processor is not in the wait or in
the set of transfer states, it is said to be in
the active state. Hence, the processor utiliza
tion----carl 'beeomputed from the fraction of time
spent in the active state. Finally, associated
with each DMA controller of a memory line is a
buffer which queues the requests for block
transfers. The OMA controller schedules these
requests to the Line, using a First-Come-First
Served (FCFS> policy.

3. The Shared Memory Organization

The shared memory configuration is derived
from the L-M organization, which exploited the
timing characteristics exhibited by semiconductor
memories with address latches [~RI 77]. The ad
dress cycle or hold time, a0, which is the

m1n1mum duration that the address is maintained
on the address bus of the shared memory module
for a successful memory operation, is usually
Less than the shared memory cycle, c0•

Throughout this paper, we assume that the basic
unit of time is the cache cycle, whicn is equal
to T seconds. If the address and shared memory
cycles are quantized so that they are expressed
as an integer number of cache cycles, then

a : ra0/Tl and C = rc0/Tl ,

so that a set of modules can be multiplexed on a
line. In general, 1 ~a< c. When a memory

operation is initiated in a module, it causes the.
associated line .to be active for a units of time
and the module to be active for c units of time.
The shared memory, which consists of N = 2n in
terleaved identical memory modules, is organized
in a matrix form in order to exploit the memory
module characteristics Ca,c>. As shown in Figure
1, a particular memory configuration Cl,m) con-
sists of l = t lines and m = 2n-a lines and
modules per line, such that lm = N, for integer
a ~ O. The blocks in the memory are interleaved
on the lines so that block i is assigned to
modules on line i mod l. It should be noted that
this does not contradict the assumption made ear
lier that blocks of the same set are on the same
line for the set associative cache model.

Since the shared memory is used in the block
transfer mode in this paper, we will assume an
address cycle of a = 1 for the shared memory, in
order to effectively utilize the line. However,
if a > 1 for a particular type of memory, the ad
dress cycle could be made equal to 1 by incor
porating an appropriate address latch in each SM
module. Since a= 1, the memory module will be
characterized by c in the rest of the paper. The
model developed in (BRI 77J is not applicable
here, since it was for single-word transfers that
are requested by pipelined processors. In order
to effectively utilize the SM modules for block
transfers, the modules on a line are interleaved
in a particular fashion, so that the servicing of
two SM requests could be overlapped on the same
line. The SM modules on a line are interleaved
so that a block of data of size b = 2° is inter
leaved on consecutive modules on that line. Let
line i and module j on that line be referred to
as L. and M .. respectively for 0 < i < l-1 and

1 l,J - -
0 < j < m-1. Then, the k-th word of the block of
data that exists on line i is in module k mod m
on that line for 0 < k < b-1. It is important to
note that the first-word of a block that exists
on line i is in the first module, M. 0, of that ,,
line. In this paper, we assume that b > m. If b
< m, memory modules M. b M. b+1, ••• ,M.- _1, will

i, , i, i ,m
not be utilized, since a block starts in module
M. 0· ,,

When an SM block request is accepted by a line
i, the DMA controller at that line issues b suc
cessive internal requests CIR) to consecutive
modules on line i, starting from module Mi 0• It
is assumed that these internal requests a~e is
sued at the beginning of every time unit. There
fore, the internal request for the k-th word of
the block will be issued to module M .. , where j

l ,J
= k mod m for 0 < k < b-1. It is obvious that
this set of b internal requests is not preempti
ble. Note that if b > m or if the cache is set
associative, the Cm+1)st internal request is for
module M. o· Consequently, the first request ,,
must be completed by the time the Cm+1)st inter
nal request issued. This constraint is satisfied
if c < m.

~- Performance Analysis

In this section· we present assumptions and
develop the models that permit us to evaluate the

308

various performance indicato.rs of the ca'Che-based
multiprocessor system.

4.1 Hybrid Simulation

For analytical purposes, it is assumed that
cache requests· to SM are random and uniformly
distributed over all l lines of the SM. This as
sumption is justified by the interleaving of the
blocks across the lines. One inference that can
be made directly from the above assumption is
that the probability of a request addressing any
module is 1/.e..

In order to understand the timing characteris
tics of the serv1c1ng of requests for block

transfer, we define the time instants t- and t+
as Lim Ct-At) and Lim Ct+At), respectively, for

At•O At+O
At > O. A time unit <t,t+1> may be thought of as

beginning at time t+ and ending at time Ct+1)-.
Hence, since a = 1, the successive Internal Re
quests which are generated to a line in the ser
vicing of an SM request, do not encounter any
conflicts.

Recall that when an SM request for a block
transfer is accepted, the DMA controllet issues b
successive IRs. If the request is accepted on
line i at time t, then the IR for the k-th word
of a block of size b is initiated at time t+k to
module Mi,j' for j = k mod m and 0 ~ k ~ b-1.
Sin.ce the SM module cycle time is c, module M ..

l ,J
will be busy in the intervals <t+k, t+c+k> for
the values of j.

Since b = 2° > m = 2n-a, then .!:!. is an integer
m

> 1. Therefore, each module on a line i which
accepts an SM request for block transfer at time

t receives % internal memory requests. In par-,

ticular, the last IR to module M. O is made at ,,
time t + c.!:!. -1) m = t + b-m. Thus, the last in

m
terval that module M. O is busy (during the ,,
current block transfer) is <t+b-m, t+b-m+c>.
After this period, a new block transfer which ad
dresses line i can be accepted. Since the
current block transfer was initiated at time t,
all block transfer requests arriving at
t+1,t+2, ••• ,t+b-m+c-1 will find line i busy.
Note that to an SM request, the line is busy for
b-m+c time units.-We refer to this as-t~l ine
seriiice-t"ime:-The actual service time of the SM
reguest is b+c-1:--This is the time takentoaC
cess and transfer a block of size b when the re
quest is accepted. Since we do not implement a
read-through policy in the cache model, the pro
cessor goes through a sequence of transfer states
having total duration b+c-1 before returning to
the active state. That is, the block transfer
must be completed before the processor can become
active again.

The cache-based multiprocessor system may be
modeled as a closed queueing network shown in
Figure 2. This network has been called the "cen
tral server model" (KLE 76J. The servers are the
shared memory Lines and the requests are issued
by a set of p processing nodes, each of which

b-m+c; m-1

Figure 2. Central server model for
the cache system.

lumps a processor with its local cache. The two
segments of a server model each SM line and re
flect the pipeline effect of the LM memory
described above.

The behavior of each processor is illustrated
in Figure 3 for both cache strategies. Node "A"
denotes an active state of the processor and node
"W," a waiting state. Node "LT" represents the
state for the first part of a transfer during
which the line is kept busy Cline service time),
and "ET," the state in which a transfer is com
pleted without holding a line. These states have
to be distinguished because of their different
properties. Note that the state representations
and their interconnections as shown in Figure 3
do not constitute Markov graphs, since each state
has a different average duration. These average
durations are indicated on the graphs. The state
of each processor changes asynchronously in an SM
request cycle. The SM request cycle is the total
average time spent in the active state, wait
state, and set of transfer states (LT and ET>.
According to the model assumptions, the visit
time (expressed in units of cache cycles) in
state A is geometrically distributed with mean
1/x(1-h), and the visit time in a state ET is
constant with value m-1.

For the set-associative cache (Figure 3a), if
a block-write is not required (with probability
1-w) on a cache miss, then the line which accepts
the SM request is busy for b-m+c time units.
However, if a block-write is required (with pro
bability w) in addition to the block-read, then
two consecutive block transfers (each of size b)
are made uninterruptedly on the same SM line. In
this case, the line that accepts the request is
busy for 2b-m+c time units.

The case of the fully associative cache is
1-------------,
I 2b-rn+c; I

I I
I I
I I
I I

(a) Set-associative cache

(b) Fully associative cache

Figure 3. State representation for each
cache implementation.

309

simpler (figure 3b): if a cache miss requires a
block-write (with a probability w> followed by a
block-read, the processor submits these requests
as two successive and independent requests to
transfer a block of size b in each case. Each of
the two corresponding LT states thus have a con
stant duration b-m+c.

In both cases, each processor goes through
"independent" states (states A and ET>, followed
by "interactive" states <states W and LT>. When
in an independent state, a processor can proceed
freely and does not interfere with the progress
of other processors. Interactive states are
characterized by a potential for conflicts with
other processors. The interactive states are
framed in Figure 3. To estimate the average
visit time in such states, simulations are re
quired. Note that the foregoing analysis that
leads to the state representation of Figure 3
simplifies the simulation significantly. Such an
approach has been cal led "hybrid simulation" [SCH
78J. Table 1 is a compilation of some of the

Table 1. Processor utilization for the set asso
ciative cache

(c=4, w=0.3, m=4, x=0.4, h=0.95, p=16).

b

4
8

16
32
64

2 4
8

16
32
64

4 4
8

16
32
64

8 4
8

16
32
64

16 4
8

16
32
64

Simulation

0.593
0.299
0.150
0.076
0.038
0.797
0.540
0.281
0.143
0.073
0.839
0.711
0.474
0.257
0.133
0.850
0.'759
0.596
0.385
0. 215
0.855
0.776
0.644
0.463
0.288

Model

0.601
0.300
0.150
0.075
0.038
0.814
0.578
0.300
0.150
0.075
0.842
a. 729
0.514
0.286
0.147
0.852
0.764
0.614
0.414
0.238
0.856
0.777
0.650
0.475
0.301

Error (%)

+1.3
+0.3
o.o

-1.3
a.a

+2.1
+7.0
+6.8
+4.9
+2.7
+3.6
+2.5
+8.4

+11.2
+10.5
+0.2
+0.7
+3.0
+7.5

+10.6
+0.1
+0.1
+0.9
+2.6
+4.5

simulation results for a realistic case Cw = 0.3,
c = 4, x = 0.4, h = 0.95, m = 4, p = 16). The
number of Lines, L, and the block size, b, are
variable. The performance index is the average
processor utilization, defined as the average
fraction of time spent by each processor in an
active state. Both cache implementations have
practically the same performance, for the same
value of the hit ratio.
-since thesesimulations are
despite the simplification, we
approximate analytical model to
cessor utilization.

4.2 Approximate Analytical Model

still expensive,
have developed an
estimate the pro-

The processor's behavior shown in Figure 3 are

quite complex to model exactly. We propose an
approximate model based on a method applied in
[HOO 77] for the modeling of random word accesses
tn multiprocessor memories. We number the pro
cessors from 1 top and the memory line from 1 to
l. Let

Ik(t) = [\,1<t>,\, 2Ct), ••• ,\,p<t>]

for k = 1, ••• ,l,

with ik .(t) = 1 iff processor j is not wait-
,) ---

ing for or using line k,
and ik .(t) = 0 iff processor ~waiting for

,)
or using Line k at time t.

lk(t) is called the indicator vector for line

k at time t. Each component ik .(t) indicates
,)

whether or not processor j is waiting for or
holding Line k. Note that a processor waits for
or holds a Line whenever it is in state W or LT
<interactive states>, respectively. Let Y be the
average fraction of time a given processor is in
an independent state. Y is also the probability
of being in such a state by the ergodic property
[KLE 76J. The symmetry of the system implies the
same value of Y for all the processors. Similar
ly, Let Xs be the probability that a given Line

is busy and s, the average Line service time of a
request. Then

Xs = Prob["at Least one processor is waiting for
or holding a given Line k"J

=

- Prob["no processor is waiting for or
holding line k"J

- Prob["i k, 1 • \,2 ••• \,p = 1"] (1)

- E[ik,1 • ik,2"""ik,p).

This Last equality results from the fact that the
expectation of a random variable taking only the
values 0 and 1 is equal to the probability of the
variable being 1. The rate of completed requests
by a line is

(2)

In equilibrium, this rate can be equated to
the rate of submitted requests to a line. To
compute this second member of the equation, we
have to distinguish between the two cache imple
mentations.

4.2.1 Set-Associative Cache (figure 3a). A
processor Submits a request wheneveritexists
state A. This occurs, for each processor, when
ever a cycle in the network of Figure 3a is com
pleted. Let C be the average time taken by such
a cycle. From the definition of Y, we have

y = 1/xC1-h) + m-1 •
c

The rate of submitted requests to the SM by
any one processor is 1/C. Since there are p re
questing processors and each request is submitted
randomly to any one of the l lines, the average
rate of submitted requests to a given line k is

310

.l.P- y .£.
c T-_1 __ + l •

xC1-h) m-1
(3)

Equating (3) and (2), and since for the Set Asso
ciative Cache (see Figure 3a), S = b(1+w)-m+c,
one finds that

XS = S • £.l • y = p y
_1 __ + 1
xC1-h) m-

= x< 1-h) • .e. • b(1+w)-m+c
with P l 1+(m-1>xC1-h) •

(4)

Combining equations (1) and (4) we have

(5)

This equation is exact for the set-associative
cache. However, the first term of the L.H.S. of
the equation is very complex to estimate in gen
eral. The approximation consists in neglecting
the interactions between processors. As a result
of the approximation, the components of lk(t) are

not correlated. This approximation performs best
for a short and deterministic line service time.
Indeed, large instances of the line service time
are more likely to result in instantaneous longer
queues and more interactions between the proces
sors. Under the non-correlation conditions,

E[ik,1•ik,2"""ik,p] = E[ik,1] • E[ik,2] ••• E[ik,pJ.

If we denote by Z the fraction of time spent
by each processor waiting for or holding a given
line k, equation (5) becomes

C1-Z)p + pY = 1 , (6)

because of the symmetry of the system.
On the other hand, since a processor is either

in an independent state CA or ET), or in an in
teractive state (waiting or holding one of the
lines), then by the law of total probability in a
system with l lines we have

Y+l•Z=1.

Using (6) with the condition that

Z = 1 - C1-pY>11P •

(7)

- p y > 0,

Consequently, by the substitution for Z in (7)
and rearranging, we obtain

(8)

Since Y is the average fraction of time spent
in a state A or ET, the processor utilization, u,
which is the fraction of time spent in state A is

1/xC1-h) Y
u = c = 1+x(1-h)Cm-1) • (9)

Besides being a good approximation for short
line service times with Low coefficient of varia
tion, the approximation (8) was proven in [DUB
81bJ to have the following desirable properties.

Property .1.: when p tends to = (and all other
parameters are kept constant), Y tends to 1/p.

Property £: equation (8) has one unique real
solution between 0 and Min (1/p,1).

As a consequence of the first property, the
approximat.ion is correct asymptotically, when the
traffic at the memory (and thus the interactions
between processors) increases. This can be seen
as follows. When the number of processors in
creases, the system of Figure 2 tends to saturate
C:KLE 76l •. Under saturated conditions, each Line
is constantly busy, which means that Xs tends to

1 for all the Lines. Equation (4) shows then ·
that Y tends to 1/p.

4.2.2 f~lly-Associative Cache. A cycle
through the network of Figure 3b may result in
one request (with probability (1-w>> or two re
quests (with probability w>. If C is the average
cycle time, the rate of submitted requests by any
one processor to the memory is (1+w)/C. For the
case of figure 3b,

y = 1/x(1-h) + (m-1)(1+2)
c

Following the same reasoning as the one lead
ing to equation (8}, one finds that equation (8)
is also applicable to the Fully Associative Cache
Model with

P = .e. • (b-m+c> C1+w) (1Q)
l _1 __ +

x<1-h) Cm-1) C1+w)

To obtain the processor utilization, we note
that

u = 1/x(1-h) _ Y , 11)
C - 1+(m-1H1+w>x<1-h> •

The Newton iterative metltod converges rapidly
with an initial value v0 = 0.5.

4.2.3 Accuracy of the Approximate Model. To
check- the accuracy6Tthe approximate model, we
have compared it with the hybrid simulation.
Some results are shown fo Table 1 that are typi
ca L. The model is adequate for parameter values
corresponding to an effective design, and it is
able to detect a poor design. lr'l figure 5, the
re$ults of the analy:tical modet for the set asso'"'
ciativ·e cache wa:s used to plot the processor
uti L ization. The memory cycle time, c, was also
Val"ied; alt tfte Other parameters were kept the
same as f<k' T~le 1. The simulati-ori points are
L ink~d, to their analytical estimate in Figure- S
The analytical model tends to slig'htly overesti
mate the uttlfn't}·e.n.

i-1 Speedup pj. th! C<!che-Based Multipr'o(:e~$or

we ~an derive the speedup of the caclie,..based
multi processor system Ct:a Lled s:ystem 1) ovet'
another syst.em ·(~lted system 2) 11jthout caches.
Of course, thEf two syst-ems have identicat parame ..
ters • That is, each of them C()nsi sts of a p pro-
cessor' system that has a shared melllory with l
lines ~rn:I m lllOd(ltes pe-r tine. However, in system
2,, there is M block transfer, s-inc.e it is not a
caohe•based sy$te'm.- The· memory modules are' in ..
ter leaved far tfng l1r word accesses, as discussed
in (EJIU 77J. Each Mntory reference reciui res a
s'lng Le word transfer. since we assume ttie same

311

memory parameters, the address cycle is a = 1,
and the memory cycle is c. ln this case the pro
bability of acceptance of a memory request for
system 2 is (see [BRI 78])

1 - P1
p = ---.-, ---=--=-- ,

A2 r <c-1H1-P1>
1 + N

(12)

where 1 - P1 = (1 - C1 - ~)PJ ~l~· and N = L•m,
L r' p'

and r' is the effective probability of a proces
sor making a memory reference in a Hme unit.

The instruction mix parameter, e, is the same
for both systems. Recall that e is the probabil
ity of a memory request being issued by a proces
sor in a machine cycle. Hence for system 2, the
fraction of references made by the processor to
the SM in each time unit is x' = a112, where T2
is the machine cycle time for processors in sys
tem 2. Note that x• is the probability that a
processor of system 2 makes a memory reference at
any time t, when the processor is in the active
state.

Since we assume that systems 1 and 2 have
identical processors, the absence of the cache in
system 2 and the service of each memory reference
in the SM elongates the machine cycle time of
each processor from T1 Cin system 1) to T2 Cin

system 2). It can be easily seen that
T2 = r1 - He t-tme units. Note that a cache cy-

cle = 1 time unit. From section 2 of this paper,
T1 consists of an integer number, d, of cache cy-

cles. In system 2, a memory reference to SM may
encounter a delay in service due to memory con
flicts. We denote by A the state in which the
processor is active, and by W the state in which
the processor is wa:i ting. Fw-rthermore, state B. . ,
denotes the state of the service of the SM re
quest for i = 1,2, •• ,c. Figure 4 depicts the
simple Markov graph for the pro-cessor in system
2. It should be p'ointed out that the scheduling
of requests for single-word transfers in this
system is not FCFS as in the system with caches.
Rejected requests CH"e res\lbmitted one cache cycle
later until they are accepted. ~hese resubmitted·
requests are assumed- to be independent and hence
have equal probability of referencing any of the
l lines. This schedute, which is also depicted
by the Ma·rkov graph of Ftgure 4, would slightly
oVe'f'dtilllate the true performance of the system
without caches. Simulations indfcate that the
overesttmatiOn- is w'itllin al:!out 5% · C:BRl 78J. A
previous model in Which tne SM block tequests are

1-x'

Figure 4. State diagram of a processor's
transition in system withOut cache

not buffered was studied in [BRI 81]. The buf
fered model presented here is more accurate but
not applicable to other interconnection networks.

Let qA and qw represent the probabilities of
being in states A and W, respectively. A solu
tion to this graph yields

PA
2

(13)

The processor
u2 = qA. rt

utilization for system 2 is
can be seen that the effective re-

quest rate is
x•·

= P +x'[C1-P ·)+cP J • <14>
A2 A2 A2

Again, an iterative technique can be applied to
obtain a solution to the utilization, u2 = qA.

Let us represent the utilization of system
by u1• This can be obtained from equation (9) or

(11>, for the set associative or fully associa
tive cache models, respectively. The effective
machine cycles for a processor of systems 1 and 2
are T11u1 and T2/u2, respectively. Since

T2 = T1 + c-1, and T1 = d, the speedup for the p

processor system is

SP
T/u2 Tz u1

<1 + c-1) u1
=--=-· = T11u1 T1 Uz d Uz

(15)

The evaluation of the speedup permits us to
compare the effectiveness of the cache in the
multiprocessor system. Certainly, this speedup
is a function of many parameters. The discussion
of the results given in the next section exposes
the effects of the variability of these parame
ters on the system performance.

5. Discussion and Conclusion

In the following discussion, we assume that
the multiprocessor system consists of p = 16 pro
cessors with private caches. The machine cycle
time of the cache based system is d = 2 Call
times are expressed in units of cache cycles>,
and the instruction mix parameter, e, is 0.8.
The shared memory has an L-K configuration with m
= 4, and l Ca power of 2) is between 1 and 16.
Thus the total number of modules is variable.
Other parameters of the study are b, the block
size, (4 < b < 64), c, the memory cycle time C2 <
c < S> -and- h, the cache hit ratio Ch = .95):
Note, however, that for a given cache size, the
hit ratio and the block size are not independent,
as observed in (STR 76]. In this study, we as
sume that, for a given block size, a cache with
an appropriate size is selected so that the hit
ratio is kept constant.

The processor utilization Cu) is a performance

312

index reflecting the degree of match between the
processors and the memory organization. The
throughput improvement provided by the introduc
tion of caches is measured by the speedup CSP),

as defined in secHon 4.3. Note that u.and SP

are not necessarily related: a system with high
"S " may have an unacceptably low "u." In gen-

P
eral, one desires a design with high processor
utilization and speedup to justify the investment
in faster processors and expensive cache
memories, respectively. For the parameters
chosen, there is little difference in the results
of the set associative and fully associative
cache models. Hence, only the results for t.che
set associative model are given in the figures.
To Limit the cost, the analytical models are used
to derivate the following curves.

A comparison of figures 5 and 6 shows that the

0.9

o.s

z 0.7
0

~ o.6
....
;:: 0.5
:::>

~ 0.4

"'
~ 0.3 ...

0.2

0.1

2 4

P=16
h=0.95
x=0.4
m=4

8 16

NUMBER OF LINES IN SHARED MEMORY (log scale)

Figure 5. Processor utilization for the set
associati ve cache

Figure 6.

o.8

0.1

" i o.6
S r"'
!:::! 0.5 ,l
.... //
- /1
!;; 0.4 /

"' ~ 0.3
....
u
~ 0.2 ...

0.1

4

p=l6
x=;4
m•4 -
m=8 -----

8

c=

16

NUMBER OF l INES IN SHARED MEMORY
t(log scale)

Processor utilization for multiprocessor
without caches

I·

I'

caches can have a dramatic effect on processor
utilization. In general, an increase in the
block size causes a significant deterioration of
the processor utilization. However, for a small
block size (4), the processor utilization for the
system with cache is much better than for the
system without cache. This improvement is more
dramatic when the memory cycle time, c, is large.
Figure 5 also shows that increasing the number of
memory lines, l, is not always cost-effective.

The following throughput comparisons between
two systems emphasize the design alternatives of
fered by the use of private caches. Both systems
consist of 16 processors. In system 1, a private
cache is added to each processor; the memory con
figuration is characterized by m = 4 and 1 < l <
16. Hence, the cache controllers access the SM
via a 16 by l crossbar switch. In system 2, the
processors are connected to an L-M memory with l
= 16 and m = 4 through a 16 x 16 crossbar switch.
All the other parameters are as described earlier
in this section.

Decreasing l reduces the total number of
memory modules and hence the cost of the decoder.
The most significant effect of l in a system is
the reduction in complexity of the processor
memory interconnection network and hence the
cost. Figure 7 shows the effective speedup

7

6

Q. 5
"' ...
~ 4

"' ...
"'

P=16
h=0.95
x=0.4 (m,b,c)

~---(4,16,4)

2 L_.__,,p._;r-<--""7'""'-------.,- (4, 4, 2)
~::::..------- (4,8,2)

-----(4, 16,2)

2 8 16
NUHBER OF LINES IN SHARED HEHORY, I (log scale)

figure 7. Effective speedup for cache-based system,
where system without cache has ~=16.

achieved by the inclusion of cache memories into
system 2 and the simultaneous reduction in the
number of lines l. It can be seen that a signi
ficant improvement in the system throughput is
still achievable by the simultaneous reduction in
l and the inclusion of cache memories. This per
formance· improvement is even more pronounced for
large values of c. A possible significant reduc
tion in l gives the designer a choice. If for a
small number of lines, l < 16, the incorporation
of a per processor cache results in a speedup,
S > 1, the designer can consider trading off p-
low-cost multiport memories for the expensive 16
x 16 crossbar switch used in the system without

313

caches. In fact, as shown in Figure 7, the in
corporation of a per processor cache results in
significant speedup in most cases, even for small
l.

REFERENCES

[SRI 77] F. A. Briggs, and E. S. Davidson, "Or
ganization of Semiconductor Memories for Parallel
Pipelined Processors," IEEE Transactions on
Computers, Vol. C-26, Febri:iii°ry 1977, pp. 162-169:°
[BRI 78J F. A. Briggs, "Performance of Memory
Configurations for Parallel-Pipelined Computers,"
Proceedings of the 5th Annual Symposium .5!!l
Computer Architecture, (1978), pp. 202-209.
[i:3RI 81 J F. A. Briggs and M. Dubois, "Perfor
mance of Cache-based Multiprocessors," ACM
SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, September 14-16,""1981.
[CEN 78] C. M. Censier and P. Feautrier, "A New
Solution to Coherence Problems in Multicache Sys
tems," IEEE Transactions on Computers, Vol. C-27,
No. 12, December 1978, pp:-1112-1118.
[DUB 81aJ M. Dubois and F. A. Briggs, "Efficient
Inte.rprocessor Communication for MIMD Multipro
cessor Systems," Proceedings of the 8th Annual
Symposium .5!!l Computer Architecture May 1981.
[DUB 81b] M. Dubois and F. A. Briggs, "Modeling
of MIMD Algorithms for Multiprocessor Systems,"
Purdue University, Technical Report TR-EE 81-13,
1981.
CHOO 77J C. H. Hoogendoorn, "A General Model for
Memory Interference in Multiprocessors," IEEE
Transactions .5!!l Computers, Vol. C-26, No. 10, Oc
tober 1977, pp. 998-1005.
[KLE 76] ·L. Kleinrock, Queueing Systems, Volume
~: Computer Applications, New York: Wiley and
Sons, Inc., 1976.
[LEH 80] A. Lehman, "Performance Evaluation and
Prediction of Storage Hierarchies," ACM
SIGMETRICS Performance '~ Vol. 9, No. 2, pp.
43-54, May 1980.
[PAT 79] J. H.'Patel, "Processor-Memory Inter
connections for Multiprocessors," Proceedings of
the 6th ~ S~mposium on Computer
Architecture, April 197, pp. 168-f77'.
[RAO 78] G. s. Rao, "Performance Analysis of
Cache Memories," Journal of the ACM, Vol. 25, No.
3, July 1978, PP• 378-395:- - -
[SCH 78] H~ G. Schwetman, "Hybrid Simulation
Models of Computer Systems, "Comm. of the ACM,
Vol. 21, No. 9, September 1978, pp. 718-723.
[SMI 78] A. J. Smith, "A Comparative Study of
Set Associative Memory Mapping Algorithms and
Their Use for Cache and Main Memory," IEEE Trans.
Software Engr., Vol. SE-4, No. 2, March 1978, pp.
121-130.
[STR 76] W. D. Strecker, "Cache Memories for
PDP-11 Family Computers," Proceedings of the 3rd
Symposium .5!!l Computer Architecture, pp. 155-158,
January 1976.

tThis research
MCS-78-18906.

was supported .by NSF Grant

A PERFORMANCE MODEL FOR MULTIPROCESSORS WITH PRIVATE CACHE MEMORIES

Janak H. Patel
Coordinated Science Laboratory

University of IlliDDis
Urbana, Illinois. 61801

1 • Introduction

This paper presents analytic and
simulation results for multiprocessors with
tlrQ-level memory hierarchy of the type shown in
Fig. 1. The first level of memory is a private
cache and the· second level of the 11.em.ory is the
main memory shared· by all processors. The two
levels are connected through a switch. In this
paper w:e shall restrict ourselves to switches
which are full crossbars or delta networks
[PAT79]. The appFoximate analytical model
presented is simple but remarkably close to the
extensive simulation results.

~ The Physical Model

2.1 The Cache.: For the purposes. of this
papera c&.Cii'e-main hierarchy will be assumed to
have ar. acceptable miss ratio less than 0.1 and a
block size small enough -and/or ·llremorie!!I fast
er.c)ugh so that a block trar.sfe:r takes . no greater
than abo'Ut 64 cache cycles. An implication of
the small block transfer ·time is ·that in a
cache-main system it is not profitable to switch
processes on · a cache llliss, beoaus.e a process
switching time is comparable to a block: transh.t
time and also because the cache is not large
enough to ho1d mare than one working set for an
acce.ptable miss ratio. Therefore, ~ c_an ass:ime
that Ol!l a caehe .U.&e, the process1;1r is idle wJ.lile
the desired block is being transfe~red, 'fhus the
system. throughput of cache-main mul tiproceasor can
be computed di\'ectly fi'Qm the ttltal. time spent in
doir.g block transfers, if' th& processoJ:' e;teci.1.'t.ioil.
i$ not overlapped with a block t:ransfe.r.

~~2 Cach~Maill. :(nt,er~nnect,ig11-: . Tw~ .
intercor.nel)ti()n networks tt wiil be studJ.ifd hel'e
are full .crossbars and delta networka •. 1'oth
networks will be used he:re in the circuit
swi tohi:ng mode. ·once a fault occurs in a cache_,_
the tsul t handling haf"dwsr1:1 t-eqw;1ste a bloclt
transfer from a particular main metnory module anl
th& netWQrk establisaes a path 'between the caoMI
and th• mait. memory module. This path is held
until the memo.ry transaction ie ctimplete. . The
path ilQnno\ b& pr•emp.t'&d by any Qthe'.1' ~U.H~
oom:ir..g frl?m -ther oache m~u.l••~ This desori~tion
implio~:tly aa$umM th.at a block reside . 1_r. a
single inemoey module. Howeve'.I', a tnemory module
itaelt mat be itterl.eaved to .. inorease . its
bandwidth. The. advantage or usi~ circuit
swi tohing and · · sto l'ir~ the bl:Qck in. or.e me111ory
module is the reduction in block tranl!li'e'r time11o
Doth in tM crossbar ar.:d delta netW:ork t)\ete ts an
initial delay in &stabl.i•hi'Ag a ~th due;, to
arbitration; deoodi.ng and $$tting ot' apprepriete
&'Witches. Onoe the .path is Eletabliahed the data
oan be trans:f'erred at a high tate.

fhis. reseatch was. supp~rted in patt b}', Jof nt · s~'"r~ .
vices Ele-ctronics Program (IJ.S·, Arl\IY1 \.t,$, Navy and
U.s. Air Fbrce) 1..1nder Gonttact NOOQl6-?IJ-c .. 0242.

:u.4

0190·3918/81/0000/0314$00.715 © 1981 lES!il

l:_ Analysis

3.1. Simple~~ In this
sectionve develop an analytical mtidel for a very
simple cache .organization. This will be exten,ded
later to include more complex cache organizations.
The following assumptions define the simple cache
model.
1. Each cac.be ts.Ill t invol1'es ·one bloek-wri ~ to a
main memory module followed by one block-read from
the same memory module.. As a consequence of this,
we further assume that once a path is established
between the faulting cache and the requested
memor;1 _module, the transac.tion (read and write of
a block) takes a constant time equal to t CPU
cycles.
2. Cache requests to main memory are random .and
uniformly distributed over all main memory
modules.

The miss ratio of a program as a function. of
ca-che si$e; block size ar.d set si!:e have been
measured by several researC.hers [KAP73+STR76lPEU77
YEH81]. From such data it is possible to
determine the request rate from a cache to the
main memory. Let ·Ill be the p:r;-obability that a
cache milkes a reque1:1t to !lain melllory in a given
time unit; thait. is., m is the probaMlity t1''Bt the
processor makes a request to the cache and that it
is a fault. m typically would be less than the
miss ratio, because not eveey C!'U cycle is a
'lllellQrJ' \'efe~enoe.

To summarize the simple ·eac)te BJO<\el • •t e•ch
time unit a cache .makes· a request to th~ inain
melliory wi'th pl'Qb&,bility m, after some wait time a
iransactUin :Oet'tte\)fl. a. mai?t 'illlltaoty 18.<ilidule an.d 1;lie
faultin~ oache takes place.·whioh lasta fol' t time
uni ts. Throuc®ut this Jl4riQ« ~-. i>r~oea~ r
~td:(l:t :i,u ••

.3 .2 ani;iyg~s sf ~ oa.e.ll._ ~ A
.pr111¢ee8<Jr ia ou~ 111\llti~ro~esaor ia in on• of t~
states. It is either busy doir-'8 useful work or it
te iU& wai titikl fQC" a Qe.che-fa\\l t ee:i-vi.oe tq 'bt1
completed. The throughput or the tiystem is
directly prtiportfonal to the . pi'1¥eessor
1J.ti\iia1;1o'n, 'lt\'trefol'ei 'ff lhaU .ua' th»
proo-ess<ir utilisation aa a me'aew.re of the syatem
&ietl'ot'l!l!'U\6•· Thia cat. 'be ~pu-t~ ·n tcl1~1ilh

Ceil.sider Fit. 2l .which atlQwa the r.ft.bt ot
Oabhe hul. ts and wai't 'litiles on \he Pl'~cess0r
aotivity. SiMe eac.h proceaat'>r cycle gen.ex-ates. a
oaohe faul1l 'wUh ¥irobabUit)' Ill) thitr~ are ,'oil
~l&tqe ll!k · ftlulU for It uti.its of useful
COmp.\\at:l:bn. . Lei;. W ~ the . _at&rage fii't
enotiur.tei-ed 11.\ et.ob request. Sil'lce a bloele
transfer taket t tbne iAn:lte. the. k ur~i ts of \isei\al
proceaMl' al)tbity tak-.11 k + llik('if+t) Utne units,
Assu!n:tn.t N pl'9ceHi:!re an~ lt main meaory lilQdulea
the :t'ollolling car, b'8 0Vl1lp1.1ted direotl:f fl'O&I Fi!•
2o, TheJto~essot utilha tloY<, .]

·u • · lk~(w~t)) "' 1/(1 +li\(w+t) 0)

The average number of busy memory modules,
B = Nmkt/[k+mk(w+t)]= Nmt/[1+m(w+t)] (2)

In terms of utilization U, B = NmtU (3)

In the above expressions, the only unknown is
the average wait time w. It is clear that the
wait time depends on several factors, such as,
request rate m, number of processors N, number of
memory modules M, block transfer time t and the
type of the interconnection network. Exact Markov
analysis is always possible for specific numeric
values of m,t,N and M, because of finite number of
states. However, the state space is very large
and therefore computationally very complex. In
the absence of a reasonable analysis, simulation
is the only other viable alternative. We have
done extensive simulation of the cache model. One
important outcome of the simulation was an
observation that the processor utilization of
given sized multiprocessor system with a specific
network (crossbar or delta) can be approximated as
a function of the product mt, where m is the
probability of a cache-to-main request and t is
the block transfer time.

Consider the Fig. 2c once again which shows
the activity of a single processor. While the
processor is waiting, the cache is resubmitting
the block transfer request again and again until
it is accepted by the network; on the average
this happens for w time units. After tpe request
is granted, the network holds a path to a memory
module for t time units. One car.i. view this as t
consecutive requests to the same module, each
request requiring one time unit of service. Thus
on each cache fault, the network sees an average
of w+t consecutive requests for unit service time.
Refering to Fig. 2c, in k+mk(w+t) time uni ts a
total of mk(w+t) requests for unit service are
made to the network. Therefore, the request rate
(for unit service) from a cache module as seen by
the network is

m' = m(w+t)/[1+m(w+t)] (4)
In terms of processor utilization U of equation
(1) we have

m' = 1 - U (5)

The approximation that we introduce here is
that w+t consecutive requests to a sir.gle memory
module can be decomposed into w+t separate
requests which are random, independent and
uniformly distributed over all memory modules,
without essentially changing the system behavior.
The model that we will analyze is a system of N
sources and M destinations, each source generates
a request with probability m' in each time unit.
The. request is independent, random and uniformly
distributed over all destinations. Each request
is for one unit service time. Rejected requests
are resubmitted as new independent .requests and
are made part of the new request rate m'. First
we analyze the system with a crossbar ar,d then
with a delta network.

12!! crossbar: We already have .the average
number of busy memory modules B from equation (3),
namely B • NmtU. We can compute the same quantity
another way. Each main memory.module is addressed
with probability m' /M from a cache. The

315

probability that none of the N cache modules make
a reque~ to a particular main memory module ~s
(1-m'/M) • Therefore on the average M[(1-m'/M)]
modules are not doir.g any memory transfers. In
other words, the averageNnumber of busy modules is

B = M[1 - (1 - m'/M)] (6)
substituting for B = NmtU from Eq. 3 and m'=1-U
from 0q. 5 we have, N

NmtU - M(1 - (1 - (1-U)/M)] = 0 (7)

The above equation in U can be solved by
standard numeric algorithms using iterative
techniques. A good initial value for U is
obtained by setting wait time w=O ir, eq. (1),
that is, setting U=1 /(1 +mt) which incidently
corresponds to the maximum possible processor
utilization.

The delta network: A delta network is an n
stage-netwariC constructed from axb crossbar
switches with a resulting size of anxbn. Thus in
our model, it is required that N = an and M = bn .
For a more complete description see [PAT79].
Functionally, delta network is an interconnection
network which allows any of the N cache modules to
communicate with any one of the M main memory
modules. However, unlike in a crossbar, two
requests may collide in the delta network ever. if
the requests were to two different memory modules.
The average number of busy modules is computed
recursively usir.g the result of the axb crossbar
as follows.

NmtU - Mm = 0 (8)
where, mi+l = 1 ~ (1 - mi/b)a O<=i<n
and mo = 1 - u

!:.. Discussion of ~ Results

In this section we present several results
obtained using the above approximate analysis.
The CPU utilization from approximate analysis was
compared with the utilization obtained in
simulation for a wide range of parameters. The
comparison showed that our analysis overestimates
the processor utilization in most cases. However.
the error was less than 2% for mt<1 and less than
7% for mt<32. Thus the approximate analysis of
the multiprocessor cache organization is quite
accurate in the region where mt<1. As we shall
see in the followir..g discussion, it is this region
which is of practical interest.

Consider Fig. 3 which is a graph of
processor utilization over a broad range of
parameters. The utilization plotted may be
interpreted as simulation results or analytical
results, since the differences are so a111all that
they are not vis.ible on the graph with the scale
used. Since in the analysis, the processor
utilization is a function of mt, the parameters m
ar.d t are not separated in this and other graphs.
The graph shows three differer.i.t systems, one ;is
N=64, M=64 u:t;tnt 64x64 crossb-ar, second is N"64,
M=64 using 2 x2 delta network aild the third is
the sir..gle processor system N"M•1. Since the w-ait
time is zero in the case of M"'M•1 system, the
processor utilization from eq. (1.) is 1/(1+mt),
which serves as the upper bound on the processor
utilization. It is clear from the graph that for
mt>1 the proceiisor utilization is less than ~0%.

Therefore in a practical system one must have the
product mt much smaller than 1 for an acceptable
level of performance. Therefore the region of
interest is mt<1. As pointed out earlier, it is
in the region of interest that our approximate
analysis is most accurate. Figures 4 arid 5 show
the processor utilization in the region of
interest. Figure 4 shows a graph f~r ~ 32x32
crossbar network and a graph for 2 x2 delta
network. Figure 5 shows the processor utilization
as a function of the network size NxN using a
crossbar. Both figures are obtained from the
analytical model of the previous section. Other
measures of performance may also be evaluated from
the analysis. For example the average traffic
between the cache and the main and the average
wait time of a request.

From a designer's perspective the above
analysis shows that for optimum performance one
must choose mt as small as possible. Recall that
m is not the miss-ratio itself but it is directly
proportional to the miss ratio and t is some
function of the block size. A typical curve of
miss ratio vs. block size for a fixed cache size
might look like Fig. 6. From this, one can
compute the graph of mt as a function of block
size, where m is the probability that the CPU
cycle is a memory reference and that it is a miss,
and t is the block transfer time. From the graph,
one can choose the optimum block size
corresponding to the minimum mt. For a given
cache size, the optimum block size for the maximum
throughput, may or may not correspond to the
minimum miss ratio of Fig. 6. To reduce mt below
this value, one can either decrease the miss ratio
by choosing a larger cache or reduce the block
transfer time by using a faster main memory.
Another alternative is to change the simple cache
organization so that some of the block transfer
time can be overlapped with the processor
execution. This alternative is discussed in the
next section.

2-:_ Extensions of the Simple Cache Model

Three most common extensions of a simple
cache organization are: (1) Buffered write back,
(2) Store-through, and (3) Load-through. All of
these achieve the same objective, namely, overlap
of the CPU execution with a block transfer. Each
extension is described below.

Buffered write back: On a cache miss, the
block to be replaced, i.e., written back, is first
stored in a high speed buffer. The desired block
is then read into the cache module. Following
this the buffer is written back to the main memory
module. The writing back of the buffer is
overlapped with the CPU execution.

Store-through (write-through): In this cache
organizatior,, every write command from the CPU
results in the word being stored in the main
memory, regardless of whether the corresponding
block is present in the cache or not. If the
block is present in cache then the word will also
be written in the cache. As a consequence, on a
read miss, the desired block is loaded in the
cache and the block being replaced is not required

316

to be written back. Here. also the writirig of each
word in to the main memory is overlapped with the
CPU execution.

Load-through: On a cache-miss for a read
reference, the desired word is directly loaded
into a CPU register from the main memory, after
which the block containing that word is read into
the cache module. This strategy tries to overlap
the CPU execution with a block read. Load-through
can be combined with either of the two previous
strategies of write-back and write-through.

All of these organizations can be analyzed
with the techniques presented in section 3. In
each case the approximation used is to treat the
memory traffic as consisting of independent sirigle
cycle requests. Furthermore, these requests are
assumed to be uniformly distributed over all
memory modules. Once the unit request rate is
expressed in terms of known and unknown
parameters, it can be substituted in eq. (6) or
(8) to obtain the average number of busy modules,
which is also expressed another way (similar to
eqs. 2 and 3) to give a full set of equations for
the solution of the CPU utilization.

6. Concluding Remarks

In this paper we have presented ar,
approximate analytical model for multiprocessors
with private cache memories. The accuracy of the
model is remarkably good considering the
complexity of the problem. In the region of
practical interest the error of the analytical
model is less than 2%. The same model is useful
in computing several different measures of
performance, such as processor utilization,
average wait time of a request and memory traffic.

The central idea introduced in this paper is
that of breakirig up a request for a block transfer
into several ur,i t requests as well as treatirig
waiting requests as several ur,it requests for the
purpose of the analysis. This idea makes the
analysis of more complex cache organizations like
write-back, write-through and load-through as easy
as the simple cache organization. As a side
benefit, we now have a way to evaluate the
bandwidths of crossbar and ·delta networks under
asynchronous block transfer modes.

[KAP73]

[PAT79]

[PEU77]

REFERENCES

K.R. Kaplan and R. 0. Winder, "Cache
based Computer Systems," Computer, pp.
30-36, March 1973.

J. H. Patel, "Processor-memory
interconnection for multiprocessors,"
Proc. 6th Annual Symp. on Computer
Architecture, pp. 168-177, 1979,

B.L. Peuto and L.J. Shustek, "An
instruction timing model of CPU
performance," Proc. 4th Symposium on
Computer Architect~re, pp. 165-178,
1977.

[STR76] W.D. Strecker, "Cache Memories for PDP-11
Family Computers," Proc. 3rd Symp. on
Computer Architecture, pp. 155-158,
Jan. 1976.

[YEH81] C-C. Yeh, "Shared Cache Organization for
Multiple-Stream Computer Systems", Tech.
Report No. R-904, Coordinated Science
Lab, Univ. of Illinois, Urbana, IL,
Jan. 1981.

. . . " .

N x M Interconnection Network

t • • I I

Processors

Private
Cache

Sh.ired Main
Memory·

Fig. 1. Multiprocessor with Private Cache

80

64X64 Crossbar

20

0
2-6 2-4 2-2 20 22 24 26

mt FP-7114
Fig. 3. CPU utilization as a function of mt

100

;e mt=O.l
~

=:so
c:
~
~ mt=0.5 :;::
:::> 60
:::> a.
u

mt=!
40

l 2 4 8 16 32 64 128
N

Fig. 5. CPU utilization vs. crossbar size

317

111111111111111
1 2 3 • • • k

(a) CPU activity with no faults

(b) mk faults with no wait

(c) mk faults with wait

D CPU Busy

I Block Transfer, CPU Idle

I Wait, Na Transfer, CPU Idle
FP-7112

Fig. 2. CPU activity with faults and wait

60
0 0.1 0.2 0.3

mt
Fig. 4. CPU utilizat~on as a function of mt

0
+::
Cl

a::
Cl)
Cl)

~

Block Size
Fig. 6. Miss ratio vs. block size

Q.5

Alf ANALYSIS OF A NEW MEMORY SYSTEM FOR CONFLICT-FREE ACCESS

Tzu Yun-Kuei, Yang Shao-Tung. Yue Chang-Hai
Department of Computer Science

Changsha Institute of Technology
H1D18.tl,China

Abstra.ct--ln this paper, the features
of a new memory system are described. The
process of conflict-free data array ac- ·
cess is analyzed for interleaved memory
system. The factors affecting the memory
bandwidth and access speed are discussed,
and the prime number of memory modules is
determined for the AP-601 computer. The
formulas for address transformation are
derived and the corresponding networks
are designed.

Introduction [1 J [4 J [5 J

In interleaved memory systems, it is
convenient to make m, the number of mo
dules. a power of 2, say m= 2P. Then the
least significant p bits of every(binary)
address immediately identify the module
to which the address belongs. But the ac
cess conflicts, in this typical system,
are vel'Y serious Wlder some conditions.
In order to generate conflict-free data .
array access, we make m, the number of
modules, a prime number 31/17 for the
AP-601 computer.

AP-601 is a high speed vectorized com
puter with ten multifunction processors
of pipeline structure operating at 20 me~
gs.cycles per second. The interconnection
network of AP-601 is a double buSs struc
ture. The memory access time is 400 ns.
The memory control llllit consists of two
pipelines for access, so that each cycle
(50 ns) may read or write two words(2*72
bits) from or to the main memory system.
'rhus the highest frequency of conflict
free data array ac~ess is 40 MC/S. Each
data array access instruction may read or
write 128 words. A simple analysis on the
memc>ry bandwidth shows that the access
speed of 17 modules (Mode 17) is 1.5
times that Of 16 modules and that of 31
modules (Mode 31) is 1.4 times that of 32
modules. The hardware technique used to
generate the conflict-free access is a.n
effective address transformation unit to
match the prime number of memory modules.

Determination of the Number of
Modules f·or the .. AP-601 Computer
In principle, the number of modules is

0190-3918/81/0000/0318$00.75 © 1981 IEEE

318

so determined as to obtain the maximtim.
data array access speed required by the
actual computer system.

For the interleaved main memory: of m
modules, the address distribution is
shown in Table 1.

Table 1

~ 0 1 2 . .. m-1

0 0 1 2 ... m-1
1 m m+1 m+2 ... m+m-1
2 2m 2m+1 2m+2 ... 2m+m-1 . • • . • .
ai aim aim+1 aim+2 •• .aim+m-1 • . . . • . . • . • .

Where Nm is module's number,
Am is the address in the module,

and the absolute physical address is

A= m *Am+ Nm (1)

The address sequence of a data array ac
pess instruction is

Where ao is the first address, and d is
the index distance.

Suppose,due to index distance d, we
can On.ly have access to m' memory modules
among m memory modules.Here m' is called
the effective number of modules for the
interleaved memory. Since in' the address
sequence, the difference between any two
neighbor addresses is d,while in a memo
ry module the difference between any two
neighbor addresses is m, so that in the
address sequence, the difference of the
two consecutive addresses, which fall
into the same memory module, satisfies
the equation 'd { d} m = m, ,

i.e. m'= {ui,d} =
d

md . m = ---
(m,d)d (m,d)

(2)

I
'
'

where lm,d} is the least common multiple
of m and d, (m,d) is the maximum common
factor of m and d. Since m' equals m, is
the ideal case, thus from(2) we should
have (m,d)=1. Evidently, it is impo8$ible
for all values of d. But,when m is equal
to a prime number mp,we would have the
case

(d~kmp)

(d=kmp) (k=1 ,2,3, •••)

In order to generate conflict-free
data array access for AP-601's double
buss structure, we should have

where Tm is the cycle time of a memory
module, and tcp is the cycle time of an

(3)

instruction. For the AP-601 computer, 'lfii

= 400 ns, tcp = 50 ns.

i.e. m' ~ 16.

Hence, we select the prime number 31/17
for the AP-601 computer.
_ The average data array access speed
sm17, or the average memory bandwidth

bm17 of Mode 17 is compared with that of

Mode 16 as follows: (3J
let

sm17

since

=----,
m 16

where m• 17(m• 16) is the average effective
number of memory modules of Mode 17 (Mode
16).
i.e. ' m 17

K17 =---
t
m 16

~ 1.5

It is calculated in Table 2. Similarly,
we have K31 -;:;::- 1 .4 (relative to Mode 32).

In the mean while, there are inevitab
ly some random scalar data access instruc-

319

tions in between or just after a data ar
ray access. In Mode 17, the probability
of immediate execution of such instruc
tion is only 0.18 to o.6. But it increa
ses with the number of memory modules.
So we select 31 memory modules (Mode 31)
as the normal operating mode and Mode 17
as the auxiliary mode for the AP-601 com
puter.

Table 2
16 17

d m'16= m'17=
(16,d) (17,d)

1 16 17
2 8 17
3 16 17
4 4 17
5 16 17
6 8 17
7 16 17
8 2 17
9 16 17
10 8 17
11 16 17
12 4 17
13 16 17
14 8 17
15 16 17
16 1 17
17 16 1
18 8 17

m I 1 6=1 0 0 6825 Iii' 17=1 6. 0625

The Mothod of Address Transformation

When mp~ 2P(P=0,1,2, •••), it is ne
cessary to find the module's number (or
address) Nm and the address in the me
mory module Am by means of address tran
sformation. In the AP-601 computer, this
is done in only two stages. The execu
tion time of each stage should not ex
ceed 27 ns for matching the pipeline
processing speed.

Address Transformation for Mode31

1 • The Formulas tor Calculating Nm31

and ~31

In the .AP-601 computer, the total ca
pacity of the main memory is 1984k words
for mp= 31. So the absolute physical
address A= 21 bits (binary),
i.e. ·

Let A1 = a0 ·

A2 = a, 8.2 a, 8 4 85
A' = a6 Lr 8a a9 810
A4 = 8 11 8 128 138148 15
A5 = a, 6a1 '181 a8 1 98 20

In order to find Nm31 and "m,1 , it is re
quired to calculate

A = A1A2Af-4A5 ,,
=

A1A2~A4As

(-5 -10 -15) = A1A2A3A4As 2 +2 +2 + •••

= A1 A~3A4+A1 A2A3+A1 A2+A1

A1+A2+A3+A4+A5 + __;;_.::::._..=______:.____;:;_ ,,
From (1) we have

"m31= A1A~3A4 +A1A2A3 +A1A2 +A1

+ f A1 +A2+A3+A4+A5l ,,
(A1 +A2+A3+A4+A5)

where J is the quotient
31

Of

Of

A1+A2+A3+A4+A5

31

31

2. The Practical Procedure for
Calculating Nm31

The first stage is to calculate
S"=A1 +A2+A,+A4+A5=°'1 <'{1s;•s2s;s4s5

(4)

320

The second stage performs two kinds
of modifications -for S" to obtain 11-_31
finally.

Firstly, substracting 11 o<.i iX.i., * 31
from S", we get

""""" . ''''' s •-s,s2s,s 4S5+000 al, oc'.2=olS1 S2S3S4S5

Because max(A1+A2+A3+A4+A5)= 1111011,
s' has only four kinds of different sta
tes from which the corresponding result
of Nm31 is obtained as shown in Table 3.

Table 3

State s•-ols's's's's'
- 1 2 ' 4 5 Nm31=S1S2S,S4S5

I • • • t ' • • • • 1 0 s,s2S3S4S5 s,s2S3S4S5

• • • • •
cs;s2s;s4s5~1}

2 011111 0 0 0 0 0

' 1 0 0 0 0 0 0 0 0 0 1
4 1 00001 0 0 0 1 0

Hence, by logic (or table look-up) we
finally obtain

From Table 3, the required logic for
mulas are formed as follows:

- t - t - I
s 1= FS1 , s 2 = FS2 , s, = FS3

I . t - t

S4=F(S4@ S5)+FS4 ' SI) = F (f) s; • . . ' . '
where F =ol+ s1 ~s2 ·s3s4·s5

3.The Practical Procedure for
Calculating "m31

The first stage is to calculate
"A1A2A3A4+A1A2A3+A1A2+A111 • To save in-

tegrated circuits, the calculation is
divided into three sections, i.e.

A1 A2 : A3 l A4
rA- A2 1 A3
I. 1 r-:..J
I 1 A1 A2

+ I A,

where A2+A3=Hcf11 H2H~4H5 has been obtain
ed from the process for calculating Nm•

The first section is A1A2=S.0a1a2a3a4s5•

The second section is to do

The third section is to do

+
ao a11a12a13a14a15

ao

* a* a" a" a" a" a 11
a9 10 11 12 13 14 15

The second stage is to do the final cal
culation of ~31 ,

.A4 = a13 a14 8 15 a16
A5 = a17 a18 a19 a20

The process of address transformation
for Mode 17 is much more complicated
than that for Mode 31. In order to use
the same stages as those used for Mode31,
we put Ao=O, and directly take A1 A~~4
as ~17"

Since Ao=ao=O,(it is guaranteed by
programming) , we have

-A=

=--------

H H H H H 11 II II II a"
ao a, a2 a3 a4 a5 1 2 3 4 5 a11a12a13a14 15

+

o O O O at a; O O 0 ag a10o 0 O ol, ot2

F

where 11 ol1~+F11 is the quotient of
A1 +A2 +A3 +A4 +A5
--------- , which has been

31
obtained from calculating Nm31 •

Address Transformation for Mode 17

1 • The Formulas tor Nm17 and ~1 7

In this case, the total capacity of
the main memory is 1088k words, so we
have similarly

Let Ao= ao
A1= a1 a2 83 a4

A2= 85 a6 87 8s
A3= a9 a10a11a12

321

= A1A~3A4-A1A2A3+A1ArA1

A1-A2+A,-A4+A5
+

17

As before, Nm17 is equal to the remain
der Gt

A1 -A2 +A3 -A4 +A5

17

i.e. N =f A1-A2+A,-A4+A5 }
m17 17

= {-A_1_+_A_3_+_A5-:-:"'""2_+_A_4+_3-}

where A2+ A4 is the reverse code of
(A2 + A4).

2. The Practical Procedure for
Calculating Nm17

In the fil'St stage we calculate

S" = A1+A3+A5+A2+A4+3

::: o(- 1 c{ S" S" sn S" l·U(,.2 3 1 2 3 4

In the second stage we produce two kinds
of modifications forS". Firstly, sub
stra.cting "ot, o<.2 ~ "* 17 from S", we get

s ' = o s1• s2 s; s 4 + 11 o(, ol'2. iX3 + 1

= c(s; s2 s3 s 4
Because max(A1-A2+A3-A4+A5+34)=1001111,
S' has only five kinds of different sta
tes from which the corresponding result
of Nm17 is obtained as shown in Table 4.

Hence, by logic (or table look-up),we
obtain

Nm17 =ol 81 82 S3 S 4

Table 4

State S'-oLS'S'S'S' - 1 2 3 4 Nm17=DlS1S2S3S4

1 0 S'S'S'S' 1 2 3 4 0 S'S'S'S' 1 2 3 4
2 1 1 1 1 1 1 0 0 0 0

3 1 1 1 1 .o 0 1 1 1 1

4 1 1 1 0 1 0 1 1 1 0

5 1 1 1 0 0 0 1 1 0 1

From Table 4, the required logic formulas
are formed as follows

322

Thus the simplification of address
t:ransfonnation for Mode 17 is the com
pensation for 64kw reduction of memory
capacity. In other words,. we exchange
64kw memory capacity for the feature of
conflict-free access.

The Memory Control Unit
of AP-601 Computer (2](6][7 }(81

As shown in Fig.1, the memory control
unit of the AP-601 computer is used to
organize the configuration of Mode 17 /
Mode 31, arrange the accesses of multi
requests to be executed, and process the
compression and restoration of vector
access, indirect address, .pipelines'
chaining, etc.

It provides double busses for data
array access, and a single bus for I/O
and scalar access. In order to produce
address transformations continuously,
there are two address forming pipelines
consisting of four segments each. The
former two segments are used to form the
absolute address and the latter.two·are
used to produce address transformations
(Fig.2, Fig.3). To match the address
forming pipelines, there are another two
pipelines for data written in, and two for
data read out. The control signal genera
tor is also a pipelined unit for synchro
nizing the operation of the whole memory
control system-.

In short, all the. main memory system
including the memory control unit is
fUlly pipelined and equipped with self
testing and self-checking circuits.

The logic diagrams shown in Fig. 2 and
Fig.3 are separately designed from the
formulas which have been derived for cal
culating Nm and 1\n,in the above sections.

Conclusion

As mentioned above, the ratio of the
average speed of Mode 17 to that of Mode
16 is K17-::::::1.5. Similarly, we have
K31= 1.4. Since the quantity of integra
ted circuits used for address transfor
mation may be neglected in comparison
with that of the whole memory system,we
get a 50% increase in access speed with
1/16 increase in memory hardware for
Mode 17. And we get a 40% increase in
access speed with 1/32 decrease in me
mory hardware and 64kw decrease in me
mory capacity.

Since the new memory system is fUlly
pipelined, it results in very high data
array access speed and is operated with
very high efficiency. ·

To Memory

From Request units

d.1
d.1

olr olz

Ho

ab 11'1 0.'2 «3

p q 10181

ao Ill 1/.2

Memory started
Signal To Memory

Data
Fan .In

Block Data

Pa ta Pi p el in 11.

Access
Scalar and Permition
I/O Data

Fig.1, Block Diagram of Memory Control Unit

~ 3

s3 s4'

I0/81

aq 010

Fig.2, Logic Diagram for Calculating Nm31

a:c ll~ a·, a'r o.B a'• O.lo O.lt rm

1/.3

Fig.3, Logic Diagram for Calculating Am31

323

To Request units

Data.
Fan ow

From Memory

Ss

o.o

ll\3 0:14 o.'15 11176
lllS

R$f erences

(\} Burroughs Corporation, "Introduction
to Burroughs Scientific- processor,"
Document,1105327, Detroit Mich.
July 1977.

[2} D.H.Iawrie,"Access and Alignment of
Data in an Array _Processo:r1•, IEEE
Trans. on Computers, Vol.C-24,No.12
pp.1145-1155, Dec. 19-75.

[3J D.Ch.ang, D.J.Kuckt and D.H.Iawrie,
"On the Effective Bandwidth of
Parallel Memories," IEEE Trans. On
Computers, Vol.C-26, No;,5 pp.480-
490, May 1977.

[4 J Carl Jensen, "Taking Another Approach
to Supercomputing," Datamation March.
1978.

[5} Cray Research Inc."Cray-1 Computer
system Hardware Reference Manual,"
MinneapolisMinn. Nov.1977.

[6] P .M.johnson," An Introduction to
Vector Processing," Computer Design,
Feb.1978 pp89-97.

[7] c.v~Ramamoorthy and H.F.Li," Pipeline
architecture," ACK Computing Surveys,
Mar.1977, pp.61-102.

[8] R.M.Russel," The Cray-1 Computer
System,_" Communications of the ACM,
Jan.1978 pp.63-72.

324

MODELING OF SHARED-RESOURCE SYSTEMS USING

THE CENTRAL-SERVER QUEUEING MODEL

N. c. Strole
IBM corporation

Research Triangle Park, N. C.

SUMMARY

This paper introduces an efficient analytic
method based on the central-server queueing model
for establishing the initial design parameters for
the simulation analysis of shared-resource: com
puter architectures. The analytic model, origin
ally designed for the optimization of multipro~
gramming systems, is shown to be applicable to the
cost-throughput optimization of a shared-resource,
multiprocessor system specifically designed for
concurrent execution of tasks within a single job.
Results from the analytic model are corroborated
via simulation techniques with the Duke University
Shared-Resource Simulator (DUSRS).

Background. One of the major goals in simulating
shared-resource computer architectures is to de
termine an optimum resource conf.iguration for hand
ling a specified workload. An optimum configura
tion for a system may be that combination of re
sources that maximizes system throughp\J.t for a
given workload, or possib1y a system configuration
that suffers the least degradation in throughput
due to faults in system components (fault
tolerant system). However, many system designers
are interested in maximizing the system through
put for a given system cost [4]~ An analytic
technique based on the central-server queueing
model, first presented by Trivedi and Wagner [9],
is shown in this paper to be applicable to the
cost-throughput optimization of a shared-resource,
multiprocessor system specifically designed for
concurrent execution of tasks within a single job.
This model is demonstrated to be an efficient

.method for establishing the initial design para
meters required by the Duke University Shared
Resource Simulator (DUSRS) [8] for the simulation
of shared-resource computer architectures.

An analytic model for maximizing system
throughput in a multiprogramming environment by
proper choice of device speeds, subject to a
system cost constraint, was shown to be applicable
to closed queueing networks and proven to yield a
global optimum to the optimization problem [9].
The method of Lagrange multipliers was implemented
in a Fortran program [5] to transform the problem
into a system of nonlinear equations that were
solved by employing an existing system subroutine
package. Workload parameters, branching proba
bilities, and device costs were factored into the
analysis over a range of system costs with varying
degrees of multiprogramming, resulting in relative
device utilizations, device speeds, and job through
put rates for each system budget and degree of
multiprogramming. A thorough development of this
analytic model can be found in [10].

P. N. Marinos
Dept. of Electrical Engineering

Duke University

Modeling Parallelism. The active resources in a
multiprogrammed system, such as the bus and I/O
channels, can be represented by a central-server
queueing model having m+l service centers
(Figure 1). The ith service center consists of a
single server and a queue for temporarily holding
tasks waiting for service. The classical usage of
the central-server queueing model assumes that the
degree of multiprogramming, n, represents the
number of concurrent jobs. Each job can be in
only one of the servers or queues at any given
time, and therefore, an individual job can be rep
resented as a series of tasks, each requiring a
particular system resource and a certain execu
tion time for its completion. The tasks are
serial in nature in that they pass from one server
to the next during execution, thus not allowing
task concurrency within a single job. All tasks
must pass through the central server (CPU) before
branching to one of the I/O servers with a fixed
branching probability Pi , i=O, l·,, ••• ,m.

To accurately model shared-resource systems,
task concurrency within a single job must be rep
resented. A precedence relation on the set of
tasks, T, present in a job can be established by
the partial ordering relation, R, such that tRt'
whenever task t completes before t' can begin.
Tasks t and t' are independent if they are non R
related. A directed path of tasks of length k may
be defined as (x 1 x 2) (x 2 x3) ••• (~-1XJt) where
Xidenotes a node (or task) at the ith level in the
path. In such a directed path, for i and j such
that l~i<j~, x. is a successor of xi and Xi is a
predecessor of *j· A terminal task is one with no
successor, while one with no predecessors is an
initial task[3].

The maximum length, kmax• of any path within
the job, represents the number of potential levels
of parallelism within the job. Assuming a total
of N tasks within a job, the degree of parallelism,
D, for the job (i.e., the number of parallel tasks
per level) is defined to be:

(1)

Thus, D represents the mean number of concur
rent active tasks within the job at any given time.
For example, the hypothetical precedence graph
shown in Figure 2 is composed of 20 tasks with a
maximum path length of 5, resulting in a degree of
parallelism, D=4.

The central-server model in Figure 1 can be
adapted to model a single job having a fixed num
ber of concurrent tasks, D, as shown in Figure 3.
The CPU becomes the master instruction processor
(MASTER)·~ the m I/O devices become m distinct

325

0190-3918/81/0000/0325$00.75 © 1981 IEEE

classes of functional units, each represented by
a sinqle equivalent server (FUNIT} ; and D
becomes the degree of multiprogramming. When
ever a task leaves the new job path, it. is
assumed that this represents the termination of
the present job, which is immediately repl.aced
by a new job having the same mean number of con
current tasks, D.

The N tasks which comprise the job can be
partitioned into g sets, Q1 , i=l,2, ••••• ,g,
where the tasks in each sel: Q1 require a: type-i
functional resource from the system pool of g
resource classes. It is assumed that one addi
tional task-is present in the system that does not
branch to one of the functional units upon com
pletion at the MASTER to represent the termina
tion of one job and the entry of a new job along
the new program path. We define Po as the new
job path branching probability and it is given by:

P0 = l/(N+l) (2)

The probability, Pi, that any given task will
require a type-i device is given by:

pi= IQil /(N+l) i=l,2, ••• g, (3)

where IQil denotes· the cardinality of set Qi'.
Also, the sum of all Pi's must be such that:

g

E
i=O

1. (4)

The probability, Pi' that a task within the job
will.require service at the ith server is assumed
to be identical to· the branching probability, p,,
in the central-server model shown in Figure 1. 1

Thus, the branching probabiiities for the central,
server model in Figure 3 are defined by equation
(3).

It is now conjectured that one may equate the
degree of parallelism, D, within a job to the
degree of multiprograuning in the optimization
problem, and thus use the analytic program to
determine an optimum set of device speeds for a
given budget. Branching probabilities are deter
mined by the distribution of task types throughout
the job as described above.

Several restrictions must be applied to the
optimization problem to permit a closed-form
so·lution; that is,

1. Task execution times are assumed to be
exponentially distributed.

2. A task can occupy only one server at a time.
3. All tasks must pass through the MASTER upon

leaving a FUNIT.
4. The nwaber of concurrent tasks must remain

constant.

The assumption that a task can occupy only
one server ,or FUNIT at a time is not always true,
since actual shared-resource systems permit tasks
to simultaneously access multiple resources, such
as memory, buses, and processing elements.

326

Therefore, analytic techniques are limited in
their ability to accurately model delays due to
resource contention. The analytic model is
thus seen as a possible tool for establishing
some general system parameters for use in a more
representative simulation model of a shared
resource system.

The Duke University Shared-;Resource Simu
lator (DUSRS) has been developed as a research
tool for the evaluation of shared-resource com
pu ter architectures and parallel program
schemata [l}. The user can define a pool of
system resource classes to be shared concurrent
ly by one or· more instruction stream processors,
each with an optional multiprogramming capa
bility. Workload data can be generated by a
separate program facility that allows the user
to implicitly define the hardware interconnection
and control structure of the system, along with
the process tasks to be executed [7]. The
simulation output gives the resulting job execu
tion times and functional resource utilizations.

The basic hypothesis that the degree of
parallelism, D, within a single job can replace
the. degree of multiprogramming, n, in a central
server queueing model for the cost-throughput
optimization of a shared-resource system, was
validated by comparing the results from various
runs of the analytic model with the results from
comparable runs of the DUSRS simulation pro-
gram [7]. Characteristic workloads, consisting
of 10 jobs with degrees of par_allelism, D, of 2,
4, and 8, were evaluated by both the analytic
and the simulation models for a system consist
ing of one MASTER, one PROCESSOR, and one rio
CHANNEL. The 95% confidence interval for job
execution time was computed (Ta:ble 1) as described
in [6] and plotted with the analytic results·
(Ta:ble 2) as a function of system cost;

The graphical results for D=8 (Figure 4) shciw
that the mean job execution times as determined
by the analytic model fall within the 95% con
fidence interval established from the DUSRS
simulation results. In addition, the device
utilizations from the two methods are in very
close agreement as shown in Ta:ble 3. Thus, the
hypothesis that the degree of parallelism, ~ with
in a job can replace the degree of multiprogram
ming, n, in a central-server queueing model for
the cost-throughput optimization of a shared
resource system is shown to be valid, and the
device speeds produced by the analytic model
can be interpreted as the effective speed of the
FUNIT classes, comprised of an unknown number of
functional units. However, the simulation runs
were implemented so as to accurately reflect the
queueing model restrictions of allowing only one
server (FUNIT) of each type. Thus, the true
parallelism within the workloads that would have
allowed multiple PRbCESS and IOTASKS to occur
simultaneously was not sunulated.

The mean number of tasks in each queue in a
FUNIT class can be estimated using a technique
known as mean value analysis [2]. We can assume
that this represents the average number of

concurrent tasks within a job requiring access to
each FUNIT class. A further simulation experiment
was conducted in which the number of FUNITs in
each class (except MASTER} was increased to this
number to allow concurrent task execution, with no,
changes to the workload. 'l'he device. speeds were
reduced so that the effective speed of each device
class was comparable to that of a faster single
device. The 95% confidence interval established
from this experiment (Table 4} also enclosed the
analytic results as plotted in Figure 4.

Conclusion. In this paper, an analytic technique
has been described for determining a s~t of cost
throughput optimized parameters for use in a more
realistic and detailed simulation model of a shared
resource system for executing jobs containing
potential parallelism among tasks. This technique
was validated using independent simulation exper
iments for a class of systems that were assumed
to be representable by a central-server closed
queueing model.

REFERENCES

[l] N. Bell, A Shared Resource Schema for Paral
lel Computation, Ph.D Dissertation, Duke
University, (1977).

[2] J. P. Buzen and P. J. Denning, "Measuring and
Calculating Queue Length Distributions", com
~' (April 1980}, pp. 33-44. --

KEW JOB PATH

CPU

FIGURE 1 - CENTRAL-SERVER QUEUElNG~l'lODEL

327

[3] E. G. Coffman and P. J. Denning, Operating
Systems Theory,, Prentioee-Hall, (.1973}.

[4] D. Ferrari, Computer Systems Performance
Evaluation, Academic Press, (1972}.

[5] R. E. Kinicki, Queuing Models for Computer
System Configuration Planning, Ph.D Disserta
tion, Duke University, (1978}.

[6] H. Kobayashi, Modeling and Analysis, Addison
Wesley, (1978}.

[7] N. C. Strole, Simulation Facility for Per
formance Evaluation of Shared-Resource Computer
Architectures, Ph.D Dissertation, Duke Univer
sity, (1980}.

[8] N. c. Strole and P. N. Marinos, "A Shared
Resource Simulation Facility", Proceedings of
1979 Johns Hopkins Conference on Information
Sciences and Systems, pp. 85-90.

[9] K. S. Trivedi and R. A. Wagner, "A·Decision
Model for Closed Queuing Networks", IEE.E
Trans. on Software Engr., (July 1979-)-,
pp. 328-332.

[10] K. s. Trivedi and R. E. Kinicki,"A Model for
Computer Confi9uration Design", computer,
(April 1980}, pp. 47-54.

Fil;URE 2 - PRECEDENCE GRAPH WITH DEGREE 4

J
0
B

T
I

1.5

M 1 •. 0
E

s
E
c
1l
N
D
s 0.5

NEW JOB PATH

HA STER

p
0

P2

p
g

f"UNIT g

FIGURE 3
CENTRAL-SERVER MODEL FOR SHARED-RESOURCE SYSTEM

.......
......

....................
............

......................... , ""
............ -..... ---

= ANALYTIC

= DUSRS

--

//-t-~~-r~~--t-~~---ir--~~+-~~~
0 lOK UK 12K 13K 14K 15K

SYSTEM COST C$1

FIGURE 4 - 95ll CONFIDENCE INTERVAL• DEGREE=S

TABLE 3 - ANALYTIC VS DUSRS UTILIZATION ·RESULTS

DEG DEVICE ANALYTIC DUSRS ANALYTIC DUS RS
TYPE RELATIVE RELATIVE ACTUAL ACTUAL

MASTER 1.0 1.0 36.0l'; 36.0l';
2 PROCSR 1.72 1.71 61.9l'; 61. 7)1

I/O 1.49 1.48 53.6)1 53.3l';

MASTER 1.0 1.0 52.3)1 52.9l';
4 PllOCSR 1.45 1.47 75.9l'; 77.5)1

I/0 1.31 1.30 6B.5ll 69.0ll

MASTER 1.0 1.0 69.6% 70.7l';
8 PRO CSR 1.23 1.22 85.6)1 86.4l';

Il'O 1.17 1.16 81.8% 82.4l';

328

TABLE l - DUSRS 95)1 CONFIDENCE INTERVAL- DEGREE•8

J 0 B ·• UN T IM E CSEC)

-BUDGT.+ $10K $12K $13K $15K

MEAN 1.030 0.722 0.614 0.462
S.D. 0.096 0.067 0.056 0.042

E ±O.CJ72 - ±0.051 ±0.042 ±0.032
LOW 0.958 0.671 0.572 0.430
-HIGH 1.102 0.773 0.656 0.494

TABLE 2 - ANALYTIC RESULTS

J 0 B R U N T I M E (SEC)

BUDGT-t> $10K $12K $13K $15K

MEAN 1.047 0.727 0.619 0.465

TABLE 4

DUSRS 95)1 CONFIDENCE INTERVAL WITH MULTIPLE
DEVICES - DEGREE=8

J 0 B R U N T I M E ISECI

BUDGT~ $10K $12K $13K $15K

MEAH 1.063 0.737 0.631 0.472
S.D. 0.114 0.080 0.064 0.050

E ±0.070 ±0.040 ±0.039 :l:0.031
LOW 0.993 0.697 0.592 0.441
HIGH 1.-133 o. 777 0.670 0.503

ABOVE RUNS MADE WITH 3 PROCESSORS AND 3 I/O CHANNELS

j,.

I

]>

I·

APPROXIMATE MODELS FOR MULTIPLE BUS

MULTIPROCESSOR SYSTEMS

M. Ajmone Marsan
Istituto di Elettronica e Telecomunicazioni

Politecnico di Torino -· Italy

ABSTRACT Markovian models are developed for the
performance analysis of multiprocessor systems in
tercommunicating via a set of busses. The per
formance index is the average number of active
processors, called processing power. The computa
tional complexity of the exact models increases
very rapidly with system size, thus making the
exact analysis impractical even for medium size
systems. To overcome the complexity of computati
on, several approximate models are introduced.
The approximate results are compared with the
exact ones and found to be surprisingly accurate
for a wide range of configurations.

1. INTRODUCTION

Early multiprocessor systems were develop
ed using crossbar networks to connect processors
and memories /1-5/. With the availability of inex
pensive microprocessors, multiprocessor systems
with a very large number of components are now
becoming feasible and cost effective. For such
systems a crossbar interconnection network may be
intolerably expensive and in general it would
provide a bandwidth much higher than needed. A
more attractive alternative is represented by bus
oriented interconnection networks. Single or mul
tiple bus architectures can be used, according to
the bandwidth required for the specific applicati
on. These interconnection networks are generally
called "multiple-bus" or "highway deficient" /5/
networks. Some papers addressing the analysis of
bus systems appeared very recently in the litera
ture /5-7/.

This study considers multiple processor
systems that exchange information through a com
mon memory which consists of several modules.
Processors and common memory modules are connect
ed by a set of "global busses". Each global bus
can connect any processor to any memory module.
Every processor is also connected (and has exclu
sive access) to a private memory. We indicate a
multiprocessor system with p processors, m common
memories and b busses with the notation pxmxb.
The block diagram of a 3x3x2 system is shown in
fig. 1.

This work was performed whiZe M. Ajmone Marsan was
visiting the UCLA Computer Science Department. The
research was supported in part by ONR under aon-
tract N00014-79-C-0866 and in part by NATO.

0190-3918/81/0000/0329$00.75 © 1981 IEEE

329

M. Gerla
~omputer Science Department

University pf California, Los Angeles - USA

COMMON MEMORY MOOULES

GLOllAL llUSSES

PROCESIOflSWITHl'RIVATE
MEMORIES

Fig. 1 - Block diagra!ll of a 3x3x2 system.

The exchange of information is accomplish
ed by fist writing the information in the appro
priate common memory module and then reading it
from the destination processor. Due to the shar
ing of both memory modules and busses, contention
may arise, causing processors to queue for a
resource which is currently in use. If the number
of busses b is greater or equal to the smaller
between the number of processors p and the number
of memories m, i.e. b) min(m,p)·, then the conten
tion is only caused by the ::haring of memory
modules.

Multiple processor systems for which the
inequality holds are usually known as "crossbar"
architectures. Multiple processor systems for
which the ini;quali ty does not hold are usually
called "highway deficient" systems or "multiple
bus" architecture. For these systems we assume
throughout this paper that P). m} b. The case m > P
can be analyzed using the same techniques descri
bed here; the models are generally simpler than
those presented in this paper.

It is possible to construct a queueing
network model for the analysis of both types of
systems. The general case is shown in fig. 2.
Processors join memory queues, and before proceed
ing to service (i.e. accessing memory) they must
be granted a permit (bus). The permit is returned
upon completion of service. The general model is
thus a closed queueing network with p classes of
customers and with passive resources /8,9/, which
in this case represent the busses. In the case of_
crossbar architectures the presence of busses can
be ignored, thus making the analysis substantial
ly simpler than for multiple bus systems.

A processor can be in one of three diffe
rent states:

Fig. 2 - Closed queueing network model.

(1) The processor can execute in its pri
vate memory

(2) The processor can ,exchange data with
other cooperating processors, by rea
ding from, or writing into the com
mon memory modules.

(3) The processor can be waiting to ac
cess a common memory module.

\lie say that a processor is ACTIVE when it
is in state (1), and the goal of our analysis is
to determine the average number of active proces
sors, P, called processing power.

P is the performance index considered in
the sequel. Other important performance measures
are simply related to P.

The assumptions we make regarding the ope
ration of the system are similar to those found
in the literature on crossbar systems.

Each processing unit is active for some
time while the CPU is executing a program that
only requires accesses to its own private memory;
the duration of these activity periods is an
exponentially distributed random variable with
the same parameter A. for all processors. At the
end of an activity period processors generate
access requests direct.ed to a specific memory,
chosen at random among< the external common memory
modules; each memory. is requested with the same
probability l/m. If a bus is available and the
requested memory is free, the processor accesses
it for an exponentially distributed period with
parameter µ, , the same for all processors and
memories. If either no bus is available or the
requested i memory is busy, the processor idles
waiting; for the necessary resources. At the end
of an· :access the processor begins a new activity
period; :.Lbus and memory are released and can: be
accessed by other processors. An arbitration me
chanism for the assignment of the bus is assumed,
that randomly chooses among the heads of the
nonempty queues referencing free memory modules.

330

The model we consider is thus completely
symmetric with respect to processors and memori
es. These symmetries are not necessary to obtain
a Markovian model, but allow some reductions in
the size of the resulting Markov Chain.

\Iii th the above assumptions we can con
struct a Markov chain to model the behavior of
the system. Using the theory of "Lumpable" Markov
chains /10/, we can reduce the number of states
of the chain/11/.

The state definition for the exact lumped
chain is:

where
(1)

n is the number of processors currently
a~cessing a common memory

q1 , ~ • • ,qb :are the numbers of processors
queueing for the memories currently acces
sed, arranged in decreasing order

qb+l' • • • ,q are the numbers of processors
queueing for a free memory, not accessib
le because no bus is available, arranged
in decreasing order.

The general pxmxb case is not easy to handle,
even after lumping is applied. \lie will therefore
introduce in the next section some approximations
which further reduce the size of the Markov chain
and permit us to attack the most general case.

2. APPROXIMATE MODELS

The reason for the introduction of appro
ximate Markovian models is that, for general mul
ti bus systems, the number of states increases
very rapidly with system size. The explosive grow
th is due to the detailed information that the
states must record about the queues inside the
system. In particular for each state of the Mar
kov chain the number of customers queued for all
common memory modules must be recorded. That is,
we not only need to know the number of the queued
customers, but also must be concerned with all
the possible ways of distributing these customers
among the system quE>ues. If we reduce the amount
of information about the status of the queues we
have. no longer a first order Markov chain beha
vior in the evolution of the system through the
state space. The approximate Markov models that
we introduce in this section analyze the system
behavior by assuming that the transitions between
the states with reduced queueing information
still satisfy the Markov property. The results
that we will obtain in this way are approximate
and must then be compared to the exact ones to
test their accuracy.

In order to define a simplified model,
one needs to specify:

a) the state· definition, that is the
amount of information used to describe the state
of the Markov chain. As was mentioned before we
will use reduced information about the queues in
the system.

b) the method to calculate the transiti
on rates for the simplified Markov model. As the
behavior is approximated by the simplified Markov
chain the transition rates must be evaluated ac
cording to some empirical rule, and several diffe
rent rules can be envisioned.

Three different state definitions (named
A, B and C) and two heuristic methods for the
evaluation of the transition rates (named 1 and
2) were considered. The .approximate models are
named using the letter referring to the state
description and the number referring to the evalu
ation of the transition rates.

Model Al - The state of the system is
represented by the total number of proces
sors waiting either for a busy memory or
for a busy bus, n , and ~Y the number of
processors current'ly accessing a common

memory module, nm. We thus have a pair

(n , n)
m q

(2)

TJ:le transition rates are evaluated by as
suming that each queued processor requests, with
uniform probability, any of the common memory
modules currently not accessible (this approxima
tion implies that a queued processor can randomly
reselect a new memory when a memory or bus beco
mes unblocked).

Next we introduce a modification of model
Al, by specify.ing a different method for the
calculation of the transition rates:

Model A2 - The state of the system is
defined as in model Al). The transition
rates are evaluated using an "averaging"
technique.

In order to evaluate the new transition
rates between two macrostates, we count the num
ber of states that we merge into a macrostate,
add all rates from the merged states to each
neighboring macrostate, and define as transition
rates the ratio between the sum of transition
rates and the number of states merged.

We now consider another definition of sys
tem state (yet retaining the rate computation
rule of model A2):

Model B2 - The state of the system is
represented by the following triplet: (1)
the number of processors accessing a com
mon memory module; (2) the total number
of processors waiting either for a busy
memory or for a busy bus; and (3) a flag

331

which is set to zero when no processor is
queued for a bus, and is set to one when
one or more processors are queued for a
bus in order to access a free common
memory module.
The transition rates are evaluated using
the averaging technique described in the
approximation A2.

Clearly, model B2 is a refinement of A2,
since the state is improved by adding a binary
information concerning the system queues.

All the preceding approximate models lack
of one feature which is very desirable in all
analytic models: namely, a closed form solution.
We introduce here the simplest possible model
which provides us with a closed form solution.

Model C2 - The system state is simply the
number of active processors: no account
is kept of the state of internal queues.
The transition rates are evaluated using
the averaging technique.

We have reduced the system description to
a birth and death Markov chain, whose solution is
easily obtained.

3. RESULTS
We compare exact and approximate analytic

results by considering a 6x4x2 system. Results
are presented in Table 1. The first column gives
the value of Q = l /µ, , the second column shows·
the exact value of processing power as a function
of Q , evaluated from the exact lumped chain. The
other columns show the percentage error that af
fects the processing power value computed with
each of the four approximations introduced. For
this case the exact chain has 37 states, whereas
the approximate chains have 12, 12, 16 and 7
states, respectively.

Approximations Al , A2 and B2 seem to
yield upper bo;.mds on the processing power, where
as C2 gives a lower bound. The upper bound can be
intuitively explained for approximation Al, since
the random redistributing of processors to memo
ries tends to relieve congestion and thus to
improve performance. The bounds seem to be rather
tight, since percentage errors well below 10%
were typically observed.

A 16-processor, 8-memory, 3-bus system
was simulated, in order to test the accuracy of
the approximate models for large system size.
Results are shown in table 2. The approximate
Markov chains o.f models Al and C2, having 46 and
17 states respectively, were solved. The results
show that the approximate models behave very well
for a system of this size; indeed, the approxima
te results are so close to the simulation results
that in most cases they fall within the 99. 9%
confidence interval. Moreover, since the system

of linear equation associated with the approxima
te Markov chain can be easily solved with numeri
cal methods, the awroximate models require much
less computer time than a simulation program.

REFERENCES

/1/ D.P. Bhandarkar "Analysys of memory inter
ference in multiprocessors". IEEE Transac
tions on Computers, September 1975, pp.
a97-9os.

/2/

/3/

F. Baskett and A.J. Smith 0 Interference
in multiprocessor computer systems with
interleaved memory". Communications of
the ACM, June 1976, ppi 327-334.

·C.H. Hoogendoorn "A general model for me-
mory interference in multiprocessors".
IEEE Transactions on Computers, October
1977, pp. 998-1005.

/4/ A.S. Sethi and N. Deo "Interference in
multiprocessor systems with localized mem
ory access probabilities". IEEE Transac
t:j.ons on· Computers, February 1979, pp.
157"'.'173.

/5/ P.J. Willis "Derivation and comparison of'
multiprocessor contention measures". IEE
Journal on Computers and Digital Techni
ques, August 1978, pp. 93-98•

/6/ 5. Jioener and W. Roeder "Efficiency of a
multiprocessor system with time-shared
busses". EUROMICRO Newsletter, 1977, pp.
35-42

/7 / F. Fung and H. Torng "On the analysis of
memory conflicts and bus contentions in a
multiple-microprocessor system". IEEE
Transactions on Computers, January 1979,
pp. 28-37.

/8/ K.M. Chandy and C.H. Sauer •iApproximate
methods for analyzing queueing network mo
dels of computer systems". ACM Computing
Surveys, September 1978, pp. 281-317.

/9/ T. W. Keller "Computer system models with
passive resources". PhD Thesis, Universi
ty of Texas at Austin, 1976.

/10/ J .G. Kemeni and J .L. Snell "Finite Markov
chains". Van Nostrand, Princeton, 1960

/11/ M. Ajmone · Marsan and M. Gerla "Markov
models for multiple bus multiprocessor
systems" UCLA Technical Report No. CSD

.810304, Feb. 1981.

332

e exact Al A2 B2 C2

.01 5.94 .o .o .o .o

.1 5.38 ;07 .06 •. 01 -.39

.3 ·4.11 .89 .59 .15 -2.24

.5 3 •. 19 1.82 .99 .30 -3.45
1. 1.86 2.52 .89 .28 . -3. 73
3. .65 1.83 .27 .07 -2. 75
5. .39 .. 1.56 .18 • 08 -2.49 .

10. .20 1.36 .13 .10 -2.29

Table l - Exact results and percentage
errors for the 6x4x2 system.

e simulation Al C2

.01 15.98 15.98 15.98

.1 14.24 14.27 13.89

.333 8.59 8.73 8.20

.5 . 6.01 .5.99 5.79
1. 2.99 2.99 2.97
3. 1.01 1.00 I o.99
5. .60 .60 .60

10. .30 .30 .30

Table 2 ,.. Simulation and approximate
results for the 16x8x3 system.

THE ANALYSIS OF A DECENTRALIZED CONTROL ALGORITHM
FOR JOB SCHEDULING UTILIZING BAYESIAN DECISION THEORY

John A. Stankovic
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, Massachusetts 01003

Abstract -- The principles of Bayesian deci
sion theory can be applied as a systematic approach
to complex decision making under conditions of im
perfect knowledge. Decentralized control of indi
vidual functions of a distributed processing sys
tem seems to be an especially relevant area for
application of Bayesian decision theory. This
paper formulates the distributed processing job
scheduling problem in Bayesian decision theory
terms, solves the problem for a particular algor
ithm, and discusses the usefulness, limitations
and open questions regarding this approach.

Introduction

Many of the potential advantages of a "cooper
ative" distributed processing system depend on the
ability to develop effective decentralized algor
ithms for the executive control functions of the
system, e.g., communication and scheduling. Pro
posed decentralized algorithms must be analyzed
for performance (e.g., average delay of messages
for the communication function or throughput for
the scheduling function), for logical correctness,
reliability, overhead costs, stability, fairness,
extensibility, cost and difficulty of initializa
tion, understandability, and how well the algor
ithms meet the specifications [1,2]. Even though
many of these criteria are subjective, both the
criteria themselves and their interactions must be
addressed as best as possible by system designers.
A further complication to the analysis is due to
the conditions of imperfect knowledge that exist
in a distributed system (1,3]. What is required
is a methodology that addresses these criteria,
their interactions, and the conditions of imper
fect knowledge.

To date, mathematical programming, queueing
theory and control theory have been applied to the
analysis of decentralized control problems. Solu
tions using these disciplines are limited in some
or all of the following ways: they are static op
timization problems, require large amounts of com
putation, depend on accurate knowledge of the cur
rent state of the system, do not include details
of the algorithms, and have limited or no potential
for incorporating the other important issues of an
algorithm's effectivenes.s 1 isted above.

Our approach to the ·development and analysis
of decentralized control algorithms is to use
Bayesian decision theory [4,5,6,7,8,9]. This
theory.directly addresses decision making under
uncerta:i.nty, and has the ability to incorporate many
complex factors and their interactions via the
utility function, e.g., reliability and performance.
Furthermore, because of the systematic approach of
Bayesian decision theory, designers of distributed
systems can apply the principles of Bayesian deci-

333

0190-3918/81/0000/0333$00.75 © 1981 IEEE

sion theory as a methodology for algorithm design
and evaluation as this paper illustrates.

This paper presents an example that illustrates
th€ use of Bayesian decision theory in developing
and analyzing a decentralized job scheduling al
gorithm. Several variations of the basic example
are also presented. The examples are simple
enough to understand yet i nvo 1 ved enough to il 1 us
tra te the practical use of decision theory to
evaluate job scheduling decisions.

Decision Theory Under Uncertainty

There ·are seven essential steps in the form
ulation and solution of a decision problem under
uncertainty. A particular formulation and solu
tion is called Bayesian dec.ision theory. In the
following sections each of these steps is ex
plained for a decentralized job scheduling algor
ithm. We then explain how to make use of the
evaluation by incorporating the analytical results
into the scheduling algorithm. The algorithm it
self is described in a piecemeal fashion through
out the seven steps of the problem formulation.

Step One~Actions

The job scheduling function fn a distributed
processing system has two tasks: schedule jobs to
run on hosts, and move jobs between hosts to bal
ance the system load. The job scheduling function
is implemented by n controllers (decision makers),
one controller running on each host. For illustra
tive purposes assume n = 5. Each controller
schedules on a fCFS basis when its host becomes
available. There is no decision strategy needed
for choosing the next job to run. Hence, this
action of the scheduler need not enter into the
decision problem. On the other hand, in order to -
balance the load each controller i may perform one
of the following actions A= {aj} j = 0, ..• 5:

ao: move no jobs

al: move one job from queue i to host 1

a2: move one job from queue i to host 2

a3: move one job from queue i to host 3

a4: mov.e one job from queue i to host 4

a5: move one job from queue i to host. 5

Moving a job to oneself is considered as moving 0
jobs, hence a0 is not really required. It is used
in this example simply to emphasize the action of
moving no jobs independently of the controller
that i.s being considered. When activated, a con
troller continues to iterate until a) it decides
to move 0 jobs, orb) it has decided to move

enough jobs to satisfy itself that it ha~ done its
share in balancing the load at this instance of
time. Part (b) must take stability into account,
i.e., all controllers should not dump all of their
excess jobs into a lightly loaded host be.cause
that will most likely cause an unstable system.·
The actual movement of the jobs will be done asyn
chronously with the scheduler. The time required
for the movement is dependent on the length of the
jobs, traffic of the network and the di stance to
be moved. Periodically, state information is
passed around the system in a manner similar to
how ARPANET routing information is passed [10, ll].
The scheduling algorithm itself is ass urned to com
plete before the next state information update
message arrives. This assumption is reasonable
since the algorithm essentially just performs a
table lookup. Note, that for more complicated sit
uations each controller might have a different set
of possible actions, or move clusters of jobs at
once. Such actions are simply added to the set of
possible actions.

Step Two~States of Nature

As the second step of a decision' problem, the
actual states of nature that could occur are speci
fied. For scheduling, the states of nature are de
fined in terms of how busy a host is. In this ex
ample, this quantity is measured in terms of the
number of jobs in the queue. More complicated
quantification of the busy estimate can be based
on many factors including, for example, the· esti
mated requirements of the. jobs in the queue [12].
However, the state information used to derive the
busy factor is independent of the use of that busy
factor in the decision theory. context. The states
of nature are deffned as a = {a0, a1 , ... e15} where:

ao: no hosts are least busy

al: host l is least busy by 1-2 jobs

a2: host 2 is least busy by 1-2 jobs

e3: host 3 is least busy by 1-2 jobs

a4: host 4 is least busy by 1-2 jobs

a5: host 5 is least busy by 1-2 jobs

e6: host l is least busy by 3-5 jobs inclusive

a7: host 2 is least busy by 3-5 jobs inclusive

a8: host 3 is least busy by 3-5 jobs inclusive

ag: host 4 is lea·st busy by 3-5 jobs inclusive

alO: host 5 is least busy by 3-5 jobs inclusive

ell: host l is leasy busy by >5 jobs

el 2= host 2 is least busy by >5 jobs

e13: host 3 is least busy by>5 jobs

a14 : host 4 is least busy by >5 jobs

a15 : host 5 is least busy by >5 jobs

Obviously, the set e can be specified in many ways.
The parameters 1-2 jobs, 3-5 jobs and >5 jobs cho
sen in the above. specific11tion of. a would typically
be tuneable system parameters and in practice the
three classes would probably vary more than shown

334

above. Furthermore, in a real system this defini
ti.on of e is probably not reasonable because it
does not distinguish between the following cases.
Supposeh.o-stl through host 4 haveO jobs and host
5 has 8 jobs, versus host l through host 4 with
1000 jobs and host 5 with 1008 jobs. In the
latter case job movement is probably not warranted.
Another possibility is to define a relative to the
local host's busyness. We continue with the above
definition of e, for ease of explanation.

Note, that due to the absence of uniqueness
in both time· and space [3] in a distributed system,
a. cannot be known precisely. Hence, what is re-

1 '
quired is the probability of a given state occur
ring, P(e1}. i = 0, ... ,15 and this is best esti-
mated by measurements or simulation. The very
nature of a distributed system requires that pro
babilities be utilized in the analysis rather than
assuming accurate state information. Fortunately,
decision theory under uncertainty satisfies this
criterion for analysis.

Step Three~Utility Function

The function u(ei'aj) that assigns gains (or

losses) to each action aj j=0, ... ,5 for each state
of nature a., i=0, ... ,15 is called a utility func-

1 •'
tion. A difficult and subjective aspect of deci
sion theory under uncertainty is specifying the
utility function. · On the other hand, very complex
interrelationships and situations can be subsumed
within the specification of the utility function
allowing, for example, the evaluation of both re
liability and performance simultaneously. .The use
fulness of applying decision theory to decentral'"
ized control analysis revolves around the utility
function. That is, if the derived utility func
tions are accurate in predicting practical deci
sions, then this theory will prove of tremendous
help to the development and analysi_s of decentral
ized control algorithms. A hypothesis of this
paper is. that since there are methodological tech-
niques(a) for deriving utility functions (even
though the values are subjective), it is possible
to derive an effective utility function for the
scheduling function, At a minimum, the derivation
of the utility function should provide a good meth
odology for addressing complex interactions and un
certainty existing in distributed systems.

The utility function u(ai,aj) can be expressed
in table format. Table l is the utility function
derived for our job scheduling example. We now
briefly describe how the values in the table were
chosen.

It was decided to use a scale from 0 to 100 to
quantify utility. If the state of nature is a0
(all hosts are equally busy) and the action is a0
(no jobs are moved) then no utility is gained or
lost from performing action a0 . This serves as a

(a)These techniques are not the subject of this paper
but.they are based on several simple axioms (see [9].)

reference point and is assigned the value .50.
Hence, values between 0-49 indicate losses of uti
lity, while values 51-100 indicate gains of .util
ity. For states of nature e1-a4 (host .i is least
busy by 1-2 jobs) inclusive, the utility of moving
a job is chosen to be 60;
u(a 1,a1) = u(e 2,a2) = u(e3,a3} = u(e4,a4) = 60.
This is less than the utility for states a6 - e9
(host (i-5) is least busy by 3-5 jobs) which is
chosen to be 75 to indicate a non-linear increase
in utility; u(e6,a1) = u(a 7,a2) = u(e8,a3) =
u(e9,a4) = 75. The utility for states a11 -a15
(host (i-10} is least busy by >5 jobs) is chosen
:o be maximu~ and assigned the value 100; u(e11 ,a1)
- u(e12 ,a2) - u(e13 ,a3) = u(e14,a4) = 100 ..
This again accounts for a non-linear increase of
utility over the previous states.

Note entries u(e5,a5) = 55; u(a10 ,a5) = 60;
u(e15 ,a5) = 65 in Table l. These utilities are
lower than the utilities for other hosts in these
same situations. This might be true, for example,
because host 5 has limited memory or is a slow pro
cessor. In fact, many of the complex factors that
should be incorporated into the analysis of decen
tralized algorithms could be subsumed in the util
ity function. As an example, the u(e14 ,a4) in
Table l was chosen to be 100. This was based on
the idea that if host 4 were least busy by more
than 5 jobs then sending a job there is exactly
what should be done. However, u(a14 ,a4) could be
tempered to account for factors such as the over
head of moving jobs, or the reliability of that
particular host, or the probability that other
hosts will also detect the same condition and send
jobs to host i. The last factor implies that to
maintain a stable system if a host becomes lightly
loaded it should not be flooded with jobs.

The scheduling algorithm in this example, like
the original ARPANET routing does not protect
against ping-ponging (cycles). Hence, the utility
may be further lowered to account for the probabil
ity of a cycle developing.

All other entries in Table l represent losses
of utility. These entries indicate that moving
jobs to the wrong host is counterproductive. For
example, u(a1,a2), the utility of moving a job to
host 2 if the real state is a1 corresponds to a
loss of utility and is chosen to be 30. Other
losses are chosen to be consistent with this loss.

In summary, even though the development of the
utility function is subjective, attempting to cre
ate such a function is a viable methodology that
forces designers to consider. the factors involved
and their interrelationships. Furthermore, the sen
sitivity of the quantification of the utility func
tion for a given problem can be determined and then
used in the design process.

335

Step Four..:...:.Observations

Each controller maintains a table of state
information. The values in this table estimate
how busy each host of the .network is. This table
is periodically updated in a manner analogous to
the ARPANET routing tables [10]. In this way,
ea.ch controller maintains its own view of the
state of nature of the network.· The controller's
view at a particular instant of time is called an
observation. More formally, the conditional pro
bability that host i observes z1 when the true
state of nature is a1 is written as P(z1 I a1). In
our example, the set of possible observations is
Z = z0, z1, ... z15 where each zk corresponds to
ei fork= i except that the zk's are observations.
The values P(zklei) assumed for this example are
listed in table 2. In practice these probabilities
can be determined by simulation or by measurement,
and improved over time. For a "quasi-static" dis
tributed system it is possible to obtain these
probabilities dynamically. Again, such a probabi
listic view of a system is, in fact, what a dis
tributed algorithm must work with. Hence, the
model being developed closely resembles the real
system in this regard.

Step Five..:...:.strategies

Next, the controller needs to formulate pure
strategies which are decision rules that specify
the action aj, j = 0, ••. ,5 that the controller
takes in response to a particular observation zk'
k = 0, ... ,15. The set of possible pure strate
gies equals the number of actions raised to the
power x where x is equal to the number of observa
tions. In this example, the number of pure strat-
egies equals 616 . Fortunately, by using Bayesian
decision theory an efficient computation procedure
can be used to determine the best strategy with
out calculating all possible pure strategies.
However, the set of probabilities P(ei) i=l,2, ... ,
15 is required. For this example, the assumed
P(ei) is given in Table 3. Again, initially
P(a.) would have to be estimated, but could be re-

1
fined as measurements of the system were taken.

Step Six Value of Strategies

In the -Oecision theory problem formulation,
step six is to compute the action probabilities
for each pure strategy. However,· Bayesian deci
sion theory does not require the calculati.on of
all the pure strategies nor the action probabili
ties. In lieu of these calculations, the Bayesian
computational procedure takes three inputs. In
puts include the probabilities P(Zlei)·i = 0, ..• ,
15 (Table 2), P(ai) i = 0, ... , 15 (Table 3) and
the utility function u(ei,aj) i= 0, ... 15 and
j = 0, ... ,5 (Table l). Then by a series of sim
ple multiplications a maximizing action for each
observed state of nature is produced. (See [9]

for a description of the computational procedure.

It is also easy to calculate the expected
value of each action and tbe weighted expected
utility of the Bayesian strategy. This last num
erical quantity can .be used as a rough comparison
of different scheduling algotithms. PreciSe com
parisons are not meani_ngful unless the utility
functions of each algorithm are consistent wHh
each other.

Step Seven-Choice Criterion

Simply, the Bayesian strategy maximizes the
expected average·utility. That is, in our example
the Bayesian strategy is the set of actions that

15
maximize i~O P(ei)P(Zle;) u(ei'A) '. Other choice

criteria are possible .but are not discussed in
this .paper. This then completes the formulation
and means for a solution of a decisio.n problem.

Utilization of Results

The designer first formulates the problem and
algorithm in Bayesian decision theory terms. This
is a subjective but methodological approach. A
sensitivity analysis is then performed on the util
ity function to either enhance the confidence in
the quantification of utility or identify those
entries in the utility table that are highly sen
sitive. Careful treatment of these entries is
then required. The next step for the designer is
completely objective and consists of a simple com
putational procedure. The result is a set of maxi
mizing actions for each decision maker (Table 4).
In general, the maximizing actions for each deci
sion maker may be different due. to different util
ity functions and/or condi ti ona 1 probabilities.

The initial maximizing actions for each deci
sion maker are then stored locally as part of the
scheduling algorithm. When a job scheduling deci
sion is to be made, a simple tat-le look up is per
formed based on the current observation about the
state of the network. This table look up identi
fies the proper decision for this scheduler. An
important part of this process is the fact that
this approach requires a low execution time over
head for the scheduler. Then special monitornodes
of the network act to dynamically adjust the pro
bability distributions and· maximizing actions by
gathering statistics. recalculating maximizing ac
tion.s, and downline loading th.ese maximizing actions
to the scheduling entities. This should be a rea
sonable heuristic if the system is quasi-static.
Simulaticm studies are planned.

Bayesian Decision Theory Calculations

A PASCAL program was written for the Bayesian
decision theory computational procedure and maxi
mizing actions for the scheduling problem described
above were calculated. ·The result is shown in
Table 4 and is 1 abe n ed Run 1 . The input probabi -
lities P(e;) for this run are reproduced in Table
4 for convenience. The results .include the action
aj for each observation Z that maximizes expected

336

average utility. A.dditional solutions were cal
culated for di'fferent probability functions P(e. }.

·These results are labeled Run 2, l and 4 and a~
presented in Ta!)Tes 5, 6, 7 respectively. Using
the original probability function P(ei} of Run 1.
Runs 5 and 6 were made by varying the. Utility
Function. In. Run 5 only one row of the utility
table (table 1) was changed. In Run 6, two rows
were altered; These results are reported in
Tables.a and 9 respectively.

The primary intent of these calculations is
to show how non-obvious maximizing actions result
even for this simple example. By obvious results
is meant that if a host i is observed as least
busy then the proper action is to send jobs to it.
If however, the probabilities and utilities inter
act in a manner as to make. some other action op
timal then this is a non-obvious result. If more
complicating factors are added into the problem,
all of the maximizing actions may be non-obvious.
The maximizing actions .in Tables 4-9 inclusive
that are non-obvi.ous are marked with an asterisk.
Several representative non-obvious results from
Tables 4~9 are now discussed.

For example, iii Run 2 regardless of the ob
servation z0 ... z6 inclusive jobs are sent to host
l to maximize expected utility. This bias occurs
primarily because of th.e high probability that
the true state of nature is 01, arid the low utility
gain o.f moving jobs when there exists only a dif
ference of 1-2 jobs.

The most interesting observation about Run 3
is that for observation z10 (host 5 least busy by
3-5 jobs) the maximizing action is a0 (move no
jobs). This result is a combination of the high
probability f .3) of e0 (all hosts equally busy)
being the true state of nature and the low utility
for host 5 because it is the slowest processor in
our example. Yet, when the observation is z15
(host 5 least busy by >5 jobs) the maximizing·
action is a~ (move jobs to host 5). This implies
that the utility of the movement of jobs dominates
the low probability of this state existing.

In Run 5 the u(e1 • a2) is increased from 30
to 50 over Run 1. This ~ay occur for many differ
ent reasons, e.g •• host 2 might be a very fast
processor or be extremely reliable. This increase
is enough to cause maximizing actions for observa
tions z0 and z5 to be a2. Yet, the u(e1.a3) in-
creasing from 30-.40 and u(e1 ,a5) decreasing from
30-20 are not enough of a utility function change
to result in any non-obvious maximizing actions.

Similar justifications (post analysis) can be
made for all the starred entries in Tables 4-,9.
However, before one does the Bayesian decision
theory computations it is not easy to come u.p with
the same results.

Conclusions

There is a definite need for an effective
technique to develop, analyze and compare decen
tralized algorithms for "cooperative" distributed
systems. Such systems are qu.ite complex with many
interacting forces, operate in a "noisy" environ
ment, are inherently probabilistic, and often
operate under strict time requirements. Most
analysis techniques do not treat problems of this
nature. In this paper it was shown how to apply
Bayesian decision theory as a methodology to deal
with this problem.

However, there are three main issues that
must be resolved before this technique proves com
pletely useable in practice. The first is concern
ed with the ability to develop an effective util
ity function. Our hypothesis was that even though
the utility function was subjective it has the
potential for subsuming some of the complicated
interacting forces in an accurate way. It is a
systematic method for dealing with complex inter
actions and uncertainty. A sensitivity analysis
can be performed to enhance one's confidence in
the utility quantification. We claimed that at a
minimum this approach was more methodological and
worthwhile than current techniques.

The second important issue concerns the dynam
ics of a distributed system. It is simple to claim
that new sets of maximizing actions can be calcul
ated when the statistics of the network change.
Yet, will the number of significant changes in the
statistics be small enough to be feasible? How
often will a switch to a new set of maximizing
actions be needed? Will the new period be long
enough to make the switch worthwhile? Answers to
these questions seem possible for what might be
called "quasi-static" distributed processing systems.

The third issue is whether the two apriori
probability functions P(ei) and P(eilZ) can be
known in practice. Initially, a best guess is made,
or a standard statistical model is assumed •. Then
these probabilities can be revised in terms ·of the
measured activities as experience with the system
grows. It is also possible to maximize expected
utility given only P(e;) and u(ei,ai). This is
sometimes cafled the no data problem because the
decision is made without making a current observa
tion. Therefore, if the decision maker does not
take samples (observations) of the current state
of the network into account then there is no need
for the P(ei]Z) information. This technique might
be appropriate in some systems for some algorithms.

References

[l] John A. Stankovic, "A Comprehensive Framework
for Evaluating Decentralized Control," Pro
ceedings 1980 International Conference on
Para 11 el Processing, August 1980.

337

f2]

[3]

[4]

(5]

[6]

[7]

[8]

[9]

G. E. LeLann, "An Analysis of Different
Approaches to Distributed Computing," Pro
ceedings ·the .First· International Conference
on Distributed·eomputinQ Systems," Huntsville,
Alabama, October l-5, 1979.

G. LeLann, "Distributed Systems-Towards a
Formal Approach," Proceedings IFIP Congress,
Toronto, North Holland Pub., August 1980,
pp. 155-160.

Herman Chernoff and L. E. Moses, Elementary
Decision Theory, Wiley & Sons, NY, l959.

A. N. Halter and G. W. Dean, Decisions Under
Uncertainty, South-Western Pub. Co., Chicago,
IL, 1971.

B. W. Lindgren, Elements of Decision Theory,
The MacMillan Co., New York, 1971.

Guillermo Owen, Game Theory, W. B. Saunders
Co., Philadelphia, ~A 1968.

Howard Raiffa and Robert Schlaifer, Applied
Statistital Decision Theory, Div. of Research,
Graduate School of Business Adm~, Harvard
University, Cambridge, MA 1961.

R. L. Winkler, Introduction to Bayesian Infer
ence and Decision, Holt, Rinehard & Winston,
Inc., New York, 1972.

(10] Leonard Kleinrock, Queueing Systems: Volume 2:

(11]

(12]

Computer Applications, John Wiley & Sons,
New York, 1976.

John M. McQuillan and David C. Walden, "The
ARPA Network Design Decisions," Computer Net
works, The International Journal of Distri
buted Informatique, Vol. 1, No. 5, August
1977' pp. 243-289.

L. Casey and N. Shelness, "A Domain Structure
for Distributed Computer Sys terns ; 11 Proceedings
of Sixth ACM Symposium on Operating System
Principles, November 1977, pp. 101-108.

[13] Wesley W. Chu, L. J. Holloway, Min-Tsung Lau
and Kemal Efe, "Task Allocation in Distri
buted Data Processing," IEEE Computer, Vol.
13, No. ll, November 1980, pp. 57-69.

(14] H. S. Storie, "Multiprocessor Scheduling with
the Aid of Network Flow Algorithms," IEEE
Trans. on Software Engineering, Vol. SE-3,
No. 1, January 1977, pp. 85-93.

[15] H. S. Stone and S. H. Bokhari, "Control of
Distributed Processes," IEEE Computer, July
1978, pp. 97-106.

States of Nature
a

Table 1: Utility Function= u(ai,aj)

50

30
30
30

30
35

15

15

15

15

20

0

0

0

0

5

30

60

30

30
30

35

75

15

15

15

20

100

0

0

0

5

A = Actions
a2 a3

30

30

60

30

30
35

15

75

15

15

20

0

100

0

0

5

30

30
30
60

30

35

15

15

75

15

20

0

0

100

0

5

Table 2: P(Zja1)

30 15

30 30

30 30

30 30

60 30
35 55

15 . 15

15 15

15 JS

75 15

20 60

0 0

0 0

0 0

100 0

5 65

States of
Nature zo · zl

a0 .0835 .0833 .0833 ~0833 .0833 .0833 .07 .07 .07 .07 .07 .03 .03 .0.3 .03 .03

a1 .043 .14 .08 .08 :08 .08 .1 .0625 .0625 .0625 .0625 .075 .018 .OTB .018 .018

.043 .08 .04 .08 .08 .08 .0625 .1 .0625 .0625 .0625 .018 .075 .018 .018 .018

.043 .08 .08 .14 .08 .08 .0625 .0625 .1 .0625 .0625 .0]8 .018 .075 .018 .018

.043 .08 .08 .08 .14 .08 .0625 .0625 .0625 .1 .0625 .018 .018 .018 .075 .018

.043 .08 .08 .08 .08 .14 .0625 .0625 .0625 .0625 .1 .018 .018 .018 .018 .018

06 ,01 .07 .07 .07 .07 .07 . 24 .03 .03 .03 .03 .15 .0125 .0125 .0125 .0125

07 .01 .15 .15 .. 07 .07 .07 .03 .24 .03 .03 .03 .0125 .15 .0125 .0125 .0125

08 .01 .07 .07 .15 . .a? .07 .03 .03 .24 .03 ;03 .0125 .0125 .015 .0125 .0125

09 .01 .07 •. 07 .07 .015 ',07 .03 .03 .03· ;24 .03 .0125 .0125 .0125 .15 .0125

010 .01 .07 .07 .07 .07 . 15 .03 .03 .03 .03 .24 .0125 .0125 .0125 .0125 .15

.005 .06 .06 ,06. .06 .06 .2 .03 .03 .03 .03 .24 .0156 .0156 .0156 .0156

.005 .13 .13 .06 .06 .03 .2 .03 .03 .03 .0156 .24 .0156 .0156 .0156 .0156

. .005 .06 .06 .13 .06 .06 .03 .03 .2 .03 .03 .0156 .0156 .24 .0156 .0156

a14 .005 .06 .06 .06 .13 .06 .03 .03 .03 .2 .03 .CH56 .0156 .0156 .24 .0156

015 .005 .06 .06 .06 .06 .13 .03 .03 .03 .03 .2 .0156 .0156 .0156 .0156 .24

338

Table 7: Run 4

a

Table S: Run 5

9

30 60 50 40 30

.01

.02

.02

.02

.02

.02
.2
• 1

.01

.05

.15

.1

.0525

.055

.075

.0525

20

Note: e1 row is the only change made to the
utility function of Table 1.

Results Results

A A
z (maximizing z (maximizing

action) action)

zo a2 * ZS a3
zl al Zg a4
z2 a2 zlO a5
Z3 a3 zll al
Z4 a4 z12 a2
Z5 a2 * zl3 a3
z6 al zl4 a4
Z7 a2 zl5 a5

340

Results A
Z (maximizing

action)

zo al *
zl al
z2 a2
Z3 al *
Z4 a4
Z5 al *
z6 al
Z7 a2
ZS a3
Zg a4
zlO a5 *
zll al
zl2 a2

zl3 a3

zl4 a4
zl 5 a5

Table 9: Run 6

a
u(ai'a.)

ao al a2 a3 a4 a5

812 40 10 100 0 10 10

613 50 0 0 70 0 0
Note: 012 ·and 013 are the only changes made to the

utility function of Table 1.

Results Results

A A z (maximizing z (maxi mi zing
action) action)

zo a4 * ZS a3
zl al Zg a4
z2 a2 zlO a5
Z3 a3 z11 al
Z4 a4 zl2 a2
Z5 a4 * zl 3 a3
z6 al zl4 a4
Z7 a2 zl5 a5

COORDINATING LARGE NUMBERS OF PROCESSORS

Allan Gottlieb*, B.D. Lubachevsky, and Larry Rudolph
Courant Institute of Mathematical Sciences, NYU

New York NY 10012

(extended abstract)

ABSTRACT

In this paper we implement several basic
operating system primitives by using a
"replace-add" operation, which can supersede the
standard "test and set", and which appears to be
a universal primitive for efficiently
coordinating large numbers of independently
acting sequential processors. We also present a
hardware implementation of replace-add that
permits multiple replace-adds to be processed
nearly as efficiently as loads and stores.
Moreover, the crucial special case of concurrent
replace-adds updating the same variable is
handled particularly well: If every PE
simultaneously addresses a replace-add at the
same variable, all these requests are satisfied
in the time required to process just one request.

1.0 INTRODUCTION

Very large scale parallel processing, made
possible by the refinement of VLSI technology, is
becoming a reality. Although current MIMD
(multiple instruction streams multiple data
streams) configurations rarely include more than
a few dozen processing elements (PEs), much
larger configurations are being designed
(Burroughs [3], CHoPP (see Sullivan et al. [23]),
etc.) and configurations involving tens of
thousands of PEs will soon be feasible.

Since in such configurations the relative
cost of serial bottlenecks rises linearly with
the number of PEs present, users of these future
ultra-large scale parallel machines will be
anxious to avoid the use of critical (and hence
necessarily serial) code sections, even if these
sections are short enough to be entirely
acceptable in current practice.

In this report we implement several basic
operating system primitives by using a
"replace-add" operation, which can supersede the
standard "test and set", and which appears to be
a universal primitive for efficiently
coordinating large numbers of independently
acting sequential processors. We also present a
hardware implementation of replace-add that
permits multiple replace-adds to be processed

This work was supported in part by the US DOE
under Contract No. DE-AC02-76ER03077 and in part
by the NSF under Grant No. NSF-MCS76-00116.

* On leave from York College, CUNY

0190-3918/81/0000/0341$00.75 © 1981 IEEE

341

nearly as efficiently as loads and stores.
Moreover, the crucial special case of concurrent
replace-adds updating the same variable is
handled particularly well: If every PE
simultaneously addresses a replace-add at the
same variable, all these requests are satisfied
in the time required to process just one request.

Critical sections, used to enforce mutual
exclusion when multiprocessing a single PE, were
introduced by Dijkstra [5] and later refined by
Knuth [16) and Eisenberg and McGuire [10].
Later, Dijkstra [7] and Lamport [17] studied
similar issues for parallel processing. Although
this report also considers similar issues, we
assume a somewhat different computational model.
Various multiprocessor synchronization
primitives, including those used below, have been
compared by Lipton [19], Burns et al. [2],
Henderson and Zalcstein [14], and Dolev [8].

This report is organized as follows. First,
our "paracomputer" model of computation is
explained and the replace-add operation is
defined (section 2). We then use the replace-add
operation to implement semaphores (section 3) and
to solve the readers/writers problem without
recourse to critical section code (section 5). A
distributed queue management technique that also
avoids the use of critical sections is derived
and then enhanced to form the core of a
distributed operating system scheduler (section
6). Finally, the replace-add hardware design is
outlined (section 9).

2.0 COMPUTATIONAL MODEL

The replace-add operation, on which many of
our considerations are based, was introduced in
the 1967 studies of the Athene hypothetical
parallel computer system (Draughon et al. [9]).
Before describing this operation, a generalized,
test and set that appears to be an attractive
primitive for coordinating concurrent processes,
we first discuss our model of parallel
computation.

2.1 The Machine - An ideal parallel processor,
dubbed a "paracomputer" by Schwartz [21],
consists of identical PEs sharing a common
memory. The individual PEs may also have
attached local memory, which we refer to as their
"private" memories; the memory shared by and

common to all processors is called "pub.lie", and
variables stored there are called "public
variables". The PEs can.simultaneously read any
public cell in one cyc'le. ,Moreover,, simultaneous
writes (including ::the !l!'eplace .. add operation
described below) :aire likewise effected in, .a
single cycle and a •;memoi:;y · ,cell '..to ·wi-ch '-such
writes are ,directeli ~ . .contaii:n csome one o'f the
quantities written inlro it. This requirement on
simu],.taneous memo.r,y .. updates illustrates the
(paracomputer) sera.al:t&'&tiion principle: The
effect of siiiultaneaus actions by the PEs is as
if.the actions om:.u~eij ttn some (unspecified)
serial order. Nate 'tintt simultaneous memory
updates are not serialized; in fact they are
accomplished in one cycle. The serialization
principle speaks only of the effect of their
action and not of their implementation.
(Paracomputers must be regarded as idealized
computational models since physical fan-in
limitations prevent their realization.)

Our (realizable) approximation to a
paracomputer is an MIMD parallel processor in
which each PE can directly access its private
memory and can access the public memory via a
(multicycle) interconnection network. Since in
this more realistic architecture a public memory
access may require many PE cycles, we must
carefully define the notion of simultaneous! 'l'Wo
actions rl and r2 are simultaneous if rl starts
before r2 finishes and r2 starts before rl
finishes.

2.2 Replace-Add - The format of the replace-add
operation, which forms the basis of much of our
subsequent discussion, is RepAdd(V,e), where V is
an integer variable and e is an integer
expression. This indivisible operation yields
the sum S=V+e as its value and replaces the
contents of storage location V by this sum.
Moreover, RepAdd must satisfy the .serialization
principle: Assume that V is a public variable
(as it ordinarily will be) and many (perhaps very
many) replace-add operations simultaneously
address v. Then the effect is as if these
operations occurred in smme (unspecified) serial
order, i.e. V receives the appropriate total
increment and each operation yields the
intermediate value of V corresponding to its
position in this order*. The following example
illustrates the semantics of replace-add: If V
is a public variable, if PEi executes

ANSi <._.- lepAdd(V ,ei)
if PEj simultaneoiisly execute$

ANSj <-- RepAdd(V'? ej) •
and if V is' not simultaneously updated by another
PEk, then eithe·r

or

ANSi <-- V+ei
A:NSj <-- V+ei+ej

* These intermediate values result from executing
prefixes of the serialized list of operations.

J42

ANSi <-~ V+ei+ej
ANSj <-- V+ej

S:nd, in ei.ther case, the value of V becomes
V+ei+ej,; :The first possibility corresponds to
the serialized order in which first PEi executes
its replace-add and then PEj executes its
replace-add; · the second possibility corresponds
to the opposite serialization. Suppose, to be
still more specific, that V initially contained
the value '10, and that ei•2 and ej-6. Then,
after the silllUl.taueous executionss V wi.11 contain
18 and either ANSi=l2 and ANSj=l8 or ANSi•18 and
ANSj=l6. .

In section 9. we present a hard~are design in
which. the replace-add operation requires
essentially the same execution time as a load or
store and in which simultaneous replace-adds
updating the same variable are processed
particularly effeciently.

3.0 SEMAPHORES

Having reviewed the basic replace-add
operation, we proceed to describe its role in
implementing a variety of higher-level
programming operations. We first present a
replace-add based implementation of Dijkstra's
[5} P(S) and V(S) operations (thus illustrating
that replace-add obviates one important need for
test-and-set), and then generalize this
implementation to PVchunk operations PC(S,e)
(resp. VC(S,e)) where S is incremented (resp.
decremented) by e (see (25]). Subsequent
sections show that our implementation of PC and
VC permits more parallelism than traditional
implementations.

Recall that the P and V operations are used
<o protect critical code sections by enforcing
the following ''l'V-property••: If IDalilY processors
concurrently execute*

Procedure PVTest
Comment: Initially S=l.

Cycle { P(S)
critfoal section
V(S) }

Ind Procedure

if the critical sect:t6Ii does not mod{fy $, and' if
no PE ceases execution, then at any time T at
most one processor is executing its· critical
section and there exist·s a time t z. t when
exactly one pro(!essor is execuJ:ing a' critical
section.

3-.l Imirlelife!iltfog PV - Irt this section .~ present
a PV :l:·mplementation thait satisfies· the

* We ulile n{rt ind ")" for tl\e tokens "Begltt,. and
"End" respectively. fiowever, our indentation
convention O'bViates the need fot these t()'kenS.

PV-property given above (see (12) for a proof of
this clai•)· The P(S) operation first waits
until the public. variable S equals 1 and then
exe-cutes Ri!J>Ad-d(S ,-1). If the result is zero,
the critical section ·may be entered. If the
result is negative, · some other processor has
control of the section and so P(S) "covers its
tracks" and then tries . again. The V(S)
i~plementation consists simply of a replace-add
incrementing .S by 1. The following code is an
appr-opriate implementation of these important
p·rimitives. (As will be explained below, various
subtleties are involved.)

l'rocedute P(S)
l•peat

If s-1 > 0 Then
If RepAdd(S,-1) z 0 Then OK <-- true
Else { RepAdd(S,l)

Until OK
End Procedure

Procedure V(S)
R-epAd-d(S, 1)

End Procedure

OK <-- False }

To emphasize a subtle point inherent in our
implementatio.n of P, c-onsider the following very
similar, but actually incorrect, implementation.

Collllll8nt: Incorrect implementation of P
Procedure NaiveP(S)

Repeat
If RepAdd(S,-1) ~ 0 Then OK <-- true
Else { RepAdd(S;l)

Until OK
End Procedure

OK <-~ false }

If one compares this simplified form with
the correct original shown earlier, it may appear
that we have merely removed a "redundant" test.
However, the simplified code can in fact fail due
to unacceptable race conditions. Suppose, for
example, three PEs, A, B, and C, execute. P(S) at
the same time with S having iU initial value. of
1. If the serial order effected is equivalent i:o
A executes first followed by B and C, then S is
set to -2 and A enters the critical section•
Suppose that A subsequently leaves the critical
section, thus incrementing S to -1. The section
should now be free to be entered by either B. or
c. The above code will allow this to occur as
soon as S is incremented to +1 from its current
value of -1. However, this may never happen,
since the following' endless scenario is possible:
B increments S to 0 and then decrements S back to
-1 before C executes its next instruction; thus
B fails to enter the critical section. Then 1

while B is between instructions, C increments and
immediately decrements_ s. B and C continue in
this fashion indefinitely causing S to vary
between 0 and -1,.never reaching +1. Since every
decrement occurs when ScO, the crit.ical section
is never entered and thus the PV-property is not
satisfied. - ·

343

Note that this race condition, unlikely when
just three processot:s are involved, becomes
steadily more probable as we increase the number
of processors trapped in the semaphore.

3.2 Ipg>lementing PVchunk - In order to -solve the
readers/writers and other synchronization
problems, it is ~nvenient to define PVchunk
operations where the increment e applied to the
public variable S is not restricted to +l. We
write these operations as PC and VC and iiplement
them using the same test-modify-retest paradigm
seen above for P and v. The following code
assumes that S has been initialized to some
positive integer.

Procedure PC(S,e)
Repeat

If S-e > 0 Then
If RepAdd(S,-e) ~ 0 Then OK <-- true
Else { RepAdd(S,e)

Until OK
End Procedure

Procedure VC(S,e)
RepAdd(S,e)

End Procedure

OK <-- false }

3.3 ~ - It is worth noting that Dijkstra
[6] considered the replace-add operation and
examined the NaiveP procedure considered - above,
noting essentially the same race condition that
we have discussed. Dijkstra concluded that the
replace-add was a less appropriate coordination
primitive than a simpler 11swap" instruction.
However, this c-onclusicn becomes progressively
lees acceptable as the number of PEs grows larger
since the swap instruction leads to serial
bottlenecks.

The previous section showed the need to test
a se111aphore be.fore a decrement-and-test operation
is applied. Since such test-decrement-retest
(and corresponding test-increment-retest)
sequences occur often, we define two procedures,
each embodying one of these two basic sequences,
which are used throughout the remainder of this
report.

Boolean Procedure TDR(S,Delta)
If S-Delta > 0 Then

If RepAdd(S,-Delta) ~ 0 Then
TDR <-- True

Else { RepAdd(S,Delta)
TDR <-- false }

End Procedure

Boolean Procedure TIR(S,Delta,Bound)
If Sii>elta < B.ound Thet). ..

If RepAdd(S,Delta) ~Bound Then
TIR.<--· true

Else { RepAdd(S ,•Delta)
TIR <-- false }

End Procedure

Using TDR the PC procedure of section 3•2
can be expressed as simply:

Procedure PC(S,e)
Repeat Until TDR(S,e)

End Procedure·

5.0 READERS AND WRITERS

In preparation for the more complex problems
to be considered below, we now use the. PC and VC
operations to solve the well . known
readers-writers problem, in which a group of
"reader" processes and "writer" processes are to
share the use of a resource. Many readers may
use the resource simultaneously, but all other
processes become blocked as soon as a single
writer is active.

The basic idea behind the following simple
solution is to maintain a counter equal to
n(l-w)-r, where n is (.no less than) the maximum
possible number of active readers in the system,
and r and. w equal the number of active readers
and writers respectively.

Procedure Re'ader
PC(S,l)
read-body
VC(S,l)

End Procedure

Procedure Writer
·PC(S1n)
write-body
VC(S,n)

End Procedure

. Note that, in the. absence, of· writers, no
serial code is executed by the above
implementation. In contra•t,. •tandard "test and
set" based implementations use (very small)
critical sections to protect the adjustme'l)t of
their counters. Although the · .. simple solution
given above .allows a continuing stream of readers
to lockout all writers and vice-vets·a, solutions
avoiding these potential lockouts are given in
(12} and (20} •. ·

344

6.0 ·MANAGEMENT .Q! RIGHLY PARALLEL QUEUES

Although at first g1-nce the important
· problem of queue management may appear to require
use of at · least a few inherently serial
operations, we show in this sec.Hon t~t a queue
can be shared among processors without.using any
code that might create serial bottlenecks •.. The
procedures to be ·shown next maintain the basic
first-in first-out 'property .of a queue, wl:\~se
proper formulation in the assumed . environment .· of
large numbers of simultaneous . insertions an,d
deletions is as follows: If insertion of a data
item p is completed before inaertic>n of another
data item q is started, then it must not .be
possible for a deletion yielding q to complete
before. a deletion yielding p has started.

Since queues are the central data structure
for many algorithms, a concurrent queue access
method can be an important tool for constructing
parallel programs. When analyzing one of their
parallel shortest path algorithms, Deo et al. [4}
dramatize the need for this tool.

"However, regardless of ,the number of
processors used, we expect that algc>rithm
PPDM has a constant upper bound on its
speedup, because every processor demands
private use of the Q."

6.1 The Algorithm - In the algorithm, below we
represe'l)t a queue of length . Size by a public
circular array Q[O:Si2:e..;.ll with public variables
I and D pointing to the locations of the items
last inserted and deleted (these correspond to
the rear and front of the queue respectively)•
Thus MOD(I+l,Size) and MOD(D+l,Size) · yield the
locations for the next insertion and deletion,
respectively. Initially l•D•O (corresponding 'to
an' empty queue).

We maintain tWo additional counters, #Ql and
#Qu, which give ' lower and upper bounds
respectively on the number of items ~n the queue
and which never differ by more than the number of
activ~ insertions and deletions. Initially
fQl•#Qu•O, indicating no activity and an empty
queue.· The parameters QueueOverflow and
QueueUnderflow, appearing in the code shown
below, are flags denoting the exceptional
conditions · that occur when a processor attempts
to insert ·into a filll queue or delete from an
empty· queue. The actions appropriate for the
QueueOverflow and QueueUnderflow conditions are
application dependent: One- possibility is simply
to retry an offending insert or .delete; another
p'ossibility is to proceed to so~ other task.

Code for a critical-section-free
·implementation of Insert and Delete is given
below• The insert operation proceeds as follows:
·First a TIR iS used to guarantee the existence of
space for the insertion, and to increment the
upper bound #Qu. If the TIR fails, a

QueueOverflow .occurs. If it succeeds, the
expression Mod(RepAdd(I,l),Size) gives the
appropriate location for the . insertion while
simultaneously updating the insert pointer, and
the insert procedure waits its turn to overwrite
this cell (this point is discussed below).
Finally, the lower bound #Ql is incremented. The
delete operation is performed in a symmetrical
fashion; the deletion of data can be viewed as
the insertion of vacant space.

Procedure Insert(Data,Q,QueueOverflow)
If TIR(#Qu,l,Size) Then {

MyI <-- Mod(RepAdd(I,l),Size)
Wait turn.at MyI
Q[MyI] <-- Data
RepAdd(#Ql,l}
QueueOverflow <-- False }

Else QueueOverflow <-- True
End Procedure

Procedure Delete(Data,Q,QueueUnderflow)
l;f TDR(#Ql, l) Then {

MyD <-- Mod(RepAdd(D,l).Size)
Wait turn at MyD
Data <-- Q[MyD]
RepAdd(#Qu,-1)

. QueueUnderflow <-- False }
Else QueueUnderflow <-- True

End Procedure

6.2 Cell Co.ntention - Since we assume that PEs
can execute at widely differing rates (due, for
example, to memory contention, see section .12),
it is possible that many active insert and dele.te
operations can hav.e been assigned the same queue
cell location L. When the queue is nearly· full
or nearly empty, cC)nflicts involving one ·insert
and one delete are reasonably likely (but a
simple "cell-vacant" flag would be sufficient to
resolve them). However, the circular. array
structure allows the (unlikely) possiblity that
many active insert and delete o.perations all
attempt to address the same cell .simultaneously.
We prevent this anomaly by associating semaphores
with.each cell (see (12] for details).

6.3 Avoiding· Integer Overflows - Care is
required to avoid potential overflows of the. I
and D counters caused by the combination of small
word size, large numbers of processors, and high
queue insertion rate. Since we need. only
maintain the values of I and D modulo the queue
size, we may bound the s1ze of I by .inserting the
statement:

If I z_ Maxint-#PE T.hen RepAdd(I ,-Size) ,
where Maxint .is the largest representable
integer, i111111ediately before the statement that
increments I. ·Since many, even all, processors
may execute this statement simultaneously, we
require that Maxint-#PE-#PE*Sizez_ Minint.

345

7.0 .~PARALLEL DATA STRUCTURES

Having discussed .queues, we now briefly
indicate ho,r the replace-add operation can be
used to provide highly concurrent access to other
important data structures. A more detailed
presentation is found in (12].

7 .1 ~ Queues - In order to define a
queue-like data structure appropriate for the
scheduler component of a hig~ly parallel
operating system, the queue mechanism described
above should be enhanced to permit insertions of
items tagged with priorities and multiplicities.
In such a queue, each item i has an associated
multiplicity mi indicating the number of times i
is to be deleted before it is actually removed
from the queue, i.e. the pair (i,mi) represents
mi consecutive entries of item i in a much longer
(hypothetical) queue. The parallel operating
system we envision needs to support the following
two primitives:

1. RequestPE(N,P,CodeBlock) - whereby a
request is made for N processes to
execute a block of code at P.riority P.

ReleasePE
primitive
completed
available

- whereby the PE invoking this
announces that it has

its assigned task and is
for reassignment.

The scheduler responds to the first primitive by
inserting CodeBlock onto the task queue with
priority P and multiplicity N. To implement the
seco.nd. primitive the scheduler deletes an entry
from the task queue and transfers control to th·e
corresponding CodeBiock. ·

7.2 Stacks - A stack of length Size is
implemented as a public array S[O:Size-1] with a
public variable Top indicating the current .top of
the stack. A push operation addresses stack
location S[RepAdd(Top,l)] thereby incrementing
Top and a pop operation addresses stack location
S [RepAdd(Top,_-1)+1] thereby decrementing Top.
Since simultaneous pushes and pops can all
address the same stack location, a (small)
parallel access queue into which pushes insert
items and from which pops delete items is
associated with each stack location.

7.3 Avail Lists - Parallel access to .the free
space (avail) list used by the linked allocation
scheme described in Knuth (16] is acheived by
maintaining a queue of pointers to free blocks.
Acquiring (resp. returning) blocks is
accomplished by deleting from (resp. inserting
into) this queue of pointers.

8.0 DETECTING COMPLETION OF PARALLEL ACTIVITY

Since the cessation of activity in.volving a
shared resource o.ften indicates completion of a
given task, it is iinportant to. be. able. to det'e:Ct
this event. In this'report we consider a typical
example, namely detecting the situation in which
a shared queue is and will .!'.!!!!:!!!!. einpty, i.e.
when all the PEs are trying to delete from an
empty queue. This is the natural termination
condition for applications in which multip;le PEs.,
each acting as-both a producer and as a consumer,
use a global queue to buffer data items which
they pass among· themselves.

If the problem of detecting coinpletiori is
temporarily ignored, the· following code typifies
such applicati0ns:

Cycle '{
If producer cycle Then {

produce data
Repeat Insert(Data,Q,Overflow)
Until Not Overflow } ·

Else { Comment: consumer cycle.
Repeat Delete(Data,Q,Underflow)
Unt:l:l N.ot Underflow ·
consume data }}

However, ·the queue· ·underflow condition generated
by Delete is· not sufficient to signify task
completion since inserts may still occur after
the Underflow condition has occurred. Thus, to
detect a state in which all PEs are trying to
delete from an emp.ty queue (this state is denoted
T), we Diilst iiil:>dify the code shown above, whiC:h we
do· as follows. When a queue-underflow occurs-,
instead af retrying the delete, we increment a
counter W which is then compared with #PE. If
they are equal, state T has occurred. If not,
the PE ~oops until either the queue becomes
nonempty, in which case W is decremented and the
deletion is retried; or until W equals #PE and
state T has occured. The detailed code. follows:

Comlilent: Initially W .. o.
Cycle { ·

If producer cycle Then {
prodlice'data
Repeat Insert (Q,Data,Overflow)
Until Not Over flow }

Else { Colirment: Consumer cycle.
Repeat Dele-te(Data,_Q,Underflow)

If Underflow Then · {
RepAdd(W,l)
Repeat Until W • #PE Or #Ql > ()
If' W-#PE Then Comment: state T ._
Else RepAdd.(W,-1) }

Until Not Underf10w·
consun\e. data }}

346

51<. 0: HARilWARE IMPLEMENTATION

· In this section we show to · imp.leinetlt an
i>mega-tietwork enhanced to enable the netirork. to
process uiul't:l.ple 'rep-lace-add · operations in a
highly parallel unner•. see £11 and '£18] for a
description of Omega.;.;netwo-rk8 and figttre 1 'for· an
illustration. ·

we suppose that P •· 2**D- PEa are to
communicate with a like number of memory modules
(MM&) and dafine a me~ey cycle to be· "the tiaie
required for a single l'E,' in 'the absence of any
other communication traffic, to transmit a
request to an MM and then receive a response.
Thia· cycle time equals the MM access ti.me plus
twice the network trsnsmiaaion time.

9.1 Implementing~~ Stores - The well
known manner in" which an omega-network can be
used to implement memory loads and stores relies
on the existence of a (unique)- path connecting
each PE-MM pair. Requests from PEs to MMs are
transmitted along these paths and responses are
transmitted along the reverse · paths.
Unfortunately, however, two concurrent requests
conflict whenever the corresponding paths- are· not
edge disjoint. ·

One way to resolve these conflicts is to
"kill" one of the two requests and have :tt
resubmitted by the PE. Despite the primitive
nature of this scheme, proposed by Burroughs
Corporation for their· FMP [3}, it exl\ibita good
average case behaviour {see (13} and [26}).
Alternatively, we ·may. resolve conflict.a· by
enqueuing one or the two.conflicting requests in
the first switch at which they -caaflict (see
[11])-. In the sequel: we do not use this queuing
technique; For expository purposes, we prefer
the simpler Bun:oughs approach.

It is worth noting that some conflicts are
"favorable": When concurrent loads and stores
are directed at the same memory location and meet
at a switch, a scheme described below shows how
they can be cOmbined (and thereby aatisfied)
without introducing any delay. Moreover, by
determining tbe .moet favorable- serial order for
these si111Ultaneoua reqliests, an enhanced switch
can 'colllbine them effieiently. The actions
appropriate f<>T each favo-1:able conflict are as
follows (some of these optimizations appear in
the CRoPP design, see [24] and [lSJ):

1. Load.;,Load: Transmit one of the two
(identical) loads and return to each the
value obtained ftom memory.

2. Load.-Store:' Transmit the store and
return ita value to satisfy the load.

3. Store-Store: Transmit either store and
ignore the other.

I

I:

Favorable conflicts reduce communication
traffic and thereby increase the percentage of
satisfied requests. Since. combined requests can
themselves be combined, any number of concurrent
memory references to the same location can all be
satisfied in one memory cycle (assuming the
absence of conflicts with requests destined for
other memory locations).

9.2 Implementing Replace-Add - The replace-add
operation can be realized by augmenting the MMs
with adders and connecting them, via an
omega-network, to the PEs: When a RepAdd(X,e)
operation is transmitted through the network to
the MM containing X, the value of X and the
transmitted e are brought to the MM adder, and
the sum is both stored in X and returned through
the network to the requesting PE.

Since we expect that concurrent replace-add
operations will frequently reference the same
memory location, efficient performance in the
case of favorable conflicts is very important.
Fortunately, by including memory and an adder in
each switch, the network can achieve for
replace-adds the excellent performance described
above for loads and stores. (Note that, although
we will continue to use the term "switch" for the
devices located at the nodes of the enhanced
omega-network, these devices are fuctionally
closer to microprocessors than to simple switches
and thus introduce non-trivial delays.)

When two replace-adds referencing the same
public variable, say RepAdd(X,e) and RepAdd(X,f),
conflict at a switch; we effect the serialization
order "RepAdd(X,e) immediately fo·llowed by
RepAdd (X, f)". This is done as follows: The
switch forJ11s the sum e+f, transmits the combined
request RepAdd(X,e+f), and stores the value f in
its .local memory (see figure 2). When the value
Y is returned to the switch (in response to
RepAdd(X,e+f}), the switch returns Y to satisfy
the original request RepAdd(X,f) and returns Y-f
to satisfy the original request RepAdd(X,e). If
there was no other conflict, Y = X+e+f; thus the
values returned are X+e and X+e+f and the memory
location X receives this Y value X+e+f. If other
RepAdd(X,g) are simultaneously processed, the
combined requests are themselves combined and the
associativity of addition guarantees that the
procedure gives a result consistent with the
serialization pr.inciple.

In· summary, the switches process favorable
replace-add conflicts as follows:

1.

2.

RepAdd-RepAdd. As described above, a
combined request is transmitted and the
result u.sed to satisfy both
replace-adds.

RepAdd-Load.
RepAdd(X,O).

Treat Load(X) as

347

3. RepAdd(X,e)-Store(X,f). Transmit a
store of e+f and satisfy the replace-add
by returning e+f.

The above scheme reduces communications traffic
and exhibits good average case performance. A
detailed analysis and hardware design will appear
in [20].

10.0 SUMMARY

Since the relative cost of serial
bottlenecks rises linearly with the number of PEs
present, elimination of such bottlenecks will
become steadily more important in future parallel
processors. By exhibiting replace-add based
bottleneck-free implementations for several
important operating system primitives, and by
presenting an efficient hardware realization of
the replace-add operation, we hope to have shown
that this operation is an appropriate
synchronization tool for ultra-large scale
parallel machines. We note.that our replace-add
implementation avoids the hardware bottleneck
usually associated with concurrent access to a
single memory location.

Recall that in the absence of writers, no
serial code is executed by our readers-writers
implementation and that completely parallel
behavior is also exhibited by our queue access
method (unless the queue in question is full or
empty)• In contrast, standard "test and set"
based solutions to the readers-writers and queue
management problems use (very small) critical
sections to protect the adjustment of their
counters. We note for example that paracomputer
simulations indicated a serial bottleneck in our
parallel codes for radiation transport until we
replaced standard queue access methods with the
ones given above.

Since we expect that on chip delay times
will typically be less than ehip to chip
transmission times, the network overhead imposed
by supporting the replace-add operation should
not degrade network transmission time
significantly. Therfore, we believe that future
parallel processors, utilizing something close to
the hardware design presented above, can realize
the replace-add in very' little more than the
execution time required for a public memory
reference. We note that the "ultracomputer"
group at N.Y.U. is developing a preliminary
design for a prototype machine and operating
system incorporating the ideas presented above.

Acknowledgement

The authors thank Jack Schwartz and Clyde
Kruskal for technical contributions, and thank
Kevin McAuliffe, Marc Snir and Jim Wilson for
carefully reading preliminary versions of this
paper.

REFERENCES

.Ul

{2]

[3J

(4)

V • . E • Benes, Mathematical Theory . .2!
Connecti!l& . ·Networks. ~ . Telephone
Traffic, Acadelidc. Press, NY. 1965.

James E. Burns, Michael J. Fischer, Paul
Jackson, Nancy A.· Lynch, Gary· L.
Peterson, "Shared Data Requirements for
Implementations O·f Mutual Exclusion
Using a Test-and-Set Primitive"; Proc.
1978 Intern. ~ on Par'tliel
Processing, PP· 79-'87·.

·Burroughs Corp., Numerical Aerodvnamic
Simulat.ion Facility Feasibilty Study~
NAS2-9897, March· 1979.

Narsingh Deo, C.Y. Pang, and R.E. Lord,
"Two Parallel Algorithms for Shortest
Path Problems", Proc. 1980 Intern. Coi;;,f.
.!:!!!. Parallel Processiiig71iP. 244~253-.~~

[SJ E .• w. Dijkstra, "Solution cH a Problem
in Concurrent Progranlming Control", CACM
8, 1965, P• 569.

[6] E. w. Dijkstra,. "Hierarchial Orderings
of Sequential Processes 0 in Operating
Systems Techniques, c. A. R. Hoare and
R. H.. Perrot Editors, Academic Press,
NY,·1972 •.

[71 E. W. Dijkstra, "Self-Stabilizing.
System& in Spite of Distributed
control", ~ 17~ 1974, PP• 643-644~

[8] · Danny Dolev, "A Comparative Study of
Synchr.onization by .Parallel Control.
Systems". Ph.b. Thesis, Wei:zmann
Institute of Science, Rehovot, .Israel,
1979.

[9] E •. Draughon; :R. Grishman, J•. S.chwartz,
and A.· Stein, "Programming
~ons:J.derations for Parallel .. computers",
Courarit Institi:it.e~ N. Y .u., lMM .362', Nov.
1967

(101, M. A.. Eisenberg and
"Further Comments
Concurrent Pr.ogramming
CACM. 15, 1972, P• 999.

M. R. McGuire,
on Dijkstra's

Control Problem",

[lll Alla'1. Gottlieb 'and. C.lyde · Kruslcal, "A
Data Moti-on Algorithni", Ultracomputer
Note #7, Courant Institute, N.Y.U, 1980.

[12] Allan Gottlieb, Boris Lubachevsky, and
Larry Rudolph, "Basic Techniques for the
Efficient Coordinatio.n of Very Large
Numbers . of Cooperating Sequential
Processors", Ultracomp.uter Note #16,
C.ourant Institute, N.Y.U., 1980.

348

(13]

(14].

[15]

[16]

(17]

Allan GottU.eb and J.T. Schwartz,
.,Networks· and· Algorithms .for Very Large
Scale Parallel Computation!', to appear

· in Compute11.

Peter B. Henderson and Yechezkel
Z&lcstein, ''Chara:cte-riZ&tion ·.of the
Synchr.onization . Languages for PV
Systems"., Proc. 1978 Intern~ Conf. ~
Parallel.ProcessinS:--

David. Klappholz• "Stocastically
C0nflict-free Database Memory Systems" ..
~ Intern• Conf. .!:!!!. Parallel
Processing.

Donald E;, Knuth, "Additional CoDD11erits ~n
a Problem in Concurrent · Programming
Control", ~ 9, 1966, P• 321.

Leslie Lamport, "A New Solution of
Dijkstra's Concurrent Programming
Problem", CACM H, 1974, PP•· 453-455.

[18J Duncan· Lawrie, "Access .a:nd Alignment o:f
Data in an AT:ray·Ptocessor", IEEE Trans.
C-24, 1975, PP• 1145-HS5. -----

[19] R. J, Lipton, · "Limitations of
Synchronization Primitives with
Conditional Branching and Global
Variables", Proc. of the 6th Annual. ACM
~ .!:!!!. Theory ··of Comp., 1974, PP•
230 241.

[20]· Larry Rudolph, Ph.D• Thesis, New York
University, in preparation.

[21] J, T. Schwartz, "Ultracomputers", ~
~. 1980[a], PP• 484-521.

{22] Howard J. Siegel, "Single Instruction -
Multiple Data S-tream Machine
Interconnection . Design·", Proc. . 1 ~76
Intern. Conf. M Parallel--pr;;cessin8,
PP• 272-280.

[23] Herbert Sullivan, Theodore BashKow, and
David Klappholz,· "A Large Scale
Homogeneous, Fully Distributed Parallel
Machine", Proc. of ·the 4th Annual ~
£!!!. Comp. ~. 19779 PP• 105-125.

[24] Herbert Sullivan and Lenard C~hn,

u.s. pattent application·pending, 1979.

(25] H. Vantilborgh and A. vanLamsweerde, "On
an Extension of Dijkstra's - Semaphore
Primitives", Inf. f!2£!. Let. 1, 1972,
PP• Ull-186.

[26] L. G. Valiant, "Experiments with a
Parallel Communications Scheme",
presented at the 18th Allerton Conf. on
Communication, Control, and c"OiiiPittinS,
1980. -

PEO

PE1

PE 2
PE 3

PE 4

PES

MMO

MMl

Figure t. An 8-input omega network.

RepAdd(X,e)---7
1--

Y-f ~
, ~ Rep Add (X, e+f)

~ y

RepAdd(X,f) ~

Figure 2.

Treatment of simultaneous replace-add operations addressing
the same memory location.

349

Parallel Scheduling Algorithms*
Eliezer Dekel and Sartaj Sahni

University of Mi,nnesota

:i.. Introduction

With .the continuing dramatic decline. in
the cost of hardware, -it is -becoming
feasible to economically build computers
with thousands of processors. _In fact,
-Batcher (lJ describes a ·- compu.ter (MPP)
with 16,3-84 processors that-is.currently
being built for NASA. In coming years, one
can expect to see computers with a hundred
thousand or even a mil.lion processing ele
ments. This expectation has motivated tl').e
study of parallel algorithi:ns;

Since the cqmplexity o-f a parallel
al.gorithm. depends very much on tbe archi
tecture of the parallel computer on which
it is run, it is n:eces.sary to keep the
architecture in mind 'when designing the
algorithm. .Several. parallel arghitect:ures
have been proposed and studied. In this
paper, we s})all deal directly only with
the singl-e instruction stream, multiple
data stream (SIMD) model. Our techniques
and algorithms readily adapt to the other
models (eg: multiple instruction stream
multiple data stream .{MIMD) and data flow
models). References. to several papers
dealing with algorithms for SIMD machines
can be found in [2].

When measuring the effectiveness of a
parallel algorithm, one needs to consider
both its complexity as well as its cost in
terms of the number of PEs used. -The
effectiveness of processor utilization
(EPU) is the complexity of the best
sequential algorithm for P divided by
(number of PRs used by A * complexity of
A)•

2. Minimum Finish Time

When preemptions are permitted, a minimum
finish time schedule for m machines is
efficiently obtained using Mc Naughton's
rule. Let p 1 ,p2 , ••• ,pn be the processing
times of the n jobs. The finish time, f,
of an optimal preemptive schedule is given
by:

- - n
f = max{ max {p.),! I pi}

l<i<n 1 mi=l -

Using f, the optimal schedule may be
constructed in O(n) time •

Using the Rarallel algorithms of .[3],

max{pi} and - .~lpi may be computed in

O(logn) time witfi n/logn PEs. To obtain
the . actual schedule, we also need

1
A.= Ip., l<i<n. All the A1.s can be com-

l. • l J - -
putJ~ in o(logn) time using n/logn PEs
[3]. Let A =0. Each job i can now dE!ter
mine its ~wn processing assignment by
using the following rule:
* This research was supported in part by
the Office of Naval Research under con
tract N00014-80-C-0650.

0190-3918/81/0000/0350$00.75 © 1981 IEEE

x +-- rAi-l/f"l • f - Ai-~
.ca_se·

- : x=e : schedule job i on machine
(A./f'l from S to p.

:x>p. :l.schedule job i ,ofi machine
. (i-A. / f"l -from f-x _to f..;x+pi

-:.else: 1 schecilule job i--onmach1ne
, _ rA./f"l from .8 t-o PCK

el).d'-cas~ -- -. -

If we have n PEs, all the machine
assignments c-an be computed in O(l) time.
However, using only n/logn PEs, these
assignments may be obtained in O{ logn)
time (Le., each PE computes at most
r logn"l assi<Jrunents). Soi the overall
scheduling algorithm has a complexity of
O(logn) ·and uaes n/logn PEs. So, its EPU
is -Q(n/ (logn*n/ logn))-=Q-{l).

3. - Number of Tardy _Joos

Let J={(p.,d.)ll<i<n} define a set of n
jobs. p7 i~ tne processing tiJlle of job i
and d. ·is1 its due time. Let S be any one
machifie schedule for J. Job i is tardy in
the schedule S iff it completes after its
d·ue time di .

Hodgson and Moore [4)
an O(nl-090) sequential
obtains a schedule that
number of tardy jobs:

have developed
algorithm that
minimizes the

The problem of finding a schedul.e
that minimizes the number of tardy jobs is
equivalent to that of selecting a maximum
card-inality subset U of J such that every
job in U can be completed by its due time.
Jobs not in U can be scheduled after those
in U and will be tardy. - A set of jobs U
such that every job in u can be scheduled
to complete by its due time is called a
feasible set. It is well known that a set
of jobs U is feasible iff scheduling jobs
in U in nondecreasing order of due times
results in no tardy jobs.

When p.=l, l<i<n, a maximum cardinal
ity feasibl~ set u can be obtained by con-

- Sidering the jobs in nondecreasing order
of due times. The job j current!¥ being
considered can be added to U iff I U I <d . •
Procedure FEAS(J,b) is a slight generali
zation. It finds a maximum subset of J
that can be scheduled in the interval
[0,b]. OONE(i)' is set to -1 if job i is
not selected and is set to a number
greater than 0 otherwise. If DONE(i) > fll,
then job i is to be scheduled from DONE(i)
- 1 to DONE(i). The procedure itself
returns a value that equals the number of
jobs selected. The correctness of FEAS i-s
easily established using an exchange argu
ment. Its complexity is ·o(nlogn) as it
takes this much time to order the jobs by
due time.

350

Let J be a set of n unit processing
time jobs. Let D(i), l<i<k be the dis
tinct due times of the jobs In J. Assume
that D(i) < D(i+l), l<i<k. Let n(i) be
the number of jobs in J -with due time
line Procedure FEAS(J,n,b)

1

2

3
4
5
6
7
8
9

ll?J
11
12

77 sel.ect a maximum number of jobs
for processing iri [l?J,b] n=IJI//
set J; integer n,b; global

DONE(l m)
sort J into nondecreasing order of
due times
DONE(l :n) - -1 //initialize//
j - l?J
for i - 1 to n do

case
: j>b: return(j)

~~~d~~se j - j+l: 
end for-
returnTj) 

end FEAS 

Figure !·.!. 

DONE( i) - j 

D(i), l<i<k. Clearly, i n(i)=n. Let 
D(l?J)=l?J and n(l?J)=l?J, Define F(i) to be the 
value of j when procedure FEAS (Figure 
4.1) has just finished considering all 
jobs in J with due time at most Di. It is 
evident that: 

F(l?J) = D(l?J) = l?J 
(4.1) 

F( i)=min{F(i-1 )+n(i) ,D(i) ,b}, l<i<k 

Expanding the recurrence (4.1), we obtain: 

m 
(4.2) F(m) =min{ min {D(i)+ i n(q)],b) 

l<i<m q=i+l 

The maximum number of jobs in J that 
can be scheduled in [l?J,b], b>l?J, so that 
none is tardy is F(k). F(k) may be effi
ciently computed, in parallel as follows. 
Let the due times of the n jobs in J be 
d(l), d(2), ••• ,d(n). Let d(l?J)=l?J. We may 
assume that d(i) >l?J, 1 <i<n. The computa-
tion st.eps are: - -

Step.!_: sort d(l:n) into nondecreasing 
order. 
~ 2: determine the points r ( l?J) , ••• , 
r(k-1} in d(l?J:n) where the due times 
change I.e. r( i) < r( i+l), l~i<k and 
d(r(i)) # d(r(i)+l). Let r(k)=n. 
Clearly, r(l?J)=l?J, and n(i}=r(i)-r(i-1) and 
D( i) = d( r( i)), l~~~k; Il(0)=a. 

Step~: since D(i) + i n(q) = D(i)+n

r(i) ,we compute FC*tlmin{n+ min {D(i)-
r(i)},b) [) . 0<i<k 

With n2 PEs, step 1 can be carried 
out in O(logn) time [SJ. Using n-1 PEs, 
the boundary points can be found in O(l) 
time. PE(i) simply checks to see if 
d(i)<d(i+l), l~i~n-1. If so, then i is a 
boundary point. 0 and n ar~ also boundary. 

351 

points. The boundar_y points have now to 
be moved into memory positions 
r(l?J),r(l), ••• ,r(k). This can be done in 
O(logn) time using n PEs and the data con
c.entration algorithm of [7]. Another data 
concenti:ation step moves d(r(l?J)), d(r(l)), 
.•• , d(r(k)) into D(l?J), D(l), ••• , D(k). 
Using· k+l PEs, D(i)-r(i), 0<i<k can be 
computed in 0(1) time. min{D(i)-r(i)) can 
be obtained in O(logk) time using the 
binary tree computation model of [3]. As 
explained in [3], only O(k/logk) PEs are 
needed for this; but using k/2 PEs is fas
ter). F(k) can now be computed using an 
additional 0(1) time. The overall 2com
plexity is therefore O(logn) and n PEs 
are used. The EPU ~f the above algorithm 
is Q((nlogn/(logn*n )) = Q(l/n). 

4. Conclusions 

The extent to which parallel computers 
will find application will depend largely 
on our ability to find efficient algo
rithms for them. The reader is referred 
to [6] for further examples of efficient 
parallel algorithms. 

References 

1. 

3. 

4. 

s. 

6. 

7. 

Batcher,. K. E., "MPP a massively 
parallel processor," proc. 1979 Int. 
Conf. ~ Parallel Processing, IEEE, p 
249, 1979. 
Dekel, E., Nassimi, D., and Sahni s., 
"Parallel matrix and graph algo
rithms," Department of Computer Sci
ence, University of Minnesota, 'l'R 
79-10, 1979, to appear in SIAM Com-
puting. · 
Dekel, E. and Sahni, S.,"Binary Trees 
and papallel scheduling algorithms," 
Department of Computer Science, 
University of Minnesota, TR 80-19, 
1980. 
Moore, J. M., "An n job, one machine 
sequencing algorithm for minimizing 
the number of late jobs," Management 
Sci. 15, PP. 102-109, 1968. 
Muller, D. E., and Preparata, F. P., 
"Bounds to complexities of networks 
for sorting and for switching," JACM, 
Vol. 22, No. 2, April 1975, pp. 195-
201. 
Dekel, E. and Sahni, s., "Parallel 
scheduling algorithms", University of 
Minnesota, Technical Report TR 81-1, 
1981. 
Nassimi, · D. and Sahni, s., "Data 
broadcasting in SIMD computers," IEEE 
Computers, c-30, no. 2, Feb 81, 101-
107. 



OPTIMAL LOAD BALANCING STRATEGIES FOR 
A MULTIPLE PROCESSOR SYSTEM 

Lionel M. Ni 
Department of Computer Science 

Michigan State University 
East Lansing, MI. 48824 

Abstract -- To balance the workload among mul
tiple processors is of fundamental importance in 
enhancing the performance of a multiple processor 

·system (MPS). Optimal probabilistic load balanc-
ing policies are studied in this paper. Multiple 
processor systems ate classified into four catego
ries according to homogeneous versus heterogene
ous processors and single-job class versus multi
ple-job classes. Closed-form solutions are deriv
ed for scheduling an MPS with single job class. 
An optimal load balancing algorithm is developed 
for an MPS with multiple job classes. The probabi
listic scheduling policy is easy to be implement
ed in. an MPS and can be extended to optimize mess
age routing in a computer communications network. 

I. Introduction 

A loosely coupled Multiple Processor System 
(MPS) consists of multiple number of independent 
processors receiving jobs from a common job sche
duler [ 2, 3 J • Such MPSs are considered a kind of 
distributed c_omputer systems. The motivation to 
develop MPS is to allow resources sharing and to 
achieve higher sys tern throughput and reliability. 
The objective of this study is to develop optimal 
load balancing techniques for achieving the above 
goals. The system performance of such an MPS is 
generally indicated by the average job turnaround 
time. 
--In .an MPS, the job scheduler i11 responsible to 
dispatch jobs among several processors. An arriv
ing job is routed to one of the process.ors accord
ing to the scheduling policy and the job. characte
ristics. Load balancing can be done either deter
ministically or probabilistically. The determinis
tic routing assigns the next processor depending 
on the current state of the system. The probabi
listic routing dispatches jobs in a proportionate 
approach, which is independent of the system 
state. 

Only probabilistic routing strategies are con
sidered in this paper. The job scheduling proba
bilities are solved for e.ach job class to each of 
the processors with given workload and job assign
ment pattern. As a resul't, the . minimal average 
job turnaround time can be achieved. An optimal 
deterministic routing policy (if exist) should 
provide a better system performance than .that pro
vided by an optimal pro.babilistit: rout:i.ng policy 
[6]. To prove the optimality of a specific deter
ministic routing policy is a nontrivial task. 
Usually, a deterministic routing policy must be 
compared with other routing policies to display 
its superiority. Most performance evaluation 
under a deterministic routing policy is conducted 
on MPS with only two or three processors [2,3,5]. 
A probabilistic job routing policy is easier to 

0190-3918/81/0000/0352$00.75 © 1981 IEEE 

352 

Kai Hwang 
School of Electrical Engineering 

Purdue University 
West Lafayette, IN. 47907 

implement in MPSs with arbitrary number of pro
cessors. The scheduling overhead is low, because 
current processor information is not needed. The 
probabilistic approach can be also used· to 
evaluate existing deterministic routing policies. 

Recently, Chow and Kohler [3] presented a queu
eing model to analyze a single-job-class and hete
rogeneous MPS. They proposed a.proportional branc
hing policy, which assigns the job scheduling 
probability in proportional to the processing 
speed of t.he processor. The proportional branch
ing policy can prevent the queue from saturation, 
but cannot minimize the average job turnaround 
time. For the deterministic . case, they presented 
an approximated numerical method to analyze a two
processor heterogeneous MPS. Towley studied the 
deterministic routing 'in a closed queueing net
work [9]. A single-server processor-sharing 
system with many job classes has been studied by 
[4). Baskett, et al. studied the behavior of que
ueing networks with different classes of custom
ers [l]. 

Some related researches were conducted by 
[ 6, 7] in packet switched computer communications 
networks. Computer network generally assumes fix
ed routing (probabilistic routing), since it is 
easy to describe by means of. a routing table. 
Adaptive . routing (deterministic routing), on the 
other hand, is complex to describe, and requires 
simulation to evaluate channel flows and delays. 
Furthermore, it was shown by [7] that at steady 
state, flow patterns and delays induced by good 
adaptive r.outing policies ate very close to those 
obtained with optimal fixed routing policies. 
Foschini. [6] studied deterministic routing polic
ies in a packet switched network with multiple 
packet classes, where the outgoing trunks have 
different capabilities. He employed a diffusion 
analysis to study the effect of routing strateg
ies under a nearly overloaded situation. 

Optimal solutions to . the load balancing pro
blem are developed in this paper for a multiple 
processor system with single job class. The pro
portional' branching policy suggested by Chow and 
Kohler [3) is formally proved to be nonoptimal. 
This study extends the MPS environment from 
single job class to multiple job classes. An 
optimal algorithm is developed to calculate the 
optimal job scheduling probabilities for each 
processor with multiple job classes. A colllparison 
of various load balancing policies for MPSs is 
also given. 

II. System Classification and Scheduling Models 

A homogeneous MPS contains identical pro
cessors. Whereas,_ a heterogeneous MPS contains 
different processors. Depending on the processor 



capability and assignability, j 0bs are claasified 
into multiple classes. Different classes of jobs 
are to be assigned to different subsets of pro
c_essors. In terms of proce.ssor. capabilities and 
job classes, an MPS can be classified into one of 
the following four categories. 

SCHO: Single job Class HOmogeneous system. 
SCHE; Single job Class HEterogeneous system. 
MCHO: Multiple job Classes HOmogeneous system, 
MCHE: Multiple job Classes HEterogeneous system. 

Queues of jobs are formed at . each processor 
based on the stochastic nature of job arrival; and 
given job class"ification. The single most import
ant -performance measure of an MPS is·. the. average 
job turnaround time. This includes the time from 
the submission of a job through the dispatcher to 
its completion by one of the processors. _!)CHE 
systems have been stUdied by Chow and Kohle_r [ 2]. 
A. queueing model for an SCHE system is shown in 
Fig.la. Jobs from the same ·class are dispatched 

. t() the j-th processpr with probabili tY Sj • The 
model can be generalized. to consider multiple 
classes of job arrivals to the dispatcher as 
depicted in Fig.lb. This queueing network is .used 
to ·model the scheduling environment of an MCHE 

. system. With minor modification, it can be appli
ed to other three classes of multiple processor 
systems as well. 

E.ach processor in th_e MPS is modeled by an 
M/M/l queue, Let n be the total number of process
ors .. and m be the total number of distinct job 
c ias_ses. For n processors, we have n independent 
M/M/l queues. The i-th job class has a Poisson 
arrival rate with mean A , The j-th processor has 
an exponentially distriiuted service rate with 
mean·. µ · • Upon the arrival of . a new job, the job 
dispatci'iier is responsible .for assigning the job 
to ·one of the pro.cessor.s. The probabilistic 
scheduling policy is independent of the state of 
the system. The state of the system is represent
ed by the number. of jobs in each of the queues at 
any instance. The first-come first-s.erved (FCFS) 
queueing discipline is assumed, and jockeying is 
not allowed ,in this study. 

Let M•{l,2,. •• ,m} . and N•{l,2,. •• ,n}. _be .two 
sets representing indices of job classes and pro
cessors respectively. Jobs in different classes 
arrive independently. Ttie total job arrival rate 
" .J., is the sum, of all different classes of job 
arrival rates, Ai· • The job assignment matrix _! 
=(a1j) is.an m by n_matrix, where aii indicates 
that the i-th c_lass job can be exe'Cuted on the 
j-th processor; aij =O otherwise. The job schedul
ing matrix _!=(sij ) is an m by n matrix, where 
sij is the probability of the i-th_ class job 
being as.signed to the j-th processor. Obviously, 
sij. •O if ai1=0. After the job scheduling matrix 
is determinecf, the actual job arrival rate, J.j , 
to the j-th processor can .. be expressed by .• 

Since each arrival source is a Poisson 
process, the linear combination .of them is also a 
Poisson process with mean arrival rate J.j 
Hence, we have 

353 

(1) 

Once the scheduling matrix S is determined, 
the model in Fig.lb can be decomposed into n inde
pendent M/M/l queues, where the j-th queue has 
mean arrival rate J.j and service rate µ 1 respec
tively. All queues oehave independently !Sut cons
trained by the linear relation in Eq,(l). 

An M/M/l queue is solvable under the unsaturat
ed· condition, Aj< µj • At equilibrium state, the 
average job turnaround time among jobs serviced 
by the j-th processor is calculated· by T. = 
l/(µj - _J.'j) for all 1j. We. wan~ to find a part~c':1-
lar assignment of Ai satufyi.ng Eq. (1) to mi.ni.
mize the average of all T.'s. Specifically, we 
define the average job turna~ound time 

T • E Tj(Aj' / J.) 
je:N 

(2) 

The problem of finding an optimal job schedul
ing matrix resulting in a minimiil average job 
turnaround time can be formulated as a nonlinear 
programming problem as follows: 

Minimize T - .· E Tj (lj I A) 
je:N 

provided that 

Ai < E a 1jµ. 
je:N J 

A < E µ · 
je:N j 

subject to 

E s1 . • 1 
je:N J 

A~ • E Aisij < µj 
ie:M 

for ie:M (3) 

(4) 

for ie:M, je:N (S) 

for ie:M (6) 

for je:N (7) 

Condition in Eq.(3) prevents any one class of 
jobs from saturating the system, Condition in 
Eq.(4) ensures that the total job arrival rate is 
less than the total service rate. Constraint in 
Eq.(7) prevents any processor from saturation 
during the scheduling process. 

III. Optimal Load Balancing with 
Single Job Class 

In a single . job class environment, the job 
assignment matrix A is a 1 by n row matrix with 
all. components equal to 1; Abo m=l, A • 11 • We 
shall use S. to represent the probability sli • 
The optimiza-lion probiem stated in Sec.II can 'be 
simplified to 



p,rovided .that 

l <j~1*µJ 

subject to 

s ~ '() 
j 

ES-.., 1 
jd j . 

>..sj < µj 

for jdf 

.for je:N 

.(8) 

(9) 

(lO) 

'(11) 

02) 

To mLn1mLH the Obj.ective fUl'lCtion T in ~· 
(8), we employed the· Method of Lagrange multi
plier. Du'e to page H-mitaticms, proofs of all 
the followfog theorems are skippeli. Interested 
rea4ers may refer to [SJ for details of all the 
proofs. . , . 

· The objective ·function in Eq.{8) can be proved 
convex wii:h respect to ·~ for all j • In an SCHE 
system, proces•ors may have different .processing 
speeds. Obviously,' ~a processor with higher servi
ce rate should have higher probabili.ty to be "8s&
igned with jobs. Without loss of generality, the 
service rates ( µj} of the n ,proce.ssors are denot
ed in descending order 

(U) 

Theorem 1: 
In an SCHE system, the job · sc-heduling matrix 

S., which minimizes T and satisfies the cons
traints in Eqs.(10)-(12); has the following 
probabilities; 

Sj= [µj-/i1j (ek->..) /Bk]/>.. 

= 0 

where 
k 

Bk= t Iii: 
i=l l. 

and 

for lsj~ 

foo: k<jsn 
(14} 

and k is determined by the job arrival rate >.. as 
follows: 

ek-~Bk < :>. ~ ek+l-~lak+l for l~k<n (15) 

or 

e -Iii s < " < e n n n n for k"'n (16.) 

with thi·s optimum assignment, we obtain 

for l<j<k 

and the minimized average job turnaround time 

(.1]) 

354 

.. Note .that ;>, ~ = >..S;;. Th~s lll~ns tbaJ: th~ actual 
j-ob :Bxn!Val rt-le .to the 3-th -pr~enor is. equal 
to tfu! ser-vjce rate of the j"".th processor subtrac
ting a term which Ts pro.por,tioaal t<> the square 
root of the. service rat.e of t~ .J~th pr.o.ces·s-or. 
In an SCRO sys~em (µj.,Ji• for sil: H~ the job .:&di-. 
eduling matrix . .! ha.a equal probability 1L =; l/n 
for .all j. :thb means that •jobs are '8signe4 
randomly !D<lng Pt'OCeHOrS with equal probability 
as ell:pected •. ·.·. ·. . · .. ·· 

In a light traffic envi'l'<>nment. oal,y the :firsJ: · 
k pr0<;essor8 ,are a.ss.~ed wit1i, jobs' as stated in 
.Theorem I. ,Ttte ·avenge job turnaround time -under 
this circumstance is faster than the service: ti-me 
o.f any o·f. the remainj.ng n-:lt slower processors. 
This fact Ui. proved in {81 by -Sh'OWing that T<llPj 
for all j)k. . . . . • 

eh0w and Kolller proPOsed a iroyprtional: branch
ing policy for an SCHE sy&t~ 13 • The scheduling 
probabilities are proportional to the service 
rate of · proceas.on, but independenJ: of. the jpb 
arrival rate, i.e., Sj • µj I e:n. for all j. We h-ave 

·discovered in 18) that this proportional branch
ing policy is not neceuarily optimal. 

Most sehedulin.g studies on loosely col;ipled 
MPSs were· conducted in a single-class job env~ron
ment. In what follows, we compare ouT scheduHng 
policy witb two, known .policies in a single~class 
job environment. 

(1) the proporti-onal brtnching policy proposed 1zy 
Chow and KObler. 

By Eq.(8), the average job turnaround time for 
the proportional branching policy~ T1 , can be 
expressed ali T1 .. a/ c_en -l.). · ·. 

(2) the optimal probabilistic 
proposed by, Ni and Hwang. 

The averap job turnaround 
al probabilistic .scheduling 
stated in Eq. (17). 

scheduling policy 

time for the optim
·policy, r2 , was 

(3} the deterministic scheduling policy proposed 
by Foschini. 

A deterministie policy r-Outes an arriving job 
to the proeessor that offers the least expec.ted 
turnaround time; An arrbring job is sent t-0 the 
queue which has the minimum ratio ·of the queue 
length t.o service rate. If minimum ratio. is .not 
unique, the job dispatcher se.lects from the ties 
the one with maximum· service rate. A generalized 
version of this policy was. studied by Foschini 
[~). This policy is cotisi.dererl the best schedul
ing. policy for an SCHE system {3]. 

(4) The ideal scheduling with a single fast pro
cesaoT. 

This corresponds to the case when a system has 
single proce;ssor whose service rate is the sum of 
service rat-es pf all n individual processors in 
an MPS. This is an ideal case bectuse the single 
processor has the same capability -of the. whole· 
MPS but the ill effect due to load unbalam:ing 
disappeared. This ideal c~se is inc~uded . for 
comparison, purpose only. The single processor is 
a standard M/M/l queue with service rate :en• The 
.average job turnaround time .of stich a system 
equals T4 = l/(6n-l}. 



There is no doubt that the· 1ieterministic sche
duling policy will result in the least turna-round 
time. However, closed-form solution of the 
aver"1!ge job turnaround time can not be obtained 
for deterministk scheduling. One approach · to 
obtain a meaningful · solution requires to perform 
extensive simulation experiments which are rather 
time-consuming. Chow and Kohler developed an 
efficient technique for analyting deterministic 
scheduling in a two-processor. SCHE syst~in. Their 
aoluti<J°ns · are accurate only for a light traffic 
environment. When the job arrival rat.e approaches 
the total service rate. the accuracy begins to 
deteriorate. 

Conside.r a two-:processor SCHE system. When 
µ 1 "' 4 and l.12 • l, we observed from Fig.2 that 

(18) 

for any choice of l • Note that .when :>.. is close 
to the total service ·rate, T3 can not be -obtain
ed due to the light traffic •ssumption made by 
Chow and Kohler. Under light load conditions , 
'1'2 and T ·approach the performance of the 
l"lng le fas~ processor. because most of the jobs 
are assigned to the fast processor. When the 
arrival rate increases, the deterministic sche
duling policy -dis.plays its superiority· over the 
probabilistic scheduling policy. The rapidly 
declined performance of tbe proportional branch
ing policy is due to its failure considering the 
effect Of the arrivd rate. 

IV •. Environment of Multiple Job Clatises 

The number of unknown scheduling probabilities 
for a multiple-job-classes environment equals the 
number of non?;ero elements in the assignment 
matrix A. In terms of the unkROWn scheduling 
Probabilities, s· the obJ"ecti'ile function can ij. 
be expressed as 

1 n m m 
T • -[ E ( l: :>..isij)/(µj- E :>...s .. )] 

:>.. j=l i=l i=l 1 l.J 
(19) 

There are two obstacles which prevent a direct 
solution of Eq. (19}. First, the obj.ective func
tion T can not ·be proved to be convex. Secondly, 
even if T is convex, the method of Lagrange multi
plier cannot be used to simplify the· problem, 
because at least m Lagrange multipliers are 
required. 

In our model, the average service rate of each 
pxocessor is assumed time-invariant. In other 
words, different classes ·of jobs assigned to the 
same processor have the same average service 
time. From the viewpoint of a processor, job 
c lasSes do not make any difhrence in achieving 
the· average service rate once a job has been 
assigned to it. Let us temporarily ignore the job 
prefer'ence restriction, that is, each job can be 
assigned to any of the processors. The total. job 
arrival rate can be. calculated by Eq.(l). The 
optimal job arrival rate assigned to each process
or can be derived directly from Theorem 1 ~ Specif
ically, if lij denotes the optimal job assignment 
rate to the j-tb processor, then Ii j = :>..sj · for 

355 

all j. This does suggest how an optimal assign
ment in an MPS with multiple job classes can be 
achieved. If we distribute differen.t job classes 
to multiple processors such that the actual job 
arrival rate, :>..j , equals the optimal job assign
ment rate, Ii j , for each of .the processors, the 
optimal job scheduling matrix can then be calcu
lated. More specifically, 

for jEN (20) 

Equation (20) is basically a set of n linear 
equations over more than n variables. This impli
es that there may exit none, or one, or infinite
ly many solutions to Eq.(20) subject to the cons
traints given in Eqs.(5) to (7). The case of no 
solution must be avoided; whereas, the other two 
cases are acceptable in the search of an optilnal 
scheduHng matrix. The following example shows a 
singular case in Which solution does not exist. 

Consider an MCHO system with two processors 
and two different job clas'8es as iliustrated in 
Fig.3 with :>.. 1 • 4, :>..2 = 2, and JJ = 10. Also only 
a 12=0 for the job assignment matrix !• 

From Theorem l, we obtain s1 = 0. 5 and s2 
• ·O. 5. Ther-efore, both Ii 1 and 62 are equal to 3. 
Substituting these values into Eq~ (20), we. obtain 

}4s11 + 2s 21 : J 
}2s22 - 3 

Obviously, s22 = 1.5 > l vfolates the constraint. 
Therefore, the solution does not exist. In this 
example, the first job class must be assigned to 
the first processor.• The optimization problem 
becomes how to find the optimal scheduling proba
bilities~ s 21 and s 22 , provided that A1 was 
assigned to the first: processor {s11 •l). In 
general, the problem of finding the optimal job 
assignment rate, lij , with some preassigrunent of 
jobs can be formulated as follows. 

i..et c. be the preassigned job arrival rate 
to the jlth processor. The preassigned rate ·may 
come from any of the jo·b classes, but equally 
treated by the processor. Let n1 be the arrival 
rate of the i-th job class, in wllich the assign
ment has not been determined. We shall referni 
as the unassigned job arrival rate of the i-th 
job elass. The preassigned and the unassigned job 
arrival rates are related by 

Tl En. = :>..- E c.=:>..-y 
iEM 1 jeN J n 

k 
where yk = Ee. (21) 

j=lJ 

Let S. be the probability of jobs assigned 
to the jlth processor over the total unassigned 
jobs with arrival rate Tl • The problem of finding 
the optimal assignment rate to each processor, 
with some preassigned arrival rates, {c.}, and 
a given total unassinged arrival rate, Jn , is 
formulated as follows: · 

n 
Minimize T = E 

j=l 
(2Z) 



provided that 

for iEM (23) 

(24) A n + yn < E µ. = 6 
jEN J n 

cj < µj 

subject to 

E S = 1 
jEN j 

for jEN 

for jEN 

for jEN 

(25) 

(26) 

(27} 

(28) 

It can be easily .proved that the objective 
function in Eq. ( 22) is convex. Closed-form 
solution for the above constrained minimization 
problem .is stated in Theorems 2 for heterogeneous 
multiple processor systems. Without loss of 
generality, we order the subscript j such that 

(29) 
2: (µ -c ) ;,;µ 

n n n 

Theorem 2: 
The optimal job assign111ent { oj } to a 

heterogeneous MPS with unassigned total arr.ival 
rate n and some preassigned rates cj for all j, 
~hich minimizes T in Eq. (22) sub3ect to the 
constraints in Eqs. ( 26 )7(28), can be evaluated by 

(30) 
for k<j:S.n 

where k is determined by the unassigned job 
arrival rate n as follows: 

for l:S.k<n 

or (31) 

(6 -y )-B (µ -c )/./]J" < n < 6 -y for k=n 
nnnnn n nn 

The physical meaning of the optimal assignment 
in Eq.(30) can be interpreted as follows. If the 
traffic is very heavy, i.e. A=n+yn approaches 
6 , the optimum assignment is very close to the 
aQailable capacity of the pr.ocessor, i.e., µj -
cj for the J-th processor. When the traffic 
becomes light, the optimal job assignment is 
formed by subtracting a value proportional to/iij 
from the available capacity of that processor. If 
cj=O for all j, Theorem 2 becomes equilivalent to 
Tfieorem 1. If µj=µ for all j in Theorem 2, 
Theorem 2 can be applied to a homogeneous MPS. 

356 

V. An Optimal Load Balancing Algorithm 

A recui:sive optimal load balancing algorithm 
is developed below to generate the scheduling 
matrix S for an MPS in a !l!ultiple-job-class 
envirO.nment. Although th.ere may be many solutions 
to S, th.e average job turnaround time is unique 
and-minimized for all possible solutions of.!• 
Ou:c: . purpose is to find a. systematic procedure to 
generate at least one .of ·the possible solutions 
of S. The notation c •. is .used to denote the 
rate"":" of the i-th class13 job. assigned to the j-th 
processor. All atj , C;i.j , n;L, and llj (for Hi~m, 
l~j~} are global variables. M is a set of active 
job classes. ieM indicates that. the ass.igliment of 
the i-th job class has not been determined, i.e., 
ni"'O • N is a set of active processors. jE N 
indicates that akj'\O for at least one ke:M. Both M 
and N sets are local variables. 

The Load Balancing Algorithm: 

Input: Global variables: aij , cij , ni, and llj • 
Local variables: M and N .sets, 

Output: Changes on those global variables. 
Procedure: 
1 • For each iE M with t aij =l, find a . particu.lar 

k such that" aik=l. Then set Cilc+-Cik+ni, ni+O , 
and aik+O for that i. Update M and N· 

2. For those jEN, calculate the corre11ponding job 
assignment r~tes cSj for jEN .by applying 
Theorem 2, where n=Eni and cj=Ecii. 

3. Form a set N', where JEN' if JEN and 1:niaij<cSj, 
Form a set M' , where iE M' if i EM and there is 
at least a jE N' such that a ij=l. If N'l!I-, 
invoke this algorithm with inputs M' and N'. 

4. Form M"=M-M' and N"=N-N'. For each j eN" with 
Eau =l, find a particular k such that 8kJ=1 

and o~ .iio. Set ckj+ckj+oj and nk+nk-oj • 
5. If N =O in (3) or at least one particular k 

was found in· {4), invoke this algorithm again 
with local inputs M" and N". 

6. Update M and N. Solve the following set of 
linear equations. 

l i~M.niXij=oj for j EN 

j!N 4ij = 1 for i EM 

where X .. 's are unknown .variables satisfying 
iJ 

lti.j =O if a.Lj =O ; Xj_j ~O if ~j =l for iE M, jE N 

This set of linear equations always has 
infinitely many solutions. Picking any one 
solution is sufficient. 

7. For jE:M and jE:N, set c1 j+cij+Xijni and aij+O. 

In the main program: 
I. Given m job classes with average arrival rates 

A. , n>processors with average service rate i1 1, 
ani m by n job assignment matrix . !_, al.la 
conditions in Eqs.(5)-(7}. 

2. Initialize local variables M={l,2, ••• ,m} and 
N={l,2, ••• ,n}. 

3. Initialize global variables; Cij+O and ni+Ai 
for all ie:M and jEN. 

4. Invoke the load balancing algorithm. 



5. For l~i5m and 1$j$n, calculate s .• • c .. /J... •• 
l.J l.J l. 

VI. Conclusions 

Optimal probabilistic load balancing policies 
are developed for a multiple processor system 
with either single job class or multiple job 
classes. Those policies provide a test· bed to 
determine the superiority of any deterministic 
scheduling policy over probabilistic ones. With 
the high implementation overhead of deterministic 
policy, we conclude that the proposed probabilist
ic scheduling policy is more feasible and can be 
systematically implemented in co111111ercial multiple 
processor systems. 

Acknowledgements 

This work was supported in part by the NSF 
research grant MCS-78-18906A02 and in part by DOT 
research contract R920044. 

References 

[ 1] Baskett , F. , et al. "Open, closed, and mixed 
networks of queues with different classes of 
customers", J. of ACM, (April, 1975), pp. 
248-260. 

[2] Chow, Y.C. and Kohler, w.H., "Dynamic load 
balancing in a homogeneous two-processor 
distributed system", Computer Performance, 
(Eds. K.M. Chandy and M. Reiser), pp.39-52. 

[3] Chow, Y.C. and Kohier, W.H., "Models for 
dynamic load balancing in a heterogeneous 
multiple processor system", IEEE Trans. on 
Computer, (May, 1979), pp.354-361, 

[4].Fayolle, G., et al. "Sharing a processor 
among many job classes", J. of ACM, (July 
1980), pp.519-532. 

[5] Flatto, L., Two parallel queues with equal 
servicing rates, IBM Research Rep. RC 5916, 
(March 1976) • 

[ 6] Foschini, G.J., "On heavy traffic diffusion 
analysis and dynamic routing in packet switch
ed networks", Computer Performance, (Eds. 
K.M. Chandy and M. Reiser), pp.499-513. 

[7] Gerla, M. and Kleinrock, L., "On the topologi
cal design of distributed computer networks", 
IEEE Trans. on COllllll •. (January 1977), pp.48-
60. 

[8] Ni, L.M. and Hwang, K., Probabilistic load 
balancing in a multiple pr.ocessor system with 
many job classes, School of Electrical 
Engineering, Purdue University, TR-EE 81-1, 
(January 1981), 41 pp. 

[9] Towsley, D., "Queueing network models with 
state-dependent routing", -J. of ACM, (April 
1980), pp.323-337. 

357 

(a) A queueing model for probabilistic load 
balancing in an SCHE system. 

• • .. .. ... 

(b) A· queueing model for probabilistic load 
balancing in an MCHE .. system. 

Fig. 1. Probabilistic load balancing models for 
a multiple processor system. 

..... 

~·;: 

! ...... 
I 
~ ...... 

~ ..... 
o.aao+-~--.~~-.-~~.--~-,-~--, 

..... 't~R. A~1vil"'iliTE ,~;""' I.Diii 

Fig. 2. Comparison of three load balancing 
policies for a two-processor hetero
geneous system with single job class. 

Fig. 3. The queueing m~del of an MCHO system 
with two_ processors and two job classes• 



TASK ASSIGNMENT IN DISTRIBUTED MULTIPROCESSOR SYSTEMS* 

Virginia Lo and Jane W. · s. Liu 
Department of Computer Science 

1304 W. Springfield Avenue 
University o.f Illinois 
Urbana, Illinois 61801 

Summary 

Our research addresses the problem of task 
assignment in distributed multiprocessor 
systems. By distributed multiprocessor systems 
we mean any configuration of processors in which 
the cost of communication between processors is 
non-negligible. A set of tasks to be assigned 
to the processors are referred to collectively 
as a distributed process. In order to achieve 
their common goal, each of . the tasks performs 
two activities: execution on one of the 
procesS'Ors, utilizing the local memory and 
resources of that processor, and communication 
with one or more other tasks in the distributed 
process (transmission of data and/or 
synchronization information). An assignment of 
tasks to processors designates one processor for 
each task to reside on for the lifetime of that 
task and is thus a static assignment. 

More precisely, we define a distributed 
process as a set of k tasks T={t 1, t 2 , ••• , tk}. 
In a multiprocessor system containing n 
processors P={pl' p2, ••• , p }, let x .. denote 
the execution cost of tadk t. whelJ it is 
assigned to and hence executed o:fi processor p .• 
Let c.; denote the commtinication cost betwedn 
two t.~"Sks t. and ti if they are assigned to 
different 1 processors. Throughout our 
discussion, we will assume that the 
communication cost between two task.s executed on 
the same processor is negligible and that 
communication costs are independent of processor 
(as in a fully-interconnected network of 
processors). An assignment of tasks to 
processors can be formally described by a 
function from the se.t of tasks to the set of 
processors, f:T -> P, and an optimal assignment 
is one which minimizes some prespecified 
performance criterion. 

We consider two dHferent performance 
criteria for optimal assignments of tasks to 
processors: minimization of the total sum of 
execution and communication costs and 
minimization of the execution and communication 
costs incurred by the processor with maximum 
cost. The latter is also referred to as 
minimization of latest finishing time because of 
the equivalence of this problem to certain 
deterministic scheduling problems. As an 

*This work was partially supported by the U.S. 
Office of Naval Research under Contract No. 
N00014-79-C-0775 and by the u.s. Dept. of En
ergy under Contract No. DE-AC02-76ER02383.A003. 

0190-3918/81/0000/0358$00.75 © 1981 IEEE 

358 

illustration of these performance criteria, 
consider a system of 4 tasks and 3 processors. 
For the assignment f(t 1) = pl' f(t 2) = p2, 
f(t 3) = p2, and f(t 4 ) = p3 the total sum of 
execution and communication costs is 
x11+x22i11:32+x43+c12+c13+c14+c24+c34 and the 

latest finishing time is max {fl,f2,f3} where 

fl xll+c12+cl3+c14' 

f 2 x22+x32+c1z-•-c13+c24+c34• 

f 3 X43+cl4+c24+c34" 

Task assignment to minimize the total sum 
of execution and communicatio"n costs has been 
analyzed using a network flow model and network 
flow algorithms by a number of researchers [l]
[2], [6J-[8]. A system of n processors and k 
tasks can be modeled as a network by letting 
each processor be a distinguished node and each 
task be an ordinary node. An edge is drawn 
between each pair of task nodes ti and t.i and. is 
given the weight ci ;• There is an eage from 
each ta.sk node ti to "t!ach processor node r with 
the weight q 

1 <;' n-2 
wiq = n-1 1· xip - n-1 xiq" 

p:i!oq 
(1) 

An .!!~ ~ is a set of edges which partitions 
the nodes of the network into n disjoint subsets 
wth exactly orie processor node in each subset 
and thus corresponds naturally to an assignment 
of tasks to processors. The capacity of ~ E_
~ cut is the sum of the weights on the edges 
in the cut and is exactly equal to the sum of 
execution and communication costs incurred by 
the assignment because of the judicious choice 
of weights according to Equation (1). 

For 2 processor systems, known efficient 
Max Flow/Min Cut algorithms can be used to find 
an optimal assignment [7}. However., the problem 
of finding a minimum n-way cut for n > 2 is NP
complete and is thus unlikely to have any 
efficient (polynomial-time) solution. 
Therefore, we have devised the following group 
of efficient heuristic algorithms which together 
yield optimal or near. optimal assignments for 
tasks in a general n-processor system. 
Simulation results indicate their performance to 
be very good. The group of algor·ithms is 
described collectively as Algorithm A and 
individually as Part I (Iterative), Part II 
(Lump), and Part III (Greedy). 



Part I is derived using the network model 
of the n-processor system described above and. is 
designed based on the following known result 
[7 J: Consider a network G obtained from the 
n-processor network by reP\acing the~ set of 
processor nodes P - {p 1} with the node pi and by 
replacing eclge s from e'ach task node to "the set 
of processor nodes P - {p1} with one new edge 
with weight equal to the s'Onl of the weights on 
the replaced edges. _!he minimum cut in the 
network G with p~ and pj as distinguished nodes 
induces J partit1.on of nodes in G into two 
disjoint subsets, A containing J and Aj 
containing p1• In arl optimal task ~signment, 
tasks in Aj ate assigned to processor pj. 

In each iteration of Part I, the Max Flow/ 
Min Cut Algorithm is applied for each processor 
node p and p as distinguished nodes (as 
describJd above~ to determine the · subset of 
tasks assigned to· p_1• The resultant assignment 
may be partial in tnat there may be tasks which 
remain unassigned. Let -fl denote the set of 
tasks which remain unassigned ~fer m 
iterations. We construct a network r:frr from 
the network Gm used in the mth iteration by 
deleting from Gm all task nodes not in t11 and 
by.redefining t"he execution cost for ti in -fl on 
processor p as 

xm = x j plus the sum of communication costs 
b~~weenili and all tasks already assigned to 
processors other than p • 

The weight on the edgej from ti to p j is. 
recalculated according to Equation (1) with 
these new values of execution cost for all tasks 
in -fl , The process of applying ~ Max 
Flow/Min Cut Algorithm in the network ~,, with 
p and p as distinguished nodes for each 
p~ocessor ~. is repeated. The iteration process 
halts when 1either all tasks are assigned (in 
which case the assignment is optimal) or when no 
tasks are· assigned in the last iteration. In 
the latter case, Part II of Algor:l,thm is invoked 
on the subset of tasks -fl not assigned by Part 
I. 

II computes a lo'wer bound L on the cost of 
an optimal n-way cut when more than one 
processor is utilized for a reduced network 
containing the unassigned task nodes and the 
processor nodes: 

r mi'n' (xi }! + milt• (t~ p1 .. pi) 
p i*r r,, 

t.e:Tm p . 
L = 

1 

where cfp ,p ) is the cost of the minimum cut 
for some rarb\trarily chosen processor pr and 
processor pi. 

Based on this lower bound, the algorithm then 
checks to see if it would be cheaper to assign 
all remaining tasks i:-o one processor. If so, 
the tasks in -fl are all assigned to the one 
processor yielding minimlDll total execution cost 
for those tasks. In this case, the resultant 
assignment in combination with th.e assignment 
from Part I is optimal~ Otherwise, Part III is 
invoked to complete the assignment. 

359 

Part III, Algorithm Simple Gl!:eefy1 ,. locates 
clusters of tasks between which:: ctommunication 
costs are "large". Tasks in a cluster are then 
assigned to the same pr-0cessor, and the 
resultant assignment may be suboptimal. In 
particular, Simple Greedy computes C, the 
average communication cost over all pairs of 
tasks. Simple Greedy then deletes all edges for 
which c < c. Each edge e = (ti.,t~) for which 
c > ciis then examined. Let 'Gi "'be the task 
cfJster containing ti and G~ be the task cluster 
containing t .• The algorirhm tests to see if 
there exists1 a processor for which the total 
execution cost for all tasks in G:f Ill' Gi is non
infinite• If so, the two clusters; are merged 
into one large cluster, edges betweel'l tasks in 
the new cluster are deleted, and the process 
continues. When no more edges remain, each 
cluster is assigned to the processor with 
minimum total execution cost for the tasks in 
that cluster. 

In order to evaluate the performance of 
Algorithm A; simulation runs were made on data 
consisting of randomly generated task-processor 
configurations under the assumption that tasks 
tend to form clusters and that communication 
costs between tasks within a cluster are on the 
average larger than comtminication costs between 
tasks in different clusters. Task systems with 
6 to 20 tasks and 3 to 5 processors were 
simulated. The nlDJlber and size of task 
clusters, the intra-cluster and inter-cluster 
communication costs, and the execution costs 
were all generated from uniform random 
distributions. In addition, simulations were 
performed in which the entire assignment was 
performed by Simple Greedy alone •. · The table 
below shows the distribution of. the ratio of 
latest finishing time for a heuristic algorithm 
(Algorithm A or Simple Greedy) to the latest 
finishing time of an optimal algorithm. 

Algorithm A 
Simple Greedy 

Optimal 
=l 

69% 
71% 

< 11/10 
25% 
14% 

< 5/4 
6% 

11% 

> 5/4 
0% 
4% 

We have also investigated the task 
assignment problem using· am approach based on a 
classical model from deterministic scheduling 
theory [3)-[4). We restrict our attention to 
the assignment of k independent tasks on n 
identical·. processors. taking into account the 
overhead1 of: commmnicat'ii:>n·, betweem tasks assigned 
to different proeessor·s. Le.t P~. T, and (ci 1) be 
the set of processors,. set: o.f tasks, and matrix 
of commlinication co:st'S,, r.espectively, as before, 
and let let (x ) be a; V'eetor of execution costs 
where xi is the cost of' executing task t 1 on 
each of the processors. The latest finislling 
time (LFT) of all tasks in T for an assignment f 
is defined as 



The latest finishing time is thus the sum of 
execution and communication costs incurred by 
that processor for which execut:l,on costs plus 
conma.mication costs is maximal. over all 
processors. An optimal assignment f0 PT is one 
for which latest finishing time is minimal. We 
note that an assignment which minimizes latest 
finishing time of all tasks in the set T also 
maximizes util.ization of the processors. in the 
system. 

We restrict .our attention to systems in 
which communication costs are a simple monotonic 
non-decreasing function of executio.n costs .• 
This assumption can be justified when 
interprocess communication occurs primarily due 
to data exchange (e.g., when the tasks form a 
producer-consumer pair). It can also be 
justified in program behavior models in which 
each task corresponds to one of k disjoint 
program localities and communication costs incur 
only during transitions between localities. 

For the case cij • o:(xi • xj) we have the 
following results: 

(1) Let X • E xi and n is the nuniber of 
tie:T n 

processors. For a > X' in an optimal schedule 
all tasks are assigned to one processor. 

(2) The problem of task assignment to 
minimize LFT for task systems wit.h both 
execution and communication costs taken into 
account is equivalent to the same problem with 
communication costs ignored. 

(3) The Longest Process:f.ng Time heurist:f.c 
(LPT) assigns tasks according to the following 
rule: whenever a processor becomes available, 
the task with the greatest execution cost among 
those tasks not yet assigned is as~igned to the 
free processor. We have the following tight 
bound: 

"i.PT 4 1 --<=---
WOPT 3 Jn 

(4) If for all tasks ti in T, 

xie:{u, 2u, 4u, ••• , 2ru, •••} 

for some constant u, then the assignment 
produced by LPT is optimal. 

For .the. case cij = o:(xi + xj) we have the 
following results: 

(1) Let X = _E xi and k is the number of 
t e:T 

tasks and n is the number of processors. F.or 
a > (n-l)/(k+(n-2)), in an optimal schedule all 
tasks are assigned to one processor. 

(2) For the LPT heuristic we have the 

following loose bound: "i.PT < 2. 
1110PT 

The proofs of these results can be found in [5]. 

360 

·.:,·. 

Our results indicate that useful 
suboptimal algorithms for the task assignment 
problem exist in both the case where the goal is 
to minimize total execution and communication 

"costs and the c~se where the goal j.s to minimize 
latest finishing time. The former goal takes a 
global view -of the -system and aims to minimize 
total resource Usage •. The latter goal· treats 
concurrency as . the main factor in working for 
optimality with respect to resource usage. BOth 
approaches represent important concerns for task 
assignment algoritlnns. 

Ref ererices 

[l] s. H. Bokhari, "Dual Processor Scheduling 
with Dynamic Reassignment," IEEE Trans. on 
Software Engineering (Vol. SE-5, No. 4, July 
1979), PP• 341-349. 

[2] w. w. Chu, L. J. Holloway, M. T. Lan, and 
Kemal Efe, "Task Allocation in D:f.stributed 
Data Processing," IEEE Computer (Nov. 1980), 
PP• 57-69. 

[3] E. G. Coffman, Jr., Ed., Computer and Job 
Shop Scheduling Theory, John Wiley and Sons, 
New York, (1976), 298 PP• 

[4] O. J. El-Dessouki, "Prograin Partitionirig and 
Load Balanc:f.ng in Network Computers," Illi
nois Institute of Technology, Ph.D. Thesis, 
(Dec. 1978). 

[5] V. M. Lo, "Task Assignment in Distributed 
Multiprocessor Systems," Department of Com
·puter Science, University of Illinois, in 
preparation •. 

(6) H. S. Stone and s. H. Bokhari, "Control of 
D:l,stributed Processes," IEEE -Computer (July 
1978), PP• 97-106. 

(7) H. s. Stone, ''Multiprocessor Scheduling with 
the Aid of Network Flow Algorithms," IEEE 
~· ~ Software Engineering (Vol. SE-3, 
No. 1, Jan. 1977), PP• 85-93. 

[8] s. B. Wuand M. T. Liu, "Assignment of Tasks 
and Resources for Distributed Processing," 
IEEE COMPCON Proceedings ~ Distributed Pro
cessing (Fall 1980), PP• 655-662. 

I 

I 



NOTES 





NOTES 





NOTES 




