
-
r-~ PROCEEDINGS

::zJ
r- Z OF THE

g 1982 INTERNATIONAL CONFERENCE
Z .

m:z:- ON
r-

~a PARALLEL PROCESSING
C)z

... -n
3m
~::zJ
rnm
~Z
~n
~ m
~
: a.
p
~
CD

i a
CD

~
~
Q.

c..
CD
~
'<
r
" o
:::
CD ...

PROCEEDINGS
OF THE

1982 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING
August 24-27,1982

Kenneth E. Batcher, Willard C. Meilander,and Jerry L. Potter

Editors
Co-Sponsored by

Department of Computer and Information Science
OHIO STATE UNIVERSITY

Columbus, Ohio

and the

IEEE Computer Society

In Cooperation with the

Association for Computing Machinery

ISSN 0190-3918 (also listed under)
IEEE Catalog Number 82CH1794-7

Library of Congress Number 79-640377
IEEE Computer Sociely Order No. 421

IEEE

COMPUTER
SOCIETV~
PRESS ~®

The papers appearing in this book comprise the proceedings ofthe meeting mentioned on the cover
and title page. They reflect the authors' opinions and are published as presented and without
change, in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors, I EEE Computer Society Press, or the Institute of
Electrical and Electronics Engineers, Inc.

International Conference on Parallel Pl·ocessing.
Proceedings of the Illtel'llutionuJ Conference onPnrallel

Processing. 1912-
[New Y()J'k, Institute of Electrical and Electronics Engi~
neers; availahle from the IEEE Computer Society,

v. III. 29 Clll. anllual.

Title vUl'ies sll~htly.
Confl'rel)(~('s for 1072- co-sponsored hy the Dept. of Blec-

trlcal and Computer Engineering. \Vayne State University, Detroit,
nIHI tht! I1~I·;l!J C(Jlllplltt~r Society In cooperntlon with the Associatioll
for Computing l\Iachinery.

Key title: Proceedings of the International Conference 011 Parallel
Processing, I SSN 0100(31)18.

1. Parallel pl'ocessing (FJlectronic computers) 1. Institute of
Electrical and }1]lectl'Unics gngineers. II. 'Vayne State University.
Detroit. Dept. or Electri!'al Ulltl Computer Engineering. III. I1i:J.;E
Computer Society. IV. Associution for COlllputing Machinery. ·V.
Title.

QA76.6.1548a 001.6'4

Li\)rary of Congress 79

Published by IEEE Computer Society Press
1109 Spring Street

Silver Spring, MD 20910

79-640377
MARC-S

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for
private use of patrons those articles in this volume that carry a code at the bottom
of the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are
permitted to photocopy isolated articles for noncommercial classroom use without
fee. For other copying, reprint or republication permission, write to Director, Publish
ing Services, IEEE, 345 E. 47 St., New York,. NY 10017. All rights reserved. Copy
right © 1982 by The Institute of Electrical and Electronics Engineers, Inc.

ISSN 0190-3918
IEEE Catalog No. 82CH1794-7
Library of Congress No. 79-640377
IEEE Computer Society Order No. 421

Order from: IEEE Computer Society
Post Office Box 80452
Worldway Postal Center
Los Angeles, CA 90080

I EEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

• The Institute of Electrical and Electronics Engineers, Inc.

II

I' I

I

I

PREFACE

This, the eleventh conference devoted to parallel processing, marks the
beginning of our second decade. The history of parallel processing and what
transpired during the first decade were discussed at the keynote session of the
1981 conference. It is appropriate at this year's keynote to learn about a
development which will have a major impact during the second decade - VHSIC, a
program of the Department of Defense to develop very dense VLSI chips. This
effort will also improve the capability of several integrated circuit
manufacturers. While denser VLSI will let us build more powerful parallel
processors it raises the question of how best to use this new capability.

As in previous years, the conference received many papers from around the world.
Of the 124 papers submitted, 46 came from 14 countries outside of the United
States. There were many papers of very high quality far too many to be
accomodated at the conference. Final selection of the 67 contributed papers to
be presented was very difficult. To fit all these papers into the schedule we
were forced to ask the authors of twenty regular papers to condense their
material to our short paper format. We regret that we could not accept more
papers and that we had to have a number of them trimmed down. Attendees at
previous conferences have indicated a preference for maintaining our tradition
of no parallel sessions so the schedule is tight and we can only accomodate a
limited number of papers and give them a limited amount of time. The conference
benefits greatly from this intense competition. We sincerely thank the authors
of all submissions for their time and effort.

We owe a deep debt of gratitude to the 153 referees who took time out from their
normal duties to evaluate the manuscripts we sent them and give us their
opinions. The job of selecting papers would have been impossible without their
help.

The program committee thanks Goodyear Aerospace Corporation and Kent State
University for their cooperation and support of our committee work. A number of
individuals helped us with our work including Lynne Brocco, Hazeljean Cheeseman,
Bob Cronauer, Pat Hawkins, Carl Mickelson, Martha Moffat, Jan Pavkov, Carole
Rey, and Elizabeth Young. We also extend thanks to the mail service at Goodyear
Aerospace for ably handling the extra load we gave them (we received and
dispatched over 1000 pieces of mail in connection with our work).

Kenneth E. Satcher - Goodyear Aerospace
Willard C. Meilander - Goodyear Aerospace
Jerry L. Potter - Kent State University

1982 ICPP Program Committee

ill

TABLE OF CONTENTS

Page

SESSION 1: KEYNOTE

The VHSIC Program and its Impact on Parallel Processing • • • • • • • • • • • • • • •• 1
Dr. Donald W. Burlage, Acting Deputy Director, VHSIC Program

SESSION 2: INTERCONNECTION NETWORKS

Design and Performance of a General Class of Interconnection Networks • • • • • • • •• 2
Laxmi N. Bhuyan and Dharma P. Agrawal

Augmented and Pruned N log N Hultistage Networks: Topology and Performance • • • • • •• 10
Daniel M. Dias and J. Robert Jump

Performance of Self-routing Shuffle-Exchange Interconnection Network in SIHD • • • • •• 13
Processors

Jamshed H. Hirza

SP2I Interconnection Network and Extension of the Iteration Method of Automatic
Vector-Routing

Wang Rong-quan, Zhang Xiang, and Gao Qing-shi

Distributed Circuit Switching Starnet
Chuan-lin Wu, Woei Lin, and Hin-Chang Lin

SESSION 3: NUMERIC ALGORITHHS I

Comparative Study of the Exploitation of Different Levels of Parallelism on
Different Parallel Architectures

R.ll. Barlow, D.J. Evans and J. Shanehchi

16

26

34

A Hesh Coloring Hethod for Efficient MIMD Processing in Finite Element Problems 41
Ph. Berger, P. Brouaye, and J.C. Syre

An Efficient Parallel Block Conjugate Gradient Method for Linear Equations • • • • • •• 47
J. S. Kowalik and S. P. Kumar

A Multi-Color SOR Method for Parallel Computation
L. Adams and J. Ortega

53

A Parallel Algorithm for Finding the Roots of a Polynomial • • • • • • • • • • • • • •• 57
Thomas A. Rice and Leah J. Siegel

SESSION 4: NUMERIC ALGORITHHS II

Optimizing the FACR(I) Poisson-Solver on Parallel Computers
R. W. Hockney

62

Parallel Poisson and Biharmonic Solvers Implemented on the EGPA Hultiprocessol • • • •• 72
Marian Vajtersic

Iterative Algorithms for Tridiagonal Matrices on a WSI-Multiprocessor
D. D. Gajski, A. H. Sameh, and J. A. Wisniewski

Optimal Implementation of Signal Flow Graphs on Synchronous Hultiprocessors
T. P. Barnwell, III and C. J. H. Hodges

v

82

90

SESSION 5: NETWORK DIAGNOSIS AND FAULT TOLERANCE

A Test Strategy for Packet Switching Networks
Willie Y-P. Lim

96

On Fault-Diagnosis of some Multistage Networks •• 99
Tse-yun Feng and I-pieng Kao

Fault Tolerance Analysis of Several Interconnection Networks • • • • • • • • • • • • •• 102
John Paul Shen

A Fault-Tolerant Connecting Network for Multiprocessor Systems • • • • • • • • • • • •• 113
L. Ciminiera and A. Serra

A Fault Tolerant Interconnection Network using Error Correcting Codes • • • • • • • •• 123
J. Edward Lilienkamp, Duncan H. Lawrie, and Pen-Chung Yew

SESSION 6: DATAFLOW AND REDUCTION MACHINES

DDSP -- A Data Flow Computer For Signal Processing • • • • • • • • • • • • • • 126
Eugene B. Hogenauer, Richard F. Newbold, and Yul J. Inn

Summary of a Hybrid Data Flow System • • • • • • • • • •
Gary N. Fostel

134

Function Sharing in a Static Data Flow Machine •• 137
Kenneth W. Todd

SERFRE : A General Purpose Multi-Processor Reduction Machine • • • • • • • • • • • • •• 140
F.-Y. Villemin

SESSION 7: LANGUAGES

A Language for Specification and Programming of Reconfigurable Parallel • • • • • • •• 142
Computation Structures

J. C. Browne, A. Tripathi, S. Fedak, A. Adiga, R. Kapur

Algebra of Events: A Model for Parallel and Real Time Systems
P. Caspi and N. Halbwachs

150

Resource Expressions for Applicative Languages •• 160
Bharadwaj Jayaraman and Robert M. Keller

Parallel Implementation of Functional Languages •• • • • • • • • • • • • • • • • • •• 168
J. R. Kennaway and M. R. Sleep

SESSION 8: NON-NUMERIC ALGORITHMS I

Parallel Generation of The Postfix Form
Eliezer Dekel and Sartaj Sahni

171

A Parallel Matching Algorithm for Convex Bipartite Graphs •• • • • • • • • • • • • • • 178
Eliezer Dekel and Sartaj Sahni

Significance of Problem Solving Parameters on the Performance of Combinatorial • • • • • 185
Algorithms on Multi-Computer Parallel Architectures

F. Gail Gray, William M. McCormack and Robert M. Haralick

NOVAC - A NOn-tree VAriable Tree for Combinatorial Computing • • • • •• 193
B. C. Desai, J. Opatrny, C. Lam, P. Grogono, J. W. Atwood, and S. Cabilio

Results in Parallel Searching, Merging, and Sorting •••••••••
Clyde P. Kruskal

196

SESSION ~ NON-NUMERIC ALGORITHMS !!

On Computing Weak Transitive Closure in O(log n} Expected Random Parallel Time • • • •• 199
Albert G. Greenberg and Michael J. Fischer

Alternative Approaches to Multiprocessor Garbage Collection • • • • • • • • • • • • • • 205
I. A. Newman and M. C. Woodward

Concurrent Disk Accessing for Partial Match Retrieval
H. C. Du

211

Algorithms for Replace-Add Based Paracomputers •• 219
Clyde P. Kruskal

Constructing Parallel Programs and their Termination Proof • • • • • • • • • • • • • • • 224
J. P. Banatre, M. Banatre, P. Quinton

SESSION 10: LARGE-SCALE SCIENTIFIC PROCESSING

Multiple Pipeline Scheduling in Vector Supercomputers
Shun-Piao Su and Kai Hwang

226

Performance Evaluation of Three Automatic Vectorizer Packages ••• • • • • • • • • •• 235
Clifford N. Arnold

Results of Parallel Processing a Large Scientific Problem on a Commercially •• • • • • 243
Available Multiple-Processor Computer System

Robert Hiromoto

Kernel-control Tailoring of Sequential Programs for Parallel Execution • • • • • • • • • 245
Mark Furtney and Terrence W. Pratt

A Performance Model for Instruction Prefetch in Pipelined Instruction Units
Gregory F. Grohoski and Janak H. Patel

SESSION 11: ARRAY PROCESSORS -----

248

Programming Techniques on the LUCAS Associative Array Computer • • • • • • • • • • • • • 253
Christer Fernstrom

Wafer Scale Integration of Configurable, Highly Parallel (CHiP) Processors • • • • • • • 262
Kye S. Hedlund and Lawrence Snyder

Testing Coordination for "Homogeneous·' Parallel Algorithms • • • • • • • • • • • • • •• 265
Janice E. Cuny and Lawrence Snyder

MPP VLSI Multiprocessor Integrated Circuit Design
John T. Burkley

Efficient Parallel Algorithms for Processor Arrays
Kuang-Hua Huang and Jacob A. Abraham

SESSION 12: MIMD PROCESSING '::';::=.;;0.:.';;';' ____ =====

268

271

Parallel Simulation by Means of a Pre scheduled MIMD-System featuring Synchronous • • • • 280
Pipeline Processors

M. Tad jan , R. E. Buehrer, W. Haelg

Pipelin1ng Array Computations for MIMD Parallelism: A Function Specification • • • • • • 284
Dennis Gannon

Combining Partial Results in an MIMD Computer • 287
Harry F. Jordan

An Approximate Analytical Model for Asynchronous Processes in Multiprocessors
Michel Dubois and FayE A. Briggs

vii

290

SESSION 13: SPECIAL-PURPOSE PROCESSORS

The Automated Design of Task-Specific Parallel Processing Architectures
Matthew O. Ward

298

A Bit-Sequential Multi-operand Inner Product Processor • • • • • • • • • • • • • • • •• 301
H. J. Sips

A Digit Online Arithmetic Simulator • 304
Bryan Gerard Mackay and Mary Jane Irwin

A Parallel Architecture for Acoustic Processing in Speech Understanding • • • • • • • • 307
Edward C. Bronson and Leah J. Siegel

A Novel Approach to Parallel Processing Cryptosystem • • • • • • • • • • 313
Yoshiyasu Takefuji, Koichiro Tsujino, Mari Ibuki, and Hideo Aiso

A Parallel/Pipeline Processor Architecture For Fast Exponentiation • • • • • • • • • • • 316
Bahaa W. Fam

SESSION 14: DISTRIBUTED PROCESSING

Island Universes: Distributing a Single-User Operating System • • • • • • • • • • • • • 319
Victor P. Holmes, Bruce N. Malm, and Tom H. Little

A Varied Strategy Programmable Arbiter • • • • •
M. Courvoisier

322

Using Write Back Cache to Improve Performance of Multiuser Multiprocessors • • • • • • • 326
Richard L. Norton and Jacob A. Abraham

Coherence Problem in a Multicache System • 332
W. C. Yen and K. S. Fu

Constrained Expressions and the Analysis of Designs for Dynamically-structured • • • • • 340
Distributed Systems

Jack C. Wileden

Analysis and Modeling of a Splitted-Bus Distributed Multiprocessor System • • • • • • • 345
Lan Jin and ~ei-Min Zheng

SESSION 15: MULTI-MICROPROCESSORS

Logic Programming on ZMOB: A Highly Parallel Machine •••••
U. S. Chakravarthy, S. Kasif, M. Kohli, J. Minker, and D. Cao

System Architecture of a Reconfigurable ~lultimicroprocessor Research System
Vito A. Trujillo

Design and Simulation of an MC6800G-based Multimicroprocessor System
James T. Kuehn, Howard Jay Siegel, and Peter D. Hallenbeck

Analysis of the PASM Control System Memory Hierarchy
David Lee Tuomenoksa and Howard Jay Siegel

viii

347

350

353

363

AUTHOR INDEX

Abraham, J. A. 271, 326 Gao Q.-s. 16 McCormack. W. M. 185
Adams, L. 53 Gray, F. G. 185 Minker, J. 347
Adiga, A. 142 Greenberg, A. G. 199 Mirza, J. H. 13
Agrawal, D. P. 2 Grogono, P. 193 Newbold, R. F. 126
Aiso, H. 313 Grohoski, G. F. 248 Newman, I. A. 205
Arnold, C. N. 235 Haelg, W. 280 Norton, R. L. 326
Atwood, J. W. 193 Halbwachs, N. 150 Opatrny, J. 193
Banatre, J. P. 224 Hallenbeck, P. D. 353 Ortega, J. 53
Banatre, M. 224 Haralick, R. M. 185 Patel, J. H. 248
Barlow, R.H. 34 Hedlund, K. S. 262 Pratt, T. W. 245
Barnwell, T. P. 90 Hiromoto, R. 243 Quinton, P. 224
Berger, Ph. 41 Hockney, R. W. 62 Rice, T. A. 57
Bhuyan, L. N. 2 Hodges, C. J. M. 90 Sahni, S. 171, 178
Briggs, F. A. 290 Hogenauer, E. B. 126 Sameh, A. H. 82
Bronson, E. C. 307 Holmes, V. P. 319 Serra, A. 113
Brouaye, P. 41 Huang, K.-H. 271 Shanehchi, J. 34
Browne, J. C. 142 Hwang, K. 226 Shen, J. P. 102
Buehrer, R. E. 280 Ibuki, M. 313 Siegel, H. J. 353, 363
Burkley, J. T. 268 Inn, Y. J. 126 Siegel, L. J. 57, 307
Burlage, D. W. 1 Irwin, M. J. 304 Sips, H. J. 301
Cabilio, S. 193 Jayaraman, B. 160 Sleep, M. R. 168
Cao, D. 347 Jin, L. 345 Snyder, L. 262, 265
Caspi, P. 150 Jordan, H. F. 287 Su, S.-P. 226
Chakravarthy, u. S. 347 Jump, J. R. 10 Syre, J. C. 41
Ciminiera, L. 113 Kao, I.-p. 99 Tadjan, M. 280
Courvoisier, M. 322 Kapur, R. 142 Take£uji, Y. 313
Cuny, J. E. 265 Kasif, S. 347 Todd, K. W. 137
Dekel, E. 171, 178 Keller, R. M. 160 Tripathi, A. 142
Desai, B. C. 193 Kennaway, J. R. 168 Trujillo, V. A. 350
Dias, D. M. 10 Kohli, M. 347 Tsujino, K. 313
Du, H. C. 211 Kowalik, J. S. 47 Tuomenoksa, D. L. 363
Dubois, M. 290 Kruskal, C. P. 196, 219 Vajtersic, M. 72

Evans, D.J. 34 Kuehn, J. T. 353 Villemin, F .-Y. 140
Fam, B. W. 316 Kumar, S. P. 47 Wang R.-q. 16
Fedak, S. 142 Lam, C. 193 Ward, M. o. 298
Feng, T.-y. 99 Lawrie, D. H. 123 Wileden, J. C. 340
Fernstrom, C. 253 Lilienkamp, J. E. 123 Wisniewski, J. A. 82
Fischer, M. J. 199 Lim, W. Y.-P. 96 Woodward, M. C. 205
Fostel, G. N. 134 Lin, M.-C. 26 Wu, C.-I. 26
Fu, K. S. 332 Lin, w. 26 Yen, W. C. 332
Furtney, M. 245 Little, T. H. 319 Yew, P.-C. 123
Gajski, D. D. 82 Mackay, B. G. 304 Zhang X. 16
Gannon, D. 284 MaIm, B. N. 319 Zheng, W.-M. 345

ix

George B. Adams III
Siroos K. Afshar
Dharma P. Agrawal
A. P. Andrews
Arvind
Venkataraman Ashok
D. E. Atkins
Jean-Loup Baer
Utpal Banerjee
Helmut K. Berg
S. Ya. Berkovich
Bruce Berra
A. T. Berztiss
Lubomir Bic
Jeffrey G. Bonar
Andrew Boughton
Faye A. Briggs
Edward C. Bronson
J. C. Browne
Forbes J. Burkowski
Bill Buzbee
F. G. Carty
Tung-Liang Chang
Francis Chin
Thomas W. Christopher
Ronald Cytron
A. L. Davis
Eliezer Dekel
Sudharsan Dhall
Daniel M. Dias
Nikitas Dimopoulos
Michel Dubois
Douglas D. Dunlop
Milos D. Ercegovac
Martha Evens
Bahaa W. Fam
James Fawcett
P. David Fisher
Gary N. Fostel
Garth H. Foster
Caxton C. Foster
Deborah Franke
Mark A. Franklin
Paul Fredrickson
Martin Freeman
Daniel D. Gajski
Dennis Gannon
Mario Gerla
Barry K. Gilbert
Paul A. Gilmore
Manio J. Gonzalez

LIST OF REFEREES

Robert Gordon
John J. Grefenstette
William I. Grosky
Amar Gupta
Hossam El Halabi
Kye S. Hedlund
Robert Hiromoto
Eugene B. Hogenauer
L. A. Hollaar
Peter Yan Tek Hsu
Kai Hwang
Richard C. Jaeger
Ramesh Jain
Steven F. Jennings
Harry F. Jordan
Rajan Kapur
Svetlana P. Kartashev
Robert M. Keller
F. H. Kierstead
John C. Knight
Hideaki Kobayashi
Harvey S. Koch
Man C. Kong
Janusz S. Kowalik
Clyde P. Kruskal
Annette Krygiel
H. T. Kung
S. Lakshmivarahan
Duncan Lawrie
Kyungsook Yoon Lee
Dennis Leinbaugh
Steven P. Levitan
Sigurd L. Lillevik
Willie Lim
Huai-An Lin
M. W. Linder
G. Jack Lipovski
J. W. S. Liu
K. Y. Liu
B. D. Lubachevsky
Joon Maeng
Gary K. Maki
Miroslaw Malek
P. N. Marinos
W. M. McCormack
Robert J. McMillen
Leslie Miller
Jack Minker
Jamshed H. Mirza
Robert K. Montoye
Amar Mukhopadhyay

x

W. D. Murphy
Lionel ~1. Ni
A. A. Nilsson
R. Y. Oh
Arthur E. Oldehoeft
Eli Opper
James M. Ortega
Fusun Ozguner
M. Tamer Ozsu
Janak H. Patel
Daniel J. Pease
Terrence W. Pratt
Robert W. Priester
c. S. Raghavendra
Malcolm Railey
Kamesh Ramakrishna
Jayashree Ramanathan
Anthony P. Reeves
Robert G. Reynolds
Sartaj Sahni
A. H. Sameh
David H. Schaefer
Michael A. Shanblatt
John P. Shen
Kang G. Shin
Daniel P. Siewiorek
Michael L. Skinner
Richard B. Smith
Seshadri Sowrirajan
John A. Stankovic
William J. Stewart
N. C. Strole
Philip H. Swain
Sowmitri Swamy
Mark Taylor
Hoo-Min D. Toong
Wing N. Toy
Vito A. Trujillo
Leonard Uhr
P. S. Wang
Donald F. Wann
Robert G. Wedig
Yiu-min Wei
Bruce W. Weide
Terry A. Welch
Jack C. Wileden
Chuan-lin Wu
W. C. Yen
Pen-Chung Yew
Mark Yoder
Matthew Yuschik

THE VHSIC PROGRAM AND ITS IMPACT ON PARALLEL PROCESSING

Dr. D. W. Burlage
Acting Deputy Director
VHSIC program, OUSDRE
Department of Defense

ABSTRACT

The VHSIC Program is now approaching the midpoint of its Phase I effort

that involves establishment of pilot line capabilities for 2B complex

silicon chips employing 1.25 micrometer or smaller feature size

processing. These chips, which will be applied in system brassboards

for electro-optical, communication, acoustical, missile guidance,

electronic warfare, and radar signal processing functions, are amenable

to highly parallel system architectures. With one of the chip sets, for

example, two chip types are employed to provide a system with 32

parallel processors, each with more than 20,000 gates, to obtain a

system capable of several billion operations per second. In effecting

these architectures, it is becoming apparent that new combinations of

skills and technologies are required to realize the potential of this

new generation of VLSI, and that the greatest challenges are now in

system design, not in device technology.

DESIGN AND PERFORMANCE OF A GENERAL CLASS OF INTERCONNECTION NETWORKS

Laxmi N. Bhuyan
Department of Electrical Engineering

University of Manitoba, Winnipeg
Manitoba, Canada R3T 2N2

ABSTRACT

This paper introduces a general class of
self routing Interconnection Networks for tightly
coupled multiprocessor systems. The proposed
network called "Radix Shuffle Network (RSN)" is
based on a new interconnection pattern called
Radix Shuffle and is capable of connecting any
number of processors M to any number of memory
modules N. The technique results in a variety of
Interconnection Networks depending on how M and N
are factorized. The network covers a broad spec
trum of interconnections starting from shared bus
to crossbar switches and various Multistage In
terconnection Networks (MINs). The permutation
capabilities of such networks are outlined. The
performance of the networks with respect to their
Bandwidth and cost is analyzed and compared with
that of a crossbar. Design procedures for ob
taining an optimal network with highest cost ef
ficiency is also presented.

I. INTRODUCTION

The performance of a tightly coupled multi
processor system rests primarily on an efficient
design of the network interconnecting the proces
sors to the memory modules. A crossbar switch
[1] allows all possible one to one connections
between the processors and memories but, the cost
grows rapidly with increase in the network size.
As an alternative tO,crossbar, Multistage Inter
connection Network (MINs), both nonblocking and
blocking have assumed paramount importance in re
cent times [2-11]. A MIN is basically a blocking
network which does not allow all possible permu
tations but is far less expensive compared to a
crossbar switch. A conflict arises when two or
more processors need the same link between two
successive stages in reaching their destinations.
Due to this interference, a subset of processors
might be blocked thus giving a degradation in
performance. Band Width (BW) of a network is de
fined as the expected number of memory modules
remaining busy in a cycle or the number of memory
requests accepted per cycle. Clearly, this is a
parameter which specifies to what extent a net
work is efficient. In a crossbar, all the memory
requests are accepted as long as no two or more
processors address the memory module. In a ran
dom mode of request, the memory BW of even a
crossbar is much less than the actual capacity
[12]. In a MIN, this value ought to be still
less because of additional conflicts in the
network. The interference analysis of such
networks have been reported in a few papers
recently [7,13,14].

The usual design of a MIN employs 2x2
switching elements. However, with the advance-

0190-3918/82/0000/0002$00.75 @ 1982 IEEE 2

Dharma P. Agrawal
Department of Electrical Engineering

North Carolina State University
Raleigh. NC 27650

ment in LSI technology, it might be better to
employ a larger module if the network performance
could be improved. It is also known that for a
crossbar the BW increases with increase in the
number of memory modules [12]. So a study on the
design of MxN MIN with N>M seems appropriate.
Patel's Delta network [7] is a logical approach
in this direction. Delta network is a self
routing (di&it controlled) network connecting an
inputs to b outputs through axb crossbar switch
es at each stage. Networks like Omega [4],
Indirect binary n-cube [6], Baseline [8] etc.
form a subset of Delta networks with a=b=2.

This paper presents a still broader class of
networks called Radix Shuffle Network (RSN). It
connects M inputs to N outputs, for any arbitrary
values of M and N. As a result, the existing
general network like Delta becomes a special case
of the proposed RSN. A Mx1 RSN represents a
shared bus multiprocessor system and a single
stage MxN RSN represents a crossbar switch.
Although several networks can be obtained by
constructing de-multiplexer trees [7] from inputs
to the outputs, a new interconnection pattern
called "Radix shuffle" will be considered
throughout this paper.

II. A MIXED RADIX NUMBER SYSTEM

Let M be a decimal number and be represented
as a product of r factors as

M = ml x m2 x ... x mr

Then, each number x between 0 to M-1 can be
expressed as a r-tuple (Xl x2 ••• x. ... x) for
O;;';x.;;';(m.-l). x is the Least. signf-ficantrdigit
and1 x I is the m6st significant digit. Associated
with each Xi is a weight Wi such that

r
L

i=l

w r

x.w. = x and w. =
1 1 1

M 1 = =
m1m2·· .mr

=

M for all l;;';i;;';r.

always

The lowest number 010 (0 0 ... 0) and the high-
est number (M-l)10 = (m1-1, m2-1 •... ,mr -1).

Whenever needed, a number x will be repre-
sented as (x) to specify the radix in-

m1 ,m2 ,·· .mr
volved.

Exam~le 1. Let M = 6 = 3 x 2

m1

010

= 3, m2 = 2;

= (00), 110 =

(11), 410 =

WI = 2, w2 = 1

(01), 210 = (10)

(20), 510 = (21)

I

This mixed radix number system forms the basis of
our interconnection. Although the same radix
system was used for Omega Networks of Lawrie [5],
there are two basic differences between the pro
posed RSN and Omega. First, RSN is a MxN network
for any arbitrary values of M and N as against a
NxN Omega Network. Secondly, the interconnection
pattern between two stages of our RSN is com
pletely different and is based on a new term
"Radix Shuffle" as defined below.

Definition 1 In the above mixed radix system,
the radix shuffle of a number x = (x l xZ ... x)

r ml ,

mz' ... ,mr will be defined
mZ' m3,··· ,mr ,m1 ·

as Srx = (xZx3 ···xr x1)

Example Z For M 3 x 4, the numbers are repre
sented from 00 to Z3. Any (x 1xZ)3,4 will be

connected to Srx = (xZx l)4,3 as shown in Fig. 1.

The connection procedure is as follows.

Number the inputs in radix (3,4) and outputs
in (4,3). Make a perfect shuffle of the input
and connect to the particular output.

Definition Z
given by,

Sm' a m-shuffle of an integer x is

S = mx
m = x

modeM-I) for O~x<M-l
for x = M-I

As the example, Fig. 1 again shows a 3-shuf
fIe of lZ inputs. There is a definite relation
ship between "radix shuffle" and m-shuffle as
stated in the following theorem.

Theorem 1 A radix shuffle of (x). is
m1 ,mZ'··· ,mr

identical to a m1-shuffle of x.

Proof of above theorem is omitted because
of space restriction.

III. A RADIX SHUFFLE NETWORK (RSN)

Let M and N be represented as products of r
terms as M=m1xm2x ... xm and N = n1xnZx ... xn. A
MxN RSN with M 1nputs rand N outputs 1S a r-~tage
Interconnection Network, consisting of a few
crossbar switches of size (m.xn.) at the ith
stage for all l~i~r. The inputs tnd outputs are
numbered with base (ml ,mZ' ... ,m) and base (n l ,
nZ,···,n) respectively in the mfxed radix number
system. r The switches at stage 'i' will be set as
per the ith digit of the destination tag. When
either M or N is a prime number the RSN reduces
to a MxN crossbar switch.

Let M. and N. indicate the number of inputs
and output1; at th1 it~stage of RSN. The first
stage will consist of (ml) number of (ml xnl)

M crossbar switches

with Ml = M. The

producing

second

-onl outputs
ml

Nl
stage will have

mZ

3

number of (mZxnZ) crossbar switches produc-

Mnl nZ
outputs. In general, the ith stage

ml mZ

switches of size (mixni) each and will produce

Mn l nZ·· .ni
Ni = ml mZ mi outputs.

The rth or the final
Mn l nZ···nr _l N

n
r

number of

stage will have

crossbar

switches producing Nr=N outputs.

Demultiplexer trees can be drawn from a par
ticular input to all outputs for full connectiv
ity and the overlap of such M trees will give
rise to a self routing Interconnection network.
However the interconnection pattern Radix shuffle
is of interest throughout this paper. The ith
stage of RSN will be preceded by am. -shuffle
(also radix shuffle) for all l~i~r, as 1shown in
Fig. Z.

Let us consider the interconnection pattern
in some more detail. The M inputs are numbered
in base (ml ,mZ, ... ,mr). The first stage of swit-

ches will be preceded by a radix shuffle which is
m shuffle in this case. The inputs to the first
s!age are numbered in base (mZ,m3 , ... ,mr ,ml) fol-

lowing the radix shuffle. The outputs of the
first stage of switches of size (ml xnl) will be

numbered in base (mZ,m3 , ... ,mr ,nl). The inputs

to the second stage of switches will be numbered
in base (m3'm4 , ... ,mr ,n1 ,mZ) following a radix

shuffle interconnection. The outputs of the
second stage of switches will be numbered in base
(m3,m4, ... ,mr,nl,nZ) and so on. We have the fol-

lowing theorem.

Theorem Z The M-input N-output Radix Shuffle
Network constructed as above is indeed self rout
ing.

Proof Let the source S = (slsZ ... s)
r ml ,mZ' ... ,mr

be desired to be connected to
(d l dZ ... d) . After r n l ,nZ, ... ,nr

the destination D=
the first stage of

Radix shuffle, the source converts to (sZs3 ...

s s) at the input of the 1st r 1 mZ,m3 , ... ,mr ,ml
stage of switches. The particular (ml xnl) switch

at the 1st stage will connect the source to the
output (sZs3 ... s dl) depending on

r mZ,m3 ,···, mr ,nl
the destination digit dl . After the second radix

shuffle it becomes (s3s4··· s dl s2) r m3 ,m4 , ... ,mr ,nl ,

m2 at the input of the 2nd stage of switches and

(s3s4 ... s dl d2) at the output.
r m3,m4, ... ,mr,nl,n2

At the output of the ith stage of switches it be
comes

After the rth stage of switches the source S
is connected to D = (d l d2 ... d)

r n l ,n2 ,· .. ,nr
Since the mixed radix system is unique, there
exists a unique path between any input and an
output.

Q.E.D.

Example 3 Let M = 6 = 3 x 2 and N = 8 = 4 x 2

ml = 3, m2 = 2 and n l = 4, n2 = 2.

The RSN consists of two (3x4) crossbar
switches in the 1st stage and four (2x2) switches
at the second stage as shown in Fig. 3. The in
puts are numbered in base (3,2) and the outputs
in base (4,2). The 1st stage of interconnection
is a radix shuffle of base (3,2) giving rise to a
3-shuffle. The inputs to the 1st stage of
switches are numbered in base (2,3). The outputs
of the 1st stage are numbered in base (2,4). The
inputs to the 2nd stage of switches are numbered
in base (4,2) following the 2-shuffle intercon
nection. Finally, the outputs are in base (4,2).
The connection between input 3 = (11)3,2 and out-

put 1=(01)4 2 is shown with dark line in Fig. 3. ,
The RSN is self routing in the sense that

the connection in a (mixni) crossbar module at

the ith stage is controlled by the ith digit d.
of the desired output, O~d.~n.-l. When all m.'~ l. l. l.
are equal to a and all ni's are equal to b, the

RSN reduces to a anxbn Delta network [7]. The
mixed radix system becomes a simple higher radix
system. The interconnection before stage 'i' be
comes m. ;:: a-shuffle for all l~i~r. The first l.
stage of the interconnection in RSN allows the
identity permutation. With r=l, any MxN RSN is
equivalent to a crossbar switch.

When N=I, M number of processors share a
common memory through a Mxl switch. This is
equivalent to a shared bus system. Although dif
ferent interconnection networks can be obtained
by constructing Demultiplexer trees from input to
output, they are all equivalent in terms of total
number of permutations, Bandwidth, probability of
acceptance etc. The Radix shuffle is just a con
venient and useful way of interconnection. The
Multistage Interconnection Networks (MIN) such as
Omega [4], Inelirect Binary n-cube [6], Baseline
[8] etc. employing 2x2 switches are essentially a

part of our RSN with M=N=2n .

4

IV. PERMUTATION CAPABILITIES OF RSN

Let the capacity C be defined as the maximum
number of simultaneous input-output connections
that can be achieved through a network. For a
MxN crossbar C = Min{M,N} [15]. In a NxN multi
stage interconnection network, although some per
mutations are not possible still the capacity re
mains equal to N. In a RSN, the capacity is up
per bounded by the minimum number of inputs/out
puts at any stage. For example, in a 6x8 RSN
with M=6=3x2 and N=8=2x4, the number of outputs
from first stage Nl=4 which is even less than the
number of processors. As a result no more than 4
processors can be simultaneously connected to the
output.

Lemma 1: In a RSN the capacity C is upperbounded

by Min{M,N.ll~i~r}. l.

In a single mxn crossbar, the capacity being
min{m,n}, it is worthwhile looking into how many
possibilities of connections exist. For example,
if m~n, all inputs can be simultaneously connec
ted to m out of n outputs provided no two or more
inputs address the same memory module. In a nxn
crossbar n! such different mappings or permuta
tions are possible. In a mxn crossbar for m~n,
there can be (n) combinations of choosing m num
bers out of nmmemory modules. Associated with
each combination, there are m! permutations. The
following lemma results:

Lemma 2 The number of permutations achievable
by a mixni crossbar module at the ith stage of

RSN is given by
n.

s. = (l.)m.! for m. ~ n. l. m. l. l. l. l.
m.

= (l.)n.! for m.~n. n. l. l. l. l.

Theorem 3 If RSN is obtained such that V l~i~r,
M.~.+l=N. for M~ and M.~.+l=N. for M~, the
tbtai num&er of permutatiohs ~cfiie~able is

where k.
stage an1t

r k i
n si '

i=l
P

is the number of switches at the ith
si is as given by lemma 2.

The proofs of the above lemmas and theorem
are omitted because of space limitation.

A conflict is said to occur in a network
when two or more sources require the same link
between two stages for reaching their destina
tions. For example, in Fig. 3, the connections
o ~ 4 and 2 ~ 5 require the same link and cannot
be simultaneously achieved. In case of con
flicts, the connections are usually achieved in
two or more cycles. The following theorem char
acterizes the conflict situation in a RSN.

Theorem 4 In a RSN, there occurs a conflict if
at least two sources s , s try to reach destinax y
tions d,d such that for l~i~r, x y

I'

Proof

(d l d2···di)x ~(dld2···di)Y

(si+lSi+2··· S;rX = (si+l si+2··· s r)y

Sx and Sy are in base (m1 ,m2 , ... ,mr)·

dx and dy are in base (n1 ,n2 , ... ,nr).

From theorem 2, a conflict will occur at the
output of ith stage if (si+ls i+2··· s r d1d2 ... di)x

= (si+ls i+2··· s r d1d2 ···d i)y·

Since both are in base (mi+l,mi+2, ... mr,nl'

n2 , ... ni) which is a mixed radix system with unique

representation of a number, the theorem holds.
Q.E.D.

V. COST MODEL OF RSN

Before modeling RSN, it is imperative to
look into the complexity of a self routing mxn
crossbar module which forms the basic block in
RSN. At the ith stage, the m.xn. crossbar should
be able to connect anyone af 1.ts m. inputs to
anyone of its n. outputs as determined by the
ith digit d. of the destination tag. This would
necessiate lrog2rii1 control lines from each pro
cessor. In adaifion, there may be one request
and another acknowledge line from each crossbar
module. The control unit inside the switch will
decode this address and connect the data lines of
the particular processor to one of the output
data lines. This will be achieved through a bi
directional data switch available in the crossbar
module. The number of data lines will depend on
the pattern of data transfer. In a serial data
transfer, there will be only one line per proces
sor. It may also be practical to transmit data
in a bit slice mode with some 'w' bits per pro
cessor. The block diagram of a mxn switching
element is shown in Fig. 4a. The complexity of
the control unit as well as the data switch grow
of the order of (mn). Assuming unit cost for a
one input/ one output switch, the cost of a mxn
switch = mn. The model results in a crossbar
with mn cross points as shown in Fig. 4b. For a
2x2 switching element, the cost is 4 units. For
a MIN employing 10g2N stages the total cost'= 4 x
N '2 x 10g2N• = 2Nlog2N = o (Nlog2N) . For a NxN

crossbar, cost = N2 This modeling is in agree
ment with the model developed in [5] in terms of
the logic gates.

A RSN 1 Mn1n2 ···n. 1
emp oys ~- number of (m.xn.)

ml m2 ···mi ~ ~

switching modules at the ith stage. The cost as-

sociated with the ith stage = Mn1n2 ···ni
m1m2 ·mi _1

Hence,

r
the total cost of the RSN = I Mn1n2 ···ni

i=1 m1m2·· .mi - 1
A special case of interest is a NxN RSN

where mi=ni , V l~i~r. The total cost is

5

r
N I n ..

i=1 ~
We get the following results.

Lemma 3 The cost of a NxN RSN for some fixed
r stages of switching elements is minimum when
realized as N = nr.

Theorem 5 The overall cost of a NxN RSN is ab
solute minimum when realized with all the factors
of N as prime numbers.

The proofs of the above lemma and theorem
are obvious and hence, have been omitted.

VI. ANALYSIS OF RSN

In this section, we will analyze the RSN
with respect to its Bandwidth and Probability of
acceptance of a request and compare it with those
of a crossbar. Bandwidth (BW) is defined as the
expected number of memory requests accepted per
cycle. Probability of acceptance (PA) is the
ratio of expected BW to the expected number of
requests generated per cycle. The RSN and cross
bar will be analyzed under the following identi
cal assumptions.

1. The operation is synchronous i.e. the mess
ages begin and end simultaneously.

2. Each processor generates a random and inde
pendent request. The requests are uniformly
distributed over all the memory modules .

3. At the beginning of a cycle, each processor
generates a new request with a probability
p. Thus p is the average number of requests
generated per cycle by each processor.

4. The requests which are not accepted are ig
nored. The requests issued at the next
cycle are independent of the requests of the
previous cycle.

Various simulation results indicate that the
above set of assumptions does not result in a
significant difference in the performance. More
over, it stands well for comparison purposes.

The BW and PA of a mxn crossbar module are
given by [7,12,13].

BW = n - n(l _ E)m
n

PA = ~ - ~ (1 _ E)m
pom pom n'

where p is the average number of messages gener
ated per processor per cycle.

The above equations are quite simple and
they compare well with the results of simulation
[12]. We compared the results of a 2x2 Delta
network [7] using the above equations with those
reported by Nelson [14]. Patel's analysis shows
a better closeness to the simulation results. We
will simply use these equations for analysis of
RSN instead of pursuing the matter further.

Dividing the bandwidth by n, gives us the
rate of requests on anyone of the n output lines
of a mxn crossbar module, as a function of its
input rate

p.
1 - (1 - 2.!!)m. Pout = n

In a RSN, the output rate of ith stage is
also the input rate to (i+1)th stage. Hence, one
can recursively evaluate the output rate of any
stage starting with the input rate of the first
stage. The output rate of stage r determines the
BW of a RSN.

Let p. be the rate of request at the output
of the ith~stage. Then

Pi-1 mi
Pi = 1 - (1 -~) ,PO is the rate of requests

~

generated by the processors.

A column Bandwidth (CBW) is the BW at the
output of a particular column.

CBWi = Pi x Ni =
Mn1n2···ni_1ni

The output BW is the CBW at stage r. BW=N p .
r

The probability that a request will be ac
NPr

cepted in RSN = PA = ~.
Po

VII. NETWORK OPTIMIZATION

In this section, we present some interesting
results on how to design a cost effective inter
connection network. The BW reflects the perform
ance of a network and a cost model was obtained
in section V. We will define a cost factor t as
the ratio of BW to cost. Since we do not have a
closed form solution for BW, most of the results
presented in this section are experimental, ob
tained through computation. We will study the
characteristics of both MxN and NxN networks.

Given a value of N for a NxN RSN, there may
be several ways to factorize N into r components.
As an example, for N=16 and r=2, N can be ex
pressed as 8x2 or 4x4. The obvious question a
rises, for given values of Nand r, what is the
optimum realization of a network. This will be
referred to as local optimization. The following
observation is made.

Conjecture 1 The most cost effective realization
of a NxN RSN in some r-stages is obtained when

m. = n. = r~N for all 1~i~r.
~ ~

The conjecture is obtained from computation
al results. Let r=2. The cost factor t=BW/cost
is plotted in Fig. 5 for various values of N, a
power of two. The peaks are obtained at a the
oretical value of ~N, even if this is not an in
teger. A computer search was carried out for a
few values of r which resulted r~ as the optimal
realization. Since r ~N may not be an integer

6

for a fixed r, the m.'s should be as close to r~
as possible. ~

There is another tradeoff in building a RSN.
For example, 16 can be factorized as 2x2x2x2,
4x2x2, 4x4 etc. The design which gives the high
est cost factor is optimal. This will be re
ferred to as global optimization of RSN.

It has been impossible to derive a closed
form solution for the optimal value of r (r t)'
For N=nr and for values n=2 and 3, the op~~mal
values of r are plotted in Fig. 6. For N, a
power of two the following conjecture states the
most important observation.

Conjecture 2 For NxN RSN with N a power of two
as many 4x4 switches as possible should be em
ployed to yield the most cost effective realiza
tion.

From Fig. 6 for a 4x4 network, r t = 1.
This means one 4x4 switch should be empf8yed in
stead of conventional four (2x2) switches. For
N=8, r t =2, thus the realization should be as
N=4x2 gl.{ploying one stage of 4x4 switches and
another stage of 2x2 switches. For N=16, two
stages of 4x4 switches are desired. So, for N, a
power of four, 4x4 switches should be employed at
all stages and for N a power of 2 but not a power
of 4, the last stage will consist of 2x2 switches
and all the previous stages should consist of 4x4
switches.

A study on loosely coupled system (distribu
ted) with a sort of hypercube topology had also
resulted in a similar observation [16]. With N,
a power of 3, optimal structure is obtained when
3x3 switching elements are utilized. In general
for any N, a discrete optimization may be carried
out to determine the most effective realization.
The networks realized in this manner will be
referred to as Optimal RSN (ORSN) in this paper.
The BW, PA and cost efficiency obtained in a NxN
ORSN for N, a power of two are compared in Figs.
7, 8 and 9 respectively with those of RSN(2) and
crossbar. RSN(2) is the MIN obtained with 2x2
switches at each stage which is equivalent to an
Omega network.

We will now examine the performance of a MxN
RSN. It is known from Bhandarkar's analysis [12]
that if the number of memory modules is increased
compared to the number of processors, the BW
increases. This is evident because, with the
availabili ty of more memory modules, less con
flicts will occur and more number of processors
can be kept busy in a probabilistic view. The
variations of BW and cost efficiency by adding
more memory modules are plotted in Figs. 10 and
11 respectively. The number of processors is
kept constant as M=16. Whenever a few memory
modules are added fresh design of the RSN is
carried out and the cost efficiency (t) is calcu
lated to yield a new ORSN. The performance of
ORSN is plotted together with that of a MxN
crossbar switch.

The BW of a crossbar increases exponentially
and theoretically reaches 16 at N=co. For ORSN,

the saturation starts earlier and remains con
stant at about 10. This is because of the con
flicts inherent in a RSN. It may be pointed out
here that ORSN is designed such that the cost ef
ficiency is at the highest level of all the de
signs. It was observed that the BW improves if
other size of the switches were allowed but this
will happen at the expense of cost effectiveness.
The crossbar itself is also a part of RSN any
way.

A similar experiment was carried out to see
the effect of adding a processor to a fixed num
ber of memory modules. Figs. 12 and 13 are ob
tained with various values of M with N kept fixed
at 16. The variation of curves obtained for
crossbar can be easily predicted theoretically

1 M
from equations, BW = N - N(1 - N) , Po = 1 and

l-(1_!)M
BW N

cost efficiency t = MN M As M+oo, BW of

crossbar approaches N. However, with a recursive
equation for BW in case of RSN and the discrete
optimization required, it was not possible to
theoretically predict the characteristics of
ORSN. The results however seem to be quite real
istic.

VIII. CONCLUSIONS

A broad class of networks called Radix
Shuffle Networks (RSN) was introduced. The
network is self routing in the sense that the
output of the switches at ith stage is selected
by the ith digit of the destination address. The
network is so general that it includes systems
ranging from a shared bus connection to a cross
bar. The cost modeling was approximate but truly
represents the complexity involved. The band
width was choosen as a performance measure with
the assumption that the cycle time is almost same
for all the realizations of RSN including cross
bar. Thus, depending on the actual parameters,
the cost efficiency curve may shift a little.
However, we are convinced that the comparisons
reported in the paper will still stand.

The observations indicate that by adding
more number of memory modules the bandwidth
increases and the RSN provides an efficient
design for such an interconnection. Many useful
results were presented. An important observation
is that a NxN MIN seems to employ (4x4) switches
instead of (2x2) switches conceived of so far.
When N is a power of two but not a power of four,
all the stages can employ (4x4) switching ele
ments except the last one which will employ (2x2)
switches. The Radix Shuffle makes that connec
tion possible.

1.

REFERENCES

W.A. Wulf and C.G. Bell, "Cmmp - A Multi
miniprocessor," Proc. AFIPS, Fall Joint
Computer Confernce, Dec. 1972, pp. 765-777.

2. V.E. Benes, "Mathematical Theory of Connect
ing Networks and Telephone Traffic," Academ
ic Press, New York, 1965.

7

3. L.R. Goke and G.J. Lipovski, "Banyan Net
works for Partitioning Multiprocessor Sys
terns," Proc. 1st Int. Symp. on Computer
Architecture, Florida, Dec. 1973, pp. 21-28.

4 D.H. Lawrie, "Access and Alignment of Data
in an Array Processor," IEEE Trans. on
Computers, C-24, Dec. 1975, pp. 1145-1155.

5. D.H. Lawrie, "Memory-Processor Connection
Networks," Ph.D. Thesis, University of
Illinois, 1973.

6. M.C. Pease, "The Indirect Binary N-cube
Microprocessor Array," IEEE Trans. on Com
puters, C-26, May 1977, pp. 458-473.

7. J.H. Patel, "Performance of Processor-Memory
Interconnections for Multiprocessors," IEEE
Trans. on Computers, C-30, Oct. 1981, pp.
771-780.

8. C.L. Wu and T.Y. Feng, "On a Class of Multi
stage Interconnection Networks," IEEE Trans.
on Computers, C-29, Aug. 1980, pp. 694-702.

9. H.J. Siegel, "Analysis Techniques for SIMD
Machine Interconnection Networks and the
Effect of Processor Address Masks," IEEE
Trans. on Computers, C-26, Feb. 1977, pp.
153-161.

10. D.K. Pradhan and K.L. Kodandapani, "A Uni
form Representation of Single and Multistage
Interconnection Networks Used in SIMD Ma
chines," IEEE Trans. on Computers, C-29,
Sept. 1980, pp. 777-790.

11. M.A. Abidi and D.P. Agrawal, "On Conflict
Free Permutations in Multistage Interconnec
tion Network," Journal of Digital Systems,
Special Issue on Parallel Processing, Vol.
IV, 2, Summer 1980, pp. 115-134.

12. D.P. Bhandarkar, "Analysis of Memory Inter
ference in Multiprocessor," IEEE Trans. on
Computers, C-24, Sept. 1975, pp. 897-908.

13. D.M. Dias and J.R. Jump, "Analysis and
Simulation of Buffered Delta Networks," IEEE
Trans. on Computers, C-30, April 1981, pp.
273-282.

14. S. Thanawastien and V.P. Nelson, "Interfer
ence Analysis of Shuffle/ Exchange Network,"
IEEE Trans. on Computers, C-30, Aug. 1981,
pp. 545-556.

15. G.M. Masson, G.C. Gingher and S. Nakamura,
itA Sampler of Circuit Switching Networks,"
Computer, Vol. 12, June 1979, pp. 32-48.

16. L.N. Bhuyan and D.P. Agrawal, "A General
Class of Processor Interconnection Strate
gies, " Proc. 9th Int. Symp. on Computer
Architecture, April 1982, pp 90-98.

00

01

02

03

10

11

12

13

20

21

22

23

Base 3.4

Decimal Base
3,2

0 00

01

10

3 11

4 20

21

00

01

02

10

11

12

20

21

22

30

10 10 31

11 11 32

Base 4,3

PiS_ 1. A Radix Shuffle of N" 3 x 4

Base
4,2

12 2 x
3-shuffle

m
inputs

2-shuffle

Fig. 3. A 6 x 8 Radix Shuffle Network

with 6 - 3 x 2 and 8 - 4 x 2

D outputs

-1-1

-1

-1+1

'''1-1

.... ,
""a1+1

... ,

2
1

Fig. 4b. Cost IIode! of a 11 x n Switch

_l-ehuftle

Base

"dJ
01

10

11

20

21

30

31

8

"1

-1

",

.,

"

Decimal

o

3

6

t
1

lIlz-shuffle Wl1 -shuffle

Fig.2. A M X N Radix Shuffle Network.

(.... 1)

o

(..... 1)

0.1

0.08

0.06

0.04

0.02

0

-::J.
r.t II
-vll r.:L

~II r:L lr II

II II

~il ii
II

II
!!
.l

= = 0 1 (m-l)

= =
CONTROL

=== !==o

P1g. 4.. Schematic ntagr .. of a _ x n Switch

~-8

~
I
I

r - 2

~' -32
I I I
I I I
I I I

I I

4 -132 8 16

(n-1)

(n-l)

32

switch size at first stage -

64

Fig. 5 Cost Efficiency vs. Switch Size at First Stage

I.

1

t
r opt •

15

10

5

1

10

8

6

4

2

1

0
1

0.8

PA

3 4 6 8 9
los,. N _

Fig. 6 Value of r opt. for N • mr

------------------_____________ crossbar

ORSN

RSN(2)
0.2L-------------____________________ __

1 2 3 4 5

10~ N

6 8

Fig. 8 Probability of Acceptance of N x N Networks

It - 16

ORSN

OL-________________________ L-________________ ~

1 2 4 8 16 32 64 128

N

Fig. 10. Effect of Adding a Memoty Module on Bandwidth

10

crossbar

ORSN

O~----~--~~--____ --__ ------------------
1 2 4 8 16 32 64 128

It

Fib. 12. Effect of Adding a Processor on Bandwidth

256

BW

lL-__________________________ --____ ----__ ------

1 3 6 8

Fig. 7 Bandwidth of N x N Networks

18

16

14

100~
12

10

8

6

4

ORSN
RSN(2)

0
crossbar

1 2 3 4 5 6 8
10g2 N

Fig. .9 Cost Effectiveness of N x N Networks

1.4

1.2

1.0

0.8

M1 0.6

0.4
It - 16

0.2

0
2 8 16 32 64 128

N

Fig. 11. Effect of Adding a Memory Module on Cost Efficiency

1.4

1.2

1.0

0.8

N1
0.6

0.4

0.2

1 4 8 16 32 64 128
It

Fig. 13. Effect of Adding a Processor on Cost Efficiency

AUGMENTED AND PRUNED N LOG N MULTISTAGE NETWORKS:
TOPOLOGY AND PERFORMANCE

Daniel M. Dias, Mitre Corporation, Houston, Texas
and

J. Robert Jump, Rice University, Houston, Texas

Abstract -- In thi s paper N log N Mul t i stage
Interconnect i on Networks (MINs) are augmented for
better rel i abi 1 ity and pruned to have differi ng
numbers of input and output "I inks. Augmented MINs
have multiple disjoint paths from network input to
output links. Optimal pruned MINs with buffers
between stages have a non-intuitive topology.

Summary

Several (NxN) multistage networks with log N
stages (referred to as MINs) have been proposed in
the 1 i terature [1-4]. It can be shown [5] that
these networks can be constructed recursi vely as
ill ustrated in Figure 1. MINs can be used to
interconnect modules of a computing system that
communicate by passi ng fixed si ze packets through
the MIN [6]. Each packet contains data and a
destination address. At each stage, one digit of
the destination address is used to route the
packet to the next stage vi a the 1 ink with the
same label (see Figure 1). This is referred to as
digit controlled routing.

The MINs in [1-4] have a unique path from
network input to network output 1 inks 1 eadi ng to
poor reliability. One method of augmenting MINs
is to add an extra stage as illustrated in Fi gure
2. It can be shown [5] that with a judicious
se 1 ect i on of the interconnection to stage S* in
Figure 2, there are exactly b diSjoint paths
(except for the common input and output 1 inks)
from each network input link to each network
output link and digit controlled routing can still

be used. An exampl e of a (23x 23) augmented MIN
showing the two diSjoint paths appears in Figure
3. Additional redundant paths through the network
can be obtained by adding further stages.

MINs can be pruned by eliminating some of the
switches. This paper considers regular pruned

MINs only [5]. A (bnx bm) regular pruned MIN
consists of arbitration, distribution and square
stages. Networks with n greater than m are called
arbitration networks while networks with n less
than m are called distribution networks [7]. The
construction of arbitration stages is shown in

Figure 4. Distribution stages with bn inputs and

bn+1 outputs are constructed in an analogous
manner. At square stages, the ori gi nal MIN is
left untouched. This paper will present

performance results for (2nx 2m) arbitration

networks onl y. There are (~) different ways of

choosing arbitration stages in a (t x t) MIN to

produce different (t x fl) arbi trati on networks.
Extreme arbitration networks, shown in Figure 5,

0190-3918/82/0000/0010$00.75 @ 1982 IEEE 10

have the arbitration stages concentrated either at
the input stages or at the output stages of the
network.

Unbuffered networks are modelled as operating
in time slots. In each time slot an attempt is
made to pass packets at input links to the desired
output 1 inks. If two packets must pass through
the same switch, a confl i ct is sai d to occur and
one of packets is selected and passed while the
other is rejected. The performance results
reported here are for the case when rejected
packets are di scarded. Approximate estimates of
performance for the case when rejected packets are
retried in the next time slot can be found in [5].

Buffered networks have fi rst-i n-fi rst-out
buffers of fixed maximum length between stages.
The ope rat i on of a (2 x 2) swi tch is modelled
essentially as follows [8]. The (minimum) packet
de 1 ay at a swi tch is modelled in terms of two
timing parameters: time t select to select the
output 1 ink to whi ch the packet is to be passed
and time t pass to move the packet through the
swi tch. The t select phase for two packets at
different links can occur simultaneously.
However, if two packets (after the t select phase)
are di rected to the same switch ouiPut 1 ink, one
is randomly pi cked for transfer and the other is
blocked. Further, the selected packet must wait
until a buffer at the input of the successor
switch becomes available; after a successor switch
buffer becomes available, the packet takes time
t pass to pass through the switch into thi s
~Uffer.

The throughput is defined informally as the
average rate at whi ch packets are put out by the
network. The normal i zed throughput (NTP) is the
ratio of the throughput obtained to the maximum
possible throughput assuming that no conflicts
occur in the network. For unbuffered networks, PO

is the probability that a packet exists at a
network input 1 ink in a time slot and Pa is the

probability that a packet at a network input
buffer is accepted ina time slot. The results
reported here were obtained using both event
driven simulation and an approximate model with
coupled Markov chains [5].

The NTP for augmented MINs are shown in
Fi gures 6 and 7. It is seen that, for faul t-free
operation, there is a small decrease in the NTP
for the augmented MIN as compared to the
corresponding MIN. The worst case single internal
switch or link failure leads to about one half the
fault-free performance. However, for most
failures, the performance is only slightly below
the fault-free performance.

For unbuffered arbitration networks, the
extreme networks are seen to have extremes in
performance as shown in Figure 8. The same is
true for buffered arbitration networks if all
switches have the same speed (i.e., the maximum
packet output rate at ali nk is the same at all
swi tches) • The network stages can be matched so
that all stages have the same maximum throughput.
This may be done by a serial to parallel
transformation at an arbitration stage [5].
Matched arbitration networks with maximum
throughput have a non-intuitive topology.
Examples of matched arbitration networks with
maximum throughputs for a single buffer between
stages are shown in Table 1. Here, the
arrangement of stages that give the highest
normalized throughput is given as a string of A's
and S's, where A denotes an arbitration stage and
S a square stage.

References

[lJ D. H. Lawrie, "Access and Alignment of data in
an array processor," IEEE Trans. Comput.,
Vol.C-24, Dec. 1975.

[2] M. C. Pease, "The Indirect n-Cube Micro
processor Array," IEEE Trans. Comput.,
Vol.C-24, Dec. 1975.

[3] H. J. Seigel and D. S. Smith, "Study of Multi
stage SIMD Interconnection Networks," Proc.
5th Annual Symp. Comput. Arch., NY, NY, Apr.
1978.

[4] J. H. Patel, "Processor-Memory Inter-
connections for Multiprocessor," IEEE Trans.
Computers, VolC-30, No. 10, Oct. 1981, pp.
771-780.

[5] D. M. Dias, "Packet Communication in Delta and
Related Networks," Ph.D. dissertation, Rice
University, Apr. 1981.

[6] D. M. Dias and J. R. Jump, "Packet
Interconnection Networks for
Systems,", Computer, Vol. 14, No.
1981, pp. 43-53.

Switching
Modular

12, Dec.

[7] J. B. Dennis and D. P. Misunas, "A Preliminary
Architecture for a Basi c Data-Flow Processor,"
Proc. 2nd Annual Symposium on Computer
Architecture, Jan. 1975, pp. 126-132.

[8] D. M. Dias and J. R. Jump, "Analysis and
Simulation of Buffered Delta Networks," IEEE
Trans. Computers, Vol. C-30, No.4, Apr. 1981,
pp. 273-282.

NETWORK
INPUT
LINKS

(II' x (;) MIN

L. ___ '!:.l ________ J

NETWORK
OUTPUT
LINKS

~ RECURSIVE CONSTRUCTION OF MINs

11

(t!' x bn) MIN

,.------------., 1

NETWORK
INPUT
LINKS

NETWORK
OUTPUT
LINKS

1 1 ~ ___________ ~ ~ ___ J

FIGURE 2 Constructing Augmented MINS

NOTE: AO", A are (bnj(lbn- 1) MINs

(23X 23) MIN d d d .-_______________ , .-___ -. 2 1 °
1 , 000

NETWORK
INPUT
LINKS

1 1 '
L ________________ J

CONTROL * 1 °
INDEX

FIGURE 3 An Augmented MIN

ARBITRATION
STAGE

------------., ;........ __ -r---,...;I n-1
" b

1

bn
INPUT
LINKS

'I OUTPUT
,I LINKS ,,-_...r-::I

I
\ I
\ ' I
\1"'---...... -1

" 1'1
,I Ab- 1 1'1
,I 1'1 , ---L ___ J-j

L.. ___________ I

(bnx bn) MIN

FIGURE 4 Constructing an
--- Arbitration Stage

100

001

101
010

110
011

111

NETWORK
OUTPUT
LINKS

NOTE: AO .. , Ab-1 are (bnx 1 bn- 1) MINs

bn '
NETWORK,
LINKS

bn '

NETWORK,
INPUT
LINKS •

SQUARE
STAGE

(m)

bm
NETWORK
OUTPUT
LINKS

bm
SQUARE NETWORK
STAGES OUTPUT

.-.J.---:'(m;.;,;)--r_ 1I NKS

~ Extreme Arbitration
Networks

Network
n type

A 5 MIN
B 5 AUG. MIN
C 10 MIN
D 10 AUG. MIN
E 5 AUG. MIN *
F 10 AUG. MIN *
* WORST-CASE FAULT

0.6 (Znx Zn) Networks ..
"-
II 0.4 A
"- B ~
z:

O.Z E
E
F

0.0 1...-...&..-........ ---.--' __ "'--...0-.....................

0.0 0.2 0.4 0.6 0.8 1.0

"
~
z:

Po

~ NTP versus Po for unbuffered
augmented MINs. under normal operation and
for a worst-case single fault.

1.0

0.4

O.z

MIN
AUGMENTED MIN (fault free)
AUGMENTED MIN
(worst case single fault)

O.O~~~~ __ ~~~ __ ~~~~~
1 3 5 7 9 11

10gZ (number of input links)

~ NTP versus network size for buffered
augmented MINs. under normal operation and
for a worst case single fault (Single buffer
between stages; t-select = 1.0; t-pass=O.O;
packets assumed to be always available at
network input 1 inks.)

1.0r---_~

0.8

~ 0.6

0:
~
z:

0.4

0.2

L. .. ~~!::;::=-~a~(w:o~r:st) 0.0 :"
o 2 4 6 8

m • 1092 (number of output
links)

FIGURE 8 NTP and Pa versus the number of
output links, for unbuffered arbitration
networks (b=2, n=8, PO=1)

12

Net- t select=O t select""l
'NOrk StrUcture Nl'P Structure Nl'P

2~0 AA 0.75 AA 1.00
2~1 SA 0.56 AS 1.00
2~2 SS 0.3B SS 0.75
;3X2O AM. 0.75 AM. 1.00

23X21 'AlIS O.SO 'AlIS 1.00
23X22 SSA 0.42 SAS 0.75

23X23 SSS 0.31 SSS 0.61
;4X2O ANA 0.75 ANA 1.00
24x21 AAAS 0.50 AAAS 1.00
24X22 SAlIS 0.45 SAlIS 0.75

24x23 SSSA 0.36 SASS 0.65
24X24 SSSS 0.27 SSSS 0.53 1=--
25X20 MAAA. 0.75 MAAA. 1.00

25X21 AAAAS o.so AAAAS 1.00

25X22 SAAAS 0.48 SAAAS 0.75

25X23 SS'AlIS 0.42 S'AlISS 0.67

25X24 SSSSA 0.32 SASSS 0.57'

25X25 SSSSS 0.25 SSSSS 0.48
;~O N\AAAA 0.75 N\AAAA 1.00

26X21 AAAAAS 0.50 AAAAAS 1.00
2~2 SMAAS 0.50 SMAAS 0.75
2~3 SSAAAS 0.47 SAAASS 0.69
2~4 SSS'AllS 0.41 SASASS 0.60
2~5 SSSSSA 0.30 SASASS 0.53
2~6 SSSSSS 0.24 ssssss 0.45
;7x2O AAAAAJ:>A 0.75 AAAAAJ:>A 1.00
27x21 MAAAAS 0.50 MAAAAS 1.00
27X22 SMAAAS 0.50 SMAAAS 0.75

27X23 SSMAAS 0.49 SMAASS 0.70
27X24 SSSAAAS 0.47 SAASASS 0.62
27X25 SSSS'AllS 0.40 SS'AlISSS 0.55

27X26 SSSSSAS 0.29 SSASSSS 0.49
~7X27 SSSSSSS 0.23 SSSSSSS 0.43
;~O AAA'AAAAA 0.75 AAA'AAAAA 1.00
2~0 AAAAAJ:>AS O.SO AAAAAJ:>AS 1.00
2~2 SM'A'A'AAS O.SO SM'A'A'AAS 0.75
2~3 SSAAAAAS 0.50 SAAAAASS 0.71
2~4 SSSMAAS 0.49 S'AlIS'AlISS 0.64
2~5 SSSSAAAS 0.46 SAS'AlISSS 0.57
2~6 SSSSS'AlIS 0.39 SSASASSS 0.52
2~7 SSSSSSAS 0.28 SSSASSSS 0.47
2~B SSSSSSSS 0.22 SSSSSSSS 0.41

TAble 1 Opti.nal. OOffered arbitraticn networks

PERFORMANCE OF SELF-ROUTING SHUFFLE-EXCHANGE INTERCONNECTION NETWORK IN SIMD PROCESSORS

Jamshed H. Mirza
Polytechnic Institute of New York

333 Jay Street, Brooklyn, NY 11201

Abstract: This is a study of the class of multi
stage Shuffle-Exchange (S/E) networks used in Sin
Ile-Instructio.n-Stream-Multiple-Data-Stream (SIMD)
processors, and their ability to realize intercon
nection requests which are arbitrary permutations
on the set of Processing Elements(PEs). The netwo
rk is made self-routing, and a recursive model is
?roposed which analyses a network in terms of
smaller ones. Performance parameters such as band
width, blocking probability, and the number of
passes necessary to realize an arbitrary permuta
tion are obtained.

Introduction : There are several topologically
equivalent multi-stage S/E networks that have been
proposed [2-4J. We will use the Omega network [5]
as a representative of the class of S/E networks.
However the results we obtain are equally applica
ble to all S/E networks since they have been shown
to be topologically equivalent [6,7].

In SIMD processors, the interconnection requ
ests by the N=2n PEs are made synchronously, and
the source-to-destination pairs usually represent
a permutation on the set of PEs. Consequently, we
will analyse the S/E networks with respect to the
ir ability to realize arbitrary permutations.

It has been shown that any permutation can be
realized in a maximum of three passes through the
network[7].However, this requires a setup time
that is time-consuming even on SIMD processors. We
will assume instead that the network is self-rout
ing so that the switch settings are determined dy
namically and no setup time is necessary. Each
data element carries with it the destination add
ress as a tag and the setting of a switch in stage
j is determined by the jth bit of the tags at its
two inputs[5]. Of course symultaneous connection
of more than one sourse-destination pairs may res
ult in conflicts.

The Model: Let N=2n • If iE: [O,2n-11, then i ..
(i)n_l •••• (i)l(i)o' Also. let ~n represent a

2nx2n Omega network.
The ~ network in fig. 1 is drawn to highli

ght the recursive structure of such networks. This
makes possible a recursive procedure for analysing
a large S/E network in terms of smaller ones.

Assume that the interconnection request is a
permutation specified by D - (DO.D1 ••••• DN_l).
where D is any arbitrary permutation of the set
(0.1 •••• ,N-1). It specifies that input i is to
be connected to output D~. Since D is a permuta
tion. there are exactly N/2 tags with (Di)n-l • O.
and. the other N/2 have (D)n_l - 1.

In our self-routing network. no request is
blocked or turned back mid-way through the network.
If a conflict occurs at a switch. one of the requ
ests is allowed to go to the right output, while
the other is misdirected and forced to go to the
wrong output. At the output of the network the re
quests that have correctly reached their destinat
ions are filtered out. and only the misdirected

0190-3918/82/0000/0013$00.75 @ 1982 IEEE 13

ones are made to pass through the network again.
starting from the destination they reached during
the previous pass. The data elements carry with
them two I-bit flags, m and r. besides the n-bit
tag identifying their destination. At any time. a
request may be a correctly directed request (cdr,
meO) if it has been directed to the correct output
at all switches it has encountered during the cur
rent pass, or a misdirected request (mdr, m-1) if
it was misdirected at least once during the curre
nt pass.Also, since multiple passes through the
network may be necessary, the r bit tells us whe
ther a request has(r-1) or has not (r-O) already
reached its destination during some previous pass.

Initially all requests start off with meO and
reO. The self-routing algorithm works as follows :
(i) if a mdr and a cdr meet at a switch. the swi

tch is set by the cdr.
(ii) if 2 cdrs or 2 mdrs meet, the switch is set

according to the tag at the upper input of
the switch. If a conflict occurs, the lower
input request is misdirected and is so marked
by setting its m bit equal to 1.
At the output of the network the cdrs(m-O,r-O)

are filtered out by the respective PEs. Also. if a
request has m=1 and r-O. its m bit is reset to 0
for the next pass. For all other requests, m and r
are both set to 1 to create "dummy" mdrs.The requ
ests are then cycled again through the network.
Thus during each pass, there exactly N requests -
some cdrs and some mdrs. Since the self-routing
algorithm always resolves conflicts in favour of a
cdr, the mdrs can be considered to be "don't care"
requests. We can assume that their tags have what
ever value is necessary to justify our assumption
that every~t network in the recursive model is
presented at :ts input with a permutation on the
set (0,1 •••• ,2 -1).

Analysis : At stage(n-1) of the J:Ln network, Di
and D~+N/2 meet at a switch. As long as their
(n-1)fh bits are different, conflict does not
occur. If their (n-1)th bits are equal. a conflict
occurs and Di +N/2 is misdirected. Also, since exac-
tly N/2 of the tags have the (n-l)th bit
equal to 0 and the remaining have it equal to 1.
conflicts will always occur in pairs. Then,

(N2/ c2) (2Cc) 2N/2-2c P(2c conflicts) - _ (1)

(N'2)

where 0 ~ 2c ~ N/2 OT 0 ~ C ~ N/4.
Define for stage(n-l) of ~n' a (2n+l)x(2n+l)

Stage Transmission Matrix S , such that
S (a,b) .. Pcb cdrs leavenstage(n-l) I a cdrs
n enter stage(n-l»

Using (1) we can find S (N,N-k) for k even. and
0~k~N/2. For k odd orn N/U .. kfN, S (N,N-k) - O.

Using S (N,N-k), we can find S (R,b) for all
O~a<N and nO~b~a. For b)a, n S (a,b)-O. We
can write S (a,b) as S (N-i,N-(i+j», n which gives
the probability that w~ enter stage(n-1) with i

mdrs and j new mdrs are created at that stage.We
have to calculate the contributions of the (N,N-k)
cases to the (N-i,N-(i+j»cases. This represents a
situation where there are i mdrs at the input of
stage(n-l), there are conflicts at k switches and
no conflicts a k"=N/2-k switches, and as a result
of which j new mdrs are created (j ~ k) at the out
put of stage(n-l). Thus k'-k-j of the conflicts do
not create a new mdr because at least one of the i
input mdrs appear at each of those k' conflict sw
itches.A little reflection will verify that at le
ast Ll-MAX(O,i-(2k"+k» of these k' switches will
have 2 input mdrs, and at most L2-MIN(i-k',k') of
them can have two input mdrs. Then the contribution
of the (N,N-k) case to the (N-i,N-(i+j»case is

(N-N-k) - (N-i,N-(i+j»

r(k\ L2 (k') (2k")~ k1p~ P 2k '-P i-k'-p S (N,N-k)

(:) n (2)

We can then find the elements of S by :

Sn (N-i,Ni(1+j»- I:. ~N,N-k)" (N-i'~-(i+j»] Sn (N,N-k)
k even
0' k~N/2 (3)

Using these equations we can fi~ Sk fo{ any k~l.
For any. j(tk' define the (2 +1]x(2 +1) Network

Transmission Matrix Tk , such that :
Tk(i,j) .. P(j cdrs leave .(lk Ii cdrs enter n)

Tk is lower-triangular and gives the transmission
tnrough all stages of the network. Note that Tl -
Sl ... I (where I is the unit matrix).

To dete~ne T, Ie need to define for a netw
ork Jrtk , a (2 +1)x(2 +1) matrix ~ such that :
~ (i, j) • P (j cdrs get through :fl..k I i cdrs

get through stage(n-l) ofJrlk)
~ is also lower-triangular and gives the transmi
ssion through stages (k-2) to 0 of J1L k • Then,

T • S x Ro. (4)
~ookin~ at the recursive structure of the net-

::(~,~~i!.2fe ca~r1t [(~~l) (2:;1)/(t)] x

(l1,i2) (jl,j2) }
Tk_l (il,jl)Tk_l (i2,j2)

if j~i

- 0 if j > i (5)
Here the summations are over all distributions of
i into (il.i2) and of j into (jl,j2) such that

MAX{0,i-2k-l)~ll,i2~MIN(i,2k-l), jl~l1, j2~i2.
Then, starting with Tl = I, we can recursively

find ~ from Tk _ 1 , and then Tk from Sk and Ro.,
until Tn is ~efermined for a JrLn netwo~.
Performance Parameters : Using the recursive model
we can determine several important performance par
ameters associated with S/E networks.

The Bandwidth B (i) of a NxN s/E network (N-
2n) is defined as n the expected number of cdrs
at the output, given that i cdrs entered the net-
work. Then, N .

Bn{i) 1: jT (i,j) (6)
j=O n

The Blocking Probability is the probability that a
request that enters as a cdr is blocked or misdir
ected during its passage through the network beca-

14

use of conflicts. It depends on i, the number of
cdrs at the input, and is given by

N
P (i)· 1: (i j)T (i,j) 1 - B (i)/i (7)

n j-O n n
Define the load L - i/N. Figures 3 and 4 show

the variation of the Bandwidth and Blocking Probabi
lity with respect to the Load. Plotting the results
with respect to L rather than i normalizes the plots
for the different size networks. For L < 1/2 B incr
eases almost linearly because at low loads mdrs are
created mainly at the first stage and very few at
latter stages since the chances of 2 cdrs meeting
in a conflict at later stages is low. At higher
loads (L> 1/2) there are more chances of 2 cdrs
conflicting in later stages and the bandwidth
increases at a slower rate. Fig. 3 also shows the
results obtained by simulation and the two values
are seen to agree closely. The plots also suggest
that the bandwidth increases at a faster rate with
increasing n. This is verified in fig. 5. Fig. 6
gives, for different size networks, the blocking
probability at each of the n stages rather than the
network as a whole. Its shape would serve to expl
ain the shape of fig. 5. Since blocking probability
falls more dramatically in later stages of larger
networks, the bandwidth increases at a faster rate
as the network size increases.

To determine the expected number of passes
necessary to realize an arbitrary permutation, we
define an absorbing Markov Chain (MC). The MC is in
state i if i requests still need to be routed to
their destinations. If X is the state transition
matrix for the MC, then n

X (i,j) - P{j requests at the output still need
n to be routed I i requests at the

input need to be routed)
Xn(i,j) - T (i,i-j) for j~i

... On for j > i
Also, X {i,i)-T (1,0)-0 for all i) 0, and

X (0,0)-1. n Thus itste-O is the only absorbing
s~ate, and all other states are transient and are
visited at most once. If #passes(i) is the expec
ted number of additional passes necessary if the
MC is in state i, then :

#passes(O) ... 0, i-I

'passes(i) - 1 + L X (i,j)#passes(j) for i)O
j On

Fig. 7 shows - the variation of
#passes{i) for different size networks at different
loads. The plot for L=l gives the expected number
of passes to realize an arbitrary permutation. Fig.
S shows that #passes{i)/n is more or less constant
for different network sizes and is about (2/3)n.
for L=I.

Conclusions : In this paper we presented a recurs
ive model for a self-routing s/E network and used
it to determine several performance parameters.
Simulation results were found to agree closely with
the analytical results.Although the network was
used here, the results are equally applicable to
all S/E networks. A more detailed treatement and
discussion will be found inIll. Further, in [I),
it is shown that the class of Bit-Permute-Complem
ent permutations [S] which include many of the
permutations commonly encountered in parallel alg
orithms require only two passes through the self
routing S/E network to be realized.

References

1. J.Mirza, "Performance of Shuffle-Exchange Netw
orks ," in preparation as Polytechnic Report.

2. L.Haynes et a1, "A survey of highly parallel
Computing, "Computer, Vol.15,No.1,Jan.1982.

3. H.Siege1,"A Model of SIMD machines and a compa
rision of various interconnection networks,"
IEEE Trans.Compt.,Vo1.C-28,No.12,Dec.1979.

4. T.Feng,"A survey of Interconnection Networks,"
Computer,Vo1.14,No.12,Dec.1981.

5. D.Lawrie,"Access and Al1ignment of data in an
Array processor, "IEEE Trans. Compt. , Vol. C-24,
No.12,Dec.1975.

6. C.Wu and T.Feng,"On a class of multi-stage Inter
connection Networks,"IEEE Trans. Compt.,Vo1.
C-29, No.8, Aug.1980.

7. C.Wu,T.Feng,"The universality of Shuffle-Exchan
ge network,"IEEE Trans.Compt. ,Vol.C-30,May 1981.

8. D.Nassimi,S.Sahni,"A self-routing Benes network
and parallel permutation a1gorithms,"IEEE Trans.
Compt.,Vol.C-30,No.5,May 1981.

0
Stl1gc St3gCS 31)
k-l k-2 ti)- 0 N-64

I ?'
~ ,

25 I
I
I ~ 2 I}'

l j 20

.. " t 15 N-32
,

~ S'
B (L) i '--' n 10 , , Sk ~ N-Hi

~ ~
"-

"""
..

'I ...
"k

Fl,.t: Occga Network. (1'1-J) Fig. 2.
I

.25 .5 .75 1.0
!'.!S..:] Load L ~

.6

.9 ~L •• 25 t
.3

.5 N-32
I

Bloc. N-32

Prob: 2
I

.4

t .8 ~
at

t .3 .1 Stage

I p (L) B -B n n-1
n .2 B n-l 1 2 3 l.

lli..& Stage Nunber -.1 .7

.25 .5 .75 1.0 5 6

~ load L- !!a.:...J. n-

4 -1.0
I

t L-.7S
I

J --~-.50 ,...
...:z

1..-.25
.....,
III
ill 2 III
(II

<a

"" 1
n_

8 16 32 64
Network size N -

(NOTE : Plots with broken lines were obtained by simulation)

15

SP2I INTERCONNECTION NETWORK AND EXTENSION OF THE ITERATION
MEfHOD OF AUTOMAfIC VECTOR-ROUfING

wang Rong-Quan, Zhang XiaDg, Gao QiDg-Sh1

Department ot Computer Archite.ture, Inst1tute ot

Comput.iBc Technology, Chinese Academy ot Sc1ences
Beijing, People's Repub11c ot China

Abstract -- In th18 paper the SP2I
Single-stage Plus 21) 1Iltereonneet1on

network, which is app11cable to tae OVCYHP
wita YOM (Cel11ll8.r Vector Computer ot Ver
tical-Horizontal Processing with Virtual
Common Kemory) and other m1lltiprooessor
systems, is d18eussed.. Starting from the
need for dynamic and parallel data align
ment, we investieate .,arious properties ot

conflict-free routing, dMeriDe the itera
tion method of automatic vector-routing
which may be used to solve the oontlict
problem in the SP2I netWork. Furthermore,
we extend the iteration method to the net
workS of AlII, 0, cf ,Indirect Binary a-011be,
Baseline, etc., which are usually seen in
literature. ne. the preblem ot routiDg
confliot 1Il these networkS, which has aot
been well sol.,ed yet so tar, may be solved
eff1ciently. P1aally, the implementatio.
methods of several co_on data lI8.I1ipula
tie. functions without conflict are given.

IntrPductiRP

Tae baekground of th18 paper 18 the
problem ot dynamic and parallel data alie
naent between .,ector processor and. .,irtu
al co_on memory in the CYOVHP with VOM
(Ce1l1llar Vector Computer ot Vertical
-Horizontal processing with Virtual Common
Kemory). We investigate .,arious properties
ot SP2! network and sol.,e the routing
oonfliot problem in SP2! and many other
netWorkS.

The OVCVHP system (1] conSiSts of I
cells. Suppose N.an. BYery oell OJ has a
processor Pj and a memory bank Kj with
capacity of 2R words, jaO,1, ••• ,I-1. {Kj!

0190-3918/82/0000/0016$00.75 @ 1982 IEEE 16

jaO,1, ••• ,.-1} oonstitutes the VOM. The
address D=D' .aD+D" points to the .'-th
elemeat of KD" , », 18 local address,D" 18
the memory bank PWIlber or cell nWllber. Let
:r.(O,1 •••• ,.-1), Jj-j 18 a binary constant
p_bar ot n bits which 18 set up in C j •

The SP2I petwork structure 18 used
and. it 18 really 1talt of the PJlI21 Single
-stage network [10,11]. A rout1Dc regiSter
Bj is set v.p 1Il OJ, {Bj I j-o,1, ••• ,I-1}
constitutes the .,ector reuting register-Jr.
The interconnect1on ot tae CVCVHP system
is jll8t the interconnection among elements
of Jr. ~king the subscript j of element ot

r as variable, the SP21 network has n
intercoDllection ftIDotions ~ 0, 11J I Pi (j).
j+2i (mod I), 1-O,1,· •• ,n-1, j-o,1, ••••• -1.
Fic.1 shon th.e interconnection of the
j-th cell with. oth.ers. Pig.2 shows th.e
intormation structure ot Bj. these data
items all partiCipate in routiDg.

Ej _ZO-1 Bj _2, Ij_~ I j Bj+~ Ij+21 Bj+~

9 ... Dl DLFrrl? ? ... 51

data

Pie.1, Th.e interconnect1eD
ot Bj with. others

local routiDg .,a114
address distance bit

»,
j

Pig.2, The information structure of Bj

RoutiDg Rules of SP21 network

Let %=30_1% -~··.%1%O _e the binary
notatioD of x, '%1 1=%i' L(k,x)=xk_1%k_2

···X1Xp, B(k,x)~_,xp_2···xD_k •
Suppose OJ prod11Oes an address Dj

D1.iR+D; • In fetohing operation, D1 must
be tl'8ll8mitted from Cj !ato 0D" , then the

3
data Aj can be fetohed out fro. RD". The

j
fetched data Aj must be transmitted from
CD; bek !ato C j' thea C j can use the data

Aj • In 8tor1ag operation, data and local
address D1 must be transmitted from Cj
into CD'" then the data can be stored into

j
)lD". Th18 kind of tr&n8lll18sion of data or

j
address from C j to CD" is called "routiDg",

j
the transm18sion of Aj troa CD; back to C j

is called "return-rout1ag". Both routiDg
and return-routiDg are executed in Y. Let
~ be the routiDg d18tance, c\j be the
return-routiDg diStanoe. dj-D;-j (mod I),
J;-B-dj (mod Il), 0'j'I-1. Both OJ and oj
are biDar,y nwabers of n bits.

In the network controlling structure,
routiDg 18 controlled by ~ , return-rout
-iag 18 oontrolled by d'j. When the X ... ory
Control Unit (KCU) 8ends out the oommand
of "rout1ag +2i ", tae rout1ag r1lle 18:

Ca) ej..Q, thiS shon that I j is !ava
lld. So I j haS no eftect on I j +21 • It the
iatormatlon of I j _21 a .. t move to Ij' then
I j chaRge. into new state and new value;
otherwise OJ remaiDS unchanged.

(b) Cj-1, th18 mean. I j haS valid in
formation.Routing result depends on (OJ) 1 :

(i} Cd,i)1-1, the oontent of I j haS

to IRQve to Ij+21 • It the oontent of Ej _21
aWlt move to I j , thEll'l Ej changes into new
valll8; otherw18e 8et ej""O.

(11) Cdj)l...o, thiS lleaDS I j haS va
lld intoraation and does not need to move.
Bj haS no eftect on Bj+2i • If the content
of Bj _2i does not need to move to Ij' then
Ej rem&iDa unohanged; otherwiSe Bj ohanges

into new valu.e, the old. valid informatlon
of I j 18 forced to diSappear. ThiS 18
the rou.tiDg confliot.

17

The procedure of parallelly fetchiDg
a vector iSI

(a> Oompute the address vector it by
all oells, then resolve it into it' and. it".
Compute t-D"-t (mod Ji). Send D', "if 8.J1d
correapondiDg valid b1t veotor e into if
(l.e., D'.U', (.EI, €,.it, where ED'
stanb tor it' of it, E1 for l' of it, IE for
t of it. ThiS notation will be used below

not only tor it but also for F and iiI).
(b) Perform n steps of routing +2°,

+21 ••• +..n-1 , ," .
(a)Petoh out aorreapondiDg data veo

tor acoording to iit' under the control of
n (i.e., every oell which haS valid looal
address fetches a data from its prlvate
memory bank). Then the tetched data vector
is sent into it. Oompute J' -I-Bt. r ... it.

(d) Perform n steps of return-rout
iDg +zO,+21, ••• ,+-J!l-1. .

(e) it is .ent into it under the con
trol ot il (i.e., it Bej ",,1, then BA 4iB J

otherwiSe B£j-o, then BA~Bj)' wher; r 18
the vector butter regiSter for lookahead
fetohiDg. 'then the data vector is in it SZl.d
ready for ue.

The prooedure of parallelly stor1ag a
vector is simllar with that of fetching
operation, but the storiDg operation of a
vector without oonfliot does not need the
retum-routing.

The spaI network also may ofter ano
ther kind. of routing oOJlll18.Dd: "broadoast
-type rOlltiDg +21-, denoted as "routiDg
+21". The only ditference of "+2i .. frOIl
"+2iw 18: when the content of Bj moves to
B3+2i and the content of Bj _2i does not
move to Bj' "+21n make. I j stlll remain
its .riginal state . and value, but "+2i "
makes Bj become "empty".

Propertles of Confliot-tree Routigg

Por oonfliot-free vector routing,only
2n steps. of routing treatment are needed
for tetching a vector, n steps tor storing
a vector.

Daorw 1 aFor an address vector of I valid
alements, Il steps of routiDg treatlllent
wit. arbitrary-order have DO oonfliot it
and only it tha 1" sat!Sfies the oondition
(*), i.e., for any integers 1,j (O'j<B,
06i<a), there exiSts

~+2i- ~ (mod 2i+1) (*)

~: Please see paper [2].
For a ~-orclered vector Y WhOS8 ad.dr

ess vector is ~(D,D+A,D+2A,D+'A, •••) ,
where D is initial address, oonstant A is

address incr_8Dt, it K ~ ./god(A,.), then
any K conseclltive address as of it point to
K clitferent memory bankS, where gcd(A,.)
is the greatest oo_on clivisor of A and ••
So,it A is odd, then god(A,B)=1, therefore
any • coaseclltive addresses of it point to
• ditfereat lIlemory t,)ankS. Generally speak
ing, pointiDg to I ditfereat lIlemory bankS

18 not sufficient enolilgh to edare routiDg
conflict-free. But for od.d A, aceord.iDg
to 'fheorem 1, we have Corollary 1.

Corollarl 1: 'f.e A-orclered. ad.dre.s
vector D of • valid. elements wit. od.d. A is

oonflict-free 1a routing.
1£ut:it.D+j.~, t-D-t=D+1. (A-1) (mod. .),

r£ i-"-D+(j+2i) ~-1)-(D+j (A-1))",,2i (A_1).
~+2 j • i)

Por od.d A, A-1 is even, •• «5'+2i-d3-2 (6-1

... 2i +1 • d-o (mod 2i+1) ,i.e., t satiSfi. the
conditio. (*). Aceord.iJIg to 'fheor. 1, the
Corollary is true.

lD. praotioe,t.e JlCU iSsus n steps of
rollt1Dc CQ , uUl.ly 1a .ertaill order,
sueh as +20 ,+2' , ••• ,+an-' or +an-' ,+an-2,
••• ,+zO.
'PIa 1: Suppose clata .A start. IIlOv1q from
I j ,ro.t1q cl!StaDce is G ,rout1q co_and
order is +~,+21, ••• ,+an-1 • .Atter k stepsof

rout1q (1'k~a) • .A arrives at Ij+L(k,d) •

lad: k steps of routiDg oause .A
to have move' a diStance LCk,cI'), 80 .A a\18t

arrive at Ij+L(k.d).
Le- 2: S'1il})posa clata .A starts IIlOviDg from
I j ,rout1Dc distance is ',rout1ag COIlllDaDd.
ord.er is +za-' ,+za-2, ••• ,+20 • .Atter k stepa

18

of rout1Dg,.A arrivea at I j +2n-kH(k,O) ,
(1Ek6n).

:b:Islt: k steps of routing cause.A to
have moved. a d.iStance ~-k·H(k,cf),.o .A

must arrive at Bj +2n-k.H(k,/) •
Deorem 2: i haS Ii valid. eleaents, routing
command ord.er is +20,+2', ••• ,+~-1, then
there w11l be no routing conflict if' and
only if' for any integar. i,j,k(O'i<.,O'j<~
1Ek,n), 1f'j-i+L(k, d!)"j+L(k, cfj) (aod.).

~IConflict-free rout1ag meana for
Bay Ii' I j (OEi<I,OEj<li, ~j), atter aDy k
(16k,n)ateps of rout1Dg,they do Dot arrive
at any same routiDg register.Based Oil Lea

ma 1,it is obvio\18 that 'fheorw 2 is true.
'fheorem ,: f has I valid. el.enta, routing

-B-1 -B-2 20 command ord.er is +~ ,+~- , ••• ,+ •
!hen there W11l be no routing conflict
it and on17 if' for any integers i,j ,k
(OEi<Ii,O,j~N, 16k,a), ~j~i+2n-k.H(k,di)
"j+an-k.H(k, ~) (mod.).
~: It follows from Lemma 2 and

the conoept of conflict-free routing.
La!' ~: Suppose x,y move from I L , Kj . to

-u 0
11:' Kjx' respectively.If (i) io~jo'1x<jK'

(11) jo-lo~jx-ix,(11i) cfx ~ ~, (iv) routing

command orter 18 +20,+2', ••• ,+~-1, then
x and yare conflict-free •

'0....,. ... 4': When cr..,. c:r. , x and y either
~ x 1

Doth move or both to not move at the a .. e
t1me. !his is called "parallel moving".
ObViously. in thiS case x anel y are conf
liot-free. Balow we considar the case of
cf. :> cf.. Without losiDg generality, suppose x y

dX-~_1~_2 ••• UP+11~_1 ••• ua (1)

0Y""~-1~-2· •• ~+10U;_1· •• UO (2)

By the theor • .,onditiod, it is 8&8y
to know that either «~iO)"(jx~jo)).1 or
«1x<io),,(jr jo)).1, where "18 10glcal
.AlID. If «ix'>1e)A(jX)jO))""', then

(Jo-io)-(jK-ix)-(1rie)-(3x-30)"'cfx-~ •
if < <Ylo)A.(jx:<j o)).t, thn

(jo-1o)-(jx-ix)=<Ii-io+ix:)-(Ii+jK'""jo)·~- ~.

~y, we obta1l1

(;Jo-lo)-(~c1:K)·~-o;. (:~)
Prom (1) and (2), we get

~-~.L(P+1,~)-L(P+1,~y) (4)
Prom ('5), we get

~o-1o·~x-~+~-ay:> d'x-tfy (5)

It there exists an 1I1teger k (1'k{n),
and a ro.tiDc conflict occurs at the k-th
step ot rout1r1g, then trom the Theora 2,
we bay.

1o+L(k,lx).~o+L(k,Oy) (mod N) (6)
jo-1o-L(k,ax)-L(k,Oy) (mod.) (7)

(a) It k~p+1, trom (7). (1).(2),(4),
we obta1l1 jo-io-cfx-~.'fhiS is contradicted
by the tomala (5).

(b) It k~p

(i) When L(k.~) ~ L(k. 01')' then (7)
becom ..

~o-1o-L(k'~x)-L(k,Jy) (8)
S.bstit.te (1) and (2) tor Ox and 01' 111

(5), respectively, we get

~o-1o·(:lc~)+(1UP_1···~-0··P_1···-k)·2k
+L(k,Ox)-L(k,Oy»L(k,dx)-L(k,Oy)

'fhiS contradicts the tOl'llala (8).

(11) When L(k,Ox)<L(k,Oy),trom (6),

sinoe 10<:10' 80 «~O+L(k,cfy) ~ N) 1\ (10+
L(k,lx)<N»-1. ThiS must be the oase ot
«~X<:lO)A(1:K(1a».'. 'fhus (6) must be
io+L(k.lx)"~o+L(k,cfy)-.' then N-~o+1o
+L(k,dx).L(k,Oy)<2k , so

1o+L(k,c'x)<~ (9)

Prom lio+L(k.~) to I~ , x baS to oover

the diStance ot 1'l-(1o+L(k,d'x))+~ • Pro.

(9)'.-(io+L(k,Ox»+1:K>1'l-~+~1'l-2k (10)

On the other hand, aooording to (1),

the diStance trom 11o+L(k,dx) to I~ is

B(n-k,~).~. But B(n-k,~).r'1'l-2k. This
contradicts the tormula (10).

By all the above oontradictions,Lemma
, must lite tne.

'lheot- 4: Su.ppose x~ m(r~es trom B~ to

I:lk ' the rOllt1Jlg cU •• tance ot x~ is cf~,

19

(k=1,2,.··,X). It tor k=1,2,···,X-1,

(i) 0'~<~+1<1'l, 0':lk<jk+1<.
(11) ik+1-~ ~ :lk+1-:lk
(11i) ,;;a d1c+1

(iv) routiDg command order is
20 2' ..n-1 + ,+ , ••• ,+.::--

then tor S.{x~1 k=1,2, ••• ,X}, n steps ot
routiDg have n3 conflict.
~: For any p,q (1,p<Q{X) ,by Lemma

" x~ and Xiq are contlict-tree, so is S.

N"!! 4t S.ppose x,y move trom Ii ' Bj to
o 0

E~,Bjx,respectiv.lY. It (i) 1o<jo' ~<jx'

(ii) jo-ig,jcix: ' (i11) Ox < dy , (iv) rout
ing command order is +2n-1,+2n-2,· •• ,+20,
then x and l' are conflict-tree.

l£2.i!: The proot is Similar to that
ot Lemma ,.

'fheo:rem 5: Suppose x~ moves trom B~ to

Bjk, the routing diStance ot x~ is cf~,

(k=1,2,···,X). It tor k.1,2,···.X-1,

(i) 0'~<~+1<1'l, 0':lk<:lk+1dT
(11) ~+1-~ <: :lk+1-:lk

(iii) d1c ~ cf~+1
(iv) rout1r1g CQauaaad order is

..n-1 ..n-2 20 +.::- ,+.:: •••• ,+

then tor S. {x~1 k.', 2,··· ,X}, n steps .t

routing have no contlict.
~: !he proot is similar to that

ot THO res 4.
Theorems 6,7, and 8 descrilite the aliti

lit l' ot SP2I network to Simulate the tund
amental tunctions ot other tnteroonneetion
networks. The proot is simple and will lite
omitted here.

Vector ,=(YO,Y, •••• '!K-,) is called
canonical. it and only it tor all k (k=0.1,
••• ,X-1), Yk is tn Ok' where xa. Suppose
P=Pn-1Pn-2 ••• P, PO is the binary notation
ot the order number p ot cell Op •

Indirect Binary n-Cube network haS n
interconnection tunctions ~ 0, 1 ~ :

aUbek(~Ok(O),Ck(')·····Ok(1'l-'»

where Ck(P)"n-1Pn-2"'Pk+1PkPk-l"'P,PO ;
p...o,l , •••• 11-1; 1I>O,1 •••• ,n-1 •

The basio interconnecting structure
of .Q, cf ,Baseline. etc.. is Shllttle-Exch
aDge. fhe Shlltfle function anu ExchaDge
function are two principal. interconnecting
functiena [10,lij:

Shutfl.(.1)-(S(0).S(1),·· •• S(II-1»
BxchaDge(1)-(B(O) ,,(1) , ••• ,B(.-l»

where S(p)-Pn-?pn_""P,PoPn_1 '

B(p)=Pn-1Pn_2""lPg, p...o,1,···,1I-1. If
one step of roating transmits a canonical
vector Y into its uestination with the
adUress vector P (1) • then the network is

saiel te Mve realized. the P('1) flUlotion.
%Aura 6: a-k steps of roating +2 j • ,+2j ",

••• ,+2ja- It, can realize the Cllbf\ m
function, where (j,.J2"",ja_k) is any
peraatatien af (k,It+1, •••• a-1).
'lUora 7: a steps of reating with arbi
trary oru.r OaD r.alize the BxchaDge ('1)
fuaction.
fiepr. 8a Por a c8l10nical vector of leng
th 11, n steps of reutiDg with any cOJllll&Dd
order can not realize the Shlrl"tl.(1) fuac
tion, but (2n-l) steps CaD.

ExtlR8iOn of the IteratiOn Method
of Automatic Vector-loat1!l

Seae vecters have roatiag conflict,
Such as !A-oruered vector with even 6.. It
.b.aa m .. ory bank conflict, therefore baa

transaissien rout. conflict. Even it the
11 elements of an audress v.ctor point to 11
ditferent memory banlta, th.re w111 st111
,osSibly exiSt reating conflict. Por
example, the bit reverse transmisSion of a
canonical vector Y has no a .. ory bank con
flict,but 1Iaa transmiS8ion reute oonfliot,
where Y=(YO'Y"""YIl-1)' the bit reveree
transmiSsien means transmitting \ from Bp

to Bp. , P=Pn-1Pn-2"'P"O' P'=PoP1"'Pn_~
Pn-1' p-o,1, ••• ,1I-1.

In order to realize dJD8mio anu para
llel data alignment, a network must Solve

20

the conflict problem. The iteration method.
of automatiC vector-rollting whioh was pre
sented in paper (2] is an efficient method
to solve the routing conflict problem for
SP21 network.fhe basio idea is as follows:

In addition to f , we set up another
vector regiSter ,=(PO.P, ' •••• P.-1) for
information reservati~n. Pj is in Cj • The
information structure of P j is the same as
that of Bj (see Pig.2).

'fhe whOle p:toooedure of acoesSing a
vector consists of sev.ral routing itera
tions. Baeh iteration consiSts of n steps
of routing and n steps of r.turn-routiDg.

Pirst,th. information to b. transmit
ted 18 sent into'. Then perform routing
iteration.

(i)")+ t
(11) r execut.s u st.ps of routing

and n steps of return-routing. It conflict
ocours, we allow some valid information to
diSappear from t .

(iii) If E8j =1, then EAj=I!BJ ' o...rej
(i.e., Cj of Pj). otherwise Bj and FCj
remain unchanged, (j=O,1, ••• ,I-1).

(iv) It Jt ~(O,O, ••• ,O), ~hen go to
(i), o~herwiSe the f.tching operation is

finiahell.
The iteration m.thod. of automatio

vector-rout1Dg may D. .xtend..d ~o many
multi-8tage or aingl.-s~ag. interconnec
tion netWorkS to solv. their rollting oonf
lict probl8111.8 .For example,AIIl [.,J (Augmeated
Data Kanipulator) network Aa8 2D intercon
necting functions Fi (j)-J±2i , j=o,l, ••• ,
.-1, 1-O,1, ••• ,n-1. Its controlling struc
ture also .. es the routiag d.istanoe as
controlling tag. Thus, the aDove iteration
method ... y De directly 1I8ed in th. AlII
network without any mod.itioation. WAh

reroatiDg is used. in the AlII networlt, the
iteration number needed for AlII n.twork 18
usually leS8 than that need.d for SP2I.

The iteration .ethod. ... y also be ex
~.nd.ed to suh aul ti-stage Shutfl.-Exohan
ge-type networkS as IndirHt Bin&r7 n-CllDe,

n, d, Baseline, eto. [a,9]. In their
oontrolling structure the destination
address Dj is used as routing tag ot the
souroe address Sj (j-o,1,···,m-1). In the
i-th stage, it (Dj)i=1, then the data is

switohed into the lower output ot the swi
toh element;otherwiSe into the h~her out
put.When extending the iteration method to
these networkS to solve their oontlict
probleas,the intormation to be transmitted
consists ot tour parts as shown in Pig.'.

data source destination valid
address address bit

n bits m+n bits 1 bit
Pig.', Intormation structure

ot Rl j and Pj

Ve set up an intormation input vector
regiSter iii &ad aa intormation reservation
vector regiSter". Rl j and Pj are in e j •
Their iDtormation structure is shown in
PiS.' • Suppose the eVeVHP system uses the
above Shuttle-Exchange-type . mul ti-&tage
interconnection network to realize dynamic
and parallel data aligl'lJRent, we w111 take
the tetching operation as example to desc
ribe the extended iteration method.

Suppose the KeU is going to tetch a
vector Y ot m elements trom VeM and send
it into vector butter regiSter i, denoted
as t. i. At tirst ,compute Y's address yec
tor D6(Do,D1,···,DN 1),where Dj=Dj.za+Dj •
1$, WD, 't...n . -Then pert'orm routillg
iteration.

(i) Rout1ag: .,. n. Ri. network. Dj
ot Rl j is used as routing tag. It at some
k-th stage, a switch element has two valid
inputs with souroe addresses i and j, and
(Di)k=(Dj)k,then the two input intormation
have to output at the same higher (or
lower) output port ot the Switch eleaent,
causing a contliot. In thiS case, we may
choose only one input (such as alays the
higher input)to outpu.t and let the another
to disappear (i.e., set its valid bit into

21

zero). Thus tor thiS switoh element, its
one outpu.t port sends out yalid informa
tion,another output port sendS out invalid
intoraation. Pinally the output ot the
network returns to i! .

Then parallelly perform a tetohing
operation, i.e., it RI£j=1, then tetoh a
data trom Xj according to local address
RIDj and send it into RUj ; otherwiSe
RI£j=O, then RIAj r-.a1ns unchanged, jaO,
1, ••• ,1'-1.

(11) Return-routillg: Rt. network.
This time, g is used as destination addr
ess veator, Sj becomes the rou.ting tag.
The transmission contlict is treated in
the same way as (i). The output ot the
network returns to if .

It Rle.j =1, then RIAj~j' O+Fcj ;
otherwiSe RlcjaO, then Bj and PCj remain
unchanged.

At last,examine pt.lt lt~(O,o, ••• ,O),
then go to (i) ; otherwiSe the tetching
operation is tiniShed.

The procedure tor storing operation
is like that tor tetching operation. But
contlict-tree storing operation does not
need the return-routing.

It in Indirect Binary n-Cube, Q, d,
Qr Baseline netwQrk, we only consider the
permutation on the set ot processor's ad
dresses (i.e. memory bank addresses), then
the destination ad~ss Dj only needs n
bits. Data vector K move. trom source ad
dress vector sr::1into vector register it
according to destination address vector D,
that is jllSt like a storing operation l.i'J.
Ve can use the scheme described above to
completely realize the permutation opera
tion.

The iteration method is alSo appli -
cable to other type single-stage intercon
nection networkS. USing the method enables
users to access to data vectors ot the vex
without very caretully considering the va
rious vector types. Vector access can be

realized automatically by machine. Conf
lict-tree vector access only needS one
routing iteration. The problem which is

worth turther studying is how to decrease
the iteration number. For example, tor ~

-ordered vector f ot N e1ements,it ~=~.2Pt
~ is odd, then the I' elements diStribute
in N'/2P memory banks. lWery memory bank
contains ~ elements ot f. Storing or tet
ching tneeds at least 2P accesses to the
YOM.In SP2I network,it the routing command
order is always +20,+21t ••• t+~-1(both tor
routing and tor return-routing) t then the
iteration number will be tar greater than
2P• But it we use the order +~-1 ,+~-2 ,

o 0 1 ••• ,+2 ,tor routiDg;the order +2 ,+2 , ••• ,
+~-1,tor return-routing ,then the iteration
namber will reach the lowest bound 2P •

Conflict-tree Implementation ot

Data Manipulation Functions

Conf1ict-tr.e routing is one ot the
most important problems ot interconnection
network and has been well discussed in a
number ot papers ~,6,8,9, etc~ • Based on
the properties at cont1ict-tree routing
discussed tormer1y, we will give some
implementation methods in SP2I network
tor tre~uent1y used data manipulation
tunctions.
1. A-Ordered. vector with Odd A

and. ReYerse vector
When it.D+j.~ ,and a=1 (mod 2) ,D and

A are broadcast into all cells to compute -D. Then only one routing iteration is

needed tor realizing tae access.
Suppose Ym(YO'Y1'···'YK_1)' Y'm(YK_1•

• • • , Y1 ,yo) • Then Y' is called as tae rever
se vector ot t. It t is a ~-ordered vect
or wita odd A, then the yt is also a
h.1-ordered vector with odd .0.1' where
tl1·za+n-A (mod za+n). The initial address
ot y, is D+(K-1)~ (mod za+n). AcceSSing
to It is oont1ict-tree. When K~N, and tiS
canonical, we can get Y' through the
to11owing process:

-+ (i) Compute the bit vector Ol= (eto ,eX1 '
••• ,oL.I_1)' where O£j=1(it j<K) or .!;eO(it
j~K) • ThiS will be denoted as (X= [J<K].
Compute t=K-1-21 (mod 1').

(ii) f$, t.Ji, <y!~.pertorm n steps
ot routing. ~.Then (Bo,B1'···'~_1)=Y'.
2. Matrix Transposition

Suppose A=(ai,j)KXK' K is odd, the
storage pattern makes every row veotor be
1-ordered veotor, every column veotor be
K-ordered veotor. We want to get B=A'=
(bi,j)KXK ,where bi,j=&j,i' the storage
pattern ot B w111 be the s8me as that ot A.

(a) Suppose A and B oooupy the dit
terent memory spaoe. Matrix transposition
is to tetoh a 1-ordered veotor A[i,*] and
to store it into the space ot an K-ordered
vector B(*,i], i=O,1,.··,K-1, i.e., to
pertorm the to110wing program[1]:

22

O .. i; Cx:; ~;A[i,*]"g1 ;it1::>B[*,i];]* ;i+1~i;]
(b) Suppose B will oocupy the space

ot A. it,. and it2 are used as two veotor
working registers, the address ot ai,i is
used as initial address tor both the i-th
row veotor and the i-th oolumn veotor to
be tetched and stored.Pertorm the program:
K..x:' ;O:n;[K_1; [it ;A[i'*]~1 ;A[*,i]~2J
R2,.,A. [i,*] ;R, :tA[* ,i] ;]*; i+1.i;K'-1::Me' ;]
where the initial address of A[i,*) and
.&[*,i] is Di=D+iK+i, D is the initial
address ot A.

(0) The oase ot A=(a1,j)mX.I. As Shown
in Pig.4, transpOSition is done by exohan
ging ot iti and tti which are the higher and
lower subdiagona1 veotors with the diagon-... ...
a1 vector ao=oo as the axiS ot symmetry.

It the global address ot ao 0 is
n ~ ,

D' -2 , then ao is oanonica1 and has 100a1
address veotor D'aD'+1. The oorresponding elements ot a i and a i +1 have the same 10-
oa1 address,but their memory bank address
es are ditterent by 1. On the oontrary,the
corresponding elements ot 0i and 01+1 have
the same memory bank address,but their 10-

oa1 addresses are ditterent by 1.So we can

adopt the following transposition prooess:
o:t>" (i)Broadoast Dt. Dt+~.p, and P2. ,~.

(11) [j~i] ... :,. [1<N-i1 ... ct2.
(11i) 11• St. "parallelly routing

+2°.. • Bil'. 1, . Fetoh out iti (whose local address vector is just in p,) and send it
into it. "Parallelly routiDg + (N-i) " .it,., .

(iv) '2+'.12. Petch out bi (itslooal
address vector is just in (2) and send it
into it. "Parallelly ro\1ting +i". il.l,?. •

(v) Under the control of ~2,R,.(P2);
Under the control of Cl" R2,.«(t,).

(vi) i+'.i. If i~N, then end; other
vise go to (ii).

Co C, •••
Dt a a 0,0 0,'

'" D'+' a"O a, , ,
--• ..

D'+i a .. i~/ • •
Dt+N-1 ~-1,0

.~

'Oi

Fig.4, Transposition of A=(ai,j)NXI

3. Compressing and Spreading

Compressing is to save memory space.
Only non-zero ela-ents of a vector are
stored into memory. Suppose ~-(PO,P1' ••• '
~-1) conSists of the subscripts of non
-zero ala-ents of 1r=(Yo,Y" •••• YN_,), ~.,
0~PO<P1<~2<· •• <~K_'~N-1.Compres8ing vector

is denoted as [t.Y]-(Ya .Y~ .···,Y'").
1-0 1 '·K-1

Spreading is the inverse operation of com-
pressing,a spreading vector(sparse vector)
is denoted as (;r.~-(O, •••• o.zo.o, ••• ,o.
Z1'O •••• 'O'ZK_'·O'· ••• O).

Su.ppoae r, '1, C". y] are all canoni
cal. Because the SP2I network only has the
"routing +2ill function, i.e •• right-ro\1ting

23

function,compressing to left is implement
ed by right-round-rO\1ting. If for 1=0,',
• •• ,t-1, Pi",i; for k~t, ~~>k, this implies
YO'Y1' ••• 'Yt - 1 are non-zero elements, they
do not need to move in compressiDg. But
the moviDg of Y~K (k~t) ma..v cause the Yi

(OEi~t-') to disappear. To avoid thiS con
flict,we first compress 1r to right end.
then parallelly transmit them to left end.
.As shoYD in Pig. 5, to oompress Y to right

Fig.5, Compress routiDg

end satisfies the oonditions of Theora- 4.
On the command order of +20,+2', ••• ,+~-1,
there is no routing confliot. Below is the
compressiDg prooedure:

(a) Broadcast ll-K. [1<K].ct. Compute
1-j 0+1**, ll-K-1M~cr- •

(D) t*+fl,1** .. Et.~E.perform n steps
cf routiDg +~-, .+f1-2, •••• +2°. this 18

conflict-free according to Theorem 5.~
(c) Y.iiit • Perform n steps of routing

0' ..n-1 +2 .+2 ••••• +~ •
(d) "Parallelly routing +K" • El,J.

Then (Bo.B1 ••••• ~_,)a[if,y] .
If ve want to store [if,t] ato the

memory space D,D+1,D+2,···. where the
initial address D=D' .~+D" • as shoYD a
Pig.6, there are two cases.We only .eed to

'~n
7""

D' *****

*~ ii ~**
D'~1~

(2) D">:J-K

Fie.6, Compressed into memory

modify the (d) of the above prooedure as
follows:

(Atter the process of (0»

"Parallelly nlilting +(D"+K)". D'". EDt.
[j<D"J.~. 'tinder the oontrol of ct, D'+1=tED'.
Then under the oontrol of it, Bt..<iDt).

The implementation prooess of .pread
ing veotor at,Z) may be:

(a) 04. [1<KJ~ t-t..t.
(b) t.Jt, ~7, ~.Jt. Perform n .teps

of routing +fl-' ,+fl-2, ••• ,+2°. Under the
oontrol of it, ~. Then B=(1,z).

4. JixJN-Square-Blook Veotor,
Fanout, Replicate

....n 2t ~ t Here we suppose 11=.::",,2 ,~=2 =8 , •

In order to thoroughly utilize the ability
of parallel oomputation, in 80me oases, we
can cut a matrix A into many .IN)(Ji-square
blocks,and every block as a "blook veotor"
may be parallelly computed by B processors.

Suppose A=(ai,j)KxK ' rK/S~ =0. Let
q=o (it 0 is odd) or c+1 (it 0 is even),
and ~=q.s,. A i8 stored into memory in the
following storage pattern: for i=o,1,···,
K-1, the address vector of the data veotor
(ai ,0,ai ,1, ••• ,ai ,K_1'0,o, ••• ,O) is (D+i6,

D+i6+1, ••• ,D+i6+K-1,D+i6+~, ••• ,D+i6+6-') ,
where D is the address of aO 0' D may be ,
arbitrary.Then the 8quare blook vector ~I~
is defined as (ai,j ,ai ,j+1 , ••• ,ai ,j+s,-' ,

a i +1,j ,ai +, ,j+1 , ••• ,a1+1 ,j+S,-1 , •••••• ,

a1+s1-1,j'~1+S1-',j+1,···,ai+S,-1,j+s1-')'
whose addressleotor is it.Di,j+H(t,1).~
+L(t,t), where H(t,~=(H(t,O),H(t,1), ••• ,
H(t,N-1», L(t,1)=(L(t,O),L(t,1), ••• ,
L(t,II-1», Di,j is the a!dress of ai,j. It
is easy to prove that 'tmD"-1 satisfies the
condition (*), so acoording to Theorem " ...
AI,J has no routing cor1tliot.

Suppose lrm (Yo ,y, ,···,Y.,_1).The fanout

vector F(Y) is defined as (YO'YO' ••• 'YO'
Y, , Y, ' •••• Y, , •••••• , Y.,-1 t Y. , -

'
, ••• , YS ,-1).

The replicate vector iCf) is defined as

24

(Yo,y,,···,YS,-" Yo ,Y" ••• 'YS,-1'······ ,

yo,y,,···,ys,-'). Both FCY) and iC~ have
2 S,==II elements.

Suppose lr is oanonioal. The F(Y) may
be obtained as follows:

(a) [1<JiJ.c1. (Ji-,) .j.? .
(b) YrO-it, ~7, iJ::JiBe. Perform n steps
t ~~~ 20-' 2n- 2 0 of rOll ~ + ,+ , ••• ,+2.

(0) Perform t steps of broadcast-type
routing +20,+2', ••• ,+2t-'.~.Then B.F(~

Suppose Y is canonioal. i(y) may be
obtained as follows:

(a) (1<JN'] .. c't •
(b) lr8, ~J.t. Perform t steps of

broadoast-type routing +2t +2t +' ••• +~-, ,_, ,_.
i1.$. Then B=R(Y).

BeSides, irregular fanout and repli
oate may also be implemented without oon
fliot. Due to the limitation of space,
these materials are omitted here.

ConolUSion

This paper has discussed in detail
the various properties of confliot-free
routing of SP2I interconnection network,
they are the baSis to find out implementa
tion methods of data manipulation func
tions.The routing step number of implemen
tation methods presented in this paper is
O(log2N), the time needed for oomputing
control-information is usually less than
the routing time. SP2I network needs
O(N·logaN) gates. Thus, SP2! has several
advantages: network struoture and oontrol
ling are Simple, transmission rate is
high, hardware devices are limited in a
reasonable range. SP2! may effioiently
realize the main data alignment functionS
faced by the CVCVHP system. The iteration
method of automatic veotor-routing, whioh
is used espeoially for solving routing
confliot problems, enables SP2! to eaSily
realize various dynamio and parallel data
alignments. The extension of the iteration
method may practioally and efficiently

solve the routing oonfliot problem8 in
Am,Indireot Binary n-Cube, Q, cS ,Baseline,
and other networks.

Aoknowledgements

The authors gratefully acknowledge
the most helpful comments of referees.
Ms. Zheng Ya-Xian's patient and Skillful
typing is also sinoerely appreoiated.

References

[1] Gao Qing-Shi, Zhang Xiang, "A general
-Purpose Cellular Supercomputer---Cel
lular Vector Computer of Vertioal and
Horizontal Prooessing with Virtual
Oommon Memory", Chinese Journal gf
CgMmuters, Vol.2, No.1, January 1979,
pp. 1-13.

[2J Zhang Xiang, Gao Qing-Shi, "Principle
of Automatic Vector-Routing and Its
Iteration", ChWese Journal gf
Computers, Vol.4, No.6, November 1981,
pp. 459-467.

[3] R. J. McMillen and H. J. Siegel, "MIMD
Machine Communication Using the Augme
nted Data Manipulator Network", 1:1h
Annual Symp, Computer Architecture ,May
1980, pp. 51-58.

[4] Gao Qing-Shi, Zhang Xiang, "Another
Approach to Making Supercomputer by
Microprocessors---Cel1ular Vector Com
puter of Vertical and Horizontal Pro
cesSing with Virtual Common Memory",
1980 Int'l. Conf. gn Parallel Prgcess
ing, August 1980, pp. 163-164.

25

[5] JII.C. Pease, "The Indirect Binary n-Cube
Mioroprocessor Array".IEK§ Trans. Com
put., Vol. C-26,May 1977, pp. 458-473.

[6] ;:-H. Lawrie, "Ace ess and Alignment of
Data in an Array Processor", IEEE
Trans.Comput. ,Vol. C-24, December 1975,

pp. 1145-1155.
[7] J. H. Patel, "Processor-PIemory Inter

connections for Multiprocessors", 2:ih
Int'1. Annual Symp. Computer Architee-

1Y£!, April 1979, pp. 168-177.
[8] C. Wu and T. Feng, "Routing Techniques

for a Class of Multistage Interconnec
tion NetworkS", 1918 Int'l. Cgnf. gn
Parallel Prpcessipg, August 1978,
pp. 197-205.

[9] c. Wu and T. Feng, "The Reverse-Ex
change Interconnection Network", 19.19.
Int'l. Oont. on Parallel Processing ,

August 1979, pp. 160-174.
[10] H. J. Siegel, "AnalysiS Techniques for

SIMD Machine Interconnection NetworkS
and the Effects of Processor Address
MaSkS", IEEE Trans. Comput., Vol. C-26,

February 1977, pp. 153-161.
[11] H. J. Siege1,"A Model of SIMD MachinGs

and a OompariSon of Various Intercon
nection NetworkS" ,IEEE TranS. Cgmput.,
Vol. C-28, December 1979, pp. 907-917.

DISTRUBUTED CIRCUIT SWITCHING STARNET*

Chuan-lin Wu. Woei Lin and Min-Chang Lin

Department of Electrical Engineering
Austin. Texas 78712

Abstract -- Starnet is a communication sub
net which can cost-effectively connect hundreds
or thousands of processors for distributed
processing. It uses distributed control and
circuit switching. Starnet's communication
medium includes two major components: a multi
stage interconnection network and a set of
interface units. The interconnection network
uses a d~stination routing scheme with no
central control. The interface unit provides
handshaking between the computer/data node and
the interconnection network under the control of
a microporcessor. Detailed design of the com
munication medium is described. A model for
comparing cost-effectiveness among Starnet.
crossbar and multiple buses is included.

I. Introduction

Starnet is a distributed circuit switching
local communication subnet which can provide
flexibility required to cost-effectively solve
general distributed processing problems. The
area of local computer network architecture is
concerned with interconnecting two or more com
puters within a restricted area such as a
single building or a small cluster of buildings.
to facilitate high-performance distributed
processing. Although there are many local com
puter networks proposed or currently existing
[11. increasingly sophisticated technology and
enlarged problem domain have spawned a need for
investigating networks which can provide higher
speed information processing in a new environ
ment enhanced by technological advances and
new processing reqUirements.

It is our goal to design a reconfigurable
subnet which allows partitioning connected
resources into any connection topology(ies).
According to our need of efficient distributed
processing the communication subnet consists
of an interconnection network and a set of
interface units (IU's). A block diagram of the
communication subnet is shown in Fig. 1. Shown
in Fig. 1 is also a multiple-IU assignment to
system components. called nodes. The subnet
realizes protocols specified in the first three
layers of a hierarchical network architecture
model [21. In the first layer. the subnet
specifies the mechanical. electrical and func
tional characteristics required to connect.

* This work was partially supported by Bureau
of Engineering Research. The University of
Texas. under grant. BER Research and Development
3074590780. and by University Research
Institute. The University of Texas. under grant
20-7499-0868.

0190-3918/82/0000/0026$00.75 @ 1982 IEEE 26

maintain. and disconnect a physical circuit in
the paths between interface units. The second
layer breaks data up into frames. provides des
tination address. transmits the frames. processes
the acknowledgement from the receivers and
handles errors if they appear. The last layer of
the subnet handles controls of the subnet oper
ation. Its key design issues among others are
routing and flow control. The architecture of
the subnet is to implement these functions
specified in the three layers in terms of its
components: interconnection network and inter
face units.

Fig. 1 A block diagram of Starnet

In section II. the design issues of the
interconnection network are considered in two
aspects: network topology and routing. Section
III deals with switching elements of the inter
connection network. The interface unit design
is then exploited in section IV. An evaluation
on the bandwidth and cost-effectiveness is
presented in section V.

II. Network topology and routing

A modified topology of baseline network 131
is used. The baseline network is a multistage
interconnection network which can provide a full
connection. By full-connection. we mean that
there exists a direct connection for each input/
output pair. Fig. 2 shows a generalized recur
sive process to generate baseline topology. In
the recursive process, the first stage contains
N/r switching elements of size r x t (i.e., r
inputs and t outputs) where N is the number of
inputs of the network. The second stage contains
t subblocks: CO' Cl •••••• and Ct _l • The process
can recursively be applied to the sub blocks until
each sub block can physically be realized by an
off-the-shelf switching element. A topology

generated by setting r = t = 2 and N = 8 is
shown in Fig. 3. The topology shows that there
are three stages of 2 x 2 switching elements and
there are 8 inputs and 8 outputs.

Fig. 2 A recursive process to generate
baseline topology.

Stage 0 1
000 000

001 001

010 010
0

s- 011
N
F

011 U
T

u 100 100 P

T 101 101 =D U
T

110 110

111 111

Level 0

Fig. 3 A 8x8 baseline network topology

The label of the components (switching
elements and links) of the interconnection net
work can be illustrated by the baseline net
work shown in Fig. 3. The stages are labelled
in a sequence from a to n - 1 with a for the
left most stage where n = log2N. Similarly.
the levels of links are labelled in a sequence
from a to n. The switching element in stage i
is labelled by (Sn-1 Sn_2 ... S1)i where Sj.
1 < j < n-1. is a base-r number. The input/
output-links of a switching element is labelled
by Sn-1 Sn_2 S1 So where Sn-l Sn_2··· S1
denotes the label of the switching element from
which the link spreads and So denotes the re
lative location of the link in one side of the
switching element. In Fig. 3. there are three
stages (0. 1. 2). four levels (0. 1. 2. 3).
four switching elements (00. 01. 10. 11) in
each stage and 8 links (000. 001 • ••..• 111) in
each level.

There is one and only one path existing
between a source (input) and a destination
(output). The unique path can be decided
according to the destination address. Suppose
that a source S is to be connected to a
destination D whose address can be represented

27

by a base-r number Dn_l Dn-2 .•. D1DO. To connect
the source to the destination. the switching
element to which the source is attached. will
take Dn-l. and connect source to the next stage
in terms of its Dn-l th output link. The
switching element in the next stage will then
take the next number in the destination. Dn-2.
and use its Dn-2 th output link to connect the
source to the next stage. The process is re
peated until it reaches the destination. For
example. assume that source S is to be connected
to destination D. 101 in Fig. 3. Then switching
element (01)0 will take the left most bit of D.
1. and switches the source to switching element
(10)1 using the lower output link. Switching
element (10)1 will then take the next bit of D.
O. and switches the source to switching element
(10)2 using the upper output link. The last bit
of D. 1. will then be used by switching element
(10)2 to connect the source to the destination.

For the purpose of fault diagnosis and sub
net reconfiguration. it is necessary to know the
routing path. The routing path can be derived
from source and destination addresses. Let
S = Sn_l Sn-2 .•. S1S0 and D = Dn-1 Dn_2 ... DlDO as
used in the above paragraph. Then the switching
elements on the path from the source S to the
destination D can be denoted by (Dn-1 Dn-2 •..
Dn-i Sn_1 Sn_2 •.. Si+1)i for a ~ i ~ n-l. In
other words. the links on the path can be denoted
by (Dn-l Dn-2 ..• Dn- i Sn-1 Sn_2 ... Si+1
Dn-i-l)i+1 for a ~ i ~ n-1. In the routing ex
ample shown in Fig. 4. S = all and D = 101 and
switching elements (01)0. (10)1 and (10)2 are on
the path.

Since there is one and only one path exist
ing for an I/O pair. the I/O pair can not be
connected in case that there is a faulty element
in the path or a conflict of using the switching
elements and/or links occurs. In order to pro
vide the fault tolerance and higher availability.
an extra stage is added to the baseline network.
A modified baseline topology is shown in Fig. 4.
The extra stage added and the baseline network
will allow two connection paths for an I/O pair
as shown in Fig. 4. In general. if the switching
element used in the extra stage has t outputs.
an I/O pair can have t connection paths.

o
U
T

N
F
U
T

~~~--~--~~ P 

Extra 8x8 Baseline Network 
stage 

Fig. 4 A modified 8x8 baseline network. 

U 
T 



The routing scheme is the same as the one des
cribed above except for the portion of the extra. 
stage. Since any output link of the switching 
element to which the source is attached in the 
extra stage will lead to the destination, the 
source can select one of the output links ac
cording to the priority policy and/or the state 
of the subnet. After an output link of the extra 
stage is selected, the aforementioned routing can 
then be followed to establish a path to the 
destination. 

III. Design of fault tolerant switching element 

Interconnection network is designed in a 
way that it can be constructed modularly in terms 
of a single type of switching element. The 
switching element realizes communication proto
cols which specify control strategy and switching 
methodology [4]. In addition to the protocols, 
fault tolerance is justified by the fact that 
circuit complexity of the subnet can be at the 
same level as the complexity of the other part of 
the system. It is likely fair to say that a re
liable subnet is even more critical than other 
reliability issues. Here we describe a Z x Z 
fault tolerant switching element which is to be 
used to modularly construct the interconnection 
network. The switching element uses distributed 
control and circuit switching. Its pin and gate 
count stays in the implementable range of VLSI 
technology. 

A block diagram of the switching elements is 
shown in Fig. 5. The switching element comprises 
of two major parts: control plane and data 
plane, which deal with control and data respect
ively. The control plane does the handshaking 
process in establishing connection pa.ths. It 
generates control signals which are fed into the 
data plane to connect data ports. The data plane 
is the part where the data communication actually 
occurs. Depending on the word length required, 
the number of the data planes to be connected can 
accordingly be adjusted. 

ackl 
reql 
rell 
dirl 
stbl 
ack2 
req2 
rel2 
dir2 
stb2 

reset pr [0 tagl tag2 

ackll 
reql' 
rell' 
dirl' 
stbl' 
ack2' 

Fig. 5 A block diagram of a ZxZ switching 
element 

28 

The major function of the control plane is 
to set up the path between the source and the 
destination according to the routing scheme. As 
shown in Fig. 5, the control plane has the fol
lowing input control lines: address tags of des
tinations (tagl, tagZ) , request lines (reql, 
reqZ), acknowledge signals (ackl', ackZ') release 
signals (rell, relZ), direction indicators (dirl, 
dirZ), strobe lines (stbl, stbZ), priority signal 
(Prio) and reset signal (reset). The output con
trol lines are relayed request lines (reql', 
reqZ'), acknowledge signals (ackl, ackZ), dir
ection indicators (dirl', dirZ'), and strobe 
lines (stbl', stbZ'). The control circuit re
ceives input signals from two switching elements 
in the previous stage, generates control signals 
for the data plane, modifies the input signals 
and relays them to the next stage. The control 
plane has four internal registers to record the 
current connection status of the switching ele
ment. It generates internal signals to facili
tate conflict resolution and data plane control. 
With this design, a physical path of the modified 
baseline network can be established in one clci.ck 
period, which include two clock phases 01 and 0z. 
During phase 01, depending on the routing tag and 
the current state of the switching element, the 
request will be rippled down stage by stage. 

If no conflict occurs along the requested 
path, an acknowledge signal will be returned from 
the receiver. During clock phase 0z, each 
switching element along this allocated conflict
free path would update their internal registers 
and set up the related connection in the data 
paIne. At the end of phase 0z, a physical path 
is actually established between the source and 
the destination if there is no conflict. The es
tablished path can remain still as long as the 
source wishes. The source can issue the release 
signal to disconnect the path. Before a better 
fault tolerance scheme can be finalized, Tripli
cated Modular Redundance, in which the circuit is 
triplicated, is used to enhance the reliability. 

The data plane is composed of a data circuit 
and a test circuit. The data circuit comprises 
of a number of duplicated copies each of which 
can have a general Z x 2 crossbar connection for 
full-duplex communication. The test circuit al
ways monitors the response to on-line data and 
perform self-diagnosis asynchronously. If a 
fault occurs, the test circuit will adopt a re
covery procedure to reconfigure the data circuit. 
The test circuit comprises of three parts: test 
data generator, match detector, and recovery con
trol logic. Test data generator provides the 
idle link with auxiliary test data in addition to 
on-line data for fault detection. Match detec
tors compare input data (either on-line data or 
auxiliary test data) to the associated outputs. 
If there exists a mismatch, the corresponding 
error flag will be raised which will then trigger 
recovery control logic to replace the current 
copy of the data circuit with an error-free copy. 

The switching element can perform bidirec
tional fault-tolerant communication and broad-



casting. The data propagation delay per switch
ing element is estimated to be 30 ns. 88 pins 
are required for a switching element which allows 
l6-bit parallel half-duplex communication. The 
design is viable for VLSI implementation. The 
gate-level design details can be found in [5]. 

IV. Interface unit 

The system component is attached to the in
terface unit which in turn connects to mUltiple 
ports of the interconnection network. The func
tions of the interface unit can be divided into 
two parts. Part 1 provides mechanisms for en
abling communication between the system component 
and the interface unit. Its design depends on 
the system component. Part 2 facilitates access
es to the interconnection network. The design of 
the second part concerns the interaction to the 
interconnection network and is independent of the 
attached system component. 

Part 2 contains active and passive connection 
ports. The active port is connected to the input 
of the interconnection network while the passive 
port is connected to the output. Only the active 
port can initiate connection request. However, 
both active and passive ports can transmit data 
after a connection path is established. When 
an active ports needs to access a passive port, 
it places the address bits of the destination 
ports on proper data lines and raises the request 
signal. Through the routing procedure (in a net
work clock cycle), the request is either accepted 
or rejected as signaled by the acknowledge line. 
If rejected, try again or the alternate path. If 
accepted, a path is already established and the 
interface unit then starts the data communication 
using the handshaking process and performs error 
checking and possible error correction. Input 
and output buffers are provided for each port. 
The main function of this part is to provide a 
reliable data communication. The higher level 
protocols are implemented in the first part of 
the interface unit. 

As shown in Fig. 6 for a connection between 
a ma~ter computer node and a slave computer node, 
the 1nput/output lines of the IU can be divided 
into two groups: 

(1) IU to interconnection network - This side is 
directly connected to the interconnection 
network. An interface unit has two kinds of 
connection to the interconnection network: 
the upper links represneting the active port 
where the master node initiates the request 
to the slave node; the lower links represen
ting the passive port where the slave node 
sends the reply to the master node. 

(2) Computer nodes to IU - The IU can be treated 
as an I/O device of computer nodes. Node 
will direct IU by passing orders via hard
wired interrupt lines and control codes con
tained on data bus. An IU requests nodes 
for service in a similar fashion. 

29 

MASTER 
PE 

• • • 

SLAvE 

PE 

• • • 

~ 
dir 
stb 
ack 

!JAn.1, 
~ 
gH;: 
aCk' , 

BASELINE 

NET¥.ORK 

Fig. 6 Connection of interface units 

In this section we present an interface unit 
design, which is based on the 2900 family [6]. 
The configuration of the bit-slice based IU de
sign is illustrated in figure 7. The 2900 family 
components employed in this design include (1) 
CPU-ALU and scratchpad register units, Am290l; 
(2) microprogram sequencer and controller ,Am291D; 
(3) bipolar memory, Am2960 Series; (4) interrupt 
controller and support devices, Am29l4; and (5) 
condition code multiplexer, Am2922. 

The IU internal structure as illustrated in 
Fig. 7 is elaborated as follows. 

(1) ALU (Am290l). With the 9 bits of microword 
ALU is capable of selecting source operands' 
functions, destination registers and provid~ 
ing various status outputs. 

(2) Microprogram Controller (Am29l0): Thismicro
program controller is an address sequencer 
that is intended for controlling the sequence 
stored in the microprogram memory. Beside 
the capability of sequential access, it pro
vides conditional branch and five levels of 
nesting microroutines. 

(3) Pipeline Register: Pipeline register is used 
to improve the execution speed. It is added 
at the PROM output to allow the overlap of 
ALU operation and memory fetch process. 

(4) Interrupt Controller (Am29l4): The Am2914 in
terrupt controller may be connected to pro
vide the capability of microprogram level 
interrupt. The occurrence of an interrUpt 
causes a branch address, which is provided 
by mapping PROM, to be fed into microprogram 
controller. Such a vectored interrupt sus
pends the current routine and activates a 
specific interrupt service microroutine. 
After the interrupt service routine is fin
ished, the suspended routine will be re.sumed. 

(5) Microprogram Memory (Am2960): These PROM's 



(6) 

( 7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

are used to store a number of interrupt
driven microroutines, which handle various 
stimuli from outside. 

Interrupt Mapping PROM (Am2975l and Am29l3) : 
These PROM's supply the 12 bit starting ad
dress of a specific microroutine according 
to the type of interrupt. 

Condition Code multiplexer (Am2922): This 
multiplexer selects the desired status and 
feeds it into microprogram controller. 

Control Register (CR): This l6-bit register 
is used to control data flow inside IU. 

Output Data Register (ODR): This16-bit reg
ister holds the data to be exported to 
active port and/or passive port. 

Input Data Register (IDR): This l6-bit reg
ister holds the data imported from active 
port or passive port. 

Control Signal Generator (CSG): The CSG, com
posed of an 8-bit register and an 8-bit 
driver, drives handshaking signals, strobe 
signals, and request signals which are gen
erated from pipeline register. 

Active Port Interface and Passive Port Inter
face (API and PPI): These two transceivers 
interface the internal output data bus to 
the external data buses DAo-15 and DA'0-15 
respectively. 

Data Bus Driver DBD): This transceiver inter
faces the internal input data bus to the ex
ternal data bus DO-IS which is connected to 
the host. 

Bypass Switch (BS): This switch is used to 
bypass the l6~bit data transferred to IU 
without microprogram interferring. 

(15) Strobe Switch (SS): As shown in Figure 4_7, 
this switch is used to bypass the, strobe sig
nals transferred to the interface unit with
out microprogram interferring. 

In the microprogram storage, there are a 
number of microroutines, which are invoked by 
the interrupt from outside. Each microroutine 
consists of a series of microinstructions that 
contain the control information over some hard
ware elements. Every time an interrupt occurs, 
a specific micro routine would be activated and 
executed by gating succesive microinstructions in
to pipeline register. Via the dedicated connec
tions to the corresponding hardward components, 
these microinstructions initiate a sequence of 
hardware activities and make the interface unit 
be able to react properly. In correspondence to 
the hardware· components of the interface unit, 
the microinstruction can be divided into 11 dif
ferent fields. Each field is in charge of a 
specific hardware element. The width, 64 bits, 
is suitable for a Am2900 family based design. 

30 

,.. 

INTRP 'u'p.. __ ..J 

CTLR 

"0_15 

15 

00- 15 DBD 1..----.... t..J 
-15 

~tffib~.~------------------~~--..~ 
~b' 

Fig. 7 Configuration of interface unit 

V. Performance Evaluation 

In this section, two performance factors: 
bandwidth and cost-effectiveness (bandwidth/ 
cost) are examined to compare bus-structure net
work [7], Starnet, and crossbar switch. Both 
asynchronous and synchronous modes of operations 
are considered here. Following assumptions are 
made for these two modes of operations. 

Asynchronous mode: 

(1) 

(2) 

(3) 

Poisson arrival and exponential distribu
tion service time for messages are assumed; 
each input link has the same arrival rate 
A, average message transmission time is 
l/ll. 

The time to setup a path is assumed to be 
small compared to message transmission time 
and can be neglected. 

Unbuffered systems are assumed; a request 
will be discarded if it is blocked of if it 
arrives at a busy input link. 

Synchronous mode: 

(1) 

(2) 

Message length is fixed; the time to trans
mit a message plus the time to set up ,a 
path is defined as a cycle. 

Each input link generates requests for mes
sage transmissio~ randomly and independ:nt~ 
ly· the destinations of requests are un~
fo~y distributed over all output links. 



(3) The requests are generated synchronously; at 
the beginning of each cycle, each input link 
generates a request with the same probabil
ity Po. 

(4) The requests being blocked are discarded; 
the requests generated at next cycle are 
assumed to be independent to the previous 
ones. 

1. Bus-structure network analysis 

A network with log2N buses is used for com
parison, where N is equal to the number of com
puter nodes to be connected. Since the complex
ity of a unibus system can be approximated as of 
order N, the complexity or log2N-bus system is 
about O(N*log2N). For simplicity, we assume that 
under both asynchronous and synchronous modes of 
operations, the log2N-bus system is able to 
acheive its perfect condition which has band
width: 

m, 

log2N, 

when the number of requests of the sys
tem at a particular time is m, m<log2N; 
when m>log2N. 
where n<m<N) 

2. Analysis for baseline network and crossbar 
switch 

Crossbar switch can be thought as a special 
case of baseline network with one stage and an 
NxN switching element. The analysis of baseline 
network thus can be applied to crossbar switch 
with slight modification. 

Asynchronous operation: 

The asynchronous operation of unbuffered 
baseline network is assumed to have the continu
ous time Markovian behavior, which means that the 
transitions of system states are timely contin
uous and the rate of transition to the next state 
depends on current state only. 

Fig. 8 shows the Markov chain of this model, 
the number of currently accepted requests is 
chosen as the state parameter. A new arrival of 

acceptable request changes state i to state i+l, 
with rate (N-i)'A'PPN(i), i=O,l, .••. ,N-l; a de
parture of currently accepted request changes 
state i to state i-l, with rate i'u, i=1,2, .... ,N 
where PPN(i) is the probability that a new re
quest will be accepted when a size-N network cur
rently has i accepted requests (i paths currently 
exist). If all PPN/2(i)'s are known, PPN(i) can 
be found in Eq. (1) where Rn m is the total num
ber of possible arrangements'of m paths in a 
size-N network. 

OONkPP(O) 

o l' 

~ ~ 
u 

Fig. 8 Markov chain for asynchronous baseline 
operational model 

To find PPN(i)'s, we can start from the 
boundary condition PP2(O)=1.O, PP2(1)=O.5, 
PP2(2)=O.O. Once the PPN(i)'s are found the 
eqUilibrium probabilities, ST(i)'s, can be solved 
eaSily, and the bandwidth of the system is 

N 
L: i.ST(i). 

i=l 

Crossbar switch in asynchronous mode is 
alyzed with the same model. The only change 
that PPN(i)=(N-i)/N for i=O,l, .•.. ,N-l. 

Synchronous operation: 

an
is 

The synchronous operation of baseline net
work and crossbar switch are modeled by assuming 
each input link generate a request with prob
ability Po in every cycle. The probability that 
i requests are accepted at one cycle can be found 
in Eq. (2). 

L: 

( ~ ) 2j +k 2j+k=i k 

(~) 1- n:k]' l: PPN U+r) 
PPN(i) j+k+A = N/2 j ,k, A r=O 

2 
Eq. 1 

L: (. ! A) 2j +k r~o (:) ~~2,j+r~/~,j+k-r 2j+k=i 

J+k+A =N/ 2 J, , CfJ C+~-J 
N 

(:) P: (l-P )N-m PA(i) L: 
m=i 

0 Eq. 2 

31 



The first summation term is the probability 
that m requests are generated at one cycle, the
second summation term is the conditional prob
ability that i requests are accepted when m re
quests are generated at one cycle, note that 
PPN(O) is equal to 1 for every N. 

The bandwidth of the system is 
N 
~ i·PA(i), crossbar switch has a simplified 

i=l Po N 
form N·[l-(l- ~) 1. 

3. Comparison 

Bandwidth: 

The bandwidths of the three networks are 
shown in Fig. 9. The analysis of baseline net
work and corssbar switch is verified by simula
tion for N=4,8,16. We can see from the figure 
that the bus network is not suitable when N is 
large, its bandwidth is limited by the number 
of buses. Increasing the number of buses is 
not practical since the increasing of one bus not 
only increases the cost of order N, but also in
curs more scheduling problems. The bandwidths of 
both baseline and crossbar networks are of order 
N the bandwidth of baseline network falls down 
siowly as N increases, the bandwidth of cross
bar switch reaches a lower limit as N increases 
to infinity. 

4096 - __ Synchronous 

- _ - - Asynchronous cross r 

1024 
Q) 

rl as 
0 

'" 256 
'" .. 

0 
rl 

s:: .... 64 
?i 
'" ..... 
'" § 16 
,0 

4 

1 
1 

Fig. 9(a) 

4 

__ _ Perfect case 
x ••• Simulation 

16 64 256 

network size-N 

1024 

Bandwidth of size-N networks, 
for synchronous mode, A/u=l.O 
asynchronous mode. 

Cost effectiveness: 

Po=1.0 
for 

To compare the cost-effectiveness, we assume 
that the control mechanisms of all three networks 
are implemented by hardware. The number of 
crosspoints of each network system is chosen as 
the cost index: bus system has N.log2N cross
points, baseline network has 2·N.log2N cross
points and crossbar switch has N·N crosspoints. 

32 

1.0 

0.8 

0.6 
~ 
'" .... 
'" ..... 

0.4 :. 
'" § 
,0 

0.2 

0.0 
1 

""'~x 

X •. Simulation 

-" - __ Synchronous 

- - - - Asynchronous 

- perfect case 

~-"'X_*-____ --.-C-r-hssbar_ 

X-~x-..____ ~a::H~ . ..1.~t:1e 
~-----__ ~~~ne 

4 16 64 256 1024 4096 

network size-N 

Fig. 9(b) Bandwidth of size-N networks, Po=l.O 
for synchronous mode, A/u=l.O for 
synchronous mode. 

This choice of cost index favors bus and cross
bar networks since the control logic for each 
crosspoint of these two networks is more complex 
than that of baseline network. The result is 
shown in fig 10. It can be found that baseline 
is the most cost-effective when N>64. The bus 
structure network is not able to support a large 
system for both reasons: few bandwidth available 
and not cost-effective. The crossbar has poor 
cost-effectiveness when N is large, also the 
tremendous complexity makes it very difficult to 
implement a crossbar switch with size over one 
hundred. 

III 

" ~ 
~ .... .... 
o 

~ 
" I 
+' 

" o 
o 

1 

1 
~ 

1 
1:5 

1 
~ 

1 
~ 

1 
IU'2lI 

Fig. 10 

--- Synchronous 

____ Asynchronous 

- - - - - Perfect case 

crossbar"- ,log2N-bUS 

"-
"-

"-

network size-N 

"-
"

"-

Cost-effectiveness of size-N networks, 
Po=l.O for synchronous mode, A/u=l.o 
for asynchronous mode. 

VI. Conclusion 

This design shows that Starnet can provide 
a data access time of 1 microsecond in a local 
computer network with over one thousand computer/ 



data nodes. The adequate transport mechanism can 
thus provide better coupling among its nodes, 
compared to some contemporary multiprocessing 
systems. With its enchanced reliability and 
reconfigurability, Starnet has potential in being 
used for various applications including large 
scale real-time computation and office informa
tion systems. 

References 

[1] K.J. Thurber and H.A. Freeman, "Architecture 
considerations for local computer networks," 
Proc. 1st International Conference on 
Distributed Computing Systems, 1979, 
pp. 131-142. 

[2] H. Zimmerman, "OSI reference model - The ISO 
model of architecture for open systems 
interconnections," IEEE Trans. Commun., 
Vol. COM-28, April 1980, pp. 425-432. 

[3] C. Wu and T. Feng, "On a class of multistage 
interconnection networks," IEEE Trans. 
Comput., Vol. C-29, Aug. 1980, pp. 694-702. 

[4] T. Fend, "A survery of interconnection net
works," Computer, Dec. 1981 pp. 12-27. 

[5] W. Lin and C. Wu, "Design of a 2x2 fault
tolerant switching element," Proc. 9th 
Annual Symp. on Computer Architecture, 
1982. 

[6] J. Mick and J. Brick, Bit-slice micro
processor design, McGraw-Hill, Inc. 1980. 

[7] R.M. Metcalfe and D. R. Boggs, "Ethernet
Distributed packet switching for local 
computer networks," CACM, July 1976, 
pp. 395-404. --

33 



COMPARATIVE STUDY OF THE EXPLOITATION OF DIFFERENT LEVELS 
OF PARALLELISM ON DIFFERENT PARALLEL ARCHITECTURES 

R.H. Barlow, D.J. Evans & J. Shanehchi 
Department of Computer Studies 

Loughborough University of Technology 
Loughborough, Leicestershire, 

U.K. 

Abstract 

This paper considers various levels of 
parallelism obtainable from sequential solutions 
for locating the eigenvalues of real symmetric 
tridiagonal matrices based on the bisection 
algorithm coupled with Sturm sequence evaluation. 
Three levels of parallelism are identified and the 
implementation of these three levels on three 
different parallel computer architectures is 
described. The three computer systems are a vector 
processor (the CRAY-l), an array processor (the 
ICL Distributed Array Processor) and an asynchron
ous multiprocessor consisting of 4 minicomputers 
linked through shared memory. Results presented 
confirm the theoretical analysis and show that one 
of the levels of parallelism, based on converting 
a standard linear recurrence relation is of use 
only for locating small numbers of eigenvalues 
using large number of processors. The other two 
levels, when combined, yield an effective 
algorithm for locating any number of eigenvalues 
on all three types of computer. 

O. Introduction 

The application considered here is the 
determination of the eigenvalues of a reai 
symmetric tridiagonal matrix. 

This is an extremely important problem as 
standard sequential eigenvalue solvers first trans
form a real symmetric matrix to tridiagonal form 
by similarity transformations: the eigenvalues of 
the resultant tridiagonal matrix are identical to 
those of the original matrix. 

The original problem of N eigenvalues on 
interval R yields on evaluation of the associated 
Sturm sequences at m interior points of R, up to 
m+l similar problems on smaller intervals. 
Repeated application of the technique isolates the 
eigenvalues onto smaller and smaller intervals 
until eventually the user required minimum size is 
reached. 

Parallelism can be introduced into the problem 
at three levels. Firstly since mUltiple independ
ent subintervals are generated parallelism over 
interval processing can be utilised. This solution 
has been implemented by Barlow and Evans (1978) but 
is inefficient when the number of intervals is 
small. Secondly, parallelism can be exploited 
within the interval by sampling in parallel a 
number of points in the same interval. Barlow et 
al (198la) have reported on the implementation of 
a mixture of these two methods on two different 
parallel computers. Finally parallelism can be 
introduced within the Sturm sequence evaluation. 

0190-3918/82/0000/0034$00.75 @ 1982 IEEE 34 

Thus, the SturnJ sequence is defined by a linear 
recurrence relation and well known methods (see 
for example Kuck, 1978) are available to trans
form this apparently sequential relation into 
parallel form. 

Which level of parallelism is the most 
efficient to exploit depends upon the balance 
between the demand for various parallel resources 
from the different versions of the algorithm, and 
the availability and cost of these resources on a 
given computer system. To analyse this balance 
the paper first specifies the problem and then 
analyses the parallel properties of the three 
potential solutions. Sections 2,3 and 4 then 
report on the implementation of these solutions 
on three different types of parallel computer: an 
array processor (the ICL Distributed Array 
Processor), a vector processor (the CRAY-l) and 
finally an asynchronous multiprocessor based on 
four Texas 990/10 minicomputers linked via shared 
memory. 

1. Problem Specification and Analysis 

The solutions are all based on the classic 
method (Barth et aI, 1967) of counting the 
negative signs of Sturm sequences derived from the 
matrix. Thus given a symmetric tridiagonal 
matrix, of size n, with real eigenvalues lying 
between Amin and Amax then counting the number of 

negative signs of the Sturm sequences at a point 
AC gives the number of eigenvalues lying below AC' 

Since the interval can be sampled at an arbitrary 
number (m) of interior points the interval frag
ments itself into up to m+l smaller intervals 
containing one or more eigenvalues. Application 
of the method to the new set of smaller intervals 
isolates the eigenvalues further and the process 
is repeated until the interval size is less than 
some user specified size. 

Sequential solutions sample each interval at 
only one interior point (the bisection point). 
Parallelism can be introduced at the three levels 
mentioned in the introduction: 

a) Processing some or all of the current set 
of known intervals in parallel: each 
individual interval is processed as in 
the sequential solution. This level of 
parallelism requires the same number of 
samples as the sequential solution but 
has the deficiency of having idle 
processors in' the initial iterations of 
the algorithm when the number of inter
vals is small. The maximum degree of 
parallelism is limited to the number of 
distinct eigenvalues (N) to be located 



b) 

c) 

and thus, assuming no overheads associated 
with controlling parallelism, the 
solution has a potential speedup (S) in 
the range l<S<N. 

Evaluation of many sample points from one 
interval in parallel. This solution can 
exploit an arbitrary number of processors 
but is relatively inefficient. Consider 
an interval containing eigenvalues that 
on being sampled at m (equally spaced) 
interior points fragments itself into 
only one interval that contains all the 
eigenvalues. Thus, multisection has 
reduced the interval size by l/(m+l) 
whereas sequential bisection can reduce 
the accuracy by this amount using only 
~n2(m+l) samples. It follows that the 

potential speedup of this solution lies 
between ~n (m+l) and m: the latter 
reflects tfie fragmentation of a single 
interval into m+l intervals containing 
eigenvalues. 

Parallelism within the evaluation of the 
Sturm sequence for a single point. The 
sequential nonlinear recurrence relation 
is 

for i=2,3, •.. ,n, (1.1) 

where c.=a.-x, with x being the sample 
11th 

point and ai the i diagonal element of 

the tridiagonal matrix: b i is the square 

of the ith diagonal element of the tri
diagonal matrix. The number of negative 
signs of Pi yields the number of eigen-

values below x. Thus evaluation of this 
recurrence relation requires 3n 
operations. 
This relationship can be transformed into 
the parallel recursion relation 

where 

qo = 1, ql = ci ' 

p. 
1 

qi 

qi-l 

(1.2) 

i=2,3, ... ,N, 

This relation involves ~n2(n) sequential 

stages, each stage consisting of between 
n/2 and n parallel subprocesses each of 
complexity 12 operations: thus stage 1 
forms all products S .• S. 1 for j=2, ... ,n, 

J r 
stage 2 combines these results to give all 
products (S .• S. l)·(S. 2· S . 3)' for j=4, 

J J- ]- r 
•.• ,n etc. (Lambiotti, 1975). Since each 

35 

Pi can be :t;econstructed by a s.ingle 

operation the number of eigenvalues below 
x can be computed in l2~n2n+2 parallel 

operations using n processors. Thus the 
speedup of the parallel version over its 
sequential counterpart is -n/(4~n2n). 

Already from this simple examination of the 
schemes it can be seen that for the separation of 
large numbers of eigenvalues (N) the first 
solution offers the best potential. For small 
numbers of eigenvalues this solution has little 
parallel potential and the other two solutions are 
better. Since the first two solutions both apply 
parallelism over the evaluation of Sturm 
sequences of different sample points it is a 
relatively simple task to combine these two 
solutions to yield a single parallel solution with 
a broader range of application than either of its 
two parts. 

A further distinguishing feature between the 
solutions is the amount of synchronisation that 
the solutions require. Synchronisation is 
required in the third solution to ensure that all 
subprocesses of a stage are complete before the 
next stage starts, that is every 12 operations. 
In solutions one and two synchronisation is 
required at most every 3n operations; that is not 
more frequently than once for each Sturm sequence 
evaluation. 

Finally, there is the question of data 
communication. Thus for the first two solutions 
sample points must be provided to the processors 
and the results in some way compared. For the 
third solution equation 1.2 shows that between 
each stage the si must be moved between the 

processors before the next stage can begin. 

The effects of synchronisation and data 
communication will be more fully discussed in the 
following section. 

2. Implementation on an Array Processor 

It is assumed that the array processor 
consists of a single control processor with p 
slave processors all of which execute the same 
instruction on different data. Any required set 
of slaves can be set inactive (masked out) on any 
instruction. The control processor can broadcast 
the same data to all of the slaves or pick out an 
item of data from one of the slaves. Slaves are 
assumed to be linearly interconnected so that all 
slaves in parallel can move an item of data to 
either their left or right-hand neighbour. 
Synchronisation is automatic on these systems. 
The ICL Distributed Array Processor (Flanders et 
aI, 1977) on which the solutions were implemented 
has 4096 slave processors (each of which can 
process one bit at a time). 

can 
some 
here 
1.2. 

Solution three, based on recursive doubling, 
use at most n processors and thus for n < p 
processors in the array are idle. Parallelism 
involves the evaluation of the q. of equation 
This is done by evaluating diff~rent partial 



products of the S. at different processors. Thus 

if a. and b. are ;tored at processor j; then all 
J J 

the S. can be evaluated locally once the sample 
J 

point has been broadcast. Each stage i of the 
. tn (n) stages involves shifting the previous 

2 i-I 
partial products (of S) 2 places along the array 
followed by the combination of the shifted results 
with the previous results. The first i-I of the 
shifted results are filled in with the old results. 
Although the arithmetic operation count is reduced 
significantly from 3n of the sequential scheme to 
l2Rn (n) for this parallel form, the number of 

2 
shift operations at (n-l) is linear in the system 
size. While data communication paths other than 
nearest neighbour are generally available on array 
processors it is clear that the cost of moving 
results will tend to dominate the. processing for 
large n. 

While solution two can use any number of 
processors it is more efficient to combine it with 
solution one so that the maximum speedup potential 
is realised while at the same time utilising all 
the processors. While this may require some 
increase in data communication to allocate sample 
points to processors the results show that this 
overhead is small compared to the cost of evaluat
ing the Sturm sequence. 

Each iteration of the combined method consists 
of allocating a distinct sample point to each of 
the slave processors followed by the independent 
evaluation of the sample function at each of the 
processors. 

Allocation of the new sample points starts by 
detecting the set of non-empty intervals arising 
from the previous iteration. This is done by 
nearest neighbour comparison of the sample point 
results for points interior to an interval. For 
points adjacent to interval boundaries this is done 
by comparing the sample point result with the 
boundary point result carried over from the 
previous iteration. The full treatment of 
boundaries is described by Barlow et aI, 1981, and 
it is sufficient here to note that new intervals 
adjacent to boundaries can be treated in exactly 
the same manner as new internal intervals. At this 
stage intervals containing eigenvalues but lying 
outside a user defined range of interest can also 
be marked as empty. Using parallel add and shift 
operations the intervals are numbered, in monotonic 
increasing order, and their total (N') obtained. 
Using the new multisection factor m=INT{p/N') the 
intention is to move the data of new interval i 
(centre point and because of boundaries its result) 
to the m processors j={i-l)m+l to j=im. This is 
done by either sequentially broadcasting the 
interval data and masking out all but m processors 
each broadcast, or by shifting the data of all the 
intervals in parallel. The latter involves first 
shifting all data leftwards until no interval 
needs be shifted further and then repeating the 
process for right shifts. The efficiency of the 
parallel shift can be grasped by noting that if 
the number of intervals is a constant between 

36 

iterations, then, at.most.m-l right or. left 
shifts are required. In the imple~enta~ion 
dynamic choice between the two opt~ons ~s made. 

Each slave processor independently evaluates 
the sample function for its sample point. This 
Sturm sequence evaluation is identical for all 
points, except for the possible incrementation ~f 
the eigenvalue count: thus the test for a negat~ve 
sign sets a mask that is then used to mask out 
processors for the incrementation operation. 

2.1 Results 

It can be noted that each individual 
processing element of the ICL DAP has an 
arithmetic (logical) power about 100 times less 
(equal) to that of its host. 

Table 1 indicates the power of the combined 
method in locating large numbers of eigenvalues: 
the theoretical results indicate a maximum 
expected speedup of ~Ntn2(1+{4096/N», offset by 
the limited power of the processing elements. 
Table 2 shows that for a matrix of size n=1024 
the parallel recursive method outperforms the 
combined method only when searching for up to two 
eigenvalues. For smaller (larger but n~4096) 
matrices the recursion method performs relatively 
worse (better). Theory predicts that for 
locating one eigenvalue of a matrix this size 
results in speedups of tn2 (4096)=12 and 1024/ 
(4tn 1024)=25 for respect~vely the combined and 
recu~sion methods: in practice the parallel 
versions were 7 and 3 times slower than the host 
computer due to the low power of the processing 
elements. 

The cost of data communication for the 
recursion relation was 15% for the example above 
while for the combined multisection it was 17% 
for N=64 decreasing steadily to 1.5% for N=4096. 

3. Implementation on a Vector Processor 

'Vector processors achieve their power by 
introducing pipe lining into the various computat
ional processes. For our purpose it is sufficient 
to note that the time taken to compute operations 
on vectors of length n is 

T{n) = A + B(n-l), where p=A/B and p»l. 

In practice this simple formulae may only apply up 
to limiting value of n corresponding to some 
vector register size of the computer concerned. 
Scalars are assumed to take the same time to 
process as a unit length vector: that is T(l)=A. 
This is a simplification since on vector 
processes that require complex data alignment net
works to be set in order to process vectors the 
scalar operation time will be significantly less 
than A. Implementations were on the CRAY IS for 
which p ~ 30-50 (Peterson, 1979). 

Consider now the .implementation of solution 
three: recursive doubling. The ordinary 
sequential recursion relation of 3n operations 



requires, 
Ts(n} = 3nA (3.1) 

since no vector processing is possible. The 
parallel recursive doubling solution requires 
~n2(n) stages of 12 operations with between n/2 
and n processes in each stage. In fact approx
imately 9nt n2 (n) ?peratio~s are required. The time 
to execute tfiese ~nstruct~ons on a vector 
processor can be bounded below by making the 
assumption that all these operations can be put 
into a single vector operation: this would result 
in a time of 

(3.2) 

Comparison of these equations shows that recursive 
doubling cannot yield results faster than the 
sequential solution if p<3~n2(n). For the CRAY 1 
this implies that parallel recursion ca~not be 
faster than sequential recursion if n>210 assuming 
p=30. 

This is an interesting limit on all parallel 
algorithms that increase the combined computational 
complexity by a factor ~n2(n} in order to generate 
parallelism of order n. 

Let us now consider a combined solution one 
and two. Imagine that we are searching for only 
one eigenvalue. Then it requires k iterations of 
bisection to reduce the interval size by 2k Since 
only one interval is available the vectors are of 
length 1 and the time taken is 

Tb =k2n(A} (3.3) 

If multisection is now introduced so that m=2j -l 
samples are taken in the single interval then k/j 
iterations are required and the time taken is 

Tm = k/j 2n(A+mB} (3.4) 

since the vectors are of length m. Before we 
proceed to minimise this equation with respect to 
j we can introduce the effect of mUltiple sub
intervals (N) into this last formulae on the 
assumption that sampling produces no more sub
intervals. Thus 3.4 becomes 

Tm = k/j 2n(A+N(2j -l}B} (3.5) 

Minimising this with respect to j one obtains 

A/B = N(2j (j*tn (2}-1}+1) 
e 

(3.6) 

3.1 Results 

Table 1 shows the CRAY 1 time to locate all 
the eigenvalues of some large matrix. The speedup 
comparison is with respect to the optimal 
sequential version (Barth, 1967) which since it 
evaluates only 1 sequential recursion relation at 
a time uses only the scalar functional units of the 
CRAY. 

Table 3 illustrates the improvement that can 
result from using multisection when searching for 
small numbers of eigenvalues. The minimum times 
occur for a value of the multi section factor that 

37 

is in rough ag);'eement with equation 3.6. The times 
of the sequential algorithm are given under the 
multisection factor of zero. For the case of 
locating 1 eigenvalue using bisection (multi
section factor=l) the parallel algorithm has no 
parallelism and carries out exactly the same 
operation as the sequential version. However the 
parallel version uses the vector functional units 
and it can therefore be seen that scalars can be 
processed ~.2~ times as fast as vectors of length 
1. 

Table 2 compares parallel recursion with 
parallel multisection: the latter using multi
section factors determined dynamically in the 
program. Discrepancies between the results of 
Tables 2 and 3 arise from using different 
terminating accuracies. 

4. Implementation on an Asynchronous Multi
Processor 

Asynchronous multiprocessor computer systems 
are composed of processors capable of independent 
operation. On these systems similar operations 
may take different amounts of time to execute. 
Thus termination of one or more operations cannot 
be guaranteed by a hardware clock as in array or 
vector processors. Signalling the termination of 
parallel processes is thus an overhead on such 
systems. Furthermore it involves communicating 
information between the processors which requires 
that the processors must share physical and/or 
logical resources. Limited access constraints to 
shared resources imply the speedup is bounded by 
saturation of shared resources availability (see 
for example Barlow, 1982 or Barlow et aI, 1982). 
Finally, synchronisation requires that on sub
processes of equal complexity faster processors 
must wait on slower ones to finish. 

The system to be considered consists of four 
Texas Instruments 990/10 minicomputers linked 
through shared memory (Barlow, et aI, 1981). The 
cost of synchronising the termination of paths 
is equivalent to 40 integer operations at a 
~n~mum. The synchronisation resource itself can 
only be accessed by one processor at a time and 
since this resource has a cycle time of approxi
mately 20 integer operations the speedup obtain
able is limited by S=(equivalent integer operations 
between access}/20. In addition there is an 
overhead associated with access to the data 
communication system (the shared memory) of 100% 
compared to accesses to local data. The shared 
memory being a shared resource also limits the 
maximum obtainable speedup. A deficiency of the 
current system is that it has no floating .point 
hardware and thus these operations take ~40 
times longer to execute than integer operations. 
To supplement our analysis we include values (in 
brackets) that would result from a floating point 
to integer operation execution time ratio of 5. 

For the solution based on parallelism within 
the Sturm sequence evaluation the cost of 
synchronisation is extremely high as it is 
required once per 12 operations from each 
processor. Thus, the overhead due to synchroni-



sation is 8% (67%) and the limit to speedup due to 
saturation of the synchronisation resource is 24 
(3): and this ignores the extra operations carried 
out in the parallel form of the solution. For small 
numbers of processors and large matrices it is 
possible to reduce the synchronisation by grouping 
subprocesses within a stage together: so that each 
processor takes nIp subprocesses. However it is 
clear that a minimum of ~n2(n) more synchronisa
tions are required than in solutions one and two. 
Furthermore from equations 1.1 and 1.2 it can be 
seen that the expected speedup from this solution 
can be at most 

s = p/(c~n2(n» where 2ti:c~ 

and thus for this system this solution has 
nothing to offer. 

The results of a straightforward parallel 
implementation of a combined solution one and two 
are shown in Table 4. This implementation is 
almost identical with the array processor version 
of Section 2. Thus parallelism over intervals and 
possibly within intervals is exploited. The 
results show that a significant amount of 
processor time is wasted (8%) either by some 
processors completing before others or by an 
imbalance in the number of subprocesses to 
processors (a single multi section factor cannot 
always achieve an equal allocation of work to 
processors). 

Since waiting ar~s~ng from synchronisation 
can be a significant cost on asynchronous systems 
various authors (Kung 1976, Baudet 1977) have re
designed algorithms so that they require no syn
chronisation. The algorithms do however sometimes 
require coordination (mutual exclusion) to ensure 
the integrity of certain program data structures 
shared by the processors: this coordination 
imposes overheads on access and limits to speedup 
for exactly the same reasons as the shared syn
chronisation resource. 

Following these ideas it is of interest to 
develop a form of solutions one and two that 
eliminates the synchronisation that forces fast 
processors to wait on slower ones. For solution 
one (bisection) this is simple since a processor 
sampling at one point of an interval can generate 
new intervals by carrying forward from the 
previous iteration the Sturm sequence results of 
the interval boundaries. The asynchronous 
algorithm can be formulated as: 

a) A list of intervals giving their centre 
point, size, left and right boundary 
number of eigenvalues. 

b) A process that collects the next interval 
from the list, evaluates the Sturm 
sequence at its centre point and then 
adds new smaller intervals to the list. 

Coordination between the processors is then only 
required to ensure one processor at a time access 
to the list. 

38 

Multis,ection (solution two) can be incorpor
ated into this solution by extending the structure 
of the list so that each interval becomes repres
ented by a tree structure. This tree structure is 
headed by the bisection interval information. 
This level (0) and lower levels then point. to 
nodes that represent multisection points: 1/2 at 
levell, 1/4 and 3/3 at level 2 etc., each node 
consisting of a pointer to its parent, space for 
two pointers to children and finally space for 
the result of the Sturm sequence evaluation for 
the point it represents. 

Pointers to nodes are only built when the 
point of that node has been taken to be sampled. 
Processors search the list/tree structure on a 
level by level basis, starting at level 0, so that 
the amount of multisection as opposed to bisection 
is always minimised. After completion of the 
evaluation the result is returned to the relevant 
node. If the node is at level 1 the tree splits 
to represent two new intervals, with each of the 
old level two nodes pointing to one of these 
intervals. Following a splitting operation the 
processor must try to recursively split the newly 
generated intervals since other processors have 
earlier completed sampling level two nodes from 
the old interval. Further details are given in 
Barlow et al (198la). 

Results for this asynchronous solution shown 
in Table 4 indicate some improvement over the 
synchronous solution. However the cost of tree 
pro.cessing is severe (6.8%) and since only one 
processor at a time can access this list there is 
a limit (p=n/16 see Barlow et al 1982) to the 
potential speedup. 

For both synchronous and asynchronous 
solutions the rate of access to shared data is low 
because after having obtained the interval data 
the 2n operations of the Sturm sequence evaluation 
make no reference to shared data. Thus without 
floating point hardware the losses were too small 
to measure: they can be expected to be - 1% for 
matrix sizes of ~ 256 with floating point hardware. 

Conclusion 

The most striking feature of the results is 
the failure of the solution based on parallel 
recursion to yield any significant improvement 
over the sequential recursive solution. Our 
analysis shows that this failure is to be expected 
for large size systems. 

This result has ramifications for all parallel 
solutions that for a system of size n convert the 
original sequential algorithm of complexity cln 
into a parallel algorithm that consists of F(n) 
steps with each step containing n subprocesses of 
complexity c2 • For the resulting solution to run 
faster than ~ts sequential counterpart then the 
number of processors that are utilised must 
satisfy p~c /c )F(n). This is a severe limit
ation for p~ce~ses based on pipe lining as there is 
a limit to the number of stages and thus the 
effective number of processors. 



TABLE 1: ICL OAP and CRAY 1 Timings for Locating all the Eigenvalues 
Using Combined Multisection and Bisection 

** 

*** 

* 

SIZE 

64 
256 

1024 
4096 

ICL OAP 

Time 
Speedup* (sees. ) 

0.24 4 
1.15 12 
6.66 27 

65.15 >46(15)** 

CRAY 1 

Time Speedup*** (sees. ) 

0.028 3.8 
0.27 5.5 
3.14 6.2 

49.26 6.8 

Speedup aaZauZated with respeat to ICL 2980 (the DAP host) 

ICL 2980 version ran out of time (CDC 7600 aomparison in braakets) 

Compared to CRAY sequentiaZ soZution 

TABLE 2: ICL OAP and CRAY 1 Timings for Locating a Small Number of 
Eigenvalues of a Matrix of Size 1024 

No. of ICL OAP CRAY 1 
Eigenvalues Solution Solution Solution Solution 

1+2 3 1+2 3 

1 2.85 sees. 1.1 sees. 0.034 sees. 0.145 sees. 
4 2.85 2.29 0.0485 0.312 

16 2.85 6.8 0.0929 1.128 

TABLE 3: Effect of Varying the Mu1tisection Factor on the CRAY 1 
(Matrix Size 1024) 

Factor(m) Times (in seconds) to locate Eigenvalues 

Eigenvalue 1 2 4 8 16 32 64 

0* 0.034 0.044 0.071 0.129 0.256 - -
1 0.084 0.085 0.085 0.092 0.107 0.147 0.228 
2 0.054 0.055 0.059 0.067 0.091 0.138 0.253 
4 0.038 0.040 0.046 0.060 0.090 0.162 0.316 
8 0.034 0.036 0.046 0.064 0.101 0.208 -

16 0.034 0.037 0.049 0.080 0.134 - -

* SequentiaZ soZution time. 

TABLE 4· Results for an Asynchronous Multiprocessor (N=16 n=256) , 
Speedup with Synchronisation 

Method 2 3 4 Idle Overhead**(inc. 
processors* Time** lockout) 

Synchronous 1.8 2.6 3.4 8% 0.5% 
Asynchronous 2.0 2.9 3.7 - -

* Compared to sequentiaZ biseation on one proaessor 
** For the ease of 4 proeessors 

39 

Tree Processing 
Overhead**(inc. 

lockout) 

-
6.8% 



This conclusion has been previously pointed 
out by Lambiotti (1975). It has led Sameh and 
Brent (1977) and Chen, Kuck and Sameh (1978) to 
develop alternative parallel recursive solutions 
that have less parallelism but are more effective 
with small numbers of processors. These solutions 
are currently being investigated. 

Another interesting point that was discovered 
was that, firstly, inspite of the low potential 
gain on introducing parallel multisection within 
an interval and secondly the increase in processing 
time on the vector processor the method did yield 
improvements even when locating small numbers of 
eigenvalues. The failure of this method for very 
small numbers of eigenvalues on the ICL DAP 
reflects the extremely low processing power of the 
array elements. 

Finally, although the asynchronous solutions 
involving both parallelism within and between 
intervals yielded only a slight improvement over 
its synchronous counter-part the former solution 
can yield significant gains when the speed of the 
processors differ significantly. Thus in the 
synchronous version all processors are slowed down 
to the speed of the slowest processor. 

References 

[1] R.H. Barlow, D.J. Evans, "A Parallel 
Organisation of the Bisection Algorithm", 
Computer Journal, 22, 1978, pp.267-269. 

[2] R.H. Barlow, D.J. Evans, J. Shanehchi, 
"Parallel Multisection Applied to Locating 
Eigenvalues of Symmetric Tridiagonal 
Matrices", to appear in Computer Journal, 
1981a. 

[3] R.H. Barlow, D.J. Evans, I.A. Newman, M.C. 
Woodward, "The NEPTUNE Parallel Processing 
System", Internal Report, Loughborough 
University of Technology, 1981b. 

[4] R.H. Barlow, D.J. Evans, LA. Newman, J .• 
Shanehchi, M.C. Woodward, "Performance 
Analysis of Parallel Algorithms on Asynchron
ous Parallel Computers", Internal Report, 
L.U.T. (1982). 

[5] R.H. Barlow, "Performance Measures for 
Parallel Algorithms", in 'Parallel 
Processing Systems', ed. D.J. Evans, 
(Cambridge University Press), 1982. 

[6] W. Barth, R.S. Martin, J.H. Wilkinson, 
"Calculation of the Eigenvalues of a 
Symmetric Tridiagonal Matrix by the Method 
of Bisection", Numer .Math. 9, 1967, pp. 
386-393. 

[7] S.C. Chen, D.J. Kuck and A.H. Sameh, 
"Practical Parallel Band Triangular System 
Solvers", ACM Transactions on Mathematical 
Software, Vol.4, No.3, 1978, pp.270-277. 

40 

18] P •. M. Flanders .• D.J. Hunt, S.J. Reddaway, 
D. Parkinson, "Efficient High Speed 
Computing with the Distributed Array 
Processor", in 'High Speed Computer and the 
Algorithm Organisation', ed. D.J. Kuck, 
D.H. Lawrie, A.H. Sameh, 1977, Academic 
Press. 

[9] D.J. Kuck, "The Structure of Computers and 
Computations", 1978, Wiley & Son. 

[10] J.J. Lambiotte, Jr., "The Solution of Linear 
Systems of Equations on a Vector Computer", 
Ph.D. Thesis, School of Engineering and 
Applied Science, University of Virginnia, 
1975. 

[11] W.P. Peterson, "Basic Linear Algebra Sub
programs for·CFT Usage", CRAY Research Inc., 
Publication Number 2240208. 

[12] A.H. Sameh, R.P. Brent, "Solving Triangular 
Systems on a Parallel Computer", SIAM J. 
Numer.Anal. Vol.14, No.6, pp.llOl-1113. 



A MESH COLORING METHOD FOR EFFICIENT MIMD 

PROCESSING IN FINITE ELEMENT PROBLEMS 

Ph. Berger, P. Brouaye, J.C. Syre 

Department of Computer Science 
O.N.E.R.A. - C.E.R.T. 

B.P. n° 4025 
31055 - TOULOUSE (FRANCE) 

Abstract -- Solving finite element problems 
on SIMD or MIMD systems raises implementation 
questions due essentially to non conflict free ac
cessing to data structures as they are commonly 
handled in finite element programs. These diffi
culties may be overcome by redesigning algorithms 
and partitioning the mesh into non connected sub
sets. After a graph modelization of the problem, 
the decomposition is related to a graph coloring 
algorithm, yielding the elementary tasks and their 
corresponding data which are allowed to run con
currently in a multiple processor system. The stu
dy is implemented on a general hardware and soft
ware MIMD simulator supporting a high level lan
guage and performance evaluation tools. 

Introduction 

The emergence of multiple processor systems 
raises numerous questions in many fields of compu
ter science : processor-memory organization, data 
allocation, task scheduling, programming languages. 
Other questions are of great concern when one wants 
to write real programs for those new systems. More 
specifically in numerical analysis, we are conduc
ting a study of parallelization in Partial Diffe
rential Equations problems using finite element 
techniques. The environment consists in a high 
performance, MIMD system currently under specifi
cation, where algorithms and data organization 
have to be redesigned to achieve efficiency, since 
speed is based on concurrency and independence ra
ther than on vectorizing or pipelining techniques 
[1][7]. Data access conflicts occurring during the 
algorithmic step of discretization are solved by 
partitioning the whole grid into non connected sub
domains. 

The efficiency of this partitioning method 
over conventional ones is evaluated by utilizing a 
general MIMD simulator currently under development 
in companion teams. The MIMD system can be configu
red by choosing appropriate parameters for the num
ber of CPUs, local memory and secondary memory 
banks, the behavior of two communication networks 
linking CPUs and local memories on one hand, local 
memories and secondary memories on the other hand. 
A simulation language allows the high level expres
sion of tasks, data organization and allocation, 
and the expression of control among tasks which 
will be interpreted by the simulator's supervisor. 
Almost every part of the hardware and software for 
the MIMD system is user-definable, thus many stra
tegies can be rapidly set up and compared. 

0190-3918/82/0000/0041$00.75 © 1982 IEEE 41 

Conflict free data accesses 

in multiprocessor systems 

Finite element algorithms often require a step 
of linearization. During this step, a usually 
large matrix is assembled. Its size equals the 
number of unknowns in the mesh and varies with the 
problem approximation [2], [3], [4]. Once fixed 
the grid geometry, the assembly step yields two 
closely interacting phases, for each element : 

- compute an elementary matrix representing the 
local nodal contribution of an element in the mesh 
to the global matrix (figure 1), 

- accumulate the matrix elements into the global 
matrix supporting the linear system coefficients 
(figure 2). 

Let NE be the number of elements in the mesh, 
C(p) the elementary contribution matrix for element 
p, and A the global matrix. Obviously, C(p) and 
C(q), for any p and q E {1,NE}2 may be computed 
concurrently (phase one). Unfortunately, as seen 
in figure 2, they will eventually alter a same line 
of A during the second phase accumulating their 
terms into A. 

The conventional. step consists in computing 
one C(p), updating A and repeating it until the 
last element. An SIMD or MIMD system (MIMDS) could 
perform phase one in parallel, but updatings would 
have to be sequential, or strongly sequenced to 
avoid access conflicts to A. MIMD systems would 
achieve better performance than SIMD ones for phase 
one, since data are usually accessed through other 
arrays. Indirect addressing is known to be tedious 
for SIMDs, while independent processors (MIMDs) 
should accomodate it naturally. 

However, an MIMDS would be in trouble forpha
se two, since two or more updating tasks running on 
different processors will possibly perform load
add-store operations on identical elements of A. 
Thus a control must be defined in order to avoid 
conflicts. It will sequence the updating tasks such 
that at any time there should not be simultaneous 
operations on a given subset of A. 

The partitioning technique 

To solve this problem, we are searching a partition 
of elements into subsets Si i=l,n, such that: 

S. = {set of elements in the mesh} 
1. 



(3) (3) (3) ~~) ~i) ~~) 
J3 J2 

a .. aij I a ij6 
~~ 

C(3) (3) (3) (3) C(p) a(p) a(p) a(p) a jli a jljl aj Ij6 Jl,k Ja 2h 

(3) (3) (3) a(p) a(p) a(p) a j6i a j6j I a j6j6 hk h2 hh 

For triangle 3 For triangle p 
with nodes (k.£.h) 

FIGURE I contribution matrices. 
(For PI. Type triangulation with one unknown per point) 

A (ith line) 

Then. for the triangles given above 

a .. 
~~ 

(I) 
aij5 

(I) 
a .. 
~~ 

(2) 
+ aij5 

+ a~~) 
~~ 

(3) (4) (5) (6) 
+ a.. + a.. + a.. + a .. 

~~ ~~ ~~ ~~ 

(superscripts denote the triangle number) 

FIGURE 2 Accumulation of contribution matrices into the final linear system. 
(PI triangulation). 

n 
U 

i=1 
Si = domain of integration 

- for any E. element in the mesh. there exists 
one i E [I • n]. E E S i 

- for any i E [I.n]. any couple E 1 • E2 E S~. 
El n E2 = cp. ~ 

For all elements belonging to Si. the set of opera
tions consisting of computing the contribution ma
trices (phase one) and assembling them into A (pha
se two) can be performed fully concurrently. By 
construction of the partition. no conflict occurs 
during phase two which is now mixed with phase one. 
Passing from Si to Si+1 will still be synchronized. 
with the capability of anticipating Si+1 phase one 
during final stages of Si processing. 

The partition is determined by identifying 
each element in the mesh with a node in a graph. 
Two nodes are adjacent if they correspond to a cou
ple of neighbour elements. i.e. El and E2 such that 
El n E2 '" cp • The construction of subsets Si of ele
ments in the mesh is equivalent to the problem of 
coloring the corresponding non planetary graph [5]. 
[6]. 

One way to achieve optimal coloring is to find 
the chromatic number y of graph G. Practically. 
this algorithm would be too much time expensive if 
one wants to include it into the normal processing 
of the global matrix computation. Instead. we used 
another one. derived from Powell and Welsh's theo
rem [8]. Let us denote di the degree (or valency) 

42 

of a point vi in G. i.e. the number of lines inci
dent with vi. sinceG is not oriented. Then the al
gorithm produces a number of colors N ~ Max (di)+I. 

The coloring algorithm can be stated as fol
lows 
- Step I : nodes in the graph are re-ordered accor
ding to their decreasing valency. Let {pil i=I •••• n 
the newly ordered list of elements. Thus PI has the 
larges t valency. Le t j = I • 

- Step 2 : take element Pjl = Pj. and find all ele
me~ts Pjk in the ordered l~st such tha~ Pjk is not 
adJacent to any PjJl,. JI, = I •..•• k-I. Th~s forms 
partition Sj. 

- Step 3 : suppress all elements of Sj from the 
list. If the list is empty. halt the process. other
whise let j be the new first element and iterate 
step 2. 

Fig. 3 shows two applications of the algorithm. 

This basic coloring method is applicable to any 
mesh type and. so far. has been experimented on 
three different regular domain triangulation (P)
type). The results are shown on Table I for diffe
rent grid sizes. 

Additionally. the basic algorithm can be im
proved in two ways : firstly. the difference bet
ween the optimal chromatic number and the number 
of colors can be attenuated. and secondly. the nu~ 
ber of elements for each color can be balanc~d. 

We chose the last solution. thus from a parti-

I· 
I 
I 



. 
IllS 

. 
ISH 

IIOV£ln:: -55 •• [CNIT TW£ -tt.& 

FIGURE 3 

<96 lRI-.£S 

Coloring two meshes (type 2, type 3) 

43 

I-H" 
It--HOI ]--) '7 
4--) n 
5---) •• 
r-) 11 
7--) 17 

'-H" 

1--) &4 
2-) 53 
1---) 51 
4---) .. 
S--) 71 ,--) ,. 
1---) 'S 
B---) &0 r-) , 



MESH TYPE #< Elements y #< colors a 

50 6 7 2.1 
200 6 8 8.17 
800 6 8 13.06 

100 8 8 2.92 
160 8 8 3.35 
400 8 8 5.61 
768 8 8 8.75 

106 8 9. 5.7 
232 8 9 10.3 
496 8 9 19.6 
756 8 9 30.96 

a standard deviation of number of elements 
per color. 

TABLE .1 

tion, C1, set up by the basic algorithm, we now build 
an improved one, C2, by performing the following 
changes: 

Step 1. The subsets of C1 are ordered accor
ding to their decreasing number of elements. Let 
Si i=l, ••• ,n be this list. 

Step 2. Some elements in Sl are shifted into 
Sn when possible. The shifting process halts for Sl 
and Sn when 

Sl has now NE/n elements (balanced number). 
Then step 2 is done with S2 and Sn. 

• Sn has now NE/n elements. Step 2 is done with 
Sl and Sn-1 • 

• No element in Sl can be transferred into Sn, 
and Sn has less than NE/n elements. Step 2 is done 
with S2 and Sn. 

We thus obtain a pseudo-uniform number of ele
ments in each color, close to NE/n. An illustration 
of this optimization gives, for the third mesh type 
in Table 1 whose deviation is rather large, the 
following improvements : 
- for 106 elements 0.7 

for 232 elements 0.7 
- for 496 elements 4.4 
- for 756 elements 8.4 

(instead of 
(instead of 
(instead of 
(instead of 

Simulation and results 

5.7) 
10.3) 
19.6) 
30.96). 

Our work, oriented to parallel numerical me
thods, is part of a joint study of multiprocessor 
systems at ONERA-CERT. Other people in our group 
developped a simulator of general MIMD architectu
res. Before giving a comparison of performance bet
ween several assembling methods, it may be helpful 
to define the overall characteristics of the simu
lator. 

The class of MIMD systems simulated corres
ponds to figure 4 

Supervisor 

Task 

Sequencing 

n interconnexion 
network 

Secondary Memory 
modules 

Migration 
processors 

Local memory 
modules 

Elementary 
Processors 

FIGURE 4 MIMD architectures 

Data and code are initially located in Secon
dary Memory modules. A Migration Processor can 
access an SM module via an Omega-type asynchronous 
network, to build up data or code blocks and trans
fer them between SMs and LMs (Local Memory module~. 
Each Local Memory is attached to one MP and one 
Elementary Processor (EP). 

A program is made of a collection of tasks 
specified by their actual input/output data on one 
side, and their algorithmic part on the other side. 
Migration Processors execute the in/out part of a 
task, while Elementary Processors execute the algo
rithmic part and can be considered as conventional 
pipelined machines. 

Task sequencing is expressed in a parallel 
language describing concurrency and synchronization 
by a set of independent, non sequential formulas. 
The supervisor interprets formulas, decides which 
ones are firable and executes actions corresponding 
to activable tasks. It sends control signals to MPs 
for data management and to EPs for code execution. 
Although the simulator is fully parametrized, the 
results given further are obtained from the follo
wing specifications : 
- SMs : Random access memories, cycle time 300 ns, 
- Omega Network : Routing time 100 ns, percentage 

of conflicts 30/100, 
- MPs Machine cycle time 300 ns, 
- LMs 128 K 64 bit word RAMs, cycle time 100 ns, 
- PEs cycle time 200 ns (5 Mflops), 
- k will range from 1 to 16, giving a peak rate of 

80 Mflops. 

We are now considering an application, taken 
from aerodynamics or structural analysis problems. 
A two-dimensional mesh is composed of 25600 trian
gular elements (and 19200 points). A single unknown 
in each point leads to four non zero coefficients 
in one line in the upper semi band of the final ma
trix (assuming it symmetric). This matrix is imple
mented as a sparse structure, where only non zero 
terms are stored, with a privileged access to lines. 
The elementary contribution matrices have six rele
vant coefficients. The geometry, i.e. the coordina
tes of nodes, is duplicated and included into the 
connectivity matrix which gives the correlation 



between the double numbering of elements and the 
nodes in the mesh. The execution time for one con
tribution is evaluated to 25 microseconds. We can 
now compare several assembling methods. 

First method: 

use sequential algorithm 

One processor is used. Its 1M is loaded with 
800 lines of matrix A and local data for 200 con
tribution matrices. The EP iteratively computes one 
contribution and assembles it into A. The 800 lines 
of A are re-written into SM and another bulk of da
ta is loaded again. There are 128 such iterations, 
leading to the results in Table 2. 

# EPs 

Exec. time 
(in seconds) 
Percentage 
MP usage 
Percentage 
EP usage 

M Flops 

I 

5.2 

20 

80 

4 

TABLE 2 : 

Simulation results 
(Sequential algorithm) 

Second method 

Parallelize computation of contributions 

The set of all contribution matrices is now a 
data structure by itself, and lies in SM. We can 
split the first step of computation into parallel 
tasks performing a subset of elementary matrices. 
The second step of assembling them into A is still 
sequential. Table 3 summarizes simulation results: 

# EPs I 

Exec 5,2 time (s) 

Percentage 21 MP usage 

Percentage 79 EP usage 

M Flops 4 

TABLE 3 

2 4 8 16 

3,2 2,2 1,7 1,5 

17 13 8 5 

65 47 30 18 

6,4 9,3 12 13,9 

Simulation Results 
(parallelize contributions) 

This method shows a little amount of paralle
lism in the first part of the program, however per
formance is not considerably improved when the 
number of processors is increased. 

Third method: 

Adding buffers for concurrency 

We keep the usual numbering of elements, and 
still distinguish the computation of contributions 
and their assembly into A. The first step can be 
considered as a producer process, while the second 

45 

will consume contribution matrices. The mesh is now 
divided into 2~ subsets {Li} i=I, ••• ,2~. We can 
exploit the following concurrency : while elemen
tary matrices in subset L2j j=I, .•• ,~ (respecti
vely L2j-l) are computed and stored into a buffer 
BUFI (respectively BUF2), those already computed 
in buffer BUF2 (respectively BUFI) can be assembled 
into A, corresponding to subset L2j-1 (respective
ly L2j-2)' Thus two levels of parallelism appear 
here : 
- between computation and assembling, 
- within computations. 

This version of the algorithm is a representa
tive trade-off of parallelization without dramatic 
algorithmic changes from the initial method. Simu
lation results are given below in Table 4. 

As can be seen, introducing buffers does not 
improve performance quite significantly. This is 
due to several factors : 

- the management of buffers, which is explicitely 
expressed by the programmer, is time expensive and 
increases the overhead in the supervisor. 

- the consuming process, assembling the elementary 
matrices, is slow and is in fact dominant in the 
total execution time. Adding more buffers is there
fore needless. 

# EPs (k) I 2 4 8 16 

Exec time 5.3 3 2 1.6 1.3 (seconds) 

Percentage 21 19 15 9 6 MP usage 

Percentage 79 70 54 34 20 EP usage 

M Flops 3.9 7 10.7 13.4 16 

TABLE 4 Adding buffers for concurrency 

Fourth Method: 

Use of coloring algorithm 

The mesh is now divided into eight colors with 
3200 elements in each subset. The coloring phase 
is a pre-processing step which prepares the compu
tations of elementary matrices and their assembling. 
Note that this step is not part of the normal pro
cessing, hence it is not included into the simula
tion times. The overhead induced by the preproces
sing is expected to be small, and may be minimized 
by parallelizing the coloring algorithm itself. 

The producer/consumer mechanism is maintained, 
however we now exploit an additional level of paral
lelism, since the assembling phase is made fully 
parallel for all elementary matrices belonging to 
the same partition. Table 5 gives the simulation 
results. 



# EPs (k) 1 2 4 8 16 

T.otal 5.2 2.5 1.2 0.65 0.35 time (sec.) 

Percentage 29 29 30 29 26 MP usage 

Percentage 75 77 81 76 71 EP usage 

M Flops 3.8 7.8 16.2 30.2 56.7 

TABLE 5 : Use of coloring algorithm 

Finally, the following diagram shows the per
formance of the different methods. Needless to say, 
the coloring one exhibits a notable gain over the 
others. 

Exec time (s) 

6 sequential algorithm 

3 

2 contributions 
are parallelized 

2 4 8 16 # EPs 

FIGURE 5 Relative performance 
of assembling algorithms 

Conclusion 

As far as parallelization of finite element 
problems is concerned, various possibilities can 
be considered on multiprocessor systems. It must 
be pointed out that applying a given method to a 
given physi~al problem introduces peculiarities 
which can improve the initial algorithm resolving 
the partial differential equations. However, almost 
all methods, in aerodynamics as well as in struc
tural analysis, resort to some common features 
useful to be dealt with: 

- the discretization of the integration domain 
is complex and irregular enough to lead the desi-

gner to describe his geometry with a connectivity 
matrix, 

- the initial step in those methods consists in 
computing some data local to elements, and projec
ting them onto a global data structure representing 
the state of physical system, 

- when this assembling step leads to a matrix
type data structure, the next thing to do is a ma
trix inversion. Problems arise for this job, since 
that matrix is very large, very sparse with non 
zero terms more or less concentrated around main 
diagonal, giving a sparse or profile implementation. 

The simulation of the first phase let us hope 
that high pe~formance could be achieved on a multi
processor system. As for the second one, if one 
uses the current widely used methods for direct in
version (like Gauss, Choleski), simulations did 
not yet reach sufficiently interesting rates to 
show that these methods are acceptable with minor 
changes. Thus new directions have to be discovered. 
The development of our simulator will allow us to 
interpret more intricated synchronization graphs of 
tasks, corresponding to new methods well adapted 

46 

to MIMD machines. 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

References 

Ph. Berger, D. Comte, A. Maldonado, J.C. Syre, 
Etude et conception d'un systeme informatique 
specialise, DERI, ONERA-CERT, technical report 
n" 1/3147 (january, 1981) 

T.J. Chung, Finite element analysis in fluid 
dynamics, Mc Graw Hill (1978) 

A.J. Davies, The finite element method: a 
first approach, Clarendon Press, Oxford (1980) 

E. Hinton, D.R.J. Owen, Finite element pro
gramming, Academic Press, London (1977) 

B. Roy, Algebre moderne et theorie des gra
phes, Ed. Dunod (1969) 

F. Harary, Graph Theory, Ed. Addison Wesley, 
(J 969) 

[7] A. Maldonado, Etude et evaluation d'architec
tures multiprocesseurs de type MIMD, ENSAE, 
Ph. D. Thesis (december, 1981) 

[8] D.J.A. Welsh, M.B. Powell, "An upper bound 
for the chromatic number of a graph and its 
application to time tabling problems", Compu
ter Journal 10 (1967), pp. 85-87 

[9] Ph. Berger, Algorithmes et methodes numeri
ques paralleles pour multiprocesseurs MIMD, 
Department of Computer Science, ONERA-CERT, 
Technical report number 4/3168, (December, 
1981 ) 

This work was supported by DRET Grant number 
82/1056/DRET/DS/CR. 



AN EFFICIENT PARALLEL BLOCK 
CONJUGATE GRADIENT METHOD FOR LINEAR EQUATIONS 

J. S. Kowalik 
Department of Computer Science 

Washington State University 
Pullman, Washington 99164-1222 

and 

S. P. Kumar 
Department of Mathematics and Computer Science 

University of Miami 
Coral Gables, Florida 33124 

Abstract -- The block conjugate gradientmeth
od for linear equations is implemented to run on 
an MIMD parallel computer. The speedup of the 
parallel version of the method is approximately 
equal to the number of processors used, thus the 
method is well suited to run on a multiprocessor 
computer. Experiments have been performed on the 
Heterogeneous Element Processor manufactured by 
Denelcor, Inc. to validate the analysis and the 
code. 

1. Introduction 

"Plato taught that we do not learn new things; 
we merely remember things we have forgotten. For 
parallel processing, Plato's point is well taken" 
[7]. Indeed, the ideas of parallel computation 
have been around for a long time, but only recent
ly have we begun to design efficient parallel al
gorithms, write executable codes and experiment 
with real parallel machines. 

The subject of this paper is a block conju
gate gradient (BCG) method for solving linear 
equations on an MIMD (multiple-instruction multi
ple-data) parallel computer. Originally, the 
method was developed for sequential computing by 
Jennings and Malik [2], who tested it and found 
that it was more efficient than the standard con
jugate gradient algorithm. The reader interested 
in the method's numerical performance and its 
comparison with other iterative methods should 
consult Jennings and Malik. The block conjugate 
gradient algorithm attracted our attention be
cause of its structure which naturally lends it
self to parallel implementation on MIMD process
ors. To test numerically the parallel block con
jugate gradient (PBCG) method we have used the 
HEP (Heterogeneous Element Processor) computer 
manufactured by Denelcor, Inc. [5]. This computer 
represents a departure from traditional computer 
architecture in that it supports multiple instruc
tion streams (subroutines) executing cooperatively 
and in parallel to solve a single problem. An 
important feature of the computer is that these 
concurrent streams of instructions need not be 
identical. Moreover, there are means to syn
chronize the solution process, i.e., enforce tem
poral precedence constraints which are imposed by 
the nature of impl emented al gorithms. An extended 
Fortran language allows us to create concurrent 

0190-3918/82/0000/0047$00.75 © 1982 IEEE 47 

subroutines and synchronize execution of themeth
od. From the user viewpoint the HEP processor we 
used can be regarded as a collection of 1~p~9 
independent processors connected to a common main 
memory. 

Let us now consider a set of linear equations, 

A:f, = II ( 1 ) 

where A is an nxn positive definite matrix, and 
:6 and II are vectors of the variables and right
hand sides, respectively. The standard conjugate 
gradient algorithm for solving (1) is as follows: 
Initial step. 

Set k = 0 
EO = rO = b - Axo 

where xO is an initial approximation to the solu
tion, usually taken to be null. 
Iterative steps. 

(i) l = Ark 

k T k 
( .. ) k (r)r lla=- -

(pk)Tuk 

(i i i ) 

(i v) 

- -
k+1 k + k k 

.lS = 25 a .e 
k+1 k k k r =r -au - - -

(v) Test convergence, and stop or continue. 

(l+1)Trk+1 

Crk)Trk 

( .. ) k+1 k+1 + ok k 
V11 £ = ~ ~ £ 

(viii) Set k:=k+1 and return to (i). 

A suitab~e convergence criterion is II rkll/lll>IIH 
where E 1S a small number. 

To develop a block conjugate gradient version of 
this algorithm we assume that the variables x are 
divided into subvectors x., xT = (xT1,xT2, ... ,;T) 

-1 - - - -m 
and equation (1) is subdivided accordingly, 



= 

~m 

~1 

~2 

b 
~m 

(2) 

The diagonal submatrices are positive definite and 
their Choleski factors are denoted by Lii • 

Let L denote a lower triangular block diag
onal matrix such that 

o 
L 

o 

Introducing a new set of variables 
t = LT~ (3) 

we obtain from (1) 
AL-Tz = b 

and multiPlyin; both sides of this equation byL-1 
we get 

or 

B~ = ~ (4) 

where 
(5) 

and 

The block conjugate gradient method is the stan·
dard conjugate gradient method applied to equation 
(4) . 

Since 
I C12 

B = L- 1AL-T = C21I. 

where 
-1 -T 

Cij = LiiAi/jj' 

the expression uk = Apk yields subvector expres-
sions of the form -

k k -1(~ -Tk) u. = p. + L.. ~ A •• L •• p .• 
~1 -1 11 jfi 1J JJ-J 

The vectors u~ can be calculated in three steps: 
~1 

48 

(a) 

(b) 

k k k 
(c) Mi = £i + ~i' 

These three steps replace the calculation l = Aek 
in the standard conjugate gradient method. Also, 
step (iii) is replaced by 

k+1 k + k k 
~ = ~ a p . 

The original variables ~ are calculated using 
transformation equations (3). 

Now we can state the block conjugate gradient 
method in terms of the vectors h' e, r, g, ~, ~. 
and M which are subdivided in the same way as ~. 

The block conjugate gradient method. 

Initial step. 

Calculate Lii such that 
_ T 

1. Aii - LiiLii' i = 1,2, ... ,m 

and solve for ~i' 

2. Lii~i = Ei' 
Set 

k = 0 

hO = 0 

r/ .. r.0 = ~. 

Iterative steps. 

1,2, ... ,m. 

Perform the following sequence of calculations 
T k k 

3. Ljj!:!j=Pj' 1,2, ... ,m 

4. L .. v~ = l;A .. w~, 
11~1 jfi 1J~J 

1,2, •.. ,m 

5 . k k k 
.Yi = £i + ~i' 1,2, ... ,m 

6. 
k(rk) T rk a = ~ ~ 

(pk)Tuk ' - -
7. k+l k k k 

~i = ~i + aPi' 1,2, ... ,m 

8. k+1 k k k 
ri = ri - aMi' 1,2, ... ,m 

9. 13k = 
(l+1)Trk+1 

(rk)Trk 

10. If convergence is achieved then go to 12, 
otherwise continue. Our convergence test is 
II rk+1" 

Ilg II ~ E, where E is a suitable accuracy. 



11. p~+1 = r~+1 + ~kn~ 
~l -1 ~l 

1,2, ... ,m. 

Set k:=k+l and go to 3. 

Finishing step. 
Solve for ~i 

12. 1,2, ... ,m 

and stop. 
The BCG method exhibits a remarkable degree of 
parallelism. Note that steps 1, 2, 3, 4, 5, 7, 
8, 11 and 12 decompose naturally and can be com
puted concurrently by m processors. Steps 6, 9 
and 10 can be implemented in a parallel fashion 
but they constitute a very small portion of the 
entire computational effort and have been imple
mented in our program on one processor. 

2. The Parallel Algorithm. 

For the purpose of our further analysis we make 
the following simplifying assumptions: 

a. nlm is integer and each block in the 
partition of A is of the same size 
n/m. 

b. every multiplication or additive 
arithmetic operation constitutes 
one computational step and all 
steps are equal in time length. 

c. all processors are identical. 
d. the matrix A is fully dense. 
e. the number of partitions m, and 

the number of used processors p 
are equal, p = m. 

The first assumption is simplifying but not es
sential. If nlm is not an integer then we assume 
that some submatrices Aii are of the size Ln/mJ 
and the remaining diagonal submatrices are of the 
size Ln/mJ+ 1. The second and third assumptions 
are correct for the HEP processor. Sparsity is 
not considered in this paper. However, the pre
sented PBCG method can be used to solve equations 
with sparse matrices and would run efficiently on 
mul ti processor computers for some cl asses of struc
tured matrices, e.g., banded matrices. 

The last assumption is not restrictive since 
the number of processors p is usually given a 
priori, and we can always use the number of parti
tions m = p. 

To design a parallel version of BCG, we break 
the BCG algorithm into a set of computational 
tasks, denoted by T. A task is a collection of 
computational activities (operations) and our con
currently running subroutines will consist of se
q uences of tas ks. The tas ks of the BCG method are 
shown in Figures 1 and 2 which present this method 
as a pseudocode. Table 1 gives the operation 
count for each task. 

49 

PROGRAM BCG (input:A,Q, output:~) 
(1) INITIALIZATION 

for i = 1 to m do 

I CHODEC (i nput: Ai i' output: Lii ) I } 
for i = 1 to m do T~ 

I Sol ve I ' 
. Lii.9i = .Il i " 

~(O) = 0 

p(O) = r(O) = d 

k = 0 

(2) FIND ~ using BCG iteration. 
~~-~~~~~~~----~ I CALL BCG(L,Q,~) IIT2* 

(3) SOLVE the lower triangular systems 
LT.x. = z. by back substitution 

11-1 -1 

for i = 1 to m do 
Solve 

FIGURE 1. 

PROCEDURE BCG (input:L,~,E, output:~) 

loop 
(a) for i = 

I solve 

1 to m do 
T k k L .. w. = p. 
11-1 -1 

(b) for i 1 to m do 
k _ l: k 

solve LiiYi - jriAij~j 

.Yi 
k k 

= Ei + ~i 

k k res i = (r. , r.) 
-1 -1 

k k pUi = (E. , u. ) 
1 -1 

(c) m 
suml = ~lresi 

m 
sum2 = i~lPui 

ak = suml/sum2 
(d) for i = 1 to m do 

k+l k k k 
ti = ~i + a ~i 

r~+l = r~ - aku~ 
-1 -1 -1 

res. = (r~+l r~+l) 
1 - 1 '- 1 

T~b 
1 

T2c 



m 
(e) sum2 = i~lresi 

13k = sum2/sum1 
Convergence test. Exit or 
continue. 

(f) for i = 1 to m do 

I n~+l = r~+l + Bkp~ T?f 
. ~1 -1 -1 1 

(g) k:=k+1, go to loop. 

FIGURE 2. 

TASK OPERATION COUNT 

T~ 
1 

n3/3m3 + 3/2n2/m2 + O(n/m) 

T~a 
1 

n2/m2 

T~b 
1 

2n2/m - n2/m2 + 4n/m-2 

T2c 2m - 1 

T~d 
1 

6n/m - 1 

T2e m 

T~f 
1 

2n/m 

T~ 
1 

n2/m2 

TABLE 1. 

Furthermore, we need to identify the time pre
cedence constraints relating execution of the tasks. 
With each new task T there are associ ated two, pos
sib ly overl appi ng, ordered sets of memory ce 11 s, the 
domain DT and range Rr When the task T is initiated 
it reads the values stored in its domain and writes 
values"into its range cells. We say that two tasks, 
T and Tare noninterfering if either: " 

(i) T is a predecessor or successor of T, or 
( i i ) RT", Rr = RTt"'\ or = DT('\ Rr = III (empty). 

The pair of set of computational tasks and the 
partial order representing time precedence con
straints is called a task system and can be con
veniently represented by a directed, acycl ic graph, 
without redundant (transitive) arcs. The task sys
tem of mutually noninterfering tasks of the PBCG 
method, for m = 3, is shown in Figure 3 as the graph 
G. Note that if we execute various tasks T of G 
in parallel but follow the precedence constraints 
(execution of each task T commences only after'all 
immediate predecessor tasks of T are completed) 
then the intermediate and final results of the 
computation will be exactly the same as the results 
of the sequential program. 

50 

Go 
back 
to 

FIGURE 3. Task execution precedence 
graph G for m = 3. 

Since we assumed that the number of processors 
and partitions are the same we can easily schedule 
the task execution. Figure 4 shows a schedule for 
m = 3. The shaded areas indicate idle periods 
for processors. 

Processor 1 T1 
1 T2a 

1 
T2b 
1 

Processor 2 T1 
2 T2a 

2 
T2b 

2 

Processor 3 T1 
3 T2a 

3 
T2b 
3 

FIGURE 4. Task schedule for m = 3. 

Giving weights to the nodes of the graph G 
according to Table 1 we obtain a weighted graph 
whi ch has m maximum 1 ength paths from START to STOP. 
One of them is, for instance, START,TI~ITR-1)-times 

( 2a 2b 2c 2d 2e 2f) 2a 2b the path T1 ,T1 ,T ,T1 ,T ,TEST,T1 ,T1 ,T1 ' 



T2c , Tid, T2e , TEST, Ti ,STOP. The wei ghts of the nodes 

START and STOP are zeros. The weight of the TEST 
task depends on the selected convergence criterion 
and is not included in our operation count. 

The sum of weights along this path, which is 
the maximum path length in the weighted graph, is: 

tm=n3/3m3+~n2/m2+ITR(2n2/m+12n/m)-2n/m+ITR(3m-4) 

The toal number of steps required by the BCG 
method is: 

t1 = m(n3/3m3+~n2/m2+ITR(2n2/m+12n/m)-2n/m)-ITR 

where ITR is the number of used iterations. t1 is 
the length of execution time for BCG on a uniprocessor, 
measured in steps. Thus the speedup of the parallel 
algorithm for the chosen schedul e with m processors 
is: 

t1 m(n3/3m3~2/m2+ITR(2n2/m+12n/m)-2n/m-iTR 
S - • 
m tm n3/3m3~2/m2+ITR(2n2/m+12n/m)-2n/m+ITR(3m-4) 

Assuming that: (i) we solve sufficiently large 
systems, (ii) n > m, and (iii) ITR «n, the value 
of Sm is very close to m, which is the maximal 
speedup achievable under ideal conditions. In 
reality, there is some loss of speedup due to the 
overhead in the parallel computing process. We 
have to create parallel subroutines, andsynchro
nize their progress. Additional time may be needed 
for data transfer and potential memory contention. 
Also we have taken into account the arithmetic work 
but ignored other instructions, such as do-loop 
controls. 

Kumar [3J estimated that the time required to 
create and synchronize parallel subprograms in the 
PBCG method is: 

t~ = 2m(7 ITR + 2) - 10 ITR. 

Thus the total execution time for the PBCG method 
is at least 

and the corresponding speedup is at most 

t 
S = ~ (6) 
m " tm 

3. Numerical Results. 

To test the PBCG method the following two types 
of problems have been solved: 

a. randomly generated positive definite 
systems. The matrices A and the vec
tors 1$ have been generated randomly and 
then A has been made di agona lly domi
nant. The right-hand side vector b 
has been calculated from E = A~. -

b. using the five-paint-star finite dif
ference formula an elliptic boundary 

51 

value problem has been converted to 
the problem of solving linear equa
tions [lJ. The problem is: 

v2u - 2u = g(x,y) inside a unit square 
R, 0 5'; x 5'; 1, 0 5'; y 5'; 1, and u = 0 on 
boundary of R, 

where 
g(x,y) = x2+y2-x-y-xy(xy-x-y+1). 

The problem has the solution 

u = 1/2xy(x-1)(y-1). 

The matrix for the second problem is highly sparse 
for large n, but our code does not take advantage 
of sparsity in storing or manipulating the elements 
of A. 

A sample of our computational results for several 
values of nand m is shown in Tables 2 and 3. To 
predict speedup we used equation (6). The actual 
execution times t~ (one processor) and t~ (m pro
cessors) are in seconds of the HEP computer. 

n m t A t A Sm 
1 m Predicted Actual 

10 2 0.0367 0.0196 1. 9822 1.8724 
2 0.1157 0.0581 1. 9961 1. 9914 

24 
6 0.1426 0.0281 5.7833 5.0747 
4 0.2328 0.0607 3.9734 3.8353 

36 
6 0.2504 0.0460 5.8952 5.4435 
4 0.3718 0.0947 3.9845 3.9261 

48 
8 0.3331 0.0466 7.8447 7.1481 
4 0.4409 0.1128 3.9910 3.9085 

64 
8 0.4777 0.0635 7.9091 7.5228 

Table 2. Random matrix. 

n m t A t A Sm 
1 m Predicted Actual 

2 0.0366 0.0189 1. 9923 1.9365 
16 

4 0.0542 0.0157 3.8877 3.4522 
25 5 0.1505 0.0335 4.8888 4.4925 
36 6 0.3099 0.0562 5.8945 5.5142 
64 8 1.0508 0.1387 7.9083 7.5761 

Table 3. Boundary value problem. 

4. Conclusions. 

The computational results support our expecta
tion that the PBCG method is very efficient. The 
efficiency of a parallel method can be measured by 
the value of 

E =~ 5'; 1 m m (7) 



and the efficiency of the PBCG is close to the opt
imal value Em = 1. The idle periods for m - 1 
processors are very short as compared with t~e tota 1 
execution time. This compares favorably w1th per
formance of the parallel LU decomposition and Givens 
transformation methods for linear equations [4]. 

In our implementation the PBCGmethod is bimodal, 
i.e., either all processors are busy or only one. 
Of course, it is possibl~ to use more processor~ 
for the computation of a k and ak but the result1n~ 
overhead could eliminate potential advantages. B1-
moda 1 methods have been cons i dered by Ware [6] and 
Worlton [7] who have pointed out that even a small 
amount of sequential processing ca~ significa~tly 
reduce the effectiveness of a mult1processor 1f 
the number of processors p is large. Assume, for 
instance, the p = 100 and ?nly s = 1/100 ?f the 
entire computational work 1S done sequen~lally on 
one processor. The ideal speedup of 100 1 S reduced 
to 

5100 = 1 = 50.25. (8) 
s + (1-s)/p 

On the other hand for p = 10 we have only a small 
loss since 

S10 = 9.17. (9) 

Hence if the execution units of the multipro
cessor with p = 10 are ten times faster than the 
execution units of the multiprocessor with p = 100 
we have t10 = 1/2t100 •. This le~ Wo~lton to the 
conclusion that there 1S less r1sk 1n the use of 
muitiprocessors having a small number ?f fast pro
cessors than there is in the use of mult1processors 
having a large number of slow process?rs. Our 
experimentation with the PBCG method 1S an example 
illustrating the point. 

52 

5. Acknowledgements. 

The authors would like to thank Denelcor, Inc. 
for making available to them the HEP computer and 
for the research grant; We also thank the reviewers 
for their helpful suggestions. 

[lJ 

[2] 

[3] 

[4] 

[5] 

6. References. 

W. Cheney, and D. Kincaid, Numerical M~th~
matics andcom~uting, Brooks/Cole Publ1sh1ng 
Company, (1980 • 

A. Jennings, and G. M. Malik, "The Solution 
of Sparse Linear Equations by the Conjugate 
Gradient Method," Numerical Methods in Engi
neering (12, 1978), pp. 141-158. 

S. P. Kumar, Parallel Algorithms for Solving 
Linear SystemsonMIMDTypeComputer, Depart
ment of Computer Science, Washington State 
University, (1981). 

R. E. Lord, J. S. Kowalik, and S. P. Kumar, 
"Solving Linear Algebraic Equations on an 
MIMD Computer," to appear in the Journal of 
ACM (1982). 

B. J. Smith, Architecture and Applications 
of the HEPMultiprocessorComputerSystem, 
proceedings of the 1981 ~ociety.for ~hoto
graphic and Instrumentat10n Eng1neer1ng, 
(August, 1981). 

[6] W. H. Ware, "The Ultimate Computer," IEEE 
Spectrum, (March, 1972) pp. 84-91. 

[7] J. Worlton, "Supercomputers - the Philosophy 
Behind the Machines," Computerworld, (Novem
ber, 1981), In Depth pp. 1-14. 

I 



A MlJLTI-COLOR SOR MEmOD FOR PARALLIL COMPUTATION 

L. Adams and J. Ortega 
Department of Applied Mathematios and Computer Soienoe 

University of Virginia 
Charlottesville. Virginia 22901 

Abstract* 

This paper conSiders a generalization of 
the classical red/black ordering of grid points 
for finite difference or finite element discret
izations of elliptic partial differential equa
tions. These ''mul ti-color" orderings are sham 
to be effective in the implementation of the SOR 
iteration method on vector or parallel comput
ers. Examples are given of various orderings 
for different discretizations and implementation 
on the CDC Cyber 2031205 and the Finite Element 
Machine is discussed. 

Introduction 

We are concerned in this paper with the 
solution of a sparse nxn linear system of equa
tions 

( 1.1) 

by iterative methods, especially SOR type 
methods, on parallel arrays or vector computers. 
As opposed to the Jacobi iteration, which has 
rather ideal properties for parallel computa
tion, the SOR method is essentially a sequential 
method. However, several authors (e. g. Hayes 
[1974], Lambiotte [1975]) have observed that if 
(1.1) arises from a five-point finite difference 
discretization of POisson's equation and the 
equations are ordered according to the classical 
Red/Black partitioning of the grid points then 
an SOR sweep m~ be carried out, in essence, by 
bio Jacobi sweeps, one on the equations 
corresponding to the red points and one for the 
equations corresponding to the black points. 
Thus, in this case, the SOR method can be effec
tively implemented on vector or parallel comput
ers. 

This strategy does not work, however, for 
higher order finite difference or finite element 
discr~tizations or for more general elliptiC 
equations which contain mixed partial derivative 
term~. In these cases, it is necessary to gen
eral1ze the Red/Black partitioning of the grid 
points to a "mul ti-color" parti tioning; for 
example, a three color partitioning, say 
Red/Black/Green, might ~ve the desired result. 
In general, the mmber of colors necessary will 
depend on the connectivity pattern of the grid 
points. If p colors are used, an SOR sweep can 
be implemented by p Jacobi sweeps, one for each 
set 01 equations associated with a given color. 

*This research was sponsored by the National 
Aeronautics and Space Administration under grant 
mmber NAG1-46. The work of the second author 
was partially supported under NASA grant nunber 
NAG1-16394 while he was in residence at ICASE. 

0190-3918/82/0000/0053$00.75 © 1982 IEEE 53 

For vector computers, this reduces the effective 
vector length to O(n/p) while for parallel 
arr~s it is necessary that each procesSor hold 
a multiple of p equations. This mul tiple will 
be determined by the particular discretization. 
Clearly, there will be a point of diminishing 
returns as p increases but for most differential 
equations and discretizations of interest it 
seems that no more than 6 colors will suffice 
and for the size of n we have in mind (n" 
10,000 + ), the multi-color strategy can be very 
effective. 

We note that multi-color orderings for SOR 
have been used before (see Young [1971]) but, to 
the best of our knowledge, have not been used in 
the context 01" parallel computation. 

In the next sectiOn, we describe the method 
in more detail and in Section 3 we discuss some 
01' the implementation questions for both vector 
computers and parallel arr~s. We do not 
address the many other problems in the success
ful use of the SOR iteratiOn, especially the 
problem of determining an optimun relaxation 
parameter. 

~-~ Orderings 

For concreteness, we consider first an 
elliptic equation of the form 

uxx + auxy + ~y : f (2.1) 

on the unit square with Dirichlet boundary con
ditions where a is a given constant and f is a 
given function of x and y. We discretize (2.1) 
with the usual second-order finite difference 
approximations (see, e. g., Forsythe and Wasow 
[1900]) which give the difference equations 

ui+1 J.+ui-1 J.+ui J'+1+ui j_1-4ui .+~[u. 1 . 1 , , , , J2" 1+ ,J+ (2.2) 

-Ui _1,j+1+ui_1,j_1-ui+1,j_1] : ~ f ij 

where h is the spacing bebieen grid point~ 
i,j:1 •• N where h(Nt1):1, u .. denotes the approx
imate ~olution at the i,~th grid pOint, and 
~ i,i:f( 1h, jh). Now partition the grid points by 
me Red/Black scheme, as indicated by Figure 1, 
and then nunber the grid points in each class 
fran left to right, bottom to top. 

R B R B 

B R B R 

R B R B 

B R B R 
Figure 1. Red/Black Ordering 



If a=O, so that (2.1) is just POisson's equa
tion, then it is well-kna.ln (see e.g. Young 
[19711) that the difference equations (2.2) may 
be written in the partitioned matrix form 

(2.3) 

where D is a diagonal matrix and.Y and.Yb 
denote the vectors of unkna.lns assocfated witfi 
the red and black grid points respectively. The 
Gauss-Seidel iteration for (2.3) may be written 
as 

D k+1 !Ur 
~+1 

b 

= -~ +.fr 

= -BT.l.I~+1+.fb 
(2.4) 

and each part of (2.4) can then be effectively 
implemented in a parallel fashion, with the 
introduction of the SOR parameter causing no 
problem. 

If a ~ 0, the form (2.3) of the difference 
equations is still valid although D is no longer 
a diagonal matrix and the Gauss-Seidel step 
(2.4) is no longer easily implementable in a 
parallel fashion. The problem is that unkna.lns 
corresponding to red points are coupled to each 
other in (2.3> (and. black points to each other 
also) whereas when a=O , they canpletely uncou
ple. ThUS we wish to introduce another parti
tioning of the grid points for which unkna.lns 
within each subset of the partitioning are 
uncoupled. If we consider the grid point sten
cil for (2.2), sha.ln in Figure 2, 

it"t/it 
~/f"'~ 
R B R 

Figure 2. Stencil for (2.2) 

wi th the Red/Black ordering, we see that the 
center Red point is connected to the Red pOints 
at the four corners. If, however, we use four 
subsets of grid pOints, labeled red, black, 
white, orange, we can ensure that each center 
point connects with only points of different 
colors. A sui table coloring pattern for this is 
illustrated in Figure 3. 

R B W 0 R B W 0 

W 0 R B W 0 R B 

R B W 0 R B W 0 

W 0 R .B W 0 R B 
Figure 3. Four color ordering of the gridpoints 

In this case, the system (2.2) can be written in 
a partitioned form analogous to (2.3) as 

54 

D1 B12 B13 B1 .fl' 

8:21 D2 8:23 8:2 .fb 
(2.5) 

~1 B32 D3 B3 
= 
~ 

B41 B42 B43 D4 .fa 

where D1, D2, D~ and Dn are diagonal matrices. 
The Gauss-Seid~ iteration in terms of (2.5) is 
then 

k+1 k k k 
D~ = -B1?1b - B1"'Q- - B1~0 +.fr l' ~ (2.6) 
D k+1 R_ k+1 R_..,Q~ R_ .. uk +.r ?lb = --z1.Yr - -z~ - -~<ro b 

with similar equations for uk+1 and 'yk+1• Since 
the D. are diagonal, (2.6)-Ys easily°implement
able on vector or parallel architectures. 

A variety of other connectivity patterns 
arise fram either finite difference or finite 
element discretizations. Two of the more cOOllllon 
are illustrated by their stencils in Figure 4, 

. . r 
~f/ 
.-/~: 

1 ."'. (a) (b) 
Figure 4. Canmon finite element stenCils 

in which (a) arises, for example, fram finite 
element discretization by piecewise linear func
tions over triangular subregions and (b) by 
piecewise quadratic functions. In case (a), 
three colors are necessary and sufficient to 
achieve the deSired decoupling while in case (b) 
six colors are required. The coloring patterns 
for the two cases are illustrated in Figure 5. 

G R G R G R 

0 B P B y B 

G R G R G R 

B G R P B y B b B 

G R B G R G it G it 

RBG YBOBPG 
(a) (b) 

Figure 5. Three and six color partitions 

In both cases, the color patterns repeat beyond 
the subregions illustrated. 

A variety of other examples could be given. 
Provided that the danain of the differential 
equation is a rectangle or other regular two or 
three dimensional region and the discretization 
stenCil is repeated at each grid, it is usually 
evident how to color the grid points to achieve 



the desired result. However, for arbitrary 
discretizations and/or irregular regions there 
is at present no algorithm to carry out the 
coloring. 

Implementatjon Consjderations 

We discuss briefly in this section some of 
the implementation considerations of the mul ti
color SOR method on vector computers and paral
lel arrays. For concreteness, We will use the 
CDC CYBER 203/205 as an example of the former 
and the Finite Element Machine at NASA's Langley 
Research Center as an example of the latter. 

On the CYBER 203/205, vectors consist of 
contiguous storage locations and the efficiency 
of the vector operations is strongly dependent 
on vector length. Maximun efficiency is 
achieved for very long vectors. For vectors of 
length. 1000 around 90% efficiency is obtained, 
but th1S drops to approximately 50% or less for 
vector s of 1 ength 1 00 and 1 ess than 1 0% for 
length 10. Hence, we would like to keep vector 
lengths on the order of 1000 or more whenever 
possible. 

Consider, for example, the difference equa
tions (2.2) and suppose that h=.01 so that N=99 
and n=N2:104. The implementation of Jacobi's 
method on this problem can be done in a 
straightforward way using vectors of length N, 
corresponding to the unknowns in each row of 
grid points. It is deSirable, however, to work 
with vectors of length order n and it is possi
ble to achieve this by considering the boundary 
values to be unknowns and ordering all the grid 
pOints, including the boundary pOints, from left 
to right, bottom to top and then applying the 
Jacobi iteration to the corresponding vector of 
length (N+2)2 of unknowns. The boundary values, 
of course, cannot be changed by the iteration 
and this is prevented by use of the control vec
tor feature on the 203/205 which allows suppres
sion Of storage of updated values into the boun
dary locations. (See, e.g. Lambiotte [1975] or 
Ortega and Voigt [1977] for more details on this 
procedure. ) Since the calculation of new values 
corresponding to the boundary points is super
fluous, this introduces an inefficiency of 
approximately 4% for N=99 but allows almost full 
efficiency of the vector operations. 

For the Gauss-Seidel or SOR method for 
(2.2) we use the four-color ordering of Figure 
3. and order the unknowns into four vectors 
corresponding to the grid points associated with 
the four colors. The matrix-theoretic descrip
tion (2.6) of the Gauss-Seidel iteration is then 
implemented by four separate Jacobi sweeps, one 
for each color. As above, the boundary values 
are considered as unknowns and then updated 
values suppressed on storage. Since the vector 
lengths are now on the order of 2500, the 
corresponding vector operations will run at 
about 95~ efficiency. The introduction of the 
SOR parameter causes no difficulty. 

We turn now to parallel arrays. The Finite 
~ement Machine (FEM) is a prototype array of 36 
M1croprocessors, arranged in a 6x6 grid. Each 
processor is connected to eight nearest neigh
bors, as illustrated in Figure 6. 

55 

·"i/· ./[-. 
. ."'--. 

Figure 6. Processor Interconnections on FEM 

and there is also a global bus that connects all 
processors. Further details, Which do not con
cern us here, may be found in Jordan [1978] and 
the references therein. 

Our primary goal in the implementation pi' 
the multi-color SOR method on the Fini te Element 
Machine, or ona similar array with perhaps many 
more processors but limited processor to proces
sor interconnections, is to keep as many proces
sors as possible running at a given time. ThiS, 
in turn, requires maximun use of the processor 
interconnections and minimum use of the global 
bus since contention for the bus will tend to 
introduce delays which cause processors to be 
idle. 

Perhaps the primary consideration in the 
implementation is to ensure that each processor 
holds at least as many unknowns as a certain 
mul tiple of the number of colors where this mul
tiple is the number of rows above the center 
point in the gridpoint interconnection stencil. 
Thus, for example, if we consider the gridpoint 
interconnection stencil of Figure 4(a) and the 
corresponding three color ordering of FigUre 
5(a), we would assign a minimum of 3 unknowns to 
each processor as illustrated in Figure 7(a). 
Similarly, for the stencil of Figure 4(b) and 
the corresponding six color ordering of Figure 
5(b), we would assign a minimum of 12 unknowns 
to each processor as illustrated in Figure 7(b). 

Figure 7(a). Processor Assignment 

IG R G R G RI 
Pm+3 0 B P B Y B 

IG R G R G RI 
P1 Y BOB P B IG R G R G RI 

Pm+1Y BOB P B 

Figure 7(b). Processor Assignment 



In the simpl est case of 36 processors and 108 
grid pOints, with 108 corresponding unknGlns, 
the assignment schEme of Figure 7(a) would be 
sufficient and the SOR method would be imple
mented by Jacobi operations, first on all the 
Red points, then the Black, then the Green. To 
carry out these Jacobi operations, curren~ 
values of neighboring unknGlns would be c;>btained 
ei ther from the processor i tsel f. or a neighbor 
processor and no use of the global bus is neces
sary. KnCMn boundary values would be stored in 
the processors which needed thEm. In any prob
lEm of interest, hGlever, there would almost 
certainly be many more grid points and unknGlns 
than processors. For the situation discussed 
above with three colors, we would assign unk
nGlns in mul tiples of three to the processors. 
Similarly, for the grid point stencil of Figure 
4(b) and corresponding six color pattern of Fig
ure 5(b), We would assign unknCMns in multiples 
of 12 to each processor. 

The above assignment strategy would allCM 
each processor to run without waiting except for 
b.lo problEms, synchronization and convergence. 
ConSider a J acQbi operation on all the unknGlns 
ot" a given color. The processors may canplete 
their work on this operation in different times 
due to a number of factors: slightly different 
clock times in the processors; different mEmory 
access times, especially for those processors 
containing unknGlns connected to boundary 
values; different numbers of unknGlns assigned 
to processors and so on. To compensate for 
4.1 ____ ____ ~ .... .,._ -I~LOLO ________ ~ _ _______ .! __ .&...1 __ _ 

Wlt::i:tt: VV.,.,J. U.L t: U.Lll t:r-t::u-.;t::i:t .LU }Jl-\J\,;C"':).LIIl) IJ.LIIIC'':), 

the computation can be synchronized by having 
each processor set a flag when it is done with 
its calculation on the current Jacobi operation 
and then wait for all other processors to com
plete. ThiS synchronization, of course, intro
duces delays. Alternately, the processors can 
run asynchronously. In this case, the numerical 
iterations will tend to deviate from the true 
mathEmatical iteration, although the conse
quences of this may even be beneficial. (See, 
e. g. Baudet [1978] and the references therein 
for further discussion of asynchronous iterative 
methods. ) 

It is, of course, necessary to check for 
convergence of the iterative process. At the 
end of each SOR iteration, each processor can 
monitor the. convergence of the unknGlns assigned 
to it, probably by canparing the current and 
previOUS iterates. When the convergence cri
terion has been satisfied for all unknGlns 
assigned to a given processor, that processor 
must continue the iteration until the conver
gence criterion is satisfied in all processors. 
Hence, the whole process will not terminate 
until all unknGlns have satisfied the conver
gence criterion and tCMards the end of the pro
cess a portion of the processors may be doing 
unnecessary work. ThiS seEmS to be an unaVOid
able inefficiency. 

56 

Summary~ ConclusionS 

The multi-color SOR method described herein 
seEmS promising for vector and array processors· 
although practiCal experience to date has been 
limited to a few numerical experiments on a 
four-processor version of the Finite ElEment 
Machine. It faces the usual difficulty with the 
SOR method of Obtaining suitably good values of 
the overrelaxation parameter and for most appli
cations of current interest for which a vector 
computer or large array would be used, there is 
little theory to help in this choice. For 
irregular regions, there is also the problEm of 
processor assignment and coloring of the grid 
pOints; the processor assignment problEm has 
been addressed by various authors (see, e. g. 
Bokhari [1979] and Gannon [1980]) but not in 
conjunction with the coloring problEm. 

References 

Baudet, G. [1978]. "Asynchronous Iterative 
Methods for Multiprocessors," ~ ~. 
~. 1:1Ilrul. 25, pp. 226-244. 

Bokh ari , G. [1979]. "On the Mapping ProblEm," 
.frQQ. .Into ~ • .on.far • .fJ:QQ, pp. 239-248. 

Forsythe, G. and WasCM, W. [ 1960]. .E1nitf: 
n.: &'&' ______ u_"''-_~_ .1:' __ n __ .l..! _"I ".! ,...,.. ______ .1-. __ .. 

&.#+1' 51 'Si''' .. E nCk11YUp.J....WL {q(-k-Lc.t~ VI IISC'-yUkId! 

Eqyations, JOhn Wiley, New York. 

Gannon, D. [ 1981]. "On Mapping non-uniform 
P.D.& Structures and Algorithms onto Uni
form Array Architectures." .frQQ. .19.8.1 .Int. 
~. .far. .fJ:QQ., pp. 100-105. 

Hayes, L. [1974]. "Comparative ,Analysis of 
Iterative Techniques for Solving Laplace's 
Fquation on the Unit Square on a Parallel 
Processor, " M. S. Thesis, Department of 
MathEmatiCS, University of Texas, Austin. 

Jordan, H. [1978]. "A SPecial Purpose Architec
ture for Finite ElEment Analysis," .fl:QQ. 
191.8..Into Jdmf • .on.faJ:: • .fr:QQ., pp. 263-266. 

Lambiotte, J. [1975]. "The Solution of Linear 
SystEmS of Fquations on a Vector Computer," 
Ph. D. Dissertation, University of Virginia. 

Ortega, J. and Voigt, R. [1977]. "SOlutions of 
Partial Differential Fquations on Vector 
Computers", .fr:QQ. .lm ~ .NYm. Anal. 
~., pP. 475-526. 

Young, D. [1971]. Iterative Solytion .Qf ~ 
~ S,ystema, Academic Press, New York, 
pp. 427-428. 



A PARALLEL ALGORITHM FOR FINDING THE ROOTS OF A POLYNOMIAL 

Thomas A. Rice 
Leah J. SiegeL 

Purdue University 
SchooL of ELectricaL Engineering 
West Lafayette, Indiana 47907 

Abstract -- In many appLications, it is neces
sary to perform the computationaLLy intensive task 
of extracting the roots of a high order reaL poLy
nomiaL. ParaLLeL approaches to the root-finding 
probLem are summarized. A new SIMD (singLe in
struction stream - muLtipLe data stream) aLgorithm 
is described. The aLgorithm is a paraLLeL impLe
mentation of Graeffe's method. It can empLoy a 
number of processors Less than or equaL to the de
gree of the poLynomiaL. The p-processor aLgorithm 
achieves an O(p) speedup over the corresponding 
seriaL aLgorithm. This compares favorabLy with 
other iterative paraLLeL root-finding aLgorithms, 
which have typicaLLy used fewer processors than 
the SIMD Graeffe's method, and which have exhibit
ed O(number of processors) speedup. 

1 • Int roduct i on 

In many appLications, incLuding digitaL signaL 
processing and automatic controL, it becomes 
necessary to extract the (possibLy compLex) roots 
of a high order reaL poLynomiaL equation. PoLyno
miaLs of degree 10 to 25 are not uncommon; poLyno
miaLs with degree as high as 100 are sometimes en
countered. In this paper, the appLication of 
paraLLeL processing to the root-finding probLem is 
examined. Proposed techniques are summarized, and 
a new paraLLeL aLgorithm is described. 

Since the conventionaL techniques of root
finding usuaLLy invoLve variabLe Length iterations 
and repetitive root extraction, they generaLLy do 
not map immediateLy to the paraLLeL domain. The 
main concerns thus become: can the probLem be 
fairLy partitioned among a Large enough number of 
processors to gain a reasonabLe speed-up, and can 
the interprocessor communications be sufficientLy 
minimized? In addition, methods that have been 
discarded for seriaL computation need to be recon
sidered for paraLLeL computation if they are easi
Ly partitionabLe. 

For a given appLication, a number of properties 
of the root-finding method must aLso be taken into 
consideration. These incLude the foLLowing: Can 
the method extract onLy reaL or both reaL and com
pLex roots? Can the method handLe muLtipLe roots 
at the same Location? Does the method encounter 
probLems of numericaL stabiLity or overfLow under 
some conditions? Does the method require a good 
initiaL estimate of a root's Location in order to 
converge? 

In Section 2, approaches to using paraLLeLism 
to extract the roots of a poLynomiaL are dis-

This materiaL is based on work supported 
NationaL Science Foundation under 
ECS-790916. 

0190-3918/82/0000/0057$00.75 © 1982 IEEE 

by the 
Grant 

57 

cussed. In Section 3, a specific paraLLeL aLgo
rithm is presented. The particuLar root-finding 
method described is one which has the required 
properties for both paraLLeL impLementation and 
scientific (in particuLar, signaL processing) ap
pLication. The attributes required in a paraLLeL 
machine to impLement the aLgorithm and the compu
tationaL characteristics of the paraLLeL aLgorithm 
are discussed. 

2. Approaches to ParaLLeL Root-Finding 

There are two principaL ways in which root ex
traction is performed. The first of these is 
domain division. This consists of partitioning 
the domain over which roots may occur and then 
searching for roots in the individuaL subdomains. 
For exampLe, after the domain is partitioned, 
MuLLer's method [6] couLd then be used to find the 
roots in each subdomain. Some paraLLeL methods of 
soLving partiaL differentiaL equations [e.g., 4] 
may be appLicabLe to paraLLeL root-finding aLgo
rithms based on domain division. 

The second principaL method of root-finding is 
the iterative approach, in which successive ap
proximations to the roots are obtained. ExampLes 
of this approach are iLLustrated in [5, 7, 8]. 
ParaLLeLism can be appLied to such aLgorithms ei
ther (1) to attempt to reduce the number of itera
tions performed or (2) to reduce the execution 
time per iteration. ParaLLeL methods by Miranker 
[9, 10], FeLdstein and Firestone [10], ShedLer 
[11], and Winograd [15] have attempted to reduce 
the number of iterations in such methods as 
Lagrange extrapoLation [10], Hermite interpoLation 
[10], and Newton-Raphson [11]. At each step in 
the iteration for finding a given root, p proces
sors obtain p different, independent approxima
tions for the root. From these, the best approxi
mation to use in the next step is derived. In 
such methods, it has been shown that the number of 
iteration steps is reduced by a factor of Log p 
when p processors are used; vaLues of p considered 
(e.g., in [11]) have typicaLLy been smaLL. 

3. ~ HighLy ParaLLeL Root-Finding ALgorithm 

In this section, an iterative root-finding aL
gorithm is presented in which paraLLeLism is used 
to reduce the execution time per iteration. The 
aLgorithm is a paraLLeL impLementation of 
Graeffe's method [6]. This method is not commonLy 
used with seriaL processors since it is sLow in 
comparison with other seriaL aLgorithms. The 
method can find both reaL and compLex roots and 
can be adapted to find roots with muLtipLicity 
greater than one. 



Graeffe',! ~ 

Graeffe's method is based upon forming a se
quence of equations whose zeros are the squares of 
the zeros of the previous equation in the se
quence. This is done to separate the roots in the 
equation so that they can be obtained by solving a 
set of linear equations. For example, consider the 
polynomial equation 

p(x) = x3 + a1x2 + a2x + a3 

= (x-z1)(x-z2)(x-z3) = O. 

If the magnitude of z1 is much larger than the 

magnitude of z2' which is in turn much larger than 

the magnitude of z3' then p(x) is· approximately 

3 2 
x -z1 x +z1 z2x- z1 z2z3 = O. 

Thus, a1 = -z" a2 = z1z2 = -81Z2, and 83 = 

-z1 z2z3 = -a2z3• 
The root squaring processes is based on forming 

the product of p(x)p(-x)(-1)n, where n is the de
gree of the original equation. This results in a 
polynomial of a degree twice that of p(x), but 

with only even powers of x. If each x2 is replaced 
by x, the result is an equation of the same degree 
as p(x), but with roots that are the squares of 
the roots of p(x). This procedure is repeated un
til each coefficient in an equation is the ~~Wgl~ 
of the corresponding coefficient in the previous 
equation, within a desired tolerance. 

Assume that k squarings (iterations) are needed 
to satisfy the tolerance requirement, and let 

m=2k. The final equation can be solved to give 
the magnitudes of the m-th powers of the roots. 
Substitution is used to find the actual roots. By 
exam1n1ng the form of the final few equations in 
the sequence, one can determine the types of roots 
(real or complex) that are in the equation. In 
general, if Zj and Zj+1 are a complex conjugate 

root pair, then the coefficient of xn- j will os
cillate. Once this oscillation meets certain 
tolerance requirements, the magnitude of the roots 
and the cosine of m times the phase angle can be 
determined. The actual angle must be determined by 
trial. 

The principle computation in Graeffe's method 

is in the repeated evaluation of p(x)p(-x)(-1)n. 
Let the current equation be given by 

n BOx + B n-1 + 
1x + B n-1 x + B n 

(1 ) 

and let the next equation in the sequence (after 

replacing i by x) be given by 

COx 
n + C n-1 + ••• + Cn_1x +Cn • (2) 1x 

It has been shown (6) that the 
Cj , can be evaluated from 

j-th coefficient, 
the previous set of 

coefficients by the equation 

58 

(3) 

For each Cj , the evaluation stops when the sub

scripts on the required Bs fall outside the range 
of the coefficient set. 

Unlike most iterative root-finding methods, 
Graeffe's method has the advantage of computing 
all of the roots in parallel and of having a basi
cally parallel structure. This algorithm for 
evaluating one set of coefficients from the previ
ous set is the basis of the parallel approach. 

Graeffe',! Method - ~ Parallel Algorithm 

Based on the explanation in the previous sec
tion, the general algorithm to implement Graeffe's 
method will be of the form: 

begin(findroot) 
k = 0 I*k is iteration number *1 
while (termination criteria not met) 
begin(loop) 

evaluate next set of coefficients 
k = k + 1 

end( loop) 
solve for roots 

end. (findroot) 

The heart of the algorithm is the finding of the 
new set of coefficients. Therefore, this part of 
the algorithm will be considered first. 

In the parallel implementation, each processor 
will compute o~e of the coefficie~ts for th~ ~~xt 
equation in the iteration. Thus, for an n degree 
(n+1 coefficient) polynomial, p = n+1 processors 
can be used. (A smaller number of processors can 
be used with a corresponding increase in execution 
time.) During a given iteration, the same opera
tions are performed to obtain each coefficient, 
but on different data, so SIMD (single instruction 
stream - multiple data stream) parallelism is in
dicated. The SIMD machine model used will consist 
of a control unit, interconnection network, and p 
PEs (processing elements), where each PE is a 
processor-memory pair (12). The p PEs are num
bered from 0 through p-1, with 0 denoting the 
rightmost PE and p-1 the leftmost PE. Each PE 
will initially contain one of the coefficients of 
the polynomial. It will be assumed that PE j, 

o ~ j ~ n, contains the coefficient of xn- j , i.e., 
at each iteration, PE j holds B., then C .• 

1 1 
The procedure in Fig. 1 computes the new set of 

coefficients from the old set. In the algorithm, 
lcycle and rcycle denote the execution of inter-PE 
transfers. In lcycle, the value in PE j is 
transferred to the variable of the same name in PE 
j+1. The transfer occurs simultaneously for all 
j. The value that was in PE p-1 is lost, and a 
zero is shifted into the transfer variable in PE 
O. Rcycle is similar. 

Fig. 2 illustrates the data movement in pro
cedure "coefficient." In each iteration, the coef
ficients can be found in parallel using a sequence 
of Ln/2J+1 steps, in which each step consists of 
two transfers, three multiplications and one sub
traction. The data transfers required are from 
each PE to its two nearest neighbors. The actual 



procedure coefficient(oLd,new) 
1* input: oLd coefficients in variabLe "oLd" 

output: new coefficients in variabLe "new" 
"oLd" in PE j is B. in eqn. (1) 

J 

*/ 

"new" in PE is Cj in eqn. (2) 

LocaL variabLe a). ,r; 
R. oLd; /* B obtained via Left shift */ 
r = oLd; /* B obtained via right shift */ 
a = oLd**2; /* wiLL accumuLate resuLt */ 
for q = 0 untiL Ln/2J do 
beg i n ( Loop-) -- -

Lcycle (g. ); /* Left shift */ 
rcycLe(r); /* right shift */ 
a = a - 2 * (-1 )**q * R. * ri 

/* add next term in sequence */ 
end (Loop) 
new = ai 

end.(coefficient) 

Fig. 1. Procedure to compute the next set of 
coefficients. 

initiaL 

vaLues 

iteration 1 

iteration 2 

iteration 3 

PE # 6 

R.6 

r6 

1.5 
0 

1.4 
0 

R.3 
0 

Fig. 2. VariabLe movement 

5 

R.5 

r5 

R.4 

r6 

1.3 
0 

R.2 
0 

in 
cient," for n = 6, p 

4 3 2 0 

R.4 R.3 R.2 R.1 R.O 
r4 r3 r2 r1 rO 

R.3 1.2 1.1 R.O 0 

r5 r4 r3 r2 r1 

1.2 1.1 1.0 0 0 

r6 r5 r4 r3 r2 

R.1 R.O 0 0 0 

0 r6 r5 r4 r3 

procedure "coeffi-
= 7. 

steps required to perform an LcycLe or rcycLe 
transfer wiLL depend on the hardware organization 
of the particuLar paraLLeL machine. A transfer 
can be done in one pass through most interconnec
tion networks, with appropriate masking. The time 
to perform a transfer wiLL therefore be smaLL. 
(Barnes and Lundstrom report a 120 ns connection 
time for a 10-stage muLtistage network (2]. In a 
system with singLe stage ring or nearest neighbor 
connections, transfer time couLd be expected to be 
even Less.) Depending on the reLative time to per
form arithmetic and transfer operations, it may be 
possibLe to overlap the network transfers with the 
computations. In this case, the time incurred by 
the data transfers wiLL be negLigibLe. Overhead 
is aLso introduced by the fact that the Ln/2J+1 
steps are performed in each PE, even though aLL of 
the coefficients do not need this many steps. The 
LcycLe and rcycLe functions shift zeros into the 

59 

"edge" PEs to nuLLify the effect of the extra muL
tipLications and subtractions. These muLtipLica
tions by zero are steps performed in the SIMD aL
gorithm that are not executed in a seriaL aLgo
rithm. In one iteration, the (n+1)-PE SIMD aLgo
rithm wiLL perform 3eLn/2J+1) muLtipLications and 
Ln/2J+1 subtractions, compared to 3Ln/2J(n-Ln/2J) 
muLtipLications and Ln/2Jen-Ln/2J) subtractions 
required in the seriaL aLgorithm. The speedup on 
arithmetic operations is therefore approximateLy 
p/2 for the p-PE aLgorithm. 

The next step to be considered in Graeffe's 
method is the determination of whether or not the 
termination criteria have been met. Fig. 3 de
taiLs an aLgorithm for this step. There are two 
cases: non-osciLLitory and osciLLitory. For the 
first, the difference between the magnitude of the 
current coefficient and the square of the previous 
coefficient is compared with the termination 
toLerance. This is done in one comparison step, 
performed simuLtaneousLy in aLL PEs. As a resuLt 
of this step, those PEs in which a reaL root has 
been Located to sufficient accuracy can be identi
fied. If the non-osciLLatory toLerance has been 
met in aLL PEs, there is no need to test the cri
teria for osciLLatory toLerance. In the aLgorithm 
in Fig. 3, this condition is tested in the "if 
aLL" statement, which has vaLue 1 if aLL PEs 
satisfy the stated condition. The way irr which 
the "if aLL" is performed wilL depend on the 
paraLLeL architecture. If it can be accompLished 
efficientLy, this capabiLity to evaLuate a condi
tion across aLL PEs can, in some cases, eLiminate 
the need to test the osciLLating criteria. Such 
statements (if aLL, if any) are impLemented in 
PEPE [14]. A possibLe impLementation for the PASM 
muLtimicroprocessor system is described in (13]. 

For osciLLatory termination, one approach to 
determining whether or not to terminate is to ob
tain the phase angLe based on both the new and oLd 
sets of coefficients. If the phase angLe is the 
same, within a specified toLerance, for both coef
ficient sets, the criterion can be considered met. 
If osciLLating termination is to be tested, each 
PE obtains, via LcycLe and rcycLe transfers, the 
current and previous coefficients from its two 
nearest neighbors. The coefficients 
(Bj_1,Bj,Bj+1) and (Cj_1,Cj,Cj+1) are used to 
determine if non-osciLLatory toLerance is met in 
PE j. In the aLgorithm, PEs in which osciLLatory 
toLerance is to be tested are enabLed (and PEs 
which met non-osciLLatory toLerance are disabLed) 
by means of a "where" statement. The "where" con
struct is a data conditionaL mask [1, 3] in which 
each PE evaLuates the condition using its own da
ta, and sets its active/inactive status so that it 
is active for the statements foLLowing the "where" 
onLy if the condition is true. PEs in which the 
condition is faLse are disabLed for those state
ments. At each iteration, the test for osciLLato
ry toLerance is performed simuLtaneousLy in aLL 
PEs which faiL the non-osciLLatory toLerance test. 

After the coefficient sequences satisfy the 
termination criteria, aLL of the reaL roots can be 
found in one paraLLeL step and aLL of the compLex 
roots can be found in one paraLLeL step. This is 
detaiLed in Fig. 4. The compLete root-finding aL
gorithm is given in Fig. 5. 



~ro~edure toleranceCold,new,n_osc,tol_ok,osc) 
* mput: 

*1 

old = previous set of coefficients 
new = current set of coefficients 
output: 
tol ok = bit vector indicating where 

tolerance was met 
n osc = bit vector indicating where non

oscillatory tolerance was satisfied 
osc = bit vector indicating where 

oscillatory tolerance was satisfied 
Osci llations are detected using II computed 
from old and new coefs: 

II rmold, II rmnew = II ~ 

21! mrcos CmEI )=CE IE 1) r r-
2m I3 r =CE r+1/E r_1) 

where EJ. can be either B. or C., 
J J 

and if this is iteration k, m=2k; 
o < r < p-1 

local variable told,rold,R.new,rnew; 
tol ok = n osc = osc = 0; 
where CerrorCold**2,new) < tol criterion1) 
--tol ok = n osc = 1; -
1* if the new coefficient is the square of the 

old one within a specified error, then the 
criterion is met. This check is done in 
parallel in all PEs *1 

if Cnot all Cn osc» then 
beginCosci llatory) -

told = old; 
rold = old; 
rcycleCrold); 
lcycle (J. old); 
rnew = new; 
I.new = new; 

1* BCj+1) *1 
1* BCj-1) *1 

rcycleCrnew); 1* CCj+1) *1 
lcycleCl.new); 1*. C(j-1> *1 
I3rmold = sqrtCrold/l.old); 
II rmnew = sq rt C rnew II. new) ; 
whereCerror Carccos Coldl (J. old * II rmold*2», 

arccosCnewlCl.new * II rmnew*2»/2.0) 
< tol criterion2) 

tol ok = osc = 1; 
1* Combine the-two equations involving 13 to 
determine a possible B for both of the last 
two coefficient sequences, and compare the 
two values of B. This is done in parallel 
in all PES that did not satisfy the squar
ing tolerance check *1 

endCosci llatory) 
end .TtOlerance) 

Fig. 3. Procedure to determine if termination 
criteria have been met. 

60 

procedure findrootCnew,n_osc,tol_ok,osc,z,mag,ang) 
1* input: 

new = elements of coefficient array 
n osc,tol ok,osc -- as in procedure tolerance 
output: -
z -- location of zero if root is real 
mag, ang -- magnitude and angle if 

root is complex 
*1 

local variable I.,r; 
tol ok = .not.Cosc .or. rcycleCosc» 

7* PEs not involved with oscillatory cases 
Cright shift is due to the fact that a 
complex root affects two adjacent coeffi
cients) *1 

z = mag = ang = INVALID; 1* no roots yet *1 
lcycleC R); 1* newCj-1) *1 
rcycleCr); 1* newCj+1) *1 
where Cn osc .and. tol ok) 
beginCnon-oscillatory)-
1* all real roots are found in parallel *1 

z = Cnewl R) ** C11 (2**k»; 
1* (newl J.) -m *1 
where (abs value(p(z) > tol criterion3) 
--z = -z; 1* test by evaLuating p(z) *1 

end(non-oscillatory) 
where (osc) 
~egin(oSCillatory) 
* all complex roots are found in parallel *1 

mag = (rl t>**(1IC2*(2**k»); 
1* magnitude of complex pair *1 
ang = arccos(new/(2* R.*sqrt (r/l.»)/(2**k); 
1* possible angLe *1 

end(osci llatory) 
end:Tfi nd root) 

Fig. 4. Procedure to compute the roots from the 
final set of coefficients. 

program parallel root(new) 
1* input: new =-coefficients of pCx) 

output: roots 
*1 

k = 0; 
repeat 
---old = new; 

coefficient(old,new); 
tolerance(old,new,n osc,tol ok,osc); 
k = k + 1; - -

until (all (tol ok»; 
findroot(new,n osc,tol ok,osc,z,mag,angLe); 

end. (parallel_root) -

Fig. 5. Program to perform parallel Graeffe's 
method. 



4. Conclusions 

Although exact comparisons between this paral
lel method and serial methods are difficult due to 
the data-dependent, iterative nature of the algo
rithms, some general comparisons can be made 
between the parallel and serial versions of 
Graeffe's method. First, the number of iteration 
steps performed will be the same as in the serial 
algorithm. However, within each step, the coeffi
cients for the next equation in the sequence are 
computed in parallel rather than serially. The 
computational speedup will be approximately p/2 
for computing the coefficient sequences. The less 
than ideal speedup is due to redundant operations 
required for the parallel algorithm. Computation
al speedup in evaluating the termination condi
tions will depend on the relative number of real 
and complex roots, and will range from approxi
mately 0.2p to 0.9p. Speedup on computations for 
finding the roots from the final set of coeffi
cients can be up to p/2, depending on the relative 
number of real and complex roots. The execution 
time will be clearly dominated by the computation 
of the coefficient sequences. The interprocessor 
communications required in the algorithm are from 
each PE to its two nearest neighbors. The ratio 
of arithmetic steps to transfer steps in each 
iteration is approximately 5:1. However, unless 
transfers are significantly slower than arithmetic 
operations, it will be possible to overlap the 
time spent in inter-PE communications with the 
time spent performing computations. Overall 
speedup will therefore be dictated by the speedup 
on computations, and will be on the order of p/2. 
This compares favorably with other iterative 
parallel root-finding algorithms, for which imple
mentations using p processors have exhibited O(log 
p) speedup. For these methods, values of p con
sidered have typically been smaller than the num
ber of processors used by the SIMD Graeffe's 
method presented here. 

In summary, a new parallel algorithm to perform 
root-finding has been developed. The approach 
taken in the algorithm differs significantly from 
that of other parallel root-finding methods. 

61 

References 

[1J G. Barnes, et al., "The Illiac IV computer," 
IEEE Trans. Comp., Vol. C-18, Aug. 1968, pp. 
746-757. 

[2J G. H. Barnes and S. F. Lundstrom, "Design and 
validation of a connection network for many
processor multiprocessor systems," Computer, 
Dec. 1981, pp. 31-41. 

[3J B. A. Crane, "PEPE computer architecture," 
Compcon ~ Sept. 1972, pp. 57-60. 

[4J D. Gannon, "On mapping non-uniform P.D.E. 
structures and algorithms onto uniform array 
architectures," 1981 Int. Conf. Parallel 
Processing, Aug. 'W!f, pp. 10tr-f05. 

[5J P. Henrici, Elements of Numerical Analysis, 
John Wiley and Sons.; Inc., NY, 1964, pp. 
146-179. 

[6J F. B. Hildenbrand, Introduction to Numerical 
Analysis, McGraw-Hill, NY, 1974,IPP. 602-608. 

[7J M. A. Jenkins and J. F. Traub, "A three-stage 
algorithm for real polynomials using quadrat
ic iteration," SIAM J. Numerical Analysis, 
Vol. 7, Dec. 1'97iJ, Pi>. 545-566. 

[8J M. A. Jenkins and J. F. Traub, "Zeros of a 
real polynomial," ACM Trans. Mathematical 
Software, 1975. 

[9J W. L. Miranker, "Parallel methods for approx
imating the root of a function," IBM J. Res. 
Develop., Vol. 13, 1969, pp. 297-3~ - ---

[10J W. L. Miranker, "A survey of parallelism in 
numerical analysis," SIAM Review, Vol. 13, 
Oct. 1971, pp. 524-547. 

[11J G. S. Shedler, "Parallel numerical methods 
for the solution of equations," Comm. ACM, 
Vol. 10, May 1967, pp. 286-290. ----

[12J H. J. Siegel, "A model of SIMD machines and a 
comparison of various interconnection net
works," IEEE Trans. Comp., Vol. C-28, Dec. 
1979, pp. 907-917. --

[13J H. J. Siegel, L. J. Siegel, F. C. Kemmerer, 
P. T. Mueller, Jr., H. E. Smalley, Jr., and 
S. D. Smith, "PASM: a partitionable SIMD/MIMD 
system for image processing and pattern 
recognition," IEEE~. Comp., Vol. C-30, 
Dec. 1981, pp. 934-947. 

[14J K. . J. Thurber, Large Scale Computer 
Arch1tecture, Hayden Book Co., Inc., Rochell 
Park, NJ, 1976, p. 243. 

[15J S. Winograd, "Parallel iteration methods," in 
Complexity of Computer Computations, R.E. 
Miller and J.W. Thatcher, eds., Plenum Press, 
NY, 1972, pp. 53-60. 



OPTIMIZING THE FACR(l) POISSON-SOLVER 
ON PARALLEL COMPUTERS 

R. W. Hockney 

computer Science Department 
Reading University 

Reading, Berks. UK. RGo 2AX 

Abstract-- A two parameter description of 
any computer is given that character ises 
the performance of ser ial, pipelined and 
array-like architectures. The first 
parameter (rm) is the traditional maximum 
performance in megaflops, and the new 
second parameter (n~ measures the 
apparent parallelism of'''the computer. The 
relative performance of two algorithms on 
the same computer, depends only on n~ and 
the average vector length of the a2:J..go
rithm. The performance of a family of 
FACR direct methods for solving Poisson's 
equation is optimized on the basis of this 
characterisation. 

Parallel Computers 

A two-parameter description of the 
performance of any computer can be 
obtained by fitting the best straight line 
to the measured time, t, to perform a sin
gle vectoJ: opeJ::atlon on vectors of varying 
length , n, (e.g. A=B*C, where A, Band C 
are vectors). A similar description of 
computer performance has been developed by 
Calahan, Ames and their coworkers at the 
University of Michigan (see [2] and the 
references therein). Our work below 
differs in the definition of parameters 
and the use made of them. Two equivalent 
generic forms for the straight line define 
two primary and one useful secondary 
derived parameter: 

where 

r 
m 

-1 
t = r (n+nlL) 

m 12 
(1) 

(maximum or asymptotic perfor
mance) the maximum number of 
elemental ar ithmetic operations 
(Le. operations between pairs 
of numbers) per second, usually 
measured in megaflops. This 
occurs for infinite vector 
length on the generic computer. 

(half-performance length) the 
vector length required to 
achieve half the maximum perfor
mance. 

Alternatively, when n<n¥2' the generic line 
may be more usefully expressed as: 

0190-3918/82/0000/0062$00.75 © 1982 IEEE 62 

where 

t -1 
11 (l+n/n¥t (2) 

11: (specific performance) or per
formance per unit parallelism, 
is defined as the ratio rmln~. 

The above def initions are shown graphi
cally in Fig. 1 where we find: 

rm is the inverse slope of the generic line 
n¥2 is its negative intercept on the n-axis 
11 is its inverse intercept on the t-axis 

SIOPll r;;y 
~ ~( ) tn = roo n + n"z 

= n-'(1 +n/n"Z) 

n 

Fig. 1. The timing diagram for the gen
erlC parallel computer, showing the defin
itions of the parameters, r m, n~ and 11. 

(From Hockney and Jesshope 1981, courtesy 
of Adam Hilger). 

It is useful to examine the values of 
rm and n~ that are expected from the com
mon forms of computer architecture. This 
is done by considering the timing line for 
each type: 

(a) Ser ial computer - the execution time 
is proportional to the number of ele
mental operations 

(3) 

where tl is the time for one elemen
tal operation. 



(b) 

Comparison with Eqn. (1) shows that 
for a serial computer 

(4) 

Pipelined computer - the execution 
time is normally expressed by the 
manufacturers in a form similar to 

t = (s+Hn-l)T (5) 

where 

T is the clock period 
s is the startup time in clock periods 
! is the number of segments in the 

arithmetic pipeline 

Compar ison with Eqn. (1) shows that 
for a pipelined computer 

-1 
reo - T (6) 

(c) Processor Array - if there are N pro
cessors which simultaneously perform 
the same ar ithmetic operation on N 
elements of each vector ( one element 
of each vector in each processor I s 
memory), then the timing graph is 
stepwise as shown in Fig. 2 

where 

(7) 

is the ceiling function of x, 
i.e. the smallest integer which 
is equal to or greater than x. 

is the time for one parallel 
arithmetic operation of all pro
cessors in the array. 

The best straight line through the 
timing graph is the dotted line which 
corresponds to 

r = Nit 
CD p, (8) 

This choice of parameters descr ibes 
approximately the average behaviour 
of the array if the vectors presented 
to it are of varying lengths, more or 
less uniformly distributed. 

On the other hand one may know 
that the vector length is always less 
than the number of processors (n(N) 
and that therefore one is always 
working on the first step of the tim
ing graph. In this case the 
behaviour is exactly described by the 
second generic form with 

7T = (9) 

63 

t Itll 

-1 

We note that this condition is the 
one assumed in the complexity theory 
of par allel algor i thms : that is to 
say that there are always enough pro
cessors. This can occur in general 
for the theoretical paracomputer 
which .has an infinite number of pro
cessors. It is nice that in our for
malism this theoretical limit occurs 
when n%=eo. 

5 

4 

3 

2 
, , , 

, , , 
, , ,-

0 2 3 4 5 

n/N 
Fig. 2. The timing diagram for an array 
of N processing elements (solid line), 
showing the best approximating generic 
straight line (dotted) which determines 
the value of n% as N/2. (From Hockney and 
Jesshope 1981, courtesy of Adam Hilger). 

The above theoretical results for a 
range of widely different computer archi
tectures suggest that n% is a measure of 
the parallelism of the computer hardware, 
varying from zero for a serial computer 
with no parallelism to infinity for the 
infinite array of processors. The excep
tion is the pipelined computer in which a 
large value of n~2 can occur either for a 
large amount of parallel operation in the 
pipeline (the number of segments ! is 
large), or for a large value of the setup 
time , s. In the former case n~ is 
measuring the hardware parallelism, bu~ in 
the latter case it is measur ing an over
head. From the users , or algorithmic, 
point of view the behaviour of the com
puter is determined by the timing expres
sion (1) and the value of n~, however it 
arises. A pipelined computer 2with a large 
value of nlf., appears and behaves as though 
it has a h-igh level of parallelism, even 
though this might be due to a long setup 
time. Hence we regard n~ as a measure of 
the apparent parallelism ~f the computer, 
and from the algorithmic (i.e. timing) 
point of view it simply does not matter 
how much of this is real. The fact that 
true parallelism and setup time are inter
changeable, incidently, shows that paral
lelism is an overhead, and therefore 
undesirable (by which we mean that paral
lelism is best avoided if at all possible, 



or that one should always seek to achieve 
the required performance with the least 
possible parallelism). 

The values of nY2and reo of a computer 
are best regarded as measured quantities 
obtained by executing the following FOR
TRAN code and plotting the timing graph of 
T against N: 

CALL SECOND(Tl) 
CALL SECOND(T2) 
TO - T2-Tl 

DO 20 N - 1,NMAX 
CALL SECOND(Tl) 

DO 10 I = 1,N 
10 A(I) = B(I) * C(I) 

CALL SECOND(T2) 
20 T = T2 -Tl -TO 

(10) 

In the above code, the DO 10 loop will be 
replaced by a single vector instruction by 
any vectorizing compiler. The measurement 
and subtraction of the timing overhead TO 
is essential because, as we have seen, any 
overhead will appear as a contribution to 
n~. In this case the overhead of measure
mjnt is nothing to do with the time of 
execution of the vector operation, and 
must therefore be subtracted. 

The character isation of the perfor
mance of computers by two parameters 
naturally leads to plotting computers as 
points in the two-dimensional (nu,r) 

72 eo 
phase plane, as is done for some well 
known designs in Fig. 3. In practice most 
computers may operate in different modes 
(scalar or vector, dyadic or triadic 
operations, different word lengths etc.) 
and therefore appear as a ser ies of dots, 
joined to form a nconstellationn in the 
diagram. The traditional characterisation 
of computer performance by the single 
parameter reo' corresponds to projecting 
this diagram onto, or viewing it through, 
the vertical axis. In the era of ser ial 
computers all of which have the same n~ 

of zero, this was clearly valid. Howevef 
in the age of the parallel computer, it is 
obviously important to recognise the dif
ferent levels of apparent parallelism by 
spreading the computers out along the n~ 
axis. We call this the two-dimensionaT 
spectrum of computers. We shall see in 
the next section that n~ determines the 
choice of the best algorit~m, and hence is 
a very important axis. As examples, Fig. 
3 shows that the CRAY-l (n "'10) and the 
CYBER 205 (nY2"'lOO) have simiiiar values of 
reo but behave very differently because 
their values of n¥2 differ by a factor 10. 
For the same reason, the ICL DAP (nY2"'lOOO) 

64 

differs from both the 
205. 

CRAY-l and CYBER 

1000 r-----,-----r-----,---;;-.+:----. 

100 

C, 

(Mops) 

10 
7600 
60' floating 

0·1 

SCALAR MOllE 

64' floating 
CRAY'l 

2-pipe 
64' 

3z' 
4-""e 

3t 61/ 

CYBER 20S 
floating vector 

64 elemonts 

)( 

8' 
integer 

+ 32' 
x floating 

0.01 L...-___ '--___ ..l...-___ -L ___ ---l 

1 10 100 1000 10000 

n,'2 
Fig. 3. The two-dimensional spectrum of 
computers, showing the CRAY-l, CYBER 205 
and I CL DAP. (After .Hockney and Jesshope 
1981, courtesy of Adam Hilger). 

Parallel Algorithms 

To a first approximation an algorithm 
can be regarded as a sequence of vector 
operations of varying length (including 
one). Such a representation, of course, 
neglects many factors that may be impor
tant (even crucial) in particular cases. 
Such factors may be, for example, memory 
bank conflicts in pipelined computers, 
data routing delays in processor arrays, 
and the simultaneous operation of scalar 
and vector units. However we have to 
start somewhere and avoid too much compli
cation if we are to obtain manageable 
results. Therefore, in common with other 
theoretical analyses of algorithm perfor
mance, we shall assume such factors are 
unimportant and·express the total time, T, 
for the execution of an algorithm as 

_llmax 
T - reo r: qt (Pt+nu) 

t-1 72 
(11) 

where we regard the algorithm as lmax 
sequential stages, t, each composed of qt 
vector operations of length Pt' The gen
er i c timing formula ( 1) is then used to 
buildup the expression (11). 

I 
I· 

[I 
I 



It is useful to define the following 
quantities: 

lmax 
q - 1: ql 

1-1 

the total number of vector 
operations, the parallel opera
tions' count or, in the language 
of complexity theory, the number 
of unit timesteps. 

lmax 
s = 1: qlP I 

1-1 

the number of elemental opera
tions, or the traditional serial 
(scalar) operations' count. 

p = s/q 

the average vector length, or 
average parallelism of the algo
rithm. 

Using these var iables the time of execu
tion of an algorithm can be expressed 
either as 

-1 T = r q(p+nll) 
... 72 

(12) 

where the algorithm is regarded as q 
sequential vector operations with average 
vector length p, or as 

-1 T = r (s+nllq) 
... 72 

(13) 

where the first term is the contr ibution 
from the traditional count of all ele~en
tal arithmetic operations, and the second 
term is the contr ibution from the number 
of parallel (i.e. vector) operations. 
Equation (13) demonstrates clearly the 
role of n1! in interpolating between the 
extremes oPthe serial computer (n%=O) and 
the infinitely parallel computer (nY; ..... ). 
For ser ial computers only the first 2term 
or elemental operations' count matters. 
For the infinitely parallel computer only 
the second term or the number of parallel 
operations matters. For computers with 
finite parallelism, a linear combination 
of the two operations' counts is appropri
ate, and the value of nY; gives the weight-
ing between the tJo. Since n~='" 
corresponds to the assumptions made in t~e 
complexity analysis of parallel algorithms 
and q is the number of unit timesteps in 
such an analysis, equation (13) shows also 
how nY; interpolates rationally between the 
extreJe assumptions that are used in com
plexity analysis and those that have trad
itionally been used in the analysis of 

65 

algorithms on serial computers. 
It is instructive to relate the quan

tities def ined above to those introduced 
by Kuck [3J for the analysis of parallel 
algor ithms. The most important of these 
is SPEEDUP which relates the speed of an 
algorithm on a parallel multiprocessor 
array to the speed of the same algorithm 
on a ser ial uniprocessor with the same 
speed arithmetic units. Thus 

SPEEDUP - (14) 

time of execution on uniprocessor 
time of execution on multiprocessor 

= number of elemental operations 
number of parallel operations 

s _ 
= - - p 

q 

That is to say the SPEEDUP is nothing 
other than the average vector length (or 
parallelism) of the algorithm. 

The use of the SPEEDUP factor as a 
figure of mer it for parallel algor ithms 
can be misleading because it is only one 
of several factors that must be considered 
in any comparison between a real parallel 
multiprocessor array and a real serial 
uniprocessor. Let us def ine the perfor
mance (or speed), P, of an algorithm as 
the inverse of its time of execution, that 
is to say T- l , the number of executions of 
the algorithm that are possible per 
second. Then the relative performance is 
given by 

P T ssxts 
...R=~= 
P s Tp qpxtp 

(15) 

where the subscr ipts s and p refer to the 
serial uniprocessor and parallel multipro
cessor respectively, and ts and tp are 
respectively the time for a serial and a 
parallel operation. Equation (15) can be 
expressed as 

P sp Ss ts 
...R=-x x 
Ps qp sp tp 

SPEEDUP x algorithmic SLOWDOWN x 

x hardware SLOWDOWN 

(16) 

The fir st f actor in equation (l6) is the 
SPEEDUP factor previously defined, however 
the second and third factors are SLOWDOWN 
factors. In order for the parallel mul
tiprocessor to outperform the ser ial 
uniprocessor, it is necessary that the 
product of the SPEEDUP and the SLOWDOWN 
factors be greater than one. It is not 
suff icient that the SPEEDUP factor alone 
be greater than one. The first SLOWDOWN 
factor, the algorithmic SLOWDOWN, arises 
because the definition of SPEEDUP assumes 



that the parallel algorithm is executed on 
the serial uniprocessor with an elemental 
operations' count of s. Almost certainly 
an algor ithm chosen lor a parallel com
puter will not be the best on a ser ial 
computer, and the number of elemental 
operations in the best serial algorithm Ss 
will almost certainly be less than s . 

s p 

Hence the algorithmic SLOWDOWN factor ~(l 

(typically 1/5). 
sp 

The second SLOWDOWN factor, the 
hardware SLOWDOWN, expresses the fact that 
if the multiprocessor and uniprocessor 
consume comparable resources, either in 
money , in number of chips, or in sguare 
millimetres of silicon, then the time to 
perform a serial operation on the unipro
cessor, ts will be much less than the time 
to perform a parallel operation on the 
multiprocessor, t. In other words if you 
build many thousfnds of processors, each 
of them is going to be very slow compared 
with the speed of a single processor built 
or purchased with the same resources. 
Hardware SLOWDOWN factors are likely to be 
very small ("'10- 3 to 10-4 ). To take an 
extreme example, the CRAY-l acts like a 
ser ial uniprocessor (small ny:"'lO) and can 
produce an arithmetic result e?ery 12.5 ns 
(=ts ). On the other hand, the ICL DAP is 
a parallel array of 4096 processors and 
performs a parallel operation in about 250 
/.Ls (=tp ). For these two computers the 
hardware SLOWDOWN is about 1/20,000. Tak
ing the two example SLOWDOWN factor s , we 
see that the SPEEDUP might have to exceed 
100,000 before the parallel multiprocessor 
is likely to outperform the serial unipro
cessor. 

Traditional methods for comparing the 
performance of algorithms are based either 
on the assumption that the computers are 
serial, when we compare the elemental 
operations' count, S; or on the assumption 
that the computers are array-like and 
always with sufficient processors, when we 
compare the parallel operations' count, g. 
We prefer to use the more general timing 
expression (12) or (13) and obtain a per
formance comparison for computers with 
f ini te values of ny:. Suppose we compar e 
the per f ormance of ~lgor i thm (a) on com
puter (1) with algorithm (b) on computer 
(2), then 

p(a,l) T(b,2) 
(17) 

p(b,2) T(a,l) 

( s (b) +n~2) g (b) ) r(l) c(2) co x x 
(s(a)+n(l)g(a» r(2) c(l) 

r:z eo 

In the above, superscripts are used to 

66 

distinguish the computer or algorithm; and 
we note that the algorithm is specified by 
the value of s and g ( or P and g) and the 
computer is specif ied by values of ny: and 
reo (or ny: and ~). The first two faators 
in Egn. (17) come from the timing expres
sion (13) and the last factor may be added 
if the cost of computer time is a relevant 
factor. C denotes the cost per unit com
puter time. 

Eguation (17) is general and compares 
the cost performance of different algo
r ithms on different computers. If, how
ever, we limit consideration to the choice 
of the better algor ithm (in the sense of 
having the higher performance) on a par
ticular computer, then Egn. (17) reduces 
to 

(18) 

in which we note that the second and third 
factors in Egn. (l7) reduce to unity, and 
that the choice of the better algor ithm 
depends only on the ny:z of the computer and 
the sand g operat~ons' counts of the 
algorithms. 

In the comparison of algorithms, the 
e(ual )erformance line along which 
p a)=p(b nl~vA ~ ~AV rnl~ h __ ~"a_ ~~ 
- - r--J - - .... -L - ..... -- _ ........ _ ... _'"" ~ .... 

divides regions of phase planes in which 
algorithm (a) has the better performance 
from regions in which algorithm (b) has 
the better performance. Along the egual 
performance line we have 

s(b)_s(a) 
nr:z = g(a)_g(b) 

(19) 

the left-hand side of which depends only 
on the computer and the right-hand side 
only on the algor i thm. In gener al the 
operations' counts sand g are non-linear 
functions of some guantity measuring the 
size of the problem being solved: for 
example the dimension, n, of the matrices 
in a matr ix problem. The egual perfor
mance line (19) can then easily be drawn 
on the (ny:' n) phase plane, because ny: is 
always an ~xPliCit function of n, albe?t a 
non-linear one. The phase plane can 
thereby be divided into regions in which 
each algorithm has the better performance. 
Sometimes it may be desirable from the 
graphical point of view to scale the axes 
and plot, for example, the (nr/n,n) or 

(nr/n2 ,n) phase plane. It is a useful 
convention, however, always to choose the 
x-axis proportional to nW the apparent 
parallelism of the compute1:. In this way 
ser ial computer algor ithms always appear 
to the left of the diagram, and parallel 
computer algorithms to the right. 



Poisson'~ Equation 

In this section we apply the method 
of analys is developed in section I I I to 
the selection of the best member of a fam
ily of direct methods for the solution of 
the model Poisson problem. The problem is 
the solution of the 5-point difference 
approximation to Poisson's equation on a 
square nxn finite difference mesh with 
simple boundary conditions (either given 
value, gradient or periodicity). Such a 
problem may seem artificially simple and 
of little practical importance, however 
history has shown that there are many 
important problems in physics (plasma, 
astro-, and dense matter), electrical 
engineering (semiconductor device simula
tion) and meteorology that require espe
cially rapid methods for solving this 
problem (see, for example, Potter [4]; 
Hockney and Eastwood [5]). 

The method to be analysed is direct, 
and involves the optimum combination of 
Four ier analysis in the x-direction and 
block cyclic reduction by lines in the y
direction. The method is known as the 
FACR( 1) algorithm, where 1 is the number 
of stages of line cyclic reduction that 
are performed before Four ier analysis 
takes place. It represents a family of 
algorithms because the parameter 1 can be 
used to minimise the time of execution. 
The first algorithm in this family, 
FACR(l), was published in 1965 by Hockney 
[6] working in collaboration with Golub. 
Subsequently the optimum value of 
1(~log2Iog2n) for serial computers was 
discovered empirically by Hockney [7], and 
the asymptotic form given later by 
Swarztrauber [8]. 

On parallel computers, it is 
interesting that the optimum value of 1 
depends not only on the size of the prob
lem, n, as it does on a ser ial computer, 
but also on the parallelism of the com
puter as measured by its half-performance 
length, n~. Hockney and Jesshope [1] have 
given the 2 analysis for one way of imple
menting the FACR algor ithm on a parallel 
computer which is most suitable for low 
levels of parallelism (the SERIFACR algo
rithm). Here we extend the previous work 
to a way of implementation that maximises 
the parallelism (i. e. vector length) of 
the algor ithm and is most suitable for 
highly parallel computers (the PARAFACR 
algorithm). The reader is referred to the 
above book for a derivation of the opera
tions' counts for Fourier analysis and 
cyclic reduction. We will quote these here 
and concentrate on the problem of finding 
the optimum value of 1. 

SERIFACR Algorithm 

The FACR algorithm involves five 
stages, and the variables that are related 
in each stage are shown for the FACR( 1) 

67 

(0.) & (b) (e) 

--------~--------

-------.-.--------

------- --- -- - - ---

(d) (e) 

Fig. 4. Data relationships in the 
FACR(l) algorithm. The arrowed lines join 
var iables related by equations or an FFT 
during different stages of the algorithm. 
(From Hockney and Jesshope 1981, courtesy 
of Adam Hilger). 

algorithm in Fig. 4. The stages are: 

(a) Modify RHS - block cyclic reduction 
by lines means the modif ication of 
the right-hand s ide of the Poisson 

(b) 

equation on n2-r lines, where 
r=l, 2, ... , L Vectors are run in the 
vertical direction,and are composed 
of corresponding variables in each of 
the n2- r lines. The vector length is 
therefore n2- r . The number of paral
lel operations is (3X2r - l +2)n, thus 
the time for this stage of the algo
rithm is proportional to 

r=! 
L (nu+n2-r)(3X2r-l+2)n 

r=l 72 
(21) 

the factor r -1 is omitted in the 
00 

above because, as was seen in section 
III, it cancels out in any comparison 
of different algor ithms on the same 
computer. 

Four ier analysis - is performed on 
n2 I lines in_farallel. Vectors are 
of length n2 are run vertically 
across the lines. The transforms are 
real and of length n and can be per-



formed by the fast Fourier transform 
(FFT) in 2¥1tl092n vector operations 

of length n2- L, hence 

-L tb = (n~+n2 )2Y~10g2n (22) 

(c) Solve harmonic equations - n tridi~~
onal equations, each of length n2 , 
are solved for the n harmonic ampli
tudes. The vectors now run horizon
tally and are of length n. The tri
diagonal systems only involve var i
abIes from the last lines modified in 
stage (a) and Fourier transformed in 
stage (b). The time of execution is 
proportional to 

tc = 5(n~+n)n2 
-L (23) 

the coefficient five is appropriate 
for solution by Gauss elimination, 
taking into account that the immedi
ate sub- and super-diagonals of the 
tridiagonal matrices are unity, and 
that the main diagonal is a constant. 

(d) Fourier synthesis - on the same lines 
as stage (b) gives the solution on 
these lines. The FFT is used in the 
same way as in stage (b) giving 

(e) Filling in - having found the solu
tion on every 2L line in stage (d), 
fill-in takes place recursively. 
Each level, r, requires the formation 
of aright-hand side ( 2 operationsl 
and the successive solution of 2r -
tridiagonal systems. Vectors run 
vertically as in stage (a), and the 
time is proportional to 

L 
E (nu +n2-r )(5X2r - l +2)n 

r-l 12 
(25) 

Evaluating the sums in Eqns. (21) to (25) 
we find the total time of execution per 
mesh point to be proportional to 

where 

n-2tSERIFACR - s+[~q, (26) 

-L s = 4L+4+(1+510g2n)2 

q' - 4L-8+8X2 L+5X2- L+510g2n 

The equal performance line between 
the algor i thm with L leve Is of r educt ion 
and that with 1+1 is easily found to be 

68 

given by 

(1+510g2n)2-(L+l)-4 

4+8X2 L-5x2-(1+l) 
(27) 

The form of Eqn. (27) suggests that a 
suitable parameter plane for the analysis 
of SERIFACR is the (ny/n,n) phase plane, 
and this is shown in Fig. 5. The equal 
per f ormance 1 ines given by Eqn. (27 ) 
divide the plane into regions in which 
1-0,1,2,3 are the optimum choices. Lines 
of constant value of n~ in this plane lie 
at 45 degrees to the axes, and the lines 
for n~-16, 128,2048 are shown dotted in 
Fig. 5. These lines are considered typi
cal for the behaViour, respectively, of 
the CRAY-l, CYBER 205, and the average 
performance of the ICL DAP. For practical 
mesh sizes (say n(500) we would expect to 
use 1-1 or 2 on the CRAY-l, 1=0 or 1 on 
the CYBER 205, and 1-0 on the ICL DAP. 
The lower of the two values for 1 applies 
to problems with n(lOO. Temperton [9) has 
timed a SERIFACR(L) program on the CRAY-l 
and measured the optimum value· of 1=1 for 
n=32, 64 and 128. This agrees with our 
figure except for L=128 where Fig. 5 
predicts 1-2 as optimal. This discrepancy 
is probably because Temperton uses the 
Buneman form of cyclic reduction (see 
Hockney [7]) which increases the computa
tional cost of cyclic reduction and tends 
to move the optimum value of 1 to smaller 
values. 

For a given problem size (value of n) 
Fig. 5 shows more ser ial computers 
(smaller n~ to the left and more parallel 
computers '{larger n~) to the right. We 
see therefore that the more parallel the 
computer, the smaller is the optimum value 
of L-

In the SERIFACR algorithm the vectors 
are laid out along one or other side of 
the mesh and never exceed a vector length 
of n. It is an algorithm suited to com
puters that perform well on such vectors, 
i.e. those that have n~(n, and/or which 
have a natural paralle~ism (or vector 
length) which matches n. The latter 
statement refers to the fact that some 
computers (e.g. CRAY-l) have vector regiS
ters capable of holding vectors of a cer
tain length (64 elements in the CRAY-l). 
There is then an advantage in using an 
algorithm that has vectors of this length 
and therefore fits the hardware deSign of 
the computer. For example, the SERIFACR 
algor ithm would be particularly well 
suited for solving a 64x64 Poisson problem 
on the CRAY-l using vectors of maximum 
length 64; particularly as this machine is 
working at better than 80 percent of its 
maximum performance for vectors of this 
length. On other computers, such as the 
CYBER 205, there are no vector registers 
and ny;lOO. For these machines it 1s 



10000 i<:'",-----,,--.,----r-.------,,-----, 

1000 

n 

100 

, , , 
", £=3 , , , , , , , , , 

, , , , , , , , 

" , , 

, , , , 

.e = 0 

, , , 
" 

" , 
" , 

10~----~~--~L-------~L-~ __ ~~ ______ ~' 
0-01 0-1 

(n~2) 
10 

Fig. 5. The (n~n,n) parameter plane for 
the SERIFACR(1) algorithm. The solid 
lines delineate regions where the stated 
values of 1 lead to the minimum execution 
time. The dotted lines are lines of con
stant n¥ corresponding to the CRAY-l 
(=20), C~BER 205 (=100) and the average 
performance of the ICL DAP (=2048). 

desirable to increase the vector length as 
much as possible, preferably to thousands 
of elements. This means implementing the 
FACR algor ithm in such a way that the 
parallelism is proportional to n 2 rather 
than n. That is to say the vectors are 
matched to the size of the whole two
dimensional mesh, rather than to one of 
its sides. The PARAFACR algorithm that we 
now describe is designed to do this. 

PARAFACR Algorithm 

Each of the stages of the FACR algo
rithm can be implemented with vector 
lengths proportional to n 2 : 

(a) Modify RHS - at each level, r, of 
cyclic reduction the modification of 
the right-hand side can be done in 

2 -r parallel on all the n 2 mesh points 
that are involved. Hence the timing 
formula becomes 

(28) 

69 

(b) 

(c) 

(d) 

(e) 

Fourier analysis The n2- 1 
transforms of length n are performed 
in parallel as in SERIFACR, but now 
we use a parallel algorithm, PARAFT, 
for performing the FFT with a vector 
length of n. The vector length for 
all lines becomes n 22- 1 and the tim
ing equation is 

(29) 

The factor 4 replaces the 2r2 in Egn. 
(22) because extra operations are 
introduced in order to keep the vec
tor length as high as possible in the 
PARAFT algor i thm (see Hockney and 
Jesshope [1], page 315). We also 
note that the factor n has moved 
ins ide the par enthes es in compar ing 
Eqn. (22) with (29), because the vec-
tor length has increased from n2- 1 to 
n 22-1. 

Solve harmonic equations - the har
monic equations are solved in paral
lel as in SERIFACR, but we use a 
parallel form of scalar cyclic reduc
tion, PARACR, instead of Gauss elimi
nation for the solution of the tridi
agonal systems (see Hockney and 
Jesshope [1], page 289 ). For the 
special case of the coefficients pre
viously noted, there are 3 parallel 
operations at each of lo92n levels of 
scalar cyclic reduction. The vector 
length is n22-1 giving 

2 -1 
tc = (nrin 2 )310g2n (30) 

Fourier synthesis - as stage (b) 

2 -1 
td = (nrin 2 )4log2n (31) 

-r F illin9 in - at each level, r, n2 
tr idiagonal systems of length n are 
to be solved. Using PARACR as in 
stage (c) the vector length is n22-r. 
Afterwards a further two operations 
are required per point which may 
also be done in parallel giving 

1 
L (nu +n22-r ) (3X2r - l log2n+2) (32) 

r=l 72 

The time per mesh point for the PARAFACR 
algorithm is therefore proportional to 

n-2tpARAFACR = s+C~q" (33) 

where 



-1 
s = Y2(310g2n+l)I+4+(111092n-4)2 

q" 41+(310g2n+l) (2 1-1)+111092n 

The equal performance line between the 
level 1 and 1+1 algorithms is given by 

(111092n- 4 )2-(I+l)-Y2(310g2n+l) 

4+(310g 2n+l)2 1 

(34) 

10000.----------.,--.--------,n----------. 

1 000 

n i = 2 i = 1 "e = 0 

100 " -
.............. !!!o 

0·01 0·1 
(~1~2 ) 10 

Fig. 6. The (nf:/n2, n) parameter plane 
for the PARAFACR( 1) algor ithm. Notation 
as in Fig. 5. 

The form of Eqn. (34) leads us to choose 
to plot the results for the PARAFACR algo-
rithm on the (nyfn2 ,n) parameter plane, 
and this is done in Fig. 6. We find that 
the equal performance lines are approxi
mately vertical in this plane, and con-
clude that 1"2 is optimal for nlJ<0.ln2 , 

2 2 72 2 
1=1 for O.ln <ny:!<n and, 1=0 for ny:>n . 
There are no circumstances when more ~han 
two levels of reduction are worth while, 
thus justifying our use of the unstabil
ised FACR algorithm (see Hockney and 
Jesshope [l],page 348). In particular, 
for a processor array with as many or more 
processors than mesh points (N)n2 ), we 
take ny:-", and find 1-0. This case 
correspo~ds to the solution of a 64x64 
problem on the ICL DAP which is an array 
of 64x64 processors. The dotted line for 

70 

ny2=100 is shown in Fig. 6, corresponding 
to the CYBER 205. For all but the smal
lest meshes (Le. for n)30) we find 1=2 
optimal. The line for ny:=20 is also 
given, from which we conclu~e that 1=2 is 
optimal in all circumstances if this algo
rithm is used on the CRAY-l. 

SERIFACR/PARAFACR Comparison 

So far we have considered the choice 
of the best value of 1 for each algorithm. 
Having optimised each algorithm we now 
consider which is the best algorithm to 
use. This is done by plotting tSERIFACR 
and tpARAFACR against (n¥/n) for a series 
of values of n, in order to determine 
approximately which algorithms abut each 
other in different parts of the parameter 
plane. One can then calculate the equal 
performance line between PARAFACR( 1) and 
SERIFACR(I') from 

where 

b 

c = 

d 

a-b 
c-d 

41'+4+(1+510g2n)2-1 ' 

41'-8+8 X21 '+5X2- 1 '+51og2n 

(35) 

[4L+("0.2n+'):2L_,)+111og2n] 

The interaction of the two algorithms is 
shown in Fig. 7 on the (n~jn,n) parameter 
plane. This division be~ween the two 
algorithms is about vertical in this plane 
showing that SERIFACR is the best algo
rithm for smaller ny:<0.4n (the more serial 
computers), and the 2 PARAFACR is the best 
for larger ny:>0.4n (the more parallel com-
puters). LiJes of constant ny: are shown 
for the CRAY-l and CYBER 205. ~e conclude 
that SERIFACR should be used on the CRAY-l 
except for small meshes with n<64 when 
PARAFACR(2) is likely to be better. On the 
CYBER 205, PARAFACR is preferred except 
for very large meshes when SERIFACR(2) 
(300<n(1500) or SERIFACR(l) (n>1500) is 
better. 

Conclusions 

The optimum choice of algor ithm for 
the solution of Poisson's equation on a 



1000 , 

n , , , , , 
SERIFACR(2) , 

, , , , 

PARAFAC R(2) 

'~o" 

, , 
'~ , 

, 

, , 

, 

SERIFACR(1) "PARAFACR(1) 10~--~~~~~UL~----~-W~~~~ 

0·01 0·1 

(rw) 
10 

Fig. 7. Compar ison between the SERI
FACR(.t) and PARAFACR(.t), showing the re
gions of the (n~/n,n) parameter plane 
where each has the minimum execution time. 

parallel computer is found to depend on 
the ratio of the parallelism of the com
puter (as measured by its half-performance 
length) to the size of the finite differ
ence mesh. Two implementations of the 
FACR(.t) algorithm have been considered, 
and in both cases we conclude that less 
cyclic reduction (lower .t) should be per
formed the more parallel is the computer. 
We find that the implementation with the 
smallest vector length (or algorithmic 
parallelism) SERIFACR, is most suitable 
for computers with low hardware parallel
ism (1. e. the more ser ial with low n¥J, 
and that the implementation with the long
est vector length PARAFACR, is most suit
able for computers with high hardware 
parallelism. 

The above conclusions are based on the 
simplifying assumptions given in the 
introduction. The best practice is to 
wr ite a program for both algor ithms with 
variable .t, and determine empirically the 
optimum algorithm and level of reduction. 
Our graphs can be a quide. 

71 

Acknowledgements 

The author wishes to thank Chris 
Jesshope, Jim craigie and Edward Detyna 
for help in clar Hying the ideas in this 
paper, and Knut Morken for pointing out 
several misprints in the original 
manuscript. 

[lJ 

[2] 

[3] 

[ 4} 

[5] 

[6] 

[7J 

[8J 

[9] 

References 

R. W. Hockney and C. R. Jesshope, 
Parallel Computers Architecture, 
Programming and Algorithms, Bristol: 
Adam Hilger, (1981). (Distributed in 
North and South Amer ica by Heyden & 
Son Inc., Philadelphia). 

D. A. Calahan and W. G. Ames "Vector 
Processors: Models and Applications·, 
IEEE ~. Circuits and Systems, 
vol. CAS-26, (1979), pp. 715-726. 

D. J. Kuck, computers and Computa
tions, New York: Wiley, (1978). 

D. Potter, Computational Physics, 
London: Wiley, (1973). 

R. W. Hockney and J. W Eastwood, Com
puter Simulation Using Particles, New 
York: McGraw-Hill, (1981). 

R. W. Hockney "A fast direct solution 
of Poisson's equation using Four ier 
analys is", i!. Assoc. Comput. Mach., 
vol. 12, (1965), pp. 95-113. 

R. W. Hockney, "The potential calcu
lation and some applic~tions", 
Methods comput. Phys. , vol. 9, 
(1970), pp. 135-211. 

P. N. Swarztrauber, "The methods of 
cyclic reduction, Fourier analysis 
and the F ACR algor i thm f or the 
discrete solution of Poisson's equa
tion on a rectangle", SIAM Rev., vol. 
19, (1977), pp. 490-501. 

C. Temperton, "Fast Fourier 
transforms on the CRAY-l", Infotech 
State of the ART Report: supercomput
ers, Vol -Y-Ea:s-C. R. Jesshope and !. w:- H""OCkney-, - Maidenhead: Infotech 
IntI., (1977), pp. 359-379. 



PARAJ·T·EL .o:ISSO. AlID BllIA.BHOIlJ:C SOLVERS 
DIPLEIIBJIll'El OIl TD EGPA KULT:IPROCESSOR 

Jfari_ VajtezoUo 

:Iaatltut. or T.Oba1oal Cyb.r.aetl •• 

Slovak A ... -.y .r S.l ..... 

Bzatl.1a .. , C •• oho.lovakla 

Ab.tzaot 

:Ia tlai. pap.r tJa. u.. or tJa. JlGPA 

(B:r1aDpD. Qeaeral hzopo •• Arra7) .oapa
t.r .7.te. or tJae IIDID (lIal.Up1. :Iaeh ... -

ti •• - .1tlpl. Data) .... or pazall.l1_ 

ror .01~ tJae •••• 1 .111ptl. b.uada:I"T 

.. lu. prebl ... fd the ......... rourth 

.rd.r. 1. pre ... t.4. A 41r •• t •• th.4 r.r 

•• 1~ tJae P.l .... eq1ll&tl ..... a .ea1-
41:reot blhanaoaio .01 .... r ar. .t:raotur •• 

ror pazall.l exeoutl0. .. tlai. hl.zar

ohloal IDl.tlproo •••• r .7.t... Both the 

.o.patatleaal ... iatU'OollllUlli.oatl .. ro

qu1:&'8IR .. t. or til. q.t.. are tak.. :Lid. 

a •• euat ia .rd.r to .iD1a1.. til. tzaae

r.r azul .~satl0 •• t.p. requ1re4. 

Both aleeri tlua. 0 ... i4.ro4 ha .... b ... a.-

t1ll&117 :rua .. the JlGPA pazall.l ... pat.r 

wl th 0 ... 14.zabl. .p •• 4 - up. :1 •• "pari-

... t ....... tlal .x.outl ... 

:Iatro4u.tl0. 

From the acIY .. t or parall.l .o.pa

t.r., att .. tl .. ha. b ... pat4 to 4 •• 1c
Iliac ~l.l .. t a1pri tluae r.r til. _.

ri.al •• 1utl.. fd tJa. bO'all4a:I"T .. 1 •• 

probl... r.r .111ptl. partlal 41r.r .. -

Ual equaU ...... ac thea pazaU.l aJ.co-

ritlua. r.r •• 1 ... iDC P.l ....... b1hanaoaio 

Tbi. v.~ ......... 4 da:rias a.th.r'. 

.ta7 at DDID, E:1I'laacea - lIirab.rc Vai .... :r

.lt7, ia 1981, .... r til. re.oa:roJa r.ll.v

.laip fd tJae .\1OZ1U14.r ........ b.14t 1' ..... 

datl ... 

0190-3918/82/0000/0072$00.75 @ 1982 IEEE 72 

eq1ll& tl... are rrequ .. t17 41.ou ••• 4 ia 
.tuti.. ..ao.:ra1ac pazall.l _.ri.al al

COri tJDI. [ •• c. 1,2]. Eap .. la117, pazal101 
P.l.... &a4 bihanaoai. ..1 .... r. r.r S:IND 

(SiDC1. :ta.t:ra.U .. - lhI1tipl. Data) aa
oh1ae. are v.U 4 ..... 1.p04 [3]. Hovev.r, 

1 •• o.t fd th ••• a1prithm. th. uaab.r 

.r proo •••• r. requlre4 1. equat.4 to the 

_b.r .2 or 4i •• r.t. ..lutl.. ..lu.. ia 

tJa. 4oaaia. D •• pl t. the ra.t that th.re 

ez1.t. a _ohia. vith 1a:rce _lIt.r or 

pro •••• or. [4] aa4 the .ext ... [5] i. 
b.lac 4 ..... 1.pe4, o. pazallel q.t ....... -

r.r .. t17 a ..... l1abl. 1 t 1. fdt .... t p ••• ll1t-

1. to ••• t thl. 4emaad ror .01TiDC larco

•• al. (.;::: 128) probl ... ari.iDC ia pza_ 

tl... The ••• t :I'OO .. t •• apari ... or a.

tual per.t.zaaao. or pro ••••• r a~7. :ICL 

DAP aacl BoZT01lf:h. BSP, a. vel1 a. fd 

thro. plpel1ae .... h1ae., •• Pol ...... 1-

... lac ha. appoaro4 ia [6]. 
Oa Jl:IMD .7.t ... our.reat17 ia .peza

tl.. the _ber or pro ••••• r. 1. aot 

c:rea t.r thaa ,50 [7] aa4 th.:rf4.re the al

COri t.. .heal.4 be .041rl.4 r.r pza.tleal 

..... tatlo.. S ... It.zati ...... the4a or 

.1a •• bl tn. ha .... lit... te.t .... til. Quap 

aacl c.* .7.te •• [8,9]. Th ••• ab peiata 

ver. 41 ... 14.41 1.t. pertl ... , oaoh .r til .. 

a •• l ... d to 0 •• pro ••••• Th. ezpezoia .. t. 

ha .... ab .... the lIt •• t per.t.:I'IIIaD.O. r.r til. 

pare17 all}'JlOJla:roao. ..th.d wiaere the 1 t.

zati .... lu •• are evaluat.d vitll .... t aJIl'T 

••• 41 ror .'JD,OIa:roRisatl ... Hov..,..r, ••• t 
fd tJae P.l •• o ••• 1 .... r. are ~. 

aa4 th • ...t'cw. .ip1t'leaat17 •• re ~1-

oult t. 1apl .... t ~1.1 .. t17. Th. per-



f'OrmaDo. i. stroacly iJJf'l ... c.d by 8}"Il

ohroniza tion of' the process and. by tran
sf'erriac the int.rm.diat. results b.t
w •• n the proo.ssors. 

Y. have implement.d two synohronous 
algorithms on the EGPA system [1 OJ , whioh 
is one of' the ep.ratiDC MIMD oompaters in 
the wo .. ld. Th. ourr.nt ooDf'igura tion of' 
this hierarchioally oreanized multipro
ce.sor ... pr.sents an .lementary pyramid •• 
Th. aim in developiDC the system was to 
a.sur. a high rat. of' f'lexibility of' 0-

peratiDC mod.s. Some charact.ristics of' 
the system are described in the f'ollo
wiac s.otion. 

In the third •• otion d •• oription is 
given of' the two algorithms sel.ot.d f'or 
implementation. Th. Pois.on equation was 
solv.d by the direot m.thod .siDC the d.
oomposition prop.rty of' the matrix whioh 
r ... lts f'rom the disoretization at' the 
problem [11]. Th. biharmonio problem sol
v.d by the s .. idireot m.thod [12] bas.d 
on splittiac the f'o~h-ord.r elliptic 
op.rator into two op.rators of' the s.
oond ord... is the .eoond one under oon
sid.ration. Th. algorithm prooe.da it.
rativ.ly Where sol.tions of' the two Poi
sson ..-ations are to b. oompat.d in on. 
it.ration. 

Th ••• f'ast .eq.ential alg9rithms ha
v. been tailored to the EGPA oonsideriac 
the ooan.otiona b.tw •• n the prooes.ors. 
Th. allooation of' the .. b-taSka to the 
proo ••• or. aff'eot. the ammount of' iJJf'or
mation trana:f'.2"Z"4Ml aDIl uae .ynohroniza
tion .tep. required. Thi •• trategy i. 
d •• oribed in the f'ourth s.otion of' this 

paper. 
Th •• xeoution re.ult. are summari

z.d in th. f'inal •• otion. Th. eff'ioi.n-
0'1' of' the perfomano. defined there is 
problem dependent and f'or .uff'ioiently 
large di.oretization param.ter. N the 
eff'ioienci.. are high enough to .upport 

73 

the oonolu.ion that EGPA i. a viable al
ternativ. to sequential oompater f'or the 
DUIIl.rioal solution of' the .lliptio equa
tions considered. 

Characteri.tio. of' th. EGPA .y.t .. 

The multiproo •• sor EGPA has b.en 
d.veloped and run at Erlaacen UDiv.r.i
ty. Xt refleot. the idea f'ormulated by 

Dndl.r, Hof'lIlIUIland Schneid.r in [13J. 
Xt ••••• ntial f'.at.re. are an .xtensibl. 
hi.rarchioal .truoture oompo.ed of' pyra
midal o.lls and more op.ratiDC mode. u
.iac, a. f'ar as po.ible, oOllllll.rcially a
vailabl. hardware. Th •• et of' operatiDC 
mod.. involv.s array-prooe •• iDC, a •• eoia
tive oompatation, data-f'low approaOh, mi
oropip.liniac, multiprcoes.iDC a. w.ll a. 
.equential oompatation. On the Figur. 1 
a model of' the 3-level EGPA-pyramide [14] 
is demonstrat.d, wh.r. on. oirol. oorr.s
pond. to a proo ••• or and it. a •• ooiat.d 
m.mory. The arrow. ill •• trat. unidir.o
tional oonn.ction b.tween a proo •• sor 
and the memory of' its n.ighbour while 
the oth.r lines r.pr •• ent bidirectional 
cOIUl.otions. 

Fipre 1. 
Th. ourrent ooJJf'igaration eensi.ts 

of' f'iv. proo.s.ors whioh f'orm a pyramid. 
with f'our .lave prooe •• or. in the bas. 
(fUrther A proo ••• ors). Th. on. proo •• -
sor in the head of' the pyramid. (B pro
c •• so .. in the f'ellowiac text) i •• ither 
eontrolliac a eompatational proe... or 



OOlDp1ltiDa a .. b-taak or the pH.1.. 11k. 

the proo ••• o:re ta th. • ••• 

TIl. pHo •••• r. all'. 32-.it 0 .. tro1 
ooaputera of tho A.EG 80-60 typ.. Eae1a 
proo ••• or i. aioropro~.1. alUl .an •• 
u •• d r.r a •••• iatiT. pro •••• iDa with a~ 

dUi0ll&1 hardwaro. The .,zp.:ria ....... Uh 

T.rtioa1 pro •••• iac [14J .h •• promi.iac 
a ••• 1.zati .. ra.t.r •• 

Tk. o ..... ti... b.t.... proo •••• r. 
all'. rea1is" tJazooup th. mal,tiport .... _ 

717. Tk. pro ••••• r. or th. array are .. i
p.our .... ot .. i. beth direcU.... The 

proo •••• r ta tho t.p OILD ao.... the ... _ 

... ri.. of a11 tho .1aT. pro ••••• r. Wbi1. 
th. a ..... ta the .ppo.it. directi .. d ••• 
DOt ozi.t. 

h. t. tho tat.ro ... oti ... tho dat. 

twaaat.r •• twe.. tho diacoDa1 proo •••• r. 

i •• b.tt1 ... Ok. :Ill ..... rioa1 app1ioatio .. 
it i. oft .. tho .... 10_ t tat.ntedia t. ro-

.. 1t •• Iloul. ••• aTai1a.1. t. eaola pro •• -
••• r artor a .yaOhroaizati ••• t.p. Gao 

way Jaoy t. .T.ro... it 1i.. ta tzaaapor

UD&' th. data Tia til. 10rt .r ript .. ich
beur., a. d ••• ri ... ta tho rourth •• oti •• 
or thi. paper. BoweT.r, eae1a tzaaaport or 
eTa1uated "_1t. i. tim ..... -iac ... 
theror." til .... p.zati •• or .eTora1 pre

o ••• or. ozooutiDa ODe taak i. OD1y u •• -

ru1 U eae1a proo •••• r .o:de. .. 1ar.. ill

d.pell4 .. t data .uaatiti... For ... r. d.
tai1 •• iII:t .... ti .. o .... raiJIa' tho .PA 

.yet .... rar.r to [1 oJ • 
Boror ... UiDC .... tho para11.1 

propoaa T.r.i .. of an a1coritJua .. EGPA, 

th. prGP'aa roll' the ...... ti.1 ozooutioa 
1. 1fZ'i U.. ta tho .A.LGOL-6S-11k. pJ:"Op"&IIa-

.. iac 1 ......... SL3. Tk. propoaa ror paza1-

1.1 ozoouti.. .h.r. eaCh pro •••• or .z ... -
10.. .. iB4.pell4 .. t pro ••••. i. th.. re1fZ'i

tt.a rro.. th. • .. u .. tia1 propoaa u.iDC 
.pooia1 iBat ... tio. ..10 or tho EGPA-Moai

tor [1.5]. Goaoza11y, a .p •• ia1 p~ac 
.. oclul. •• Jaoul.. be ro:nau.1at •• roll' eae1a pro-

74 

• ••• or. Sue1a .. 0da1. ooataiBa a •• 10 of 

prooedaro. to b. ozoouted a. ..11 a. 4.

.1azati... of Tariab1... Tk. Tariab1 •• 

.re or 10oa1 aa4 .1.bal. typ... TIl. Taria
b1.. or th. fona.r typo are 1.oa1 ta til. 

mata pr~ or ia ... ..r the pro •••• or. 

oz ... t ••• hi1. th. 1att.r 0 ... are u ••• 
by .. or. proo ••• or .... are 10eat04 ta 

.p •• ia1 "".717 ....... 10.. Ir th. proo •• -
••• oz ... t.. oa a11 A proo •••• r. .ro th. 
....., a. it has .... 10k. oa.. ill .. r ap

p1i .. t1 ... , .ll1y 0 •• propoaa .. 0_1e f.r 

a11 pre ••••• r. has to b. wri tt... Jlo.o
v.r for eaCh pr.o ..... the A pro ••••• r., 

0.. .p •• ia1 .. oda1. i. to b. fo~at.4 to 

oreat. ooatro1 ....... 10. ..." the oorre.
p .. cUac .1 •• 1 Tariab1 •• Gall b. d.01aro4. 
:Ill oN.r to i ... tiry the proo ••• or. U the 

id .. ti0&1 proo..... .ro rail o. .11 proo.

..or., th.re i. a "f'aria.1. for aotua1 

proo ••• or Da8lb.r in the prosram aoclul.. to 

•••• 01ared • 
Th .... iIl prosram for th. B proo ••• or 

... o.pa •••• proo.4Ian. for iaitia11eavl .. , 
oz ... ti .. , ayaohroDizatiOD ... t.lnIiDati •• 

..r the wb01. oompatatioaa1 proo •••• 

The Poi ....... BihalnIomo S01ver. 

Tk. DiriGhl..t prob1 .. ror P.i .... 
.. uati.n ta 10 •• 4i8I ... ioDlfor .. 1IDk.Do .. 

:tuBotioa u ... roll' civ" r-oti ... r ... 

• 
taR 

•• ii 
(1) 

•• a UBi 10 .. uar. R with the 1touIl4a7t7 it i. 
oo .. i •• rod. Ut.r di.or.ti.,iDa the 40 ... ta 

ia .oth 4Iireoti... by a at.p or ai •• 

(JJ+1 )-1 for aa tat.pr JJ, th .... 0Il4 or-

d.r d.riTaUT •• ta (1) GaIL b. approz1Jlla
ted by f'ialt. diff • ..-.. foZ'lllUl.a •• Tk. 

ro.1i1tiDc .... :re. 1iaoar ayat .. or .. ua

ti... ia ..... (2) 



where the veotor u oontaiaa ~ value. of 
u to ~e eva1ut.4 in the int.rior srid 
point.. The matrix M i. of known ~look

tridiacoaa1 .tra.otur. M = (-I, T, -I) vi th 
tridiagoaa1 ~loCks T = (-1,4,-1) and with 
id.ntity matrio •• I of ord.r •• 

Th. algorithm of matrix deoompo.iti
on [11] is adopt.d to solv. (2) making ad
vantage of the prop.rty 

T = VDVT 

wh.r. 

V :: (ViJ ) = 1.:1 ain !i~, 
i,J = 1, ••• ,. 

and 

D = diag (d1,d2, ••• ,4.) with 

i1l: 
di = 4 - 2 00. ;;r 

i = 1, ••• ,. 

ar., resp.otive1y, the .igeuv.otor and. 

eigeDY&lu. matrio.s of T. Def'iBiD&' the 
_trioes 

i = 1, ••• ,., 

lows: 
po. Eva1uat. the right-baDd sido v.otor 

w of (2). 

P1. Comput. vw == Y, 
where Y i. a matrix r.presentation 
of w. 

P2. Solve for i = 1, ••• ,. 

Tilii = 7i 
wh.re Yi is i-th row of Y and 

i = 1, ••• ,. 

are of order •• 

Pl. Comput. vU = U 

(4) 

wh.r. the i-th row of the matrix U 
ia ui traaapo •• d for i = 1, ••• , •• 

A. fast a1corithm for .01ving the ~i
harmoBio aquatio. 

75 

u ltltltlt + 2ultltYY + 'U..yyyy == f i. R, 

the ~OUDdary conditions being (5) 

u = g1' Uza = g2' on R 
is propos.d in [12J. On. it.ration of 

the a1cori thm pro ..... ~ 

u(m+1) == [2 ... I _ 2( 1_w)2M-1 (M-1B)]U (.) 

2 (.-1) 
-0) u + d (6) 

wh.r. the ~ ord.r matrix H ia a .par •• 
diagoaa1 one .f the form 

H == diac(I+Ho,Ho, ••• ,Ho,I+Bo)' with 
BO = (1,0, ••• ,0,1). Th. v.ct.r 4 i. com
put.d from oon.tant v.otor. ~ an4 0 whioh 
r.su1t from the di.or.tizatioa of the gi
ven funotion. of (5). Th. pa:ram.t.r OJ i. 
n.c •• sary for en.uriD&' the couv.rgenoe 
of the proo •••• 

The i t.ra tions (6) are computed un-

til 

max I u(m+ 1) u(·) I <:: € 
i.1 - i.1 i,.1=1, ••• ,. 

~.oom.. valid for a pre.ori~ed aocura
cy £ • The iterative ao1ution u of (5) 
is then obtained by 

u = Fu,(m+1) (8) 

(.+1 ) 
wh.re u re .. 1 ta fro. (7) and the 

~10okdiagoaa1 matrix P' = diag(V,V, ••• ,V) 
i. of order ~. 

Th. algorithm proo •• d. in the follo
wing st.ps: 

• ...... 1 

BO. Eva1uat. the oo .. tant v.otors b 
and 0 and. oomput. 
eI = FMi 1b + ~1(Ml1.). 
S.t u(O) = 0, u(1) == .-1~. 

LA.B: • _ • + 1 

B1. Ca1cu1at. w(m) = HFu,(m) taking 

advantage of the .par.ity of B. 
B2. Co.put. w == h(·) fro. the 

spar •• veotor w(·) and. ord.r it 

into a matrix Y. 

Bl. Solv. TiYi = Wi wh.re Wi ia 
i-th row of Y and. Ti ia as 



d.ef'iu.d. ill. ( 4 ) • 

B4. 501 v. T i. "iii. • Y i. tor lii.' 
i • 1,2, ••• ,N whioh are oompo-( ) 
• eat •• t the v.ot.r Mi1(Mi1H)u m 

from (6). 
BS. Evaluat. u(1II+1) 'by (6) and. ex.

out. the t.st (7). 
B6. R.peat trom LAB i.t (7) is n.t 

valid.. 
B7. Evaluat. u 'by (8). 

!!pl.meatati..n .t the a1gori.thma 

To .x.out. both the algorithm. on 

EGPA w. hay. tri.d. t •• pli. t up the oom
putati.oaa1 task i.nto tour porti.o .. amoDS' 
the tour prec ••• or. oD.1y. Th. rol. ot the 
B proo ••• or i. to .up.rvi..e the proo ••• 
and. to reali.ze the output ot .valua ted. 
re.ult •• For this rea.on it will be tur
ther .upposed. that Ii is a IllUlti.pl. of 

4 • F.r exp1aD&tion purpo ••• let u. 
d.i.tiasuiah the ~roo ••• or. Oil. the A 1.
v.l 'by AJ, J • 1,2,3,4 as .hoVII. ill. the 
fisare 2. 

(A3,A 1) (A2,A4) 

(A4,A2) (A 1 ,A3) 

fisa:re 2. 

Th. lef't and. right nei.chbour. ot 
ea •. preoe.sor AJ d.ef'i.n.d. 'by A.JL aD.d. AJR 
r •• pecti.v.ly are Civ .. i. par.nth ••••• 
The tir.t t.Z'III c.rr •• pond. to the A.JL 
while the •• ooad. ... t. the AJR t.r 
J = 1, ••• ,4. T. ideatity valu ••• t a 
gl.bal variable x, w •• hall re.p.oti.v.ly 
write x(J). x(JL) and. x(JR) ao.oriiac to 
the def'i.D.i tion .t pre •••• or. AJ, AJL 
and. AJR. l.I'Iarth.r. t.r a more •• IlT.D.i .. t 
t.zmalati..n ot the a1corithm., .om. pr.
•••• i.DS' taaotioas are intr.du •••• 

Fer the .yaohr.D.izati.n, us. i.. ma
d.. of Yait (0), wh.r. the ooad.iti.on 

76 

.xpr •••• d. 'by 0 lIIU.t b.oom. valid. bef'.r. 

proo •• d.i.DS' to the •• xt .t.p ot the a1-
corithm. In praotic., the pro •••• or i • 
askiDS' duriac it. a.tiv. wai.tiDS' .tate 
1'.r r •• p .... t. wh.th.r 0 i.. b.iac ful
tilled or aot. For the traaepori pha •• 

realiz.d. by pr.o •••• r AJ, wh.r. a quar
t.r ot array X lo.ated •• the pre.e.sor 
AJR i. traasp.rt.d. into the m.m.ry of 
A.JL, Traas (XJR) i. u •• d.. J:f' the valu. 
ot a variable x i. to b. traaeported. ill. 
the .am. way, the .tat .... t Traa. {x} i. 
u •• d. aualO8'ChUl17. 

In the procram f.~at.d. f.r pr.
oes •• r AJ, Ex.out. (5) wi11 d.8IlOt. ex.
outi.on .t the wh.l. task .1' .t.p 5. In 
•• ntra.t, 'by Ex.out.J (5) oaly the J-th 
quart.r ( w. reoall J = 1., ••• ,4) .1' the 
task in .t.p 5 will b. .xeout.d. 'by the 
pro ••••• r AJ. 

TurniDS' baok to the a18'ori.thm f.r 
Poi •• on equati.on, 0 ••• aD. ob.erv. that 
.t.p. P1 aad. P2 ar. ind..p.nd.eatly •• 1-
vabl. on all tour proo.s •• rs. Ind..ed, tor 
Ii b.iDc a IllUlti.pl. of 4, the matrix pro
duct of .t.p P1 oaD. b. p.rf'OZ'llled. in tour 
.ubtasks partitioniac the matri.x V h.ri
zontally into tour reot&J:I8'Ular mat rio •• 

VJ , J = 1, ••• ,4, haviDS' the sam. typ •• 
How ..... r, bef'or •• al.u1atiac the matri.x 

produ.t. VJY = YJ Oil. four proo •••• r. 
ooncurreatly, the o ... taat matrix Y 
.hould. b. evaluat.d. by .ach preo •••• r 
oompl.t.ly. Yithout aay oommaaioation 
b.twe.n prooe •• or., in .t.p P2 the r.w. 
of YJ for each prooe •• or AJ are oaly ne
ed..d tor .valuation of UJ whioh i. row
wise .truotured. from Ii/4 .olutio"ui 
of (3), wh.r. i = (J-1)Ii + k, k=1, ••• ,Ii. 

In ord.r to compute the matrix IllUl
tiplioati.on iu atep P3 i.n parallel, the 
oomplete matri.x U lllUat be available to 
each proce •• or. Hence, att.r atep P2 
.yaohroni.zati.on aad. traaaport ot quar -
tera UJ of U b.twe .. d.i.aconally po.i.ti.o-



ned pr •• e.s.rs should f.ll.w. The syn

Obr.Dization .f the prooe.s i. realized 
by .ettiug the value .f the variable ber
fertig on prooe •• or AJ OR ~ after this 
pr •• e.sor ha. fiai.hed it. Job on .teps 
P1 and P2. Eaoh pr.oessor AJ is waitiDg 
aotively until it. right n.ishbour i. 
r.ady in .rd.r to be able to transport 

the array ij JR fro. AJR into the .... ory 
of AJL. U this transport i. realiz.d 
the value f.r the variable transfertig 
on AJL i. reset on true. Howev.r, it may 
oocur that the left neighbour AJL ba. not 
y.t finiahed the exeoution of ateps P1 
and P2 or even the prooeasor AJ has not 
obtain.d the portion of U whi.h should 
be transp.rted to it by AJR fr.. it. 
diagonally l.oated prooe.s.r. 

In b.th oases it i. neoe •• ary to 
wai t in order to realize the transport 
phase of the algorithm oompletely. Then 
under the same principle a. in .tep P1, 
step P3 oaR be oalculated in parallel. 
Prooe.s.r B realize. output of the re
aultiug matrix U in the fini.hiug .tag. 
of the EGPA Poi •• on Solv.r (EPS) algo
ri thm whioh oan be formula ted for para
llel execution on four proo •••• r. AJ, 
J = 1, ••• ,4 from the vi.wpoint .f one 
proc ••• or AJ as follOW.: 

berfertig .--~ 

transf.rtig - ~ 
Ex.cut. (PO), 
ExecuteJ (p1,P2), 

berfertig (J) - !!:!!. 
Vait (b.rferUg (JR) ~ !!:!!.), 
TraIUl (UJR) , 

tranafertig (JL) - .!£a!. 
Wait (berfertig (JL) - .!£a!.), 
Wait (tranafertig (J) - !!:!!.), 
ExeouteJ(P3). 

The algorithm for the biharmoDio e

quation is .f an iterative .truoture and 
is therefore more demandiDg on synchro
nization. In the preprooes.iug pha.e the 

77 

right-hand side veotor. b and 0 are to 
be evaluated on eaoh prooe •• or. Aooor
ding to the previous explauation of the 
EPS algorithm, the evaluation of the 
veotor d oan follow in parallel whereby 
eaOb prooe.sor evaluate. the corre.po~ 
diug quarter of the veotor. 

Attention i. focused to the itera
tive .ection of the algOrithm whiOb i. 
oruoial from the viewpoint of implemen
tation effioienoy. We introduoe a global 
variable m where the _b.r of cu.-ren
tly evaluated it.ration i. b.iDg .tor.d. 
The fir.t .ynohronization pha.e is in 
the begiDDiug of eaoh it.ration in order 
to start the new iteration after eaoh 
prooe •• or ha. fiai.hed the evaluation of 
preoediug i tera tion values. :It i. reali
z.d by waitiDg AJ on AJR, i.e. until 
m(J) = m(JR) and by transport of values 
of m after whioh the proce.sor AJ is 
waitiJlg until m(J) • mdiag(J) and 
m(J) = m(JL). Here, mdiag(J) is the va
lue of the variable m tralUlport.d from 
the diagonally looated prooessor to the 
prooe.sor AJ. The oompatation .tart. 
with the evaluation of the eomplet. 
"window" BFu(m) on eaOb prooe •• or in or
der that parallel multiplioation by VJ 
be exeoutable. The twofold elimination 
pha.e i. to be performed analogously a. 
in the previous algorithm. Baviug .tored 
its portion of preo.4iDg iteration valu
es, eaoh prooessor can also oalculate in
dependently oorrespond1ug n.w iteration 
values u(m+1) by (6). 

Sinoe eaoh prooes.or AJ oan evalua
te the maximum value max of differenoe. 
of two auooe.siv. iteration value. in 
it. oorrespondiug quarter of grid points 
only, there is a problem how to deoide on 
the termination of the proc.ss (6) by 
(7). For this reason a global boolean 
variable iter ba. been defined and. ini
tialized .n eaoh prooe •• or by fal.. in 



tb.. ~ ~ .. it .. U ... Zt. va
l.. i. ~ •• t OD trae.. tko.e proo •••• r. 
wh.~ BIaS i. pea.ter tbaa a siy" E. • 

Att.r the .valuatioa .t aax .. proc •••• r 
A.1 tke Tal .... r.t.rtil' (.1j ia iaorea •• 4 

1t7 1 aa4 t.ll.we4 b7 .~sati •• aDd 

..... equ .. tl,. b7 the traaap.ri of .... i
t.rati .. val ••• a ••• 11 a. of it.r val" •• 

•• tw... tiacoaa1 pro •••• or.. Th. Tal •• 
of the .)'DOJaroaisati .. Taria.l. traaa

t.rtil' i. :Laorea.eel 1t7 1 ill tk. lett 
lI.icJa1totlriJlc proo ••• or AJL. 

Th. ".1 ••• et tk. it.r Taria.l. 
trea .ach proc •••• r •• lDc availa.l. to 
all of th .. , tke 4 •• i.ioa tro .. tk ••• Ta
l ••• i. ma4. _.tk.r tk. it.ratioa will 
OOlltlallo .r the tiDal ..... tatioll with 
oat .. t of reaulta all_14 tollow. Th. ti
:aal aatrtx _ltiplioatio. i. p.r.tona.4 .. 
A proo ••• or •• hil. the •• t .. t of reault. 
i. ma4. t~ the B proo •••• r. 

T1ae profP"lUBlllilll' .oh .... tor parall.l 
exeoutio •• t ... ite2&ti.1I of tko EGPA 

BilaaZ'lllOlli. S.lvor (EBS) alcoritlull tor 
... h proo ••• or A.1 i. the t.ll.willl'l 
UB, .. +- ... 1 

Wait ( .. (.1) = .. (JR», 
Trazut ( .. ( JR» , 
Wait ( .. (.1) = ..uac (.1) !!!i 
_(.1) I: .. (JL». 

~ 

it~r _ tal •• 

b._te (B1), 
b." •• .1(B2,B"B4,BS), 

.u. max - £ !!!!!l 
it.r (.1) - l!!!!. 
hrf'.rtiC (.1) - •• r.t.rtil' (.1).1 

Wait ( •• r.t.riig (.1) = 
= •• r.teriil' (JR»; 

Trazut (V5;», 
TraIIa (iter (a» , 

traJUl1".riiC (.n.) _ traaator

til' (.n.).1 
Wait (traaat.riil' (JL) = traaat.r
til' (.1) alUl •• rf'.rtic (.1) • 

= •• r.tertic (JL», 

78 

.u. itor (J) !£ it.rtiac (.1) !£ it.r 
(JL) !£ it.r (a) !!!.e repeat tro .. 
UB. 

R •• "lt. aDd .01101"411,, r .... r.k. 

The two all'.n tlull. of the previous 
•• 0ti.1I •• re ex ... te4 OD EGPA. Alao the 
.eq ... tial v.r.i... 4 •• ori •• 4 ill thir4 
• .. tiOll were ~ .. a .u.sl. pr ...... r Am 

80-60. Th. .p •• 4-.p tor parall.l iDlpl.
"OIIta tio. of the a1l'en tlull ap.illat the 
.eq ... tial 0.0 i. 4et'ill.4 b7 

t. • = -tp 

wh.r. t. i. CPU ti ... of the .onal axe

.. ti .. alUl tp .orr.apoacla to the parall.1 
•••• Th. a ...... 4 .tti.ieD07 of :i.Jlapl ... en
tati •• i • ..-1 •• t04 ill t.Z'IIl8 of • -,. 

• = !. 100 ~ • 
1I'h.~ • i. the _ber of proo ••• ora par-

ti.ipatilll' ill .o .... tatio:aal .oa. T1ae 

tim. Tal"o. siY" i. Tabl.. 1 aacl 2 are 
CPU tiDI.. ..ea ... reel tor the mol. oom

patatiolULl pro •••• IIOt iD01.cliJIc the ti
••• tor the outpat of re_lt •• SiDOR 
•• th the a1l'eri t.. EPS aa4 EBS llav. 
•• 011 tail.r.4 t. employ fear A proo •• -
.01' •• 11 aritlull.tioal aJUI t .... p.rt op.

rati"', • = 4 i. 00ll8i4ereel ill the at
tioieD07 r.ault •• ZII .pit •• t this the 
re.ult. t.r •• S due t. tho 5-proo •• -
•• 1' ooa:ticuzoat:l..11 of EGPA are al.o elY" 
:I.a pareatk ••••• 

Th. ~.u1t. f.r .olnlll' the Poi .... 
equatio. t.r tk. taaoti •• x2.,.2 are .am-
man.eel t.r '9'ar:l.... Jr ill Ta.l. 1. Tb.o 

.p .... "p OaD •• .... t. iaorea.. i. 4.

........ .11 tk. pro.l... .:1.... Xt ill ..... 
tra t.. the ia:tl ... o. of the ayaoJaroai.a
tioa aJUI t:&'all8pori pha.. oa tke .tti

.i...,. 1fIli.h iDOrea... apparOlltl,. _011 

the illdepea4oatl,. .01Ta.l. ari tJua.tioal 
taak ••• 00 ... cloDI1 .. lIt f.r ~. Jr. S~ 



o. th •• t.pe of th. a1cOrit_ are hicJa1,)" 
parall.l there ari ••• th. qu •• tioa 1I'Jay 

th. .p •• d-up ratio do.. DOt tead aor. 

010 •• 1')" t. the ideal valu. of 4. TIle 

mai. rea.o. i. tlla t all the A. proo ••• Or8 

evaluate th. oo.pl.t. v.otor 11' .iaa1ta:a.e

... 1')", i ••• the .pe.d-up for thi •• tace 

B t (ia •• 0.) • tp(ia •• 0.) 

,2 6.9.59 4.8'7 

40 12.988 6.494 

64 49.8,34 16.449 

80 94.8.52 28.610 

128 '74.624 10,.2'7 

of th. a1cOri t_ i. 1 o:a.1,)". (Of' oour •• , 
it alpt b. po •• ibl. to clivid. the ta_ 
of evaluati .. 11' i.to four proo •••• r. 
but with additioaal oo.t. for ~ 
aillatioa a:a.d traaaport of porti ... 

of 11'.) 

• .(ia ~) 

1.44 ,6.0 (28.8) 

2.00 .50.0 (40.0) 

,.0, 7.5.8 (60.6) 

,.,2 82.9 (66.,) 

,.6, 90.7 (72.6) 

Table 1. 

naG biJaaraoaio .qaatioa (.5) was .01-

v.d for the uDka ... tuDotioa x'_",2+2xy 
for •• re value. or E. oa a vari.ty or 
cr1de. 'l'Iae it.rati .. pa:rea.t.r. IJJ 1I8.d 
are •• timat.d a. propo •• d ia [16J. :It oaa 
'be .... fro. Tabl. 2, •• r. th. IDIIIIb.r of 
it.rati .... oorreepo:a.de to th. aooura.,.. 
E = 0.001, tllat th. r •• ulte for the aleO
ri 1Iba EBS are 1... ".pe:a.d .. t o:a. pa:rea.-

tar B thall i:a. the preo.diDff aleori 11_. 

OR th. oth.r ha:a.4, th. effioi8RQY r ... 
• ult. aoJaiev.d are .1iSbtl')" wore. tha:a. 
ia th. alpritba BPS ev .. for larp B. 
1:t i. due to th. iterative _tura of 

the a1cOritlua wb.ere t1l'. ~liIati .. 
au4 traaapori plIa ••• witJaila ... it.ra-
ti •• aff.ot the .p .... -up .... idera.l')". 

B a t.(ia •• 0.) tp(ia e.o.) • • (ia ~) 

,2 27 .50.,84 2S.8,8 1.9S 48.8 ('9.0) 

40 " 96.742 43.189 2.24 .56.0 (44.8) 

64 60 4,6.387 161.010 2.71 67.8 (.54.2) 

80 69 782.288 277.406 2.82 70.S (.56.4) 

100 7.5 1 ,89.704 446.849 ,.11 77.8 (62.2) 

Tabl. 2. 

1:t .hoal.. be ~e.ticat... ..tJaer a fiv.

pr ..... or reali_at i •• 1I'oul" briDe aa i.-

79 

preY_eat of • a:a.d e for both aleoritha •• 

1:t would al.. b. iat.re.t~ to kDe1l' 



whether the syaOhrODizatio. ot the A pro
oessors per.toraed through the B prooes
sor woa1d yie1d ~etter resu1ts or .ot. 
We .ote that there is a1so a ohaaoe to 
.. e the FFT routiae iaatead of a 01assi
oa1 matrix prodaot prooedare ia the a1-
goritha EPS. lIoweTer, ia suo approach 
the per.tormaaoe strategy has to be Dlodi
fied ~eoause the traaafora ~ V iastoad 
ot .. 1tip1ioatioa by VJ .. st ~e rea1ized 
ea eaoh prooessor. lleaoe, the syaohrODi
za tioa aa4 traaaport shou1d ~e per.tormed 
twioe oODlpared to its beiDe per.tormed ea
oe i. our strategy. 

The re.u1ts of experiDl .. tS iadioate 
that ~oth a1serithme oaa ~e effieieat1y 
iDlp1 .... ted oa the SPA sy.t... SODle 
other experiDle.ts aad· aaa1yse. a180 sup
port the view that EGPA, as a se.era11y 
eri .. ted DIU1tiproces.or, appears to be 
adequate for s01TiDc a broad variety of 
• 0.-DaDlerioa1 as we11 as DaDlerica1 prob-
1eDls. 

Aokacw1 ...... t. 

The author is deep1y iadebted to 

Prot. li. Da41er for his persoua1 atte ... 
tio. aa4 support he save to this resoaroh 
work. A1.0 the 0011aboratioa with 0011e
asues H. GOs .... , Y. K1eiaoder, 
H. Rathke aad II. Zisoh1er i. aOkRow1ed

ced. 

Refereaoes 

[1J R.li. 1I0okaey, -A Fast Direct S01v.
tioa of Poisso.,sEquation VsiDS 

Fourier A:aa1ysis -, JACH 12, ( 1965) , 

pp. 95-113. 

[2] D. He11er, ftA survey of Para11e1 A1-

cori thme ia llwDrioa1 Linear A1ceb
raft, Siam ReTiew 20, (1978), 

pp. 740-777. 

80 

[3] A.H. Sameh, S.c. Choa, aa4 D.J. Kuek, 
ftPara11e1 Poisson aad Biharmonic 501-
versa, CODlfUtiDc 17, (1976), 
pp. 219-230. 

[4J P.M. F1an4er., D.J. Bant, 5.1'. Redda

way, aad D. Parkiaaon, -Etfici .. t 
HiCh Speed CODlpatiDe with the Distri
'bated Array Processor-, ia Hieh Speed 
CODlvuter aad A1coritha Orcanization, 
Acad .. ic Pr ••• , (1977), pp. 11,3-128. 

[5] K.E. Bateher, nDesiga ot a Hass!ve1y 
Para11e1 Prooessorft , iEEE TraaS.CODIp. 
0-29. (1980), pp. 836-840. 

[6J R.li. HoOkRey, aad C.R. J •• shope, 
Para11e1 CODIfUters, Adam Hi1cer lAt., 
(1981), 416pp. 

[7J R.J. Swan, 5.11. PU11er, aa4 D.P. Sie
wiorek, ncJ_ A Hoda1ar MD1ti-Hicro
processor-, Proo. AFiPS, (1977), 
pp. 637-644 • 

[8 J G.H. Baudet, -AsynChronous iterative 
Methods for MD1tiprooessors-, 
JACM 25, (1978), pp. 226-244. 

[9J S.H. PU11.r, A.K. Jon •• , and i. Dur

baa, nCamecie-He110n UDiversity 
Jhl1ti-Hioroproo.ssor ReTiew (cut), 
Cam.ci.-He110. Univ., Dept. of 
CODlp. SOieao., AD - A 050135, (1980) • 

[10J V. H.reksea, R. K1ar, aad W. K1eia4lt
der, nHardware - DI.asur .... t. of 
storac. aooess ooDf1iots ia the pro

oessiDe array EGPAII, Proc. 7th a
tern. Srmp. on CODlpater Arohiteotu
~, La Bau1e (1980), pp. 317-324. 

[11J B.L. Buzbee, G.II. Go1ub, aad C.li. 
Hie1son, "0. direct Dlethod. for s01-
viDe Poisso. Equatioas", Siam J. 
Bam. A:aa1ys. 7, (1970), 
pp. 627-656. 



~2J H. VaJteriie, ftA Fast A1gor1tba for 

So1viag the First BiharmoDio B~ 
clary Va11le Prob18111 ft , COlIIP!'tiDC 23, 
(1979), pp. 171-178. 

[13J Y. lIb.dl.er, F. BoflllaDD, and B.J. 

Sohneider, DA Genera1 Purpose Array 
with a Broad Speotrum of App1ioati
ODSD, IDforaatik Faohberiohte 4, 
SpriDger Ver1ag, (1976), 
pp. 311-334. 

~4J A. Bode, "Vertioa1 Prooess~: The 
ema1atioD of assooiative and para1-
1e1 behaVior OD oODVentiona1 hard.
ware ft, EurOlllioro, (1980). 
pp. 215-220. 

81 

[l.5J H. Bathke, Para11e1 - Solmittate11e, 

EiDf'iihrunr EGPA, PAR. ED1J'. :rn.ter
na1 dOOUJllentatiOD fi1e, EGPA Pro
jeot, LNMD XXI, University of Er-

1angeD - NUrDberg, (1980). 

[16J L.Y. Ehr1ioh, "So1v~ the bihar
moDio equation as ooup1ed. finite 
differenoe equationa", SXAH J. 
HUm. ADa1ys. 8, (1971) 
pp_ 278-287_ 



ITERATIVE ALGORITHMS FOR TRIDIAGONAL MATRICES ON 
A WSI-MULTIPROCESSORT . 

* * ** D. D. Gajski, A. H. Sameh, and J. A. Wisniewski 

* . Department of Computer SC1ence 
University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801-2987 

Abstract -- With the rapid advances in semi
conductor technology, the construction of Wafer 
Scale Iritegration {WSI)-multiprocessors consisting 
of a large number of processors is now feasible. 
We illustrate the implementation of some basic 
linear algebra algorithms on such multiprocessors. 

1. Introduction 

The need has always exis.ted for fast and effi
cient numerical computations that accurately and 
truly simulate physical processes. The VLSI tech
nology increased that demand by making numerical 
computation affordable. This, in turn, further 
expanded their popularity and application. The 
computers used for this purpose usually come in 
three forms: 

(a) High-speed parallel and/or pipelined ma
chines. These are general-purpose, expensive ma
chines (CRAY-l, CYBER 203/205, NASA's Numerical 
Aerodynamics Simulator, and S-l) optimized for 
high performance (usually using special packaging 
technology, cooling system, and on the leading 
edge of technology). 

(b) Attached array processors. These are less
general, order-of-magnitude less costly machines 
with high-speed arithmetic, designed to perform 
well on.certain applications (FPS AP series). 
They are attached to a host processor, which sup
plies only numerically-intensive special tasks to 
the attached processor. The attached processor 
is fully programmable but knowledge of its archi
tecture is necessary if the machine is to be prop
erly exploited. 

(c) Special-purpose co-processors. These are 
special-purpose, low cost "black boxes" that can 
execute efficiently a few well-defined problems. 
They are minimally programmable and they are used 
as arithmetic accelerators (Intel's 8087), as 

+This work was supported in part by the National 
Science Foundation under Grant No. US NSF MCS8l-
17010. 

0190-3918/82/0000/0082$00.75 @ 1982 IEEE 82 

** Sandia National Laboratories 
Division 2113 

Albuquerque, New Mexico 87185 

special library subroutines (FFT, triangular 
solvers, filters). 

In this paper we are interested in systems of 
the third type. Here, one or more special-purpose 
accelerators attached by shared bus to the low
cost, low-speed, general-purpose host can trans
form the host into a powerful number cruncher for 
a specific application. These special applica
tions may be real time applications, or just some 
frequently used algorithms that we would like to 
speed up. The addition of one or more special
purpose accelerators, at $100-$200 each, may im
prove performance, resulting in performance-cost 
ratios that are not available with any other 
general-purpose system. 

The WSI Model 

VLSI technology has brought us the capability 
of increasing processor speed, size and complexity 
of several orders of magnitude. However, it needs 
a hierarchical and regular design, since the old 
von Neumann model is difficult to upgrade for the 
emerging WSI (Wafer Scale Integration) technology. 
This has influenced the search for new models of 
computation and machines. In addition to the con
straints imposed by packaging and manufacturing 
technology, a WSI model must satisfy the following 
requirements: 

(a) a few types of simple processor memory mod
ules replicated throughout the wafer; 

(b) regular communication network between mod
ules with a constant number of crossovers; 

(c) I/O ports on the boundary of the wafer; 

(d) asynchronous communication among modules; 

(e) I/O rate independent of the size of the 
problem; and 

(f) high level of fault-tolerance. 

The most popular VLSI model for numeric com
putations, the systolic array model introduced by 
H. T. Kung [KuLe79] satisfies our conditions (a), 



(b), and (c). It implicitly assumes a global syn
chronizing clock, even though it can be adapted 
for asynchronous c01llll1Uni.cation without loss of 
generality. The model, however, does not satisfy 
conditions (e) and (f); it assumes as many 1/0 
ports as needed, that is, an 1/0 rate that grows 
with the size of the problem. Furthermore, it 
assumes an adequate memory (outside of the sys
tolic array) that stores all the data, and an 
environment that fetches the data (possibly in 
parallel) from the memory and supplies them at the 
proper moment to the systolic array at no cost. 

Moreover, the systolic array model assumes 
that all processors in the array are good, and if 
one processor becomes faulty the whole systolic 
array becomes faulty. This implies that the sys
tolic array does not satisfy the definition of our 
WSI model since each processor must be a separate 
die,and has tested fault-free before it is as
sembled into a systolic array. A realistic model 
must allow for any number of faulty processors in 
the array. An occurrence of a fault should cause 
only degraded performance but not cause the system 
to break down. 

A multiprocessor array model satisfying cri
teria (a) through (f) is shown in Fig. 1. The 
model is an array of identical Switch-Processor
Memory (SPM) modules. Each processor P communi
cates with its local memory M and with other pro
cessors (and memories) through the switch S. Each 
S is a 5X5 crossbar and communicates asynchron
ously with four neighboring switches. The entire 
switch array operates in circuit switching mode. 
Since there are only four possible paths from any 
input port (straight ahead, left, right, and to
ward processor), only two bits of information are 
needed to set up S. The communication bus between 
two switches, that is, the crossbar width, can be 
one or more bits wide and, generally, it should 
match the processor (arithmetic) bandwidth. In 
addition, each memory submodule can independently 
communicate with memory submodules of its neigh
bors. This link allows any number of SPM modules 
to have their memory submodules organized as one 
uniform queue. 

We will assume that if any S, P, or M sub
modules is faulty, that the entire SPM module is 
faulty. Furthermore, any number of SPM modules 
can be faulty at any time. A module may be manu
factured faulty or it may fail during normal oper
ation. The problem is how to configure a partly 
faulty array of modules into a fault-free array. 
If this is done during the wafer testing it in
creases the yield, but a failure during the oper
ation brings the entire system down. If a fault
tolerant operation is required, the configuration 
algorithm must be distributed throughout the array 
so that upon the detection of a fault the multi
processor will reconfigure itself, excluding the 
faulty module from the set of available SPM mod
ules. For that reason, each P stores a processor 
status-map in which a ° or 1 for each SPM indicate 
its status,' good or faulty, respectively. After 
each fault detection, the processor bit~ap is up
dated. 

83 

Generally, there are two problems in WSI de
sign. Firstly, an algorithm must be developed 
that can be easily mapped into the logical model 
of the WSI multiprocessor, that is, the fault-free 
array of SPM modules. 

Secondly, the logical model must be mapped 
into the physical model which is a partly faulty 
array of SPM modules on the wafer. It helps, as 
is the case in our paper, if the logical model is 
one-dimensional and the physical model is two
dimensional. The algorithms for mapping into the 
physical model are beyond the scope of this paper. 
Some interesting work in this area is described in 
[AuCa78], [Kore8l], and [FuVa82]. 

In this paper we describe the configuration 
shown in Fig. 2 and demonstrate its suitability 
for three important linear algebra problems. 

2. Algorithms 

Here we consider three simple, yet important, 
problems. The first deals with the determination 
of the distribution of the eigenvalues of a large 
positive definite tridiagonal matrix. This prob
lem arises frequently in the area of mathematical 
physics. The second problem, which is related to 
the first, is that of obtaining the distribution 
of the real roots of a polynomial of degree n, 

n n-i 
P (x) = L Yi x ,in which all the coefficients 

n i=O 
Yi are real and nonzero. Finally, the third prob-

lem is concerned with the solution of large posi
tive definite tridiagonal linear systems; a prob
lem that arises in numerous applications. 

For the first two problems we employ Rutis
hauser's quotient difference algorithm (the QD
algorithm). e.g., see [Ruti63]. [Henr58 and 63]. 
and [ScRS73]. For the third ?roblem. we also use 
an iterative algorithm. S?ecifically. we '·use the 
cyclic Chebyshev semi-iterative method. see 
[Varg62]. [Wach66]. and [Youn7l]. 

2.1 The QD-Algorithm 

(a) Problem 1 

Let 

T (1) 

be the positive definite tridiagonal matrix under 
consideration, where 8i + 0, 1 ~ i ~ n - 1. Since 

the eigenvalues Al > A2 > ••• > An of! are in

variant under similarity transformations, we con

sider instead the tridiagonal matrix
A

; = DTD-l 

where D is a diagonal matrix chosen such that 

T ~l (2) 



Applying the classical LR-algorithm to ~l' see 

[Ruti58 and 63] and [Wilk65]. as given by the 
iterations 

J = L R. -k _k;;'k 

J = R. L -k+1 ;;'k-k 

in which 

1 

(k) 
e l 1 

~= 
(k) 

e 2 

(k) 
ql 1 

(k) 
q2 

~= 

k = 1. 2. 3 ••.. 

1 • and 

e (k) 
n-l 

1 

1 

(k) 
qn-l 1 

(k) 
qn 

are unit lower triangular and upper triangular 
matrices. respectively, it is known that as 

(3) 

k ~ oo'~k ~ :, and qjk) ~ Aj • Now, from the fact 

that L R. = R. L we can derive the QD-scheme _k+l ;;'k+l ;;'k~' 

for computing approximations to Aj • l2.j < n. 

The scheme is given by 

(1) 
ql (Xl' 

(1) e2/q~1) , e. 
J J J 

(1) 
qj+1 

(1) 
o,j+l - ej , l2.j < n - 1 

and for k = 2, 3, 

(k-l) + «k-l) (k» 
qj+1 ej +1 - e j , 

q (k-l) (k-l)/ (k) 0 _< J' _< n _ 1 
j+1 ej qj (4) 

where e6k) = e~k) = O. This QD-scheme is repre

sented by two Rhombus rules: 

(k-l) + (k-l) 
qj ej 

(k) (k) ::t + e j _l (Sa) 

84 

(5b) 

(quantities to be computed are underlined). The 

two sequences {qjk)} and {ejk)} are guaranteed to 

be positive, with lim qj(k) = A. and lim ej(k) = O. 
I<-- J I<--

The rate of convergence, which is only linear, can 
be accelerated by various techniques, see [ScRS73]. 
Since we are only interested in the distribution 
of the eigenvalues. rather than accurate approxi
mation of them, the unaccelerat·ed QD-algorithm is 
adequate for our purposes. For any iteration k, 
the eigenvalue A. lies in an interval of center 

J 

~jk) = qjk) + ejk) , 

and radius 

P(k) = /q(k) e(k) + /q(k) e(k) 
j '-0j+1 . j '-0j j-l 

We terminate the algorithm when. for any k. 

( (k) (k) ) 2' i 1 h i qi e i _l • 2. ~ 2. n. s ess t an a g ven 

tolerance. 

Fig. 3 shows the dataflow diagram of our algo
rithm. The obvious mapping of the dataflow dia
gram onto the chain of Ps is to assign each row to 
one P. In this case, one single value has to be 
sent from one P to the neighboring P during the 
time of two arithmetic operations. Therefore, for 
a balanced design, the communication bandwidth of 
a processor P must be b/min(td+tm,ta+ts ) bps, 

where b is the number of bits in each value sent 
and t d , tm' tao and ts are the execution time for 
division, multiplication, addition, and subtrac
tion, respectively. Furthermore, it takes 

2k(td+t +t +t ) to generate qik). and (n+2k) 

( t +t +~ +~ )Sto obtain q(k) q(k) q(k). 
d mas 1 ' 2 • •••• n 

(b) Problem 2 

Consider the n-th degree polynomial with unit 
leading coefficient 

where all the Yi's are real and different from 

zero. The roots of Pn(x) are, therefore, either 

real or appear in complex conjugate pairs. The 
QD-algorithm used for Problem 1 can be adapted to 
obtain all the real roots, as well as the real co
efficients of the quadratic factors whose roots 

I 
i. 



constitute the complex conjugate 

e.g., see [Henr58, 64, and 67]. 
this problem is generated row by 
Rhombus rules (5), where the top 
table are given by: 

roots of Pn(x) , 

The QD-tab1e for 
row using the two 
two rows of the 

(0) 
ql = -Yl' 

(-j+l) 
qj Yj 2 ~ j ~ n, (6a) 

and 

(-1) 
-1, 

(-j) 
1 e. ej 

J 
2 ~ j < n - 1, (6b) 

with e(O) = e(-n) = O. 
o n 

In Fig. 4, we show the flow of the computa
tion for n = 3. If the horizontal strip (indica
ted by dashed lines in Fig. 4) is mapped on one 
PE, then the communication rate between two PEs is 
b/min(td+tm,ta+ts ) bps. If only half the strip is 

mapped on one PE, the rate is doubled. The execu
tion time is the same as in the previous example. 
We now state the following theorem regarding the 
convergence of the algorithm. 

Theorem [Henr67] 

Let the roots of Pn(x) be zl' z2' ••• , then 

(i) for every j such that IZjl > Izj+ll, 

lim e(k) = O. 
k+oo j 

(ii) for every j such that I z. 1 I > I Z . I > 
J- J 

lim q(k) 
k+oo j Zj. 

(iii) for every j such that Izj_ll > IZjl > Izj+ll 

> I Zj+21, 

lim q(k) q(k) 
k+oo j j+l 

Hence, we terminate the algorithm when, for any k, 

I( (k) + (k-l» _ ( (k-l) + (k-2»I < £ 
qj qj+l qj qj+l 

where £ is a given tolerance. 

2.2 An Iterative Tridiagonal Solver 

Here, we assume that one requires solving 
linear systems of the form Tx = f, where T is that 
positive definite matrix given in (1) witn all the 
diagonal elements a i = 1. Without loss of gener-

ality, we assume that n is even. 

85 

Let 

and P be a permutation matrix such that the linear 
- T T T 

system (~ ! ~)(! ~) = (~ !) is of the form 

[
I E ] [x(R)] [f] -n/2 - _ _R 

ET I x(B) f 
- _n/2 _ _B 

(7) 

where E is the lower bidiagonal matrix 

E 

x(R) and fR contain the odd-indexed elements of x 
- - (B) 
and !, respectively, and ~ and ~B contain the 

even-indexed elements. The cyclic Chebyshev semi
iterative scheme is given as follows, see [Varg62]. 

~6R) is chosen arbitrarily, 

(B) 
~l (~B 

_ ET ~6R», and 

(R) 
(1 - (R) + w2k (f - E (B) 

~2k w2k)~2k-2 -R - ~2k-l)' 

k = 1, 2, 3 (8) 

(B) (B) T (R) 
~2k+l = (1 - w2k+l)~2k-l + w2k+l (~B - ~ ~2k)· 

Here, w.'s are the optimal acceleration parameters 
J 

and are given by 

2 w2 = 2/(2-p ), 

j 2: 2, 

in which p < 1 is the spectral radius of the 
matrix 

Assuming that p is given, the iteration (8) may be 
written as 



2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

~l:= a random vector of order n2/2 

~l:= !B - ET ~l 
i:= 2 

2 
ni:= (1 - ~ ~i)-l 

~i:= (1 - ni)~i-l + ni(!B - ET ~i) 
i:= i + 1 

(9) 

10. If stopping criterion is not satisfied, go 
back to 5. 

The stopping criterion is based on the convergence 
(R) 

of ~2k (~i in the above program segment) and is 

given by 

where £ is a specified tolerance. If p is not 
given a priori, we have several options: 

(i) If the system Tx = f is to be solved for 
many right-hana-sides (not necessarily all 
at once), then it may be advantageous to use 
our QD-algorithm in Problem (1) to evaluate 
the largest eigenvalue ~ = 1 + P of the tri
diagonal matrix 

2 ! = [1:\_1' 1, 1] 

(if) If ! is strongly diagonally dominant, then 

we may either take all Wi's to be 1, i.e., 

use the classical Jacobi method, or estimate 
p by IIEII . _ 00 

We show the flow of the computation, equation (9), 
in Fig. 5, where each node performs the computa
tion indicated either by step 6 or step a. The 
quantities S, (l-s), and n, (l-n) are computed 
ahead of the main computation and stored in each 
PE as constants. Since there are four mUltiplica
tions and three additions per node, the total time 
is t* = 4tm + 3ta' Each node requires two compo-

nents of x and y in addition to three constants - -
8i _l , 8i and f j . However, the switch in Pk is 

used by PE(k_l) to communicate the other three 

constants (not used in the k-th PE) to the PE(k+l)' 

Hence, for a balanced design we must have 
ab(4tm+2ta+ts ) ~ 1, (see Fig. 5). 

86 

3. Processor Design 

The processing submodule which satisfies the 
requirements given in Section 1 (Fig. 6) consists 
of an arithmetic unit performing floating-point 
division, multiplication, addition, and subtrac
tion, two register-files with three registers each 
and four queues. The input queues DQ, XQ, and YQ 
are register files with a serial input port and a 
parallel output port, while the output queue OQ 
has a parallel input port and a serial output 
port. The communication through the switch sub
module is asynchronous and bit-serial. The oper
ands are always sent or taken from each queue in 
the same order. However, the order in which the 
operands are distributed among three input queues 
is not guaranteed. For example, the operand for 
the XQ may arrive before or after the operand to 
be stored in the YQ. If an input queue is empty, 
the control unit waits until the data arrives. In 
our statically scheduled operation it is not neces
sary to associate a validity bit with each operand 
(as in some dataflow machines), since the order is 
determined ahead of time. Two extra bits must be 
added to each data value to distinguish among the 
three input queues. Furthermore, if the data is 
sent to a nearest neighbor, two additional bits 
are needed to set up the switch in the neighboring 
SPMmodule. Thus, four bits of overhead are nec
essary for the communication between nearest 
neighbors. 

As an example of processor operation, the 
dataflow-diagram of a node from Fig. 5 is shown in 
Fig. 7(a). There are four multiplications, two 
additions, and one subtraction to be performed. 
There are three system constants (stored in DQ) 
and two variables (stored in XQ and YQ) passing 
through the switch. The variable Xi . is already 

,J 
in the XQ from the previous iteration. Each node 
in the dataflow graph generates one result, which 
is stored in the register indicated on the arc 
going out of the node. The sequence of micro
instructions for the given dataflow graph is shown 
in Fig. 7(b). An arithmetic operation and a move 
to the OQ are performed in parallel. Similar 
microinstruction sequences can be written for 
other dataflow diagrams. 

Using the present-day technology rate for 
floating-point arithmetic ([WaMca2], td = 2.5 ~s, 

.5 ~s) and communication rate (50 t = t = t 
mas 

MB/sec) for a wafer communication, we can compute 
the ratio tcomm/tarith' If the 32-bit floating-

point format is assumed, then t /t i h comm ar t 
(ax36/50xlO-6)/(4t + 2t + t ) = 5.44/3.5 ~ 1.6. mas 
We see that our algorithm for problem 3 is commu
nication intensive. The performance can be im
proved by doubling the width of the switch from 
one bit to two bits. This will, of course, double 
the cost of the switch but will result in more 
balanced design, since the t /t ith will be-comm ar 
come o.a for 32-bit floating-point format. 

The algorithms for problems 1 and 2 are 



arithmetic intensive. 

4. Conclusion 

We have presented in this paper a multi
processor model for systolic algorithms. We think 
it is better suited for Wafer-Scale-Integration 
than the systolic-array model. In particular, in 
our model the communication is asynchronous and 
the model is fault-tolerant, which will improve 
the yield during manufacturing and allow graceful 
degradation during the operational life of the sys
tem. 

Since the packaging technology is the bottle
neck in system design, the iterative method in 
problem 3 compares favorably with direct methods. 
While the direct method requires roughly 5(tm+ 
ta)n, our algorithm needs time (1 + [j/k])(n + 2k) 

(4tm + 2ta + t s ) for j iterations, where k is the 

number of SPM modules in the chain. For strongly 
diagonally dominant matrices the number of iter
ations, even with the w's taken as unity, is 
small, and this iterative algorithm is competitive 
with the direct method for large n. For example, 
if I I~I I ~ 0.8, and Wj = 1, then the maximum norm 

of the error after 90 iterations will be roughly 

10-9 that of the initial error. Hence, for n ~ 
1000, one hundred good SPM modules on a wafer will 
yield a solution with a reasonable accuracy in 
roughly 0.8 the time needed by the direct method; 
we used the floating-point arithmetic rates stated 
above. The performance is approximately the same 
since most of the algorithms are I/O limited and 
not arithmetic limited. Although our model takes 
more silicon than models used for direct imple
mentations, it offers fault-tolerance, simplicity 
and regularity which outweigh, in our opinion, the 
cost. 

References 

[AuCa78] R. C. Aubuson and I. Catt, 'Wafer-Scale 
Integration--A Fault Tolerant Proce
dure," Journ. of Solid-State Cir., Vol. 
SC-13, (1978), pp. 339-344. 

[FuVa82] D. Fussell and P. Varman, "Fault
Tolerant Wafer-Scale Architecture for 
VLSI," Proc. of the 9th International 
Conf. on Computer Architecture (1982), 
pp. 190-198. 

[Henr58] P. Henrici, "The Quotient-Difference 
Algorithm," Nat' 1. Bureau of Standards 
Appl. Math. Ser. 49, (1958), pp. 23-46. 

[Henr63] P. Henrici, "Some Applications of the 
Quotient-Difference Algorithm," Proc. 
Symposia in Appl. Math., Vol. 15-,--
(1963), pp. 159-183. 

[Henr64] P. Henrici, Elements of Numerical Anal
ysis, John Wiley & Co., (1964). 

[Henr67] P. Henrici, "Quotient-Difference Algo-

87 

rithms," in Math. Methods for Digital 
Computers, Vol. 2, A. Ralston and H. 
Wilf (eds.), pp. 37-62, John Wiley & Co., 
(1967) . 

[Kore8l] J. Koren, "A Reconfigurable and Fault
Tolerant VLSI Multiprocessor Array," 
Proc. of the 8th International Conf. on 
Computer Architecture, (1981), pp. 425-
442. 

[KuLe79] H. T. Kung and C. E. Leiserson, "Sys
tolic Arrays (for VLSI)," in 1. S. Duff 
and G. W. Stewart (eds.), Sparse Matrix 
Proceedings 1978, SIAM, Phila., (1979), 
pp. 256-282; also, in C. A. Mead and 
L. A. Conway, Introduction to VLSI Sys
tems, Sec. 8.3, Addison-Wesley, Reading, 
(1980). 

[Ruti58] H. Rutishauser, "Solution of Eigenvalue 
Problems with the LR-Transformations," 
Nat'l. Bureau Standards Appl. Math. Ser. 
49, (1958), pp. 47-81. 

[Ruti63] H. Rutishauser, "Stabile Sonderfalle des 
Quotienten-Differengen Algorithmus," 
Numer. Math., Vol. 5, (1963), pp. 95-
112. 

[ScRS73] H. Schwarz, H. Rutishauser, and E. 
Stiefel, Numerical Analysis of Symmetric 
Matrices, Prentice-Hall, (1973). 

[Varg62] R. Varga, Matrix Iterative Analysis, 
Prentice-Hall, (1962). 

[Wach66] E. Wachpress, Iterative Solution of 
Elliptic Systems and Applications to the 
Neutron Diffusion Equations of Reactor 
Physics, Prentice-Hall, (1966). 

[WaMc82] F. Ware and W. McAllister, "C-mos Chip 
Set Streamlines Floating-Point Proces
sing," Electronics, (Feb., 1982), pp. 
149-152. 

[Wilk65] J. Wilkinson, The Algebraic Eigenvalue 
Problem, Oxford, (1965). 

[Youn7l] D. Young, Iterative Solution of Large 
Linear Systems, Academic Press, (1971). 



':0:1 
':0:1 I-'" 
I-'" Qq 

Qq 

N 
I-' 

~S I ~I ~ QqQq ,,, ~I H o I-'" 

:k I"j (') 

" ~ I-'" III 

I~ c: 1'1'1-' 

~ I-' P' 
1'1' ~ ~ !~ lit I-'" 
'tI P-

'lI! .... I"j (1) .... 0 I-' 

IS n (') 
(1) ,..., 

~ en 0 
en I"j lit 0 ,. 
I"j I-'" 

~. 1'1' 

-<I ~ (1) 
I"j 

P-III • . I (1) 1'1' 
I-' I-'" 

~ 
~ , . 

3: " ; i 
L ... ___ . ___ I L ________ --J 

00 
00 

Fig. 3. Dataflow diagram for the eigenvalue problem Fig. 4. Dataflow diagram for roots of polynomials 



Fig. 5. Dataflow diagram for tridiagonal solver 

Fig. 6. Processor block diagram 

89 

RI 

* 

R6 

(a) 

1. R4 -+- XQ * DQ, 
OQ -+- DQ, POP DQ; 

2 . R4 -+- R4 - DQ, 
OQ -+- DQ, POP DQ; 

3. R6 -+- Rl * YQ, 
OQ -+- XQ, POP XQ, POP YQ; 

4. R3 -+- DQ * XQ, 
OQ -+- DQ, POP DQ; 

5 • R3 -+- R4 + R3; 
6. R3 -+- R2 * R3; 
7.0Q-+-R6+R3; 

(b) 

Fig. 7. (a) Dataflow diagram for node y .. from 
Fig. 5; 1J 

(b) Microinstruction sequence for 
processor in Fig. 6 



OPTIMAL IMPLEMENTATION OF SIGNAL FLOW GRAPHS 
ON SYNCHRONOUS MULTIPROCESSORS 

T. P. Barnwell, III 
C. J. M. Hodges 

School of Electrical Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332 

INTRODUE:TION 

This paper discusses some results of a theo
retical and experimental study of a general proce
dure for implementing recursive and nonrecursive 
signal flow graphs and other similar arithmetic 
algorithms on synchronous digital machines com
posed of multiple identical programmable proces
sors. A fundamental feature of our approach is 
that it attempts to make maximum use of the Skewed 
Single Instruction Multiple Data (SSlMD) mode [1-
3] of the synchronous multiprocessor system. When 
operating in this mode, the multiprocessor exe
cutes exactly the same program on all of the pro
cessors simultaneously, but with a fixed time skew 
imposed between the instructions execution times 
on the separate processors. In addition, the 
single program utilized in the SSIMD mode is al
ways exactly a single processor realization of all 
the computations as.sociated with a single time 
index of the signal flow graph. Hence, where the 
SSIMD mode of an appropriate single-processor im
plementation. 

A primary goal of this research is to develop 
procedures for automatically generating optimal 
multiprocessor signal flow graph implementations 
from a simple, non-parallel representation of the 
algorithms to be implemented. An appropriate al
gorithmic representation might be a set of dif
ference equations or a matrix presentation [2-4] 
of the signal flow graph. 

In a study of this type, it is very important 
to carefully define the criterion for optimality. 
In this study, three definitions of "optimal" are 
used. An implementation is said to be proeessoy
optimal if the use of M processors leads exactly 
to an M fold increase 
in the systems throughput as compared to a single 
processor implementation. An implementation is 
said to be time-optimal if the absolute theore
tical limit [51 for that signal flow graph has 
been achieved for the particular constituent pro
cessor. Finally, an implementation is said to be 
absolutely-optimal or just optimal if it is time
optimal and there exists no other solution which 
requires fewer processors. 

In these terms, it is now possible to sum
marize our results thus far. First, for a very 
large class of recursive signal flow graphs, the 
SSIMD approach results in absolutely-optimal im
plementations. This class includes all direct 

0190-3918/82/0000/0090$00.75 © 1982 IEEE 90 

form digital filters and their transposed forms, 
all lattice form digital filters, all parallel or 
cascade digital filters based on lattice or direct 
forms, and many more. Second, where an absolute
ly-optimal SSIMD solution exists, it can be con
structed automatically. Third, where an absolute
optimal SSIMD solution does not exist, a time
optimal solution can be constructed using a Paral
lel Skewed Single Instruction Multiple Data 
(PSSIMD) structure. In a PSSlMD implementation, 
two or more programs coexist in the same imple
mentation. The question of whether the PSSIMD 
time-optimal solution is absolutely-optimal is 
difficult to answer in general, but it is clear 
that the PSSIMD solutions obtained in this fashion 
are very efficient. 

THE SSIMD MODE 

The techniques of interest all utilize the 
Skewed Single Instruction Multiple Data (SSIMD) 
mode of the synchronous multiprocesors to realize 
the implementations. In this mode, exactly the 
same instruction stream is executed on all the 
processors, but a fixed time skew is maintained 
between instruction execution times on separate 
processors. 

The fundamental concept is illustrated by the 
simple example of Figure 1. In this example, the 
second order direct form filter of Figure la is 
implemented as a single processor program as shown 
in Figure lb. In this single processor realiza
tion, none of the delay elements are realized di
rectly, but rather the output from each delay 
element becomes an input to the program and the 
input to each delay element becomes an output from 
the program. In the SSIMD realization, these de
layed values are not computed by this processor, 
but are suppl ied from identical computations on 
other processors. 

Figure 2 illustrates the fundamental charac
ter of an SSlMD solution. In the one processor 
solution of Figure 2a, the same processor which 
generates the output point r(n) is also the pro
cessor which has generated all the previous output 
points, rem) for m < n. Hence these points are 
always available when needed. In Figure 2b, a two 
processor solution is illustrated. The key point 
is that, even though the value of r(n-l) must be 
available before r(n) is computed, it is not nec
essary for it to be available before the computa
tion of r(n) is begun. What is required, rather, 



is that the value of r(n-l) must be available be
fore it is used by processor 1. Hence processor 1 
may be started as soon as it is guaranteed that 
r(n-l) will be available from processor 2 before 
it is needed by processor 1. 

Figure 3 shows the diagram for a one proces
sor, a two processor, and a five processor real
ization for the signal flow graph of Figure 1. In 
the single processor solution of Figure 3a, all of 
the past values of r(n) are supplied by the same 
processor, and there is never any issue of data 
availability. In the two processor realization of 
Figure 3b, alternate points are supplied by each 
processor, and the two processors must be skewed 
such that the data requirements of each is always 
met by the other. Likewise, Figure 3c shows a 5 
processors solution in which every 5th set of 
points is supplied by each of the 5 processors. 
It should be noted that all these SSIMD solutions 
are "free running" such that whenever a processor 
completes the computations associated with one 
time index, it immediately begins the computations 
associated with another time index. Hence, each 
program realizes an infinite loop (one time index 
per loop) and, under the assumption that the pro
gram timings are not data dependent, each loop 
takes exactly the same amount of time. Thus, if M 
processors are started at M starting time, t ,0 < m< 
M-l, then the relative time skew so impos~d re-
mains fixed untill the program is halted external
ly. Hence, the program of implementing a par
ticular recursive and iterative arithmetic prog
ram reduces to specifying the M starting times, to 

t M- l , such that all the data necessary in 
the various computations is available before it is 
needed. 

Fixed Program Implementations 

The problem of implementing a particular re
cursive signal flow graph in SSIMD mode can be 
divided into two related problems. The first pro
blem is that of finding and characterizing all 
legal SSIMD solutions for a particular single pro
cessor program realization of the signal flow 
graph. The second problem is that of constructing 
the particular single processor program so that 
the eventual SSIMD solution will be optimal. This 
section addresses the first problem. 

In fitting the program together in the SSIMD 
mode, the only information necessary concerns the 
length of the program, the times at which recur
sive inputs are needed, and the times at which 
recursive output are available. Hence, a program 
with a single recursive output such as that of 
Figure 1 can be characterized as 

K(I(L), I(L-1) , ..... , 1(1), R, T) (1) 

where K is the task identifier, T is the task 
length', R is the output time for the recursive 
output, I(t) is the input time for the tth delayed 
recursive output, and L is the value ofltlhe long
est delay. The important theoretical results for 

91 

this environment can be summarized as follows [3-
41: 

1) All SSIMD M-processor solutions are bounded by 
the solution in which the processors are started 
at equal intervals and the outputs are periodic. 
For such a solution, the time between outputs is 
TIM and 

t =!!!:L 
M 

o < m < M-l (2) 

Stated another way, if an M-processor (processor
optimal) solution exists, it can be implemented 
with the above starting times. 

2) The maximum number of processors which can be 
used in such a solution, M, is given by 

M x 

M x 

INT[M(x,x)1 = INT[M!N[M(t)1] (3a) 

INT [M;N [I~t~-R]] (3b) 

where M(t) is the non-integer number of processors 
which could be utilized if the only constraint 
came from the recursive input I(t), t is the 
value of t for which M(t) is minimum, a~d INT [ '1 
means "the integer part". 

3) Any SSIMD implementation for the given program 
can be obtained with uniform time skews as shown 
in (1) above so long as M < M • 

- x 

4) The greatest throughput which is achievable by 
these techniques is obtained with a time skew of 

I(t ) - R 
t ' x (4) 
x t 

x 

This solution is generally achieved with M + 1 
processors by adding extra non-functional lelays 
to the program, and although time-optimal, is gen
erally not processor-optimal. A solution which is 
both time-optimal and processor-optimal occurs 
for Mx processors only for the unlikely case of M 
=M(t). x 

x 

5) Time-optimal solutions are available for M + 
1 processors, and the addition of more than ~ne 
processor will never increase the throughput be
yond a sample rate of l/tx ' 

Based on these results, three important fea
tures should be noted. First, given a single pro
cessor program for a signal flow graph or other 
algorithm describable as in equation (1), the max
imum number of processors which can be used is 
immediately available (eq. 3b) and the starting 
times in the SSIMD solutions are trivially simple 
to compute (eq. 2). Hence, for a given program 
the SSIMD implementation procedure is very simple. 
Second, and more important, the maximum number of 



processors which can be utilized (eq. 3) is a fun
ction of only a single input time, I(t). Hence, 
a simple constraint exists for optimi~ing a par
ticular program for an SSIMD implementation. This 
program is obtained by maximizing the minimum 
value of M(t). Finally, and perhaps most impor
tant, the opfimum time skew, t , is a function of 
neither the program duration o~ the number of re
cursive inputs or outputs for the program. This 
allows for several important generalizations to be 
made, and, for properly written programs, leads to 
very impressive solutions. For example, the 
system of Figure 1 can typically be implemented 
with 8 or 9 processors, even though it has only 
two recursive inputs. 

OPTIMAL SIGNAL FLOW GRAPH IMPLEMENTATI0NS 

Based on the results summarized in the pre
vious section, it is clear that any program which 
implements a signal flow graph can be the basis 
for an SSIMD solution. In regard to the optimal
ity of such programs, three separate issues must 
be addressed. First, how is the maximum through
put, the rate which defines a time-optimal solu
tion, determined for any signal flow graph? 
Second, how is the question of the existence of a 
time-optimal SSIMD solution to be addressed, and 
how is a time-optimal SSIMD solution constructed 
if it does exist? Finally, if no time-optimal 
SSIMD solution exists, how can a time-optimal 
PSSIMD solution be constructed? 

The first question has been addressed in a 
paper by Renfors and Neuvo [51, in which they show 
how to determine the maximally attainable through
put for any signal flow graph given the arithmetic 
constraint of the processor. The procedure can be 
summarized as follows. The first step is to ex
pand the signal flow graph node structure so that 
all arithmetic operations occur as individual 
branches (see Figure 4). Note that this procedure 
deterministically sets the precedence relations 
among all arithmetic operations. The second step 
is to measure the_tfcithmetic delays and count the 
delay elements (z t) associated with each 
loop. The minimum sampling period (and hence the 

maXi-:: :h;;;'h[::: in" .uoh a .y.t .. i, ,iven(:: 

loops J 
where Tt is the total arithmetic delay in the t~ 
loop and N2 is the total (integer) number of delay 
elements in the tth loop. For an implementation 
to be time-optimal it must attain this limit. 

Using the above result, it is a straight
forward process to construct all the time-optimal 
SSIMD solutions which exists, and the best SSIMD 
solution if no time-optimal solution exists. All 
that is required is to first construct all pos
sible signal flow graphs of the type of Figure 4 
from the original signal flow graph. This is ac
complished by systematically expanding each node 

92 

into all possible sets of nodes each of which in
volves only one multiply and one add. Then, for 
each of these expanded signal flow graphs, all 
possible arithmetic orderings can be enumerated in 
a directed search using the intrinsic precedence 
relations [61. Each of these orderings consti
tutes a program for realizing a single processor 
implementation, and the maximum throughput for 
each is computable from eq. (4). The program(s) 
with the minimum value of t are the best SSIMD 
solution, and if t = T , t~en that solution is 
time-optimal. A ke~ poi~t in this regard is that 
if a time-optimal SSIMD solution exists, then it 
is also absolutely-optimal. This is because the 
SSIMD solution uses all the cycles of all the pro
cessors on the algorithm, which is the best that 
can ever be achieved. 

It is possible to structure the searching 
procedure described above so as to simultaneously 
construct PSSIMD solutions if no time-optimal 
SSIMD solution exists. The procedure begins by 
removing all the delay elements from the signal 
flow graph as shown in Figure lb. Then all of the 
loops in the system are tabulated as follows. 
First, all first order loops are found by replac
ing each delay element and tabulating any result
ing loops. Second, all second order loops are 
found by replacing all delay elements in sets of 
two, and tabulating all loops not previously 
found. This process is repeated for increasing 
numbers of delay elements until all loops are tab
ulated. One of the loops tabulated in this pro
cedure must be the limiting loop of eq. (5), and 
this loop must occur as a set of contiguous arith
metic operations in any SSIMD solution. Hence, 
the optimal program construction task reduces to 
ordering the remaining operations so as not to 
violate equation (5). 

For many classes of recursive systems, such 
as direct form, cascade direct form, and parallel 
direct form filters, the individual loops do not 
"over lap" or, in other words, they do not share 
arithmetic operations. For such system, each loop 
can be implemented separately in several allowable 
orders and several absolutely-optimal SSIMD solu
tions exist. For other systems, such as the lat
tice filter of Figure 4, the loops overlap, but it 
is possible to order the remaining operations so 
as not to violate equation (5). For still other 
systems, such as the coupled form, no time-optimal 
SSIMD solution exists. Alternately, a time-opti
mal PSSIMD solution can be constructed by system
atically "offloading" the loop overlap operations 
to other processors. These secondary "slave" pro
cessors are synchronously locked to the "master" 
processor, which is defined as the processor which 
implements the limiting loop. This PSSIMD con
struction can always be used to construct a time
optimal solution, but the question of its ab
solute-optimallity is harder to address. It is 
clear, however, that the slave processors still 
automatically benefit from the same SSIMD gains as 
the master processor. This means, for example, 
that if the total arithmetic processing time for 
the master processor is TM and the total arith-



metic processing time for a slave processor is 
Tm/N , then N master processors can be serviced by 
one slave. 

DISCUSSI0N 

All of the above results are really a reflec
tion of the intrinsic data flow constraints in
herent in recursive algorithms, and they are ob
tained by mixing three sets of constraints: the 
fundamental recurs ive constraints of the algor
ithm; the simple, highly structured constraints of 
the signal flow graphs; and the constraints impos
ed by SSIMD realizations. There are several im
portant points here. The first is that if a SSIMD 
mode exists in a multiprocessor, then there are no 
better ways for implementing many digital filters. 
This fact is made even more attractive by the fact 
that the SSIMD implementations are generally much 
simpler than other multiprocessor options which 
typically involve the parsing of the signal flow 
graph to exploit the local parallelism. The 
second important point is that all the limits on 
the number of processors and the throughput (t ) 
are a reflection of the recursive nature of t~e 
algorithms. If the programs are not recursive, 
then the programs can be implemented such that 
there are no such constraints, and the number of 
usable processors goes to infinity. What this 
means, clearly, is that the solution is no longer 
constrained by the algorithm but rather by the 
nature of the I/O hardware. The key point here is 
that the SSIMD solution for non-recursive programs 
is processor-optimal for any number of processors, 
and these solutions are even simpler to implement 
than the solutions for the recursive case. 

The largest potential problem in SSIMD solu
tions concerns the inter-processor communication 
issues. Since the entire SSIMD development has 
been done under the assumption that the processors 
could communicate "at will", this would at first 
seem like a critical issue. It turns out, how
ever, that it is not. This is true for two rea
sons. First, the fundamental periodicity of the 
SSIMD solution makes the communications require
ments very uniform, which avoids many potential 
time conflicts. Second, and most important, the 
nature of the communications environment can be 
systemtically controlled. To see this, one simply 
needs to note that the number of processors with 
which a particular processor must communicate is 
controlled by the Maximum length of its delay ele
ments (see Figures 1, 2, and 3). The use of long 
delay chains does improve the final solution since 
it leads to SSIMD realizations which require fewer 
processors to realize a time-optimal solution. 
But the entire procedure still works if the maxi
mum delay length is constrained to be one. In
deed, this is true in the classical formulation 
for the signal flow graph [4]. For such realiza
tions, each processor only talks to its two near
est neighbors, and the communications is always in 
one direction. Such realizations have the same 
maximum throughput rate, but, in general, require 
a few more processors to attain it. Most impor-

93 

tant, however, they have a communication environ
ment which is always trivally implementable. 

1. 

2. 

3. 

4. 

5. 

6. 

REFEREN6ES 

C. J. M. Hodges, T. P. Barnwell, III and D. 
McWhorter, "Implementation of an all Digital 
Speech Synthesizer Using a Multi-processor 
Architecture," 1986-International-60nferenee 
on'Aconstiesj'Speechj-and-SignalProcessing, 
Denver, Colorado, April 1980. 

T. P. Barnwell, "Optimal Implementations of 
Recursive Signal Flow Graphs on Synchronous 
Multiprocessor Architectures in SSIMD Mode," 
Paper in preparation. 

T. P. Barnwell and C. J. M. Hodges, "Optimum 
Implementation of Single Time Index Signal 
Flow Graphs on Synchronous Multiprocessor 
Machines," 1982 - International- Conference' 'on 
Acoustics~ . Speech; . -an!l'1hgnal- ·Proees!ll.ng, 
Parl.s, France, May 1982. 

R. Crochiere and A. V. Oppenheim, "Analysis 
of Linear Digital Networks," Proc. -IEEE, vol. 
63, pp. 581-595, April 1975. 

M. Renfors and Vrjo Neuvo, "The Maximum 
Sampling Rate of Digital Filters Under Hard
ware Speed Constraints," IEEE - -Trans-actions 
on-Cireuits-and-Systems, T-CAS, pp. 196-202, 
March 1981. 

T. P. Barnwell, C. J. M. Hodges and S. 
Gaglio, "Efficient Implementation of One and 
Two Dimensional Digital Signal Processing 
Algorithms on a Multiprocessor 
Architectures," 1979 International- - -Conf
erence on'Aeousticsj'Speechj andSignal'Pro
eessing, Washington, D. C., April 1979. 



·, 
xln) ----l_-~__?.!.!!!L....=_-~D_.yln) 

yIn) • borln) + b,rln-'- + b2rln-2) 

rln) •• 1rln-1) + 82rln-2) + xln) 

Figure la: Signal flow graph for a 
2nd order recursive direct 
form II digital filter. 

Figure 2a: Single processor implementation of 
the signal flow graph·of Fig. 1. 
All points in the output stream 
and all values of r(n) are computed 
by the same processor. 

Figure 3a~ In a single processor SSIMD reali
zation, all recursive outputs are 
supplied by the same processor. 

94 

•• 

~ ----- .... ,,' ..... , '" , I , 
I , 

I \ 
I \ 

x-r~~rt---.---~~'~y 
I 
I 

I , 
I 

... ,./ i, ...... ----- '" 

Figure lb: Single processor realization for 
the sigPBl flow graph shown above. 
All delays are not implemented by 
the program, but these are realized 
by the parallel structure. 

• 

Figure 2b: Two processor implementation of the 
signal flow graph of Fig. 1. The 
computation of r(n) by processor 1 
can be started as soon as processor 
2 has been running long enough to 
guarantee r(n--l) will be available 
when needed by processor 1. 

Figure 3b: In a two processor SSIMD realization, 
alternate recursive outputs are 
supplied by each processor. 



Figure 3c: In a five processor SSIMD realization, every 5th time 
index is computed by each processor. The processors 
are skewed in time so as to guarantee all recursive 
inputs are available when needed. 

W2 (n) e ""5 (n) W6 (n) "'2 (n) 

x (n) ---Q---------Q-""-..;.--<>----o----oO---y (n) 

o-~ __ o_W~8 ~In .... ) --C~--"", ""9 (n) 

) f 
11 (1) z-1 Rl 

LOOP LOOP LOOP ARITHMETIC Tt 
INDEX SEQUENCE ~ ~ 

1-2-4-8 1*/1+/2+/4*/4+ 2d + 3d . 2d + 3d . m m 

2-" 2*/2+ d 
m 

+ d d + d . m . 
1-2-9-4-8 1*/1+/4+ d + 24 m a d1l\/2 + d. 

OPTIMUM SSIMO SOLUTIONS 2"'/1*/1+/2+/4"'/4+ ••• other operation •••• 

-24+3d .. a • 24 + 2d .. a 

Figure 4: Example of the derivation of an optimal SSIMD program 
for a 2nd order lattice filter. Each node involves one 
multiplY, "n*", and one add, "n+", where n is the node 
number. The loop tabulation gives the minimum sampling 
period, TO. The program has two delay outputs, Rl and 
R2, and two delay inputs, 11 (1) and 12 (1). The Program 
construction procedure gives the ordering indicated, which 
gives a value of t =T. Thus, the SSIMD solution is 
absolutely-optimal: ?Note: The storage and I/O operations 
have been left out of this analysis for simplicity. They 
can easily be included in the analysis.] 

95 



A TEST STRATEGY FOR PACKET SWITCHING NETWORKS(a) 

Willie Y-P. lim 
Laboratory for Computer Science 

Massachusetts Institute of Tcchnology 
Cambridge, Massachusetts 0;> 139 

Abstrilct -- A test strategy for packet switching networks 
is des\:ribed. The effect of a single stuck-at fault is either 
misdirected packets, missing packets, corrupted data in packets, or 

'multiple p'ackets. A fault can either prevent packet transmission 
or affed .the integrity of the data sent in the packet and it is 
detected .as one of 4 cases -- both output ports of the switching 
element inaccessible to an input port, an output pori inaccessible 

,to an input port, an input port permanently connected to an 
output port and erroneous packet length. 

Introduction 

Packet communication architecture has been discussed in 
the context of implementing data-flow machines [I]. Such 
sy's·tems use packet switching networks for inter-processor 
connection. In [I] for example, the network used is composed of 
packet switching elements called 2x2 router·s. Packet switching 
for another class of networks are discussed in. [4]. Each packel is 
rouled through the network using ·the information carried in 'Ihe 
packet. Due to this distribution of the switching fundion, many 
packets can be simultaneollsly transmitted through the various 
stages of the network. When asynchronous or self-timed 
communication protocols are used, the testing of such networks 
requires new approaches. A strategy for testing such networks is 
described in this paper. 

Fault diagnosis of networks has been studied by [3] for 
on-line fault diagnosis and by Wu and Feng [7]. The work in [7] 
dealt mainly with the fault diagnosis of networks in which the 
switching. etements have single b.it inputs. Wider inputs are used 
in packet communication. Furthermore the packet format and 
communication proJocol used affeel the test and fault diagnosis 
strategy. 

Packet Format and Packet Communic.ation Protocol 

A packet is a sequence of bits and is usually transmitted as 
a sequence of sub-unilswith each sub-unit being some fixed 
number of bits. For convenience, a sub-unit is referred to as a 
byte. The number of bits in a byte is usually determined by chip 
pin-out and communication bandwidth considerations. The 
information contained in a packet is composed of the destination 
address, the data to be sent and the length of the packet. Since 
only packet switched networks are considered in this paper, the 
destination. address is necessary for- routing the packets through 
the network. Ihe packetlenglh information can be included in the 
data transmitted, or an extra bit can be used to indicate which 
byte is the last one in the packet. 

Packets are assumed. to be transmitted using asynchronous 
communication protocols. The transmission of each packet or byte 
is accompanied by an. event signalling the arrival of the packet or 
byte at the destination and each successful receipt of a packet 
must be acknowledged by the explicit sending of a' control signal. 
For example, a special signal may be used to indicate the arrival 
of the packet, or the arrival event may be encoded in ·the data 
signal lines as in the "duat-rail" communication prototol [2]. 

(a) This research was supported by the National Science 
Foundation under grant no. MCS-7915255· and the Department of 
Energy under contract no. DE-AC02-79ERI0473. 

0190-3918/82/0000/0096$00.75 © 1982 IEEE 96 

APacket Swikhinp, Network 

The switching element. in the network is a 2x2 router which 
receives packets at its .two input ports and sends them out at its 
two output porfs. The least signific ant bit of the address byte of 
the packet is used for selectin8 the output PQrt for sending the 
packet. Output ports can be independently selected by the input 
ports and, if there is contention for an output pori, only one of 
the input ports is connected while the other waits until the output 
port becomes free, i.e. the input is temp'orarily blocked. If there 
is no contention for an output port, then the packet transmission 
from an illPut port to an output pori can proceed in parallel with 
a non-conflicting one. The various input-output pori 
confi'gurations possible are ~,hown in Figure I. The least 
significant bit of the destination address 'byte having a value of 0 
will cause output port 0 to be selected while output port 1 will be 
selected if that bit is I. 

The packet switching networ~, has the same interconnection 
structure as the baseline network [5], [6]. Figure 2 shows the 
structure of a 16x 16 network. Each router in the network is 
connected to another router or a processor through links. For a 
network with N input ports and N output paris, there are 1082 N 
stages of routers and 1 + 1082 N levels of links. The. ports of the 
routers in each stage are number·cd· from top to bottom starling 
with 0 at the top. These numbers are not shown in Fi~llre 2. 
Instead the destination addresses of the output porls of the last 
stage of the network are show I). If P $ P $_/ .•• P / Po with 
s = (log N) - 1 is the bit representation of the pori number, then 
the roufer number in that stage is given by the value of the bit 
string P $ P $_/ •.. P /' i.e. by dr-opping the least significant bit of 
the port number. With this network structure, destination address 
bytes of the same value will route packets to the same output 
pori of the network. The number ot output ports that ca~ be 
addressed, i.e. the network size, is fixed by the number of bits In 

the destination address byte. Pori and router numbers are 
important. for identifying porls and routers within a given stage 
during testing or fault diagnosis. In this paper, the nchvork IS 

assumed to be for connecting N processors, where N (> 0) IS some 
power of 2. 

Inputs Outputs 0=0=0 
1 1 

uS=Q==0==fd=% 
(a) (b) (e) (d) (e) (f) 

Configurations with no blocking 

B=ff 
(g) (h) 

Configurations with blocking 

Figure 1. Port Configurations of the 2x2 Router 



Level 0 2 3 

Figure 2. A 16x 16 Network of 2x2 Routers 

Fault Model 

o 
8 

4 

12 

2 

10 

6 

14 

1 

9 

5 

13 

3 

11 

7 

15 

4 

One, or more of the following effects will be produced by 
every single stuck-at fault occurring in a link or router of the 
network - 1) misdirected packets, 

2) missing packets, 
3) cor'rupted data in packets, and, 
4) multiple packets be~ng received. 

The types of faults occurring in the net.work can be divided 
into two classes. The first of tlle~e is the class of faults that 
affects the asynchronous communication protocol. Examples of 
faults in this class include the packet acknowledge or packet 
control signals being stuck at one of the logical values or a 
switching element being stuck in some erroneous state due 10 a 
fault occurring inside it. The effee! of this class of faults is 
missing packets, i.e. no packet is received when one or more is 
expected. , This occurs when the packets fail to arrive within some 
specified time which, is larger than Ihe normal pac-\<,et transmission 
time. The parkets are held' up ~.omewhere in the network due to 
faults. The other c'lass of faults affects the integrity or 
interpretation of data in a packet. A stuck-at fault occurring in a 
link, for example, can cause packets to be misdirected due to an 
erroneous' destination address bit being used. Or, the occurrence 
of an internal, fault in a swikhing element can ca'use the address 
bit to be interpreted wrongly. If the full a.ddress space available 
is not used, a fault in a link need not necessarily cause packets to 
be misdirected. We may get instead, erroneous data in the 
received packet. 

FigLire 3 shows the various faulty router configurations. 
The dashed lines indicate the connections that are operable while 
the dark lines indicate the connection being permanently fixed. 
Case (a) in the figure is for faults that prevent packet 
transmission through an input pori while case (b) is for faults that 
prevent packet transmission through an input-output pori pair. 
The third case is for faults that cause an input port to be 
permanently connected to an output port. Note that a connection 
is said to be good if packets can be sent through it using the 
asynchronous communication pwtocol. Hence the case of 

97 

(a) Both output ports inaccessible to an input port 

(b) One output port inaccessible to an input port 

~~-F7t-~ 
~~-t:J-~ 
(c) One output port permanently connected to an input port 

Figure 3. FBultyConfigurations of the 2112 Router 

corrupted data in a received packet at the proper destination is 
not shown. Neither is the case wher!;! the faulty router sends 
packets to two output ports considered. This is because in order 
that the router be able to send packets to two output ports, the 
fault must make it bevave like a fork in sending the packet arrival 
s!gnal out and like a merge, in receiving the packet acknowledge 
Signals. We assume that the design of the router is such that this 
will cause packet transmission to hang. 

Test Strategy 

The test strategy proposed here involves checking that 
packets can be sent through the input ports of every router in 
the network. To do this, the two test phase approach discussed 
in [7] is used. Since each phase involves a single test as each 
router is tested by the tr ansmission of a single packet through it, 
we call, the two phases tests 1 :and 2. In test 1, each router input 
port is checked to see if it c an be connected directly to the 
~orrespondingoutput port -- input port 0 to output port 0 and 
Input 1 to output port 1. All routers are set up as in (e) of Figure 
1 by using the proper destination addresses. Test 2 checks to 
see if each input port can be connected to the output port across 
from it -- input port 0 to output port 1 and input port 1 to output 
O. This means that all routers are set up as in (I) of Figure 1. 
Note that in both Cases packet transmission through each input 
port of the router is independent of each other. 

In each test, exactly one specially formatted packet is sent 
from a, source to a destination and there are exactly N such 
source-destination pairs that will be communicating concurrently. 
Hence if. the network is working properly, each processor will 
send and receive exactly one packet. The forma~ of the packet 
used depends to some extent on the router implementation. In 
any case, the source address is also included in the packet. The 
source address in the recei.ved packet is checked to make sure 
that the packet received is sent by the expected source. Some 
test bit patterns are also sent to check for stuck-at faults in the 
data bits. This test pattern is composed of two bytes, the first of 
which is an alternating sequence of O's and l's while the second 
is the same sequence rotated by 1. The width ~f the test patlern 
is the same as the width of the data path of the byte serial 
transmission used. In those implementation where the Last Byte 
bit is used, the length of the packet is also included to check for 
stuck-at faults in that bit. If the packet length is fixed during the 
test, the length information need not be sent as d.ata in the 
packet. 

With this test strategy, if case (a) of Figure 3 occurs, the 
effect will be two missing packets - one for each .test. In this 
case a stuck-atfsult occurring in the atlached input· link of the 
router cannot be distinguished from one that occurs inside the 
router. Case (b) will have thE! effect of a missing packet in one of 
the tests. In case (c), the effect will be a missing packet and 
more than one packet received by a destination in one test. If a 
fault occurs that causes packets of the wrong len8ths 'to be sent 
the destination will see a shortened packet and it as well as som~ 
other destinations may receive "dditional packets. 



F autl Di agnosis 

If a fault is detected in·the lesl, the fault diagnosis strategy 
described'in'plis used to identify the faulty router. However, it 
is . important to note that the strategy given in [7] deals only with 
single bit input lines, while in this paper we are dealing with 
multiple signal lines carrying bytes observing some asynchronous 
communication protocol. Hence, inslead of gelling faulty O\ftput 
'patterns; we get one 01 the effects described earlier. For 
example, the logically unidentified output value (open circuit) "-" 
and logical.ly erroneous value (two independent logic signals being 
tied together) "~. correspond to Ihe effecls of missing packets 
and multiple packets; respectively. 

Both Output Ports Inaccessible to an Input Port 

Since in this case a fault occ.urring in a link cannol be 
distinguished from. one that occurs in the connected router, Ihe 
fault is assumed to be in a link. Once the link is located, further 
tests are then done to locale the adual fault. Since a link is on 
exactly one path f.or each lesl, Ihe set of links Ihal are on Ihe 
faulty path can be idenlified as follows. Each link is identified by 
the number of the input port that it is connected to. In test 1, if 
p. P ._1 .•.. p I Po is the link that is connected to the source 
processor then the link at the oulput side of the i-th slage is Po 
P" .• P, p. '" Pi. I ' where 0 :S i :S s. Similarly for lesl 2, Ihe 

link at fhe output side of Ihe i-Ih slage is Po PI'" Pi Ps 
.•• Pi.;tP1• , • In test I, the link al Ihe output side of the i-th 

stage .is identified by rotating, to the right by· 1, the righmost 
s-i+l bits of the link number of the previClus stage while in test 2, 
the process is the same except Ih~t the least significant bit of the 

.s-i+l bits is always complemented after the rotation. To identify 
the "faulty" link, the source addresses for the two te~Is are 
obtained from the destination addresses of the processors. Ihat 
did not receive a packet. Note that the source-destination 
addresses are related as follows: for test I, the addresses are bit 
reversals of each other and· for lest 2 they are Ihe complement of 
the bit reversals of each other. The set of links of the path is 
determined for each test. The "r.aulty· link is the intersection of 
the tw.o link sets. Two tests are required for locating the "fal,Jlly" 
link and to determine if the fault is in the link or the router, one 
more test is necessary. This test involves checking to see if 
packet arrivals and packet. acknowledgments can be detected at 
the input .port of the router. The absence of the former means 
that the link' is bad and the- absence of the lalter means that the 
router is bad. 

An Output Port Inaccessible to an Input Port 

For this case; there is only one destination that receives no 
p~ckets for both tests. To locate the faulty router, a binary 
search is ·done. The objective of the search is to identify the 
stage in which the router is located. Knowing Ihe path and the 
stage, the router can be pinpOinted. A search tree with each of 
the stages ·of the network as leaves is constructed. Starting at 
the root, the stages 0 to·~ (if s is even) or ¥ (if s is odd) will be 

in the left subtree and the rest of the stages in the right subtree. 
The left subtree is set up to he Cif the same configuralion as the 
test in which thef aull occurs while the right subtree is set up in' 
the sametonfiguration as the other test. The network is then 
tested. If no faully response is .obtained then the fault is in the 
right subtree; otherwise it is in the left subtree. This process is 
repeated for the faulty subtree until the stage is located. The 
number of tests reqlJiredis of the order 10g(log N). 

An Output Port Permanently Connected to an Input Port 

In this case one of the I'es.ts will give two faulty responses 
- missing' packet and multiple pacllets at two distinct destinations. 
From the test at which the fault occurs, the fault type can be 
determined - for test I, the ·Ieft two cases of (c) in Figure 9 and 
for test 2 the other two cas.es. At most 2 tests are required to 
10.cate the router. 

98 

Erroneous Packet Length 

For this case, the destination will receive a shorter than 
expected packet. Sitlce ttie fault may ocwr in a link or a router, 
depending on whether the Last Byte bit is used or not, the 
situation is similar to' that of bolh output ports being inaccessible 
to an input port. A fault has the effect of sending fragments of 
the packets through the network. More than one destination may 
receive multiple packets;. all but one of these will receive a normal 
packet followed by at least one erroneous packet. The remaining 
one destination will receive one shortened packet followed 
possibly by some erroneous packets. The faulty path is identified 
by. the latter since it is the proper destination and is guaranteed 
to receive at -least the destination address byte of the packet. 
Each test will give a faulty path and the intersection of the set of 
links or routers in the two paths is Ihe faulty link or router. 

Summary 

A test strategy for packet switching networks has been 
presented. The strategy is developed for byte serial packet 
communication using an async.hronous communication protocol. It 
has been shown ttiat the effect of a single stuck-at fault can be 
clas.s!fied into misdirected packets, missing packets, corrupted 
data in packets, or multiple packets. There are basically two 
types of faults - those that prevent packet transmission and those 
that affect only the integrity or. the interpretation of the dat a 
sent in the packet. The presence of a fault. in the network will 
show up as one of 4 cases - both output port.s of the switching 
etement not accessible to' an input port, an output port not 
accessibte to an input port, an input port permanently connected 
to an output port and erroneolls pac~,et . length. An 'approach for 
fault lotation is also presented and it is shown that" the number of 
tests required is either constant or of the order of log (log N). 

Acknowledgements 

. The author is indebted to Professor Jac~ Dennis as well as 
to Bill Ackerman; Andy Boughton, Dean Brock and Ken Todd for 
their criticisms, comments and help in the preparation of. the 
paper. 

References 

[1] J. Dennis, G. Boughton, and C. Leung, "Building Blocks for 
Data Flow Prototypes,· Proceedings of 1980 Symposium .on 
Computer Architect,re, LaBaule,. France, (May, 1980),pp. 
1-8; 

[2) 

[3] 

[4] 

[5) 

[6) 

[7) 

C. Mead and L. Conway, Introduction to VLSI Systems, 
Addison-Wesley, Reading; MA, (J 980), 396 pp. 

J. Narraway and K-M... So, "Fault Diagnosis in 
Inter-processor Swilching Networks," Proceedings of the 
IEEE International Conference on Circuits and Computers, 
ICCC 80, (October, 1"980), pp. 750-753. 

A. Tripathi and G. Lipovski, "Packet Switching in' Banyan 
networ1<.s," Proceedings of the 6th Annual Symposium on 

.. Computer Architecture, (April, .1 979), pp. J,60-167. ' 

C. Wu and T. Feng, "On a Class on. Multistage 
Inte.rconnection Networks," IEEE Transactions on Computers; 
(August, 1980), pp. 694-702. 

C. Wu and T. Feng, "The Reverse-exchange Intercon'1eclion 
Network," IEEE Transactions on Computers, (September, 
19801, pp. 801-811. 

C. Wu and T. Feng, "Fault-diagnosis for a Class of Multistage 
Interconnection Networks,· IEEE Transactions on Computers, 
(October, 1981),743-758. 



ON FAULT-DIAGNOSIS OF SOME MULTISTAGE NETWORKS 

Tse-yun Feng and I-pieng Kao 
Department of Computer and Information Science 

The Ohio State University 
2036 Neil Avenue Mall 

Columbus, OH 43210 

Abstract -- It was shown previously that 
four tests are required in order to detect single 
faults and to locate single link stuck faults for 
a class of multistage interconnection networks. 
In this paper we show that only three tests are 
actually necessary and sufficient both to detect 
single faults and to locate single link stuck 
faults. The test schemes described achieve the 
least number of tests required for detecting and 
locating such faults. 

Introduction 

In a paper previously presented at this con
ference [1] it was shown that four tests are re
quired in order to detect single faults and to 
locate single link stuck faults for a class of 
multistage interconnection networks. This paper 
is to show that only three tests are actually 
necessary and sufficient to detect and locate 
such faults. 

Fault Model 

The fault model described here applies to a 
class of multistage interconnection networks [2], 
although the discussion is mainly on the baseline 
network. The interconnection network discussed 
in this paper consists of N1og2N/2 switching ele
ments where N is the number of inputs and 
N10g2(N+1) links. Each switching element has two 
inputs and two outputs, and it can have only two 
valid states as shown in Fig. 1. The faulty and 
the valid states constitute the 16 possible states 
of the switching elements listed in Tap1e I. The 
faults to be diagnosed for a switching element in 
valid states S10 and S5 are listed in Tables II 
and III, respectively, where "_" means the logi
cally undefined output and "~" means logically 
erroneous output resulting from the simultaneous 
input of 0 and 1. It is assumed that - and ~ can 
be differentiated from each other and from 0 and 
1 during the test. The links of the network can 
have stuck kind of faults (Tables II and III). 

Detection of Single Faults 

According to the fault model, a fault in an 
interconnection network can be either a link 
fault or a switching element fault. A link fault 
can be either a stuck-at-O or stuck-at-1. A 
switching element fault can be considered to be 
the malfunction of the switching element from its 
valid states. 

Theorem 1: Three tests are necessary and 
sufficient for detecting single faults in a base
line network constructed of switching elements 

0190-3918/82/0000/0099$00.75 © 1982 IEEE 99 

with two valid states S10 and S5. 

Proof: Consider one switching element with 
inputs Xl' x2 and outputs Xl' X first. To de
tect a single fault we need at least two tests, 
one for switching element at state S10 and the 
other at S5. From Tables II and III it can be 
seen that the test (xl' X2) = (0, 1) or (1, 0) 
can detect all types of S10 and/or S5 malfunc
tions, but the test (xl' X~) = (1, 1) or (0, 0) 
cannot. However, any comb1nation of the two 
tests [(0, 1) for both S10 and S5, (1, 0) for 
both S10 and S5, (0, 1) for S10 and (1, 0) for S5, 
or (1, 0) for S10 and (0, 1) for S5] is not suf
ficient to detect all the link faults. In other 
words, one additional test is needed during either 
S10 or S5 test. Therefore, at least three tests 
are required. Let (0, 1) and (1, 0) tests be 
used for switching element functioning at S10 so 
that any single link fault or the S10 malfunction 
can be detected. Then, let (0, 1) test be used 
for the switching element functioning at S5 to 
detect the S5 malfunction. Thus, three tests are 
necessary and sufficient to detect single faults 
for the network. 

Detection and L6cationof Link Faults 

There are two test phases as shown in Fig. 2. 
During Phase 1, the input terminals, labelled in 
binary numbers, with even or odd number of l's 
receive input vector 01 or 10 (or alternately 10 
or 01), respectively. Based on the result of 
Phase 1 test, all input terminals then receive 
either all l's or all D's (Fig. 2.b or 2.c) dur
ing Phase 2 test. Fig. 3 shows an alternate test 
scheme. 

Theorem 2: Independent of network sizes 
three tests are necessary and sufficient for de
tecting and locating single link faults in a 
baseline network constructed of switching ele
ments with two valid states S10 and S5. 

Proof: The necessary condition is quite ob
vious because it requires at least two tests 
(Phase 1) in order to detect the link faults and 
at least one additional test to locate the fault. 
The sufficient condition can be proved due to the 
fact that during Phase 1 test the type of link 
stuck fault is determined and unique faulty path 
can be computed between the faulty output and its 
input [1], thus, only one subsequent test is re
quired to determine the other faulty path during 
Phase 2 so that the intersection of these two 
paths gives the faulty link. 

Fig. 4 gives an example of the detection and 



(a) 

(b) 

(c) 

Fig. 2. Fault-free response. (a) Phase 1 test. 
(b) Phase 2 test for stuck-at-O fault. 
(c) Phase 2 test for stuck-at-l fault. 

Input Output 

(a) 

() 2 3 4 

(a) 

(b) 

(c) 

Fig. 3. Fault-free response of an alternate test scheme. 
(a) Phase 1 test. (b) Phase 2 test for stuck-at-O fault. 
(c) Phase 2 test for stuck-at-l fault. 

Input Output 

___ ,--,,"_ (faul.ty output) 

(b) 

Fig. 4. Locating the link stuck fault. (a) Phase 1 test. (b) Phase 2 test. 

100 



location of link faults. Since Phase I test 
identifies the link fault to be a stuck-at-O type, 
every input terminals then receives a I during the 
Phase 2 test. From these two tests the possible 
faulty links are identified to be (6, 6, 3, 5, 6) 
for Phase I and (7, 6, 2, 0, 1) for Phase 2. In
tersecting these two sets we find that the link 
stuck-at-O fault is located at link 6 of level 1. 

Discussion 

The test schemes described in this paper 
achieve the least number of tests required for 
detecting single faults and locating single link 
stuck faults for a class of multistage intercon
nection networks. It is obvious that additional 
tests are required in order to determine the type 
and location of switching element faults. 

References 

[1] C. Wu and T. Feng, "Fault-Diagnosis for a 
Class of Multistage Interconnection Networks", 
Proc. ICPP (August 1979), pp. 269-278. 

[2] C. Wu and T. Feng, "On a Class of Multistage 
Interconnection Networks", IEEE Trans. on 
Computers (August 1980), pp. 694-702. 

'Xl n xl xl =Et-= xl 
x2 il2 "2 xl 

(a) (b) 

Fig. l. A 2x2 switching element. (a) Direct connection 
(b) Crossed connection 

Table 1. Set of 16 States and the Related Symbolic Representation of a 
2x 2 Switching Element 

CrQ_apoint. CronpoiAt 

Stne Swttehills Svitch1ng St.te Svit eh1n3 Switchiq .- £1'_1; 
bktrix .- El_t 

"-trill: 
SJlllbol ,_, S)'IIIbol Sftbol 

" :Q: :!± " n: ±!: 
(0000) 1000) 

" j2j: :!± " :t3: :8= 
(0001) (l00l) 

'2 U
1
:!± 

(0010) 

'10 ltd: :!± 
(l010) 

" ~ :if '11 I~ :ij 
0011 lOU 

" g :i± '" N :ij 
(0100) 1100 

's E :if '" ~ it 
(010l) (llOl) 

'6 U :!± ,,. ~ :if 
(OUO) (1110) 

" ~ it '15 ~ :ti 
(OUl) (llll) 

101 

Table II. Faults, Test Inputs, and Outputs in Valid State S10 

Faull: Test Output 

N ...... Faulty 

" '2 X, "2 X, '2 
... zi· ~ 1 0 0 1 0 0 
oS" 1 1 1 1 1 0 

-1 x;. i~ 0 0 0 0 0 1 

-~ 
0 1 1 0 1 1 

~ ... xi, :Ii 0 1 1 0 0 0 

~~ 
1 1 1 1 0 1 

X~I 2i 0 0 0 0 1 0 
1 0 0 1 1 1 
0 1 1 0 - -55-SO 1 0 0 1 - -0 0 0 0 - -
1 1 1 1 - -
0 1 1 0 1 -

$5-S1 1 0 0 1 0 -
0 0 0 0 0 -1 1 1 1 1 -
0 1 1 0 - 1 

55-52. 1 0 0 1 - 0 
0 0 0 0 - 0 
1 1 1 1 - 1 

55-5) 0 1 1 0 1 1 
1 0 0 1 0 0 

~ 
0 1 1 0 - 0 

5S-54 1 0 0 1 - 1 
0 0 0 0 - 0 

! 
1 1 1 1 - 1 
0 1 1 0 - ~ 

S5~S6 1 0 0 1 - ~ 
0 0 0 0 - 0 

! 1 1 1 1 - 1 
55-57 0 1 1 0 1 : ~ 1 0 0 1 0 

:i 0 1 1 0 0 -55-Sa 1 0 0 1 1 -
0 0 0 0 0 -

~ 
1 1 1 1 1 -0 1 1 0 ~ -. 55-59 1 0 0 1 ~ -:. 0 0 0 0 0 -
1 1 1 1 1 -

5S-S10 0 1 1 0 0 1 
1 0 0 1 1 0 

-'-·11 0 1 1 0 : 1 
1 0 0 1 0 

SS-SU 0 1 1 0 0 0 
1 0 0 1 1 1 

Ss-5ll a 1 1 0 ~ 0 
1 0 0 1 • 1 

SS-S14 0 1 1 0 0 : 1 0 0 1 1 
SS-SlS 0 1 1 0 : 1 0 0 1 • 

Table III. Faults, Test Inputs, and Outputs in Valid States S5 

OUtput 
Fault Test 

~.~ ... aw.:y 

x, '2 '1 '2 x, '2 

~ 
Xl- Xl 1 0 1 0 0 0 

':!: 1 1 1 1 0 1 
~ ; I Xl. Xl 0 0 0 0 1 0 

! 0 1 0 1 1 1 _ .. 
0 1 0 1 0 0 ~ ... "i'''i 

~~ 
1 1 1 1 1 0 

x2 - x2 0 0 0 0 0 1 
1 0 1 0 1 1 
0 1 0 1 - -

510-50 1 0 1 0 - -
0 0 0 0 - -
1 1 1 1 - -
0 1 0 1 1 -

510'"'51 1 0 1 0 0 -
0 0 0 0 0 -
1 1 1 1 1 -
0 1 0 1 - 1 

510.52 1 0 1 0 - 0 
0 0 0 0 - 0 
1 1 1 1 - 1 

"0-'3 0 1 0 1 1 1 
1 0 1 0 0 0 

.: 0 1 0 1 - 0 
510-54 1 0 1 0 - 1 . 0 0 0 0 - 0 

J 1 1 1 1 - 1 
510-55 0 1 0 1 1 0 

1 0 1 0 0 1 
~ 0 1 0 1 - ~ !i 

S10·56 1 0 1 0 - ~ 

~ 0 0 0 0 - 0 
1 1 1 1 - 1 

~ 510-3, 0 1 0 1 1 : 1 0 1 0 0 

~ 
1 0 1 0 -

S10-5a 0 1 0 1 -
0 0 0 0 0 -
1 1 1 1 1 -
0 1 0 1 • -

510 .. 59 1 0 1 0 ~ -
0 0 0 0 0 -
1 1 1 1 1 -

SlO"SU. 0 1 0 1 • 1 
1 0 1 0 ~ 0 

510 ... 512 0 1 0 1 0 0 
1 0 1 0 1 1 

S10-S13 0 1 0 1 : 0 
1 0 1 0 1 

SlO",S14 0 1 0 1 0 • 1 0 1 0 1 • 
S10-51S 0 1 0 1 • ~ 1 0 1 0 • 



Fault Tolerance Analysis of 
Several Interconnection Networks 

John Paul Shen 

Department of Electrical Engineering 
Carnegie-Mellon University 

Schenley Park, Pittsburgh, PA 15213 

ABSTRACT -- A /3-network is an interconnection network 
composed of 2 x 2 switching elements cal/ed /3-elements_ 
/3-networks can be used as multicomputer communication 
networks_ In a previous paper, a theoretical framework 
facilitating the fault-tolerance analysis of /3-networks was 
developed_ In this paper, the analytical results from the earlier 
work are applied to the analysis of several well-known 
/3-networks_ These /3-networks include the shuffle-exchange 
network, the double-tree network, the indirect binary n-cube 
network, and the Benes rearrangeable switching network. A 
formal technique for describing topological structure of a 
fJ-network, and some useful techniques for analyzing complex 
fJ-networks are also presented. 

1_ INTRODUCTION 

A class of interconnection networks called fJ-networks has 
been proposed as intercomputer communication networks (lCN) 
for multicomputer systems [1]. An n x n fJ-network is an 
interconnection network which provides connections from n 
input terminals to n output terminals and is composed of 2 x 2 
switching elements called {j-elements. Each /3-element can be 
set to one of two states, namely the "through" (T) state or the 
"cross" (X) state, corresponding to the two possible 
permutations of its input terminals. The n computing units of a 
multicomputer correspond to both the n input terminals and the 
n output terminals. Hence, the n input links and the n output 
links of the /3-network are considered to be identical and have 
been defined as the n terminal links of the /3-network [1]. 

In a previous paper [2] a theoretical framework facilitating the 
fault-tolerance analysis of fJ-networks was developed. This 
paper constitutes a sequel to that work. The analytical results 
from the earlier work are applied to the analysis of several well
known fJ-networks. These fJ-networks include the inverse 
shuffle-exchange network [3], the double-tree network [4], the 
indirect binary n-cube network [5], and the rearrangeable 
switching network [6]. 

Pertinent results from [2] are now summarized here. A fault 
model was specified which allows fJ -elements to be stuck in 
either of their two normal states, i.e., stuck-at-through (s-a-T) or 
stuck-at-cross (s-a-X). A new connectivity property called 
dynamic full access (DF A) was introduced which serves as the 
criterion for fault tolerance in /3-networks. A /3-network has the 
DFA property if each of its inputs can be connected to anyone of 
its outputs via a finite number of passes through the fJ-network. 
A fault in a /3-network is a collection of /3-element stuck-at faults. 

0190-3918/82/0000/0102$00.75 © 1982 IEEE 

A fault is said to be criticill if it destroys the DFA property of the 
p-network. A minimal critic§! fau!! is a critical fault none of 
whose proper subsets constitutes a critical fault. A fJ-network 
with DFA is k-fault toleraQ! or k-FT if the failure, either s-a- T or 
s-a-X, of any k or fewer p-elements does not destroy DFA. The 
largest k for which a fJ -network is k-FT is called the 
fault·tolerance fEll parameter of the fJ-network. 

A graph model for analyzing /3-networks called a fJ·graph was 
introduced in [2]. The labeled /1-araph of a fJ-network is a 
labeled directed graph with vertices representing the 
fJ·elements, and edges representing the links of the fJ·network. 
An edge is labeled and called a terminal edge if it corresponds to 
a terminal link of the I~-network, otherwise it is not labeled and is 
called an intermediate edge. An unlabeled fLgrgnh, or simply a 
,B'graph, is a labeled p-graph with all its edge labels deleted. 
Figure 1 illustrates the labeled fJ-graph of a fJ-network called the 
8 x 8 inverse shuffle exchange (ISE) network [3J which connects 
eight computing units {0,1, ... ,7}. Each computing unit is 
implicitly represented by a terminal edge in the fJ-graph. Usually 
the terminal edges are labeled with the indices of the associated 
computing units as depicted in Fig. 1. Each fJ-element in a 
p-network is modeled by a vertex with two incoming and two 
outgoing edges in the corresponding fJ-graph. A fJ-element 
stuck-at fault can be modeled by the splitting of the 
corresponding vertex into two subvertices, each with one 
incoming and one outgoing edge. Furthermore, it is easily seen 
that a /3-network has the DFA property if and only if the 
corresponding p-graph is strongly connected. 

102 

000 

001 

010 

011 

100 

101 

110 

111 
(a) 111 

(b) 

Fig. 1. (a) The 8x8 inverse shuffle exchange 
(ISE) network; (b) Its labeled /3-graph. 

Given an n x n fJ-network N, a connection of N is a one-to-one 
mapping from the n input to the n output terminals, and can be 
represented by a permutation of n elements. The ~ of N is 



determined by the states of its z. ,B-eleinents. If Sj = s(bj) e{T,X} 
denotes the state of the j3-element bj, then a state of N is 
represented by a z-tuple s(B) = s(b1,b2, .. ·,bz) = (Sl' S2'''''sz)' If 
some of the j3-elements are not specified, or their states are not 
of interest, then we can characterize s(B) by the partial state, 
s(8) = (Sl' S2'''''S,), where sje{T,X,d}, and d represents an 
unspecified or don't care state. A connection p of N is realizable 
if there exists a state s of N such that by setting N to state s, the 
one-to-one mapping specified by p is established. It is possible 
that a connection of N can be realized by more than one state of 
N. 

A second network parameter based on the intercomputer 
communication delays was introduced in [7] as a measure of the 
performance of a j3-network. This parameter d is obtained by 
considering the communication delays between all pairs of 
computing units and choosing the maximum or worst case value 
of these delays. The above definition was formalized in [7] by 
making use of the j3-graph model of j3-networks. The 
edge-distance, or simply distance, from edge i to edge j in a 
p-graph is the number of intermediate vertices in the shortest 
directed path having edges i and j as its first and last edges, 
respectively. The edge-diameter, or simply diameter, of a 
p -graph is the longest distance between any two edges of the 
p-graph. The communication delay fQQ) parameter d of a 
p-network is the diameter of its p-graph. 

The CD parameter d thus indicates the worst possible delay, 
measured in terms of the number of jl-elements, between any 
pair of computing units in the multicomputer system. Meanwhile, 
the FT parameter k indicates the maximum number of 
j3-elements in a p-network, whose failures, either s-a-T or s-a-X, 
do not destroy the DFA property of the network. In this paper, 
the FT and CD parameters are derived for several well-known 
,a-networkS. Section 2 presents a formal technique for 
describing the topological structure of a ,a-network, and some 
useful techniques for the analysis of complex j3-networks. 
Sections 3 and 4 contain the analYSis of the inverse shuffle
exchange (ISE) network and the double-tree (DOT) network, 
respectively. It is shown that both the ISE and the DOT networks 
are non-fault tolerant, i.e., their FT parameters are k = O. 
However, modified versions of the ISE and DOT networks are 
presented which are fault tolerant. It is also shown that the 
shuffle-exchange (SE) network possess the same FT and CD 
parameters as that of the ISE network. Section 5 analyzes the 
indirect binary n-cube (nIBC) network. It is shown that the nlBC 
network exhibits very desirable FT and CD parameters. It is 
further shown that the flip network used in the Staran SIMD 
parallel processor [8] and the omega network [9] also possess 

the same FT and CD parameters as the nlBC network. In Sec_ 6 
the CD parameter and bounds for the FT parameter of Benes' 
rearrangeable switching (BRS) network [6] are presented. A 
conjecture of the actual FT parameter is also included. 

2. GENERAL ANAL VSIS TECHNIQUES 

A ,a-network is a collection of ,a-elements interconnected by 
fixed links. A ,a-element can be viewed as containing flexible 
links which can be programmed, i.e., set to certain states, to 
provide desired communication paths from the inputs to the 

103 

outputs of the ,a-element. This section develops a formal 
technique for concisely describing the topological structure of 
j3-networks_ Large and complex j3-networks are typically 
constructed from smaller ,a-networkS; the smallest being the 2 x 
2 ,a-element. Frequently, many identical subnetworks are 
connected to form a large network with a regular 
interconnection structure. Two very general interconnection 
methods for j3-networks are now discussed. 

The dimension of an n x n j3-network N is INI = n. By 
numbering the inputs and outputs from top to bottom, the set of 
inputs of N can be denoted by two ordered sets I(N) = (1 1,1 2, ... ,ln) 
and O(N) = (01,02, ... ,On)' respectively. In an interconnected 
multicomputer system the inputs and outputs of N coincide, 
hence we can say that I(N) = O(N), which means that Ij is 
connected to OJ for i = 1,2, .. _,n. j3-networks with the same 
dimension can be connected to form a cascade or series 
network; we now define this concept formally. 

A j3-network N is a cascade of ,a-networks N ,N2, ... ,N , 
denoted N = N1 ·N2 • ... 'Ny' if INI = INll = IN21 = ... = IN J. and I(N) 
= I(N1),0(N1) = I(N2), .. ·,0(N -1) = I(N ), O(N ) = O(N). If all the 
subnetworks are identical, i.e:, if N1 = N2 = .. ~ = N , then we will 
write N = N~. A cascaded ,a-network and all itsYsubnetwOrkS 
must have the same dimension. Many well-known j3-networks 
are cascades of other networks. 

Given two ordered sets of terminals, X = (X1,X2, ... ,Xa) and Y 
= (V l' V 2'"'' V b)' the union of X and V, denoted ~ !!Y, is another 
ordered set of terminals Z = (Zl' Z2'''''Zc)' such that c = a + b, 
and Zj = Xj for i = 1,2, ... ,a, and Zj = Vj_a for i = a + 1, a + 2, ... , 
a + b. We can now define another interconnection method 
involving the vertical composition or juxtaposition of networks. 

A ,a-network N is a stack of j3-networks N1, N2, ... ,Nw' denoted 
N = N1 + N2 + ... + Nw' if INI = IN11 + IN21 + ... + INwland I(N) 
= I(N1) U I(N2) U ... U I(Nw) and O(N) = 0(N1) U 0(N2) U ... U 

O(N). If all the subnetworks are identical, i.e., if Nl = N2 = ... 
= Nw' then we will write N = wN 1. The above two 
intercol}nection methods, cascade and stack, can be combined 
in the construction of complex j3-networks. 

The interconnection topology of the n links in a j3-network can 
be conveniently described by a permutation of its terminals. An 
n x n permuter 7T is defined here as a network consisting of n 
fixed links connecting two sets of n terminals. The connections 
realized by the permuter 'IT can be represented by a permutation 
of n elements thus 

'IT = 

where tj is connected to 'IT(t j ) for i = 1, 2, ... ,n. An n x n permuter 
can be considered to be a degenerate or empty n x n j3-network, 
and hence can be used as a subnetwork in the construction of 
large networks. 

Since a fJ-network is composed of j3-elements and fixed links, 
j3-elements and permuters can be considered as the most 
primitive elements used in the construction of j3-networks. The 
two interconnection methods, cascade and staCk, can be 



defined as operators on the primitive elements. All p-networks 
of interest can be formed by applying the cascade (*) and stack 
(+) interconnections to a set of p-elements and permuters. 

Two p-networks are isomorphic if they have the same labeled 
p-graphs. The actual symbols used for the labeling are 
insignificant. There exist one-to-one correspondences between 
the p-elements. links and terminal links of two isomorphic 
p-networks. Isomorphic p-networks also have the same 
connecting capability and network structure. However. the 
diagrams representing two isomorphic p-networks may not look 
identical. They can be made to look identical by rearranging the 
positions of the p-elements without breaking and reconnecting 
any link. 

Every p-network has a unique (unlabeled) p-graph. but a 
p-graph can represent more than one p-network. depending on 
the labeling of its terminal edges. Hence an unlabeled p-graph 
represents a class. of p-networkS all having the same unlabeled 
p-graph. We define two p-networkS to be BG-eguivalent 
(p-graph equivalent) if they have the same unlabeled p-graph. 

All the p-networks belonging to the same BG-equivalence 
class can be viewed as possible realizations of the same 
unlabeled p-graph. Each p-network corresponds to a specific 

labeling of the edges of the p-graph. In a p-graph of z vertices 
and 2z edges. there are 22z distinct ways of labeling its edges. 
Hence the p-graph represents a BG-equivalence class of 22z 
distinct p-networks. not all of which may have practical 
significanc/;'l. All the edges in the p-graph of a single-stage 
p-network are terminal edges. Hence each p-graph represents a 
unique single-stage p-network. 

We are interested in the fault tolerance characteristics of 
p-networks. These characteristics depend strictly on the 
structure of the p-networks. and not on the computing units. It 
appears that a p-graph captures all the useful structural 
properties of a p-network. including connecting and switching 
properties needed for fault-tolerance analysiS. Thus p-networks 
in the same BG-equivalence class have the same fault-tolerance 
properties. 

Let N be a p·network with z p-elements B = {b1.b2 ..... bz}. A 
(partial) state of N. denoted s(B) = (S1.s2 ..... sz), is an assignment 
of each of the z p-elements to the T. X. or d state. where s. 
e{T.X.d} derfotes the state of the p-element b. for i = 1.2 ..... z~ 
The p -elements which have been assigned the IT or X states are 
called the specified p-elements. The residual network of a 
p-network N with respect to a (partial) state s. denoted N/s. is 
the p -network obtained from N by replacing all the specified 
p-elements of s by fixed links according to the specified states. 
The number of p-elements in N/s is equal to the number of 
unspecified p-elements in s. The residual network of N with 
respect to a completely specified state is simply a collection of 
links and is not of much interest. Figure 2a depicts a p-network 
N with seven p-elements B = {b1.b2 ..... b7} connecting eight 
computing units. The residual p-network of N with respect to the 
partial state s(B) = (d.d.d.d.X.X.T). denoted M =N/s. is 
illustrated in Fig. 2b. We can extend this concept to p-graphs. If 
G is the p-graph of a p-network N. then the residual B.:9nm!:l of 

104 

G with respect to a state s. denoted Gis. is the p-graph of the 
residual p-network N/s. Figure 2c and Fig. 2d are the p-graphs 
of the p-network of Fig. 2a and its residual network M = N/s of 
Fig. 2b. respectively. It cari easily be seen that residual networks 
of a p ·network are also legitimate p-networks. 

1 

2 

3 

4 

S 

6 

7 

8 

bS 

s .. ; S 

2 

3 

4 

S 

6 

7 

8 
(a) 

b7 

Fig. 2. Illustration of a residual network: (a) A 
p-network N; (b) A single-stage p-network. 
M = N/s. s = (d.d.d.d.X.X.T); (c) p-graph of 
Fig. 2a; (d) p-graph of Fig. 2b. 

"'2 

(b) 

Many practical complex p-networks are constructed by 
systematically interconnecting a collection of smaller 
p-networks. By knowing the properties of the subnetworks and 
their interconnections we often can draw conclusions about the 
entire network. This is the approach taken here. 

Theorem 1: If two p-networkS N1 and N2 are BG-equivalent 
then N1 has DFA if and only if N2 has DFA. 

Proof: Let G1 (G2) be the unlabeled p-graph of N1 (N~. A 
p-network has DFA if and only if its p-graph is strongly 
connected. Hence N1 (N2) has DFA if and only if G1 (G2) is 
strongly connected. Since N1 and N2 are BG-equivalent. G1 
must be identical to G2• and hence N1 has DFA if and only if N;i! 
hasDFA. 4 

This theorem tells us that DF A is independent of the specific 
labeling of terminal links. i.e .• all links can be considered as 
intermediate or terminal links. The DFA property of a p·network 
can be checked by inspecting any other p·networkin its BG
equivalence class. 

Theorem 2: If N1 is a residual network of N with respect to a 
state s. i.e .• N1 = N/s. and N1 has DFA. then N must also have 
DFA. 

I 



Proof: All the terminal links of N still exist in N1. Since N1 has 
DFA, there exists a connecting path between any pair of terminal 
links of N1 . Since N1 is a residual network of N, all connecting 
paths in N1 exist in N. Hence there exists a connecting path 
between any pair of terminal links of N. Therefore N must have 
DFA. tl 

Frequently, a residual network of a f3·network has an obvious 
structure which facilitates fault·tolerance analysis. Theorem 2 
allows us to analyze the residual network and draw certain 
conclusions about the original network. Clearly, the converse of 
Theorem 2 is not true. Every faulty /J·network is a residual 
network of the fault·free /J·network. A critical fault produces a 
residual f3·network which does not have DFA. A /J·network has 
the full·access property if each input terminal can be connected 
to every output terminal via exactly one pass through the 
network [6]. The proof of the following Theorem is straight 
forward and is omitted. 

Theorem 3: Let the /J·network N be a cascade of g subnetworks 
N1, N2, ... , N , i.e., N = N1' N2 • ... ·N . The network N has full 
access if an? one of the subnetworks ~1 ,N2, ... ,N has full access. 

9 tl 

Clearly any /J·network N having full access must have DFA. 
The above theorem says that if N is a cascade of subnetworks 
then anyone of the subnetworks having full access will 
guarantee full access and DFA for N. We use I to denote the 
identity connection 

I = (tl tz . . . tn) 
tl tz . . . tn 

in which every terminal tj is connected to itself via the network 
N. We say a network N contains the identity connection I if there 
exists a complete state s of N that realizes the identity 
connection. I will also be used to represent the residual network 
N/s. 

Theorem 4: Let N = N1 'N2 •... 'hl . If some Nj has DFA and all 
the other N.'s contain the identity c5nnection I, then N must have 

I 

DFA. 

Proof: Assume that Nj has DFA. Let N' = N1 'N2 •... 'N j_1 and N" 
= Nj+1 * ... ·NQ so that N = N'·Nj·N". Since each Nj for i = 
1 ,2, ... ,g, contams I, both N' and N" must also contain I. Let s' and 
s" be complete states of N' and N", respectively, such that N' Is' 
= I and N" Is" = I. Let s be a partial state of N that results from 
setting N' and N" to the states s' and s", respectively. Clearly 
N/s = I'Nj 'I = Nj • Since Nj has DFA, N/s must have DFA. 
According to Theorem 2, N must also have DFA. tl 

The above theorem implies that if a /J-network N has DFA and 
contains the identity connection I, then any cascade of multiple 

105 

copies of N must also have DFA. The foregoing results will be 
applied to the analysis of several well-known /J-networkS in 
subsequent sections. For convenience we assume in this paper 
that all /J-networks have dimension 2m where m is an integer, i.e., 
only 2m X 2m /J.networks are considered. 

3. INVERSE SHUFFLE·EXCHANGE NETWORKS 

An n x n a-stack S is an n x n /J-network consisting of a stack 
of n/2 /J-elements. Many n x n /J-networks contain a single 
stage or multiple stages of /J-stacks. A well·known /J.network 
called the n x n shuffle-exchange network or SE network, P, is 
the cascade of an n x n permuter and an n x n /J-stack [3]. The n 
x n permuter Cl used here, which resembles the perfect shuffling 
of a deck of cards, is called the perfect shuffle. If the terminals 
are numbered from 0 to n·l, then the perfect shuffle permutation 

1 
a = 

0-( 1) 

can be defined as follows 

n-1 \ 

Cl(n-l») 

ali) = (2i + L2i/n J ) mod n, for i = 0,1 , ... ,n·l. 

The inverse of an n x n /J-network N, denoted N-1, is illlother n 
x n /J-network that is the same as N except that the direction of 
all the links is reversed. The input terminals become the output 
terminals, and vice versa. Clearly the inverse of an n x n 
permuter is represented by the corresponding inverse 
permutation. The n x n inverse shuffle-exchange network, or ISE 
network, is the inverse of the n x n SE network. Figure la 
depicts the 8 x 8 ISE network. Although N'N = N2, N*N-1 is not 

always defined, unless N is a permuter. In fact if both N1 and N2 
are permuters, then the cascade operator * used in N1 *N2 
becomes identical to the usual composition operator in 
permutation groups. It can be shown that (Nt)"1 = (N- l )! = N·!. 

For convenience, we restrict our attention to 2m X 2m ISE 
networks, where m is an integer. Each /J·element in an ISE 
network can therefore be designated by an m-bit binary number 
bmbm_1 ... b1, where bj€ {0,1}. The top /J-element is designated 
00 ... 0 and the bottom {:i-element is deSignated 11...1. Following 
the same convention, all the 2n links can be labeled from top to 
bottom by (m + I)-bit binary numbers bmbm.1 ... bo' starting from 
00 ... 0 and terminating with 11 ... 1, as illustrated in Fig. I a. 

In the above labeling scheme each vertex bmbm.1 ... b1 has two 
incoming links labeled bm ... b10 and bm ... b11, and two outgoing 
links labeled Obm ... b1 and lbm ... b1. When /J·element bmbm_1 ... b1 
is in the T-state, connections are established from bm ... b 10 to 
Obm ... b1 and from bm ... b11 to I bm ... b1. If it is in the X·state, these 
connections are reversed. The labels for /J·elements can be 
translated directly into /J-graphs to identify corresponding 
vertices. The binary (m + 1 )-tuple labels for /J-network links can 
be used to label edges in the /J-graph and, thereby implicitly 
identifying the computing units. The labeled J3-graph of the ISE 
network of Fig. 1a is shown in Fig. lb. 



o--~-r-+--+-r--r~~r;--r-~-+---

1 ---''-_r--.. 

3-~_-, 

4 _--r-"-\.....¥ 

5 

6 

7-14-~~--~L-J-~-+1-~-j--~--

Fig. 3. The 8 x 8 omega network. 

It has been shown that Pease's indirect binary m·cube is 
isomorphic to the omega network, which is actually a cascade of 
m stages of the 2m X 2m ISE network [10]. For example, the 23 x 
i3 omega network in Fig. 3 is a cascade of three identical 8 x 8 
ISE networks. We know from Pease's work [5] that the indirect 
binary m·cube has the full access property, that is, every input 
terminal of the network can reach any output terminal via one 
pass through the network. By doing a space· to-time 
transformation, the ith stage of the indirect binary m·cube can be 

mapped onto the ith pass through the 2m X 2m ISE network. 
Hence' if an input terminal of an indirect binary m·cube can reach 
anyone of the output terminals in m stages, then any input 
terminal of the 2m x 2m ISE network should be able to reach any 
other terminal within the distance m. The communication-delay 
parameter d of the 2m X 2m ISE network must therefore be m or 
less. In other words, for the 2m x 2m ISE network, d 5. m. It has 
been shown in [7] that, given a {I-network of n {I·elements the 
lower bound for its CD parameter d is ~og2n J + 1. Since Ihe 
~ x 2m ISE network has ~.1 p·elements, the lower bound for its 
d must be ~Og2(2m.1U + 1 = m. Hence the CD parameter of 
the 2m x 2m ISE network must be d = m. It is easy to see that the 
2m x 2m ISE network is O·FT. Both the top and bottom 
{I-elements contain selfloops which constitute single critical 
faults [1]. The foregoing discussion leads to the following 
theorem. 

Theorem 5: The FT and CD parameters of the 2m X 2m ISE 
network are k = 0 and d = m, respectively. A 

The minimal communication delay of ISE networks makes 
them very desirable for systems requiring very fast 
communication. In addition, ISE networks require very simple 
control algorithms [5]. Clearly, a serious drawback of ISE 
networks is their lack of fault tolerance. We now propose a 
modified ISE network which is fault tolerant and still possesses 
the minimal communication delay. 

The 2m X 2m modified lSI; network, or MISE network, is the 2m 

x 2m ISE network with two of its links altered as follows. The top 
output from {I·element 00 ... 0 is connected to link 11...1 instead 
of to link 00 ... 0. Similarly, the bottom output of {I-element 11 ... 1 
is connected to link 00 ... 0 instead of to link 11...1. Basically, in 
the MISE network, the destinations of the two original sell-loop 

links are exchanged. Figure 4 illustrates the 23 x 23 MISE 
network. It can be shown that the 2m X 2m MISE network is 1-FT 
and still possesses the same minimal CD parameter of d = 
m. This result is stated in the following Theorem, whose proof is 
documented in [7]. 

Theorem 6: The FT and CD parameters of the 2m X 2m MISE 
network are k = 1 and d = m, respectively. A 

106 

000 

001 

010 ------,-"'" 

011 
1 00 _...,_-1--" 
1 01 - ....... _.r-_-' 

11 0 _--r-",-J 

111 

Fig. 4. (a) The 8 x 8 MISE network; 
(b) Its p-graph. 

(b) 

The MISE networks are fault-tolerant p-networks with minimal 
communication delay. We have thus synthesized a fault·tolerant 
p·network by modifying a non·fault·tolerant p·network. Thiswas 
accomplished without adding extra p-elements or increasing 
communication delay. The Simple control algorithm used for ISE 
networks needs to be modified only very slightly for the MISE 
networks [1]. The {I·graph of the 2m X 2m SE network is 
isomorphic to that of the 2m x 2m ISE network. Hence they both 
possess the same FT and CD parameters. Same is true for the 
modified SE network and the MISE network. 

4. DOUBLE·TREE NETWORKS 

The double-tree network was first proposed by Levitt, Green 
and Goldberg in their study of a class of p.networks called CPCU 
(complete permutation·complete utilization) networks [4]. A 
double·tree network consists of a right and a left "half." Each 
half of the network resembles a binary tree. The left and right 
trees are mirror images of each other, and each pair of mirror
image {I·elements is connected by a link. Figure 5 illustrates the 
23 x 23 double-tree network. The double·tree network has been 
investigated by three different research teams for three very 
different applications. Levitt et al designed the double-tree 
network as a fault correcting network. By cascading a double
tree network with a CPCU network, a single-fault correcting 
CPCU network is obtained. Hopper and Wheeler [11) 
considered using the double-tree network as a packet switching 
network for local computer networks. The double·tree network 
was one of two {I. networks considered by Leung and Dennis 
[12] for implementing the distribution network of the MIT Data 
Flow Processor. 



Righi Hall 
r---"-' 

/' I 

, 
, I 

Fig. 5. The 23 x ~ double·tree network. 
or DOT network. 03' 

'-___ .J 

The structure of a 2m x 2m double·tree network. or DOT 
network. denoted Om' can be defined recursively as follows. The 
p. element is defined as the 21 x 21 DOT network. The 2m X 2m 

DOT network Om is obtained by cascading a stack of 2m.1 

p·elements to the input side and a stack of 2m.1 p·elements to 
the output side of the 2m.1 x 2m·1 DOT network ° according to 
the following construction rules; see Fig. 6. m·1 

~------~ FDt: 
I br--=:Ol----i!t-----j----L-I-
I I 
I I 
; D~1 I 

Fig. 6. The general structure of the 2mx2m 

DOT network Om' 

b;m_l 

1. Assign the labels b1.b2 ..... b2m~1 (b~.b~ ..... b~m.1) to 
the p·elements to be cascaded to the input (output) 
side of 0m.1' 

2. Connect one output of the new p·element b. to input 
link I. of ° 1 for j = 1,2 ..... 2m.1. J 

J m· 

3. Connect one input of the new p·element b: to output 
line OJ of 0m.1 for j = 1.2 ..... 2Jn-1. J 

4. Connect the remaining output of b. to the remaining 
• J 

input of bj' 

The inputs of the (b.)'s and the outputs of the (b:),s are the inputs 
and outputs. respedtively, of ° . J m 

107 

In general, Om has 2m+1·3 p·elements. and has 2m·1 stages 
of p,·elements. with stage i and stage 2m·i each having exactly 
2m., p·elements. for i = 1, ... ,m. For example. 03 as shown in Fig. 
5 has 5 stages and stages 1, 2, 3, 4 and 5 have 4. 2. 1. 2 and 4 
p·elements respectively. The single p·element in the middle. i.e .• 
stage m of Om' is called the center p·element. and is denoted b . 
Based on the construction of ° . a vertical symmetry and ':t 
horizontal symmetry can be identified in the network structure of 
Om' The left half and the right half of Om are symmetrical with 
respect to a vertical axis passing through bx' Furthermore. the 
upper half and the lower halt of Om are symmetrical with respect 
to a horizontal axis passing thorugh bx' 

A DOT network is a multiple'stage p·network. Unlike a single· 
stage network, not every link of a multiple'stage network is a 
terminal link. Hence, not every edge in its p'graph is a terminal 
edge. The CD parameter d denotes the longest distance 
separating any pair of edges in the p.graph. Since the terminal 
edges represent computing units. for a multiple'stage network. it 
is useful to also consider the longest distance separating any 
pair of terminal edges in the p·graph. Hence, we define the 
terminal ~ (TO) parameter t of a p·network as the longest 
distance between any pair of terminal edges in its p.graph. 
Consequently the TO parameter indicates the actual worst case 
communication delay between any two computing units. For 
single·stage networks t = d. Clearly. the terminal delay of a full· 
access p·network with t stages is equal to t. 

Lemma 1: The 2m x 2m DOT network ° has TO parameter t = 
2m·1 and CD parameter d = 4m.3. m 

Proof: Every input terminal of Om can reach the center 
p·element bx ' and bx can reach every output terminal. Hence 
Om has full access. Since Om has 2m·l stages. the TO 
parameter must be t = 2m·1. 

. Let the two input links of bx b~ a1 and a2, and the two output 
links of bx be e1 and e2 . The links e1 and e2 can reach every 
terminal link of Om via exactly m·l p·elements. and can reach 
every link of Om via 2(m·1) or fewer p·elements. On the other 
hand. every link in Om can reach e1 and e2 via 2m·1 or fewer 
p ·elements. Hence the distance between any two links is at 
most2(m·1) + 2m·l = 4m·3. 

To prove that d = 4m·3. we must show that there exist two 
links in Om separated by the distance 4m·3. The distance from 
e1 back to a1 is equal to 2m·2. and the distance from a1 to a2 is 
equal to 2m·l. Since the upper and lower halves of ° are 
joined only by the center p·element b ,the shortest path fr;;'m e 
to a2 must include 81, Hence the distance from e1 to ~ i~ 
2m·2 + 2m·l = 4m·3. Therefore the CD parameter of Om is d = 
4m·3. 4. 

l~iS easily seen that the center p·element bx of Om is critical. If 
bx IS s·a·T, then the network will be split into disjoint upper and 
lower halves. Hence the FT parameter of 0· is k = O. To 
summarize the foregoing results we have the folk,wing theorem. 

Theorem 7: Let Om denote the 2m X 2m DOT network. The FT 
parameter of Om is k = O. The CD parameter of Om is d = 4m·3. 
The TO parameter of Om is t = 2m·1. 4. 



We now propose a modification of the DOT network to make it 
fault tolerant. We know that the center p-element bx is critical; it 
can easily be shown to be the only critical p·element. We can 
remove the only single critical fault of bx s·a·T by simply deleting 
the center p·element b~. The modified OOT·network, or MOOT 
network, Xm is identical to the DOT network Om except that the 
center p-element b is permanently set to the X·state. Figure 7 
illustrates the 23 x 2~ MOOT network. 

2 

3 

4 

5 

6 

7 

8 

Fig. 7. The 23x23 modified DOT network, 
or MOOT network, X3 . 

Like the original DOT network, the MOOT network has full· 
access. However, the number of stages, and hence the TO 
parameter, has been reduced by one to t = 2m-2. Using the 
argument given in the proof of Lemma 1, it can be shown that the 
CD parameter for the 2m X 2m MOOT· network is d = 4m·4, which 
is also one less than the CD parameter of the DOT network. 
Thus the MOOT network actually has better delay characteristics 
than the OOT network. It can be shown that the smallest minimal 
critical faults (MCFs) of the 2m X 2m MOOT network consist of 
pairs of mirror· imaged p·elements being stuck at the same state. 
Hence, no single critical fault exists and the 2m X 2m MOOT 
network is 1·FT. We have the following theorem, a formal proof 
of which can be found in [1]. 

Theorem 8: Let Xm denote the 2m X 2m MOOT network. The FT 
parameter of Xm is k = 1. The CD parameter of X is d = 4m·4. 
The TO parameter of X is t = 2m.2. m A 

m 

Interestingly, we have succeeded in modifying a non· fault· 
tolerant p·network to make it 1-FT, while decreasing its 
communication delay. As might be expected, the connecting 
capability of the MOOT network, in terms of the number of 
permutations that can be realized, is slightly less than that of the 
corresponding OOT network due to the absence of the center 
p·element. An alternate modification which does not sacrifice 
any connecting capability is simply to add a redundant 
p·element b' in tandem to b to correct the s·a· T fault of b x x x' 

1 
2 

108 

5. INDIRECT BINARY m-CUBE NETWORKS 

Various "cube" structures have been proposed for 
interconnecting large numbers of processors in computer 
systems. The binary m·cube structure has been frequently 
considered [5,13]. This network may be thought of as 
interconnecting 2m processors which are placed at the vertices 
of an m·dimensional cube. Each edge of the cube represents a 
link connecting two processors, hence the name "binary" m· 
cube. One processor can be designated as the origin with an 
m·bit binary address 00 ... 0. Other processors can then be 
identified by their corresponding coordinates in the m· 
dimensional space. The binary m·cube has a regular structure 
and is relatively simple to control. The average communication 
delay between any pair of processors is small. 

---------, 

c~, 

s 

" • 
• 
• 

L _______ "':m __ _ 

Fig. 8. The general structure of the mlSC 
network Cm' 

I 

I 
I 
J • 

"., I . 
J • 
I 
I 
I 

The indirect binary m·cube, or mlSC network, denoted by C , 
is a 2m X 2m p·network which is defined recursively as follows. n;.. 
p·element is a 11BC network. An mlBC network for m > 2 is 
constructed from two (m-1 )IBC networks and a 2m X 2m p:;'tack 
according to the following equation 

Cm = (Cm.1 "+ Cm.1)*u*S*u-1, 

where u is the perfect shuffle permuter, S is a p·stack, and u-1 is 
the inverse perfect shuffle permuter. As before, the operator • 
denotes cascade or composition of permutations. Figure 8 
shows the general structure of Cm' The indirect binary 3·cube 
C3 is illustrated in Fig. 9. 

2 -.-,._.r-..... 
3 _-,-r-"""L""/ 

4 

5-4-r-,----;-~--~~ 
6--,-,L...---I-..... 
7 __ .<-Jr-..... ./ 

8~~~--~-J--~-+--~~~--~ 

Fig. 9. The 31SC network C3· 



The interconnections provided by the mlSC network emulate 
those of an m-dimensional binary cube [5]. The mlBC network 
has m stages of fJ-elements with 2m-1 fJ-elements per stage. The 
total number of /3-elements in this network is m2m-1 _ There are 
2m terminal links which correspond to the corners of the binary 
m-cube, while the /3-elements correspond to the edges of the 
binary m-cube. The /3-elements in any stage correspond to all 
the edges parallel to one of the axes. A /3 -element set to the 
X-state corresponds to a traversal of that edge in the binary m
cube. A simple algorithm, similar to those of the ISE and MISE 
networks exists for the control of the mlBC networks (5). 

Two other well-known fi-networkS are actually isomorphisms 
of the mlBC network. The 2m X 2m !.!.[Q network used in the 
Staran SIMO parallel processor manufactured by Goodyear 
Aerospace is structurally isomorphic to the mlBC network [8]. 
The two networks differ only in their control schemes. Unlike the 
mlSC network, in which each /3·element can be individually 
controlled, there is only one control line for each stage of 
/3-elements in the flip network. All the /3·elements in the same 
stage are set to either the T-state or the X-state simultaneously, 
to accomplish either the "shift" or the "flip" operation. Lawrie 
devised a /3-network called the omega network for accessing 
and aligning data in an array processor [9). The omega network 
is typically placed between a set of processors and a set of 
memory modules. Processors access data in the memory via the 
omega network. An inverse omega network is an omega 
network in which the direction of all the links are reversed. It has 
also been shown that the 2m X 2m inverse omega network and 
the indirect binary m-cube are structurally isomorphic [10]. 

It is well-known that the mlSC network is a full access 
/3-network, hence its terminal delay tis m, the number of stages. 
In fact there exists a unique path of length m from each terminal 

link to any other terminal link. Since a terminal link aj can reach 
any other terminal link in distance m. aj must be able to reach 
any link, terminal or intermediate, within the distance 2m·l. We 
now show that the CO parameter d of the mlBC network is 2m-1. 

Two BG·equivalent f3 ·networks have the same communication 
delay. A SG-equivalent of the mlBC network can be obtained by 
cyclically rotating the stages, i.e., by replacing stage 1 by stage 
m, stage 2 by stage 1, etc. Since the mlSC network is 
isomorphic to the inverse omega network, which is a cascade of 
identical stages, any cyclic rotation will produce an isomorphic 
f3·network. Consequently, the links in any stage can be made 
the terminal links by the cyclic rotation. Hence any link whether 
terminal or intermediate can reach any other link within the 
distance 2m-1. In one pass an input terminal link can reach all 
the output links of the mth stage, but only half of the input links to 
the mth stage. The unreached links can be reached in a second 
pass. Consequently, there exist links separated by the distance 
2m- 1, hence the TO parameter t of the 2m X 2m mlBC network is 
m and the CD parameter d is 2m-1. 

The recursive structure of the mlSC network suggests that we 
can determine its fault-tolerance parameter by induction. For 
this purpose we first develop several lemmas. 

Lemma 2: Let C be an mlSC network. Sy setting all the 
f3-elements in the ~th stage to the X-state we obtain a residual 
network C~ having the structure illustrated in Fig. 10. 

109 

c:,-1 

Fig. 10. A residual network C~ of the 
mlSC network Cm' 

Proof: The structure of C is defined in Fig. 8. We need to show 
the permuters u and u -1 ::'nd the {J -elements in the mth stage of 
Cm combine to form the permuter y of Fig. 10. If we label the 
links in a stage from top to bottom with the address numbers 

0,1 ,,,.,2m-l, then the permuter y can be defined by the following 
permutation: 

yea) = a+ 2m-1 (mod 2m) 

where a e{O,l ,,,.,2m -1} is the address of a link. If we represent a 
by the equivalent binary number amam_1".a1, then we can write 

y(amam_1,,·at) = amam_r "a1 

where a = 0 (1) if a = 1 (0). Effectively, the permuter y 
connects the ith output ~f the upper Cm_1 to the ith input 01 the 
lower Cm_1 and vice versa. The perfect shuffle u and the inverse 
perfect shuffle u- t can be similarly defined as follows: 

u(amam_1,,·a1) = am_1·"a1am 

and 

U-1(amam_t,,·a1) = a1am·"a2· 

u effectively corresponds to a cyclic left shift of the binary 
address a a 1".a1, and u- t corresponds to a cyclic right shift of m m-
this address. 

The permuting effect of a f3-element can also be defined in 
this way. Let the permutation realized by a f3-element in the 
T-state be denoted by ET and that realized by a fJ-element in the 
X-state be denoted by EX. Then 

ET(amam_1·"a1) = amam_1,,·a1 

and 

Now 

= y(amam_1,,·a1) 

from which it follows that u*EX.0'-1 = y. 

Corollary 1: The residual /3 -network C'm of Lemma 2 is BG
equivalent to a /3-network C"m obtained by cascading two 
(m-l)ISC networksC~_1 and c:,-1' Il 



If, instead of setting all the p-elements in the mth stage to the 
X-state, we set them to the T-state, another interesting residual 
network is obtained. 

*ET • . 1( ) ET. -1( ) U U amarn.1 ... a1 = u am.1"".a1am 

= u·1(am.r··alarn) 

= amam.r··ar 

Hence u'ET ·u·1 = I, where I is the identity permuter. This leads 
to the following lemma. 

Lemma 3: Let C be an mlBC network. By setting all the 
p-elements in the ~th stage to the T-state we obtain a residual 
network C' which is a stack of two (m-l )IBC networks c1 1 and 
~ m ~ 

~~. 6 

The two residual networks em and C' m will be useful in 
computing the fault tolerance of Cm' As shown in Corollary 1, 
C'm is essentially a cascade of two (m-l)IBC networks, while 
C· m is a stack of two (m·l )IBC networks. Since the mlBC 
network has loops of length m, and hence has elementary 
circuits of length m in its p·graph, its fault tolerance k must be 
less than m. We show next by induction, that k is indeed m-l. 

Lemma 4: The FT parameter k of the mlBC network Cm is m-l, 
form~2. 

Proof: The 21BC network is clearly l-FT because its p-graph 
contains a Hamiltonian circuit and no self-loop [1]. It remains to 
be shown that for m > 2, if Cm.1 is (m-2)·FT, then Cm must be 
(m-l)-FT. 

Let f be any set of m-l faulty p-elements in Cm' Since Cm has 
m stages, there must exist a stage which does not contain any 
faulty p-element. We can assume without losing generality, that 
this fault-free stage is the mth stage. Hence all the faulty 
p -elements of f are in the first m·l stages, I.e., they are contained 
in the two subnetworks C~.l and ~'1 of Cm' Since all the 
p-elements in the mth stage are fault-free, they can all be set to 
the X·state o~ the T·state to obtain the residual networks em or 
C· m respectively. We want to show that the Cm network 
containing the fault f or, equivalently, that the residual network 
Cm/sf, where Sf is the partial state representing the fault f, still 
hasOFA. 

Case 1: (One subnetwork is fault·free) All m·l faulty p-elements 
of f are in one subnetwork, say c1 l' The other subnetwork ~ 1 m- m· 
must then be fault-free. We know that a fault-free IBC network 
has full access. Hence cfl 1 must have full access. Since C is m· m 
BG-equivalent toa cascade of the two subnetworks (Corollary 
1), it can be concluded from Theorem 3 that C Is. must still 
have full access. Since C'm/sf has DFA and"ls ~ residual 
network of Cm/sf , by Theorem 2, Cm/sf must also have OFA. 
Therefore em is (m-l )-FT. 

~./s must still have DFA. The upper and lower halves, C~.l 
and dlm -1' of the residual network C' are disjoint. Since both 

1 . ....2 m 
Cm.1/sf and "'-;;'./Sf have DFA, a link in the upper (lower) half of 
C· miSt ca~ reach all the links in the upper (lower) half of C· m/sf' 
For a hnk In the upper (lower) half to reach all the links in the 
lower (upper) half, we can set the fault-free p·elements in the mth 

stage to the X-state to obtain C'm/sf Consequently any link in 
Cm/sf can reach any other link in Cm/sf' Hence emlsf must 
have OFA and em must be (m·l )-FT. 6 

Theorem 9: Let Cm denote the 2m x 2m mlBC network. The FT 
parameter of em is k = m·l. The CD parameter of Cm is d 
2m·l. The TO parameter of Cm is t = m. 6 

Unlike many of the p·networks presented earlier, mlBC 
networks have FT parameters which are not a constant, but a 
function of the size parameter m. mlBC networks exhibit the best 
FT and CD combination of the p-networks considered so far. If 
the number of p-elements of Cm is denoted by n, then the fault 
tolerance of Cm is approximately log2n and the communication 
delay is approximately 210g2n. 

6_ BENES' REARRANGEABLE NETWORKS 

One of the· earliest studies of connecting networks was 
performed by Clos on nonblocking switching networks [14]. 
Clos presented a class of non blocking networks, now called ~ 
networks, consisting of three stages. of crossbar switches. 
Benes presented a special class of the three-stage Clos network 
and showed that it is rearrangeable [6]. A network in this class 
has 2 x r input and 2 x r output terminals and consists of only 
square crossbar switches. The first and the third stages each 
contain r 2 x 2 crossbar switches, or p ·elements, while the 
middle stage contains two r x r crossbar switches. It has also 
been proven that this network can be further decomposed by 
replacing each of the r x r crossbar switches in the middle stage 
by another three·stage rearrangeable network of the same 
structure, as illustrated in Fig. 11. This process can be 
continued until all the square crossbar switches in the network 
are /3 ·elements. The resultant network is a rearrangeable 2m X 

2m p-network consisting of 2m·l stages of /3·elements. We refer 
to this /3.network as the Benes' rearrangeable network or BRS 
network. The fault· tolerance properties of these BRS networks 
are the topic of this section. 

rxr 

Case 2: (Both subnetworks are faulty) The m-l faulty p-elements 2m 
of f are distributed in both C1 1 and ~ . In this case each m·. m·l 
subnetwork can contain at most m·2 faulty p-elements. Since by 

rxr 

assumption Clm 1 and c2 1 are (m-2)-FT, then both C1 Is and . m· m·t f 

110 

Fig. 11. Decomposition of Clos's rearrangeable 
network as presented by Benes. 



The smallest 2 x 2 BRS network is the ~·element. The 2m X 2m 

BRS network Bm for m ~ 2 is defined recursively as follows. 

B = S ·u·lo(B + B )·u·S m m m·l m-l m 

where Sm denotes the 2m X 2m p·stack, u denotes the perfect 
shuffle permuter, and Bm.l denotes the 2m.1 x 2m.l BRS network. 
Figure 12 depicts the structure of the 2m X 2m BRS network. The 
~ x 23 BRS network B3 is illustrated in Fig. 13. The general BRS 
network Bm has 2m-l stages of p·elements and is symmetrical 
with respect to the middle stage. By the definition of 
rearrangeability, this network is capable of realizing all 2ml 
possible connections. The BRS network is then the most 
powerful ~.network, in terms of the connecting capability, that 
we have considered so far. It is also the most difficult to analyze. 

Left Hall _ Stage Right Hall 

r-- - - --;::--::-::::1..f:::::::.r:::-:--=--:::;- - -- - --, o -+;-r---~~~Hr~~~~--~rI~ 
1 
2 
3 -,~--r,", 
4 
5 _ ...... ....r-...L 

6 ~~~-' ~~~~ 

7 ~~~--~~~~~~~~--~~~ 

Fig. 13. The ~ x ~ BRS network, B3. 

o~-

l~ I 
r--to: 

::D::l 1 
Bm-1 : I ~ Lemma 5: The CD parameter of the 2m X 2m BRS network Bm is 

I I d = 4m·3. 
I 

I 
I 
I 
I 
I 
I 
I 
I 

t1 : Proof: The baseline network has full access, hence a terminal 
I link of Bm can reach all the links in the right half of Bm ,n one 
I pass. It can reach any link of Bm in a second pass. or within the 

=o:i !" 
: distance dl = (2m·l) + (m·l) = 3m·2. 

Zm_ 1 -- ~--------------~ 
__ .t=o::" The middle stage Sm cascaded with the right half of Bm is 

Fig. 12. The general structure of the 2mx2m 

BRS network Bm. 

BRS networks have been extensively studied by many 
researchers, including Joel [15] and Opferman and Tsao·Wu 
[16]. Previous work has focused on the analysis of the network 
complexity, and implementation of efficient algorithms for 
network control. Opferman and Tsao·Wu have also studied the 
diagnOSis of faulty ~·elements which are stuck at the T· or the 
X· states. They assume that the state of each individual 
~·element is not accessible, and have shown how to derive a 
very small set of connections, or permutations of the terminals, 
which correspond to an efficient set of test patterns. 

As shown in Fig. 12,. the 2m X 2m BRS network Bm contains a 
stack of two 2m.1 x 2m.l BRS networks. We denote the upper 
one by B~.l and the lower one by ~.1. Let Sj denote the stack 
of p·elements in the ith stage of Bm whose stages are numbered 
1 ,2 •... ,2m·l, from left to right. Consequently, Sm denotes the 
middle stage. and the network Bm is symmetrical with respect to 
Sm. We call the subnetwork to the left (right) of Sm the left (right) 
"half" of Bm. Hence the network Bm is the cascade of the left 
half, the middle stage Sm' and the right half as illustrated in Fig. 
13. Wu and Feng designed a full·access p.network called the 
baseline network [17] which is isomorphic to the cascade of the 
left half of Bm and the mi~dle stage Sm' 

Since the BRS network is rearrangeable, it clearly has full 
access. Hence its terminal delay t is the number of stages in the 
network, which is 2m·l. The communication delay parameter t is 
much more difficult to derive than the terminal delay. 

III 

isomorphic to the inverse baseline network. It has been shown 
that the inverse baseline network is isomorphic to the baseline 
network [17], so Sm cascaded with the right half of Bm also 
possesses full access. Hence any non·terminal link in the left 
half of Bm can reach all the terminal links within the distance d2 
= 2m-2, and can reach any link of Bm within the total distance d3 
= d2 + (2m·2) = 4m·4. Similarly. any non·terminal link in the 
right half of Bm can reach at least two terminal links within the 
distance d4 = m·l, and hence can reach any link of Bm within 
the total distance ds = d 4 + dl = 4m·3. Since ds > d3 > d1.' every 
link must be able to reach any other link within the distance ds = 
4m-3, Hence the communication delay d of the BRS network Bm 
is at most ds. If we can show there exist two links separated by 
the distance 4m·3, then the communication delay parameter 
must be exactly ds = 4m·3. 

Let b denote ap·element in the upper half of the middle stage 

Sm· Let ko denote the upper outgoing link of band kj denote the 
lower incoming link of b. Because the structure of the BRS 
network, an upper out£loing link of a p·element in Sm can only 
reach the upper half terminal links of Bm in one pass through the 
network. Hence after the first pass, ko can only reach all the 
upper terminal links. Furthermore. in a second pass ko cannot 
reach any of the lower incoming links to the p·elements of S ; 
see Fig. 13. Only in a third pass can k reach k.. Hence t~e 

. . 0 I 
distance from ko to kj IS equal to (m·l) + (2m·l) + (m·l) = 4m·3 
= ds· Therefore, the communication delay parameter d of the 
2m X 2m BRS network is 4m·3. A 

Some upper bounds on the fault tolerance parameter k of B 
can be easily obtained. Let the 2m terminals of B be numberea 

m 
O,l, ... ,2m.l from top to bottom. If the top (bottom) ~·element in 



each stage is set to the T-state, a critical fault consisting of 2m-l 
p-elements results, which isolates the terminal a (2m -1). Hence 
the fault tolerance parameter k of the 2m X 2m BRS network must 
be less than or equal to 2m-2. 

The 2m X 2m BRS network contains two major subnetworks 
B~_l and ~-1' Each of these 2m-l X 2m-l BRS networks in turn 
contains two 2m.2 x 2m-2 BRS networks, etc. We call the terminal 
links O,1, ... ,2m.l _1 of Bm its upper terminal links, and call the 
remaining links 2m.1,. .. , 2m_l the lower terminal links. In the left 
half of Bm any upper (lower) terminal link can only reach those 
links which are upper (lower) input links of the subnetworks of 
Bm' Consequently, if all 2m-l p-elements of the middle stage Sm 
are set to T, the upper and lower terminal links of Bm are 
disconnected, and Bm is decomposed into two identical 
subnetworks. Hence another upper bound for k is 2m-l _1. 
Combining the two upper bounds we can conclude that the FT 
parameter k of the 2m X 2m BRS network Bm is bounded above 
by min{2m-2, 2m-l _1}. 

It is conjectured that k is actually equal to this upper bound. 

~~:i~~~~~ ~~~~lr x 2m BRS network Bm has FT paramet~ 

For m ~ 3 the above conjecture is known to be true. If it is true 
for m = 4, then the conjecture can be proven inductively using 
the similar approach as that of Theorem 9. 

Theorem 10: Let Bm denote the 2m x 2m BRS network. The FT 

parameter of Bm is k S min{2m-2 ,2m-l _1}. The CD parameter of 
Bm is d = 4m-3. The TD parameter of Bm is t = 2m-1. A 

BRS networks appear to~ have fault tolerance and 
communication delay similar to those of mlBC networks. If the 
number of p-elements of Bm is n, then the fault tolerance of Bm 
is approximately 210g2n, and the communication delay is 
approximately 410g2n. 8RS networks appear to be fault tolerant 
with respect to full access as well. 

ACKNOWLEDGEMENT 

The author would like to acknowledge the helpful comments 
and superb guidance provided by Proh~ssor John P. Hayes. 

REFERENCES 

1. J.P. Shen, Fault Tolerance Q[ B-networks in 
Interconnected Multicomputer Systems. Ph.D. 
Dissertation, Dept. of Elec. Engineering, Univ. of 
Southern Calif., Aug. 1981. Also available as USCEE 
Tech. Report No. 510. 

2. J.P. Shen and J.P. Hayes, "Fault tolerance of a class 
of connecting networks," Proc. Z!h Ann. Symp. 
Computer Architecture, pp. 61· 71, 1980. 

112 

3. H.S. Stone, "Parallel processing with the perfect 
shuffle," IEEE Trans. Computers, vol. C·20, pp. 
153·161, Feb. 1971. 

4. K.N. Levitt, MW. Green and J. Goldberg, "A study of 
the data commutation problems in a self·repairable 
multiprocessor" ~ Spring Joint Computer Q.QnL., 
pp. 515·527,1968. 

5. M.C. Pease, "The indirect binary n·cube 
microprocessor array," IEEE Tr~ Computers, vol. 
C·26, pp. 458-473, May 1977. 

6. V.E. Benes, Mathematical Theory Q[ Connecting 
Networks and Telephone Traffic, New York, 
Academic Press, 1965. 

7. J.P. Shen and J.P. Hayes, "Synthesis of fault 
tolerant beta- networks," Proc. 12th Symp: 2!!. Fault 

Tolerant Computing, June 1982. 

8. K.E. 8atcher, "The Flip network in STARAN," Prru<.. 
Parallel Processing Conf., pp. 65·71, Aug. 1976. 

9. D.H. Lawrie, "Access and alignment of data in an 
array processor," IEEE Trans. Computers, vol. C·24, 
pp. 1145-1155, December 1975. 

10. D.S. Parker, "Notes on shuffle/exchange· type 
switching networks," IEEE Trans. Computers, vol. 
C-29, pp. 213·222, March 1980. 

11. A. Hopper and D. J. Wheeler, "Binary routing 
networks," IEEE Trans. Computers, pp. 699·703, 
October 1979. 

12. C.K.C. Leung and J.B. Dennis, "Design of a fault· 
tolerant packet communication computer 
architecture," Proc. Tenth Fault·Tolerant Computing 
~, pp. 328·335, Oct. 1980. 

13. H. Sullivan and T.R. Bashkow, "A large scale 
homogeneous fully distributed parallel machine, I" 
Proc. 4th Ann. Symp. Computer Architecture, pp. 
105·117, March 1977. 

14. C. Clos, "A study of non·blocking switching 
networks," full! ~ ~.!ruml., Vol. 32, No.2, pp. 
406·424, March 1953. 

15. A. Joel Jr., "On permutation switching networks," 
full! ~ Tech. .!IDm:!.., Vol. 47, No.5, pp. 813·822, 
May·June 1968. 

16. D.C. Opferman and N.T. Tsao·Wu, "On a class of 
rearrangeable switching networks, part II: 
enumeration studies and fault diagnosis," §!ill ~ 
Tech. Journ., pp. 1601·1618, May·June 1971. 

17. C.L. Wu and T. Y. Feng, "Fault·diagnosis for a class 
of multistage interconnection networks," ~ 
Parallel Processing Conf., pp. 269·278, Aug. 1979. 



A FAULT-TOLERANT CONNECTING NETWORK FOR 
MULTIPROCESSOR SYSTEMS 

L. Ciminiera 
CENS - Istituto di Elettrotecnica Generale 

Politecnico di Torino 
Corso Duca degli Abruzzi, 24 

10129 TORINO - ITALY 

This paper presents a new interconnection network, 
referred to as F-network, which is able to corre£ 
tly handle the communications between the connec
ted devices, even if some nodes within the net
work are faulty. The routing algorithm presented 
in this paper provides a fast procedure for rero
uting a message; hence, the redundant paths can 
also be used to enhance the network bandwidth. It 
is also shown that the rerouting properties are 
still valid when broadcasting is used. Analytical 
models show that the MTBF of a F-network is un
reacheble by using several non-fault-tolerant ne~ 
works in parallel. Finally, this paper presents 
the modularity properties of the F-network, which 
lead to a LSI or VLSI implementation cheaper than 
for a pair of parallel delta networks. 

1. Introduction 

One of the most prom~s~ng approaches to the impl~ 
mentation of large mUltiprocessor systems is ba
sed on the use of special switched networks, con
necting the processors with themselves and/or 
with the memory banks. In the past few years, ma
ny papers on interconnection networks have appea
red in the literature [1] [7J . Almost all 
of them deal with the functional properties, the 
performance issues and the implementation of the 
networks discussed. 
Little attention has however been paid to the 
fault-tolerance capabilities of interconnection 
networks. Fault-tolerance can be achieved in seve 
ral ways; the most classical methods include the 
use of self-checking and correcting codes for the 
data transmitted through the network and the 
fault tolerant design of network switches and 
control units. These techniques rely directly on 
the network implementation. A third way consists 
in providing multiple alternative paths for the 
transmission of messages; in this case, the net
work topology and the routing and re-routing algo 
rithms greatly influence the network fault-tole
rance. 
When the latter approach is used to enhance the 
fault-tolerance, the following criteria may be u
sed to judge the network design: 

0190-3918/82/0000/0113$00.75 © 1982 IEEE 

and 

113 

A. Serra 
Istituto Elettrotecnico 
Facolta di Ingegneria 
Universita di Catania 

Via Andrea Doria, 6-95100 Catania - Italy 

1) the mean life time of the network should be 
substantially higher than in the other net
works, and it should be better than that achie 
ved by duplicating or multiplying other net
works; 

2) the control algorithm should be as simple as 
possible; furthermore, dynamic rerouting should 
be used, since it allows simple recovery proc~ 
dure and increases the network performances; 

3) the network should be able to perform all the 
switching functions performed by the commonest 
networks, without any penalty; 

4) the number of active devices required for impl~ 
menting the new network should be kept as low 
~s possible. 

In ~lJ a multiple path routing scheme for the ba
nyan networks is presented; however it is not well 
suited for circuit switching, hence it partially 
violates criterion 3. In [8J -:- ITO], the rerou
ting capabilities of the ADM and IADM networks are 
studied; such networks are not able to reroute e
very message, hence they violate criterion 2. This 
paper presents a new network, referred to as the 
F-network, which performs well with respect to all 
the criteria listed above. Furthermore, it is mo
dular, hence it is suitable for low-cost LSI or 
VLSI implementation. 
In section 2, the F-network definition is presen
ted and the routing algorithm is formulated. In 
section 3, the rerouting capabilities of the F-ne~ 
work are shown, when broadcast communications are 
used. 
In section 4, analytical reliability models for 
the F and multiple delta networks are presented, 
and the results obtained are discussed. In section 
5, the modularity properties of the F-network are 
illustrated and their impact on the implementation 
costs are discussed. 

2. F-network definition 

The "basic element of the network presented in this 
paper is a switch with 4 inputs, 4 outputs and ca
pacity 1. A block diagram of a single switch is 
shown in Fig. 1. Although this diagram can be used 
as a suggestion for implementation, it is provided 
hence only to explain the switch behaviour clearly. 



M 
U 
L 
T 
I 
P 
L 
E 
x. 

o 
E 
M 
U 
L 
T 
I 
P. 

Fig.l.Block diagram of the switch used. 

Let N be the number of input and output devices 
and n be equal to 10g2N.The the whole F network 
is constituted by n+l stages composed of N nodes. 
While each node in a middle stage is a full 
sl~itch, the nodes located in the stages 0 and n 
are constituted by only the right or left half 
of a full switch. Hence, the overall complexity, 
is Nlog2N times the complexity of the swicth shown 
in Fig.1. 
The nodes within each stage are numbered from 0 
to N-l and from top to bottom, while the stage are 
numbered from 0 to n and from left to right.The 
input devices are connected to the nodes in stage 
o and the output ones are connected to the nodes 
in stage n. The two sets of input and output devi 
ces mayor may not be coincident. In the rest of 
this paper, a node of the network will be refer
red to as Pj, where P (O~ P <N) indicates the n~ 
ber within the stage and j (0 ~ j ~ n) indicates 
the stage number. 
One vector of bits (Pj,n-l, ••• ,Pj,O) can be asso
ciated to each node; each vector is calculated so 
that the following relation holds: 

n-l 
P = I: 

j k=o 
P 2k 
·k J, 

(1) 

In other words, (Pjln-l' ••• 'P j ,o)is the representa 
tion of the number P in the binary number system. 
The interconnections between the nodes in the 
F-network are defined using the following rules. 

Definition 2.1. 

The topology of an F network with N input and N 
output devices can be obtained by connecting the 
four outputs of a generic node P j (O~ j < n) to the 
nodes P.+l , Qj+l' Rj+l' Sj+l where the number of 
these n5des are expressed by the following strings 
of bits: 

P. l=(P. l'···'P .. l'P .. ,p .. l'···'P. 0) J+ J,n- J,J+ J,J J,J- J, 

Q. l=(P. l'···'P .. l'P .. ,p .. l'···'P. 0) J+ J,n- J,J+ J,J J,J- J, 

114 

R. 1= (P . l' ••• , P. . l' P. ., p. . 1'···' p. 0) J+ J,n- J,J+ J,J J,J- J, 

S. l=(P. l'···'P .. l'P .. ,p .• l'···'P. 0) J+ J,n- J,J+ J,J J,J- J, 

It is worth noting that the F network is a super
set of the binary cube network; in fact, the for
mer can emulate the latter, by using only the co~ 
nections to Pj +l and Qj +l • The F network with N=8 
is shown in F1g.2. 
Although the network topology seems very complic~ 
ted the routing algorithm is very simple. In fact 
the F network belongs to the "digit controlled" 
class of networks [4J; that is, the routing at 
each stage is performed only on the basic of a 
single digit within a routing tag. In our case, 
since the message entering a node can be routed 
to one out of four outputs, the routing tag 
T=(tn-l, ••• ,to) is composed of n four-valued di
gits tj (O~j<n). The four possible values of tj 
are 0, 1, 2, 3; the choice of the set of the va
lues for tj is merely conventional. The path-fin
ding process of a message is based on the use of 
a special function f defined below. 

Definition 2.2. 

The function f (P , tj) accepts a string of bits 
P and a four-valued digit tj and produces a 
string of bits (i.e. a number) defined by the fol 
lowing relation. 

h 

o &::;t~-~~~---~r=====~ 0 

1 1 

3 

5 

7~~-"""':;~~---~~===~7 

Fig.2. The 8x8 F-network. 

I 
I 



(P l'···'P. l'P.,P. l'···'P n- J+ J J- 0 
) if t. 0 

J 

(P l'···'P. l'P.,P. l' ••• ,P ) if t. 1 
f (P, t.): 

n- J+ J J- 0 J 
J (P l'···'P. l'P.,P. l'···'P ) if t. 2 

n- J+ J J- 0 J 

(P l'···'P. l'P.,P. l'···'P n- J+ J J- 0 
) if t. 3 

J 

Once the right routing tag has been calculated, a 
request for the output D=(d _l, ••. ,do) generated 
by the input S(s l' .•• 's )nis routed according 
to the followingn;ecursiv~ procedure: 

M = S 
o 

M. 1 f(M., t.),O <j~n 
J+ J J 

D M 
n 

(4) 

where M. (O.$' j~ n) is the node at the stage j in
volved in the past between Sand D. 
The most important feature of the F - network is 
that it gives 2n possible destinations, while 
4n = 22n different routing tags are allowed. From 
the pathfinding procedure defined by (4), it can 
be established at once that the sequence of nodes 
M~ composing a path is altered, even if only one 
d1git composing the related routing tag is alte
red. Hence different paths correspond to different 
routing tags. 
Furthermore, since the number of the possible ro~ 
ting tags is larger than the number of the possi
ble destinations, several paths exist in a F-net
work, connecting an input to an output node. For 
example, if a message for the output 6 is genera
ted at the input node 4, in the network shown in 
Fig.2, it can be routed by using on e of the following 
tags: (0,1,0) (1,0,2), (0,2,2), (1,3,0). 
The following theorem provides us with two impor
tant results. 
It shows how a message can be routed through the 
network and how the redundant paths can be used 
to circumvent faulty nodes. Moreover, the algo
rithm presented needs a routing tag representa
tion using only n+l binary digits rather than 2n. 

Theorem 2.1. Let C = (Cn-l, ••• , Co) = S(i)D, where 
the symbol e indicates the bit-wise exclusive-or 
operation performed on the two vectors of bits S 
and D. Let r be a binary variable initially set to 
o and r(j) be the value of r after the completion 
of the j-th step of the routing algorithm descri
bed by the following recursive procedure: 

M =f(M (C $ (j») (j+l)= (j) (5) 
j+l j' j r , r r 

or, alternatively 
(j) (j+l)-(j) 

M. 1=f(M.,2+(C. $ r », r =r 
J+ J J 

(6) 

115 

with M =S and M =D. 
o n 

Proof 

In order to, prove the thesis of the theorem, it 
is sufficient to show that the j-th bit of M. 1 

J+ 
is equal to dj and that the bits form 0 to j-l 
are equal in Mj+l and Mj. In fact, once such a 
result is proven, the k-th bit of Hn is equal to 
the k-th bit of Mk+l' that is dk ; hence ~=D. 
In general, when the routing algorithm reaches 
the step j a certain number of routing steps ma
king use of the equation (6) have already been 
esecuted. 
The two cases of a even and an odd number of such 
steps are considered separately: 
a) ~: r(j)=O and ~.j=Sj' since, from (6), an 

even number of complementations have been per
formed on these bits and their initial values 
where 0 and s., respectively. From Definition 
2.1. we deriv~ that the following relation 
holds: 

(") 
m.';l=m .. 0 (r J e>C.)=s.E>C. 

J+-'t.J+ J,J J J J 
(7) 

since C. was computed as s. ~ d., the (7) be co 
J J J mes 

m. ,; l=s.(j;)s. $d.= d. 
J+-'t.J+ J J J J 

(8) 

b) odd: r(j)=l and mjg=;j' since, from (6), an odd 
number of complementations have been performed 
on these bits, and their initial values where 0 
and Sj, respectively. Using the same arguments 
as in the case a, it is possible to show that 
the following relation is valid: 

m. ,; 1=;. @ 1 @ d. $ s.= d. 
J+-'t.J+ J J J J 

(9) 

the O-th to the In both cases the bits from 
(j-l)-th are copied from Mj 
At each step of the routing 

into Mj+l. 
algorithm illustrated 

in Theorem 2.1., it is possible to calculate the 
neJ!1t node of the path, using one out of two possi. 
ble formulas. In other words, there are always'at 
least two different paths starting from a node 
within the F-network and leading to the same de
stination node. Only when the message reaches a 
node in stage n-l, the alternative paths lead to 
the same destination node different merely from 
a formal point of view. In fact, while either e
quation (5) or equation (6) can be used, the re
sult is always D. This feature derives from the 
assumption that a different device is connected 
at each node in stage n. Theorem 2.1. assumes that 
the routing is performed on the basis of a binary 
variable r and a vector of bits C, by applying a 
sequence composed of a mix of two types of steps. 
By using all the possible patterns of steps, all 
the paths interconnecting the same input-output 



pair are generated.Given an input node, there are 
2n possible tags leading to the same output node; 
however, only 2n- l distinct paths exist, since 
the tags differing only in tn-l produce identical 
paths. Since 2n possible destinations exist, the 
,,2n,..1 h . f . d 
~ pat s start1ng rom an 1nput no e are e-
qually distributed among all the possible desti
nations. Furthermore, the F-network is designed 
so that alternative paths exist at each stage. 
This feature allows an on-the-fly rerouting of a 
message, when some nodes in a network are faulty. 
In fact, if at step j of the routing algorithm, 
the next node selected by using equation (5) is 
faulty, the message can be routed to the node s~ 
lected by using equation (6), and vice versa. The 
on-the-fly re-routing can be usefully employed 
to enhance the network baridwidth, since the 
nodes previously acquired must not be released, 
and the re-routing is accomplished in a short ti 
me interval. 

3. Broadcasting 

Broadcasting capability is an important issue for 
a connecting network, since the algorithms exec~ 
ted on multiprocessor systems often require that 
the result of some computation should be sent to 
a pool of processor and/or memory banks. Broad
casting in the F-network is discussed in this se 
ction. 
In general, in an interconnection network, the 
path, for a multi-destination message is establi 
shed by duplicating, on different output links 
of some switch, either the arriving packet (pa
cket switching) or the request-to-connection (ci~ 
cuit switching). The F-network also works in this 
way; furthermore, since more than two outputs 
per node are available, broadcasting in the net
work presented here has the same rerouting prope~ 
ties as the point-to-point transmission. 
The routing of a multi-destination message is per 
formed on the basis of the routing tag C, the bit 
r, defined in section 2, and an additional n bit 
broadcastiqg mask B=(bn_1, ••• , bo)' used to iden
tify the switches which should duplicate the ar
riving message on their outputs. In fact, a node 
in stage j, finding bj = 1, duplicates the messa
ge, while, if bj = 0, the node behaves as in a 
point-to-point connection. The duplication of a 
message on two different output links of a node 
in stage j can be seen as the superimposing of 
two point-to-point connections, one with Cj~O 
and the other with Cj=l. Hence, by applying for
mulas (5) and (6), e1ther of the following nodes 
in'the stage j+l can be selected for the copy of 
the message correspond~ng to ?j=O 

M =f(M 0) (J+l)= (J) 
j+l j' r r (10) 

M. 1=f(M.,2) 
J+ J 

(j+1) -(j) 
r =r 

116 

while, for the copy of the message corresponding 
to C.=l, either of the following nodes can be u

J 
sed: 

M. l=f(M.,l) 
J+ J 

M. l=f(Mj ,3) 
J+ 

(j+l) (j) 
r =r (11) 

(j+l) -(j) 
r =r 

Thus, in the F-network, two alternative paths 
exist for each copy of a message, which is dupli 
cated at a node to allow broadcasting transmission. 
Note that the two copies of a message may be ro£ 
ted independently, hence in general the value of 
r(j+1) is not equal for both copies. 
It is easy to proof that if a message is duplic~ 
ted only once, in stage j, it will reach only 
two outputs, whose numbers differ in only thej-th 
bit. When many duplication of the same message 
occur, the final result obtained is equivalent to 
the superposition of the results of each single 
message duplication. Hence, the following theorem 
may be easily proven. 

Theorem 3.1 

A sou:ce node S=(sn-l,"" %0) can broadcast to 
the 21 destination nodes D =(dn_l, ••• ,dO):Whose 
numbers are obtained by taking all the 21 combi
nations for the bits dki_l, ••• ,dkO and fixing a 

value for the other n-l bits. The complete routing 
tag should be computed as follows: 

where 

r (0) 0 

C DG) S 

B 

j=kO,kl ,··· ,ki _l 

otherwise 

Theorem 3.1 states that the cardinality of the 
set of the destination nodes should always be a 
power of two. In effect, it is possible to apply 
to the F-network a broadcasting scheme presented 
in [}oJ for IADM and ADM networks; in addition,it 
is possible to eliminate the constraint, imposed 
in the original presentation of this method, on 
the contiguity of the stages duplicating the mes
sage. 
The first step is to compute the difference bet
ween the number of destinations and the largest 
power of 2 less than that number. The binary re
presentation of such a difference can be embedded 
into C, by using the bits Cki-l"'" Cko ' which 
are not used by the stages duplicating the messa
ge, as shown by the previous discussion. 
(C.AND.B) is a vector of bits, where the bits in 
position ki-l, ••• ,kO express the current value of 
the count, while the others are meaningless and 



set to O. When a decrement of 2kjis performed on 
the (C.AND.B) number, the bits of the result in 
position ki-l, ..• ,ko expre9s the value of the in
put count decremented by 2J , while the other bits 
are still meaningless. In order to obtain the co£ 
rect output value of the whole vector C, the bits 
of the result (xn- l , ... ,xO), obtained by decreme~ 
ting (C.AND.B), and the bits of C must be merged 
according to the following rule: 

(12) 

otherwise 

This decrement and merge operation is used by the 
routing algorithm performed by the control units 
of the nodes which should duplicate the arriving 
message. This algorithm is described by the proc~ 
dure shown in Fig. 3. 

if b.=O - ~ 

then if (R.AND.B) and b.=OVj~i 
-- J I 

then do not duplicate the message and 
-- send the single copy as if C. + r (i) =0 

~ 

else subs tract 2i from (R.AND.B) 
set the counter to 0 if the result 
is negative merge the result of the 
substraction and C 

if countl0 

then route the copy wit~ modified 
-- C as if Ci G> r(i) =1 as if 

C. <t> r(i) =0; 
~ 

else do not duplicate the message 
and send the single copy as 
if c. 0r (i) =0; 

~ 

Fig.3. Procedure executed by a control unit of a 
switch which should duplicate the arriving 
message. 

Note that the binary broadcast subtrees pruned are 
always those leading to the highest numbered out
puts. 
Finally, it should be noted that the F-network al
lows a message to be duplicated and both copies to 
the rerouted, at the same node, even when tha al
gorithm described in Fig.3 is applied. In fact,the 
bits of C are never changed by the rerouting pro
cedure, hence the bits of C.AND.B entering a con
trol unit are always correct. 
In conclusion, the F-network is able to perform 

117 

the most sophisticated broadcasting techniques al 
lowed by other similar networks; in addition, it 
is able to combine such broadcasting properties 
with the dynamic rerouting capabilities discussed 
in section 2. 

4. Reliability modelling 

The primary goal of the F-network design was to 
obtain an interconnection network able to correc
tly handle the communications between its input 
and output devices, even if some nodes are faulty. 
The final result expected is the enhancement of 
the network reliability. The results presented in 
this section give an estimation of the reliabili
ty enhancement achieved. The analysis is based on 
the following assumptions; 
a) the faults occur, independently, only within 

the network nodes; 
b) the nodes in the stages 0 and n are considered 

fault-free; 
c) each kind of fault prevents the correct execu

tion of any node operation, hence a faulty no
de is totally unavailable; 

d) the whole system is considered faulty, when 
the number and the location of the faulty no
des prevent the communications between at 
least one input-output pair. 

Hypothesis a is obvious, since only network relia 
bility should be studied. Hypothesis b derives 
from the assumption that each input or output de
vice communicates with the network by only one 
port. In this case, the failure of the first 
switch connected to one of these ports prevents 
every communications with the corresponding device. 
Hence, the faults within the nodes in stages 0 

and n are not recoverable by using a suitable 
network topology, but their effect should be avo~ 
ded only by the reliable implementation of such 
switches. 
Hypothesis c leads to a conservative analysis,si~ 
ce, in general, a fault does not destroy all node 
functionalities. Finally, under hypothesis d, the 
occurrence of non-critical faults does not pre
vent any system operation. 

Theorem 4.1. 

The minimum number of faults leading to a system 
failure is 2. 
The proof derives directly from the routing algo
rithm, which allows two alternative paths at each 
stage. 

Theorem 4.2. 

The maximum number of faults possible without cau 
sing a system failure is ~ «10g2N)-1), where N 
is the number of input and output devices. 

Proof 

From the proofs of Theorem 2.1., it follows that 



all the messages requiring the use of the node 
(P 1"" ,P, ,P, 1"" ,P ), at the stage j, may be 

n- J J- 0 

rtrouted only to the node (p 1"",P"P'l, ••• ,F), 
n- J J- 0 

and viceversa. Hence, the N nodes whithin a stage 
can be divided into N/2 subets of 2 nodes, refer
red to as ~ subsets. Since the network does not 
fail until both nodes in any p subset are faulty, 
the maxi!)l.tm1 number of faul ts in a non-faulty net 

, N -
work ~s 2 10g2 N. 

Theorem 4.1. and Theorem 4.2 provide the lower 
and upper exact bounds on the number of faults, 
which cause a system failure. However, it can ea
sily be realized that both the best and the worst 
cases occur only when some particular pattern of 
faults is found. Hence, the network reliability 
characterization provided by the results of the 
previous theorems is too poor. Since the fault I£. 
cation is random, the number of faults causing the 
system failure is a random variable. T~us, it 
important to evalua~e its mean value, k. The 
ral expression for k is the following one: 

L 

k= !2 i P(i) 
N 

L= - «log N)-l) 
2 2 

is 
gen~ 

(13) 

where P{i) is defined as follows: 
P(i) = pr{ the i-th fault causes the system failur, 

This probability can also be expressed by the fol 
lowing formula: 

P(i)=Q(i-l) R(i) (14) 

where: 

Q(i-l)=Pr ti-l faults do not cause the system fai 
lurel 

and 

R(i)= Pr {a fault causes the system failure \ i-I 
faults have already occurred and the system 
is not faulty} 

In a NxN F-network, L ~subsets exist, and the who 
Ie system is not faulty until both nodes in the 
same ~ subset are faulty. Hence, the fault pat
terns preserving the system functionalities are 
constituted by nodes belonging to different ~ sub
sets.The number of the groups of i-I different 

subsets is(~l'; 2i - l fault patterns correspond to 
each group, tecause it is possible to choose in
dependently for each subset the faulty node ~since 
all the fault patterns are equally probable,Q(i-l) 
is given by the following expression 

Q(i-l)=2 i-I ( L )f( 2L ) 
i-I i-I 

(15) 

Given a non faulty F-network with i-I faults, the 
i-th failure of a node causes a system failure 

118 

if and only if the new faulty node belongs to the 
same p subset as one of the previosly failed no
des. Since such nodes belong to i-I different 
subsets, there are i-I nodes out of 2L-(i-l), the 
failure of which will cause a system failure. Hen 
ce, R(i) can be expressed as follows: 

i-I 
R(i)= 2L-i+l (16) 

Note that Q(l)=l and R(l)=O, as required by Theo
rem 4.1., and Q(L+l)=O and R(L+l)=l, as required 
by Theorem 4.2. By using the equations (11),(14), 
(15) and (16), it is possible to compute k. 
Fig.4 shows the value of k for different network 
sizes. It is wort~ noting that for Delta, !ADM 
and ADM networks k is always 1. In fact, the Del
ta networks provide only one path between a in
put-output pair, hence the failure of a single n£. 
de will cause a system failure. 
The IADM and ADM networks in general provide mul
tiple paths betweeq an input device and an out
put one; however, for some input-output pairs, 
there is only one path. Since each node within 
such networks is involved in at least one of the 
se unique paths, a single failure will cause a 
sys tern failure. 
Let us compare the reliability of the F-network 
with that of a system of h parallel 2x2 delta ne~ 
works like that shown in Fig.s where a network is 
switched off as soon as one of its nodes fails, 
For the sake of uniformity, it will be assumed 
that each delta network is implemented replacing 
each 2x2 crossbar switch with a fully connected 
bipartite graph with 4 nodes, each one constitu
ted by a switch like that shown in Fig.l, with 2 

K 
50 

40 

30 

20 

10 

4 8 163264 128256 N 

Fig.4. Average number of faults leading to the s~ 
stem failure for different network sizes. 



Input : 
device.: 

NET 1 

NET h 

output 
device. 

Fig.S. Redundant interconnection system composed 
by h parallel networks. 

inputs and 2 outputs. Furthermore, it will be as
sumed that the time to failure of each node is a 
random variable with negative exponential distri
bution and mean value A-I. Since each node of the 
F-network is twice as complex as that of a delta 
network, it is assumed that the failure rate for a 
switch of the F-network is 2). • 
At this point, it is possible to compute the mean 
time before the failure (MTBF) for the network pr~ 
posed here and the configuration shown in Fig.S. 
The MTBF of a F-network,MTBFF,can be computed as 
follows: 

L (i-l ) 
f;l ~o (L_j)-l P(i) (17) 

For a single delta network, the failure is caused 
by a single node failure, because there is only one 
path between each input-output pair. Since the ne~ 
work has identical nodes, the MTBF is given by the 
following formula: 

(18) 

It is worth noting that the life time of a delta 
network also has a negative exponential distribu
tion.Hence, it is easy to compute by using formu
las of classic reliability modelling the MTBF for 
a system with h identical parallel networks where 
each single network is switched off when one of 
its nodes fails. The final result is given by the 
following expression: 

h 

2: 
i=l 

-1 
i (19) 

The plots of the MTBF for the F-network and for a 
system with h parallel delta networks are shown in 
Fig.6. 
It can be seen that the parallel delta networks a
chieve the same MTBF as the F only when the sizeof 
the network is small, for realistic values of h. 
However, interconnection networks are intended for 
very large multiprocessor systems, hence the range 
of interest is shown on the right side of Fig.6. 
After simple calculation, it can be seen that for 

119 

MTBF 
l-' 

\~ 
\ \\ 

\" ," 

4 

" , 
" ~ , " , " , " , " , " delta networks, " 

8 

, " 
'" '" , "h=3 

,'h.2 
'h= 1 

16 32 64 128 256 N 

Fig.6. MTBF for the F and parallel delta networks. 

N=32, more than 1000 delta networks are needed to 
achieve the same MTBF as a single F network; this 
number goes up to above 106 , when N=128 is consi
dered. 
In other words, the previous analysis shows that 
the MTBF attained by a single F network cannot be 
reached by a system where the redundancy is ob
tained by using several delta networks in parallel. 

5. Network modularity 

Previous work on the LSI and VLSI implementation 
of interconneting networks [l~ .; [14] has shown 
that switches belonging to different stages must 
be integrated in a single circuit, in order '·to o£. 
tain the minimum chip count for implementing a g! 
ven network. Unfortunately, the use of basic blocks 
composed by switches of different stages imposes 
some constraints on the network topology. 
Hence it is not always possible to define such b~ 
sic building blocks, for each interconnecting ne~ 
work. The modularity issues of the F-networks are 
discussed in this section. The goal is to show how 
a F-network of a given size can be built, inter
connecting several smaller multistage subnetworks. 
The most important feature of these subnetworks 
should be the limited number of interconnections. 
In fact, smaller the number of input and output si_ 
gnals, the smaller the number of pins required for 
implementing each subnework in a single chip.Since 
the pin count rather than the area is the main I! 
miting factor for the integration of large subne~ 
works, the basic builing block with the minimum 
number of interconnections give's us the best VLSI 
implementation. 



Definition 5.1 

A SUBF network with M=2m (m~ 2) inputs, referred to 

as SUBF (M), is a network obtained from an M in
put F-network, by using switches with 4 inputs 
and 2 outputs in the last stage. 
From Definition 5.1. if follows that a SUBF (M) 
has 2M output links. 
Each output node has 2 outlets, which will be di
stingnished by referring to them as the "dashed" 
link and the "solid" link, with an obvious referen 
ce to their representation in the figures of this 
paper. Hence, each SUBF (M) has M "solid" and M 
"dashed" outlets. 
In order to allow the connection of several SUBF(M), 
it is assumed that the implementation of th~ out
put nodes of such networks is in accordance with 
the block diagram shown in Fig.7. The selection of 
the "dashed" or the "solid link" is performed by 
enabling the appropriate three-state buffer' in . . , 
th~s way, several output links of a SUBF network 
can be tied to the same input link of a different 
SUBF network, without extra logic. 
A NxN F- network can be obtained by using (N/M) 
10gMN SUBF(M) networks, arranged in 10gMN stages 
of N/M subnetworks. The first stage should perform 
all the routing functions of the first m stages of 
the F-network.From the routing algorithm presented 
in section 2, it can be deduced that a message en
tering ~he F-netwo~k from input P=(Pn_l, ••• ,PO)can 
reach e~ther node ~n stage j, whose number is ex-
PEessed bY_(Pn_l""'Pj'x, ••• ,x) or by 
(Pn_l, ••• ,Pj'x, ••• ,x) where a string of x stands 
for any binary string of the same length. 
Hence, in order to preserve such a behavior for 
o~j~ n-l it is necessary for each SUBF(M) to 
group the input exnressed by (p 1 P x x,) - ~ n- , ... , m-l' , ... , 
and by (Pn-l, ••• ,Pm_l'x, ••• ,x); varying the string 
Pn-l, ••• ,Pm-l all the N/M pairs of groups are gene 
rated. Moreover, since a message occupying the no-
d ( -e Pn-l"" ,Pm-l'~-2' ... ,dO) at stage m-l, can 
reach ei ther node(Pn-l, ... ,p ,d l' d 2' .... ,dO)or node m m- m-

M 
U 
L 
T 

p. 

A 

B 

"solid" link 

"dashed" link 

Fig.7. Output switch for a SUBF network. 

120 

(%-1' "";m'dm-1'~2' ... , dO) at stage m; it is n~ 
cessary to use the two output links to reach all 
the possible nodes. In particular, the "dashed" 

link of the output (Pn-h"'" Pm' ~-1,dm-2,dO)is 
c£.nnected !,o the "solid link of the output 

(Pn-l"",Pm'~-1'~-2, ••• ,dO)' In this way, the 
choice of the value of ~-l is performed at the 
last stage of the SUB(M), while the adjustment of 
the most significant n~ bits in performed by cho 
osing either the "solid" or the "dashed" link. -
The second stage of SUBF networks is able to per
form the same operation as the first one; however, 
since it should operate on the second block of m 
bits, there is a m-unshuffle permutation, which 
causes an m-position right rotation of the bits 
expressing the node number. Each subnetwork gro-
ups the inputs expressed by (d • dO p m-l' .. , 'n-l'···' 
P?m-l'X, ••• ,x)and by (~_1> ... ,.do'Pn-l,""P2m-l'X, .•• ,x). 
S~nce the most significant m bits cannot be chan
ged, the connection between "solid" and "dashed" 
links at the output of the second stage must not 
influence such bits. 
Repeating the same process shown above and taking 
account of the increasing number of most signifi 
cant bits which cannot be changed, all the logMN 
stages can be laid out. A final m-unshuffle per
mutation is required to obtain the correct orde 
ring of the outputs. A l6x16 F-network built u~ 

sing eight SUBF (4) is shown in Fig.B. 
Each SUBF(M) allowing the transmission of w para 1 
leI signals per input, requires 3wM connections -
with the outside world. Whereas, each MxM subnet
work proposed in IT~ for a class of delta net
work requires 2wM connections. 
Let us consider the problem of implementing a fa
ult-tolerant network with N inputs and N outputs 
and B parallel signals per input. Two alternati
ves with similar costs are considered: the use of 
a NxN F-network, the use of a pair of NxN modular 

0 
4 
8. 

12 

1 
5 
9 

13 

4 2 5 
10 6 
11 10 

14 

6 3 
7 
8 

7 

9 
11 
15 

Fig.B. l6x16 Jj:.network built using B SUBF(4)networks. 



delta networks in parallel. 
In the first case, the number of modules to be u 
sed, bF , is given by: 

B 
b = 

F w 
B 

(ZO) 
w 

while in the second case, the number of the sub
networks, is expressed by 

b = ~ ZNlogZN 
A w MlllogZMll. 

B 

w 
(21) 

The value of M is limited by the number of pins 
per package allowed, such a limitation does not 
depend on the type of the network. Hence, if the 
limited number of pins imposes a maximum of Zo 
connections per subnetwork, the following expre~ 
sions must hold: 

20 
(ZZ) 

(Z3) 

Assuming M =20/3w and M=2 /Zw the following rela-
tion can br obtained: 0 

(Z4) 

From (Z4) it can be deduced after trivial comput~ 
tion, that for M;' 3.3., the number of chips requi 
red by a F netwo~k is smaller than that required
by a duplicated delta network. Taking account of 
the relation 20 =3~w=Z~w, it will be seen that 
b and be,. decrease by increasing the values of 
M! and M . Hence, the minimal chip count is achie 
ved by m~king ~(or MA ) as large as possible;in
general, such a condition leads to M >3.3. Thus, 
the chip count for implementing a F-~etwork is 
less than required for a duplicated delta net
work, although the former has better reliability 
and performances. 

6. Conclusions 

Let us now compare the results presented in the 
prev~s~ons sections with the four criteria li
sted at the beginning of this paper. The analy
tical models presented in section 4 have shown 
that the mean lifetime of an F network is so hig~ 
that a similar result cannot be achieved by using 
several networks in parallel, where each network 
does not have intrinsic fault-tolerance· properties. 
Hence F-network performs very well under crite
rion 1. 
The F.·network achieves its high level of reliabi 
lity by introducing multiple redundant paths be
tween each input-output pair.The routing algorithm 
is only O(log N), since the F is one of the so
called "digit-controlled" networks [4J, hence it 
allows the control functions to be distributed a-

121 

mong several units; furthermore, the selection of 
alternative paths may be performed on-line, as r~ 
quired by criterion Z, so that simple recoverypr£ 
cedures are allowed and rerouting can be used to 
enhance the system performances. 
F is the only network presented in the literature 
which holds all the rerouting properties when bro 
adcast communications are considered, even if so
phisticated broadcasting techniques are used. 
Furthermore, since the F-network is a superset of 
the multistage cube network, it is also able to 
perform all the other switching functions of the 
most popular networks, as required by criterion 3. 
Finally, the number of active devices required by 
an F network is about equivalent to that required 
by redundant network composed of two delta net
works in parallel. Moreover, if the chip count r~ 
ther than the number of active devices in cons ide 
red as a cost function, the F network becomes ch~ 
aper than two delta networks in parallel, although 
the former configuration has better reliability, 
performance and switching capabilities than the 
latter. 

References 

[lJ Batcher K., "The flip network in STARAN", 
1976 Int. Conf. Parallel Processing, Aug. 
1976, pp. 6S-71 

[ZJ Goke G., Lipovski G.J., "Banyan networks for 
partitioning multiprocessor systems", ~ 
Symp. Compo Arch., Dec. 1973, pp.Zl-Z8. 

[3J Lawrie D., "Access and alignment of data in 
an array processor", IEEE Trans. on Compu
ters, Vol. C-Z4, lZ(197S) pp.1l4S-llSS. 

[4J Patel J., "Performance of processor-memory 
interconnection for multiprocessors", IEEE 
Trans on Computers, vol.C-30, 10(1981), Oct. 
1981, pp.77l-780. 

[S] Pease M., "The indirect binary n-cube micro 
processor array", IEEE Trans .Comp., Vol.C-Z6, 
S(1977), pp.4S8-473. 

[6J Siegel H.J., "A model of SIMD machines and 
a comparison of various interconnection net 
works", IEEE Trans.Comp.,Vol.C-Z8, 10(1979), 
pp.907-9l7. 

[7] Feng T., "Data manipulating functions in p~ 
rallel processors and their implementations'; 
IEEE Trans. on Computers, Vol. C-Z3,3(1974), 
pp.309-3l8. 

[8J Siegel H.J. and McMillen R., "The use of a~ 
gmented data manipulator in PASM" , Computer, 
Vol.14, n.Z, Feb. 1981, pp.ZS-3l. 

[9] McMillen R. and Siegel H.J. "MIMD machine 
communication using the augmented data mani 



pu1ator network" 7th Ann. Symp. on Computer 
Architecture, May 1980, pp.51-58. 

[10] McMillen R. and SiegelH.J., "Dynamic rerou 
ting tag schemes for the augmented data ma
nipulator network", 8th Ann. Symp. on Compu
~ Architecture, May 1981, pp.505-516. 

o.u Tripathi A. and Lipovski G.J., "Packet swi! 
ching in banyan networks", 6th Ann. Symp. 
on Computer Architecture, Apr. 1979, pp. 
160-167. 

[1;0 Ciminiera L. and Serra A., "Modular interco,!!. 
nection networks with asynchronous control", 
14th Hawaii Int. Conf. on System Sciences, 
Jan. 1981, pp. 210-218. 

[13] Smith S.D., "LSI design considerations for 
multistage interconnection networks for p~ 
ralle1 processing systems", 14th Hawaii Int. 
Conf. on System Sciences, Jan. 1981, pp.219-
227. 

[llJ Franklin M.A. and Waun D.F., "Pin limita
tions and VLSI interconnection networks", 
Int. Conf. on Parallel Processing, Aug.1981, 
pp.253-258. 

122 



A FAULT TOLERANT INTERCONNECTION NETWORK USING ERROR CORRECTING CODES 

J. Edward Lilienkamp, Duncan H. Lawrie, and Pen-Chung Yew 
Department of Computer Science 

University of Illinois at Urbana-Champaign 
Urbana, Illinois 61801 

ABSTRACT 

A method for constructing a fault tolerant 
interconnection network is described. It uses 
error correcting codes to correct errors due to 
all single and many multiple failures of both 
switching elements and links, and requires O(Nw) 
encoders and decoders, where N is the network size 
and w is the size of the packet in bits, and less 
than w additional check bits. Also discussed is a 
method for isolating the failed component after 
one is detected. This result contrasts with 
previous results because it allows the network to 
continue operation while the fault is being 
located, rather than performing off-line testing. 

Introduction 

Much research has been done in the area of 
interconnection networks in multiprocessor 
systems, but not enough attention has been paid to 
making such networks fault tolerant. This paper 
addresses that issue and applies an old technique 
to the problem. 

This fault tolerant network design attempts 
to provide a cost effective method that allows the 
network to operate properly in the presence of 
some set of failures, including all single 
failures, while maintaining a straightforward 
routing algorithm. 

Previous approaches have attempted to solve 
the problem by providing alternate paths from each 
source to each destination, allowing a failed 
component to be bypassed. Falavarjani and Pradhan 
[FaPr81j and Adams and Siegel [AdSi82j propose 
using a standard network with an extra stage. 
With this extra stage, there is more than one path 
to each destination. Shen and Hayes [ShHa80j use 
a simple fault model, and explore the fault 
tolerant capabilities of conventional 
configurations. Yew [YewP81j proposes using 
multiple layer networks, which are by default 
fault tolerant, since a failure in any particular 
layer could be avoided by deactivating that layer. 

These results have several limitations. 
First of all, many authors assume an unreasonably 
optimistic fault model, such as a switching 
element will only fail by becoming stuck at one of 
its valid states. Second, many fault models do 
not include failure of a data link, and all faults 
are assumed to be permanent and not transitory. 
Third is the extra complexity added to the routing 
algorithm. In order to avoid a faulty section of 

This research was supported by the Department of 
Computer Science, University of Illinois at 
Urbana-Champaign, the National Science Foundation 
under Grant No. MCS 80-01561, and the United 
States Department of Energy under Grant No. 
DOE DE AC02-81ER10822. 

0190-3918/82/0000/0123$00.75 © 1982 IEEE 

the network, the location of the fault must be 
known by the sender prior to transmitting the 
packet. Finally, several passes through the 
network may be required to pass a permutation when 
a failure occurs. 

The approach here is to apply the techniques 
of error coding to correct errors caused by a 
single fault, and to analyze the failure data to 
locate the faulty component. The use of error 
correction codes in communication systems is not 
new [PeWe72j. Pradhan and Stiffler [PrSt80j 
discuss using error codes to achieve fault 
tolerance in many computer applications, such as 
ALU and memory design, but they do not mention 
interconnection networks specifically. This paper 
discusses using such codes to achieve a fault 
tolerant network design. 

The Network and the Fault Model --- --- ----- -----

The network to be considered here is the 
omega network of size N=2n for packets of w bits 
routed in parallel, although the technique is 
applicable to other networks as well. The packets 
can be buffered in a switching element to allow 
improved performance [CLYP81j [Chen82j, and the 
network can be operated in one of two modes, SIMD 
or MIMD. 

123 

The network described above can be viewed in 
three dimensions. The x dimension is the 
direction of packet flow. The y dimension is the 
different processors in the system. The z 
dimension is the parallel bits of the packets sent 
by the processors. One conventionally views a 
network in the x-y plane. 

A packet consists of many bits, but pin 
limitations in VLSI technology require that only s 
bits per package be allowed. Consequently, at 
least wls packages are required to implement a 
single switching element. The fault tolerance 
scheme presented here will take advantage of the 
multiple package requirement. 

A virtual switching element is defined as a 
single column of physical switching elements and 
its associated control. This functions as a 
single w bit switching element. Similarly, a 
virtual link is the column of wires that implement 
a w bit link. Finally, a physical switching plane 
is defined as a single x-y plane of physical 
switching elements and their associated links, 
which with the control implement an s bit layer of 
the NxN network. 

The fault model is general and will encompass 
almost any single and some multiple failures of 
real components. It is assumed that any single 
interconnection link can fail, independently of 
any other link. An example of a link failure is 
one that is permanently stuck at logic level 0 or 
1, or some level outside the normal logic domain. 
It is also assumed that any single physical 



switching element package can fail independently 
of all of the others, and that such a failure 
causes some or all of the outputs of that 
switching element to be invalid. Link and 
switching element failures can be either permanent 
or transitory. 

Fault Tolerance ~ Coding Each Packet 

The principal of this design is to take 
advantage of the package redundancy caused by the 
large word size, and use an error code to correct 
errors caused by single failures. This requires 
great care, since faults in the network control 
could potentially route a packet to the wrong 
destination. 

As mentioned previously, several physical 
switching elements are required to implement one 
virtual switching element. As currently 
described, however, a single fault in the output 
of the control section could cause all of the 
physical switching elements in the virtual switch 
to route the outputs to the wrong port, which is 
undesirable. If the control section generated 
three control signals independently and the 
physical switching elements contained voting logic 
for these signals, then a single fault in the 
control section would not cause any of the 
switching elements to misroute the data. Hence 
the worst case failure would be a switching 
element failure. If an error correcting code were 
used to correct the error caused by a single 
switching element failure, then the fault would 
not cause system failure. Furthermore, the same 
code can be used to correct errors from link 
failures. 

The previous discussion said little about the 
error correction code required, and did not 
address the problem of corruption of routing bits. 
When a switch failure occurs, then a contiguous 
run of s bits aligned on an s bit boundary could 
be in error. Any code used would have to be able 
to correct for such a failure. Furthermore, the 
destination tag portion of the packet must be 
corrected in the control section of every stage, 
so if an error destroys a bit in the tag, the 
packet will still be routed properly. 

Although codes to correct large bursts of 
errors exist [PeWe72], they are cumbersome to use, 
particularly in the coding and correcting 
operations. An alternative is to use a single 
error correction code on pieces of the data, and 
distribute the bits of the code words to different 
physical switching elements. Then a switching 
element package failure would only destroy single 
bits of several code words, all of which can be 
corrected. 

One could use a (2m-l,2m-m-l) Hamming code 
[PeWe72] for such a purpose. The bits of data are 
divided into parcels of 2m-m-l bits each. These 
are coded in parallel, resulting in k=w/(2m-m-l) 
groups of 2m-l bit code words, each group 
containing 2m-m-l data bits and m parity bits. 
Each bit of a code word is sent to a different 
switching element. One possible assignment is to 
route b~t i of group j to switching element (i+j-
2)mod(2 -1)+1. The output of the switches at the 
final stage are unscrambled, and the error 

correction procedure is applied. 
It was initially stated that the scheme was 

to allow all single faults in the network. 
Additionally, the errors from several common 
multiple failures can be corrected, so it is 
desirable to classify those mUltiple failures that 
do not disrupt correct network operation. The 
only multiple failure that would prevent 
successful network operation is one that destroys 
more than a single bit of a code word. A single 
physical switching plane can fail totally and the 
network will continue to operate. Thus if a 
failure occurs and the physical switching plane or 
some portion of it is implemented on a single 
card, then the failed section could be removed and 
replaced while the network continues to operate. 
Only multiple failures in the same virtual 
switching element or in different physical switch 
planes but common to at least one path would cause 
incorrect operation. Similarly, multiple link 
failures are allowed if they do not happen to 
destroy two bits of the same code word. 

The network can be made more resilient to 
error by applying the correction to the code words 
between every stage. Then the input to each stage 
is known to be correct, and the network can 
tolerate single faults in each virtual switching 
element. This change would require 10gN times as 
many decoders as the original scheme. 

The main disadvantage of this technique is 
the large increase in the number of bits, which is 
m/(2m-m-1). The number of encoders and decoders 
required is Nw/(2m-m-l). The limitation on the 
maximum size code is the packet size (including 
routing bits) and the number of bits in a physical 
switching elem~nt. The total packet size must be 
at least s(2 -m-l) bits, or some of the bits in 
the switching elements will not be utilized. 

The most optimal code for arbitrary w can be 
selected by choosing the smallest value of m such 
that 2m-m-l ~ wis. Then the number of parity bits 
required is ms, and the parity bit overhead is 
ms/w. Since m~log(w/s), the overhead is 
O(slog(w/s)/w), plus O(Nw) encoders and decoders. 
This is preferable to triple modular redundancy. 

Fault Location 

This section describes a way to analyze the 
failure data to locate the failures. The 
technique is simple and can be performed by an 
auxiliary processor while the network continues to 
operate normally. This contrasts with the 
techniques proposed by Feng and Wu [FeWu81], which 
require the network to cease normal operation 
while a series of tests are used to locate the 
failure. 

The error correction codes described in the 
previous section determine which bits have been 
corrupted, and thus isolate the fault to a 
particular physical switching plane. If a single 
physical switching element fails, then as many as 
s bits are incorrect, whereas a link failure will 
only destroy a single bit. 

The correction circuits for each data word 
cooperate together in locating a fault. If an 
error is corrected, then the source and 
destination tags are sent to a fault location 

124 



processor. The fault location processor 
accumulates failure information over several 
cycles of network operation. If all corrections 
are to the same single bit of the data words, then 
a link error is suspected. Otherwise, a switching 
element is suspect. Depending on the type of 
error, the fault location processor determines at 
which switching element or link the paths of the 
failed packets intersect. 

Determining the intersection of the paths can 
be accomplished by comparing the source and 
destination tags of the corrected packets. Lawrie 
showed [Lawr75) the path used by a packet is 
uniquely determined by its source and destination 
tags. A packet travels through switching elements 
in stage i 

Sn_1Sn_2··· S1 i=l 
S is i~·· .Sl D ••• D i+2 n- n- - n n-
DnDn_1••• 2 i=n. 

The intersection of two paths can be 
determined by comparing the concatenated source 
and destination tags of the paths, and noting the 
common bits. The absence of a continuous run of 
identical bits (not including Sand D1) indicates 
the paths do not intersect nat any switching 
element. The paths from 100 to 110 and 110 to 000 
do not intersect at any switching element. On the 
other hand, the paths from 001 to 011 and 111 to 
001 do intersect, because SlDn=3 is 10 in both 
pairs. Since it matches two bits from the left, 
the paths intersect at the second stage and 
switching element 10. The technique is similar 
for locating link failures, except a link requires 
n consecutive bits. 

In the presence of multiple faults, fault 
isolation can be difficult. If the network fails 
due to multiple faults then on-line fault 
isolation is impossible. If the multiple faults 
allow continued operation, then the data could be 
analyzed as before. This will result in a list of 
suspect locations, but they will not be completely 
accurate. If two packets go through two separate 
failed components in early stages of the network 
and happen to go through a common switching 
element, then that element could be flagged as 
faulty. For such cases off-line testing as 
described in [FeWu81) would be required. 

Conclusion 

This paper has presented a method for 
achieving a fault tolerant interconnection design 
using error correcting codes. The technique 
utilizes the multiple packages required to 
implement many parallel bits in the packet. The 
packets are encoded using several Hamming codes, 
and the bits of the code are distributed to 
different physical switching elements. At the 
destinations the packets are corrected for errors. 
The error caused by any single failure, and a 
large class of multiple failures, can be corrected 
by the codes. The network requires O(Nw) extra 
hardware in the form of packet encoders and 
decoders, where N is the network size and w is the 
packet size. Also, additional hardware is 
required in the form of extra bits to be 
transmitted, although that is dependent on the 

125 

particular Hamming code chosen. 
Also presented is a technique for comparing 

the source and destination tag bits of the packets 
requiring correction to isolate the fault in the 
specific switching element or link, while the 
network continues normal operation. This is 
different from previous fault location techniques, 
which require removing the network from the system 
for special testing. 

There are two problems with this technique. 
First of all, it presumed the existance of fault 
tolerant encoders and decoders for the error 
correction code. Secondly, the scheme requires 
many bits to be routed in parallel. For a bit 
serial method of transmission some other method 
for achieving fault tolerance be required. 

[AdSi82) 

[CLYP81] 

[Chen82) 

[FaPr81] 

[FeWu81) 

[Lawr75) 

[PeWe72] 

[PrSt80] 

[ShHa80) 

[YewP81] 

REFERENCES 

George B. Adams III and H. J. Siegel, "A 
Multistage Network with an Additional 
Stage for Fault Tolerance," Fifteenth 
Hawaii International Conference on 
System Sciences, Jan. 1982. 
P-Y. Chen, D. H. Lawrie, P-C. Yew, and 
D. A. Padua, "Interconnection Networks 
Using Shuffles," Computer, Vol. 14, No. 
12, Dec. 1981. 
Pin-Yee Chen, Multiprocessor Systems: 
Interconnection Networks, Memory 
Hierarchy, Modeling and Simulations, 
Ph.D. Thesis, University of Illinois at 
Urbana-Champaign, January, 1982. 
K. M. Falavarjani and D. K. Pradhan, "A 
Design of Fault-Tolerant Interconnection 
Networks," submitted for publication, 
1981. 
T. Feng and C. Wu, "Fault-diagnosis for 
a class of multistage Interconnection 
Networks," IEEE Transactions on 
Computers, vol. C-30, Oct. 1981. 
Duncan H. Lawrie, "Access and alignment 
of data in an array processor," IEEE 
Transactions on Computers, Vol. C-24, 
Dec. 1975. 
W. Wesley Peterson and 
Error-Correcting Codes, 
Cambridge, MA, 197-2-.--
D. K Pradhan and J. 

E. J. Weldon, 
The MIT Press, 

J. 
"Error-Correcting Codes 
Checking Circuits," Computer, 
No.3, March 1980. 

Stiffler, 
and Self

Vol. 13, 

John P. Shen and John P. Hayes, "Fault 
Tolerance of a Class of Connecting 
Networks," Seventh Annual Symposium on 
Computer Architecture, May 1980. 
Pen-Chung Yew, On the Design of 
Interconnection Networks for Parallel 
and Multiprocessor Systems, Ph.D. 
Thesis, University of Illinois at 
Urbana-Champaign, March, 1981. 



DDSP--A DATA FLOW COMPUTER FOR SIGNAL PROCESSING 

Eugene B. Hogenauer, Richard F. Newbold and Yul J. Inn 

ESL Incorporated 
A Subsidiary of TRW Inc. 

495 Java Drive 
Sunnyvale, CA 940B6 

Abstract ESL Incorporated is presently 
developing a high speed data flow computer desig
nated the Data Driven Signal Processor (DDSP). 
Intended primarily for signal processing applica
tions, DDSP is designed to be programmable and 
modular. The use of data flow architecture pro
vides a natural way of expressing parallelism in 
algorithms; DDSP maps this parallelism onto a mul
tiprocessing system that can be expanded without 
software modification. The maximum configuration 
of 32 processors occupies four chassis and has an 
execution rate of about 71 MFLOPS. Hardware and 
high order language designs were coordinated 
resulting in a compiler that generates extremely 
eft icient code. 

1.0 INTRODUCTION 

The Data Driven Signal Processor (DDSP) is 
being developed by ESL Incorporated to meet 
requirements for a digital signal processor that 
is cost effective, programmable, modular, and eas
ily interfaced with other digital hardware. Data 
flow techniques are used because they provide an 
effective method for programming algorithms in a 
multiprocessor environment; data flow exposes the 
fine grain parallelism in algorithms without 
explicit software directives. This parallelism 
can then be spread out over several processors to 
increase overall performance. Data flow is also a 
natural way of expressing signal processing prob
lems, which engineers typically represent using 
data flow graphs. 

DDSP has been designed for ease of programming 
with a high order language capable of generating 
efficient machine code; it is modular, with a 
variety of possible configurations ranging from 
one to 32 processors; it is fast, with a full con
figuration operating at about 71 million floating 
point operations per second (MFLOPS); and it 
interfaces with a variety of devices allowing for 
concurrent data and I/O processing. 

Currently, the best way of getting low cost 
computing power is to use array processors such as 
the Floating Point Systems AP-120B. Over the past 
few years, array processors have permitted the 
solution to a wide class of vector oriented prob
lems, with a cost effectiveness unobtainable with 
conventional computers. However, this cost effec
tiveness can be lost when new software is 
required. Array processors are usually programmed 
using horizontal microcode that is difficult to 
write and maintain. The need for a high order 
language is born out in statistics on programming 
productivity developed by R. S. Bucy and K. D. 
Senne, and reprinted in (12). Bucy and Senne mea
sured the number of man-months to program a 
nonlinear filtering problem on several computers. 
Their results indicated that programming took 0.5 
man-months using Fortran on the VAX-ll/7BO, as 
compared to 6.0 man-months for microprogramming 
the Floating Point Systems AP-120B. This factor 
of 12 is typical of the microprogramming experi
ence at ESL using other array processors. 
Although array processor hardware is inexpensive, 
the high software costs can greatly reduce their 

0190-3918/82/0000/0126$00.75 © 1982 IEEE 

126 

effectiveness. Floating Point Systems has tried 
to alleviate high software ~osts by developing a 
version of Fortran called AP-Fortran. This 
approach is effective in improving programmer pro
ductivity but, for one benchmark (12) it generated 
code that was four times slower than a hand-coded 
version. The Data Driven Programming Language 
(DDPL) developed for DDSP, mitigates these prob
lems by providing a high order language that is 
capable of generating efficient machine code. 
This has been achieved because of the inherent 
expressive power of data flow techniques, and 
because hardware and language designs were closely 
coordinated from the earliest conceptual stages. 

Data flow computers operate on an entirely 
different principle than conventional von Neumann 
computers: A von Neumann computer executes 
instructions one at a time (or sequentially), 
whereas a data flow computer executes nodes when 
the data for those nodes becomes availabre:--Nodes 
are like the instructions used in von Neumann com
puters, except that they can perform more than one 
operation. These nodes are logically connected by 
!!£! which are used as pathways between nodes. 
Arcs are used for sending tokens tha~ contain the 
values used in computations. Arcs are 
one-directional pathways that have a source and a 
destination and are connected between~output 
port of one node to the input port of another. A 
node is activated when all requIred tokens have 
arrived at input ports and is executed when a pro
cessor is available. When a node executes, the 
input tokens to the node are consumed. A data 
flow program follows a single assignment rule 
which states that a token can only have one desti
nation. This rule permits the orderly allocation 
and deallocation of values as they are created by 
one node and subsequently consumed by another and, 
it exposes the parallelism in algorithms. 

The current work in data flow computers has 
concentrated on experimental designs that are 
applicable to the broad range of computational 
problems. Our approach has been to look at a spe
cific class of problems (i.e. digital signal proc
essing), and to use data flow techniques that 
result in a cost effective processor as compared 
to current methodology (i.e. using array process
ors). An overview of data flow concepts is beyond 
the scope of this paper; however, good introduc
tions are given by T. Agerwala and Arvind (7), and 
J. B. Dennis (B). Also of importance is a survey 
of data flow languages by W. B. Ackerman (9). Our 
design has been greatly influenced by the work of 
J. R. Gurd and I. Watson (1,2,3,4), and Arvind and 
K. Gostelow (5,6), especially in regards to the 
concept of dynamic tagged data flow. In DDSP a 
label field is appended to the data tokens in 
order to distinguish between different instances 
of the same token. A matching store resembling 
that proposed by Gurd and Watson is used to 
match-up pairs of tokens with the same label. The 
matching process is implemented using a hash algo
rithm similar to that described by T. Ida and E. 
Goto (11). The work by J. B. Dennis and K-S. Weng 
(10) on the use of data streams in data flow com
puters has also been influential to the DDSP 



design, because of the similarities between data 
streams and time series data used in digital sig
nal processing. 

The next section establishes some of the basic 
characteristics of DDSP including how it compares 
with other data flow processors and with array 
processors. Section 3.0 covers DDSP architecture 
with descriptions of matching store, the process
ing element and the interco~nection netw~rk. An 
introduction to the Data Drlven Programmlng Lan
guage (DDPL) is given ~n Section 4.0 ~ith 
explanations on token labellng, the skew algorlt~m 
and a special data structure used for communl
cation. Finally, Section 5.0 gives the results of 
a discrete time simulation for two signal process
ing benchmarks, Section 6:0 presents. an 
application of DDSP to sonar slgnal proCesSlng, 
and Section 7.0 reports on the current status of 
DDSP development. 

2.0 DDSP CHARACTERISTICS 

DDSP systems can be configured with one pro
cessor or expanded to a system having up to 32 
processors without software modification. DDSP 
can meet a wide range of performance requirements 
starting with a single processor operation at 2.22 
MFLOPS, and extending up to a 32 processor system 
operating at 71 MFLOPS. A s~ngle D~SP ~rocessor 
is packaged on two large pr1nted c~rcult card~. 
Up to 8 processors can be pac~aged 1~ a chassls 
along with a bus controller, dlagnostlc ~ardware, 
and one or more I/O controllers. The max1mum sys
tem configuration of 32 processors is packaged in 
four chassis. As a performance benchmark, today's 
crop of array processors operate at 5 to 12 MFLOPS 
and can be matched by DDSP systems with 3 to 6 
processors. Large DDSP systems exceed the proc
essing capability of the CDC STAR-IOO and CRAY-I, 
two of the world's fastest supercomputers. 

Several unique characteristics of DDSP set it 
apart from other data flow computers. These 
include: 

• a skew algorithm for routing data among pro
cessors 

• a special data structure called the data driv
en communication (DDC) structure used for 
transmitting data between procedures 

• generalized labels for multidimensional index
ing. 

The skew algorithm makes use of a token's 
label field to direct the token to a specific pro
cessor. Using this algorithm, it is possible to 
have a uniform distribution of processing for a 
wide class of array and signal processing 
problems. For many of thes~ problems,. ~he skew 
algorithm has the added beneflt of locallz1ng com
munication to nearby processors. 

In most data flow programming languages, pro
cedures are called with parameter lists similar to 
those used in conventional programming languages 
(13 14). For DDSP we have developed a more flexi
ble'approach using a type of linked-list that we 
call a data driven communication (DDC) structure. 
A procedure is called simply by passing the proce
dure a pointer to the DDC structure. The 
structure not only contains data used in the com
putations, but also control information such as 
array dimensions and return point~rs. . 

Generalized labels are used 1n order to glve 
DDSP a powerful method of indexing multidimen
sional data. All nodes are assumed to operate on 
arrays of data where dimensions are determined at 
the point where the corresponding tokens are gen
erated. 

DDSP is being designed as an alternative to 
array processors, by providing low cost computing 
power with much more system ~lexibi~i~y: The fol
lowing points demonstrate thlS flexlb1l1ty: 

127 

• Multi-tasking system. Any number of tasks can 
proceed in parallel. The hardware changes 
contexts (switches from one task to another), 
without any processor overhead. 

• Automatic data management. Data storage is 
allocated when a data value is calculated and 

is deallocated when the data value is used by 
subsequent computations. An associative memo
ry allows direct access into a data array even 
if some elements of the array have not been 
allocated. 

• Continuous data streams. This feature allows 
digital filtering operations to proceed with
out the usual overhead associated with index
ing across block boundaries. 

• Data dependent branching. Unlike array pro
cessors, DDSP handles data dependent branching 
with the ease of conventional computers. 

• Data feedback. Infinite impulse response 
(IIR) filters, adaptive filters, and phase 
lock loops can be implemented using normal 
programming techniques. The time required for 
feedback can be utilized by other tasks that 
are pending execution. By contrast, array 
processors have problems with feedback, of~en 
resulting in an underutilization of process1ng 
resources. 

• Macro compiler. Programmers can develop their 
own libraries of often used functions. In 
addition, system macros are available for 
standard functions such as I/O and control. 

3.0 DDSP ARCHITECTURE 

The need for a programmable, high speed signal 
processor was the primary reason in choos~n~ a 
data flow architecture for DDSP. Although dlgltal 
signal processing involves a high proportion of 
vector operations, there are enough scalar, con
ditional and other "non-regular" operations to 
give data flow architecture a decided advantage 
over pipelined approaches used in many array pro
cessors. DDSP architecture is similar to that 
developed by Gurd and Watson at the University of 
Manchester, whose primary motivation has been to 
build an experimental machine for data flow 
research. As a result, instruction times for 
their machine have been kept relatively slow so 
the operation of the processor can be easily rede
fined. 

DDSP implements a dynamic tagged data flow 
model where tokens are tagged with a label field 
determined at run-time. A DDSP system consists of 
several processors that are closely coupled though 
an interconnection network. As shown in Figure 1, 
a processor includes an input queue for temporar
ily saving tokens, a matching sto~e for 
associating pairs of tokens, and a processlnq ele
ment for performing high speed integer and 
floating point comput~tions. The processing e~e
ment receives a contlnuous stream of token pa1rs 

Figure 1. DDSP processor block diagram 



for typical applications by designing matching 
store to equal or exceed_ the speed of the process
ing element. 

There is an important trade-off in designing a 
multiprocessing system in regard to the speed of 
an individual processor vs. the number of parallel 
processors in a system. Some data flow research
ers (8) have indicated that thousands of 
relatively slow processors can be connected in a 
data flow system using serial I/O. We feel, how
ever, that there is a point of diminishing return 
in regards to finding problems with enough paral
lelism to fully utilize such a large collection of 
processors. As a result we have designed DDSP 
with a relatively fast processor that can perform 
floating point operations in about 450 ns (2.22 
MFLOPS). Because of the high speed, it requires a 
relatively small number of processors to equal the 
speed of today's supercomputers, and for a given 
level of throughput, less parallelism in the prob
lem is required to keep all of DDSP's processors 
fully ut i li zed. 

The interconnection network (like the rest of 
DDSP), has been strongly influenced by the nature 
of signal processing computations. Much of these 
computations are vector oriented, requiring highly 
localized communication. For the most part, com
munication is local to the originating processor 
or to its nearest neighbors. Although long dis
tance communication is required, it is usually for 
transmitting input values and summary results; 
these require an order of magnitude less communi
cation bandwidth than local communication. 

The architecture of the processor is shown in 
Figure 1. A data token enters the processor from 
the bus to the left of the processor and is placed 
in the input queue. The input queue provides load 
leveling within the processor and temporary stor
age when processing large volumes of data. The 
queue is organized as a first-in-first-out buffer 
with input from the bus and output to matching 
store. 

3.1 Matching Store 

The matching store is a high speed associative 
memory used to match pairs of tokens having iden
tical k,ys. A key consists of an II-bit node 
address Identifying the node used for token proc
essing, and a l6-bit label field, providing the 
token with attributes such as Index and iteration 
numbers. When a match is found, the pair of 
tokens and the key are sent to the processing ele
ment where the node definition is executed. If a 
match cannot be made then the unmatched token is 
stored in memory until a matching token comes 
along. Tokens used in unary operations don't 
require matching and are simply passed through 
matching store. 

Matching store is implemented by using a par
allel hash algorithm devised by T. Ida and E. Goto 
(11). The algorithm works on the same principle 
as hash techniques used by compiler designers. 
Ida and Goto's contribution has been the design of 
a high speed hardware algorithm that accesses hash 
tables in parallel and provides a means of delet
ing table entries when two tokens are matched. In 
our design, two parallel hash tables are imple
mented, each capable of holding 16K tokens. The 
hash algorithm is controlled using a state transi
tion sequencer implemented in firmware. A 
matching store operation starts by using a hash 
function to transform the 27-bit key into a l4-bit 
hash address. The contents of the two parallel 
hash tables are checked for a match, and if one 
exists, then the matching token is deleted from 
the,hash table and the resulting token pair is 
sent to the processing element. If there isn't a 
match then an attempt is made to store the token 
at the hash address; however, it is possible for 
both table entries to be filled resulting in table 

128 

overflow requIrIng special processing. In DDSP 
table overflow conditions are handled entirely 
within the parallel hash hardware. This contrasts 
with Gurd and Watson's approach (4), where an 
independent overflow unit is implemented u'sing a 
relatively slow speed microprocessor. 

DDSP's matching store has a variable cycle 
time of between 110 and 150 ns; when hash tables 
are about half full, an average of 250 ns are 
required for a matching operation including the 
time for overflow processing. The approach in 
DDSP is to operate matching store with a faster 
cycle time than required by the processing element 
and to allow for a relatively high proportion of 
overflow processing. In this manner, we are able 
to implement matching store with two parallel hash 
tables as compared to the eight tables used by 
Gurd and Watson. 

3.2 Processing Element 

A token pair and the corresponding' key are 
input to the processing element when it becomes 
available. The processing element includes a 
microprogram sequencer that controls two process
ing units: an arithmetic processor and a label 
processor. For the most part, these units operate 
independently although they can be tied together 
in order to share resources. The arithmetic pro
cessor includes an arithmetic logic unit (ALU) and 
a high-speed multiplier used for processing both 
floating point mantissas and integers, an 8-bit 
ALU for floating point exponent processing, and a 
memory unit to store constants and intermediate 
results. The label processor is used for creating 
new labels and performing various index 
operations. 

Integer operations are performed in one micro
cycle while floating point operations take 2 
cycles for multiplies and an average of 4.5 cycles 
for adds. Label processing is performed in paral
lel with these operations and can usually be com
pleted without adding to the overall processing 
time. Additional overhead is usually required for 
testing iteration numbers resulting in an average 
floating point speed to about 450 ns (2.22 
MFLOPS). This same type of overhead results in 
average integer times of about 250 ns (4 MOPS). 

3.3 Interconnection Network 

Data tokens coming out of the processing ele
ment's output queue are output to the intercon
nection network shown in Figure 2. The network is 
essentially a linear arrangement of processors 
with wrap-around from the last pair of processors 
to the first pair. This arrangement is augmented 
by a three level tree used for long distance com
munication. The processors are closely coupled 
with a minimum amount of network overhead required 

If 0 PORTS 

Figure 2. DDSP interconnection network 

I 

!" 



to pass tokens between processors. At the bottom 
level of the network are column buses (C-buses) 
used for local communication along the base of the 
tree. Tokens can be output onto one of the two 
C-buses on either side of the originating process
or depending on the token's destination. The 
network is organized like a packet switching net
work, where packets simply consist of a single 
token. Each token has its own network destination 
used in routing itself to anyone of the process
ors in the system or to an 1/0 port. For signal 
processing problems, the vast majority of the com
munication is with local processors; thus, column 
buses are used the majority of the time. To sup
port longer moves the basic linear arrangement of 
processors is augmented by a three level tree 
structure with communication between levels per
formed through bidirectional queues. 

4.0 DATA DRIVEN PROGRAMMING LANGUAGE (DDPL) 

One of the primary reasons for using the Data 
Driven Signal Processor is the ease of 
programming, as compared to microprogrammed array 
processors such as the Floating Point Systems 
AP-120B. DDSP is programmed using the Data Driven 
Programming Language (DDPL), a high order language 
with syntax modeled after ADA and language con
structs designed for data flow computing. 

The programmer designs algorithms for DDSP 
usi~g a simple conceptual model of parallel proc
esslng, without regard to the actual number of 
processors in the system. The hardware configura
tion is specified as compile-time parameters, and 
when the configuration changes, the program is 
simply recompiled with new parameters. The pro
gram itself remains unaltered, allowing for the 
development of configuration independent software. 

A DDPL program has a block structure consist
ing of a program block containing one or more pro
cedure blocks; a procedure defines a logical group 
of actions that have a common purpose. Procedures 
communicate with one another by sending and 
receiving data driven communication (DDC) struc
tures containing both data and control 
information; these structures are in the form of 
linked lists where list members may consist of 
values or sub-structures. Values include data 
used in computations, as well as control infQrma
tion used to invoke procedures and route output 
data. A procedure contains node definitions which 
are the basic units of data flow computation; a 
node definition is similar to a task on conven
tional computers, because it can execute 
independently of the other software in the system. 
Node definitions contain all the executable code 
in a DDPL program including assignment, output, 
and nested if-then-else statements. In the Data 
Driven Programming Language, a node definition can 
have from one to four input ports, and may produce 
an unlimited number of output tokens. For nodes 
with three or four inputs, the compiler generates 
equivalent node definitions with the one and two 
inputs supported by hardware. 

As a data flow program executes, the same node 
definition may be activated thousands of times. 
In order to keep track of these various acti
vations, a generalized label is appended to the 
tokens; for a node to be activated, all the input 
ports must have tokens with identical labels. The 
programmer defines the label field on a procedure 
by procedure basis by subdividing the label into 
label index fields with programmer defined mean
ings such as "sample number", "filter number", or 
"user identification". When writing assignment 
statements the programmer continually makes refer
ences to these index fields in a manner analogous 
to array subscripting. 

A unique skew algorithm is used to map index 
numbers into speclfic processor destinations in a 

129 

manner that provides effective load balancing 
among processors. This skew algorithm allows the 
programmer to write software without knowledge of 
the specific DDSP· configuration. For example, an 
algorithm can be debugged on a DDSP system with 4 
processors, and subsequently used on a 32 process
or system without software modification, with the 
skew algorithm automatically spreading the compu
tations over the larger set of processors. 

A powerful feature of the Data Driven Program
ming Language is the ability to define macros and 
then to expand these macros at compile time using 
macro substitution and conditional compilation. 
The motivation for using macro substitution in 
DDPL is to give the programmer a great deal of 
flexibility and still allow the efficient gener
ation of machine code. The programmer can build 
macro libraries for often used operations, using 
the same syntax as DDPL programs. In addition, 
there are system macro libraries that include var
ious utility functions for DDC structure creation 
and manipulation, I/O device control, and various 
arithmetic functions. 

4.1 Destinations and Labels 

Tokens are primarily generated within node 
definitions when an output statement or destina
tion statement is executed. In addition, when the 
program starts execution, initial token values are 
generated based on information in the token decla
rations. No matter which method is used, a token 
must be given a destination and label. At the 
machine level, this requires the speclfication of 
a network destination, a local destination, and a 
label fleld. The network destination specifies 
the processor or I/O device where the token is 
being directed. The local destination indicates 
the destination node within that processor togeth
er with the specific port into that node. In the 
high order language, the programmer specifies a 
local destination simply by referencing the node 
input by its symbolic name. The label is speci
fied in a manner analogous to array subscripting, 
and the network destination is derived without 
programmer intervention by a combination of com
pile and run time operations on the label field 
using the skew algorithm. 

The manner in which labels are interpreted is 
based on a generalized label declaration provided 
at the start of each procedure. This declaration 
specifies how the label field is subdivided into 
label index fields, provides a symbolic name for 
each index, and indicates the index range. In 
addition, the declaration specifies how the label 
indices are used to generate network destinations. 
Once a decision is made on label field use, a 
programmer's effort can be concentrated on the 
programming task itself without any further regard 
as to how tokens are routed among processors. 
Generalized labels are more flexible than the 
fixed format labels proposed by Gurd and Watson 
(13) because they can be formatted by the program
mer to meet specific application requirements. 

"The label declaration can be described using 
the following example declaration: 

label (TIME,COUNT,USER:5,8,3) using (1,-2,0); 

Here the label field which has a total of 16 bits 
is divided into three index fields with symbolic 
names TIME, COUNT and USER. The index fields are 
assigned a specific number of bits: the index 
TIME is assigned the high order 5 bits followed by 
COUNT with 8 bits and USER with 3 bits. The 
indices are considered unsigned magnitudes so 
indexing starts at zero and goes in the positive 
direction. Thus the 8-bit index COUNT has a range 
from 0 to 255 (i.e. 2**8-1). 

The DDPL programmer can think of the process-



ors as being arranged linearly with the last pro
cessor connected back to the first processor. In 
this scheme, higher numbered processors are to the 
right and lower numbered processors are to the 
left. As a result, when a token generated in the 
last processor is routed one processor to the 
right, it in fact, ends up at the first processor. 
It is because of this wrap-around feature that the 
programmer does not have to know specifically how 
many processors are in the object DDSP system. 

A token is routed in the network based on the 
skew algorithm applied to the token label. Since 
the same algorithm is used in all processors, 
tokens with the same label will be routed to the 
same processor no matter where they were 
generated. In the above example, the u~ing phrase 
specifies routing constants corresponding to each 
index. These constants are used by the skew algo
rithm in the following manner: Assuming that a 
node is executing in one of the processors, if the 
TIME index is incremented, then the resulting 
token is routed +1 (e.g. one processor to the 
right). If COUNT is incremented the routing will 
be -2 (e.g. two processors to the left). If USER 
is changed, it will have no effect on routing 
because the corresponding routing constant is 
zero. As another example. if both TIME and COUNT 
are incremented, then the routing is the sum of 
the routings for the individual indices. 

To be more specific, the network destination 
(i.e processor number) for a new token is computed 
as a function of the token's label indices and the 
procedure's routing constants using the following 
skew algorithm: 

NDEST := (RI*II + R2*I2 + ..• + Rn*In) mod NPROC 

where Rl, R2, ..• , Rn are the routing constants, 
11, 12, •.• , In are the label index values, and 
NPROC is the number of processors in the DDSP con
figuration. The resulting value, NDEST, is the 
logical processor number in the network. The com
piler is optimized to compute the function at 
compile time if at all possible. As an example of 
how this algorithm is used, suppose the label dec
laration is 

label (I,J,K,L:2,2,2,10) using (1,-1,1,3) 

and the new label has the index values 

1-0 
J - 1 
K - 2 
L - 12 

Assume that this program is being compiled for a 
four processor DDSP system, then the current log
ical processor number is 1*0+(-1)*1+1*2+3*12 mod 4 
= 1. 

When a node definition is activated, it has an 
input label field associated with it referred to 
as the current label that contains the current 
indices, the processor where the node is activated 
is referred to as the current processor. Within 
the confines of this activation, current index 
values are referred to by their symbolic names as 
specified in the label declaration. These values 
can be used in generating labels for output 
tokens, or used as operands in arithmetic and con
ditional operations. 

The programmer has several ways of specifying 
a destination. The most common way is to use the 
symbolic name for a node input followed by an 
index list. The index list is an ordered list 
that corresponds one-to-one with the index identi
fiers in the label declaration. With reference to 
the above example, a destination might have the 
form: 

130 

XDATA (TIME + 3, COUNT - 1, USER) 

In this example, the TIME index is incremented by 
+3 and the COUNT by -1 relative to the current 
indices. XDATA is the symbolic name for the des
tination and, based on the routing constants 
above, the destination is 3*1 + (-1)*(-2) +5 
(e.g. five processors to the right). 

4.2 Data Driven Communication (DDC) Structures 

The primary means for communicating between 
procedures is by sending and receiving a special 
data structures called data driven communication 
(DDC) structures. DDC structures are used in DDPL 
(rather than the parameters lists common to most 
high order languages) because of their 
versatility. For example: 

• DDC structures can be created without specific 
knowledge about the indexing scheme used by 
the receiving procedure. 

• The sending procedure doesn't have to have a 
complete set of data before it starts to send 
a structure. 

• DDC structures can be created with parallel 
sub-structures. These sub-structures can be 
sent independently of each other, thus creat
ing parallel transmission paths between proce
dures. 

• DDC structures can be combined and separated 
simply by manipulating the pointers to these 
structures. 

• The actual movement of data values at the base 
of a structure, only occurs on the basis of 
data availability on the part of the sending 
procedure, and data demand on the part of the 
receiving procedure. This two-way data con
trol allows for an orderly flow of data 
between procedures. 

• DDC structures may include not only the data 
to be processed but control information such 
as the array dimensions, the type of data in 
the structure (integer or floating point), or 
where the results should be sent. The struc
ture can also specify which procedure should 
be used in processing the data. 

• DDC structures can be used to time-share a 
procedure among several calling routines. 
Independent DDC structures are used by each of 
the callers so that they can easily be identi
fied within the receiving procedure. 

The programmer creates and manipulates DDC 
structures by using a set of system macros. The 
macros generate node definitions that do the actu
al data manipulation. In Figure 3, an example is 
given on how DDC structures can be used for matrix 
multiplication. A matrix mUltiply procedure is 
sent a structure consisting of two sub-structures 
representing the matrices to be multiplied. The 
dimensions of the matrices are included as part of 
the sub-structures, and the columns are separated 
into their own sub-structures so that they can be 
transmitted in parallel. The matrix multiply pro
cedure receives the DDC structure, performs the 
computations, and creates another structure as the 
final result. 

The actual manner in which a DDC structure is 
transmitted is illustrated in Figure 4. The send
ing procedure outputs a call to the receiving pro
cedure in the form of a-poTnter indicating where 
the structure is being created. The call enters a 
first-in-first-out queue where it stays until the 
receiving procedure has an activation name avail
able. The number of activation names for a 
procedure is specified by the programmer and 
determines the number of calls that can execute 
simultaneously. One of the "index fields defined 
for the procedure is used to hold the activation 
name. When an activation name is assigned to the 



MATRIX A 

POINTER USED TO 
3} REFERENCE STRUCTURE 

MATRIX 
DIMENSIONS 

MATRIXB 

ROW 
DATA 

OUTPUT DATA 
STRUCTURE 

PRODUCT A"B 

Figure 3. Example data driven communication 
(DDC) structure 

PROCEDURE x 
(SENDER) 

TRIGGERING 
CALL 

CALL X WITH 
POINTERTOA 

I 
I 
~~ ... ~ 

~oV 
~ I 

, 

PROCEDURE v 
(RECEIVER) 

ACKNOWLEDG E WITH 
POINTERS TO B&C 

I 

1~<1> 
0"<'; 

~<,; I 

I 

l:l 
IA) :3 

" > 

" !;( 
ACKNOWLEDGE C 

WITH DATA 

I 
IB) 

Figure 4. Transmission of DDC structures 
between procedures: (A) DDC 
structure to be sent between 
procedures X and Y. (B) Sequence 
of events in sending DDC structures 
bet~een procedures X and Y. 

calling routine, the receiving procedure makes a 
request to the sender which includes a pointer 
indicating where the structure is to be used. The 
sender, in turn, sends an acknowledge in the form 
of a pointer to the next level ln the structure. 
This request/acknowledge process continues until 
the bottom levels of the structure are reached. 
At this point, the receiving procedure makes a 
request for data values from the sender, and the 
sender waits for data to become available. The 
data is subsequently sent to the receiving proce
dure and consumed as part of the computations. 

4.3 Node Definitions 

Node definitions contain all the 
statements in a DDPL program. These 
similar to tasks used by conventional 
systems: They represent a segment of 

executable 
nodes are 
operating 
code that 

131 

label (TIME,COUNT,USER:5,8,3) using (1,-2,0); 
A, B, SYNC: token integer; 
TEMP: local integer; 

node A, B is 
TEMP := A - B; 
if TEMP >= 0 then 

SYNC(O,O,O) := TEMP; 
else 

SYNC(TIME+l,COUNT,5) := COUNT+l; 
end if; 

end node; 

Figure 5. Example node defintion 

can be executed independently of all other soft
ware in the system. In DDPL a node has a 
relatively small number of input ports (from one 
to four inputs). Because of this, node defi
nitions tend to be short and thus result in DDPL 
procedures consisting of many independent nodes. 
Each of these node definitions represent an oppor
tunity for parallel activation, and DDSP achieves 
its high speed as a result of spreading these 
activations over several processing elements. 

One of the features of DDSP, is that there is 
no processor overhead associated with the transi
tion from one node activation to the next. As a 
result, the number of node activations has little 
effect on the overall execution time. In fact, 
good DDSP programming practice requires that node 
execution time be kept to a minimum in order to 
allow as many independent activations as possible. 
To achieve this, nodes are kept short and program 
loops are implemented by multiple node 
activations. This involves the output of a con
trol token with an incremented index field and 
feeding it back to the node at the start of the 
loop. This process causes independent and some
times parallel activation of the loop iterations. 
It also allows parallel execution of other nodes 
that are not part of the loop. 

Statements that can be used in a node defi
nition include output, assignment, destination and 
if-then-else statements. Output statements per
form basic integer, floating point and logical 
operations, and output tokens to specified desti
nations. Assignment statements perform the same 
types of computations, except the results are nor
mally used within the current node activation. 
Destination statements are used in conjunction 
with pointers in order to return results to desti
nations determined at run-time. Availability of 
the if-then-else statement represent one of the 
key advantages of DDSP as compared to array pro
cessors. The fact that DDSP can perform data 
dependent branching means that different software 
can be used in processing the elements of an 
array, depending on the element values themselves. 
This can be achieved with no loss in processor 
eff iciency. 

In Figure 5, an example node definition is 
presented, identifiers are declared at the program 
and procedure levels. The node executes when 
tokens with identical labels are available at 
input ports A and B; TEMP is computed and stored 
as a local variable and the if-then-else statement 
determines which of the two output statements to 
execute. The second output statement uses the 
current index value, COUNT, as an operand. 

5.0 DDSP SIMULATION RESULTS 

An important part of DDSP development has been 
the implementation of a discrete time simulator. 
The simulator models asynchronous operations 



Table I. DDSP Simulation Results for P'IR Filter 

Number of Type of Effi- Execution 
Proces- Arith- ciency Rate 

sors metic (% ) 

1 integer 99.99 3.80 MOPS 
2 .. 99.42 7.58 
4 .. 97.98 14.98 
8 .. 95.10 29.02 

16 .. 86.78 53.12 

1 float- 99.99 2.03 MFLOPS 
2 ing 99.80 4.15 
4 po~nt 99.24 8.24 
8 97.68 16.16 

16 .. 92.62 30.72 

Notes: 
(1) 32 tap finite impulse response (FIR) 

filter. 
(2) 64 samples processed in parallel. 
(3 ) MOPS: Million operations per second. 
(4) MFLOPS: Million floating point 

operations per second. 

involving interprocessor and matching 
store-to-processor communication down to the reg
ister level. Execution of node definitions are 
modeled simply by establishing the elapsed time 
between the start of execution and when tokens are 
output to the interconnection network. The simu
lator has been an indispensable aid in the design 
of DDSP by allowing the design team to perform 
trade-offs of performance vs. hardware complexity. 
It has also provided a means for evaluating DDSP 
performance for some typical signal processing 
applications. Results for two such applications, 
a finite impulse response (FIR) filter and a fast 
Fourier transform (FFT) algorithm are presented in 
this section. 

Table I indicates the execution rate and effi
ciency of a 32-tap FIR filter. The execution rate 
indicates the average number of arithmetic oper
ations being performed, excluding index and book
keeping operations; efficiency indicates the 
proportion of time that the processing element is 
performing useful work. The results indicate a 
slight decrease in efficiency as the number of 
processors increase, primarily because the number 
of parallel operations is held at a constant 
level. 

Table II shows similar results for 256 and 
1024 point complex FFTs. In these experiments, 
the efficiency actually increased for larger pro
cessors configurations, mainly because the number 
of paralle! operations was allowed to increase 
along with the number of processors. Results for 
the 1024 point complex FFT, indicates that a four 
processor DDSP system (about half a chassis) is 
comparable to a Floating Point Systems AP-120B. 

6.0 DDSP APPLICATIONS 

DDSP applications cover the fields of signal, 
sonar and image processing. DDSP implements basic 
functions such as digital filters, phase lock 
loops and FFTs. In addition, its programmability 
permits more specialized functions such as adap
tive filters, synchronous video integrators, and 
signal search/recognition processors. 

DDSP can be used as an attached processor to a 
host computer or for dedicated applications in a 
totally self-contained configuration. In Figure 
6, one such application is shown for an adaptive 

132 

Table II. DDSP Simulation Results for FFT 
Algorithm 

Complex Number Effi- Time Execu-
FFT of ciency per tion 

Size Proces- (% ) FFT Rate 
sors (ms) (MFLOPS) 

256 1 95.28 3.76 2.72 .. 2 96.00 1.867 5.48 .. 4 97.31 0.921 11.12 .. 8 97.46 0.460 22.26 

1024 1 94.05 19.05 2.69 .. 2 95.33 9.40 5.45 .. 4 96.89 4.62 11.08 

1024 for - - 4.8 10.7 
AP-120B 

Notes: 
(1) Floating point arithmetic used. 
(2 ) Number of samples processed in parallel 

increase with the number of processors. 

array beam former (15) used in sonar signal proc
essing. This example shows the versatility of 
DDSP to handle a large number of time-shared func
tions in real-time. In Figure 6, data is 
collected from 16 independent transducers. The 
data streams are formed into a beam by adapting to 
a reference signal generated by the pilot tone 
generator. The adaption is performed by a 
least-mean-squares (LMS) algorithm that compares 
the incoming signal streams with delayed versions 
of the desired signal. The bandwidth of the 
desired signal fixes the bandwidth of the main 
beam and the front end delay determines the beam 
look direction. Two sets of FIR filters are used 
in the processes: The first, implements the adap
tive LMS algorithm, resulting in continuously 
updated filter coefficients. The second, applies 
the updated coefficients to the original data to 
form the desired beam. The resulting data stream 
is transformed into the frequency domain by an FFT 
and then averaged to enhance its spectral compo
nents. Display formatting and control are also 
performed in DDSP, resulting in a completely 
self-contained system. 

The hardware for this application consists of 
a DDSP system with eight processors, packaged in a 
single chassis. The processor utilization is 
about 50 percent, allowing for other time-shared 
applications. 

7.0 DDSP STATUS 

Our goal is to have a working DDSP prototype 
up and running in late 1983. The prototype will 
consist of four processors with complete software 
support. It will be interfaced to a VAX-ll/780 
and a high speed digital recorder. The VAX will 
be used for compiling and loading software. Data 
input/output will be performed with either VAX or 
the high speed recorder. 

The hardware design consists of four unique 
designs. These include the matching store, proc
essing element, bus controller, and I/O 
controller. The first two designs are repeated 
for each processor in a DDSP system. The bus con
troller is repeated for each set of four 
processors. At this time, the functional design 
is complete for all but the I/O contrOller. The 
detailed circuit design is complete for the match-



'~~,,~~ """"" " ~: 

",/ " .. iD~: 
INTERFERENCE 

NOTE: SAMPLE RATE: 1024 Hz 

Figure 6. A DDSP application: 
former 

ing store and is nearing completion for the bus 
controller. 

The software support consists of four major 
modules including the compiler, assembler, code 
compactor and diagnostic software. The detail 
software design is complete except for the diag
nostic software. Code and test is complete for 
the compiler. 

8.0 CONCLUSIONS 

DDSP's primary attraction is that it solves a 
total system problem that involves the programming 
of multiple processors to achieve very high 
speeds, thereby providing a flexibility unobtaina
ble with array processors. It has several unique 
characteristics that set it apart from other data 
flow computers including an efficient algorithm 
for routing data among processors, a special data 
structure used for transmitting data between pro
cedures, and a generalized labeling scheme for 
multidimensional indexing. Simulation results 
show that processor efficiency is extremely high, 
even for large DDSP systems with figures well 
above 90 percent in most cases. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge Craig A. 
Peterson for his design of matching store, Danley 
M. Carlson for implementing the microassembler, 
and Gloria S. Hogenauer for editing this paper. 

REFERENCES 

1. I. Watson and J. R. Gurd, "A Prototype Data 
Flow Computer with Token Labelling," AFIPS 
Conference Proceeding, NCC, June 1979, pp. 
623-628. 

2. J. R. Gurd and I. Watson, "Data Driven System 
for High Speed Parallel Computing -- Part 1: 
Structuring Software for Parallel Execution," 
Computer Design, June 1980, pp. 91-100. 

3. J. R. Gurd and I. Watson, "Data Driven System 
for High Speed Parallel Computing -- Part 2: 
Hardware Design," Computer Design, July 1980, 
pp. 97-106. 

133 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

H. 

15. 

adaptive array beam 

I. Watson and J. R. Gurd, "A Practical Data 
Flow Computer," Computer, Vol. 15, No.2, Feb. 
1982, pp. 51-57. 
Arvind and K. P. Gostelow, "A Computer Capable 
of Exchanging Processors for Time," Proc. IFIP 
con9ress 77, Aug. 1977, pp. 849-853. 
Arvlnd and K. P. Gostelow, "The 
U-interpreter," Computer, Vol. 15, No.2, Feb. 
1982, pp. 42-49. 
T. Agerwa1a and Arvind, "Data Flow Systems," 
Computer, Vol. 15, No.2, Feb. 1982, pp. 
10-13 . 
J. B. Dennis, "Data Flow Supercomputers," Com
puter, Vol. 13, No. 11, Nov. 1980, pp. 48-~ 
W. B. Ackerman, "Data Flow Languages," Comput
~, Vol. 15, No.2, Feb. 1982, pp. 15-25. 
J. B. Dennis and K-S. Weng, "An Abstract 
Implementation for Concurrent Computation with 
Streams," Proc. 1979 Int'l Conf. Parallel 
Processing, Aug. 1979, pp. 35-45. 
T. Ida and E. Goto, "Performance of a Parallel 
Hash Hardware with Key Deletion," Proc. IFIP 
Congress 77, Aug. 1977, pp. 643-647. 
W. J. Karplus and D. Cohen, "Architectural and 
Software Issues in the Design and Application 
of Peripheral Array Processors," Computer, 
Vol. 14, No.9, Sept. 1981, pp. 11-17. 
J. R. Gurd and I. Watson, "A Multilayered Data 
Flow Computer Architecture," Dept. Of Computer 
Science, University of Manchester, March 1980. 
Arvind, K. P. Goste1ow and W. Plouffe, "An 
Asynchronous Programming Language and Comput
ing Machine," Tech. Report l14A, Dept. of 
Information and Computer Science, University 
of California, Irvine, Dec. 1978. 
B. Widrow, P. E. Mantey, L. J. Griffiths, B. 
B. Goode, "Adaptive Antenna Systems," Pro
ceedings IEEE, Vol. 55, No. 12, Dec. 1967, pp. 
2143-2159. 



Gary N. Fostel 

Intermetrics Inc. 

Abstract 

Recent years have seen an explosive growth 
in r~ch on high capacity systems 
incorporating large numbers of pcocessors, 
pcoducing solutiQtlS to varied aspects of the 
total pcoblem. 'Ibis paper explores the thesis 
that a selection fran the available techniques 
together with a S¥Oergistic combination of 
deviCe, architecture and pcogranming technology 
can yield a very powerful, reliable and usable 
dataflow system for a good pcice. 

Introduction 

Is there a pot of micro pcocessors at the 
eild of the rainbc:JW? How big is the pot and what 
shape is it? '!his paper SUlllllarizes one answer to 
the second; a nore detailed discussion can be 
fOlmd' in [10]. '!be main ideas behind this 
developnent are: 

o The programning methodology must be 
substantially improved; Data Flow languages 
provide a point of departure. 

o The system"'s architecture IlUSt be "two 
dimensional" to be consistent with current 
mass production technology (chips and 
boards) • 

o Hardware IlUSt be matched to the software for 
efficient execution and human ~ehension. 

Multi-level PrograJlllling 

One methodology currently under developnent 
by the Navy for signal pcocessing algorithms 
(EM:3P [7]) embraces three such levels: low level 
coding for oanputational fragments, a data flow 
(DF) language for organizing those fragments, and 
a HOI. for control programs which JOOnitorand 
control the OF graPl (OFG). 'Ibis split allows 
natural expression of the three, different, bIt 
related facets of the problem. 

While nulti-level expression might seem to 
invi te incoherent and unanalyzable systems, 
program verification results suggests just the 
opposite. Gutag argues that a single formalism 
will not adequately span the verification 
requirements of ariy real world problem [9] and 
pre$ents a three 'layer methodology of local, 
organizational, and system specifications. The 
is a cx:npelling match between the pragmatics of 
prograJlllling in EM:3P and the abstract issues of 
certification. 

0190-39!8fS2-fOOOO10134$OO;?5 @1.982 IEEE 134 

'!he web programing methodology similarly 
embraces three levels: machine code, DFG"'s, and 
llCI'ORs. The nature of the machine oOae depends 
on the processing elements employed and might be 
systolic machine descriptions or hand -tuned ASM 
code for side-effect free primitve computations. 
DF languages are canpatible with notations used 
by engineers and are nearly ideal in that context 
for organizing the primitives defined by the 
machine code. A variety of data flow languages 
exist and are well described elsewhere [1]. ACTOR 
systems have object oriented, message passing 
semantics: a generalization of the OF inodel with 
,greater expressive power owing to greater 
flexibility. The combination of expressive power 
and data packages makes such a top level control 
,a ideal extension of DFG'" s. 

OPERATING SYSTEM 

Figure 1. 

Figure 1 shows an awlication with intensive 
inpltreduction (Gl) and output CXlI'Idi tioning 
(G2). A probe is used for a lIPI'li tor operation 
(P). Persistent data is maintained by 1\CTORS (Al 
and DB) and analyzed out of band by ACTOR A2. A2 
detects a need to create two instances of G2 and 
the oUtput of, G1 is replicated and fed (as input) 
to the G2"'s. The OS provides device interfaces 
01, D2, and 03, as well as graPl loading, 
execution, replication of G1 output, and linkage 
with G2. The J\CTORs serve as "intelligent- glue" 
to hold OFG'" s together as a larger system. The 
oanputation in Figure 1 might be a military 
system which detects ~ threat, launches two 
missiles, and then guides them to their targets. 

I 



Web Architechttire 

VLSI chips will provide cheap performance 
only if they are part of a larger system which is 
itself easy to hIild. For example, many to many 
connection networks [2] solve sane problems, hIt 
may be oostly tb manufacture. Dennis [1] has 
noted that the "complexity, as measured by total 
wire length, grows as O(n**2}" for physical 
layouts of components in many to many networks. 
Indeed, the connection topology is the heart of 
the web design1 the name "web" reflects the 
similarity of spider webs and sketches of the 
inter-connection topology. There are three 
specialized processors (chips) to match the three 
levels of the methodology. 

P - ?rocessor for low level computational 
fragments. (P-ipeline) 

M - Management of the data flow graphs 
and interface to the ACl'ORs. (M-emory) 

G - l\CTOR control systems and Web 0001-

munications and OS. (G-ateway) 

There are two interconnect patterns in the 
Web, one between p"s and M"s and another between 
the M"s and G"s. The M"s thus serve as the 
interface between the processor and control IlUch 
as a shared memory in a more conventional model. 
While the M will indeed contain large areas of 
on-chip memory, significant improvement over a 
passive device is possible with addition of on
chip intelligence and application tuning. 

The M-P grid is principally devoted to the 
data paths needed to support high bandwidth DFG 
bperation. The application DFG"s will be mapped 
onto the network illustrated in Fig 2. The most 
critical properties of this model are homogeneity 
to simplify mapping, high connectivity to resist 
single failures and allow high bandwidth and lack 
of any connections which cross to simplify 
fabrication. The lack of universal 
interconnectivity implies trade-off in the 
quali ty of the mapping of the DFG onto the M-P 
grid 

6882322-4 

Figure 2. 

135 

The ~ grid is responsible for 
comnunications aJrong ACTORs and with the external 
environment. The requirements here are distinct 
fran those of the M-P grid: delay is more 
critical, volume of data is lower. Larger grid 
distances are likely in order to maintain global 
control of the Web. The low level view of the 
~ grid is a number of local networks with a 
small number of M" s, bounded by G" s which act as 
gateways to other such local networks. One such 
might be "G-M-M-M-M-G" 1 the M"s are said to be an 
M-string. The high level topology of these 
strings is illustrated in Figure 3, with the 
intersection points representing G~s and the 
connecting lines the M strings. The result is a 
tree network with additional circular links added 
to reinforce the fault tolerance and delay 
characteristics of such trees, yet containing no 
crossed lines. These networks are discussed in 
[5] • 

Figure 3. 

Inplementation Problems 

First, the the DFG to M-P mapping IlUst be 
optimized1 further the control system 1Td.lst be 
able to keep up with the processing. system in 
the M-G grid will be hard pressed to control the 
application. Second, the M, P and G chips 1Td.lst 
be designed and hIilt1 the goals are aggressive: 
million bit chip technology and miniaturized, HOL 
architecture with store and forward network 
interfaces in each chip. An optimization 
strategy is proposed (Figure 4) which integrates 
pre-compile, compile, load and run-time 
techniques. 



Analysis Tools ~ Application Sources 

off-line 

1 
Hosting Advice ~ Systems Analysts 

load Heuri sti cs ..---- OS Measurement 

run-time 
..--- Processor Lobbyi ng 

6882322-3 

Figure 4. 

Graph theoretic techniques can identify 
clumping properties of Dro" s to reduce the volume 
of scheduling decisions made at run-time. Most 
appropriate to the Irode1 in Figure 4 is work by 
Stryker [81 on deriving global properties of 
DFG"s from local properties of the nodes in the 
DFG, especially consumer-producer relationships. 
Informal analysis can produce additional results 
which is passed to the translator and run-time 
system as semi-formal advice, in the manner of 
pr agmas in Ada. 

Applications are loaded via mapping tricks, 
e.g. identity node creation, spliting, clumping 
and replication to heuristically squeeze the 
tasks into the "best" spot. If the "best" is not 
good enough, or if a chip fails, overloads result 
which must be gradually spread over nearby 
processors. A simple rule to achieve this is: 
Processors constantly grab as much work as they 
can find, with whatever reserve capaci ty they 
have to look for it. This is similar to 
"diffusion scheduling" used by Ward and Halstead 
[4] for control of the Munet. 

The rectangular grid of the Web presents . a 
problems. There must be four independent 
connections on each M and P chip. Each of these 
connections must be high bandwidth, leading to a 
P wi th 128 pins! The M is worse. While not 
unheard of, such pin counts are expensive in 
silicon area devoted to pin out loads. In any 
event, a dense rectangular packing of the M-P 
grid allows no spaCe for the G chips. A very 
nice solution was proposed by Miller [6], using a 
hexagonal gr id, which leads to the layout shown 
in Figure 5. All interconnections for the M-P 
grid can be achieved in a single layer, with 
extremely short connections. The longer radial 
and circular connection of the M-G grid require 
only one rrore connection layer. 

136 

6882322-1 

Figure 5. 

[11 

[2] 

[3] 

[ 4] 

[5] 

[6] 

[7] 

[81 

[9] 

[10] 

References 

J. Dennis, Data Flow Super canputers, IEEE 
Oamputer Magazine Nov 1981. 

Tse-yun Feng, Survey of Interconnection 
Networks, IEEE Computer Magazine Dec 1981. 

H. Stone, S. Bokhari, 
Distribuited Processes, 
Magazine July 1978. 

Control of 
IEEE canputer 

R. Halstead Jr., S. Ward, The Munet: A 
Scalable Decentralized Archtitecture for 
Parallel Computation, -seventh -Annual 
Symposium on Computer Architecture. 

A. Despain, D. Patterson, X-tree: ~ Tree 
Structured Multi-ProcesS'o-r - Canputer 
Architechture, Fifth Annual Symposium on 
Oomputer Architecture. 

J. Miller, private discussions of Jude"s 
personal multi-processor project. 

us Navy, Enhanced Modular Signal Processor 
(EMSP), Procurement Request N00024-8l-PR-
28807, April 1981. 

D. Stryker, Graph Analysis in Data Flow 
Signal Processing, Intermetrics Internal 
R&D Technical Note, April 1981. 

J. Gutag, J. Horning, J. Wing, Some Remarks 
~ Putting Formal SpecificatIons to 
Productive Use, ForthOOOling Xerox PARe 
Technical Report, April 1982. 

G. F6stel, ~ ~ Data Flow System, 
Intermetrics Internal R&D Technical Note, 
Feb 1982. 



FUNCTION SHARING IN A STATIC DATA FLOW MACHINE(a) 

Kenneth W. Todd 
Laboratory for Computer SClcnce 

Massachusdts Institute of Technology 
CambridGe, MA 02139 

Abstract - Sharing a single copy of' the body of a function 
among its invocation points .in a program has been an important 
means of keepin!; down the size of large programs and thus 
enablin!; them to run on conventional computers. to do the same 
for programs run on 11 static data flow machine is also desirable 
but not easy because of the nature of the machine. This paper 
presents a scheme at the machine level of a static data flow 
machine for sharing a f!Jnction amon!; its activation sites which 
tan be further modified to accommodate a variety of constraints. 
For programs using this scheme, space consumption is reduced 
but at the cost of an increased execution time. 

The Static Data Flow Machine 

With the advance in VLSI technology, it has become easier 
to make smaller and cheaper custom computer component'S. That, 
coupled with the current research on distributed systems anp the 
desire to exploit parallelism in programs, has made data flow 
based computation attractive. 

Unlike traditional computers based on von Neumann 
architecture, a data flow machine has no "program counter". 
Instead, an instruction executes whefl the values for all its 
operands have arrived. After execution, its result is sent to other 
instructions, possibly making some of these ready. Hence, 
instruction exec~ltion sequencing i.s based .on the data 
dependencies amOn!; them' and not on their location in the 
program memory. A high degree of parallelism is also obtainable 
since at any instant more than o.ne instruction can be ready. 

Data flow computers can be classified as either stahc or 
dynamic. Both classes base their execution on data flow 
principles, but the specifics vary. This paper is concerned with 
the stalic machine, which for the purposes of this paper differs 
from the dynamic machine in three ways. First, the static machine 
lacks a runtime loader- a p'rogr am is loaded in its completed 
form. Second, an instruction can have at most one a.clivation al 
any instant. Third, instructions and their operand values are 
stored together, making them not "pure". A more in-depth 
dis.cussion on a stalic data flow machine can be found in [5]. For 
details on a dynamic data flow mac!)ine see [I] and [2]. 

Figure 1 shows the configuration of th!! static data flow 
machine currently. under development 'by the Computalion 
Structures Group of the Laboratory for Computer Science at MIT. 
II is COnstructed from two types of components: processing 
elements ,(PEs), which hold both program and data, and 2 X 2 
routers, which allow the PEs to communicate with each other. At 

'-------1 results and Signals 

Figure I. A Static Data·Flow Machine 

(a) This research was supported by the National Science 
Foundation under grant no. MCS-7915255 and the Department of 
Energy under contracl no. DE-AC02-79ERI0473. 

0190-3918/82/0000/0137$00.75 © 1982 IEEE 137 

present this prototype consists of four PEs and a network of four 
routers. By the adding more components the pote1,1tial amount of 
parallelism obtainable can be arbitrarily increased. 

Instrut.tion Cells 

The basic unit of execution in the static data /low machine 
is an instruction cell. A graphical representation of a simplified 
illstruction cell is shown in Figure 2 as a box with several fields. 
The top field (ontains the opcode of the cell. Directly below it 
are the (initial) signals-needed value field and the signals-resel 
value field; whose functions are deferred until later. At the 
bottom of the (ell are fields Ihat hold the operand values. From 
the right of the cell extend result arcs and signal arcs. A result 
arc, represented by a solid line, is used by a cell to send copies 
of the result to oper and fields of other cells. Signal arcs, 
represented by dashed lines, are used by cells to simply signal 
each other. This example shows a cell that computes 
"8 := A + 2·'. The actual cell used by the prototype is more 
complex a'nd hence more powerful than the one presented here 
and is described in detail in [8]. 

A cell cannot execute (or. fire) until it is ready. For this 
simplified version of a cell two conditions must be met: (1) the 
value of each operand must be present, either as a constant or a 
value received via a result arc from another cell; and (2) the 
signals-needed value must be zero. When a cell meets both 
conditions, its number (or addre<,s) is placed on a queue of ready 
cells maintained by its PE. Eventually the cell is fired, consuming 
the values of all non-constant operands in the process, sending 
copies of the result to operands of other cells as indicated by the 
results arcs, si!;naling other cells as indicated by the signal arcs, 
and .overwriting the signals-needed field wilh the ihe 
signals-reset value. 

II is often necessary to prohibit one cell from firing until 
after another cell has fired. For example, if cell X sends its result 
to an operand of cell Y, X should not fire again until Y has fired 
and is thus ready for another value from X. To insure this, Ihe 
signals-reset value of X is set to 1 and a signal arc is establi.shed 
from Y back to X. When X fires, itssi&nals-needed value is set to 
1, and it cannot fire again until this value returns to zero. With 
each signal reception, its signals-needed value is decremented. 
When Y fires it signals X via the signal are, causing ·the 
signals-needed value of X to turn zero, meaning that X can then 
safely refir.e. This example is sO common that in order to keep 
the graphs readable, a signal arc that is associated with a result 
arc will be abbreviated by omitting the signal arc and replacing 
the arrow head of the result arc with a solid one. 

As an example, Figure 3 shows three snapshots of the 
instruction cell program gr~ph calculating "C:= 2 * A + 8". 
Snap-shot III shows the state of the graph when values for A and 
B have arrived. Snapshot 112 shows the graph after the IMUL (ell 
has fired. Snapshot .. 3 shows the graph state at the end of the 
computatiOn when the IADD cell has fired. 

/ / 
operand values result arcs acknowledge arcs 

Figure 2. An Instruction Cell 



3 ·r~!; II r=:§l A • 
(#1) 8 

B • 
f----I ... C 

·r~!; II 6 ~ A • 
(#2) 8 

B • 
f---... C 

(#3) : =======~~ . ..::~::1~:::::;=~_---I~~_1.:~-.. C 
Figur.3. Three Shapshots of an Instruction Cell Program Graph 

Functions 

The high level source language from which instruction cells 
are generated for the prototype is VAL [3]. VAL is a functional, 
side 'effect free language des'igned primarily for numer,ical 
computations. Because instruction cells are functional in nature 
and since side effects would' place restrictions on the sequence o,f 
instruction execution, VAL is ideal <,!S a data flow source language. 

VAL, like most high level languages, provides for function 
definitions. A survey of ' the methods used in both dynamic data 
flow and conventional machines to implement functions reveals 
that none, can be successfully applied to the static data flow 
machine. The code of a 'function in conventional machines was 
originally impure and 1.I(0rked as long as the (unction had no more 
than one activ"tion at a time; When recursion was added, the 
.code needed to be pure and this was accomplished by moving the 
data and return address to a frame on a runtime stack. As for 
dynamk data flow machines, some link and load a fresh copy of 
the function body at the time of Ihe call while others use colored 
tokens that permit multiple activations of cells. 

A straightforward procedure for implementing function calls 
in the static data flow machine is to insert the body of the 
function at each point of invocation, the same process that a 
time-optimizing compiler for any language would do with .a small 
side effect free function. However, as the number of invocation 
points increases and as the size of the function grows, such a 
process can result in a rather large instruction cell program 
generated from a comparatively small VAL program. Since a single 
c.ell consumes more memory than a corresponding insfruction in a 
conventional computer (32 bytes in the prototype), it would not 
take long' for this process to fill the memory of ,a, data flow 
computer. "In cases li,ke thi~, a scheme for, implementing the 
sharing of one copy of a function body amQng many or all of its 
invocation points can be advantageous since it would significantly 
reduce the number Of cells genera-ted. 

To accolJlplish this sharing, four problems must be dealt 
with. 'First, arbitration must be performed among different 
invocation' points simultaneously calling the function. Second, the 
data associated with each invocation must be kept separate. 
Third, a way must be established to determine to which invocation 
pOint to send the results. Fourth, deadlock must be avoided. 

Figures 4 and 5 show how this sharing process can be 
implemented for a function that, takes N arguments and returns M 
values. Figure 4 shows what is needed from the vantage point of 
a caller while Figure 5 shows what must be done on the part of 
the' function. Starting from an ilWOtation point in Figure 4, as 
each argument value of the function becomes available, cell 
number Xis signaled and the value is stored in an .10 (identity) cell 
wher-e it waits' for a signal to proceed into the function body. 
When :all argument value.s are 'ready, the signalsrneeded value of 
X is 2;ero and it fires. This implies that the fundion call is strict in 
that an aCtivation does no.t start execution of the body until all 
argument values are ready. To' allow otherwise might result in 
mixing data of different activaHons. 

138 

arg1 --'1 , , , , , , , , 

CELLS 
OF 

FUNCTION 
BODY 

argN _I : 

X 'V* Y+1 

ID ~D result 1 
N N~M+1 toarbilration 0 1 I 

result 1 
+A ' I -L _______________________________ I • , 
: fromresultFAN1celis ~Y+M 
I, dD

1 !. resultM 
resuliM 

~--------------------------------. Filur. 4. Function Sharing from a Caller's Vantage Point 

, ,-<-__ u,,;1 !,"1~ _____ ... 

" " " ,.-
" " " " , , 

----------_/ ,"-: ,-------./ 
: L-r-----1-----~--====~~ , , , , , , . , , . 
• • • 

CELLS 
OF 

FUNCTION 
BODY 

L----L_...J------~--LI 

to cell 
Y+1 

toceH 
Y+M 

Figure 5. Function Sharing from the Function's Vantage Point 

When X does fire it sends the value "1''' to the SER 
(serialize'r or non-determinate merge) cell in Figure 5. The SER 
cell is a· special case for the rules that determine when a cell is 
ready to fire because it needs only one oper and, and the result it 
produces is the value of that ope'rand. In case both operands are 
present, the SER arbitrarily chooses which one to use this firing 
and selects the othe.r one next time. Using a binary tree of SER 
functiol)s, arbitration between any number of simultaneous 
function calls can be achieved. 

Eventually, the value "1''' reaches the root of the SER tree 
and is sent to the SFAN (signal fan) cell. This cell has the effect of 
creating a temporary signal arc between itself and the cell 
number specified by its lone operand, as indicated by the 
fan-shaped object in the figure. Thus, when this cell fires, a 
signal is sent to cell number Y. 

Referring again to Figure 4, once I' has received this signal 
it fires and signals the 10 cells holding the argument values. These 
cells i.n turn fire, sending .their v.alues into the function bo.dy. 
When the cells that receive the arguments have fired, they send 
signals back to the SFAN cell of Figure 5 as shown. This prevents 
a different invocation poi.nt from' sending its argument values to 
the function body before it is safe to do so. 

While the funciion is executing, it needs to remember where 
to send the results. Also, other invocations should be allowed to 
proceed with their fundion call when the body is ready. For this 
the first-in-first-out (FIFO) buffering of Figure 5 is introduced, 
-This FIFO can be a chain of 10 cells or some other construct that 
behaves like a queue. Because the function body also exhibits 



FIFO-like behavior, if invocation, starts before invocation i then 
invocation i will terminate before invocalio.n j. This will correctly 
match each set of funclionresults with thecorrespondir:>g value 
through the FIFO buffer. 

After the results have been produced they must be sent· to 
the caller. To accomplish this, the FANI (fan to operand 1) cell is 
used, a cell much like the SF AN except that the arc it creates is a 
result arc from itself to the first operand of the cell specified by 
the FANl's first operand, and the value sent over this arc is the 
FIINl's second operand. For each result there is a FANI cell, and 
when the return value has been produced, it is sent to the second 
operand cif its FANI cell as shown in Figure 5. There is also an 10 
cell 'at the activation pOint that is used as a receiver for this value 
and an IAOO cell at the FIFO's end Ihat is used to calculate the 
number of that 10 cell. Thus, for the i1h result, "t' is added to the 
"Y" that eventually' exits the FIFO and this sum is sent to the ,th 
FIINI cell along with the i1h return value. When the FANI cell fires 
it sends this return value to cell Y + i. 

One drawback to this schemp is that a singte invocation 
point is prohibited from having concurrent activations. Suppose 
for example that invocations 11 and B share Ihe same fundion with 
the results of A being fed' to B, possibly indirectly. If A 
generates results faf.ter than B can conf.ume them, this stream of 
values will eventually extend bMk to the function body itself and 
thus prevent the completion of any more calls. If B·then atternpts 
a call, it too will not be able to complete. This would re~;ult in 
deadlock since B is waiting for A to complete ils current calls 
while A is waiting for B to lise the values it has sent. By 
including the <.ignal arcs in Figure 4 from cell number> Y + 1 
through Y + M to X, a second ac"vationof A win not start until 
the first one has completed and thus c1earpd the result receiver 
cells. This will prevent the bad.log of values from stopping the 
output of the function body. 

Pratical Considerations 

Unfortunately, this last restriction degrades Ihe efficiency 
of this function sharing s(.heme when used in a pipeline. If it can 
be determined at translation time that an invocation using a 
shared body is independent of all olher invocations of Ihal body, 
then this restriction (an be lifted for Ihal invocation. 

If the function takef. only one argument, a ~.liRht 
optimization can be performed by combining ~. with the 10 cell that 
holds the tone argument value. An increaf.e in the maximum rate 
at which the fundion body could handle activations would result. 

If many simult aneous c ails to the function body are 
expected, then it will be desirable to make the body a maximal 
pipeline to IIchieve a high throughput rate. For simple 
expressions and conditionals, [4] describes an algorithm that 
achieves this by using buffering 10 cells. For complex VAL 
constructs slIch as loops, a description of more complicated 
techniques required can be found in [7]. 

There maybe a limit to the <;ignals-needed value; in the 
prototype it is 15. Because of cell number X, the sum of the 
number of arguments and return values is limited to 14, which is 
not too confining. The number of result and signal arcs mip,ht.alf.o 
be limited; in the prototype it is 6. This limits the number of 
arguments to 6 bec allse of cell number Y ~ again, not a serious 
drawback. Fundions thai exceed either of these two limils ~.hould 
reduce its nllo,ber of arguments (results) by combining them into 
a single record and passing (returning) Ihe record pointer. 

If addresses of cells are used instead of cell numbers, then 
cell number Y + i would be found by ad.ding i times the size of a 
cell to the address of (ell number Y instead of simpty i, assuming 
that all cells are the same size. If not, then it may nol be 
possible to calculate the return cell numbers at run time .. In .this 
case the ,original scheme can be modified by augmentinp, Ihe 
function to lake M additional arguments. The values of thE'se 
arguments would be the addresses of cells Y + 1 though Y + M 
which are compile time computabte (onstants and they would be 
sent via FIFO buffering to their respective FANI cells. 

139 

An example 

A test of this sharing scheme has been performed on the 
following example: 

tan(x) = sin()() / cos()() = cos(x - 'Ir/2) / cos(",) 

Since the cos function is inVOked from two differenl points, it is a 
candidate for function sharing. 

For the prototype, two translations- shared and unshared 
- were derived for the tan function. A summary of these 
translations and the results of computing tanll.O) are given below: 

Non-Sharing Sharing Sharing 
Translat'ion Translation Improvement 

Cells Generated 

Cells Executed 

Passes Performed 

115 cells 75 cells 

91 cells 114 cells 

33 passes 45 passes 

35% 

-25% 

-36% 

(A pass is the simultaneo'Us execution of every cells that is 
currently ready. It would be the order of the execution time of a 
program if each (ell fired as soon as it was ready.) As the table 
shows, there is a time-space tradeoff involved. The size of the 
program is significantly reduced when sharing is used but at Ihe 
cost of an increase in both the number of cells executed and 
passes performed. It should be noted that a large part of this 
increase is because the two cos calls are simultaneous. 

Conclusion 

Function sharing is not for every application. It can be a 
bottleneck in pipelines and in general increases the exec.ution lime 
of a program. However, it can significanlly reduce the size of a 
program. In some cases the size reduction obtained would allow a 
program to be translated for and rlln on a data flow machine that 
would otherwise be too large. 

Acknowledgments 

The ideas of this paper were originally presented .by Joe 
Stay in [6]. I have developed them further both in [7] and this 
paper and have successfully applied Ihem to the prototype. My 
thanks go to Professor Jack Dennis and to Dean BrOCk, Willie Lim, 
and Bill Ackerman for their helpful comments and suggestions in 
the preparation of this paper. 

References 

[1] Arvind and V. Kathail, "A Multiple Processor Dataflow 
Machine that Supports Generalized Procedures," The Eighth 
Annual Symposium on Computer Architecture (May, 1981), 
pp. 291-302. 

[2] Arvind and K. P. Gostelow, "A Computer Capable of 
Exchanging Processors for Time," Information Processing 
77: Proceedings of IFlP Congress 77 (August, 1977), pp. 
849-853. 

[3] 

[4) 

[5] 

[6] 

[7] 

[8] 

W. B. Ackerman. and J. B. Dennis, VAL - A Value-Oriented 
Algorithmic language Prelimina~y Reference Manual, 
Laboratory for Computer Sc·ience, MIT, TR-218, (June, 
1979). 

J. D. Brock and L. B. Montz, " Translation and Optimization 
of Data Flow Programs," Proceedings of the 1979 
International Conference of Parallel Processing, (August, 
1979), pp. 46-54. 

J. B. Dennis, "Data Flow Supercomputers," Computer 
(November, 1980), pp. 48-56. 

J. E. Stay, "Functions in the Form 1 Data Flow Mathine," 
Private communication (August, 1979). 

K. W. Todd, High Level VAL Constructs in a Static Data Flow 
Machine, Laboratory for Computer Science, MIT, TR-262, 
(June, 1981). 

K. W. Todd, An Interpreter for Instruction Cells, labor atory 
for Computer Science, MIT; eSG Memo 208, (July, 1981). 



SERFRE A GENERAL-PURPOSE MULTI-PROCESSOR REDUCTION MACHINE. 

F.-Y. VILLEMIN 

DEPARTEMENT DE MATHEMATIQUES ET D'INFORMATIQUE CNAM 292 RUE SAINT MARTIN 75141 PARIS CEDEX03, FRANCE 

ABSTRACT 

FP, John Backus' applicative language naturally 
expresses concurency in programs. SERFRE evaluates 
FP programs by exploiting their built-in concurency 
as much as possible. In the single user version it 
has one I/O-processor (that either updates memories 
of the C-processors when a data or a program defi
nition is given, or initiates a program evaluation 
and returns the result to the user), and many 
C-processors (that evaluate the programs). They 
are organized in modules, a module being a small 
number of C-processors and a strictly non-blocking 
communication device having at least two more 
ports than the number of C-processors in the modu
le. When evaluating a program a C-processor detects 
concurency, calls for non-busy C-processors, and 
if any are available, initiates evaluation of 
concurent sub-programs on different C-processors 
(or else behaves like a sequential processor). 

INTRODUCTION 

An FP language (see J. Backus [Bac ] for details) 
consists in a set X of objects, a set F of basic 
functions mapping objects into objects, a set A 
of function names and a definition operation def 
(def a = f means a is the name of the function f), 
a set C of function constructors forming new func
tions by combining objects, existing functions, 
and names of defined ones (~denotes composition) 
and, an execution command : (f : x means f is 
executed on the object x). 
An FP program is such a function. 
Some constructors can express concurency in 
programs,e.g. : construction, [fl, ..• ,fn ] means 
fl, ••• ,fn are to be executed concurently. 

Programs in von-Neumann languages (FORTRAN, PASCAL 
•.• ) can be translated into FP programs [ViI ], 
revealling their built-in concurency. 

STRUCTURE OF SERFRE 

SERFRE is a multi-processor command-driven (string 
reduction) machine having only a few different 
components (it is a VSLI architecture). It direc
tly executes a FP language, trying to have sub
programs executed on different processors. It is 
a dynamic loosely-coupled system using direct 
communication with storage of messages. 
Figure 1 describes the architecture of a possible, 
single-user implementation of SERFRE, and, 
figure 2 the structure of a module. 
The I/O-processor either updates memories of the 
C-processors when a data or a program definition 
is given, or, initiates a program evaluation and 

0190-3918/82/0000/0140$00.75 © 1982 IEEE 140 

returns the result to the user, or, takes care of 
local memories overflows by swapping on secondary 
storages. 
Each C-processor has it own memory (working as a 
ROM for him) containing definitions of data and 
of programs (defined functions). 
C-processor exchange messages of the form: <re"ceiver 
address, program, data, sender address>. When a 
C-processor has to evaluate a function formed by 
a constructor involving concurency, it calls the 
(strictly non-blocking) communication device of its mo
dule which eventually calls other modules ones, 
for non-busy C-processors, and, sends them the 
concurent sub-programs and the data to execute 
and waits for them to return their results, if 
any are available, or else evaluates them sequen
tially. 
A C-processor consists of a register for the 
return address (sender), a stack for the program 
(a place for each ~-composed function), registers 
(variable-length arrays) for the data, and, a 
reduction engine which first takes the top of the 
program stack, then checks whether this is a basic 
function (and evaluates it on the data and puts 
the result in the data registers), or the name of 
a defined function in the memory (and puts its 
definition on the top of the program stack and 
carries on), or function formed using a constru~
tor involving concurency (and calls for C-proce$~ 
sors for evaluating the concurent sub-programs 

and waits for their results). It contains a stack 
for intermediate results in case of sequential 
evaluation of recursively defined functions, and, 
of concurent sub-programs. 
When the program stack is empty, it calls the 
C-processor corresponding to the return-address 
and sends him the message < return address, empty, 
data, his address>. 
A full description of several proposed implementa
tions of SERFRE is given in the report submitted 
to the French Office of Patents. 

OTHER DESIGNS 

TRELEAVEN and al. review [TI.T2] the proposed 
demand-driven architectures. 
SERFRE compares to TRELEAVEN and MOLES design [T2 ] 
but, it does not have the global memory bottle-neck 

and has a more powerfull mean of communica
tion between processors. 
MAGO'S design [MAG] is a tree organized system 
and seems to waste a lot of time in communication 
between processors,what we have tried to minima
lize. 



REFERENCES 

[Bac] 

[MAG] 

BACKUS, J. "Can progrannning be liberated 
from the von-Neumann style 1 
A functionnal style and its algebra of 
programs", Com. ACM 21, 8 (Aug. 78), 
613-641. 

MAGO, G.A. "A network of microprocessors 
to execute reduction language" 
Int'l J. Computer and Information Scien
ces 8, 5 pp 349-385 and 6 pp 435)471 
(\980) • 

Secondary 
Storage 

[TI ] 

[T2 ] 

VIL 

\' message lines 

TRELEAVEN, P. "VLSI Processor Architec
tures" Computer 15, 6 (June 82), 33, 45. 

TRELEAVEN, P, BROWN BRIDGE D, and, 
HOPKINS, R. 
"Data-driven and Demand-driven Computer 
Architecture, Compo Survey 14, 1 
(Mar 82), 91, 138. 

VILLEMIN F.-Y. "Translation of FORTRAN 
programs into FP programs" 
Report CNAM-GRIP 81/03 (Revised version 
submitted for publication), 1981. 

- - - - - '--------. 

Module 1 Module N 

FIGURE 1 

lines 
ti1emory C-Processor 

Connnunication 
Device 

memory line 
FIGURE 2 

141 



A LANGUAGE FOR SPECIFICATION AND PROGRAMMING OF 
RECONFIGURABLE PARALLEL COMPUTATION STRUCTURES 

J. C. Browne, A Tripathi, S. Fedak, A. Adiga, R. Kapur 
Department of Computer Sciences 

The University of Texas at Austin 
Austin, Texas 78712 

Abstract 

The Computation Structures Language (CSL) 
defined and described herein is a vehicle for 
specification and programming of multi-type, 
multi-phase parallel computation architectures. 
The design principles for CSL include: (i) 
separation of parallel structuring from 
sequential computation, (ii) use of higher level 
language modules as the primitive execution 
elements, (iii) provision for multiple modes of 
data sharing and interprocess communication and 
(iv) capabilities for the replication of 
instantiations of program units and communication 
channels. The formal computation model for CSL 
is an extended form of colored Petri nets. The 
motivation for development of this programming 
system is the availability of reconfigurable 
network architectured computer systems which can 
implement multi-type/multi-phase parallel 
computer architectures. Specification of 
parallel architectures and programming of 
parallel architecture are separately discussed. 
The concepts are illustrated by examples. 

Specification and Programming 
of Parallel Architectures 

Micro-electronic technology allows computer 
architectures implementing high degrees of 
programmable parallelism of several types and 
even architectures capable of dynamically 
reconfiguring to different types and degrees of 
parallelism and communication geometry [KAR77 , 
VIC79, SIE78, BRA79]. The Texas Reconfigurable 
Array Computer (TRAC) [SEJ80, PRE80, KAP80, 
JEN81] is a practical example of such an 
architecture. The Computation Structures 
Language (CSL) defined and described in this 
paper is a vehicle for exploiting such 
architectures. CSL implements both specification 
of parallel computation structures and 
programming of these parallel architectures. CSL 
supports dynamic structuring of computations 
through multiple phases each of which may display 
different types and degrees of concurrency and 
differencing requirements for sharing of data and 
interprocess communication. The model of 
computation implemented by CSL is that of an 
extended form [KAP82] of colored Petri nets 
[PET 80]. A modeling system for analysis of the 
execution behavior of CSL programs has been 
developed utilizing this correspondence to 
colored Petri nets. 

CSL is being developed in the context of the 
Texas Reconfigurable Array Computer Project 
(TRAC). Its implementation will utilize the 
unique capabilities of the TRAC architecture for 

0190-3918/82/0000/0142$00.75 @ 1982 IEEE 142 

representation of a wide spectrum of parallel 
computation architectures for dynamically 
reconfiguring itself between these parallel 
architectures. TRAC can implement any MIMD 
configuration ,of SISD or SIMD tasks within the 
span of its resource set. (See [SEJ80] for a 
brief description of TRAC.) The concept base of 
CSL is, however, in large measure independent of 
any particular architecture. CSL could be 
compiled for a conventional serial architecture 
or for a vector processor. The prototype CSL 
interpreter is indeed being developed in Pascal 
with simulation of parallel process executions on 
a DEC PDP-10. 

A Rationale for Multi-type/Multi-phase 
ParaIfel Computation 

It is well known that applicability of a 
computer architecture which implements anyone 
fixed type of parallelism has been limited by the 
difficulty of mapping an extensive set of 
problems to execute efficiently on any Single 
type of parallel structure. Vector streaming 
parallelism has been effective on many large 
scale numerical problems [VOI77, JOR77]. SIMD 
parallel of fixed degree and fixed 
interconnections structure has been found to be 
effective on a limited class of problems 
[SAM78,KUC77]. The limited effectiveness of 
these architectures has often been hard-won. 
There are three reasons for this historically 
experienced difficulty. 

1. Mapping complex computations to a single 
architecture may lead to significant 
portions of the computations being based 
on high operation count algorithms. 

2. It is often the case that a computation 
will pass through several phases each of 
which need a different parallel 
structure or different degrees of 
parallelism for efficient realization. 

3. Mapping of the communication 
requirements of a computation upon a 
single fixed interconnection geometry 
may lead to heavy data movement costs 
[GEN78]. 

Recent investigations of the interconnection 
geometries required for efficient execution of 
such significant tasks as solution of Poisson's 
Equation [GR079] as finite element equations 
[GAN8l] have shown that no single type of 
interconnection network is suitable for these 



problems. Kapur and Browne [KAP81) have 
decomposed the solution of block tri-diagonal 
linear systems into its natural computation 
structures and find three different basic modes 
of interconnection are required in the absence of 
a paracomputer architecture. (A paracomputer is 
a multiprocessor which implements conflict-free 
access to common memory [SCH80).) 

These factors lead naturally to 
investigation of programming principles for 
multi-type/multi-phase parallel computation 
structures. 

Design Principles for ~ Programming System 
for Multi-type/Multi-Phase Parallel Programming 

MULTI-PHASE PARALLEL PROGRAMMING 

Parallel programming adds to sequential 
programming the requirement for definition and 
programming of protocols to govern the 
interactions of the concurrently executing 
processes. A language system for parallel 
programming must therefore include the following 
capabilities above those for sequential 
programming: 

·definition and control of concurrently 
executing processes 

.definition of mechanisms for interprocess 
communication 

·definition of mechanisms for correct and 
efficient sharing of data 

Multi-type/multi-phase parallel programming 
adds the further requirement that the process and 
communication structures be specifiable at run 
time and also be reconfigurable as the 
computation progresses through its phases. It is 
also often necessary to pass results obtained in 
one phase to a later phase. We have also found 
in our attempts to write parallel programs that 
there is a need for convenient and flexible means 
of creating multiple instantiations of given 
program units and communication channels between 
program units. 

CSL implements these requirements in a 
formulation based upon four design principles. 

1. separation 
programming 
interprocess 
programming 
units 

of specification and 
of concurrency and 

communication from the 
of sequential computation 

2. use of the separably compilable units of 
a higher level language as the execution 
units from which the parallel 
computation structures will be composed. 

3. inclusion of both shared address space 
and address space data transfer modes of 
communication. 

143 

4. recognition that in parallel programming 
processes and communication channels 
must have structure and multiple 
occurrences just as does data in 
sequential programs. 

These four principles are the foundation for 
a straightforward but flexible language system 
for efficient parallel programming and effective 
utilization of dynamic reconfiguration. 

CSL deals only with definition and control 
of computation--structures and specification and 
implementation of interprocess communication. 
Execution units (tasks or processes) are 
sequential programs which can be written in any 
language (Pascal for the current TRAC 
implementation). CSL provides capabilities for 
composing execution units into computation 
structures, for defining the mechanisms and 
protocols for communication between tasks and for 
initiating and controlling task executions. CSL 
provides only that computational power necessary 
to implement task control. This approach is to 
be contrasted to that of more conventional 
languages for parallel programming such as PL/I, 
ALGOL68, and Concurrent Pascal which have added 
specific concurrent control features to general 
purpose programming languages. CSL separates the 
programming of elementary execution units and the 
composition and control of computation 
structures. This separation of conceptually 
disjoint problem domains leads to a clear 
specification and programming interface. 

Use of separately compilable units of higher 
level languages as the unit of composition for 
parallel computations allows flexibility in unit 
size. The execution units do not know whether 
they are executing independently or as a part of 
a concurrent process set. The CSL programmer 
does require knowledge of which data structures 
in the tasks will be shared or involved in 
communication. Indexing of programs is 
implemented as a means of replication of many 
program units executing on different data sets. 
This of course also requires the indexing of 
communication channels coupling the program 
occurrences. 

CSL is a block structured language which 
uses macro-definitions as a code compression 
device. This choice was dictated by the 
convenience offered for the interpretive 
implementation planned. Macro declarations may 
be recursive. 

CSL supports both the sharing of variables 
(overlapping address spaces) between sets of 
processes and data transfer between disjoint 
address spaces. TRAC architecture supports 
efficient implementation of both mechanisms 
[SEJ80). Overlapping address spaces are 
supported by creating network connections linking 
a given physical memory module to more than one 
processor. The sharing of access is on a logical 
basis rather than a physical access basis. A 



processor attaches a shared memory through a 
priviledged instruction. The attach will not be 
honored by the network hardware until the 
requested memory module has been released by its 
current holder (if it is currently attached). A 
segment of memory is thus switched from address 
space to address space rather being shared across 
otherwise disjoint address spaces.~logical 
concept of data sharing in CSL is, however, 
specified independently of the implementation 
model. 

CSL can be thought of as representing the 
logical endpoint of an operating system job 
control language. A CSL program is a job control 
program for an environment of great flexibility. 
It represents a prototype for the job control 
language for many component and reconfigurable 
architectures. 

The subsequent sections sketch and 
illustrate some of the capabilities of CSL. The 
Users Reference Manual [ADI81] gives a full 
definition of each statement in the language. 

Specification of Parallel Architecture 

The specifications for a computational 
architecture are written in terms of logical 
program elements such as tasks, shared data and 
logical channels between tasks rather than in 
terms of device or processor properties. The 
specifications for a structure of a given type 
and phase is bound by a CONSTRUCT statement. The 
architecture bound by a CONSTRUCT statement 
remains in effect until the execution path 
encounters another CONSTRUCT statement. 
CONSTRUCT statements can be nested. TASKS, 
CONDITIONS and CHANNELS, the elements of a 
computation structure, are defined within a 
CONSTRUCT statement. The effect of a CONSTRUCT 
is for the system resource scheduler to configure 
an architecture conforming to the specification 
and to map the TASKS and CHANNELS upon this 
architecture. A User's Reference Manual which 
gives examples of each statement as well as a 
full syntactic and semantic definition is 
available. The most effective exposition of CSL 
is, however, by example. Figure 1 is a CONSTRUCT 
statement for TASKS and shared variables taken 
from an example program given in full detail in 
Appendix A. 

CONSTRUCT 
TASKS 
t2(i) 
t2(j-1) 
t2(m) 

C[s(i),s(i+1),s(i+2)]; 
C[s(j-2),s(j-1),s(j)]; 
C[s(m-1),s(m),s(m+1),s(m+2)] 

RANGE m = i+2 TO j-3 BY 2; 

Figure 1: Example of a CSL Construct Statement 

The first thing to notice is that the TASK 
declaration, t2(m), is based on indexing. It is 
often the case that many invocations of identical 
processing are required. Indexing gives a 
convenient method for specification of the number 
of identical process replicas and also for 

associating data with each invocation. C 
declares the file upon which the program code is 
to be found. The [s(i), s(i+l), s(i+2)] 
associates with t(i) shared data elements s(i), 
s(i+1) and s(i+2). The actual structure of s is 
defined within the task code. It might be a 
column of-an--array or an entire array. The 
declaration of s(i) s(i+1) and s(i+2) as 
associated with t2(i) notifies the system 
scheduler to establish a memory configuration 
where t2(i) can access s(i), s(i+1) and s(i+2). 
The RANGE declaration specifies the number of 
tasks and shared data elements to be instantiated 
in this configuration. 

A CONDITION may be associated with each 
TASK. It becomes a variable shared by the TASK 
and the CSL program. CONDITION's are the only 
ov.erlap between the address space of tasks and 
the controlling CSL program. 

CHANNEL's implement 1 to N communications 
between tasks. DATACHANNEL's are declared for 
the movement of high volume data between task 
address spaces. MESSAGE CHANNEL's are declared 
for the movement of control information and low
volume data. Different implementations are used 
for the two channels constructs. There are a 
number of extended declaration capabilities such 
as specification of the number of buffers 
associated with a CHANNEL. Figure 2 is an 
example of a DATACHANNEL declarat40n taken from 
the program given in Appendix A. 

CHANNELS 
(moveright[i] = DATACHANNEL FROM f-c-p(i) TO 

f-c-p«i+1) MOD (N+1»; 
moveleft[i] = DATACHANNEL FROM f-c-p(i) TO 

f-c-p«i+N) MOD (N+1»;) 

144 

RANGE i = 0 TO N; 

Figure 2: Channel Declarations 

CONSTRUCT statements must appear prior to 
the execution of the tasks or use of the channels 
they define. The appearance of a CONSTRUCT 
statement in the execution path of a CSL program 
voids previous CONSTRUCT statements with release 
of all resources unless the CONSTRUCT statement 
encountered is contarnea- in a nested parallel 
structure (nested COBEGIN, see Section 5). The 
RETAIN statement provides an exception to release 
of resources. The memories containing the data 
elements specified in a RETAIN statement will be 
(logically) retained in the system for further 
processing within a subsequently encountered 
CONSTRUCT statement. 

Parallel Programming with CSL 

The three additional tasks of parallel 
programming (over sequential programming) are: 

1. 

2. 

establishment and control of 
execution of tasks 

implementation of 
communication 

concurrent 

interprocess 



3. control of access to shared data 

CSL attempts to use as sparse a syntax set as is 
consistent with ease of programming. 

We 
constructs 

describe 
relevant 

here 
to 

Assignment, repetition 
flow statements are 

on those language 
parallel programming. 

and sequential control 
minimal in number, 

and will not be Pascal-like in structure 
discussed herein. 

Execution control is implemented by eight 
statements. EXECUTE, COBEGIN-COEND, TERMINATE, 
STOP, CONTINUE, WAIT, SIGNAL, RESET. Let us 
again refer to an example (Figure 3). 

WITH s(m), s(m+1) DO EXECUTE t2(m) 
RANGE m = n TO j-1 BY 2; 

Figure 3: Example of a WITH Statement 

EXECUTE is followed by a list of task names. 
These tasks execute (logically) in parallel. 
Communication between the list of executing tasks 
can only be through shared variables. This is 
the characteristic statement for expressing SIMD 
executions. The statements contained between a 
COBEGIN-COEND pair are logically executed in 
parallel. They will often, however, contain 
synchronization statements such as 
WAIT/SIGNAL/RESET or CHANNEL commands such as 
SEND/RECEIVE. This is the mode for expressing 
MIMD or pipelined processing. 

Access to shared data is governed by the 
WITH statement. The task(s) named in the execute 
begin execution whenever they can have exclusive 
access to the shared variables contained in the 
WITH statement. The WITH construct in Figure 3 
is used for exclusive access to the variables 
s(m) and s(m+1) for Task t2(m) for even m. The 
WITH construct also implements in its extended 
formats read-only access and exclusive access to 
some data items and read-only to others. 

The WHEN statement implements the Dijkstra 
[DIJ75] guarded command construct. It is 
normally used on conditions defined in the CSL or 
on the standard system generated conditions on 
CHANNELS. WAIT/SIGNAL/RESET complete the 
synchronization constructs. They are functions 
defined upon CONDITION variables and have the 
obvious semantics. 

Interprocess communication between 
independently executing tasks is via CHANNELS. 
SEND and RECEIVE are illustrated in Figure 4. 

(SEND leftarr TO moveleft[i] 
SEND rtarr TO moveright[i]; 
RECEIVE newright FROM moveleft[(i+1) MOD (N+1)]; 

RECEIVE newleft FROM moveright[(i+N) MOD (N+1)]; 
RANGE i = 0 TO N-1; 

Figure 4: Example of Data Movement through CHANNELS 

145 

SEND places a data item on a channel. it is then 
available for the tasks declared as eligible to 
RECEIVE. A SEND blocks only if no buffer space 
is available while a RECEIVE blocks unless there 
is a data item on the channel specified in the 
command. A RECEIVE on a data channel "removes" 
the data from the channel and decrements the 
count of expected receives. The message is 
removed only when all expected RECEIVE's have 
been executed. The action of a SEND/RECEIVE is 
to transfer values between data structures 
defined in task address spaces. These data 
structures musr--be declared in the outermost 
block of the Pascal programs defining the tasks. 
Data appearing in shared data declarations cannot 
be sent via channels. 

The CSL Computation Model 

The existence of a formal computation model 
for a programming language offers a number of 
significant advantages. It allows an assessment 
of the power and applicability of the language. 
It guides the development and verification of 
correct programs. It provides the foundation for 
performance analysis of programs written in the 
language. 

The formal computation model for CSL is an 
extended form of colored Petri nets [PET80]. The 
principal logical extension is to partition 
places into HOLD and ENABLE regions. This is 
illustrated in Figure 5. 

Figure 5: Extended Colored Petri Net Segment 

The HOLD region simply holds tokens until the 
state of the transition and input places enables 
some one token in each place to participate in a 
firing. The algebraic representation of such a 
system is given by defining Set Operation Systems 
[KAP82]. Set operation systems generalize Vector 
Replacement Systems [KEL78] by allowing sets of 
"tokens" to be present at a place. The concept 
correspondence between CSL and colored Petri nets 
is given in Table 1. The actual modeling system 
also incorporates interval clocks in order to 
support performance evaluation of the execution 
of CSL programs. 



CSL Constructs 

shared data elements, 
data elements sent 
through CHANNELS 

TASKS 

WITH statements, 
CHANNEL buffers 
Conditions 

Colored Petri Net 
Constructs 

colored tokens 

transit ions 

places 

Table 1 - Correspondence between 
CSL constructs and colored 

Petri nets 

Implementation Structure 

A full feasibility demonstration for 
implementation of the CSL based programming 
system for parallel programming was executed 
before the design given here was adopted. 
Figures 6 and 7 schematically show the structure 
of the system and the relationship of the several 
components. The responsibility of the several 
components is as follows. 

System scheduler 

-------- --

JM - job moni tor 

Tl,T2 •... ,Tn - n tasks 

~ control message flow 

-< - ~ data message flow 

Figure 6 

Each job, which consists of a reconfigurable 
set of tasks, is driven by a job monitor. The 
job monitor consists of four components. The CSL 
program specifies the configurations for the 
computational structure and the parallel process 
execution. The CSL run-time system is an 
interpreter for the declaration and executable 
statements of the CSL program. The configuration 
analyzer loads the CSL program and scans it for 
CONSTRUCT statements. The configuration analyzer 

146 

message 
_ !!!1,!!I __ _ _ 

Figure 7 

then negotiates with the system scheduler for the 
establishment of resources and parallel 
architectured structures to conform to the 
computational architecture specified in the 
CONSTRUCT statements. Whenever a configuration 
has been established, control is turned over to 
the appropriate executable portion of the CSL 
program. This program is then interpreted by the 
CSL run-time system. Control of the tasks of a 
CSL program is attained through the sending of 
messages to and from the CSL program running the 
job monitor and the tasks executing in the 
several task processors. Task executions are 
controlled through the sending of messages via 
packets in the TRAC network. SEND's and 
RECEIVE's on data channels are executed through 
the switchable memory concept of TRAC. SEND's 
and RECEIVE's on message channels are implemented 
by packet movement. 

It is necessary for the processor resident 
monitor of each task to understand the data 
structures which it is to send and receive. 
Accordingly, the configuration analyzer 
initializes the processor resident monitor with 
the locations and characteristics of the data 
structures which it is to send and to receive. 
The initiation of transfers of data via the 
shared switchable memory mechanism is also 
initiated via packets being sent to the 
appropriate processor resident monitors. The 
details of this communication are given in a 
report, "Processor Resident Monitor of TRAC" , 
[CAN81 ]. 

The implementation of the CSL interpreter 
has been completed on the DEC-10 in Pascal. It 
is serving as a simulator where the task code is 
replaced by dummy stubs. A design for the job 
configuration analyzer has been made down to the 
level of Pascal data structures and flow of 
control through functions and procedures. The 



processor resident monitor has been resolved down 
to the streams of flow of control through the 
modules and functions for all major tasks 
including loading of task modules, initialization 
procedures, acquire and release of shared 
memories, handling of page faults and handling of 
packet arrivals. 

Summary 

This paper has described a programming 
system designed to exploit the capabilities of 
reconfigurable multi-processor architectures. 
The feasibility of this programming system has 
been established and a number of non-trivial 
programs coded in this system to demonstrate its 
applicabili ty. 

References 

[ADI81] Adiga, A., Fedak, S., Tripathi, 
Browne, J.C., "A Computation Structures 
Revised", Preliminary Technical Report 
Dept. of E.E., The University of 
Austin. 

A. and 
Language: 

TRAC-27, 
Texas at 

[BRA79] Brandjwan, A., Hernandez, J.A., Jaly, R. 
and Kruchten, P. , "Overview of the ARCADE 
System", Proc. 6th Symp. on Compo Arch. I, 
pp. 42-49, 1979. 

[CAN81] Canas, D., "The Kernel Monitor for TRAC", 
Preliminary TRAC Report, Oct. 1981. 

[DIJ75] Dijkstra, E.W., "Guarded Commands, 
Nondeterminancy and Formal Derivation of 
Programs", CACM, Vol. 1!h ~ !!.' Aug. 1975. 

[GAN81] Gannon, D., "On Mapping Non-Uniform PDE 
Structures and Algorithms onto Uniform Array 
Architectures", Proc. Xth Int. Conf. on 
Parallel Processing, Aug.---1981:iPp. 100-105. 

[GEN78] Gentleman, W.M., "Some Complexity Results 
for Matrix Computations on Parallel Processors", 
Journal of the ACM, Vol. 25, 1978, pp. 112-115. 

[GR079] Grosch, C.E., "Performance Analysis of 
Poisson Solvers on Array Computers" in 
Supercomputers: Vol. 2, Ed. by C.R. Jesshope 
and R.W. Hockney:-(Infotech, London, 1979) pp. 
147-181. 

[JEN81] Jenevein, R., DeGroot, D. and Lipovski, 
G.J., "A Hardware Support Mechanism for 
Scheduling Resources in a Parallel Machine 
Environment", Proc. 8th into Symp. on Compo 
Arch., pp. 57-~981. 

[JOR77] Jordan, T.L. and Fong, K., "Some Linear 
Algebraic Algorithms and their Performance on 
CRAY-1" in High Speed Computers and Algorithm 
Organization, Ed. by D.J. Kuck, D.H. Lawrie 
and A.H. Sameh (Academic Press, New York, 1977) 
pp. 313-316. 

[KAP80] Kapur, R.N., Premkumar, 
Lipovski, G. J • , "Organi zation 

U. V. and 
of the TRAC 

147 

Processor-Memory Subsystem", AFIPS Conf. Proc., 
pp. 632-629, May 1980. 

[KAP81l Kapur, R.N. and Browne, J.C., "Block 
Tridiagonal Linear Systems on a Reconfigurable 
Array Computer", Proc. 1981 Parallel Processing 
Conference. 

[KAP82] Kapur, R.N., "On the Synthesis and 
Analysis of Reconfigurable Computer Programs", 
Ph.D. Dissertation, Department of Electrical 
Engineering, The University of Texas at Austin, 
May 1982. 

[KAR77] Kartashev, S.L and Kartashev, S.P, "A 
Multicomputer System with Software 
Reconfiguration of the Architecture", Proc. 8th 
Int. Conf. Computer Perf., pp. 271-286, 197~ 

[KUC77] Kuck, D.J., "A Survey of Parallel Machine 
Organization and Programming", Computing Surveys 
2., pp. 29-60, 1977. 

[PET80] Peterson, J.L, "A Note on Colored Petri 
Nets", Inf. Proc. Lett., Vol. lh ~ 1, Aug. 
29, 19 8Q.Pp .-----m>:4 3-. -- --

[PRE80] Premkumar, U.V., Kapur, R.N. and 
Lipovski, G.J., "Organization of the TRAC 
Processor-Memory Subsystem", AFIPS Conf. Proc. , 
pp. 623-629, May 1980. 

[SAM78] Sameh, A.H., "Parallel Numerical 
Algorithms" in High Speed Computer and Algorithm 
Organization, Ed:-lby~ Kuck, D.H. Lawrie 
and A.H. Sameh (Academic Press, New York, 1977) 
pp. 205-228. 

[SCH80] Schwartz, J., "ULTRACOMPUTERS", ACM 
TopiCS 1, pp. 484-521, 1980. 

[SEJ80] Sejnowski, M.C., Upchurch, E.T., Kapur, 
R.N., Charlu, D.P.S. and Lipovski, G.J., "An 
Overview of the Texas Reconfigurable Array 
Computer", AFIPS Conf. Proc., pp. 631-641, May 
1980. 

[SIE78] Siegal, H.J., Mueller, P.T. 
H.E., "Control of a 
Multimicroprocessor System", Proc. 
on Parallel Processing, pp. 9-17, 

and Smalley, 
Partitionable 
Int. Conf. 
19~ --

[VIC79] Vick, C.R., "A Dynamically Reconfigurable 
Distributed Computing System", Ph.D. 
Dissertation, Auburn University, 1979. 

[VOI77] Voigt, R.G., "The Influence of Vector 
Computer Architecture on Numerical Algorithms" in 
High Speed Computer and Algorithm Organization, 
Ed. by D.J. Kuck,-O:H. Lawrie and A.H. Sameh 
(Academic Press, New York, 1977) pp. 229-244. 

Appendix A - An Example 

This CSL program is a complete parallel 
formulation for a particle-in-cell code. The 
details of the problem formulation can be found 
in TRAC project technical report [BR081]. The 



major portion of the code "(MACRO's oerr and oerb) 
is a parallel structuring of Odd-Even Reduction 
[KAP82]. The MACRO poisson combines oerr and 
oerb to solve Poisson's equation. The main 
program alternates calls to the Poisson equation 
solver and the routine f-c-p which computes 
fields and move charges. Each copy of f-c-p 
computes the field and moves the charges in a 
column of "cells". The copies of f-c-p must 
communicate with their nearest neighbors in order 
to compute fields and hand particles to the 
columns where they move in a given time step. 
The major execution steps of the program are 
contained in the last 10 lines of the program. 

Program Plctst; 

YAR 
l,j,N,col,p : INTEGER; 

MACRO oerr(s,i,j,k); 
(definition for reduction step of Odd even) 

YAR m: INTEGER; 

BEGIN 
IF k)1 THEN 
(reduction step number) 
BEGIN 
(phase 1: diagonal block solution) 

CONSTRUCT 
TASKS tl(m) : B[s(m)] RANGE m= i TO j; 

~D; 

EXECUTE tl(m) RANGE m = 1 TO j; 
END; 

BEGIN 
(phase 2: merging neighboring rows ) 
(using 2-pole/3-position switch ) 

CONSTRUCT 
"TASKS 

t2(1) 
t2(j-l) 
t2(m) 

END; 

COBEGIN 

C[s(1),s(i+l),s(i+2)]; 
C[s(j-2),s(j-l),s(j)]C 
C[s(m-l),s(m),s(m+l),s(m+2)] 

RANGE m = 1+2 TO J-3 BY 2: 

IIWITH s(l) DO EXECUTE t2(1); 
IIWITH s(m-l),s(m) DO EXECUTE t2(m) 

RANGE m = i+2 TO j-l BY 2; 
COEND: 

FOR n = 1 TO 1+1 DO 
WITH s(m),s(m+l) DO EXECUTE t2(m) 

RANGE m = n TO j-l BY 2: 

COBEGIN 
IIWITH s(m+l),s(m+2) DO EXECUTE t2(m) 

RANGE m = i TO j-3 by 2: 
/lWITH s(j) DO EXECUTE t2(.j-1l: 

CXlEND: 

BEGIN 
(inverse perfect shuffle) 

CONSTRUCT 
TASKS 

t3(2m-l):D[s(2m-l),s(m)] 
RANGE m = 1 TO j/2; 

t3(2m):D[s(2m),s(m+(j-l)/2) 
RANGE m=i+l TO j/2 -I: 

END: {construct} 

VITH sCm) DO EXECUTE t3(m) RANGE m = i TO j-l; 

148 

COBEGIN 
IIWITH sCm) DO EXECUTE t3(2m-l) 

RANGE m = i TO j/2: 
IIWITH s(m+(j-i)/2) DO EXECUTE t3(2m) 

RANGE m = 1 TO (j-l)/2; 
COEND: 

END; 

k := k - I: 
RELEASE: 
oerr (s,(j+l)/2,j,k); 
(invoke next pass of reduction) 
CONSTRUCT 

TASKS solve : E; 
END; (constructl 
EXECUTE solve; 
{solution of single block returned by reduction} 

ENDHACRO; {oerr} 

MACRO oerb(s,j); {back substitution for oer} 

(j:block dimensionality of original matrix •••• ) 
{ •••••••• power of 2 minus 1 } 
(k:step number, initially, k=1 ) 

YAR m: INTEGER; 

BEGIN 
FOR k = 1 TO (log(j+l)-I) DO 

BEGIN 
CONSTRUCT 

TASKS 
b(m) : F[s(m-(j+l)/2.*(k+l», s(m), 

s(m+(j+l)/2**(k+l»] 
RANGE m :(j+1/2.*(k+l) 

TO j+l-(j+l)/2**(k+l) 
BY (j+l)/2**(k+l): 

END; {of construct} 

WITH s(m),s(m+(j+l)/2**(k+l» DO EXECUTE b(m) 
WITH s(m-(j+l)/2**(k+l»,s(m) DO EXECUTE b(m» 

RANGE m=(j+l)/2*.(k+l) TO j+l-(j+l)/2*.(k+l) 
BY (j+lli2*·(k+1l; 

END; {for} 
ENDMACRO; {oerb} 

MACRO poisson (s,j); 

BEGIN 
oerr(s,I,j,log(j»; 
oerb(s,j); 

ENDMACRO: {poisson} 

BEGIN {main program} 
( initiaUze 

p : the number of processes 
N : total number of columns in the grid 
col : no. of columns assigned to each process 
H : number of iterations required 

NOTE: 1) p = NIcol 

CONSTRUCT 
TASKS 

2) each process or task also 
needs the two columns 
adjacent to those assigned to it.} 

f-c-p(O) (lnit,move ,charge) : Cflle[qv(ll) ,qv(j)] 

RANGE j = 1 TO c01+1; 
f-o-p(l) (init,move,charge) : Cfi1e[qv(i*col+j)] 

RANGE «j=O TO col+l),(i=1 TO N-2»: 
f-c-p(p) (inlt,move,charge) 

: Cfi1e[qv(I),qv«N-l)·col +j)] 
RANGE j = 0 TO col; 

END; {of construct} 
(EXECUTE f-c-p(i).init: (Initialization) 

EXECUTE f-c-p(i).charge; 
(maps charges from particle positions 
to mesh points ) 



FOR j = 1 TO M DO 
BEGIN 
poisson (qv,i); {solves poisson equation) 

COBEGIN 
CONSTRUCT 
TASKS 

f-c-p(O) (init,move,charge) : Cfile[qv(N) ,qv(j)] 
RANGE j = 1 TO col+1; 

f-c-p(i) (1nit.move.charge) : Cf11e[qv(i*col+j)] 
RANGE «j=O TO col+1).(1=1 TO N-2»; 

f-c-p(p) (init.move.charge) 

CHANNELS 

: Cfile[qv(1).qv«N_1)*col +j)] 
RANGE j = 0 TO col; 

(moveright[i] = DATACHANNEL FROM f-c-p(i) TO 
f-c-p«i+1) mod (N+1»; 

moveleft[i] = DATACHANNEL FROM f-c-p(i) TO 
f-c-p«i+N) MOD (N+1»;) 

RANGE i = 0 TO N; 
END; {of construct) 

II( EXECUTE f-c-p(i).move; 
{each task moves its particles) 
SEND leftarr TO moveleft[i]; 
SEND rtarr TO moveright[i]; 
RECEIVE newright FROM 

moveleft[(i+1) MOD (N+1)]; 
RECEIVE newleft FROM 

moveright[( i+N) MOD (N+1)]; 
{information about particles that 
crossed partitions is sent to 
adjacent tasks ) 
EXECUTE f-c-p(i).charge;) 
{calculates new charge distribution) 

RANGE i = 0 TO N-1; 
COEND: 

END: 
END. 

149 

Appendix Reference 

[BR081] Browne, J.C., Kapur, R.N. and Adiga, A., 
"Particle-in-Cell Code Analysis", Technical 
Report TRAC-33, Department of E.E., The 
University of Texas at Austin, Fall 1981. 

This work was supported by the National Science 
Foundation under Grant Number MCS77-20698 and by 
the Department of Energy under Grant Number 
DOE-AS05-81ER10987. 

The second author is currently associated with 
the Corporate Computer Science Center, Honeywell, 
Incorporated. 



P. CASPI, N. HALBWACHS 
!MAG Laboratory 

Grenoble, FRANCE 

Abstract: The nodel presented here differs 
fran the usual rrodels of parallel processing by 
t\\lO aspects: On one hand, it takes fully into ac
oount the netric notion of tine, thus allowing the 
descripti<n of hard real tine system:;. On the 
other hand, it is a p.tre behavioural nodel, in the 
sense that it does not use any abstract nachine 
notion. From a forrralization of the notion of 
event, we sha.r that the behaviour of a logical 
system nay be described, by rreans of fffM cpera
tors, in a precise and concise way. The algebraic 
properties of the nodel are then studied, in order 
to define sone nethods for analysing or transfor
ming system:; described in this forrralism. 

Two different notions of tine are used in 
system nodeling. In sequential system:;, as far as 
tine perforrrance is not considered, the tine 
concept nay be reduced to the ordering of actions, 
or nore generally of events occurring during the 
system life, that is a perfectly knc:Mn total 
ordering relationship. In parallel system:;, the 
ordering of events depends <n the executi<n tine 
of the actialS. So a precise descripti<n of sudh a 
system needs the usual netric noti<n of tine. 
Ha.rever, since the execution times are generally 
uncknown, the correctness of parallel system:; is 
COITIlOnly required to hold independently of any 
assurrpti<n about the speeds of the involved pro
cessors. So, rrany authors were led to consider the 
ordering of events in a parallel system as a 
partial ordering, and to assimilate parallel 
systems with undeterministic sequential ones. This 
approadh alla..rs to get rid of any netric notion of 
tine, and has led to nest of the parallel programs 
proof teChniques. Ha.rever it does not apply as 
scx::n as real tine systems are considered. In sudh 
system:;, the netric notion of tine is used not 
only to carpare the perforrrances of several inple
nentations, hut also to decide of the adequacy of 
a system to its specifications. 

Another characteristic of rrany approadhes to 
parallel behaviour nodeling (for instance [1], [7] ) 
is the use of an abstract nadhine nodel, nore or 
less derived fran finite state autOllBta. A beha
viour is defined as an equivalence class upon the 
set of nadhines, and thus the proof of a system 
reduces to the proof of the equivalence between 
the abstract nadhines representing the specifica
tion and the inplerrentation of the system. The 
drawbacks of sudh an operational approadh for the 

This \\IOrk was supported by C.N.R.S. under grant 
ATP-"Parallelisrre, corrmunication, syndhronisation". 

0190-3918/82/0000/0150$00.75 © 1982 IEEE 150 

initial specification process have been pointed 
CRlt in [3]. In short, the specificati<n language 
is generally far fram being natural, and nay lead 
to overspecification. 

In this paper, we present a purely behaviCRl
ral nodel for logical, parallel or real tine 
system:;, Whidh takes fully into a=unt the real 
tine dependencies between internal and external 
events of a system. OUr notion of tine nay be 
viffMed as a sinple ordering tine, as far as purely 
parallel systems are considered, or as a netric 
tine, assumed to be the global tine of an external 
observer to the system. 

In secti<n 1, the basic notions of tine and 
event are defined. An event is represented by an 
increasing staircase function from tine to n<n 
negative integers, whidh counts the nunber of 
occurrences of the event during the tine. An 
ordering relationship and a set of operators are 
provided in section 2, that structure the set of 
events as an ordered semiring. 'Ib illustrate the 
descriptive pcMer of this algebra, we sha.r 
(secti<n 3) that finite state nadhines and Petri 
net nodels nay be specified by system:; of linear 
equations and inequalities over events. In order 
to define an effective calculus <n sudh specifica
tions, the algebra is extended in secti<n 4 to 
becorre a ring, the elenents of Whidh are called 
pseudoevents. The use of this calculus to real 
tine system:; design problem:; is illustrated in 
secti<n 5. Secti<n 6 describes a systerratic nethod 
to get approxinate results about descriptions in 
our nodel, by neans of discrete transforms of 
pseudoevents. Sorre nice properties of the algebra, 
When the tine nay be considered as discrete, are 
gi ven in section 7. In conclusion, the extension 
of the nodel towards nurrerical system:; is diSCUS
sed, and open problem:; are set, the solution of 
Whidh would greatly increase the capabilities of 
CRlr calculus. ~t proofs have been anitted,blt 
nay be found in an extended versi<n of this paper 
[5]. 

1. TIME AND IM!Nl'S 

1.1 Tine 

Our notion of tine refers to an absolute <ne, 
sudh as perceived by an external observer to the 
system. At the description level, the problem of 
the relative tines neasured by several 
subsystem:; I clocks in a distriblted system, sudh as 
studied in [6], does not arise. We shall generally 
nodel the set 'Il' of tines by the set lR or Z/; of real 
or integer nUIlbers. Elerrents of 'Il' are called tines 
or instants When 'Il' is considered as an affine 



space, and tine intervals, delays or durations 
"When the vectorial structure of 'Il' is considered. 

1.2 Ewots 

We consider as events the transitions between 
states that nay appear either in a system or in 
its environnent, such as setting a switch, or 
assignirg a new value to a variable. Moreover, an 
event nay occur several tines during the period of 
observatiat of the system, rut, as we deal with 
discrete systems, the set of occurrences of an 
event is asstmed to be enunerable. At a suitable 
level of abstractiat, we can decide that an cx:cur
renee of an event has no duration, and can be 
viewed as a cut in the tine line, that separates 
the tines before and after the event occurs. Thus 
we define an event e to be a finite or infinite 
increasing sequence of instants, Where e(n) 
denotes the instant of the n-th occurrence of e. 
We shall furthernore inpose that, if the sequence 
is infinite, it converges towards fa> in 'Il' with n. 
This restrictiat is noti vated by algebraic reasons 
and may be intuitively justified because, in 
discrete systems, an event nay not occur infinite
ly often in a finite ancunt of tine. 

The IlUIIber of occurrences of an event e will 
be noted #e. For convenience, we do not prevent an 
event fran having several sinultanea.ls occurren
ces. The set of events will be noted E('ll'), or 
sinply E "When the choice of 'Il' is irrelevant. 

Of course, this definition of events copes 
with real tine behaviour IYOdeling. However, it is 
also convenient to describe sequential or prrely 
parallel systems: For instance, if L is a language 
at a vocabulary V, we can associate with each 
synbol a in V and with eac:h strirg c in L, the 
event a Which is the increasing sequence of the 
ranks of the synbol a in c. 

This representation by neans of sequences 
allo.lS us to equally handle the present, the past 
and the future of the system. 'Ibis is close to the 
point of view adopted, for instance, in the appli
cative language LUCID [2]. 

1.3 Cbmters 

An alternative way for handling events 
consists of using counters. SUch counters have 
appeared useful in describing or progranming 
synchronizatiat between processes [10], [11]. With 
each event e, we shall associate a oounter 1.1. , 
Whic:h is an applicatiat fran 'll' to IN , defined !s 
follo.lS: 

1.1. (t) = max{ nl1 ~ n ~ #e & e(n)<t} e 

Thus Ile ( t) neasures the Il1lItber of occurrences 
of e that nave happened strictly before t. 1.1. is 
an increasing, left continuous staircase fun~iat 
at 'II'. Figure 1 pictures the counter of the event 
e=(1,3,4,6). 

Let an event counter be an increasing, left 
continuous total function fran'll' to IN , Which 

151 

If : 

.3 r--r 
2 :-f: 

,----t: : 
I I I I 
, I I I 

-10123lf5678910 t 

Figure I 

value is zero on sate interval ] ..... , Xc], then 
(usirg the Church's l.arIi:lda notation), 1.1.= A.e'l.I.e is 
obviously a bijectiat between the set of events 
and the set of event counters, since: 

¥n=1. .te, e(n)= nax{ t€'Il' 1 1.1. (t) < n} e 

2. 'lBE AI.GmRA CJI! EI1J!Bl'S 

A logical system behaviour will be oonsidered 
as a vector of interrelated events, and a system 
as a set of such behaviours. In this section, we 
shall see ha.r to specify such a system by neans of 
few cperators over events. 

* .. . If k € IN, the primary event k 1.S, by defJ.nJ.-
tion, the event Which has exactly k occurrences, 
sinultaneously happening at the instant zero: 

¥n=1. .k, ~(n)=O 

I.I.k(t)= if t~O then 0 else k 

Since the instant zero will generally repre
sent the initial instant in a system life, primary 
events will, be often used to nodel initial states. 

2;2 0Mering over E 

For every e,f in E, let 

e ~ f <=> #e ~ #f & ¥n=1.. #e, e(n) > fen) 
¢=> ¥t€ 'll', l.I.e(t)~ I.I.f(t) 

So the (partial) ordering over events coinci
des with the pointwise ordering over counters. 
This ordering will be useful, in particular, to 
represent causality relationships over events. 

(E,~) is a lattice, and we can define the 
inf and sup cperators as follows: 

¥e,f E, 
l.I.inf(e,f)= A.t. ndn(l.I.e(t),l.I.f(t» 
Ilsup(e,f)= A.t. nax(l.I.e(t),l.I.f(t» 

E has a ndnim.un elenent 0, Which is the event 
Which has no cx:currences (#.2:= () • 

2.3 aun and Difference of events 

The sum of t\oio events e and f is defined to 
be the event Which occurs each tine e or f occurs. 
More precisely, the sequence of occurrences of ~ 
event e+f is ruilt by interleaving the sequences 



of e and f, according to their tenporal ordering, 
This notim can be easily fornalized 1:¥ means of 
oounters, justifying the additive rotatien: 

\le+f = A.t, Ile(t) + llf(t) 

The + q>eratien, beiD;J obvials1y camutati ve 
and associative, nay be generalized to an arbitra
ry finite nuni:ler of q>erands: 

f= ~=O e i -=> llf= A.t, E~=o 11 (t) e i 
The product of an evente1:¥ a natural integer 

k is the k tines iterated sum of e: 

k 
ke= Ei=le 

The difference over events is en1y a partial 
q>eratien, the definitien of Which results fran 
the definitien of the sum: 

d= e-f «=> e= d+f 

Note that the difference e-f is defined only 
if f is a subsequence of e, 

2.4 Delay ~tars 

Let I:;. be a delay, then the delay q>erator D 
I:;. 

perfornB a translatien of every occurrence of its 
q>erand according to 1:;.: 

11 I:;. = A.t'll (t-I:;.) 
Dee 

The exponential notatien is justified 1:¥ the 
obvious properties that DO is the identity q>era
tor en E, and that DtnQ.. DI:;.+o for every delay 
1:;., 0 , The q>erator Dl will be noted D, 

3. APPL1CATI<1!1' '10 JBIAVIa:JRAL IES::RIPl'I<JI 

Let us shcM' bere that the preceding concepts 
are 'Nell suited to the descriptien of parallel and 
real tine systems, and lead to very ooncise 
descripticns of suCh systems, 

3.1 Periodic Events 

Let us express that an event e occurs at 
tines 0, 1:;., 21:;., ,.", n/:;.", , ,Clearly, e satisfies 
the following recursive definitien: 

I:;. 
e=De+1 

Similarly, the weaker assunptien that e 
occurs at positive instants, and that two succes
si ve cx:currences of e are separated 1:¥ a delay 
SIlBller than I:;. nay be expressed as follows: 

3.2 Respalse Times 

I:;. 
e(De+1 

Let e be an inpIt event to a system, and s be 
the altput response to e, that is requested to 
cx:cur within the tine interval I:;. following each 
occurrence of e, This can be expressed 1:¥: 

. These exaIlP1es POiJIt alt. t;he usefulness of 
linear equat.1artls and JneqUali t~es over events, 
Evidence for such a fact will also be provided 1:¥ 
the following application of aIr ncde1 to the 
behavioural descr~ptien of finite state nachines, 
Petri nets, and tirred Petri nets, 

~.3 Finite State Madrlne 

Let M= (V,O,O',~) a finite state nachine, 
Where: 

v is a finite voca.bllary 
, 0 is a finite set of states 

0' is a napping fran axo to V 
~ € 0 is the initial state 

A behaviaIr of M is a string 0= a1 ~, , ,~. , • 
* of V such that there exists a sequence 

~q1"CIn'" of states, suCh that, for every n 

SIlBller than the length of c, O'(CIn' CJn+l) exists 

and is equal to ~+1' In aIr node1, a behaviour of 

M will be a vector (a I a € V) of events, suCh that 

a is the sequence of the ranks of the synbo1 a in 

a string like c, 

First, 'Ne nay describe, for every couple 

(q,q') of Oxo, the event "the transitien q-'.>q' is 

performed", Let ~' be this event. Ebr rotational 

convenience, let q' (resp, 'q) be the set of states 

q' such that O'(q,q') (resp, O'(q' ,q» is defined, 

Then, 1:¥ observing that a state q is left at 
"instant" n if and cnly if it was reached at 
"instant" n-1 and it bas sare successor state, 'Ne 
get: 

, Ebr every state q,such that q' '" ¢ , 
E, ern' = DE" eq"q + u(q) q€q'..,.." q€'q 

Where u(q)= if ~ then ~ e1se.2. 

Now, for every a in V, the event a happens 
each ''tine'' a transitien q-;.q' is performed, Where 
O'(q,q' )=a, So: 

, Ebr every a in V, a= EO'(q,q')=a eCJ;l' 

Figure 2 

152 

I 



Exanple: Let us consider the state graph of 
figure 2. We get: 

~ = De12 

fran which it follows that: 

i = D22: + 1 and b = D3 ~ + Dc - c + D 

We shall see in section 7 a necessary and 
sufficient condition for the difference in the 
last equation to be defined. With this additional 
condition, the above equations exactly characteri
ze the machine behaviours. Of course, the Charac
terization by means of regular expressions is much 
sinpler, rut the sane process applies to nore 
caIplex machines, like ccmrunicating systerrs of 
[7], [8]. 

New, let us see heM the nodel applies to a 
parallel asynchronous language. 

3 .4. Petri Nets 

Like state machines, Petri nets [9] only use 
an ordering notion of tine. So 1Ne shall choose'll' = 
Zl: and describe, for each transition of the net, 
the event "the transition is fired". 

Notations: let P be the set of places, T be 
the set of transitions. For each place p and each 
transition a, let us denote: 
. p' (resp.· p) , the set of output (resp. input) 
transitions of p. 
. a' (resp. 'a), the set of ootput (resp. input) 
places of a. 
Let m(p,O) be the initial marking of p, and a be 
the event whidl happens each tine the transition a 
is fired. 

The transitions are fired one at a tine, so 
the marking m(p,n) of the place p at the instant n 
is: 

m(p,n) = m(p,O) + ~ ~A(n-1) - ~ ~A(n) 
DE'P '0 aEp' a 

Writting that this marking may not becone 
negative, 1Ne get: 

Vp E P, ~aEp' a .; ;'cpob + m(E.!.Q2 (1) 

New, 1Ne can write that at rrost one transition 
may be fired at each instant: 

A A 

~aET a .; ~aETDa + ! (2 ) 

(1) and (2) constitute a system of linear 
inequalities which characterize the set of correct 
behaviours of the net. 

3 • 5 TiDEd Petri Nets 

Of course, the preceding characterization of 
Petri nets nay be extended to synchronous real 
tine rrodels such as tined Petri nets [l3]. In such 

153 

nets, a delay ~(p) is associated with each place 
p. '!be t1l\lO follCMing rules differenciate tined 
Petri nets from ordinary ones: 
• If a token reaches a place p at the instant t, 
it becomes unavailable until the instant t+~(p). A 
transition is enabled if and only if each of its 
input places contains an available token. 
• A transition nay not remain enabled during a non 
null interval of tine: It must be either fired or 
disabled as sCXX1 as it is enabled. 

The inequality (2) of ordinary Petri nets 
does not hold for ti.Ired nets, since several tran
sitions may be simultaneously fired. Taking the 
first rule into account, the system (1) becares: 

VpE P, E i .; D~(P)~ b + m(n,O) 
aEp' -bE'P :::.=--

The second rule forces every event to be as 
large as possible, so the above system must 
become: 
VaE T, 

i= infpE'a( D~(P)~E.i + !!!1E,Ol - ~cEp.-{a}~ 
This system of equations characterize the set 

of correct behaviours of the net only if it does 
not contain so called "no duration loop", i.e. if 
it is inpossible for a token to participate in the 
firing of a transition and to cone back simultane
ously enabling this transition. Otherwise, the set 
of correct behaviours is only a subset of the 
solutions of the system of equations: Fbr instan
ce, if the delays associated with both places of 
the net of figure 3 are zeros, the only equation 
1Ne get is a = 0, though the true behaviour is a = 
o =.Q" because of the null initial marking. 

o o 

Figure 3 

4. PSI!lJIX) EVPN1'S 

In the previous section, 1Ne have illustrated 
the descriptive pc:lIII19r of the rrodel. Let us new 
look for transformation and proof techniques for 
such descriptions. Starting with an equation such 
as 

e = ~e +! 

the approach taken here consists of giving a sense 
to the expressions: 

and 
e = 

~ 
(1 - D )e = ! 
__ 1_ = ~ '" rP" 
1 - D~ n=O 

This is achieved by extending the set of 
events so as to make the difference a total opera-



tor, and by defining an internal product. 

Let us first note that, fran the definitions 
of the sum and delay operators over events, the 
following identity holds for every event e: 

= le oe(n) 1 e n=l _ 

Our extensien of the set of events staight
forwardly results fran this identity. 

4.1 Definitial. 

A pseudo event is a normal series 

x = Eb x If(n) 
n=l n 

where: 
• (~) is a sequence of n:::n null relative inte
gers; 
· (~) is a strictly increasing sequence of 
instants; 
• both sequences have the sane length #X, Which 
can be finite or infinite, but in the latter case, 
the sequence (~) converges tCMards infinity. 

The pseudo event 0 is such that ifO=(). With 
each pseudo event x can be associated in a ene to 
one way its counter Ilx defined by: 

Ilx = A.t. if x=() then 0 else Ex <t xn 
n 

The set R of pseudo events is provided with 
the usual sum and product c:perators over formal 
series. (R,+, x) is an integral, camutative ring 
with neutral elenents 0 and 1=00. 

A partial order is defined over pseudo events 
as follows: 

a "b = v:t <"']I', Ila (t) .; Ib(t) 

(R, ,,) is a lattice, and the sup and inf ope
rators are the correspcnding operators en 
counters. 

An event is either 0 or a pseudo event with 
positive coefficients ~ . Thus its counter is an 
increasing function of t. One can see that these 
definitions are consistent with the previous ones 
given in sections 1 and 2, with the following 
loosened notations: 

Since, for every pseudo event a and every k 
in lN, ka=ka, 'lie shall emit henceforth to subline 
the pr~rrary pseudo events. Since 1 is the neutral 
elenent of the product,it will be anitted in 
products. So 06 will denote the event 061 . J::lotice 
that, with these notationsl the expressioo o%. nay 
be viewed. either as the D operator applied to a, 
or as the product of D6 by a. More generally, 
every pseudo event nay be viewed. as an operator en 
R. 

The product operatien, and the above nota
tions justify the first step of the process of 
formal resolution of the equation e=D e+ 1. The 
second step will be justified by the study of 
invertibility in R (a pseudo event a has an 

154 

inverse if and cnly if there exists a' such that 
aa'=l). 

4.2 Pnclidean Divisial. 

4.2.1 Proposition: A necessary and sufficient 
condi tien for a pseudo event x to have an inverse 
is that Xl = ±l . lobreover, 

1 - -x(l) n 
x=~o En;.OY' 

Where 
y = sign(-x1 ) E~2 XnDx (n)-x(l) , 

and ~ denotes the n tirres iterated product of y 
by itself. 

4.2.2 Corollaries:. Let a=1-e, Where e is an 
event such that en » 0, then the inverse of a is 
an event, since l/a = En;.O en. 

· A necessary and sufficient condit~en for th~ 
inverse of an event e to pe an event ~~ that e=rf' 
for some 6. Obviously 1/rP=: 0-6. So {o I 6 <" m is 
the set of unity elements of the semiring (E,+,x). 

4.2.3 Ring norm: Let us recall that an appli
cation v fran a rin:;J R to IN is called a rin:;J norm 
if and enly if: 

v(x) = 0 . <=> x = 0 
• v(xy) = v(x)v(y) 
· x has an inverse if and enly if v(x)=l 

So the application v, Which associates with 
each pseudo event ai'O the integer JaIl, and such 
that v(O)=O is a rin:;J norm en R. 

4.2.4 Proposition: R is an Euclidean ring, 
Le. for every a,b in R, (b*D), there exist q,r in 
R such that a=bq+r and v(r) < v(b). 

Let us give the divisien algorithm, Which is 
very close to the polynanials division according 
to increasin:;J variables powers: 

step 0: Let r(o)= a and q(o)= 0; 

Step k+l: IfJr:~kJ<J b~ then stop. Else ,let 

x(k)= r:(k) /6 . If x(k)~ ~ then go to step a, else 
let: 1 1 

(k) (k) r~~~-b(l) (k+1) (k) (k) p =x D ,q =q +p , 

r(k+1)= r(k)- p(k)b 

· step ( cr.: Let db be the snallest integer greater 
than X(K, if x 0, the greatest integer snaller 
than x k otherwise. Let: 

4.3 Linear Inequalities of Pseu<b Events 

Our formal calculus is 0C1#I pcMerful enough to 
solve any linear equation. However, behavioural 
specificatien in our nodel rrakes a very general 
use of linear inequalities, Which are more diffi-



cult to handle tecause of the partial nature of 
the ordering on R. So, let us examine serre proper
ties of this ordering in relation with algebraic 
cperators. 

4.3.1 Inequalities and sum: For every a,b,c 
in R, a ~ b - a+c ~ b+C. In other INOrds, the 
sum and difference operators are order preserving. 

4.3.2 Inequalities and product: A great deal 
of INOrks concerning ordered algebraic structures 
(see for instance [14]) neke the hypothesis that 
positive product is order preserving, that is to 
say, that for every a,b,c: 

a ;;. b & c;.() => ac ;;. be 

This hypothesis is obviously false in R: For 
instance I-D is positive, rut (I-D)~ 1-2DID2 is 
not. So let us consider the set M:n(R) of order 
preserving pseudo events: 

tt::n(R)= { x E R I a E R & a ;;. 0 = > ax .. 0 } 

It can be easily shOND. that M:n(R) = E. 
Exanple: Let us consider the t'I.O inequalities 

6 
x(I-D ) " 1 (1) 

x " --~-- (2) 
1 - D6 

( 1) neans that x cannot have t'I.O occurrences 
separated by a delay snaller than 6 (cf.3.1 ) . 
Since 1/(I-D6) is an event, we nay nultiply by it 
the t'I.O rreniJers of (1), so (1) inplles (2). But 
the converse is false, tecause I-D is not an 
event: Figure 4 pictures an event satisfying (2 ) 
rut not (1), with lF4. 

2 , 
1 __________ J 

o 8 12 t 

Figure 4 

In this section, we shall illustrate the use 
of the calculus on pseudo events on tlNO sirrple 
problems. 

5.1 First ExaDple 

A system receives two strictly periodic 
sequences of input requests. The former sequence 
starts from the instant 0, with a 2 seconds 
period, and the later one starts fran the instant 
I, with a 4 seconds period. The system is nade of 
n identical processors, eaCh of WhiCh takes 7 
seconds for processing a req:uest telonging to the 
former sequence, and 5 seconds for processing a 

155 

Figure 5 

request from the later ooe. This system nay te 
represented by the tined Petri net of Figure 5. 

The question is: What is the miniITUm IlUIlber 
of processors needed so as to take into account 
every request as soon as it happens. 

In our nodel, this problem nay te stated as 
follows: Let a, e te the events respectively asso
ciated with input arrivals from eaCh sequence. Let 
c, d. respectively represent the event "an input 
fran the former (resp. later) sequence is taken 
into account by serre processor", and e, f respec
tively represent the event "a processor ends 
processing an input fran the fomer (resp. later) 
sequence". Then: 

· The specification of input sequences nay te 
written: 

a= rla + 1 and 0= D4e + D (1) 

Since a request cannot te taken into account 
tefore its arrival, we have: 

(2 ) 

· The processing tirres of requests are specified 
as follCMS: 

(3 ) 

• As a request nay only te taken into account when 
there exists an idle processor, we get: 

(4 ) 

Finally, the immediate handling requirerrent 
provides: 

c=aandd.=e 

Now, ( 1) reduces to 

1 
a = 1=-02 and 

(5) 

A D 
b=---

1 - oi 
So getting rid of any event variable, the problem 



nay be restated as follows: 

"Find the least integer n, suCh that 
1 - D7 D _ D6 
----- + ----- .. n " 
1 - if 1 - D4 

or ''What is the naxinum value of the counter of 
the pseudo event 

1 + D + if - D6 _ D7 _ D9 
x = " ---------~-=-~4---------

Now, we can perform the division in x, until 
getting: 

x = 1 + D + D2 + D4 + D5 _ D7 !_:.E_ 
1 - D4 

-D 7 (I-D) / (1_D4 ) is a periodic pseudo event, the 
counter of Which can easily be shown to have the 
naxinum value O. Thus, the maxinum value of the 
counter of x is the one of 1+I>+lJ2-+l:fofD5 , Which is 
5 (see figure 6). So n=5 is the solution. 

J1x (t) 

5 
4 

3 

2 

123456789101112 

Figure 6 

5.2 SecaId ExaDple 

t 

Let us consider b.'o processes PI and l'2 ' 
sharing an exclusive resource. EaCh process p. 
cyclically asks for the resource, uses it during 1i. 
delay ~, then releases the resource and works 
during a delay l'Ii' (Oi, I'Ip 0) , after What it 
canes back asking for the resource. This system is 
represented by the net of Figure 7. 

Na.T assURe that the resource is very expen
sive and is required to be pernanently used. The 
problem is: What conditicn Il1.lst satisfy the delays 
01 ' I'll ' ~ , 0. ' to aChieve this requirenent? 

With the notations of the net, the problem 
nay be stated as follows: Find a necessary and 
sufficient condition en the delays 0i' l'Ii so that 

Figure 7 

156 

the following system 8 admits a solution 
(el,e2) in ExE: 

8 { 
ei(l - DOi+l'li) .. 1 , i=1,2 

el(l - DOl) + €2(1 - D02) = 1 

Now, since e1(1-D01) + e2(1-D02) = 1 WhiCh 

is an event, then D01e1 + D~€2 Il1.lst be a subse

quence of e1 + ~. On the other hand, since 

I'll> 0 and e1 (I-DOl +1'11) .. 1, D01e1 has no sill1.llta

neous occurrences with e1' for one can easily show 

that for every integer n: 

el (n+!) > (D01el ) (n) > e1 (n) 

So D01e1 (respectively D02e2 ) nust be a sub
sequence of ~ (resp. e1 ). 

el-{)02~ and ~-D01e1 are events and their 
sum equals 1, so one of them nust be equal to 1 
and the other to O. Therefore: 

8 = 812 ~ 821 , Where 

0' 
8ij= { ei= --12&i+&2 & ej= -!1+02 & 

l-{) l-D 
DOji1-DOi+l'li) 1-DOj+l'lj". I} 
--- -0-+0--- .. 1 & ---o~~ ~ 

1-D 1 2 1-D 1 2 

So, a soluticn satisfying 8 exists if and 
only if 

WhiCh is equivalent to 

01 +1'11 .. 01 + ~ and ~+1'I2 .. °1+°2 

The final necessary and sufficient oondition is 

I'll .. 02 and 1'12 .. 01 

In section 5, we have given sare exarrples of 
the use of the forna1 calculus in proving proper
ties about behavioural specifications. Of oourse 
the pr<x>fs perforrred there nay have appeared 
rather ad hoc, and are not susceptible of systena
tization. en the other hand, it has been shown in 
§4.3, that the non rronotonicity of the product 
over pseudo events nay give rise to difficult 
problems in dealing with linear inequalities. In 
this section, we shall propose a systenatic nethod 
providing approximate results, even When such 
difficulties arise. 

Our definition of pseudo events by neans of 
fornal series of the delay operator D is very 
close to discrete transform teChniques widely used 
in the field of finite difference equations. 
Nevertheless, to our knowledge, those techniques 
never have been applied to inequalities. 



6.1 Definition: For every pseudo event 

a= ~1 ~Da(n) , let us define the function I\>a 

frc:rn lR+ to lR,. by: 

'" = ,_ ",#a a xa(n) 
"'a I\.A. l..n=1 n 

I\>a is generally a partial function, only defined 
en an interval [O,raL Where ra is the convergence 
radius of the series. 

6.2 'lheorem: If a is a positive pseudo event, 
then I\> 1.S paS1. ti ve en the interval ]0, min ( 1 , r a) ] . 
The cofiverse is not true. 

6.3 Exarrp1e of applicatien: Let us cone back 
to exanple 5.2. We want the system S to have a 
solution, Where 

Now this system admits a solutien e1 only if 
there exists a real function I\> (=l\>e1) such that, 
for every x in [0,1[: 

I I\>(x) (I-x "'1 +01) .. 1 

l x~i!:!~ .. I\>(x) i!:!~~li1-!~~~1 
1-x~ 1-x02 

whid!. is equivalent to: 
\/x € [0, 1[, ~ l::Q '" +0 

F(x)= ! __ i!:! __ li!:!_~ __ :L .. 1 
(1_x01) (1_x~+t.2) 

In the neighbourhood of x=1, F(x) 

So a necessary condi tien for the 
a solution is: 

"'1~ .. 01~ 

~ ~~~1+"'1~ 
°1 (~+"'2) 

system S to have 

It is exactly the result provided by the 
nethod of [12] to find peI1tBIlent behaviours of 
tined Petri nets. Notice that it is enly a neces
sary condition, since the n.s.c. found in 5.2 was: 

All the non real tine, and lTOSt of the real 
tirre digital systerrs make use of a discrete notien 
of tine. This notivates the investigatien of 
particular properties of R(1l) whid!. is done in 
this section. 

7.1 Discrete Derivatives 

157 

7. 1. 1 Definition: If a R(7lo), let us call the 
derivative of a the pseudo event a(l-D). 

This denomination is noti vated by the follo
wing - obvious, rut very useful - proposition, 
which corresponds to the property of real 
functions, that a functien is increasing if and 
enly if its derivative is positive: 

7.1.2 Proposition: A necessary and sufficient 
condi t1.on for a pseudO event a in R(7lo) to be an 
event, is that its derivative is a positive pseudo 
event. 

Exanple: Let us COI'!e back to the exanple 
given in 3.3. As announced there, we are new able 
to express the candition en C for D3c + DC - c + D 
to be an event, which is: 

D(l-D) ) c(1-D-D3)(1-D) 

7.2 Linear Inequalities and Fixed lbints 

Notations: For each a, b in R(7lo), let us 
define: 

[a) = {X€ R(7lo) I a .. x } 
• (b] = {uR(7lo) I x .. b} 
• [a,b] = [a) n (b] 

7.2.1 Proposition: For each a, b in R(7lo), [a) 
(respect1.vely (hII, [a,b]) is a conplete inf-closed 
semi lattice (resp. sup-closed semilattice, 
lattice), i.e. every subset of [a) (resp. (b], 
[a,b]) has a greatest lower bound (resp. a least 
upper bound, a least upper bound and a greatest 
lower bound). 

Notice that R(lR) does not satisfy this 
property: For instance, the sequence: 

2n-2 2n-1 
( Xn= nzn=I_ D ""'2'n- ,n E JIst) 

is included in [ 0, 1-D ], rut has no least 
upper bound in R(lR). 

7.2.2 Proposition: Let us recall that a 
function f frc:rn R to R is said to be 
latticecontinuous, if and only if, for every 
subset X of R admitting a least upper bound 
X, (resp. a greatest lower bound ! ) the 
set { f (x) x X} admits a least upper 
bound y such that Y= f(i) (resp. a greatest lower 
bound 'i. sud!. that y;= f(!) . 

Then, for every '" in '1l' and every pair (f, g) 
of lattice continuous functions, the functions 

Ax.D"'x, Ax.f(x)+g(x), Ax.inf(f(x),g(x», 
Ax.sup(f(x),g(x» are lattice continuous. 

7.2.3 Applicatien:Let us cansider a system of 
linear inequalities in R(7lo), of the following 
form: 

S = { x(l-e.) .. b., i=1..n } 
1. 1. 

where all the ei are events such that ei (1 » O. 

Then the set P of solutions of S is the set 



of pre-fixed points of the function f? 
,- . nf (b +e x) , which is lattice <XlQj:;inu~ •• 1 i=I •• n i i 
ous. 

On the other hand, fran 4.2.2 and 4.3.2, we 
have: 

x(I-e.) .;; b. =~ x .;; b. /(I-e~ ) 
1 1 1 ~ 

So P is included in $] , with 
!3= infi=l. .n(bi/(I-ei» • Since(13lI is a sup-closed 
semilattice, if P is rot EStpty, it admits a least 
upper bound i'i . By Tarski' s fixed. point theorem, -
i'i is the greatelllt fixedpoint of fs' FurthenIOre, 
the sequence (~(~) I ielN) is included in the 
conplete lattice [ i'i, ~], and by Kleene' s fixed 
point theorem, it CDlvergeS towards ~ • Note that 
P is generally only included in ~]. '.Ole point is 
that by this process, we can add to S a new 
inequality, which is inplied by S and nay be satu
rated, since 13 E P • 

• e:us CDlSider the following system of 
inequalities: 

x 1 

{ 1~ .;; 1-~4 
x .;; 1 - 1+D 

Neither of the t\\O inequalities nay be satu
rated by x without violating the other. But the 
system reduces to: 

X = ....!.. , x.;; f(X) 
I-D 

1 D4 
with f= ~. inf(-_3 ' 1 - - + DX) 

I-IT l+D 
Using the above rotations, we get: 

4 
Il'" inf(2.--, ...!.. _ ~)= _I_ 

I-If I-D I-If I-If 
let us oarpute the greatest fixed point ~ of f, 
smaller than ~. We get: 

i30 = fO(~) = ~ = 1/(1-D3 ) 

~1 = fl(~) 
= inf(I/(1-D3 ), I-D4 /(I+D)+D/(1-D3 » 
= 1 + (D3 .fD7)/(1-D6 ) (see Figure 8) 

~ = ?(~) 
= inf(1/(1-D3 ), I-D4 /(1+D) + D + (D4 iD8 )/(1-D6» 

~1 

As a last illustration of the descriptive 

o 1 2 3 4 5 6 7 8 9 10 11 12 t 

Figure 8 

pc:Mer of oor calculus, let us consider the des
criptim of a task that needs a delay l!. e IN, rut 
nay be interrupted on every integer instant. The 
task is assumad to be ncn reentrent. 

Figure 9 

~ling this task leads to a very conplex 
timed Petri net (Figure 9). In this net, the tran
sition a represents the begirming of the task. 
When the token reaches a place J., the task Ilily be 
either iJmediately interrupted 1¥ the firing of 
c., then entering the interrupted state Ii until 
~cti vated by the firing of d.;, else CDlt1nuated 
for ale unit of tine in Wi before becaning again 
interruptible. b (=t> ) represents the end of the 
task. l!. 

~ition: Let ~,D,a,a be the four events 
respeCtiVe y representing the begirming, the end, 
the interruption and the reactivatioo of the task. 
Then, given ~,a,a, the event e is uniquely deter
mined by the folo.ring relation: 

~+d-~-b A o .;; ------ - ISb .;; l!. 
1 - D 

The proof is rather tedious [5J, rut conple
tely forIlill, and the result proved is rot trivial 
and Ilily be used to deal with systems with inter
ruptible tasks in a very sinpler way than by means 
of timed Petri nets. 

This paper bas presented a nodel for real 
tine and parallel systems, and a set of results 
allowing, to sate extend, the transforIliltion and 
analysis of the descriptioo of these systems in 
the nodel. '!his \IIOrk nust be extended particularly 
in two directions: 

158 



First, the power of the calculus nust be 
increased. We have shown that a great deal of 
problems involve investigations on systems of 
linear inequalities. For instance, let us consider 
two COllIlllIlucating asynchronous processes like in 
CCS [7]. Assune each process nay be described by a 
system of linear inequalities over its external 
events. Then the resulting process will be descri
bed by the conjunction of the two systems, Where 
the interprocesses oormunication events have been 
equalized and eliminated. So we nust be able to 
eliminate a variable from a system of linear ine
qualities without l<x>sing any infoIllBtion about 
the remaining variables. Furtherrrore, rrany 
problems, and particularly scheduling problerrs, 
nay be expressed by linear optimization problems 
over (pseudo) events. But the partiel nature of 
the ordering relationship gives raise to a lot of 
difficult questions in applying linear programming 
techniques. 

Another future extension concerns nunerical 
systems. One way is to cont>ine the results obtai
ned by cur calculus with classical techniques of 
program analysis. Another possibility is to extend 
the nodel to deal with variables. '!his was <hle in 
[4] for specification purposes, but the extension 
of the calculus to such a widened nodel is far to 
be obvious. 

In spite of these questions, the nodel 
presented here seems to us a powerful tcol to des
cribe and analyse the behaviour of parallel and 
real tine systems, and a unifying franework for a 
lot of problerrs in this field. Of course this 
approach is not considered as concurrent to the 
classical state-transition ones, but is expected 
to lead to catplerrentary results. 

[1] C.Andre, F.Boeri, "I'he behaviour equivalence 

and its applications in Petri nets analysis". 

Journees d' etude AFC!En' , schemas de controle 

des systenes infoIllBtiques. Paris (Septenber 

1979). 

[2] E.A.Ashcroft, W.W.Wadge, ''llJCID: A non proce

dural language with iteration". CACM, vol. 20, 

n07 (July 1977). 

[3] P.Caspi, N.Halbwachs, M.Moa.lla, "Approche 

CCIl{lOrterrentale pour 1a specification des 

159 

systenes terrps reel". Journee d' etude AFC!En', 

specification. Toulouse (Septenber 1900). 

[4] P .caspi, N. Halbwachs, An approach to real 

tine systems nodeling. R.R.no253, IM1V3 lab0-

ratory, Grenoble (June 1981). 

[5] P. Caspi, N. Halbwachs, Algebra of events: A 

nodel for parallel and real tine systems. 

R.R.no285, IM1V3 laboratory (January 1982). 

[6] L. Lanport, "Tine clocks, and the ordering of 

events in a distributed system" • CACM, 

vol.21, n07 (July 1978). 

[7] R.Milner, A calculus of oormunicating 

systems. Lecture notes in ClOI'lpUter science, 

n092. Springer Verlag (1900). 

[8] R.Milner, "On relating synchrony and asyn

chrony" , CSR-75-oo, Edint>urgh University 

(November 1900). 

[9] J.L.Peterson, "Petri nets", Aa1 Corrputing 

Surveys, vol. 9, n03 (Septenber 1977). 

[10] D.P.Reed, R.K.Kanodia, "Synchronization with 

eventCOlIDts and sequencers" , CACM, vol.22 , 

n02 (February 1979). 

[ll] P.Robert, J.P.Verjus, ''Towards autcnonnus 

description of synchronization nodules" • 

Proc. IFIP Congress, Toronto (1977). 

[12] J.Sifakis, "Use of Petri nets for perfornance 

evaluation" • Measuring ,nodeling and evalua

ting carputer systems. North Holland Pub. Co. 

(1977) • 

[13] J.Sifakis, Le controle des systenes asynchro

nes: Con~s, proprietes, analyse statique. 

Thesis, Grenoble University (June 1979). 

[14] U. Zinernann, Linear and cont>inatorial optimi

zation in ordered algebraic structures. 

Annals of discrete nathematics, nOlO, North 

Holland Pub. Co. (1981). 



RESOURCE EXPRESSIONS FOR APPIJCATIVE LANGUAGES 

Bharrldwt1j Jayaraman 
Department of Computer Science 

University of North Carolina 
Chapel Hill, NC 87514 

Abstract -- A high-level approach to resource 
management in the framework of an applicative 
language is presented. A resource is defined as a 
linguistic construct that may be used either to 
exercise control over the concurrent evaluation of 
functions, or to serve as an interface to files, 
databases, etc. The specification of this control is 
achieved by resource expressions. Resource 
expressions are closely related to path expressions in 
their basic approach to specification of constraints, 
but differ in their semantics and implementation. The 
semantics of resource expressions is based on the 
concept of execution graphs and residues, and an 
implementation has been constructed using a set of 
queueing primitives for a demand-driven execution 
model. 

1. INTRODUCTION 
The results presented here are motivated by a 

desire to develop resource management primitives 
which mesh well with an applicative programming 
language. In retrospect, the language constructs to be 
described also work well for ordinary languages, but 
there are other options for those languages which are 
not attractive for applicative fanguages. 

The major advantage of an applicative language for 
distributed systems is that no special care need be 
taken in exploiting available concurrency; the results 
of a program are guaranteed to be well-defined, 
independent of system timings. However, the concept 
of "resource management" for such a language may 
still be relevant, on two grounds: 

1. It may be necessary to control the amount of 
concurrency which would occur naturally within 
the execution of a program, as concurrent 
evaluation of functions require additional 
resources (e.g. memory) to support. 

2. It may be desirable to augment an applicative 
language with constructs to enable efficient 
interfacing with files and databases, i.e., 
structures that may change because of side
effects~ Techniques are then needed to 
encapSUlate such side-effects. ~nq mnke them 
interface cleanly with "pure" applicative code. 

After some experimentation with various 
encapsulation methods for resource control 
(resembling monitors, serializer'l, etc. [3, 13, 14]), it 

,was decided that such methods do not fit well within 
the framework of applicative languages, as they require 
the introduction of operational notions such as queues, 
messages, etc., and also do not lend themselves to a 
convenient denotational semantics. On the other hand, 
expression-based languages, such as path-expressions 
and their variants [1, 6, 7, 12] are attractive for three 
reasons: 

This material is based upon work supported by grant 
MCS BI-06177 from the National Science Foundation. 

0190-3918/82/0000/0160$00.75 @ 1982 IEEE 160 

Robert M. Keller 
Department of Computer Science 

University of Utah 
Salt Lake Oity, Utah 84118 

1. They may be composed from primitive constructs 
similar to the way functional expressions are 
composed, and hence are compatible with the 
applicative style of programming. 

2. They possess "bracketing" qualities similar to 
function evaluation, i.e., it is not necessary for the 
programmer to indicate explicitly the start and 
stop of an action. Rather, these events are 
contained in the notion of a functional expression 
being evaluated as a unit. 

3. They have been derived from the notion of regular 
expressions [21] which can be considered as a 
denotational description of finite automata, 
suggesting that their extensions to resource 
control (which require transcending the finite
state languages) might also be amenable to a 
denotational semantics. 

We describe here an expression-based language 
extension called resource expressions. Its uses, 
semantics, and implementation are the subjects of this 
paper. Resource expressions are closely related to 
path expressions in their basic approach to 
specification of constraints, but differ in their 
semantics and implementation. 

There have been some attempts to introduce the 
concept of a resource in an applicative framework: 
Arvind et. al. [2] present dataflow monitors as a means 
for defining a resource and its scheduling, and Gurd 
and Catto [11] present some implementation ideas for 
dataflow monitors. In comparison, resource 
expressions are a higher level means of specifying 
resource control, sinc e certain types of scheduling 
disciplines are expressed more succintly in resource 
expressions. However, the expressiveness of resource 
expressions in their current form is more limited 
compared to dataflow monitors. 

Friedman and Wise [10] introduce an 
indeterminate operator frons for constructing a 
multiset, the order of whose elements is determined 
only when the multiset is accessed. Although frons 
may be used to express solutions to a variety of 
problems requiring the use of'indeterminate merging, 
the issues of resource control are not handled at the 
level at which frons is used. 

Another type of approach, the use of pseudo
functions [16], is attractive, but is less structured than 
the one presented here. However, pseudo-function 
constructs are employed in the implementation of our 
current model. 

2. LINKING RESOURCES TO FUNCTIONAL EXPRESSIONS 

Programs in applicative languages are presented 
as expressions denoting the application of functions to 
their arguments. We refer to these as functional 
expressions to distinguish them from resource 
expressions, which form the main topic of this paper. 

Suppose that we desired to exert greater control 
over the evaluation of various functions. We could use 



some device which explicitly sequences those functions 
[14, 17]. However, if the functions are evaluated in 
unpredictable order or are embedded within very large 
expressions, it is then desirable not to impose a rigid 
sequencing, but rather to impose a system of 
constraints on functions, e.g. that certain 
subexpressions do not get evaluated concurrently, etc. 
This has the effect of giving greater freedom on the 
order of expression evaluation, in the case where it is 
difficult to determine a priori orderings giving the right 
amount of concurrency. These constraints are 
expressed herein as resource expressions, and we 
think of them as providing a kind of "synchronizing 
overlay" on a functional expression. 

To indicate the invocation of a function f which is 
controlled by a resource, we use res('f, args), in place 
of the usual f(args). Here res is a pseudo-functional 
object which represents an instance of the resource, 
and is created by evaluating a pseudo-function 
specifying the actual resource. Since the function 
being evaluated is encapsulated inside the resource, 
the quoted f is used to avoid lexical scoping violations. 
A variable denoting the quoted f could be used instead. 
TJ::o.e definition of the actual resource takes the form 

RESOURCE ... resource name ... parameters ... 
CONSTRAINT 

... resource expression ... 
WHERE 

ACCESS ... function definition ... 
(with optional IMPORTS) 

ACCESS ... function definition ... 
(with optional IMPORTS) 

END 

where ACCESS is used to identify functions that may 
be invoked from outside the resource. The current 
version of the language extensions also allows nested 
resource definitions, but we will not be concerned with 
them in this paper. 

Once a resource is instantiated, it may then be 
accessed by so-called tokens. A token is a request (or 
demand) to evaluate some function controlled by the 
resource, along with the actual parameters, it' any, 
needed for this evaluation. The term token class will 
be used to refer to the function that is controlled by 
the resource. 

We now sketch two examples illustrating different 
uses of resource expressions: the first illustrates how 
to interface with a database, and the second, how to 
control the amount of concurrency arising in 
concurrent evaluation of functions. 

A skeletal example of a resource manager that 
encapSUlates a shared database accessed by "read" 
and "write" operations is 

RESOURCE database_manager(database) 
CONSTRAINT 

(write*+[read])11 
WHERE 

ACCESS write( ... ) IMPORTS database 
ACCESS read( ... ) IMPORTS database 

END 
The resource expression here enforces the well-known 
readers-and-writers constraint [8]. The subexpression 
write· allows a sequence of arbitrarily many write's and 
the sUbexpression [read] allows in parallel arbitrarily 
many read's. Since "+" denotes nondeterministic 

161 

selection and "/1" denotes non-terminating sequential 
repetition, it follows that read's and write's always 
exclude one another. If db 1 and db2 are two distinct 
databases, then identical but independent managers 
for each could be created by equations 

LET res1 = database_manager(dbl), 
res2 = database_manager(db2) 

The two databases are synchronized independently 
using functional expressions such as resl('read), 
res2('write, val), etc. 

As a second example, consider the concurrent 
computation evoked by the following function 
definitions: 

FUNCTION main(x) 
RESULT n~ x=o THEN 0 ELSE 

f(x)"g(x)/h(x) + main(x-1) 
WHERE FUNCTION f(x) .. . 

l~UNCTION g(x) .. . 
FUNCTION hex) .. . 

END 
Suppose we wished to constrain the evaluation of f and 
g (but not h) so that only one of them is evaluated at 
any given time; in other words, f and g must be 
executed in mutual exclusion of one another. We may 
express this constraint as follows: 

FUNCTION main(x) 
LET res=mutexO 
RESULT IF x=O THEN 0 ELSE 

res('f, x)*res('g,x)/h(x) 
+ main(x-l) 

WHERE RESOURCE mutexO 
CONSTRAINT (f+g)1I 
WHERE ACCESS f(x) .. . 

ACCESS g(x) .. . 
END 
FUNCTION hex) .. , 

END 

If we wished to constrain h also, and further 
wished to allow arbitrarily many h's to follow f or g, we 
could use the expression «f+g).h· )#, where ..... denotes 
sequencing. (The definition of h would now also have to 
be encapsulated inside mutex.) 

If, in addition to the constraints of the preceding 
example, we were willing to allow arbitrarily many h's 
to proceed concurrently with themselves, we would use 
({f+g).[h])lI. 

To summarize the available constructs, we present the 
syntax of resource expressions accompanied by a brief 
informal semantics. Each individual token class is a 
resource expression. Furthermore, if Rand S are 
resource expressions, then so are 

R+S denoting the non-deterministic choice of either 
R or S as alternatives; the alternative chosen 
must be "satisfied" by the availability of tokens. 

R.S denoting the sequencing of R followed by S only 
when there are sufficient tokens to satisfy both 
Rand S. 

R· denoting a non-deterministic choice of an 
arbitrary number of sequential repetitions of R; 
the number of repetitions depends on the 
number of available tokens. 



[R] 

!Rj 

similar RO, except no non-deterministic 
choice is involved; # does not terminate. 

similar to RO, except that consecutive 
repetitions may be done in parallel. 

similar to R*, except that consecutive 
repetitions may be done in parallel. 

It should be mentioned that the number Of 
repetitions in the above repetitive expressions, i.e. RO, 
RO, !Rj, and [R], includes zero. Hence the number of 
tokens needed to satisfy such expressions is zero. 
Also, the meaning of our sequencing operator "." is 
different from the sequencing operator ";" used in path 
expressions. We elaborate on this distinction in the 
next section. 

3. A BASIS FOR FORMAL SEMANTICS 

Our motivation for formalizing the meaning of 
resource expressions is to provide a precise 
specification not only for the user, but also the 
implementor. Most attempts at giving a semantics for 
expression-based languages have been informal [6, 7], 
operational [1, 19], or formal-language based [4, 23, 
20]. Of these the formal-language semantics is of 
interest here, since it comes closest to an acceptable 
denotational definition for resource expressions. 

Semantics based on formal languages define the 
meaning of an expression to be a set of allowable 
execution sequences of tokens, derived solely from the 
expression. In general, one considers a set of partial 
orders on tokens, rather than sequences, to account 
for concurrent execution. However, for sake of 
simplicity of presentation, we will use sequences 
instead of partial orders in the subsequent discussions 
in this section. 

Such a semantics implicitly assumes that one is 
only interested in "consistent" behaviors, Le. the 
sequence of all tokens allowed to execute must be a 
prefix of some member of the above set. However, the 
notion of "completeness" is stronger, i.e., any sequence 
of tokens allowed to execute must be exactly equal to 
some member of the above set. We will refer to such 
such a sequence as a complete sequence. 

The notions of consistency and completeness are 
expressed by the following two sernantic models: 

1. Consistency can be realized by an exped:i.ent 
approach, which chooses any alternative of 
the ,elxpression which is partially satisfied by 
the available tokens. 

2. Completeness, on the other hand, can only be 
realized by a prudent approach, which 
chooses an alternative of the expression that 
is completely satisfied by the available 
tokens. 

As an example, consider the expression (a.b + 
c.a). Assuming that an "a" and a "c" token are 
available, an expedient approach may choose the sub
expression "a.b", even though no "b" token had arrived. 
The "c" token will then not. be,<ecuted. A prudent 
approach would prefer the sub-expression i'c.a", since 
it will permit both "a" and "c" to be executed. With the 
expedient approach, it is possible to get blocked after 
"a", since a "b" token may never arrive. 

162 

Thus, although the expedient approach is more 
efficient. since it provides faster response to certain 
tokens, it. may fail to execute complete sequences, 
even when there are sufficient tokens. A prudent 
approach, on the other hand. generally would take 
longer to decide what to do with a given collection of 
tokens, but offers the advantage of always being able to 
ex.ecute complete sequences. 

We use a prudent approach for resource 
expressions consisting of a single sequence, e.g. a.b.a.c 
would require two a's, one b, and one c token to be 
present before it is chosen as an alternative. To 
provide the efficiency of the expedient approach, we 
have introduced the construct "/" for commit which 
can be used in place of a "." in a sequence. The 
meaning here is that only enough tokens to enable 
execution of the prefix up to the "/" are required for 
committing to the entire sequence. Thus, in a.b/a.c 
one "a" and one "b" would suffice, and the subsequent 
"a" and "c" would be processed when they arrive, but 
would not hold up the first "a" and "b" for their arrival. 
In this way we give the user the capability of choosing 
"shades" of expedience and prudence. 

Our semantics will be as if there were an implicit 
commit after the body of each of the repetitive 
expessions, as well as one at the end of a top-level 
expression. 

It should be noted that alb is not equivalent to 
a+a.b, and hence the commit construct can't be 
simulated using simply sequence and alternation. To 
see this, compare the behavior of these two 
expressions on the input tokens !a,b!. The expression 
alb will allow both a and b, whereas the expression 
a+a.b will allow one of two possible outcomes due to 
the non-determinism of "+": either only a, or both a 
and b. Thus their behaviors are not equivalent. 
Alternatively, compare the expressions (a+a. b)* and 
{a/b)": the former allows a sequence of only a's, 
whereas the set of sequences allowed by the laller is 
exactly the set prefixes of ababab ... 

Semantics of path expressions deflne only the 
consistency requirement, and therefore may be said to 
use the expedient approach [1. 6. 7, 12]. The commit 
construct "/" is equivalent to the "." of path 
expressions, but the effect of our sequence construct 
"." is not achievable in path expressions. However, by 
adding the device of "predicates" [1], it appears that 
the effect could be achieved. This device could also be 
used to overcome some limitations of expression-based 
control described in (1;)], viz. the inability to specify 
constraints based on the state of the resource, 
parameters of tokens, etc. The proper integration of 
such devices into expression-based control for 
applicative languages is still a subject of our 
investigation. 

4. FORMAL SEMANTICS 

To provide a formal semantics which reflects 
completeness as well as consistency, we must take into 
account the collection of input tokens available to the 
resource expression. Since we wish to define the 
behavior of repetitive expressions inductively, we must 
not only define the allowable order of tokens; but also 
the collection of tokens remaining after each 
repetition. 



We therefore define the behavior of a resource 
expression for any bag of input tokens T as a set of 
pairs of the form <g. r>. where g is ari execution graph 
and r is a bag of residues. These pairs will henceforth 
be referred to as g-r pairs. We use a bag. rather than a 
set. since we use to represent inputs which have 
several tokens belonging to the same token class. 

An execution graph is a generalization of an 
execution sequence. and is defined by the functions 
SEQ and PAR. which have the following meanings: 

SEQ{x.y) : x is executed before y 
PAR{x.y) : x is executed concurrently with y 

where x and y represent either tokens or execution 
graphs composed of SEQ and PAR. Both x and y must 
have completed their execution in order for PAR(x.y) 
or SEQ{x.y) to complete their execution. For PAR{x.y). 
x and y need not have started execution at the same 
time. 

The residue r is the bag of tokens T minus the 
tokens used in defining the execution graph g. 

To simplify the definition of its semantics. a 
resource expression is first converted into an 
equivalent normal form. We then define the semantics 
of normalized resource expressions inductively by 
showing how the set of g-r pairs can be constructedme 
examples illustrating our construction. 

The normal form is a set of alternative prefixed
sequences. where prefixed-sequences are of the form 
XI! ... ! xm where "/" is the commit construct. and 
alternatives are specified by "+". Each Xj' except for 
XI' is a set of alternative sequences. where seqv.encBs 
are of the form YI' .... Yn. However. XI is a sequence of 
the form YI' .... Yn (with no alternatives). Finally. each 
Yj is either an atom or a repetitive expression whose 
body has been expressed in normal form. Examples of 
the normal form are shown below: 

a.b.a 
a.b/(a + b/a) 
a" .b.~cl + a/(a + b) 
~a/b.c + (a+b)* .bl 

Examples of expressions not in the normal form 
are the following: 

(a + b) . (c + d) 
(a + b) / c 
{(a+b)" r 

The normal form is derived by transforming a 
given resource expression using two sets of equalities. 
The first set is the followine;: 

P. (Q + R) := (P . Q) + (P . R) 
(P + Q) . R = (P. R) + (Q . R) 
(P + Q) / R = (P / R) + (Q / R) 

where p. Q. and R are assumed to be. arbitrary 
expressions. A mltable exception. however. 18 ~hat P / 
(Q + R) is not equal to P / Q + P / R. ~onslder. for 
example the meanings of the two expressions a/(b+c) 
and alb '+ a/c: the former expression specifies that t~e 
selection of b or c is to be made after a token for a IS 
evaluated. whereas the latter implicitly selects b .or c 
even before a is evaluated. Thus their operatlOnal 
meanings differ. 

The second set of equalities relates the repetitive 
constructs. A partial list is the following: 

163 

«R)")"=(R)" 
«R)")#=(R)# 
[[R]] = [R] 
![R]j = !Rj 

In converting a resource expression into the normal 
form. a subexpression satisfying a form given on the 
LHS of the above equalities is replaced by the 
corresponding RHS. 

We define the semantics of a normalized resource 
expression N for a bag of input tokens T by 
constructing a set L(N.T) inductively. We illustrate the 
construction for alternatives. prefixed-sequences. and 
the repetitive expressions only; a complete treatment 
may be found in [15]. 

1. For alternatives. the set of g-r pairs is the union of 
the set for each term. The union is taken to reflect 
the non-determinism of "+". 

2. For prefixed sequences. the g-r pairs for the 
sequence up to the first commit "/" are first 
constructed. For each residue r in the above set. 
the g-r pairs for the subexpression up to the 
second commit are obtained. etc. The resulting 
execution graph is obtained by sequencing (using 
SEQ) the execution graphs of each term; the 
resulting residue is that of the last term. 

3. Finally. for repetitive expressions. there are 
basically two cases: a) for """ and "[]". the g-r 
pairs will also include the pair <e.T>. where e is 
the null graph and T is the input bag of tokens. 
whereas for "H" and "U" this pair will not be 
included. b) For "*" and "H". sequences are 
constructed using SEQ. whereas for "[],, and "U" 
execution graphs are constructed using PAR. In 
all cases. the set of g-r pairs is constructed 
inductively: the residue from the first repetition 
being used as the bag of input tokens for the 
second. etc. 

We express the semantics of the above three types 
of expressions more formally as follows: 

1. Consider N = XI + X2 ... + xn. where Xi's are prefixed 
sequences. We define 
L(N. T) = L(xl' T) U L{X2. T) U ... U L( xn. T) 
to be the set of g-r pairs for N. assuming L{ Xj' T) is 
the set of g-r pairs for each Xj' 

2. Consider N = XI / x2 / ... / xn. where Xl is an 
ordinary sequence. and all other Xi are sets of 
alternative sequences. Then we define L(N. T) 
inductively as follows: Let 
L(XI!",!Xn_I.T) = !<gj.rj>!i=l.kj. and 
for i= 1.k. L(xn.rj) = ! <g~.rjj> ! j= 1.kil. 
Then we define 
L(N.T) = Uj=l.k Uj=l.kt!<SEQ(gj.gjj).rjj>!' 

3. Consider N = [x] where X is any normalized 
resource expression. Let 
L(x.T) = !<gjrj>! i= 1.kl, and 
for i = 1.k. l~t L(N. rj) = !<gjj.rjj>. j = 1.r;!. 
Then we define 
L(N. T) = Uj=l.k Uj=l.rre! <P AR(gj.gjj).rjj>! U <e. T>. 
where e represents the null graph. 

We illustrate the set of g-r pairs for some simple 
resource expressions. We use bag( ... ) to denote a bag of 
tokens; bagO is the empty bag. 



(1) N = a/{b + c) 
T = bag{a,b) 
L{N,T) = !<SEQ{a,b), bagO>1 

(2) N = alb + a/c 
T = bag(a,b) 
L(N,R) = !<SEQ{a,b), bagO> 

<a, bag(b»l 

(3) N = c.[a + b].a 
T = bag(a,a,b,c) 
L(N,R) = !<SEQ(c,a), bag{a,b», 

<SEQ(c,a,a), bag{b», 
<SEQ(c,b,a), bag(a», 
<SEQ(c,PAR(b,a),a), bagn>l 

5. IMPLEMENTATION OF RESOURCE EXPRESSIONS 

There are two important steps in the 
implementation of resource expressions: 

1. The expressions are represented in an 
intermediate form which consists of a set of 
condition-action pairs, similar to guarded 
commands [9]. (However, we are not relying on an 
existing implementation of guarded commands in 
our implementation.) 

2. The target language program for a given 
intermediate form is constructed in a modular 
form by translating conditions and actions 
separately, and then combining the resulting 
programs together. Each repetitive expression is 
translated as a single recursive procedure, and 
the top-level expression is translated as a single 
procedure, if it is not a repetitive expression. 

The next three sections describe the intermediate 
form, the target language primitives, and the 
translation respectively. 

5.1. INTERMEDIATE FORM 

The intermediate form is derived using the 
semantics of the different types of normalized 
resource expressions, viz. sequences, prefixed
sequences, alternatives, and repetitive expressions. In 
each case we determine a condition that must be 
satisfied before the corresponding action is taken. This 
condition is a conjunction of numeric thresholds for 
each token class, and indicates the minimum number 
of tokens of each class that must be present in ordel 
to take the corresponding action. The action specifies 
the actual sequence of tokens to be served. We first 
briefiy explain how the condition-action pairs for a 
normalized resource expression are derived. 

For a sequence, the condition is determined by 
considering only its atomic terms, Le. excluding all 
repetitive expressions in the sequence. Repetitive 
expressions do not participate in the construction of 
the threshold condition because they permit zero 
repetitions of the body to occur, and therefore have a 
trivially satisfiable threshold condition. However, when 
a repetitive expression is encountered during the 
action, the condition corresponding to the body of the 
repetitive expression will be tested to see if any further 
repetitions are possible. Thus the actual number of 
repetitions that occur depend on the number of 
available tokens at this time. 

164 

For a prefixed-sequence, the condition is that 
determined by the (ordinary) sequence up to the first 
commit construct in the prefixed-sequence. The 
condition corresponding to the remainder of the 
prefixed-sequence is tested only after the action 
corresponding to the initial prefix has been taken. It 
should be noted that (COMMIT .... ) may occur only as 
the last term in a sequence of length> 1. 

The intermediate form for a set of alternatives 
such as w1+W2+··· +wn is «C1al)(c2aZ)··· (cnan», 
where (CiaJ is the intermediate form of Wi. 

The intermediate form of repetitive expression r is 
of the form 

(REPEAT ... ) where 
REPEAT = If r = (x)* then STAR else 

If r = (x)1I then POUND else 
If r = [x] then BRACKET else 
If r = Ix] then BRACE 

and the dots represent the intermediate form x. 

For example, the intermediate form of la.b.a/b + 
a.[a+c]'cl may be derived from the above rules to yield 

(BRACE {(cl al) (c2 a2») where 
c1 = «2 a) (1 b» 
a1 = (a b a (COMMIT «(1 b» (b»» 
c2 = «1 a) (1 c» 
a2 = (a (BRACKET «(1 a» (a» «(1 c» (c») c) 

5.2. PRIMITIVES FOR SYNCHRONIZATION 

We now turn to a brief review of the primitive 
queueing operators for synchronization described in 
[14]. The primitive operator queueO creates an empty 
queue initially. The contents of the queue may be 
modified, by a side-effect, via the operators enq and 
deq. enq( q,f) synchronizes the execution of a 
functional expression f by enqueueing a token for f in 
the queue q; the actual execution of f can be initiated 
only after the resource dequeues the token for f from 
the queue q, using deq( q). The value of enq( q,f) is the 
value computed by f; the value of deq(q) is delay(f), 
where the token for f is at the head of q. delayer) is the 
unevaluated form of f, and the evaluation may be 
explicitly forced by force( d) where d = delay{f). If we 
wish to evaluate the token immediately after 
dequeueing, we may use eval(q), which is equivalent to 
force(deq(q». Separating the dequeuing of a request 
from its evaluation facilitates the execution of several 
tokens from a single queue in parallel. 

When multiple queues are used to synchronize 
several different classes of tokens, it is often necessary 
to test for the presence of tokens in the different 
queues. The operator waitq(q,n) tests and waits until 
q has at least n tokens in it, and only then returns a 
value, say true, as its result. In contrast to waitq, the 
operator nonempty(q,n) returns true if q has at least n 
tokens in it, and false otherwise; thus no waiting is 
involved. 

The last queueing primitive to be used here is 
reserveq(q,n) which reserves the first n tokens of q and 
makes them "invisible" during any subsequent testing 
of q -- either by waitq or nonempty. The motivation for 
this operator will be clear when the translation of 
resource expressions is considered. 



We summarize all the queueing operators below: 

queueO 

enq(q,f) 

deq(q) 

force(d) 

evalq(q) 

waitq(q,n) 

creates an empty queue. 

synchronizes the evaluation of fusing q 
by enqueueing a token for f in q. 

returns an unevaluated form, delay(f), 
where the token for f was at the head 
of q. 

evaluates f, where d = delay(f). 

dequeues and evaluates f, where the 
token for f is at the head of q. 

tests and waits until q has at least 
n tokens. 

nonempty(q,n) returns a boolean value indicating 
whether or not q has at least n tokens. 

reserveq(q,n) reserves the first n tokens of q. 

In order to arbitrate among several queues and 
exercise control over the order in which tokens from 
different queues are selected and evaluated, we 
introduce the following operators: 
seq(aj, ... ,an) evaluates the expressions aj, ... ,~ in 

sequence; the result returned is an' 
spar(aj .... ,an) evaluates the expressions aj, ... ,an in 

parallel; the result is an' but is 
returned after all aj, ... ,an have 
been evaluated. 

arbit(a j,a2) evaluates a l and a2 in parallel; the result 
is false if a2 is evaluated before aj, 
otherwise true. 

5.3. TRANSLATION 
The basic approach to the translation is to allocate 

one queue for each distinct token class. Given an 
intermediate form «cjaj) (C2a2) ... (cn~»' we test the 
conditions Cj, ... ,cn in parallel and select the one that is 
detected to be true earliest. This parallel testing and 
selection is accomplished by means of a chain of 
arbit's as follows: 

LET tj = arbit(cj,t2) 
t2 = arbit( C2' t 3) 

t n- j = arbit(cn_l,cn) 
RESULT 

IF tj THEN aj ELSE 
IF t2 THEN a2 ELSE 

IF t n- j THEN an-l ELSE an 

where ci and ai are to be replaced by their translated 
programs respectively. Note that ci is of the form 
«nj 0Pl) (n2 0P2) ... (nk 0Pk»' Hence if we allocate ql to 
token class oPl' ~ to oP2' ... , ~ to 0Pn ' we may 
translate ci as spar(waitq{ql,nj), waitq(~,n2)"'" 
waitq(~,nk»' which tests and waits until the threshold 
condition ci becomes true. Note: The abbreviations 
t l , ... ,tn- j are treated as common sub expressions in 
FGL, and hence are evaluated only once. Also, the order 
in which the abbreviations are defined is immaterial. 

The general form of an action ai is (Xj X2 ... Xj) 
where each Xk can only be an atomic term or a 

165 

repetitive expression; however, the last term, Xj' can 
also be a prefixed sequence. For sake of uniformity we 
will assume that the result produced by ai is in the 
unevaluated form and must be forced expJ1citly, 
similar to that for any atomic term. Thus we have the 
following general form for the translated program for 

LET d j = trans(xj) 
d 2 = trans(x2) 

d j = trans(x) 
RESULT 

seq( d j , •.• , d j , 

delay(seq(force( d j ), ... force (dj») 
) 

where trans(x) = 
If atom(x) then deq(queue.lor_x) else 
If Xj = (COMMIT ... ) then commit(queues.lor_xj) else 
If x = (STAR ... ) then stare queues.lor...JC) else 
If x = (BRACE ... ) then brace(queues.lor_x) else 

etc. 
where commit, star, and brace are procedures for 
(COMMIT ",), (STAR ",), and (BRACE ... ) respectively. 

The difference between # and" (and also between 
Hand []) from the standpoint of their implementation 
is that the recursion in the former case has no 
termination condition, whereas for the latter the 
recursion terminates when none of the threshold 
conditions of its body is satisfied by the available 
tokens. Thus the recursion expands, in the former 
case, only as much as there are tokens in the input to 
satisfy some threshold condition of the body. 

When an expression occurs as the last term in an 
action, say Xj' the evaluation of Xj must take place after 
Xj-j, but the threshold condition for Xj may be tested 
concurrently with evaluation of x j,x2"",Xj_j' Assuming 
that the translated program for Xj is represented by 
commit(queue.lor_xj), we may express the translated 
program for (x1x2' .. Xj-l (COMMIT ... » by modifying 
the LET and RESULT expression above as follows: 

LET com = commit(queues.lor...JCj) 
RESULT seq(dj, ... .dj_j' 

spar(seq(force( d j), ... , force( dj-1), 
force(com», 

com» 

The difference between the translation of .. and [] 
is that the evaluation of successive repetitions will be 
sequential for" and concurrent for []. In both cases, 
however, the testing of the threshold condition of the 
body and the construction of the unevaluated form will 
be similar, i.e. the threshold condition of successive 
repetitions of a [] will be tested sequentially. Once a 
threshold condition among the set of alternatives is 
selected, it is necessary to reserve as many tokens as 
indicated in the threshold condition. Such 
reservations ensure that these tokens are not re-used 
during the testing of the threshold condition inside the 
body of the repetitive expression. The number of 
repetitions in both cases will depend on the number of 
available tokens, but is in general indeterminate. 
Furthermore, the actual set of tokens used in 
constructing the unevaluated form is dequeued before 
any evaluation is initiated. 

We illustrate some of the important steps of the 
translation using the expression !a.b.a/b + a.[a+c].c!. 
The intermediate form is 



(BRACE 
«(2 a) (1 b)} 

(a b a {COMMIT «{1 b)} {b}}} }} 
(((1 a) (1 c)} 

{a (BRACKET «(1 a)} (a}) «(1 c)} (c)}} c}} 
) 

The translated program is 

PROCEDURE brace(qa.qb,qc} 
LET t1 = arbit(spar(waitq(qa.2}. waitq(qb.1». 

spar(waitq(qa.1). waitq{ qc.1)}} 
d1 = deq(qa) d2 = deq(qb) 
d3 = deq(qa) d4 = deq(qc) 
com = deq(qb} 
brc = brace(qa.qb.qc} 
brck = bracket{qa.qc) 

RESULT seq( IF t1 THEN seq(d1.d2.d3. 
delay(spar(seq(force( d1}. force( d2). 

force(d3}. force(com}}. 
com») 

brc} 
WHERE 

ELSE seq(reserveq(qa.l}. 
reserveq( qc.1}. 
seq(d1.brck.d4. 

delay( seq(force( d 1) ,forc e(brc), 
force(d4})}». 

PROCEDURE bracket(qa.qc} 
LET t1 = or(n1.n2} 

d1 = deq( qa) nl = nonempty( qa, 1) 
d2 = deq(qc) n2 = nonempty(qc,1) 
brck = bracket{qa.qc) 

RESULT IF t1 THEN 
IF nl THEN seq(d'1.brck. 

delay(seq{force( d1}, 
force(brc»» 

ELSE seq(d2,brck, 
delay{seq(force(d2). 

force{brc») ) 
ELSE nil 

In order to initiate the evaluation of the entire 
program. it is necessary to force the top-most 
expression by force(brace{ qa.qb.qc)}, 

6, SUMMARY AND CONCLUSIONS 

Resource expressions are proposed here as a 
high-level linguistic means of specifying resource 
control. These expressions are composed of primitive 
constructs for arbitration, iteration. etc., and are 
capable of specifying solutions to a variety of 
problems, Given that it may be necessary to 
coordinate concurrent computations that arise in 
functional programs and interface functional 
programs with structures that have a shared state. 
e.g. databases. we feel an expression-based language 
like resource expressions is appropriate for this 
purpose, since they are notationally compatible with 
the applicative style. and also a simple de notational 
definition for them can be constructed. 

Resource expressions are very similar to path 
eJl:pressions in their basic approach to specification. 
bv;, differ in their semantics and implementation. We 
have formalized the semantics of resource expressions 
in terms of a set of execution graph-residue pairs. by 
defining this set for any bag of input tokens. The main 
difference in our semantics is that we take into 
account the notions of consistent as well as complete 

166 

behavior of an expression. In order to provide the user 
the capability of choosing from different shades of the 
two approaches, the "/" construct has been included. 

We have presented a systematic translation of 
resource expressions in terms of the queueing 
primitives of a demand-driven execution model. In 
comparison to implementations of path expressions, 
our approach does not require restrictions, such as 
those barring repeated occurrences of an operation 
name. etc. [1. 6. 7]. The two main steps in our 
translation are the following: conversion to an 
intermediate form (condition-action pairs) based on 
the semantics of the different constructs. and 
translation of the intermediate form in terms of the 
queueing primitives. The latter translation is in turn 
separated into translating conditions and actions. and 
then combining the two translated program fragments 
together. Owing to the modularity in the translation 
process and its close bearing to the defined semantics. 
we have been able to construct a correctness proof of 
the translation for an abstract implementation [15]. 

An interesting application of demand-driven 
evaluation in this implementation is in representing 
infinite execution graphs: e.g. we translate the 
expression (a+b)# using what appears to be a 
nonterminating recursion; however. because of 
demand-driven evaluation, the recursion will expand 
out as much as is necessary to accomodate available 
tokens. Other benefits of demand-driven evaluation for 
resource control are discussed in [14]. e.g. in 
rendering simple solutions to the problem of busy
waiting. etc. 

It is possible to perform several optimizations on 
the translated program, in order to reduce their space 
and time requirements, by techniques such as: 1) 
combining deq and force into evalq, 2) minimizing the 
number of queues, 3) avoiding unnecessary 
reservations. etc. A fuller discussion of these 
optimizations and the conditions under which they are 
applicable are presented in [15]. 

[1] 

[2] 

[3] 

[4] 

[5] 

REFERENCES 

S. Andler. Predicate Path Expressions: A High
level Synchronization Mechanism. Ph.D. thesis. 
Carnegie-Mellon University, (August, 1979). 

Arvind, K.P. Gostelow, and W. Plouffe. 
"Indeterminacy, monitors, 
Operating Systems Review 
1977). pp. 159-169. 

and 
11(5). 

dataflow". 
{November, 

R.R. Atkinson and C.E. Hewitt, "Specification and 
proof techniques for Serializers". IEEE 
Transactions on Software Engineering SE-5( 1}. 
(January, 1979), pp. 10-23. 

V. Berzins and D. Kapur. Denotational and 
axiomatic definitions for Path Expressions. 
Laboratory for Computer Science. M.LT .• 
Computation Structures Group Memo 153-1. 
{November, 1977}. 

T. Bloom, "Evaluating synchronization 
mechanisms." In Proc. of the Seventh ACM 
Symposium on Operating Systems Principles. 
(1979). pp. 24-32. 



[6] RH. Campbell and A.N. Habermann. "The 
specification of process synchronization by Path 
Expressions." In Gelenbe and Kaiser (editors). 
Operating Systems. Springer. (1974). pp. 89-102. 

[7] RH. Campbell and R.B. Kolstad. A practical 
implementation of Path Expressions. University of 
Illinois at Urbana-Champaign. Technical Report TR 
UIUCDCS-R-80-1008. (June. 1980). 

[8] P.J. Courtois. R Heymans. and D.L. Parnas. 
"Concurrent control with readers and writers." 
Communi.cations of the ACM 14(10). (October. 
1971). pp. 667-668. 

[9] E.W. Dijkstra. "Guarded commands. non-
determinacy, and a calculus for the derivation of 
programs." Communications of the ACM 18(8) 
(August. 1975). pp. 453-457. 

[10] D.P. Friedman and D.S. Wise. "An Indeterminate 
Constructor for Applicative Programming." In 
Proc. Seventh Annual fu[mposium QLl Principles ill 
Programming Langu~ (1980). pp. 245-250. 

[11] J.R Gurd and A.J. Catto. "Resource Management in 
Dataflow." In Conference QLl functional 
p.L9f",La,m1!lillB. L~J.l1'SI<1<:(',l'§' and .comouter 
archjl~d.ure, (1981), pp. 77-84. 

[12] A.N. Habermann, Path ~ression§.,. Dept. of 
Computer Science, Carnegie-Mellon University. 
Technical Report. (July, 1975). 

[13] C.A.R Hoare, "Monitors: An operating system 
structuring concept." Communications of .tb~ ACM 
17(10), (October. 1974), pp. 545-557. 

[14] B. Jayaraman and RM. Keller, "Resource control in 
a demand-driven data-flow model," In Proc. 
International Conference on Para~iel Processing, 
(1980), pp. 118-127. 

167 

[15 J B. J ayaraman, Resource contrQ). in .i! demand
driven data-flow model. Univ. of Utah, Ph.D. thesis, 
(August, 1981). 

[16] RM. Keller, Denotational models for parallel 
programs with indeterminate operators. North
Holland, E.J. Neuhold (ed.). Formal Description of 
Programming Concepts. (1978), pp. 337-366. 

[17] RM. Keller and G. Lindstrom. "Applications of 
feedback in functional programming," In 
Conference on functional programming languages 
and computer architecture. (1981), pp. 123-130. 

[18] R.M. Keller, G. Lindstrom, and S.S.Patil, "A 
loosely-coupled applicative multi-processing 
system," In Proc. AFIPS. (1979), pp. 613-622. 

[19] R.M. Keller and G. Lindstrom, "Hierarchical 
analysis of a distributed evaluator," In Proc. 
International Conference on Parallel Processing, 
(1980). pp. 299-310. 

[20] T. Kimura. "An algebraic system for process 
structuring and inter-process communication," In 
ACM J:iillLhth Annual Symposium on the Theory of 
Computing. (May, 1976), pp. 92-100. 

[21] S.C. Kleene, Representation of events in nerve 
nets. Princeton University Press, (1956), pp. 3-40. 

[22] P.E. Lauer and RH. Campbell, "Formal semantics 
of a class of high-level primitives for coordinating 
concurrent processes," Acta Informatica 5: (1975), 
pp. 297-332. 

[23] W.E. Riddle. "An approach to software system 
behavior description," Computer Languages 4: 
(1979), pp. 29-47. 

[24] A. C. Shaw. "Software Specification languages 
Based on Regular Expressions," In W.E. Riddle, RE. 
Fairley (editor), Softw~ Development Tools, 
(May, 1979), pp. 148-174. 



PARALLEL IMPLEMENTATION OF FUNCTIONAL LANGUAGES 

J.R. Kennaway and M.R. Sleep 
University of East Anglia 

Norwich, NR4 7TJ, U.K. 

Abstract 

Functional programming, and its 
implementation using parallel architectures, is 
receiving increasing attention in the literature. 
Turner [4] has proposed a novel implementation 
for sequential machines using a variable-free 
form of code based on logical combinators. 

We present one translation of combinatory 
representations to process nets which allows full 
exploitation of parallelism. Our notation (LNET) 
is an exchange-view, behaviour passing variant of 
Milner's CCS. 

Introduction 

Programming even a sequential machine in a 
provably correct and maintainable fashion 
presents a complex and challenging intellectual 
task. Managing this complexity in the face of 
parallel architectures presents an immense 
challenge. and approaches which reduce this 
compiexity are currently receiving widespread 
attention in the literature. 

Functional languages reduce the complexity 
of the programming task by prohibiting 
destructive assignment: a functional program may 
be viewed as a set of mathematical equations 
which specify the solution. This is good from the 
software engineering viewpoint. but makes life 
hard for the implementer who now has to work out 
when it is safe to forget values, resorting to 
garbage collection in extremis. 

On the other hand. because there are no 
side-effects in a functional language, expressions 
may always be evaluated in parallel, which 
suggests we may remedy at least some of the 
perceived inefficiency of functional programming 
by buying speed from parallel technology. 

We present here a language. LNET, for 
describing parallel processes. and show how 
functional languages can be translated via 
combinators into LNET. 

We rely heavily on the reader's 
willingness to read [2]. [3]. and [4]. The 
recent ACM conference [1] contains much useful 
background. 

Major characteristics of LNET 

LNET stands for Language of Named 
Experiment Trees. reflecting its origins in CCS 
[3]. with which we assume familiarity. There are 
two major changes with respect to CCS: 

1. CCS ~. which present some difficulties 

0190-3918/82/0000/0168$00.75 @ 1982 IEEE 168 

of implementation, are eliminated in favour of 
process names. and the underlying message-passing 
medium is no longer assumed to be synchronous. 
Instead. each process has a name, generated at 
run-time when the process was created, by which 
it is known to other processes. A communication 
between two processes takes the form of an 
exchange of messages. in which one process (the 
active partner in the exchange) directs a message 
to the other process (the passive partner), and 
then waits for that process to accept the message 
and send back a reply. The passive process may 
perform some local processing to compute the 
reply, but no interVening communications are 
allowed. The result is that a single exchange 
can be implemented as a pair of asynchronous 
communications, while being logically equivalent 
to one indivisible synchronous event. This allows 
LNET to be given a clean axiomatic semantics. 

2. Process behaviours and process names can be 
sent as messages from one process to another. 
This extension is necessary to allow the dynamic 
rearrangement of patterns of communication which 
our distributed implementation of graph reduction 
requires. 

Basic LNET constructs 

Space precludes a full syntax and semantics 
for LNET. Here we shall informally describe the 
principal constructs of the language. 

An LNET process is of the form X:p. p is a 
process behaviour. which specifies the 
communications the process is capable of. X is a 
process identifier. which at run time will be 
bound to an automatically generated process name 
unique to the process. (Note that process names 
themselves do not appear in the syntax of LNET). 
The behaviour p may take any of the following 
forms: 

1. NIL - the behaviour which does nothing. 

2. 1!!!. X1:pl ... / Xk:pk in p' 
This creates k new processes whose 
pl •••. ,pk and whose run-time names 
the process identifiers Xl •... ,Xk. 
concurrently with the process X:p'. 

behaviours are 
are bound to 
They run 

3. g.p' g is a guard, which is constructed 
from serial or parallel combinations of 
communications. In the notation of context-free 
grammars we have: 

g ::=c/g.g/g/g 

The communication c takes one of three forms. 

(i) e!X?x This is an active communication, 



directed at the process identified by X. The 
expression e is evaluated and sent to X; the 
communication then awaits the reply and binds it 
to x. The remainder of the behaviour in which 
this communication appears may use the value of x. 

(ii) x?!e This is a passive communication. It 
accepts from any other process a message which it 
binds to the variable x. It then evaluates the 
expression e (which may depend on x) and transmits 
the result back to the process making the active 
communication. The value of x is, as with the 
previous form of communication, available to the 
remainder of the behaviour. 

We extend this by also allowing passive 
communications to take the forms t?!e and 
t(x)?!e, where t is any of some countable but 
otherwise unspecified set of tokens. The 
communication t?!e will wait for some process to 
make it an active communication of the form 
t!X?x' (with the same token t). Similarly the 
communication t(x)?!e will only accept a 
corresponding active communication of the form 
t(e')!X?x'. 

(iii) wait This is also a passive communication. 
It suspends the process in which it occurs until 
some other process makes an active communication 
to it, and then proceeds without replying. The 
process making the active communication is still 
waiting for a reply; a later passive 
communication of the form (ii) will succeed and 
provide the reply. 

4. indeX') This is an indirection behaviour. 
It accepts any active communication made to it 
and retransmits it to the process identified by 
X'. X', if and when it accepts the communication, 
will send its reply directly to the process that 
made it, rather than via the indirection process. 

5. LNET has a fairly conventional apparatus of 
let and where declarations, and conditionals. 

Translating functional programs into LNET 

We assume familiarity with Turner's paper 
[4J in which he shows how functional programming 
languages can be implemented by translating their 
programs into a variable-free form, by 
introducing a few constant functions called 
combinators. Apart from the usual basic values 
and operators, just two combinators, called K and 
S, are sufficient to express any functional 
program: 

(K x) y = x «S x) y) z = (x z)(y z) 

These definitions of K and 8 can be read as 
rewrite rules, allowing any instance of their 
left hand sides (a redex) to be rewritten as the 
right hand side. After translation into 
combinators, a program can be executed by 
repeatedly applying these rules. A translation 
into K and 8 alone is highly inefficient; 
however, by introducing a few more combinators -
six, in fact - a more efficient translation can 

169 

be obtained. 

Expressions built up from combinators, basic 
values, and operators can be represented as trees, 
or, more generally, as directed graphs, which 
allow sharing of common subexpressions. We shall 
now show how these combinator graphs can be 
translated into LNET process nets. The basic 
idea is that each node of the graph is modelled 
by a process, and processes representing adjacent 
nodes of the graph communicate with each other in 
such a way that the resulting behaviour of the 
process net corresponds with the operation of 
graph reduction. Various regimes of graph 
reduction (normal order, parallel innermost, etc.) 
and combinations of these can be modelled by 
choosing the translation appropriately. 

The reduction rule for 8, in graphical 
notation, is as follows. The nodes marked "@" 
(read "apply") represent function applications. 

@ 

1\ 
@ ..... "J\ 

/ ~r......:.2'. 

The circled part of the left-hand graph is the 
redex reduced by this rule. If the nodes of the 
graph are processes distributed in some way over 
an underlying network of processors, a significant 
amount of non-local computation may be required 
just to establish the existence of a redex. Our 
first step is therefore to break down the 
reduction rules into smaller steps, each of which 
requires communication only between one process 
and its immediate neighbours. We subdivide 8 
into three different forms, 80, Sl and 82, with 
the rules: 

s, 
I 
x 

/\ 
S", j 

I 
l( 

We do the same thing for basic operators such as 
+: 

T x 

~ a node holding the 
value of a+b 

(when a and b are simple integers) 

+l 

/\ 
x 'j 

List-handling operators (cons, nil, head, tail) 
can be handled similarly. 

We now define LNET behaviours to model 
these. 



so = let p = ~?!Sl . P in p 
Sl AX. let p = ~?!(S2 X) P in p 
S2 AX.AY. let p = ~?!(S3 X Y) • P in p 
S3 AX. AY. AZ. ~ V: (APPLY X Z) 

I W: (APPLY Y Z) 
in (APPLY V W) 

Most other combinators may be modelled in the 
same way. Two, the identity I and the "deleter" 
K, require the use of indirection behaviours. 
Their combinator reduction rules are: 

I x ->- x (K x) Y ->- x 

Accordingly, we define the "incomplete" 
behaviours 10, KO and Kl analogously to SO and Sl, 
and define 11 and K2 as: 

11 AX. indeX) K2 AX. AY. indeX) 

APPLY is the behaviour which models apply nodes: 

APPLY = AX. AY. ~!X?z . (z Y) 

This behaviour takes as arguments the process 
identifiers identifying the processes which 
model the left and right hand descendants of the 
apply node in the combinator graph. It sends a 
token ~ to the left hand descendant X. The 
reply it receives (which should be a parametrised 
behaviour requiring a process identifier) is 
bound to z. The behaviour then becomes the 
result of supplying the identifier Y as an 
argument to z. Comparing this APPLY with the 
definition of, for example, SO, we see that in 
the parallel combination 

X:SO I Y:(APPLY X Z) I Z: ••• 

the APPLY process sends the token ~ to the SO, 
which replies with the message Sl. The APPLY then 
becomes the behaviour (SI Z). The transformation 
of the process net can be pictured thus: 

Note that the process X:SO is still there and is 
ready to respond to another active communication. 
This is necessary because of the possibility of 
sharing. There may be many other APPLY 
processes sending ~ tokens to X, and the 
process X must reply to all of them. When there 
are no more references to X in the process net 
the X:SO process is garbage and may be collected. 
(Determining when this happens is a non-trivial 
question and is not addressed here). 

Constants such as 17 or true are 
represented by processes which repeatedly (because 
of possible sharing) send the constant they hold 
to any other process which asks for it. 

CONST = AX. let val?!x . p in p 

170 

The behaviour (CONST 1·7) expects a val token, to 
which it replies with the message "17". This val 
token will have been sent by a process 
representing a basic operator such as +: 

+2 = AX.AY. (val!X?a I val!Y?b) . (CONST(a+b» 

The + on the right hand side is the "real" one 
that actually does the addition. There are also 
a +0 and +1 defined analogously to SO and SI. 

A proof that this translation correctly 
models combinator graph reduction requires the 
construction of a formal semantics for LNET and a 
mathematical statement of the precise 
correspondence between the reduction of a 
combinator graph and the behaviour of its LNET 
translation. It is beyond the scope of this 
paper. A detailed example of the reduction of a 
simple graph to normal form is presented in [2J. 

The translation we have given models the 
regime of combinator reduction which reduces 
every redex in the graph concurrently. This 
maximises parallelism but is dangerous in the case 
of graphs which, while processing a normal form, 
also allow nonterminating reduction sequences. 
However, other reduction methods, such as lazy 
reduction, can be modelled by choosing other 
translations of the combinators, operators, and 
apply node. 

Conclusion 

The representation of functional programs as 
variable-free combinator graphs allows them to be 
modelled as networks of parallel processes which 
act in concert to perform a distributed 
evaluation of the whole expression. 

Acknowledgements 

This work was supported by grants from the 
U.K. S.E.R.C. Kent Karlsson and Jan Galkowski 
made detailed comments on an early draft, and 
Matthew Huntbach and Warren Burton provided a 
stimulating environment for our work. 

[ IJ 

[2] 

[3J 

[ 4] 

References 

ACM Conference on Functional Programming 
Languages and Computer Architecture. 
New Hampshire (October, 1981). 

J.R. Kennaway and M.R. Sleep, "Expressions 
as Processes", ACM Symposium on LISP and 
Functional Programming, Pittsburg (August, 
1982). 

Milner, R., A Calculus of Communicating 
Systems, Springer-Verlag Lecture Notes in 
Mathematics, vol. 92., (1980). 

Turner, D.A., "A new implementation 
technique for applicative languages", 
Software: Practice and Experience, 
vol. 9, (1979), pp. 31-49. 



Parallel Generation Of The Postfix Form· 
Eliezer Dekel+ and Sartaj Sahni 

University of Minnesota 

Abstract 

An efficient parallel algorithm to obtain the postfix 
form of an infix arithmetic expression is developed. The 
shared memory model of parallel computing is used. 

Key Words and Phrases: Arithmetic expressions, 
postfix, infix, parallel computing, complexity. 

L lntroduction 

The parallel parSing and evaluation of arithmetic 
expressions has been the focus of research for many 
years. [1], [2], [9], [11], and [13] are some of the 
important papers written on the parallel evaluation of 
arithmetic expressions. The most Significant result 
here is due to Brent [1]. Brent [1] has shown that 
arithmetic expressions containing n, n ~ 1, operands; 
operators (+, *, and I); and parentheses can be 
evaluated in 410g2n+l0(n-l)/p time when p processors 
are available. Parallel parsing of arithmetic expres
sions has been considered by Fisher [5], Krohn [8], Lip
kie [12], and Schell [16] (among others). Fisher's work 
is restricted to vector (or pipelined) computers. While 
Krohn's work was intended primarily for pipelined com
puters (specifically for the CDC STAR-lOO), the ideas 
contained in [8] can be extended to parallel multipro
cessor computers. Krohn, however, does not consider 
the asymptotic performance that could be obtained 
from his parallel parsing algorithm. Upkie [12] and 
Schell [16] explicitly consider parSing on parallel 

multiprocessor computers. Lipkie [12] provides some 
grammar rules for parallel parsing but does not 
develop a formal algorithm. Schell [16] is a thorough 
study of parallel techniques for several of the phases 
normally encountered in compiling (scanning, syntax 
analysis, parsing, error recovery, etc.). Schell 
develops a parallel LR parser. The complexity of this 
parser is, however, quadratic in the input size (under 
some constraints, he shows that its complexity 
becomes linear). Schell also discusses the applicability 
of his techniques to precedence grammars. 

In this paper, we develop a parallel algorithm to 
obtain the postfix form of an arithmetic expression. 
The reader unfamiliar with the postfix form of an 
expression is referred to Horowitz and Sahni [6]. 

*This research was supported in part by the Office of 
Naval Research under contract N00014-80-C-0650. 
+ Author's present address: Mathematical Sciences 
Program, University of Texas at Dallas, Richardson, 
TX750BO. 

0190-3918/82/0000/0171$00.75 © 1982 IEEE 171 

The model of parallel computation that we shall 
use here is commonly referred to as the shared 
memory model (SMM). Much work has been done on 
the design of parallel algorithms using the SMM. The 
reader is referred to [3], [4] and the references con
tained therein. 

While one can talk of obtaining the postfix form for 
an entire program, we shall limit our disucssion here to 
simple expressions. These are permitted to contain 
only operands (constants and simple variables), opera
tors (only the binary operators +, -, *, I, and l' are per
mitted), and parentheses CC, and ')'). 

The parallel algorithm that we shall develop here 
is closely related to the common priority based 
sequential infix to postfix algorithm. We shall make 
explicit reference to the version of this algorithm that 
is presented in [6]. This algorithm utilizes a stack as 
well as a dual priority system. The instack priority 
(ISP) of an operator or parenthesis is the priority asso
ciated with the operator or parenthesis when it is 
inside the stack. The incoming priority (Iep) is used 
when the operator or parenthesis is outside the stack. 
For the operator and parenthesis set we are limited 
tO,the priority assignment of Figure 1 is adequate. 

The algorithm of [6] assumes that the infix expres
sion is in E(l:n) where E(i) is an operator, operand, or 
parenthesis, 1 ,;; i ,;; n (in practice, E(i) will be a pOinter 

into a symbol table). For example, the expression 
A+B*C is input as E(l)=A, E(2)=+, E(3)=B, E(4)=*, and 
E(5)=C. The postfix form is output in P(l:m), m,;; n. 
For our example, we shall have P(l)=A, P(2)=B, P(3)=C, 
P(4)=*, and P(5)=+. The sequential time complexity of 
the postfix algorithm of [6] is O(n). 

operator /parenthesis ISP ICP 

0 
1',unary+,unary- 3 4 
*, / 2 2 
binary+, - 1 
( 0 4 

0 

F'igure 1: Instack and incoming priorities. 

In Section 2, we shall see that the algorithm of [6] 
can be effectively parallelized. 



2. Parallel Generation of the Postfix F'Ol'm. 

Let the infix expression be given in E(l :n) as described 
in Section 1. For every E(i) that is an operator or an 
operand, we define a value AITER(i) such that E(i) 
comes immediately after E(AFTER(i» in the postfix 
form of E(1:n). For the first operand in the postfix 
form, we define the AFTER value to be zero. Note that 
since parentheses do not appear in the postfix form, an 
AFTER value for them need not be defined. As an 
examp1e, consider the expression (A+B)*C. Its postfix 
form is AB+C*. Since E(1:7) = (t, A. +, B, ')', ., C), 
AFTER(l:7) = (-, 0, 4, 2, -, 7, 3). 

Our parallel algorithm to obtain the postfix form of 
E( 1 :n) will consist of two phases. In the first, the values 
AFTER(l:n) will be computed. In the second phase, the 
postfix form will be obtained using these values. In 
order to determine AFTER(1:n), we need to first com
pute the level L(i) of each token in the expression. 
Informally, the level of a token gives the depth of nest
ing of parentheses in which this token is contained. So, 
if a token is not within any parentheses, its level is O. 
More formally, the level, L, is defined by the algorithm 
of Figure 2. 

step 1: 1
1 if E(i)=' (' 

G(i) <- -1 if E(i)=' ( 
o otherwise 

step Z: L(i) <- EG(j) ,~i~ n 
1"1 

, 1~i5,n 

step 3: L(i) <- L(i)+l if E(i)=')', l~ i~ n 

Ji'4jure ;;: Computation of L. 

In Figure 3. we give an example arithmetic expres
sion together with the LO values associated with each 
token (row 3). 

Let us sequence through procedure POSTF1X of [6] 
as it works on the example expression of Figure 3. The 
variable i points to the token in E that is currently 
being examined. When i=l, E(l)='(' and '(' gets put 
onto the stack. Next, i=2, and E(2)=A is placed into the 
postfix form. When i=5. the postfix form has 
P(1:2)=(A,B) and the stack has the form -00, (. *. During 
this iteration ... is unstacked (as ISP(") ;;" ICP(E(5»). 
We shall say that E(3) gets unstacked by E(5). E(5) 
gets added to the stack and on the next iteration, 
E(6)=C is placed in the postfix form. When i=lB, the 
stack has the form -00, +, 1', (. -, *, 1', l' and 
P(1:9)=(A,B .... C,D,E,F.G,H). During this iteration. 
E(16)=1', E(14) =1'. E(12)=*, and E(lO)=- get unstacked 
(in that order). I.e., E(16). E(14), E(12), and E(10) get 
unstacked by E(lB). Furthermore. E(lO) is the last 
operator to get unstacked by E( 1 B). 

For each i such that E(i) is an operator, we may 
define Uti) to be the index in E of the operator or 
parenthesis that causes E(i) to get unstacked. In case 
E(i) gets unstacked after the entire expression has 
been seen. then U(i) = n+1. For our eXaplple. U(3) = 5. 
U(lO) = U(l2) = U(l4) = U(l6) = lB. Also, for each i 

such that E(i) is either an operator or a right 
parenthesis, we may define LU(i) to be the index of the 
last operator that gets unstacked by E(i). If no opera
tor is unstacked by E(i). then LU(i) is set to O. For our 
example, LV(3)=O, LV(5}=3, LU(7)=LV(lO}=LU(12) = 
LU(14)=LU(16)=O, and LV(lB)=10. 

Continuing with our example. we see that when 
i=19, P(1: 13)=(A.B, *,C,D,E,F.G.H,1',1'. *,-), and the stack 
has the form -00,+,1'. At this time. E(7)=1' is unstacked 
and E(19)=* is stacked. So. LU(19)=7 and U(7)=19. 
Rows 6 and 7 of Figure 4 give the U. and LU values for 
all the operators and parentheses of our example. 
Note that U is defined only for operators and LU only 
for operators and right parentheses. 

An examination of procedure POSTFIX [6] and our 
definition of the level L of a token reveals that if E(i) is 
an operator, then: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

E A • B + C t D - E • F t G t H ) • r - 'J + K ) • L ) + M ) 

G 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 o -1 0 0 0 1 1 0 0 o -1 0 o -1 0 o -1 

L 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 3 3 3 3 3 2 2 2 1 1 1 

rcp 4 4 0 2 1 4 4 0 2 0 1 0 

rsp 3 0 ~ 2 1 0 0 lIB 2 1m! 1 I!IJ 

U 21 19 18 18 18 18 21 31 27 30 33 

LU 0 0 0 0 0 0 10 7 25 0 28 21 31 

AFTER II 0 4 2 19 3 10 Ell 6 12 9 14 11 16 13 17 15 PIa 20 7 28 II 1m! 5 26 24 rill 29 75 ~ 32 21 fJlil 

Position in P III 1 3 2 17 4 14 II 5 13 6 12 7 11 8 10 9 l1li 16 15 23 FlII m 18 20 19 !Ill 22 21 III 25 24 Ell 

172 



Uti) = least j, j > i such that rSP(E(i» ~ rCP(E(j) 
and L(i)=LO). If there is no j satisfying tills 
requirement. then U(i)=n+ 1. 

From the definition of U, it follows that if E(i) is an 
operator or a right parenthesis. then LU(i) is given by: 

LU(i) = least j, j < i such that U(j)=i. If there is no 
j with U(j)=i. then LU(i)=O. 

Before proceeding to determine AFTER. it is useful 
to eliminate extraneous right parentheses. An extrane
O'\JS right parenthesis is formally defined to be one for 
which the LU value is O. Extraneous right parentheses 
together with their matching left parentheses serve no 
useful function but may be present in E nonetheless. 
Examples of occurrences of such parentheses are: (Al 
«A+B12*C. and «(A+ill22.(extraneous right parentheses 
have been underlined). 

The elimination of extraneous right parentheses 
may be accomplished in the following way. Define 
C(1:n) as below: 

. _ {O if E(i) = ) and LU(i) = 0 
C('l.) - 1 otherwise 

Let S(i) be the sum t C(j). l,,;i";n. S(i) gives the 
;=1 

number of tokens in E(l:i) that are not extraneous 
right parenthesis. The replacement: 

(E(S(i», U(S(i», LU(S(i») .... (E(i), Uti), LU(i» 

carried out for all i such that E(i) is not an extraneous 
right parenthesis results in the elimination of all 
extraneous right parentheses from E. 

As an example. consider the expression: 

«(A+B+CI2.+D)"«(~ 

The extraneous right parentheses are underlined. Fol
lowing the elimination of these parentheses, the 
expression E takes the form: 

«(A+B+C)+D)*«(E 

As we shall see below. follOwing the determination 
of the levels L(l:n). the left parentheses serve no useful 
function in our algorithm. Hence. these could be elim
inated along with the elimination of the extraneous 
right parentheses. To accomplish this, we need only 
define C( 1 :n) as; 

. _ fo if E(i) = (or (E(i) = ) and LU(i) = 0) 
C( 1.) - 11 otherwise 

and proceed as before. 

173 

Once the extraneous right parentheses have been 
eliminated, AFTER may be computed as described 
below. In the following discussion of the computation 
of AFTER. we assume that n has been updated to the 
value S(n) defined above. 

case 1: E(i) is an operand. 

In this case, we determine the largest j. j < i such 
that EO) is either an operand or LU(j) is defined and 
greater than 0 (note that as extraneous parenthesis 
pairs are not permitted, if E(j)=')' then LU(j) > 0). 
Such a j does not exist iff E(i) is the first operand in the 
expression. From procedure POSTFIX and our 
definition of LU, it follows that 

1 
0 if no j as ab ove exists 

AFTER(i) = j if E(j} is an operand 
LU(j) otherwise 

case 2: E(i) is an operator. 

In this case. we see that if there exists a j such 
that j > i and U(j)=U(i), then AFTER(i) is the smallest j 
with this property. So. in our example expression, 
U(lO) = U(12) = U(14) = U(16) = 18, Also, in p, E(10) 
comes immediately after E(12) which comes immedi
ately after E(14). E(14) comes immediately after 
E(16). 

For E(16). however, there is no j, j > 16 and U(j) = 
U( 16). For operators with this property, there are two 
possibilities: either UO)-l is an operand or U(i)-l is a 
right parenthesis. If U(i)-l is an operand. then E(U(i)-
1) is the token placed in P just before the unstacking 
caused by E(i) begins. Hence. AFTER(i) = U(i)-1. If 
E(U(i)-l) is a right parenthesis. then this right 
parenthesis would have caused at least one operator to 
get unstacked (by assumption, extraneous parenthesis 
pairs are not permitted). Hence. LU(U(i)-l) ~ 0 and 
E(LU(U(i)-l» is the operator that immediately pre
cedes E(i) in P. So, we get: 

j f- least j, j > i and U(j)=U(i) 

U(i)-l iJj is undefined and 
E(U(i)-l)is an operand 

AFTER(i) = LU( U(i)-l) iii is 'IlJl1.defined 
and E(U(i)-l)= .), 

j iii is define d 

Row 8 of Figure 3 gives the AFTER values for all the 
operators and operands in our example expression. 
The AFTER values link the E(i)s in the order they should 
appear in the postfix form. This linked list is shown 
explicitly in Figure 4. From this linked list. we wish to 
determine the position. POS. of each operator and 



Ji'igure 4 

operand in the postfix form. For dhe at tiie operands, 
i.e., the one with AFTER(i) =0, this position is already 
known (it goes into pel»~. With each E(i), let us associ
ate a one bit field K(i). K(i)=O iff the position of E(i) in 
P(i) has not been determined. Initially, K(i)=O for all 
but one of the tokens (i.e. the one with AFTER(i)=O). 

For any node, i, in the linked list defined by the 
AFTER values, POS(i), is one more than the number of 
nodes preceding it in that list (the node with AFTER 
value 0 is the first node in the list; so the list is linked 
backwards). The POS values may be obtained by recur
sively splitting this linked list. The first time the list is 
split, we get two lists (A and B) consisting of alternating 
elements from the original list. The POS value of the 
first element in list A is already known and that for the 
first element of list B is now known to be 2. Figure 5(a) 
shows the resulting lists when we start with the lists of 
Figure 4. The lists A and B are again split. When the 
list A of Figure 5(a) is split, we get the lists A1 and A2 of 
Figure 5(b). At this time, the POS value for the first 
node of list A2 becomes known, i.e., 3. Each time a list 
is split, we get two lists of about half the length. So, 
following fiognl splits, all lists will be of size 1 and all the 
POS values will be known. The formal algorithm to 
determine POS is given in Figure 6. 

step 1 I linitialize I I 
case 

:AFTER(i) is undefined: K(i) <- undefined 
:AFTER(i)=O: K(i) <- 1; POS(i) +- 1 
:else: K(i) <- 0 

end case 

step;8 Ilsplit lists and compute POSI I 
for v <- 1 to r log n I do 
if K(i)=O then j +- AFTER (i) 

endif 
endfor 

AFTER(i) <- AFTER(j) 
if K(j) = 1 then 

K(i} 4- 1 

POS(i) <- POS(j)+2V - 1 

endif 

Figure 6 Algorithm to compute POS. 

The correctness of the algorithm of Figure 6 can 
be established formally by providing a proof by induc
tion on the length of the initial linked list. We omit this 
proof here. 

Once the POS values have been computed as 
described above, the postfix form P is obtained by exe
cuting the following instruction: 

if AFTER(i) is defined then P(POS(i» <- E(i) 

Complexity Analyisis 

First, let us consider the computation of the levels 
L (Figure 2). Step 1 can be done in 0(1) time using n 
PEs (each PE is assigned to compute a different G(i». 
]t can also be done in O(log n) time using n/log n PEs 
(each PE sequentially computes log n of the GOs). The 
L(i)s of step 2 may be computed in O(log n) time using 

2 3 ._~ J} . 17 11. HI 20 . 6 . 26 29 21 ; 

QJ .. u::J .. ~ .. CJ .. D2J .. D2J .. IT-~'I .. [Ii] .. [[j .. [--[1<1 .. [J~ .. Oj<tL' List h 

List B 

(a) Splitting the list of Figure-t 

(b) Splitting the list A of (a) 

F'igure 5 

174 



n/log n PEs and the partial sums algorithm of [4J. 
Finally, step 3 can be preformed in O(log n) time using 
n/log n PEs. Hence, the levels LO may be obtained in 
O(log n) time using n/log n PEs. 

Next, consider the computation of V and LV. One 
possibility is to use mp PEs to first make m copies of 
each of the p operators and right parentheses in E (m 
is the number of operators in E). This takes O(log m) 
time. Note that O(logn) time is needed to avoid read 
conflicts. Each operator now has a copy of the opera
tors and right parentheses in E for itself. Each opera
tor E(i) is assigned p PEs to work with. These are first 
used to eliminate operators and right parentheses E(j) 
with j :s; i. Next, the level and ISP of E(i) is transmitted 
to the remaining operators and right parenthesis. This 
takes O(log p) time (again having no read conflicts) 
with p PEs. Operators and right parentheses with a 
different level number or with Iep > ISP (E(i» are elim
inated. The operators and right parentheses not yet 
eliminated are candidates for V(i). The one with least j 
can be determined in O(log p) time using a binary tree 
comparison scheme and p PEs. If there are no candi
dates, V(i)=n+ 1. LV may now be determined in a simi
lar manner. This strategy to compute V and LV takes 
O(n2 ) PEs and O(log n) time. Using the techniques of 
[4J, it can be made to run in O(log n) time using only 

O(n2/1og n) PEs. 

An alternative stategy is to first collect together 
all operators and right parentheses that have the same 
level number. This can be done in O(log2n) time using n 
PEs as follows. First, each left parentheses determines 
the position of its matching right parentheses. This is 
done by simply sorting the left and right parentheses 
by their level number. If a stable sort is used, each left 
parenthesis will be adjacent to its matching right 
parentheses following the sort (Figure 7). The sort can 
be accomplished in O(10g2 n) time using n PEs [15]. 
Now, each left parenthesis can determine the address, 
M(i), of its matching right parenthesis. 

25 27 

8---{2] 

28 30 

8---{2] 
Figure 7 

175 

Once M(i) has been determined for each left 
parenthesis E(i), we can link together all operators and 
right parentheses with the same level as needed in the 
computation of U. There are only two possibilities for 
any operator i. These are: 

(a) E(i+l)='(': In this case, E(i) is linked to M(i+l)+1. 
(b) E(i+l) ~ '(': In this case i+2=n+1 or E(i+2) is an 

operator. Regardless, E(i) is linked to i+2. 

Performing this linkage operation on the example 
of Figure 3 gives the linked lists of Figure B. Now, each 
linked list can be treated independently. For opera
tors with the highest ISP (Le., t), the V value is 
obtained by collapsing together consecutive chains of t 

so that all l' point to the nearest non t. The V value 
equals the link value. So, V(7) = 19, U(14) = U(16) = 
18. For operators with the next highest ISP, the V 
values are obtained by removing all nodes representing 
the operator 1'. The link values give the U value. Doing 
this on the lists of Figure 7, yields the lists of Figure 9. 
So, V(3)=5, U(19)=21, V(12)= 1B, V(28)=30. Now, by 
eliminating all nodes that represent • and I and col
lapsing the lists we can determine the V value for the 
next ISP class. We obtain U(5)=21, U(21)=32, 
U(10)=lB, and U(25)=27. Each elimination and collaps
ing operation above can be performed in O(log n) time 
using n PEs and the strategy used in Figure 6 to com
pute POS. Since the number of ISP classes is a con
stant, the time needed to determine U is O(log n). 

It should be evident that LU can be computed dur
ing the computation of U. Each operator and right 
parentheses keeps track of the farthest operator it 
unstacks from each ISP class. In comparing the two 
strategies to obtain V and LV, we note that the first 
strategy takes O(logn) time but requires O(n2 /10gn) 
PEs while the second strategy takes O(10g2n) time and 
requires only n PEs. So, the logn speed-up of the first 
strategy over the second is obtained through a consid
erble increase in the number of processors used. 

The extraneous right parentheses can be elim
inated in O(logn) time using n/logn PEs. The initial 
values of AFTERO may now be computed. First, each 
operand determines the nearest (on its left) binary 
operator, right parenthesis, and operand. These are 
shown in Figure 9 for our example of Figure 3. Zeroes 
indicate the absence of a nearest quantity on the left. 
These three sets of nearest values can be determined 
in O(log n) time using n PEs. For example, to get the 
nearest operands, we eliminate all E(i)s that are not an 
operand. The remaining E(i)s are concentrated to the 
left. This enables each operand to determine its 
nearest left operand. Next, the operands are distri
buted back to their original spots (see [14J for an O(log 
n) distribution algorithm). 



10 12 18 

D-O--G 
25 27 

~ 
28 30 

~ 
F'igure 8 

If E(i) is an operand and has no nearest operand 
on the left, AITER(i)=O. If the nearest binary operator 
(on the left) has LUO > 0, then AFTER(i) equals this LV 
value. If E(i) has a nearest right parenthesis (on the 
left) then AFTER(i) is the LV value of this parenthesis. 
Otherwise, AITER(i) is the iocation of the nearest 
operand on the left. 

If E(i) is an operator, we can determine the smal
lest j, j > i such that V(j)=U(i) during the computation 
of V and LV. So, if such a j exists, AITER has already 
been computed. If no such j exists, AFTER(i) is to be 
set to either U(i)-l or LV(U(i)-l). Both these quantities 
are already known. So, the computation of AFTER for 
operators takes 0(1) additional time. 

The computation of POS (Figure 6) requires only 
O(log n) time and n PEs. The formation of P takes 0(1) 
time and n PEs. Hence, using n PEs, the postfix form 
may be computed in O(log2n) time (the second strategy 

to compute U and LU must be used as only n PEs are 
available). The complexity is dominated by the sort 
step. Another complexity measure worth computing is 
the EPV (effectiveness of processor utilization). This is 
the the ratio of the complexity of the fastest known 
sequential algorithm and the product of the complexity 
of the parallel algorithm and the number of processors 
used by this algorithm. For our parallel postfix algo
rithm, we have: 

EPU = O( ~ ) 
log n "it 

Note also that by using n 2 PEs and the first strategy to 
compute U and LV, the postfix form can be computed 
in O(logn) time. The EPU of the resulting algorithm is 

O(~' logn 7· 

3. Conclusions 

We have shown that it is possible to effectively parallel
ize the postfix algorithm given in (6). Our parallel algo
rithm runs in O(log2n) time when n PEs are available. If 
only n/k PEs oare available, our algorithm can still be 
used. The complexity will be O(k log2n). 

The results of this paper nicely complement the 
work reported on the parallel evaluation of expressions 
(see [1], [2], [9], [11], and [13]). 

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

E A * B + C t D - E * F t G t H • I - ( ( J + K * L + M 

nearest binary 0 10 12 14 16 19 21 25 28 31 
operator 

f"'I,,"drest right 0 0 0 0 0 18 18 18 27 30 
paren thes is 

neares t operand 11 13 15 17 20 24 26 29 

F'igure 9 

176 



References 

1. Brent, R, "The parallel evaluation of general arith
metic expressions,". .f. ACM 21, 2, April 1974 pp. 
201-206. 

2. Brent, Ro, Kuck, D.J., and Maruyama, KM., "The 
parallel evaluation of arithmetic expressions 
without divisions," IEEE 'l'rans. Comput. C-22, May 
1973, pp. 532-534. 

3. Dekel, E., and Sahni, S., "Parallel scheduling algo
rithms," University of Minnesota TR Bl-1, to appear 
in Operations Resea:rch. 

4. Dekel, E., and Sahni, S., "Binary trees and parallel 
scheduling algorithms," in Lecture Notes in Comput
er Science, vol 111, CONPAR B1, Springer Verlag, 
New York, 19B1. 

5. Fischer, C.N., "On parsing and compiling arithmetic 
expressions on vector computers." TOPLAS Vol. 2, 
No.2, April 19BO, pp. 203-224. 

6. Horowitz, E. and Sahni, S., "Fundamentals of data 
structures," Computer Science Press, Patomac, MD, 
1976. 

7. Knuth, D.E., "An empirical study of FORTRAN pro
grams," Software 1, April 1971, pp. 105-133. 

B. Krohn, H.E., "A parallel approach to code generation 
for Fortran like compilers,"SIGPLAN Notices, March 
1975, pp. 146-152. 

9. Kuck, D.J., "Evaluating arithmetic expressions of n 
atoms and k divisions in a(logzn+2 logzk)+ c steps, 
manuscript, March 1973. 

177 

10. Kuck, D.J., "Parallelism in ordinary programs," 
Proc. Symposium on Complexity of Sequential and 
Parallel Numerical Algorithms, Carnegie-Mellon, 
Pittsburgh, PA, May 1973. Academic Press, New 
York. 

11. Kuck, D.J., and Maruyama, KM., "The parallel 
evaluation of arithmetic expressions of special 
forms," Rep. RC4276, IBM Res. Center, Yorktown 
Heights, NY, March 1973. 

12. Lipkie, D.E., "A compiler design for multiple in
dependent processor computers," PhD dissertation, 
University of Washington, Seattle, 1979. 

13. Maruyama, KM., "On the parallel evaluation of poly
nomials," IEEE Trans. Comput.,C-22, Jan. 1973, pp. 
2-5. 

14. Nassimi, D. and Sahni, S., "Data broadcasting in 
SIMD computers," IEEE TRANS. on Computers. C-

30, no. 2., Feb 19B1, pp 101-107. 
15. Preparata, F.P., "New parallel-sorting schemes," 

IEEE Trans. on Computers, C-27, No. 7,July 197B, 
pp. 669-673. 

16. Schell, RM., Jr., "Methods for constructing parallel 
compilers for use in a multiprocessor environment," 
PhD dissertation, University of lllinois, Urbana, 
1979. 



A Parallel Matching Algorithm for Convex Bipartite 
Graphs· 

Eliezer Dekel + and Sartaj Sahni 
University of Minnesota 

Abstra.ct 

An efficient parallel algorithm to obtain maximum 
matchings in convex bipartite graphs is obtained. 

Key Words and Phrases: Parallel algorithm, convex bipar
tite graph, scheduling, complexity. 

1. Introduction 
A convex bipartite graph G is a triple (A,B,E). A = 
Itt1,a.2, ... ,a,.j andB = ~bl,b2, ... bmj are disjoint sets ofver
lices. E is the edge set. E satisfies the following proper
ties: 
(1) If (i.j) is an edge of E. then either iEA and jEB or i EB 

and jEA; i.e .. no edge joins two vertices in A or 
two inB. 

Property (1) above is the bipartite property while pro
perty (2) is the convexity property. An example convex 
bipartite graph is shown in Figure 1.1. 

A B 
al bl 
a2 b2 

a3 b3 
a4 

a5 

Figure 1.1 A convex bipartite graph. 

F !:: E is. a ma.tching in the convex bipartite graph 
G=(A,B.E) iff no two edges in F have a common endpoint. 
F1=!(a.l. b 2). (a.4.b3). (a.5.bl)jis a matching in the graph 
of Figure 1.1 while F2=Ha\.b 1}.(a lo b2),(a2,b 3)! is not. F is 
a m.a.xim.um. card.ina.lity matching (or simply a maximum 
matching) in G iff (a) F is a matching and (b) G contains 
no matching H such that IH>IFl (IHI=number of edges in H). 
The matching depicted by solid lines in Figure 1.1 is a 
maximum matching in that graph. 

-This research was supported in part by the Office of 
Naval Research under contract N00014-80-C-0650. 
+ Current address: Mathematical Sciences Program. 
University of Texas at Dallas. Richardson. Texas 75080. 

0190-3918/82/0000/0178$00.75 @ 1982 IEEE 178 

In what follows. we shall find it convenient to have an 
alternate representation of convex bipartite graphs. It is 
clear that every convex bipartite graph G=(A,B.E), 
A=!a.1.· ... a.,.I. B=!b l ..... bm I is uniquely represented by the 
set of triples: - -

T = Hi.Si.ht~1~i$nl 
s,=minIJ(a..bj)E EI 
ht =max!J(a.;,bj )EEj 

In the triple representation, we explicitly record the 
smallest (s,) and highest (ht) index vertices to which 
each a.; is connected. For the example of Figure 1.1. we 
have T = Hl,1,2). (2.3,3). (3.0.0). (4.3.3), (5,1.3)1. 

As an example of the use of matchings in convex 
bipartite graphs. consider the problem of scheduling n 
unit time jobs to minimize the number of tardy jobs. In 
this problem. we are given a set. of n jobs. Job i has a 
release time T, and a due time d;. It requires one unit of 
processing. We assume that r, and d; are natural 
numbers. A subset F of J is afeasible subset iff every job 
in F can be scheduled on one machine in such a way that 
no job is scheduled before its release time or after its 
due time. A feasible subset F is a mmmum feasible 
subset iff there is no feasible subset MAXM of J such that 
~. 

A maximum feasible subset F can be found by 
transforming the problem into a maximum matching 
problem on a convex bipartite graph. Without loss of 
generality. we may assume that min!Td=O; r,<d;, l~i$n; 
and max !dtlsn. The convex bipartite graph correspond
ing to J is given by the triple set T = W. St. ht) I 
s,=r •. ~=dc-1J. Figure 1.2 shows an example job set and 
the corresponding convex bipartite graph G. Vertex i of 
A represents job i while vertex i in B simply represents 
the time slot [i,i+1]. There is an edge from job i to time 
slot [j,j+1] iff TiSj<d;. Hence, every matching in -G 
represents a feasible subset of J. Also, corresponding to 
every feasible subset of J there is a matching in G. 
Clearly! a maximum cardinality feasible subset of J can 
be easily obtained from a maximum matching of G. In 
addition, a maximum matching also provides the time 
slots in which the jobs should be scheduled. 

Glover [5] has obtained a rather simple algorithm to 
find a maximum matching in a convex bipartite graph 
G=(A.B,E). Let ht=max!J (a.;.bj)E EJ, l:sdAI. Glover's 
algorithm considers the vertices in B one by one starting 
at b 1. We first determine the set R of remaining vertices 
in A to which the vertex b j currently being considered is 

connected. Let q be such that I1q ER and h" = ~~lh" I· 



A B 

o o 
o 3 

6 

5 

6 

Figure 1.2 

Vertex bj is matched to aq and aq deleted from the 
graph. The next vertex in B is now considered. Observe 
that Glover's algorithm is essentially the same as that 
suggested by Jackson [6]. 

A straightforward implementation of Glover,s algo
rithm has complexity O(mn). When m is O(log log n), a 
more efficient implementation results from the use of 
the fast priority queues of van Emde Boas ([4] and [8]). 
The resulting implementation has complexity 
O(m+nloglogn). The fastest sequential algorithm known 
for the matching problem is due to Lipski and Preparata 
[8]. It differs from Glover's algorithm in that it examines 
the vertices of A one by one rather than those of B. This 
algorithm has complexity O(n+mA(m)) where A(.) is the 
inverse of the Ackermann's function and is a very slowly 
growing function. 

In Section 2, we obtain a parallel algorithm for max
imum matchings in convex bipartite graphs. Our 
analysis of this algorithm will assume the availability of 
as many PEs as needed. This is in keeping with much of 
the research done on parallel algorithms. In practice, of 
course, only k processors (for some fixed k) will be avail
able. Our analyses are easily modified for this case. It 
will be apparent that if our algorithm has time complex
ity t(n) using g(n) PEs, then with k PEs (k<g(n)), its com
plexity will be t(n}g(n) Ik. 

The parallel computer model used is the shared 
memory model (SMM). This is an example of a single 
instruction stream multiple data stream (SIMD) com
puter. In a SMM computer, there are p processing ele
ments (PEs). Each PE is capable of performing the stan
dard arithmetic and logical operations. The PEs are 
indexed O,l, ... ,p-1 and an individual PE may be refer
enced as in PE(i). Each PE knows its index and has some 
local memory. In addition, there is a global memory to 
which every PE has access. The PEs are synchronized 
and operate under the control of a single instruction 
stream. An enable/disable mask may be used to select a 
subset of the PEs that are to perform an instruction. 
Only the enabled PEs will perform the instruction. Dis
abled PEs remain idle. All enabled PEs execute the same 
instruction. The set of enabled PEs may change from 
instruction to instruction. 

179 

If two PEs attempt to simultaneously read the same 
word of the shared memory, a read conflict occurs. If 
two PEs attempt to simultaneously write into the same 
word of the shared memory, a write conflict occurs. 
Throughout this paper, we shall assume that read and 
write conflicts are prohibited. 

The reader is referred to [2] for a list of references 
dealing with graph algorithms, matrix algorithms, sort
ing, scheduling, etc. on a SMM computer. 

2. Parallel Matching In Convex Bipartite Graphs 

In Section 1. we showed that every instance of the prob
lem of scheduling jobs to minimize the number of tardy 
jobs could be transformed into an equivalent instance of 
the maximum matching in a convex bipartite graph 
problem. It should be evident that the reverse is also 
true. Hence, the two problems are isomorphic. A 
parallel algorithm for a special case of the job scheduling 
formulation was obtained by us in [1]. In this special 
case, it was assumed that all jobs have the same release 
time. This correspondll to the case when the convex 
bipartite graphs are of the form T=!(i,s, ,h; )ll5:i5n! and 
Si=C, 15:i5n for some c. 

We shall now proceed to show how the solution for 
the special case described above can be used to solve 
the general case when all the TiS are not the same. This 
will be done using the binary tree method described by 
Dekel and Sahni [2]. Rather than specify the new algo
rithm formally, we shall describe how it works by means 
of an example. 

A convex bipartite graph is shown in Figure 2.1. For 
this graph, 1AI=14 and 18=13. The Si and h; values associ
ated with each vertex of A are given in the first two 
columns of this figure. The flrst step in our parallel algo
rithm for maximum matching is to sort the vertices in A 
in nondecreasing order of Si. Vertices with the same Si 

are sorted into nondecreasing order of h;. For our 
example, the result of this reordering is shown in Figure 
2.2. 

Following the sort, we identify the distinct s, values. 
Let these be R 1,R2, ... ,R,.. Assume that R 1< R2< ... <R,.. 
Let RIe +1=maxfh;!+1. For our example, k=4 and 
R{1:k+l) = (1, 4, 9, 12, 14). 

We are now ready to use the binary tree method of 
[2]. The underlying computation tree we shall use is the 
unique complete binary tree with k leaf nodes. Figure 
2.3 shows the complete binary trees with 4, 5, and 6 leaf 
nodes. For our example, k=4 and we use the tree of Fig
ure 2.3(a). With each node, p, in the computation tree, 
we associate a contiguous subset fu,u+1,u+2, ... ,vj of the 
vertices in B. This subset is denoted [u,v].P or simply 
(u.v]. 



8i hi A 

4 S 

1 3 

1 

4 10 

4 

11 

10 

12 13 

13 

4 11 

12 13 

12 12 

fi'igure 2. 1 

i 7 3 2 4 6 1 5 12 9 8 11 14 

1 1 1 1 4 4 4 4 9 9 9 12 

2 3 4 4 4 8 10 11 10 11 13 12 

Figure 2.2 

(a) 4 leaves 
(b) 5 leaves 

(c) 6 leaves 

Figure 2.3: Complete binary trees. 

B 

10 13 

12 12 

13 13 

Let the leaf nodes of the computation tree be num
bered 1 through k, left to right. If P is the ith leaf node, 
then [u,v].P is [Ri ,Ri +1-l] (Le., U=Ri and v=Ri+c1). If P 
is not a leaf node, then the subset of B associated with P 
is [u,v].LC(P) U [u,v].RC(P) where LC(P) and RC(P) are, 
respectively, the left and right children of P. The sub
sets of B associated with each of the vertices in the 
computation tree for our example are shown in Figure 
2.4. The number in each node of this tree is its index, 

1 [1,13] 

Ji'i1]'Ure 2.4 

[9,13] 

7 
[12,13] 

Let P be any vertex of the computation tree. Let 
[u,v] be the subset of B associated with P. The subset of 
A available for mrztchi:ng at node P is denoted M(P) and 
is defined to be: 

180 

For, example , 

M(1)=! 1,2,,,., 141; 
M(2)=!1,2,3,4,5,6, 7,121; 
M(4)=!2,3,4,7j; 
etc. 

The subset M(P) of A vertices available for matching 
at P may be partitioned into three subsets MAXM(P) , I(P), 
and T(P). MAXM(P) is a maximum cardinality subset of 
M(P) that may be matched with vertices in [u,v].P by 
algorithm MATCH; this subset is called the mulched set. 
I(P) denotes the infeasible set. It consists of all vertices 
iEM(P)-MAXM(P) such that h;.",",v. The transferred set T(P) 
consists of ail vertices iEM(P)-MAXM(P} such that h;, >v. 

Consider node 2 of Figure 2.4. The matching prob
lem defined at this node is given in Figure 2.5. Note that 
h'i. = min!v, h;,l. A' is the set M(2) and B' is [u,v].2. If 
Glover's algorithm is used on this graph, then 
H,2,3,4,5,7,12j defines a subset of A' that can be 
matched with vertices in B'. Further, this gives a max
imum matching. Hence, MAXM(2)=!i,2,3.4,5,7,121; 
1(2)=6; and T(2}=¢. Observe that IMAXM(1)1 is the size of a 
maximum matching in the original convex bipartite 
graph. Also, T(l)=¢ and I(l)=A-MAXM(l). 



h~ A' B' 
S. 

l. l. 

4 8 10 Q1 

1 4 20 02 

1 3 30 03 

1 4 40 04 

4 8 50 05 

4 4 60 06 

1 2 70 07 

4 8 120 0 8 

Figure 2.5 

We shall make two passes over the computation 
tree. The first pass begins at the leaves and moves 
towards the root. During this pass, the MAXM. ], and T 
sets for each node are computed. The second pass 
starts at the root and progresses towards the leaves. In 
this pass. the MAXM set for each node is updated so as to 
correspond to the set of A vertices matched by Glover'S 
algorithm to the B vertices associated with that node. 

Pass 1 

In this pass. we make extensive use of the parallel algo
rithm developed in [1] for the case when all the SiS are 
the same. For our purposes here, it is sufficient to know 
the sequential algorithm (FEAS of [1]) that this parallel 
algorithm is based on. This sequential algorithm is given 
in Figure 2.6. For convenience. this has been translated 
into the graph language used here. The parallel version 
of this algorithm has complexity O(logn) and uses n/logn 
PEs [1]. 

line procedure FEAS(n,u,v) 
IIFind a maximum matching of vertices in 
A onto the B set [u,v]. For every vertex iE:A, 
si=u.ll 

1 global MAT(l:n); set A; integer n,u,v,i,j 
2 sort A into nondecreasing order of h;. 
3 MAT(l:n) <- 01 linitialize II 
4 j <- u 
5 for i <- 1 to n do 
6 case 
7 :j>v: return(j) I I all vertices in B matched I I 
8 :j~h;.: Iiselect ill j <- j+l, MAT(i) <- 1 
9 end case 

10 end!or 
11 re turn(j) 
12 endFEAS 

Ji'igure 2.6 

181 

An examination of Glover's algorithm reveals that it 
performs exactly as does procedure FEAS when the res
trictions and simplifications applicable to FEAS are 
incorporated into it. 

Hence. for a leaf node of the computation tree, the 
MAXM set may be obtained by a direct application of pro
cedure FEAS (or its parallel equivalent). For example. 
for node 4 of Figure 2.4, we have A = M(4) = !2,3.4.71; 
h 2=4; hs=3; h 4=4; h?=2; u=l; and v=3. Using FEAS 
(observe that this algorithm yields the same results 
regardless of whether the h;. values or the modified 
values h'i of Figure 2.5 are used), we obtain 
MAXM(4)=!7,3,21. Note that MAXM consists of exactly 
those vertices i with MAT(i)= 1. 10 consists of exactly 
those vertices i with MAT(i)=¢ and h;.~v. The remaining 
vertices form TO. The matched set MAXM, transferred 
set T. and infeasible set I for each of the leaves in our 
example are shown in Figure 2.7. Null sets are not expli
citly shown. So. for node 4, 1(4)=¢; T(4)=141; and 
MAXM(4)=!7,3,21. The sets are ordered by h;.. 

For a nonleaf node p. the MAXM. I. and T sets may be 
obtained by using the MAXM. 1. and T sets of the children 
of P. Let Land R. respectively. be the left and right chil
dren of P. To determine MAXM(P) , we first use procedure 
FEAS with U=UR and V=VR ([UR.VR] is the subset of B 
associated with the right child R of P). The A set consists 
of T(L) U MAXM(R). Since both T(L) and MAXM(R) are 
already sorted by h;.. the sort of line 2 of FEAS can be 
replaced by a merge. Let S be the subset of T(L) U 
MAXM(R) that has MATO=l following the execution of 
FEAS. The following theorem establishes that MAXM(L) U 
S is a maximum cardinality subset of M(P) that may be 
matched with vertices in [u.v].P. Hence. 
MAXM(P)=MAXM(L) U S. Following the determination of 
S. MAXM(L) and S are merged to obtain MAXM(P) in non
decreasing order of h;.. 

Theorem 2.1: MAXM(L) U S as defined above is a max
imum cardinality subset of M(P) that may be matched 
with vertices in [u.v]'P using algorithm MATCH. 

Proo!: The proof is by induction on the height of the 
subtree of which P is the root (A tree consisting of only a 
root has height 0). If this height is 1. then MAXM(L) and 
MAXM(R) are maximum cardinality subsets of M(L) and 
M(R) that can. respectively. be matched by Glover's algo
rithm with vertices in [u.v].L and [u.v].R. If this distance 
is greater than 1. then MAXM(L) and MAXM(R) satisfy this 
maximum cardinality matching requirement by induc
tion. 

As far as node P is itself concerned. we see that only 
vertices in M(L) are candidates for matching with ver
tices in [UL.VL] (recall that for vertices in M(R). the s, 
value exceeds VL). Furthermore. when Glover's algo
rithm is used with the A set being M(P) and the B set 
being [uL.VR] = [u,v].p, vertices in B are considered in 
the order UL. uL+l ..... vL. uR ..... vR. Hence. MAXM(L) is 
precisely the subset of M(P) that gets matched with 



i 

S. 
1. 

7 

1 

2 

i 

s 
i 

h. 
1. 

3 

1 

3 

i 

s. 
1. 

7 3 

1 1 

2 3 

/ 
0 

2 

1 

4 

[1,3] 

7 3 

1 1 

2 3 

Q 

2 4 

1 1 

4 4 

T 

4 i 

1 s. 
1. 

4 h. 
1. 

Q 
2 4 1 5 

1 1 4 4 

4 4 8 10 

/ 
I 

1 5 12 6 

4 4 4 4 

8 10 11 4 

\ [1,8] 

6 1 5 12 

4 4 4 4 

4 8 10 11 

[4,8] 

I 

9 12 8 14 10 11 6 13 

9 4 9 12 19 9 4 12 

10 11 11 12 13 13 4 13 

\ [1,13] 

0 I 

i 9 8 14 10 11 13 

s. 9 9 12 12 9 12 
1. 

h. 10 11 12 13 13 13 
1. 

1[9,13] ~ 
0 I 

i 9 8 11 i 14 10 13 

s. 9 9 9 s. 12 12 12 
1. 1. 

h. 10 11 13 h. 12 13 13 
1. 1. 

[9,11J [12,13] 

Figure Z. 7. Results of first pass. 

The candidates for the remaining vertices in B, i.e., 
[uR,vel are clearly T(L) U M(R). From the way Glover's 
algorithm works, it is also clear that the vertices of T(L) 
U M(R) that will get matched to [Ue,VR] are a subset of 
T(L) U MAXM(R). Let this subset be S'. We wish to show 
that S is a legitimate choice for S'. First, we show that S 
represents a feasible matching. Then, we shall show that 
S is in fact selectable by Glover's algorithm. 

We know that MAXM(R) can be matched into [Ue,VR]. 
Let Z be any such matching. Since S is selected by FEAS, 
we know that every vertex in S can be paired with a dis
tinct vertex in [UR ,VR] in a such a way that no vertex j in 
S is paired with a vertex with index greater than h;. Con
sider a pairing W that meets this condition. Now suppose 
that some ve.rtex j in S is paired with a vertex q in 
[UR,VR] with index less than Sf. Clearly, j must be a 
member of MAXM(R) (as all vertices in T(L) have an s 
value less than UR). Suppose that j is matched to j 1 in Z. 
So, q<j I' If j I, is free in W, then the pairing of j in W may 
be changed from q to j I' If j 1 is not free, then suppose it 
is matched to j2' From the restriction on W, it follows 
that q<JJ~hia' If 12E:T(L), then 12 may be paired with q 

andj withjl (since q<h Sia<q<h;a)' If 12E:MAXM(R) , then 
suppose that i2 is matched to is in Z. It is easy to see 
that j31'j I' If q=ja or is is free in W, then we may pair j 
with j 1 and 12 with j3' If q is in the interval [so h·] 

]2' '2' 

then we may pair j withiJ andj2 with q. If q is not in this 
interval, then since q<hia, q<Sj2~j3. Note that the condi-

182 

tion q <j 2iH is preserved. This is needed in case 
j2i+2E:T(L). Now, let j4 be the vertex paired with j3 in W. 
It should be clear that we can continue in this way and 
modify W so that j is paired with h 12 with is. j 4 with j 5. 

etc. In the new pairing. there is one fewer vertex of S 
that is paired with a vertex with smaller s value. 

Repeating the above construction several times, W 
can be transformed into a matching such that every ver
tex jE:S is matched to a vertex q in [UR. UL] such that 
sj~q~hi' Hence. S represents a feasible matching. 

Let S' (as defined earlier) be the subset of MAXM(R) 
U T(L} matched by Glover's algorithm to the vertex set 
[UR.VR]. We shall now proceed to show that S is a valid 
choice for S·. Let Z be any matching of MAXM(R) into 
[UR.vR]. Let Y be a matching of S' in which all vertices in 
MAXM (R) n S' are matched to the same vertex in [UR, v R] 
as in the matching Z. Let W be a corresponding match
ing for S. The existence of the matchings Y and W is a 
consequence of the construction used to show the feaSi
bility of S. 

From the definition of S', it follows that S· oS. Also, 
from the working of FEAS, it follows that SOS·. Let jE:S 
be a vertex with least h; such that i ~ S'. If no such j 
exists, then S=S'. Assume that j is matched to q in W. If 
q is free in y, then S' cannot be of maximum cardinality. 
So, let pES' be matched to q in Y. By definition of Y and 
W. p ~ S. Also, from the order in which FEAS considers 
vertices, hp2:hj (as otherwise, FEAS would consider p 
before j and select p for S). Hence, S'UtiHpj is also a 
subset selectable by Glover'S algorithm (Since hp2:hj' by 



ensuring j<p, Glover's algorithm will be forced to matchj 
before p.). S' U liHpj agrees with S in one place more 
than does S'. 

By repeating this interchange process, S' may be 
transformed into S with the result that S is also a max
imum cardinality subset of MAXM(R) U T(L) that is select
able by Glover's algorithm for matching in [UR ,v R]. 

Hence, MAXM(L) U S is a maximum cardinality sub
set of M(P) selectable by Glover'S algorithm for matching 
in [u,v),P, • 

Once MAXM(P) is known, T(P) and I(P) are easily 
computed, Actually, as I(P) is never used, we may omit 
its computation, Figure 2,7 shows the MAXM, I, and T 
sets (except when empty) for all nodes in our example, 

Pass 2 
In the second pass, for each vertex P of the computation 
tree, we compute a set MAXM' (P) which represents the 
set of A vertices matched by Glover's algorithm with the 
set [u,v],P, With respect to the matching shown by solid 
lines in Figure 2,1, we see that if P is the root, then 
MAXM'(P) = 11, 2, 3, 4, 5, 7,8,9, 10, 11, 12, 14j; if P is 
node 3 of the computation tree, then MAXM'(P) = IB, 9, 
10, 11, 14!, 

i 

s 
i 

h. 
~ 

i 

s 
i 

h. 
~ 

7 

1 

2 

7 3 

1 1 

2 3 

Q' I 
3 2 

1 1 

2 4 

[1,3] 

i 

s 
i 

h. 
~ 

Q' 

2 4 

1 1 

4 4 

i 

s 
i 

h. 
~ 

7 3 2 4 1 

1 1 1 1 4 

2 3 4 4 8 

/ 
1 5 12 

4 4 4 

8 10 11 

X,~j 
Q' 

4 1 5 12 

1 4 4 4 

4 8 10 11 

[4,8] 

Q' 

5 

4 

10 

If P is the root node, then MAXM'(P) =MAXM(P) , by 
definition of MAXM(P) , Let P be any nonleaf node for 
which MAXM'(P) has been computed, Let Land R be the 
left and right children, respectively, of P. Let [u,v].L = 
[UL,VL) and [u,v].R = [uR,vR]. Let V = !~iE:MAXM'(P) and 
Sj<uLJ, Let W be the ordered set obtained by merging 
together V and MAXM(L) (note that both V and MAXM(L) 
can be maintained so that they are in nondecreasing 
order of It;. and that W is also in nondecreasing order of 
It;.), MAXM'(L) consists of the first min {Iwl, 11L -'ILL +lj ver
tices in W, The correctness of this statement may be 
established by induction on the level of p, MAXM'(R) is 
readily seen to be MAXM'(P)-MAXM'(L), Figure 2,B, shows 
the MAXM'( ) sets for all the vertices in the computation 
tree of our example, 

From the MAXM'( ) sets of the leaves, the matching 
is easily obtained, If P is a leaf, and [u,v].P=[a,b), then 
the first vertex in MAXM'(P) is matched with a, the 
second with a+ 1, etc, (note that MAXM'(P) is in nonde
creasing order of It;.), The matching for our example is 
also given in Figure 2,B, 

9 12 8 14 10 11 

9 4 9 12 12 9 

10 11 11 12 13 13 

\1,13J 
Q' 

i 9 8 14 10 11 

s. 9 9 12 12 9 
~ 

h. 
~ 

10 11 12 13 13 

k 
19,Uj 

Q'\ 

i 9 8 11 i 14 10 

s. 9 9 9 s 12 12 
~ i 

h. 10 11 13 h. 12 13 
~ ~ 

[9,11] [12,13] 

rna tching={ (7,1) , (3,2) , (2,3) , (4,4) , (1,5) , (5,6) , (12,7) , (9,9) , (8,10) 

(11,11),(14,12),(10,13)} 

Ji'i,gure 8,8 Second pass 

183 



Comptezity Analysis 

The initial ordering of A by si and within si by h;. can be 
done in O(log2n) time using n/2 PEs([l1] and [12]). Dur
ing the first pass, the computation of MAXMO requires 
the use of FEAS and a merge. The use of FEAS (without 
the sort) takes O(logn) time and requires 
O(IM(P~/loglM(P~) PEs [1]. The merge at node P takes 
O(logn) time with lM(p~12 PEs. Since. MAXM can be com
puted in parallel for all nodes on the same level of the 
computation tree. O(logn) time is needed per level. The 
total time for the first pass is O(log2n) and n/2 PEs are 
needed. Pass 2 requires only some merging per node. 
The total cost of this pass is also O(10g2n) and n/2 PEs 
suffice. 

Hence, the overall complexity of our parallel algo
rithm for maximum matching in convex bipartite graphs 
is O(log2n). The PE requirement is O(n). 

Another complexity measure often computed for 
parallel algorithms is the effectiveness of processor utili
zation (EPU) (see [1]. [2]. and [14]). For any problem P 
and parallel algorithm A. this is the ratio of the complex
ity of the fastest known algorithm for P and the product 
of the complexity of A and the number of PEs used by A. 

For our algorithm, we have an EPU that is 
O«n+mA(m»/(10g2n*n» (recall that m::/B). 

3. Conclusions 

This paper has further enhanced the utility of the binary 
tree method of Dekel and Sahni [2] for the design of 
parallel algorithms. It should also be pointed out that 
while all of our complexity analyses have assumed the 
availability of as many PEs as needed. our algorithms 
can be used when fewer PEs are available. The complex
ity of each algorithm will increase by no more than the 
shortfall in PEs. So if only half the number of PEs is avail
able, then the time needed will at most double (except 
tor a possible constant increase in overhead). 

The parallel matching algorithm developed here can 
be used to obtain efficient parallel algorithms tor several 
scheduling algorithms. These algorithms are developed 
in [l5}. 

4. References 

1. Dekel. E. and Sahni. S .• "Parallel scheduling algo
rithms." International Conference on Parallel Pro
cessing. pp. 350-351, 1981. To appear in Op. Res. 

2. Dekel. E., and Sahni, S .• "Binary trees and parallel 
scheduling algorithms," In Lecture Notes In Com
puter Science. vol 111. CONPAR81. Springer Verlag. 
1981. pp. 480-492. 

184 

3. Dekel. E .. Nassimi, D .• and Sahni, S., "Parallel matrix 
and graph algorithms". SICOMP, vol. 10. no. 4. Nov 
1981. pp. 657-675. 

4. Emde Boas. P. van, "Preserving order in a forest in 
less than logarithmic time and linear space." Info. 
Proc. Let., 6, pp. 80-82. 1977. 

5. Glover, F .. "Maximum matching in a convex bipartite 
graph," Naval Res. Logist. Quart., 14 (1967), pp. 313-
316. 

6. Jackson, J.R.. "Scheduling a production line to 
minimize maximum tardiness." Research Report 43. 
Management Science Research Project, University of 
California. Los Angeies. 1955. 

7. Lageweg. B.J. and Lawler, E.L .. Private communica
tion. cited in "Sequencing by enumerative methods," 
by J.K. Lenstra. p.22, Mathematisch Centrum, 
Amsterdam. 1976. 

8. Lipski, W. Jr. and Preparata, F. P., "Efficient algo
rithms for finding maximum matchings in convex 
bipartite graphs and related problems." ACTA Infor
matica. 15. pp. 329-346, 1981. 

9. McNaughton, R., "Sequencing with deadlines and loss 
functions." Manag. Sci., 6, pp.I-12, 1959. 

10. Muntz, R. R., and Coffman, E. G., Jr., "Optimal 
preemtive scheduling on two-processor systems," 
IEEE Trans on Computer, e-18, (1969) pp. 1014-1020. 

11. Nassimi, D., and Sahni s., "Bitonic sort on a mesh 
connected parallel computer," IEEE Trans on Com
puters, c-28, no. 1. January 1979, pp.2-7. 

12. Preparata, F. P., "New parallel-sorting schemes," 

IEEE Trans. on Computers, c-27, no.7, July 1978, 
pp.669-673. 

13. Rinnooy Kan, A. H. G .. "Machine scheduling problems. 
classification complexity, and computation". Nighoff, 
The Hague. 1976. 

14. Savage. C., "Parallel algorithms for graph theoretic 
problems." Ph.D. Thesis. University of Illinois. 
Urbana, August 1978. 

15. DekeL E., and Sahni. S .. "A parallel matching algo
rithm for convex bipartite graphs and applications to 
scheduling". University of Minnesota. Technical 
Report TR 81-3. 



SIGNIFICANCE OF PROBLEM SOLVING PARAMETERS ON THE PERFORMANCE 
OF COMBINATORIAL ALGORITHMS ON MULTI-COMPUTER PARALLEL ARCHITECTURES 

F. Gail Gray, W. M. McCormack, Robert M. Haralick 

Dept. of Computer Science and Dept. of Electrical Engineering 
Virginia Polytechnic Institute and State University 

Blacksburg, Virginia 

ABSTRACT (1) 

This experiment has determined an 
optimum problem solving strategy for the 
consistent labeling problem. One combi
nation of factors, depth first search 
strategy-transmit large problems-transmit 
50% of a processor~s work, was found to 
be statistically best, especially for 
large problem sizes or for architectures 
with restricted communications paths. 
Future work involves experimentation to 
understand the architecture related fac
tors. The results in this paper indicate 
that the performance of the system, even 
using the optimum problem solving stra
tegy, will vary considerably with archi
tecture. 

I. INTRODUCTION 

Combinatorial problem solving under
lies numerous important problems in areas 
such as operations research, non-parame
tric statistics, graph theory, computer 
science, and artificial intelligence. 
Examples of specific combinatorial prob
lems include, but are not limited to, 
various resource allocation problems, the 
travelling salesman problem, the relation 
homomorphism problem, the graph clique 
problem, the graph vertex cover problem, 
the graph independent set problem, the 
consistent labeling problem, and proposi
tional logic problems [12-15]. These 
problems have the common feature that all 
known algorithms to solve them take, in 
the worst case, exponential time as prob
lem size increases. They belong to the 
problem class NP. 

This paper describes the interaction 
between specific algorithm parameters and 
the parallel computer architecture. The 
classes of architectures we consider are 
those which have inherent distributed 
control and whose connection structure is 
regular. 

(l)This work was supported in part by the 
Office of Naval Research Grant 
N00014-80-C-0689. 

0190-3918/82/0000/0185$00.75 © 1982 IEEE 185 

Combinatorial problems require solu
tions which do searching. To help in 
describing the parallel. combinatorial 
search, we associate with the space yet 
to be searched the term "the current 
problem." A representation mechanism 
which can partition the space yet to be 
searched can divide the current problem 
into mutually exclusive subproblems. 

Now suppose that one processor in a 
parallel computer is given a combinato
rial problem. In order to get other pro
cessors involved, the processor divides 
the problem into mutually exclusive sub
problems and gives one subproblem to each 
of the neighboring processors, keeping 
one subproblem itself. At any moment in 
time each of the processors in the paral
lel computer network may be busy solving 
a subproblem or may be idle after having 
finished the subproblem on which it was 
working: At suitable occasions in the 
processlng, a busy processor may notice 
that one of its neighbors is idle. On 
such an occasion the busy processor 
divides its current problem into two sub
problems, hands one off to the idle 
neighbor and keeps one itself. 

The key points of this description are 

1. the capability of problem division 

2. the ability of every processor to 
solve the entire problem alone, if it 
had to. 

3. the ability 
transfer a 
neighbor. 

of a busy processor to 
subproblem to an idle 

The parallel computer architecture 
research issue is: to determine that way 
of problem subdivision which maXlmlzes 
computation efficiency for each way of 
arranging a given number of processors 
and their bus communication links. 

To define this research issue pre
cisely requires 

1. that we have a systematic parametric 
way of describing processor/bus 
arrangements and 



2. that we have alternative problem sub
division techniques. 

This paper addresses the interaction 
between the processor/bus graph and prob
lem size subdivision transfer mechanism. 
Once these relationships are determined 
and expressed mathematically, the paral
lel computer architecture design problem 
becomes less of an art and more of a 
mathematical optimization. 

Our ultimate goal is to allow computer 
engineers to begin with the combinatorial 
problems of interest and determine via a 
mathematical optimization, the optimal 
parallel computer architecture to solve 
the problems assuming that the associated 
combinatorial algorithms are given. 

II. PROCESSOR-BUS MODEL 

In this section we discuss a proces
sor-bus model which can be used to model 
all known regular parallel architectures 
[l,3,4,7,B,10,2l-26]. The model does not 
currently include the general intercon
nection and shuffle type networks. 

The graphical basis for the model is a 
connected regular bipartite graph. A 
graph is bipartite if its nodes can be 
partitioned into two disjointed subsets 
in such a way that all edges connect a 
node in one subset with a node in the 
second subset. A graph is connected if 
there is a path between every pair of 
nodes in the graph. A bipartite graph is 
regular if every node in the first set 
has the same degree and every node in the 
second set has the same degree. One sub
set of nodes represents the processor 
nodes and one subset represents the com
munication nodes in the parallel process
ing system. Every edge in the graph then 
connects a processing node to a communi
cation node. 

Any regular bipartite graph can be 
used to design a parallel computer struc
ture by assigning the nodes in one set to 
be processors and the nodes in the other 
set to be communication links (or buses). 
Notice that theoretically either set of 
the bipartit.e graph could be the proces
sor set. Therefore, each unlabeled 
bipartite graph represents two distinctly 
different computer architectures depend
ing upon which set is considered to be 
processors and which set is considered to 
be the buses. 

The notation B{n,d ,n ,dc ) will be 
used to denote a re~ulgr 5ipartite graph 
which represents an architecture with n 
processors (each connected to d communiE 
cation nodes) and n communica~ion nodes 
(each servicing dc c processors). The 

186 

Boolean 3-cube will then be represented 
by a graph B{B,3,12,2). In general, the 
Boolean n-cube wi~llbe represented by a 
graph B{2n , n , n2 - , 2). Reversing the 
assignment of nodes to processors and 
buses produces the B{12,2,B,3) graph 
which is called the p-cube by some inves
tigators. 

Other common architectures also have 
representations as bipartite graphs 2 For 
example, a planar array of size x con
nected in the ¥on N~umann manner is 
modeled as a B{x ,4,2x ,2) graph, the 
Moo~e 2onnection results in a 
B{x ,B,4x ,2) graph, the common bus 
architecture { or star) with x processors 
is a B(x,l,l,x) graph, and the common 
ring architecture is a B{x,2,x,2) graph. 
All existing architecures with regular 
local neighborhood interconnections can 
be modeled as a B{np,dp,nc,dc ) graph. 

III. PROBLEM SOLVING FACTORS 

Introduction to Tree Searching 

In order to make effective use of a 
multiple asynchronous processor for any 
problem, a major concern is how to dis
tribute the work among the processors 
with a minimum of interprocessor communi
cation. Kung [14] defines module granu
larity as the maximal amount of computa
tional time a module can process without 
having to communicate. Large module 
granularity is better because it reduces 
the contention for the buses and reduces 
the amount of time a processor is either 
idle or sending or re7eiving work. Also, 
large granularity 1S usually better 
because of the typically fixed overhead 
associated with the synchronization of 
the multiple processors. 

In the combinatorial tree search prob
lems we are considering, module granular-. 
ity as defined by Kung is not as meaning
ful because each processor could in fact 
solve the entire problem by itself with
out communicating to anybody. For our 
problem a more appropriate definition of 
module granularity might be the expected 
amount of processing time or the minimum 
amount of processing time before a pro
cessor splits its problem into two sub
problems, one of which is given to an 
idle neighboring processor and one of 
which is kept itself. 

When a processor has finished search
ing that portion of the tree required to 
solve its subproblem, it must wait for 
new work to be transferred from another 
processor. The amount of time a proces-



sor must wait before transmission begins 
and until transmission is completed is 
time wasted in the parallel environment 
that would not be lost in a single pro
cessor system. Thus, one must expect 
improvement in the time to completion to 
solve a problem in the multiple processor 
environment to be less than proportional 
to the number of processors. The factors 
that can affect the performance by either 
reducing the average transmission time or 
reducing the required number of transmis
sions include choice of algorithm, choice 
of search strategy, and choice of sub
problems that busy processors transfer to 
idle processors. 

Choice of Algorithm 

In the single processor case, various 
algorithms have been proposed and studied 
to efficiently solve problems requIrIng 
tree searches. These usually involve 
investing an additional amount of compu
tation at one node in the tree in order 
to prune the tree early and avoid need
less backtracking. In work on constraint 
satisfaction [111, the forward checking 
pruning algorithm was found to perform 
the best of the six tested and backtrack
ing the worst. 

For the same reasons, it seems clear 
that pruning the tree early should be 
carried over to a multiple processor sys
tem to reduce the amount of computation 
necessary to solve the problem. There 
are other reasons as well. Failure to 
prune the tree early may later result in 
transfers to idle processors of problems 
which will be very quickly completed. 
Since a transfer ties up, to some extent, 
both the sending and receiving processor, 
time is lost doing the communication and 
the processor receiving the problem would 
shortly become idle. 

We would, therefore, expect that in 
the multiple processor environment the 
forward checking pruning algorithm for 
constraint satisfaction would work much 
better than backtracking. However, in 
the uniprocessor environment Haralick and 
Elliott also showed that too much look 
ahead computation at a node in the search 
could actually increase the problem com
pletion time. It is not clear that this 
would be true in the multiple processor 
case. It may be best to do more testing 
early reducing future transfers, communi
cation overhead, and delay in contrast to 
the single processor case where only some 
extra testing has been found to be worth
while. 

A second consideration in the selec
tion of a search algorithm is the amount 
of information that must be transferred 
to an idle processor to specify a 

187 

subproblem and any associated lookahead 
information already obtained pertinent to 
the subproblem. In most cases this is 
proportional (or inversely proportional) 
to the complexity of the problem remain
ing to be solved. Thus the transmission 
time will be a function of the problem 
complexity. Backtracking requires very 
little information to be passed while, 
for forward checking, a table of labels 
yet to be eliminated must be sent. 

Search Strategy 

Search strategy is a second factor of 
importance to the multiple processor 
environment. When a problem involves 
finding all solutions, like the consis
tent labeling problem, the entire tree 
must be searched. Thus, in a uniproces
sor system the particular order in which 
the search is conducted, i.e., depth 
first or breadth first, has no effect. 
In a multiple processor system, however, 
this is a critical factor because it 
directly affects the complexity of the 
problems remaInIng in the tree to be 
solved and available to be sent to idle 
processors from busy processors. 

A depth first search will leave high 
complexity problems to be solved later 
(that is, problems near the root of the 
tree.) This would seem to be desirable 
in the multiple processor environment 
because passing such a problem to an idle 
processor would increase the length of 
time the processor could work before 
going idle and thereby reduce the need 
for communication. On the other hand, a 
breadth first search would tend to pro
duce problems of approximately the same 
size. Since the problem is not completed 
until all processors are finished, the 
breadth first strategy might be prefera
ble if it results in all processors fin
ishing at about the same time. It might 
be that the best approach could be some 
combination of the two; for example, one 
might follow a depth first strategy for a 
certain number of levels, then go breadth 
first to a certain depth, and then con
tinue depth first again. 

Problem Passing Strategy 

A factor closely related to the search 
strategy occurs when a processor has a 
number of problems of various complexi
ties to send to an idle processor. The 
optimization question is how many should 
be sent and of what complexity(ies). 
Further complicating this is a situation 
where the processor is aware of more than 
one idle processor. In such a situation, 
how should the available work be divided 
and still leave a significant amount for 
the sending processor? 



Further complicating this question is 
the fact that the overhead involved in 
synchronizing the various processors and 
transmitting problems to idle ones will 
eventually reach a point where it will be 
more than the amount of work left to be 
done. An analogous situation exists in 
sorting; fast versions of QUICKSORT even
tually resort to a simple sort when the 
amount remaining to be sorted is small 
[13] • 

In this case, it would appear that a 
point will eventually be reached where it 
is more effective for a processor simply 
to complete the problem itself rather 
than transmit parts of it to others. 
Determination of this point will depend 
on the depth in the tree of the problem 
to be solved and the amount of informa
tion that must be passed (which depends 
on the lookahead algorithm being used.) 

Processor Intercommunication 

One decision that has to be made is 
how the need to transfer work is recog
nized. Specifically, does a processor 
which has no further work interrupt a 
busy processor, or does a processor with 
extra work poll its neighboring proces
sors to see if they are idle. 

The advantage of interrupts is that as 
soon as a processor needs work, it can 
notify another processor instead of wait
ing to be polled. This assumes, however, 
that a processor would service the inter
rupt immediately instead of waiting until 
it had finished its current work. A 
disadvantage is that when a processor 
goes idle, it cannot know which of its 
neighbors to interrupt. Using polling, 
an idle processor can be sent work by any 
available neighboring processor instead 
of being forced to choose and interrupt 
one. In addition, although an inter
rupted processor may be working or tran
smitting (a logical and necessary condi
tion) when interrupted, it may not have a 
problem to pass when it is time to pass 
work to the interrupting processor. In 
fact, the interrupted processor could 
itself go idle. For these reasons the 
simulation we discuss in section IV uses 
polling. Whenever a processor completes 
a node in the tree, and as long as it has 
work it could transfer, it checks each 
neighboring CPU and the connecting bus. 
If both are idle, a transfer is made. 

188 

IV. SIMULATION EXPERIMENTS 

In order to better understand the 
behavior of the tightly coupled asynchro
nous parallel computer, we have designed 
a series of simulation experiments using 
the consistent labeling 90nstr~int satis
faction problem. The slmulatlon used to 
perform these experiments was written in 
SIMULA [Birtwistle" Myhrhaug & Nygaard, 
1973]. Le2 U and L be finite sets Let 
R C (U x L). We use the simulated par
allel computer to find all functions 
f: U -> L satisfying that for all (u,v) e 
UxU,{u,f{u),v, f{v» e R. The goal of 
the experiments is to determine which 
architectural and which problem related 
factors are significant enough to warrant 
further investigation. This paper pre
sents the results for problem related 
factors. 

In this experiment each problem factor 
was tested a~ two levels. The factors 
and levels tested are given in Table 1. 
Based on previous experiments [16], it 
was very clear that forward-checking was 
significantly better than backtracking so 
all experiments used the forward-checking 
algorithm [11]. In order that the 
results be applicable for different 
architectures and problem sizes, two 
problem sizes (small and medium) and two 
very different architectures (in terms of 
the number of communication paths) were 
used. The architectures chosen were sym
metric to eliminate the need for assump
tions about the architecture related fac
tors discussed earlier. The ring 
architecture, B{64, 2, 64, 2), due to the 
limited interconnection structure, will 
have difficulty passing work from the 
initial processor to distant processors. 
The Boolean 6-cube B{64, 6, 192, 2), 
should be able to effectively utilize 
most of the 64 processors. Finally, one 
replication was run of each combination. 
This involves running the simulation with 
different random number seeds to create 
statistically equivalent combinatorial 
problems. An analysis of variance was 
used to determine the significance of the 
problem related parameters and to deter
mine interactions of the parameters [20]. 
The measure of performance used was the 
time until the problem was solved. 

Results 

The analysis of variance was done 
using the SAS (Statistical Analysis Sys
tem) package. The analysis showed sta
tistically significant differences in the 
means (at a level of 0.0001), and second 
and third order interactions for the 
search strategy, size pasSed, and number 
passed. The means for the two cutoff 
point levels were not statistically dif-



ferent. Because the 
interaction among strategy, 
number was significant, the 
of these three factors were 
eight levels of one combined 
further analysis. 

three way 
size, and 

combinations 
treated as 
factor for 

Duncan~s multiple range test was per
formed [20] to divide the levels into 
groups with similar performance. The 
results, based on the average time to 
completion for the different experimental 
conditions, are shown in Table 2. 

The key result is that one combination is 
clearly superior, depth-large-50%, and 
should be used in further experiments. 
(This combination also produced the low
est mean for each of the four architec
ture-problem size pairs.) 

There is a logical explanation for the 
groupings. For each factor one value can 
be classified as positive (i.e., it 
should contribute to improved performance 
regardless of other factors), and the 
other negative (i.e., it should result in 
poorer performance). The positive fac
tors are indicated as level 1 in Table 1. 
For example, passing more than one sub
problem or passing large sub-problems 
should be preferable as the idle proces
sor should stay busy longer. Since in a 
depth first search a processor works on 
small problems, this should leave larger 
problems to pass. As a result communica
tion time is reduced. 

using this idea of a positive level 
for each factor, only one combination has 
all 3 levels positive, three have two 
positive, three have one positive, and 
one no positive levels. The grouping 
produced by Duncan~s test confirms this 
analysis and, in fact, produces a finer 
partition. Thus, the interaction between 
these factors agrees with the analysis. 
The analysis of variance also indicated 
significant interactions between the com
bined factor and the experimental condi
tions of problem size and architecture. 
To best understand these interactions, 
the values were plotted as suggested by 
Cox [6]. (Figures 1,2,3). If there were 
no interaction, then the curves in each 
figure would be parallel. 

Figure 1 shows a clear interaction 
between problem size and architecture. 
For a small problem, a small number of 
processors is sufficientJ thus, the ina
bility of the ring to spread sub-problems 
to idle processors is not a severe handi
cap. However, for a larger problem, the 
performance of the ring is much worse 
than that of the 6-cube which is able to 
involve many more of the processors. In 
each case the time to completion was 
approximately 3 times longer in the ring 

189 

architecture. Since the degree of each 
processor node in the ring is 1/3 of the 
degree of each processor node in the Boo
lean 6-cube, it appears that performance 
may be proportional to the degree of the 
processor nodes. This has intuitive 
appeal because more communication paths 
should improve the ability of processors 
to keep busy. Later experiments will 
confirm or deny this conjecture. It is 
also possible that diminishing returns 
may set in for extremely large numbers of 
communication nodes. This plot indicates 
that the use of an optimum architecture 
becomes more crucial for large problems. 

Figure 2 shows the interaction of the 
combined problem solving factor with 
problem size. Clearly, the need to det
ermine the best combinations of problem 
solving factors becomes more critical as 
the size of the problem increases because 
a bad choice has a greater detrimental 
effect on the larger problem. 

Figure 3 shows the interactions of the 
combined problem solving factor with 
architecture type. This plot shows that 
an optimum choice of problem-solving fac
tors tends to reduce the effects of a bad 
choice of architecture. However, the 
difference in performance between the 
architectures using the optimum problem 
solving strategy is still a factor of 3, 
so that further experiments to determine 
an optimum architecture seem justifiable. 

REFERENCES 

(1) Anderson, G. A., and E. D. Jensen, 
"Computer Interconnection Struc
tures: Taxonomy, Characteristics, 
and Examples", Computing, Surveys, 
Vol. 7, Dec. 1975, pp. 197-213. 

(2) Armstrong, J. R. and F. G. Gray, 
"Some Fault Tole-rant Properties of 
the Boolean n-Cube", Proceedings of 
the 1980 Conference on Information 
SCIences and Systems,-Princeton, NJ, 
March 26-28, 1980, pp. 541-544. 

(3) Benes, V. E., "Optimal Rearrangeable 
Multistage Connecting Networks", 
Bell System Technical Journal, July 
1964, pp. 1641-1656. 

(4) Batcher, K. E., "Sorting Networks 
and Their Applications", Spring 
Joint Computer Conference, 1968, pp. 
307-314. 

(5) Birtwistle, G. M., Dahl, O. J., B. 
Myhrhaug, and K. Nygaard, SIMULA 
Begin, Auerbach Publishers Inc., 
Philadelphia, PA, 1973. 



(6) 

(7) 

(8) 

(9) 

cox, D. R., Planning of Experiments, 
John Wiley & Sons, Inc., New York, 
1958. 

Despain, A. M. and D. A. Patterson, 
"X-Tree: A Tree Structured Multi
processor Computer Architecture", 
5th Annual Symposium ~ Computer 
Architectura, architecture, 1978, 
pp. 144-151. 

Finkel, R. A. and M. A. Solomon, 
"Processor Interconnection Strate-
gies", IEEE Transactions ~ Compu-
ters, Vol. C-29, May 1980, pp. 
360-370. 

Foster, M. J. and H. T. Kung, "The 
Design of Special Purpose VLSI 
Chips", ComEuter, Jan. 1980. 

(10) Goke, R. L. and B. S. Lipovski, 
"Banyon Networks for Partitioning 
Multiprocessor Systems", Proceedings 
of ~ Conference ~ ComEuter 
Arch1tecture, 1974, ~p. 21-28. 

(11) Hara1ick, Robert M. and G. Elliott, 
"Increasing Tree Search Efficiency 
for Constraint Satisfaction Prob
lems", Artificial Intelligence, Vol. 
14, 1980, pp. 263-313. 

112) Hillier, F. S. and G. S. Lieberman, 
0Eerations Research, Holden Day, 
Inc., San Francisco, 1979. 

(13) Knuth, D. E., The Art of ComEuter 
Programming, Sorting and Searching, 
Addison-wesley Pub1ishIOg, Reading, 
MA, 1973. 

(14) Kung, H. T., "The Structure of Par
allel Algorithms", in Advances in 
comeuters, Vol. 19, edited by M. 0: 
YOV1ts, Academic Press, 1980. 

(15) Lee, R. B., "Empirical Results on 
the Speed, Redundancy and Quality of 
Parallel Computations", Proceedings 
of 1980 International Conference on 
ParaIIe1 Processing, 1980. 

(16) McCormack, W. H., F. G. Gray, J. G. 
Tront, R. M. Hara1ick and G. S. 
Fowler, "Multi-Computer Parallel 
Architectures for Solving Combinato
rial Problems", Multi-Computer 
Architectures and Image Processings: 
Algorithms and Programs, Academic 
Press, New York, 1982. 

(17) Mead, C. A. and M. Rem, "Cost and 
Performance of VLSI Computing Struc
tures", IEEE J. Solid State Cir
cuits, sc-14 (2)-; pp. 455-462, 1979. 

(i8) Mead, C. A. and L. A. Conway, Intro
duction to VLSI Systems, Addison
Wesley, Reading, MA, 1980. 

(19) 

(20) 

Mirza, J. H., "Performance Evalua
tion of Pipeline Architectures", 
Proceedings of 1980 International 
Conference oo-ParaIIe1 Processing, 
1980. 

Ott, Lyman, An Introduction to Sta
tistical MethOds and Data AnalySIS, 
Duxbury Press, North Scituate, MA, 
1977 • 

Table 1 - Experiment Summary 

FACTORS TESTED 

FACTOR 

search strategy 

size .of sub-problem 
passed 

number of sub-problems 
passed 

cutoff point 

LEVEL 1 

depth-first 

largest 

50% of expected 
total work 

none 

EXPERIMENTAL CONDITIONS 

Architecture 
number of processors 
number of buses 

Size of combinatorial 
problem 

One replication 

Ring 
64 
64 

small - 12 
units & labels 

random 

190 

LEVEL 2 

breadth-first 

smallest 

1 sub-problem 

4 units to be tested 

6-cube 
64 
192 

medium - 16 
units & labels 

random 



24 

-(1)20 
o 
o 
o .. 
g 16 

c 

-
~ 12 

.... 
z 
o 8 
.... 
W 
...J 
a. 
~ 4 
o 
U 

Table 2 - Duncan~s Multiple Range Test 

GROUPING* MEAN 
COMPLETION 

TIME 

ID FACTOR COMBINATION 

A 
B 
C 
D 
E 

F E 
F 

G 

2,705,274 
1,874,887 

689,372 
451,133 
335,267 
301,774 
247,667 
147,181 

NUMBER SEARCH SIZE NUMBER 

8 
7 
4 
6 
5 
3 
2 
1 

breadth 
breadth 
depth 
breadth 
breadth 
depth 
depth 
depth 

small 
large 
small 
small 
large 
large 
small 
large 

one 
one 
one 
50% 
50% 
one 
'>0% 
50% 

*means with the same grouping are not significantly different 
significance level = 0.05 

FIGURE 1 
PROBLEM SIZE AND 

ARCHITECTURE 
VS. COMPLETION TIME 

RING 

12 16 

PROBLEM SIZE-:fI:UNITS= # LABELS 

191 



16 

12 

8 

4 

-(/) 

0 
0 
0 ... 
0 
0 

z 20 -
W 
~ 
.-- 16 
Z 
0 
t-
w 12 ..J 
CL 
~ 
0 
u 

8 

4 

" FIGURE 2 

PROBLEM SIZE AND 
PROBLEM-SOLVING FACTORS 

VS. COMPLETION TIME 

2 3 

COMBINED 

FIGURE 3 
ARCHITECTURE AND 

5 6 7 

FACTOR 10 NUMBER 

PROBLEM-SOLVING FACTORS 
VS. COMPLETION TIME 

2 3 4 5 6 7 

COMBINED FACTOR ID NUMBER 

192 

8 

6-CUBE 

I 

8 



NOVAC - A NON-TREE VARIABLE TREE FOR COMBINATORIAL COMPUTING 

B.C. Desai 
J. Opatrny 

C. Lam J.W. Atwood 
S. Cabilio P. Grogono 

Computer Science Department 
Concordia University 

Montreal, Quebec, Canada 

Abstract - - In exact computation, a number of 
problems exist, the solution to which demands an 
exhaustive search and hence a great deal of 
computing time. The algorithms used are simple 
but the computation involved is so great that it 
cannot be done economically on a large scale 
time-shared general purpose computer. The 
present multiprocessor project at Concordia 
consists of a dynamically variable virtual tree 
structured system for solving a class of combina
torial problems. The proposed multiprocessor 
structure consists of loosely coupled processors 
with no shared memory. Each processor in the 
system can be a master or a slave or both, and 
under certain conditions a master processor can 
become a slave of its own slave processor. A 
master assigns tasks to the slaves and subsequent
ly obtains results from them. The nature of the 
problem being solved and the high bandwidth of 
the interprocessor communication bus is expected 
to cause inappreciable degradation due to conten
tion. The user expresses the problem being 
solved in a high level language called Pascal-C; 
this is conventional Pascal with a number of 
additional constructs including synchronization 
statements. Another part of the project involves 
designing the extensions to an existing operating 
system to support this dynamically ·variable 
structure and the runtime system of Pascal-C. 

Introduction 

There are many problems in exact computation 
requiring a great amount of computing time to 
solve them. The computations involved are simple 
however the amount of computation is so great 
that it cannot be done economically on a large 
scale general purpose computer. Parallel proc
essing of subproblems derived from a large class 
of problems on multi~microprocessors is becoming 
increasingley feasible economically. Interproc
ess communication of these processors is imple
mented by an interconnection network. A number 
of surveys of interconnection networks have 
appeared in relevant literature, ego [7]. Numer
ous systems have been proposed to exploit the 
parallelism in such problems. A computer 
structure in the form of a tree has been proposed 
in [1]; a system to solve problems that may be 
expressed with recursive algorithms is presented 
in [4]. In [5], a microprocessor based system 
has been described for the 0-1 programming 
problem. A number of adaptive computer architec
ture schemes have been proposed recently; [9,12] 
are examples of such systems. However, many of 
these systems are in the developmental or 
experimental stage and/or are too expensive for 
general availability. 

The NOVAC project at Concordia consists of 

0190-3918/82/0000/0193$00.75 © 1982 IEEE 193 

a loosely coupled, non-tree structured multi
processor system with the potential of being 
dynamically structured into a virtual variable 
tree to solve a class of combinatorical problems. 
This system is to be built with off-the-shelf 
mini and micro computers, and interconnected 
using an inexpensive asynchronous bus. The 
logical structure, consisting of a hierarchy of 
masters, each with a number of slaves is natural 
for the set of problems which can be split-up 
into a number of identical sub-problems. 

Novac Hardware 

The hardware, Figure 1, consists of a 
number of PDP/II based processing systems; each 
processor in the system has its own private 
memory and is under control of its own operating 
system. Each processor executes independently 
and communication between processors is via the 
common Novacbus. Each processor thus, has the 
same physical status as any other processor. 
The initial system consists of a PDP-ll/34 and 
several LSI-ll/23 processors. The PDP-ll/34 is 
equipped with conventional peripherals (terminal, 
printer, and disk drives) an an UNI (Unibus to 
Novacbus) interface to the Novacbus, but the 
LSI-ll/23 has only a UNI interface, and as such 
can only communicate with the other processors 
in the system. 

The. proposed system has the following fea
tures (i) the problem presented to it can be sol
ved by the same program code (a copy of the code 
is resident in the memory of each processor); 
(ii) the logical tree structure with a master
slave relationship of the processors: the master 
assigns the sub tasks to the slaves; the slaves 
can act as masters and divide their tasks and 
assign them to their slaves; (iii) there is a 
main master at the "root" of the tree and the 
user communicates his problem via this master; 
(iv) there is no shared memory and communication 
is limited between the master and slave; (v) no 
communication exists amongst the slaves; (vi) 
the amount of communication between the master 
and slave is not extensive; (vii) the processors 
are interconnected via the UNI interface to the 
Novacbus. 

Since the amount of communication between 
the processors is limited, a single asynchronous 
bus of high bandwidth to serve the maximum 
number of processors is proposed; the high band
width keeps the contention for use of this bus 
low. The proposed channel will support a 
hierarchy of communication protocols from high 
level virtual communication between programs, 
to low-level physical communication between 
hardware units. 



This system which has only one interconnec
tion per processor has the following drawbacks. 
In applications where interprocessor communica
tion is very high the system will de.grade con
siderably. However, in compute bound situations 
where the ratio of local processing to interpro
cess communication requirements is high (ie. 
where for each word of interprocess communication, 
the number of instructions executed is of the 
order of 103 to 106) this interconnection will 
allow a large number of processors to be inter
connected. Each processor in this system has 
its own copy of the program code which makes 
inefficient use of memory. In addition, data 
must be transmitted from the master processor to 
the slave processor instead of pointers. However, 
in the applications considered for NOVAC, where 
the amount of communication is limited, the 
transmission time for interprocessor communica
tion is expected to be low. 

The proposed interconnection is simple and 
inexpensive while providing for modularity. The 
communication protocol is simple to set up and 
control. 

Pascal-C 

The design of the language for the multi
processor system is based on the following 
objectives and assumptions: 

1. Programs for the system can be developed in 
a familiar high-level language which has been 
augmented with only a few new constructs; 

2. There should be specific language constructs 
to allow efficient and simple utilization of 

• the processors in the system; 

3. Synchronization of processes is simple or 
even unnecessary in most computationally 
bound combinatorial problems. 

Since none of the well known languages for con
current programming eg., Concurrent Pascal [2J, 
Modula [11], Ada [8], Edison [3] satisfied our 
sp~cific requirements, we decided to use Pascal-C 
which is Pascal, augmented by these three 
additional constructs: down procedures, critical 
procedures, and synchronization statements. The 
syntax and the usage of these constructs are 
given below, however the details of these exten
sions are given in [10]. 

The procedure and function declaration part 
of a block in Pascal-C may include declarations 
of critical procedures and down procedures. 

<critical procedure declaration>::=critical 
<procedure declaration> 

<down procedure declaration> : :=down 
<procedure heading> 
<copy section> 
<block> 

<copy section> ::=copy<identifier>{ ,<identifier>} 
I <empty> , 

194 

Thus, in the declaration of a critical procedure 
the keyword critical precedes the keyword pro
cedure. In the declaration of a down procedure 
the keyword down precedes the keyword procedure. 
Furthermore, the heading of a down procedure can 
be followed by the keyword ~ and a list of 
identifiers containing global variables, proce
dures and functions which can be used in the 
statements of the down procedure. 

The following synchronizing statements are 
available in Pascal-C: 

<wait statement>::=wait «identifier> 
--{ ,<identifier>}) 

<terminate statement<::=terminate «identifier> 
{,<identifier>} ) 

where <identifier> must be a name of a down 
procedure. 

In addition to the scope level as usually 
defined in Pascal. we will also define for each 
element of the language, (e.g. variable, func
tion, procedure, down procedure) its process 
level. This process level indicates the nesting 
level with respect to down procedures. The 
critical and down procedures cannot be recursive; 
in addition the critical procedure cannot be 
nested or call another critical procedure, and 
all its parameters must be value parameters. 

An invocation of a down procedure creates 
an independent concurrent process in a slave 
processor. A critical procedure call in a slave 
processor creates a new process in the master 
processor. Critical procedures are used by a 
slave to pass its results back to the master. 
Synchronization statements allow the process in 
a master to wait for the results of its slave(s), 
or to terminate processes in its slaves. Down 
procedure statements and critical procedure 
statements are used to invoke down procedures 
and critical procedures, respectively. The 
syntax of down procedure statements and critical 
procedure statements is identical to the syntax 
of ordinary PASCAL procedure statements. The 
actual parameter of a down procedure correspon
ding to a variable parameter must be a variable 
whose scope includes the down procedure. 

The present design of Pascal-C does not 
allow for the use of pointers as variable para
meters to down procedures or in copy sections. 

Pascal-C has been used successfully to 
program and dry run several different kinds of 
combinatorial problems. 

Implementation of Novac 

Here are the three major areas in which 
implementation effort is underway: 

1. Assembly of the NOVAC-Tree hardware units. 
This will be from off-the-shelf systems 
with very little additional hardware to 
provide interprocessor communication. 



2. Construction of an operating system (OS) 
that provides the multiprocessing 
capabilities required for the NOVAC-Tree 
system and the Runtime system (RTS) of 
Pascal-C. The OS is based on RT-ll 
which allows the processors connected to 
the NOVAC bus to appear as ordinary 
peripherals. The RT-ll OS will require 
additional features; for example, it 
must support the mapping between virtual 
and real slave processors; it must allow 
atomic execution of critical procedures. 

3. Construction of a compiler and runtime 
system for Pascal-C. The proposed 
language closely resembles standard 
Pascal, and it should be possible to 
adapt an existing Pascal compiler to 
the requirements of the project. Most 
of the support for non-standard features 
is provided by the RTS, and a substan
tial proportion of the language imple
mentation effort will be directed to
wards the RTS. 

The progress of this project and experience 
gained from it will be revealed in a future 
paper. 

References 

[1] J.L. Bentley, H.T. Kung, "Two Papers on a 
Tree-Structured Parallel Computer", CMU 
CS-79-l42, Carnegie Mellon University, 
Pittsburgh, Pa. 

[2] P. Brinch Hansen, "The Programming Language 
Concurrent Pascal", IEEE Transactions on 
Software Engineering, 5(2), 1975, p.199-207. 

PROCESSOR SYSTEM 

MEMORY 
CPU ....... 

etc. 

UNIB US I I UNIBUS 

r 
UNIBUS/ 
NOVACBUS 
INTERFACE 

NOVACBU S 1 

[3] P. Brinch Hansen, "Edison-a Multiprocessor 
Language", Software-Practice and Experience, 
11(4) 1981, p.325-360. 

[4] B. Buchberger, J. Fegerl and F. Lichtenberg
er, "Computer Trees: A Multicomputer Concept 
for Special Purpose Parallel Processing", 
Microprocessors and Microsystems, 3(6) 
July/August, 1979. 

[5] B.C. Desai, "A Parallel Processing System 
to Solve 0-1 Programming Problem", Ph.D. 
Thesis, McGill University, January 1977. 

[6] D.J. Farber, "A Ring Network", Datamation, 
February 1975. 

[7] Tse-yun Feng, "A Survey of Interconnection 
Networks", Computer, December 1981, p.12-27 •. 

[8] J. Ichbiah et aI, "Reference Manual for the 
Ada Programming Language", U.S. Department 
of Defence Publication, 1980. 

[9] S. 1. Kartashev and S.P. Kartashev, "Multi
computer System with Dynamic Architecture", 
IEEE Transactions on Computers, 28(10), 
October 1979, p.704-72l. 

[10] C. Lam, J.W. Atwood, S. Cabilio, B.C. Desai, 
P. Grogono, J. Opatrny, "A Multiprocessor 
Project for Combinational Computing", 
CIPS-82, Saskatoon, Sask. Canada. 

[11] N. Wirth, Modula: "A Language for Modular 
Multiprogramming", Software-Practice and 
Experience, 7(1), 1977, p.3-35. 

[12] L.D. Wit tie , MICROS, "A Distributed Opera
ting System for MICRONET, A Reconfigurable 
Network Computer", IEEE Transactions on 
Computers, C29(12), December 1980, p.564-
572. 

PROCESSOR SYSTEM 

CPU 
MEMORY 

etc. 

I I 
I 

UNIBUS/ 
NOVACBUS 
INTERFACE 

I N OVACBUS 

Figure 1. Proposed NOVAC System 

195 



RESULTS IN PARALLEL SEARCHING, MERGING, AND SORTING 
(Summary) 

Clyde P. Kruskal 

Department of Computer Science 
University of Illinois 
Urbana, Illinois 61801 

Introduction 

Comparison problems such as merging and sort
ing are of fundamental importance in computer 
science, and much effort has been devoted to 
finding efficient algorithms for solving these 
problems on sequential processors. Recently a 
similar effort has been devoted to to solving 
these problems on parallel processors [1] - [7]. 
In this paper we present parallel algorithms for 
searching, merging, and sorting which have good 
worst-case performances. 

Initially, our algorithms are presented under 
Valiant's model of parallel computation [7] which 
captures the inherent difficulty of solving corrr 
parison problems (the notation has been changed 
slightly to be consistent with ours): 

••• there are P processors available, and 
therefore P comparisons can be performed 
simultaneously. The processors are syn
chronized so that within each time inter
val each of them completes a comparison. 
At the end of the interval the algorithm 
decides, by inspecting the ordering rela
tionships that have already been esta
blished, which P (not necessarily dis
joint) pairs of elements are to be com
pared during the next interval, and 
assigns processors to them. The computa
tion terminates when the relationships 
that have been discovered are sufficient 
to specify the solution to the given 
problem. 

Under this model Valiant presented algorithms for 
merging and sorting that were faster than any 
previously known. 

More realistic models of parallel computation 
are shared-memory machines. One particular model 
of shared-memory machine is the CREW P-RAM which 
in a single cycle allows the processors to per
form concurrent reads from the same location but 
not concurrent writes (Concurrent Read Exclusive 
Write Parallel Random Access Machine). Although 
shared-memory machines with single cycle memory 
access are not physically constructible -- at 
least for very large numbers of processors -- the 
study of their performance can be a powerful tool 
for gaining insight into the nature of parallel 

This work was supported in part by the National 
Science Foundation under Grant No. NSF-MCS81-
05896. 

0190-3918/82/0000/0196$00.75 © 1982 IEEE 196 

computation. Borodin and Hopcroft [1] showed 
that Valiant's merging and sorting algorithms 
can, in fact, be implemented on a CREW P-RAM. 

We improve on the results of Valiant. For 
example, we present a merging algorithm that is 
optimal up to a constant factor when merging two 
lists of equal size, independent of the number of 
processors; in particular with N processors it 
merges two lists each of size N in 
1.893 19 19 N + 4 comparison steps. We then use 
the merging algorithm to obtain a sorting algo
rithm which, in particular, sorts N values with N 

. 19 N 19 19 N 
processors l.n 1.893 19 19l9 N (plus lower order 
terms) comparison steps. All of our algorithms 
can be implemented on a CREW P-RAM. 

We define Searc~(N) to be the number of corrr 
parison steps required by P processors to search 
a sorted list of N elements for some specified 
value,Merg~(M,N) to be the number of comparison 
steps required by P processors to merge two 
sorted lists of sizes M and N, and Sor~(N) to be 
the number of comparison steps required by P pro
cessors to sort N elements. Throughout this 
paper, we write 19 x for log2X and In x for the 
natural logarithm logex. 

Searching and Merging 

This section contains results for parallel 
searching and merging. The general outline of 
the section closely follows Valiant [7] (Section 
2), and several of the algorithms are improve
ments of Valiant's. 

The following theorem generalizes the sequen
tial algorithm for searching a sorted list to the 
parallel case. 

Theorem 1. Search (N) .. rlog(N+ 1)-1. 
- -1' log(P+ 1) 

more, the bound is tight. 
Further-

Proof. We show by induction that in k comparison 
steps we can search a sorted list of size 
(P+ 1)k-l: The formula certainly holds for k=O. 
Assume it holds for k-l. Then to search a list 
of size (p+1)k_1, we can compare the element 
being searched for to the elements in the sorted 
list subscripted by i,(p+1)k-l for i = 1,2, •••• 
There are no more than P such elements [since 
(P+1)(p+l)k-l = (p+l)k > (P+l)k_1]. Thus the 



comparisons can be performed in one step, 
problem is reduced to searching a list 
(P+l)k-l_l • In general to search a list 
N in k comparison steps we need 

or 

or 

(P+l)k_ l > N 

k > 

k 

log(N+l) 
log(P+l) 

flog(N+l )-\ 
log(P+l) 

and the 
of size 
of size 

We now show that the bound is tight. Given a 
sorted list of N elements, during the first step 
any algorithm can examine only P elements. Some 
segment of unexamined elements must have length 
at least 

> N-P 
P+l 

N+l _ 1 
P+l • 

By induction after the k-th step the problem must 
N+l have size at least -----k- - 1. Thus the number of 

steps required by a\ttl1lgorithm is at least the 
minimum k for which 

~-1 
(P+l)k " 0 

or k > log(N+l) 
log(P+l) 

or k f log(N+l)l 
log(P+l) 

( ) f log(N+ 1)-\ 
Corollary 1. Merg~ I,N " log(P+l) • 
ermore, the bound is tight. 

Corollary ~. For 1 " M " P and M " N, 

Merg~(M,N) " 

Furth-

Proof. Assi.gn Lp /MJ processors to each element 
in the smaller list and merge as in Corollary 1. 

Corollary l. For 1 " P " M " N, 

Merg~ (M,N) " r M/p 1 r 19(N+ 1) 1 . 
Proof. Assign r M/p 1 elements in the smaller 
list to each processor and merge as in Corollary 
1. 

Theorem 2. For P = L Ml - l/k Nl/k J, integer k > 2, 
and 2 "M<N, 

Merg~(M,N) " 
" 

kf~+I-\ 
19k 

k 
19 k 19 19 M + k + 1 • 

Summary of proof. The proof p'roceeds induc-
- . ~ I-11k l/kJ tively, by showing, gl.ven M N proces-

sors, how we can in k compar son steps reduce the 
problem of merging two lists of length M and N to 
the problem of merging a number of pairs of 
lists, where each pair's shorter list has length 

197 

less than MIlk. The pairs of lists are so 

created that we can distribute the L Ml - l/k Nl/kJ 
processors amongst them in such a way as to 
ensure that for each pair there will be enough 
processors allocated to satisfy the induction 
hypothesis. 

The above theorem 
Valiant's Theorem 3. 
special case of k=2, 
minimized when k=3: 

is a generalization of 
Valiant's result is the 
whereas the formula is 

Corollary!. For P = LM2/3 N1/3 J and 2 "M " N, 

Merg~(M,N) " 3f~+ 11 193 

" 
3 

193 19l9M + 4 

!!! 1.893 19l9M + 4 

The following corollary is very similar to 
Valiant's Corollary 5. However, besides having 
the obviously better constant factor for k=3, the 
algorithm is slightly more natural and has a 
smaller additive constant. The proof is very 
similar to the proof of Theorem 2. 

Corollary 5. 

2 " r " M " N, 

and 

Merg~(M,N) 
k 

" 19k (lglgM - 19l9r) + k + 1 • 

Corollary ~. For 2 " P " M+N, 

Merg~(M,N) " 
M+N + p 19(M~) 

3 
+ 193 19l9P + 6. 

Corollaries 5 and 6 together define a merging 
algorithm which, for M = N and all P, is optimal 
up to a constant factor; this optimality is a 
consequence of the lower bound for merging given 
in [1] and the fact that no parallel algorithm 
can be more than P times faster than its sequen
tial counterpart. 

Basically, all of these algorithms can be 
implemented on an CREW P-RAM in time equal in 
order to their number of comparison steps -- see 
[l]. 

Sorting 

The merging algorithm of Corollary 6 allows us 
to obtain fast sorting algorithms by using an 
idea of Preparata [5]. In general, our sorting 
algorithms are enumeration sorts, i.e. the rank 
of an element is determined by counting the 
number of smaller elements. 

We present here the general idea of the sort
ing algorithm under the simplifying assumption 



that all variables are cQntinuQus. 
CQnstant (dependent 'On P and N). 
wQrks as follQws: 

Let G be SQme 
The algQrithm 

If N = 1 the list is sQrted, while if P = 1 SQrt in 
SQrt l (N) cQmparisQn steps using the best sequen-

tial sQrting algQrithm [it is well knQwn that 
SQrt l (N) = N 19 N - O(N»). Otherwise apply the: 
fQllQwing prQcedure: 

(1) Split the prQcessars intQ G grQups with 
piG > 1 prQceSSQrs in each, and split the 
elements intQ G graups with Nip > 1 elements 
in each. 

(2) Recursively SQrt each grQUp independently in 
parallel. 

(3) Merge every sarted list with every 'Other 
sorted list. 

(4 ) SQrt the entire list by taking the rank 'Of 
each element ta be the sum 'Of its ranks in 
each merged list it appears in, less G-2 
times its rank in its 'Own list. 

NQting that step (4) requires (G) = G(G-l) 
2 2 

independent merges, we are led tQ the fQIlQwing 
recurrence relatiQn fQr the time Sp(N) it takes 

this algQrithm tQ SQrt N elements with P> 1 prQ-
cessQrs. 

Sp(N) Sp(~) + Merge 
2P 

N N) (G'G 
G G(G-l) 

" Sp(~) + N(G-l) + 19(N(Gp-l) ) --P-

G 
3 (2P) + 193 Ig Ig G(G-l) + 0(1) • 

Let M be the minimum 'Of P and N. Then nQt CQunt
ing the sequential sQrting (after the final 
recursive call), the abQve algQrithm requires 
apprQximately 

~. (N(G-l) 
Ig G P + Ig(N(Gp-l) ) + 19 19 p) , 

cQmparisQns. This is minimized fQr 

3 P l~ l~ P ) G = max( In 3 NlgG ' 2 . (*) 

In (4) we shQW that this algQrithm can be made 
rigQrQus far P, N, and G all integers. Further
mQre, we shQW that these algQrithms can be imple
mented 'On a CREW P-RAM. This yields the fQllQw
ing specific results. 

_ _ 3 19l9N 
When N-P, G - ln3 19l9lgN by equatiQn (*), 

SQ 

198 

SQr~(N) 1.893 19N 19l9N • ( 1 + 
19 19 19 N 

O(lg 19 19 19N ) ) 
19 19 19 N • 

This is an impravement 'On the 2 19 N 19 19 N 
'Obtained by Valiant. 

FQr G=2, which is the 'Optimal chQice fQr G 
3 

when N > 2 In 3 P 19 19 P, 

N 19N 3 
P + 193 19P IglgP 

+ O(!!p + 1 P 1 2N) g gp 

NQte that fQr G=2 the algQrithm is a pure cQmpar
isan sQrt, i.e. it is nQ lQnger an enumeratiQn 
SQrt. 

Finally, if P = N(lgN) l /k then 

1.893 k 19 N + Q(k 19 N) 

This in an imprQvement 'On Hirschberg (3) which 
l+l/k . shQwed that N prQcessQrs can SQrt 1n 

O(k 19 N) time, and a generalizatiQn 'Of Preparata 
(5) which shQwed that N 19 N prQcessQrs can SQrt 
in O(lg N) time. 

References 

[1) A. BQrQdin and J. E. HQPcrQft, "RQuting, 
Merging and SQrting 'On Parallel Models of 
ComputatiQn" Froc. 'Of ACM 14th Ann. ~. on 
Theory of Computing, (May 1982), pp. 338-344. 

(2) F. Gavril, "Merging with Parallel Proces
sors", CACM, (Oct. 1975), pp. 588-591. 

(3) D. S. Hirschberg, "Fast Parallel Sorting 
Algorithms", CACM, (Aug. 1978), pp. 657-661. 

(4) Clyde P. Kruskal, "Searching, Merging, and 
Sarting on Pa rallel Models of CQmputation", 
manuscript, (Apr. 1982). 

(5) Franco P. Preparata, "New Parallel-Sorting 
Schemes", IEEE Trans. on Camputers, (July 
1978), pp. 669-6~ 

(6) Yossi Shiloach and Uzi Vishkin, "Finding the 
Maximum, Merging and Sorting in a Parallel 
Computation Model", J. of Algorithms, (Mar. 
1981), pp. 88-102. 

(7) Leslie G. Valiant, ''Parallelism in Comparison 
Prablems", SIAM J. on Computing, (Sept. 
1975), pp. 348-355::-



ON COMPUTING WEAK TRANSITIVE CLOSURE 

IN O(LOG N) EXPECTED RANDOM PARALLEL TIME 

Albert G. Greenberg 
University of Washington 

Seattle, Washington 

Michael J. Fischer 
Yale University 

New Haven, Connecticut 

Abstract -- We consider the time needed to 

compute the weak transitive closure of a Boolean 

matrix, with respect to a probabilistic model of 

unrestricted parallelism. Our principal result is 

an algorithm that computes the weak transitive 

closure of any n x n Boolean matrix in expected 

time O(log n) and in time O«log n) 2) in the 

worst case. Thus, the weakly connected components 

of any directed graph on n nodes, or the connected 

components of any undirected graph on n nodes, can 

be computed within these bounds. 

1. INTRODUCTION 

We define weak transitive closure in terms of 

reflexive and transitive closure. The reflexive 

and transitive closure of an n x n Boolean matrix 

* n-l A is the Boolean matrix A = (I v A) ,where v 

denotes coordinate-wise disjunction. The weak 

transitive closure of A is the Boolean matrix A = 

(A v At) *, where At denotes the transpose of A. 

We can regard A as the adjacency matrix of a 

directed graph and A as a presentation of the 

graph's weakly connected components. Our interest 

is in the parallel time needed to compute weak 

This material is based upon work supported by 
the National Science Foundation under Grants 
MCS80-03337 and MCS8l-l6678, and the Office of 
Naval Research under Contracts N00014-80-C-022l 
and N00014-82-K-OlS4. 

0190-3918/82/0000/0199$00.75 © 1982 IEEE 199 

transitive closure. 

We use a probabilistic version of the 

Parallel Random Access Machine (P-RAM), a model of 

a synchronous parallel computer introduced by 

Fortune and Wylie [3]. An advantage of the model 

is that its power can be related to the power of a 

probabilistic Turing machine. A formalization of 

this relation and a recent result of Ale1iunas et 

a1. [1] lead to an algorithm that, given any 

symmetric n x n Boolean matrix A, computes A* 

with probability of error ~ 1/2, in O(log n) 

time. We combine this a1gori thm with a 

deterministic algorithm for reflexive and 

transitive closure to obtain our main result: an 

algorithm that, given any n x n Boolean matrix A, 

- computes A with no chance of error, 

- runs in expected tfme O(log n), worst 
case time D( (log n) ), and 

- uses nOel) processors. 

A more refined analysis than that given below 

indicates that O(nS 1bg n) processors suffice. 

Obviously, if A then our algorithm 

computes reflexive and transitive closure. 

Equa1i ty holds, for ins tance, if A is "Eulerian". 

An n x n Boolean matrix is Eulerian if the number 

of ones in its i-th row equals the number of ones 

in its i-th column (1 ~ i ~ n). In this case, 

we can regard A as the adjacency matrix of a 



directed graph in which each strongly connected 

component is an Eulerian digraph [2]. The 

* observation that A = A if A is a symmetric 

Boolean matrix has bearing on the following 

problem posed by Hirschberg et al. [5]. 

Let A be an n x n symmetric Boolean matrix. 

We can regard A as the adjacency matrix of an 

undirected graph G on nodes 1, 2, ••• , n. As 

defined in [5], the problem of computing the 

connected components of G is to compute an 

n-vector c, where c[i] = min{j: 1 < j ~ n, and 

j belongs to the same connected component as i in 

G}, for 1· < i < n. Hirschberg et al. presented 

a deterministic algorithm, with respect to a 

parallel model similar to ours, that computes c in 

time in the worst case, using 

2 O(n flog n) processors. 

Notice that c can be obtained * * from A =(ai,j) 

by computing c[i] = min{j: 1 ~ j < n, a~ .=l}, - 1,J 

for each i (1 ~ i ~ n). The min computations 

can be carried out in O(log n) time using n 2 

* processors. As A A, our results provide an 

alternative method for computing c that costs 

O(log n) expected time, O( (log n) 2) worst case 

time, and nO(l) processors. 

Some discussion is in order on how our 

results contrast with recent (independent) results 

of Reif [7]. Let us review a crucial result of 

Aleliunas et al. first. In [1], Aleliunas et 

space-bounded, nO(l) al. gave an O(log n) 

time-bounded sequential algorithm to decide 

undirected graph reachability; that is, to decide 

if two distinguished nodes in an n node undirected 

graph belong to the same connected component. The 

Aleliunas algorithm is probabilistic, with 

"one-sided" error probability: If the two nodes 

belong to the same component, then the algorithm 

200 

decides correctly with probability > 1/2; 

otherwise, the algorithm always decides correctly. 

The chance of error can be eliminated, without 

change in the space or time bounds, if we allow 

the algorithm to be non-uniform in n (Cf. [7]). 

run 

Reif's work adapts the Aleliunas algorithm to 

in O(log n) parallel time, using n°(1) 

processors, with one-sided error probability [7]. 

(The result of Theorem 2 below is similar.) Again, 

at the cost of a non-uniform construction, the 

chance of error can be eliminated, without change 

in the complexi ty bounds. Although our work is 

also based on the Aleliunas algorithm, we get a 

different result: graph reachability can be 

decided for every pair of nodes in an undirected 

graph, without error and without resort to a 

non-uniform construction, in O(log n) 

average, using nO(l) processors. 

time on 

Reif defined a complexity class, 

1:* CSYMLOG, in terms of O(log n) space-bounded 

symmetric Turing machines [6], and established 

that every language in 1:* CSYMLOG is 

recognizable in O(log n) time, using nOel) 

processors, with probability of error < p, where 

p is any constant, 0 < p < 1. (Again, a 

non-uniform construction can be used to eliminate 

the chance of error.) His analysis can be 

strengthened using our main result, to establish 

that every language in 1:* CSYMLOG is 

recognizable, with no chance of error, in 

O(log n) expected time, using no(1) processors. 

Reif showed that 1:* CSYMLOG contains a number of 

interesting problems: invalidity testing of 

formulas in a restricted quantified Boolean logic, 

recognition of edges in a minimum spanning forest, 

recognition of k-connected vertex pairs in an 

undirected graph, and several graph recognition 



problems. 

2. PROBABILISTIC PARALLEL RANDOM ACCESS MACHINES 

We begin with an informal description of a 

deterministic P-RAM [3]. An infinite number of 

processors PO' Pl •••• are available. with each 

having a local accumulator. a local program 

counter. and an infinite local memory. The 

processors share access to two infinite global 

register sets: the read-only input registers 

single program controls execution. In this 

setting. a program is a finite list of possibly 

labeled instructions. An instruction is of one of 

the following forms. 

AC := x 
x := AC 
AC := AC + x 
AC := AC - x 
goto L 
if AC=O then goto L 
fork L 
HALT 

AC refers to the accumulator of the processor that 

executes the instruction. x is an address. an 

indirect address. or a constant. and L is a label. 

One restriction applies to the use of global 

memory. At each step. at most one processor can 

write to a register. On the other hand. any 

number of processors can read the same register 

simultaneously. 

Initially. a single processor Po is active. 

If at some step t. a processor Pi executes an 

instruction of the form "fork L". then at step t+l 

a new processor P j begins execution at the 

instruction labeled L. with the accumulator of P j 

set to the value in the accumulator of Pi at step 

t. Hence in t steps up to 2 t processors can be 

activated. By convention. for i < j. if Pi is 

201 

activated at step tl and P j at t 2 • then tl ~ t 2 • 

The P-RAM terminates when Po executes a HALT 

instruction. 

As defined in [3]. a deterministic P-RAM 

* computes a function from {O.l} to {O.l}. We make 

a small change to allow for the computation of 

* * functions from {O.l} to {O.l} • We add an 

infinite global set of write-only output registers 

Out l • Out 2••••• and fix input/output conventions 

as follows. An input x=x l x 2 ••• x s of s bits is 

presented one bit per register in In l .In2 ••••• Ins • 

and s is presented in processor PO's accumulator. 

All other registers have value O. We say the 

machine outputs Y=YlY2 ••• Yt of t bits. iff when Po 

halts 

can 

1. t=max{a. a} where a is the number in 
PO's accumulator, and 

In a deterministic P-RAM. no two instructions 

have the same label. In a probabilistic 

P-RAM. a given label can be associated with at 

most two instructions. If two instructions II and 

12 have the same label L and a processor Pi 

executes a jump to L. then with probability 1/2 Pi 

jumps to II; otherwise (with probability 1/2) Pi 

jumps to 12 (independently of any other step of Pi 

or any other processor). 

A probabilistic P-RAM computes a random 

function [8], defined as follows. A random 

function F from X to Y is characterized by a 

function PF: X x Y --) [0,1] such that. for all x 

in X, I PF(x.y) < 1. The expression F(x)=y 
y in Y -

means F applied to x equals y with probability 

PF(x.y). A probabilistic P-RAM Q is said to 

compute F iff X=Y={O.l}* and on input x. Q outputs 

y with probability PF(x,y). for all x in X and y 



in Y. Also, Q does not terminate with probability 

1 - I PF(x,y),for all x in X. We say Q runs 
y in Y 

in expected time T(n) (in time T(n» iff, on every 

input of n bits, Q terminates in expected time 

.5 T(n) (Q always terminates in < T(n) time). 

A probabilistic Turing machine also computes 

a random function from {O,I}* to {O,l}* [4, 8]. 

Fortune and Wylie have shown that with respect to 

computing 0-1 functions, time on a deterministic 

P-RAM is at least as powerful as space on a 

deterministic Turing machine. A small 

modification of their proof gives us a useful 

connection between probabilistic Turing machines 

and probabilistic P-RAM's. 

Lemma 1: Let F be any random function 

computable 

time-bounded 

machine, 

on an Sen) space-bounded, 

multitape probabilistic 

where log T(n) = O(S(n» 

T(n) 

Turing 

and 

Sen) ~ log n. Then there is a probabilistic P-RAM 

that computes F in time O(S(n». 

Proof: (Outline) 

Consider a probabilistic Turing machine M 

that computes F in Sen) space and T(n) time. We 

may assume that M never enters the same 

configuration twice, as without more than a 

constant factor loss in time or space M can 

maintain a "clock" on a work tape. 

of n bits. M can assume 

Fix an input x 

up to 2d*S(n) 

configurations on x, where d is a constant. 

We adapt a technique of [3] to construct a 

probabilistic P-RAM P that simulates M on x so as 

to compute F(x) in O(S(n» time. Suppose that the 

function Sen) is itself computable in O(S(n» 

time. P forks 2d*S(n) processors, giving a 

processor Pi for each configuration ci of M on x. 

202 

Pi chooses a successor c j of c i uniformly at 

random from among the possible successors of c i 

and writes j into global register Wi' for all i 

(1 .5 i .5 2d*S(n». In effect, this constructs a 

graph in which a given node ci corresponds to 

configuration c i • At most one edge emanates out 
A A 

of c i ' to c j ' where j is the value of Wi. 

The graph contains a directed path leading 

out of the node corresponding to the start 

configuration, which describes an execution of M 

on input x. P uses global memory to mark each 

node on this path. As M runs in Sen) space, the 

last node on the path must correspond to a final 

configuration. Lastly, the output registers are 

written in accordance with the marked nodes. The 

essential details involved in implementing these 

steps in O(S(n» time can be found in [3]. 

To carry the proof through without aSSuming 

that Sen) is computable in O(S(n» time, we use 

the usual trick of trying the simulation for 

Sen) = 2,4,8,... until we reach a trial value 

large enough so that M reaches a final state in 

the simulation. In performing each trial, if any 

successor of c i requires more than the currently 

allowed amount of space, we leave Wi undefined, 

and if Wi is defined from a previous trial, we do 

not change it. The latter condition is necessary 

to maintain the right probabilistic behavior. 

Otherwise the simulation would be biased towards 

choices that lead to rapid halting. 

o 



3. THE ALGORITHM FOR WEAK TRANSITIVE CLOSURE 

We begin with a theorem describing a random 

function which we refer to as random closure. For 

any symmetric Boolean matrix A, the random closure 

of A equals the reflexive and transitive closure 

of A with probability ~ 1/2. We will exploit 

this and other properties of random closure to 

arrive at an efficient algorithm for weak 

transitive closure. 

One more notation is of use. We write A < B 

to signify that the Boolean matrices A and B 

satisfy B = B v A. 

Theorem 2: There is a probabilistic P-RAM P 

that computes a random function R from symmetric 

Boolean matrices to Boolean matrices such that for 

every n x n symmetric Boolean matrix A: 

1. P computes R(A) in time O(log n). 

2. If PR(A,B) -F 0, then B is an n x n 
Boolean matrix with A ~ B < A*. 

3. PR(A,A*) ~ 1/2. 

We refer to R(A) as the random closure of A. 

* The second property implies that B * A • 

The third indicates that R(A) is likely to equal 

* A • 

Proof: By lemma I, it suffices to give an 

O(log n) space-bounded, nO(l) time-bounded 

probabilistic Turing machine that computes a 

random function satisfying the second and third 

properties. We appeal to a recent result 

involving random walks in graphs, defined as 

follows. A random walk in an undirected graph G 

starts at an arbitrary node in G. At each step 

beginning at a node v, we choose an edge uniformly 

at random from the edges emanating out of v and 

203 

traverse it. Now let G be an undirected graph 
'I 

having e edges. Also let i and j be any two nodes 

in G, and let d i , j be the length of the shortest 

path from i to j. The analysis of Aleliunas et 

al. shows that the expected number of steps in a 

random walk in G starting at i before reaching j 

is at most 2d i ,je [11. 

Let A be any n x n symmetric Boolean matrix 

and G the graph (having n nodes and e edges) 

corresponding to A. Using the methods in [11, we 

can construct an O(log n) space-bounded, n°(l) 

time-bounded probabilistic Turing machine M which 

on input i,j,A simulates step by step a random 

walk of 4(n-1)e steps starting at node i in G 

(1 ~ i,j ~ n). If the walk reaches j then M 

outputs 1; otherwise M outputs O. Hence if i and 

j are in the same connected component of G, M 

outputs 1 with probability > 1/2. M always 

outputs 0 otherwise. 

To complete the proof, for 1 ~ i, j ~ n, 

compute b i , j as the disjunction of ai, j and the 

rlog 2(2n2)1 results of running M rlog 2(2n2)1 
times, on input i,j,A. The computation requires 

O(log n) space and nO(l) time. A < B follows by 

construction. * Also, B ~A holds, since bi,j=I is 

possible only if j is reachable from i in the 

graph corresponding to A. Finally, it can be 

verified that B = A* with probability > 
r 21 2 2 

(1 - 1/2 10g2(2n ) )n, ~ (1 1/(2n2»n ~ 1/2. 

o 
We note that a similar argument can be used to 

obtain a random function that maps Eulerian 

matrices to Boolean matrices and satisfies the 

three properties given in the theorem. 

Now, we give our main result. 



Theorem 3: There is a probabilistic P-RAM 

that, on every n x n Boolean matrix A, computes A 

without error, runs in expected time O(log n), in 

time O«log n)2) in the worst case, and uses 

n O(I) processors. 

Proof: The desired P-RAM executes the 

following algorithm. 

(Cf. Theorem 2). 

S := I v (A v At); 
repeat 

T := R(S); t 2 
S := (T v T ) 

until S = T. 

R denotes random closure 

At the bottom of the repeat loop we have 

I v (A v At) < T i (A v At / A. When 

the algorithm halts T=(T v Tt)2, so it follows 

that T = A holds. Each iteration of the loop 

costs O( log n) time using n O( 1) processors. 

Because of the squaring, the loop will be repeated 

at most O(log n) times, giving the desired worst 

case time bound. 

To complete the proof it suffices to show 

that the expected number of iterations of the loop 

is O( 1). By theorem 2, we have a sequence of 

trials, each with probability of success ~ 1/2, 

ending on the first success. The expected length 

of such a sequence is < 2. 

o 
Acknowledgement 

We are indebted to Richard Ladner for 

bringing reference [1] to our attention early in 

this research, and to Martin Tompa for helpful 

comments on preliminary versions of this paper. 

204 

REFERENCES 

1. Aleliunas, R., Karp, R.M., Lipton, R.J., 
LovAsz, L., and Rackoff, C., Random Walks, 
Universal Traversal Sequences, and the 
Complexity of Maze Problems, 20th Annual 
Symposium on Foundations of--Co~ 
Science (October 1979), 218-223. 

2. Anderson, S., 
Combinatorics", 
Chicago, 1970. 

"Graph 
Markham 

Theory and Finite 
Publishing Company, 

3. Fortune, S. and Wylie, J., Parallelism in 
Random Access Machines, Proceedings of the 
Tenth Annual ACM Symposium ~ Theory of 
comp,uting. (May 1978), 114-118. 

4. Gill, J., Computational Complexity of 
Probabilistic Turing Machines, SIAM Journal on 
Computing i, 4 (December 1977), 675-695. 

5. Hirschberg, D.S., Chandra, A.K., and Sarwate, 
D. V. , Computing Connected Components on 
Parallel Computers, Communications of the ACM 
~ (1979), 461-464. 

6. Lewis, H. and Papidimitriou, C., Symmetric 
Space-Bounded Computation, Technical Report 
TR-08-80, Harvard University, Aiken 
Computation Laboratory, August, 1980. 

7. Reif, J. , Symmetric Complementation, 
Proceedings of the Fourteenth Annual Symposium 
on Theory ofCoiiiPUting, San Francisco, CA (May 
1982), 201-214. 

8. Santos, W.J., Probabilistic Turing Machines 
and Computability, Proceedings American 
Mathematical Society ~ (1969), 704 710. 



ALTERNATIVE APPROACHES TO MULTIPROCESSOR GARBAGE 
COLLECTION 

Newman I.A., Woodward M.C. 
Department of Computer Studies, 

Loughborough University of Technology, 
Loughborough, Leicestershire, U.K. 

Abstract -- This paper considers the problem 
of performing garbage collection in a list process
ing system in parallel with list updating. One 
previously published method for searching an exist
ing list system and marking all reachable nodes is 
outlined and a new method for performing the same 
function is described. The two methods are then 
compared with respect to both the number of nodes 
that need to be visited to complete a marking 
phase, and the number of synchronisations that are 
needed when there is more than one marker working 
in parallel. A number of different list structures 
are postulated, and results are presented of the 
predicted performance of the two algorithms. 

Introduction 

Within list processing systems, nodes are 
repeatedly added to and removed from a number of 
lists. The storage locations in the memory space 
available to the list processing system tend to be 
allocated for use in a particular list and then 
freed. It is clearly desirable to reclaim these 
freed cells for subsequent use, and there are a 
number of techniques whereby this may be accomp
lished. The technique that is considered in this 
report is Garbage Collection which was first 
proposed by McCarthy [3] and used in the LISP 1.5 
system [4]. 

Using this technique the problem of storage 
reclamation is (often) ignored until the list of 
available cells (free list) becomes empty. When 
this arises, the list processing is temporarily 
suspended and a garbage collection process locates 
cells which have become free and adds them to the 
free list. 

The basic garbage collection algorithm falls 
into four phases:-

1) Marking phase in which all accessible nodes 
are marked. 

2) Relocate phase in which all accessible nodes 
are compacted into a single 
contiguous area. 

3) Update phase 

4) Reclaim phase 

in which all pointers to 
relocated nodes are changed. 

in which the inaccessible cells 
are collected to form the new 
free list. 

A perfectly satisfactory garbage collection 
scheme need only consist of phases 1 and 4 and it 
is this scheme that will be considered further in 

0190-3918/82/0000/0205$00.75 © 1982 IEEE 205 

the remainder of the paper. 

Steele [6] suggested that garbage collection 
could be performed in parallel with list process
ing using two processors, one garbage collecting 
and one performing the processing operations. 
Under these conditions the user(s) would be 
spared the delay which would otherwise occur 
when the free list becomes empty. A workable 
solution to this problem, which prevented inter
ference between the two processors was developed 
by Dijkstra et al [1]. This solution was 
extended to incorporate multiple list processors 
(mutators) and multiple garbage collectors by 
Lamport [2]. Lamport pointed out that interfer
ence between the mutators and the garbage 
collectors was potentially high in the marking 
phase (phase 1) but that the reclaim phase (phase 
4) should involve negligable interference since 
the nodes being reclaimed cannot, by definition, 
be accessed by any mutator. If all the reclaimed 
nodes are gathered into an independent list then 
the only possible interaction occurs when this 
list is added to the free list and this is a 
single operation. 

In this paper, therefore, the reclaim 
phase will be ignored and a new algorithm for 
marking reachable nodes will be developed and 
compared with that devised by Lamport. 

Firstly, the terminology will be introduced, 
and the algorithm adopted by Lamport will be out
lined. The new solution is then presented 
together with results showing the performance of 
the two algorithms. 

Definition of Terminology 

The list structure to which consideration 
will be given consists of a collection of list 
cells (nodes). Each node consists of some 
(possibly no) data fields and an ordered sequence 
of pointers to other nodes (edges). The node 
from which an edge emanates will be called its 
source and that to which it points the destination. 
Some of the edges are distinguishable as null 
edges, that is the edge does not connect two nodes 
but acts as a terminator. 

If an edge connecting nodes A and B exists 
and B is the destination of the edge then B is 
(one of) the successors of node A and A is a 
predecessor of B. Nodes having no successors are 
called terminal nodes (or terminals). 



Some of the nodes, known as root nodes, are 
fixed. A node is said to be reachable (or acces
sible) if there is a path to it from a root via 
reachable nodes. A non-reachable node is called a 
garbage node. 

Lamport's Algorithm 

Lamport introduces an extra field into the 
nodes for use during the marking phase. This 
field is intended to hold a colour which may be 
one of black, grey or white, and indicates at 
which of the stages of the marking phase the node 
is. 

Operations are introducted to change the 
colour of a node to a specific value. Also 
introduced is a shading operation which changes a 
white node to grey but leaves other colours 
unchanged. These operations on a node are required 
to be indivisible with respect to the list process
ing system (i.e. they must be point operations). 
The node space is divided into several (not 
necessarily disjoint) subsets. A marking process 
(marker) is assigned to each of the subsets. No 
details are given as to the method of division, so 
a physical division seems simplest. Initially, 
all nodes are marked white. 

The operation of the marking algorithm 
commences with the roots being shaded. Each 
marker then searches its subset of nodes. When a 
grey node is located by anyone of the markers all 
the successors of that node are shaded and the 
original node is coloured black. All the markers 
are then requested to restart the search of their 
portion of the node space. The marking terminates 
when no grey nodes exist, i.e. all reachable nodes 
have been coloured black. The garbage (unreach
able) nodes are those that remain white. 

Several comments may be made upon this 
algorithm. Firstly, no attempt is made to use the 
structure of the list within the algorithm itself. 
All reachable nodes may be located by chaining 
down the list structure from the roots. This 
leads to a second point, that all the garbage nodes 
will have to be inspected, possibly several (and 
in some cases many) times. This time is, of 
necessity, "wasted" since a garbage node, by 
definition, cannot become grey. This is an inevit
able consequence of dividing the node space into 
physical subsets. 

Further, the synchronisation between the 
markers is non-trivial. The need for one marker, 
on discovering a grey node and shading its 
successors, to cause all others to restart the 
search of their subspace requires a "communication 
path" between every pair of markers. Also, when a 
marker completes the search of its subspace, no 
guarantee can be given that it has completed its 
work as another marker may later discover a grey 
node. Only when all markers have completed 
searching their own subspaces can the marking 
process terminate. This requires each marker to 
monitor the state of all other markers in some wa~ 

206 

Irrespective of the method that is used to 
implement the intercommunication there is bound 
to be a considerable waste of processor time. 
This may be caused by unnecessary searching of the 
list structure, by waiting to be informed whether 
to restart the search or by both of these event
ualities. If a marker pre-empts all the others, 
forcing them to restart their searches as soon as 
it has marked one node, then the uncompleted 
searches are wasted. If on the other hand all 
markers are allowed to finish their search then 
any marker finding nothing has been wasting time. 
In either case it is necessary to have some way 
for markers to indicate whether they have 
completed or not so that it is possible to 
determine the end of the marking phase. If 
messages between the processors are used then 
every marker must send a message to every other 
marker when it has finished a search without 
finding a shaded node. Although the number of 
messages could be kept to a minimum some are 
bound to be sent unnecessarily. The alternative 
would be to use one shared location to record the 
state of each processor, in which case processors 
would need to loop inspecting the value of the 
locations for the other machines once they had 
finished an unsuccessful search. Any such loop
ing would, of course, represent wasted processor 
time. 

Chaining Algorithm 

The algorithm described above was based on 
a physical sub-division of the node space. An 
alternative algorithm is described below which 
marks the reachable nodes by searching down the 
list structure and has hence been given the name 
Chaining Algorithm. 

In order to partition the list space, and 
thus enable several markers to operate, the 
concept of a sublist is introduced. Each marker 
is allocated a section of the total list structure 
and marks the nodes contained in this sublist. 
Once a marker has a sublist, it may proceed 
independently of the other markers (thUS reducing 
the synchronisation overheads). However, to 
enable marking to be equitably distributed 
between the markers an additional list is"intro
duced. 

This list, the subroot list, holds the 
roots of unmarked sublists. Initially, it 
contains the roots of the whole structure. The 
list can be kept short, with possibly one entry 
for each marker since this list represents work 
yet to be allocated to a marker. The colour 
yellow is introduced for a node contained within 
the subroot list, so the roots of the list 
structure are initially coloured yellow. Also, 
the term "uncoloured" is introduced for a node 
which is either white or grey. 

When a marker is started, or whenever it 
has completed the marking of a sublist, it 
removes a node from the subroot list to discover 
the section of the list it is to process. This 
node is shaded. The marker then refills the 



subroot list by adding the uncoloured successors 
of the subroot it has obtained to the list until 
either the list is filled or only one uncoloured 
successor remains. The nodes added to the subroot 
list are coloured yellow. At all stages in the 
remainder of the algorithm yellow nodes are treated 
as black when encountered by a marker since the 
nodes following are guaranteed to be marked at a 
later stage. 

The remainder of the algorithm, shown in 
outline in Figure 1, is as follows. 

marker 
begin 

while subroot list is not empty do 

remove node from subroot list; 

shade node; 

od 

refill subroot list; 

while subroot is not black do 

while number of uncoloured 

od; 

successors = 1 do 

shade successor; 

colour node black; 

advance to successor 

setting as subroot 

while number of uncoloured 

successors > 0 do 

od 

od; 

choose one successor; 

shade sucessor; 

advance to successor 

colour current black; 

current:=subroot 

FIGURE 1: Algorithm for a Marker 

The marker maintains two pointers to the sublist 
it is processing, one to the subroot and one to 
the node it is currently inspecting. Both of 
these initially point to the root of the sublist. 
If only one uncoloured successor of the current 
node exists then the node is shaded, the current 
node is coloured black and both the subroot and 
current pointers are advanced to the successor. 
This process is repeated until a node with several 
or no uncoloured sucessors is met. If the current 
node has some uncoloured successors then one is 
chosen. It is shaded and the current pointer is 
advanced to it. This shading and advancing is 
repeated until the current node has no uncoloured 

successors. When this situation arises, the 
current node is coloured black and the current 
pointer is set to the subroot. The whole of this 
procedure is then repeated until the subroot is 
coloured black. When that occurs the sublist for 
which the marker was responsible has been marked 
and a new root is chosen from the subroot list. 
The marker terminates when it cannot obtain a node 
from the subroot list. 

With a simply connected list structure (that 
is one containing no closed loops and no inter
connection between sublists), the algorithm is 
guaranteed to be correct and to terminate. The 
list structure appears as many independent lists 
each with its own marker. Furthermore, the only 
synchronisation required between the markers is 
when accessing the subroot list. The synchronisa
tion overhead may be kept to a minimum by allowing 
one marker to be filling the list independently of 
markers which are removing nodes from the list. 
A marker which attempts to remove a node may still 
have to wait either for another marker removing a 
node or if the list is apparently empty because it 
is in the process of being refilled. The markers 
can, however, be prevented from interfering with 
one another during the refilling stage if, when 
one marker is attempting to refill the subroot 
list then further markers are allowed to by-pass 
the refilling stage of the algorithm. 

If the list structure is not simply connected 
but the sublists have common nodes (but still 
without loops) then consideration must be given 

207 

to the possible events at the intersection points. 
The simplest possibility to consider is that one 
marker colours the cormnon node yellow or black before 
any other marker accesses that node. When another 
marker reaches that node, it will proceed no 
further. If the intersection node is white or 
grey then the structure beyond the node needs to 
be inspected and several markers may attempt to 
colour the sublist. This will have the same 
effect as several passes down the branch by a 
single marker, that is, the several markers will 
jointly colour the nodes below the intersection 
point. 

If two markers attempt to update the colour 
of the intersection node simultaneously, then one 
must complete its update after the other. The 
node then becomes that colour. Whichever colour 
is finally given to'the node, it is valid for at 
least one of the markers, and this marker will 
complete the colouring. 

However, with the algorithm as described, a 
list structure containing cycles (closed loops 
between edges) may cause a marker to permanently 
loop. To overcome this, some intelligence may be 
given to the markers. If, while chaining down 
through the successors, the marker visits an 
excessive number (e.g. more than the maximum 
height of the structure or more than the total 
number) of nodes without reaching a terminal (or 
a yellow or black node), then it may assume that 
a loop exists and arbitrarily colour the current 
node yellow and add it to the subroot list. In 



this way, a terminating condition is placed within 
the loop. Loops will then only reduce the 
efficiency of the algorithm due to wastage in 
identifying them. 

Comparison of the Marking Algorithms 

Empirical testing of the algorithms was 
carried out using a simulated multiprocessing 
system. The algorithms were used on a number of 
types of list structure. Four types of structure 
were chosen to exercise the algorithms under a 
variety of conditions. The types were:-

a) Linear List 

b) Curtain 

This structure consists of many linear 
lists emanating from a single root. 

c) Highly Interconnected 

In this structure, each node has many 
branches with a large number of nodes 
being shared between sublists. Two 
versions of each structure were gener
ated, the second being the mirror image 
of the first, that is the sublists that 
were placed left to right for a node in 
one version were placed right to left 
in the other. 

d) Random 

The interconnection was generated 
randomly. 

Each of the first threee list structures 
were used with both a high and a low proportion of 
the node space consisting of reachable nodes. All 
structures were loop free. Lamport's algorithm 
was performed twice, once with the markers search
ing from the low addresses to high addresses and 
secondly from high addresses to low. Table 1 
shows some of the results obtained from the 
simulation studies when the node space consisted 
of 100 nodes. 

From the table it can be seen that, with one 
exception, the Chaining Algorithm performs better 
than that of Lamport on each of the values 
tabulated. In most cases, the number of nodes 
visited is vastly reduced (often by a factor of 
50 or more). Also the costs of synchronisation 
between the markers is reduced. The overall 
improvement obtained from the Chaining Algorithm 
can be observed from the elapsed times given in 
the table. 

The structure with which the Chaining 
Algorithm performs least well is one with high 
interconnectivity. Yet even with this structure 
the synchronisation overheads are minimal. This 
is of great advantage since a synchronisation will 
(in general) be much more expensive than a node 
visit. The first highly interconnected structure 
represents a 'worst' case for the Chaining 

208 

Algorithm as implemented. In order for the 
blackening of the nodes from the terminal nodes 
towards the subroots to take place, the sublists 
need to be traversed many times. This is partly 
due to the high interconnection which will yield 
a high degree of overlapping sublists and partly 
due to the greater number of successors which 
each node has. The pathological nature of the 
structure can be seen in the fact that the image 
structure is traversed at about one third of the 
cost. 

The effect of synchronisations is not fully 
revealed in the elapsed times recorded in Table 1, 
since a synchronisation is approximately as 
expensive as a node visit in the simulation 
program, whereas it would probably be substanti
ally more expensive in practice. Furthermore, in 
the results for Lamport's algorithm a synchronisa
tion does not cause waiting which it would do for 
some processors in some cases in practice. The 
very much higher level of synchronisation in 
Lamport's algorithm for most list structures 
could therefore be assumed to result in a further 
time advantage for the Chaining Algorithm in 
practice. 

One possible improvement to the Chaining 
Algorithm would require the introduction of back
ward as well as forward pointers in the list. 
The algorithm could then move back up the sublist 
from a terminal node marking as it goes. This 
would save successive searches down the list if 
there was a large fan out from the sub-node. 
Unfortunately, this structure would require a 
much more elaborate algorithm since it would be 
possible for an ascending marker to be unable to 
find the subnode from which it started due to the 
action of mutators changing the sub-tree. 
Explicit synchronisation between markers and 
mutators might now be required and the possibility 
of processing a section of the tree which has been 
rendered garbage is also highlighted. 

Conclusions 

The chaining algorithm appears to provide a 
substantially faster multiprocessor garbage 
collection system with fewer synchronisations than 
was available previously. This contention is 
being tested in practice by the implementation of 
a simple list processor system on a four processor 
machine with shared memory [5]. The results 
obtained do confirm the predictions. 



Marking Algorithm - Comparison Table 

Chaining Lamport 
Algorithm 

Up Down 

Type G. M Node W. Time Node Syn Time Node Syn Time 
N. Vstd P. Vstd Vstd 

Linear 0 1 100 0 0:26 5150 100 8:56 5150 100 9:00 
List 
Dense 0 5 100 24 1:19 5710 500 9:26 5730 500 9:28 

Linear 95 1 5 0 0:02 305 5 0:32 400 5 0:42 
List 
Sparse 95 5 5 24 0:06 125 25 0:13 600 25 1:01 

Curtain 0 1 103 0 0:28 5150 100 9:11 5150 100 9:14 
Dense 0 5 103 27 0:33 2251 200 3:58 3370 350 5:46 

Curtain 84 1 19 0 0:06 908 16 1:37 908 16 1:38 
Sparse 84 5 19 27 0:09 959 80 1:40 987 80 1:42 

High 1 1 2310 0 6:03 5148 99 9:02 5051 99 8:57 
Inter- 1086 0 3:05 
Connect 1 5 4335 42 12:46 4110 400 6:52 3875 400 6:31 
Dense 1297 45 4:17 

High 51 1 55 0 0:16 2717 49 4:50 2432 49 4:44 
Inter- 250 0 0:54 
Connect 51 5 90 38 0:34 2346 215 4:00 2704 245 4:38 
Sparse 105 27 0:36 

Random 40 1 186 0 0:44 4060 60 7:07 2200 60 3:56 
One 40 5 189 42 0:55 1465 170 2:32 2612 255 4:28 

Random 79 1 84 0 0:18 1893 21 3:19 428 21 0:47 
Two 79 5 84 24 0:52 1227 100 2:04 1201 100 2:02 

Random 75 1 82 0 0:17 1943 25 3:24 782 25 1:24 
Three 75 5 82 24 0:52 1219 105 2:04 1380 125 2:20 

Table 1 Simulation Results for Marking Algorithms 

KEY 

Type 
G.N. 

M 
Node 
Vstd 

W.P. 

Time 

Syn 

The formation of the list structure. 
The number of garbage nodes in the 

structure. 
The number of markers employed. 
The number of nodes visted during the 

marking phase. 
The number of time steps during which a 

marker was waiting on the 'listfront' 
semaphore. 

The elapsed time (in minutes and seconds) 
for the simulation of the marking phase. 

The number of times, in total, that the 
markers were restarted at the beginning 
of their subspace. 

Notes on Table 1 

1) The simulated time for a multiprocessor 
solution represents the sum of the times 
taken by the processors. This is necessarily 
greater than the simulated time for an optimum 

209 

uniprocessor solution. The actual elapsed 
time would be rather more than one fifth of 
the total time. 

2) The simulated version of Lamport's algorithm 
permitted every marker to finish its search 
each time. This extra marking on each pass 
accounts for the lower elapsed time of some 
multiprocessor trials. 



References 

[1] E. W. Dij kstra, et al: "On the Fly Garbage 
Collection: An Exercise in Co-operation," 
CACM, Vol 21, No 11 (1978), pp 966-975. 

[2] L. Lamport, "Garbage Collection with Multiple 
Processes: An Exercise in Parallelism," 
Proceedings of the International Conference 
on 'Parallel Processing', Walden Woods (1976), 
pp 50-54. 

[3] J. McCarthy, "Recursive Functions of Sym
bolic Expressions and their Computation by 
Machine," CACM, Vol 3, No 4, (1960), 
pp 184-195-.-

210 

[4] J. McCarthy, et al: "LISP 1.5 Programmer's 
Manual," MIT Press, Cambridge, Mass. (1962). 

[5] I.A. Newman, R. Stallard and M.C. Woodward, 
"An Implementation of a Multiprocessor List 
Manipulation System," Dept of Computer 
Studies, Loughborough University of Technology 
Loughborough, Leics. U.K. (1982). 

[6] G.L. Steele, "Multiprocessor Compactifying 
Garbage Collection," CACM, Vol 18, No 9, 
(1975), pp 495-508. --



CONCURRENT DISK ACCESSING FOR PARTIAL MATCH RETRIEVAL 

H.C.Du 
Department of Computer Science 

University of Minnesota 
Minneapolis, Minnesota, MN 55455 

Abstract -- Since a file is usually large and 
can not reside in primary memory, the response 
time to a query is dominated by the disk access 
time. In order to reduce the disk access time. 
and hence the response time. a file can be stored 
on several independently accessible disks. In this 
paper. we discuss the problem of allocating buck
ets in a file among disks such that the maximal 
disk access concurrency can be achieved. We are 
particularly concerned with the disk allocation 
problem for binary Cartesian product files. which 
have been shown to be effective for partial match 
retrieval. A heuristic allocation method is first 
proposed for the cases where the number (m) of 
available disk units is a power of 2. Then it is 
extended to fit the cases where m is not a power 
of 2. The proposed heuristic allocation method 
has a "near" strict optimal (hence optimal) per
formance for a partial match query in which the 
number of unspecified attributes is greater than 
a small number (5 or 6). 

1. Introduction 
In an information retrieval system. a basic 

individual unit of information is defined as a 
record and a collection of records is called a file. 
If the number of records in a file is large enough 
(cannot reside in primary memory). the whole file 
must be stored on a secondary storage device 
such as a magnetic disk unit. Therefore. we can 
also assume that the file is divided into buckets 
and each time the secondary storage device is 
accessed. a whole bucket is brought into primary 
memory. 

Since the disk access time is considerably 
longer than the instruction execution time and 
primary memory access time. the time taken to 
respond to a query can be simply measured in 
terms of distinct disk accesses which must be 
issued. The number of distinct disk accesses that 
must be issued is equal to the number of buckets 
which contain at least one record satisfying the 
query. 

The file design problem for a particular type 
of queries can, therefore. be stated as follows : 
Given a file (a set of records). arrange records 
into buckets in such a way that the average 
number of buckets to be examined, over all 
concerned queries. is minimized. 

The response time to a given query can be 
further reduced if the file is stored on several 
independently accessible disks. Several buckets 
can be accessed at one disk access time, if they 
are on different disks and only one bucket can be 
accessed at a time if they are on the same disk. 

0190-3918/82/0000/0211$00.75 © 1982 IEEE 211 

The response time to a given query in this case is 
no longer proportional to the total number of 
buckets needed to be examined, but becomes 
proportional to the maximum number of buckets 
needed to be examined on a particular disk. 
Given a file designed primarily for some type of 
queries and an m-disk (m>l) system. in order to 
reduce the average response time. it is necessary 
to arrange all buckets into m disks in such a way 
that the maximal possible disk access con
currency is achieved when examining the 
required buckets. 

In this paper, we discuss the problem of allo
cating all buckets in a file. which is designed for 
partial match retrieval. to m disks. Particularly 
we concentrate on the allocation problem for 
binary Cartesian product flles. In section 2 .. the 
relations between partial match queries and 
Cartesian product files are discussed. The exist
ing Disk Modulo (DM) allocation method which has 
been shown to be effective for Cartesian product 
files is reviewed in section 3 and its performance 
is shown to be poor for binary Cartesian product 
files. In section 4. we first propose a heuristic 
allocation method for binary Cartesian product 
files when the number (m) of available disk units 
is a power of 2. Then it is extended to fit the 
cases where m is not a power of 2. The perfor
mance of the proposed allocation method under 
various conditions is compared with that of an 
"ideal" strict optimal and Disk Modulo allocation 
methods in section 5. 

2. Partial Match Queries and Cartesian Product 
Files 

A record may consist of a single attribute or 
multiple attributes. A k-attribute record r is an 
ordered k-tuple (q, r2 •...• lK), each ri t:Di for 
l~i,s;k. where Di is the domain of the i-th attri
bute. A partial match query q for a k-attribute 
file is of the form (Al=al.A2=a2 ..... Ak=ak), 
where for l,s;i,s;k. 6.j, is either a key belonging to 
Di' the domain of the i-th attribute. or is 
unspeCified (Le .• a don·t care condition), in which 
case it is denoted by • and where the number of 
unspecified attributes is j where 1 ~ j ~ k - 1 . 

A response to query q is a list of all records 
in which the i-th attribute is equal to ai if ai is 
not a *. We also say "a record r satisfies a given 
query q" if and only if record r is in the response 
list of query q. Recently much attention has been 
paid to the multi-attribute file design problem for 
partial match queries ([1]-[7] and [10]-[13]). In 
this paper we shall also limit ourselves to multi
attribute files. 



In the following we are going to define the 
Cartesian product file concept which has been 
shown to be effective for partial match queries 
[5]. A file F is called a Cartesian product file. if it 
satisfies the definition in below. 

Definition : Let Di denote the i-th attribute 
domain of a k-attribute file and let each Di be 
partitioned into mi disjoint subsets 
DiO' Di 1,"" Dt(m'-l)' We call F a Cartesian pro
duct file if all'records in every bucket are in 
D111 XDZi2X ... XDkiJe' where each ~i:i is one of the 
sunsets Dj 0, Djl , ... , Dj (rnj-l) . 'fife bucket b ~ 
Dlil XDZi:l.X. .. XDkiK is denofed by [i1' iZ' "., ik]. 

As an example. let Dl =D?=1a.b.c.dj, 
D10=DZO= fa.bl and Dll =DZl = fc.dl. Then the 
following is a Cartesian product file : 
Bucket rO,O]= D1 OXD20 =!(a.a),(a,b), (b,a),(b,b)! 
Bucket [0,1]= Dl0XDZl =f(a,c),(a,d), (b,c),(b,d)l 
Bucket [1.0]= D11 XDZO =/(c,a),(c,b), (d,a),(d,b)! 
Bucket [1,1]= Dl1XDZ1 =Hc,c),(c,d), (d,c),(d,d)! 

Although in the above example all possible 
records are included, it should be noticed that a 
Cartesian product file as defined above is a subset 
of Dl XDZX ... XDk and does not necessarily contain 
all possible records. The Cartesian product file 
concept also satisfies a common property of all 
"good" file design methods described by Lin, Lee 
and Du [10] : that is , records in one bucket are 
similar to one another. The Cartesian product file 
concept is a simple and natural way to cluster 
similar records into the same bucket. 

Many good file systems such as those 
designed by Rivest [12J, Rothnie and Lozano [13J. 
as well as Liou and Yao [11], are all Cartesian pro
duct files. Aho and Ullman [1] explored the file 
design problem of partial match queries with the 
assumption that each attribute in a partial match 
query has a probability of being specified, and 
their file structure is also a Cartesian product 
file. The main difference among these file sys
tems is the way each attribute domain Di is parti
tioned. In [5J many properties of Cartesian pro
duct files were discussed. 

3. Disk Modulo Allocation Method 

Since Cartesian product files have been 
shown to be effective for partial match queries 
and have been widely (though sometimes impli
citly) described in the literature, it would be 
worthy considering the bucket allocation problem 
for Cartesian product files. Du and Sobolewski [9] 
proposed a Disk Modulo allocation method for 
Cartesian product files. 

Definition: Let file F t;.D1 XDZX ... XDk be a Carte
sian product file, where each Dj is partitioned 
intomi disjoint subsets DiO,Di1' ".,Di(m--l)' and 
m be the number of available disk umtl(labeled 
as 0, 1, ... , m-l). Let [il,i2 , ... ,ikJ denote the 
bucket Fn(Dli1 XD2~X. .. XDkilC)' where l";ij <mj 
for 1,,; j,,; k. In the Disk MOdulo (DM) allocation 
me~hod each buc~et [i~ ,tz, ... , ik1 in file F is 
aSSIgned to dlsk umt (i1 + 12 + ... +ikJ mod m. 

212 

Given a file with n buckets, there are mn 
ways to allocate n buckets into m disks. The 
problem of finding an optimal allocation method 
is very difficult. Du and Sobolewski, therefore, 
compared the Disk Modulo allocation method with 
an ideal "strict" optimal allocation method. 

Definition : An allocation method is said to be 
strict optimal to a query if a maximum of'll/ffi' 
buckets need to be accessed on anyone of m 
independently accessible disks in order to exam
ine the n buckets in response to the query. If an 
allocation method is strict optimal for all possible 
queries, it is called a "strict optimal" allocation 
method. 

Note that a strict optimal allocation method 
is optimal. The Disk Modulo allocation method 
has been shown to be strict optimal for the fol
lowing cases [9] : 
1) all partial match queries with only one 
unspecified attribute, 
2) all partial match queries with at least one 
unspecifie~ attrib~te j for which mj mod m=o, 
3) all posslble partIal match queries when mi mod 
m =0 or mi =1 for alll,,;i,,;k, 
4) all possible partial match queries when m=2 or 
3. 

More properties of Disk Modulo allocation 
method can be found in [9]. Although the Disk 
Modulo allocation is strict optimal for the above 
cases, the following example shows that it is not 
strict optimal (or even optimal) in general. How
ever, Du also proved that the Disk Modulo alloca
tion method is asympototic strict optimal if all 
mt 's increase to infinity [8J. 

Example 3.1: Table 3.1 shows the distribution of 
assigning all buckets among m disks using the DM 
method for a Cartesian product file F in which 
m1 =m2=m3=2 and m>? As can be seen, the dis
tribution is not uniform and, in fact, disks 4 to m 
are never used. The obvious optimal allocation 
method in this case is to assign each bucket into 
a different disk. 

Generally speaking, the Disk Modulo al1oca
tion method has a good performance (close to 
strict optimal) when each mi is either 1 or a large 
number. On the other hand, its worst case occurs 
when each mi is small but not equal to 1 (one of 
such cases is mt =2 for all i). The above conclu
sion is supported by the follOwing facts : 
1) The Disk Modulo allocation is asympototic 
strict optimal when all mi's increase to infinity 
[8]. 
2) let F ~D1 XD2X" .XDk be a Cartesian product file 
with Di partitioned into mi disjoint subsets and F' 
S. D'lXD'2X ... XD'k be a similar file but with a 
greater number of records (and therefore buck
ets) in which D'j is partitioned into m'j diSjoint 
subsets where m'i;;"mi and mi mod m = m'· mod 
m for l,,;i,,;k. Du and Sobolewski showed th~t the 
performance of the Disk Modulo method for the 
file F' is better than (closer to strict optimal) 



that for the file F [9]. 
3) From Table 3.1. we know the Disk Modulo allo
cation method has a relatively poor perfor
mance for large m and small mi ·s. 

4. A Heuristic Allocation Method for Binary 
Cartesian Product Files 

In a Cartesian product me F if each attribute 
domain Di contains only two elements. then file F 
is a binary Cartesian product me. Since there 
are only two elements in each attribute domain 
each attribute domain can be partitioned int~ 
either 1 or 2 disjoint subsets (Le .• mi =1 or 2). 
Therefore. a binary Cartesian product file can be 
characterized by the following two properties: 
1) The number of attributes (k) is usually very 
large. 
2) The number of disjoint subsets partitioned 
from each Di (mi) is either 1 or 2. 

In this section we study the allocation prob
lem for binary Cartesian product files due to the 
follOWing reasons: 
1) Binary files are important. Any record type can 
be encoded as a binary string and it was pointed 
out by Rivest [12] that binary files seem to be the 
hardest type for which to design an "optimal" file 
structure. since the number of attributes is usu
ally large and the user has the greatest flexibility 
in specifying queries. 
2) Several papers ([3]. [4J and [12]) concerning 
the file design problem for partial match queries 
are concentrated on binary files and certain 
types of binary Cartesian product files have been 
shown to be "good" file structures for partial 
match queries. 
3) Unfortunately. Disk Modulo allocation method 
has a relatively poor performance for binary 
Cartesian product files. 

In the rest of this section we first consider 
the cases where m is a power of 2 and a heuristic 
allocation method which has a better perfor
mance for binary Cartesian product files is pro
posed. 

Definition : Let F be a k-attribute binary Carte
sian product flle (therefore. mi = 1 or 2 for 
l:!i:i:!i:k). and let m be the number of available 
disk units and m is a power of 2. Let T=f 
h . iz ..... ih I be the set of all attributes i with 
mi =~. For convenience and without loss of gen
eralIty. we shall assume that h = i for l";:i:!i:h. A 
heuristic allocation method (REU) is defined as 
follows: 
Bu~ket [il.iZ.: ... ik].(note ij=O or 1 for l";:i..;:k) is 
assJ.gne~ to dISk umt (l;kj = 1 ij 'Pj) mod m. where 
Pj= Z(J mod log m) for l";:j:!i:b: and p·=1 for 
h+ l..;:j..;:k. J 

Example 4.1 Let F be a binary Cartesian product 
file with mi=2 for 1..;:i..;:4 and m5=1. and !{1=4. 
Then loga m =2. Pi = 2(1 mod Z) =2 
PZ = z( Z mod ~,= 1. P3 = z( 3 mod Z) =2: 
P4=Z(4 mod 2) = 1. and P5=1 (since m5=1). 

Table 4.1 shows the distribution of all buck-

213 

ets in the above example. Note that all 16 buckets 
are uniformly distributed among 4 disks. Let S be 
the set of all attributes j with mj = 1 and Si' for 
O..;:i< logZm • be the set of all attnbutes j with i=j 
mod logZ m and jeT (i.e., m j =2). In the previous 
example S=[5~. So = [2,4! and Sl =[1.3!. By the 
definitions of S and Si for O";:i<logzm. it is not 
hard to see that in the heuristic allocation 
method Pj=1 for each jeS and Pj=Zi for each 
jeSi. where O";:i<logZm. 

There are two interesting properties depicted 
in Example 4.1 : 
1) For each bucket [il.iZ ..... ik]. O";:ij<mj for 
l:!i:~";:k. Therefor~, i1 =0 for each jeS l~ince 
mj-1) and Ekj=l(lj'Pj) mod m = Ekj=1.~(Ij'P·) 
~od m .. That means ~he value of Pj for eAch je13 
IS of no Importance. Smce mj =1 for each j e S. the 
number of buckets needed to be examined to 
respond to a query will be the same no matter 
the j-th attribute is specified or not. Further
more. let F c;:.Dl XDZX ... ~ be a binary k-attribute 
Cartesian product file and each Di is partitioned 
into mi subsets for l";:i:!i:k with mj =1 for some j. 
For simplicity. let us assume J=1. Let F' c.. 
DZXDSX ... XDk be a (k-1)-attribute Cartesian pro
duct file and each Di is partitioned into mi sub
sets for 2..;:i..;:k. If bucket [il.iZ .... .ik] in me F is 
assigned to disk d by the proposed allocation 
method. then bucket [iZ .... • ik] in file F' is also 
assigned to disk d (since ml =1 and il =0). Given 
a query q=(Al =a1.A~=az ..... Ak=ak) in file F. there 
is a query q' =~AZ=a2 .... .Ak=ak) in file F' 
corresponding to query q and the responses to 
query q and q' contain the same number of buck
ets. If bucket [i1 .iZ ..... ik] in file F is in the 
response to query q, then bucket [iZ ..... ik] in file 
F' is in the response to query q'. Thus. from the 
performance point of view there is not much 
difference between file F and F'. For simplicity in 
th~ rest of this paper we are going to assume that 
S IS empty (Le .• mi =2 for all i) for each binary 
Cartesian product file. 
2) For a given partial match query which contains 
at least two unspecified attributes. one belongs to 
So and. the other belongs to Si • then the heuristic 
allocat~on method ~s strict optimal for the query. 
For mstance. m Example 4.1 queries 
q=(Al =*.AZ=·, A3=a3.A4=a4.A5=~)' where a·eD· 
for 3~i";:5. and queries q'=(Ai = •. Az~az~ 
A3=:=*.~=~.Af>=B.f». where aZeDZ and a5eD5 are 
strICt optimal. The readers can verify this by 
themselves. 

Before giving a theorem which shows that the 
heuristic allocation method is strict optimal 
under certain conditions, let us define some nota
tions first. Let <bl,.bz ..... bk > denote the set of 
bu~kets [il:iZ ..... it<J with ij=bj if b j is not a· or 
O~lj..;:mrl If bj IS ., where bi is either • or 
O..;:0i~m~-l for l";:i~k. For example <*,0.1,*> = 
HO,O.l,Oj, [0.0.1.1]. [1.0,1,0], [1,0,1,1]1· if 
m1 =m4 =2. <bl.bZ ..... bk > is also the response 
list o~ a partial match. query q= (Ai =al.AZ =aZ 
• ... ,Ak-ak), where ai=* If bi=· or aieDib' if b· is 
not a >I< for l~i";:k. It is not harff to ~ee 



<b1.· ... bi - 1 .... bi+1 ..... bk> = VOlf~1t=O<bl 
..... bi -l.t. bi + 1 ... · .bk>· 

Let G= I<bl.~ ..... bk> j <b1.ba ..... bk> has 
exactly logam unspecified attributes. one from 
each Si. where 0~i<log2m I. The following 
lemma shows that all buckets in each element of 
G are "uniformly" distributed among m disks. 

Lemma .4.1 Assume that m=ah for some non
negative integer hand <bl.ba ..... bk> t G. All 
buckets in <b l' b2 ..... bk > are "uniformly" distri
buted among m disks. one in each disk. by the 
proposed heuristic allocation method (Due to the 
.space limitation. all proofs in this paper are omit
ted.). 

For instance. < ... ".0.0.0> is the response list 
to a query q=(Al =·.Aa=·.A3=a3'~=B..4.At>=8.(5). 
where ajtDiQ for 3~j~5. in Example 4.1. Since 
m=22=4 and leS1' and 2tSO' < •• ·.0.0.0> eGo All 
four buckets [0.0.0.0.0]' [0.1.0.0.0]. [1.0.0.0.0] and 
[1.1.0.0.0] in <·.·.0.0.0> are assigned to disk 0.1.2 
and 3 respectively. 

Theorem 4.1 Let m=2h and q be a partial match 
query containing at least one unspecified attri
bute from each Sj for O~j<logam=h. Then the 
heuristic allocation method is strict optimal for 
queryq. 

Assume m=zh. By definition of the heuristic 
allocation method if mj=2 for l~i~k and k is a 
multiple of h. then there are exactly k/h attri
butes belonging to each Si for O~j<h. 

Corollary 4.1 Let mj=2 for l~is:k and m=2h. and 
k is a multiple of h. The heuristic allocation 
method' is strict optimal for all partial match 
queries which contain more than (h-l).k/h 
unspecified attributes. 

The above theorem and corollary are quite 
useful in practice. Let us consider a special case 
m= a2 =4 and k=20 (there are about a million pos
sible records in the file). A query being asked 
usually has less than 10 attributes being specified 
(most likely no more than 5). Thus by the Corol
lary 4.1 the heuristic allocation method is strict 
optimal for this query. 

In an information retrieval system. usually 
some number of attributes will never or have a 
very little chance being specified in a query. If 
there are log2m=h attributes never being 
specified. then we can assign one of such attri
butes to each Sj for o~ i < h and the heuristic allo
cation method is becoming strict optimal for all 
possible partial match queries (with those attri
butes unspecified). Even if the number of such 
attributes is less than logam. the performance of 
the heuristic allocation method can be improved 
by assigning one of such attributes to each Si and 
assigning the rest of attributes to those Sj's 
which contain no such attributes. 

In the above allocation method. bucket 
[i1.j2 ..... ik] is ~~signedto ciisk (Ekj = 1 ij 'Pj) mod 
m. where Pj = 2\J mOd log m) if mj = 2 for 1 ~ j~k. 

214 

We can extend the above allocation method by 
replacing p' =20 mod log m) JYith either 
p' = a(j moddogJ mJ) or Pj = 2(j mod'log ni1) to fit 
the cases where m is not a power of 2. The 
extended allocation method has almost the same 
performance as the original one. This will be 
shown in the next section. 

5. Analysis and Comparisons 
In this section the performance of the pro

posed allocation method under various conditions 
is compared with those of Disk Modulo and an 
"ideal" strict optimal allocation methods . 

Let Fr=Dl XD2X ... ~ be a binary Cartesian 
product file. We shall still assume that mi =2 for 
l~i~k. Therefore. each Di is partitioned into 2 
single element subsets Di 0 and Dj l' The number 
of queries with j unspecified attributes equals to 
(C(k.j).ak - j ). where C(k.j) is the number of ways 
to choose j elements from a pool with k elements. 

Let q = (AI =al ... · .Ak =ak) be a partial match 
query with j unspecified attributes i1 .i2 ..... ij and 
<c1 ..... ck> be the response to query q. where 
0i =aj ="' if it lil.ia ..... ij! or ai t Die' !1 apH. Since 
mi =2 for l~i~k. t.here are 'aJ buckets in 
<c1.c2 ... ·.ck>· Let AK(q) = (no.n1 ..... fim-1) be 
an m-tuple with ni denotes the number of buck
ets in <01.c2 ..... ok> which are assigned to disk i 
by allocation method K. Thus. ADM(q) and 
AHEU (q) denote the distributions of all buckets in 
the response to query q among m disks when Disk 
Modulo and the proposed heuristic allocation 
methods are applied respectively. 

Let N=(nO.n1 ..... nm-1) be an m-tupl~ with I1t 
being non-negative integer. We define N(l) to be 
the m-tuple formed by a right circular shift of i 
pos~ions of all m cO~fo~ents of N. ~)r_example. 
If N-(1,2.3,4). then N >-(4.1,2.3). N( -(3.4,1.2), 
N(3):(2,3,4.1) and N(4):(1.2.3,4) =N. Let us also 
define m functions fi(N) = N+N(i) for l~iS:m. 
Also for convenience. let fi ,i:l .... t' (N) denote 
fi, (fi.l( ... (fi' (N) ... ). The follo~ng llitorem shows 
tliat given K query q how to compute ADM (q) and 
AHEU(q) . 

Theorem 5.1 Let q=(Al =a1 .Aa =aa ... · .Ak =ak) be a 
partial match query with j unspecified attributes 
il.iZ ..... ij and <c1.c2 ..... ck> be the response to 
query q. Lel t= (E~ci) mod m and t·= 
( 1: ~ ci.Pt) mod m. where Pi = 2n if it Sn as 
defined in the heuristic allocation method. Let N 
and N' be an m-tuple with all components to be 0 
except the t-th and t·-th component to be 1 
respectively. Then AHEU (q) = f p.%, .~ ..... Pi' (N) 
and ADM (q) = f 1.1. .... 1 (N). where-t'liere arel 11's 
in the expression. 

For example. let 'roi =2 for 1 ~ i:!!: 5 and m=4. 
Since So=12.41 and Sl =11.3.51 (recall the 
definitions for So and S1 in the previous section). 
P1 =P3=P5 =2 and Pa=P4=1. Let q=(A1 ="'.Aa=*. 
As='" .~=B..4.At> =a5). where a4 tD40 and a5eD51' 
Then t=1. t·=2. ADM(q) = f 1 • 1 ,1(N=(1.0.0.0» = 
(1.3,3,1) and AHEU(q)=fa 1 a (N·=(0,1.0,0»))) = 
(2,2.2.2). • . 



Let AK(q) = (no,nl ... ·,nm -l)' where ni 
denotes the number of buckets. among those 
needed to be examined to respond to queryq. 
being allocated to disk i by allocation method K. 
Thus. the time required to respond to query q is 
max InO,nl , .... nm -ll. 

Now let us consider the performance of the 
proposed heuristic allocation method under vari
ous conditions. First assume m=2h. Given a par
tial match query q. from Theorem 4.1. if there 
exists at least one unspecified attribute from 
each Si for O~i<h, then the proposed allocation 
method is strict optimal for query q. Let k be a 
multiple of h. Thus. the number (b) of elements in 
each Si for O~i <h is the same (Le .• b= k/h). 

Assume that there are j unspecified attri
butes in a query q. Let Prob(i,j) denote the pro
bability of having all j unspecified attributes in i 
out of h Sr's, where O~r<h. 
Then Prob(1,j) =(C(h,1).C(b.j» I C(k,j) if j~b or 0 
if j > b. 
Prob(2,j) = «G(h,2) .C(2b,j» I C(k,m - Prob(1,j) 
if j~ 2b or 0 if j > 2b. 
In general Prob(i.j) = «C(h.i).C(Lb, j» I C(k,j» 
-l:i-lr ::; 1 Prob(r,j) if j~(i.b) or 0 if j>(i.b). 
Note l:1-1r=lProb(r.j)= (C(h,i-l). C«i-1).b,m 
IC(k,j) if j:S«i -1 ).b) or 0 if j > «i-1).b). 
Thus, the probability for the proposed allocation 
method to be strict optimal for query q is 
Prob(h,n =1- (C(h,h-1). C«h-1).b.m IC(k,n if 
j~«h-l).b) or 1 ifj > «h-l).b). 

For example, let k=B and m=4. Given a par
tial match query q with 4 unspecified attributes, 
the probability of the proposed allocation method 
to be strict optimal for query q equals to 
Prob(h=2,j=4) =1- (C(2,l).C(4,4» IC(B,4) =34/3~ 
0.9714. 

Tables 5.1, 5.2 and 5.3 show the comparisons 
of the performance of an "ideal" strict optimal, 
the proposed heuristic and Disk Modulo allocation 
methods when m is a power of 2. Let SO, HEU and 
DM represent a strict optimal, the proposed 
heuristic and Disk Modulo allocation methods 
respectively. Let TK and REK denote the average 
response time and the relative efficiency, respec
tively, of a concerned partial match query when 
allocation method K is employed. REK is defined 
as (100. TSO) I TK, which shows the degree of 
closeness of the performance of allo'cation 
method K to that of an "ideal" strict optimal allo
cation method. Note it is different from the pro
bability of allocation method K to be strict 
optimal for a given partial match query. Also 
note that the case where all k attributes are 
unspecified is considered in Tables 5.1, 5.2 and 
5.3, although there is no such partial match 
query according to our definition. 

In comparing these results, the following can 
be concluded : 
1) The proposed heuristic allocation method has a 
better performance than Disk Modulo allocation 
method in all cases. 
2) For fixed m and k, the performance of the pro
posed heuristic allocation method for a query q 

215 

with j unspecified attributes will first degrade as j 
increases. However, it will improve rapidly after j 
is greater than log2m. In fact it becomes strict 
optimal when the number of unspecified attri
butes is greater thanf'{log2m -l).k Ilog2ffi'· 
3) For a fixed k but different m, the average 
response time to a query q with j unspecified 
attributes is almost the same when Disk Modulo 
allocation method is applied. That means the 
relative efficiency of Disk Modulo allocation 
method will decrease as the number of available 
disk units increases. Fortunately this is not true 
for the proposed heuristic allocation method. 
4) The proposed allocation method has a "near" 
strict optimal performance for a query q in which 
the number (j) of unspecified attributes is 
greater than a small number (5 or 6). 

Since the average response time to a query q 
is proportional to the number of unspecified 
attributes in q, this last point is very important. 
For instance, in Table 5.2 (b) REHEU=54.90 for j=3 
and the difference between THEU and TSO is less 
than one disk access. However, in the same table 
REDM =63.64 for j= 15 and the difference between 
TDM and TSO is more than two thousand disk 
accesses. 

When m is not a power of 2, the proposed 
allocl}tion method can be extended by replacing 
p. = 2U mod log m) with either 
p~=2( j mod&log rru) or Pj=2( j modfiog m"). Let 
BEUl and HEU2 denote Uie former and the latter 
modified heuristic allocation methods respec
tively. Tables 5.4 and 5.5 show the comparisons 
of the performance of HED1, a strict optimal and 
Disk Modulo allocation methods for m=5 and 6. 
Similar comparisons are shown in Tables 5.6 and 
5.7 for HEU2 when m=6 and 7. Although those 
nice results in the previous section cannot be 
applied to HEU1 and HEU2 any more, the:ir per
formance is still fairly close to strict optimal 
when j is greater than 5 or 6. Some more com
parisons of the performance of a strict optimal, 
HEU1, HEU2 and Disk Modulo allocation methods 
are shown in Table 5.B. The results in Table 5.B 
are derived under the assumption that each 
query has an equal probability being asked. When 
m is a power of 2, both HEU1 and HEU2 allocation 
methods become HEU allocation method. It is not 
hard to see that the performance of REU 1 and 
HEU2 allocation methods for the cases where m is 

. not a power of 2 is not inferior to that of HEU 
allocation method for the cases where m is a 
power of 2. Although it can not guarantee the 
best result, when m is not a power of 2 the sug
gested criterion to choose either HEU1 or HEU2 
allocation methods depends on the difference 
between log2m-t!0g~lI!J and rtog2ni' -log2m. If 
logZm-t!og2m.J < 'fogZrri' -logZm then choose 
HEUI otherwise choose HEU2. 

6. Summary 
If a file is. large and can not reside in primary 

memory, it is stored on a secondary storage 



access concurrency, all buckets in a file need to 
be carefully allocated to a multiple disk system. 

In this paper we are concerned with the disk 
allocation problem for partial match retrieval. 
Any record type can be encoded as a binary 
string and binary files are probably the hardest 
type for which to design a good file structure. 
Also, it has been shown that Cartesian product 
files are effective for partial match queries. 
Therefore, we particularly concentrate on the 
allocation problem for binary Cartesian product 
files. 

Since the performance of the existing Disk 
Modulo allocation method is first shown to be 
poor for binary Cartesian product files, a heuris
tic allocation method for binary Cartesian pro
duct files when the number of disks is a power of 
2 is first proposed. Then the proposed heuristic 
allocation method is extended to fit the cases 
where m is not a power of 2. The proposed 
heuristic allocation method is shown to be "near" 
strict optimal for a partial match query in which 
the number of unspecified attributes is greater 
than a small number (5 or 6). A systematic way 
to compute the response time to a given query 
when the proposed heuristic and Disk Modulo 
allocation methods are employed is also given. 

7. References 

1. Aho, A.V. and Ullman, J.D., "Optimal Partial
match Retrieval When Fields are Independently 
Specified," ACM Trans. Database Systems, vol. 4, 
no. 2, June 1979, pp. 168-179. 

Table 3.1 

Bucket 

[0,0,0J 

[0,0,lJ 

[0,1,0J 

[0,l,lJ 

[1,0,0J 

[l,0,lJ 

[1,l,0J 

!l,l,lJ 

Disk. :II: 

4 

m 

Assigned DiSK 

:# of Buckets Assigned 
to That Disk 

216 

2. Bolour, A., "Optimality Properties of Multiple
key Hashing Functions." JACM, vol. 26, no. 2, April 
1979, pp. 196-210. 
3. Burkhard. W.A., "Hashing and Trie Algorithms 
for Partial Match Retrieval," ACM Trans. Database 
Systems, vol. 1, no. 2, June 1976, pp. 175-187. 
4. Burkhard. W.A., "Partial Match Hashing Coding: 
Benefits of Redundancy," ACM Trans. Database 
Systems. vol. 4. no. 2, June 1979. pp. 228-239. 
5. Chang, C.C., Lee, R.C.T. and Du, H.C., "Some 
Properties of Cartesian Product Files," Proc. 
ACM-SIGMOD 1980 Conf., Santa Monica, Calif., May 
1980. pp.157-168. 
6. Chang, J.M. and Fu, K.S., "Extended k-d Tree 
Database Organization : A Dynamic Multiattribute 
Clustering Method," IEEE Trans. Software Eng .• 
vol. SE-7, no. 3, May 1981, pp. 284-290. 
7. Chang, C.C., Lee, RC.T. and Du. M.W., "Symbolic 
Gray Code As a Perfect Multi-attribute Hashing 
Scheme for Partial Match Queries," IEEE Trans. 
Software Eng, May 1982, pp. 235-249. 
8. Du, H.C .• "Some Design and Analysis Problems 
for Parallel Processing," Ph.D. Diss., University of 
Washington, Tech. Report 81-08-03. 
9. Du, H.C. and Sobolewski, J.S .• "Disk Allocation 
for Cartesian Product Files on Multiple Disk Sys
terns." ACM Trans. Database Systems. March 1982, 
pp.82-101. 
10. Lin, W.C., Lee, RC.T. and Du, H.C., "Common 
Properties of Some Multi-attribute File Systems" 
IEEE Trans. Software Eng .• vol. SE-5, no. 2. Mardh 
1979, pp. 160-174. 
11. Liou, J.H. and Yao, S.B., ''Multi-dimensional 
Clustering for Data Base Organizations" Informa
tion Systems, vol. 2, 1977, pp. 187-198. ' 
12. Rivest. RL., "Partial-match Retrieval Algo
rithms," SIAM J. Comput .• vol. 15, no. 1, March 
1976, pp. 19-50. 
13. Rothnie. J.B. and Lozano, T., "Attribute Based 
File Organization in a Paged Memory Environ
ment," Comm. ACM, vol. 17, no. 2. Feb. 1974 pp. 
63-69. • 

Table 4.1 

~--------.------.-.---.-•... 

~"'.~ "., [,::~: .. ;--':~~' "., I 
Bucket 

[1lI,0,IlI,0,0J 

[0,0,0,l,0J 

[0,0, l,llI, IlIJ 

[0,0,l,l,IlIJ 

[13,1,0,13,I2JJ 

[0,l,0,l,0J 

[0,l,l,0,0J 

[0,l,l,l,IlIJ 

Disk # 

[1,0,0,l,0J 3 

[1,0,l,0,0J 0 , 

[1,0,1,l,0J 

[1,l,0,1,0J 

[1,1,1,1,0J 

-1 
#: of Buckets Assi.gned I' 

_____ to That Di_sk __ --l. 

4 ! 
4 

4 

4 

I 
I 

! 
! 
I 

I 
J 



Table 5.1 (a) Table 5.2 (a) 

M=8 and K=8 
M=4 and K=8 

unspecified TSO THEU REHEU TOM REOM unspecified TSO THEU RE HEU TOM REOM attributes 
attributes 

1 1 1."""0 1""."" 1 1"".0" 
1 1 1.,,""" 10"."" 1 1"0.00 2 1 1.250" 8"."" 2 50."0 
2 1 1. 4286 70."" 2 5"."" 3 1 1.7321 57.73 3 33.33 
3 2 2.2143 9".32 3 66.67 4 2 2.6857 74.47 6 33.33 
4 4 4.0857 97.9" 6 66.67 5 4 4.5357 88.19 10 4".00 
5 8 8.0""" 100."" 10 8"."" 6 8 8.2857 96.55 2" 4".0" 
6 16 16."000 1"0.00 2" 80.0" 7 16 16.""0" 100.00 35 45.71 
7 32 32.000" 1"0."0 36 88.89 8 32 32.0000 100.00 70 '45.71 
8 64 64."000 100.00 72 88.89 

Table 5.2 (b) 
Table 5.1 (b) 

M=8 and K=16 
M=4 and K=16 

unspecified TSO THEU REHEU TOM REOM 
unspeci fied TSO THEU REHEU TOM REOM attributes 
attributes 

1 1 1.0"00 1"0."" 1 1""."" 
1 1 1.00"" 10" ."" 1 1"0.00 2 1 1. 291 7 77.42 2 50."" 
2 1 1. 4667 68.18 2 5".00 3 1 1.8214 54.9" 3 33.33 
3 2 2.30"0 86.96 3 66.67 4 2 2.8791 69.47 6 33.33 
4 4 4.23"8 94.55 6 66.67 5 4 4.8571 82.35 1" 40.0" 
5 8 8.1282 98.42 1" 8".0" 6 8 8.8369 9".53 2" 4".0" 
6 16 16.0699 99.56 20 80.00 7 16 16.7334 95.62 35 45.71 
7 32 32 .0252 99.92 36 88.89 8 32 32.5952 98.17 70 45.71 
8 64 64.0056 99.99 72 88.89 9 64 64.4073 99.37 126 5".79 
9 128 128.0000 100.00 136 94.12 1" 128 128.2158 99.83 252 50.79 

10 256 256.0"00 100.0" 272 94.12 11 256 256.0678 99.97 462 55.';1 
11 512 512.0""" 10".00 528 96.97 12 512 512.0""" 1"0."0 924 55.41 
12 1024 1024."0"" 10".00 1056 96.97 13 1024 1024. 0000 10a.0" 1716 59.67 
13 2048 2048.0""" 1"".00 208" 98.46 14 2C48 2048. 0000 100."0 3432 59.67 
14 4"96 4096."0"" 100.00 416O 98.46 15 4096 4096.""00 100.0" 6436 63.64 
15 8192 8192.0000 100.00 8256 99.22 16 8192 8192.0000 100.0" 12872 63.64 
16 16384 16384.0"00 100.00 16512 99.22 

Table 5.4 

Table 5.3 (a) M=5. K=16 and P j =2 j mod I!og ~ 

M=16 and K=8 
un spec ified Tso THEU1 REHEU1 TOM REOM 
attributes 

unspecified Tso THEU REHEU TOM REOM 1 1 1.0"00 100.00 1 1"0.0" attributes 2 1 1.4667 68.18 2 5".0" 

100.0" 
3 2 2.20"" 90.91 3 66.67 

1 1 1."0"" 1""."0 1 4 4 4.1538 96.30 6 66.67 
2 1 1.1429 87.00 2 50.0" 5 7 7.3333 95.45 1" 7"."" 3 1 1. 4286 7"."" 3 33.33 6 13 13.7622 94.46 20 65.0" 
4 1 1. 9429 51.47 6 16.67 7 26 26.4434 98.32 35 74.29 
5 2 2.9571 70.00 10 20.00 

8 52 52.2962 99.43 70 74.29 
6 4 4.5714 87.50 20 2".0" 9 1"3 103.4070 99.61 127 81.10 
7 8 8.0000 H'0.0" 35 22.86 

10 2"5 205.7622 99.63 254 SO.71 
8 16 16.000" 10".00 70 22.86 

11 410 410.3590 99.91 474 86.5" 
12 820 820.1538 99.98 948 86.50 
13 1639 1639.2"0" 99.99 18"7 90.70 
14 3277 3277 .4667 99.99 3614 90.68 
15 6554 6554.000" 10". "0 6995 93.70 

Table 5.3 (b) 16 13108 13108.0"00 10"."" 13990 93.70 

M=16 and K=16 
Table 5.5 

unspecified TSO THEU REHEU TOM REOM M=6. K=16 and P ,=2 j mod 2-09 ~ attributes J 

1 1 1.0000 1"0.0" 1 10".0" 
unspecified TSO THEU1 REHEU1 TOM RED!-I 
attributes 

2 1 1.2000 83.33 2 50.00 
3 1 1. 5786 63.35 3 33.33 

1 1.0000 1.000" 100."'0 1.00"0 100.CO 
4 1 2.2648 44.15 6 16.67 

2 1.000'" 1.4667 68.18 2.""00 50.00 
5 2 3.4725 57.59 10 20.00 

3 2.0000 2.200" 90.90 3.0"00 66.07 
6 4 5.6833 70.38 2" 20.00 

4 3.000'" 3 .9077 76.77 6.0000 50.00 7 8 9.8084 81.56 35 22.86 
5 6.0"00 6.7308 89.14 10.0000 60.00 

8 16 17.8228 89.77 70 22.86 
6 11.0"0'" 12.6643 86.86 20.0000 55. oJ" 9 32 33.6608 95.07 126 25.40 
7 22.001!!O 23.7566 92.61 35."000 62.36 

1" 64 65.3127 97.99 252 25.40 
8 43.0""1!! 46.0398 93.40 70.0000 61.43 11 128 128.8132 99.37 462 27.71 
9 86.0000 89.5622 96.02 126.0000 68.25 12 256 256.3121 99.88 924 27.71 

1" 171.0000 176.3846 96.95 252.0000 67.96 
13 512 512. "01!!0 100.00 1 716 29.84 

11 342.0000 348.5769 98.11 463.0000 73.57 
14 1024 1"24.0000 1"0.00 3432 29.84 12 683.000" 692.2154 98.67 926.0000 73.76 
15 2048 2048.0000 100.00 6435 31.83 

13 1366.00"0 1377.4000 99.17 1730. ""00 78.96 
16 4096 4096.0000 1"0.00 12870 31.83 

14 2731.001!!0 2746.3333 99.44 3460.0000 78.~3 
15 5462.0000 5481.5m:", 99.64 6555.0000 83.33 
16 10923.0000 10950.0"00 99.75 13110.0000 83.32 

217 



Table 5.6 

M=6. K-16 and P .=2 j Imod 
J 

log .iii 

unspecified Tso THEU2. REHEU2 TOM REOM 
attributes 

1 1.BBBB 1.BIilI1JI1J lI!llil.1il1il 1.1il001il 100.B" 

2 1.0001il 1.5417 64.86 2.BIil"I!l 50.01il 

3 2.""B0 2.3125 86.49 3 .0"B0 66.67 

4 3.""B0 3.9148 76.63 6.00"B 50.0" 

5 6.0B0" 6.68B9 89.81 U'J.B0IilB 60.0B 

6 11.BBBB 12.3613 88.99 2B.0IilBB 55.01il 

7 22.IilB00 23.B577 95.41 35.0B00 62.86 

8 43.BB00 44.7051 96.19 70.IilIilBIil 61.43 

9 86.0B00 87.3317 98.48 126.BB00 68.25 

1B 171."0"" 172.9492 98.87 252."000 67.86 

11 342."BB0 343.6344 99.52 463.0000 73.87 

12 683."000 685.4478 99.64 926."00B 73.76 

13 1366.B0BB 1368.3571 99.83 1730.000B 78.96 

14 2731.0BBB 2734.2917 99.88 346B.IilBB0 78.93 

15 5462.BBB0 5465.3750 99.94 6555.BBBB 83.33 

16 1B923.BB00 1"927.BB00 99.96 13110.B0BB 83.32 

Table 5.7 

M=7, K=16 and P j=2 
jrmod log .iii 

unspecified Tso THEU2 REHEU2 TOM REOM 
attributes 

1 1.01!lIilB 1.l!l0BIil 11m .00 1.0000 101il.00 

2 1.000" 1.2917 77.42 2.01il01il 50.00 

3 2.1il01!l0 2.0714 96.55 3.0000 66.67 

4 3."000 3.3764 88.85 6.0000 50.00 

5 5.0000 5.6891 87.89 10.0000 50.00 

6 10.0000 10.4472 95.72 20.0000 50.00 

7 19.0000 19.6892 96.50 35.0000 54.29 

8 37.0000 37.9409 97.52 70.0000 52.86 

9 74.0000 74.6066 99.19 126.0000 58.73 

10 147.0000 147.7451 99.50 252.001il0 58.33 

11 293.0000 293.8720 99.70 462. 1il""0 63.42 

12 586. 001il0 586.4203 99.93 924.0000 63.42 

13 1171.01il00 1171.4821 99.96 1717.1il1il00 68.20 

14 2341.1il001il 2341.4583 99.98 3434.0000 68.17 

15 4682.0000 4682.0000 lI!l0.00 6451.0000 72.58 

16 9363.001il0 9363.0001il 100.00 12902.001il0 72 .57 

Table 5.8 

K M TsO THEU1 REHEU1 THf\U2 REHEU2 TOM REOM 

8 4 2.6599 2.8579 93.07 2.8579 93.B7 3.8071 69.87 
8 5 2.5203 2.71B7 92.98 2.77B7 90.97 3.8B46 66.24 
8 6 2.2259 2.6053 85.44 2.6967 82.54 3.8046 58.51 
8 7 2.1295 2.6041 81.77 2.2938 92.84 3.8046 55.97 
8 8 1.5533 1.9975 77.76 1.9975 77.76 3.8B46 4B.83 
8 9 1. 5507 1.9676 78.81 2.B409 76.00 3.8046 4B.76 
8 11il 1.5279 1.9619 77.88 2.1il330 75.16 3.8B46 40.16 
8 11 1.4365 1. 947B 73.78 1.8890 76.B5 3.8B46 37.76 
8 12 1.434B 1.9321 74.22 1.9543 73.38 3.8046 37.69 
8 13 1.4137 1. 9321 73.17 1.7659 8B.1il6 3.81il46 37.16 
8 14 1.4137 1.9321 73.17 1.7424 81.14· 3.8B46 37.16 
8 15 1.4111 1. 9321 73.04 1. 6421 85.94 3.8046 37.09 
8 16 h1421 1 :5431 74.01 1. 5431 74.01 3.8B46 30.02 

-------------------------------------------------------------------
16 4 24.987B 25.1243 99.45 25.1243 99.45 28.3653 88.09 
16 5 21il.4862 2B.8778 98.12 21.1354 96.93 27.2701 75.12 
16 6 17.1542 18.51B9 92.67 18.1231 94.65 27.1515 63.18 
16 7 14.9412 17.7862 84.B0 15.4550 96.68 27.1451 55.04 
16 8 12.5225 13.2763 94.32 13.2763 94.32 27.1450 46.13 
16 9 11.6B71 12.4597 93.16 12.9293 89.77 27.1450 42.76 
16 IB llil.4946 11. 7945 88.98 12.2545 85.64 27.1450 38.66 
16 11 9.4351 11.4304 82.54 11.0990 85.01 27.145B 34.76 
16 12 8.8328 11.1344 79.33 10.5928 83.39 27.145B 32.54 
16 13 8.1001 11.0870 73.06 9.6664 83.8B 27.145B. 29.84 
16 14 7.8044 11.0582 70.58 9.lIiJ28 85.74 27.1450 28.75 
16 15 7.4133 11.0512 67.08 8.4084 88.17 27.1451!l 27.31 
16 16 6.3435 7.7227 82.14 7.7227 82.14 27.1451il 23.37 
-------------------------------------------------------------------
24 4 246.1701 249.2461 99.97 249.2461 99.97 258.6822 96.32 
24 5 199.8357 200.4949 99.67 2Bl.8313 99.lill 231. 7746 86.22 
24 6 166.6132 171il.4278 97.76 168.5526 98.85 225.1il612 74.03 
24 7 143.0493 154.5536 92.56 144.0367 99.31 223.9369 63.88 
24 8 124.5875 125.4996 99.27 125.4996 99.27 223.8135 55.67 
24 9 111. 2490 113.0549 98.4g 114.9421 96.79 223.8050 49.71 
24 10 100.1676 l1il3.3942 96.88 105.3645 95.07 223.8046 44.76 
24 11 91.1142 96.5833 94.34 95.4793 95 .• 43 223.8046 40.71 
24 12 83.5570 91.7665 91.05 88.3628 94.56 223.8g46 37.33 
24 13 77 .1il4 74 89.2935 86.29 80.9989 95.12 223.8046 34.43 
24 14 71.8581 87.7426 81.9" 75.3481 95.37 223.8046 32.11 
24 15 67.1951 86.9325 77 .30 69.8275 96.23 223.8046 30.02 
24 16 62.3036 65.0619 95.76 65.0619 95.76 223.8046 27.84 

218 



ALGORITHMS FOR REPLACE-ADD BASED PARACOMPUTERS 

Clyde P. Kruskal 
Department of Computer Science 

University of Illinois 
Urbana, Illinois 61801 

I. Introduction 

Several groups are designing large-scale mul
tiprocessors to take advantage of inexpensive, 
fast floating-point processors which will soon be 
available. One such project is the "NYU Ultracom
puter" [3] for which much effort has gone into 
designing operating system algorithms [5], [10] 
and designing and implementing numerical algo
rithms (e.g. [6]). In this paper we present and 
analyze algorithms for solving nonnumerical prob
lems on an idealized model of the Ultracomputer 
a "replace-add-based paracomputer". 

A replace-add-based paracomputer is essentially 
a traditional shared memory machine augmented with 
an extra primitive -- the "replace-add". By exhi
biting algorithms that make use of the replace-add 
to be faster than any algorithm for solving the 
same problem on a traditional shared memory 
machine, we show that this primitive enhances the 
model. 

(N.B. The current Ultracomputer design is 
based on the "fetch-and-add" operation [4] rather 
than the replace-add. However, these two primi
tives are essentially equivalent, and all of our 
algorithms can be easily transferred to the newer 
model.) 

II. The Paracomputer Model of Computation 

An idealized parallel processor, dubbed a para
computer by Schwartz [11] and classified as a WRAM 
by Borodin and Hopcroft [2], consists of auto
nomous processing elements (PEs) sharing a central 
memory. The model permits every PE to read or 
write a shared memory cell in one cycle. In par
ticular, simultaneous reads and writes directed at 
the same memory cell are effected in a single 
cycle. 

We augment the paracomputer model with the 
"replace-add" operation (described below) and make 
precise the effect of simultaneous access to the 
shared memory. To accomplish the latter we define 
the serialization principle: The effect of simul
taneous actions by the PEs is as if the actions 
occurred in some (unspecified) serial order. For 

This work was supported in part by the Applied 
Mathematical Sciences Program of the U.S. Depart
ment of Energy under Contract No. DE-AC02-
76ER03077, and in part by the National Science 
Foundation under Grant Nos. NSF-MCS79-21258 and 
NSF-MCS81-05896. 

0190-3918/82/0000/0219$00.75 © 1982 IEEE 219 

example, consider the effect of one load and two 
stores simultaneously directed at the same memory 
cell: The cell will come to contain some one of 
the quantities written into it. The load will 
return either the original value or one of the 
stored values, possibly different from the value 
the cell comes to contain. Note that simultaneous 
memory updates are in fact accomplished in one 
cycle; the serialization principle speaks only of 
the effect of simultaneous actions and not of 
their implementation. 

The Replace-Add Operation 

We now describe a simple yet very effective 
interprocessor synchronization operation, called 
replace-add, which takes two parameters C and E. 
This indivisible operation is defined to increment 
the value in cell C by the integer E and also 
return this sum to the executing PE. Moreover, 
replace-add must satisfy the serialization princi
ple stated above: If C is a shared cell and many 
replace-add operations simultaneously address C, 
the effect of these operations is exactly what it 
would be if they occurred in some (unspecified) 
serial order, i.e. C is modified by the appropri
ate total increment and each operation yields the 
intermediate value of C corresponding to its posi
tion in this order. 

The following example illustrates the semantics 
of replace-add: Assume during some cycle PEi exe
cutes 

replace-add(C,Ei ) , 

PE j executes 

replace-add(C,E j ) , 

and no other operations are performed on C. Furth
ermore, let V be the value in C at the start of 
the cycle. Then, at the end of the cycle, C will 
contain V + Ei + Ej and, depending on the serial 
order effected, either PEi and PE j will receive 
the values 

and 

respectively, or they will receive the values 

V + Ei + Ej and V + Ej 

respectively. 

We stress that paracomputers, especially when 
augmented with the replace-add, must be regarded 
as idealized computational models since physical 
limitations such as restricted fan-in prevent 
their realization. However the '~ltracomputer 
group" at the Courant Institute of New York 
University is designing a parallel processor that 
approximates such a machine (see [3] for a 



description of the architecture). A crucial 
aspect of the design is that multiple accesses to 
the same location (including replace-adds) are 
accomplished in approximately the same time as a 
single access to a location. 

III. Algorithms 

This section contains paracomputer algorithms 
for solving a wide class of problems. We con
sistently use N for the problem size. use P for 
the processor size. and denote the PEs as 
PEO ••••• PEp_1• Some of the algorithms assume. for 
the sake of clarity, that P divides N (i.e. 
N = LP); they are easily. generalized for P not 
dividing N. We use the order notations O. C. e, 
and 0 as defined by Knuth [7]. The base of all 
logs can be assumed to be two unless otherwise 
specified. As in [11]. we say that an algorithm 
is completely parallelizable if its speedup is 
e(p) • 

Since many algorithms have synchronization 
points (i.e. points that all PEs must reach before 
any PE passes). it is important to note the fol
lowing constant-time algorithm for synchroniza
tion: Let t be an otherwise unused shared cell 
with initial value 0; each PE replace-adds 1 to C 
and waits until C has value P; the PEs are then 
synchronized and may continue. 

Often a program will require many successive 
synchronizations. This can be achieved by having 
three synchronizing cells and rotating the syn
chronizations: Let C1• C2, C3• be three (other-
wise unused) shared cells with the values C1 and 
C2 initially O. For the first synchronization 
point, each PE replace-adds 1 to C1 and waits 
until C1 has value P; the PEs are then synchron
ized. Some one of the PEs sets C3 to O. For the 
next synchronization C2 is used for replace-adding 
and when its value reaches P, C1 is set to O. 

Note that C3 is set to 0 before C2 reaches P, so 
for the third synchronization C3 may be used •. and 
then C2 set to O. The initial state having been 
reestablished, we may again use C1 and set C3 to 
0, etc. 

Summing 

Suppose that we are given an array 
W = wO' ••• ,wN- 1 of N values, and wish to compute 
the partial sums si = Wo + ••• + wi for 
i = 0 ••••• N-1. This problem can be solved in time 
e(N/p + 10gP) using standard algorithms for solv
ing linear recurrences (e.g. see [11]). Thus sum
ming is completely parallelizable for 
N .. Q(P log P). Of course, the summing algorithm 
may be generalized by substituting any associative 
binary operation for addition. Note that if only 
sN-1 (the total "sum") is desired. more efficient 
algorithms exist for certain binary operations. 
For example, the maximum of N values can be deter
mined in time e(N/p + log 10gP) (see [12]. [13]). 

220 

Inte~er summing. When finding the partial sums 
of N integers, we can make heavy us e of the 
replace-add to solve the problem in time 
e(N/p + log l,og p) by adapting Valiant's algorithm 
for finding the maximum [13]. 

First consider the case when P = N(N-1)/2. 
This problem is easily solved in constant time: 
Assign the first PE the task of finding sl (the 
second partial sum). the next two PEs the task of 
finding s2' the next three PEs the task of finding 
s3' etc. The partial sums si can be independently 
determined in constant time by initially setting 
si = Wo and then replace-adding w1.···.wi to si. 

Next assume merely P;> N; this problem can be 
solved with the following algorithm: 

If N = 1 set So = Wo and return. Otherwise perform 
the following five steps. 

(1) 

(2) 

(3) 

(4) 

(5) 

- 2 -
Partition the N items into g .. IN 1(2P+N) I 
groups G1, ••• ,Gg each of size h ~ (2P+N) IN. 
so that the first h items are in group G1• 

the next h items in G2• etc. 

Partition the PEs also into g groups with 
h(h-l)/2 ~ P(2P+N)/N2 PEs in each. 

Assign each group of PEs to a distinct .group 
of items. and solve the summing problem for 
each group independently using the preceding 
dependent-size integer summing algorithm. 

Apply this algorithm recursively to the total 
sums ti of each group Gi • thereby producing 
uO, ••• ,ug-1 -- the partial sums of the ti's. 

Add ui - 1 (or 0 if i = 0) to each partial sum 
in Gi . 

Steps (1), (2). (3). and (5) each requires con
stant time and. since P C; N(N-l)/2, the depth of 
the recursion at step (4) is e(log 10gN -
log 10g(P IN + 1» (see Valiant [75]). so the entire 
algorithm requires time e(log log N -
log 10g(P IN + 1». In particular. the saturated 
problem (I.e. N" P) is solvable in time 
e(log 10gP). 

Finally. consider the case when P < N. and use 
the following algorithm: 

(1) Partition the items into P groups GO, ••• ,Gp_1 
each of size NIp, so that the first NIp items 
are in group GO' the next NIp items in G1• 

etc. 

(2) Apply the sequential summing algorithm to 
each group independently. 

(3) App~y the preceding saturated integer summing 
algorithm to the total sums ti of each group 
Gi • thereby producing uO •••• 'llp_l -- the par
tial sums of the ti's. 

(4) Add ui - 1 (or 0 if i = 0) to each partial sum 
in G .• 

1 



Step (1) requires constant time, steps (2) and 
(4) require e(N/p) time, and step (3) requires 
e(log 10gP) time. Thus, the entire algorithm 
requires e(N/p + log log P) time and is completely 
parallelizable for N = Q(p log log p). 

Unordered integer summing. The unordered sum
ming problem is the problem of finding the partial 
swns of some one unspecified permutation of the 
data. If the Wi are integers this swn can be 
formed in time S(N/P): initialize some temporary 
location T to 0 and replace-add every Wi to T. 
The result of the addition of Wi is the partial 

swn si' 

Permutations 

Suppose we are given an array W = wo' ••• ,wN_ 1 
of size N = PL and a 'permutation 'It of 0, ••• ,N-l. 
Then the permutation problem is to permute W 
according to 'It. 

Algorithm. One algorithm for solving this 
problem allocates a temporary array T of size N 
and performs the following two steps: 

(1) Copy W directly into T (i.e., each PEi moves 

w iL+j into t iL+ j for 0 .:; j < L). 

(2) Copy T back into W according to 'It (i.e., each 
PEi moves t iL+ j into w'lt(iL+j) for 0.:; j <L). 

Analysis. Steps (1) and (2) both require time 
e(N/p). Thus the entire algorithm requires time 
e(N/p) and is completely parallelizable for 
N = Q(P). 

Variant. Unfortunately, the above algorithm 
requires extra storage proportional to N. When 'It 
is known in advance, i.e. 'It is not part of the 
data, the problem is solvable in time S(N/P) using 
extra storage proportional only to P: Partition W 
into Rand S where IRI = P and IS I =N-P. Copy R 
into a temporary array R' (thus W = R' (disjoint) 
UNION S). Store into R (from R' and S) the items 
in 'It-1(R). (Note that 'It and hence 'It-I are known 
in advance.) Store the items of R', that have not 
been placed back into R, into the free locations 
of S. Now the problem has been reduced, in con
stant time, from W of size N to S of size N-P. 
N/P such iterations will effect the entire permu
tation. 

Packing 

Suppose we are given an array W = wo' ••• ,wN_1 
of N = PL items, some of which are marked. The 
packing problem is to move the i-th marked item to 
the i-th location of W. 

Algorithm. 

(1) Use integer swnming (with marked items 
assigned 1 and unmarked items assigned 0) to 
determine the desired destinations of the 
marked items. 

(2) Partition the array W into L blocks of P con-

221 

tiguous items. Perform the following two 
steps for k = O, ••• ,L-l. 

(a) Each PEi stores the i-th item of the k
th block into a (distinct) temporary 
location t i • 

(b) Each PEi whose associated item ti is 

marked moves the item from ti into its 
desired destination in W. 

Analysis. Step (1) is integer swnming and thus 
requires time S(N /p + log log p), and step (2) con
sists of N/P iterations of two e(l) operations and 
thus requires time e(N/p). Therefore, the entire 
algorithm requires time e(N/p + log 10gP) and is 
completely parallelizable for N = Q(p log log p). 

Variants. The unordered packing problem is the 
same as the packing problem, except that it is 
unnecessary for the marked items to maintain their 
original relative order. This problem can be 
solved in time e(N/p) by replacing swnming with 
unordered summing in step (1) above. Thus the 
unordered packing problem is completely parallel
izable for N = Q(P). 

Unfortunately, this algorithm requires extra 
storage proportional to N. Unordered packing, 
however, can be realized in time e(N/p) using 
extra storage proportional only to P: delete step 
(1) and begin step (2) with a replace-add to 
determine, at the k-th iteration of step (2), the 
desired destination of the items in the k-th 
block. 

Merging and Sorting 

In [81 we show that two lists of size m, n, 
where m.:; nand N = m + n, can be merged in time 
e(N /p + log log m). Thus, when m = n merging is 
completely parallelizable for N = Q(P log log p). 

We also show in [81 how this merging algorithm 
can be used to obtain a sorting algorithm which 
requires time 

e(logN 10glogN) 
log log 10gN 

and 
e(N log N) 

P 

for Q(P) = N o(P log log p) 

for N=Q(PloglogP). 

Thus, sorting is completely parallelizable for 
N = Q(PloglogP). 

An important special case. Suppose we wish to 
sort an array W consisting of N (not necessarily 
distinct) integers in the range 1 to N. The fol
lowing algorithm solves this simpler problem in 
time e(N/P + 10glogP). 

(1) Create an array C of size N initialized to 0. 

(2) Count how many items have each value by 
incrementing (via replace-add) C(wi ) for all 
i E {I, ... ,N}. 

(3) Apply integer swnming to C and then set 
D(i) = C(i-l) (and D(I) = 0), so that D(i) is 
the number of items less than i. 



(4) Copy W into a temporary array T. 

(5) The final location j of the i-th original 
item is obtained as replace-add(D(t i ),I). 
Set Wj equal to t i • 

To illustrate this algorithm consider the prob
lem of sorting the array W = (2,1,5,3,2). After 
step (2) above C = (1,2,1,0,1), where C(i) is the 
number of items with value i (e.g. two items have 
value 2 and no items have value 4). At step (3) 
summing is applied to transform C into 
(1,3,4,4,5); C{i) now represents the number of 
items less than or equal to i. D = (0,1,3,4,4) is 
derived from C by shifting the values of C right 
one position and represents the number of items 
less than i. At step (4) W is copied into T. 
Finally at step (5) the final location of the i-th 
item of W is determined by replace-adding 1 to 
D{t i ). For example, the fourth item of T is 3 so 
its final destination in W is D(3) + 1 = 4. More 
interestingly, since the first and fifth items of 
T a.re both 2, they both replace-add 1 to D(2) to 
determine their final destinations; one of them 
effects the replace-add first and its final desti
nation in W is D(2) + 1 = 2, and the other effects 
the replace-add second and its final destination 
in W is D(2) + 1 + 1 = 3. 

Steps .(1), (2), (4), and (5) all require time 
e(N/p) and step (3) requires time 
e(N/p + log log P). Therefore the entire algorithm 
requires time e(N/p + 10glogP) and its speedup is 
e(N/(N/P + 10glogP». It is completely parallel
izable for N = Q{P log log P). 

An alternate algorithm with good average-case 
behavior. We now describe a parallel version of 
quicksort and show that its average-case time com
plexityis e«N 10gN)/P). Thus, using average
case analyses, comparison-exchange sorting is com
pletely parallelizable for N = Q{p). 

Suppose we wish to sort an array W of N items. 
First consider the case when N=P. 

If N" 1 then W is sorted. Otherwise perform 
the following steps. 

(D Choose an item M at random from W. 

(2) Let S, E, B be the sets of items smaller than 
M, equal to M, and bigger than M, respec
tively. Apply unordered packing three times: 
first to pack the items of S to the beginning 
of W, then to pack the items of E immediately 
after, and finally to pack the items of B to 
the end of W. 

(3) Assign IS I PEs to Sand IBI PEs to B, and 
recursively apply the algorithm to Sand B 
concurrently. 

We now analyze this algorithm under the assump
tion that the items are all distinct, which cannot 
decrease the (average) execution time. Suppose 
that the item M chosen during step (1) is the i-th 
smallest item in W. Then the algorithm is recur
sively applied to sets of size i-I and N-i. Since 
i is uniformly distributed over {I, ••• ,N}, we are 

222 

essentially constructing a random binary search 
tree of size N. The expected depth of the recur
sion is the expected height of this tree, which is 
known to be e(log N) (see Robson [79]). Since 
only a constant amount of time is required for 
steps (1) and (2) (see section on packing), the 
entire algorithm requires time e(log N); since 
N=P, the speedup is e(p 10gP)/e(10gp) = e(p). 

For N > P, we employ the above algorithm as if 
we had N PEs by assigning each PE the work per
formed by N/P PEs. This gives a time complexity 
ofe(N/p) e(logN) = e«N 10gN)/P) and a speedup of 
e(p) • 

As a practical consideration, choosing M likely 
to be near the true median lowers the average-case 
time complexity of the algorithm (but not its 
order). One possibility is to use the median of a 
random sample of some R < N items. If we choose 
R = O(IP) the median can be found in only constant 
time by sorting. 

Selection 

Suppose we are given an array W of N items from 
an ordered set and an integer 1 " k " N, and wish 
to find the k-th smallest item in the array. For 
N "p we know of no algorithm faster than sorting. 
However, for N> P we can parallelize the linear 
sequential algorithm of Blum et al. [1] as fol
lows. 

Algorithm. If N" P sort the items; the k-th 
smallest item is the k-th item in W. If N > P per
form the following four steps: 

(1) Partition the items into P groups of size 
(essentially) N/P. Assign the i-th PE to the 
i-th group and use the sequential fast median 
algorithm to find the median item in each 
group. 

(2) Sort these medians to find M, the median of 
the local medians. 

(3) Let S, E, and B be the sets of items smaller 
than M, equal to M, and bigger than M, 
respectively. Use unordered summing to 
determine I S I and IE I (the cardinalities of 
the sets S and E). 

(4) Perform one of the following three steps: 

(a) k" IS I: Pack S using unordered packing 
and then recursively apply this 
(generalized-median finding) algorithm 
to S, still searching for the k-th smal
lest item. 

(b) IS I < k " IS I + IE I: The k-th smallest 
item is M. 

(c) IS I + IE I < k: Pack B uSing unordered 
packing and then recursively apply this 
(generalized-median finding) algorithm 
to B, but now searching for the 
k - IS I - IE I smallest item. 

Analysis. The important property of this algo
rithm is that at each recursive application at 
least a quarter of the remaining items are elim-



inated from consideration. After log4/3(N/P) 
recursions, the number of items remaining is no 
more than 

log4/3(N/P) 
N(3/4) P 

at which point we apply the sorting algorithm. 
The complexity of step (1) is 0(N/P), of step (2) 
is 0(logP loglogP) of step (3) is 0(N/P), and 

log log log P , 
of step (4) is 0(N/P + Tp(3N/4» where Tp(N) is 
the complexity of the entire algorithm. Thus, the 
complexity Tp(N) is 

and 

0( log P log log p) 
log log logP 

if N (P 

0(logP loglogP + N/P + T (3N/4» if N)P 
log log log P P 

logP log logP ) 
0(N/P + (log2(N/P) + 1) logloglogP 

Hence the algorithm is com2letely 
_ (p logP (loglogP) ). 

parallelizable 

for N - Q log log log P 

IV. Conclusion 

We have presented algorithms for solving 
several basic problems on a replace-add-based 
paracomputer. All of the problems discussed are 
completely parallelJzable, at least for large 
enough problems. In fact, for none of the prob
lems does the problem size have to be signifi
cantly larger than the number of PEs in order to 
attain maximal speedup. 

While a paracomputer not .enhanced with the 
replace-add will also attain maximal speedup for 
solving the above problems, such a machine some
times requires slightly larger problems to attain 
this goal. What is perhaps more significant is 
that a machine without the replace-add is more 
diffic~lt to program and sometimes requires exor
bitant overhead in order to allocate the PEs to 
their tasks. This manifests itself in the case of 
merging and therefore sorting: The Borodin
Hopcroft [2] technique for solving the PE alloca
tion problem on the weaker model is not only unob
vious but requires at each iteration several steps 
to reallocate the PEs. In contrast, on a 
replace-add-based machine it is extremely easy to 
solve the PE allocation problem and the resulting 
algorithm has low overhead. 

In summary, the replace-add-based paracomputer 
performances for solving the above problems are, 
in our opinion, quite impressive. Adding to this, 
their ability (as noted earlier) to realize highly 
concurrent operating system primitives, makes 
replace-add-based paracomputers an architecture 
worth striving for. While fan-in and other limi
tations prevent their physical realization, they 
can be reasonably approximated by machines using a 
multistage interconnection network [3]. The 
"Ultracomputer group" at the Courant Institute of 
New York University is presently designing a pro
totype of such a machine and believes that a full 
scale version containing thousands of PEs will be 

223 

constructible by the end of the decade. 

V. References 

[I] Manuel Blum, Robert W. Floyd, Vaughn Pratt, 
Ronald L. Rivest, and Robert E. Tarjan, "Time 
Bounds for Selection", .:!.. Compo and System 
Sciences, (Aug. 1972), pp. 448-461. 

[2] A. Borodin and J. E. Hopcroft, "Routing, 
Merging and Sorting on Parallel Models of 
Computation" Proc. of ACM 14th Ann. ~. ~ 
Theory of Computing, (May 1982), pp. 338-344. 

[3] Allan Gottlieb, Ralph Grishman, Clyde P. 
Kruskal, Kevin P. McAuliffe, Larry Rudolph, 
Marc Snir, "The NYU Ultracomputer -- Design
ing an MIMD, Shared-Memory Parallel Machine", 
Proc. 9th Ann. ~. on Computer Architec
ture, (Apr. 1982), pp. 27-42, IEEE Trans. on 
Comp., to appear. 

[4] Allan Gottlieb and Clyde P. Kruskal, "Coordi
nating Parallel Processors: A Partial Unifi
cation", Architecture News, (Oct. 1981), pp. 
16-24. 

[5] Allan Gottlieb, Boris Lubachevsky, and Larry 
Rudolph, "Coordinating Large Numbers of Pro
cessors", IntI. Conf. on Parallel Processing, 
(Aug. 1981) pp. 341-34~ 

[6] Malvin Kalos, "Scientific Calculations on the 
Ultracomputer", Ultracomputer Note 1130, 
Courant Institute, NYU, 1981. 

[7] Donald E. Knuth, "Big Omicron and Big Omega 
and Big Theta", SIGACT News, (Apr.-June 
1976), pp. 18-24. 

[8] Clyde P. Kruskal, "Results in Parallel 
Searching, Merging, and Sorting", IntI. Conf. 
on Parallel Processing, (Aug. 1982). 

[9] Robson, "The Height of Binary Search Trees", 
Australian Computer Journal, (Nov. 1979), pp. 
151-153. 

[10] Larry Rudolph, "Software Structures for 
Ultraparallel Computing", Ph.D. Thesis, 
Courant Institute, NYU, (Feb. 1982). 

[11] J. T. Schwartz, "Ultracomputers", ACM TOPLAS, 
(Oct. 1980), pp. 484-521. 

[12] Yossi Shiloach and Uzi Vishkin, "Finding the 
Maximum, Merging and Sorting in a Parallel 
Computation Model", Journal of Algorithms, 
(Mar. 1981) pp. 88-102. 

[13] Leslie G. Valiant, "Parallelism in Comparison 
Problems", SIAM Journal on Computing, (Sept. 
1975), pp. 348-355. --



CONSTRUCTING PARALLEL PROGRAMS AND THEIR TERMINATION PROOF 

J. P. BANATRE, M. BANATRE, P. QUINTON 
I.R.I.S.A. 

Campus de Beaulieu 
35042 RENNES Cedex - France 

Abstract -- This note considers the construc
tion of parallel programs and the production of 
their termination proof. In the first part, an ori
ginal scheme for describing process cooperation is 
presented and it is shown how this scheme may be 
used for the production of termination proofs. Ba
sically, the approach consists of mapping a system 
of processes into a multiset which is repeatedly 
decreased throughout the computation. Using pro
perties of a well-founded ordering on finite multi
sets, we derive termination proofs. In the second 
part, an example illustrates the method and other 
applications are suggested. 

1. Introduction 

The subject of construction of parallel (or 
distributed) programs gains more and more interest, 
as microprocessor technology is goind ahead. 

Several languages have been proposed which 
allow the description of parallel programs for 
example [3]. Some of the theoretical aspects in
volved in the semantics of these programs have been 
investigated in several groups. Another field of 
interest concerns the proof of strong correctness 
for distributed programs. Recent progresses are re
ported in [4]. It appears from the aoove enume
ration that several kinds of investigations are 
going on "collaterally", but the problem of cons
tructing parallel programs which surely terminates 
is never addressed globally. This is the topic of 
the present study. 

Concerning the termination of his repetitive 
construct, Dijkstra states in [1], p. 41 : "The 
basic theorem for the repetitive construct asserts 
for a condition P that kept invariantly true that 

(p and wp(DO,T) => wp(DO,p and ~ BB» 

Here the term wp(DO,T) is the weakest precondition 
such that the repetitive construct will terminate. 
Given an arbitrary construct DO it is in general 
very hard -if not impossible- to determine 
wp(DO,T). I therefore suggest to design our repeti
tive constructs with the requirement of termination 
consciously in mind, i.e., to choose an appropriate 
proof for termination and to make the program in 
such a way that it satisfies the assumptions of the 
proof". Then he proposes to map the DO construct 
variables into a well-founded set, chosen to be the 
natural numbers under the'> ordering. This idea 
provides a straighforward method for proving loop 
termination. 

Our proposal applies the same type of idea to 
the construction of parallel programs. Constructs 
that we propose for expressing parallel programs 
are designed with the requirement of termination 

0190-3918/82/0000/0224$00.75 @ 1982 IEEE 224 

clearly in mind. 

An original scheme for describing process coo
peration is presented in section 2 and section 3 
shows how this scheme may be used for termination 
proofs. Application of these tools in the program
ming of an example is demonstrated in section 4. 
Section 5 contains a brief review and discussion. 

2. A scheme for process cooperation 

Consider a system S of active processes 
Pi>". ,Pn. Each Pi is provided with a "weight" Wi. 
Cooperation between any couple (Pi,Pj) of S is go
verned oy a conditionR(wi,Wj) which has to be met 
before any communication between Pi and Pj occurs. 
Processes Pi and Pj are said to be neighbours when 
their weights verify condition R, otherwise they 
are "isolated". This neighbourhood relationship is 
dynamic since after cooperation. processes Pi and 
Pj may change their respective weights in such a 
way that R(wi,Wj) does not hold anymore (but 
R(wi.Wk) andR(wj.wr) may hold ••• ). 

The overall system S becomes "steady" when al::: 
its component processes become isolated. 

Thefoilowing program fragment gives an in
formal description of the functioning of process 
Pi 
Pi : weight (Wi) exchange c5i with c5j 

begin 
do 
--wait(#coupling with a process Pj or 

steady statel!) ; 
if I! steady state I! then I! exit do 

fi 
od-: -- . 

Yi 
end 

else bi(wi.c5j) 

Fig. 1 

loop II 

Process Pi possesses a weight Wi and when 
coupled with a process Pj "receives" information 
c5j from Pj and "sends" information 0i to Pj. Only 
after this information exchange. processing 
bL(Wi.c5j) takes place. If system S becomes steady, 
process Pi executes its postlude Yi and terminates. 

3. Termination proof 

A usual tool for proving the termination of 
program is the well founded set : a set of elements 
and an ordering > defined on these elements. such 
that there can be non-infinite descending sequen
ces of elements. The idea for proving termination 
of a process is to find a termination function that 



maps process variables into a well-founded set -the 
value of the termination function being successi
vely decreased through out the computation. Natural 
number under the ~ ordering are often used for 
proving termination of loops [1]. In [2], multiset 
ordering is shown to be well-founded and is used 
for proving termination of production systems. Mul
tisets are like-sets, but may contain multiple 
occurrences of identical elements. Consider two 
multisets of natural numbers Ml and M2, the rela
tionship M1»M2 holds if M2 can be obtained fromMI 
by replacing one or more elements of Ml by any fi
nite sequence of natural numbers, each of which 
being smaller than the replaced one (more details 
in [2]). 

Our idea consists of applying the multiset or
dering for proving termination of our parallel pro
grams. To each process Pi is associated a termi
nation function fi (corresponding roughly to bi of 
fig.l) which maps the weights into the set of na
tural numbers under the usual ordering. Each appli
cation of the funtion reduces the weight through 
the computation. So wi will take successively the 
following values {Wi!, wi2 •••• ,wik ••• } such that, 
Vu,v u>v = wiu>wiv ' Assume now, that every pro
cess Pi is provided with such a function then t~e 
initial state of the global processing (involving 
Ph," ,Pn) may be described by the multiset {wu, 
w12 •••• , Wln}=Wl, any subsequent state {Wi!, wi2, .•. , 
Win}=Wi will be such that Wi «WI and any state de
rived from Wi will be such that Wj«Wi' Thus we ha~ 
ve a simple means for proving termination of pa
rallel programs built according to our scheme. 

4. A short example 

4.1. The problem and its solution 

Consider the problem of sorting a set S of n 
(different) integers in ascending order. The 
following algorithm may be imagined : 

A process is associated to each number and 
initially a weight n is attached to each process 
So there are n processes and WI = ~. 

n 

The condition R between two processes Pi and 
Pj is defined as R(Wi,Wj) = (Wi-Wj = 0) i.e., two 
processes may cooperate iff their respective 
weights are identical. 

Consider two processes Pi and p. such that 
R(Wi,Wj) is true. The actual processing performed 
by Pi consists in comparing value Vi (number to 
which Pi is associated) with Vj. If vi>Vj then de
crease Wi by one, otherwise Wi remains unchanged. 
Pj performs the symmetric processing. 

The function fi attached to Pi is the 
following : 

function fi = if Vi<Vj then Wi := wi -l fi 

This function possesses the property required 
from termination functions, proof of termination of 
our algorithm is then straighforward. 

225 

4.2. Functioning of the algorithm 

Let S be {7,4,2,3,1}, and each process Pi be 
represented by a couple (vi,Wi) where Vi represents 
the value to Pi and Wi the weight of Pi, 

A possible processing leading to the solution 
is the following : 

(7,5) (4,5) (2,5) (3,5) (1,5) 

(7,5) (4,4) (2,4) (3,5) (1,5) 

(7,5) (4,4) (2,3) (3,5) (1,4) 

(7,5) (4,4) (2,3) (3,4) (1,3) 

(7,5) (4,4) (2,3) (3,3) (1,2) 

(7,5) (4,4) (2,2) (3,3) (1,2) 

(7,5) (4,4) (2,2) (3,3) (1,1) 

Two communicating processes are linked by an 
horizontal line. 

Of course this is one among the possible paths 
leading to the solution. This algorithm is non
deterministic as it does not indicates how coope
rating couples are selected. 

When the system reaches its steady state, 
weight Wi of process Pi represents the position of 
Vi in the sequence s ; Wi may then be printed to
gether with Vi by the Yi part of process Pi' 

4.3. Proof of termination 

WI = {n, ..• ,n}, then given any configuration 
W~ derived from WI (by application of functions 
f~'s), we have Wj«Wl, and VWk derived from Wj; 
Wk<<Wj. Configurations Wi have a lower bound, 
Wlb = {1,2,3,4,5}. The termination proof is then 
straightforward. 

Remark. If the numbers are not assumed to be diffe
rent, the condition R becomes Wi = Wj "Vi'" Vj. 
Thus the weight is a couple of integers (w,v). Ter
mination proof is identical. 

5. Review and discussion 

Appropriate language constructs have been de
signed in order to describe processes and condi
tions. This cooperation scheme has been applied to 
the solution of a variety of problems : parallel 
pretty printer, parallel compile-time symbol reso
lution, implementation of unvariant properties in 
distributed systems (these properties are related 
to logical time, weights Wi are timestamps asso
ciated to each process) ••• 

References 

[1] Dijkstra, E.W.,A discipline of programming. 
Prentice Hall (1976). 

[2] Dershowitz, N., Manna, Z., Proving termination 
with multiset ordering. CACM, 22,8 (Aug. 1979), 
pp. 465-476. 

[3] Hoare, C.A.R., COImnunicating Sequential Pro
cesses. CACM, 21,8 (Aug. 1978), pp. 302-321. 

[4] Francez, N. Distributed termination. ACM TOPLAS 
2, 1 (Jan. 1980), pp. 42-45. 

[5] Sintzoff, M. Approximated Synchronization for 
distributed control. Note (June 1980). 



MUL TlPLE PI PELINE SCHEDULING IN VECTOR SUPERCOMPUTERS 

Shun~PiaQ SuandKai Hwang 
School of Electri.cal Engineering 

Purdue University 
West Lafayette, Indiana 47907 

Abstract -- A Parallel task scheduling model 
is proposed for multi-pipeline vector processors. 
This model can be applied to explore maximal con
currency in vector computers, like the CRAY-1, 
CYBER-205, STAR-lOa, TI-ASC, and IBM 3838. The 
optimization problem of simultaneously scheduling 
mUltiple pipelines with vector tasks is shown to 
be NP-,cnmplete. Thus, we have developed several 
heuristic. scheduling algorithms,which can be easily 
implemented in vector processors 'With low system 
overhead and high throughput performance. 

Introduction 

High-performance vector computers are demand
ed in numerical weather forecasting, structural 
analysis, seismic data processing, simulation of 
nuclear reactors, aerodynamics simulation, and 
among many other large-scale scientific/engineer.mg 
computing applications. In contrast to a scalar 
processor that prGlcesses one data element at a time, 
a vector computer has vector instructions applied 
to groups of data elements, called vectors. Vector 
instructions have inherent advantages over equiva
lent scalar instructions embeded in DO-loops. A 
vector instruction saves repeated instruction 
fetch.es in a DO-loop and eliminates index and 
branch instructions for loop control. Vector com
puters appear as array processors or pipeline com
puters [8]. The array approach uses replicated 
processing elements (PEs) to explore spatial para
llelism, such as 64 PEs in Illiac IV and 16 PEs in 
Burroughs Scientific Processor. Notable pipeline 
computers include Texas Instruments ASC system, 
CDC STAR-IOO, IBM 3838, Cray Research CRAY-I [15], 
and CDC CYBER-205 [3]. Pipelined computers have 
been widely adopted in commercial computer systems. 
Array processors appear only in a few research 
computers [8, 10]. 

In this paper, we develop new methods to pro
mote p.arallel execution of vector instructions in 
a pipelined computer. Con currencies in programs 
should be exploited by mUltiple .pipelines in a 
vector processor. Each task system contains a set 
of vector instructions (tasks) with precedence 
relation determined only by data dependencies. 
Each pipeline processor is assumed to be multifunc
tional, that is, capable of executing different 
functions at different times, but only one static 
function at a time. 

For parallel vector processing, multiple 
pipelines are used to reduce the execution time of 

*This research was supported in part liy the U .S .• A. 
National Science Foundation under grant ECS-80-
16580, and in part by Academia Sinica, Rep. of 
China. 

0190-3918/82/0000/0226$00.75 @ 1982 IEEE 226 

all instructions in a given task system. The 
problem of scheduling mUltiple scalar tasks on 
multiple pipelines has been studied by Ramamoorthy 
and Li [14], and Brune, et al [2]. Their results 
indicate that some optimal scheduling algirithms 
can be obtained for only very restricted classes 
of task systems. Li [11] studied the scheduling 
problem for restricted vector loops. We are 
interested in using several pipelines simultaneou!r 
ly processing a long vector task. A long vector 
task is partitioned into many subvectors to be 
processed by several pipelines simultaneously. 
Lloyd [12] suggested the use of several processors 
for a single task. The number of pipelines 
required to process a vector task is determined 
by the chosen scheduling algorithm. 

In a multi-pipeline computer, significant 
overhead time is required to execute a vect'or 
instruction due to start-up and pipeline flushing 
delays [10]. This overhead time may reduce the 
performance of the pipeline system. Li neglected 
overhead in order to simplify the scheduling model 
for vector tasks [11,14] Bruno and Downey [11 
discussed the complexity of task sequencing in
cluding set-up time. We consider system overhead 
for scheduling vector tasks in mUltiple pipelines. 
We prove that the multi-pipeline scheduling pro
blem is NP-complete, even for restricted task 
classes. Heuristic scheduling algorithms aredeve-' 
loped to enable parallel vector processing. Per
formance bounds are derived for these heuristic 
algorithms. Several example task systems are used 
to illustrate the proposed vector scheduling meM 

thodology. 

The Vector Task Scheduling Model 

A functional block diagram of a typical mul
tiple-pipeline vector computer is shown in Fig. 1. 
Main memory is often interleaved to minimize the 
acces time of vector operands. Instructions and 
data may appear in either vector or scalar forms. 
The Instruction Processing Unit (IPU) fetches and 
decodes both. scalar and vector instructions. All 
scalar instructions are dispatched to the Scalar 
Processor for. execution. The Scalar Proce~ 
contains multiple scalar pipelines. After a vec
tort or instruction is recognized by the IPU, the 
Vector Controller takes over in super~sing its 
execution. The functions of this controller in
clude decoding vector instructions, calculating 
effective vector-operand addresses, setting up the 
Vector Access Controller and the Vector Pipelines. 
and monitoring the execution of vector instuue
tions. The Vector Access Controller is responsi.ble 
for fetching vector operands by a series of main 
memory accesses. The Vector Buffer acts as a 
cache to close up the speed gap between the vector 



Access Controller and Vector Pipelines. We ass·ume 
m identical Vector Pipelines, each of which is 
static and multifunctional. 

We concentrated our study on vector tasks 
exclusively. The vector Controller is capable of 
scheduling several vector instructions simultane
ously. The time required to complete the execut
tion of a single vector instruction (vector task) 
is measured by (Kogge [10]). 

t T (1) 

where to is the overhead time due to start-up and 

flushing delays, tt is the average latency between 

two successive operand pairs, and L is the vector 
length (the number of component operands in a vec
tor). The start-up time is measured from the ini
tiation of the vector instruction to the entrance 
of the first operand pair into the pipeline. The 
flush time is measured from the entrance of the 
last operand pair to the completion of that vector 
instruction. The average latency is measured be
tween two successive operand pairs entering the 
pipeline. The parameter T = tt • L is called the 

productive time. Parameters to and tt vary with 

different vector instructions. The overhead time 
to may require several hundreds of pipeline cycles. 

The average latency tt is usually one, two or a 

few pipeline cycles. 
Given a task system, we wish to schedule the 

vector tasks among m identical pipelines such that 
the total execution time is minimized. For sim
plicity, we assume equal overhead time to for all 

vector tasks. A vector task system can be charac
terized by a four-tuple [II, < , to' TJ, where 

(1). II = {T l ,T2, ••• ,Tn } is a set of n vector 

tasks. 
(2) • 

(3). 

(4)'. 

< is a partial ordering relation, speci
fying the precedence relationships among 
the tasks in set II 
t is the overhead time of each vector 
o 

task. 
T : II + R is a time function defining 
the productive time T(Ti ) of each tatlk 'Ii' 

A parallel schedule for a vector task system 
[II , <, to' t] is a total function f, mapping each 

task T E: II into a finite subset of interval-pipeline 
pairs, where an interval-pipeline pair ([x.yJ,Pi ) 

represents the event that a sub task of T is being 
processed by pipeline Pi during time interval 

[x,yJ. If f(T) = ({[xl'Yl],Bl ),( [x2 'Y2],B2), 

•••• ,( [xk'Yk],Bk)}, then the following conditions 

must be met in order to smooth the pipeline opera-
tions. 

k 

(1). Yi - Xi > to and i~l (Yi - Xi - to) 

227 

l' (T), for all xi'Yi E: R. i 1.2 ..... k. 

(2). BiE: {P l .P2 .... ,Fm} fori 1.2 .... ,k. 

If Bi = Bj , then (xi,Yi ) n (xj .yj ) = <P. 

(.3). At time t, vec tor task T is execu ted by 
a subset of k pipelines {Bi : Xi "§ t ~Yi' 

i = 1. 2, ••• ,k} • 
(4). The start ,time is S(T) = Min{x1 ,x2 , •.• , 

~} and finish time is F(T) = Max{Yi'Y2' 

••.• 'Yk} • 

Morever, a parallel schedule for a given task 
system must satisfy the followIng two properties: 

(a). Different vector tasks cannot be pro.., 
cessed by the same pipeline at the same 
time because of using only static pipes. 

(b). Whenever Ti < Tj , then S(Tj ) ~ F(Ti ) as 

governed by the precedence relation 
among tasks. 

The finish time w of a parallel schedule for 
n tasks is defined by w = MaX{F(T l ) .F(T2), ... , 

Fer )}. An optimal parallel schedule has the mi-
n 

nimal finish time Wo among all parallel schedules 

for the given task system. Our objective is to 
find an "optimal" or "suboptimal" parallel sche
dule for any given vector task system. The follow
ing example will clarify the problem environment. 

Given a vector task system [II. <, to.T] as 

specified in Fig.2(a), where II = {Tl .T2 .T3 ,T4} • 

to= I, T(Tl ) = 10. T(T2) = 2. T(T3) = 6. and T(T3) 

= 6, and T(T4) = 2. We want to schedule the four 

tasks on two (m=2) pipelines. Using the shorthand 
notation Ti = T(Ti ) for I ~ i ~ 4, a parallel 

schedule fl is obtained in Fig.2(b), where the 
shaded area shows the idle period of the pipelines. 
The vector task TI is partitioned into two sub-

tasks, TIl and T12 • with TIl = 7 and Tl2 = 3. Si

milarly, the vector task T3 is partitioned into 

two subtasks, T31 and T32 • with T3l = 4, T32 = 2. 

The parallel schedule f 1 is specified by the follow

ing mappings. 

f(T1) {([0,B],P l ),([3,7],P2)}, with S(TI)=O 

and F(Tl ) = B. 

f(T2) = {([B,ll],P2)}, with S(T2) = Band 

F(T2) = 11. 

f(T 3) {([B,13],Pl ),{[ll,14],P2)}, with S(T3) 

= Band F(T3) = 14. 

f(T4} {([0.3].P2)}, with S(T4) 0 and F(T4) 

= 3. 



The finish. time of the parallel schedule fl 

is thus w = F(T3) = 14 as revealed in Fig.2. 

The NP Completeness of Pipeline Scheduling Problem 

NP-complete problems have received much 
attention in recent years [6]. Ullman [17] proved 
that the general preemptive scheduling problem is 
NP-complete. Ramamoorthy and Li [14] studied the 
scheduling problem for shared-resource pipeline 
systems. They considered only scheduling scalar 
task systems. We consider here the scheduling of 
vector tasks. The multiple-pipeline scheduling 
problem can be stated as a feasibility problem: 
Given a vector task system [n, < ,to"] , a vector 

computer with m identical pipelines, and a dead
line D. Does there exist a parallel schedule f 
with finish time w such that w ~ D? 

We shall consider two partial ordering rela
tions over a given task set n. An empty relation,. 

E, corresponds to the set of all independent 
tasks. A tree relation. e. is a precedence rela
tion in which all tasks are related by a single
rooted tree. Proofs of all theorems can be found 
in reference [16]. 

Theorem .!.: 

The feasibility problem for scheduling a task 
system of independent vector instructions over 
multiple pipelines is NP-complete. 

Theorem 1: 

The feasibility problem for scheduling a tree 
system of vector instructions over multiple pipe
lines is NP-complete. 

If all vector tasks in an independent task 
system have equal productive time. i.e. 'i is a 

constant for i = 1.2 ••••• n, then it is possible to 
solve the feasibility problem in polynomial time. 
This suggests that, with additional restrictions 
on the scheduling problem, one may expect a poly
nomial-time scheduling algorithm. In this paper, 
we schedule vector tasks with different productive 
times. The NP-completeness of the above tW'0 feas.i
bility problems indicates that the mUltiple-pipe
line scheduling problem is indeed .ery hard to 
solve. Due tQ this computational intractability. 
heuristic scheduling algorithms are desired in 
real-life system designs. even though heuristic 
schedules may not be necessarily optimal. 

Scheduling Independent Vector Tasks 

The scheduling algorithm for independent 
tasks is specified with an input and. a task system, 
[ n, < ,to"]' for m identical vector pipelines. 

where n = {T1, •••• Tn}. ,(Ti ) = 'i for i = 1, ••• , 

n. The output is a parallel schedule. f. for the 
given task system of independ~nt tasks. 

Let tj be the time span of using pipeline Pj 
in the execution of a given task system. Theover
head time and productive time are both included in 
t j • Let k be the total number of partitions for 

all vector tasks in a parallel schedule. If no 
vector task has ever Deen partltioned, the ave.rage 

n 
time span is computed by t.=(. El '. + n ., ) 1m. If 

. ~= ~ 0 

a parallel schedule has k partitions, then the 
n 

average time span becomes ~ = (i~1 'i + n· '0 + 
k • '0)' The cri.terion for developing the heuris

tic algorithm is to make t j • j = 1.2 •••• ,m, as 

close to the average value ta or ~ as possible. 

We assume the condition that ta > to/2 for any 
practival task system. 

ALGORITHM! (For scheduling independent tasks): 

Step.!.. IInitialize parameters I 

i -+- 1; j -+- 1; tj -+- 0 foe j 

f(Ti ) -+- ~ for i = 1 •••• ,n; 

1, ... ,m; 

Step 1. IAssign task Ti to pipeline Pj and then 

check if the scheduling process is com
pletel 

t' -+- t • t -+- t' + t + , . 
j' j 0 i' 

If l = nand j = m. then assign the task 
by f(Ti ) -+- f(Tj ) U {([t' .tj ] ,Pj )}; and 

terminate the process. 

Step 1. ICheck if the time span of pipeline Pj is 

within a given boundl 

If Itj - t I ~ t 12 then assign task T. - a 0 -- ~ 

to pipeline Pj with f(Ti ) -+- f(Ti ) U{([t', 

tj].P j )}; increment the indices j -+- j + 1 

and i -+- i + 1; and go to Step 2. 

Step~. ICompare the time span of pipeline Pj with 

the allowable boundl 

If tj > t a , then go to Step 5. ~ assign 

thr task Ti to pipeline Pj with f(Ti ) -+

f(Ti ) U {([t'.ti],P.)}; increment i -+- i + 
. 1 

1; and go to Step 2. 

228 

lOne subtask of T. is being processed by 
~ 

pipeline Pj • Update the average time 

span. Assign a sub task of Ti to pipeline 

Pj +11 

Set f(Ti ) -+- f(T.) U {( [t'.t + t 12],P )}; 
~ a 0 j 

-+- tj - (t + t 12); tj -+- t + t 12; 
o a 0 a 0 

t -+- t + t 1m; j -+- j + 1; , -+-, • t' -+-
a a 0 i o' 

tj; tj -+- t' + to + 'i; and go to Step 2. 

The parallel schedule generated from Algorithm 



A is denoted as fA' Algorithm A adopts a bin 

packing .approach [4] by assigning all possible 
tasks to pipeline PI before considering pipeline 

P2 and so on. This approach has been successfully 

used by McNaughton [13] to construct the shortest 
preemptive schedule for independent tasks on m ~ 2 
identical processors. The complexity of Algorithm 
A is O(n). We have used the time span criterion 
It j - t I ~ t /2 to decide when to partition a a 0 

vector task and update the average time span tao 

The maximum number of partitions for a given task 
system is m - 1. 

The finish time 000 of an optimal schedule fo 

for a task system of independent tasks is lower 
bounded by the average time span tao This lower 

bound occurs when no task is being partitioned. 

W ~ t o a 
(2) 

Theorem 1: 

Applying Algorithm A to the independent task 
system [II, e: ,to,T] over m pipelines, we obtain on 

the following upper bound on the finish time wA 
of the schedule fA' 

(3) 

We have performed a series of simulation ex
periments in order to compare our results with 
three known scheduling algorithms: First Come 
!!!!!..l:. Serve (FCFS), Randomly Choose (RC) ,I:Oilgest 
Process First (LPF). We consider m = 4 pipelines 
with overhead time to = 1. The productive time 

of any task system is a random variable, uniform
ly distributed in the range [1,999). We examined 
100 task systems each with n independent tasks 
for 4 ~ n ~ 20;. Schedules for each heuristic al
gorithm and their average finish time are genera
ted. Let Wi be the average finish time of a 

schedule and w~ be the lower ·bound of the average 
finish time for an optimal schedule. The perfor
mance ratio (wi/Wt) for each scheduling algorithm 
is plotted in Fig.S. Algorithm A is shown supe
rior to all three knownschduling heuristics. 

Example 2: 

Given a task system [II, E ,to,T) of indepen

dent vector tasks, where II = {Tl,T2,T3,T4,TS} , 

and T(T1) = 13, T(T2) = 8, T(T3) = 7, T(T4) = 11, 

T(TS) = 3. 

A parallel schedule fA for this task system 

is shown in Fig.6(a). Task Tl is partitioned 

into two sub tasks with TIl = 11.2S and T12 = 1.7S. 

Similar partitioning is done for T4 with T41 = 3.S 

and T42 = 7.S. Vector tasks T2, T3 and TS are 

scheduled without partitioning. Such a schedule 

229 

fA is defined by 

fA (T1) 

f A(T2) 

fA (T3) 

f A(T4) 

fA (TS) 

{([O,12.2S] ,PI) ,([0,2. 7S] ,P2)} 

{([2.7S,li.7S],P2)} 

{([O,8],P3)} 

{( [8,12.S] ,P3) ,([O,8.S] ,P4)} 

{([8.S,12.S) ,P4)} 

The time spans of the four pipelines are t1 = 
12.2S, t2 = 11.75, t3 = 12.S and t4 = 12.5. The 

finish time of fA is wA = 12.S, which is slightly 

higher than the optimal schedule with Wo = 12 as 

shown in Fig.6(b). 

Scheduling A Tree Task System 

The heuristic we developed for a tree task 
system (II,e,t ,T) is based on a tagged scheduling o . 
policy. First, we mark each vector task by a tag 
A. If a vector task T; has no immediate prede
cessors, then set tag ~(Tj) + 1. If Tj has not 

been assigned a tag value and all the immediate 
predecessors of Tj' namely Tjl,Tj2, ... ,Tjk' have 

tag values, then aSSign A(Ti ) + max{A(Tj1 ), ••• , 

A(Tjk)} + 1. After tagging, we form a group of 

subsets E1,E2, ••• ,Et , where Ei = {TjIA(Tj) = i, 
Tj E II}, and ~ is the largest tag value (tree 

height). Each Ei consists of independent tasks 

which canbe processed concurrently. Obviously, 

Q E. = II, and E. n Ej = <P if i '" j. Once we 
i=l ~ ~ 

obtain E1,E2, ••• ,Et , we can apply Algorithm A, for 

each Ei , to obtain a parallel schedule for the 

tree system of n tasks. 

Algorithm! (for scheduling tree tasks): 

Step 1. Generate E1,E2, ••• ,E • 

Step 1. For i = 1 to t step 1 do 

begin 

If lEi I ~ 2, call Algorithm A with the 

independent task system (Ei,E,to,T) as 

input. If IEil = 1, perfor ~equal par

titioning. 
/The start time of the schedule for (E~ 

E,to,T) equals the finish time of the 

schedule for (Ei _1,E,to ,T)/. 

end 

In Algorithm B, the time needed in Step 1 is 
of order O(n) as proved in [4]. For each indepen
dent task system (Ei,E,to,T), the run time using 



Algerithm A has .order O(ki ), where ki, is; the num

ber .of task in E.. At mest m - 1 partitions. ceuld 
~, 

.occur in the s'chedule fA' Thus, the cemplexity 

of Algerithm B has .order O(n) and at mest R,(m-I) 
partitions can be made in the schedule fB• 

Th,eerem 4: 

Applying Algerithm B te a tree task system 
[II,e,te ,,] over m pipelines, we .obtain the fellew-

ing upper beund en the finish time wB' where we 

is the finish time .of an .optimal schedule fer the 
same tree task system and R, is the teee height. 

WB ;!i [1 + R,(m+2 1) te j. W 
ta .0 

(4) 

Example ~: 

Given a tree task system[II,e,te,,]Where II = 
{T1, ••• ,T9} fellows the tree relatienship shown 

in Fig.7(a). Suppese te 1, '1 = 2, '2 = 4, '3= 

6, '4 = 8, '5 = 8, '6 = 2, '7 = 6, '8 = 4, '9 = ~ 

We want te schedule this tree task system en m= 4 
icientical pipelines. Using Algerithm B, we .obtain 
El = {T1,T2,T3,T4}, E2 = {T5,T6,T8}, E3 = {T7 ' 

E4 = T9} at step·l. 

At Step 2, a parallel schedule fB is genera

ted as depicted in Fig; 7 (b): Shaded areas indi.
cate the idle times .of pipelines. Tasks, T2,T3, 

T4,T5,T7 and T9 have been partitiened inte sub

tasks. The schedule fB is specified bv the fellow

ine: mannines: 

{([O,3] ,PI)} 

{([3,6.S],P1),([O,2.S],P2)} 

f B(T1) 

f&(12) 

fB (T3) 

fB,(T4} 

= {([2.S,6.7S],P2),([0,3.7S],P3)} 

{([3.7S,7],P3),([0,6.7S],P4)} 

f B(T6) 

fB (T8) 

f B(T7) 

f B(T9 ) = 

{([7 ,11.75] ,P 1) , ([7,12] ,P 2) , ( [7, 

8.2S],P3)} 

{([8.2S,11.2S],P3)} 

{([7 ,12],P 4)} 

{([12,14.S] ,Pi): 1;!i i;!i 4} 

{([14.S,16.S] ,Pi): 1;!i i;l1i 4} 

The finish time .of fB is wB = 16.S, within the 

same order of magnitude as the finish, time We .of 

an .optimal schedule which has a lewer beund W .0 ~ 
13.25. 

Cenclusiens 

Scheduling vecter tasks in a multi-pipeline 

230 

vecter precesser is dene in parallel in the pre
pesed scheduling algerithms. Cencurrent precess
ing allows a vecter te be partitiened inte several 
subvecters fer simultaneeus executien by parallel 
pipelines. We have censidered the .overhead time 
asseciated with the pipelined executien .of vecter 
instructiens. The parallel pipeline scheduling 
preblem is shown NP-cemplete, which preludes us 
frem insisting en .optimal scheduling algerithms. 
Heuristic algerithms are thus develeped fer inde
pendent and tree task systems. If the average 
time span witheut partitiening is lenger than the 
.overhead time, high perfermance is expected in 
these heuristic algerithms. Our study can be 
extended te schedule vecter task systems ether 
than independent .or tree tasks: The partitiening 
.of a vecter by time units can be alse cenverted 
te partitiening by vecter lengths. The prepesed 
pipeline scheduling methedolegy should be very 
useful te these whe are invelved in the design and 
evaluatien .of supercomputers fer parallel vecter 
precessing. 

References 

[1] Brune, J. and Downey, P., "Cemplexity .of Task 
Sequencing with Deadlines, Set-up Times and 
Changeever Cests," SIAM.:!. Computing, Nev., 
1978, pp.393-404. 

[2] 

[3] 

[4] 

[S] 

[6] 

[7] 

[8] 

[9] 

Brune, J., Jenes, J. W., III, and Se, K., 
"Determinis.tic Scheduling with Pipelined Pr<r 
cesser," IEEE Trans. Computers, April 1980, 
pp.308-3I6. 

Centrel Data Cerp., CDC CYBER 200/Medel 20S 
Technical Descriptien;-St. Paul, Minn., 1980. 

Ceffman, E. G., Ed, Computer and Jeb Shep 
Scheduling Theery, New Yerk, Wiley 1976. 

Deane, R. H. and White, E. R., "Balancing 
Werkleads and Minimizing Set-Up Cests in the 
Parallel PreceSSing Shop," Opl. Res. 9,., Vel. 
26(1), 1975, pp.4S-S3. 

Garey, M. R. and Jebnsen,D. S., Cemputers 
and Intractab,ility - ! Guide te the Theery 
.of NP-CeIilpletertess, W. H. Freeman and Cempany, 
1979, 338 pp. 

Hu, T. C., "Parallel Sequencing and Assembly 
Line Preblems," Oper. Res., Ve1.9, 1961, pp. 
841-848. 

Hwang, K., Su, S. P., and Ih, L. M., "Vecter 
Cemputer Architecture and Precessing Techni
que," Advances in Cemputers, (M. Yevits, ed.) 
Vel.20; 1981, pp.l1S-197. 

Karp, R., "Reducibility Anmng Combinaterial 
Preblems," Cemplexity .of Cemputer Computa
tiens, (Miller, R. and Thatcher, J., eds.) 
Plenum Press, New Yerk, 1972, pp.8S-103. 

[10] Kegge, P. M., The Architecture .of Pipelined 
Cemputers," McGraw-Hill Beek Cempany, New 
Yerk, New Yerk, Chapts. 4,S, 1981. 



[11) Li, H. F., "Scheduling Trees in Parallel Pi
pelined Processing Environments," IEEE Trans·. 
Computers, Nov. 1977, pp.l101-1112. 

[12) Lloyd, E. L., "Scheduling Task Systems with 
Resources," Technical Report MIT/LCS/R-236, 
Laboratory for Computer Science, MIT, 1980. 

[l3) McNaughton, R., "Scheduling with Deadlines 
and Loss Functions," Management Sciences, 
Oct. 1959, pp.I-12. 

Instruction 
~ Processing 

Unit 
Main 
Hemory 

Vector 
Access 

Controller 

[14) Ramamoorthy, C. V. and Li, H. F., "Sequencing 
Control in Multifunctional Pipeline Systems," 
Sagamore Computer Conference ~ Parallel Pro
cessing, 1975, pp.79-89. 

(15) Russell, R. M., "The CRAY-1 Computer System," 
Comm.!...2i Ass. of Computing Mach., Jan. 1978, 
pp.63-72. 

[16) Su, S. P. and Hwang, K., "Multiple Pipeline 
Scheduling for Parallel Vector Processing," 
TR-EE-81-17, School of Elec. Eng., Purdue 
University, W. Lafayette, Indiana, April 1981. 

[17) Ullman, J. D., "NP-Complete Scheduling Pro
blems," Journal .2i Computer and System Sci
~, Vol. 10, 1975, pp.384-393. 

Vector Scalar 
Controller L-+ Processor 

I t 
1 I. 

Vector I Pipe 1 I 
Buffer -" 

I Pipe 2 I 
• • • 

I Pipe m I 
Vector Pipelin e 

Fig. 1 The functional block diagram of a multiple-pipeline vector computer. 

231 



(a) The precedence graph.of a vector task system. 

t:O 1 8 9 

:: I:: I 1'11 

(b) A parallel schedule fl for the task system in (a). 

Fig. 2 The parallel scheduling of a task system of vector 
instructions. 

t 
a 

t:O tb 

PI 

Pz 

P3 

• • • 

::-1 t 
m 

Fig. 3 A worst-case example showing the schedule f without 
partitioning in the proof of case 1 in Theotem 3. 

232 

13 14 



taCk) 

I ta (1) ta (k-l) 
t:O tb t 

I 
PI 

P2 

Pm- k- l 

Pm- k 

Pm- k+l 

Pm- l 

P 
m 

a 
I I I I I 

I 
I I 

• I I • I I I I I I 
ta+t O/2 

I I 
I I ta (l)+tO/2 I I 

I I J I I 
I I • I I t a (k-l)+tO/2 • , 

I 
I : I I I 
I I 

t I 
m 

Fig. 4 A worst-case example showing the schedule fA with k partitions.in the 
proof of case 2 in Theorem 3. 

CI) 
(J 

~ 
~ 
0 

4-< 
H 
CI) 

Po< 

CI) 
~ 

oM 
'-' 
cO 

.-l 
CI) 
~ 

1.680 

a Algorithm A for independent tasks 

1.'190 
S LPF (Longest Processing First) 

o RC (Randomly Choose) 

1.'Il!O Y FCFS (First Come First Serve) 

1.3611 

l.l!I3O 

1.210 

1.1~O 

1.010 

1.000 

~ r-----r-----,-----.------r-----.-----.------.-----.-----. 
3.00 5.00 7.OD 9.00 1l.OD 13.00 16.DO 17.00 19.00 21.00 

n 

Fig. 5 Performance comparison of Algorithm A and three known 
scheduling algorithms. 

233 



t:o 

to 

to 

to 

to 

t:o 12.25 

to 'n I 
to '12 I to I '2 I 12.5 
to '3 I to I '41 

to '42 I to I '5 

(a) A parallel schedule fA for the task system in Example 2. 

t:o 12 

to 'n 
to '12 I to I '2 

to '4 

to '3 I to I '5 

(b) A known optimal schedule for the task system in 
Example 2. 

Fig. 6 Two parallel schedules for the task system in Example 2. 

A tree task system 

7 12 14.5 

Tl I to I '2l ~ to '51 ~ to '7l to 

T 22 I to I '31 ~ to '53 '52 to T72 to 

T 32 I to I '41 to 1 to I T6 ~ to T73 to 

'42 ~ to '8 to '74 to 

(b) A parallel schedule fBobtained from Algorithm B 

Fig. 7 A tree task system and a parallel schedule 

234 

16.5 

'91 

T92 

'93 

T 
94 



Clifford N. Arnold 
Research and Advanced Design Laboratory 

Control Data Corporation 
St. Paul, Minnesota 55112 

Abstract - Eighteen kernels were used as a 
benchmark for three automatic vectorizer 
packages. The resultant code was timed on 
Control Data CYBER 203 and CYBER 205 systems 
to assess the performance improvement produced 
by such automated techniques. Of the 18 
kernels, 16 were significantly transformed by 
at least one software package; thirteen ran 
faster on the CYBER 205 than highly optimized 
scalar code, and of those, eleven ran faster 
by at least a factor of three. A rough 
estimate of the programming effort to do the 
same vector transformation by hand showed that 
the automated software can speed the 
translation process by a factor of ten. 

1. Introduction 

The potential of very fast computational rates 
for vector and array processors necessitates 
code rewriting from scalar constructs to array 
or vector constructs. Array data structures 
can then be manipulated in parallel in 
multiple arithmetic units or streamed through 
pipeline units (which essentially eliminates 
the load/store time). The Control Data CYBER 
205 and the Cray Research Cray-1S computers 
possess vector rates which range. from two to 
ten times their respective scalar speeds, and 
typically greater than five times the speed of 
a CDC 7600. Experience te1ls us that for a 
given code these high rates are approached 
only if the large majority of the work is done 
in vector mode. Otherwise the scalar time and 
thus the scalar rate dominates. Software 
tools that simplify the process of generating 
good vector code would help users make better 
utilization of these machines. 

Several compiler and preprocessor projects are 
in progress across the country to develop and 
perfect techniques to map scalar code into 
vector code. This function is called 
automatic vectorization. It should not be 
confused with scalar optimization which is a 
highly developed and mature technique. 

Several vectorizing compilers exist in the 
field, but they are generally considered early 
~ersions of an underdeveloped art form. Good 
examples are the compilers for the Texas 
Instruments ASC, the Cray-l, and the CDC CYBER 
200 Series. Research on automatic 
vectorization has gone far beyond these. For 
a review of such research see [1] and [2] and 
references therein. 

0190-3918/82/0000/0235$00.75 @ 1982 IEEE 235 

Two software packages that aid the programmer 
and compiler in generating vector code have 
come to my attention. One is from Kuck and 
Associates, Inc. and is called the Kuck 
Analyzer Package (KAP) [3]. The other is from 
Pacific Sierra Research [4][5] and is ca1led 
the Vector and Array Syntax Translator 
(VAST) • This paper reports on an experiment 
to assess potential performance improvements 
due to each of three automatic vectorizers: 
KAP, VAST, and a CDC CYBER 200 FORTRAN 
Compiler (hereafter referred to as CYBER 200 
FTN). Comments on usability and potential for 
productivity improvements are included. 

2. Procedure 

The test base consisted of 18 kernels of 
FORTRAN from the Lawrence Livermore Laboratory 
[6] [7] • This benchmark, commonly called the 
Livermore Loops, was run through KAP and 
VAST. Both analyzers output FORTRAN source 
code with vector extensions. KAP output is 
not CYBER 200 compatible, so the syntax of the 
KAP output was manually converted to CYBER 200 
FORTRAN. Care was taken not to add vector 
constructs unless KAP indicated the need and 
vector constructs were always added where 
indicated by KAP. The conversion was intended 
to be a simple translation by a process that 
could easily be automated. The only semantic 
change was to declare three arrays ROWWISE. 
This change was indicated by KAP (though a 
straightforward syntax change could also 
vectorize this construct). The conversion 
process was very time consuming and prone to 
errors. Most of the time was spent tracking 
down hard to discover typographical errors. I 
also needed to keep track of array 
declarations for new scratch vectors and had 
to spend time learning the CYBER 200 vector 
extensions that an automatic source code 
generator would have available to it. The 
process in all required many runs and six to 
eight person weeks. 

VAST, on the other hand, produces CYBER 200 
FORTRAN source code directly. The input 
source code was run through VAST and then 
through compilation and execution. A few 
simple user directives were added to the 
source code which appear as comments to the 
compiler, but are recognized by the VAST 
product as permission to collapse loops if 
possible. Four runs, over a period of three 
days were required to obtain best results. 



The original code was adjusted to 
three times, varying the loop trip 
time. For vector kernels, these counts turn 
into vector lengths showing the 
characteristics of vector performance for 
those loops. The ranges covered in the counts 
were designed to be broad and also bracket 
those used in the Livermore Magnetic Fusion 
Energy Procurement (1978). 

The actual experiment was based on repetitions 
of seven different runs; four on the CYBER 203 
and three on the CYBER 205. The original 
source code was compiled by CYBER 200 FTN with 
only scalar optimization and with both scalar 
optimization and vectorization. This source 
code was also processed through VAST followed 
by CYBER 200 FTN. The converted KAP output 
was compiled by CYBER 200 FTN. 

3. Results 

VAST and CYBER 200 FTN take a comparable 
amount of time to execute the vectorization 
analysis and code translation, and take 
considerably less time than KAP. Since the 
packages are written in different languages, 
and KAP ran on a different computer, absolute 
comparison is difficult. Estimates show KAP 
would take about one decimal order of 
magnitude longer to do its analysis than VAST 
or CYBER 200 FTN would if all were run on the 
same computer. 

Computational performance of the kernels for 
the seven execution scenarios are summarized 
in Table 1. Table entries are in MFLOPS from 
the second pass of each run wi th trip counts 
as noted in Figure 4. Errors in the timings 
of the kernels were determined from 
repetitions of the runs. Typical 
uncertainties for a given kernel was 4 and 0.5 
microseconds for the CYBER 203 and CYBER 205 
respectively. The Expected Errors (MFLOPS) in 
Table 1 are based on the speed of the fastest 
execution scenario for each kernel. 

When automatic vectorization is applied, all 
kernels except 16 and 17 show significant 
performance changes relative to the 
unvectorized run. Kernels 5, 6, 13, and 14 
show the smallest variation. All execution 
scenarios for all variations of trip counts 
for these four kernels register performance 
within 56 percent of the unvectorized run. Of 
the remaining 12 kernels, only one, kernel 8, 
did not improve over the unvectorized 
performance for any scenario at some trip 
count. For the CYBER 205 runs, a majority of 
the kernels show impressive gains due to 
automatic vectorization. Kernels 2, 4, 5, 6, 
8, 11, 13, 14, 15, and 18 discriminate these 
vectorizers' capability to uncover vector 
constructs. 

Below I summarize for each kernel the 
automatic vectorization that has occurred. 
Note also the difference between the CYBER 203 

TABLE 1. TIMINGS FOR THE LIVERMORE LOOPS 

CYBER 203 TIMINGS CYBER 205 TIMINGS 

CYBER Expected 
Kernel Unvectorized 200 FTN VAST KAP CYBER 200 FTN VAST KAP Error 

1 9.6 22.4 23.0 22.7 121.5 121.3 120.2 1.5 
2 12.3 12.3 3.9 15.6 12.5 16.2 76.9 1.0 
3 5.9 15.7 15.7 15.8 78.8 73.9 76.6 2.9 
4 3.3 3.3 3.3 2.8 3.3 3.3 17 .0 0.1 
5 7.9 7.9 7.9 3.5 7.9 7.9 5.7 0.1 
6 5.2 5.2 5.2 4.2 5.2 5.2 6.1 0.1 
7 17.0 24.4 24.5 24.4 146.0 146.9 144.7 2.1 
8 22.4 22.4 22.4 11.8 22.4 22.4 15.9 (0.05 
9 13.0 18.1 17.6 18.1 80.7 81.0 81.6 0.6 

10 8.6 11.9 12.0 10.2 29 .6 29 .8 30.7 0.3 
11 1.7 7.5 8.5 7.4 8.4 8.5 8.2 0.4 
12 2.9 36.8 35.3 35.6 73.0 77.4 76.0 7.9 
13 3.1 3.1 3.0 2.6 3.1 3.0 4.4 (0.05 
14 5.5 5.6 5.5 4.8 6.9 6.9 5.3 0.1 
15 3.4 3.3 3.3 3.7 3.4 3.4 19.3 (0.05 
16 0.6 0.6 0.6 0.6 0.6 0.6 0.6 (0.05 
17 4.9 4.9 4.8 4.9 4.9 4.9 4.9 0.2 
18 8.3 1.0 14.9 17.2 4.2 42.4 50.1 0.3 

Notes: 

1) Entries are in million floating point operations per second (MFLOPS). 

2) Results are from the second pass with trip counts noted in Figure 4. 

236 



and CYBER 205 performance. Since these two 
machines have identical scalar units, the 
timing differences are due to the vector 
calculations, and therefore help to point out 
how much of each kernel's performance is due 
to vector manipulation. 

Kernel 1: l-D Hydrodynamics Excerpt 
This is a simple loop which all three 
vectorizers succeeded in vectorizing. 
Two scalar broadcasts make this loop run 
impressively on the CYBER 205. 

Kernel 2: Unrolled Inner Product 
This DOT PRODUCT is camouflaged by being 
unrolled into a loop summing five partial 
products. CYBER 200 FTN generates scalar 
code. VAST generates five vector 
temporaries using gather instructions and 
then does five vector additions and 
multiplications and lastly the vector 
sum. KAP recognizes the DOT PRODUCT and 
generates the single CYBER 200 macro 
instruction. 

Kernel 3: Inner Product 
All three vectorizers recognize this as a 
vector DOT PRODUCT and generate the CYBER 
200 macro instruction. 

Kernel 4: Banded Linear System 
This loop is nested to level 2, but is 
neither tightly nested nor trivially 
co11apsible. VAST leaves the loop alone 
and CYBER 200 FTN generates scalar code. 
KAP inverts the loops and discovers a 
vector DOT PRODUCT for which it needs to 
gather array "A". KAP leaves the loop on 
"J" as a scalar loop and finishes by 
gathering array "X", doing the final 
vector multiply, and scattering array "X". 

Kernel 5: Tri-Diagonal Elimination, Below 
Diagonal 

This loop has a scalar recurrence on 
array "X" , and therefore has been 
unrolled in the original code for 
improved scalar performance. VAST leaves 
the loop alone and CYBER 200 FTN 
schedules efficient scalar code. KAP 
rerolls the loop, recognizes the first 
order recurrence and generates a macro 
instruction. for which CYBER 200 FTN 
generates a STACKLIB call. KAP also 
factors a vector multiplication out of 
the loop. 

Kernel 6: Tri-Diagonal Elimination. Above 
Diagonal 

Aside from the backward loop counter. 
this kernel is nearly identical to kernel 
5. VAST leaves the loop alone and CYBER 
200 FTN schedules efficient scalar code. 
KAP rerolls the loop, recognizes the 
first order recurrence. and generates a 
macro instruction (again. a CYBER 200 
STACKLIB call). The multiplication that 
could be vectorized and factored out of 

237 

the loop is instead used in the macro 
instruction. 

Kernel 7: Equation of State Excerpt 
This loop is vectorized by all three 
vectorizers. Eight broadcast triads for 
the seventeen operands make this a very 
impressive loop for the CYBER 205. 

Kernel 8: P.D.E. Integration 
This is a good example of a loop with 
possible linear recurrences and many 
calculations that are not coupled to the 
recurrences. These later mentioned 
calculations can be factored into their 
own loop and thereby transformed into 
vector instructions. Neither VAST nor 
CYBER 200 FTN does this and instead 
scalar code is generated. Because the 
loop is computationally dense with 
temporaries, effective scheduling of the 
256 word register file permits very fast 
scalar execution. KAP factors many. 
though not all. allowable calculations 
out of the loop. This leaves about half 
of the calculations in the scalar loop. 

Kernel 9: Integrate Predictors 
This loop steps along the rows of a two 
dimensional array. instead of the 
columnwise ordering to which CYBER 200 
FORTRAN defaults. VAST and CYBER 200 FTN 
generate gather instructions. the vector 
computation. and then scatter 
instructions. KAP explicitly notes the 
parallel structure of the computation. 
implies the ROWWISE construct, but cannot 
legally implement it on the CYBER 200 
without unpredictable side effects. Here 
I make the choice of using ROWWISE in the 
original code because I can rule out the 
side effects. Then all three vectorizers 
discover the same solution as a simple 
vector expression. 

Kernel 10: Difference Predictors 
This kernel has the same rowwise 
characteristics of kernel 9. It is 
vectorized by all three vectorizers in 
the same way when the ROWWISE statement 
is used. Again. KAP implies the ROWWISE 
usage whereas VAST and CYBER 200 FTN do 
not. 

Kernel 11: First Sum 
This loop is recognized by both CYBER 200 
FTN and KAP as a linear recurrence. and 
the appropriate instruction macro 
(STACKLIB ca11) is generated. VAST 
leaves this code alone. 

Kernel 12: First Difference 
All three vectorizers recognize this loop 
as vector subtraction. 

Kernel 13: 2-D Particle Pusher 
This kernel contains array references in 
which the array elements are loaded and 



stored in data dependent mappings, that 
is specifically not by fixed strides. 
VAST does not change the code. CYBER 200 
FTN generates scalar code. KAP gathers 
and scatters by index lists for all data 
dependent mappings except array "H" which 
is left in a scalar loop. Thus, most of 
the arithmetic is done in vector mode. 
Note that array "H" can be 
"gathered/scattered" and calculated in 
vector mode only if it is a permutation 
list, that is, a list with no duplicate 
index references. Such a case is not 
guaranteed here. 

Kernel 14: l-D Particle Pusher 
This loop is analogous to kernel 13 in 
having data dependent referencing of 
arrays. Again CYBER 200 FTN and VAST 
perform no vectorization. KAP vectorizes 
a smaller percentage of this kernel than 
of kernel 13. The speed reduction of the 
vector version relative to the scalar 
version suggests that the register file 
cannot be scheduled as effectively as 
when the entire loop is left as scalar. 

Kernel 15: Casual FORTRAN 
and CYBER 200 VAST FTN find no 

vectorization in this 
replaces the IF statements 
tests to generate control 
The two dimensional 

kernel. KAP 
with logical 
bit vectors. 

arithmetic 
expressions in the kernel are converted 
to two dimensional vector expressions 
with control stores. Figures 1 and 2 
show the original FORTRAN and vector 
FORTRAN versions of the KAP output 
respectively. Note the discussion in 
Section 4 below. 

c·· lI;all;* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c". KERNEL 15 CASUAL FORTRAN. DEVELOPMENT VERSION. 
C 
C 
C 
C 
C 

CASUAL ORDERIN!)- OF SCALAR OPERATIONS IS TYPICAL PRACTICE. 
THIS EXAMPLE DEMONSTRATES THE NON~TRIVIAL TRANSFORMATION 
REQUIRED TO MAP INTO AN EFFICIENT MACHINE IMPL.EMENTATION. 

SAVE*RTC(SAVDMY) 
DO 999115 IGL",:al,ITI"ES 
CALL CLRSTK 

NRc 7 
HZ. 2S 
AR* :5./3. 
8R- 7./S. 

U5 DO .os J. 2,NR 
DO ,.115 K. 2,HZ 

If'( J-NR)31.30,:tO 
30 VY(K,J). 0.0 

ElO TO .5 
31 IF( VHtk,J+I) -VH{K,J) )33,33,32 
32 T* AR 

GO TO 34 
33 T* 8R 
304 IF( VF(K,J) -VF(K-l,J»3S,36,36 
315 Rill' AMAXI( VH(K-l,J), VHtK-l,J+1J) 

S* VFlK'"",J) 
GO To ~7 

36 R- AMAX1, VHCk.J). VHCk.J!+l» 
S- VFCK.J) 

31 VYCk,J). SQRT( W(K • .IU.Z +R_RUT/S 
:38 IF( K-NZ)40,3S.31 
31 YSCK,J)- O. 

Ge TO .5 
401Ft VFU(.J) -VFCK,J-1))41,4Z,oil2 
oil 1 R- AMAXH VGCk,J-U, VGCK+l.J-l)) 

S= VF(K,J-l' 
T. 8R 

GO Te 0 
.2 R- AMA)(H VGCK,J). VIHk+l .. ")) 

Sa VFCk.J!) 
Ta AR 

.3 VSCK.J). SORT, VHCk.")"2 +R.RUT/S 
4:5 CONTINUE 

899115 CONTINUE 
sot ( 1:5» _RTC C SAVDK¥) 

Figure 1. Kernel IS-Original Code. 

238 

SAVEC - RTC{SAVDMY) 
HR • 7 
H2 - 215 
AR - :5,/3, 
SA: = 7,/5. 
DO IV:I,ITlMES 
CAll CLRSTK 
JNX(':S) = SEO(1.6,l)+1 
FV1X(1:6) = JNX{':6)-7 
MF1(1:6) = FV1X(1:6).GE.0 
MF2{1 :S} = FV1X(1 :6LLT.0 

~~~~~: ~~;, ~, ~~~(j., ~~6~ ~ +1 
X VY(2:2!5,2:7 .• O,r'

WHERE (MF2Q3(1: 24.1 :6})
X FV2X02(1:24.1:6) .. VH(2:2!5.3:S)-VH(2:2!5,2:7)

MF304 (1: 24,1: 6) = FV2XQ2{ 1: 24.1: 6), GT, OEO,ANo,MF2Q3(1: 24,1: 6)
MF405(1: 24, 1 :6} .. FV2XQ2(1: 24.1: 6). LE, OEO.AND.MF2Q3(1: 24,1 :6)
WHERE (MF3Q4(1 :24,1 :6»

X TBXOS(':24.1:6) = AR
WHERE (MF4QS(1:24.1:6»

X TBX06(1:24.1:6) = 6ft
WHERE (MF2Q3(': 24. 1 :6»

X FV3X07(1':24,':6) = VF(2:2!5.2:7)-VFC1:24.2:7)
MF508{ 1: 24,1 :6) = FV3XQ7(1: 24,1: 6). LT. OEO.ANO.MF2Q3(1: 24,1 :6)
HFS09(1: 24,1 :6) = FV3X07(1: 24,1: 6) .GE. OEO.AND.HF203(1 :24, 1 :6)
WHERE(HFS08(1:24,l:6» DO
RBX010(1:24.1:6) z AMAX1(VHC1:24,2:7),VH(1:24,3:8»
SCXQ11(1:24,l:6) II: VF(1:24.2:7)
END WHERE

WHERE(MF6Q9(1: 24,1: 6» 00
RBXQ10(1:24,t:6) = AMAX1(VH(2:25,2:7).VH(2:2S,3:8»
SCXQ1'(':24,t:6) - VFl2:25,2:7)
END WHERE

WHERE (MF20311 : 24,1: 6») DO
VY (2: 25, 2: 7) = SOA:TtVG(2: 25. 2: 7) __ 2+RBXQl O(1 : 24. 1 : 6) _RBXQl O(1: 24

X ,1 :6»*TDXQ6(1 :24,1 :61/SCXQ11 (1 :24,1 :6)
FV40'2fl:24,1:S) I/: KRX013(1:24.1:6)-25
END WHERE

60 MF7Q14(1 :24,1 :6) II: FV4Q12(1: 24,1 :6) .GE.O.AND.MF2Q3(1 :24.1 :6)
HFSQ1511 : 24, 1: 6) = FV40'2(1: 24.1 :6). LT. O.ANO.MF2Q3(1 :24,1 :6)
WHERE (MF7Q14(1 :24.1 :6t)

X VS(2:25.2:7) = O.
WHERE IHF8Ql5t 1: 24,1: 6»

X FVS016(1 :24.1 :6) = VF(2:25,2:7)-VF(2:2S.1 :6)
MF9Q17(1 :24. 1 : 6) = FVSQ16(1: 24.1: 6). LT. OEO.AND.MFSQ1!5(1: 24, 1 :6)
MF'018{ t: 24,1: 6) = FV5Q,6(1: 24,1: 6) .13£. OEO.AND.MF8Ql!5(1 :24, 1 :6)
WHERE(MF9Q17(1:24,l:S») DO

RAX019(1: 24,1: 6) II: AMAXI (VG(2:25, 1 :6), VIH3: 26, 1 :6»
SBXQ20(1:24,l:6) • VF(2:25,1:6)
TAXQ21(':24,t:61 • BR
END WHERE

WHEREIMFlQ18(1 :24,1 :6» DO
RAX019(1: 24,1: 6) a AMAXI (VG(2: 215,2: 7), VG(3: 26, 2:7»
SBXQ20(1:24,l:6) • VFt2:25,2:7)
TAX021(1:24,l:6) • AR
END WHERE

62 WHERE CMF801:5(1:24,1:6»)
X VS(2:25,2:7) II: SORHVH(2:25.2:7) __ 2+RAXQ19(1:24,l:6)_RAXQ11
X (1: 24,1 :6))*TAX021 (1 :24. 1: 6)/SBXQ20(1 :24.': 6)

65 ENDDO
SOl(15) • RTC(SAVDMY)
ARRAY MF1Ql(1 c 24,J a 10) • HF1(J)
ARRAY FV2XQ2(1 • 10.J I: 10) c FV2X(J,I)
ARRAY MF2Q3C1 • 24,J • 10) • MF2(J)
ARRAY MF304(1 - 10,J - 10) • MF3(J.I)
ARRAY MF4Q5(1 I: 10.J • 10) = MF4(J.I)
ARRAY TBX06(1 = 10.J I: 10) *= TBX(J~I)
ARRAY FV3X07(1 - 10.J _ 10) a FV3X(J,I)
ARRAY MFSQ8(I - 10.J • 10} - MFS{J.I)
ARRAY MF6.09C1 I: 10.J = 10) .I'1F6(J.1l
ARRAY RBXQ10(1 c 10,J I: '0) I: RBX(J,I)
ARRAY SCXQ11(1 - 10,J - 10) • SCX(J.I)
ARRAY FV4Q12(1 • 10.J - 10> • FV4X(J,I)
ARRAY KRXQ13(1 liZ 10.J 6) II: KRXCI)
ARRAY MF7Q14(1 - 10,J 1: 10) I: MF7(J.J)
ARRAY ",F80'S(1 I: 10.J _ 10} - MFS{J.I)
ARRAY FVSQ16(1 I: 10.J 10) - FV5X(J,I)
ARRAY MF9Q17(I _ 10,J I: 10) c MF9(J, I)
ARRAY MF1018(I - 10.J • 10) - MF10{J,I)
ARRAY RAXQ19(1 • 10.J • 10) • RAX(J.I)
ARRAYSBXQ20CI. 10,J. 10) II: SBX(J,I)
ARRAY TA-X021(1 • 10,J. 10) - TAX(J,I)

Figure 2. Kernel l5-KAP Vector FORTRAN.

Kernel 16: MONTE CARLO Search Loop
No vector manipulations are done by any
of the three vectorizers.

Kernel 17: Implicit Conditional Computation
No vector manipulations are done by any
of the three vectorizers.

Kernel 18: 2-D Hydrodynamics Fragment
This kernel has three loops nested to
level 2. It is a classic example of a
"picture-in-frame" computation. The mesh
points on the frame are boundary
conditions to be skipped in this
computation. Calculations are to ,take
place for all the points in the picture.
CYBER 200 FTN will not collapse this

construct into I-dimensional vectors
because it will not generate the control
stores to avoid the frame. CYBER 200 FTN
instead vectorizes the inner loops which
i.n this case yield vectors of length 5.
Both VAST and KAP generate a collapsed
version of the two dimensional loops and
the bit vectors to control the stores.

4. Discussion

State-of-the-Art Automatic Vectorization

Even a casual glance at the descriptive
summaries listed above shows clearly that KAP
did the most vectorization of the three tools
studied. KAP, in fact, vectorized a superset
of that done by VAST and CYBER 200 FTN
combined. A look at the techniques used by
each should predict this point. VAST and
CYBER 200 FTN rely on pattern recognition of
source code within an individual Do Loop to
detect constructs for vector conversion. KAP
does most of its pattern recognition within
vector dependence graphs. Such a
representation traces the data dependence of
individual array elements and the flow
dependence of sequences of source code.
Parallelism is not restricted to Do Loops, and
Do Loop analysis is more general. The
resulting representation is closer to the
sense of the flow of the calculations than the
original source code in all but the most
carefully designed FORTRAN programs.

In the Livermore Benchmark, kernels 4, 8, 13,
14, 15, 16, 17, and 18 represent significant
tests for state-of-the-art vectorizers, circa
1981. The remaining kernels are essentially
"one-liners". Kernels 16 and 17 require
knowledge of the input data before
vectorization tran.sformation is reasonable.
Of the significant tests remaining, KAP solved
the problem optimally for all, save slight
improvements on kernels 8 and 15. This last
comment is made relative to the best manual
vectorization effort. Kernel 15 is a good
example of taking very stylized, though not
uncommon code, working out the data
dependencies, and generating an entirely
vectorized kernel from something that did not
initially look like vector code at all. I
have extracted the two forms of KAP output,
Figures 1 and 2 so the reader can see how the
transformation is done.

From discussions I have had with compiler
writers, vectorization experts, supercomputer
users, and the CYBER 200 Compiler Development
group, there is a general consensus that KAP
represents the state-of-the-art in automatic
vectorization technique at this time.

Usability

Both the CYBER 200 FORTRAN Compiler and VAST
are eminently usable. Simply add one command

239

line for either into an execution procedure
and the rest is automatic. VAST allows the
user to add some hints in the form of
"directives" which aid the tool in its
analysis. The VAST package also has easy to
read output which can help the user in several
ways. Figure 3 shows the kernel 5 excerpt
from the VAST output. It describes clearly
what problems it had converting the loop.
Often the user can then recognize quickly what
could be improved and what should be left
alone. VAST was designed to be used in this
type of interaction, with the user and tool
sharing their expertise in an iterative mode
to optimize code. The second part of this
kernel, which is outside of the timing loop,
shows the user the appropriate CYBER 200
FORTRAN vector syntax for converted code.
This is a good learning device for the novice
vector programmer. VAST shows that a
vectorizing preprocessor can be incorporated
invisibly, and that the output can be an aid
to the experienced or inexperienced programmer.

The effort required to do a manual conversion
of scalar code to vector code is estimated
conservatively by the time I used to convert
KAP output to CYBER 200 Vector FORTRAN. VAST
demonstrates that the speed up in terms of
programmer effort for automatically genera.ted
code is, in this case, at least a ten to one
ratio over the manual effort. Thus, where KAP
shows the vectorization state of the art, VAST
shows how much programmer time can be saved in
the automatic conversion of code.

3 f:7. C
3f:8. C". I<Ht4El ~ TPI-O[AG(!NAL ELI~rNATIC""', BElOw OUGONj.l
3t:Q. IJI(-lOOPsrSJ-Z
370. CHl t8WJTlMFfISAYEI
371. 00 qqq5 IGt l. ITtf4ES
312. Ctoll \lYNIl

• •••• TrotANSlHlCN ['JAGNCSTIC -- liNE 3721
ONLY ASSIGNf'lENT STATFf'lENTS CA.N BE TRANSLATED TO AUAY SYNTAX

373. D{1 5 I-Z,IJI<,3
374. X.I }. All).UII I-XCI-III
315. xCI+1) • Afl+U*IYII+lI-X([n
3n. 5 HI+2'1 • A(l+2)*CY(J+Z)-X(lHU

••• tj.TA D£PH'flENCY CONflICT -- lPH 3761
THIS LEFT IUtoiD SIrE USE PilE-VENTS SAFE TRANSLATION

.... AliIlAV -- Y Q.ICHH HANO SIDE USE ON LIlliE 37 It
++++ L[NE 37t:t HANSlHIO" N[lT POSSIBLE j;[1Jt THE DO lOOP .++. BEGINNING LINf -- 313 lnop LAREl - 5 lOOP INDEX -- I

311. C Of) A2 I-l,~ US RE"'AIMDER KERNel
~le. C A2 HI) - '(I)*(yU I-XU-II)
379. qqq, cm;r JNl'F
380. CHl Q'"R:JTHIE("JSAVEI
381. SOl(5) - fLOATftHVE-JSAVEI-SIIl
382. ",RITE fblOli21 SDTf5J,SIII
383. C •• ** ••• "'." •• ""+""+
381t. 1C1<1o:-5
311';. CKSU"'·O.
3eb. DO 3C~1 r-z.,IJIC,3
381. 3051 CIC'SU"'.CKSUH+l.txU IHU+l JUI 1+21)

MVAST-' IJI<-2J13+l
V'VASH 1; N'IASTl-08VGATHP fl((2; NVAST)" 3, IIIVAST; VVASH l;NVAS T' J
II V A ST r N V, 5 HI; NVAsn -g8 YG UHP l)t(~; NVA ST)' 3, NVA S1; VVASTI NY AS

• T+I:NVAS11,
YVASTll*NVAST+l: NY' ST }-08VGATHP (X lit INVAST), 3,NVASTJ VVAS Te2.

• NVAST+l;NYASTlI
VVAS It 3.N'IAS1+11 NUST) _OBVIPIITl (2., 3.; VVAST 13.I\IVAS1+1 JNYAST)

• I vvaSHN'IA !T+H IIIvaS1)-VV'Sf(1; NUSH +VVASHNVAS T+l;NVAST)
v VAS T III III VASTI-VVAS Tt NVAST+l; NYAST 1 +'1 VAST (2.N YASH 1; NV'" SO
$V AS TIll- C8SrOTf 'IVA SlI3.NYA ST +If NU S T "'IUS Tf 11 NY AS T))
CKSU"'-CICSll'I+SVAST n 1
l-IIIVAST·3+2

3051 CONT [NUE

+++t LINE 3el1 Dr Ul0P SUCCESSFUllY TRAI'fSlATED TO ARUY S,(rHAII
++++ SEGJNIIIIIIIG THE -- 3H. lOOP LA9El -- 3051 LOOP INDEX -- I

~eB. wt::JTE Ih91C1k"KJ(,CI(Sl:M
3813. C

Figure 3. VAST Output for KernelS.

Performance Considerations

Throughout this paper the motivation for
vectorization is to harness the potential
performance improvements of the vector and
array processors. Does automatic
vectorization in fact do this? The answer is
not a simple yes or no. Figure 4 shows the
performance profiles for the eighteen kernels
with varying trip counts. The profiles
represent for each kernel the fastest vector
version of that code as choosen from the three
vector solutions. Kernels with flat profiles
(kernels 5,6,8,11,13,14,16, and 17) are
dominated by scalar computation. Except for
kernel 8 their characteristic computation rate
is less than 10 MFLOPS. The remaining curves
have profiles which have increasing
performance with increasing trip count and an
asymptotic behavior for large trip counts.
This is the characteristic shape of vector
code executing on the CYBER 205. The
computation rate of these kernels typically
exceeds 50 MFLOPS, and in all cases exceeds 10
MFLOPS.

Vectorization did not produce the fastest
computation rates for all the kernels. The
fastest solution on the CYBER 205 for kernels
5, 8, and 14 was by CYBER 200 FTN which did
not detect any vectors for these kernels. The
timings in Table 3 for the CYBER 203 show

150

100

50

500 1000

Trip Counts ("Vector Lengths")

Figure 4. CYBER 205 Performance Profiles for
the Livermore Kernels (Best
Automatic Vectorization)

240

additional dramatic examples of vectorization
slowing code down. These occurrences depend
both on the source code and on a machine's
relative vector versus scalar performance
capability. For example, when vectorization
adds a substantial vector set-up penalty it
can negate the advantage of vector
computation. In such cases the compiler
should generate scalar object code. This
process is called vector optimization and is
machine dependent~d sometimes data
dependent. It should not be confused with
vectorization. Note Table 1 for ranges in
performance due to the three vectorizer
packages.

The goal of vector optimization is to generate
the best object code for a given vector
computation. Using the CYBER 205 as an
example, vector execution speed depends
strongly on

1. vector length,
2. vector store density for bit vector

control stores
3. vector set-up due to

a. gather/scatter
b. compress/mask-merge

4. generation of index and control bit
vectors.

The optimized object code must reflect the
expected execution time which as shown above
may depend on many parameters. Such vector
optimization must be addresaed directly in
future vectorizers to guarantee good
performance.

Figure 5 shows the comparison for best vector
speed (due to automatic vectorization) versus
the best scalar speed. Because of the
maturity of scalar optimization relative to
automatic vectorization, the scalar times are
near the best. The vector ranges on the other
hand represent for each kernel the fastest
vector version for that code as in Figure 4.
These ranges are not guaranteed to be the best
vector speed because the decision on how much
to vectorize a given loop is not based on
performance considerations. Figure 5 shows
impressive performance improvements due to
vectorization of very different types of codes.

Lastly, the following questions should be
asked. Is not the effective speed of the
computer determined by the code in which the
computer spends the most time, which is often
the slow scalar code? Has vectorization
improved anything if scalar code remains and
dominates? The answer is a definite yes. The
code may still be scalar dominant, and yes, we
have also improved things. If a computer has
a very fast vector unit, relative to its
scalar unit, then the percentage improvement
is equal to the percentage of scalar
computations converted to vector computations,
whether by a compiler, or human, or
preprocessor. If the scalar code can be

160

• BEST SCALAR
PERFORMANCE

140

I BEST VECTOR
PERFORMANCE
(RANGE FOR

I
THREE PASSES)

120

:l 100

1
~

I I
:;;

80 I ..
!S
en
"-
0
-' u.. 60 :;;;

I 40

I ..
20 I • I

• • • .. • • • .,
i • • • • ~ 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Kernel Number

Figure 5. Scalar and Vector Performance Summary for the Livermore Kernels

reduced so that it no longer dominates the
computation, then the average computation rate
represents the impressive vector rate. Though
this latter goal may be unlikely for a
computer center workload as a whole, many
users will enjoy the benefit. So the more an
automatic tool does for you, the more the
speed up you get. In the worst case, the
improvement is linear with the vectorization
success.

5. Summary: A Case for Automatic
Vectorization

I have studied three automatic vectorization
packages and the performance enhancement each
brings to the Livermore Loops Benchmark.
Performance speed-up for several kernels are
very impressive, essentially achieving the
theoretical speed-up. Out of the 18 kernels,
automatic vectorization improved the CYBER 205
times by the following indicated factors over
scalar performance:

3 kernels (I, 3, 12):
7 kernels (2, 4, 7, 9, 11,
15, 18):
1 kernel (10):
2 kernels (6, 13):

> 10 * scalar

> 5 * scalar
> 3 * scalar
>1.1 * scalar

241

If these 18 kernels are used as a system
workload, each kernel equally weighted,
automatic vectorization would increase the
total throughput by 70 percent. Note that the
scalar time still dominates the execution time
(60 percent scalar, 40 percent vector).
Kernel 16 dominates this time (59 percent of
total) because it is so much slower than the
other 17 kernels. If this kernel were
eliminated from the sample, automatic
vectorization would increase the total
throughput by 170 percent, or a factor of 2.7
times in speed. In this case the scalar time
is less than half the total (37 percent
scalar, 63 percent vector; comparable to 11 of
17 kernels vectorized). Thus, as an
approximate figure, automatic vectorization
will give about 50 percent vectorization by
computations count, a speedup of 100 percent
in time, for code like the Livermore
Benchmark. Note that in the best case when a
code is full of loops analogous to kernels I,
2, 3, 4, 7, 9, 10, 12, 15, and 18, automatic
vectorization will bring a manyfold
improvement over the scalar execution.

The KAP in all cases did equal or more
vectorization than the CYBER 200 FTN or VAST,
and is generally agreed to represent the state
of the art in analysis technique. Of the 170

percent speed-up quoted above, 66 percent can
be attributed to CYBER 200 FTN vectorization,
an additional 11 percent to VAST'
vectorization, and an additional 93 percent to
KAP. This assumes that as information
pertaining to the vectorizability of a kernel
is increased the kernel will at worst run at
the' same speed and may run faster; that is,
the best vector solution is deterministic.
This point has yet to be proven.

The amount of programmer time and effort that
an easy to use vectorizer can save over an
equivalent manual solution is demonstrated by
comparing the time to use VAST as opposed to
KAP. Translating manually from KAP vector
output to CYBER 200 FORTRAN took ten to
fifteen times longer than the 2 1/2 days to
get a best effort from VAST. The time period
for the KAP work was not an attribute of KAP,
but of the manual process for translating and
debugging code. VAST shows that there is
nothing particularly difficult in generating
CYBER 200 FORTRAN automatically. There is a
lesson to be learned when I spend 6 weeks on
something that need only take 2 1/2 days.

Thus, as a programmer productivity aid,
automatic vectorization has high potential.
Presently a tool does not exist. that has the
vectorization potential of KAP and the
usability of VAST.

The most salient criticism of automatic
vectorization is that it does not address the
total problem as stated by those users who
need the best conceivable vector solution.
That is, it does not rewrite code on a global
scale, nor reorganize the mathematical
approach. In simple terms, those who need the
best solution find they need to rework the
problem from scratch. There are a lot of
human factors involved in such an effort. The
required imagination and thinking cannot be
replaced. Interactive vectorization tools
could help program development. Such tools
would have to be able to respond to queries on
the vectorizability of a kernel and the
resulting side effects to other routines. It
should be able to predict both the static and
dynamic memory requirements of program
changes. Graphical response showing how the
calculations proceed through the grid space
would be helpful to the user who interacts
well with chalk board tactics.

Past experience shows that such tools will
encourage the user's imagination and insight,
and thus truly help the code development

242

effort. There is nothing in this scenario
that . appears to be beyond the technical
ability of near future vectorizers. As vector
and array processors become more pervasive,
the demand for such software will rapidly
increase. Therefore, I see a promising future
for automatic vectorization software and the
users who must rely on it.

Acknowledgement - The author thanks Jim Emery
and Eric Rowe of Control Data Corporation for
their helpful comments during the preparation
of this text.

References

[1] D. Kuck, R. Kuhn, B. Leasure, M. Wolfe,
"The Structure of an Advanced Vectorizer
for Pipe lined Processors," Proc. of
COMPSAC 80, the 4th Int' 1 Computer
Software and Applications Conference,
Chicago, Ill., October, 1980, pps.
709-715.

[2] D. Kuck, R. Kuhn, D. Padua, B. Leasure,
M. Wolfe, "Dependence Graphs and Compiler
Optimizations," Proc. of the 8th ACM
Symposium on Principles of Programming
Languages, Williamsburg, Va., January,
1981, pps. 207- 218.

[3] M. Wolfe, B. Leasure, Understanding KAP
Output Listings, Kuck and Associates
Inc., September, 1981.

[4] B. Brode, "Precompilation ·of Fortran
Programs to Facilitate Array Processing,"
Computer, Vol. 14, Number 9, September,
1981, pps. 46-51.

[5] B. Brode,. VAST User's Guide (CYBER 205
Output Option), Pacific Sierra Research
Corporation, Publication No. N- 355-A,
September 1981.

[6] F. McMahon, Unpublished. (Available from
C. N. Arnold on request.)

[7] F. McMahon, To be Published as a
Livermore Report.

RESULTS OF PARALLEL PROCESSING A LARGE SCIENTIFIC PROBLEM
ON A COMMERCIALLY AVAILABLE MULTIPLE-PROCESSOR COMPUTER SYSTEM

Robert Hiromoto
Computing Division

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Abstract

Presented is a summary of a parallel
processing experiment designed to study the feasi
bility of doing large-scale scientific calcula
tions on multiple-processor architectures. This
particular experiment was performed on a UNIVAC
1100/80 computer system, whose architecture (con
figured about a common memory) eliminates the need
for data transmission between processors. The al
gorithm used in the experiment is a particle-in
cell (PIC) method; it was selected because of its
large, independent computational tasks that are
adaptable to this particular parallel-processing
architecture. Timing results for the parallel
processing version of this algorithm using one,
two, three, and four identical processors are
given and are shown to have promising speedup
times when compared to the overall run times meas
ured for a single processor version of the algo
rithm.

Summary

This paper presents the results of an inves
tigation concerning the feasibility of parallel
processing a significant scientific problem on a
commercially available multiple-processor system.
Of particular interest is the computational speed
up as a function of the number of processors em
ployed. The algorithm used in this experiment is
a particle-in-cell (PIC) method for simulating the
electrostatic interactions of a collisionless
plasma [1]. This particular problem represents a
large scientific calculation of interest to the
Los Alamos National Laboratory as well as a class
of algorithms exhibiting limited vector capabili
ties. Figure 1 illustrates the multiple/single
thread PIC algorithm implemented in our experiment
with threads 1 and 4 parallel processed.

An initialization stage of the algorithm sets
up the aggregate of plasma particles positions
velocities, and corresponding charge distribut~on.
For each discretized time step (6t), the main com
putational loop advances the particle's position
and velocity through the effects of the electros
tatic interactions arising between particles and a
uniform, background electric/magnetic field.
Throughout this loop, a particle-in-cell method is
employed to decompose a region of space into a
collection of cells [2]. These cells are then
used to track particle movement, and assist in the
evaluation of the total charge distribution (C),
the electrostatic potential (¢), and the electric
field (E) under which all particles are accelerat
ed (pushed).

Our experiment was successfully implemented

0190-3918/82/0000/0243$00.75 © 1982 IEEE 243

and timed on a UNIVAC 1100/80 multiple-processor
computer system at Sperry UNIVAC, Roseville, Min
nesota. A simplified diagram of the UNIVAC 100/80
is given in Fig. 2. A principal feature of this
system is the ability of all processors to execute
a single instruction stream in parallel upon data
in common memory. This feature is supported by
the Cobol compiler but not by the Fortran com
piler. Software designed by David Hammer (a
UNIVAC consultant with Sandia National Labora
tories, Albuquerque, New Mexico) enabled a single
copy of the PIC code written in Fortran to be im
plemented in a parallel-processing mode. The
multiple-processor computer system may be config
ured with one, two, three, or four processors. A
further characteristic of the UNIVAC 1100/80 ar
chitecture is that no one physical processor may
always have exclusive access to the execution of a
given activity. On the contrary, depending upon
the length of the task itself, all the physical
processors may have time-shared portions of the
activity's entire execution stream. A distinc
tion, therefore, is made between activities and
processors.

Because of software addressing limitations,
the PIC code was restricted to a maximum of
262,000 decimal words of total memory. For each
particle, five data quantities (two for position
and three for velocity) were required. Three mesh
quantities, constituting a 34 X 34 mesh size were
required and duplicated for a maximum of eight
particle-push activities. A total of 37,000 par
ticles were initiated for processing, requiring
213,000 words of memory (particle plus mesh data).
An additional 47,000 words of memory were used for
the instruction stream, address mapping and ac
tivity synchronization scheme.

Table I gives the results of the experiment.
The speedup values are the ratios of the overall
execution time of a single-thread version of PIC
running on one processor to the overall execution
time of a multithread PIC code running on two,
three, and four processors. We found that a max
imum speedup of three was attained when using four
processors with four activities spawned for each
multiple task.

Because the multithread PIC was not totally
parallel (see Figure 1), the speedup for four pro
cessors may not indicate the full potential of the
PIC algorithm. The times recorded and used for
the parallel-processing speedup calculations were
based on wall clock times, with timing runs made
in a dedicated mode. Because of time constraints
and limited resources, actual CPU times were not
measured.

We conclude that significant computational
speedups are strongly suggested by Our results for
multiple-processor environments similar to the
UNIVAC 1100/80 computer system. We further note
and caution that our results are highly coupled to
the particular algorithm and the multiple
processor architecture selected.

References

[1] Morse, R. L., and C. W. Nielson. "One-, Two-,
and Three-Dimensional Numerical Simulation of
Two Beam Plasmas." Physical Review Letters 23
(10 November 1969), 19, pp. 1087-1090.

[2] Morse, R. L., and C. W. Nielson. "Numerical
Simulation of Warm Two Beam Plasma."

1

t 0-
o-

Initialize
Particle Data

Compute Cl

l

f 0-
o-

An
C" E Cl

1=1 ,

f o-
Solve
-~=C

~
Compute E = E(.

f 0-
Push nl .. nlAn

Particles

Compute Cl

~
END END

Figure 1. A multithread version of PIC as imple
mented on a UNIVAC System 1100/80 with
two parallel-processing tasks (1 and
4), where A = total number of parallel
activities ~multithread), n = total
number of particles, n. = number of
particles for activity1i, C = total
charge (distribution), and C. = charge
computed for activity i. 1

244

The Physics of Fluids 12 (November 1969), 11,
pp. 2418-2425.

ACknowledgments

I want to thank the staff and management of
the Computational Division of the Sandia National
Laboratories, Albuquerque, for the use of their
facilities and their assistance during the initial
implementation and testing of the PIC code. In
particular, I appreciate the help of David Hammer
during this period. I also want to thank the
Sperry UNIVAC group in Roseville, Minnesota, for
their generous cooperation and for the use of
their 1100/80 computer system upon which our
results are based.

CENTRAL MEMORY

CACHE CACHE

Figure 2. A simplified diagram of the UNIVAC
1100/80 with four processors P (desig
nated 1100/84).

Number 01 AcUv lUes Number of Aver"M run Speedup
Proceaaors Time (m liBecoDdJ Per ParaDel Task

1

2

3

4

Table I.

1 102631 1

2 57110 1.80

3 42214 2.43

4 33283 3.09

Run times and speedups as a function of
number of processors and number of ac
tivities for each parallel task
spawned.

KERNEL-CONTROL TAILORING OF SEQUENTIAL PROGRAMS
FOR PARALLEL EXECUTION

Mark Furtney
Babcock and Wilcox, Inc.

Lynchburg, Virginia 24505

Terrence W. Pratt
Department of Applied Mathematics and Computer Science

University of Virginia
Charlottesville, Virginia 22901

Abstract

Kernel-control tailoring is a method of
preprocessing an ordinary sequential program for
parallel execution. The preprocessing is intended
to remove a substantial amount of the control
dependence between operations in the program
through deletion of conditional branches and
unrolling of loops. The method is applicable to
existing programs of practical size. Preliminary
results from tailoring of a sample of FORTRAN
programs are reported.

Introduction

There are three classes of dependence between
operations that inhibit parallel execution: data
dependence. in which one operation must wait for
an operand to be computed as the result of another
earlier operation; resource dependence, in which
operations must wait on the availability of
memory, functional units, or other resources; and
control dependence, in which an operation must
wait until it is known to be on the actual path of
program execution before being executed. Various
studies have indicated that the effect of control
dependence in inhibiting parallel execution is a
central problem. Riseman and Foster [1] isolated
the problem in a classic study. For a sample of
real programs run on an idealized machine (no
resource dependence) they showed that programs
with an average potential speedup of 51 to 1
(parallel over sequential execution) , when only
data dependence is considered, in fact could
realize only an average speedup of less than 2 to
1, due to the effect of control dependence. The
goal of this study is to obtain more extensive
data on the magnitude of this control dependence
in large scientific FORTRAN programs, and then to
investigate a novel solution to the removal of
some of this control dependence. The new method
is called kernel-control tailoring and is based on
the use of kernel-control decomposition (Pratt
[2]) to preprocess the program to determine the
control path, leaving a simplified program with
less control dependence to be executed on the
parallel computer.

This work was supported in part by NSF Grant
MCS78-00763 and NASA Contract NASI-16394 while the
second author was in residence at the Institute
for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center,
Hampton, Virginia.

0190-3918/82/0000/0245$00.75 © 1982 IEEE 245

Control Dependence in FORTRAN Programs

The initial question of this study was to
obtain better data on the amount of control
dependence in a realistic sample of FORTRAN
programs. The usual notion of basic block is
useful. A basic block is a sequence of straight
line code that includes no conditional branching,
looping or subprogram calls. Within a basic
block, execution of operations can be performed in
parallel, inhibited only by data dependencies.
Within a basic block, every operation essentially
has the' same control signal input, which is the
control signal sent when the branch point
preceding entry to the block is passed during
execution. Large basic blocks in a program
indicate relatively little control dependence
(since all operations in a basic block are
dependent on the same control signal); small basic
blocks indicate much control dependence.

A sample of 44 production FORTRAN programs
was analyzed, ranging in size from 2500 to 125,000
lines of code, all written for applications in
nuclear and structural engineering. About 920,000
lines of code were analyzed; after deletion of
comments, declarations, etc., about 390,000
FORTRAN statements remained to form the basis for
the study. The size of the basic blocks was used
as an appropriate indicator of the amount of
control dependence. Each program was scanned and
basic block sizes were tabulated (among a wealth
of other statistics). The average basic block
size was found to be 3.5 statements or 23
operations (using some rough approximations for
operation counts). These figures substantiate
that control dependence is indeed a serious
problem, since not much useful parallelism can be
expected within a block of only 23 operations. In
essence, these results support what is clear from
a visual analysis of typical sequential programs
in almost any language: control structure, that is
branching, looping, and subprogram calls, almost
always breaks up a program into small basic
blocks. This fragmentation makes most operations
dependent on a control signal computed only
slightly before the operation itself is to fire,
regardless of the fact that its data operands may
have been computed much earlier.

Various solutions have been proposed in the
literature to remove control dependence in
programs: prefetching and executing both arms of
conditionals (see Riseman and Foster [1] and
Magid, Tjaden, and Messinger [4]), the use of
boolean variables to turn control dependence into

data dependence (see Padua, et al, [3]), and
various loop transformations (Padua' [3]).

Kernel-control decomposition

An alternative approach to removing control
dependence is suggested by the theory of kernel
control decomposition (Pratt [2]). We first
sketch the main theoretical results, then indicate
why the theoretical potential is unrealizable in
practice, and show an alternative approach that
appears to bypass some of the practical
difficulties.

Briefly summarized, the theory of kernel
control decomposition shows that any program may
be decomposed into a control part, which is
concerned only with determining the control path
to be taken by the program, and a kernel part,
which is concerned only with computing the output
results of the program. The surprising result is
that, in principle, control dependence can be
completely eliminated from the actual computation
of the program (the kernel) by performing this
decomposition and then executing the control part
separately first to determine the control path.

Practical Constraints on K-C Decomposition

The theoretical result of complete removal of
control dependence is tempered by severe practical
difficulties. The first problem is that in real
programs, very few variables and statements are
pure kernel or pure control; most participate in
both kernel and control computations. In the
decomposition, these variables and statements must
be copied into both kernel and control parts. The
second major difficulty lies in the identification
of the kernel and control components of a
program. To identify each component involves a
process of back tracing control paths from output
statements (to identify the kernel part) and from
conditional branch points (to identify the control
part). This is a nontrivial task in large
practical programs. The result of studying the
decomposition potential of several medium sized
FORTRAN programs is that complete decomposition is
impractical, primarily for these two reasons.

A Practical Approach

Analysis of the sample of FORTRAN programs
suggests that an alternative to complete kernel
control decomposition might be practical. We
observe that in these practical programs, there
are in fact a subset of the variables that are
global control variables whose values are set
directly from input data, and that thereafter
remain constant during execution. These variables
represent the problem size parameters, output
option chOices, and various other important
parameters during a run of the program. Actually
these are not pure control variables in the
theoretical sense, because inevitably their values
are printed out during the course of the run, but
ignoring this output (which serves only for
documentation of the run) they serve only control
purposes within the program.

In a typical FORTRAN program, these global

control variables are part of a COMMON block. At
the start of the program, their values are
initialized from data provided by the user in
setting the problem size parameters and options to
be used. Subsequently these control values are
tested repeatedly during program execution to
control branching and also to control the number
of iterations of loops, but their values do not
enter directly into the computation of output
results except in minor ways. Another important
practical observation is that for many large
production programs, such as nuclear reactor
simulations, these global control variables are
used to set problem size parameters and options
that remain constant over many runs of the same
program, e.g., for many runs of a large
simulation.

We use the concepts from kernel-control
decomposition to decompose the program, but only
for a partial decomposition based solely on these
global control variables. The method is termed
kernel-control tailoring (or K-C tailoring) and
may be outlined as follows:

1. Identify the global control variables of
interest. This can be done automatically by
scanning the source program, identifying
"candidate" variables in COMMON blocks, ancl then
deleting those variables that are assigned
modified values in any subroutine, to get the
final list of variables (making due allowance for
possible coding tricks in FORTRAN that mask such
assignments).

2.
control
data).

Identify
variables

the input values for these
(extract them from the input

3. Preprocess each routine in the program to
find the conditional branching and looping that is
controlled by these control variables only.

4. For each conditional branch found,
determine the direction of the branch, using the
known values for the control variables. Si~ce the
control values are invariant during execution, the
direction of such a branch is always the same
during execution. Thus the code down the branch
not taken is dead code and can be deleted. Also
delete the conditional branch statement itself
(and replace it by a GOTO to the proper branch if
necessary).

5. For each loop found, determine the number
of iterations of the loop, using the known values
for the control variables. The loop may now be
unrolled completely to become straight line code
with no testing for termination, or it may be
partially unrolled in various ways. Nested loops
can be transformed to unroll the loop with the
smallest iteration count, etc.

6. Take the preprocessed program, which now
has a substantial part of the control sequencing
removed (ideally), and which also has a
substantial amount of dead code eliminated
(ideally), and process it for parallel processing
in the usual way'.

246

7. The preprocessed program may now be
executed repeatedly for different data sets,
provided the control variable input values remain

unchanged. Thus for a large production program,
the cost of the preprocessing is potentially
spread over more than a single execution of the
program.

K-C tailoring is applicable to any ordinary
sequential program (in FORTRAN or any other
language) and produces a simplified program in the
same language. The simplified program may then be
optimized for parallel (or sequential) execution
by the standard language processors, vectorizers,
etc.

Effectiveness of the Approach

To determine the potential effectiveness of
this technique, the data base of FORTRAN programs
was used again. A typical program was taken from
the sample, and the number of control variables
determined. The amount of control sequencing
determined by these control variables was
analyzed. The program consisted of 51 subprograms
that contained 1736 variables that were used for
control purposes. Of these 133 were identified as
the global control variables of interest. The
program was instrumented to determine the use of
these global control variables. About 20% of the
conditional branching and 40% of the looping was
found to be determined only by the values of these
control variables. A subsequent analysis of a set
of benchmark FORTRAN programs showed a large
variation among programs both in the number of
global control variables and in the amount of
control sequencing affected by these variables.
We have observed counts of 30% of the conditional
branching and 50% of the looping controlled by
global control variables in some programs, but
ranging down to some programs with very few global
control variables controlling less than 1% of the
total number of run-time control decisions. A
more refined set of measurements are currently
being implemented. These preliminary results
indicate that there do exist a substantial class
of production programs for which K-C tailoring
affects a nontrivial portion of the run-time
control decisions.

Inner loops of critical routines are known to
consume a large proportion of the computing time
used by many large production programs. We are
particularly interested, therefore, in the effect
of K-C tailoring on the performance of inner
loops. In the same reactor simulation program, a
single routine was measured to use about 40% of
the computing time in a typical run. The critical
part of this routine is a triply nested DO loop.
The loop parameters for each loop are global
control variables (representing the size of the
reactor core in three dimensions). Thus these
critical loops are directly affected by K-C
tailoring. To observe the possible effects from
various forms of K-C tailoring that involve
substitution of known control variable values
followed by loop unrolling, we manually performed
these transformations on this routine and measured
the speedup. When the inner loop alone was
unrolled, a speedup of 1.3 to 1 was measured.
When the two outer loops were unrolled (leaving
multiple copies of the small inner loop), a
speedup of 2.1 to 1 was observed. Both these

247

transformations may easily be made automatically
during K-C tailoring. Finally a more complex
transformation was performed that changed the
nested I-J-K loops into a K-I-J nest, followed by
unrolling of the two inner loops (leaving one
large outer loop). This transformation led to a
measured speedup of the loop alone of 3.2 to I,
but since some array transposition was required,
the overall speedup was 2.4 to 1. Complete
unrolling of the entire loop nest was considered
impractical due to the code expansion involved.
Dongarra and Hinds [5] show similar results from
studies of the performance improvements due to
loop unrolling in FORTRAN programs.

Conclusion

Kernel-control tailoring of a sequential
program can remove a substantial amount of control
dependence by using a simple preprocessing of
static code. After the K-C tailoring is complete,
the program may be more effectively transformed
and optimized by existing methods, such as those
of Kuck, et al. [3] for parallel and vector
machines and those of ordinary global optimizers
for sequential computers. Thus K-C tailoring
appears promising as an adjunct to existing
methods of optimization.

The theory of K-C decomposition suggests that
there is a range of options available in removal
of control dependence through these techniques,
ranging from the straightforward static
preprocessing proposed here, through levels of
increasingly sophisticated (and costly)
separations of control and kernel parts based on
dynamic execution of a partial control part, to
complete decomposition. A deeper understanding of
this range of options may lead to additional
practical methods for K-C tailoring.

References

[1] Riseman, E. and Foster, C., "The inhibition
of potential parallelism by conditional
jumps," IEEE Trans. Comput, C-21, No. 12,
December 1972, pp. 1405-1411.

[2] Pratt. T., "Program analysis and optimization
through kernel-control decomposition," Acta
Inform, Vol. 9, No.3, 1978, pp. 195-216.

[3] Padua, D., Kuck, D. and Lawrie, D., ''High
speed multiprocessors and compilation
techniques," IEEE Trans. Comput, C-29, No.9,
September 1980., pp. 763-776.

[4] Magid, N., Tjaden, G. and Messinger, H.,
"Exploitation of concurrency by virtual
elimination of branch instructions," Int.
Conf. on Par. Proc •• 1981, pp. 164-165. ----

[5] Dongarra, J.J. and Hinds, A.R. , ''Unrolling
loops in FORTRAN," Software - Practice and
Experience. 9, (1979), pp. 219-226.

A PERFORMANCE MODEL FOR INSTRUCTION PREFETCH IN

PIPELINED INSTRUCTION UNITS

Gregory F. Grohoski
IBM Corporation
T. J. Watson Research
Yorktown Heights, NY

Abstract

Center
10598

This paper presents two models of an
instruction execution pipeline incorporating an
instruction prefetching strategy. One model
ignores operand accessing and thus models a
computer system with separate program and data
memories. The second model accounts for operand
accessing. The throughput and memory traffic of
the prefetch strategy are analyzed based upon run
statistics derived from trace tapes of programs
compiled for the IBM ~60/370 architecture.

1. Introduction

Pipelined processors frequently utilize
instruction pre fetching to supply instructions to
the pipeline without delay. Little work has been
published which analyzes instruction prefetching
at the instruction word level in pipelined
computers. Yet an understanding of instruction
prefetching is crucial to the design of high
performance computers when it is not economical to
use a large, fast memory, or when available memory
technology is not fast enough to support the rate
of instruction execution desired.

A pre fetching strategy can be stated as
follows. Instruction words ahead of the one
currently being decoded are fetched from the
memory before the instruction decoding unit
requests them. Thus, the memory access time of an
instruction word is masked by the execution of
previous ly fetched instructions. If the
instruction stream being executed was purely
sequential, by fetching instructions early enough,
no instructions past the first one executed would
see any delay, and the memory would experience no
more requests for instruction words than if no
prefetching was being performed.

Successful branches disturb the sequentiality
of the instruction stream. A program consists of
unconditional branch instructions, conditional
branch instructions, and non-branch instructions.
Conditional branch instructions result in a
transfer of control only if the condition they are
testing is true, so conditional branch
instructions may be successful or unsuccessful.
Unconditional branch, or jump, instructions always
result in a transfer of control. Therefore, they
are always successful.

One of the first analyses of instruction
prefetching was done by Rau[1,2]. His analysis
does not account for the effect of operand
accessing upon instruction prefetching.

Acknowledgements: This research was supported by
the Naval Electronics Systems Command under VHSIC
contract N00039-S0-C-0556.

0190-3918/82/0000/0248$00.75 @ 1982 IEEE 248

Janak H. Patel
Coordinated Science Laboratory
University of Illinois
Urbana, IL 61S01

2. Analytical Model

The prefetch strategy of the model requires the
hardware diagrammed in Figure 1. It is assumed
that the memory is interleaved and can accept
requests at a maximum rate of one request per
cycle. A cycle is simply the smallest unit of time
which the model is aware of and corresponds to a
hardware clock cycle. All requests require T.
cycles to return from memory. There are two
prefetch buffers, of sizes s and t instruction
words. The s-size buffer holds instructions
fetched during the sequential part of a run. When
a branch is successful, the entire buffer :is
invalidated. The other buffer holds instructions
fetched from the target of a conditional branch.
Similarly, when a conditional branch is resolved
and determined to be unsuccessful, the contents of
this buffer are invalidated. The non-pipelined
instruction decoding unit requests instruction
words at a maximum rate of one word per r cycles.
If the instruction requested by the decoder is
available in the sequential buffer for sequential
instructions, or is in the target buffer if a
conditional branch has just been resolved, and is
successful, it enters the decoder with zero delay.
Otherwise, the decoder is idle until the
instruction returns from memory. After r cycles,
the instruction type is known.

The program is assumed to begin with a jump
instruction. For the first l+s cycles, 1 memory
request for an instruction is issued each cycle,
to fill up the sequential prefetch buffer.
Thereafter, one request is issued every r cycles
until a conditional branch or jump instruction is
decoded.

Except for jump instructions, all decoded
instructions enter the execution pipeline, where E
units are required to complete execution. If the
decoded instruction is an unconditional branch the
instruction word at the target of the jump is
requested immediately by the decoder, and decoding
ceases until the target instruction returns from
the memory. The pipeline will see the fUll memory
latency time, T, since there was no opportunity
for target prefetching.

If the decoded instruction is a conditional
branch, sequential pre fetching is suspended during
the E cycles it is being executed. The
instruction simultaneously enters the execution
pipeline, but no more instructions are decoded
until the branch is resolved at. the end of E units.
Instructions are prefetched from the target memory
address of the conditional branch instruction.
Requests for t target instructions are issued at
the rate of one per cycle. Once the branch is
resolved, target prefetc.hing becomes unnecessary.

If the branch is successful, the target
instruction stream becomes the sequential stream,
and instructions are requested every r .units from

this sequential stream. Execution of this new
stream begins when the target of the branch
returns from memory, or whenever E units have
elapsed, whichever is later.

If the branch is unsuccessful, instruction
requests are initiated every r units of time
following the branch resolution and continue until
the next branch or jump is decoded.

A list of the parameters necessary to describe
the model appears in Table 1. All intervals on the
following time diagrams are assumed to be closed
on the left and open on the right.

A run consists of all instructions executed
following the decoding of a successful branch
instruction, and terminating with the decoding of
another successful branch instruction. There are
only two run types: those that begin with an
unconditional branch, and those that begin with a
successful conditional branch. Figure 2
illustrates the two run types and details the
instructions and the execution times that are
counted as part of the runs. A run whose first
instruction is the target instruction of an
unconditional branch will be referred to as a
u-run, while a run whose first instruction is the
target of a successful conditional branch will be
referred to as a cs-run.

Figure 3a is a time diagram of the execution of
a u-run. An unsuccessful conditional branch
occurs during the run. Instants when memory
requests are submitted for sequential instructions
are marked with an asterisk, while instants when
target requests are submitted to the memory are
marked with a '+'. Figure 3b diagrams the
execution of a cs-run.

The performance measures used to evaluate the
prefetch strategy are the throughput of the
execution pipeline and the memory traffic the
strategy generates. The throughput is defined to
be the number of instructions executed divided by
the execution time of the program, and the memory
traffic is defined to be the number of memory
requests generated divided by the execution time
of the program. The throughput is bounded by l/r;
memory traffic is bounded by one.

2.1 Analysis of the non-operand fetching case

At the beginning of every run the condition of
the prefetch buffers is known. Therefore, the
pre fetching and execution behavior of a program
can be reconstructed by breaking the instruction
stream up into runs, and analyzing the performance
of the prefetch scheme for each run case. For
arbitrary values of the parameters the analysis
becomes complex and amounts to simulation of the
run. By restricting the parameter space,
analytical results are obtained. We do not
present the lengthy derivations of the results;
for detailed derivations the interested reader is
referred to [3].

Let the interbranch distance be defined as the
number of instructions from one branch instruction
to the next, excluding the first branch, but
including the second. Let the ith such interval
in a run be denoted by Ii. Thus, referring to
Figure 4, I, = 2 is the number of instructions from
the beginning of the run to the first branch,
which is an unsuccessful conditional branch.

249

An unsuccessful conditional branch removes
memory cycles from sequential prefetching.
Therefore, after the branch is resolved, the
number of instructions in the sequential buffer
may not be sufficient to support the maximum rate
of execution, and the decoder may have to wait for
instructions to return from the memory. Thus an
unsuccessful conditional branch, after its
resolution, adds a delay to the execution time of
a run.

Let z; be the number of instructions in the
sequential buffer after the resolution of the ith
unsuccessful conditional branch in a run, and let
d j be the delay added to the execution time of a
run due to the ith unsuccessful conditional
branch, that is, due to an insufficient number of
instructions in the sequential pre fetch buffer.
For convenience we define zd to be the number of
instructions in the sequential pre fetch buffer at
the start of the run and do to be the delay
incurred at the start of the run. Then, for a run
with k intervening unsuccessful conditional
branches, we have the following:

k

Number of instructions executed in any run = l: I;
j~'

Non-operand fetching results; 0 < S < T < E + 1

Unconditional Run:

Zo = 0; do = T; Zj = s;

d. = { 0,
r max (O,T - r z;),

ISiSk;

Ij+ I SZi l
li+l>zi f
k+1 k

execution time of run = kE + l: rl. + l: d.
i-I' ;=1 I

number of memory requests =
k+l k d

kt + ~ Ii + l: r -.!..] + s + r T - s 1
i-I ;==1 T r

Conditional successful run:

Zo = I;

(1)

ISiSk (2)

(3)

(4)

(5)

do = max (O,T - E) + max (O,E + T - Ir - max(T,E» (6)

. (r dj '1 Zi - nun s, Zj_1 + +)
d; = same as eq. (2)
execution time of run = E + eq. (3)

k+1 k d
number of memory requests = (k + 1)1 + l: /. + l: r-.!..l

;=1' ;-0 T

2.2 Effect of operand accessing

(7)

(8)

(9)

Operand accesses interfere with instruction
pre fetching when program and data memory are not
separate. To prevent execution pipeline delays,
operand fetches must preempt any instruction
fetches which would otherwise occur. Since memory
cycles are stolen from the prefetch mechanism,
instructions might not be pre fetched in time to
avoid decoding delays. The terms requiring an
operand and operand accessing refer to both
operand fetching and storing.

We assume that an instruction which requires an
operand may reqUire only one operand and may not

be a branch instruction. After r units the
decoder will realize that the instruction requires
an operand. At this point, any instruction
prefetching which would have occurred is preempted
and a memory request is issued for the operand.
Simultaneously, the instruction enters the
execution pipeline. For the instruction to make
use of the operand while it is in the pipeline, the
operand must return prior to E units after it
entered the pipeline. We therefore assume

OSs<TSE-l
for the remainder of Section 2.2.

We can model operand accessing by introducing
p, the probability that an instruction requires an
operand, given that it is not a branch or jump
instruction. This probability can be estimated
from program trace tapes. Furthermore, we will
set r=1, since this presents the most reasonable
case. Equations for u-runs and cs-runs are
presented.
Unconditional Run:
Zo = 0; d; = same as equs. (1) and (2)
z; = min (s,z;_1 + d;_1 + (1 - p)(I;-I) + 1-1;

+p*max(O,I;-I- T); ISiSk

execution time of run =
k+l

(10)
(11)

kE + .I1[/; + d;_1 + p*max(O,I;-I-T)] (12) .-
number of instruction requests =

k+l

kt +.I [d;_1 + 1 + (1 - p)(l;-I) + p*max(O,lj -l-T)] (13)
.-1 k+1

number of operand requests = pI (1;-1) (14)
;=1

Conditional successful run:

Zo = t; Zj = same as eq. (11)
dj = same as eqs. (1) and (2)
execution time of run = E + eq.(12)
number of instruction requests = t + eq.(13)
number of operand requests = t + eq.(14)

3. Results

(15)
(16)
(17)
(18)
(19)

Since our analysis is not exact and also since
it is not valid for certain ranges of parameters,
a trace-driven simulator was used to verify the
analytical results. Program traces were broken up
into the two run types and runs were further
classified by the number and spacing of
intervening unsuccessful conditional branches.
The frequency of occurrence of each run was used
to weigh the execution time and memory request
equations presented in Sections 2.1 and 2.2.

Two program traces were analyzed. These
programs were compiled for the IBM 360/370
architecture. One program, GAUSS, is a FORTRAN
execution of a Gaussian elimination program. The
other program, SLIST, is a trace of a PL/I list
processing program. Table 2 lists some of the
important statistics of each program.

For the non-operand fetching case for T <= E +
1, simulation results differed from analytical
results by at most 2% for GAUSS and at most 4% for
SLIST. The analytical model is only approximately
valid for T > E + 1. For this T for GAUSS, the
simulation results were still within 2% of the

250

analytical model; however, for SLIST, the error
was less than 9%. The error results from the
treatment of unsuccessful conditional branches in
our derivation. Note in Table 2 that the number of
of unsuccessful conditional branches in SLIST is
about 4 times that of GAUSS. We have included the
performance of the non-prefetching case. For this
case we assume that an instruction fetch request
is issued to memory after r units for non-branch
and jump instructions and after r+E units for
conditional branches. Figure Sa shows the
throughput as a function of target prefetch buffer
size. Throughput saturates when t=3. For the
parameters shown, this is to be expected. A
maximum delay of T cycles may occur followirlg the
resolution of a successful conditional branch. To
overcome this delay, enough instructions must be
in the buffer or must have been requested such
that the decoder can run without delay for T
cycles._ Loosely,_ then, t. should be chosen such
that rt=T to eliminate the delay cycles. This
means that choosing t=3 will give the maximum
throughput for a given s. Increasing the
sequential buffer size effectively scales the
throughput, and, as for t, s>3 does not enhance
the performance. This is similar to target
prefetch buffer size saturation.

Figure 5b plots the memory traffic versus t for
the same trace, SLIST, of Figure Sa. The traffic
is not nearly as sensitive to s as the throughput
is. This occurs because increasing s with t fixed
has two compensatory effects. On the one hand,
increasing s increases the number of sequential
requests generated immediately following the
decoding of an unconditional branch. On the other
hand, increasing s reduces the d-delays
immediately following the resolution of
unsuccessful conditional branch instructions.
Since sequential requests are generated during
these delay cycles, increasing s decreases the
number of these requests which are generated.

Increasing t with s fixed also has two
compensatory effects. As t increases, the number
of requests for instructions at the target address
of all conditional branch instructions increases.
As t increases, the execution time of cs-runs
decrease, because increasing t reduces the delay
which follows the resolution of a successful
conditional branch instruction. For both SLIST
and GAUSS, the number of conditional branches is
sufficiently greater than the number of successful
conditional branches to cause the memory traffic
to increase as t increases with s fixed.

Results are not presented for GAUSS, since the
effect of s>1 on throughput and traffic is
negligible. This is due to the predominance of
successful conditional branches (11.9%) combined
with the relative lack of unsuccessful conditional
branches (2.1%). Since the frequency of
successful conditional branches in SLIST and GAUSS
is about the same (10.2% and 11.9%, respectively),
the effect of t is similar in both cases.

Finally, we present the effect of operand
accessing on performance. Figure 6a plots
throughput versus the degree of target prefetch
for s=1 and s=3, for both the model and simulation
for SLIST. The p used for the model was 0.159,
which is derived from the trace of SLIST. Thus, a
meaningful comparison can be made between the

simulation and the model. The operand accessing
model is slightly optimistic. Figure 6b plots the
traffic for the simulator and the model. For this
combination of parameters, the operand fetching
model yields results within 8% of the simulation.

4. Concluding Remarks

Unsuccessful conditional branches cause delays
resulting from an insufficient sequential buffer
size to appear. They also enable operand accesses
to cause delays which can not be overcome by
increasing the size of the sequential prefetch
buffer. Programs which have few unsuccessful
conditional branches will not suffer from these
problems.

While pre fetching from the target of
conditional branch instructions reduces delays for
successful conditional branches, it substantially
increases the memory traffic. Increasing the size
of the sequential buffer may increase or decrease
the traffic, depending upon the parameters and
program under consideration.

Since conditional branches are much more
frequent than unconditional branches, significant
improvements in performance require a predictive
prefetch strategy. In particular, based upon the
detailed run analyses performed to evaluate the
equations of the model, some of Smith's[4]
strategies may work well.

References

[1] B. R. Rau and G. Rossman, "The Effect of
Instruction Fetch Strategies Upon the
Performance of Pipelined Instruction Units,"
Proceedings of the Fourth Annual Symposium
on Computer Architecture, 1977, pp. 80-89.

[2]

[3]

B. R. Rau, "Sequential Prefetch Strategies
for Instructions and Data," Stanford
Electronics Laboratory Technical Report No.
131, Stanford University, January, 1977.

G. F. Grohoski, "An Instruction Prefetch
Model for Pipe lined Execution Units," Tech.
Rept. R-913, Coordinated Science Laboratory,
University of Illinois, Urbana, Aug. 1981.

[4] J. E. Smith, "A Study of Branch Prediction
Strategies," Proceedings of the Eighth
Annusl Symposium on Computer Architecture,
1981, pp. 135-148.

MEMORY @ (AcCESS TIME T)

EXECUTION PIPELINE

t WORDS

Figure 1. Innruction Pipeline

251

I I I : I : : : : : : : i I : I : I : I I I : : I
I r i T I························· ············1 r I···········

/ ~ EXEC~noN TIME OI,rt:R WHICH RUN IS CEFlNEi) ----i --;-~~C~UN
BEGlNNING OF RUN DECODED
UNCONDJTlONAL
BRANCH CECODED T i rne. ---

UNCONDITIONAL RUN

I I I : : II I I : : I II I I I I : I I :

* I
I

I r 1 E 1 1 r \

/ f---- EXECUTION ~IAE 0\'£1< WHICH RUN IS DEFINE!) ----1 ENg':'C~UN
BEGINNINC OF RUN
CONOITIONAL
BRANCH O[CCDEO

CONDITION.A.L SUCCESSFUL R~.m

Figure 2. Possible Run Types.

s=3 r=2 t=2 E=4 T=6

* * * * * * * * ++ * * I I 1 1 I 1 1 1
1

1 I I I 1 1 I I 1 I 1 I I I I I 1

r I T r r r E r

CECCOD

* 1
1

r r
UNCONomOtW. SUC:::ESSF'UL elWiCH BRANCH

Figure 3a. Unconditional Run.

++ * * * * ++ * * I 1 1 I I I I I I I I I I I I I I I I 1 1 I I I 1 1

I r I E I \ I r I r I r I E I r 1 r I····
SUC'"~L ~COOER SUCCESSFUL
CONDInONAL IDLE BRANCH
/lRANCH

BRANCH RESOLVED.
TA.qoET STRE'.AW
etc:",£! SE~UEN11AL S7ti:£AM

Figure 3b. Conditional Successful Run.

* * * * * * * +++ * +++ * * * 1 I
, I ,

III 1 I III 1 I I 11 I I 11 I , , 1 I 1 , 1

I r I T Ir I r I E I r I E I r I r I r I
-r 0 1<- t,--' ~ t Io--/J-I\

r=2 s=3 t=3 E=4 T=6 SUCCESSF1JL
BRANCH

Figure 4. U-run with two intervening unsuccessful
conditional branches.

Parameter

r

s

t

E

T

p

Table 1. Model Parameters

Description

Instruction decode time

Size of sequential
prefetch buffer

Size of target
prefetch buffer

Range

>=1 cycles

>=0 words

>=0 words

Execution pipeline length >=1 segments

Memory access time

Probability an instruction
requires an operand

>=1 cycles

I·

/I # # #
!am.:. ~ ! £!..:. f .5!..:. ! !!J!,. I!

SLIST 69935 2007 2.9 7127 10.2 5773 8.3 8765 .1590
GAUSS 63611 33 .05 7535 11.9 1337 2.1 449 .0082

Table 2. Program Statistic.s.

.5
SLIST

.45

.4

.35 s=2

.3
s>-3 I

>-
~.25
G

~
s=1

S .2
~
..... IS

.1 s-8

0.e5 T=5 £-5

8
r-2 1

121 2 3 4 5

.9

.8

.7

.5

u .5
1= • 4 51 >-

.3

.2

.1

121
121

1.

Figure S., Throughput va. target prefeteh buffer size.

SLIST

s-S

2 3 4

1.

Figure Sb. Memory traffic VB. target prefeteh buffer size.

i-5 E-S
r=2

5

252

.6

.54

.48

.42

.36
>-
::J
c..
:I:

.3
Cl

5. 24
a::
:I:
>-.18

.12

.1216

121

.9

.8

.7

.6

u .5
a: .4 a::
t-

.3

.2

.1

121

SLIST (p-.ISS)
(SIM) Si3

==-
s-'I i=='" (MOD)

P

(MOD) s-B

(5IM) s-B

121 2 3

1.

Figure '8. 'l1lroughput Coalp.uison of aDulation and
operand accessing model.

(S1M) s-3

(5IM) s=B
(MOD) s-B

121 2 3

t

Figure lb. Traffic comparison of simulation and
operand accessing: model.

(MOD) s-3

(SIM) s-I

T-3 £-4
r-l

5

4 5

PROGRAMMING TECHNIQUES ON THE LUCAS
ASSOCIATIVE ARRAY COMPUTER *

Christer Fernstrom

Department of
Computer Engineering

Lund University
P.o. Box 725

220 07 LUND, SWEDEN

Abstract

LUCAS (Lund University Content Addressable System)
is an associative array computer in the SIMD
(Single Instruction - Multiple Data) category.
This paper describes the programming of the machi
ne on different levels and introduces the soft
ware tools that are used. A high level language
that takes full advantage of the architecture and
yet allows powerful manipulation of data on an
algorithmic level, is presented. Programming exam
ples show the use of the language in signal pro
cessing applications and data base management.

1. Introduction

An associative array processor is an associative
memory where each memory word contains its own
processing element and where a communication net
work is defined between the words. The organiza
tion is of type SIMD (Single Instruction - Multip
le Data), meaning that the ~ instruction is
executed in parallel on different data. An impor
tant feature with associative array processors is
the possibility to search the memory contents in
parallel. The result of the search (contents in
words satisfies/does not satisfy the search cri
terion) is marked in an activation register, cal
led the tag register, in each word. Subsequent
parallel operations may be limited to the words
where the tag register contains the value 'true'.

The interest in associative array computers has
been steadily increasing during the last two de
cades. It has been possible to add the complexity
needed without paying the penalty of much higher
costs. The regular structure in this kind of
machines is very well suited for implementation
in VLSI, and as VLSI design techniques become more
widespread, the interest will continue to grow.

Since the introduction of the first commercially
available associative computer, STARAN in 1973,
several general purpose high level languages for
programming parallel array computers have been
proposed. Some of these can be said to be true
general purpose languages in that no special app
lication and no special machine has guided the
design [1-4], while others are oriented towards
an existing computer such as STARAN [5], DAP [6],

*This research was in part supported by the
National Swedish Board for Technical Development
under grants 79-3770 and 81-4606 at theUniversi
ty of Lund.

0190-3918/82/0000/0253$00.75 © 1982 IEEE 253

and ILLIAC IV [7-9]. Important application areas
for associative array computers are image proces
sing and data base management. Special purpose
languages for these applications have also been
designed [10,11].

LUCAS (Lund University Content Addressable System)
is an associative array processor currently under
development at the University of Lund, Sweden.
The working mode is bit serial and the machine is
constructed from off-the-shelf components. This
paper describes different programming levels on
the machine and includes a description of a high
level language defined as an extension to Pascal.

2. The Architecture of LUCAS

LUCAS consists of two parts: a Control Unit and
an Associative Array. By a simple interface it is
attached to a host computer, at present a PROLOG
z80 microcomputer system with CP/M operating sys
tem. The host computer sends instructions to the
Control Unit and handles input and output of data
(fig 1). Alternatively, input and output can be
handled by a dedicated I/O processor that direct
ly communicates with a fast secondary memory. A
detailed description of the design is given in
[12] •

2.1 The Associative Array

The Associative Array (fig 2) consists of 256
words that are interconnected by a powerful inter
connection network. The design of one word is de
picted in fig 3.

The word length is 4096 bits. Data is accessed one
bit at a time, pointed to by a 12-bit address from
the Control Unit. A processing element for bit
serial computations is also included in each word.

The processing element comprises an ALU and four
one-bit result registers: T (tag), R (result), C
(carry) and X (auxiliary). The ALU performs opera
tions on the five one-bit arguments M, T, R, C
and X. The M input can recieve data from either
the corresponding memory word or from another word
via the interconnection network. In this way data
can be moved up and down the array or interchanged
according to different communication patterns,
e.g. the perfect shuffle.

The tag register is used as an activation control
for the word since it enables the write signal to
the memory. This mechanism is of the highest im-

portance and is in fact the key to associative
array computing. A parallel search selects cer
tain words by setting their tag registers accor
ding to the results of the search. Then follows
computation in parallel on selected words.

Input and output of data is done via a shift re
gister which is directly accessed from both LUCAS
and the host (or the I/O processor).

2.2 The Control Unit

The Control unit (fig 4) accepts instructions from
the host computer and executes these in the form
of microprograms. An instruction to LUCAS can in
clude up to four parameters - ususally describing
the locations and the lengths of the operands.

An important part of the Control Unit is the Add
ress Processor. It performs fast computations of
addresses to the Associative Array (increment,
decrement, add constant etc). The Address Proces
sor contains several index registers and a data
stack. Furthermore the Control Unit contains a
Common Register which is used for parallel search
ing in the Associative Array and for operations
between one dimensional and parallel data (e.g.
add the same value to data in every word of the
array) •

An example shows the interaction between LUCAS
and the host:

Given an n x m dimensional matrix M and an m di
mensional vector V, calculate the n dimensional
vector X = M x V.
The elements of V are stored in the Common Regis
ter and the elements of M in the Associative
Array. Space is reserved for X in the Associative
Array.

Common V[1] V[m]

Word 1 M[1 ,1] M[1 ,m] X[1] s[1]
Word 2 M[2,1] M[2,m] X[2] s[2]

Word n M[n, 1] M[n,m] X[n] s[n]

<-------------------> <--> <-->
area in the Associa- area scratch
tive Array that is reser- pad area
reserved for the ved
matrix H for X

Actions performed on Actions performed on
!t~_t2~!~ __________________ ~gg~§~ _______________ _

Specify operation CLEAR
FIELD to LUCAS with pa-
rameter indicating the
X vector

2 Execute CLEAR FIELD
operation

3 Specify operation to se
lect the n first words

4 Select the n first
words by putting a one
in the tags

5 set j=1

254

6 calculate the address to
the j:th elements in V
and M

7 Specify the operation
MULTIPLY COMMON with
parameters indicating
the j:th elements in V
and M and the scratch
pad area

8

9 Specify operation ADD
FIELDS with parameters
indicating the X vector
and the scratch pad area

10

11 j:=j+1

12 if j <=m then go to 6

13 exit

Execute the MULTIPLY
COMMON operation, lea
ving ~he result in the
scratch pad area

Execute ADD FIELDS
operation

As can be seen in the example, the host keeps
track of the variables in the Associative Array,
while all the actual calculations are done in pa
rallel in LUCAS. This is the normal interaction
between LUCAS and the host.

The interface is designed so as to let the two
actions overlap.

3. The software structure

Great effort has been put into making LUCAS flexi
ble. Mainly intended as a research machine, dif
ferent aspects of array computing have been and
will be exploited. This has led to a design which
is programmable on several levels.

3.1 Micro Programming

The LUCAS machine instruction set, which constitu
tes the software interface to the host computer,
is defined as a set of microprograms, executed by
the control unit. Prior to the execution of an
application program, the microprogram memory can
be loaded from the host. Machine instructions may
range from single search operations up to compound
operations such as matrix multiplications or ope
rations on data base relations.

In each clock cycle a total of 80 control signals
are sent from the Control Unit to various parts of
LUCAS. The control signals can be divided into
five groups: host communication (6), microprogram
flow control (32), Associative Array control (16),
Address Processor control (26) and one group for
user defined auxiliary functions (2).

Fig 3 shows a processing element in the Associa
tive Array. As can be seen in the picture, the
ALU has six inputs and four outputs. The function
performed in the ALU is controlled by a f~ve bit
code. This means that only 32 of the 4*264 possi-

ble functions in the ALU can be performed. Since
all computations are done bit-serially, it is
extremely important that the ALU instruction set
is well suited for the kind of calculations done,
to avoid unnecessary overhead,

The implementation of the ALU, in the form of a
user programmable read only memory, allows opti
mization of ~ts instruction set for different
applications. In signal processing applications,
the instruction set would be strongly oriented
towards arithmetic calculations, while in data
base management applications the transfer of bits
between the four registers and the memory, as well
as boolean functions such as AND, OR etc would be
chosen.

3.2 Interaction with sequential programs on the
host

To avoid dependency upon the choice of the host
computer, nearly all the system software develo
ped has been written in Pascal. For the same rea
son it was decided that application programs also
should be written in high level language. A lib
rary of Pascal procedures that interacts with
LUCAS are incorporated in the system library.

It is interesting to note that the penalty for
using a high level language, as compared to assem
bly language, in terms of speed, is remarkably
small. Especially in applications with heavy com
putations. This is due to the fact that most of
the sequential operations performed are housekee
ping operations and can overlap in time with com
putations in LUCAS.

Assembly programming is kept to a minimum, and in
fact less than 50 bytes of machine code is needed
to set up the software interface with LUCAS. This
means that all the software developed is complete
ly transportable between different hosts.

4. A high level programming language

The rest of this paper is a description of a high
level language that is currently being implemented
on LUCAS. We start the presentation with a brief
discussion of what we want to obtain followed by
an informal description of the language elements.
In the subsequent sections each element is descri
bed in detail and the use of the language is pre
sented in the form of programming examples. Final
ly a complete description of the syntax is given.

4.1 Primary Considerations

There are two different approaches to the design
of high level languages for parallel computers:

- the parallelism of the computer has a correspon
dence in the syntax of the language.

- the syntax of the language does not contain any
primitives for parallel computations, but the
compiler tries to detect inherent parallelism
in the sequential program and to generate code
for the parallel computer.

Our view is that the parallelism should be appa
rent in the language. If the parallel structure

255

of the computer has no correspondence in the lan
guage, the user will be less motivated to design
his algorithms in a way which involves parallel
computation. It is unlikely that an algorithm for
a sequential computer could easily be transformed
to fit into a parallel machine. This not only
calls for unnecessary complications in the compi
ler, but also leads to less efficient use of the
parallel computer.

4.2 Guidelines for the design

The following requirements for the language are
stated:

- The language should only include constructs that
can be efficiently implemented on LUCAS.

- The language should be functionally complete in
the sense that all possible algorithms for LUCAS
can be expressed in it.

- The language should be suitable for and empha
size the use of structured programming.

- The language should be kept small and be fairly
easy to implement.

The use of an existing sequential programming lan
guage as a base for the new language would have
many advantages:

- The sequential language has a well defined syn
tax.

- Implementation is simpler since existing compi
lers can be modified to accept the new language.

- The user needs to learn relatively few new con
cepts.

4.3 Description of the language

We decided that the language should be an exten
sion to Pascal and it is referred to as Pascal/L.
The choice of Pascal meets the two last require
ments stated above, provided that the extensions
are chosen carefully.

Pascal is a well structured language with strong
typing of variables. Its structure allows a large
amount of error detection both at compile time and
at run time. Compilers for Pascal are relatively
simple to implement. The syntax has been chosen
so that only one symbol lookahead is needed, ena
bling the use of a simple parsing technique. To
facilitate the code generation and to make the
compilers more portable, an implementation scheme
with code generation for a stack oriented virtual
machine is used. The existence of portable compi
lers, often written in Pascal, simplifies its im
plementation on different machines.

The following extensions to Pascal are defined:

- Declaration of variables that will be allocated
in the Associative Array. In the following these
will be referred to as parallel variables.

- An indexing scheme to access parts of parallel
variables.

- Expressions involving parallel variables.

- An extended control structure, allowing the use

of parallel variables as control variables.

- Standard functions for alignment of parallel
variables.

- Input and output of parallel variables.

In the text, the words 'scalar' or 'sequential
variable' stand for variables that are allocated
in the host computer memory, while a 'parallel
variable' is allocated in the Associative Array.

Appendix A contains a syntax summary of the lan
guage.

4.3.1 Data Declaration

Parallel variables are characterized by their di
mension and their range. The dimension of a paral
lel variable refers to the number of subscripts
in the declaration. The range, which can be seen
as a measure of the parallelism, is given by the
size of the first dimension.

The linear organization of the LUCAS Associative
Array makes it especially suited for operations
on one- and two-dimensional arrays. In principle,
arrays of any dimension can be represented in
LUCAS. However the natural storing scheme for one
and two-dimensional arrays, where adjoining array
elements also are physical neighbours, will be
lost, In this description of Pascal/L we are the
refore only concerned with arrays of one and two
dimensions, even though the final definition of
the language probably will include arrays of high
er dimensions.

There are two kinds of parallel variables:

selector and parallel array.

A selector is defined as a boolean bit vector in
tended to limit the parallelism of the operations
in the Associative Array. At execution time this
is accomplished by setting the tag registers in
those memory words where the corresponding selec
tor element has the value true • When a selector is
declared, it can optionally be initialized to any
value.

<selector type> ::= selector [constant •• constant]I
selector [constant •• constant] := <boolean

aggregate>

<boolean aggregate> :: = <choice> => <boolean value>!
<choice> => <boolean value> , others =>

<boolean value>

<choice> ::= constant t constant •• constantl
constant •• constant step constant

<boolean value> ::= true I false

Examples:

var

var a

a select0~[O •• 255];

a : selector[o •.• 2551: =(0.1 ,5=>true, others=
=>false>;

selector[O •• 199]:=(0 •• 126 step 2=>true,
others=>false><;

In the declaration of a parallel array the first

256

dimension specifies the maximum range of paralle
lism for the variable.

var para: ,parallel array[O •• 99,0 •• 2] of integer;

declares the variable para to be defined in the
words 0 to 99 in the Associative Array. Each word
contains three elements of para.

<parallel array type> ::=
parallel array [constant •• constant]

of <parallel component
- type> I

parallel array [constant •• constant , constant
•• constant]

of <parallel component
- type>

<parallel component type> ::= <parallel type>

<parallel type> ::= <parallel type identifier>
<parallel standard type> I record <parallel

fl.eld list> end

<parallel type identifier> ::= <identifier>

<parallel standard type> ::= integer I real boo
lean I char I
string[constant]

<parallel field list> ::= <parallel record sec.tion>
{ ; <parallel record

section> }

<parallel record section>
<field identifier> {

: :=
<field identifier> }
<parallel standard
type>

Example:

~ parrec parallel array[O •• 99] of record
a,b : integer;
c : real

end;

4.3.2 Indexing

When operating on a parallel variable it is possi
ble to reference several elements along its paral
lel dimension at the same time. This set of ele
ments is referred to as the range of parallelism
for the operation. If the index is omitted, the
complete array is referenced.

<parallel indexed variable> ::=
<parallel array variable> [<first index>]
<parallel array variable> [<first index>,

<expression>

<parallel array variable> ::= <variable>

<first index> ::= <selector expression> I * I
constant I constant •• constant

<selector expression> ::= <expression>

Examples:

para[*,O] Selects column 0 of para. Par~ is a
two dimensional parallel variable.

para[a,O] Where a is a selector, selects a sub-
set of column 0 in para.

para[2 •• 4,0] Selects elements 2,3 and 4 of co
lumn 0 in para.

4.3.3 Expressions and Assignment

It is possible to combine sequential and parallel
variables in expressions as long as no type con
flict occurs. An expression that contains parallel
variables always results in a parallel value (ex
cept for some standard functions that take a pa
rallel variable as an argument and yield a scalar
value). The meaning of expressions such as:

4 * para or para > 4

where para is an array, is that the scalar is com
bined with each element of the parallel variable.

There are four kinds of assignment statements:

1) Left side and right side are scalars.
This is the normal Pascal assignment statement.

2) Left side is parallel and right side is scalar.
All elements within the range of the left side
variable are assigned the value of the scalar
expression.

3) Left side is scalar and right side is parallel.
The right hand side of the assignment should
be a parallel variable indexed so that only one
element is selected.

4) Left side and right side are parallel.
The elements within the range of the left hand
side variable are assigned the corresponding
values of the right hand side expression. The
range of the expression must be equal to, or
overlap, the range of the left hand side varia
ble.

In expressions, all parallel variables must have
the same range, otherwise a run time error occurs.

The following program gives an example of diffe
rent kinds of assignment.

Program Assign;
var odd selector[O •• 255]:=(1 •• 255 step 2=>

true, others=>false);
even, sel : seleCtOr[O •• 255];
p1,p2 : parallel array[O •• 255]
i : integer;

of integer;

begin
even:=not odd; (* Both sides parallel. The

same range *)

p1[even]:=p2*2; (* Both sides parallel. The
range of the right side
expression overlaps the
range of the left side
variable. *)

p1[oddl:=O; (* Left side parallel. Right
side scalar. *)

i:=p2[5]; (* Left side scalar. Right
side parallel. The range
of parallelism includes
one element. *)

sel:=p1 > p2; (* Both sides parallel. The
same range. *)

i:=p2[sel]; (* Left side is scalar. Right

end.

is parallel. sel must have
one and only one true ele
ment. *)

257

In statements where data is stored in different
words in the Associative Array, the movement of
data must be explicitly specified using standard
functions for data alignment.

var p1,p2
begin

parallel array[O •• 100] of real;

(* p1[2]:=p2[3]; is not allowed. Should be
written: *)
p1[2]:=shift(p2,-1);

(* p1[4 •• 84]:=p2[O •• 80]; is not allowed.
Should be written: *)
p1[4 •• 84]:=shift(p2,4);

4.3.4 The Control Structure

To control the sequential program flow, Pascal
contains five different structured constructs:
if, case, while, repeat 'and for statements. The
first two are used to select different paths in
the program execution, while the remaining three
control repetition of statements. Similar concepts
are included in Pascal/L to allow parallel expres
sions to control selection and repetition.

The construct:

if boolean expression then true-statement
else false-statement

in Pascal selects one of two different paths in
the program flow, depending on the value of the
boolean expression. In the corresponding parallel
statement, the boolean expression yields a selec
tor. Each element in the selector determines what
statements will be executed on its corresponding
data elements.

In a global perspective this means that both the
true statement and the false statement are execu
ted, but on different data. Rather than to extend
the if-then-else construct in Pascal, a parallel
selection takes the form:

where parallel boolean expression do true
statement

elsewhere false-statement

where the elsewhere-part is optional.

Analogous to the Pascal case statement, which is
a generalization of the if-then-else construct,
where the selection is based on the value, of the
expression given at the head of the case state
ment, Pascal/L defines a parallel form of the case
statement. As with the if-then-else construct, the
parallel case does not choose one execution path
but all, each working on different data. The form
of the parallel case statement is:

case where parallel expression of

end

constant 1 : statement;
constant2 : statement;

constantn : statement;
others : statement

where the others-part is optional. In the imple-

mentation of the parallel case statement, care
must be taken so that the code generated assures
that only one choice is made for each word in the
Associative Array. Since every choice in the list
is taken, one after another, it is possible that
a variable in the head expression is changed so
that a second correspondance would occur, this ti
me with another constant.

In a similar way an extension to the Pascal

while boolean expression do repetition state
ment

is defined to control repetition for parallel dat~

while and where parallel boolean expression
do repetition statement

Here the repetition statement is repeated as long
as the parallel boolean expression takes the Va
lue true in any element. The repetition statement
is only executed on data where the corresponding
element in the boolean expression has the value
true.

The following example. illustrates the use of the
while and where construct:

v1,v2 : parallel array[0 •• 2] of integer;

begin
--v;-[0]:=2; v1[1l:=4; v1[2]:=3; v2[0]:=0;

v2[1]:=0; v2[2]:=0;
while and where v1 > 0 do
begin

v2:=2*v2+v1;
vl:=v1-1

end" --'
loop iteration

1

2

3

4

v2[0]<-2*0+2=2
v2 [.1] <-2*0+.4=4
v2[2]<-2*0+3=3

v2[0]<-2*2+1=5
v2[1]<-2*4+3=11
v2[2]<-2*3+2=8

v2[0]<-5 unchanged
v2[1]<-2*11+2=24
v2[2]<-2*8+1=17

v2[0]<-5 unchanged
v2[1]<-2*24+1=49
v2[2]<-17 unchanged

since v1 [0].=0

since v1[O]=O

since v1[2]=0

The loop ends after four iterations since all ele
ments in v1=0.

4.3.5 Standard Functions

A number of standard functions for data alignment
are defined. Some of these work on variables with
arbitrary range of parallelism, while others are
defined for fixed size variables.

shift (parallel array I selector, i)

The function shifts the parallel variable, i steps,
along its first dimension. Zero elements are shif
ted in from the edge. This corresponds to moving
data up or down the Associative Array.

258

rotate (parallel array I selector, i)

Similar to the shift function except that the ele
ments that are shifted out at one edge are shif
ted in at the opposite edge of the parallel varia
ble.

propagate (selector, i)

The propagate function copies all true elements in
the selector to the i following elements.

var sl selector[1 •• 10] :=(3 ,6=>true, others=>
false) ;

s2 selector[1 •• 10] ;
begin

s2:=propagate(sl,2); (* s2 will be true in
elements: (3,4,5,6,
7,8) *)

exchange (parallel array I selector)

The elements of the variable are pairwise inter
changed using the Exchange Network. The range of
the variable must be even.

shuffle (parallel array I selector)

The variable is shuffled using the Perfect Shuffle
Interconnection Network. The function is only de
fined for parallel variables which have a range
corresponding to the size of the Associative Ar
ray.

first (selector)

This function finds the first true element in a
selector and returns a nel, selector with only this
element true.

next (selector)

The next-function returns the same value as the
first-function. The difference is that the first
true element in the parameter automatically is
assigned the value false.

any

The any-function returns the value false if a pre
vious call to the first- or the next-function re
turned an all-false selector, otherwise it returns
the value true.

some (parallel boolean expression)

A call to the some-function evaluates the boolean
expression and returns the value true if it con
tains at least one true element, otherwise it re
turns the value false.

var parl
sell
su

begin

su:=O;

parallel array[0 •• 9] of integer;
selector[0 •• 9] ;
integer;

sell :=par1[*"l > 10; (* select elements grea
ter than 10 *)

while some(sell) do
su:= su + par1[next(sell)];

(* su contains the sum of all elements in par1
whose value> 10 *)

responders (parallel boolean expression)

The responders-function evaluates the boolean ex
pression and returns the number of true elements
in the result.

range (parallel expression)

Returns a selector of range 256 with true elements
indicating the range of parallelism for the ex
pression.

4.3.6 Input and Output

The Pascal standard procedures read and write are
extended to allow input and output of parallel va
riables. Either complete parallel arrays or selec
ted subsets can be read and written.

5. Programming examples

The use of Pascal/L in two different applications
is presented in the following programming examp
les.

The first example demonstrates one common opera
tion on a relational data base, namely the PROJECT
operation:

PROJECT R1 OVER A GIVING R2

where R1 and R2 are relations and A an attribute
of R1. This operation creates a new relation, R2,
from R1 by discarding attributes other than A.
After that, all redundant tuples are removed from
R2. Each relation has a corresponding mark selec
tor that indicates where tuples are defined. A
description of the operation can be found in [13].

Program Project;
var r1mark selector[0 •• 255];

r2mark selector[0 •• 255];

temp1 selector[0 •• 255];

temp2 selector[0 .• 255];

(*

(*

(*

(*

Selects words
containing rl *)
Selects words
containing r2 *)
Marks remaining
tuples in r1 *)
Marks all du
plicates of the
tuple that is
under compari
son *)

r1 parallel array[0 •• 255] of record

instance: string[20];

begin

a,b,c : string[20]
end;

••• (* Relation r1 is input and r1mark is
initiated *)

temp 1 : =r1mark;
instance:=r1[first(rlmark)].a; (* S.elect first

instance of
attribute a *)

while any do

begin
temp2:=(instance=rl [templ] .a); (*Select du

plicates *)

259

templ[temp2]:=not (temp1); (* mark as ana
lyzed *)

r2mark[first(temp2)]:=true (* the first is
included in
r2 *)

instance:=r1[first(temp1)].a; (* get next
distinct
instance
of attri
bute a *)

end---'
end.

The second example shows how the FFT algorithm
can be programmed on LUCAS. For details of the
use of the Perfect Shuffle and Exchange Networks
in FFT, see [12, 14] •

Program FFT;
const iterations=8; (* 8 iterations for 256 point

FFT *)
complex = record re,im: real end;
omega: pa~ array[128 •• 255,~itera

tions] of complex;

product

samples

parallel array[128 ••• 255] of
complex;
parallel array[0 •• 255] of com-
plex;

spectrum : parallel array[0 .. 255] of com
plex;

iter : integer;
lower: selector[0 .• 255]:= 0 •• 127=>false,

others=>true);
even: selector[0 •• 255]:=

(0 .• 254 step 2=>true, others=>
false>;

(* input samples and complex constants
omega *)

spectrum:=samples; (* spectrum after 0 itera
tions *)

for iter:=l to iterations do
begin - -

product[lower].im:=spectrum[lower].re *
omega[lower].re -
spectrum[lower].im *

omega[lower].im;
product[lower].im:=spectrum[lowe~].re *

omega[lowerJ.lm+

where even do
begin -

spectrumllower].im *
ornega[lower).re;

spectrum.re:=spectrum.re + shuffle(pro
duct.re);

spectrum.im:=spectrum.im + shuffle(pro
duct.im);

end
elsewhere

begin
spectrum.re:=spectrum.re - exchange(shuff

le(product.re));
spectrum.im:=spectrum.im - exchange(shuff

le(product.im));
end-

end;--(* for-loop *)

(* FFT spectrum is found in array 'spectrum'
with bit-reversed index *)

end.

6. Summary

The LUCAS associative array processor is intended
as a working tool for research in the field of
associative processing and some related applica
tion areas. In this paper programming aspects are
investigated and a high level language, Pascal/L,
is proposed.

Pascal/L is defined as a superset of Pascal and
includes the following extensions:
- parallel variables that are allocated to the

Associative Array
an indexing scheme to access parts of the paral
lel variables
expressions that include parallel variables
an extended control structure, where parallel
expressions are used to control the execution
standard functions for data alignment of paral
lel variables
extended input and output.

Appendix A.
Syntax summary of the exte~sions to Pasc~

Data Declarations

<selector type> ::=selector [constant •• constant]1
selector [constant •• constant] := <boolean

aggregate>

<boolean aggregate> ::= <choice> => <boolean va-
. lue> I

<choice> => <boolean value> , others => <boo
lean value>

<choice> :: = constant I constant •• constant I
constant •• constant step constant

<boolean value> ::= true I false

<parallel array type> ::=
parallel array [constant •• constant]

of <parallel component type> I
parallel array [constant •• constant , constant

•• constant]
of <parallel component type>

<parallel component type> ::= <parallel type>

<parallel type> ::= <parallel type identifier>
<parallel standard type> I record <parallel

field list> end

<parallel type identifier> ::= <identifier>

<parallel standard type> ::= integer I real I boo
lean I char I
string[.constant]

<parallel field list> :: = <parallel record section>
{ ; <parallel record

section>}

<parallel record section> ::=
<field identifier> { , <field identifier> }

<parallel standard type>

260

Indexing

<parallel indexed variable> ::=
<parallel array variable> [<first index>] I
<parallel array variable> [<first index> ,

<expression>]

<parallel array variable> ::= <variable>

<first index> :: = <selector expression> I * I
constant I constant •• constant

<selector expression> ::= <expression>

Statements

<where statement> ::=
where <parallel boolean expression> do <sta

tement> I
where <paralle~ boolean expression> do <sta

tement>
elsewhere <statement>

<whYle and where statement> ::=
while and where <parallel boolean expression>

do <statement>

<parallel case statement> ::=
case where <parallel expression> of

<case list element> { ; <case-list ele
ment> } end I

case where <parallel expression> of
<case list element> { ; <case-list ele

ment> } ;
others : <state~ent> end

<case list element> ::= <case label> { , <case
label> } : <statement>

References

[1] H.K.Resnick, A.G.Larson, "A COBOL Extension
for Associative Array Processors", Proc of
the Conference on Programming Languages and
Compilers for Parallel and Vector Machines,
pub. as SIGPLAN Notices 10,3 (March 1975)

[2] E.B.Allen, A.G.Larson, "FORTRAN Extension
Pesign Concepts for Associative Processing",
1975 Sagamore Computer Conf. on Parallel Pro
cessing.

[3] R.H.Perrott, "A Language for Array and Vector
Processors", ACM Trans on Prog Languages and
Systems, Vol 1, no 2, Oct 1979

[4] A.P.Reeves, J.Bruner. M.Poret, "The Program
ming Language Parallel Pascal", Internal Pur
due Electrical Engineering Report TR-EE 80-
32, July 1980

[5] R.G. Lange, "High Level Language for Associa
tive and Parallel Computation with STARAN",
Proc of the 1976 Iriternat •. Conference on
Parallel Processing.

[6] P.M.Flanders, "DAP-FORTRAN Language", CM39,
RADC, ICL 1976

[7] K.Stevens, "CFD - a FORTRAN-like Language for
the ILLIAC IV", Sigplan Notices, March 1975

[8] D.H.Lawrie, T.Layman, D.Baer, J.M.Randal,
"Glypnir - a Programming Language for ILLIAC
IV", Comm ACM 18, March 1975

[9] R.E.Millstein, "Control Structures in ILLIAC
IV FORTRAN", Corom ACM 16, Oct 1973

[10] P.T.Mueller Jr, L.J.Siegel, H.J.Siegel, "A
Parallel Language for Image and Speech Pro
cessing", Proc. of COMPSAC 80, Oct 1980

[11] K.Bratbergseugen, O.Risnes, T.Amble, "ASTRAL
- A Structured and Unified Approach to Data
Base Design and Manipulation", RUNIT Comp
Centre at the University of Trondheim, Nor
way. Report No STF14.A80003, 1979

[12] C.E.Fernstrom, I.F.Kruzela, B.A.Svensson,
"The LUCAS Associative Array Processor",
Lund University Dept of Computer Engineering
Techn Report 1981

[13] I.F.Kruzela, B.A.Svensson, The LUCAS Archi
tecture and Its Application to Relational
Data Base Management", Proc of 6th Workshop
Computer Architecture for Non Numeric Pro
cessing 1981

[14] H.S.Stone, "Parallel Processing with Perfect
Shuffle", IEEE Trans on Computers, vol C-20,
Feb 1971

Instruction

Host Contol

Unit

II
Data Associative

Array

Figure 1.

261

8
4096 _

~ Common register

~ Mask register

256

Count

Resp.

I/O Memory word ALU

Figure 2. The Associative Array

Bit address 'I' WR WRALL

Common Function

5

out

R

§
o
tJ

Figure 3. One Memory Word. I/O register and ALU.

Host Computer Buses

I Mask register

AA Control

Figure 4. The Control Unit

WAFER SCALE INTEGRATION OF CO~"'FIGURABLE,
HIGHLY PARALLEL (CHiP) PROCESSORS(")

EXTENDED ABSTRACT

Kye S. Hedlund(b)
Lawrence Snyder

Department of Computer Science
Purdue University

West Lafayette, IN 47907

Abstract - A two level aecomposition strategy for
wafer scale implementation of CHiP processors is
presented. With current technology, machines with
over 300 processors per wafer can be fabricated.
These wafer scale machines will be cheaper, faster and
more reliable than their counterparts implemented
with single chip components.

Introduction
Many different architectures for parallel proces

sors have been proposed but few large-scale parallel
systems have actually been built. One reason is that a
large-scale parallel processor consists of a great many
components. This introduces severe practical prob
lems of construction, wiring and reliability. If the
number of individual components could be decreased,
parallel processors would be far easier and cheaper to
construct.

The absolute minimum number of components is
reached when the entire parallel processor is fabri
cated on a single silicon wafer. These wafer scale sys
tems have greatly reduced cost due to the increased
level of integration. Reliability is higher since the con
nections between processors are implemented in sili
con. Furthermore, there is the potential for increased
performance since data values passed between proces
sors are not driven off the wafer.

Wafer scale integration (WSI) has been previously
att.empted by discretionary wiring [1]. Due t.o the
additional masking steps required, this has not proved
to be practical. Other researchers are currently inves
tigating laser restructuring [2] and fuse blowing
approaches to implementing WSI.

At the center of our approach is the conflgurable,
highly parallel (CHiP) processor [3] family of restruc
turable architectures. CHiP computers are composed
of many simple processing elements (PEs) that are not
directly connected together but are inserted at regu
lar intervals into a switch lattice. The programmable
switches can be set to connect the PEs in a wide
variety of in.terconnection patterns.

We propose wafer scale implementation of CHiP
processors. No extra masking steps are required mak
ing the approach cost effective. A two level methodol
ogy decomposes the problem into mapping small CHiP
machines into building blocks and then structuring
the building blocks on the wafer. Although we consider
CHiP computers, the concepts presented are entirely
general and can be applied to other parallel systems.

(11) Research supported in part by Office of Naval Research under
8,~n:tract Nos. NOOOl4-6o-K-0616 and Contract NOO014-61-K-0360.

Author's present address is Dept. of Computer Science, U. of
North Carolina, Chapel Hill, NC 27514

0190-3918/82/0000/0262$00.75 @ 1982 IEEE 262

Implementing Wafer Scale Integrauon
A large number of simple PEs can be patterned of.

a single wafer. But on any given wafer, many of the PEs
will contain defects - errors in the circuitry such as
broken wires or nonfunctional transistors. These
defects are randomly distributed over the wafer sur
face.

To implement a wafer scale system, all PEs on a
wafer are tested, and then the good PEs are connected
together. The wafer is structured so that the presence
of faulty PEs is masked and only functional PEs are
used. The switch lattice of CHiP processors provides
the interconnection flexibility required to structure
the wafer. Switches can be programmed to route
around faulty PEs and connect together only the func
tional PEs. Redundant switches are added to the lat
tice to perform the structuring.

The structuring problem is made difficult by' low
PE yield; for any particular PE it is very unlikely that
all its four neighbors will also be functional. The posi
tioning of good PEs on the wafer differs from the
required connection pattern. Hence considerable wir
ing may be required to connect a PE to its neighbor in
t.he CHiP lattice. This introduces delays from the
intervening switches and increases signal transmission
time. System speed is proportionately reduced.

Now suppose that most PEs are functional. The
good PEs are distributed in a more regular pattern -
one more closely resembling a lattice. This simplifles
the structuring problem. Faulty PEs can be eliminated
by column exclusion, all PEs in a column containing a
faulty PE are eliminated, and the columns adjacent to
the excluded column are connected together. The only
requirement is that we can wire around faulty or
unused PEs. This strategy has been used previously ir~
64K memories and in Batcher's MPP.

For this simple approach to be practical. the
wafer must contain very few faulty PEs. But due to the
nature of the integrated circuit manufacturing pro
cess, high yield is achievable only with very simple
circuits - much less complex than aPE.

But suppose the units patterned on the wafer are
not individual PEs but building blocks of a CHiP
machine. Each blo,;!k is itself a small CHiP processor.
By providing sufficient redundancy within each block, a
smaller but completely functional CHiP machine (the
virtual lattice) will exist within almost every building
block. With each block contributing a small, fixed size
virtual lattice, a large CHiP machine is formed from
the blocks.

If enough redundancy is provided within each
building block, the percentage of blocks containing a
smaller, completeLy functional virtual lattice will be
very high. This allows the use of the column exclusion
strategy to eliminate the relatively rare block that is
completely dysfunctional.

To determine the degree of redundancy required,
we developed a yield model based on the Price model
of the integrated circuit manufacturing process. This
model is the basis for the quantitative determination
of the effect of redundancy.

The smaller virtual lattice must be mapped into
the larger building block. This mapping makes the
block function as if it were a virtual lattice. An
observer of the input/output behavior of the block
would be unable to distinguish it from a virtual lattice.
The mapping associates each vertex (PE or switch) in
the virtual lattice with an image in the block. }o'urther
more, every datapath in the virtual lattice becomes a
path in the block. A path may be a single datapath or
a sequence of connected switches.

In summary, we have introduced a two level
decomposition of the wafer scale lattice. A very large
CHiP lattice is patterned on the wafer. It is logically
divided into small building blocks. From almost every
building block a small fixed size CHiP processor is
extracted, and the blocks are composed to form the
wafer scale machine. Faulty blocks are eliminated by
column exclusion. Note that the two level decomposi
tion limits the length of paths between PEs to the size
of a block. This assures that system performance will
not be catastrophically degraded by the occurrence of
faulty PEs.

Designing Building Blocks
Each PE has a simple arithmetic-oriented instruc

tion set, an 8-bit ALU and 64 bytes of memory. This is
sufficiently powerful to execute a wide variety of sys
tolic algorithms. Implemented with current (2tJ-m)
technology, each PE occupies approximately a 1.?5mrn
x 1..75mm region of silicon. .

A 2 x 2 virtual lattice is mapped into a building
block. From the yield model, the cumulative probabil
ity density function of defects (Fig. 2) for relative area
A = 1.0 and 2.0 is known. From this we can derive [3]
the probability that at least 4 out of N PEs are func
tional (Table 1). 4 good PEs can be found out of a set of
12 in 99% of the time. Consequently, each building
block is chosen to be 4 PE x 3 PE CHiP machine insur
ing that almost all blocks contain the 4 PEs required
for a 2 x 2 virtual lattice. In addition to redundant PEs,
each building block also has twice the required
number of switches (Fig. lb). These redundant
switches are used to map the 2 x 2 lattice into the
block.

A Wafer Scale CHiP Processor
A 9 x 9 grid of building blocks can be patterned on

a 4" wafer (Fig. 3). The bonding pads and drivers
required to connect the wafer scale CHiP machine to
external memory (or other wafer scale machines) are
placed around the periphery of the grid. Redundant.
drivers are used to guarantee the integrity of the
external connections. The grid occupies only 68% of
the wafer area which leaves sufficient remaining area
for 150 pads and drivers per lattice edge. Packaging
constraints may place a lower limit on the number of
external connections.

A 2 x 2 virtual lattice is recovered from each
block 99% of the time, and the occasional faulty block
is eliminated by excluding the column containing the
fault. Table 2 shows the frequency of different grid

263

rli.zes after faulty blocks are eliminated. Almost half of
the wafers use all 81 blocks. An "average" water con
tains a CHiP processor of 297 PEs. The switches in
unused or faulty blocks are used to connect. the blocks
in the columns adjacent ot a faulty block. Thus the
"wire around" requirement for blocks becomes a "wire
through" capability via the CHiP switch lattice.

Is this approach efficient? In addition to excluded
columns, only 4 of the 12 PEs in each block are used.
On the average, there are 74 usable 2 x 2 CHiP lattices
in each wafer scale machine (Table 1). Suppose we
5imply pattern the entire wafer with 2 x 2 laltices. A
4" wafer holds 288 of these. At the predicted 20% yield,
only 58 of the lattices are fully functional. Hence fault
tolerant building blocks containing redundant com
ponents a.re area efficient. The area lost t.o redun
dancy is more than made up for by the increased
recoverability of the blocks. Moreover, the wafer scale
solution is more robust to failures, has better perfor
mance and lower cost.

Conclusions

The two level decomposition could be a practical
method for implementing wafer scale integration. It is
cost effective since no additional processing steps are
required. Additionally, the maximum wire length
between PEs is limited, and the wafer area is efficiently
utilized.

As described above, our methodology benefits
from the fact that the mechanism needed for structur
ing, the switch lattice, is an integral part of the archi
tecture. Although this Simplifies our work, it is not
necessary. The method is entirely general. It can be
applied to other systems composed of uniform parts
including parallel processors with fixed interconnec
tion structures.

Practical problems of testing, power consumption,
synchronization and clocking, etc. are discussed in
detail in [4,5].

Acknowledgments
The authors would like to thank Gerold Neudeck

for his assistance in formulating the yield model.

References
[1] R.L. Petritz "Current Status of Large Scale

[2]

[3]

[4]

[5]

Integration Technology," IEEE J. Solid-State
Circuits SC-2 ,4(Dec. 1967), 130-147.
G. Chapmann - private communication, Lincoln
Labs.
L. Snyder "Introduction to the Configurable,
Highly Parallel Computer," IEEE ComputerV-15
,1 (Jan. 1982),47-56.
K. Hedlund AND L. Snyder "Wafer Scale
Integration of Conflgurable, Hi.ghly Parallel
(CHiP) Processors," Tech. Report 407, Compo
Sci. Dept., Purdue U., Aug. 1982.
K. Hedlund "Wafer Scale Integration of Parallel
Processors," Ph.D. Thesis, Compo Sci. Dept.,
Purdue U., Aug. 1982.

N

o ·
·

PE

o Switch >-

·

0
.......--, ,,.....-

I~ -
~ fl [-

[l n ,
~

l~igure 1 - a 2 x 2 CHiP Lattice (Virtual Lattice) and
a 4 x 3 Building Block

Table 1 - Recovery of 4 PEs from. h .?b

= number relative prob >= 4 number of
of PEs area !lood PEs redundant PEs

4 1.00 .200 0
6 1.50 .733 2
6 2.25 .953 5

12 3.00 .990 8

Table 2 - Size of Wafer Scale Processor for 9 x 9 Grid

Lattice Size from a 9 x 9 Grid

cumulative size of CHiP
p:-obability

- -I
probabi.lity grid size processor (PEs)

.443
I

.<143 9x9 18 x 18 = 324
.394

I

.837 9x8 18x16=2B8
.129 .966 8 x 8 16x16=256

~271 .993 Bx7 16 x 14 = 224
.0069 I 1.000 <8X7

Expected Number of Processors = 297

264

1.

.9

.8

.7

.6

.3

.3

.2

.1

PROB_ OF <= M DEFECTS
PR(Z <= M; A)

o. ~ ____ ~ ____________________ __

3 5
II - NUYBER OF DEFECTS

Figure 2 - Defect Distribution for Relative

Area = 1.0 and 2.0

1 2 c:t

i :mltl'\

\~lmlPldl lIJ~ //
~/

o Bonding Pad

<1 Driver

Figure 3 - Layout of a Wafer Scale CHiP Processor

TESTING COORDINATION FOR "HOMOGENEOUS" PARALLEL ALGORITHMS

Janice E. Cuny
Lawrence Snyder

Department of Computer Sciences
Purdue University

West Lafayette, Indiana, 47907

Absrra.ct: A collection of parallel processors is said
to be coordinated if each write from one process
ing element (PE) to another is answered by a
read. We report on an efficient algorithm to test
coordination for parallel programs in which the
code for each PE is a loop. We also test a weaker
predicate for parallel algorithms with oblivious PE
codes and we show that the general problem is
PSPACE-hard.

"Homogeneous parallel algorithms" refers to
a large class of parallel computations, reminis
cent of cellular arrays, formed from "identical"
processing elements (PEs) that often use pipelin
ing and novel interconnection structures. They
include algorithms for matrix operations [1],
dynamic programming [2], data base operations
[3], sorting [4], and signal processing [5]. The
algorithms in this class are motivated by the
potential for direct VLSI implementation but they
are equally well suited for implementation as pro
grams for general purpose parallel architectures
[6].

Upon close scrutiny many of these algorithms
are anything but "homogeneous". The processing
requirements of PEs may differ because of initiali
zation details, termination details, timing and
edge effects (Le. special problems encountered
when a PE is on the perimeter of a proceSSing
array). There is a benefit in retaining the concep
tual simplicity of homogeneity and relegating the
differences to the status of implementation
details. This is because, at a high level, many pro
cessors are identical and their differences on
lower levels can largely be inferred from the
algorithm's global structure. A key goal. then, in
the effort of simplifying parallel algorithm
development is:

To support "homogeneous" simplification by
automatically generating FE variants when
possible and to assist in their development
when manual design is required.

This work is part of the Blue CHiP Project. It is supported in
part by the Office of Naval Research Contracts N00014-80-K
OB16 and NOOOl4-B1-K-0360. The latter is Task SR0100.

0190-3918/82/0000/0265$00.75 © 1982 IEEE 265

We report on progress towards .this objective for
variants that differ in the timing characteristics
of their interprocess communication.

We have reported [7] on the automatic syn
thesis of PE variants to synchronize interprocess
communication. We start with a parallel algo
rithm which assumes an abstract data fiow execu
tion mode and for a limited, but widely practical
class of algorithms, we generate the timing neces
sary for synchronous execution. But what if the
algorithm is not in the class or if manual design is
required? In this paper, we report on algorithms
that assist the designer by testing the compatibil
ity of interprocess communication.

A MODEL OF PARALLEL PROGRAMS
Our abstraction of a homogeneous parallel

processor is an Interprocessor Commu.nication
(IC) System. An IC system is given by a set of m
finite state machines, M 1.M2 Mm , each desfrib
ing the input/output behavior of a single P~t The
alphabet of the machine is the power set of

IT~.a' w~,alie:[m] A ae:I:}

where!: is a finite set of values, Tj,a denotes the
reading of the value a from PE j, Wj,a denotes the
writing of the value a to PE j and rp. the empty
set. represents any other operation not involved
in interprocessor communication including opera
tions that transfer values to and from the exter
nal environment. If PE i writes to PE j or PE j
reads from PE i, we say that there is a commu.ni
cation Link from i to j. Notice that the intercon
nection graph of the processors is implicit in the
indexes of the symbols.

We... assume that the PEs execute synchro
nously and that on each step a PE can execute a
set of operations simultaneously. Specifically, the
execution of an IC system is defined by two
sequences, cl.c;2,C3, ... and QO,QI,Q2..... Each ele
ment of the first sequence is an an m-vector of
symbols, one per PE, describing the operations
executed in a single step. Each element Q/r; of the
second sequence is an mXm matrix of strings,

t IC systems can be defined more generally [B] but for the
purposes of this paper. we present only a limited version.

tt [m] denotes the set Il.2 mj.

where qr.! gives the status of the communication
link from PE i- to PE i. The qr.; are all of the form
a(3 with a e: E- and (3 e: (E-Ir where E-I is the set of
inverse symbols of E.. We interpret ql"J = a(3 to
mean that the symbols a have been written on the
link but they have not yet been read and the sym
bols (3 have been requested from the link but they
have not yet been written. A symbol a and its
inverse a-I cancel at the boundary between a and
(3, i.e. a'a- I =,\, the empty string.

In general, for Ie ~ 1 and i e:.[m], af is the Ie-th
symbol in a word defined by M, and

Initially, QO is empty, i.e., qi~i =,\ for all i,i e: [m].
Generally, qfJl = a.·q,.rb where

and

if wi.a e: af+l

otherwise

{
a-I if ~ e: aio +! i.a !

b = ,\ otherwise

and a sequence QD,QI,Q2, ... is a legal computation
if and only if

The latter condition enforces our intention that a
PE reads the same symbol that was written to it in
the corresponding write.

An Ie system is said to be strongly coordi
nated if for all i, j, and Ie,

qf.; = ,\
that is, during synchronous execution correiilPond
ing reads and writes occur Simultaneously. I If we
allow the writes to precede their corresponding
reads we say that the system is wealcly coordi
nated: for all i, i, and Ie

qr.i e: IAI ~ E 1\

((Ie >01\ qI"J- I e:E 1\ qf.;=a. ·qf.;l·b) => a. =,\) .

RESULTS

In this work, we consider algorithms to
answer the·question

Given an Ie system, is it strongly (weakly)
coordinated?

t We permit simultaneous reading and writing for technical
simplicity, but the more conventional unit time delay
between writing and the subsequent reading requires only
more complicated, not substantially different, definitions.

266

for three cases of increasingly complex Ie struc
ture. We develop algorithms for testing coordina
tion in the first two cases: loop programs in which
all PEs repeat a single cycle of operations and
oblivious programs in which restrictions on legal
computations are removed. In the third case,
consisting of general Ie systems, we show that
testing is computationally intractable.

Loop Programs

We first restrict our attention to loop pro
grams in which each PE executes an initialization
sequence and then repeatedly executes a single
cycle of instructions. While this restriction seems
prohibitive, many highly parallel systems, such as
the systolic processors [1], can be characterized
in this way.

We have developed an algorithm to test strong
coordination O¥t a single communication link of a
loop program. The algorithm checks the first
MAX + LCM execution steps of the machines for
coordination errors, where MAX is the length of
the longer initialization sequence for the PEs
involved and LCM is the least common multiple of
their cycle lengths. This test is sufflcient
because, for Ie > MAX + LCM, each PE executes the
same operations in time step Ie that it does in
time step (Ie-MAX) mod LCM. The algorithm, with
a few modifications can be used to test weak coor
dination as well. In both cases, it requires O(n2)

time where n is the maximum number of states in
the machines involved.

If we assume that a system is composed of a
small number of distinct PE types which are inter
connected in analogous ways, then it is sufficient
to test each link type just once. For a system
with t link types, we have

Theorem. 1. The coordination of a system of
interconnected, loop programs can be tested
in O(a·t) where c is a constant dependent on
the loop structure of the PE code.

Notice that the bound is independent of the
number of PEs and is influenced only by the
variety of their communication, which would be
small for "homogeneous" algorithms.

Oblivious Programs

Generalizing, we allow arbitrary finite state
machines but we remove the restriction on legal
computation sequences. In these oblivious pro
grams, it is impossible to branch based on the

tt The complete details of our algorithms and proofs are
presented in the full version of this paper [9].

values transmitted between PEs. For such sys
tems, we can test only worst case coordination,
answering the question

Given a communication link, does it have a
potential coordination error?

If our algorithm reports NO, then the communica
tion link is coordinated; if our algorithm reports
YES, it is possible that the detected error would
never occur in any legal computation of the sys
tem.

The algorithm first constructs the "cross pro
duct" machine for the two finite state machines
involved. For strong coordination, the testing
question is then reduced to a question of state
reachibility in this new machine. The test, there
fore, requires O(q) time where q is the number of
states in the cross product machine; in terms of
the original machines, the algorithm requires
0(11.2) time. For weak coordination, we reduce the
test to a predicate on the computation tree for
the cross product machine. We show that we can
determine the value of this predicate in
0(q3) = 0(11.6) time. For systems with t interface
types, then, we have

Theorem 2. The worst case coordination of an
IC system can be tested in O(d·t) where d. is a
constant dependent on the structure of the
PE code.

Again, the result is dependent only on the variety
of the PEs not necessarily their number.

General IC Systems

In the most general case, given an IC system
with arbitrary structure and data dependent
branching, we show

Theorem 3: Testing the coordination of arbi
trary IC systems is PSPACE-hard [10].

The proof of this theorem involves reducing the
language recognition problem for linear bounded
automata to our testing question.

CONCLUSIONS
Although the complexity theory results indi

cate that coordination testing is a very compli
cated task, it is important to notice that many
recently developed parallel algorithms are
covered by Theorem 1. The testing algorithms
discussed here are being implemented and we
expect that they will be of significant assistance in
the development of parallel programs.

267

ACKNOWLEDGEMENTS
We owe a debt of gratitude to Dennis Gannon

for useful discussions concerning coordination, to
Cathy Cole for her cheerful assistance with the
algorithms, and to other Blue CHiP Project
members, including Francine Berman, for their
support and suggestions.

REFERENCES

[1] H. T. Kung and C. E. Leiserson, "Systolic
Arrays (for VLSI)," Tech. Rep. CS-79-103,
Carnegie-Mellon University (1979).

[2] L. J. Guibas, H. T. Kung and C. D. Thompson,
"Direct VLSI Implementation of Combinatorial
Algorithms," Caltech Conference on VLSI, Cali
fornia Institute of Technology, 1979.

[3] S. W. Song, "A Highly Concurrent Tree
Machine for Data Base Applications," Froc.
Int'L Coni. Pa:raLLel Processing, 1980, pp.
259-268.

[4]

[5]

Sally Browning, "The Tree Machine: A Highly
Concurrent Programming Environment,"
Ph.D. Thesis, California Institute of Technol
ogy, Jan. 1980.

Hassan M. Ahmed, Jean-Marc Delosme, and
Martin Morf, "Highly Concurrent Computing
Structures for Matrix Arithmetic and Signal
Processing," Computer, Vol. 15, No.1, pp. 65-
82, Jan. 1982.

[6] Lawrence Snyder, ''Introduction to the
Configurable Highly Parallel Computer," Com
puter, Vol. 15, No.1, pp. 47-56, Jan. 1982.

[7] Janice E. Cuny, and Lawrence Snyder,
"Conversion from Data-Flow to Synchronous
Execution in Loop Programs," Tech. Rep. CS-
82-392, Purdue University, 1982.

[8]

[9]

Janice E. Cuny and Lawrence Snyder, "A Model
for Analzying Generalized Interprocessor
Communication Systems," Tech. Rep CS-82-
406, Purdue University, 1982 (in preparation).

Janice E. Cuny, and Lawrence Snyder, "Test
ing the Coordination Predicate," Tech. Rep.
CS-82-391, Purdue University, 1982 (in
preparation) .

[10] Michael R. Garey and David S. Johnson, Com
puters a.nd Intractability, W. H. Freeman and
Co., p. 271, 1979.

MPP VLSI HULTIPROCESSOR INTEGRATED CIRCUIT DESIGN

John Burkley
Digital Technology Department
Goodyear Aerospace Corporation

Akron, Ohio 44315

ABSTRACT

A large scale integrated multiprocessor circuit
has been developed for use in the Massively
Parallel Processor system (~WP). The chip, built
in an HCHOS technology, contains eight bit-serial
processing elements (PE's) and is the basic
building block for the MPP processing array.

INTRODUCTION

The NPP is a large scale single instruction
stream, multiple data stream (SUlD) machine being
built by Goodyear Aerospace Corp. for NASA/GSFC.
(1,2,3). The system block diagram is shown in
Figure 1. The Array Unit (ARU) processes two
dimensional arrays of data. Array control is
generated by the Array Control Unit (ACU) which
executes the user program and performs any
sequential processing and scalar arithmetic
necessary to support array operations. Array data
I/O is through a special Staging l1emory which both
stores and permutes array data. The Program and
Data Hanagement unit serves as an external I/O
preprocessor.

The ARU makes the }iPP special; it incorporates
16348 PE's organized in a 128 x 128 array and
operating at a basic cycle of 100 nsec. Each PE
supports boolean and arithmetic operations, is
maskable and is capable of routing data to its
orthogonal neighbors. Table I shows the speed of
typical operations.

F'ig. 1 - I1PP Block Diagram

To build an array of this size and speed required
the development of a VLSI chip. The chip is
partitioned to include eight PE's configured in a
2 x 4 array, an eight bit bi-directional data port
with a parity tree and a SUNOR tree, and a disable

0190-3918/82/0000/0268$00.75 © 1982 IEEE 268

TABLE I - SPEED OF TYPICAL OPERATIONS

EXECUTlQN
OPERATIONS SPEED

ADDITION OF ARRAYS

8-BIT INTEGERS (9-BIT SUM) 6553
12-BIT INTEGERS (13-BIT SUM) 4428
32-BIT FLOATING-POINT NUMBERS 470

MULTIPLICATION OF ARRAYS
(ELEr1ENT -BY -ELEMENT)

8-BIT INTEGERS Cl6-BIT PRODUCT> 1861
12-BIT INTEGERS (24-BIT PRODUCT> 910
32-BIT FLOATING-POINT NUMBERS 291

MULTIPLICATION OF ARRAY BY SCALAR

8-B IT INTEGERS Cl6-B IT PRODUCT> 2824
12-BIT INTEGERS (24-BIT PRODUCT> 1489
32-BIT FLOATING-POINT NUMBERS 373

'MILLION OPERATIONS PER SECOND

circuit capable of disconnecting the chip from its
east-west neighbors. This last feature
facilitates automatic repair of the array using
redundant processing elements. The chip replaces
some 200 MSI and SSI circuits. The chip will
execute ten million operations per second when
operating with high speed ~1 (45 nsec access).
PE memory was not included within the chip for
several reasons. First, local memory would have
reduced the number of PE's per chip and
complicated its design and development. Second,
the use of external memory allowed the MPP system
to take full advantage of existing memory
technology, allowing more memory per PE at a
faster access time than is possible in HCNOS.
Finally, future systems could expand PE memory
without a chip redesign. A total of 2112 chips
are required to construct an MPP array. This
total includes a spare column of chips (4 columns
of PE's) for redundancy.

CHIP DISABLE

A chip disable line is provided which logically
disconnects the chip from the array by disabling
the SUHOR output and enabling a bypass circuit
which routes data directly from the west route and
S register inputs to the east route and S register
outputs. This logically removes that chip from
the array allowing column substitution. Since
only a small portion of chip logic must work for
the bypass logic to be functional, a failed array
could be repaired automatically by substituting a
spare column of chips for a failed column without
waiting for a maintenance call.

PE DESIGN

The PE includes six single bit registers
(A,B,C,G,P,S), a variable length shift register, a
full adder and some combinatorial logic. A PE
logic diagram is shown in Figure 2. The chip is
controlled by 16 control lines. The PE may be
divided into four subunits; logic and routing,
arithmetic, I/O, and masking. These subunits have
independent control but share a common clock. The
subunits are interconnected by a bi-directional
data bus which also connects to external PE
memory.

LOGIC ~ ROUTING SUBUNIT

The logic and routing subunit is formed by the P
register together with some supporting
combinatorial logic. P can be logically combined
with the state of the data bus and the result is
stored in P. When routing is enabled, one of four
inputs to the route multiplexor is selected and
latched in P. The multiplexor inputs are the
states of the P registers in the north, south,
east, and west neighbor PE's.

ARITHMETIC SUBUNIT

The arithmetic subunit consists of a serial-by-bit
adder formed by Band C and a variable length
shift register whose output may be stored in A. A
may also be loaded from the data bus. The adder
receives an input from A and P. When enabled by
control the adder adds the two input bits to a
carry bit stored in C and forms a two bit sum.
The least significant bit is stored in B and the
most significant bit is stored in C so it becomes
the carry bit for the next cycle. C may be
initialized to either a one or a zero.

The arithmetic unit also includes a variable
length shift register for local storage of partial

products. This feature significantly improves
multiply and divide operation times. The shift
register circulates the output of B back through N
stages of delay to the adder input register A. The
length of the shift register, N, may be set in
steps of 4 from 2 to 30. Since A and B also add
two stages of delay, the total shift register
length may vary from 4 to 32.

I/O SUBUNIT

The I/O subunit is formed by the S register and a
two input mUltiplexor which selects input from
either the data bus or the S register of the PE's
west neighbor. S register shifting may go on
independent of other PE operations except when
data must be stored or loaded from PE memory.

MASKING SUBUNIT

The masking subunit is formed by the G register.
Masking is enabled when G is low. Routing and
arithmetic operations may be masked separately.
In addition, the state of P may be outputted to
the data bus selectively negated by G. This
allows a masked invert of data in PE memory to be
executed in two cycles.

}lEMORY INTERFACE

The PE subunits are interconnected by a
bi-directional data bus. This bus may be used to
exchange data between PE registers or to read and
write PE memory. The control lines allow only one
bus source at a time. The chip includes an eight
bit parity tree which generates parity on memory
write operations and checks parity on memory read
operations. If bad parity is detected a parity
error latch is set. Because of the parity tree
delay, memory operations with parity will operate
at a 120 nsec cycle. Parity may be ignored for
lOmlz operation. The eight memory buses are also
sumored to form a single bit output.

- -- - - - - - - - - -- -- - - --- - - -- - - - -- - - - - -- - - - - - - - - - - - - ~

SR elK

ARITHMETIC SUB-UNIT

~~+-----+.LCSET

BENB
\7---+-----4-!-CENB

L-+------I-..!.-tRESET

=~J=~j----------------~========f=====~~====i===:tt:====~L----------+~--_-_-_-_-_-_-_-_-_1--+-~BCClK A-SEl I PADD 1_- ___ _________ ___ _

g~A,-~-----r~--------------~----------+--------+--~~------4-----r---------lr~------~

N
E
W
S

,-------_ _--------- ---- ------
P LOGIC & ROUTING

SUB-UNIT

ROUTE
OUT

r - - - - - MASK- - -j
SUB-UNIT , , , , , , , , , , ,

I
- - _________ I

AClK p" G ENB G-ClK ~2~K

,- --- -- --- --I

, I/O SUB-UN IT ,
, , , , ,

J.r~------S- ENB
IHI-~----------S-OUT

1 ,
1- __________ ...!

S-IN S-SEl S-ClK

Fig. 2 - MPP Processing Element Logic Diagram

269

Fig. 3 - MPP Chip Photomicrograph

S-OUT 3 S-OUT 4
EAST 3 PEO PEl PE2 PE3 PE4 PES PEG PE7 EAST 4

NORTH 3 SOUTH 4
NORTH 2 SOUTH S
NORTH 1 SOUTH 6
NORTH 0 SOUTH 7

WEST 0 WEST 7

K [j LOGIC

SIO SIR SIR SIR SIR SIR SIR SIR
0 1 2 3 4 S 6 7

Fig. 4 - MPP Chip Topology Drawing

270

CHIP FABRICATION

The MPP multiprocessor integrated circuit was
fabricated by Solid State Scientific Inc. in an
HeMOS technology using 5um design rules. The
design was implemented' using about 8000
transistors and required a chip size·of 235 x 131
mi12 • The chip requires two power supplies.
Internal circuitry operates at 7 volts; the output
translators require 5 volts. The chip is packaged
in a 52 pin flat pack and dissipates 550mw when
operating at 10 megahertz.

The chip design includes a high speed
bi-directional data bus. This data bus was
implemented using NMOS transistor pull-downs and a
current mirror biased pull-up transistor. This
bus implementation increased chip power
dissipation but greatly improved response time.

The chip photomicrograph is shown in Figure 3; its
topology drawing is shown in Figure 4. The eight
PE's are grouped together in the middle of the
chip in long narrow strips. This was done to
minimize control line metal runs. The data bus
and routing logic are grouped toward the top of
the chip. This logic had the most severe timing
constraillts and was laid out as close to the chip
pins as possible to minimize line delays. The
shift registers are grouped along the bottom of
the chip. The control decode is split and fed in
from both sides of the chip.

CONCLUSIONS

An eight PE multiprocessor chip has been developed
for use in the MPP. The PE chip design meets all
the functional and critical timing specifications
first proposed by Batcher (2) in 1979.

REFERENCES

(1) J.P. Strong; D.H.Schaefer; J.R.Fischer;
K.R.loIallgren; P.A.Bracken: "The Massively
Parallel Processor and Its Applications",
13th Int'l Symposium on Remote Sensing of
Environwent,April 1979 ERIM, Ann Arbor.

(2) Dr K.E.Batcher: "MPP - A Massively Parallel
Processor", 1979 Int'l Conference on Parallel
Processing, August 1979, IEEE Catalog No.
79CH1433-2C.

(3) J.Tsoras: "The Massively Parallel Processor
(HPP) Innovation in High Speed Processors"
AIAA Computers in Aerospace Conference III,
October 19131

-EFFICIENT PARALLEL ALGORITHMS FOR PROCESSOR ARRAYS

Kuang-Hua Huang and Jacob A. Abraham

Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

Abstract

With the advent of VLSI technology, it is
possible to provide extremely high but inexpensive
computational capability with a system consisting
of a large number of identical processors organ
ized in a simple, regular structure. In order to
exploit the high computation capability of the
arrays, however, it is important to employ an
efficient parallel algorithm. In this paper a
measure is proposed which can calculate the effi
ciency of an algorithm performed in a proaessor
array. This measure is used to compare several
proposed array architectures for a variety of
algorithms. Finally, efficient parallel algorithms
for recursive filtering problems, matrix-vector
multiplication, and matrix multiplication are also
proposed.

~ Introduction

Problems such as weather prediction, seismic
data analysis, and signal and image processing
have to process extremely large amounts of data,
but even the fastest existing computer cannot
satisfy these demands [1]. A solution to the need
for high computational power is the connection of
a large number of identical processors or process
ing elements (PEs). Each PE has limited private
storage, and in order to not restrict the number
of PEs placed in an array, each PE is only allowed
to be connected to some neighboring PEs. Thus, all
PEs are arranged in a well organized structure
such as a linear array or two-dimensional array.
With VLSI technology, the processor arrays can be
implemented in one chip or in a number of identi
cal chips, and the hardware cost increases only
linearly with the number of processors in the
array.

Systems using a large number of PEs include
the MPP (massively parallel processor) [2], the
CLIP family [3], and systolic arrays [4,5]. We
refer to these arrays as processor arrays in this
paper. They are usually used as peripheral proces
sors which perform computation intensive tasks.
Figure 1 shows a typical processor array employed
in a computer system. All the data transferred
between the host system and the processor array
has to pass through the bus and PEs in the boun
dary of the processor array; this may cause some
of PEs to be idle at some time. However, the data
transfer in a processor array can be overlapped
with computation.

-This research was supported by the Naval Elec
tronics Systems Command under VHSIC contract
N00039-80-C-0556.

0190-3918/82/0000/0271$00.75 © 1982 IEEE

Main Memory

]
Host Bus

J C

Processor

Array

5L I/o device ,- ,
L,.-~

I I

----""-y--

'1"- - - - - -
I I

, V
r- - 1 , ,
L -~

I /0 device

Fig. 1. A processor Array as a Peripheral Processor
in a General System

271

It is therefore important to employ an effi
cient parallel algorithm to exploit the high com
putation capability of the arrays and reduce their
idle time. In this paper, the efficiency of
parallel algorithms for a computation task per
formed in a processor array is investigated. A
measure of efficiency is proposed in section 2.
It is used to measure the efficiency of some
parallel algorithms in section 3. Section 4 pro
poses new algorithms and processor arrays to
obtain a better performance for the computation
tasks which are discussed in section 3.

Z~ Criteria ~a Measure ~ Efficiency
~ Parallel Algorithms

In this section a measure will be given for
the efficiency of an algorithm when it performs a
computation in a processor array. It is obvious
that the number of required PEs (P) and the tur
naround time (T) of the computation are two of
the factors which affect the efficiency of a
parallel algorithm. Another factor is the required
data transfer bandwidth of the algorithm to send
data into the array; an algorithm requiring a
large data transfer bandwidth easily saturates the
bus in Figure 1, and reduces the system perfor
mance. The data transfer bandWidth, B, is defined
as the maximum number of words which have to be
transferred through the I/O ports of the boundary
PEs in a time unit (a time unit is defined as the
period of time a PE performs an operation).
Furthermore, the importance of the bandwidth is
more obvious when a processor array is applied in
a real-time environment with a large volume of
data.

Consider a computation task with C operations
which requires the transfer of I input and output
operands for its execution, in a processor array
conSisting of P PEs. The turnaround time (T) is

the time from the beginning of transferring the
task to a processor array until the result is sent
back to the host. This time should satisfy equa
tion (1) below, since the completion of an opera
tion requires one time unit, and up to P opera
tions can be done by the processor array in each
time unit. The turnaround time, T, should also be
greater than or equal to the number of words that
can be transferred on the bus per time unit, liB,
to complete the data transfer.

T £ C/P (1)
T £ liB (2)

From (1) ~d (2) we get,
PBT £ CI. (3)

The product of P, B, and T2 is the Space
Time-Bandwidth complexity of an algorithm executed
in a processor array. Equation (3) shows that
pro~uct CI is the lower bound of the complexit~
PBT ; an optimal algorithm has a value of PBT
approaching the lower bound.

The ratio of the complexity, PBr2, of an
algorithm to its lower bound CI, represented as R,
is a measure of the efficiency of the algorithm.
In the rest of this paper, the complexity PBT2 and
ratio R are used to measure the effiC~ency of an
algorithm. The lower the value of PBT , the higher
the performance of the algorithm in some sense;
also, R=1 implies that the algorithm is optimal,
and a large value ot R means that the algorithm is
inefficient.

i Measurina ~ Effioienoy ~
~ Systolio Alsoritbms

The systolic array architecture [4,5] pro
posed by Kung is a kind of special purpose proces
sor array. The systolic algorithms provide well
organized data flow through the arrays; once a
piece of data is sent into a systolic array, it
passes through the array and is fully exploited
until its associated computations are done. Thus,
more PEs can be kept busy and the communication
requests between the array and the host system are
reduced to a minimum. These are the primary fac
tors which realize a high system performance.

The PE primarily used in systolic arrays is
an inner product step processor which consists of
three registers: R , R , and R. These registers
are used to perf8rm ~he foll8wing multiplication
and addition in one time unit: R = Rc + Ra * Rb•
Two different geometries of ~nner product PEs,
which Kung defined and called type-A and type-B,
are shown in Figure 2 (a) and (b).

coOu' in Cin Q'n in Sin cog
in

Cin

Sin Sout A Sin Sout
au aut

Aout out Aout
(0) (1)) (0)

C out - C in + Ai"· Bin

Fig. 2 Three Types of Inner Product Step Processors
(a) Type-A, (b) Type-B, (c) Type-C.

In the sections 3.1 through 3.3, the effi
ciency of the systolic algorithms, for problems
such as recursive filtering, matrix-vector multi
plication and matrix multiplication, is ex·amined.

272

The systolic algorithms per;orm well when process
ing narrow band matrices (i.e. when proceSSing
band matrices with the widths of the bands much
less than the dimensions of the matrices) [5] •
For dense matrix operations the advantages of the
systolic algorithms decrease. We will examine the
efficiency of matrix-vector and matrix multiplica
tion algorithms in processing both narrow band and
dense matrices; the boundary between the two cases
will also be considered.

i.~ ~-~ Multiplioation

ConSider a matrix-vector multiplication
I = A*X (4)

where A is a n by n matrix with elements ai j' X
and I are two n-by-1 vectors with elements i j and
YL respectively. The operation can be perf~rmed
as follows:

(5)

li.arJ:mf. Jand. ~-~ Multiplioation

When the matrix A in the equation (4) is a
band matrix with the width of the band, W « n,
the number of computations, C, is approaching W*n
and the number of the words~ I, is approaching
(W+2)*n, the lower bound ~f PBT 2is

CI !! (W +2W)*n •

The systolic algorithm for matrix-vector mul
tiplication in [4,5] required W processors,
(W/2+1) units of bandwidth, and (2n+W) time units.
Thus,

PBT2 = W*(W/2+1)*(2n+W)2 !! 2*(W2+2W)*n2•
The ratio R is about 2.

DJmu. Ha.tl:ix.-~ Multiplioation

If the matrix A in the equ~tion (4) ~s a
dense matrix, the value of C is n and I is n +2n;
the lower, bound of PBT2 !s 3

CI = n +2n •
The systolic algorithm for matrix-vector multipli
cation in [4,5] required 2n-1 processors, n/2+1
of bandwidth, and 3n 2ime units. Thus, 2

PBT = (2n-1)(n/2+!)(3n)2
!! 9n + 13.5n - 9n •

The value of R is about 9 for large n. All the
formulas shown in this section are also shown in
Table 1 (a) and (b) for comparison with the new
parallel algorithms proposed in section 4.

i.Z Reoursiye Filterins Problems

Another application of the systolic array
architecture is in evaluating a recurrence equa
tion which is used, for example, for recursive
digital filtering in signal processing problems.
An m-th order recurrence problem. is defined as

Xi = Fi (xi _1' •••• ,xi _m) for 1£1 (6)
where Fi is a given recurrence function and Xi is
calculated ·from its m predecessors. Assume Xi
(i~O) is given.

* A band matrix is a matrix with elements ai j
for which '
ai =0 if j>i+p or i>j+q 1~,~ and 1~,~j

'the width (W) of the band matrix is (p+q-1).

In this computation, ~ is m.n and I is n+m;
the lower bound of the PB2 is2found as follows:

1(1 = mn + m n.
The complexity PB~ for th~ algo~ithm in [4] is

m(1)(2n) = 4n m.
The value of R is about 4 for this algorithm.

~.~~Multiplication

A matrix multiplication is represented as
C=AB (7)

where matrices A, B, and Care n by n band
matrices with elements a1 j' bj k' and ci k
respectively. (A dense matr i is a 'special ca~e
of a band matrix with a full band width.) Let W1
and W2 be the widths of band matrices A and B.

The operation of equation (7) can be per
formed by calculating

n
ci k = I ai j·b j k for 1~,~. (8)

, j=1 ' ,

lfAz:.r.Qx.DaD4 ~ Multiplication

For a band matrix multiplication represented
in equation (7) with the condition W1,W2«n, the
product CI can be derived as follows:

C ! W1.W2.n
I ! 2(W1+W2)n 2

C~ ! 2(W1+W2)W1.W2.n •
The complexity PBT of the matrix multiplication
systolic algorithm can be derived as follows:

P = W1.W2
B = 2(W.1+W2)/3
T = 3n+M M = m~n(W1'W2)

and PBT2 = 6(W1+W2)W1.W2n
therefore, R = 3

~~ Multiplication

For a dense matrix multiplication, the pro
duct CI can derived be as3follows:

C = n
I = 3n2

CI = 3n5
The complexity PBT2 of the systolic algorithm in
[4,5] can be derived as follows:

P = 3n2 (Only 3n2 out of 4n2 processors
contribute toward the computation.)

B

and PBT2
with R

=
=
=
=

2n
5n
150·n5,
50

All the equations shown in this section are
also shown in Table 2 (a) and (b) for comparison
with other matrix multiplication parallel algo
rithms.

~.lI. Remarks

The values of PBT2, CI, and R derived in sec
tions 3.1, 3.2, and 3.3 suggest that the systOli~
algorithms might be improved to obtain lower PBT
values and better performance.

From [4,5], we know that the systolic algo
rithms do not pipe data elements into every pro
cessor in every time unit in order to synchronize
with other data streams when performing the
expected computations. This, however, idles one
half to two-thirds of the processors at any given

273

time.

Three straightforward methods can be used to
overcome this problem. First, independent, func
tionally equivalent computations can be inter
leaved in the array to obtain high throughput.
However, functionally equivalent computational
tasks do not always exist in the system at the
same time. Another method is to partition a compu
tation into independent computations of the same
size and interleave them in the array. Unfor
tunately, not all oomputations can be partitioned
into independent computations; also, some overhead
must be paid for end conditions. Finally, one
processor element can be used to do the job of two
(or three) adjacent processors, since the others
are idle all the time in the existing schemes.
Although this increases the efficiency of the sys
tem, this method still does not exploit all of the
inherent parallelism in the given computation and
will require a complicated data transfer and con
trol scheme.

lI.~ Efficient Parallel Algorithms
~ Processor ~

A data broadcast concept is introduced in
section 4.1. Incorporating this concept into pro
cessor arrays for processing recursive filtering
problems, matrix-vector multiplication, and dense
matrix multiplication results in better perfor
mance; these are discussed in sections 4.3, 4.2,
and 4.4, respectively. In addition, more efficient
algorithms for matrix multiplications using the
two-dimensional hexagonal-connected systolic array
[5] are given in section 4.4.

lI..~nat& Broadcast
Data broadcast is defined as sending a data

element to all processors at the same time in a
multiprocessor system; it can be achieved by con
necting a common bus to all processors in the sys
tem. Data broadcast to each PE may not make sense
for many computations. However, for some particu
lar computations, it provides a better performance
and is an alternative approach for reducing the
communication requests between the array and the
host. Sections 4.2 and 4.3 will show that the
processor arrays with data broadcast capability
(called broadcast processor arrays) provide better
performance than the systolic arrays in [4,5] when
they perform the matrix-vector multiplication and
recursive filtering problems.

A new inner product processor with data
broadoast capability is shown in Figure 2(c) and
called a type-C processor in this paper. The input
and output of the register Rb of the type-C pro
cessor are connected directly; thus, a data ele
ment loaded into the input of register Rb will be
broadcast to the registers Rb-Of all the proces
sors in that row.

Although a driver is required to drive a
broadcast path, it only takes a limited area [6].
Furthermore, the propagation delay of the broad
cast data transfer may be larger than that for a
nonbroadcast array. However, the delay is no
worse than that of a clook driving a whole chip or
system, and the data is transferred in parallel

with the computation (such as with a multiplica
tion and an addition in inner product processor
arrays) which usually takes many cycles. Thus the
delay in data broadcast does not significantly
affect the performance" of processor arrays.

lL.~ HiLt.rJJt.-~ Multiplication

A broadcast array for band .matrix-vector mul
t,1plication is const.ructed by connecting W type-C
processors ina row whereW is the width of the
band of the matrix. An array with its associated
data stream is shown in Figure 3(b) for the compu-
tation in Figure 3(a).

0 3• a ..

0 23 0 33

0 12 0 22

all

°Il all x t Y I

° 21 0 22 02l X2 Y2

all 0» all a l_ Xl YJ

042 AU A .. 0.5
•. X • Y.

Fig. 3(a) A Matrix-Vector Multiplication with p=2,q=3

a S4 0 84

043 0 53

0 32 0 42

0 21 0 31

Fig •. 3(b) A Broadcast Processor with Data Streams
for the Multiplication in Fig. 3(a)

The algorithm of the computation is reviewed
as follows. All the registers Rc in the array are
initially set to zero. At time j (~1), Xj is
broadcast to all ~ registers, the element
aC1+D_k) j is loaded into register Ra of the k-th
pNScess{)~ from the right and the element y i+ 1
enters the array from the right; the elbiiit
y.1 1 is initially set to zero, and it accumu
llta; the product of ai j and Xi in each processor
as it flows to the I~rt. ThUs, the matrix A is
loaded into the array column by column and all the
computations associated with Xi are performed in
the time unit j. In the remaind~r of this paper,
the data flow of matrix A is called a Column
Diagonal Form (CDF) of the matrix A, since the
matrix elements (a) are processed ~.Ia
~ and followed i61 its diasopal successors
(ai +1,j+1)·

.lW:l:mI. JaA!l Hi!rJ.x-~ Multiplication
For the matrix-vector multiplication in

equation (4) with W«n, the algorithm for the
broadcast array requires

P = W
B = W+2
T = n+W

andpB~u:'W(W+2)(n+w)2 5 (w2+2W)n2 for W«n.
From the value of CI derived in section 3, it can
be seen that the ratio R approaches 1 and the
algorithm is therefore optimal.

274

All the values of P, B, T, PBT2 and R
required by the algorithms in this section and by
the algorithm in [4] to perform a narrow band
matrix-vector multiplication are summarized in
Table 1 (a).

lluB HiLt.rJJt.-~ Multipliqation

For matrix-vector multiplications with W > n,
a data format transform called partial row trans
lation (PRT) was proposed in [7] to modify the
original systolic data flow for an efficiency
improvement. The broadcast technique in combina
tion with the PRT technique provides a greater
efficiency when W>n.

lL.~ Reqursiye Filterins Problems

A linearly connected broadcast array with m
type-C processors and one buffer can be used to
solve the m-th order recurrence problem in equa
tion (6). In order to illustrate the idea and the
improvement gained by the data broadcast tech
nique, the example used in [4] is given here as
follows:

Xi = a·x~_1 + b·xi 2 + c·xi 3 + d (9)
where a,b,c and dare-constants.

Figure 4 shows the array structure and the
data streams for this example. Before the compu
tation starts, the constants a, b, and care

!~~e~es:::t~!~~;~ !:dr:~!s!~::t!fttO~ ~:c~t~~~e~~

Fig. 4 A Broadcast Array for the Computation of a
3rd Order Recurrence Problem

the right most processor, for the entire computa
tion. At the beginning of the time unit i, each
xi (iL1) with an initial value, d, emerges from
the right most processor and accumulates its par
tial product terms as it passes through the system
to the left. The left side of the linearly con
nected array is a buffer. It is used to latch the
final value of xi at time i (i>m) and to broadcast
it back to Rb of all other processors in order to
compute xi+1' xit2 ' and xi+3. During the first m
time units, fie given values of x l' x
m+2' ••• 'xO are broadcast in sequence, one-~ each
tl.me unit.

A result is piped out from the buffer every
time unit instead of every other time unit as in
the original systolic array. The algorithm in this
section requires
P = m+1
B = 1

T = n+2m

(the constant a, b, c, and dare
prestored in the array.)
(including m time units required to setup
the constant a, b, c, and d in serial.)

thus~ 2
PBT = (m+1)(n+2m) = (m+1)n2 when n»m.

When n»m, which is the usual case in signal pro
cessing problems, the value of R approaches
(m+1)/mj this implies that the algorithm is
optimal in the limit.

~.~ ~ Multiplication

Since the matrix multiplication systolic
algorithm in [4,5] does not perform efficiently
for band matrix multiplication with large W, an
algorithm was proposed in [7] for an or tho
connected array, such as for the MPP system, to
achieve a better performance in processing the
band matrix multiplication when W>n. However, this
array cannot perform narrow band matrix multipli
cation efficiently.

When we stack n matrix-vector multiplication
broadcast processor arrays in a broadcast two
dimensional array, it can be used to perform
dense matrix multiplication. Figure 5 shows the
broadcast two-dimensional array and the data
streams for proceSSing a dense matrix multiplica
tion. When the matrix A is broadcast from the left
side of the array and B is fed into the array from
the top edge, each processor in the array is used
to accumulate the partial product terms for an
element of the matrix Cj the fihal result of the
matrix C is shifted out after the computation is
done. This array performs dense matrix multipli
cation very effiCiently, but it has the same prob
lem of inefficient narrow band matrix multiplica
tion as the array in [7].

We therefore modify the original hexagonal
connected systolic array by reversing the data

l
q,l b4Z b43 b44

b.J1 b3Z b33 b
34

~l bzz b Z3 bZ4

~l bIZ q3 q4

<J.i.4 ~3 ~z ~r

°Z4 °Z3
~

Clzz ~1

°34 ° °32 °31 33

°44 °43 °42 °41

Fig. 5 The Data Streams for a Broadcast 2-Dimensional
Array to Perform a Dense Matrix Multiplication

275

flow direction of the result. Our parallel algo
rithms performed in this structure provide better
performance for both narrow and dense matrix mul
tiplica tions.

~~~ Multiplication 

In addition to the CDF, we introduce two 
more data flow formats called Row-Diagonal Form 
(RDF) and Backdiagonal-Diagonal form (BDF) , which 
can be used in matrix multiplication algorithms 
with a greater performance. When a matrix is pro
cessed in RDF in a systolic array, the elements 
are loaded into PEs ~~ ~ and followed by 
their diaional successors. The BDF owes.its name 
to the fact that because the backdiagonal of the 
processed matrix flows into the array in a line 
and each element is followed by its diagonal suc
cessor in the matrix. 

For the band matrix multiplication with W,=3 
and W2=4 shown in Figure 6(a), Figure 6(b) shows 
the systolic array and data streams flowing in the 
directions indicated by the arrows. The matrix A 
in RDF is loaded into the array from the left top 
boundary, B in CDF from the right top, and C in 
BDF from both sides of the top. All the elements 
in the bands of matrices A, B, and C move synchro
nously through the array in three directions. Each 

•• 
those 

{ 

A backdiagonal of a matrix consists of 
elements aii with the property 
ai,j I i+j =''tlonstant for '~i,j~n}. 



a 11 a 12 
0 

b 11 b 12 b 13 0 C 11 C 12 C 13 C 14 0 
a 21 a 22 a 23 b 21 b 22 b23 b 24 C 21 C 22 C 23 C 24 C 25 

a 32 all a 34 * b32 b 3l b 34 b 35 = Cll C32 C33 Cl4 

b4;5 C 42 

0 0 0 

Fig. 6(a) Band Matrix Multiplication, W1=3 and W2=4 

1 

Fig. 6(b) Data Streams and Hardware Configuration 
for the Band Matrix Multiplication in Fig. 6(a) 

ci k is initialized to zero as it enters the array 
and accumul~tes all its partial product terms 
before it leaves the array through the bottom 
boundary. Figure 7(a), 7(b), 7(c), and 7(d) show 
four steps of the matrix multiplication in Figure 
6. 

The complexity PBT2 of this algorithm can be 
derived. from the data as follows: 

P = W1.W2 
B = 2(W,+W2)/3 
T = n+M; M = min(W"W2) 

and tQen 
PB~!2.W1.W2(W1+w2)n2 when n»M 

R = , 
The value of R is improved from 3 with the origi
nal algorithm to 1 with the algorithm in this sec
tion. The value of R of the algorithm and array 
in [7] is O(n); it is therefore inefficient for 
large n. 

276 

~~ Multiplication 

For processing band matrices with W>n, the 
processors in the two ends of the array process 
only a few operations and are idle for the other 
times; this causes the algorithms in [4,5] and the 
ones in this paper for narrow matrix multiplica
tions to be inefficient. 

We now propose ti.le new data flow formats 
('oM' SoM' and CDH) constructed from the data 
formats -- matrices A in RDF, B in CDF and C in 
BDF. Applying these new formats to the hexagonal 
connected systolic array provides greater effi
ciency improvement for dense matrix multiplica
tion. In order to describe the data rearrangement 
scheme for a multiplication wLth two band matrices 
with W1,W2>n, Figure 6(b) shows that each of the 
matrices A, B, and C is divided into three parts 

• •• DM represents dense matrix. 



(d) 

Fig. 7 First 4 Steps of the Computation on Fig. 6 

-- main diagonal, upper part, and lower part; they 
are represented by the subscripts m, u, and ~ 
respectively. 

The data format ~ of the mat~ix A is formed 
with Au concatenated by A~ and Am' then by another 
copy ot" A as shown in Figure 8. The format BnH 
is formeM with »-~ concatenated by Bu and Bm, then 
by another copy of B~. The format CDM is formed 
with the matrix C in BDF concatena~ed by Cu and 
C~. Both BDM and CDM are also shown in Figure 8. 

The data in formats AoM' BoM' and COM are fed 
into the array through the bounaary processors at 
the top left, top right and at both sides respec
tively as shown in Figure 8 to perform a dense 
matrix multiplication. Each element in the matrix 
C is initially set to zero the first time it is 
fed into the array. It passes through n processors 
in one or two columns to accumulate its n partia~ 
product terms. From Figure 8, we know only n 
processors and 2n time units are required to per
form a n-by-n dense matrix multiplication. 

277 

The values of PBr2 and R of the algorithm can 
be derived from the values of P, B, and T as fol-
lows: 

P = n2 
B = 6n 
T = 2n 

and theg 
PBT' = 24*n5 

R = 8 
All the values of P, B, T, PBr2, and R for dif
ferent algorithms and arrays to perform dense 
matrix multiplication are summarized in Table 
2(b). It shows that the broadcast two-dimensional 
array performs most efficiently for dense matrix 
multiplication, but it is not suited for narrow 
band matrix multiplication. The two algorithms 
proposed in this section can be chosen to obtain 
the best performance for matrix multiplication 
with distinct values of W in the same array. 
Using the algorithms in [5], [7], and this paper 
to perform matrix multiplications for various 
values of W, the values of the ratio R are plotted 



1 

Fig. 8 The Data Streams A ,B ,and C 
for a 4-by-4 Dense~tr~ MUltiP~cation 

in Figure 9. It shows that the algorithms pro
posed in this paper provide the highest efficiency 
when performing matrix multiplication. They are 
also the most efficient for the cases between 
narrow-band and dense matrices. 

Conclusion 

The measures PBT2 and R have been proposed 
in this paper to evaluate the efficienoy of an 
algorithm when it is performe~ on a processor 
array. A data broadcast conoept was introduced for 
prooessor arrays to obtain better performance for 
partioular computations. Several parallel algo
rithms and prooessor arrays have been presented 
to obtain an effioient performance for the reour
sive filtering problem, matrix-vector multiplioa
tion, and matrix multiplication. 

Acknowledgement 
The authors like to thank Prof. Janak H. 

Patel for his contribution to the idea in Section 
4.2. 

References 

[1] Sugarman, R. ,nSuperpowern computers,' liIl 
Spectrum, April 1980, pp. 28-34. 

[2] Batoher, K. E. 'Design of a Massively Paral
lel Prooessor,' liIl .Ir.aDa. Computers, Vol. 
C-29, No.9, Sept. 1980, pp. 836-840. 

[3] Fountain, T. J. 'Toward CLIP 6 - an Extra 
Dimension,' .liB. CQmputer Society workshop ml 
Computer Architegture ~ Pattern Analysis 
.and. .lmAu. Dstabase Management, Hot Springs, 
Virginia, Nov. 1981, pp. 25-30. 

70 

W=W1=W2 

56 

42 

a 
R 

28 b 

14t 
c 

o L...-I _L----l.-------'_--'-----.---1 

00 (\J to (\J 

(t.vn 

Fig. 9 The Ratio R for Matrix Multiplioation vs WIn 
(a) the Original Systolio Algorithm 

278 

(b) the Algorithm for the Ortho-Connected 
Array with PRT 

(0) the Algorithm Proposed in this Paper 



[4] Kung, H.T. 'The Structure of Parallel Algo
rithms,' Adyances ~ Computers. vol 19: 

[6] C.A. Mead and L.A. Conway, Introduction ~ 
~ Systems. Massachusetts: Addison-Wesley, 
1980. Academic Press, 1980, pp. 65-112. 

[5] Kung, H.T. and Leiserson, C.E. 'Systolic 
Arrays (for VLSI) , ' ~ Ha.t.r.U. ~. 
1978, Society for Industrial and Applied 
Mathematics, 1979, pp. 256-282. 

[7] Priester, R. W., Whitehouse, H. J., Bromley, 
K. and Clary, J. B. 'Signal Processing with 
Systolic Arrays,' 12a1 International Confer
~ ~ Parallel Processoring, Bellaire, 
Michigan, pp. 207-215. 

systolic algorithm 
in (4) 

broadcast algorithm 
in this paper 

W 
W+2 
n+W 

P 
B 
T 

systolic 
19orithm 

in [4] 

broadcast 
algorithm 
in this paper 

2n-1 
n+2 
2n 

algorithm 
in [4] 
with PRT 

broadcast 
algorithm 
with PRT 

P 
B 
T 

PBr2 
R 

W 
W/2+1 
2ij+W 

!! 2(W'+2W)n2 
2 

!! (W2+2W)n2 
1 

PBT2 
R 

2n-1 
n/2+1 
3n 

!!9n4 
9 

!!8n4 
8 

n 
nl2+1 
3n 

!!4.5n4 
4.5 

Table 1(a) S~ry of the values of P, B, 
T, R, and PBT' for band matrix-vector 
multiplication for W«~~ with2C = W*n, 
I = (W+2)n, and CI = (W-+2W)n • 

Table~(b) Summary of the values of P, B, T, R, and 
PB for d~nse matrix-vector multiPl!Cat30n, 
with C = n, I = (n+2)n, and CI = n +2n • 

P 
B 
T 

PBr2 
R 

ortho-
systolic connected the algorithm 
algorithm algorithm in section 4.4 
in [4] in [8] for band matrices 

P W1*W2 nM Wl*W2 
B 2(W1+~)/3 W1+~ 2 W~tW2) 

PB; 
_ 3n+ 2 3n+ 3 _ n+ 2 
=6W1*W2(W1+W2)n !!9M(WtW2)n =2W1*W~(W1+W2)n 

R 3 o n) 

Tab] e 2(a) 
PBT2 for 
with C 
and CI 

Summary of the values of P, B, T, R, and 
band matrix multiplication for W«n, 
: W1*W2*n, I = 22(W1+W2)n, 
= 2lW1+W2)W1*W2*n. 

ortho- algorithm in algorithm in broadcast 
systolic connected section 4.4 section 4.4 two-dimensional 
algorithm algorithm for band for dense processor 
in [4] with PRT [8] matrices matrices array algorithm 

3n2 n2 3n2 n2 n2 
2n 2n 4n 6n 2n 
5n 

150n5 
5n 

50n5 
3n 

108n5 
2n 

24n5 
3n 

18n5 
50 17 36 8 6 

Table~(b) Summary of the values of P, B, T, R, and 
PB for d~nse matr~ multiPlicatson, 
with C = n , I = 3n , and CI = 3n • 

279 



PARALLEL SIMULATION BY MEANS OF A 
PRE SCHEDULED MIMD- SYSTEM FEATURING 

SYNCHRONOUS PIPELINE PROCESSORS 

M. Tadjan, R.E. Buehrer, W. Haelg 

ETH (Swiss Federal Institute of Technology) 
Institut fur Reaktortechnik 
CH-8092 Zurich, Switzerland 

Abstract --- The software package PSCSP (£ower
~eries £ontinuous ~imulation £rogram) for the 
simulation of continuous systems being developed 
at ETH achieves a great deal of parallelism by 
making use of the power-series integration tech
nique. A parallel version of PSCSP currently runs 
on the ETH-Multiprocessor EMPRESS. 

The new processor scheduling strategy presented in 
this paper was developed in order to further im
prove the processing time of this integration meth
od. A summary of different performance studies is 
presented, demonstrating that this method is very 
well suited for an MIMD- Parallel processor con
sisting of several synchronous pipeline processors 
connected to a powerful EMPRESS-type intercommuni
cation memory. A description of such an architec
ture is given. 

Introduction 

The software package PSCSP (£ower-~eries £ontinu
ous ~imulation £rogram) (a) for the simulation of 
continuous systems makes use of the power-series 
integration method. In addition to a fundamental 
high integration speed this technique offers a 
great amount of parallelism ideally suited for an 
implementation in an appropriate MIMD- (multiple
instruction stream - ~ultiple-£ata stre~) paral
lel processor. Earlier predicted speed improve
ments (2) are currently verified on the ETH-Multi
processor EMPRESS (5). 

To give a survey of some features of PSCSP which 
are important in this context we first describe 
briefly the method of integrating by means of 
power-series and the parallelization concept used 
in the pa~allel version of PSCSP. The improved 
schedulingptrategy is explained afterwards and -
illustrated by a practical example - the theoreti
cal gain in speed ,achievable by this technique is 
presented. In the final section a parallel 
processor consisting of synchronous pipeline 
processors connected by an EMPRESS-type intercommu
nication memory (intercom) is described. 

(a)PSCSp, designed and written at ETH (3), actu
ally exists in two versions: the sequential ver
sion is intended for implementation on a standard 
computer such as the PDP-11, the DEC-10, etc., 
while the parallel version is implemented on the 
ETH-Multiprocessor EMPRESS (3,4,5). 

0190-3918/82/0000/0280$00.75 © 1982 IEEE 280 

Parallel integration by means of power-series 

A system of n first order differential equations 
is given as follows: 
dy. 

dx~ = f i (x'Y1'···'Yn) (i 1,2, .•• n) 

where 

fi(xo ) = Yio 

are given as initial values. 

The solution for Yi(x) at x=xo+h using the method 
of power-series expansion is 

00 (x-x )V 
y. (x) = I y.(x )v 0 (2) 
~ v=o ~ 0 v! 

(fi(xo 'Y1' ... 'Yn) must be holomorphic in the inter
val (x-xo)). In order to proceed numerically, (2) 
is separated as follows: 

Vo v hV 
Yi(x) = I Yi(xo ) • ~ + Ri(Vo'X) (3) 

v=o 
When all Ri(vo'x) satisfy a given convergence cri
terion (3) the expansion is terminated and calcula
tion of the next Yi(x) is started with x:=x+h, xo: 
=xo+h). Otherwise, v is further increased and an 
additional term is added to (3). 

In (2),(3) it is shown that evaluation of the 
function fi in (1) can be separated into individual 
tasks having the nature of simple arithmetic opera
tions (e.g. r=p+q, r=p*q etc.) or elementary func
tions (e.g. r=g(p)). These tasks can be standard
ized and stored in a program library. (This elimi
nates the need for calculating specific and compli
cated recursion formulas for each individual fi; 
instead one can define simple recursion formulas 
for the tasks mentioned. As a result calculation 
of the coefficients in (2) is rather trivial.) In 
general, depending on the structure of the problem 
to be simulated, several of these tasks are inde
pendent of each other and can therefore be calcu
lated simultaneously (first stage of parallelism). 
As shown in the following example, the recursion 
formulas of the recursive tasks additionally show 
an inherent parallelism (second stage of par
allelism) . 

Example 

(4) 



By defining rv 
(v) hV 

r .,,! l?" 

q = Cl(v). hV 

""\) v! 

(v) hV 

P • v! 

the corresponding recursion formula reads, 

r 
v s=o 

(v > 0) 

In (3) it is shown that all other recursive tasks 
lead to similar recursion formulas. The calcula
tion of such sums of products can be done Cluite 
easily by means of "recursive doubling". The 
critical path length of such schemes is directly 
dependent on v. 

A sample calculation of component fiv of fi(x) is 
illustrated in figure 1. As a conseCluence the time 
for calculating fiv is also dependent on v. 

Performance improvement by means of 
a new processor scheduling strategy 

Reduction of the critical path length 

The calculation time for fiv (see figure 1) can be 
reduced substantially if one can find a scheme 
where a complete pass is independent of v (i.e. 
the critical path length is constant). The exist
ence of such a strategy is demonstrated below, 
using recursion formula (5), 

v 

rv I Ps * ~-s 
s=o 

The formula can be separated as follows 
v-1 

r 
v Po * ~ + Pv * '10 + L Ps * ~-s 

, s=l , 
R 

(6) 

v 
The eCluivalent separation at (v+1) can be written 

where 

v 

+ L Ps * ~+l-s 
s=l 

~ v+1 
v-1 

Rv+1 = P1 * 'Iv + Pv * '11 + L p * q ,s-2 s ""\)+l-s 
(8) 

In the standard 
and r v+1 in the 
in (71 contains 
variables p and 
Rv+1 already at 
S1nce 

R * v 
PSCSP rv is calculated in one pass 
next. The fact that Rv+1 of rv+1 
at most the v'th derivatives of 
'1 makes it possible to compute 
the time r is calculated. 

v 

r v+1 = Po * ~+1 + Pv+1 * '10 + C, where C = Rv+1 

is completely independent of v, recursive tasks 
are reduced to nonlinear ones, provided Rv+1 is 
available after rv has been calculated. The modi
fied graph for the example of figure 1 is pres
ented in figure 2. The critical path length is 
constant. 

281 

Processor scheduling strategy 

Given 
- a task system B=(T,<) in which T= (A1, ••• ,A ) 

eCluals a set of tasks and < is the partial gr
dering relation. 
Ai<Aj implies that Aj cannot start execution pri
or to completion of Ai. 
a weigpting function a(Ai), representing the ex
ecution time ~i = a(Ai)' 
a fixed number of identical processors, n. 
The objective is to find a partition T1 .•• Tn of 
T such that the largest execution time on any 
processor 

t = max (E ~j) (10.) 
max ".i ~'e:T' 

o 0 0 0 J ~ 0 

1S m1n1m1zed. Cons1derable attent10n must be paid 
to the development of fast heuristic scheduling 
algorithms, yielding suboptimal results (7,8). 

Whenever a simulation problem has a deterministic 
structure (i.e. if one has a time-invariant problem) 
its task system is identical for each integration 
step. ConseCluently, compilation and scheduling 
have to be done only once. The appropriate (sched
uling) information for each individual processor 
can be computed in advance and loaded into the 
corresponding processor memories. 

The standard parallel version of PSCSP is able to 
create graphs for deterministic problems as out
lined in figure 1. By means of the previously dis
cussed method of reducing the critical path length 
graphs like the one shown in figure 2 are obtain
able. 

In order to compare both versions in terms of to-
tal execution time t (10) a model of a parallel 
processor was define~~nd simulated on a PDP-11. 
This model consists of a number of synchronously 
working pipeline processors and an intercommunica
tion memory intercom as will be outlined in the 
hardware description later on. The arithmetic of 
each processor is a dynamic multifunction pipeline 
(9), whereby the number of stages can be varied in 
the model. The execution times of any operation 
(e.g. addition, multiplication etc.) within a task 
are variable too, but are assumed to be identical 
in this example. Both graphs (figure 1,2) were 
scheduled according to the "level algorithm" (8). 
As a reference we also determined the ideal calcu
lation time tideal' given as 

(any task To is part of the critical path). 
1 

( 11) 

As expected, execution times referring to the im
proved graph turned out to be significantly 
shorter. Results for one of these examples, the 
"restricted three body problem"· (3), are presented 
in figure 3. 



Hardware description of an 
appropriate multiprocessor 

The multiprocessor described below has been des
igned in accordance with the requirements of the 
integration technique just described. Components 
and related functions are presented in table 1. 
The intercom, being a slightly modified version of 
the one installed in the ETH-multiprocessor 
EMPRESS (5), consists of a quadratic organized 
memory matrix whereby an individual processor 
duplicates its data into all elements of its asso
ciated row (see figure 4). Reading is possible in 
all elements of its associated column. In additio~ 
every execute processor has the facilities to 
write into the supervisor row (in this mode, at a 
specific time slot only one execute processor or 
the supervisor itself gets access to the cor~ 
responding write lines wl s )' As mentioned earlier, 
scheduling of the execute processors is done at 
compilation time in the supervisor processor. As a 
result, prior to the start of the integration part 
the program memories of all execute processors are 
loaded by the supervisor. 

The synchronization of the execute processors is 
controled by a dedicated logic in the supervisor 
processor. Note that intermediate results of the 
"recursive doubling" and the results ai (figure 2) 
are available in the execute processor region of 
the intercom while the results of fiv are trans
ferred at a pre scheduled time slot by the appro
priate execute processor to the supervisor row to 
be available for further processing. 

Conclusions 

The need for efficient algorithms and powerful 
computer hardware is very acute in the field of 
digital simulation. The outlined method of in
tegrating differential equations by means of 
power-series in a pre scheduled MIMD- pipeline
multiprocessor points out possible solutions for 
some of the problems in this field. The relative
ly large effort of compilation (including the 
scheduling of processors) is worth-while because 
in many simulation problems one does not often 
have to change the model but only related para
meters. Compilation needs to be done only once for 
different runs, allowing an unrestricted profit 
from the fast execution of the integration part. 

References 

( 1) Flynn M. J ., "Some Computer Organizations and 
Their Effectiveness" IEEE Transactions on 
Computers, Vol. C-21 , No.9, September 1972, 
pp. 948-960 

(2) Halin H.J., Buehrer R. and Haelg W., 
"Software Development for the ETH-Multiproc
essor Project: Partial Integration of Ordinary 
and Partial Differential Equations by Means of 
Power Series" Proceedings of the Second IMACS 
(AlCA) International Symposium on Computer 
Methods for Partial Differential Eguations, 
(Lehigh University,Bethlehem, Pennsylvania), 
1977 

(3) Halin H.J., Buehrer R., Haelg W., Benz H., 
Bron B., Brundiers H.J., Isacson A., Tadjan M. 
"The ETH Multiprocessor Project: Parallel 
Simulation of Continuous Systems" 
Simulation, October 1980, pp. 109-123 

(4) Buehrer R., "A New Type of MIMD-Type Multi
processor Handling Two-stage Parallelism by 
Means of a Dynamically Configurable Archi
tecture" In Liu M.T. and Rothstein J., editors 
Proceedings of the 1981 International Confer
ence on Parallel Processing, 1981, pp. 292-293 

(5) Buehrer R., "Hardware eines dynamisch kon
figurierbaren Multiprozessors" PhD thesis 6930, 
Swiss Federal Institute of Technology Zuerich, 
1981 

(6) Tadjan M., PhD thesis, Swiss Federal Institute 
of Technology Zuerich, to be published 

~) Adam T.L., Chandy K.M. and Dickinson J.R., 
"A Comparison of List Schedules for Parallel 
Processing Systems" Corom. of the ACM 17, 12, 
1974, pp. 685-690 

(8) Coffmann E.G.Jr., Leung J.Y-T. and Slutz D., 
"On the Optimality of First-fit and Level 
Algorithms for Parallel Machine Assignment 
and Sequencing" Proceedings of the Interna
tional Conference on Parallel Processing, Ed. 
J.L. Baer 1977, pp. 95-99 

(9) Ramamoorthy C. V. and Li H. F . 
"Pipeline Architecture" Computing Surveys, 
Vol. 9, No.1, 1977 

Table 1: Functional survey of the multiprocessor components 

Component Function 

Supervisor computer - 1/0 activities 
- program compilation, preparation 

and execute processor scheduling 
- control of integration 

Execute processors - execution of arithmetic operations 
- data provision for further calculations 

Intercom - simUltaneous transfer of intermediate 
or final results 

282 



1 

at 

/ 
I / 

d 6 
f 11' f 

21' 
f. 

II' 

0 non-recursive task, single instr. ; al 
cpl " f(v) 

0 1 @ recursive task cpl f(v) 
cpl: critical path length 

Figure 1: Calculation of fi v example 

execution 
time 

800 

600 

400 

200 

2 

o standard schedullllQ 

• optimized schedullnQ 

s number of pipeline staQII 

4 6 8 10 12 14 16 
number of 
processors 

Figure 3: Performance improvement by 
means of an optimized 
scheduling strategy 

283 

Ra .,1'+' Ra .11+1 Ra. 1'+ 1 
4 8' 9 I 

t 

f11' 

/ I 
/ I 

d6 

0 non-recursive task, single instr.; 
aj cpl :/ f (v) 

a i•• 

non-recursive task, multiple instr.; 
cpl l' f (v) 

Raj' 1'+ 1 @ recursive task; cpl = f (v) 

cpl: critical path length 

Figure 2: Optimized calculation of fi 
v 

Execute (pipeline) processor 
write lines rl.: read lines 

1. 

Mi Program memory 

example 

INT. 
1. 

Intercome Interface Sync: Synchronize 
signal 

M. 
S1. 

Dual Port Memory 32 k words ) 

M •• Dual Port 
1.J 

Memory '" 64 words ) 

(i1's) 

Figure 4: Architecture of the Multiprocessor 



Pipelining Array Computations for MIJID Parallelism: 
A Functiop Speci1lcation. 

by Dennis Gannon 
Department of Computer Sciences, Purdue University 

West Lafayette, Indiana 

Introduction 
This paper describes a formal link between the 

data fiow model of MIMD computation and the design 
and analysis of systolic systems. To establish the rela
tionship between these two models of computation we 
describe a small set of functional operators which will 
enable us to express many vector and array algo
rithms !loS networks of interacting data-driven 
processes. Using these tools, we will then show that 
the data flow graphs of many functions can ge refor
mulated as "systolic" systems. 

The main result of the paper is a theorem which 
gives conditions which will garentee that the systolic 
version of the computation graph will perform asymp
totically as fast as a fully concurrent execution of the 
original data flow graph. 

Vector Valued Data Floy Operators. 
The majority of highly parallel computation is 

based on array and vector data structures formed 
from primitive scalar types such as the integers Z, the 
reals R, booleans B, and complex number C. Let 
IT; i= loon} be a set of primitive data types. Define 
the direct product type, written as 

n 
nT, or as TlxTaX'" xTn , 

';=1 

to be the set of n-tuples 

(Xl,X2,x3,""Xn ) with x,e:T,; for i=1..n. 

More generally we define a d.oma.in recursively as 
either 

1 A primitive scalar type such as Z, R, B, or C. 
2 The direct direct product of a finite set of 

domains. 
n 

For example, the. set of real n-vectors is n R 
(=1 

which is denoted by Rn and the set of n by m integer 
m 

arrays is n Zn. An array of 'records' such that each 
(=1 

record contains an integer, a boolean, and 2 reals 
" could be described as .n (ZxBxR2). The individual 

>=1 
components 'of a member of some domain will 
addressed by indexing that describes the position of 
the component in the structure. 

All of the programs constructed below will be 
described as "functions" 

,:D1--->D2 

from one domain DI to another D2• More precisely. , 
will be a structured set of interacting processes that 
collectively define a finite state machine (a function 
with memory in the sense described by Ackerman 
[Acke82J.) The basic components of a function are 
simple sequential processes that will be called cell 
functions. Each cell function performs a "small" set of 
scalar operation on a "small" set of variables. For 
example, the expression 

Research supported by NSF Grant MCS-8109512. 

0190-3918/82/0000/0284$00.75 © 1982 IEEE 284 

Cfunction f(x. y. z: R}: R; 
I 

f := y - (x+z); 
}; 

defines a function' :Rs ---> R which could be graphi
cally represented as shown in figure 2.1. 

'K-+-__ 

f 

Figure 2.1 Cell function node 

The inputs to a cell function represent queues of 
values. We shall define the execution semantics to be 
data-driven, Le. if at time to all input queues to a cell 
become nonempty. one value is removed from the 
head of each queue and at time to+1 the cell produces 
output values. 

Cell functions represent small units of sequential 
computation. Explicit parallelism is expressed 
through the application of higher order functional 
operators. Of the many possible classes of operators 
four are described below. 

A. The Product Operator. The simplest form of 
parallelism is the vectored application of a function. 
Given 

,,:D'I---->D'2 i=1..n 

The product operator defines a function 
n n n 
n '(: n D, ---> n D, 

(=1 ,=1 1 ,=1 2 

which represents the concurrent operation of the n 
functions ,,;. 

B. Permutation and Data Movement Operators. 
Many important computations cannot be specified 
completely without defining certain complex data 
movement operations. 

For example. the Rotation operation executes a 
right circular shift of a product structure. 

Rota.te/c(xl.a, ... xn) == (Xn-k+loXn-k+2 ..... Xn.Xl' .. ·.Xn-/c) 

Many other usefull permutations can be defined but 
they will not be needed here. 

C. Iterated Composition: The Chain Operator. 
Given a function 

':D",xD~ ---> D",xDc 

for some structured domains Da.' D~ and Dc. the chain 
operator defines a mechanism to iterate f over the 
values in Da.. More SpeCifically. if f is a function 
defined with the header 



function f(x: D,.; y: Db ): D,.xD.; 

then the iteration 

var x: D,.xDb; 

x := initial values; 

for i := 1 to n do 
I 

x:= f(x, yet) ); 

can have at least two interpretations when I is viewed 
as network of interacting cell functions. The simplest 
of meanings is given by the aha:in operator which con
structs from a function I a sequence of copies of I 
where the output if the i"' copy is directed to the 
input of the (i+l)1I1. copy. We denote this by 

n n n 
ChI : D,.x n Db ---+ D,.x n Db 
("1 ("I ("I 

which is represented by the graph in figure 2.2. 
Any composition of the operators and function 

constructors described above can be viewed as 
defining the data fiow graph of a program: graph edges 
correspond to the binding of function parameters and 
each edge represents a queue of values; graph nodes 
correspond to the basic cell functions. Because we 
have not specified any operators that may conditionaly 
select from a subset of input values, any function net
work has the property that the graph is acyclic and 
the order of arrival of operands to a cell node is deter
mined by the structure and not the timing of the sys
tem. The latter property shall be referred to as 

f 

Figure 2.2. 8hl (x ,y(i» 
,"I 

dependence synchronization and is sufficient to 
guarantee that pipe lining the system is entirely well 
defined. In particular, it implies that the "graph" may 
be executed on a data fiow machine where only the cell 
function address and argument position is needed to 
form the "packet address". 

285 

D. The Systolic Iteration. For a single set if input 
(x, y I, ... , y") the low utilization of the cell functions in 
n 

r;;,.1 represents a large memory (large silicon area) 
,"I 
cost for any hardware implementation of this con
struct. The natural alternative is to allow one copy of 
I to be used in "feedback" loop, Le. some of the out
puts of I are connected to some of its inputs as illus
trated in figure 2.3. While the resulting structure is 
not easy to initialize (see [GannB2] for detailS), it does 
permit the cells of I to be reused on each iteration . .. 

As a data flow operation orie can show that f'..1f1 is 

dependence synchronized if and only if f is depen
dence synchronized. On the other hand it is not clear 

.----

. 
• .. - -

Da 

_______ r----< Db --, 

f 

I __ ..J 

.. 
Figure 2.3 Syf graph structure. 

,"I 

that the Sy operation can express all the parallelism 
that is provided by the chain construction. In fact, it is 

n 
not hard to construct examples where i~' executes 

n 
O(n) times faster than f'..1f" There is, however, a 
situation where one can prove the the systolic itera
tion exhibits the same parallelism as the chain opera
tion. 

Recall that a function is said to be transitive if 
there exists a formal dependence of each component 
of the output on each component of the input. We shall 
say that a function I is weakly transitive if its k-fold 
self-compOSition (flo) is transitive for some k. Weakly 
transitive functions occur in computations such as the 
L-U decomposition of a matrix, convolution based 
operations such as the FFT, the solution of partial 
differential equations, the solution of linear 
recurrences, and many graph algorithms such as tran
sitive closure. In this case we have the result 

THEOREM. Let f be a weakly transitive function that 
executes in constant time. Then 

n n 
The time complexity of i~f is o(n) and time(f'..1f') 

n = time( Chf). 
i=1 

n 
2 As a data ftow graph the edges of f'..1f' represent 

queues of values. These queues are of bounded 
length where the bound depends only on f and 
notonn. 
The proof is given in the report [Gann82]. 
The above paragraphs .have stressed Data Flow 

semantics to describe systolic systems. The problem 
of transforming the data-driven semantics to a syn
chroneous set of processors has been considered by 
Cuny and Snyder [CuSn82]. 

To illustrate the above ideas and constructs, con
sider the qtlL order linear recurrence relation 



Zi:= t a.]:I:(-S i:=q +1 ..... 71. 
/=1 

z,:= c( i:=l ..... q 

where :1:(. c, and a.] i=l..n. ;=1 .. 71. are all real 
numbers. Programmed in the standard manner shown 
below the sequential complexity is roughly 2nq. 

The superscripts indicate iteration count and are 
suppressed in the sequentail computation. A cell func
tion to compute one step of the inner product formed 
by the summation is given by 

Cfunction ipstep(a. x. s:R): RzR; 
I 

I; 

ipstep2 := s + a.x; 
ipstepl := x; 

Applying the chain operator over the first parameter 
we generate the complete inner product 

function IP(x.a: R'l): RzR'l; 
I 

q 
IP := Ch ipstep(O,a..,z,); 

(=1 
I; 

which is pictured as the network in figure 3.1. 

Figure 3.1 The inner product function. 

The function has been constructed to compute the 
inner product as the first component of the result and 
return the values of x as the remaining q components. 
There is no parallelism in this function other than 
structural: each cell function can act only after its 
right neighbor acts. The complete recurrence is given 
by a second application of the chain operator. 

n 
,~IP(C'l,Cq-l'" .,C 1,a.: ..... a.\) 

which is pictured in figure 3.2 below. 

286 

n 
Figure 3.2 ChIP(c,x). 

i=1 

Notice that this application of the chain used the asso
ciativity of the direct product operator to identify 
R:z:Rq with R'l zR. The reassociation of the components 
of the output turn IP into a weakly transitive function. 
Hence, one may apply the Sy operation as a replace
ment for the last chain operation. The result is 

n 
z :=fj{IP(cq .Cq _l, .... C loa.: , .... 17.1 ) 

which is illustrated in figure 3.3. 

n 
Figure 3.3 SyI'P(c,a). 

'=1 

This structure is identical to the systolic recurrence 
solver of Kung and Leiserson [KuLe80]. (There are 
several other derivations of systolic arrays from 
formal principles. See for example Kuhn [Kuhn80].) 

References 
[Acke82] W. Ackerman. "Data Flow Languages," Com

puter. Feb. 1982 vol 15. no.2. 
[CuSn82]J. Cuny. L. Snyder, "The Coordination of Loop 

Data Flow Programs", Technical Report, 
Department of Computer Sciences. Purdue 
University, 1982. 

[Gann82] Pipelining Array Computations for MIMD 
Parallelism: A functional Specification. 
Technical Report. Department of Computer 
Sciences. Purdue University, 1982. 

[Kung80] H. T. Kung, C. E. Leiserson. "Algorithms for 
VLSI Processor Arrays", C. Mead and L. Con
way. Introduction to VLSI Systems, Adison
Wesley, Reading, Ma .. (1980). pp. 271-292. 

[KuhnBO] R. Kuhn, Ph. D. Thesis. Dept. of Computer Sci
ence, University of Illinios, Urbana, Illinios, 
1980. 



COMBINING PARTIAL RESULTS IN AN MIMD COMPUTER 

Harry F. Jordan 
Department of Electrical Engineering 

University of Colorado 
Boulder, Colorado, 80309 

Abstract 

One of the most demanding types of 
computation in an MIMD computer is one in which 
all instruction streams are tightly coupled in 
producing a single result. This paper treats 
this problem with respect to a shared memory 
multiprocessor. Experimental verification of 
the analysis is obtained on the HEP computer, a 
pipe lined multiprocessor. The specific problem 
analysed is directly comparable to a previous 
analysis of the same problem on a network 
computer. A comparison suggests that there is 
a strong correspondence between delays due to 
conflicting access to a shared memory cell in 
the current case and the conflict for use of 
communication links in the network computer case. 

Introduction 

In any MIMD computer an important type of 
computation is one in which a large number of 
processes contribute to a single result. The 
demands made by such a cooperative computation 
on the data communications and synchronization 
facilities of a parallel architecture are quite 
stringent if good performance is to be achieved. 
The author has previously been involved in a 
study of cooperative computation on a computer 
consisting of a large number of microprocessors 
sharing no memory but having several types of 
high performance communication structures [1]. 
The current paper deals with a true multi
processor in which all data memory is shared. 
The experimental resul~ presented are from the 
HEP computer [2,3,6], a pipelined, shared 
resource, MIMD machine. 

Summation of Partial Results 

In a multiple instruction stream computer 
numerical algorithms are carried out by multiple 
parallel instruction streams, or processes, 
which share data. A typical short term behavior 
is that N processes run completely independently 
through a computation P(i); i = l,2, ••• ,N after 
which some partial results V(i) must be combined 
across all processes. A typical form of combina
tion is summation, treated in the discussion 
which follows. The discussion applies, however, 
to reduction (in the APL sense [4]) over any 
commutative and associative dyadic operator. 

If we characterize the processes performing 
computations P(i) as producers of the partial 
results V(i) and identify a consumer process 
which uses the sum result R then two methods of 
performing the summation can be identified. The 
first method we call consumer driven because the 
consumer process executes instructions which 
actually perform the individual additions. We 
will use a dollar sign $ preceding a variable 

0190-3918/82/0000/0287$00.75 @ 1982 IEEE 287 

name to denote the combination of a value with a 
full/empty status as is done in the HEP mUltiple 
instruction stream computer [3]. Further we 
assume a hardware mechanism, as in HEP, which will 
delay the reading of such a variable until it is 
full and delay writing it until it is empty. 
Reading $V will set its status to empty while 
writing it will set the status to full. 

A producer driven summation which runs 
efficiently regardless of the order in which 
partial results are produced makes use of a 
single communications location to pass partial 
results to the consumer process. The hardware 
synchronization mechanisms prevent a producer 
from storing its result until a previously 
stored value has been consumed. The programs 
for producers and consumers then appear as: 

Producer 

$V := partial result j 

Consumer 

s := $V ; 

for K := 2 step 1 until N do 

s := s + $V ; 

$R := S 

Realizing that producers are essentially 
idle while waiting for the consumer to empty $V 
leads to the second method of summation which 
we call producer driven because the producers 
perform the actual additions. In this method the 
partial sum ( s in the above programs ). is shared 
by the N producers. This shared partial sum $S 
is initialized to zero and a count location 
$Count is initialized to N. The producer program 
is then: 

Producer j 

C := $Count - 1; 

s := $S + V(j); 

if C 'I 0 then begin $S := s; $Count := C end 

else $R := s; 

Most of the code executed by Producer j is 
concerned with counting the number of producers 
which have contributed to the sum and determining 
the last one, and hence completion of the result. 
This counting was done by the loop in the 
consumer driven method. If completion could be 
determined by some other means, then a producer 
could execute only: $S:= $S + V.. With the 

J 
completion count the consumer need only use the 
result $R when it becomes fUll. It should be 
noted that the section of code from the use of 
$Count in line one to its filling in line three 



forms a critical section which at most one pro
cess j can execute at a time. Since $S appears 
only in this critical section it need not have a 
full/empty status. 

Data conflict/Synchronization Time Analysis 

The time required to complete such a summa
tion is determined by two influences: the times 
required by the subcomputations P , which we 

j 
will call t(P.), and the times spent by producers 

J 
waiting to execute the critical section on $Count. 
The time required for completion of the result 
t($R) is certainty no less than 

{t(Pj) j = l,2, ••• ,N} 
:md if t(Pj) has a vl'll'J.ance which 
~s much larger than the time spent by one 
producer in the critical section, t , then we 

c 
expect critical section competition to have a 
small effect. The critical section will have its 
maximum influence when all t (P'> = t are equal. 

J p 
In this case the time required to produce the 
result will be t($R) = t + N·t . 

p c 

In general, with fairly tightly synchronized 
processes, we expect to be able to say that 
t(P.) is randomly distributed with a mean which 

J 
is much larger than tc and a variance which is 

larger than t but not larger than N· t. In 
c c 

this case the order independence of the summation 
algorithm is useful but critical section con- . 
flict also influences the computation time. No 
matter what the variances of t(Pj) this case will 
occur for N sufficiently large, assuming that 
the variance of t(P j ) does not increase with N. 

Since the time delay due to critical section 
conflict results from the sharing of $Count by 
up to N-l other processes, it can be reduced by 
employing a form of batch adding in which the N 
processes are divided into groups of G processes 
so that each group forms an independent sum. 
These partial sums are then combined G at a time 
in the manner of a base G tree until a single 
sum results. 

A recursive procedure Sum for group summa
tion is organized as follows. Assume that 

N = GK terms are to be summed in groups of size 
G and that for each level lof the summation 

K-l tree, there are G sum variables and corres-
ponding full/empty count variables. A recursive 
procedure to sum a term u into sum number sn at 
level l of the tree involves each producer 
calling the procedure at level one. The last 
producer to contribute to a group sum carries 
~hat sum to the next level of the tree, adding 
~tto the group sum at that level. One of the 
producers, the "last" one, will call Sum once 
for each level l = l,2, ••• ,K and terminate after 
filling the result $R. To adapt this procedure 
to arbitrary N it is only necessary to set 

K = ceiling (logG N) 
and to alter the initial values of the count 
variables. 

288 

A detailed analysis [7] of the time to 
complete a summation yields an upper bound of 
the form: t($R) ~ time for largest partial result 

+ time for initial entry to Sum 

+ K ~ time for single level 

+ K ~ (G - 1) ~ critical section time. 

Assuming N to be fixed, it is of interest to 
determine an optimal group size G. Only the 
last two terms of the bound depend on G and 
minimizing the sum of these terms over Gleads 
to a value of G satisfying G(ln G - 1) = r - 1 
where r is the ratio of the time for a single 
level to the critical section time. Since the 
critical section is contained within the code 
for a level it is clear that r > 1. The optimal 
value of G for several values of the ratio is 
shown in Table 1. 

r 123 4 5 

G 2.718 3.591 4.319 4.971 5.572 

Table 1: Optimum Group Size G 

Experimental Results 

The group summation method discussed above 
was programmed for the HEP multiple instruction 
stream computer using the HEP Parallel FORTRAN 
language [5]; a set of 50 producer processes were 
created which, for simplicity, summed their 
process indices j ; j = 1,2, ••• ,50. Thus all 
t(P.) = 0 and the worst case conflict situation 

J 
obtained. A main program started the 50 
producers synchronously and waited for the sum 
to become available, timing the length of the 
wait. The results for N = 50 and several 
values of G are shown in Table 2. 

Group Size Time to Sum 
G microseconds 

2 759.7 
3 707.0 
4 739.4 
5 793.9 
6 845.2 
7 937.0 
8 941.7 
9 980.7 

10 1066.4 
25 2004.1 
50 3616.4 

Table 2: HEP Parallel FORTRAN Group Summation 

The running times show a behavior which is 
consistent with a ratio r between one and two. 
An assembly code listing of the sum procedure 
yielded a ratio of 1.233 by actual instruction 
count. One way to look at the results is that 
in the best case, G = 3, an addition is being 
done every 14.1 microseconds. This point of view 
is misleading for three reasons. First, the 
procedure is not meant to compete with a 



summation done by a single process but is used to 
combine results produced by independent processes 
set up in parallel for other purposes. Second, 
the HEP computer cannot run 50 processes at full 
speed. In its current prototype version it will 
execute one instruction from each process every 
5 microseconds when all processes are active. 
Finally, the current (1980) HEP prototype has a 
severe indexing restriction whic4 causes indexed 
expressions in FORTRAN to produce unreasonable 
numbers of machine instructions. To measure the 
latter effect, the indices for a group size of 
G = 3 were precomputed prior to execution time 
and a summation time of 233.3 microseconds was 
obtained. This respresents a speedup by a factor 
of 3 over the execution time indexing version 
and compares favorably with the time to sum 50 
integers with a single process of 243.2 micro
seconds. 

It should be noted that memory bank conflict 
is not an issue in HEP since memory accesses 
are pipe lined [3] and a separate analysis [6] 
shows that 50 processes are more than sufficient 
to keep pipeline fall-through time from having 
any influence on computation time. Thus the 
above analysis, which relates only to the shared 
memory cells and not to larger blocks of memory, 
is the correct one in this case. 

Communication Delay Versus Access Conflict 

It is interesting to compare the qualitative 
aspects of the current analysis with those of the 
previous analysis of the Finite Element Machine 
(FEM) multi-microprocessor network [1]. In the 

FEM a time multiplexed bus connects all process
ors and a set of parallel communications paths 
connect processors with their eight nearest 
neighbors in a planar square array. The group 
summation considered in the present paper 
corresponds most closely to the "distributed 
computation" considered there. To make use of 
the parallel neighbor communication paths a 
group size of nine, corresponding to a processor 
and its eight nearest neighbors, was chosen for 
the lowest level. The group size at subsequent 
levels was two, corresponding to a binary tree. 

The "distributed computation" had a fairly 
complex control structure but was still faster 
than the other algorithms studied in spite of 
this control overhead. The speed resulted from 
the use of non-shared parallel communications 
paths for most of the information transfer. This 
corresponds very closely to the use of indepen
dent group sum locations in the current analysis 
to limit the number of processes competing for 
the same resource (memory cell). The group 
size in the FEM case could not be varied 
reasonably since it depended on network 
structure. One of the other algorithms examined, 
however, the centralized algorithm, corresponds 
very closely to the use of a single group in the 
current study. The poor results obtained for 
that algorithm correspond well to those obtained 
for the single group of size 50 reported above. 

289 

There are enough qualitative similarities 
in the two analyses to indicate that communica
tions link conflict in a network computer plays 
a role in performance analysis which is quite 
analogous to shared memory conflict in a multi
processor. In fact, the HEP system with its 
pipelined memory access and full empty memory 
cells can be analyzed quite accurately by taking 
any cell shared between two processes as a one 
word buffered communications link between those 
processes. 

References 

[1] Jordan, H. F., Scalabrin, M. and Calvert, 
W., "A Comparison of Three Types of 
Mul tiprocessor Algorithms," Proc. 1979 
International Conference on Parallel 
Processing, (August 1979), pp. 231-238. 

[2] Smith, B. J., "Architecture and Applica
tions of the HEP Multiprocessor Computer 
System," Real Time Signal Processing VI, 
Proceedings of SPIE, Vol. 298 (August 1981). 

[3] Smith, B. J., "A Pipelined Shared Resource 
MIMD Computer," Proc. 1978 International 
Conference on Parallel processing, (August 
1978), pp. 6-8. 

[4] Iverson, K. E., A Programming Language, 
John Wiley and Sons, New York (1962). 

[5] Denelcor, Inc., "HEP Parallel Fortran 
Users Manual," Denelcor Publication 10002-00, 
3115 E. 40th Avenue, Denver, Colorado, 80205. 

[6] Jordan, H. F., "Performance Measurements on 
HEP - A Pipelined MIMD Computer," Report 
CSDG 81-5, Computer Systems Design Group, 
Electrical Engineering Department, 
University of Colorado, Boulder, Colorado. 

[7] Jordan, H. F., "Combining Partial Results 
in an MIMD Computer," Report CSDG 82-1, 
Computer Systems Design Group, Electrical 
Engineering Department, University of 
Colorado, Boulder, Colorado. 



AN APPROXI~ATE ANALYTICAL ~ODEL FOR ASYNCHRONOUS 

PROCESSES IN ~ULTIPROCESSORSt 

~ichel Dubois 
Thomson-CSF 

Laboratoire Central De Recherches 
Domaine De Corbeville, B.P.No. 10 

91401 Orsay, FRANCE 

Abstract 

~ultitasked asynchronous processes on mul
tiprocessors are subject to performance degrada
tions due to the sharing of critical sections. 
The concurrent accessing of such critical sec
tions also results in the familiar lock-out prob
lem. A general methodology to estimate the per
formance degradations of such algorithms on the 
processor utilization is presented in this paper. 
We study in detail a simple multiprocessor system 
with P processes sharing one critical section. 
We then generalize our study to a system with an 
arbitrary number of critical sections. The ap
proximation is good for the case in which the 
cpitical sections have low coefficients of varia
tion. Such an analysis, when applied to the pro
cessor lockout problem, can result in an optimi
zation of the distribution of the critical sec
tions in a multiprocessor operating system. 

1. Introduction 
In order to guarantee the correctness of exe

cution of multitasked multiprocessor algorithms, 
explicit synchronization is often required in 
parallel algorithms. The resulting blocked time 
is large if the synchronizing processes have sig
nificantly different processing times. The per
formance of synchronized iterative parallel algo
rithms in multiprocessors has been studied in 
[DUB82J. In some cases, the synchronization 
points may be removed. A synchronized algorithm 
in which all explicit synchronization conditions 
have been suppressed becomes an asynchronous al
gorithm. The concept of asynchronous algorithms 
is derived from the chaotic relaxation scheme in
vestigated by Chazan and ~iranker [CHA69J. Bau
det has determined general convergence conditions 
for an asynchronous iterative algorithm [BAU78J. 
Kung defined the properties of an asynchronous 
algorithm and described s.everal examples [KUN76J. 
An asynchronous algorithm is controlled through a 
set of global variables accessible to all 
processes. Each process computes independently 
(processing phase), reads the global variables, 
modifies . some of them, then activates a new pro
cessing phase or terminates. Global variables 
are usually accessed in critical sections in ord
er to ensure correctness. 

There are also many situations in which a pro
cessor that tries to access a critical section 
(C.S.), such as a ready list, is blocked because 
the C.S. is being used by another processor. In 
this case the processor may spin until the lock 
is released. Therefore, the processor which at-

t This research was supported by NSF Grant ECS 
80-16580. 

0190-3918/82/0000/0290$00.75 @ 1982 IEEE 

and 

290 

Fayl A. Briggs 
Department of Electrical Engineering 

Rice University 
Houston, TEXAS 77001 

tempts unsuccessfully to access the C.S. is 
locked out. The lockout problem is a direct 
result of multiple processors attempting to pro
cess common data structures asynchronously. This 
situation resembles the memory conflict problem 
in tightly-coupled multiprocessor systems dis
cussed by so many authors [CHA77J. For the 
memory conflict problem, the resources were 
hardware resources (memory modules), whereas, the 
lockout is due to contention for software 
resources. There are numerous such shared data 
bases in a multiprocessor operating system be
sides the ready list. These include memory allo
cation table, page allocation table and I/O 
lists. 

In order to evaluate the efficiency of various 
configurations of lockable software resources, we 
must consider the effect of processor lockout. 
The most significant potential cost arises be
cause a process that blocks on a spin lock does 
not relinquish the processor on which it is exe
cuting. Thus if a process blocks on a lock for a 
lengthy period, an important system resource, a 
processor, will be lost to the system for the 
duration of this period. 

Lengthy blocking arises when contention for a 
lock becomes too high. To keep contention at an 
acceptable level, locks must be used to provide 
mutual exclusion only when the grain size is suf
ficiently small [JON79J. Grain size is deter
mined by two factors: the first factor is the 
amount of time for which mutual exclusion is 
necessary. A short critical section has a small
er grain size than a long one. The second factor 
is how frequently mutual exclusion is needed. A 
lock that must be locked often has a longer grain 
size than a lock that is touched infrequently. 
Locks are basically associated with pieces of 
code or data structures. As the number of pro
cessors and processes in the system increases, 
the grain size of such locks tends to grow be
cause they are inevitably accessed more and more 
frequently. 

In this paper, we introduce an analytical 
model based on the central server model to evalu
ate the performance of asynchronous processes and 
the effect of software lockout upon system per
formance. One classical approach to solving the 
central server model is to apply the BC~P model 
[BAS75J for closed queueing networks. In 
[KU~79J, an aggregation approximation has been 
applied to this model for exponentially distri
buted critical sections. However, critical sec
tions tend to behave more like deterministic 
servers, in which case the BC~P model is not very 
effective. In the following, we present a simple 
approximation to solve the central server model 
and to estimate the processor utilization due to 
the execution of asynchronous processes. The 



preclsl0n of the approximation is good only for 
critical sections with low coefficients of varia
tion. This approximation is similar to the one 
used by Hoogendoorn to study the performance of 
multiprocessor memories [H0077J. The model is 
introduced in its general form. 

An implementation of an algorithm on a given 
architecture is characterized by a set of perfor
mance features, {f1,f2, ••• ,fN}, extracted from 
the analytical model. Let F be the feature space 
for the given architecture and algorithm. F can 
be seen as the product space of the one
dimensional spaces generated by each feature: 

F = {f1} x {f2} X ••• x {fN}. 

The topology of the space F is complex. The 
feature values may be dense along some coordinate 
axes, and discrete along some others. A 
performance index for a given architecture is a 
real function defined on F by the analytical 
model. Local maxima of the index locate operat
ing points in F where the architecture and the 
algorithm implementation are particularly "well
matched" with respect to the index. The power of 
analytical models resides in the estimation of 
the impact on the performance of a given feature 
or subset of features in isolation. The average 
processor utilization, U, defined as the fraction 
of time a processor is busy, is used in this pa
per as the performance index. The feature-space 
approach permits the visualization of the effect 
of the performance features on the parameters of 
the algorithm and architecture. 

£. Central Server Model for Asynchronous Processes 
A simple multiprocessor architecture is shown 

in Fig. 1. A set of P independent processors ex
ecute tasks in a common shared memory through an 
interconnection network. This architecture is 
called "tightly-coupled" and is typified by the 
C.mmp [WUL81J. Such a muCtiprocessor system can 
implement multitasking in which a given algorithm 
is decomposed into a set of tasks that run in
dependently in parallel [FLY72J. When these task 
modules communicate intensively, they are each 
associated with a processor, under a ~ 
scheduling strategy [JON79J, i.e., the processes 
are swapped in and out simultaneously, and not 
individually. A process is not preempted when it 
is blocked at the beginning of a critical sec
tion; rather it "spins" (busy wait) [JON79J or 
waits for an interrupt without relinquishing the 
processor (in the second case, user hardware in
terrupts must be provided or else an operating 
system call is made). These strategies are 
designed to minimize the overhead and speed up 
the algorithm in an environment where the cost 
underutilizing processors is secondary. 

One problem which occurs in multiprocessor 
systems is memory contention [CHA77J. Generally, 
the memory is made of a set of independent 
modules. It is interleaved. The instruction cy
cle of each processor comprises a variable number 
of machine cycles such that at most one memory 
reference occurs during a machine cycle. A re
jected request is resubmitted at the next machine 
cycle. Under these conditions, a request to the 
shared memory can be characterized, in most 

291 

cases, by a probability of acceptance Pa, result

ing in a geometrically distributed access time 
[PAT81J. 

In the architecture of Fig. 1, the processors 
compete for the shared memory on a word-by-word 
basis. This results in performance degradations 
due to conflicts in accessing instructions and 
data [CHA77J. Let P be the number of processors 
and M the number of memory modules. Each proces
sor references the shared memory with a probabil
ity r during any machine cycle. A widely used 
approximation, which is justified by the inter
leaved storage pattern, is that the references to 
the memory are independent and uniformly distri
buted among the M memory modules. This approxi
mation leads to the probability of acceptance of 
a memory request as 

P = - 1 - (1 --) M [ r PJ a rP M' (1 ) 

For a derivation of Equation (1), see, for ex
ample, [PAT81J. 

Formula (1) was derived under the hypothesis 
of independent requests. In reality, however, a 
rejected request is automatically resubmitted 
during the next machine cycle. One correction 
was introduced in [DUB81J to take into account 
the wasted cycles due to memory conflicts in the 
computation of Pa ' The behavior of anyone pro-

cess is described in the Markov graph of Fig. 2. 
W is the state corresponding to a wasted cycle 
due to memory conflicts, and A is an active cy
cle, during which a processor may issue a new re
quest. Solving for (qA,qW)' the stationary pro-
bability distribution of the states, one finds 

P 
q = a q - 1 q (2) A P +r(1-P ); W - - A 

a a 

From the graph of Fig. 2, r is defined more 
precisely as the probability of referencing the 
memory during an active machine cycle. In the 
absence of memory conflicts, all machine cycles 
are active. Because of the memory conflicts, 
memory references are also made during each wast
ed cycle. The effective rate of memory access 
cycles is thus --

(3) 

and Equation (1) becomes 

(4) 

Equations (3) and. (4) define an iterative process 
by which one can compute Pa' for given M, P and 
r. 

In a typical asynchronous MIMD algorithm, P 
processes share L critical sections. Outside of 
a critical section, a process can proceed· freely. 
However, only one process can be executing a 
given critical section at any given time. Typi
cally, the execution of critical sections con-



sists of updating one or more common variables. 
The fluctuations of their execution times, which 
are mainly due to memory contentions, are often 
small. Data-dependent fluctuations can also be 
present (e.g., conditional modification of a 
shared variable). 

A process in an asynchronous MIMD algorithm 
can be seen as a succession of cycles. A cycle 
consists of two phases in which a proceSS is in 
the non-critical-section phase or in the 
critical-section phase. More specifically, a cy
cle consists of some processing followed by a re
quest for a critical section, a possible waiting 
time to obtain the right of access, and the exe
cution of the critical section. This behavior 
can be modeled by a closed queueing network with 
a population of size P, a P-server node (PN) and 
L single-server queues, as shown in Fig. 3. Each 
server queue is for a critical section (CS). 

In the following sections, an approximation 
for this closed queueing network is presented. 
We begin with the simple case in which L = 1, 
then generalize it to an arbitrary value of L. 
Simulations have shown that the model is adequate 
for a wide range of systems and for CS's with low 
coefficients of variation (say, less than .5). 
The coefficient of variation of the independent 
processing time (CVT) has little influence on the 
model prediction. When it is increased beyond 1, 
the approximation deteriorates very slowly. Fi
nally, the model is not appropriate for the case 
in which CVT = 0, and the CS's and routing are 
deterministic. These figures are given to indi
cate the domain of validity of the model. 

The model shown in Fig. 3 is similar to the 
model for time-sharing systems with L computing 
centers and P users [KLE76J. The terminology 
used in the approximation is borrowed from such 
systems. The processes are called "jobs." The 
independent processing time is the "think time," 
and its mean is noted by T. The critical sec
tions are referred to as "servers," and the mean 
execution time of each server is S (when L = 1) 
or Si (when L > 1). Further notations will be 
introduced in the following discussion. 

3. An Approximation to the G/G/111P Queue 
Two queues of the G/G7'fl7Pclass-; namely the 

M/G/111P queues [JAI68J and the D/D/111P queues 
[KIN78J, have exact solutions. Based on this 
class of queues, we hereby propose a simple ap
proximation to an algorithm with one critical 
section (Fig. 4). There are P jobs, one proces
sor node (PN) with P servers and one single
server queue which represents the critical sec
tion (CS). Under the stochastic assumption, each 
job has a probability X of being outside of the 
CS (or, equivalently, of being in the PN). In 
such a state, the job can request access to the 
CS. By the ergodic property, X is also the aver
age fraction of "think time" [KLE76J within each 
job cycle. From the value of X, one can derive 
the mean properties of the network. For in
stance, the mean job cycle time, denoted by C, is 

related to X by the formula X = t Let 

I(t) = (i 1(t), i 2(t), ••• ,i p(t», 

292 

with i.(t) = 1 iff job j is not in the server, 
J -

and i.(t) = 0 iff job j is in the server at time 
J 

t. 
I(t) is called the indicator vector for the CS at 
time t. Each of its components indicates whether 
a given job is present in the server or not. 

Theorem 1. For any G/G/111P queue in equilibri
um, 

E [i 1 i 2· •• i pJ + pX = 1, (5) 

where E [i1i2 ••• ipJ is the expected value of the 
product of the components of the indicator vector 

and p = Pu, with u = t. 
Proof: Let Xs be the probability that the server 

is busy. Equating the flows of jobs in and out 
of the server at equilibrium, we obtain 

Xs t = P t = P • f ' 
or Xs = pX. 

(6) 

On the other hand, 

Xs = Prob [ "at least one job is in the server" ] 

= Prob ["all the jobs are not in CS" ] 

= 1 - Prob [ "i1 i 2 ••• ip = 1'J (7) 

= 1 - E [i1 i 1 ••• i pJ . 

The last equality results from the fact that 
the expected value of a random variable taking 
only the values 0 and 1 is equal to the probabil
ity of the variable being 1. 

The theorem results from equating (6) and (7). 
[J 

Corollary 1.1. (Approximate Model) 
If i 1,i2, ••• ,i p are independent random vari-

ables, then 

and xP + pX = 1. (8) 

Properties of the Approximate Model 
Below, we give three properties of the approx

imate model. These properties will be proven in 
a later section for a more general case. 

fl. Equation (8) always has a unique solution 

Xa between 0 and MIN(1,~). 
1 2 

P2. Xa = 1+u + O(p ). 



For a constant P, Xa "behaves" as the function 

1 T+U when u tends to o. 
The approximation Xa obtained from equation 

(8) is better when P is small. In this case, the 
waiting time is small and a job cycles as if it 
were the only one present in the network. The 
independence assumption is thus valid. 

P3. For a constant u, lim PXa = 1. 
P+CD 

In [KlE76J, these properties are shown to hold 
in the general case, i.e., 

X " 1!u' for P « 1 + t 
and X - l.. for P » 1 + 1-- Pu' u • 

A consequence of property P3 is that the ap
proximation of equation (8) is still good when 
the hypothesis leading to equation (8) (no in
terference between jobs) is most violated. 

Unfortunately, Xa cannot be a bound for all 
systems. It is very easy to prove that the 
D/D/111P queue [KIN78J is such that X > Xa for 

all P and u. On the other hand, it is not diffi
cult to find examples of M/M/111P queues with 
X < Xa. 

4. Discussion and Heuristics 

Evaluating E[i 1 ••• i pJ is analytically impossi
ble for most cases. Faced with such a complexi
ty, we resort to extensive simulations. One in
teresting theoretical result that should guide 
us, however, is given in [PRI76J, where it was 
shown that, among all M/G/111P systems, the 
M/D/111P has the largest value of X (and thus the 
best performance). Price also showed that when 
the coefficient of variation of the server (CVS) 
becomes large, the performance of the M/G/111P 
queue depends very much on higher moments of the 
server's distribution. 

For values of CVT and of CVS less than .5, the 
hypothesis of the model is violated because the 
job flow is practically deterministic [KIN78J, 
and the interactions between the jobs in the net
work are very large. The approximation performs 
best for a short deterministic service time. 
Indeed, large instances of the service time are 
more likely to result instantaneously in longer 
queues and in more interactions between jobs. 
Some simulation results are summarized in Tables 
1 and 2. In all cases, an offset exponential and 
a hyperexponential were used for the cases of a 
coefficient of variation less than one and 
greater than one, respectively. The model param
eters have been selected such that (P-1) u 1. 
This case is one of the most difficult to esti
mate, since it is an intermediate point for which 
the results of properties P2 and P3 do not apply 
[KlE76 pp. 208-209J. The relative error in X is 
less than 5% in most cases (the errors larger 
than 5% are underlined). The approximation wor
sens slightly when the number of processors and 
the CVT increase. It is not adequate for the 
cases when both distributions are either exponen-

293 

tial or deterministic. In such cases, we can use 
the M/M/111P queueing network [JAI68J or D/D/111P 
queueing network [KIN78J. 

5. Extension to Multiple Critical Sections 
We now consider the more general network, 

shown in Fig. 3. In this network, a job stays in 
the PN for a random "think time" and then 
branches to anyone critical section, CS i , i = 

1, ••• ,l with a branching probability Pi. The 

mean processing time of CS i is Si. let Ik(t) be 

the indicator vector for the k-th critical sec
tion. 

Ik(t) = (i k,1(t), i k,2(t), ••• ,i k,p(t», 

for k = 1, ••• ,l. 

The definition of each component is the same 
as in section 3. Each component ik,j(t) of the 

vector indicates whether the job from processor j 
is in the k-th critical section or not, at time 
t. 

Theorem 2. For each critical section, 

H\,1ik,2 ••• \,pJ + Pk·X = 1, (9) 

Pk Sk 
where Pk = ukP and uk = ---T---. 
Again, X is the fraction of time spent in the PN. 
Proof: The proof proceeds as for theorem 1 and 
is omitted here. [J 
Theorem 3. Within the framework of the job in
dependence hypothesis leading to equation (4), an 
approximate solution for the model of Fig. 2 is 

X + (l-1) (10) 

Proof: Given the independence hypothesis, equa
tion (9) becomes 

X~ + Pk·X = 1, (11 ) 

where Xk is the fraction of time spent by each 

job outside CSk• 

On the other hand, 

l 
Prob("job is in PN") 1-l: Prob("job is in CS k"), 

k=1 

or 
l 

X = 1 - L (1 - Xk). 
k=1 

(12) 

Combine equations (11) and (12) to obtain 
(10). [J 

Formula (10) is the approximate model. Note 
that at the solution, we must have 

1 > PkX, k=1, ••• ,l. (13) 

Equation (10) is obviously a generalization of 



(8). 
The existence of a solution to equations (8) 

and (10) is established below. 
Theorem 4 Equation (10) has a unique real solu
tion, Xa; such that 

o < X < MIN(1,_1--), where PMax = MAX {Pk}, 
- .a - PMAX k 

k=1, ••• ,L. 
Proof: We give a graphical proof. We initially 
assume that PMax < 1. When X increases from 0 to 

1, the L.H.S. of equation (10» increases mono
tonically from (L-1) to L, whereas the R.H.S. de-

L 
creases monotonically from L to 1: (1-p )1/P < 

k=1 k 
L. There must be an intersection point for a 
value of X between 0 and 1. 

The alternative is PMax ~ 1. In this case, 

when X increases from 0 to _1 __ , the L.H.S. of 
PMax 

equation (10) increases monotonically from (L-1) 

to _1 __ + L-1, while the R.H.S. decreases mono
PMax 

tonically from L to 

Again, an intersection point must exist for X 
between 0 and _1 __ • n 

PMax 
Now that the existence of a unique solution is 

proved, one can find it by iterative methods or 
by graphical methods. 

Let uMax = M~X{ui} and PMax = PUMax ' The fol-, 
lowing two theorems illustrate the asymptotic 
behavior of Xa' 
Theorem i. 

Xa = __ ..;.1r-L--+ O(p~ax)' (14) 

1: ui 
i=1 

1 + 

Because PiX < 1, i=1, ••• ,L, a first order ap
proximation of equation (10) yields 

L 
X + (L -1) = L - 1: Xu. + 0 ( P~ ) , 

i=1' ax 

from which the claim can be easily derived. 

For a constant P, the first term of equation 
(14) dominates when uMax tends to O. This first 

term is also the value of X obtained by neglect
ing the waiting time at each queue [KLE76J. 
Theorem!. For constant ui ,i=1, ••• ,L, 

lim PM ·X = 1. 
p .... ax 

Proof: As X+L-1 > LC1 -

(15) 

P X) 1/P and 
Max 

294 

PMax·x~ 1, we have, for all P, 

1 > P X > 1 _ (X+L-1)P. 
- Max - L 

If Si I 0, then X < 1, and X+~-1 < 
the claim is proved. 

1, so that 

[J 

Note that X = _1 __ is the asymptotic value ob-
PMax 

tained when one server becomes a bottleneck 
[KLE76J. Theorems 5 and 6 show that the approxi
mation of equation (10) is correct for asymptotic 
cases. It can be expected to be a good approxi
mation for intermediate values of the parameters; 
i.e., values such that 

P 

L 
1 + 1: ui 
--'.:.... =-.:,1 __ [KLE76 pp. 220-221]. 

uMax 
(16) 

The results for a uniform and a triangular 
branching probability distribution are shown in 
Table 3. The approximate model is in agreement 
with the simulations performed for various possi
ble values of CVSi and CVT. Note that the ap-

proximation is good for the case when CVSi=CVT=O 

because of the random routing, which destroys the 
correlation between jobs, exhibited, for example, 
in the D/D/111P system. The maximum possible 
value for X is .5, because Sk = T. 

6. The Processor Utilization 
The average-processor utilization, denoted U, 

is used to evaluate the degree of matching 
between an architecture and an asynchronous algo
rithm, as modeled in sections 3 through 5. Be
sides asynchronous algorithms, the model can also 
be applied to evaluate processor lockout in the 
context of the multiprocessor operating system. 
In both cases, a processor is busy while it is 
outside and inside of the critical sections. 
Idleness is caused by blocking at the entrance to 
the critical sections and by memory conflicts. 

For the G/G/111P case, the processor utiliza
tion, U can be found as follows. The total time 
during which a processor is busy within each cy
cle is 

(17) 

where T and S are the mean "think" time and the 
mean service time respectively. qA is the coef-

ficient which accounts for memory conflicts. In 
general, a fraction r of machine cycles contains 
a reference to the memory, and each memory re
quest is accepted with a probability Pa• If the 

request is not accepted, it is resubmitted during 
the next machine cycle. Under these conditions, 
we have shown that (see equation (2» 

(18) 



where Pa is given by equations (3) and (4) if we 

assume spin locks. On the other hand, the time 
taken by each cycle is mI = C. The average pro-

cessor utilization is thus 
(T+S) ·qA 

U = C = q ·X ·(1 + 1) 
A T 

(19) • X 

where So(= qA • S) and To(= qA • T) are the mean 

time to execute CS and the mean think time in the 
absence of memory conflicts, respectively. 

This formula can be generalized to the case of 
L critical sections, provided that X is defined 
as the fraction of time spent in the processor 
node per cycle through the network, and S is re-

L ~ 
placed by 1: P·S.. In equation (19), (1 + -)X 

i=1 " To 
represents the penalty due to the synchronization 
at the critical section. 

The relative error in the estimation of X is 
matched by a similar added error in the estima
tion of U. Whereas the estimation of X from the 
model is reliable, the estimation of R, the mean 
response time, from X can introduce an unaccept
able error in R. To show this, we recall that X 

= T!R' where T is the mean think time and R is 

the mean response time. Let EX and ER be the re

lative errors in X and R, respectively. Then 

E = AX ~ dX • M • 1 ! _R_ • ~ ~ (1-X) • AR 
X X - dR X - T+R R R 

A EX 
Hence, ~ = 1-X. 
It can be seen that if EX ¢ 0, then ER can be 
very large as X tends to 1. 

However, it can be easily seen that the rela
tive error in C is equal to that in X, because X 

= f. Therefore, the cycle time can be estimated 
with the same relative error as that in X. How
ever, even for a small error in X, the error in R 
can be large. 

As an example, we analyze a system with P in
dependent and identically dependent processes 
sharing L identical critical sections. We denote 

S 
the ratio TO by t. By equation (19), 

o 0 

U = qA X (1 + to) • 

X is the solution of equation (10): 

is obtai ned as with 

295 

Recall that M is the number of memory modules 
and is considered fixed. P is the number of pro
cessors participating in the algorithm execution, 
and its maximum value is M. The performance 
features are P, r, L, t. These features gen-o 
erate a 4-dimensional space of which two plane 
cuts are displayed in Fig. 5. The cuts illus
trate the combined effects of the contention for 
the critical sections and the memory modules when 
P = 64, M = 64, and L = 16 or 64. As L goes from 
16 to 64, to (the critical-section to think-time 
ratio in the absence of memory conflicts) becomes 
the dominant feature over r (the probability of a 
memory refe~nce per active machine cycle) in the 
typical operating region (r greater than .6). 

7 Conclusion 
A simple approximation to estimate the proces

sor utilization in asynchronous MIMD algorithms 
has been presented in this paper. The model as
sumes that the time taken by the execution of a 
critical section is deterministic or has a low 
coefficient of variation. 

The validation of an approximation with such a 
broad applicability requires extensive simula
tions. Only selected results have been reported 
here. The approximation has been compared to the 
simulation results for the G/G/111P (Tables 1 and 
2) and the more general system of Fig. 3 (Table 
3). Note that the model does not include the 
service discipline at the queues. However, the 
simulations were run for a FCFS (First-Come
First-Served) policy. To appreciate the quality 
of the approximation from Tables 1 and 2, one 
should keep in mind that the most difficult cases 
to estimate are the ones corresponding to inter
mediate values of the parameters, as defined by 
equation (16). 

Such simple approximate models have great im
portance in the understanding of multiprocessor 
program behavior. They permit software designers 
to compare alternative implementations and to es
timate to which degree a given algorithm is fit 
to be executed on a tightly coupled system. For 
example, one interesting property of the model is 
that it depends only on the number of processors, 
critical sections and their total traffic p •• , 
This implies that, within the limits of validity 
of the model, the speed-up is equally affected by 
the wait on short but frequent critical sections 
and the wait on long but infrequent critical sec
tions provided that the total traffic is the 
same. However, short critical sections require 
more additional instructions to open and close 
the critical sections. 

LIST OF REFERENCES 

[BAS75J F. S. Baskett, K. M. Chandy, R. R. Muntz, 
and F. G. Palacios, "Open, Closed, and Mixed Net
works of Queues with Different Classes of Custo
mers," Journal ~ the ACM, Vol. 22, No.2, Apri l 
1975, pp. 248-260. 
[BAU78J G. M. Baudet, "The Design and Analysis 
of Algorithms for Asynchronous Multiprocessors," 
Ph.D.Thesis, Department of Computer Science, 
Carnegie-Mellon University, Pittsburgh, PA, April 
1978. 



[CHA69] D. Chazan and- W. Miranker, "Chaotic Re
laxation," Linear Algebra and..!.!!. Applications, 
Vol. 2, 1969. 
[CHA77] D.Y. Chang and D.J. Kuck, "On the Effec
tive Bandwidth of Parallel Memories," IEEE 
Transaction on Computers, May 1977, pp. 480-489. 
[DUB81J M. Dubois and F. A. Briggs, "Efficient 
Interprocessor Communication for MIMD Multipro
cessor Systems," Proceedings of the 8th 
International Symposium ~ Computer Architecture, 
May 1981. 
[DUB82] M. Dubois and F. A. Briggs, 
of Synchronized Iterative Processes 
cessor Systems," to appear in 
Transactions on Software Engineering. 

"Performance 
in Multipro

the !§g 

[FLY72] M. J .Flynn, "Some Computer Organi zations 
and Their Effectiveness," IEEE Transactions on 
Computers, Vol. C-21, No.9, September 1972, pp: 
998-1005. 
[H0077] C. H. Hoogendoorn, "A General Model for 
Memory Interference in Multiprocessors," !§g 
Transactions ~ Computers, Vol. C-26, No. 10, Oc
tober 1977, pp. 998-1005. 
[JAI68] N. K. Jaiswal, Priority Queues, New York: 
Academic Press, 1968. 
[JON79] A. K. Jones and P. Schwartz, "Experience 
Using Multiprocessor Systems. A Status Report," 
Carnegie-Mellon University, Technical Report, 

Table 1. Value of X estimated for different 
G/G/111P systems for (P-1)u=1 

CVS=D CVS=.5 

CVT=1 CYT=2. CVT=5 CVT=.5 CVT=, CVT=2. CVT=5 

CVS=1 CVS=O Approxi-
mation 

of 
Corol
lary 

CVT=1 CVT=O 1 

.443 .422 .416 .411 .430 .416 .412 .408 .398 .500 .414 

4 1/3 .654 .631 .622 .617 .636 .622 .615 .612 .592 .750 .631 

8 1/1 .777 .755 .748 .740 .760 .745 .738 .733 .715 .875 .768 

16 1/15 .852 .835 .828 .816 .839 .826 .821 .818 .799 .938 .857 

32 1/31 .901 .888 .881 .868 .890 .880 .875 .863 .858 .969 .914 

64 1/63 .933 .922 .917 .894 .924 .915 .912 .890.9 .984 .949 

128 1/127 .954 .946 .941 .918 .948 .941 .937 .916 .928 .992 .970 

Table 2. Relative error eX) on X different 
G/G/111P systems. 

CVS=O CVS=.5 CVS=1 cvs=o 

CVT=.S CVT=1 tVT=2. CVT=S CVT=.5 tVT=1 CVT=2 CVT=5 tVT=1 CVT=Q 

-~ -1.90 -.48 +.73 -3.72 -.48 +.49 +1.47 +3.86 -!ld. 

p 

8 

CMU-CS-79-146, October 1979. 
[KIN78] L.L. L. Kiney, and R. G. Arnold, 
"Analysis of a Multiprocessor System with a 
Shared Bus," Proceedings !!.f. the 5th Annual 
Symposium~ Computer Architecture, April 1978. 
[KLE76] L. Kleinrock, Queueing Systems, Vols. I 
and II, John Wiley and Sons, 1976. 
[KUM79] B. Kumar and T. A. Gonsalves, "Modeling 
and Analysis of Distributed Software Systems," 
Proceedings of the 7th Asilomar Conference on 
Operating System Principles, December 1979. 
[KUN76] H. T. Kung, "Synchronized and Asynchro
nous Parallel Algorithms for Multiprocessors," in 
Algorithms and Complexity: New Directions and Re
cent Results. J. F. Traub Ed., New York: 
Academic Press, 1976. 
[PAT81J J. H. Patel, "Performance of Processor
Memory Interconnections for Multiprocessors," 
IEEE Transactions ~ Computers, Vol. C-30, No. 
10, pp. 771-780, 1981. 
[PRI76] T. G. Price, "A Note on the Effect of the 
Central Processor Service Time Distribution on 
Processor Utilization in Multiprogrammed Computer 
Systems," Journal of the ACM, Vol. 23, No.2, 
April 1976, pp. 342-346. 
[WUL81] W. A. Wulf, R. Levin and S. P. Harbison, 
Hydra/i.mmp: A!l Experimental Computer System. 
New Yo.rk: McGraw-Hi II Book Company. 

Table 3. Simulation results and model predic
tion for the central server model 
with multiple servers 

branching 
probabi l ity 

L distribution 

2 unif. 

(modell 

.245 

(simulation) 

CVT=1 CVT=O CVT=.5 
CVS=O CVS=O CVS=.5 

.228 .230 .225 

8 4 unif. .372 .353 .359 .343 

8 8 unif. .440 .435 .439 .424 

(Pi = t) 
8 16 un if • .471 .470 .472 .465 

(Pi = tr) 
2 8 unif. .492 .492 .500 .492 

(Pi = t) 
4 8 unif. .475 .475 .479 .470 

4 1/3 -3.52 o +1.45 +2.27 -.79 +2.57 +2.60 +3.10 +6.59 -15.87 
16 8 unif. .366 .344 .347 .333 

8 1/7 -1.16 +1.72 +2.67 +3.78 +1.05 +3.08 +4.07 +4.77 +h!l -12.23 

16 1/15 +.59 +2.63 +3.50 +~ +2.15 +3.75 +4.38 +4.77 +7.26 -8.63 

32 1/31 +1.44 +2.93 +3.75 +~ +2.70 +3.86 +4.46 +~ +~ -~ 

64 1/63 +1.71 +2.93 +3.49 +!:.!i +2.71 +3.72 +4.06 +6.63 +5.44 -3.52 

128 1/127 +1.68 +2.54 +3.08 +~ +2.32 +3.08 +3.52 +g +4.53 -2.22 

296 

8 4 triang. .341 

1 3 3 1 
[(P1,P2,P3,P4) = (:r'lf'lf'lf)] 

.323 .325 .314 

8 8 triang. .422 .412 .416 .401 

_13577531 
[(P1,P2'· •• ,P8) - (32"'32"'32"'32"'32"'32"'32"'32")] 

8 16 triang. .462 .460 .462 .452 

_ 1 3 5 7 9 11 13 15 15 
[(P1,P2,···,P16) - (nlf'nlf'nlf'nlf'nlf'nlf'nlf'nlf'nlf'···"!'Zlf)] 



Figure 1. Tightly-coupLed MIMD processor 

I-Pa 

Figure 2. Markov graph for computing r 
e 

1.0 

.9 

0 
w 

u .8 

8 

I .7 

"0 
8 .6 

~ 
;:! 

~ .5 
.: 

~ 
~ .4 
;: 
~ 
c 

~ .3 
E 

~ 
u 
Ji .2 

"3 

~ .1 

.1 .2 .3 

Figure 3. System with L criticaL 
shared by P processes 

\ 
\ 
\ .. 64 
\ ... 64 
\ ,-16 (plain) 
\ 064 (dotted) 

\ 

.4 

\ 
\ 
\ 
\ 

.5 

PN 
r-----, 
I I I 
I I 
I 

Figure 4. G/G/111P system 

.6 .7 .8 

Probabil ity of a Kemory Reference per Active Machine Cycle. r. 

Figure 5. Feature pLanes for asynchronous aLgo
rithms in a tightLy coupLed system 

297 

sections 



THE AUTOMATED DESIGN OF TASK-SPECIFIC 
PARALLEL PROCESSING ARCHITECTURES 

Matthew O. Ward 
Visual Communications Research Department 

Bell Laboratories 
Holmdel, New Jersey 07733 

1. Introduction 

Interest in parallel processing h!l,s mainly 
stemmed from a requirement to perform vast amounts 
of computation at high speed on sometimes large 
quantities of data. For example, processing of 
video information in real-time for applications 
such as robotics requires analysis to be performed 
on data arriving at rates as high as 15 million 
picture points per second. Most systems to date 
which are capable of this speed are built almost 
entirely of special purpose hardware, which is 
expensive, time consuming to design and develop, 
and often restrictive in its applications. More 
flexible systems, such as SIMD machines, can per
form tasks very quickly but are restricted as to 
the complexity of the tasks they can perform as 
well as being often difficult to program. 

The research presented here is an attempt to 
overcome some of these problems. The goal is to 
take a set of algorithms which one wishes to 
execute very frequently, and automatically design 
an MIMD machine capable of executing the tasks at 
a desired speed. In the case of robotics these 
tasks will include image preprocessing, feature 
extraction, object classification, arm guidance 
and monitoring, and accessing and updating the 
kn!::Mledge base of the environment in which the 
robot works. 

In this and many other environments designing 
systems around algorithms is a reasonable approac~ 
due to the frequency of execution for each algo
rithm and the importance of high speed. Granted 
this methodology could not be used to develop a 
general purpose system, but it is fairly agreed 
upon that no single computer system is capable of 
satisfying all computing needs without exorbitant 
cost and underutilization. A major restriction is 
that once a system is designed the set of algo
rithms to be run on it are fixed, although it may 
be conjectured that algorithms in the same 
restricted environment may show enough similarity 
in data and control flow characteristics to allow 
fitting new algorithms to the architecture. 

2. SYl?tem Component·s 

The basic subtasks involved in the research 
approach presented here are as follows. 

2.1 Extraction of Parallel Processable Tasks from 
Se~uential Programs 

In a given program there are two types of 
parallelism which one can detect and utilize atthe 
statement level without Significantly modi~ing the 
original code. The first ~s noting when pa~rs of 

0190-3918/82/0000/0298$00.75 @ 1982 IEEE 298 

statements are mutually data independent,[2] i.e., 
one is not reading from a veri able which the other 
is attempting to write into. These are termed 
statement independent. The second type is recog
nizing when one iteration of a loop is unaffected 
by the progressing of another, i.e., iteration 
ordering is irrelevant. This is termed iteration 
independency. Thus, by comparing all pairs of 
statements a~ well as analyzing all loops one can 
learn for each occurrence of each statement in a 
program's execution the earliest time it can be 
executed (firing condition) as well as the latest 
point at which its results are needed by other 
statements (reset condition). The definition and 
format of these terms was introduced by DervisogJ.u., 
[9] although the extraction method used in that 
work did not always produce correct results. 

Two conditions must be true for a statement 
to execute properly, namely control flow which 
indicates the statement must execute at some time 
to insure correct results, and valid data must be 
available to use in calculations. These conditiom 
together constitute a firing condition, which may 
be represented simply by a list of all statements 
which must execute prior to the firing of the 
given statement. Since multiple control paths 
may exist for each statement there may exist sev
eral possible conditions, of which at most one m~ 
be true at a given time. Thus, a sum-of-products 
representation is used, with the product terms 
being the individual statements and the sums being 
the separation of distinct paths. For example, in 
the following section of code statement 5 cannot 
execute until either the true branch of 2 fires or 
statement 4 executes. Statement 2 is a control 
component while all others are data components. 
Note the reduction by precedence rules. 

x = n*y (1) 
If (x<m) (2) 

m m/y (3) 

x x/y (4) 

r = x + n (5) 
p( 5) 1*2t + 1*2f*4 

2t +4 

Once the parallelism is extracted a simula
tion is performed of the parallel execution of the 
program. This is done to ensure that sufficient 
savings in execution time are possible, thus, 
meriting a continued effort at designing a corres
ponding hardware architecture. This is an 



important stage as it has been found that many 
algorithms do not lend themselves to significant 
parallelization, either due to the form of the 
particular implementation of the algorithm or the 
nature of the algorithm itself. 

2.2 Processor Allocation and Communications 
Requirements 

As a first step towards designing architec
tures to fit particular algorithms the system 
must attempt to determine the minimum number of 
processors needed to take advantage of all of the 
available parallelism while at the same time rea
sonably minimizing the amount of interprocessor 
communications, as this is the main bottleneck of 
any well-balanced parallel processing environment. 
Although it can be readily shown that the optimiza-· 
tion of either of these problems is NP-complete 
satisfactory results can often be derived using 
partially analytic and partially heuristic-guided 
construction in a bounded amount of time. 

Maximum parallelism can be easily insured by 
assigning tasks to processors such that no two 
tasks on the same processor will ever be ready for 
execution at the same time. This is directly 
derivable from the firing conditions by noting 
that tasks which have data dependencies or control 
conflicts may reside on the same processor. Some 
methods used for reducing the number of processors 
as well as interprocessor communications include 
assigning processes in order of decreasing inter
process communications as estimated by approximat
ing loop counts, and limited lookahead in evaluat
ing more globally the cost incurred in assigning 
a process to various processors. 

At this point, knowing the processes which 
will reside on each processor, estimates of both 
processing and storage requirements of each proc
essor and some general information concerning 
interprocessor communications will be known. This 
information is useful both in avoiding excessive 
system cost by specifying minimum component 
requirements and also helping to decide how to 
group components of similar requirements in the 
event that cost or component constraints require 
'collapsing' of the resulting architecture. 

2.3 Architectural Specifications Based on 
Functional and Communications Requirements 

Given the functionality (processing and data 
and control communications) requirements of the 
algorithms in their parallel form, an architecture 
must be designed with the appropriate functional 
capabilities. The previous two sections have out
lined the extraction and grouping of the process
ing and communications characteristics required, 
and this information is now used in conjunction 
with an architectural components knowledge base to 
design one or several hardware configurations cap
able of executing the algorithm in parallel. 

Some of the information included in this 
knowledge base are details of the computing cap
abilities of processing elements, size and address
ing means of memory, and bandwidth and control 

299 

protocol of links. Perhaps the most important 
information is that of interfacing specifications 
for each device, thus, avoiding the design of 
'impossible' hardware architectures. 

The procedure then is to first locally match 
processor requirements with processor capabili
ties and interprocessor traffic with link band
width, and then refine selection using compat
ability relationships, working outward until a 
totally defined, compatible (able to be inter
faced) system is produced. Obviously provisions 
must be made to resolve deadlocks in the proce -
dure, i.e., when there exists no alternatives 
which allow components to be linked. This often 
will entail decreases in speed or increases in 
cost, which will be user specified. 

2.4 Compiling Parallel Processable Tasks Into 
Architecture Dependent Executable Form 

Once an architecture has been designed and 
constructed the tasks assigned to each processor 
must be converted to an executable form, includ
ing message passing protocol, firing and reset
ting expression evaluation, and, of course, the 
program code itself. The simplistic operating 
system required on each processor to perform these 
tasks has several advantages over those on exist
ing distributed systems. Firstly, the ordering 
of operations is totally deterministic in that 
all essential orderings are preserved by the 
parallelization process. In addition, communica
tions is less a problem than in general purpose 
systems, as more is known of the interactions 
between processors which will take place. Thus, 
it is possible to do much pre-execution antici
patory work. 

The basic series of tasks to be executed on 
each processor of the system will be as follows. 

a. Receive a message concerning the firing or 
resetting of a statement. 

b. Evaluate firing and resetting conditions fur 
all statements awaiting this message on the 
processor. 

c. If a firing condition is true then 

cl. Gather required data for execution. 

c2. Execute the statement. 

c3. Send messages and possibly resulting 
values to all processors which are 
awaiting its completion. 

d. If a reset condition is true then 

dl. Reset the state for that statement 
so the firing condition is again 
evaluated for future reexecution. 

d2. Send messages to all processors 
which are awaitine; the resetting. 



As many of these tasks will be identical in 
form for each task and processor a hardware imple
mentation of many of these components is logical, 
especially in communications and expression evalua
tion. This is important, as these tend to be the 
major bottlenecks in parallel processing systems. 

3. Current Status 

At the time of writing a significant percent
age of the system has been designed, implemented, 
and tested. The work described in Sections 2.1 
and 2.2 has been completed, accepting as input 
normal programs written in a large subset of C and 
producing firing and resetting conditions as well 
as processor assignments. The knowledge base has 
been designed and a skeleton for the entering and 
querying of information has been completed. A 
study is underway to determine the significant 
attributes needed to describe architectural com
ponents to use in the automated design process. 
Likewise, an algorithm for creating hardware archi
tectures using the knowledge base and the ~orithm 
requirements has been designed, the implementation 
of which will be completed when the knowledge base 
is available. A system for compiling the tasks 
into executable modules for a test bed of Motorola 
68000 microcomputers has been completed. Other p:'O

cessors can be easily incorporated with a suitable 
cross-compiler and a small number of processor
specific I/O routines. Finally, a communications 
processor is being designed to reduce losses in 
speed due to communications and condition 
evaluation. 

The simulated parallel execution of several 
algorithms has been compared to corresponding 
sequential execution to check for both equivalence 
in results and estimated speedup. Processor 
assignment for a number of short programs « 40 
lines) has been checked against optimal assign
ment located by analytic (exhaustive search) 
methods with highly satisfactory results. Assign
ments made for larger programs, although difficult 
to thoroughly assess, have been fairly satisfac
tory, although it can be seen that additional 
heuristics may be beneficial. 

4. Conclusions 

A general description has been presented of a 
methodology for automatically designing special
purpose parallel processing architectures given 
the tasks which are to be performed. Results to 
date have been quite encouraging as to the effec
tiveness of the technique. Obviously, the method 
would be relatively useless in designing general
purpose systems, unless a set of representative 
algorithms could be devised which would cover a 
nearly complete spectrum of program types. It is 
believed that this is not possible, agreeing with 
the idea that no single architecture could ever 
satisfY all possible user needs. A major deter
minant in the effectiveness of the method was the 
actual implementation of the algorithms used as 
input. It was observed that minor changes in the 
implementation could result in major increases in 
parallelism and reduction of interprocessor com
munications. Thus, as work progresses a set of 

300 

rUles is being developed as a guide for writing 
programs to best exploit parallelism, several of 
which will be implemented into a precompiler to 
relieve the user of the need to modifY his or her 
programming style. 

5. References 

[1] Arvind, Decomposing a Program for Multiple 
Processor Systems, Proceedings of the 1980 
IEEE Conference on Parallel Processing. 

[2] A. J. Bernstein, "Analysis of Programs for 
Parallel ProceSSing", IEEE Trans. on 
Computers, Vol. EC-15, No.5, Oct., 1966. 

[3] J. B. Dennis,K. Weng, An Abstract Implementa
tion for Concurrent Computations With 
Streams, Proceedings of the 1979 IEEE Con
ference on Parallel Processing. 

[4] D. J. Kuck, "Parallel Processing of Ordinary 
Programs", Advances in Computers, Academic 
Press, Vol. 15, 1976. 

[5] Kuck, D. J. High-Speed Multiprocessors and 
Their Compilers, Proceedings of the 1979 
IEEE Conference on Parallel Processing. 

[6] H. Lorin, Parallelism in Hardware and Soft
ware: Real and Apparent Concurrency, 
Prentice Hall, 1972. 

[7] W. C. McDonald, T. G. Williams "Evaluation 
of Multimicroprocessor Interconnection Net
works for a Class of Sensor Data Procession 
Problems", SPIE Vol. 241, Real Time Signal 
Processing Ill, 1980. 

[8] C. V. Ramamoorthy, M. J. Gonzalez, 
A Survey of Techniques for Recognizing 
Parallel Processable Streams in Computer 
Programs, Fall Joint Computer Conference, 
1980. 

[9] B. I. Dervisoglu, Modeling Maximum Parallel 
Executions in Pipeline Executable Form 
Using Precedence ExpreSSions, University of 
Connecticut Technical Report, CS-79-5. 



A BIT-SEQUENTIAL MULTI-oPERAND INNER PRODUCT PROCESSOR 

H.J. SIPS 
Delft University of Technology 

Abstract- A bit-sequential multi-operand inner 
product processor is described with D(2N.n) com
plexity where N is the number of product pairs and 
n is the wordlength of the operands. The operands 
have variable precision. The result is available 
d clock cycles after the absorption of the last 
bit of the operands. The parameter d is a small 
positive constant. 

I. The algorithm 

The summation of product terms is necessary in a 
large number of scientific computations such as 
matrix manipulations, signal processing, etc •• The 
inner product function is defined as: 

N 
P = L A.B. (1) 

j=l J J 
To achieve a high computing speed most two operand 
sequential processors transport their data and 
variables in a bit-parallel manner. If instead of 
a sequential processor a parallel processor ap
proach is taken this results in the use of many 
bit-parallel buses. This imposes severe restric
tions on the constructability of a parallel com
puter system. These restrictions do not disappear 
in VLSI. As a means to overcome computational and 
interconnection complexity the use of bit-sequen
tial processing can be considered. SwartzLander et 
al.[SWAR78] considered a quasi-serial implementa
tion of the productterms using a parallel counter 
multiplier. 
Because bit-sequential processing intrinsicly slows 
down the computation time it is very important to 
use the datatransport lines effectively i.e. the 
bits on the in- and output operand lines should be 
significant on each time step. On-line and semi on
line algorithms have this property. On-line algo
rithms are defined by the property that to generate 
the j-th digit of the result it is necessary and 
sufficient to have the operands available up to the 
(j+d)-th digit, where d is a small positive con
stant. On-line algorithms with the least signifi
cant digit first have been developed among others 
by Atrubin [ATRU65] and Chen [CHEN79]. Trivedi et 
al. [TRIV77] has developed algorithms for the most 
significant digit first using a redundant number 
system. On-line algorithms are only efficient if 
long expressions have to be evaluated. If, however, 
a recurrent equation is solved the result must be 
delayed by (n-d) time steps. 
Semi on-line (SOL) algorithms are defined [SIPb82] 
by the property that d clock cycles after the ab
sorption of the last digits of the operands the 
first digit of the result is available. The param
eter d is now a small positive constant which is 
independent of the word-size n and for which holds: 
d(s)<d(p). drs) is the semi on-line delay and d(p) 
is the delay in a full bit-parallel implementation 
of the arithmetical operation. In the multi-oper
and case we can further demand that the hardware 
is of D(M.n) complexity where M is the number of 
opera~ and n is the wordsize. the effective delay 

0190-3918/82/0000/0301$00.75 @ 1982 IEEE 301 

of the semi on-line algorithm is (n+d) cycles. 
The operation (1) is evaluated in (n+d) .clock 
cycles using semi on-line algorithms. The condi
tion d(s)<d(p) implies processing of the operands 
during transportation. Semi on-line algorithms 
can also be defined with the most significant 
digit first or with the least significant digit 
first. 
The number A is represented by the bitstring 
{a(n)a(n-1) ••• a(1)} where aU) is the bit that is 
enter.ed into the processor first. If A is a sign
magnitude number bit a(l) is always the sign-bit. 
If A is a two's complement number the bits proceed 
in normal order. The algorithm is based on the 
technique of incremental multiplication [TRIV77] 
[CHEN79]. The algorithm is extended for multi
operand operations and two's complement numbers. 
Let: 

A . (kJ={a. (k)a. (k-1) • •• a .(1)} 
J J J J 

(2) 

Aj(k) is Aj up to the k-th bit. From (2) follows: 

A.(k)=A.(k-1) + a.(k).2t (3) 
J J J 

t::::-k+1 and k>1 for MSB-SM (a(1)=sign bit) 
t=k-2 and k>l for LSB-SM (a(1)=sign bit) 
t=k-1 and k?J for LSB-TC 
t=-k and k?J for MSB-TC 
A .(0)=0 for IC; A .(1)=0 for SM 

J J 
It then follows that; 

A .(k). B .(k)=A .(k-1). B. (k-1)+A .(k-1). b • (k). 2t + 
J J J J J J 

t Bj (k).aj (kJ.2 (4) 
Suppose; 

P.(k)=A .(kJ.B.(k).2-t 
J J J 

, (5) 

Pj(O)=O for TC, Pj (l)=O for SM 

From this the following recurrent equation can be 
derived; 

P. (kJ=2-s • P .(k-1 )+A . (k-1). b. (k)+B. (k). a .(k) (6) 
J J J J J J 

s=-l for the MSB first algorithms 
s= 1 for the LSB first algorithms 

This can be done for every product in equation (1); 
N 

P(k)=2-~P(k-1)+ L {A .(k-1). b(k)+B .(k). a. (k)} (7) 
j=l J J J 

Each recursion step the evaluation of (7) requires 
the full addition of 2N+1 operands. 
The generation of the partial product for sign
magnitude numbers is straightforward according to 
(6) since the magnitudes can be interpreted as 
positive numbers. The signs of A. and B. determine 
whether the partial product P(k)J is wei~hted as a 
positive or a negative number in (7). 
A two's complement number can be expressed as: 



n n-1. i-1 
A=-2.a(n) + I a(1-).2 (8) 

i=l 
(LSB first case) which means that all the bits 
besides bit a(n) can be treated as if they where 
positive. The bit a(n) gives a negative weight to 
B(~) in equation (7). 

II. Implementation 

To achieve enough speed in solving (7) the opera
tion must be done in a pipelined way. There are 
two phases to be distinguished in the evaluation 
of equation (7): 
I. Compression of the partial operands in a sum 

and a carry.vector. 
2. Addition of I. and the shifted partial product 

generated in the previous time step. 
The phases I.and 2 can be done in a pipel~ned way. 
For large values of N internal pipelining of phase 
I may be necessary. The approach is to use a carry 
save cellular array of dimension 2N.n. In this case 
the delay is linearly dependent on the number of 
operand pairs N. An example of a carry save adder 
array is shown in figure I. The cells of the array 
consist of full adders. The array produces a sum 
and a carry vector. Note that in figure I the top 
row can be deleted for positive operands. The b2 
operand can be directly feeded into the full 
adders of row 2. The elements are included for re
gularity since additional logic must be included 
in each cell. 
For the addition in equation (7) the operands must 
be in two's complement form. If the operands are 
sign-magnitude numbers they must be converted to 
two"s complement numbers. When both operands in the 
multiplication process are sign-magnitude numbers 
and have the same sign they are already in the 
correct form so no conversion is needed. When the 
operands have opposite signs the weight of the 
product pair will be negative. The complementing 
of both partial operands can be done by complemen
ting the individual bits of the operands and adding 
a I to the operand. The addition of a I to the 
operand is the same as putting a I on the c. in
puts in figure I if the corresponding operafi~ is 
negative. So the sign bits in the sign-magnitude 
format are not involved in the computation of the 
partial operands according to equation (7). The 
combination of the sign bits of the operand pair 
only determines the positive or negative weight of 
the total operand pair. 
When both operands are two's complement numbers 
the operands are already in the desired form. Only 
the sign bit must be interpreted as a negative 
weighting factor. Here the sign bits of the oper
ands are explicitly involved in the computation of 
the operands accordig to equation (7). 
For the sign determination of the result the method 
of Agrawal et al. [AGRA78] is followed. This method 
prevents the extension of the operands by inverting 
the sign bits and adding a fixed correction factor 
o to the sum (0 inputs in figure I). 
The additign of the righthandside terms of eq. (7) 
besides 2 .P(k-1) can be done in the way described 
above. The result has entr~og22Nl+ n bits. Each 
time step the partial product generated in the pre
vious time step must be added to the sum of the 

302 

partial operands. This can be accomplished by 
(5.3) counters. This is the same method as in 
[CHEN79] ,[SIPa82]. These counters are shown in fi
gure 1. The outputs of the counters (8.0(1).0(2)) 
are wired according to the algorithm (MSB or LSB). 
The counters contain three storage cells to save 
the partial product. Figure 2 shows the wiring for 
the MSB and for the LSB algorithm. It can be seen 
that in the LSB wiring of the (5.3) counters only 
nearest neighbour interconnections occur. 
The carry save adder array description in figure I 
does not include the control mechanism needed to 
generate the partial operands. The aim must be to 
design a cell which is simple of structure and has 
a minimum of interconnections to the outside world. 
From eq. (7) it can be seen that each time step a 
new bit is appended to the operands. Whether or 
not the operand participates in the addition of 
that time step is dependent on the new bit of the 
corresponding other operand. The minimum needed 
is a full adder, one storage cell to hold the 
operand and a few gates. Figure 3 shows the basic 
cell layout. The operand line ( here B. has been 
chosen) is a line along all cells wher~ the oper
and is to be stored (rowwise). They succesively 
activate each column. The control signal q(k+1) 
loads each new bit of the operands in the next 
column. The control line g=a.(k) is the one step 
delayed value of one bit of the corresponding 
operand A.(k) and qualifies the operand B.(k) 
accordingJto eqation (7). The treatment gf A.(k-1) 
is a little different because of the differen~e 
in the k-index. Therefor the new bit a.(k) must be 
suppressed. This is indicated by the s1gnal q(k) 
which is the one step delayed signal q(k+1). The 
complement signal determines whether the operand 
is positive (com=O and cin=O) or negative (com=l 
and a. =1). 
After1-~rocessing the last bit of the operands the 
result must be available as soon as possible. In 
the MSB first case the result is stored in the 
(5.3) counters. A fast carry propagating adder is 
necessary to determine the result. The propagation 
delay determines the delay d of the operation. 
The result is then in two's complement form. If a 
result in sign-magnitude is required an extra 
complementing step is needed. This can be done 
while the sign bit is placed on the output. In 
the the LSB first case there is no fast carry 
propagating adder necessary if the result is re
quired in two's complement form because the MSB 
half of the product can be calculated during the 
output transfer of the result. There is, however, 
in overlapped computation an extra (5.3) counter 
counter hecessary because the accumulating (5.3) 
counter is needed in the next inner product eval
uation. If the result has to be in sign-magnitude 
form a fast carry propagating adder is necessary 
to determine the sign bit. 
Figure 4 shows a numerical example of the LSB 
first two·'s complement algorithm. 
Another property of the multi-operand processor 
is the improved dynamic accuracy. If the inner 
product has a mixture of positive and negative 
operands the multiplication of product pair j may 
overflow in the sense that the result contains 
more than n bits without causing an overflow of 
the final result. (This is shown in figure 4). 



III. References 

I. [AGRA78] D.P. Agrawal, T.N. Rao, "On multi
operand addition of signed numbers", 
IEEE Transactions on Computers, Vol. 
C-27, November 1978. 

2. [ATRU65] A.J. Atrubin, "A one dimensional real
time iterative multiplier", IEEE Trans
actions on Computers, Vol. EC-14, 
June 1965. 

3. [CHEN79] I.N. Chen, R. Willoner, "An O(n) par
allel multiplier with bit-sequential 
input and output", IEEE Transactions 
on Computers,Vol. C-28,October 1979. 

4. [SIPa82] H.J. Sips, "Comments on: An O(n) par
allel multiplier with bit-sequential 
input and output", IEEE Transactions 
on Computers, April 1982. 

5. [SIPb82] H. J. Sips, "A bit-sequential approach 
to parallel processing", (submitted 
to IEEE Transactions on Computers) 

6. [SWAR78J E. Swartzlander, B. Gilbert, I. Reed, 
"Inner product computers", IEEE Trans
actions on Computers, Vol C-28, 
December 1979. 

7. [TRIV77] K.S. Trivedi, M.D. Ercegovac, "On-line 
algorithms for division and multi
plication", IEEE Transactions on 
Computers, Vol. C-26, July 1977. 

A it" B + C * D 
101110~00101O + 001110".001011 

-18 '" 10 + 14 * II 

00000 
00000 
00000 
00000 

A(O).b(1) 
B(1) .a(1) 
C(O).d(I) 
D(1).c(l) 
corr.fact.IIO 

7;:OO:<';O""'O-O"'O"O"'O'AO + 
p(O) 
p(1) 

A(1) .b(2) 
B(2) .a(2) 
C(I) .d(2) 
D(2) .c(2) 

P(I).2- 1 

P(2) 

etc. 

P(2).2- 1 
P(3) 

000 0 00000 
000 0 00000 + 

110 

, 
00000 
00010 
00000 
00011 

000 0 00101 + 
000 0 00000 
000 0 00101 + 

110 

, 
00000 
00010 
00000 
00011 

000 0 00101 + 
000 0 00010 
000000111 + 

"f 

P(3).2-1 

P(4) 

P(4).2-1 
P(5) 

P(5).2- 1 
p(6) 

100110 
-26 

110 

00110 
01010 
00110 
01011 

000 I 00001 + 
000000011 
000 I 00100 + 

110 

l 
00000 
00000 
00000 
00000 

000 0 00000 + 
000 0 10010 
000 0 10010 + 

110 

f 
I 00000 
o 10 I 0 I 1-1 
I 00000 c; 
I 00000 " 

III I 10110 + 
000 0 01001 + 
III I II \1 I 

'f 

Figure 4. Numerical example 

303 

~ ... 
to fast carry propagating adder 

Figure I. Carry save array 

(.) MSB firs t 

(b) LSB first 

Figure 2. (5,3) counter wiring 

---4-++--..---1---++--- bJ (k+1) 

---++~~h+--+-r'----I~-- g- aJ (k) 

Figure 3. Basic cell layout 



A DIGIT ONLINE ARITHMETIC SIMULATOR 

Bryan Gerard Mackay 
Mary Jane Irwin 

Department of Computer Science 
The Pennsylvania State University 

University Park, PA 16802 

Abstract -- Digit online arithmetic has a 
great deal of potential for the speedup of com
putation. Digit online algorithms have the prop
erty that in order to generate the j-th most sig
nificant digit of the result it is sufficient to 
have the first j+k most significant digits of the 
operands. The difference k is a small predefined 
constant corresponding to an online delay. This 
paper presents a software package that simulates 
the operation of computational, systems which use 
digit online arithmetic. The simulator provides 
the ability to investigate the advantages and 
disadvantages of using digit online arithmetic 
for various applications. 

Introduction 

In recent years a good deal of research has 
been directed towards digit online algorithms and 
their corresponding architectures 12], I3], I4J, ISJ. 
I 6] , I7] . These algorithms may be realized by 
special arithmetic systems, one of which uses digit 
online pipelines. Online algorithms have the 
property that in order to generate the j-th most 
significant digit of the result it is sufficient 
to have the first j+k most significant digits of 
the operands. The difference k is a small prede
fined constant. Thus, after a startup delay of k 
steps an online'algorithm will generate one digit 
of the result at each step. 

The advantage of using digit online pipelines 
is demonstrated in systems that involve the 
chaining together of many pipelines. Machines 
such as the CRAY-l use the technique of chaining 
on words to achieve the fastest processing speed. 
This involves connecting the output of one pipe
line to the input of another. If two conventional 
pipelines are chained together in this way the 
second pipeline cannot begin processing until the 
first pipeline has produced its first result. On
line pipel~es are not strung end to end but side 
to side to achieve chaining on digits, creating an 
online pipeline network [3]. The attractiveness 
of online pipeline networks can be seen most dra
matically in the computation of recursive equa
tions. In such a network the computation of f i +l 
may begin as soon as the iirst digit of f. becomes 

l. 

available. The improvement in processing speed 
over conventional pipeline networks can be dra
matic. 

This paper presents a software simulation for 
operations and expressions evaluated using digit 
online algorithms first presented in [4]. The 
simulator implements floating point addition (sub
traction), multiplication, division, and square 
root in a fully digit online manner. The simula
tor was designed to provide the ability to create 
and analyze a.wide range of digit online pipeline 

0190-3918/82/0000/0304$00.75 © 1982 IEEE 304 

networks. In this way it helps to determine the 
advantages and disadvantages of using online 
arithmetic to solve various problems. 

Design of the Simulator 

The simulator package consists of about two 
thousand lines of PASCAL code on a VAX 11/780 
system running UCB VMUNIX. The programs were de
signed to be highly interactive and easy to use. 
Consequently they can be used to demonstrate the 
concepts of digit online arithmetic to those who 
are unfamiliar with this subject. The simulator 
can be run so that the operand digits are re
quested from the user as they are needed and the 
result digits are displayed as they become avail
able. In this way the operation of the algorithms 
may be directly observed. 

The programs simulate the algorithms RADD, 
RMUL, RDIV, and RSQR presented in [4]. The algo
rithm NORM has been implemented to help normalize 
operands. The digit online algorithms were de
signed in such a way that they may be implemented 
with a limited number of hardware primitives re
quiring a small number of gate delays [4]. The 
four primitive operations implemented in the sim
ulator are: 

1) Selection of a fixed point value based on 
a two digit value. This operation may be 
performed using 2 gate delays in a simple 
table lookup fashion. 

2) Addition of two fixed point values. This 
operation is performed by a signed digit 
addition that requires 4 gate delays. 

3) Multiplication of a fixed point value by a 
single digit value. This operation takes 
6 gate delays. 

4) Shifting a fixed point value by a constant 
value. In hardware this operation could be 
accomplished by simply offsetting the inter
connections between corresponding components 
in 0 gate delays. 

All of the more complex operations in the floating 
point algorithms are manipulated so that they can 
be expressed in terms of these four simple func
tions. Each iteration of an algorithm is simu
lated by a series of calls to these primitive 
functions producing the desired result. In this 
way the simulation carries out the operations in 
the same way that they would be performed in hard
ware by a digit online pipeline. The simulator 
also keeps track of the number of gate delays that 
have elapsed at the end of each step. This will 
give the user an idea about the processing speed 
of the network. 

The algorithms RADD, RMUL, RDIV, and RSQR 
operate by taking one digit of each operand per 
iteration and generating approximations to the 



characteristic and mantissa of the result in the 
fashion of the traditional continued sums/products 
algorithms [1]. The algorithms are online with 
respect to their inputs but since the result is 
not available until the final iteration they are 
not online with respect to their output. Fortu
nately, there are algorithms that when given the 
approximations to the result out of these algo
rithms, can generate the result in an online man
ner. Two of these functions were programmed into 
the simulation. 

The first such function is the discretization 
algori thm DISC [4]. When supplied with the ap
proximations to some result z, DISC will generate 
z in a digit online manner. By using DISC, the 
operations of addition (subtraction) and multipli
cation will be performed with an online delay of 
one. Both division and square root will have an 
online delay of three. A problem with DISC is 
that it tends to generate unnormalized results. 
The algorithm RADD, for example, always preshifts 
the mantissa of the result one position to the 
right to avoid mantissa overflow, so usually the 
result will be .unnormalized. Unnormalized results 
increase the error in a system IsJ. They also 
cause problems when these results are used as the 
input to a process that does not accept unnormal
ized operands such as RDIV. 

Another digit generating algorithm, MOSN, may 
be used to decrease the probability of unnormal
ized results. MOSN is constructed so that the 
last characteristic digit of the result is not 
computed until the f{rst approximation to the man
tissa of the result becomes available. Using the 
first mantissa approximation, MOSN determines how 
many places the mantissa can be shifted to the 
left without causing overflow. In this way, MOSN 
is able to normalize many results that would 
otherwise be unnormalized. The online delay of 
algorithms using MOSN will be one greater than the 
delay out of DISC. Table 1 shows a comparison of 
a divide operation using DISC and MOSN. As may be 
seen from this example the result when using MOSN 
is closer to the correct result. The penalty for 
using MOSN is an additional step. The simulator 
uses redundant base 8 arithmetic. 

Table 1 - A Comparison of DISC and MOSN 

Result of RDIV and DISC. 

PROCESS NUMBER 1: Began at time = o. 
02:2216 (1.803l2sE+Dl) is the dividend b. 
10:4534 (9.617408E+D6) is the divisor c. 
13:0414 (1.877546E-06) is the quotient a. 

Ended at time = 288. 

Result of RDIV and MOSN. 

PROCESS NUMBER 1: Began at time = o. 
02:2216 (1.803l25E+Dl) is the dividend b. 
10:4534 (9.617408E+D6) is the divisor c. 
12:4143 (1.874752E-06) is the quotient a. 

Ended at time = 320. 

The actual quotient is 1.874855E-06. 

Experimental Results 

One of the major accomplishments of the simu-

305 

lator to date has been to clearly demonstrate the 
areas of concern that exist when using digit on
line arithmetic. By simulating various online 
pipeline networks, the magnitude of these concerns 
was observed. The simulator also served as a use
ful tool for finding solutions to some of these 
concerns. The primary concern is generation of 
unnormalized results. When unnormalized values 
occur in a network, gradual mantissa underflow 
may occur [5] since an unnormalized value may 
not be as precise as it could be. By shifting 
the mantissa left to remove leading zeroes, more 
digits of the result may be added increasing the 
precision. An even bigger problem with unnormal
ized values in a network is that they may not be 
used as the divisor in RDIV or as the radicand in 
RSQR. 

The algorithms RADD, RMUL, and RDIV all have 
the possibility of generating unnormalized re
sults. The algorithm RSQR however, is an inter
esting exception. RSQR will operate correctly 
provided that the mantissa is normalized and pos
itive. If the radicand satisfies these require
ments then the result of RSQR will also be normal
ized. When combined with DISC, RSQR will compute 
the square root in an online manner with an online 
delay of three. This result will be normalized, 
so it may be used as the radicand of another 
square root operation or the divisor of a division 
operation. Thus, it is possible to construct an 
online pipeline network to compute the n-th root 
of x, where n is a power of 2, provided that x is 
positive and normalized. This network will have 
an overall delay of 4(10g2n)-1 steps. Table 2 

shows the simulation of a network to compute the 
eighth root of a number. 

Unfortunately, the algorithms RADD, RMUL, and 
RDIV do not have the desirable property that they 
always generate normalized results. In fact, when 
combined with DISC, these algorithms will usually 
generate unnormalized numbers. MOSN only decreases 

Table 2 - A Network to Compute Eighth Root 

Enter the expression(s) (Type "." 
1: d:=Ac:=Ab:=Aa. 

to stop.): 

Enter the 2 characteristic digits 
Enter the 6 mantissa digits of a. 

of a. 1 4 
276570 

PROCESS NUMBER 1: Began at time O. 
14:276570 (2.559993E+10) is the radicand a. 
12:510400 (1.600000E+05) is the square root b. 

Ended at time 352. 

PROCESS NUMBER 2: Began at time 128. 
12:510400 (1.600000E+D5) is the radicand b. 
03:620000 (4.000000E+D2) is the square root c. 

Ended at time 480. 

PROCESS NUMBER 3: Began at time 256 
03:620000 (4.000000E+D2) is the radicand c. 
02:240000 (2.000000E+Dl) is the square root d. 

Ended at time = 608 

the probability of unnormalized results. But no 
algorithm which can truly be said to be digit on
line can guarantee that the result will be normal-



ized for all possible values of the operands, es
pecially in the case of cancellation during sub
traction. One way to guarantee that the result 
will be normalized is to put restrictions on the 
operands so that cases such as the above do not 
occur. 

Increasing the online delay of certain oper
ations is another way of guaranteeing that a value 
in an online pipeline network can be normalized. 
The algorithm NORM has been incorporated in the 
simulator to provide· the user with the ability to 
specify the online delay of a process. NORM re
ceives the inputs in an online fashion and gener
ates a result, with the same value as the operand, 
after an online delay of one. If the first digit 
of the operand is a zero, NORM will be able to 
shift the mantissa one position to the left and 
adjust the characteristic accordingly. NORM is 
also written so that. by recursively applying NORM 
to an unnormalized number enough times, that num
ber will eventually be normalized. Thus, an un
normalized mantissa such as 0.100 ••• 0018 will 

become 0.100 ••• 0178 after one application of NORM, 

and 0.077 ••• 78 after n applications of NORM. 

The simulator package has .been used to simu
late many practical online pipeline networks. One 
such network is for the LU decomposition of an 
n by n tridiagonal matrix using the recurrences: 

dO = bO 

d:t. = bi - ci _l (ai/di _l ) for 1,;; i,;; n-l 

The computation ~i = ai/di _l is treated as a de-

sirable by-product. Table 3 shows the simulation 
of one iteration of the LU decomposition for 

[! 
3 0 

i] ~ 
0 0 

~] ~ 
3 0 

j] 20 7 1 0 
* 

11 7 
22 5 2 1 0 -9 

0 36 0 -4 0 0 

This example shows the advantage of using digit 
online arithmetic. As can be seen from the start
ing and ending times of the processes, the compu
tations of ~l' dl , and ~2 are performed in paral-

lel. 
One problem with this application is that the 

result di _l may be unnorma1ized and therefore the 

computation of ~i = ai/di_1may be incorrect. One 

solution to this problem would be to restrict the 
values of ai,bi , and ci in such a way that di _l 
will be normalized. These re·strictions would ob
viously reduce the usefulness of the system. An
other solution is to apply the algorithm NORM to 
the divisor. 

Conclusions 

This paper has presented a highly functional 
simulator for digit online algorithms. Since it 
was designed to perform in the same way that a 
straightforward hardware implementation of the al
gorithms would operate, the s.imulati.ons of online 
pipeline networks will experience the same prob
lems that the actual networks would encounter. The 

306 

Table 3 - LU Decomposition 

PROCESS NUMBER 1: Began at time = 0 
01:600000 (6.000000E+OO) is the dividend all]. 
01:200000 (2.000000E+00) is the divisor d[O]. 
01:300000 (3.0000E+OO) is the quotient ~[l]. 

Ended at time 384 

PROCESS NUMBER 2: Began at time 160. 
01:300000 (3.000000E+OO) is the multiplicand c[O]. 
01:300000 (3.000000E+OO) is the multiplier ~[l]. 
02:110000 (9.000000E+OO) is the product. 

Ended at time 480. 

PROCESS NUMBER 3: Began at time = 256. 
02: 240000 (2. OOOOOOE+Ol) is the addend b[ 1] • 
02:110000 (-9.000000E+OO) is the augend. 
02:130000 (l.lOOOOOE+Ol) is the sum d[l]. 

Ended at time - 576. 

PROCESS NUMBER 4: Began at time 352. 
02:260000 (2.200000E+01) is the dividend a[2]. 
02:130000 (l.lOOOOOE+Ol) is the divisor d[l]. 
01:200000 (2.0000E+OO) is the quotient i[2]. 

Ended· at time = 736. 

possibility- 0·f unnormalized divisors occuring in 
a network is one such problem. The need to avoId 
unnorma1ized values leads to tradeoffs in proces
sing speed, restrictions on inputs, and the pre
cision of results. The simulator allows the user 
to investigate how these tradeoffs come into play 
for various applications. 

Bibliography 

[1] DeLugish, B.G., "A Class of Algorithms for 
Automatic Evaluation of Certain Elementary 
Functions in a Binary Computer", Ph.D. Thesis, 
Report 399, DCS, Univ. of II., June 1970. 

[2] Ercegovac, M.D. and A.L. Grnarov, "On the 
Performance of On-Line Arithmetic", Proc. 
1980 Inter. Con£. on Parallel Proces'Siilg," 
pp. 55-62, August 1980. 

[3] Owens, R.M. and M.J. Irwin, "On-Line Algo
rithms for the Design of Pipeline Architec
tures", Proc. Sixth Annual Symp. on Computer 
Arch., pp. 12-19, April 1979. 

[4] Owens, R;M, "Digit On-line Algorithms for 
Pipeline Architectures", Ph.D. Thesis, Report 
CS-80-2l; Dept. of Computer Science, Penn 
State Univ., August 1980. 

[5] Owens, R.M., "Error Analysis of Unnormalized 
Arithmetic", Dept. of Computer Science, Penn 
State Univ., August 1981. 

[6] Raghavendra, D.S. and M.D. Ercegovac, "A Sim
ulator for On-line Arithmetic", Proc. Fifth 
Symp. on Computer Arith., May 1981. 

[7] Trivedi, K.S. and M .. D. Ercegovac, "On-line 
Algorithms for Division and Multiplication't• 
IEEE Transactions on Computers, Vol. C-26, 
No.7, pp. 681-687, July 1977. 



A PARALLEL ARCHITECTURE FOR ACOUSTIC 
PROCESSING IN SPEECH UNDERSTANDING 

Edward C. Bronson 
Leah J. Siegel 

Purdue University 
School of Electrical Engineering 

West Lafayette, IN 47907 

Abstract - Speech understanding is a complex 
task which requires extensive computation. To increase 
the processing speed, a speech understanding system can 
be decomposed into tasks which can be performed by a 
series of distributed processing sub-systems. An archi
tecture to perform acoustic processing is described in 
this paper. The parallel architecture for acoustic pro
cessing calculates characteristic parameters which 
describe the input speech signal. The types of opera
tions performed include digital filtering, FFTs, linear 
predictive coding, autocorrelation calculations, and pitch 
analysis. The architecture is a multiple-SIMD system 
using the MC68000 microprocessor as the basic process
ing element. Using realistic assumptions from existing 
speech understanding systems, the attributes of the 
parallel system to perform acoustic processing for real
time speech understanding are derived. In particular, 
details about the organization and the number of pro
cessors in each of the component SIMD sub-systems are 
obtained. Interconnection network requirements are 
determined from the SIMD algorithms used. Timing 
analysis is performed. 

I. Introduction 

A speech understanding system accepts spoken 
speech input, derives a conceptual understanding of the 
input, and produces a response. In a typical system, a 
number of knowledge source components interact to 
resolve the errors and ambiguity inherent in human 
speech. These knowledge sources perform operations 
such as acoustic parameterization, phonetic interpreta
tion, lexical processing, syntactic analysis, semantic 
interpretation, and response generation. Existing speech 
understanding sptems that have been developed are 
described in [6], [8]' and [16J. 

The extensive computation required precludes real
time speech understanding on a conventional serial com
puter. To improve the processing speed, the different 
knowledge sources can act in parallel (possibly on 
different portions of an utterance), and in addition, com
putational tasks within each knowledge source can be 
performed in parallel. Advances in technology have 
made it realistic to consider large-scale parallel process
ing systems [e.g., 2, 5, 13J. By designing multiprocessor 
knowledge sources, real-time speech understanding (with 
a constant delay) should be achievable. The next sec
tion briefly outlines a general configuration for a mul
tiprocessor system for speech understanding. In the fol
lowing sections, a detailed description and analysis of a 
parallel architecture for acoustic processing is described. 

n. A Parallel Architecture For Speech Understanding 

An architecture proposed to handle the speech 
understanding task consists of a distributed series of 

This material is based upon work supported by the National Sci
ence Foundation under Grants ECS-7909016 and ECS-8120896. 

0190-3918/82/0000/0307$00.75 @ 1982 IEEE 307 

computation stations [3, 4J. Each computation station 
corresponds roughly to a speech understanding 
knowledge source. This distributed parallel architecture 
is diagramed in Fig. 1. The interconnection of 
knowledge sources forms a linear pipeline in which each 
stage is a complete multiprocessor sub-system. 

A typical computation station consists of an input 
memory buffer (ME), an output MB, control units 
(CUs), and processing elements (PEs). The organiza
tion of the PEs within each computation station is 
selected to exploit whatever parallelism is inherent in 
the specific task being performed by that station. The 
processing time for each station is a function of the 
computational complexity of the tasks to be performed 
and the amount and arrival rate of input data. Assum
ing a maximum input rate, the processing speed require
ments can be met by employing parallelism within the 
task algorithms and also among the tasks to be ,per
formed. Minimum processing time Cor the computation 
station will be insured when the data in the input MB is 
processed as soon as it is available. When a subset of 
PEs has finished a processing task and stored its result 
in the output MB, it is available to be assigned another 
task by the computation station's primary control unit. 

Each computation station is specialized to meet 
performance (speed) requirements of the overall system. 
Processing proceeds asynchronously with respect to 
adjacent computation stations. When the processing 
time for each station is approximately equal, then no 
bottlenecks occur and data flow through the system will 
be continuous, providing real-time performance (with a 
constant delay). Because the parallelism within each 
computation station permits processing of all pro~able 
utterance hypotheses simultaneously, there is no need to 
backtrack once any particular hypothesis has been 
determined improbable. Thus, extensive parallelism is 
being used at each stage of the speech understanding 
process in order to simplify the interaction among vari
ous knowledge sources. 

Ill. Acoustic Processing 

Acoustic processing is the task of transCorming 
periodically sampled digitized speech into characteristic 
tIme and frequency domain parameters. Acoustic pro
cessing is described in [15J and [24J. 

The number and type of parameters used by the 
major speech understanding systems vary with each sys
tem. The complete set of parameters calculated, called 
characteristic parameters, represents a segment of 
speech data called a frame. A frame can range from 5 
to 20 ms in length and corresponds to a uniform section 
of an utterance. A frame length of 12.8 ms is used by 
the architecture described here. For each frame, 37 
characteristic parameters are calculated. In order to 
achieve real-time performance, the 37 parameters must 
be calculated in at most 12.8 ms. 

The speech data is sampled at 20 KHz. ThereCore, 



a 12.8 ms speech data frame contains 256 data samples. 
This 256 point data set is called the short data set. 
Most of the acoustic parameters are calculated from 
these data points. Other parameters, especially those 
relating to the pitch of the speaker's voice, require a 
longer segment of speech data containing several vocal 
cord oscillations. For these parameters, a 51.2 ms seg
ment of speech data, consisting of ·1024 digitized sample 
points, is used. This data set, called the long data set, 
includes the current 12.8 ms frame plus the preceeding 
38.4 ms of speech data. Both data sets are completed 
and available for processing simultaneously. The 
parameters calculated from both data sets characterize 
the interval of speech of the short data set. 

The 37 characteristic parameters are listed below. 

Al -+ A24 Linear predictive coding (LPC) coefficients. 
- ~e predictor coefficients uniquely specify the 

transfer function of the vocal tract. 
AC The normalized autocorrelation coefficient at 

unit sample delay. This is a rough measure of 
the uniformity of the data within the frame. 

EH Signal energy within a !!igh frequency band 
(5000 -+ 10000 Hz). 

EL Signal energy within a Low frequency band 
(625 -+ 2500 Hz). 

EM Signal energy within a Mid frequency band 
(2500 -+ 5000 Hz). 

ET Signal energy within the Iotal frequency range 
(O -+ 10000 Hz). 

EVL Signal energy within a Very Low frequency 
band (O -+ 625 Hz). The energy within the 
speech signal characterizes the overall vocal 
tract configuration. 

ERN LPC normalized minimum error. This parame
ter reflects the accuracy of the linear prediction 
model for describing the speech frame. 

FO Fundamental frequency (pitch). The fundamen
tal frequency indicates the oscillation rate of the 
speaker's vocal cords. 

F 1 First formant (resonant) frequency. 
F2 Second formant frequency. 
F3 Third formant frequency. The values of the 

first three formant frequencies are useful in the 
characterization of vowels and sonorants. 

RMS Root mean square energy of the preemphasized 
speech signal. 

ZC Zero~ crossing density. The zero crossings can be 
used to separate fricative from non-fricative 
speech sounds. 

The algorithms required to obtain these parameters will 
be discussed in section V. 

IV. An Architecture For Acoustic Processing 

The SIMD Architecture 

The architecture to perform acoustic processing 
within the speech understanding system is called the 
Acoustic Processing Computation Station. This is the 
second stage of the speech understanding system 
diagramed in Fig. 1. The Acoustic Processing Compu
tation Station is diagramed in Fig. 2. It consists of a 
primary CU which coordinates -processor activity, 4 
secondary CUs, an input MB, an output MB, 512 PEs, 
and a multistage cube interconnection network. The 

308 

HUMAN SPEECH 

SEGMENTATION 

LEXICAL PROCESSING 

Fig. 1. A distributed speech understanding system. 

INPUT PROCESSING COMPUTATION STATION 

INPUT MEMORY BUFFER 

M I 
U N 
L T 
T E 
I R N 

S C E 

T o T 
A NW 
G NO 
E E R 

C K 
C T 
U I 
B 0 
E N 

OUTPUT MEMORY BUFFER 

SEGMENTATION COMPUTATION STATION 

Fig. 2. The Acoustic Processing Computation Station. 
computation station receives its data from the Input 
Processing Computation Station. It calculates the 
characteristic time and frequency domain parameters for 
frames of the input data and stores the results in the 
output MB. These parameters are then accessed by the 
Segmentation Computation Station. The components of 
the computation station form a multiple-SIMD 
(MSIMD) system designed to exploit the parallelism 
inherent in acoustic processing tasks. 

The Processing Element 

The MSIMD acoustic processing architecture uses 
512 PEs. The PE model used is based on that 
presented in [7]. All control and arithmetic operations 
within the PE are performed by an MC68000 micropro
cessor. A memory management unit will arbitrate all 
read and write operations to the microprocessor. When 
the CU broadcasts an instruction to the PE, this 
instruction is stored within an internal instruction 
memory and subsequently read by the MC68000. The 



CU can enable or disable the PE by utilizing masking 
instructions. The CU can also read various condition 
codes from the PE. The internal memory is used for 
data storage and is used only by the PE. 

The MC68000 microprocessor is a powerful 16-bit 
device with 56 instruction types, 14 addressing modes, 
and eighteen 32-bit internal data and address registers 
[11]. Processor timing calculations were made with the 
microprocessor running Motorola's 68343 fast floating 
point software [12]. The execution times are calculated 
for the microprocessor running with a 12.5 MHz clock 
frequency. Processing times for arithmetic operations 
are given in Table 1. 

The Interconnection Network 

Each PE is connected to all of the other PEs in the 
computation station by a 16-bit multistage cube inter
connection network with independent box control [17]. 
The cube network can be partitioned into independent 
sub-networks of varying power of two sizes, allowing 
subsets of the PEs to act as independent SIMD 
machines. Routing through the network is established 
with routing tags generated by each PE. The multis
tage cube interconnection network was chosen because 
of its extremely high efficiency when performing many 
parallel processing algorithms. Network transfer times 
used are based upon the simulation studies in [I]. Net
work transfer times for different data types are given in 
Table 2. These times include the times for routing tag 
generation and configuration of the network based on 
the routing tag specification. 

V. Algorithms 

The calculation of the 37 characteristic acoustic 
parameters requires many signal processing operations. 
To achieve the necessary processing speed, each signal 
processing task was divided into parallel sub-tasks or 
algorithms that can be run on an SIMD machine. Nine
teen parallel signal processing algorithms were used. 
Each of the SIMD algorithms is such that it can run on 
machines of different sizes, with execution time a func
tion of the machine size. The processing time for the 
computation station can be adjusted by varying the 

Table 1. Processing times for the MC68000 with a 12.5 
MHz clock. 

OPERATION 

Integer (16 bit) 

Add/Su btract 
Load 
Store 

Floating Point (32 bit) 

Add/Su btract 
Divide 
Multiply 
Square Root 
Load 
Store 
Compare 
Absolute Value 
Negate 

Complex (2 * 32 bit) 

Add/Su btract 
Multiply 

0.4 
0.4 
0.4 

14.1 
48.6 
28.2 

124.2 
0.8 
0.8 
1.6 
0.8 
1.6 

28.2 
141.0 

309 

Table 2. Network transfer times for each data type. 
These times include time to generate routing 
tags and set the network. 

DATA TYPE TIME (Jls) 
Integer (16 bits) 4.5 
Floating Point (32 bits) 6.4 
Complex (2 * 32 bits) 10.1 

number of PEs executing each SIMD sub-task. 
The nineteen parallel algorithms used by the 

Acoustic Processing Computation Station are listed 
below. The first number after each item in the list 
designates a reference to the calculation performed seri
ally. Subsequent numbers indicate references to a paral
lel algorithm. 

Autocorrelation Calculation [15, 19, 22] 
Center Clipped Signal Construction [15, 20] 
Data Zero Padding 
Digital Inverse Fil ter [15, -] 
Energy Band Calculation [24, -] 
FFT [14, 21] 

Radix 2 Decimation-in-Frequency (DIF) 
Radix 2 Decimation-in-Time (DIT) 

Formant Frequency Analysis [9, -] 
Hamming Window [15, -] 
LPC Coefficients Calculation [10, 20] 
LPC Minimum Error Calculation [10, -] 
Maximum Calculation [-, 23] 
Minima Calculation [-, 23] 
Normalized Autocorrelation Calculation [18, -] 
Partial Autocorrelation Calculation [15, 19] 
Pitch Extraction [15, 20] 
Preemphasis [15, -] 
RMS Energy Calculation [24, -] 
Squared Magnitude Operation 115, -] 
Zero Crossing Calculation [24, -] 

Several of the parameters computed by the Acous
tic Processing Computation Station are obtained by 
combining a number of these algorithms. The 256 point 
Autocorrelation Calculation used to obtain the LPC 
coefficients is computed by combining four parallel algo
rithms: Data Zero Padding, Radix 2 DIF FFT, Squared 
Magnitude Calculation, and the Radix 2 DIT FFT. 
The Digital Inverse Filter used in obtaining the formant 
frequencies is composed of four parallel operations: Data 
Zero Padding, a Radix 2 DIT FFT, a Squared Magni
tude Calculation, and a DBR -> WRP Network Data 
Transfer. 

Interaction points occur at the end of one algorithm 
and the beginning of another, when the parallel algo
rithms must interact to synchronize and exchange data. 
The specific problems which must be addressed at the 
interaction points are sub-system size and data alloca
tion. The number of PEs used to execute each algo
rithm is determined by the real-time constraints. 
Therefore, the number of PEs operating on a given data 
set may change. In addition, the way in which data is 
assigned to the PEs may differ from one algorithm to 
the next, or the results from one algorithm may not be 
allocated in the pattern needed by the next algorithm. 
To simplify algorithm interaction, four distinct data 
orderings are defined for the algorithms used. For D 
PEs and data items d(O), d(I), ... , d(D-I): 

Single Sequential Order (SSQ): 

PE p con tains d(p) 



For D/2 PEs and data items d(O), d(I), ... , d(D-I): 

Dual Bit Reversed (DBR): 

PE p contains d(br(2 * p) 
and d(br((2 * p) + 1)) 

where br(x) = bit reverse of x 

Dual Sequential Order (DSQ): 

PE p contains d(2 * p) 
and d((2 * p) + 1) 

Wrap Around Order (WRP): 

PE p contains d(p) 
and d(p + D/2) 

Each of th~ above three data orderings can be general
ized to D /2' PEs for D data items where i is an integer. 

In addition to the parallel signal processing algo
rithms listed above, five data alignment/data transfer 
algorithms were designed and used by the computation 
station: 

Load Data in DSQ Order 
Distribute Data 
DBR -> WRP Network Data Transfer 
DSQ -> DBR Network Data Transfer 
Network Data Broadcast 

The Load Data algorithm is used for the initial assign
ment of data to the PEs. The Distribute Data algo
rithm distributes data by copying the data points from 
one set of PEs to another preserving the data ordering. 
The two Network Transfer algorithms perform realloca-

tion of the data to obtain the specified data ordering. 
(For the algorithm sequences considered, no other reallo
cations were needed.) A Network Data Broadcast is a 
network data transfer in which a single data item is 
transferred to each PE in an SIMD machine. 

VI. Operation and Performance 

A different series of parallel algorithms is executed 
by the computation station on the short data set and on 
the long data set. The algorithms performed on the two 
data sets constitute two synchronous algorithms that 
are run asynchronously with respect to each other. Fig. 
3 shows the assignment of principal algorithms to PEs 
and the algorithm processing times for one 12.8 ms seg
ment of speech. The architecture consists of 512 PEs. 
PEs 0 through 255 are assigned the algorithms which 
are performed on the short data set. PEs 256 through 
511 are assigned the algorithms which are performed on 
the long data set. 

Assume that the short data set is available at time 
0.0. At that time, the 256 data samples are loaded into 
PEs 0 through 256. These data samples are then 
transferred to the remaining PEs by using the intercon
nection network. The calculations on the short and 
long data sets proceed asynchronously from this point. 
The partitioning of the Acoustic Processing Computa
tion Station's PEs to perform all of the above algo
rithms can be easily seen in Fig. 3. 

A summary of processing times and the number of 
PEs utilized for each parallel algorithm are given in 
Table 3. When completion of an algorithm results in 
the generation of a characteristic parameter, that 
parameter is indicated after the algorithm name. The 

DATASET TIME (ms) 

CIl 
Eo< 
Z 
r-1 

~ 
~ 
C!i 
~ 
CIl 
CIl 
r-1 
0 
0 
I:t: 
Il-. 

AVAILABLE 

~ 

64 

128 :;: : 
FORMANT ANALYSIS 

192 -

::::: .. . :. . .' .. : ~: . ..... . 
.AUTr~~~~~·A.TION: .. : :~F.~.t ENERGY BAND CALC 

: : : :" :::. . .. 

266 
PITCH EXTRACTION ........., 

320 -

384 

448-

( 
I 

612 

-DISTRmUTEDATA TO 612 PEs 

Fig. 3. Assignment of tasks to PEs and algorithm processing times for one 12.8 ms segment of speech. 
(Labels indicate the principal processing steps.) 

310 



Table 3. Summary of the processing times and the 
number of PEs used for each algorithm. 

PARALLEL ALGORITHM 

Short Data Set Algorithms 
Subsequence One 

Load Data in DSQ Order 
Distribute Data 
Hamming Window 
Distribute Data 
Preemphasis 
Autocorrelation Calc. - 256 point 

Data Zero Padding 
Radix 2 DIF FFT 
Squared Magnitude Calc. 
Radix 2 DIT FFT 

Distribute Data 
Network Data Broadcast 
LPC Coefficients Calc. (A1-+A24) 
LPC Minimum Error Calc. (ERN) 
Digital Inverse Filter 

Data Zero Padding 
Radix 2 DIT FFT 
Squared Magnitude Calc. 
DBR -+ WRP Network Transfer 

Minima Calc. 
Formant Frequency Analysis (Fl,F2,F3) 

Subsequence Two 

Time after Autocorrelation - 256 point 
RMS Energy Calc. (RMS) 
Norm. Autocorrelation Calc. (AC) 

Subsequence Three 

Time after Autocorrelation - 256 point 
Zero Crossing Calc. (ZC) 
DSQ -+ DBR Network Transfer 
Radix 2 DIT FFT 
Energy Band Calc. (EH,EL ,EM,ET,EVL) 

Long Data Set Algorithms 

Load Data DSQ Order 
Distribute Data 
Maximum Calc. 
Center Clipped Signal Construction 
Partial Autocorrelation Calc. 
Pitch Extraction (FO) 

'# PEs TIME 
(ms) 

256 0.205 
512 0.006 
256 0.028 
256 0.006 
256 0.049 

256 0.001 
256 1.857 
256 0.085 
256 1.857 
128 0.013 
32 0.160 
32 5.952 
32 0.182 

128 0.001 
128 1.650 
128 0.085 
128 0.013 
128 0.259 
64 0.090 

@ 12.499 

4.094 
2 0.174 
2 0.284 

4.094 
128 0.046 
128 0.013 
128 1.650 
128 0.327 

@ 6.130 

256 0.205 
512 0.006 
256 0.261 
256 0.042 
256 11.714 
256 0.138 

® 12.366 

parallel algorithms which make up the longest synchro
nous path of each of the algorithm sequences are listed 
in order. Their processing times are tabulated and are 
indicated in Table 3 as 81, 82, 83, and /1, corresponding 
to the processing times for subsequences 1, 2, and 3 of 
the short data set and the subsequence on the long data 
set. These times are also shown on Fig. 3. The process
ing time for the computation station will be the slowest 
of the asynchronous sequences. The processing time of 
the computation station is 12.499 ms resulting from the 
processing of the short data set. Since all processing is 
completed before the arrival of the next speech data set 

311 

( 5 12.8 ms ), data flow through the architecture is con
tinuous with no bottlenecks, providing real-time opera
tion with a constant delay of 12.499 ms. The point at 
which processing is completed is indicated in Fig. 3. 

VII. Discussion 

This work focuses on the problem of using an 
MSIMD system to perform a large number of algorithms 
under real-time constraints. Major issues addressed 
include choice of partition sizes for the component algo
rithms, determination of the overall machine size, data 
allocation and alignment at the junctures between algo
rithms, and interconnections between the algorithms. 
The design resulted in a 512 processing element archi
tecture in which data flow is continuous with no 
bottlenecks. Real-time performance is achieved with a 
constant delay of 12.499 ms. 

At any point during processing, there may be from 
one to four independent SIMD algorithms being exe
cuted. The component SIMD machines range in size 
from 2 to 512 PEs. Nine different system configurations 
(i.e., partitionings) are used. These are accomplished 
dynamically, by reassignment of the control units to 
subsets of the PEs. A very rough measure of processor 
utilization can be determined by a ratio of the areas 
during which processors are performing algorithms and 
the total area of a single 12.8 ms frame. This calcula
tion results in a processor utilization of about 75' per
cent. 

The required processing speed to acheive real-time 
performance was obtained by increasing the number of 
PEs executing the parallel algorithms. The ability to 
acheive greater speed by increasing the number of pro
cessors is characteristic of the problem domain of acous
tic processing. The flexibility of the MSIMD architec
ture presented is particularly well suited for these types 
of problems. 

Many of the algorithms could be executed in less 
time than indicated in Table 3 if more PEs were used. 
However, this would have delayed other parallel algo
rithms and real-time performance may not be achieved. 
Other algorithms could not be ·run any faster because 
the maximum number of processors that can be 
employed in the algorithm are being used. For IOlxample, 
the LPC Coefficients Calculation algorithm can use only 
32 PEs. Even though more processors are available 
(Fig. 3.), using more PEs will not decrease the process
ing time of the algorithm. The SIMD machine partition 
sizes were chosen in an attempt to create the smallest 
possible overall machine to perform all of the tasks 
within the real-time constraints. 

The types of algorithms to be performed and the 
real-time constraints placed on the system design 
resulted in very constrained algorithm scheduling. In 
order to meet the real-time requirements, each algo
rithm must be run on the SIMD machine of the size and 
in the order indicated in Fig. 3. This restriction on the 
size of an SIMD sub-machine indicates a requirement 
that the operating system must acknowledge requests 
for an SIMD machine of a specific size. An open prob
lem is whether or not this type of highly constrained 
scheduling could be done efficiently by an automatic 
scheduling algorithm. 

Substantial speed was obtained by utilizing the 
small number of well defined data orderings at the 
interaction points between parallel algorithms. This 
eliminated the need for the architecture to store and 



load data items between algorithms. Distribution and 
reallocation of data required only 0.2 percent of the 
total processing time of the computation station. The 
sequencing of the algorithms was chosen to minimize 
this reallocation time. In most cases, the parallel algo
rithms were designed such that no data alignment was 
necessary. For example, the 256 point Autocorrelation 
Calculation is performed by executing a sequence of four 
algorithms. The first algorithm, Data Zero Padding 
accepts data in SSQ order and outputs data in WRP 
order. The Radix 2 DIT FFT algorithm uses the WRP 
orderd data and outputs data in DBR order. The 
Squared Magnitude Calculation preserves the data in 
DBR order, which is then used by the Radix 2 DIT 
FFT. The last algorithm outputs data in WRP order. 
For this sequence of algorithms, no additional data allo
cation was needed than that provided by the algorithms 
in the sequence. Because of the speed increases which 
can be gained by avoiding frequent data reallocations, 
an intelligent scheduler should make use of data alloca
tion information in sequencing the algorithms and in 
selecting among alternate versions of a given algorithm. 

The work presented in this paper points the way to 
many directions for future work. Additional parallel 
algorithms could be explored. Since there are some idle 
processors during portions of the speech frame analysis, 
additional characteristic parameters could be calculated. 
The addition of floating point hardware to augment the 
instruction set of the MC68000 should be explored. All 
of the algorithms used in this work were deterministic 
and therefore had predictable processing times. Some 
signal processing operations, such as spectrum enhance
ment [15]' have processing times that may vary depend
ing upon the input speech data. Design of an architec
ture using these algorithms would require probabilistic 
modeling and computer simulation studies. 

An issue which must be considered in the design of 
large scale systems such as the one presented here is the 
extent to which one wishes to employ special purpose 
hardware. Since speech processing is an evolving 
research area, it is desirable to have a flexible system on 
which new algorithms can be tested. This architecture 
provides such a research tool in which the amount of 
parallelism provided can be varied to execute a wide 
variety of algorithms. The design presented in this 
paper demonstrates the feasability of an MSIMD system 
to perform speech acoustic processing within real-time 
constrain ts. 

VllI. References 

[1] G. H. Barnes and S. F. Lundstrom, "Design and 
validation of a connected network for many
processor systems," Computer, Dec. 1981, pp. 31-41. 

[2) K. E. Batcher, "The design of a massively parallel 
processor," IEEE Trans. Comp., Vol. C-29, Sept. 
1980, pp. 836-844. 

[3] E. C. Bronson and L. J. Siegel, "A parallel architec
ture for speech understanding," 1981 IEEE Int. 
Con/. Acoust., Speech, Signal Processing, Mar. 
1981, pp. 1176-1179. 

[4) E. C. Bronson and L. J. Siegel, "Overview of a dis
tributed parallel architecture for speech under
standing," Proc. 15th Hawaii Int. Con/. System Sci
ences, Jan. 1982, Vol. I, pp. 350-359. 

[5) M. J. B. Duff, "Parallel algorithms and their 
influence on the specification of application prob
lems," in Multicomputers and Image Processing, K. 

312 

Preston and L. Uhr, eds., Academic Press, NY, 
1982, pp. 261-274. 

[6) D. H. Klatt, "Review of the ARPA speech under
standing project," J. Acoust. Soc. Am., Vol. 62, 
Dec. 1977, pp. 1345-1366. 

[7) J. T. Kuehn, H. J. Siegel, and P. D. Hallenbeck, 
"Design and simulation of an MC68000-based mul
timicroprocessor system," 1982 Int. Con/. Parallel 
Processin(j~ Aug, 1982. 

[8] W. A. Lea, Ed., Trends in Speech Recognition, 
Prentice-Hall, Englewood Cliffs, 1980. 

[9] J. D. Markel, "Application of a digital inverse filter 
for automatic formant and F 0 analysis," IEEE 
Trans. Audio Electroacoust., Vol. AU-21, June 
1973, pp. 154-160. 

[10) J. D. Markel and A. H. Gray, Linear Prediction 01 
Speech, Springer-Verlag, NY, 1976. 

[11] Motorola, MC68000 16-bit Microprocessor User's 
Manual, second edition, M68000UM(AD2), Jan. 
1980. 

[12) Motorola, "68343 last floating point source/object 
lor MC68000," M68KFFP specification sheet, Nov. 
1981. 

[13] M. C. Pease, "The indirect binary n-cube micropro
cessor array," IEEE Trans. Comp., Vol. C-26, May 
1977, pp. 458-473. 

[14) L. R. Rabiner and B. Gold, Theory and Application 
01 Digital Signal Processing, Prentice-Hall, Engle
wood Cliffs, 1978. 

[15] L. R. Rabiner and R. W. Schafer, Digital Process
ing 01 Speech Signals, Prentice-Hall, Englewood 
Cliffs, 1978. 

[16) D. R. Reddy, "Speech recognition by machine: a 
review," Proc. IEEE, Vol. 64, April 1976, pp. 501-
531. 

[17) H. J. Siegel and R. J. McMillen, "The multistage 
cube: a versatile interconnection network," Comput
er, Dec. 1981, pp.65-76. 

[18) 1. J. Siegel, "A procedure for using pattern 
classification techniques to obtain a 
voiced/unvoiced classifier," IEEE Trans. ACQust., 
Speech, Signal Processing, Vol. ASSP-27, Feb. 1979, 
pp. 83-89. 

[19) L. J. Siegel, "Parallel algorithms for linear predic
tive coding," 1980 IEEE Int. Con/. Acoust., Speech, 
Signal Processing, Apr. 1980, pp. 960-963. 

[20] 1. J. Siegel, "Using SIMD machines for speech 
analysis," Proc. 14th Hawaii Int. Con/. System Sci
ences, Jan. 1981, Vol. I, pp. 309-318. 

[21) 1. J. Siegel, P. T. Mueller, Jr., and H. J. Siegel, 
"FFT algorithms for SIMD machines," 17th Aller
ton Con/. on Communication, Control, and Comput
ing, Univ. of Ill., Oct. 1979, pp. 1006-1115. 

[22) L. J. Siegel, H. J. Siegel, R. J. Safranek, and M. A. 
Yoder, "SIMD algorithms to perform linear predic
tive coding for speech processing applications," 
1980 Int. ConI. Parallel Processing, Aug. 1980, pp. 
193-196. 

[23) H. S. Stone, ed., Introduction to Computer Architec
ture, Science Research Associates, Inc., Chicago, 
1975. 

[24] V. W. Zue and R. M. Schwartz, "Acoustic process
ing and phonetic analysis," in [8), pp. 101-124. 



A NOVEL APPROACH TO PARALLEL PROCESSING CRYPTOSYSTEH 

Yoshiyasu TAKEFUJI, Koichiro TSUJINO, Marl IBUKI, and Hideo AlSO 

Department of Electrical Engineering 

Kelo University 

3-14-1 Hiyoshi, Yokohama 223. JAPAN 

Abstract -- A new cryptosystem based on multiresidue 
codes and on pseudorandom number generation is proposed in 
tbis paper. Parallel and pipelining computations in encryp
tion aod decryption can be realized by adopting multiresidue 
codes aod the mixed-radix conversion scheme. The difficulty 
of cryptoanalysis in multiresidue codes is discussed in de
tail. A cipher unit for encrypting a 2~-blt data block and 
for decrypting a 32-bit data block has been implemented by 
employing a low-cost microprocessor. The implementation of 
the unit is mentioned 1n this paper. 

Introduction 

Hiding information 1n secret codes has been spreading 
in communication systems among computers, terminals, or both 
of these. Since the Data Encryption Standard (DES) and 
several new cryptosystems have been presented recently 
[1][2], we have entered a cryptograph age. An ideal cryp
tosystem possesses the characteristics of easiness in both 
data encryption and decryption at low cost and those of 
hardness in breaking its cipher. 

A new encryption system based on mixing multiresidue 
codes with a technique 1n pseudorandom number generation is 
presented in this paper. The proposed encryption system is 
a conventional cryptosystem. The cryptoanalysis is 
extremely exhaustive. The cryptosystem with simple data 
encryption and decryption has been implemented on a low cost 
microprocessor. The number of moduli (n) and the values of 
the moduli (ml,m2, ••• ,mn) correspond to keys in the mul
tiresidue system. 

The multiresidue system has to satisfy 

21<5, LCM(ml ,m2, ••• ,mn), 

where k is the length of a data block to be encrypted. 
The cryptosystem employing pseudorandom number genera

tion is based on a block chaining scheme. In the block 
chaining scheme, the present data to be encrypted are influ
enced by other data previously encrypted. In the proposed 
system, information data in the present state to be 
encrypted are affected by both information of the multiresi
due code in the previous state and the related pseudorandom 
number. The pseudorandom number is also influenced by 
information of the multiresidue code in the previous state. 

The block chaining scheme has an inevitable drawback. 
Even if any single encrypted data block is dropped from the 
trasmission line or is not received by the decryption sys
tem, it would be very difficult or almost impossible to 
decrypt the succeeding encrypted data blocks. 

The implemented cryptosystem employs 24-bit data block 
encryption and 32-bit data block decryption with six moduli. 
The length of one block to be encrypted can be easily 
expanded. 

The data to be encrypted can be converted modulus by 
modulus in parallel. The data decryption can be pipelined 
adopting the mixed-radix conversion method [3]. 

In order to break the implemented Cipher, a Marcov 
model of a complete graph conSisting of 21+ nodes and 2.2.4.( 224-
-1)/2 arcs has to be solved. Moreover, the difficulty of 
the cryptoanalysis can be enhanced by increasing the period 
of the pseudorandom number sequence. 

The proposed enoryption and decryption procedures are 
described in Fig.l and Fig.2 , respectively. 

CODyersion ~ ~ ~~ multiresidue ~ 

The multiresidue 
m1,m2, ••• ,mn which 
M=LCM(m1,m2, ••• ,mn). 
in a residue rorm. 
then, 

system 1s composed of multiple moduli 
give the usable number range 

Let a normal number X be represented 
The residue representation of IxlM is 

IxlM <==>{xl.x2, •••• ,xn}, 

where xi=IXlmi means that xi is the itb reSidue of X modulo 
mi. 

• If O<a<m and 
multiplicative 
a=\l/b\m. 

lablm=l are satisfied. a is called the 
inverse of b mod m, and is denoted by 

0190-3918/82/0000/0313$00.75 © 1982 IEEE 313 

Example 1: For the moduli ml=6,m2=1,m3=11, the usable 
number range is then 

o ~ X < H = LCH(6.7.11) = 462. 

When X is 26, the mul tiresidue representation of I X I M 
is 

A high speed parallel residue computation algorithm is 
proposed in this paper. When 2K±1 (k=1,2,.w.) are adopted 
as moduli, every residue is able to be calculated in paral
lel as shown in Fig.3. The residues of an n-bit data block 
mod 2K-l can be parallely calculated on every k-bit block. 
This can be proved using Eq.(l) [3] as follows: 

la+b+c+····IM=1 ialM+IM+lcI M+ ····11"1 (1) 

Proof: Consider X mod Mw Let X be an n-bit data and 
H be 2K_1 (k=1.2 ••••• ). 

H=21<-1=0 mod M 
2K =1 mod M 
(2K)l =1 1 =1 mod H, 1=1,2""r otl 

IxIM=1 lao+2a, + •••• +2'·-!.~·dH+12K >1·la,+2 ... ,+ .••• +2·"".·,1 
+12" 1·la.+2a + .••. +2:h 0,1+ •••••• j M 

Q.E.D. M ~ .zl!"1 d - 1M M 

The residUes of an n-bit data block mod 2 K +1 can be 
calculated on every 2k-bit block in the same manner. 

The proposed parallel computation algorithm is suitable 
not only for multimicroprocessor implementation, but also 
for iterative VLSI implementat10n. 

Conversion .t..o. .t.lLe.. H1.u.a-.B..aJU...J. u.a..t..ul 

There are two schemes of conversion from the residue 
system to the normal number system. The one is based on the 
Chinese Remainder Thorem, While the other the Mixed-Radix 
Conversion [3]. We have adopted the latter conversion from 
the Viewpoints of the parallelism and the pipeline process
ing capability involved. 

The mixed-radix expression is of the form 

S=an if mi+ •••. +a3·m2-ml+a2-ml+al, 
1.= 1 

(2) 

where ai is the ith mixed-radix coefficient. The a1 
(1=1,2, •• :.,n) are required to obtain the normal number 
representation as shown in Example 2 • 

Example 2: For ml=7, m2=3, and m3=5, find the asso
ciated mixed- radiX digits of" {4,0,3} I where the mixed 
radix expression is 

Solution 

moduli: 7 

Residue repre- - ~~~) 
sentation of x 

-) 4 

x-al • 0 

" 
Multiply byll17I M- X) 

-=U.. 
7 

~ 

-) 

x-at 
a2 ~ -7-- -

Multiply bYI1/31~ 
x-al - a2 -7-

0 

4 

2 

1 

/ 2~ 
~ 

2 

0 

• X 

~ 

I 

(3) 

Segment 

/5 
3 

4 

4 

3 

7 
~ 

2 

0 

2 

a1=4 

~egment 

a2=2 
Segment 

:/ 
·-0" 

~ 
a3=0 

Then the mixed radix representation 
{0,2,4}. Hence by Eq.(3), one obtains 

or x is 



Parall.1!sm AAA oipellning 

Assuming that t processors are employed tor converting 
the normal data to t residues, the itb residue ot X mod .IIi 
is computec by the itb processor, where X 1s the normal data 
and mi 1s the ith ·modu~us. The maximum througbput of the 
multiprocessor system depends OD the slowest residue compu
ta tion. The experj;mental encry·ptlon program, which was 
designed to compute eacb of the 8i% residues in sequential 
on a single processor, can be divided into the six indepen
dent program modules~ If the modules are processed in 
parallel on tbe six processors, approximately .. ti·ve times of 
the tbroughtput will be expected to be achieved with some of 
the waiting overhead for synchronization among the six pro
cessors. 

On the other hand, the data decryption adopting the 
mixed-radix conversion scbeme oan be mapped onto the paral
lel and pipelined multiprocessor architecture as showD in 
Fig.~. Fig.4 describes a three-residue decryption system of 
Example 2 in the previous section. Processor P1 is a queue 
which transmits the residues x1, x2, and x3. Processor P2 
performs the calculation of the segment 1 to obtain the 
mixed-radix coefficient a2 shown in the solution of Example 
2. Similarly I P3 and P~ are tor the segmeot 2 and for the 
segment 3, respectively. Processor Q performs the conver
sion from the mixed-radix system to the normal number system 
following Eq.(3). 

If each queue of every processor provides an adequate 
length, the system requires no centralized synchronization 
at all, because the soheme is based on a data flow mechan
isa. When all the required data arrive at queues at· a pro
cessor, the computation is tired and is autonomously per
formed in the processor to provide th~ computed result for 
the succeeding processors. In order to convert t residues 
into the normal data. N processors need to be given in the 
system. where N is t(t-l)/2 +2. Since in the decryption 
system the processor Q shown in Fig.~ for the conversion 
from the mixed-radix system to the normal number system has 
the heaviest load in the computation, the unit time of the 
pipelined processing is determined by the computability ot 
the processor Q. 

The experimental decryption program for sequentially 
converting the six residues to the normal data can be 
divided into the seventeen independent program modules (t=6, 
N=17). It t~e modules are processed in parallel on seven
teen processors, it could be estimated by the experimental 
decryption program that the unit time diminishes to approxi
mately one twelfth of the time which was required tor 
decryption on a Single processor. 

~dorandQm ~ 

Tbe pseudorandom number genarated by a linear 
rSQurrence ~odu~o 2 -sh~ft register- [1] is utilized as a 
key of the Caesar Cipher [1] in the proposed system. 

When a trinomial of the form xl' +xt +1 whose degree is a 
Hersenne exponent is adopted as a generator polynomial, the 
period of the linear recur~ing sequence becomes 2Y -1 [1]. 
On the other hand, the period of a primitive polyno.ial 
becomes 2P-l, where p l"s the degree of the polynomial [1]. 
Combinations or various generator polynomials can be chosen 
to generate pseudorandom numbers. _. ~~ ~~ 

Let a polynomial H(x) be Gl(x)G2(x) •••• Gt(x). rhe 
period of the "1"111near recurring sequence becomes 
LCH(n1,n2, ••••• nt)·2\ , where "ni (1:1,2, •••• ,t) are the 
period of the Gi(x) and tbe 21+l has to be satisfied as .fol
lows [4): 

Example 3 : 

Solution : 

Hence, the 

Find the period of H(x)=(x3 +% +If(x+1)~ 

G1(x)=x3 +x +1 
m1=2 
nl=23 -1=7 

G2(x)=x+l 
m2=3 
n2=2'-1=1 

period of the H(x) becomes 

itt 
LCMt7,1)'2 =7·4=28 ~ 
{;!i+l12;'< Max(2,3) Sl} . 

The length of the generated pseudorandom number 
sequence corresponds to the key length of the Caesar Cipher. 
The Dumber of shifted clocks in a state 1s influenced by 
multiresidue codes in the previous state. If a trinomial of 
the form xP+z~+l whose degree is a Hersenne exponent is 
chosen as a generator polynqmial, the generator requires a 
p-bit initial seed (not all zero) and the total number of 
the seeds becomes 2P -1 [1). 

A cipher unit tor realizing the proposed encryption and 
deoryption has been implemented by the use of a microproces
sor Z-BOA as shown in Fig.5. RS232C, HDLC, and SDLC inter-

314 

faces are realized in the unit employing a S10 chip for the 
Z-80 family. The encryption time and the decryption time 
are 1 liS and 2 ms, respeotively. The encryption and the 
decryption programs are stored in a 2k-byte ROM. The number 
of moduli and the values of the moduli can be changed by 
manipulating DIP switches or by replacing the ROM with 
another Ode. Tbe cost of the experimental unit waa approxi
mately 70 dollars. 

Strength RL mult~res1due ~ ~ 
pS§!!Udorandom JUUII..b..e..r. generation 

It is assumed in tbis section that abundant encrypted 
data blocks are sampled by a cryptoanalysist and that tbe 
length of a data block is known. Consider the number of 
required blocks to be sampled. In order to cryptoanalyze 
the multiresidue code. the property at the inclination in 
the probability of the occurrence of 11S in the bit sequence 
of a residue can be utilized. 

When the modulus m is even, the probability of the 
occurrence of 11S in a residue is estimated to be 1/2. When 
the modulus m is odd, the probability Pi of the occurrence 
of 11S in the ith bit of a residue is estimated to be rIm, 
~::~~ r is a positive integer. The Pi is satisfied as tol-

(m-2 K)/m=Pk< •••• <pi< •••• <pl=pO=(m-l)/2m (~) 

where pO is the probability of the occurrence of liS in tbe 
least significant bit of the residue and pk is that in the 
most significant bit. rhe equation m=I/(I-2pO)=I/(I-2pl) is 
satisfied by Eq.(4). 

Let ~ be the statistical probability of pO. In order 
to investigate whether an odd modulus m is employed or not, 
it 1s sufficient to examin whether the inequality m-1 < 
1/( 1-2P1t) < 11+1 is satisfied or not. Therefore, 

1/2-1/2(m-1) < PIt < 1/2-1/2(10+1). 

1/2-pO-1/2(m-1) < 'PO"-pO < 1/2-pO-1/2(m+1), 

1/2m-1/2(m-l) < ~-pO < 1/2m-1/2(m+l), 

-1/2.(m-l) < ~-pO < 1/2m(m+l), 

~~PO""N( q" (m2 _1)/4nm2.), 

wbere N means the normal distribution and n is the number of 
required blocks to be sampled. 

In order to estimate modulus m with the reliability of 
99J, 

(3/2) (lIjii)/(mt _l )/m2< 1/2m(m+1). 

9m:l(m+l~ (m:l-1)/m 2 < n • 

9(m+1)3 (a-1) < 9(me+1)+ < n 

should be satisfied, where me is the estimated maximum 
modulus. For example, 118=127 then n:::::' 231. When the modulus 
is even, 9(me+l)2 < n is introduced in the same manner. 

The strength of multiresidue oodes without pseudorandom 
number generation is determined by the number of required 
blocks to be sampled. The Dumber depends upon the maximum 
modulus. The larger modulus is chosen, the longer blook to 
be encrypted is needed. 

Coo01us100 

A ·new cryptosystell based on mixing mul tiresidue codes 
with a technique in pseudorandom number generation is pro
posed. The cryptosystem has been ·imp~emented in the low
cost cipher unit using a microprocessor. If the charac
teristics of parallelism and pipelining involved in the mUl
tiresidue system are mapped onto mult1microprocessor systems 
or onto iterative VLSI ~ystems, encryption and decryption of 
much higher speed could be achieved. It is investigated 
that the difficulty ot cryptoanalysis of multiresidue codes 
depends upon the maximum modulus. It is expected that the 
proposed low-cost cryptosystem will contribute to spreading 
communication with hiding information in secret codes. 

Referepseo 

[1) Adel J. Goldberg, • Special Issue: Cryptology, ACM 
Computing Surveys, vol.11, no.~. ( December. 1979 ). 

[2] Masataka Kato, Series: Fundamental Cryptology. 
Mathematical SCiences, SCienoe Press, no~178. ( April, 1978 
) - .no.22~, ( February. 1982 ). 

[3] Nicholas S. Szabo, Richard Tanaka, • Residue ArithmetiC 
aOG its Applioations to Computer Technology, • McGraw Hill, 
( 1967 ). 

[4] Y. Miyazawa, n Coding Theory, n Shokodo Press, ( 1973 ). 



I D~TA BLOCK 1 
Tr<lnsposition 

I TRANSPOSED DATA 1 

Re:; idue eomputo t ion 

Copy 

I .... ~lULTtJ~ESIUUE CODE I 
Tr:ll1spos i t i on 

< 
1 TIC:ANsrOSED MULTTIlESIDUr. CODE J 

Shiftct.l clock:; 

I 
PSEtJ[)ORi\~nn~1 NlIMIWll I Keys I CAI:Si\ll. C1 PHEll 

I Gr.:~EHATOR 1 'I BO:-'; 

1 
[n i t ia l seed ~et 

~ 

1 ENCnYrTl:1l DATA 1 

Fig.! EncTyption procedure 

I ENCRYPTED DATA BLOCK J 
Initial .seed set 

I PSEUDORANUO~I NU~tBL!{ I !~~~l·se,.,. r INVERSE OF 1 
GENERATOR I 1 CAESAR (I PtiER 

ShifteJ (lockS 

I TIlA.'lSPOSED MULTIlt[SrnUE CODr: I 

Transpos i t ion 

I MULT1RESIDUE COOl: ·1 
Copy 

K 

The MixcJ-RaJi:.. Conversion 

I TR:\t{SPOSUl OAT:' I 
Tr:lnspo:s; t ion 

DEr.I~Yf'TEO llATp, 

Fig.2 Decryption procedure 

315 

n~bit datu block 

A: adder mod M 

Fig.3 Parallel computation- of a residue of X mod M, 

where M is the form of 2'< - 1 

RESIDUE xl RESIDUE x2 RESIDUE x3 

1 ! 1 

at 

Queue -~ 8 § § 
I 

~ 
~ 

Fig.4 'fhree-residue decryption system 

Fig.S Cipher unit 



A PARALLEL/PIPELINE PROCESSOR 
FOR 

FAST EXPONENTIATION 

Bahaa W. Fam 
The MITRE Corporation 

Bedford, Massachusetts 01730 

ABSTRACT 

This paper presents a generalized 
architecture for a parallel/pipeline processor 
capable of performing exponentiation (raising 
some base (II to a power x in a finite field) in 
O(log2(log2x» time. This device has 
applications in coding and public key data 
encryption. 

INTRODUCTION 

In this paper we present a highly efficient 
parallel processor architecture for finite field 
exponentiation. 

Knuth gave a good technique for 
exponentiation with a single processor 
architecture having time complexity of 
2(log2x)t where t is the time delay of 

mUltiplying (or mUltiplying/reducing in a finite 
field) two N-bit numbers [3]. 

Knuth's algorithm was applied to a two 
processor device and the complexity of the 
procedure was subsequently reduced to 
(log2x) t shown to be optimal for any parallel 

architecture [~. This bound was based on the 
number of squaring operations required in the 
wor st case. We wi 11 c.onsider a parallel 
architecture which performs finite field 
exponentiation in O(log2 ~og2 x) )t time. 

This device has applications to coding and 
public key data encryption. In some 
cryptographic systems the generation of some 
public key (y) from some secret key (x) consists 
of raising some known base (II to the power x in 
some GF(2N) [2], [4]. 

MATHEMATICAL BASIS OF EXPONENTIATION 

Assume we are performing exponentiation in 
GF(2N) • 

We can say that x, the desired exponent can 
be represented by some N-bit vector, b. 

b = (~-l' ~-2' •••• , bo ) 

Knowing that (II y+z = «(IIY) «(II Z) we can 

express (II x as 
N-l 2i b. n (II ~ 
i=O 

If the powers of (112i (i = 0, I, • 
,N-I) could be provided to a number of 

0190-3918/82/0000/0316$00.75 © 1982 IEEE 316 

multiplication units operating in parallel 
(mUltiplication being commuative in Galois 
Fields) the time required to produce the desired 
power of the base (II could be greatly reduced. 

ARCHITECTURE CONCEPT 

The structure of processor to be discussed 
is based on the concept presented above. 

The processor architecture is 
topologically similar to that of a binary tree. 
A single multiplication element in our processor 
would correspond to a node in the binary tree 
while a line (parallel/serial) for the 
undirectional transfer of information within the 
processor would in turn correspond to an arc in 
the tree • 

Now consider the procedure by which such a 
machine might compute the product of 2n 
numbers (mI' m2 •••• ,m2n). The set of 
numbers would first be partitioned into pairs 
and assigned among the 2n- I multiplication 
elements (ME) at level n. 

The processors at level n would each 
multiply the two numbers assigned to them and 
pass the product to their "father" at level n-l. 
The "fathers" at level n-I would then mul tiply 
the values in their registers and pass the 
product to their "fathers" an so on. The process 
would continue until the root processor had the 
value 

mo 
~ 

in one register and 

in the other. Multiplying the contents of its 
two registers it: 

would produce 
2n n mi' the desired result. 
i=l 

If we had half the number of multiplication 
elements (an n-l level architecture) we could 
partition the 2n numbers by assigning two 
pairs of values to each multiplication element 
on the lowest level. 

Each bottom level mUltiplication element 
would proceed by multiplying its first pair of 
numbers and then its second pair which would 
pipeline the products of (ml' •• , m2n-l) 
through to the root first followed by the 
produc ts of (m2n-I , ••• ,m2n) • 
The top most element l ( an accumulaEing 



multiplication element above the root of the 
tree structure) would then store the value of 
the product of the first 2n- l numbers until it 
receives the product of the second 2n- l 
numbers. It would then multiply the two to 
produce the desired product. The delay in 
achieving the result in this design would be 
that of n+l multiplications as opposed to a 
delay of n multiplications in the example with n 
levels. Clearly the processor could have any 
number of levels with the number of levels being 
inversely proportional to the time delay in 
achieving the product. 

To compu te a x we wou ld, ra ther than 
multiplying 2n arbitrary numbers as in our 
exa~ple, multiply the precomputed powers of 
a 2 selectively based on the binary 
representation of the exponent x to obtain aX. 

A device was recently developed.which 
produces all necessary powers of a 2l. in 
time (l)t [5]. In combination the two devices 
can produce any a x in GF(2N) very 
efficiently. 

GENERAL ARCHITECTURE AND ALGORITHM 

In this section we will present the design 
of a general (J level) processor for the 
exponentiation problem under consideration as 
well as the formal version of the processing 
algorithm. It is important to note that the 
majority of the decision making specified in the 
algorithm will be implemented through the 
hardware in the the multiplication elements. 
Some branching that is specified in the 
algorithm, that which requires that certain 
steps of the algorithm be skipped over in the 
very early and very late iterations, will be 
controlled by a comparator/counter which will 
control clock inputs to the various levels of 
the structure. 

In an efficient implementation, x would 
probably be placed in a shift register with 
appropriate connections to the 2J - l 
multiplication elements on level J and shifted 
2J bits at each iteration providing the 
control for that wave of computation. 

There are three distinct types of 
mul tiplication elements in this architecture. 
All have a multiplication/reduction unit (a 
device capable of mUltiplying two N-bit numbers 
and reducing the product in GF(2N) in time 
delay t.) They differ only in their decision 
logic. 

Prior to the computation of aX the 
powers of a would be distributed two to each ME 
along the Jth level until each ME had two, while 
these are being mUltiplied the next set of pairs 
would distributed. Th~ process would continue 
until all N of the a 2 l. had been 
distributed. 

The multiplication elements at level J have 
logic (hardware) to perform the decision 
operations specified in the algorithm. The 
binary representation of x can be considered to 
be a control element for these devices. These 
elements also have one register containing the 
value 1. 

317 

The multiplication elements on levels 1 
through J-l have a multiplication/reduction unit 
and two input registers A and B. 

The multiplication element used to compute 
the accumulated partial products and ultimately 
produce the result has a logical feedback from 
its output to its B register. It outputs the 
result only when the counter/comparator so 
directs it. Below is the general algorithm for 
computing a x in GF(2N). 

Let us consider the general structure 
of the processor. 

~ 
~ 

~ ~ 
0~ b:d ~ 
r:f.~~~ 
tJ~~~ 

I 
I 

I 
I 

I 

ME 

Level a 

Levell 

Level 2 

Level 3 

Level N-l 

N,2N- 1_l Level N 

Figure 1 

ALGORITHM 

o 1=0 

1 a) Level J Multiplication Elements 
(MEJ i) for i-0,1,2, ••• ,2J - L l , 
If (b2i+(I)2J, b2i+l +(I)2J ) 

(0,0) Move the value 1 from the register 
to MEJ - l , Li/2J 

(1,0) Move the value a 22i+( I) 2J 

to MEJ-l, Li/2J 

(0,1) Move the value a 22i+l+(I)2J 

to MEJ-l, Li/2J 



(1,1) Move the product of 

a22i+(I)2J 22i+l+(I)2J 
,a 

to MEJ-l, Li/2J 

bJ - l ) (level J-l ME ) 

If I ~ 1 mul ti ply contents of A 
register and B register and 
move result to MEJ - 2, Li/2J 

bJ - 2) (level J-2 ME) (MEJ -2 i) for 
i=O, •• '. ,2J - 3-l 

c) 

If I~ 2 multiply contents of A 
register and B register and 
move result to MEJ-3, Li/2J 

• • • 
(level 1 ME ) 

If I ~J-l mul tiply contents of A 
register and B register and 
move result to MEO,O 

Level ° ME (MEo,o) 

If I=J move contents of A 
I register to B register. 

If J+l ~ 1< rN/2Jl+J+l multiply 
A register by B register and store 
product in B register. 

If I=rN/2Jl+J+l output product 
and STOP. 

2 1--+1+1 

If I<rN/2J lgo to 1 a) 

If rN/2Jl~I<IN/2Jl+ J go to 1 

bJ -(I-rN/2J l» 

If I =rN/2Jl+J go to .!. c) 

ANALYSIS OF COMPLEXITY 

It was shown earlier that the number of 
levels in the processing stucture influences 
the speed of the exponentiation procedure. 

First we will examine the number of 
multiplication elements in a given architecture 
of J levels. By definition of the topology, 
each level (k) of the processor has twice as 
many multiplication elements as the previous 
level(k-l). Hence the first level(k=l) has one 
ME the second has two, the Kth 2K- l • There 

318 

are J levels plus one accumulating element thus 
a total of: (2J -l)+l=2J multiplication 
elements in the design. 

The time complexity of a J-level device can 
be calculated as follows: 

There are 2J - l multiplication elements on 
level J. If we wish to compute aX in GF(2N) 
and x is represented by an N-bit vector then 
there are at most N values of a 2\0 be 
multiplied 

If there are 2J - l processors on level J 
then each multi~liesrN/2J-llvalues. Thus 
there are rN/2J literation levels in the 
procedure hence a time delay of fN/2Jl t 

We note that partial products are being 
pipe lined through the system to the 
accumulating ME at the top level (level zero). 
In order to output the result the accumulating 
ME must receive the product of the last wave 
of values. They must pass through J levels 
(level J-l through level 1) before reaching the 
accumulating ME. This requires an additional 
time of J t. When MEO ° receives the 
product it must multiply it by the partial 
product in its B resister and output the result 
taking time t, thus the total time delay of the 
procedure is. 

t 

We stated previously that such a design 
co~ld .yield a. com~lexity of (log2(10g2x»). 
Th~s ~s true ~f 2 = N. This is the lower 
bound on the computation of aX in GF(2N) 
using this device. In this case no accumulating 
ME is needed saving one delay. 

References 

[~ A. Borodin, The Computational 
Complexity of Algebraic and Numeric 
Problems, American Elsevier, New York 
1975. ' 

[?] W. Diffie and M. E. Hellman, "New 
Directions of Cryptography", IEEE 
Transactions on Information TheOry, Vol 
IT-22, No.6, pp 644-654, November 1976. 

[4] 

[5] 

D. Knuth, Seminumerical Algorithms, 
(Second Ed.), Addison-Wesley, Menlo 
Park, 1981, Pg 444 

B. Schanning, S. Powers, J. Kowalchuk 
'~EMO: Privacy and Authentication fo; 
the Automated Office", Proceedings of 
the Fifth Conference on Local Computer 
Networks, Oct 6-7, 1980. 

B. Fam, J. Kowalchuk, "A VLSI Device 
for Fast Exponentiation in Finite 
Fields", M82-3l; The MITRE Corporation, 
June 1982, ppl-27. 



ISLAND UNIVERSES: 
DISTRIBUTING A SINGLE-USER OPERATING SYSTEM 

Victor P. Holmes, Bruce N. Malm, and Tom H. Little 
Departments of Computer Science, and Electrical/Computer Engineering 

New Mexico State University 
Las Cruces, New Mexico 88003 

Abstract -- A fully decentralized operating 
system is specified for a single user multiple 
computer environment. Most operating systems 
have been designed around the architecture of a 
specific machine. We propose to design the oper
ating system in a modular fashion specifying the 
needed hardware architecture as the operating sys
tem evolves. Each module is assigned to its own 
processing element and these communicate when 
necessary via a message passing scheme. Process 
swapping is not necessary since multi-processing 
does not take place on the computing element 
level. Although connected to a local network most 
work is done at the local user station and there 
is no dynamic load. balancing at the network level. 
A distributed design leads to small and simple 
operating system modules. By distributing fUnc
tions to independent processors protection is 
greatly simplified and the inherent concurrency 
gained improves performance. 

INTRODUCTION 

The decreasing size and cost of integrated 
circuitry suggests a new direction in the develop
ment of computer systems. It is quite reasonable 
to expect the current state of multiple users per 
processor to be totally reversed: one user 
will have an array of processors at his disposal. 
This paper specifies a multiple processor archi
tecture and its accompanying distributed operating 
system for a single user environment. 

To date operating systems have been designed 
around the architecture of a specific machine. In 
contrast, we propose to first design the operating 
system in a modular fashion. The overall archi
tecture of the desired machine will then evolve as 
the design of the operating system evolves and 
will be specified to meet its needs. This pro
posal is based on the everpresent reality that 
hardware is no longer an expensive resource, and 
need not place the traditional constraints on 
system design. The phrase "Island Universe" is 
used to suggest the extensive processing power 
available to an isolated, single user under this 
design. 

Network Levels 

We view network activity on three levels. 
On the large scale, there is a remote network 
which links geographically distant sites, pro
viding potentially global communication and spe
cialized services. The next level, the local net
work, is of the Ethernet variety (1), and operates 
in the niche traditionally occupied by a central
ized, time-sharing system. On this level are a 
variety of basically independent users operating 
out of their own stations, with occasional cooper
ation on specific tasks. In general, we feel a 
user should complete work based on resources at 
the user's station and not arbitrarily send work 

0190-3918/82/0000/0319$00.75 @ 1982 IEEE 

out to other stations. This prevents local per
formance degradation due to the load of others, as 
well as providing a measure of protection between 
users. However, we still recognize isolated in
stances of network use beyond that of a mail 
service, but the local resources of an individual 
user are considered sacrosanct. Central to the 
design of the "Island Universe" environment is the 
third level of network, the user station itself. 
The components of the distributed operating system 
constitute a miniature network of cooperating 
processes within the user's sta.tion and is the 
topic of this paper. 

THE DISTRIBUTED OPERATING SYSTEM 

We propose to partition the operating system 
into cooperating modules, similar in concept to 
task force utilities in Medusa (2), each with 
specific functions mapped onto physically separate 
hardware components. This greatly simplifies the 
overall complexity and protection needs. Each 
component has a small resident nucleus and a soft
ware process to perform the implied operating sys
tem function. A major function of each nucleus is 
concerned with message passing and is therefore 
reminiscent of other nuclei (3,4), but is even 
less complex than these examples. A diagram of 
the interconnections between these components is 
shown in Figure 1. Each hardware component con
sists primarily of a processor and memory to hold 
its assigned software process. Some modules have 
a natural association with certain devices such as 
the User Interface with the display terminal and 
the File System Manager with secondary storage. 
Each module is partitioned in such a way as to 
make its task quite simple. We propose to elimi
nate many of the complexities brought on by 
resource sharing. 

319 

Software Modules 

There are two types of software modules, sys
tem and user processes. System processes are 
statically assigned to the User Interface(UI), Task 
Scheduler(TS), File System Manager (FS), Device Con
troller(DC), External Communication Controller(ECC) 
and the Inter-process Communication Manager(IPC). 
These processes are resident at all times and 
because of their limited task are limited in size. 
On the other hand, user processes are run in the 
Processor Array (PA), a collection of identical 
processors. Because of the inherent unpredicta
bility and varying needs of user processes, these 
processors need more memory and perhaps more 
speed. All processes cooperate on common tasks 
via a message passing system. Messages between 
system processes or between system and user pro
cesses take place on the Service Bus while those 
between user processes take place on the Inter
process Communication Bus. The function of each 



system process will now be briefly described. 
The UI handles all interaction with the user 

and essentially acts as a command line interpreter 
and, possibly, an editor. The DC manages all use 
of devices not associated with the user display 
terminal or the on-line file system and caters to 
specific device idiosynchrasies. The ECC performs 
all external networking functions for the station 
and, thus, is concerned with protocol as well as 
security matters. The FS manages access to the 
file system and maintains a local file cache in 
primary memory as well as the file system itself 
on secondary storage. The TS and the IPC both 
manage and support the needs of user processes 
running in the PA. The TS acts as a user process 
manager while the IPC manages the communication. 
Each process is assigned dynamically to a proces
sor in the array and is allowed to block as well 
as run to completion without swapping. A 
"process cache" is maintained to re-use processes 
already in the PA without having to reload them. 

Communication takes place between these 
modules in two ways, messages and data. As pre
viously mentioned, requests for system activity 
takes place in the form of messages on the Service 
bus. Similarly, communication needs between user 
processes take place as messages, but on the IPC 
bus:. Messages are short transmissions, typically 
of fixed length, occurring quite often. Data 
communication occurs less often but involves much 
longer transmissions. For example, this might be 
the loading of a user program to a processor in 
the PA from the file system. While this form 
occurs less often, we would not want to dominate 
the Service bus for the considerable amount of 
time it would require. Hence, this creates the 
need for the separate Data bus. Although these 
connections are described as buses, we do not rule 
out the presence of dedicated links for high den
sity traffic. 

ADVANTAGES 

The decreasing cost of processor and memory 
resources has made possible experimentation in the 
distribution of operating system functions. We 
believe that division of the operating system into 
distinct physical subsystems offers many advan
tages in terms of simplicity, efficiency, protec
tion, and security. Of course, we also expect an 
improvement in performance due to the concurrency 
in such a system. 

From the perspective of the working environ
ment implied by this architecture, there are 
several obvious adVantages. The isolation of the 
user from centralized control increases both re
sponsiveness and security. The paradigm of a 
local network of autonomous stations (with commu
nications capability) more accurately reflects 
the work habits of most computer users than does 
that of a centralized time-sharing system. 

Also, the system has many advantages stem
ming from its internal organization. The oper
ating system and user processes are all totally 
distributed, allowing significantly faster re
sponse (resulting from the parallelism), and 
additional security (resulting from autonomous 
nature of the individual processors). 

320 

Many traditional problems of operating sys
tem design disappear in this architecture. There 
is no need for memory management, CPU scheduling 
(in the timeslice sense), or inter-user security. 
The operating system itself is also inherently 
secure from user intrusions. The modularization 
realized by the separation of the components sim
plifies the progr~ing of the individual func
tions. Evidence of this is seen in many examples 
of multi-users time sharing systems where multi
layered tables are needed to implement sharing 
and allow processes to be swapped out. 

The message-based nature of the system 
yields a measure of protection. Furthermore it 
is a simpler problem because it is defensive in 
nature and, since each computing module has only 
a nucleus and one process running, there is 
little need for extensive hardware protection 
me chani sms • 

CONCLUSION 

Implicit in our design is the assumption of 
the availability of inexpensive resources. The 
number of processing elements may seem over
whelming at first glance, but advances in VLSI 
technology will allow fabrication of systems in 
a fraction of the space of current centralized 
computing systems in the very near future. 
Current technology allows line widths of 1 micro
meter. Use of X-rays will make line widths of 
.1 micrometers possible (5). These improvements 
point to densities that will allow several times 
the number of devices per chip than are now 
possible. The modules of our proposed system 
might well be put on just a few chips, and this 
will reduce cost and improve reliability. In 
particular, the processor array appears to be 
appropriate for high density fabrication tech
niques. In the next few years, micro-computers 
as complex as the PDP-ll/34, complete with 
processor, memory, and I/O interfaces will be 
available on a single chip (6). The recently 
announced multimicroprocessor chip, Texas 
Instruments' RIC (7) merely reinfor~es the prac
ticality of this view for the future. 

One of the major goals of this work is to 
provide an environment which supports execution 
of true concurrent algorithms in the system's 
Processing Array. Furthermore, it is important 
that this capability be designed into the system 
from the beginning. The operating system should 
provide a set of tools which aid in the speci
fication or parallel programs and it is our 
intent to do so. 

Currently, work is in progress to model this 
system. Weaknesses can be observed, in this 
manner, to aid in the final specification of the 
design. Of particular interest is usage pattern 
of the communication paths. We hope to begin 
the development of a prototype system within the 
next year. Only through the construction of such 
a system can we witness the benefits in terms 
of complexity of system design, performance and 
protection. 



(1) R.M. Metcalfe, and D.R. Boggs, "Ethernet: 
Distributed Packet Switching for Local 
Computer Networks", Comm. of the ACM, 
(July, 1976), pp. 395-404. 

(2) J.K. Ousterhout, D.A. Sce1za, and P.S. 
Sindhu, "Medusa: An Experiment in Distri
buted Operating System Structure", Comm. of 
the ACM, (Feb., 1980), pp. 92-105. 

(3) P.B. Hansen, "The Nucleus of a Multipro
gramming System". Comm. of the ACM, (April, 
1970), pp. 238-250. 

(4) J. Hoppe, "A Simple Nucleus Written in 
Modula-2: A Case Study", Software-Practice 
and Experience, vol. 10, 1980, pp.697-706. 

TS 

I 
I 
I 

G 
Processor 

Array 
I IPe 
r BUS 
I 

00 ... 0 

(5) B. Fay, et. al., "X-Ray Replication of Masks 
Using the Synchrotron Radiation Produced by 
the ACO Storage Ring", App. Phys. Lett., 
(September, 1976), pp. 370-372. 

(6) L. Wittie. et. al., "MICROS. A Distributed 
Operating System for MICRONET, A Recon
figurab1e Network Computer", IEEE Trans. on 
Computers, (December, 1980), pp. 1133-1144. 

(7) R. Budzinski, J. Linn, and S. Thatte, 
"A Restructurab1e Integrated Circuit for 
Implementing Programmable Digital Systems", 
Computer, (March, 1982), pp. 43-54. 

Service Bus 

FS - De 

p 

---

-

U 
Device 

Bus 

Eee ~ 
Local 

Network 

"--------II II-------J 
Data Bus 

Figure 1 - Single-user distributed as: 
Subsystems and Interconnections 

321 



A VARIED STRATEGY PROGRAMMABLE ARBITER 

M. COURVOISIER 
L.A.A.S.-C.N.R.S. 

UUiversite Paul Sabatier 
7, avenue du Colonel Roche - 31400 TOULOUSE - France 

ABSTRACT 

The use of arbiters can be very efficient in 
shared bus multimicroprocessor structures. As these 
structures become more and more complex the use of 
arbiters having very sophisticated aDbitration ru
les is needed. Presently most of the aDbiters which 
have been studied are based on two simple aDbitra
tion rules : linear or circular (one only is cycli
cal and allows mixed priority schemest51) and no 
systematic design rules exist. 

In this paper we present a contribution to the 
systematic design of arbiters having complex aDbi
tration strategies based on three rules : linear, 
circular and cyclical. 

The basic structure corresponds to a modular 
synchronous arbiter and the problem consists in de
signing the decision part as a state machine whose 
construction is obtained by three successive rules. 

INTRODUCTION 

Local parallel shared bus structures require 
fast access procedures to the bus. Among the diffe
rent possible techniques [ 1 J selection techniques 
are the most efficient in this case. As distributed 
structures become more and more complicated, the de
finition of effective priority rules of access is 
needed. This can be obtained by using centralized 
arbiters able to implement varied arbitration rules. 

At present some authors have proposed different 
structures of arbiters [2,3,4,5,6J among which 
synchronous ones are well suited to shared bus multi
microprocessors systems. Nevertheless the arbitra
tion schemes are for the most part very simple : 
linear or circular and no systematic construction 
rule is given. 

The aim of this paper is to define systematic 
construction rules for the decision block of a 
synchronous arbiter previously proposed [6J. By 
USing three operators corresponding to elementary 
allocation strategies : linear, circular, cyclical, 
assembling of these operators can lead to very so
phisticated arbitration decisions. The rules propo
sed lead to the progressive construction of the 
decision block whatever its complexity can be. 

BACKGROUND 

The signaling convention uses the request
grant mode. 

The structure of the aDbiter proposed in [6,7] 
is made up of five blocks (Figure 1) : input, detec
tion and end of requests, deciSion, sequencing, 
output. 

The meaning of the signals is as follows 
{Ri} : request lines, {Gil : grant lines, !R,: detec
tion of requests, ~: detection of an end of request, 
LIR : load input register, DEC : decision, LOR: load 

output register, <X>R : clear output register, CP : 
clock pulse. 

The transitions of the aDbiter are controlled 
by the sequencing block whose state diagram is given 
in Figure 2. 

DEFINITION OF ARBITRATION RULES 

After having loaded the input requests the arbi
ter must select one of them according to the arbitra
tion rule chosen. The arbitration rule is programmed 
in the decision block of the arbiter as a state 
machine. 

In this paper, we propose to use and combine 
three arbitration rules : 
L linear (1L2L ••• IN) represents a strict priority 

between users 1,2, and N decreasing from 1 to N. 
R round robin or circular (1R2R .•• RN) represents a 

fair allocation strategy. If user K has been ser
ved, user K+1 has priority on all other users. 

C cyclical (1C2C ••• CN) represents also a fair allo
cation strategy in which a user is served accor
ding to all the previous services granted by the 
aibiter. For instance consider 1C2C3 ; suppose 
that user 2 has been served, followed by user 1 
and that users 2 and 3 are simultaneously reques
ting. A circular strategy serves user 2 whereas 
a cyclical strategy serves user 3. 

Figure 3 is an example of the decision block for 
a circular strategy and a 4-user arbiter. 

The combination of these rules is performed by 
using brackets. 
Example: «lL2L3)R(4R5» is an arbiter which gives 
a circular priority between the block (1L2L3) and 
the block (4R5). In the block (1L2L3) the priority 
is linear; it is circular in the block (4R5). 

The construction of a strategy from elementary 
ones allows to define Very sophisticated arbiters 
according to the requirements of the multimicropro
cessor structures in which they must be used. 

The problem consists in designing the state ma
chine of the decision block and this task can be 
very tedious if the strategy is complex. For ins
tance, as will be shown in the next part, the deci
sion block of an arbiter with strategy «1R2)R(3R4) 
R(SR6» is a 32 states machine with 160 labelled 
arcs. Our contribution consists in defining rules 
for the systematic construction of decision blocks 
USing any block based combinations of L, R and C 
strategies. 

DEFINITION OF CONSTRUCTION RULES 

The systematic construction of the state machine 
of the decision block of an arbiter is carried out 
in three steps : 
1. Determination of the states 
2. Determination of the arcs 
3. Labelling of the arcs 

0190-3918/82/0000/0322$00.75 © 1982 IEEE 322 



(Lenght limitations of this paper imply that cons
truction rules are given without proofs) • 

Determination of the states 
Let us consider the three basic cases : 

(1L2 ••• LN), (1R2 ••• RN) and (lC2 ••• CN), which are 
fully linear, circular and cyclical strategies res
pectively and let us call them L-block, R-block and 
C-block. The L and R blocks are representable as n 
states machines each state i being associated with 
user i, whereas the C block is represented as anI 
states machine because (n-1) I states must be asso
ciated with each user i in order to keep track of 
the past services (represented by the permutations 
on n-1 users) consider now the following arbiters 
in which U is also a user and S can be any of L R 
or C strategies. 
«U)S(lL2 ••. LN)) «U)S(1R2 ••• RN)) «U)S(lC2 ••• CN)) 

In the first case, when U has been served, the 
next user to serve is the highest priority user re
questing in the second block regardless of the past. 
In the second case the next user to serve in the se
cond block must be determined according to the posi
tion of the last user served on the priority ring. 
In the third case all the past of the second block 
(all the possible permutations between users) must 
be memorized. Consequently in the first case one 
state is sufficient for (U) whereas n and nl are 
necessary in the second and third cases, respective
ly. This leads to the following definition: 
Definition : The multiplicity of a block Bi is a 
number Mi which gives the number of times states of 
other blocks Bj at the same level of the factorized 
expression of the strategy must be repeated. This 
is to keep memory of the state of block Bi when it 
is left. 
Example: Let 1,2, ••• N be n users. 
The multiplicity of (lL2 ••• LN) is 1 
The multiplicity of (lR2 ••. RN) is n 
The multiplicity of (lC2 ••• CN) is nl 

A one user block may be considered as being of 
any ~ or C type because its multiplicity is always 1. 

In case of embadded blocks the calculation of 
the number of states of the upper block which is in 
fact the complete decision block itself must be made 
according to the subblocks which constitute it. 
Then two parameters are necessary to caracterize a 
block : - the number of its states NS 

- its multiplicity M. 

It can be shown that these parameters are obtai
ned by recursive formulas, which at a given level 
of the factorized expression are 

or 

or 

or 

NS (e) = t... NS~e-l) • n M(e-O if the level t 
b=1 i=1 

M(e) 

M 
( f) 

M(t) 

iFb 
operator is L or R 

B 

(B-1)! L Ns(f-l). n M(f-l) if the level e 
b i=1 b=1 operator is C' 

Vb 

B (e-U 
level t operator is L n M. if the 

i=1 
~ 

B 
M(e-O if the level t operator B. n is R 

i=1 
~ 

B 
M(C-ll if the level t operator is C B! n 

i=1 
L 

with B : number of subblocks of the considered level. 

The application of these formules starts from 
the level1blocks. Once the upper block is reached, 
the number of states which is necessary for each 
user is known. 
Examples ... « (1R2) R(3R4)) R(5R6)) 

{
NS=32 users 1,2,3 and 4 need 4 states 

users 5 and 6 need 8 states 
M=32 

{
NS=12 

M=6 
~: 

... «lC2C3) L4) 
users 1,2 and 3 need 2 states 
user 4 need 6 states 

- the number of states of a n user fully linear 
block is n, 

- the maximal number of states of a n user fully 
circular block is 2n-1, 

- the maximal number of states of n user fully cy-
clical block is n I 

A fully L(or R(or C)) block is a block made up of 
L(orR(orC) ) subblocks only. 

Detexminationofthe arcs 
Each state assigned to one user has (n-1) out

going arcs because any other user (n users) may be 
served after it. Consequently, the total number of 
arcs is NS.(n-1). The determination of the destina
tion of these arcs can be made systematic if an 
indeXing of the states pointing out the origin of 
their multiplicity is given. 

Indexing states 
---The-follOWing rule is applicable. 
Rule 1. Indexing of states is applicable from the 
lawes.t block level. Each state is indexed relatively 
to the blocks which cause its multiplicity to increa
se, by the names of the users the memory of which 
must be kept. 
Example « (1R2) R( 3R4) ) R(5L6) ) 
gives : 

13 2) 31 \ 
14 24 32 42 

5 13 5 14 523 524 5 31 5 32 5 41 5 42 

613 614 623 624 631 632 641 642 

8 states are necessary for user 5(the multiplicity 
of «(1R2) R(3R4)) is 8) because after 5 has been ser
ved it must be possible to decide which one of 
users 1,2,3 and 4 must be served according to the 
priority rules. 513 is an abbreviated from of 5 pre
ceded by 1 preceded by 3. 

Determination of the outgoing arcs of a state 
---consider-state-i;;,-an:d-let -iis-caII-,;(-;,.--{;.;-;;···· ''''pj 
the set of components of index 0<. • An arc exists 
which comes out i~to one of the states associated 
with user j. Determining which one of the j states 
is reached by io<. needs the following consideration: 
the past of the system which was kept in state io( 
must also be kept in state j~ in order to agree with 
the arbitration stategy rule. Consequently the rule 
below holds : 
~. An arc connects i~ to jJ>if..e contains sub
scripts belonging to {{o<.,i} -jj in the same order 
as iof, if the order is significant. 
Example: «lC2)C3C4) Each state has 3 outgoing arcs. 
The outgoing arcs of state 13 are directed to 23 
314 413• 

323 



Labelling the arcs 
This is the last step in ~~e construction of the 

state machine of the decision block of an arbiter. 
Apply the following procedure : 
Step 1. Each outgoing arc of a state receives as la
bel the name of the user corresponding to the state 
it is directed to. 
Step 2. The labels of the arcs originating from the 
same state must be made exclusive according to the 
strategy of the arbiter. Let io( be this state and e 
its block level. Apply iteratively from the higher 
block level kmax to level t. 
~. Let k be the current level and u the position 
of the block which contains i~ in that level. Consi
der arcs whose destination states belongs to a 
block B~k)~B~k) (B(k) stands for the kth. level block 
in position j). Let b(k) be the number of blocks at 
level k. 

( ... « ) ... L ••• « io( )t ) ... L ••• ( B(k) )"')k "')kmax 

or~ ~J 
11 

a). The level k operator is L 
Arcs are labelled by the product of complemented 
users names at the left of B1k ) Exclusion between 
these labels is performed according to the priori
ties of the corresponding users in the block B(k) 
with respect to its operator type (L R or C). if 
the operator is L the priority is from left to 
right ; if the operator is R the priority is given 
to users whose name is not in IX according to their 
order in the block ; if the operator is C the prio
rity is determined according to the order of the 
users of the block Bjk) in the subscript 0< • 

b). The level k operator is R. Two cases have to be 
distinguished: ... j> u • The arcs are labelled by 
the product of complemented users' names which are 
in blocks B~~i to BJ~i • Exclusion between them is 
performed like in a. 

... j < u The arcs are labelled by 
the product Of complemented users' names which are 
in blocks B(k to R(k) and B(k) to B(k) Exmlusion 

u+~ -o(k) 1 J-1 . 
between them 1S performed like in a. 

c). The level k operator is C. Each arc is labelled 
by the product of complemented users' names 
... which are not in~ and not in Blk), 
... which are in Qo( at the right of fhename of the 
user to which the arc ends in B~k). 
2.2. Let k be the current level. Consider arcs be
longing to B~k): 
( .. +.( ) ... ~ .. , ( I to< ). ) .. , ~ ... ( )"'h "')1<--

-<;.. ~ ~ ore .. ---
Ill ... 

a). The level k operator is L. These arcs are label-
led by the product of complemented users' names at 
the left of B~k) • 
b). The level k operator is R or C. These arcs are 
labelled by the product of complemented users' names 
which are not in B~k) • 
Example : (lC(2R(3C4») NS = 8 ; M = 8 

Indexed states : 1 23 13 124 14 

23 24 

3 4 
Outgoing arcs (24) 

123~ 23 4 23 _ 123 3 4 

13 ~ 23 4 24_ 124 4 

124 -+ 24 3 4 3 ---. 13 2 4 

14 --+ 24 3 4 4 -+ 14 3 4 

324 

Labels step 1 

24.3 
123 - 23 3 4 

~ 
step 2.1. c 

..• etc (Figure 4) 

IMPLEMENTATION 

The structure of the arbiter is modular and 4 
modules are independant (for a given number n of 
users) of the strategy employed. The implementation 
of a given strategy can be obtained by programming 
the decision module constructed as shown in Figure 
5. The PLAl and PLA2 contain the equations of the 
excitation variables and of the output variables 
respectively corresponding to the state machine of 
the decision block designed by the above procedure. 
By using a state variable register of lenght 

Lo92 (n!) bits any n user strategy can be imple
mented by programming the two PLASonly. 

By using off_the_shelf TTL-S circuits and 82S100 
FPLAS for the implementation a response time of 
150 ns is obtainable (CP=50 ns) • 

CONCLUSION 

In this paper, a method for the systematic im
plementation of complex strategy arbiters has been 
presented. It is based on the use of a modular syn
chronous arbiter. Further studies include the defi
nition of multistrategy arbiters and cascadable 
arbiters based on the same principle. 

REFERENCES 

Thurber K.J., Masson G.M., "Distriputed proces
sor communication arChitecture", Lexington 
books, 1980. 

2 Plummer W.W., "Asynchronous arbiters", IEEE 
T.C., vol.C-21, n O l, January 1972. 

3 Pierce R.C., Field J.A., Little W.D., "Asyn
chronous arbiter mOdule", IEEE T.C., vol.C-24, 
n °.9, September 1975. 

4 H¢jberg K.S., "One step programmable arbiters 
for multiprocessors", Computer Design, 
November 1979. 

5 Courvoisier M., "A programmable arbiter for 
multiprocessor systems", Digital Processes, 
voL 5, n03-4, 1979. 

6 Courvoisier M., "Un arbiter N-utilisateurs -
une res source , programmable", Electronics 
Letters, July 1979. 

7 Courvoisier M., Geffroy J .C., Seck J.P., "A 
self-testing arbiter circuit for multimicro
computer systems", 10th Fault-Tolerant Compu
ting Symposium, Kyoto, October 1980. 



R' 
.. ---- ·---"'R f-- -,--.... 

I-

I 
I 
I 
I 
I L ____ _ 

I E 
N G 
P I 
U 5 

DECISION 
BLOCK 

T l R' .... ~:-1-1-.... 
=i~~~ 

I 
I LlR 
I~ 
I 
I 
I 

DEC 
,----

lOR 

COR 

FIGURE 1. Structure of the arbiter 

FIGURE 2. The sequencing block 

R' TT R' 
\ t.1 I 

Ri TT R"i' 
it4 

o 
--L ... ~-~G1 

• 0 E 
U G 
T I 
P 5 
U T 

On T ~ 
,.----, 

LOR COR 

CP: Clock Pulse 

R' 2 

R'RlR' 1 3 4 
R' n iF 

2 i t. 2 I 

R3 TT Ri' 
it.3 

FIGURE 3. The decision machine a 4 user circular arbiter 

1,2,3,4 : stands for Ri,-,R4 (stored users' names) 

FIGURE 4. The decision machine of (1e (2R (3e4) ) ) 

325 

FIGURE 5. Structure of the decision block 



• USING WRITE BACK CACHE TO IMPROVE PERFORMANCE OF MULTIUSER MULTIPROCESSORS 

R. L. Norton and Jacob A. Abraham 
Computer Systems Group 

Coordinated Science Laboratory 
University of Illinois 
Urbana, Illinois 61801 

Abstract 

In the context of a multiuser multiprocessor 
system with private cache, we consider the write 
through versus the write back policy of main 
memory update. The write back policy has the 
advantage that the bus traffic is reduced compared 
to the write through policy. It is usually assumed 
that the coherence problems of write back require 
hardware such as global directories to detect 
potential coherence problems. For this reason a 
write through cache is usually used which provides 
coherence for all transactions. 

In this paper we suggest ways to avoid coher
ence problems altogether in user code, and examine 
the potential savings due to being able to use a 
write back rather than a write through cache, in 
terms of bus traffic. Using a detailed instruc
tion level simulation it was found that in the 
typical case the write back policy will allow 
greater than double the number of processors on 
the bus at a given traffic level, compared to 
write through. 

I. Introduction 

The shared bus approach to multiprocessing is 
very attractive since it is simple to implement 
and easy to use in a multiuser timesharing 
environment. Standard busses such as the Multibus, 
Versabus, and S-100 bus all have provision for 
multiple processors on the bus [1,2]. Larger com
puter systems such as the VAX 11-780 have been 
converted for shared bus multiprocessor operation 
[9]. Modern operating systems which are process 
based (VMS, UNIX, AOS) are particularly well 
suited to such an environment [3,7]. 

The obvious disadvantage of the shared bus 
approach is that the bus (and memory), being the 
only shared resource, is a bottleneck. In [9] a 
dual processor VAX is described and it is reported 
that bus saturation occurs somewhere between 2 and 
3 processors. Providing multiple paths to memory 
which can be switched to allow concurrent access 
by multiple processors eases this problem, and a 
great deal has been written on this approach 
[5,6]. In the case of relatively few processors, 
however, it is convenient to avoid the complexity 
of cross bar or delta switches and attempt to con
nect the processors on a single bus. One can then 
consider connecting this substructure to others 
through various switching networks, as in Cm. 
[11] • 

• This research was supported in part by the 
Joint Services Electronics Program (U.S. Army, 
U.S. Navy, and U.S. Air Force) under Contract 
N00014-79-C-0424 and in part by the Naval Elec
tronics Systems Command under VHSIC contract 
N00039-80-C-0556. 

0190-3918/82/0000/0326$00.75 @ 1982 IEEE 326 

In a shared bus system the number of proces
sors which can be supported depends on the bus 
bandwidth available, hence it is important to con
sider ways of reducing the traffic on the (single) 
memory bus. One method is to use a private cache 
for each processor. The effectiveness of cache 
memories in improving performance of computer sys
tems is well known [12,13]. The most obvious 
advantage of the cache is the reduced access time 
for cache relative to that of main memory. The 
use of a private cache can also reduce traffic on 
the memory bus. While this is of secondary 
interest in uniprocessor systems, it is of criti
cal importance in bus coupled shared memory mul
tiprocessor systems. 

In this paper we consider methods of cache 
organization which offer reduced bus traffic com
pared to the methods commonly used in existing 
uniprocessor designs. We consider a general pur
pose time sharing system for which a detailed bus 
transaction level simulation has been constructed. 
Under realistic assumptions, we find that the bus 
traffic can be reduced in the typical case by a 
factor of greater than 2, and for some systems by 
a factor of greater than 8, by employing these 
techniques. This surprising result directly 
translates to having more than twice as many pro
cessors in the system at a given level of bus 
saturation. These techniques deal mainly with the 
update policy of main memory. This improvement is 
made with no degradation of common or desirable 
operating system functionality. In particular, 
neither interprocess communication nor symmetric 
multiprocessing are precluded. 

II. Cache Coherence ~ Potential ~ due ~ 
Writeback 

The two major categories of cache organiza
tion, shared and private, are shown in figures 1 
and 2 respectively. Examples of these structures 
(in the uniprocessor case) are commercially avail
able. The VAX 11-780 from Dec uses private cache 
while the Data General MY/aooo uses a shared cache 
[4,11]. The ATU (address translation unit) is 
shown between the CPU and the cache, indicating 
that the virtual addresses which are issued by the 
CPU are translated into physical addresses which 
index the cache. There are advantages to placing 
the ATU between the cache and the system bus (the 
cache is then indexed by virtual addresses) and 
this organization is under study now. For the 
remainder of this paper we will assume the usual 
case of translating the addresses before indexing 
the cache, as illustrated in Figures 1 and 2 • 

As in any hierarchical memory system the 
question of coherence among multiple copies of 
logically identical data items (e.g. a cached item 
and its copy in memory) must be resolved [10]. 
The shared cache in fig~re 2 has no coherence 



problem, since there is no device that modifies 
the memory without going through the cache. This 
allows the use of a write back rather than a write 
through policy for main memory update. This is the 
organization used in the MVIBOOO. 

In the private cache structure of figure 
there is potential for cache coherence problems 
even in the uniprocessor case, since DMA 1/0 can 
modify cached data. In the VAX 11-7BO, which uses 
this structure (with a single CPU) the cache moni
tors the bus for writes to locations that it has 
cached. When it detects one it marks the 
corresponding cache slot empty so that the next 
access will be forced to read the modified value 
from memory. Writes to cache can be immediately 
passed on to main memory, and the memory system is 
able to queue write requests, so that the proces
sor can continue without waiting for the write to 
complete. Read access to the cache, of course, 
requires no transaction on the system bus, hence 
the private cache saves bus traffic over the 
shared bus cache. 

There is a third alternative, namely using a 
write back policy in a shared cache. Since cached 
values are written only on a cache fault that 
requires a replacement into memory, or at context 
switch time, cached values may be modified in 
cache more times than they are written to memory. 
This represents a potential savings in bus traffic 
over the write through case. In addition, the 
complexity of queued writes to main memory can be 
avoided. The disadvantage is that a "modified" 
bit must be maintained in the cache and at context 
switch time any modified words (or blocks) must be 
written out. This causes bus traffic to be related 
to context switch rate. The main problem with 
write back is the coherence problem, which we will 
consider now. 

A user process as modeled in figure 3, exe
cuting in a timesharing environment, will typi
cally do all of its 1/0 via system calls and in 
the usual case will be doing blocking 1/0. Inter
process communication will also be done via system 
calls (as opposed to directly writing shared 
memory). It seems then that user code need not 
worry about coherence, so that any write through 
operation from a user process represents an 
unneeded bus transaction. This is the motivation 
for conSidering how much traffic is used for write 
through, and whether it can be avoided. 

In a process based operating system, which is 
typical of what is run on the systems considered 
here, a process can be blocked, ready, or running. 
We will assume that a ready process can execute on 
any of the processors in the system, and that when 
a processor is ready to run a process, that pro
cess is taken from a central queue in an atomic 
operation which is not susceptible to races among 
processors. This is not a difficult objective to 
achieve, and it allows the operating system to be 
largely independent of the number of processors 
that are connected to the bus. Figure 3 illus
trates the major states that a process can be in, 
and some conditions under which transitions occur. 
This simple model is not at all unrealistic for 
consideration of the execution phase of a process. 

327 

We will ignore process initiation and termination, 
since these are boundary conditions during which 
operating system control of cache can be assumed. 

Hence, if the following three rules are 
observed, we can at least ignore the coherence 
problem for nonsystem code. 

(1) The process does no 1/0 itself. This does 
not restrict the operating system from ini
tiating DMA 1/0 into the process address 
space. 

(2) When a process is in the blocked or ready 
state, there are no values from the process 
address space in the cache. 

(3) When the process communicates with another 
process, it does so via a system call, as 
opposed to (for example) writing into physi
cal memory that the receiving process is 
expecting to use for communication. 

While it is beyond the scope of this paper to 
treat operating system implementations relative to 
cache policy, we have conSidered the problem. 
Suffice it to say that these rules do not preclude 
services such as nonblocking 1/0, multiple event 
wait, and interprocess communication, which we 
feel are essential in any multiprocessing system. 
Having confined the coherence problem to the 
operating system we appeal to the fact that the 
system can be aware of when coherence problems can 
arise. In the case of interprocess communication 
it is possible to implement message passing by 
mapping a block of memory into the receiver's 
address space. Since the pages were previously 
unmapped (not in the receiver's address space), 
they certainly are not in cache, so there is no 
coherence problem. A less elegant alternative 
which has been used in DEC-10 dual processor sys
tems under SMP (symmetric multiprocessing) is for 
senders to cause a cache flush in the receiver's 
cache. There are more intricate hardware solu
tions in the literature as well [10]. 

In the later sections we will consider the 
amount of bus traffic that can be saved by using a 
write back cache in various system configurations. 
In what follows we assume that the problem of 
coherence is dealt with as suggested above. We 
now discuss the simulation system used. 

III. Simulation System 

There are many ways of analyzing a complex 
system such as the one in Figure 1. These range 
from the stochastic approach of characteriZing a 
system in terms of a small number of statistical 
parameters to the empirical investigation of a 
realization of the system. We have chosen to 
simUlate the system at a fairly low level; i.e. 
instruction timing and bus conflict behavior are 
faithfully replicated, but those phases of opera
tion which are not directly of interest relative 
to cache performance, such as instruction decode 
details, are not included. The simulation will 
accurately reflect, for example, alternating bus 
access by the processors. The system is driven by 
execution of target system code. 



The amount of concurrency inherent in this 
system precludes the exclusive use of a standard 
sequential programming language. We use the C 
programming language to express the sequential 
parts of the target system. To extend the 
language for the simulation of highly concurrent 
systems, we have constructed a simulation environ
ment which provides for process creation, termina
tion, synchronization, and communication. This 
allows a very natural expression of the semantics 
of a digital system since typical hardware systems 
can be accurately viewed as a collection of 
processes. In our example we have only 3 
processes. These are the bus process and two 
processes to realize the processors. Figure 4 
illustrates the structure of the system. The ker
nel portion is written in assembly language since 
it needs to be able to maintain multiple data seg
ments for the processes. The utilities are writ
ten in C, as are the simulation modules CPUO, 
CPU1, and BUS. 

Part of the benefit of using the simulation 
environment is that code can be shared. For exam
ple, there is only one copy of the code which 
implements the CPU element, and there are two 
independent processes that execute this code. In 
this sense the simulation system is modular. To 
increase the number of processors on the bus we 
merely invoke a third copy of the CPU process by 
changing two lines of code in the simulation. 
Changing the design of the target in this fashion 
is quite simple and this allows the deSigner to 
evaluate several different system configurations 
in a matter of a few hours. 

The most important functional capability pro
vided by the simulation system is the ability to 
manage several processes in a single address 
space. Management includes the following. 

Process creation and termination 
Processes can be created and terminated 
dynamically. 

Priority scheduling of processes 
Processes can be initiated at any of 4 
priority levels, with all processes at a 
given priority executing in a round robin 
fashion. 

Maintenance of a sleep queue 
Processes typically indicate that they are 
going to incur a time delay by calling 
sleep. A memory module would for example 
issue the call nsleep(450)n to indicate that 
a memory access requires 450 ns. Other 
processes will continue executing during 
this 450 ns period if possible. 

Signal, wait, and semaphores 
These are provided for interprocess communi
cation and synchronization. 

The. simulation system implements the target as a 
collection of processes that run in the single 
address space of a UNIX process. This feature is 
critical to good performance. We incur a penalty 
of only about 30 instructions for signal and wait, 
since there is no need to call the operating sys
temto communicate with other processes, in con
trast to other simulation systems· [14]. 

IV. Analysis of the Effects of Cache Policy 

Within the context of a system such as that 
in Figure 1, there are many parameters whic.h can 
be varied without violating the basic structure. 
We consider the following. 

(1) Cache policy: write back vs. write through 

(2) Length of time slice. 

(3) Timing parameters such as bus speed and 
behavior with and without cache. 

(4) Cache block size. 

Our main result deals with the amount of bus 
traffic that can be saved by using a write back 
rather than a write through policy. For the write 
back case, the length of time that a process runs 
without a context switch (and attendant write 
back) is also examined. We refer to this time as 
the timeslice. 

As we have mentioned, the simulator used here 
is a low level deterministic simulator. To evalu
ate a given deSign parameter, a test program is 
run on the (simulated) target. In our case a com
piler for a simple variant of Pascal was written 
to allow reliable and convenient generation of 
nontrivial target programs. This language was 
chosen for convenience since some support software 
for its execution was already in existence. The 
hypothetical target processor was chosen because 
it is architecturally interesting and straightfor
ward to implement. There is nothing inherent in 
our analysis technique that precludes evaluation 
of existing real machines. We have in fact done 
so in evaluating a similar system incorporating 
PDP-11 processors, and an effort to compare the 
current system to a similar structure using the 
Motorola 68000 processor is under way. Since we 
are concerned here mainly with the issue of bus 
traffic and cache effects, the detailed issues of 
the processor architecture are largely irrelevant, 
as long as the processor used is similar in its 
address reference behavior to conventional 
machines. Our simulation has been so designed. 

To illustrate the role cache plays in reduc
ing bus traffic, a simple program was run on the 
system and bus speeds were varied. The program 
sorts elements in a matrix by calling several sub
routines. This program was used because, in con
trast to the Gaussian elimination program used 
later, it depends heavily on subroutines. 

328 

Figure 5 is a plot of average bus utilization 
versus bus speed for a two processor system with 
private cache. The higher curve is for the case 
that the cache is turned off completely. Note 
that saturation occurs at a much slower bus speed 
for the no cache case, indicating that the cache 
is effective in keeping the processors off the 
bus. It should be noted that the statistic given 
(bus utilization) is not a useful measure of per
formance since the amount of time a processor 
spends waiting due to conflicts is not indicated. 
It is not difficult to obtain conflict statistics 
from the Simulator, but for this study it suffices 
to examine the execution time of the various cQn
figurations (see Figure 6 for example). 



A more interesting example is shown in Fig
ures 5 and 6 which show traffic and execution time 
respectively as a function of timeslice. The 
analysis of the cache behavior has been carried 
out on several variations of the following confi
guration. 

(1) The cache is two way set associative and 
can hold 1Kb. Both code and data are typi
cally cached, and the block size is 4 bytes. 

(2) The cache is private to the processor, one 
cache per processor as in Figure 1. 

(3) The memory is Simplistic in that no requests 
are queued; if a word is written on a write 
through cycle the processor waits until that 
transaction is complete before proceeding. 

(4) The bus is relinquished at the end of each 
cycle, so that if contention occurs, proces
sors will alternate bus cycles. 

The code in this case is a 30 X 30 Gaussian 
elimination program. The cache size is 256 32 bit 
words. This is intentionally somewhat small com
pared to the size of the code plus data for the 
program, which totals about 5600 bytes. The hit 
rate for this program is typically 95%. 

The Gaussian elimination program does no I/O 
and is inherently free of subroutine calls. To 
simulate the effect of operation in a timesharing 
environment, a clock tick interrupt occurs at reg
ular intervals corresponding to a transition from 
the running to the ready state of Figure 3. It is 
assumed that on return to the running state the 
cache appears empty and has to be demand loaded. 
While this is not necessarily the best way to 
design a system, it is common practice. 

At context switch time the write back cache 
has to write any modified location into main 
memory. The write through cache has no such 
requirenment since written values have already 
been updated. Hence we expect that a very high 
context switch rate will cause the write back to 
suffer. As can be seen in Figures 5 and 6 this is 
indeed the case. 

However, even going to the extreme of a con
text switch every two thousand instructions, the 
write back strategy is superior by a factor of 
1.64 in terms of bus traffic and by a factor of 
1.62 in execution time, for this program. While 
the times~s shown in Figure 5 are accurate rela
tive to the assumed speed of the components of the 
system, they depend on both the speed of the pro
cessor relative to the cache and the times for the 
instructions executed. The bus traffic in Figure 
6 is independent of processor speed and we can 
state that assuming a context switch every eight 
thousand instructions we need to support 2.57 
times as many bus transactions if write through is 
used. 

On a large VAX system, the context switch 
rate under load is in the vicinity of Sixty con
text switches per second [15]. With the timing 
used in our experiments this corresponds to about 
16000 instructions per timeslice, which will give 
an even greater advantage to the write back pol
icy. Furthermore, increasing the number of pro-

329 

cessors for a given multiprogramming load will 
decrease the context switch rate, further reducing 
overhead bus traffic. In the limit, assuming 
processes run to completion, the write back policy 
requires fewer bus transactions by a factor of 8. 
If the processor architecture is primarily memory 
to memory, as in the Intel iAPX 432 [17], the need 
for cache to reduce bus traffic is even greater. 
Under these assumptions, and assuming run to com
pletion proceSSing we find that the write through 
cache issues more bus transactions than the write 
back cache by a factor of 18 for this problem. 
This illustrates the need for careful cache design 
in such systems. 

We have also investigated smaller programs 
and different cache organizations. Figure 8 is a 
graph of execution time versus bus speed for the 
matrix sorting problem. The cache in this case 
has a blocksize of 16 bytes, and we assume that 
any write back transaction must write a 16 byte 
block. Write through, of course, requires only a 
single transaction. The average bus utilization 
in this case ranges from .36 to .59, even though 
the bus speed is 2.2 micro seconds, which 
corresponds to approximately twice the instruction 
time for this processor. When the processor speed 
was changed to 30ns for all instructions, with a 
100 ns cache, the bus utilization was still only 
.9 at a bus cycle time of 1.2 microseconds. Thus 
the adding a write back cache effectively more 
than doubles (700 ns versus 2000ns at the .55 
saturation level) bus bandwidth as measured by the 
average saturation. 

In Figure 9 the bus traffic for this program 
for the write through and write back case are 
plotted. The two are equal at a point well below 
realistic levels of context switch activity. As 
in the other cases, the write back policy is supe
rior for reasonable context switch rates, though 
in this case, the improvement is only a factor of 
1.3. 

Conclusions 

This study has shown that for a shared bus 
multiprocessor organization one can significantly 
increase the number of processors a given bus can 
support by using a write back rather than a write 
through policy for main memory update from cache. 

For small to medium size machines, for which 
the cost of a processor is small compared to the 
cost of the rest of the system, this is an espe
Cially attractive means of improving multiuser 
performance without adversely affecting the effi
ciency or the functionality of the operating sys
tem. 

There are many more parameters and deSign 
tradeoffs that we have not considered here. 
Currently we are investigating the benefits of 
having a relatively wide path from the cache to 
main memory, and having the I/O devices communi
cate using this bus. If we assume that the I/O 
devices are reasonably intelligent it is possible 
to move a large part of the file system and 
operating system services into the device con
trollers (the file and I/O handlers) and into the 
bus interface (interprocess communication and syn-



chronization). Current CPU chips are quite impres
sive in that they have reached the level of being 
viable for support of useful operating systems. 
VLSI techniques applied to considerations such as 
cache design and operating system support as 
described here will allow the construction of 
extensible systems that can be oonfigured for an 
extremely wide range of performance while main
taining component commonality. 

REFERENCES 

[1] VERSAbus Specification 
Motorola Inc. 

1981, 

[2] Richard W. Boberg, "Proposed Microcomputer 
System 796 Bus Standard," Computer, Vol 13 
No. 10, pp. 89-105, Oct. 1980. 

[3] G. H. Goble and M. H. Marsh, "A Dual Proces
sor VAX 11/780," .2th .Arw.wll. Symposium .QI1 
Computer Arghitecture, 26 April, 1982. 

[4] IAXllHl ~ Seryiges Referenge HaJ:w.al., 
1980, Digital Equipment Corporation. 

[5] .lln1x. Programmer '.a. HaJ:w.al., 7th edition, Vol 
2b, Jan 1979, Bell Telephone Labs inc, Murry 
Hill, NJ. 

[6] J. H. Patel, "Analysis of Multiprocessors 
with Private Cache Memories", lEil~. 
~., vol. C-31, pp. 296-305, April 1982. 

[7] J. H. Patel, "Performance of Processor
Memory Interconnections for Multiproces
sors,"~kana.. ~., vol c-30, pp 
771-780 Oct 1981 

[8] R. J. Swan, S. H. Fuller, and D. P. 

[9] 

Sieworek, "Cm. A modular, multi
microprocessor," Proceedings of the National 
Computer Conference, 1977. 

K. R. Kaplan and R. Q. Winder, 
Computer Systems", Computer, 
March 1973. 

"Cache-Based 
pp. 30-36, 

[10] G. S. Rao, "Performance Analysis of Cache 
Memories", ~.~, vol. 25, No.3, pp. 378-
395, July 1978. 

[11] C. J. Alsing, K. D. Holberger, et al. "Min
icomputer fills mainframe's shoes," ~ 
tronigs, pp. 130-137, May 22, 1980. 

[12] lAX Argbitegture Handbook, 1981, Digital 
Equipment Corp. 

[13] L. M. Censier and P. Feautrier, "A New Solu
tion to Coherence Problems in Multicache 
Systems", .un~. ~. , vol. C-27 , 
No. 12, pp. 1112-1118, December 1978. 

[14] F. I. Parke, "An Introduction to the N.mPc 
Design Environment," ~ progeedings g!~ 
~ ~ Automation Conferenge, June, 
1979. 

330 

[15] W. N. Joy, "Installing and Operating 4.1bsd" 
May 18,1981, Computer Systems Research 
Group, Department of Electrical Engineering 
and Computer SCience, University of Calif., 
Berkeley. 

[16] lAX Hardware Handbook, 1981, Digital Equip
ment Corp. 

[ 17] P. Tyner, .1.Aa lli GENERAL JlAIA PROCESSOR 
ARCHITECTURE REFERENCE ~ Intel Corpora
tion, 1981. 

CPU 
a 

Figure 1. 

Figure 2. 

I/O 
DEVS 

SYSTEM BUS 

I 
MAIN I 

MEMORY 

Private Cache System 

I/O 
DEVS 

CPU 

Shared Cache System 



... ... 

F"l9ure 3~ States of Process Execution 

CPU 
o o 

I Kernel 

Utilities 

Kernel: Process mcncgeme'1t 
Utilities: !nstrumentot1on end 

kernel interface 

CPU 

Figure 4. Simulctor Structure 

z ::. 
I-

~ 
~ 
I-
::J 

Ul 
:l 

'" w 
CJ a: 
0: w 
> a: 

.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 

.1 

II 
21l1i1 41111 61l1l 81i11i1 111011 1201i1 14111i1 16110 18110 21l01l 

BUs. CYCLE TIME IN NANOSECONDS 

.. ,..,.... 5. Bu. S.t.urat '.-n 

57 

54 --'-51 

48 

45 

~ 
42 

... ... 39 
a: 36 0: 
I-

Ul 33 
::J 

'" 311 

27 

24 

" .... 
" "-

21 -18 

2 4 8 

TIMESLICE - THOUSANDS Of INSTRUCTIONS 

Figure 6. Bus Traffic VS Timesl1ce 

3911 

3711 I'-.. "'T< ..-
351i1 ""'-.... 
330 

3111 

!! 290 
x 
Ul 271i1 

" z 
251l 0 

u 
w 
Ul 2311 

MtI1'£ .... 
211l ~ 
199 ........... 

170 

2 4 8 

TIMESLICE - THOUSANDS Of INSTRUCTIONS 

rlgure 7. Execution Time VS Timasltctt 

4111 

372 v 
343 ;;:.:;.. V 
314 V 

'" 
285 

'" - 256 
x 

V 
/' ..... 

/ 
....... 

"'" 
en 227 

" z 198 0 
u w 169 en 

140 

/' V 
/ .,./""" 

/ ".....-

/ .,./ 
III ~ 
82 

41111 6110 81111 11I91i1 121111 141111 IGBII 181111 29011 221111 

BUS CYCLE TIME IN NANOSECONDS 

F'tgu,.e 8. Execution Ttme VS Bus Speed 

~ ... ... 
a: 
0: 
I-

Ul 
iil 

1511 

141 

132 
- \ 

123 \ ::M~ 

114 \ 
195 

96 
f-

I'---~ I =..a 
87 

~ 
78 r--.... 
69 - --611 

2 8 III 12 14 16 

TIMESLICE IN THOUSANDS Of INSTRUCTIONS 

Figure 9. Traffic VS Timesltce 

18 21i1 



Coherence ProbLem in a MuLticache Systemt 

W. C. Yen;: 
FairchiLd Advanced Research and DeveLopment 

PaLo ALto, CaLifornia 94304 

and 

K. S. Fu 
SchooL of ELectricaL Engineering 

Purdue University 
West Lafayette, Indiana 47907 

Abstract 

Coherence probLem occurs in a muLti cache system 
when data inconsistency exists in the private 
caches and the main memory. Without an effective 
soLution to the coherence probLem, the effective
ness of a muLticache system wiLL be inherentLy 
Limited. These probLems wiLL be cLoseLy examined 
and treated in a systematic top-down manner. A 
new soLution, LSCS (LogicaL semi-criticaL section) 
scheme, in which the memory reference of a proces
sor is made as fast as possibLe, is proposed. 

1. Introduction 
The architectures of a muLtiprocessor computer 

(8,12J are primariLy characterized by three attri
butes: (1) muLtipLe, not highLy speciaLized pro
cessors are used, (2) aLL processors share most, 
and often aLL, of the main memory, and (3) each of 
the processors is able to do computation individu
aLly. Advantages offered by these attributes are 
so fruitful that these architectures wilL undoubt
edly play an important role in the computer of the 
future. 

The modularity and redundancy inherent in a 
muLtiprocessor computer offer the opportunity to 
buiLd a more reliabLe system. In a carefulLy 
designed computer, a faiLure of a single module 
does not crash the entire system, instead onLy a 
gracefuL degradation of the system's performance 
is anticipated. It is aLso true that in a muL
tiprocessor computer the sharing of resources and 
processing power tends to smooth out effects due 
to random variations in workLoads. In return, the 
throughputlcost ratio is increased. This occurs 
even if each processor in a muLtiprocessor comput
er performs worse than when it is in a uniproces
sor configuration (12J. 

The economicaL advantage of a muLtiprocessor 
architecture during the computer construction 
phase has aLso been noticed in [15J. The reguLar
ity of a muLtiprocessor computer aLlows dupLica
tion of modules of the same type. Both time and 
cost of design are thus reduced significantLy. 
Furthermore, the designer of a multiprocessor com
puter may enjoy the freedom of choosing the most 
cost-effective uniprocessor eLement structure, in
dependent of the processing speed of the eLement. 

Due to physical limitation imposed by the ex
isting technoLogy, a uniprocessor computer may not 

t This work was supported by the NSF Grant ECS 
80-16580. 

;: W. C. Yen was with the School of Electrical En
gineering, Purdue University. 

0190-3918/82/0000/0332$00.75 © 1982 IEEE 

be abLe to offer enough, or required, processing 
power. Thus, in spite of other advantages such as 
expandabiLity, modifiability, etc., the construc
tion of a muLtiprocessor computer seems to be 
necessary. Concurrent execution of a number of 
tasks on different processors which aim at a sin
gle computation objective can reduce the overaLL 
computation time to a certain degree depending on 
the nature of the computation and the specific ar
chitecture of the computer. To date, aLL or some 
of these advantages have been cLearLy demonstrated 
to a certain extent by a number of experimental 
and commerciaLLy avaiLabLe computers such as 
C.mmp, Cm*, PLURIBUS, S-1 MuLtiprocessor, IBM 
370/168, CDC Cyber 170, HoneyweLL 60/66, Burroughs 
B7700, and Tandom Nonstop. 

ALthough muLtiprocessor computers offer many 
potentiaL advantages, they aLso generate many 
probLems. In particuLar, many people have long 
beLieved that a muLtiprocessor computer composed 
of N processors aLways yieLds much Less than N 
times the performance (throughput) of the 
corresponding singLe processor computer due to the 
substantial memory interference and synchroniza
tion overhead. MuLtiprocessor computers are, 
thus, doomed to waste substantiaL resources, espe
ciaLly when the number of processors is large, say 
greater than four. 

The experimentaL data obtained from C.mmp (10J 
disproved the impression that synchronization 
overheads, also termed software lockout, is in
tolerably high in a muLtiprocessor computer. In 
fact, in the measurements invoLving 14 processors, 
idLeness due to locking consumed less than 1 per
cent of the processors. On the contrary, the cost 
of memory interference is indeed high. RoughLy a 
factor of 3 in performance degradation has been 
observed in C.mmp (10J if aLL 16 processors exe
cute from a common memory. ConsequentLy, the ma
jor threat to the performance of a multiprocessor 
computer is primariLy due to the contention in the 
memory. 

332 

Numerous studies aiming at reducing the memory 
interference have been performed ever since the 
proposaL of muLtiprocessor computers. They can be 
roughLy grouped into three categories: (1) soLu
tions resort to the static or dynamic memory alLo
cation strategies (4,6,9,13,17J, (2) solutions re
quire data tagged by speciaLly designed operating 
systems (5J, (3) solutions assume dynamic hardware 
support independent from software environments 
(1,6,11,18J. Among them, we beLieve that the fu
ture general purpose multiprocessor computers wilL 
fall into the third category especially for high
performance systems. The architectures with fewer 



management probLems and Less speciaL software as
sists wiLL eventuaLLy dominate. 

In a computer of the third category, each pro
cessor is associated with a private cache by which 
a certain amount of information is trapped in and 
retained. As we know, in addition to the usuaLLy 
faster memory cycLe time, a cache serves as a Loo
kahead and Lookbehind buffer. The Lookahead capa
biLity of a cache may actuaLLy increase memory in
terference unLess the additionaL words brought 
aLong with the missing word into the cache do not 
introduce extra fetches to the main memory. 
Moreover, the cache capacity has to be Large 
enough to insure that the utiLity of the Lookahead 
is no Less than that of the Lookbehind. Neverthe
Less, a system with Less memory interference does 
not necessariLy resuLt in a better performance. 
Good performance is a resuLt of a baLance between 
the degree of memory interfer~nce and the cache 
hit ratio. This subject has been studied in [18J. 
On the other hand, the information retained in a 
cache, termed Lookbehind capabiLity, usuaLLy has a 
high possibiLity to be reused severaL times before 
swapped back into the main memory so that the fre
quency of main memory references is highLy re
duced. In return, the memory interference is aLso 
reduced. 

UnfortunateLy, such a muLti cache system, as 
shown in Figure 1, causes coherence probLem be
cause muLtipLe copies of a main memory bLock may 
reside in muLtipLe private caches at any given 
time. In generaL, a coherence probLem occurs as 
soon as two or more access paths to a singLe data 
entry exist simuLtaneousLy. This probLem is vitaL 
to the integrity of the system and is regarded as 
the major obstacLe in the design of a muLti cache 
system. In order to eLiminate such a coherence 
probLem once and for aLL, an interesting shared
cache system, as shown in Figure 2, has been pro
posed and extensiveLy studied by Yeh [16J. Each 
processor, instead of taLking to its private 
cache, goes through the interconnection network 
and then taLks to a cache which is shared by aLL 
processors. In principLe, the phiLosophy behind 
this proposaL is to appLy the cache memory tech
noLogy to the conventionaL main memory and omit 
aLL privateLy owned caches. As a resuLt, the ori
ginaL shared main-memory now becomes the secondary 
memory. The LeveL of boundary of memory hierarchy 
for context switching during a page fauLt, howev
er, is pushed one LeveL down to the boundary 
between the second and the third LeveL of memory 
hierarchy in this case. For such a shared-cache 
system, the coherence probLem is truLy eLiminated 
but aLL the originaL probLems which Lead us to put 
the cache into a muLtiprocessor computer stiLL ex
ist, such as memory interference and transmission 
deLay of interconnection network. 

In the foLLowing sections, ~e first iLLustrate 
coherence probLems in detaiL and then discuss 
various soLutions for them. 

2. Coherence ProbLem 
- COher~ce probLem may occur in a muLti cache 
system hen data inconsistency exists in the 
caches a d the main memory. MuLtipLe copies of a 
given main memory bLock may exist in severaL 
private caches. Modification of any copy of this 
shared bLock by a processor in its cache wiLL 

333 

cause an obsoLete vaLue of this shared data in 
every other cache. Data inconsistency thus occurs 
in the caches. To take specific exampLes, Let us 
consider a muLti cache system with N caches, Ci for 

i=1, ••• ,N, and a main memory being shared by aLL 
processors, Pi for i=1, ••• ,N. Let X be the physi-

caL address of a main memory bLock issued by the 
memory mapping function of a processor. When a 
copy of bLock X resides in Ci , Let the correspond-

ing cache bLock address be Yi. Thus, "bLock X" 

is aLways used to denote a specific bLock in the 
main memory, and "Yi" impLies that a copy of this 

main memory bLock resides in the cache bLock y of 
Ci • In the foLLowing two exampLes, coherence 

probLems arise: 
(E1) Data are assumed to be shared among 

processes. Pi reads bLock Yi without noticing 

that bLock y. has been modified by P .• 
J J 

(E2) A process is aLLowed to switch among pro
cessors. Process A may be executed on two proces
sors in a sequence such as ••• • P .• P .• P .• As 

1 J 1 
a resuLt, process A may have a copy of bLock X in 
both C. and C .• If process A has modified bLock 

1 J 
Yj' it wiLL then read obsoLete data from Yi after 

switching back to Pi. 

Modification of a copy of bLock X by a proces
sor in its private cache wiLL resuLt in data ob
soLeteness in the main memory if bLock X is not 
updated immediateLy. As a resuLt, coherence prob
Lems may aLso arise under the foLLowing situa
tions: 

(E3) Data are assumed to be shared among 
processes. A copy of bLock X is brought into Ci 
upon a miss whiLe another copy of bLock X has been 
modified in C. and this modification has not yet 

J 
been refLected in bLock X. 

(E4) A process is aLLowed to switch among pro
cessors. Process A is running on Pi first and 

then switched to P.. After process A has been 
J 

switched, the most recentLy modified data of pro-
cess A may stiLL be in Ci • Hence process A run-

ning on Pj couLd read obsoLete data from the main 

memory upon a miss. 
These exampLes are expressed from a process' 

point of view. Viewing from a processor, in fact, 
the probLems posed in (EZ) and (E4) are exactLy 
the same as the probLems posed in (E1) and (E3). 
Since cache memory management is carried out in 
hardware it is much easier to deaL with processors 
rather than with processes for a muLti cache sys
tem. Thus, restricting processes switching among 
processors to eLiminate (E2) and (E4) does not ac
tuaLLy simpLify the probLems. On the other hand, 
(E3) and (E4) can be eLiminated if the main memory 
update poLicy is write-through instead of fLag
swap. NevertheLess, without buffering, the rate 
of accessing the main memory can not be Lower than 
the write rate of a processor in a write-through 
poLicy. In the next section, some previous soLu
tions are described. We wiLL then present a new 



scheme in which the memory reference of a proces
sor is made as fast as possible. In' particular, 
this scheme is developed in a systematic top-down 
manner. 

3. Previous Solutions 
A commonly used coherence scheme in commercial 

computer systems with a smaLL number of processors 
is to connect every cache to a high-speed bus on 
which the addresses of the block to be modified 
are sent. Each cache permanently monitors this 
bus and invalidates the affected block in case of 
a hit. In the mean time, the write-through policy 
is used to insure the update of main memory. This 
scheme has many weaknesses [2]. The invalidation 
traffic on the bus is often very high since the 
mean write-rate for most processors is between 10 
and 30 percent. The peak rate is even much 
higher, and, a buffer may be needed for each cache 
to queue up the invalidated addresses. Moreover, 
a different coherence probLem may occur due to 
these invalidation queues. Finally, the rate of 
cycle stealing of the cache directory to perform 
the search for those invalidated addresses is so 
high that only a small proportion of cache direc
tory cycles is free for normal operations. All of 
these explain the reason that this scheme has been 
limited to systems with no more than two caches. 

The caches in C.mmp [5] implement write-through 
in the main memory, but the contents of caches on 
other processors are not affected. The coherence 
problem is resolved by having the operating system 
to designate which pages are safe to cache via the 
cacheable bit in the reLocation registers. Thus, 
all those shared writable pages have to be in the 
main memory only. In other words, the shared 
writable data are centralLy managed. The draw
backs of this scheme are the need of a speciaL 
operating system and the hit ratio of caches is 
inadequate for a high-performance computer. It 
should be noticed that the special assist required 
from the operating system may not be necessary in 
a capability-based system with architectural sup
ports. In addition, for specific environments, 
the resulting cache hit ratio may be adequate for 
a low-budget multiprocessor computer as well. 
However, this solution obviously is an inherently 
limited approach. 

More recentLy, three cLoseLy related schemes 
have been developed independently by Tang [14], 
Censier and Feautrier [2], and Widdoes [15]. They 
treat each block in the main memory as a semi
critical section [3]. This means that a block X 
can be shared among several readers but can only 
be accessed by one writer. Here, a reader stands 
for a cache Ci in which a copy of block X resides 

and in the mean time this copy has only been read. 
A writer represents a cache Ci in which a copy of 

block X resides while this copy has been written 
by processor Pi. ALL the readers or the writer of 

bLock X are recorded in a logically centralized 
map. This map is dynamically updated whenever the 
state of any semi-criticaL section is changed. In 
other words, such a map is designed to keep track 
of aLL the readers or the writer of each block X 
in the main memory. Hence, not only the ir
relevant cache invalidation requests can be fiL-

334 

tered out but the cache where the most recentLy 
modified data of block X reside, can be identi
fied. As a result, the flag-swap policy is adopt
ed in all three proposals. 

This map-based approach certainly requires more 
hardware, but offers a much better performance 
especially when the multiprocessor computer con
tains more than two or four processors. It solves 
the coherence probLem without knowing the seman
tics of the content of each main memory block. 
Thus, this is a totally transparent approach. 
However, this approach is based on the concept of 
semi-critical section not only logically but also 
physically. Consequently, when the first time a 
processor is trying to write into a cache block 
which was loaded upon a read miss, the processor 
can not execute this write until the state of the 
corresponding main memory block X is changed even 
if its cache owns the only copy of block X. We 
thus refer this approach as the PSCS (Physical 
Semi-Critical Section) scheme in contrast to our 
LSCS (Logical Semi-Critical Section) scheme 
presented in the next section. A digest of the 
PSCS scheme can be found in [7]. 

4. The LSCS Scheme 
T~purpose of using a cache is to feed the 

data to a processor as fast as the processor 
demands. Thus, the cache is often integrated into 
a processor unit and implemented by the same tech
nology as the processor. Moreover, the management 
of cache memory is completely made by hardware and 
makes decisions locally as much as possible so 
that the response time to a processor's demand can 
be minimized. 

The objective of the proposed LSCS scheme is to 
reduce the effective cache access time by making 
as many local responses as possible. There are a 
main memory controller MC and a cache controller 
CC i for each cache Ci • These controllers run 

asynchronously. Commands are exchanged between 
the cache controller and the main memory controll
er. A local response means that a cache controll
er can permit a processor accessing its cache 
without interacting first with the main memory 
controller. To understand this proposed scheme 
clearly, let us define that the legal state of 
block X viewed from MC is X-state {a,b,c,d}, 
where 

a: no copy, or no valid copy, of block X is 
in caches, 

b: bLock X is updated and only a single copy 
of bLock X is in caches, 

c: bLock X is updated and multiple copies of 
block X are in caches, 

d: block X is obsolete and only a single copy 
of block X is in caches. 

Let the legal state of a copy of block X in Ci 
viewed from CC i be Yi-state {a,a,y,o} where 

a: a copy of block X may be in Ci , however, 

it is invalidated. 
a: an intact copy of block X is in C. and it 

1 

is the only copy of block X in caches. 
y: an intact copy of block X is in Ci , howev-



er, there is one or more copies of bLock X 
in other caches. 

a: a modified copy of bLock X is in Ci and it 

is the onLy copy of bLock X in caches. 

These states are iLLustrated in Figure 3. NP(X) 
represents the number of copies of bLock X which 
resides in caches. Obvious correspondences 
between b and a, c and y, d and a respectiveLy can 
be recognized. Any change of Yi-state must be re-

fLected in the X-state. 
Figure 4 specifies the state-transitions re

quired to maintain data coherence when a write 
operation is performed by processor Pi. In case 

of a cache hit on the write reference to Ci , there 

are four possibLe states for Yi-state. If 

Yi-state is a, the situation is the same as a 

cache miss except that the cache repLacement aLgo
rithm does not have to be executed. If Yi-state 

is a, CC i signaLs MC to decLare a write into bLock 

X so that X-state has to be changed from b to d; 
in the mean time, Pi's write operation and the 

change of Yi-state from a to a are carried out as 

weLL. This means that a processor's write opera
tion is not deLayed if a cache hit is in state a. 
However, if MC is invoked by another cache con
troLLer to inquire the state of bLock X at this 
time, there is a sLight possibiLity that the X
state is stiLL in state b but the corresponding 
Yi-state has been changed to a. We caLL this 

probLem "the uncertainty of state b", that is, 
when MC detects a bLock X in state b it can not be 
sure that the bLock X is indeed in state b or ac
tuaLLy in state d. This probLem, fortunateLy, 
does not compLicate the cache controL mechanism as 
much as it first appears to be and wiLL be dis
cussed and resoLved Later. If Yo-state is y, CCo 

1 1 
signaLs MC to decLare an 
bLock X. Processor Po 

1 

excLusive writing in 
can not write into the 

corresponding cache bLock Yi untiL a X-state-

transition compLetion signaL from MC is received. 
In order to change the X-state from c to d, MC has 
to inform every other cache controLLer which owns 
a copy of bLock X in its cache to invaLidate that 
copy. In other words, one request on the X
state's transition from c to d wiLL invoke one or 
more y-state's transitions from y to a. 

In case of a cache miss on the write reference 
to Ci , a repLacement aLgorithm wiLL be executed 

and a cache bLock Yi wiLL be seLected for the 

missing bLock X. However, if the copy of bLock X' 
which originaLLy resides in the seLected cache 
bLock Yi has been modified, it needs to be swapped 

back to update the main memory. MC wiLL aLso 
check to see if there is onLy a singLe copy of 
bLock X' Left in aLL other caches after Co has re-

1 
pLaced this copy of bLock X'. If it is the case, 
the corresponding cache controLLer, say CCo, wiLL 

J , 
be signaLed to change the Yo-state from y to a to 

J 

, 
decLare that the cache bLock Yj owns the onLy copy 

of bLock X'. 
Before a copy of bLock X being Loaded into Ci , 

MC has to decLare an excLusive reading of bLock X 
for Ci • Thus, aLL cache controLLers which have a 

copy of bLock X in their caches wiLL be signaled 
to invaLidate those copies. In addition, if MC 
detects that a copy of bLock X has been modified, 
the main memory needs to be updated first. The 
uncertainty of state b of bLock X does not reaLLy 
compLicate the decLaration of excLusive reading. 
No matter what the X-state reaLLy is the cache 
controLLer which has the onLy copy of bLock X in 
its cache has to be signaLed to invaLidate this 
copy. Therefore, whether or not this copy has 
been modified can be checked at the same time. 

Figure 5 specifies the state-transitions re
quired to maintain data coherence when a read 
operation is performed by processor Pi. Nothing 

335 

has to be done for reading bLock X if there is a 
vaLid cache hit in Ci • IF a cache miss occurs on 

the read operation to Ci , the same repLacement aL

gorithm as the one specified in Figure 4 wiLL be 
executed. Before a copy of bLock X being Loaded 
into Ci , however, MC decLares a shared reading of 

bLock X for Ci • Now, an extra work has to be done 

by MC for resoLving the uncertainty of state b of 
bLock X, it is not required otherwise. MC needs 
to signaL CC j to check the Yj-state if a copy, and 

the onLy copy, of bLock X is in Cj • This uncer

tainty checking can be done in paraLLeL with Load
ing a copy of bLock X into Ci • However, if unfor-

tunateLy Yo-state is indeed d, this is rare, MC 
J 

wiLL be signaLed by CCo to update the bLock X and 
J 

reLoad an updated copy of bLock X into Ci • Note 

that we have to pay attention to the timing of 
this uncertainty checking since it has to be com
pLeted before processor Pi reads bLock Yi. 

5. Considerations of impLementation 
Sample impLementations of the specifications in 

Figures 4 and 5 are ilLustrated in Figures 6 and 7 
respectively. A 3-bit tag (2 bits if encoded) is 
associated with each cache bLock to represent the 
Yi-state. The tag is interpreted as foLLows if it 
is set. 

vi[y]: vaLid bit. The copy of bLock X in cache 

bLock Yi is vaLid. 

singLe bit. 

bLock Yi 

caches. 

The copy of bLock X in cache 

is the onLy copy of bLock X in 

miry]: modify bit. The copy of bLock X in cache 

bLock Yi has been modified by Pi. 

A (N+1)-bit tag is associated with each bLock in 



the main memory to represent the X-state. The tag 
is interpreted as follows if it is set. 

P[X,i]: ith bit in the present array. A copy of 
block X is in Ci , where i=1, ••• ,N. 

M[X]: modify bit. Block X is obsolete. 

In addition, a combinatorial logic circuit NP(X), 
which tells us how many bits are set in the 
present array of block X, is required in MC. 

There is little problem with the cache tag or
ganization. However, there is a variety of dif
ferent ways to organize the main memory tag for 
each block, which directly affects the organiza
tion of MC. Two most intuitive approaches are 
available. One is to include the (N+1)-bit tag 
into each main memory block so that the tags are 
actually a portion of the main memory space and 
spread out allover the entire space. The other 
is to aggregate all tags into a dynamically 
managed bit map which can be implemented by a fas
ter device. However, the former approach suffers 
a sLow memory reference time; the Latter approach 
has the problem of contention. 

We suggest to physically distribute the MC (of 
course, all tags) as illustrated in Figure 8. 
Furthermore, the main memory is interleaved by 
both higher and lower order bits. Two levels of 
distribution are intended to obtain. The lower 
Level is achieved by associating a moduLe of MC 
with each main memory module. Thus, the conten
tion in MC is highly reduced. On the other hand, 
the higher level is achieved by interLeaving the 
memory in higher order bits so that the availabiL
ity of the main memory is provided. Note that the 
interleaving on the Lower bits is also necessary 
for reducing potentiaL memory interference on 
shared code. 

With regard to the position of the Lower bits, 
it is dependent on that the main memory is inter
Leaved by bLock, subblock, or word. This further 
depends on the ratio of interconnection network 
switch time (circuit switch) and main memory 
moduLe access time. In other words, if the cir
cuit switch set-up time is relatively Long, inter
Leaving by bLock wouLd be a better choice. On the 
contrary, if the main memory access time is rela
tiveLy Long, to interLeave the main memory by sub
bLock or word wouLd then be better. Such an ar
chitecturaL decision can be made in terms of mani
pUlating the parameters of main memory access time 
tsc and bLock transfer parameter y in our earlier 
modeLs reported in [18]. 

Thus, each MC moduLe actuaLly contains a set of 
tags (a portion of the dynamically managed bit 
map) for the corresponding main memory module and 
a repLica of MC logic circuit and microprogram. 
The MC module may be implemented by a faster dev
ice than the main memory moduLe and the operations 
in MC may aLso be overLapped with those in the 
main memory moduLe. As a result, the performance 
degradation due to the addition of coherence 
mechanism can be highLy reduced. We can also take 
advantage of such an organization to include 
buffers in MC and CC i • Because now these con-

troLlers are physically associated with each indi-

336 

vudual memory (main memory and cache) moduLes, the 
additionaL buffers do not affect the coherence 
mechanism much. The system performance can thus 
be further improved. 

6. Performance Estimates 
The use of coherence mechanism always degrades 

the system performance. The effect of the scheme 
based on the map-based approach appears in both 
cache hit ratio and effective memory access time. 
A lower cache hit ratio wiLL be observed due to 
inevitable cache invaLidations, while the need of 
interactions with memory controLlers slows down 
the memory access. The cache invalidation rate 
wilL be the same for aLL map-based schemes; thus, 
the effective memory access time is used as the 
performance index. A rough comparison between 
PSCS and LSCS schemes is given in this section. 

Let us assume that the probabiLity of a vaLid 
hit in cache is h. The probability that a cache 
block contains the only copy of a main memory 
bLock is (1-p), where p is the multi-copy coeffi
cient. Furthermore, the mean time required for 
completing a memory access in case of a vaLid 
cache hit and without consulting with MC is t. 
The mean time required for compLeting a memory ac
cess in case of a valid cache hit but requiring a 
consuLtation with MC is t'. The mean time re
quired for completing a memory access in case of a 
miss or an invaLid cache hit is T. The effective 
memory access time may be obtained by assuming 
that the proportion of data wiLL be brought in the 
cache by a read miss and be modified subsequently 
by a write is e. Then, the effective memory ac
cess time for the PSCS scheme is 

Wp = h[1-e(1-h)]t + he(1-h)t' + (1-h)T, 

and for the LSCS scheme is 

WL = h[1-ep(1-h)]t + hep(1-h)t' + (1-h)T. 

Thus, the difference is 

Wp - wL = he(1-p)(1-h)(t'-t). 

The amount of performance improvement is directly 
reLated to the specific organization and implemen
tation of MC. Nevertheless, this gives a typicaL 
performance improvement of about 5 to 15 percent. 
In particuLar, the additionaL hardware overhead of 
the LSCS scheme is aLmost negligible. 

7. ConcLuding Remarks 
The coherence problem in a multi cache system 

has been treated in a systematic top-down manner. 
The proposed LSCS scheme offers a better perfor
mance with negLigible additionaL hardware over
head. 

ACKNOWLEDGMENT 
The authors wish to thank F. A. Briggs for pro

viding the initiaL manuscript on a digest of some 
previous coherence schemes. 

REFERENCES 

[1] F. A. Briggs and M. D. Dubois, "Cache Effec
tiveness in MuLtiprocessor Systems with Pipe
Lined Parallel Memories," Proc. Int. Conf. 



Parallel Processing, pp. 306-313, Aug. 1981. 
[2] L. M. Censier and P. Feautrier, "A new solu

tion to coherence problems in multi cache sys
tems," IEEE.!!:!!1.!. ~ Comput., vol. C-27, no. 
12, Dec. 1978. 

[3] P. J. Courtois, F. Heymans, and D. L. Parnas, 
"Concurrent Control with "readers" and "writ
ers"," Comm. ACM, vol. 14, no. 10, pp. 
667-668, Oct. 1m. 

[4] A. A. Covo, "Analysis of multiprocessor con
trol organizations with partial program 
memory replication," IEEE Trans. on Comput., 
vol. c-23, no. 2, pp.""""1i3-120, Feb.'" 1~ 

[5] S. H. Fuller and S. P. Harbison, "The C.mmp 
Multiprocessor," Tech. Rep., Carnegie-Mellon 
Univ., Pittsburgh, Pa., Oct. 1978. 

[6] C. H. Hoogendoorn, "Reduction of memory in
terference in multiprocessor systems," Proc. 
4th Annual Symp. Comput. Arch., pp. 179-183, 
1977. ' 

[7] K. Hwang and F. A. Briggs, Computer 
Architecture and Parallel Processing, 
McGraw-Hill, Initial Manuscript, pp. 
7.34-7.43, July 1981. 

[8] A. K. Jones and P. Schwarz, "Experience Using 
Multiprocessor Systems - A Status Report," 
Computing Surveys, vol. 12, no. 2, pp. 
121-166, June 1980. 

[9] J. M. Kurtzberg, "On the memory conflict 
problem in multiprocessor systems," IEEE 
.!!:!!1.!. ~ Comput., vol. c-23, no. 3, pp. 
286-293, March 1974. 

main memory 
context switching 

boundary _L __ _ 

Figure I. The multicache system 

337 

[10] M. V. Marathe, "Performance Evaluation at the 
Hardware Level and the Operating System Ker
nel Design Level," Ph.D. Thesis, Carnegie
MeLlon Univ., Pittsburgh, Pa., 1977. 

[11] J. H. Patel, "A Performance Model for Mul
tiprocessors with Private Cache Memories," 
Proc. Int. Conf. Parallel Processing, pp. 
314-317, Aug. 1981. 

[12] M. Satyanarayanan, "Commercial MuLtiprocess
ing Systems," Computer, vol. 13, no. 5, pp. 
75-100, May 1980. 

[13] A. J. Smith, "Multiprocessor memory organjza
tion and memory interference," Comm. ACM, 
vol. 20, no. 10, pp. 754-761, Oct. 1977. ---

[14] C. K. Tang, "Cache System Design in the 
Tightly Coupled Multiprocessor System," AFIP 
Proc. NCC, vol. 45, pp. 749-753, 1976. 

[15] L. C. Widdoes, Jr., "S-1 Multiprocessor Ar
chitecture (MULT-2)," S-1 Project Report, 
1979. 

[16] C. C. Yeh, "Shared Cache Orgaization for 
Multiple-Stream Computer Systems," Tech. 
Rep., CSL, Univ. of Illinois at Urbana
Champaign, Urbana, Il., Jan. 1981. 

[17] W. C. Yen and K. S. Fu, "Performance Analysis 
on MuLtiprocessor Memory Organization," Proc. 
ACM Pacific '80 Conf. on Dist. Processing, 
pp. 142-153, Nov. 1980. 

[18] W. C. Yen and K. S. Fu, "Analysis of Mul
tiprocessor Cache Organizations with Alterna
tive Main Memory Update Policies," Proc. 8th 
Annual Int. Symp. Comput. Arch., pp. 89-105, 
May 1981. 

context switching 
boundary 

J __ 

Figure 2. The shared cache system 



• Yi-state: the legal state of a copy of block X in Ci 
viewed from CC i • 

• X-state: the legal state of block X viewed from MC 

NP(X)=O NP (X)=1 NP(X»1 

HLXJ=\) /I[XJ=1 

Figure 3. The states of block X 

CD 
o 
o 

o 

case X-state of 
a: a ... b; 

Ideclare Yi contains the only copy Of XI 

b: b .. C; 
Icheck the uncertainty Of b state;! 
/checking can be done in parallel withl 
Iloading XI 

c: c .. C; 
d: d ... Ci 

lupdate XI 
load X ... Yi; 

CD 
o 

Figure 5. State-transitions for a read operation 

338 

o 

b .. d; 
IX-state change I 
I is carried out! 
lin parallel with! 
Iwrite 'Ii' 

o 

no 

DECLARE 
EXCLUSHE 
WRITING 

select I cache block y to be replaced; 
if the copy Of block X· in y modified then 

update x'; 
if NP(X')=1 after replacellent then 

declare single copy 0" block XI; 
Ithis single copy delaration can bel 
Icarried out in parallel with Ci I 51 

le"oCclusive readingl 

cas. X-state 0" 
a: a ... d; 
b: b • d; 
c: c + d; 

<:> EXCLUSIVE READING 

linyal idate all copies of block X, 
d: d • d; 

/update Xl 
load X ... )Ii; 

Figure 4. State-transitions for a write operation 

fork: 
:cobeg;n 

P[X,j1:=O; 
v j[Y]:=O; 

coend; 
~NP(X>"'1; 

~ 

.9!!. a cache block y; 
:I:r vi [y]=1 !!!!!! 

CObe,in 
.!.- 1II;[y]=1 .!!!!!:!. 

swap (y) • X'; 
"[X'):=O; 
P[X' ,;]:=0; 
if NP(X'>=2 then 
- find j, s1'9n'il CC j ; 

ICC j set Sj[Y']:=" 

coend; 

for all j that P[X,jl=1 do 
----rork': -

:Cob?in] 
P x,) :=0; 
"j[y1:=O; 

..i! _j[y]=1 !!'!.!!! 
swap (Yj) + X; 

coeod; 
. ~NP(X); 

tobelilln 
PU,il:=1; 
M[Xl:=1; 
load (X) + Yi ; 

toend; 

Figure 6. A sample Implementation of a write 
operation 



P, 

, .. 
!f<[:;~~.t~;~Ck 'I; 

col)egin 
11. lIi Cy)=1 .!.!!!!! 

swap ''I) • X'; 
MU'J:=D; 
PU' ,il:=O; 
if NPO")"2 then 
- find i, signal CC j ; 

(CC j set Sj[Y']:=l1 

eOI'M; 

['1>~--------------------~ , 

find j that p[X .. u-, do 
....-cGbeg .. n -

swap (Yj) .. X; 

sj[yl:-G; 

_j[Yl:-D; 

~ c,::a"OO .)'i; 

P[X,,1]:""; 
MU1:-o; 
~ 

cobeqtn 
!!.rut j that PU,U-' ~ 

cobe,'" 
Sj['/]:"O; 

.!!. IIj [y]'" then 

.i!!!!!.*; 
coend; 

loi'd1iJ .. 'Ii. 
PU,iJ:=1; 
~ 

Figure 7. A sample Implementation of a read 
operation 

r-
I 
I 
I L __ 

-----------l 
••• 

----,----

I 
I ____ ...J 

L MA I N MEMORY 

HIGHER ORDER 
BITS 

• MEMORY ADDRESS 

339 

LOWER ORDER 
BITS 

Figure 8. The organization of Me 



CONSTRAINED EXPRESSIONS AND THE ANALYSIS OF 
DESIGNS FOR DYNAMICALLY-STRUCTURED DISTRIBUTED SYSTEMS 

Jack C. Wileden* 

Computer and Information Science Department 
University of Massachusetts 
Amherst, Massachusetts 01003 

Abstract -- Designs for distributed systems 
with dynamic structure can be very difficult to 
understand and reason about. Constrained 
expressions, a closed form, non-procedural 
representation of all the possible behaviors of 
such a system, can help designers in analyzing a 
dynamically-structured distributed system's 
design. In this paper, the constrained expression 
formalism is introduced, an effective procedure 
for deriving constrained expressions from 
procedural design descriptions is outlined, and an 
example illustrating the use of this procedure in 
analyzing a design is presented. 

Introduction 
The Dynamic Process Modelling Scheme (DPMS) 

and its main descriptive component, the Dynamic 
Modelling Language (DYMOL) [1], were developed to 
provide a foundation for software design tools 
applicable to distributed systems with dynamic 
structure. A distributed system with dynamic 
structure is one in which some or all of the 
system's components may come into and/or go out of 
existence, and intercomponent communication paths 
may be established and/or closed, during the life 
of the system [2]. Systems of this kind are 
increasingly common; they include such things as 
process-based distributed operating systems, 
computer networks, and the tasking facility in 
Ada. The potential value of DYMOL as a language 
to aid designers of dynamically-structured 
distributed software systems has been demonstrated 
in (1]-[3]. 

Dynamically-structured distributed systems 
can be very difficult to understand and reason 
about, primarily due to the subtle interactions 
among system components that can arise due to 
dynamic structure and concurrent activity in such 
systems. Hence, it is useful to have techniques 
supporting the succinct description and rigorous 
analysis of the possible behaviors of a system of 
this kind. To this end, DPMS provides constrained 
expressions, a closed form, non-procedural 
representation for all the possible behaviors that 
could be realized by some dynamically-structured 
distributed system. 

Constrained expressions are related to other 
regular expression-based description languages [4] 
such as event expressions [5], path expressions 
[6], flow expressions [7] and counter expressions 
[8]. Constrained expressions are more general 
than any of these related languages, however. 
Constrained expressions also permit the 
description of the behavior of 
dynamically-structured distributed systems, which 

*Supported in part by the National Aeronautics and 
Space Administration under grant NAGI-IIS 

0190-3918/82/0000/0340$00.75 © 1982 IEEE 340 

these other languages do not. 
In this paper, we introduce the constrained 

expressions formalism, outline the effective 
procedure for deriving constrained expressions 
from DYMOL design descriptions and give an example 
illustrating the use of this derivation procedure 
in informally analyzing the DYMOL design of a 
dynamically-structured distributed system. We 
also outline our current and future work on formal 
analysis techniques for dynamically-structured 
distributed system designs based upon the 
constrained expressions formalism. 

Constrained ExpreSSions 

Informal Description 
Constrained expressions are a closed form, 

non-procedural representation of concurrent 
behavior in the same sense that regular 
expressions are a closed form, non-procedural 
representation of the behavior of finite state 
machines. In fact, the operators used in 
constrained expressions include the standard 
regular expression operators (concatenation, 
alternation, transitive closure) as well as two 
operators (interleaving and its transitive 
closure) used to represent concurrent activity. A 
constrained expression is formed by using these 
operators to combine symbols from an alphabet of 
events in the system being described into a 
collection of subexpressions, one subexpression 
for each component in the modelled system. The 
interleave of these subexpressions then represents 
the unconstrained set of possible system 
behaviors, ignoring such fundamental properties as 
the necessity of a message's being sent before it 
can be received or an inter component communication 
channel's being opened before it can be used in 
message transmission. The required fundamental 
properties are formally described by a second 
collection of sub expressions , called the 
constraint set. Then the set of behaviors (or, in 
formal terms, the language over the event 
alphabet) described by the overall constrained 
expression is just what remains after the 
unconstrained set of behaviors is filtered by the 
constraint set. This filtering process can be 
formally defined as a set intersection. 

Formal Definitions 
-----C-onstrained expressions define languages over 
an alphabet, E, of distinguished events. The 
expressions are composed of symbols from E, 
symbols from an auxiliary alphabet S of constraint 
symbols, the special symbols A (null event 
sequence) and {6 (empty set of event sequences), 
and a set of operator symbols. The constrained 



expression operators include the familiar 
operators of regular expressions alternation 
(represented by U), concatenation (represented by 
juxtaposition), and transitive closure 
(represented by *) -- plus two operators, 41 and 
+, used to represent concurrent activity. The 
~ operator signifies the shuffling or 
interleaving of the two strings that are its 
operands. The unary operator + denotes the 
interleaving of zero or more copies of its 
operand. (a) 

In defining the language represented by a 
particular constrained expression, we begin with a 
representation over an augmented alphabet and use 
an interpretation rule to produce a set of strings 
over the actual alphabet of interest. In 
particular, we let E and S be two disjoint, finite 
sets called the event alphabet and the constraint 
alphabet, respectively. A constraint set, CS, 
consisting of n constraining languages,---Ci for 
1<i<n, can then be defined with respect to n 
dTsJoint subsets, Si' of S. Each such Ci is 
represented by an expression over Si' ex(Si)' 
formed using any of the event expression 
operators, and interleaved with E* and Sj * for 
j;li. That is, 

for each constraining language Ci, 1<i<n. A 
constrained expression with respect to CS is then 
defined to be any expression over (E U S) that can 
be formed using the event expression operators 
other than +. This expression thus represents a 
regular language L', which is a subset of (E U S)* 
and which we call the un interpreted language of 
the constrained expression.Cb) We also define a 
homomorphism H:(E U S)* ~ E* by: 

H(e) e 
H(s) = A. 

for all e in E 
for all s in S 

Finally, for a given constrained expression with 
respect to CS which represents the uninterpreted 
language L', we define the interpreted language, 
L, represented by the expression to be the set of 
strings over E (i.e., subset of E*) described by: 

L=H(L' f'I C 1"'" "Cn) for Ci in CS (1) 

This definition, generalizes the definition given 
for counter expressions in [8] by allowing for the 
application of multiple constraints in determining 
the acceptability of a string. 

Analyzing Designs 
For an important subset of 

dynamically-structured distributed systems, DYMOL 
and constrained expression descriptions are 

(a) 
The shuffle operation was first defined and 

studied by Ginsburg [11], while Riddle presents a 
thorough formal discussion of both of these 
concurrency operators in [5]. 

(b) Proofs that expressions of this form represent 
regular languages may be found in [11], [5], and 
[8 ]. 

341 

related by an effective procedure for deriving the 
constrained expressions describing the potential 
behavior of any given DYMOL description of a 
system. This effective procedure is similar to 
the syntax-directed translation scheme commonly 
employed in compiler construction [9]. By using 
this procedure, the designer of a 
dynamically-structured distributed software system 
can derive a succinct representation of the 
possible behaviors of a system whose design is 
described in the more natural, procedural language 
DYMOL. This succinct, constrained expression 
representation provides the basis for an informal 
analysis of the DYMOL design, since it can expose 
intercomponent synchronization or communication 
anomalies. It also serves as the starting point 
for more formal analysis methods, based upon the 
derivation of systems of inequalities from a 
constrained expression description, which are 
currently being developed [10]. 

For the subset of DYMOL-described systems 
that we are considering here, the constraint set 
CS consists of three constraining languages. The 
first, Cl, describes the necessary restriction on 
transmission of messages in a distributed system. 
Cl is expressed using subset Sl of the constraint 
alphabet S, where Sl={@i,@i'}. The special symbol 

@i can be thought of as corresponding to the 
sending of a particular message along a particular 
message transmission channel, with the subscript i 
indexing the specific message type and channel 
pair. Similarly, the symbol @i' may be thought of 
as corresponding to the receipt of a particular 
message on a particular channel. The constraining 
language Cl is represented by the expression 

C 1=~@i*A(@i@i' )+ )6S2*6S3*4E* 
i 

The event expression (bc)+ represents a set that 
may be described as "all strings containing an 
equal number of b's and c's such that any prefix 
of any string always contains at least as many b's 
as c' s". Thus, Cl describes the requirement that 
the reception of a message is always preceded by 
the sending of a corresponding message, although 
more messages may be sent than are ever received 
(due to the interleaved @i*)' This precisely 
captures the message transmission semantics of 
DYMOL. 

Constraining languages' C2 and C3 are formed 
using subsets S2={$i,$i'~i,&i'} and S3={#i,#i'} of 
S, respectively. For brevity and simplicity, we 
omit their detailed definitions. C2 describes a 
constraint on the use of interprocess 
communication channels in a dynamically-structured 
distributed system. Specifically, it stipulates 
that message transmission may only take place 
along channels that are currently operational. C3 
similarly governs the use of message contents in 
determining the flow of control within a process 
in a DYMOL model. (See [2] for details on these 
constraining languages.) 

In the setting of the constraint set 
CS=C1 U C2 U C3, analysis of a design modelled in 
DPMS proceeds in two stages. First, the effective 
procedure is applied to the model, translating it 
from a DYMOL description into a constrained 
expression. This procedure, defined in detail in 



[2], is very similar to the translation performed 
by a compiler, being based upon translation rules 
associated with each syntactic construct of DYMOL. 
The result of this translation is an expression 
consisting of message type names (the elements of 
the event alphabet E in this setting), symbols 
from S and the constrained expression operators. 
The second stage of analysis involves inspection 
of the language represented by the derived 
constrained expression. Specifically, strings in 
the language that correspond to either desirable 
or undesirable system behaviors are sought. While 
no completely general algorithmic approach to this 
search is possible, it nevertheless can often 
result in useful information to guide the designer 
of a dynamically-structured distributed system. 
Several examples, such as those in [1]-[3], have 
demonstrated the value of this technique. 

Examples 
Although space limitations preclude a fully 

detailed treatment, we offer the following 
excerpts from an example in [2] to illustrate 
various facets of the preceding discussion. 

This example concerns a DPMS model of a 
distributed system with dynamic connectivity, 
namely a producer-consumer situation in which a 
producer generates information that can be 

processed by either of two consumers. The 
producer in the modelled system generates a stream 
of variable~length information packets, each 
packet postfixed with a termination indicator. It 
is intended that each packet const~tute a single 
complete, coherent set of data for a consumer. 
Therefore, proper processing require~, that each 
complete packet, including its ~rmination 
indicator, be received by exactly one consumer. 
Each time that the producer is pr pared to 
generate an information packet, a manager process 
called c pool selects a consumer to receive the 
information. When the producer has completed the 
generation of a packet, c pool is notified to 
disconnect the producer from- the most recently 
active consumer. 

Figure 1 gives the DYMOL description of the 
producer process of this model. (See [1] for 
details on DYMOL and [2] for a complete version of 
this example model and its analysis.) Following 
each sending of the 'ready'message indicating its 
intention to generate an information packet, the 
producer (at p4) awaits an indication that a 
consumer is prepared to receive it before actually 
commencing generation of the information. The 
consumer's confirmation of each reception of a 
'goods' message is used by the producer (at p8) to 
ensure that the items in an information packet are 
consumed in the same order in which they were 
produced. The producer's 'term' message (p9 and 
p10) is the packet termination indicator sent to 
the consumer, while the 'done' message (p11 and 
p12) informs the consumer pool manager, c pool, 
that a complete packet has been generated. -

The result of applying the constrained 
expression translation procedure to the DYMOL 
description of the producer process is shown in 
Figure 2. This is the sub expression describing 
the unconstrained possible behavior of this 
process. Figure 3 shows the complete constrained 
expression for the full modelled system, including 

342 

producer: p 1: 

p2: 
p3: 
p4: 
p5: 

p6: 
p7: 
p8: 

p9: 
p10: 
p 11: 
p12: 

WHILE INTERNAL TEST DO 
BEGIN 

SET BUFFER := ready; 
SEND cp; 
RECEIVE ok; 
WHILE INTERNAL TEST DO 

BEGIN 
SET BUFFER := goods; 
SEND info; 
RECEIVE ok; 

END; 
SET BUFFER .- term; 
SEND info; 
SET BUFFER := done; 
SEND cp 

END. 

Producer Process 

Figure 1 

(#1 #1' ready @2 
(&9 @13' ready &9' #1 
U &13' @4' ready &13' #1 
U &17 @S' ready &17' #1 
U &9 @23' got_it @9' #5 
U &13.@24' got_it &13' *5 
U &17 @2S' got_it &17' *5) 

(#2 #2' goods @6 
(&9 @13' ready &9' #1 
U &13 @4' ready &13' #1 
U &17 @S' ready &17' #1 
U &9 @23' got it @9' #5 
U &13 @24' got_it &13' 65 
U &17 @2S' got it &17' #5) )* 

63 #3' term @11-64 #4' done @17)* 

The Producer Process Subexpressions 

Figure 2 



($8 $17 116 *12 '18 1124) 
~ 
(*1 # 1,' ready @2 
(&9 @13' ready &9"' tit 
U &13 @4' ready &13 #1 
U &17 @S' ready &17' #1 
U &9 @23' got_it @9' #5 
U &13 @24' got_it &13' tiS 
U &17 @2S' got_it &17' #5) 

(#2 112' goods @6 
(&9 @13' ready &9' III 
U &13 @4' ready &13' *1 
U &17 @S' ready &17' D1 
U &9 @23' got it &9' #5 
U & @ 'got it & 3' Us 
u &i~ @~~, go~t &i7' #5) )* 

#3 #3' term @n *4 *4' done @17)· 
Il. 

«&2 @6' goods &2' #8 
U &2 @1l' term &2' tl9) 
«118' #11 tlU' got_it @23) U )..) ). 
il. 

«&3@6' goods &3' *14 
U &3 @1l' term ~3' #23) 

«#14' #17 #17' got~t @24) U A) )* 

~ 
«(&8 @2' ready &8' #19) 
U (& 8 @ 17' done & 8' # 22» 

«$ 2 $ 9 «# 19' ready @ s> 
U (122' done @ 20» 

«(&8@2' ready &8' #19) 
U (&8@17' done &8' #22»$2' $9'» 
U ($3 $i3 «#19' ready @S) U (122' done @20» 

«(&8 @2' ready &8' #19) 
U (&8 @17' done &8' #22» 

$3' $13'» ) ). 

Cl @l*A(@l @l') +A···~@2S*A(@25 @2S') 

A s *.t\ s * ~ E* 
2 3 

Complete Derived Constrained Expression 

Figure 3 

343 

the producer, the consumers, and c_pool. Now, 
using the interpretation rule for constrained 
expressions (1) it can be determined that one 
string contained in the language described by the 
Figure 3 constrained expression is: 

ready ready ready ready goods goods got it got it 
term done done ready ready ready ready goods

goods got_it got_it term done done term 

The message sequence represented by this 
string corresponds closely to the expected 
sequence of message transmissions in the modelled 
system in a case where the producer sends two 
single-item information packets. A sequence of 
four(C) 'ready' messages would naturally appear as 
the producer process signalled c pool of its 
intention to generate a packet and c pool 
responded by indicating that a consumer - was 
prepared to receive the information. The 
transmitted information ('goods') and the 
confirmation of its reception ('got it') follow as 
expected, and finally the 'term' and 'done' 
messages indicate the completion of a packet 
transmission. The intermixing of the final four 
symbols of the string (in fact, the derived 
constrained expression permits any ordering of the 
last three symbols in this behavioral 
representation) indicates that the receiving of 
the 'term' and 'done' messages by a consumer and 
the c_pool process, respectively, are potentially 
concurrent events. 

Examination of the string reveals one 
unexpected aspect of the modelled system's message 
transmission behavior, however. The string 
contains only three 'term' symbols, indicating 
that one information packet termination indicator 
was not received by a consumer process, although 
it was sent by the producer. This is an 
unacceptable situation under our previously-stated 
assumption that a complete packet, including the 
termination indicator, should be received by a 
Single consumer each time such a packet is 
generated. Yet the fact that this string is a 
string- in the interpreted language of the derived 
constrained expression indicates that this 
unacceptable behavior can be realized by the 
system as currently modelled. To the software 
system designer contemplating this DPMS model as a 
possible design for the producer-consumer system, 
this would presumably indicate that the proposed 
design was faulty. In fact, examination of the 
Figure 3 constrained expression can lead to 
discovery of the source of the difficulty. This 
is done in [2], where a revised version of the 
DYMOL design is then presented. Performing the 
constrained expression analysis on the revised 
design demonstrates that the difficulty has indeed 
been corrected. 

(C) Each completed communication of the modelled 
system generates two symbols in the message 
sequence describing its behavior. One represents 
the movement of the message from sender into the 
message channel while the other signifies the 
message's movement from the message channel to 
receiver. Under the semantics of DPMS, these 
events can be arbitrarily separated in time, hence 
the corresponding symbols need not, in general. 
occur adjacent to one another in the string. 



Conclusion 
In this paper we have introduced the 

formalism of constrained expressions and suggested 
how constrained expressions can be used in 
analyzing designs of dynamically-structured 
distributed systems. As our example indicates, 
however, the derived constrained expressions can 
be long and unwieldy. Therefore, analysis based 
upon manually manipulating and inspecting the 
derived expressions is likely to be incomplete and 
error prone. At the very least, one would like to 
have automated tools for generating example 
strings from the language represented by a given 
constrained expression. Such tools would simplify 
the inspection approach and reduce the tedium and 
likelihood of errors. Fortunately, such tools are 
quite straightforward to build. Ideally, one 
would like formal techniques, more powerful than 
simple inspection, for uncovering anomolies in the 
behavior described by a constrained expression. 
We are presently working on developing such formal 
techniques [3]. Our approach involves deriving a 
system of inequalities from a constrained 
expression description, then attempting to solve 
the system of inequalities. This process formally 
demonstrates the presence or absence of certain 
types of behaviors in the modelled distributed 
system. Examples of this technique appear in [3] 
and [10]. 

[1] 

[2 ] 

REFERENCES 

J. Wileden, "Techniques for Modelling 
Par allel Systems wi th Dynamic Structure," 
Journal of Digital Systems, 4,2, (Summer 
1980), pp:T77-197. 

J. Wileden, "Modelling Parallel Systems with 
Dynamic Structure," Department of Computer 
and Information Science, University of 
Massachusetts, COINS Technical Report 78-4, 
(January 1978). 

344 

G.S. Avrunin and J.C. Wileden, "Algebraic 
Techniques for the Analysis of Concurrent 
Systems," Department of Computer and 
Information Science, University of 
Massachusetts, COINS Technical Report 81-11, 
(May 1981). 

[4] A. Shaw, "Software Specification Languages 
Based on Regular Expressions," in Software 
Development Tools, Springer-Verlag, 
Heidelberg, (1980), pp.148-175. 

[5] W. Riddle, "An Approach to Software Behavior 
Description," Journal of Computer Languages, 
1, (1979), pp.29-47. 

[6] R. Campbell and A. Habermann, "The 
Specification of Process Synchronization by 
Path Expressions," in Lecture Notes in 
Computer Science, 16, Springer-Verlag, 
Heidelberg, (1974), pp.~-102. 

[7] A. Shaw, "Software Descriptions with Flow 
Expressions," IEEE Transactions on Software 
Engineering, SE-4, 3 (May 1978), pP:-242-254. 

[8] M. Welter, "Counter Expressions," RSSM/24, 
Dept. of Computer and Communication 
Sciences, University of Michigan, Ann Arbor, 
Michigan (October 1976). 

[9] A Aho and J. Ullman, The Theory of Parsing, 
T~anslation and ComPIIi~entice-Hall, 
Englewood Clifrs: N.J., (1972). 

[10] G.S Avrunin and J.C. Wileden, "Describing and 
Analyzing Di stributed System Designs," 
Department of Computer and Information 
Science, University of Massachusetts, COINS 
Technical Report 82-2, (January 1982). 

[11] S. Ginsburg, 
Context-Free 
York, (1966). 

The Mathematical Theory 
-r8nguages, McGraw-Hill, 



ANALYSIS AND MODELING OF A SPLITTED-BUS 
DISTRIBUTED MULTIPROCESSOR SYS'l'E}! 

Lan Jin Wei-min Zheng 
Department of Computer Engineering and Science 

Tsinghua University, Beijing, China 

Summary 

A two-dimensional distributed multiprocessor 
system structure based on the concept of splitted 
bus was proposed in [1]. It was noted that intro
duction of switches into bus structure makes the 
multiprocessor systems highly flexible and cost
effective. The probability of bus contention can 
be reduced, thus resulting in better line utili
zation and shorter message delay time. The ease 
of routing control by means of switches helps in 
organization of reconfigurable and partitionable 
distributed systems. 

The one-dimensional structure based on 
splitted-bus concept proposed in this paper looks 
like a wheel, as shown in Fig.1. It consists of a 
data loop and star-shaped control links between 
the centralized routing controller and processor 
nodes. The data loop is fully duplex and can be 
splitted into segments by the routing switches, 
so that separate communication paths can~e esta
blished at once for several distinct pairs of 
nodes to transfer variable-length messages so long 
as these paths do not conflict with one another. 
Three switches are needed for each processor node: 
one central switch for segmentation of the data 
loop, and two side switches for connecting the two 
ports of the processor to the loop across the cen
tral switch. Such an arrangment makes it possible 
to realize different modes of interconnection: 
broadcasting (one-to-all), shifting (every node 
to its neighbor by any modulo count), and random 
(multiple one-to-one). All these modes of inter
connection are useful for parallel computations 
on a multiprocessor system. Furthermore, the 
installation of three switches for each node 
permits all or any number of processors to be iso
lated and operate independently without affecting 
the normal operation of the rest of the system. 

For purpose of analysis, we establish two 
models for the system: one for the control proces
sor, and the other for the data loop. 

The job arrival process is modeled by two 
waiting queues in the control processor. The queue 
A accepts the message-communication requests from 
all nodes and delivers them one by one to find the 
desired intercounection paths on the basis of 
First-come-first-serve discipline. If the control 
processor fails to find path for some job, then 
this job enters the second queue B, which is given 
a higher priority than the queue A. The arrival of 
jobs to the queue A assumes a Poisson distribution 
with mean arrival rate N~packets per second, 
where N is the total number of processor nodes on 
the loop, and >-. is the mean delivering rate of 
packets-from each node. All the nodes are assumed 
to be identical. The message length per packet 

0190-3918/82/0000/0345$00.75 © 1982 IEEE 345 

assumes a negative exponential distribution with 
mean length 1/u bytes per packet. 

The model of the data communication loop 
consists of N separate models of the nodes, each 
of which is composed of receiving buffers, trans
mitting buffers, and the data link i connecting 
two adjacent nodes i and (i-1). Let Rk be the mean 
arrival rate of messages delivered from all nodes 
and passing through data link k. It can be shown 
that 

).. N2 1 
R = Rk = u ~ 1:1 bytes/sec. 

and is independent of k for all 0 ~ k ~ N-1. 

Let the maximum transfer rate of the commu
nication line be V bytes/sec, then the bandwidth 
utilization factor is equal to 

R AN2 
BU = V = ~VrR:11 

The inverse ratio of the number of node 
pairs which occupy the data link k during message 
transfers between them to the total number of node 
pairs which require communications in general is 

N(N - 1) 4(N - 1) 
n = --Nli;;-- = ---W----

which represents the number of communication jobs 
that can be served simultaneously by the loop in 
the limit of its maximum bandwidth. It is a mea
sure of parallelism [2J of the system, and is 
nothing else but the number of servers of the 
system viewed from queueing theory. 

To estimate the total message delay timeT, 
we neglect the time spent in repeatedly examining 
the queue B, and thus obtain 

P1Z1 P2Z2 
T = ~r1:-p11 + Z1 + 1:-P2 + Z2 

where Z1 is the constant service time of queue A, 
Z2 is the mean service time of data loop and 

equals to 1/uV sec, 
P1 = N"Z1' and 
(>2 '" N>.z~n 

The formulae obtained above for calculating 
can also be applied to the cases of single-port 
splitted-bus systems as well as integrated-bus 
systems. The only difference exists in the value 
of n. For integrated-bus systems, n is always 
equal to 1, whereas for single-port splitted-bus 
systems, the value of n can be found as 

N(N - 1) 4N(N - 1) 
n = (;2i4):-;;-~; = ;2-:-8;-:-8 

Different values of n for the systems under com
parison are listed in the following table: 



2-port 1-port 
NWIOer of splitted-bus splitted-bus 

nodes loop syste. loop system 

6 3.33 1.58 
8 3.5 1.87 

10 3.6 2.09 
12 3.67 2.28 

The formula for bandwidth utilization is 
rewri tten in terms of n for all cases as below: 

N)" 
BU = lirn 

A series of simulation experi.ents have beea 
pei'fol'll8d for 2-port splitted-bus, 1-port split
ted-bus, as well as integrated-bus systellS. The 
sue assUlllptioJ18 and conventioJ18 were made as in 
theoretical analysis. 'l'he calculated and the ex
perimental curves are shown in Fig.2. 'l'he7 coin
cide rather satisfactori17. 

References 

1. Lan Jin, "A New General-purpose Distributed 
Multiproce8l!lOr System Structure", Proc. of the 
1 International Conference on Parallel 
Processing, pp.153 - 1 • 

2. Lan Jin, D. Wang, and M. Sheng, "Parallel 
Processing Computer Architecture", (ia Chinese) 
Guofang GoDg7e Publisher, Beijing, China, 1982 

,. B. Kob&7ashi and A. G. Koubeim, "Queueing 
Models For Computer Co .. unicatioJ18 S7stem 
Anal7sis", IEEE Trans. on Co_., COM-25 
(Jan. 1977), pp. 2 - 29. 

4. w. w. Chu and A. G. Koubeim, "On '!'he Anal7sis 
and Modeling of a Class of Computer Co __ ica
tiOJl8 S7ste.", IEEE Trans. OD CoII8I., COM-20 
(June 1972), pp.645 -660. 

5. J. SpragiJ1l!l, B. Jafari ad T. Lewis, "Some 
Simplified Performance Modeling Techniques with 
ApplicatioJ1l!l to a New Ring-structured Micro
computer Network", Proc. of the 6th Annual 
Sl!J!OsiUII 011 Computer Architecture (April 1979), 
pp.111 - 116. 

6. B. Jafari, J. Sprin, "Simulation of a Class 
of Ring-structured Networks", IEEE Trans. on 
Computers, YOl.C-29 No.5 (M&7 1980), pp. 385 -
392. 

7. B. Jafari, and T. Lewis (1977). "A New Loop 
Structure for Distributed Microcomputing 
S7stems". 1st Ann. Roclq Mountain Se. on 
Microcomputers: SlstellS, Software, Architecture, 
pp. 121 - 141. 

Processor 
node 

Routing 
switches 

Control 
processor 

Fig.1 Splitted-bus wheel-struotured s7stem 

o 

T..us 

50l; 

100 200 ,00 400 500 
A. packets 

sec 

o 

346 

Fig.2 Bandwidth utilization factor BU and total 
transmissien time T VB mean message arrival rate 
curves 

N=6, 1/U:SO b7tes/packet, V=125 Kb7tes/sec. 
_ experimental ---- theoretical 
x: integrated-bus s7stem 
0: single-port spli tted-bus system 
• : double-port splitted-bus system 



LOGIC PROGRAMMING ON ZMOB: A HIGHLY PARALLEL MACHINE 

U.S. Chakravarthy, S. KasifL M.KohliL J. Minker, D. Cao 
Department of ~omputer ~cience 

University of Maryland 
College Park, MD, 20742 

Abstract -- This paper proposes a framework 
for implementing a logic programming environment 
on a distributed system. ZMOB is one such multi
ple microprocessor architecture where the indivi
dual microprocessors are connected by a high speed 
conveyor belt. The paper describes how the logic 
programming environment is created on ZMOB. TOis 
enables us to exploit the high level of parallel
ism possible in logic programming. The approach 
and preliminary design raises several relevant 
issues in distributed parallel processing environ
ments which are currently being investigated. 

1. Introduction 

The introduction of logic as a conceptual and 
applicative aid in the derivation of programs 
(L8]) has resulted in the implementation of the 
logic language PROLOG ([2] L6], and [7]). PROLOG 
interpreters have been designed to be executed on 
a sequential machine i.e., on single processor 
architectures. However the complete separation of 
logic (the specification of the statements of the 
problem to be executed) and control (the order of 
execution of statements ) allows several degrees 
of freedom during the interpretation of the pro
gram thus providing a natural parallelism that 
could be implemented on a parallel architecture 
system ([4]). 

The inherent nondeterminism available during 
a logic program execution can be exploited in the 
following directions: 

1. At any time during execution more than one 
goal node may be selected. 

2. Many literals in a clause can be expanded 
upon. 

3. Many procedures can be invoked for a pro
cedure call. 

Logic programming is distinguished from other 
applicative programming languages such as LISP 
due to the fact that more tnan one procedure can 
match a procedure call. This seeming disadvantage 
on a sequential machine can be exploited in a 
highly parallel environment, as some or all match
ing procedures can be invoked Simultaneously. 

We shall discuss the design considerations 
for implementing a PROLOG-like language on a 
highly parallel system called ZMOB, at a high 
level. In our initial design the problems associ
ated with the parallel execution environment are 
made transparent to a class of users who do not 
want to know about it. For a detailed functional 
specification and design considerations of ZMOB as 
a parallel problem solving system see [1] and [2]. 
Because of length restrictions we assume that the 
reader is familiar with Horn clauses and logic 
programming. See [4] for details. 

~. ZMOB Configuration and Architecture 

ZMOB is multi-microprocessor, distributed 
memory architecture with a high speed "conveyor 
belt" communication facility among the micropro
cessors, and a host mini-computer. There can be a 
maximum of 256 microprocessors in the system each 
with a memory capacity of 64K bytes. There are 257 
bins (including one for the host machine) which go 
around on the conveyor belt carrying information 
from processors to which they are attached. 
Ideally speaking the conveyor belt is fast enough 
to service individual microprocessors at the speed 
at which they can access the'ir core memory. For 
more details refer to [5]. 

Communication among the processors can take 
place either on a point to point basis or by 
broadcast1 wherein a Single microprocessor can 
communica~e with a set of microprocessors on the 
belt. This broadcast mode of message passing is 
achieved b~ a pattern matching capability at each 
processor 1nstead of a destination oriented 

0190-3918/82/0000/0347$00.75 @ 1982 IEEE 347 

transmission. An exclusive source mode is avail
able for communicating on a point to point basis 
without repeated handshaking. Each processor has 
a mail stop, which handles the interrupt, receiv
ing and transmission of information to and from 
the bins. 

1. ZMOB as !! Problem ~ 

In this section we first describe the decom
position of ZMOB into its functionally independent 
components. Then we present the rationale for this 
decomposition and describe the conceptual specif
ication of each component. 

There are five clusters of microprocessors 
and the host machine in the ZMOB problem solving 
system. They are: 

1. The VAX-host machine. 
2. A set of machines dedicated to problem 

solving, termed Problem Solving Machines (PSMs). 
3. A set of machines dedicated to answering 

function free ground assertions, the Extensional 
Database (EDB) machines. 

4. A set of machines dedicated to servicing 
general rules or axioms, termed Intensional Data
base (IDB) machines. 

5. An IDB monitor supervising the IDB 
machines. 

The assertions and the axioms of the logic 
program will be distributed among the IDB and EDB 
microprocessors and the actual problem solving 
carried out on several PSM microprocessors simul
taneously. Figure 1 shows a small logic program 
and its distribution among different clusters of 
ZMOB. 

1.1 Problem Solving Machines (PSMs) 

The role of the PSMs is central to the entire 
problem solving process. The capabilities of the 
PSM permit the inherent parallelism available in a 
logic program to be exploited in its entirety. 

The PSM manages the search space. Initially 
the goal node is placed in a PSM. In the process 
of attempting to solve the goal node, a PSM has 
the capability to dynamically create new PSMs 
which- can independently develop and manage the 
subtrees of the search space. New PSMs are ini
tiated if there is non-determinism associated with 
solving an atomic goal. Each PSM is autonomous 
except for the knowledge of the parent-child rela
tionship and canl in turn, perform the same opera
tions. In addit on to managing the goal tree and 
dynamically initiating the new PSMs, the PSM 
selects a subgoal of a conjunction of goals to be 
solved, and selects a clause in the goal tree to 
be expanded next. When a goal assigned to a PSM 
is completely solved it transmits the solution to 
its parent PSM. The parent of the initial PSM is 
the VAX machine. 

Each PSM interacts with IDB machines to 
obtain procedure bodies to generate new nodes in 
the goal tree. It also interacts with EDB machines 
to solve atomic goals and to generate new nodes in 
the goal tree. A PSM can worK on more than one 
path of th~ search tree while it is waiting for a 
unifier and procedure body to be returned on some 
other path from either the EDB or the IDB. 

1.~ Intensional Database (IDB) Machines 

We assume that the IDB is relativel¥ small 
and that each Z80A can effectively conta1n the set 
of all procedure clauses of the program. This 
assumption allows us to replicate tne IDB on 
several machines referred to as IDB machines. Each 
IDB machine contains the same information, thus 
making the existence of several IDB machines tran
sparent to the PSMs. This replication of IDB 
machines is advantageous on account of the 



"broadcast by pattern" facility available on ZMOB. 

Whenever the PSM sends an atom for expansion 
to the lOB, the first "idle" lOB machine could 
pick up the request and process it. In an exten
sion to this system we plan to consider the han
dling of the lOB when the set of procedure clauses 
exceed the capacity of anyone machine in. the sys
tem. The lOB could then be distributed on a set of 
machines in much the same way as is done for the 
EDB still making it transparent to PSMs. An lOB 
machine finds all matching procedures requested by 
the PSMs, returning all matching procedure bodies 
at once, or one at a time. 

1.1 Extensional Database (~) Machines 

The EDB is the union of all relational tables 
containing ground, function-free assertions. 

We identify a relation with an unique integer 
number obtained from the relation name. This per
mits a relation to be readily relocatable onto any 
EDB machinet thus creating a virtual addressing 
facility. he atoms that belong to the EDB in the 
procedure definition are specially marked to 
denote they may be found in the EDB. the IDB or in 
both. Thus PSMs send only the valid requests to 
the EDB and IDB machines. When the request for 
matching some atom P( ••• ) is sent to the EDBl. one 
of the machines that contains the relation tIt''' 
picks up the request. When a relation is distri
buted among several EDB machines, the operation is 
still similar, as one of the EDB.machines contain
ing the relat10n acts as a supervisor, thus making 
it transparent to the PSMs. 

1.~ The Host Machine and the lOB Monitor 

The VAX 780 serves as the host machine and 
provides an interface between the user and the 
ZMOB. The user loads ZMOB executable code via the 
VAX and initiates processing. As noted earlier, 
VAX shields the user from the parallel environment 
of ZMOB. 

The IDB monitor is a simple version of a mon
itor and exists in the s~stem to avoid certain 
deadlocking and overload1ng conditions. When all 
lOB machines have their buffers full no more 
requests may be sent to the IDB machines. The lOB 
monitor keeps track of the availability of buffers 
in lOB machines and when an overload condition is 
detected it informs all PSMs to take corrective 
action. PSMs, in turn, request responses from the 
lOB machines without making new additional 
requests until buffers become available in lOB 
machines. This situation is detected by the lOB 
monitor and broadcast to all PSMs. 

1'2 The Rationale for the Approach 

There are many possible ways in which one 
could design a parallel logic problem solving sys
tem on ZMOB. The design of· the system that we have 
outlined above was arrived at through several 
iterations and has numerous advantages. 

The system is modular in design in that each 
processor is dedicated to a specific task: problem 
solving, procedure management, assertion manage
ment, or monitoring. Hence each microprocessor can 
operate independently of other microprocessors. 

The autonomous nature of each PSM in develop
ing its search tree enables it to use necessary 
heuristics in the generation of the search tree. 

The conceptual treatment of Qrocedures and 
assertions is handled uniformly. There is no 
essential difference between the EnB and the lOB, 
as they both serve as distributed memory to the 
system. The distinction was made because of dif
ferent unification algorithms employed and poten
tial size differences. In database applications 
the size of the lOB is likely to be significantly 
smaller than the EDB portion. IDB procedures may 
contain functions, whereas EDBs contain only 
function-free ground atomic formulae. 

348 

The fact that an unique operation is per
formed by each processor leads to speed up ~ossi
bilities such as preprocessing, and preparat10n 
for next request at idle time. 

The IDB features the principle, that informa
tion is not returned unless requested. This 
allows us to use the lOB as a tem~orary buffer for 
the PSM and to perform local heur1stic ordering on 
the procedures returned. by the lOB machine. 

The system is inherently flexible and allows 
the user to choose a particular configuration ( 
i.e., the number of EDB, IDB and PSMs) especially 
suited for his purpose. 

The relocatable nature of the usage of EDBs 
and IDBs permits them to be loaded onto any pro
cessor in the system. 

The functional independence of the system 
components increases the reliability of perfor
mance. 

!. Communication Among ZMOB Components 

.Any distributed processing environment 
requ1res that information be exchanged between its 
elements and hence communication is needed 
between the elements. In an environment like ZMOB 
where the same problem is being distributed among 
several processors there is a need for information 
exchange to carry out the problem solving 
activity. Hence the need for communication primi
tives and message formats to keep communication 
overhead low and to maintain a flexible system. 

Two features of the ZMOB architecture namely 
the broadcast facility using a pattern, and the 
exclusive source mode of communication, have been 
useful in designing the primitives necessary for 
problem solving. The broadcast facility allows a 
single PSM to converse with a set of IDB and EDB 
machines and the exclusive source mode permits 
large amounts of data to be transferred between 
two machines without handshaking overhead. 

The ZMOB components constantly interact among 
themselves and the VAX for solving a problem. Com
munication primitives have been defined to carry 
on the interaction in an efficient and flexible 
manner. 

2' User Interface ~ Control 

Facilities for the user to interaot with the 
problem solver (machine) is an essential and 
integral part of the overall design aspect of'· any 
system. 

VAX acts as the external interface to ZMOB. 
The user accesses ZMOB as a resource from the 
host machine and VAX provides a smooth interface 
relieving the user of the details of ZMOB aspects 
of problem solving. 

The user can be in three different states of 
interaction as a logic problem solver. They are: 
the off-line mode, the active mode, and the execu
tion mode. 

In the off-line mode the user is, in general, 
creating a logiC program (or deductive relational 
database as the case may be) by using the facili
ties available on the host machine. These opera
tions are performed outside the ZMOB utilization, 
as they do not need the ZMOB capabilities and dur
ing these operations ZMOB is potentially free to 
be used by others. 

The active mode of operation contrasts with 
the off-line mode in the usage of specific support 
software developed for ZMOB and is executed on the 
host machine. This phase is employed in preparing 
for the execution mode by compiling and converting 
the source code to ZMOB compatible version. The 
user has control over the configuration and other 
aspects of ZMOB in this mode. 

The execution mode is the phase in which the 
user is actually using ZMOB for problem solving in 



its full capability (though transparent to the 
user) with VAX acting as the interface. In this 
mode the VAX channels the user query ( o~ the 
goal) and other user interaction to ZMOB com
ponents after checking for syntax and sequencing 
and formatting them if necessary. Also all com
munication from the ZMOB components to the user 
are channeled through VAX. 

The user is to be provided with facilities to 
trace/debug his logic program, as well as to 
gather specific statistical information from the 
system. The statistical information gathered can 
be used to fine-tune the system to specific needs 
and evaluate the performance of the system under 
various conditions. 

Apart from the interaction to create com
pile, execute and debug logic programs, the user 
is to be provided witn the facility to specify 
and guide the control aspects of logic problem 
solving. The user can exercise several degrees of 
freedom in the choice of the control of a logic 
program. Within a clause literals can be selected 
ranging from left to right literal selection 
(i.e., depth first tree generation) as in PROLOG, 
to a completely arbitrary literal selection. The 
user can specify these through the syntax of the 
axioms of the logic program. 

§.. Summary and Scope 

The ZMOB configuration permits a high degree 
of parallelism to take place in solving a problem. 
The use of logic programming as a formalism per
mits the exploitation of the parallel capability 
without forcing the user to rewrite his program to 
account for the inherent parallelism that can take 
place. The separation of the logic of the specifi
cation of the program from the control permits 
this to be achieved. Thus the system being 
designed will permit a problem to be executed on a 
single machine or on multiple machines within the 
ZMOB configuration. 

We know of no attempts to exploit parallelism 
in programs based upon a speCification of the pro
gram in logic. We khow of no other approaches 
similar to ours using other computer configura
tions. 

The work described is of considerable 
interest for problems which inherently have ~ high 
degree of parallelism. These problems arise 1n 
artificial intelligence and in database systems. 
Sequential computations, although possible to run 
in the system would undoubtedly be executed much 
slower in our approach. 

Once the system is implemented, there is much 
that must be done. Its effectiveness must be 
evaluated. Simplifications made for this first 
system must be removed. A more flexible control 
capability should be provided to the user so that 
advan~age can be taken of his knowledge of the 
problem. Modifications to PROLOG-like languages 
will be necessary to enable communications between 
machines to take place. Considerations must also 
be given to operating system problems and to 
understanding the optimum configuration needed to 
solve a problem. Work on large artificial intelli
gence problems and databases would be achieved by 
the availability of disks and drums on the Z80A 
machines. Thus a wealth of research topics remain 
to be accomplished. Work on parallelism and logic 
programming is in its beginning stages. I. Acknowledgements 

Work on this subject was supported by NASA 
grant NAG 1-51 and b¥ the NSF grant MCS-7919418. 
We gratefully apprec1ate their support which made 
this work possible. We also would like to express 
our apprec1ation to Charles Asper and Norbert Eis
inger Who have also contributed to the effort. 

References 

[1] C. Asper, D. Cao, U.S. Chakravarthy, S. 
Kasif L M. Kohli, and J. Minker, Functional 
Specirications of ~ Problem SOlver, 

349 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

Department of Computer Science, University of 
Maryland, Under Preparation. 

K.L. Clark and F. McCabe, Programmers' Guide 
to Ic-prOb6Yl Computer SC1ence~epartmen~ 
Imperia 0 ege, London, CCD Rep. 79/7, 
(1979). 

N. Eisin~er, S. Kasif, and J. Minker, L~giC 
PrO~ramm1ng: A Parallel Approach, Depar ment 
of omputer Science, University of Maryland, 
College ParkA Techn1cal Report 1124, 
(December,1901), 44 pp. 

R.A. Kowalski, ~~~7§ for Problem Solving, 
North-Holland, );-281 pp. 

C. Rieger, J. Bane, and R. Trigg ZMOB: A 
Mighlt Parallel Microprocessor L Department of 

ompu er Science, University OI- Maryland, 
Technical Report 911, (May,1980), 22 pp. 

P. Roussell, PROLOG: Manuel de Reference et 
d'Utilisation, Groupe~eITigence Artifr
cielle, Universite d'Aix-Marseille, Luminy, 
(September, 1975). 

D.H.D. warrent 1m lementin PROLOG: ComKiling 
Predicate ~ ro ra, epartment of rtif
lclal lhteIIigence! n vers1ty of Edinburgh, 
Research Reports 3~ and 40, (1977). 

M.H. Van Emdenf. and R.A. Kowalski,. "Logic as 
a Programming anguage", J. ACM, vol 23, No 
4, (1976), pp. 733-7112. - -

GOAL : _GP(x,MRY) 

LOGIC PR06RAPl : 
AXIOPlS : 

GP(x,z)-P(x,v), P(v,z) 
P(x,v)-F(x,v) 
P(x,v)-Pl(x,v) 

DISTRIBIlTION .ooNG lHE CLUSTERS : 

ASSERTIONS : 
Pl(MRlHA,SANDRA) -
Pl(SANDRA.r'lARY) -
Pl(KARErt.B ILU 
F<BOB.SANDRA) -
F(JOIIN.I"ARY) 
F (DON, GREG) 

(
P(X'V) _F(x,v) } 
P(x,v)- Pl(x,v) 

GP(x,zl-P(x,v), P(v,z) 
-GP(x,MRY) 

FIGURE 1. 

F 

mOB, SANDRA) 
F(JOHN,MRY) 
F(IXlN, GREGl 



SYSTEM ARCHITECTURE OF A RECONFIGURABLE MULTIMICROPROCESSOR RESEARCH SYSTEM 

Vito A. Trujillo 
Computing Division 

Los Alamos National Laboratory 
Los Alamos, New Mexico 87545 

Summary 

This paper presents the architecture of an 
experimental multiprocessor system that incor
porates a reconfigurab1e array of microprocessing 
and memory elements. The system is designed 
specifically as a research tool for implementing 
and evaluating parallel-processing algorithms on 
various multiprocessor architectures. Consequent
ly, the principal design objective is to provide a 
multiprocessor with fully reconfigurab1e 
processor-to-memory and processor-to-processor in
terconnections in order to allow direct comparison 
of algorithms for a wide range of multiprocessor 
architectures. Basically, the system .is a tightly 
coupled, shared-memory MIMD machine [1-2] that 
supports reconfiguration between processor and 

memory nodes to permit experimentation with common 
memory architectures and with various processor 
network structures such as rings, trees, and 
stars. This experimental computer system is 
currently under development within the Computing 
Division at Los Alamos National Laboratory. 

As illustrated in Figure 1, the Mu1timi
croprocessor Research System consists of numerous 
processor and memory nodes that are directly in
terconnected using multiple processor-to-memory 
buses and multiported global memory nodes. The 
multiple bus/multiported memory arrangement func
tionally implements a full crossbar switch between 
the processor and memory nodes [3]. This 
multiple-bus architecture allows processor-to
processor communications to occur concurrently 

SYSTEM 
CONTROL 
BUS PROCESSOR NODES GLOBAL MEMORY NODES 

P0-Gm BUS ... 
Pl-Gm BUS 

. : 
PxRi-Gm BUS 

Pal 

... 
PxWI-Gm BUS 

... 
~~----------------~--------~------------~----~~-GmBUS 

MULTIPROCESSOR 
SYSTEM NETWORK 

CONTROL 
PROCESSOR 

Fig. 1. Multiprocessor Research System system architecture. 

U.S. Government work 350 
not protected by U.S. copyright. 



with processor execution from either local memory 
or global memory. 

Three types of processor nodes are included 
within the system: (1) system control processor, 
(2) general floating-point processors, and (3) 
dedicated data transfer processors. The system 
control processor performs system initialization 
(downloading of global memory, configuration con
trol, etc.), initiation of parallel processing ap
plications code, performance measurements, memory 
error processing, etc. In addition, because the 
multiprocessor is strictly an execution environ
ment, the system control processor provides com
munication with an external local area network 
that includes development workstations. Each gen
eral floating-point processor includes Intel iAPX 
86/87 microprocessing elements [4], 48k bytes of 
local dedicated ROM/RAM, real-time interrupt fa
cility, and memory mapping logic that allows 
sixty-one 16k-byte memory segments to be per
manently and/or dynamically allocated within the 
system global memory. Each data transfer proces
sor is a high-speed controller specifically 
designed for implementing processor-to-processor 
communications by performing data movement between 
global memory segments. 

The system global memory consists of multiple 
memory nodes, each having a 256k-byte RAM array 
accessible from the system control processor and a 
multiported memory controller. The port for the 
system control processor supports downloading and 
memory error reporting functions. The multiported 
memory controller includes interface logic for 20 
ports, memory arbitration logic that implements a 
last-granted-Iowest-priority algorithm, and a 
high-speed memory access controller. Memory map-

ping logic within each processor node allows each 
memory node segment to be allocated as either 
private or public memory for each processor node. 

The processor-memory interconnection is ac
complished with memory mapping logic at each pro
cessor node, a multiported memory controller at 
each global memory node, and a multiple bus inter
connection backplane that allows an orthogonal ar
rangement of processor and memory boards. As il
lustrated in Figure 2, an orthogonal packaging 
scheme uses minimal bus lengths in providing com
plete physical interconnection between processor 
and memory nodes. Basically, the processor-memory 
interconnection provides fully reconfigurable 
processor-to-memory connections, resolves access 
arbitration when multiple processors are simul
taneously accessing a common global memory node, 
and supports mutual exclusion to shared memory. 
Control of shared memory is accomplished through 
an extension of the LOCK mechanism available with 
the iAPX 86/87 microprocessor [4]. 

Processor-to-processor communication is im
plemented indirectly through the processor-memory 
interconnection by specialized data transfer pro
cessors that perform data movement between global 
memory nodes. Each data transfer processor in
cludes memory mapping logic similar to the general 
floating-point processors; consequently. these 
nodes can access any segment within system global 
memory. In addition, the data transfer processor 
nodes include high-speed control, buffer, and 
translation logic that permit both contiguous and 
noncontiguous memory block transfers. The data 
transfer processors are controlled by linked 
structures within global memory and include mask
able interrupt capability indirectly through the 

GLOBAL MEMORY , 
RIGHT SECTION r---

GmR(IS:OO) ~ .. ~~ -~-.... 

GLOBAL MEMORY k 
LEFT SECTION 

GmL<l5:00) 

-,.u-..... ~ .... : .... ...: 

7 . SYSTEM BACKPLANE 'i PI- OmL SECTION 
Pi-OmR SECTION 
Pc-Pi SECTION 
Pc SECTION 

CONTROL PROC£SSOR 
Pc 

-" ___ 1 PROCnSOR SECTION 

Pnn'OEH£RAL 
PROCESSOR 

fill ( R:W>n - DATA 
TRANSFER 
PROCESSOR 

Fig. 2. Multiprocessor Research System orthogonal packaging diagram. 

351 



system-control processor. Functionally, the 
data-transfer processors can be visualized as mul
tiple intelligent buses for interprocessor commun
ications. 

Currently, the Multimicroprocessor Research 
System accommodates a single system control pro
cessor, 20 processor nodes that can include either 
general floating-point processors or data transfer 
processors, and 32 global memory nodes. However, 
a typical maximum configuration consists of 16 
general floating-point processors and 2 data 
transfer processors, which are sufficient for han
dling 16 iAPX 86/87 interprocessor communications. 

352 

References 

1. M. Satyanarayanan, Multiprocessors: A 
Comparative Study, Prentice-Hall, Inc., Engle
wood Cliffs, N.J., (1980). 

2. P. H. Enslow, Jr., "Multiprocessor Organiza
tion - A Survey," ACM COmputing Surveys (March 
1977), Vol. 9, pp. 103-129. 

3. J. H. Patel, "Processor-Memory Interconnec
tions for Multiprocessors," Proc. 6th Annual 
Symposium on Computer Architecture (April 
1979), New York, N. Y., pp. 168~177. 

4. Intel iAPX 86,88 User's Manual (August 1981), 
Intel Corporation, Santa Clara, CA. 



DESIGN AND SIMULATION OF AN MC68000-BASED 
MULTI MICROPROCESSOR SYSTEM 

James T. Kuehn 
Howard Jay Siegel 

Peter D. Hallenbeck 

Purdue University 
School of Electrical Engineering 

West Lafayette, IN 47907, USA 

Abstract -- The design of a multi microprocessor 
system for image processing and pattern recogni
tion applications utilizing the 16-bit Motorola 
MC68000 and other off-the-shelf components is 
described. This system can be dynamically recon
figured to operate in either SIMD or MIMD mode and 
can be used as a building block for the PASM par
titionable SIMD/MIMD machine. The results of 
simulations of SIMD operation that were used to 
guide the design of the MC68000-based system are 
discussed. The possibilities for overlapped 
operation of the SIMD control unit and processors 
are examined. The system architecture, including 
hardware to interface the off-the-shelf components 
needed for SIMD/MIMD processing, is given. Final
ly, simulation studies of the performance of the 
proposed MC68000-based system are presented. 

I. Introduction 

The demand for higher throughput and very large 
database handling capabilities is forcing computer 
system designers to consider nontraditional archi
tectures, notably distributed/parallel systems. 
Architects have proposed microprocessor-based 
large-scale parallel processing systems with as 

many as 214 and 216 processors (e.g., 9, 17J that 
show promise in meeting these data-handling and 
throughput demands. 

Two types of parallel processing systems are 
SIMD and MIMD (4J. SIMD (single instruction 
stream - multiple data stream) machines (e.g., Il
liac IV (3J, STARAN (1J) typically consist of a 
set of N processors, N memories, an interconnec
tion network, and a control unit. The control 
unit broadcasts instructions to the processors, 
and ~ll enabled ("turned on") processors execute 
the same instruction at the same time. Each pro
cessor exe~utes instructions using data from a 
memory with which only it is associated. The in
terconnection network allows interprocessor com
munication. 

An MIMD (multiple instruction stream - multiple 
data stream) machine also typically consists of N 
processors and N memories, but each processor can 
follow an independent instruction stream (e.g., 

This research was supported by the Air Force Of
fice of Scientific Research, Air Force Systems 
Command, USAF, under Grant No. AFOSR-78-3581, and 
by the Defense Mapping Agency, monitored by the 
United States Air Force Systems Command, Rome Air 
Development Center, under Contract No. 
F30602-81-C-0193. The United States Government is 
authorized to reproduce and distribute reprints 
for Governmental purposes notwithstanding any 
copyright notation hereon. 

0190-3918/82/0000/0353$00.75 @ 1982 IEEE 353 

C.mmp (22J, Cm* (18J). As with SIMD architec
tures, there is a multiple data stream and an in
terconnection network. 

A Multiple-SIMD machine is a parallel process
ing system that can be structured as one or more 
independent SIMD machines of varying sizes (e.g., 
MPP (8]). A partitionable SIMD/MIMD machine can 
be structured as one or more independent SIMD 
and/or MIMD machines of varying sizes (e.g., PASM 
(13]) • 

SIMD and MIMD parallelism has been shown to be 
applicable to a wide variety of image processing 
tasks [13, 14, 15]. In this paper, the SIMD mode 
is emphasized; however, the use of full processors 
and the overall organization of the system will 
also allow MIMD operation. The system to be 
presented could be used as a single SIMD machine, 
or as a building block for a multiple-SIMD 
machine, or a partitionable SIMD/MIMD machine (us
ing the techniques described in [13J). 

SIMD algorithm simulations for several machine 
configurations have been performed [5, 11]. These 
studies have examined the possibilities for over
lapped operation of the control unit and proces
sors. Overlapping can be improved as additional 
hardware (e.g., latches, buffers) is added at the 
interfaces of these components. Each hardware 
configuration represents a "case" for which rela
tive run time performance of assembly language 
test algorithms was measured. The results of 
these simulations were used as a basis for the 
control unit/processor organization described in 
this paper. A design based on this organization 
and employing currently available off-the-shelf 
components is described and simulated. 

This design work is motivated by two research 
projects at Purdue. One is the development and 
implementation of the PASM (partitionable 
SIMD/MIMD) multimicroprocessor syste~ The other 
is the study of the use of parallel processing for 
mapping applications. 

In Section II, a model of the proposed 
SIMD/MIMD system is given. A summary of our ear
lier SIMD algorithm simulation studies and over
lapping schemes is presented in Section III. In 
Section IV, the design of a multi microprocessor 
system which incorporates Motorola MC68000 proces
sors is described. The hardware organization of 
the control unit, processors, and additional sup
port components is discussed in detail in Section 
V~ It is shown that the interface logic for the 
microprocessors necessary for SIMD/MIMD processing 
will be minimal; thus the high cost of a custom 
VLSI design can be saved. Ideas for a prototype 
patterned on this design are given. Finally, 
results of simulation studies of the proposed 
MC68000-based machine are summarized in Section 
VI. 



.!!.. Model of the Proposed SIMD/MIMD System 

The basic system components of the proposed 
machine are a Control Unit (CU) (including its own 

memory), N=2n processors, N memory modules, and an 
interconnection network. The processors are mi
croprocessors that perform the actual SIMD and 
MIMD computations. A memory module is connected 
to each processor to form a processor/memory pair, 
called a processing element (PE). The PEs are 
numbered (addressed) from 0 to N-17 The intercon
nection network provides a means of communication 
among the PEs. 

In SIMD mode, the CU fetches instructions from 
its memory, executes the control flow instructions 
(e.g., branches), and broadcasts the data process
ing instructions to the PEs. The CU may coordi
nate the activities of the PEs in MIMD mode. 

"Functional-block" models of the interactions 
of the CU, PEs, and network will now be presented. 
Later, the hardware used to implement each func
tion will be described. 

The CU's functions may be classified into six 
areas (consult Figure 1). The numbers in 
parentheses in Figure 1 correspond to the com
ponent classifications given below. 
(1) The CU execution unit performs program flow 

operations (e.g., loop counting, branching). 
(2) CU memory contains the SIMD instruction 

stream. It also provides data storage for 
the CU execution unit. 

(3) The fetch unit fetches instructions from CU 
memory and routes them to the CU execution 
unit, the PEs (via the CU/PE interface), or 
to other specialized CU hardware. 

(4) The CU/PE interface collects PE instructions 
and enable signals and broadcasts these to 
the PEs. 

(5) The masking operations unit decodes and mani
pulates masks. Masks specify which PEs are 
to be enabled or disabled. 

(6) Microprogrammed logic directs the operations 
of the fetch unit, masking operations unit, 
and other specialized CU hardware. Signals 
are generated for system control functions 
(e.g., "bringing up" the CU and PE execution 
units, initializing I/O devices). 

A PE's functions include the following (consult 
Figure 2). 
(7) In SIMD mode, the PE execution unit accepts 

instructions broadcast by the CU and performs 
computations that process the local (PE 
memory) data stream. In MIMD mode, instruc
tions and data are fetched from PE memory. 

(8) PE memory contains data for the SIMD mode 
operations of the PE execution unit. It also 
contains instructions and data for MIMD mode 
operations. 

(9) The PE/network interface sends data and rout
ing information to and accepts data from the 
interconnection network. 

(10) The condition codes register stores the PE 
execution unit condition codes. The data 
condition select lines specify which bit or 
boolean function of bits in the register will 
represent the status of the PE. 

(11) Logic controlled by the PE's enable/disable 
signal ensures that the PE executes no in-

354 

structions and generates no network conflicts 
while disabled. 

The interconnection network has the single task 
of transferring data among the PEs. It accepts 
data from the "source" PEs at its N input ports 
and routes the data to its N output ports, where 
it is accessible to the "destination" PEs. The 
Generalized Cube network, a network being con
sidered for use in PASM for reasons discussed in 
[12], is assumed in the simulations. This network 
consists of n stages of switches and is controlled 
by routing tags. 

In a serial processor, components 4, 5, 6, 9, 
10, and 11 are either unnecessary or are meaning
less. These functions comprise what is known as 
the "overhead due to parallelism." Well-designed 
CU/PE and PE/network interfaces can minimize this 
overhead by overlapping the operations of the CU, 
PEs, and network. Overlapping allows the CU, the 
set of PEs, and the network to perform their own 
tasks, synchronizing only when there is some in
formation to be exchanged. Examples of overlap
ping are: 
(1) the CU fetching the next instruction in the 

stream or executing CU instructions while the 
PEs are executing an instruction, 

(2) the PEs executing an instruction while a set 
of data items is passing through the network, 
and 

(3) the network passing more than one set of data 
items from input to output simultaneously. 

In this paper, (1) is analyzed and simulated. 
(Aspects of (2) and (3) are discussed in [11], but 
are beyond the scope of this paper.) 

In SIMD mode, all of the enabled PEs will exe
cute instructions broadcast to them by the CU. A 
masking scheme is a method for determining which 
PEs will be active at a given point in time. An 
SIMD machine may have several different masking 
schemes. 

The general masking scheme uses an N-bit PE en
able vector to determine which PEs to activate. 
PE i will be active if the i-th bit of the PE en
able vector is a 1, for O<i<N. A mask instruction 
is executed whenever a change in the active status 
of the PEs is required. The Illiac IV, which has 
64 processors and 64-bit words, uses general masks 
[16]. However, when N is larger, say 1024, a 
scheme 'such as this becomes less appealing. 

The PE address masking scheme [10] uses a 2n
bit mask to specify which of the N PEs are to be 
activated. PE address masks are fetched from the 
instruction stream and sent to the masking opera
tions unit to be decoded into a PE enable vector 
[13]. This vector is passed to the CU/PE inter
face to effect the change in status of the PEs. 
General masks are passed to the CU/PE interface 
unchanged by the masking operations unit. 

PE address masks may be decoded and then mani
pulated by the masking operations unit. For exam
ple, decoding two PE address masks, "or"-ing them 
together, and using the result as the PE enable 
vector activates the union of the sets of PEs ac
tivated by each individual mask [13]. This im
plies that the masking operations unit can perform 
basic boolean operations on masks and can tem
porarily store a number of general and decoded PE 
address masks. 



cu 
CU MEMORY 

(2) 

}0.1' lB 
r -it 

MICROPROGRAMMEO FETCH 
!;1J INSTRUCTION REQUEST 

CU EXECUTION 
INSTRUCTION UNIT CU INSTRUCTIONS UNIT 
OECOOING ~ (3) lB (1) 

LOGIC (B) 
PESC 

MASKS 

MASKING NOTFULL. EMPTY. 

OPERATIONS PE REQUEST SIGNALS 
UNIT INSTRUCTIONS 
CONTROL 

1~ lB 
OTHER 
CONTROL 
SIGNALS 

MASKING CU/PE 

~ OPERATIONS PE ENABLE VECTOR N/ INTERFACE 
UNIT (5) (4) 

OATA N-BIT DATA PE ENABLE ,J.- PE 
CONDITION CONDITIONAL VECTOR INSTRUCTION 

SELECT MA5K (BIT • TO PE .) BROADCAST 

J N 
N lB 

PE 
INSTRUCTION 

REQUESTS 

Figure 1. Model of the Control Unit (CU). 

PE i 

DATA BIT. OF DATA ~ 1 PE~f-
16 PE 

CONDITION CONDITIONAL INSTRUCTION 1 INSTRUCTION 
SELECT MASK REQUE5T BROADCAST 

PE ENABLE VECTOR ADDRESS 
(BIT .) I DECODING 

LOGIC (11) 

ADDRESS READ DATA 
ENABLE 

; 24 
;f-16 

PE MEMORY JiEAD/WR I TE DATA PE EXECUTION 

(B) 

J !f-

MULTIPLEXER 4 
(lOUT OF B) 

CONDITION CODE 
LOGIC (10) 

CONDITION CODES 

r HI 
UNIT 

ADDRESS 24 
(7) 

READ/WRITE 
ADDRESS DATA 

24 16 

PE/NETWORK 
INTERFACE 

(Q) 

PE ENABLE VECTOR 
:lLOGIC (11) 

(BIT i) 

M+l 

NETWORK 
SET 

;'; ~B; ~B; 1 
DATA 
READY 
SIGNAL 

FROM TO 
OTR:l.n DTRou~ 

Figure 2. Model of a Processing Element (PE). The three ADDRESS buses 
shown coming from the PE execution unit are physically the same bus. 
Similarly, the three READ (/WRITE) buses are physically the same. 

355 



Data conditionaL masks are the resuLt of per
forming a test on LocaL (PE) data in an SIMD 
machine environment, where the resuLts of dif
ferent PEs' evaLuations may differ. As shown in 
Figure 1, the CU receives an N-bit data condition
aL mask comprised of N one-bit "true/faLse" data 
conditionaL resuLts, one resuLt from each PElS 
condition code register. The "true/faLse" data 
conditionaL resuLts are stored in the masking 
operations unit for use in activating or deac
tivating the PEs. For exampLe, this type of data 
conditionaL masking was used in PEPE to impLement 
the "where" conditionaL tests [21]. 

Certain CU execution unit instructions cause a 
branch based on data conditionaL mask information. 
For exampLe, "if any" PE meets some criteria (a 
bit in the data conditionaL mask is "true"), the 
CU execution unit would execute a branch to a dif
ferent part of the program. The masking opera
tions unit uses the data conditionaL mask results 
from the PEs to evaluate the "if any," "if alL," 
etc., conditions. 

III. SIMD Simulation Overview 

A. Introduction 

Our earlier SIMD algorithm simulation studies 
have examined the possibilities for overLapped 
operation of the control unit, processors, and in
terconnection network [5, 11]. Overlapping can be 
improved as additionaL hardware (e.g., latches, 
buffers) is added to the CU/PE and PE/network in
terfaces. Six hardware configuration "cases" were 
identified and the relative run time performance 
of assembly language test algorithms was measured 
for each. A summary of the four cases from [5] 
and the two cases using tagged instruction words 
from [11] appear in Subsection B. In Subsection 
C, simulation results from the six cases will be 
summarized and compared. Based on the results, 
one of the cases will be chosen for the 
MC68000-based design. 

B. Summary £!. Cases 

In case 1, the CU and PEs are forced to operate 
in lock-step fashion. That is, while the CU is 
fetching or executing an instruction, the PEs are 
idled, and vice-versa. The STAR AN system operates 
in a case 1 mode since there is a singLe instruc
tion register in the controL unit which contains 
the currentLy executing instruction [19]. 

Case 2 aLLows the CU to fetch instructions or 
execute CU instructions whiLe the PEs are execut
ing. However, the CU must wait untiL the PEs have 
completed their operation before broadcasting the 
next PE instruction. 

A FIFO instruction queue shared by the PEs is 
added in case 3. This aLLows the CU to send PE 
instructions (opcodes and operands) to the queue 
without having to wait for the PEs to complete 
their current instruction. Associated with each 
opcode/operand pair in the queue, the N-bit 
enabled/disabLed status associated with that in
struction (the PE enable vector at fetch time) is 
stored. The PE enabLe vector must be stored since 
CU masking operations (changing the PE 
enabLed/disabled status) might be performed before 
the queued PE instruction is actuaLLy executed. 

356 

The Illiac IV and MPP control units and PEPE 
arithmetic control unit use the case 3 overlap 
processing method [2, 19, 21]. ALL three machines 
employ data conditional masking, but the resulting 
masks are stored in the PEs themselves. 

For case 4, a CU instruction buffer is added to 
the case 3 configuration. An implicit assumption 
for this case is that the fetch unit and CU execu
tion unit are independent processors. (For cases 
1-3, the fetch and execution units are not neces
sariLy distinct.) The fetch unit classifies in
structions as CU or PE instructions and sends them 
to the appropriate instruction buffer. The fetch 
unit must distinguish branch operations (incLuding 
"if any/if alL" branches) by stopping the fetching 
process when these instructions are encountered. 
Branch instructions affect the program counter 
(which the fetch unit maintains to know the "next" 
instruction), so the fetch unit must wait until 
the CU has emptied its instruction buffer and ad
justed the program counter based on the resuLt of 
the branch before continuing. Fetching is also 
discontinued during masking operations to allow 
the masking operations unit to associate the new 
PE enable signals with subsequentLy fetched PE in
structions. 

For the previous cases, the fetch unit decoded 
each instruction in order to determine where (the 
CU or the PEs) the instruction would be executed 
and the size (number of operands) of the instruc
tion. This scheme required that the fetch unit 
have full knowledge of CU and PE instruction types 
and formats. This adds considerable complexity to 
the fetch unit, and would necessitate changes to 
it if either the CU or PE execution units were 
changed. An effective soLution is to associate a 
tag with each CU memory word, specifying which 
component (CU execution unit, CU microprogrammed 
logic, or PEs) is to interpret the word. Cases 5 
and 6 correspond to cases 3 and 4, but with fetch
ing and buffering by words rather than by instruc
tions. Each word (as opposed to each instruction, 
including both opcode and operands, as in cases 
1-4) sent to the PE instruction buffer wiLL have 
associated with it an N-bit enabLe vector. 

The tag scheme just described has several ad
vantages. First, the PEs will onLy be idled when 
the instruction queue becomes empty; an unLikely 
event since the instructions are delivered to the 
queue at the rate of the CU memory access time. 
The time needed to decode the tag is negligibLe in 
comparison to the time necessary to fully decode 
each instruction and determine how many operand 
words are associated with that instruction. The 
fetch unit no longer requires knowledge of the 
specifics of the PE instruction set since PE in
struction words are treated as data. Furthermore, 
a 16-bit line connecting the CU to the processors 
is needed, as opposed to the 80 bit line if com
plete instructions, including operands, were sent 
to the PEs (assuming MC68000 instructions require 
1 to 5 16-bit words). However, the instruction 
opcode must be decoded by the PE execution units 
to determine if "immediate" data operands or ad
dress fields are present. This step was previous
ly done by the controL unit; data operands were 
associated with the instruction opcode before be
ing broadcast to the PEs. 



C. Simulation Results 

During simulations performed for several assem
bly language test algorithms, the relative run 
time performance of the 6 cases was measured. The 
results of cases 1-4 were presented in [5J but are 
summarized here for comparison with cases 5 and 6. 

The assembly language instruction set that was 
used for the simulations is of our own design. It 
is similar to instruction sets supported by so
phisticated current microprocessors, but augmented 
by instructions for the control unit operations, 
masking operations, and network data transfers. 

The test algorithms are two versions of an im
age smoothing algorithm for a 16-PE system smooth
ing a 16x16 pixel image [13J. For these algo
rithms, each PE contains a subimage of 4x4 pixels. 
In the "original" version of the algorithm, a PE'S 
subimage pixels and "border" pixels from adjacent 
PEs are copied to a 6x6 pixel "work area" array. 
Smoothing operations are performed on the pixels 
in the work area. For the "improved" version of 
the algorithm, the "border" pixels and a subset of 
the subimage pixels are copied to the work area. 
In this version, both the work area array and the 
subimage array are accessed during the smoothing 
operations. As will be shown, the original algo
rithm performs better for small images, while the 
improved algorithm performs better for large (more 
realistically-sized) images. Some parameters of 
the algorithms are shown in Table 1. 

Table 1. Test algorithm characteristics. The 
"TOTAL CU" and "TOTAL PE" columns indicate the 
percentages of CU and PE instructions executed. 
"CU IF ANY" is a subclass of "CU BRANCH," which is 
a subclass of "CU TOTAL." Similarly, lOPE NETWORK" 
instructions are included in the "TOTAL PE" clas
sifi cation. 

INSTRUCTIONS PE/CU INSTRUCTIONS EXECUTED (PERCENT) 

INSTRUCTION 
ALGORITHM 

EXECUTED TOTAL CU CD TOTAL PE 
RATIO 

CD BRANCH IF ANY PE NET. 

OmGINAL 649 5.01 17 12 0 63 4 

lIlPROVED 660 4.23 19 15 0 61 4 

Each test algorithm was assembled using a spe
cial assembler supporting the augmented instruc
tion set and simulated using our Purdue SIMD Simu
lation and Timing (PSST) system. An instruction 
execution trace for each simulated algorithm was 
generated to be used later as input to the timing 
algorithms. A small number of PEs and small image 
sizes were used since the simulations of the SIMD 
system are performed comparatively slowly on a 

serial host computer. Details of the algorithms, 
instruction set, assembler, simulations, and tim
ing routines are presented in [11J. 

In preparation for timing the simulations, each 
instruction in the instruction set was classified 
by its constituent operations and characteristics. 
These characteristics include the number of 
operand words to be fetched, the CU execution time 
(for CU instructions), the CU to PE transfer time 
(for PE instructions), the PE execution time and 
network execution time (for PE instructions), 
flags to indicate data conditional mask instruc
tions, branch instructions, network instructions, 
and so on. A table of instructions and their 
characteristics was prepared. 

The timing algorithms reference the instruction 
set characterization table and accept input of 
relevant timing information (e.g., opcode load 
time (1 cycle), 16-bit operand load time (1 cy
cle), buffer enqueue or dequeue time (1/2 cycle), 
mask decoding time (1 cycle». The interconnec
tion network set-up time and network propagation 
delay time were 1 cycle each. Finally, the in
struction trace output from the test algorithms 
was used as input to evaluate the timing for cases 
1-6. Note that the same instruction execution 
trace can be used repeatedly for many combinations 
of cases and timing assumptions. For these simu
lations, a circuit-switched network whose ports 
are directly connected to PE execution unit regis
ters was assumed. No PE/network overlap was con
sidered. 

The run time results shown in Table 2 are nor
malized such that the case 1 timing = 1.00. As 
shown, the run time of case 3 is significantly 
less than those of case 2 and case 1. This was 
expected since the instruction "mix" for these al
gorithms is such that PE instructions greatly out
number CU instructions and PE instructions occur 
in large groups, allowing the buffer to do its in
tended function. The case 4 run time falls some
where between the case 2 and case 3 timing. The 
fact that case 4 performs worse than case 3 for 
these algorithms is not surprising since CU in
structions rarely occur in groups (thus under
utilizing the CU instruction buffer). Further, 
the percentage of branch instructions performed 
ranges from 70 to 80 percent of the CU instruc
tions, thus preventing the filling of the CU in
struction buffer in the case 4 configuration. 

In cases 5 and 6 (fetching and buffering by 
words), the time needed to fetch and enqueue in
structions, including their operands, is propor
tional to their length (cases 1-4 had a constant 
time). However, the simplified tag decoding for 
these cases might offset the overhead of the extra 
enqueue/dequeue operations. Comparisons made 
between cases 1-4 and 5-6 may be influenced 

Table 2. Normalized run times for cases 1-6. 

CASE 3 CASE 4 CASE 5 
ALGORITHM CASE 1 CASE 2 

a b a b a 

OmGINAL 1.00 .73 .67 .66 .71 .70 .76 

IMPROVED 1.00 .74 .66 .66 .72 .72 .77 

(a) "Enqueue" and "dequeue" operations may not overlap each other. 
(b) "Enqueue" and "dequeue" operations may overlap each other. 

357 

b 

.73 

.74 

CASES 

a b 

.B4 .61 

.B6 .63 



strongLy by the simpLer (and potentiaLLy faster) 
case 5-6 hardware. For exampLe, enqueue and de
queue times may be shorter for cases 5 and 6 since 
aLL queuing functions invoLve a shorter, fixed
size word. The very wide bus assumed in cases 1-4 
may in reaLity be a smaLLer, time-muLtipLexed bus, 
thus increasing the CU/PE instruction transfer 
time for those cases. If the fetch, decode, en
queue, dequeue, and execution times are assumed to 
be the same as for cases 1-4, cases 5 and 6 per
form somewhat worse than the case 2 configuration 
because of the aforementioned factors. Case 3 is 
faster than case 5 because enqueuing and dequeuing 
operations are not done word-by-word. The speed 
advantage of case 3 wouLd be negated if it used a 
16-bit time-muLtipLexed bus and a sLightLy sLower 
fetchldecode unit. The percentage of instructions 
with operands and the average operand Length (both 
aLgorithm-dependent parameters) aLso infLuence the 
reLative performance of the cases greatLy. 

The instruction queue sizes chosen for the case 
3-6 configurations aLso have an effect on the aL
gorithms' run time. The minimum size needed was 
seven words for case 3, six for case 4, and three 
for cases 5 and 6. A detaiLed anaLysis of the 
minimum PE instruction buffer sizes required to 
get the same overaLL execution time the infinite 
buffer (assumed in TabLe 2) wouLd provide is given 
in [11]. 

Based on the simuLation resuLts obtained for 
the SIMD mode, the case 5 configuration has been 
chosen. Case 3 was not chosen because of the more 
compLex fetch unit design and the very wide CU/PE 
bus width requirement. Assuming the use of stan
dard microprocessors, the case 3 configuration un
necessariLy dupLicates the instruction decoding 
function of the PEs. A narrower, time-muLtipLexed 
CU/PE bus couLd be impLemented with case 3, but 
this approach wouLd LikeLy negate the speed advan~ 
tage gained by buffering instructions as a unit. 
Furthermore, standard microprocessors accept in
structions word-by-word. Case 5 simpLifies the 
design of the fetch unit considerabLy since tags 
associated with each memory word indicate that 
word's destination. The fetch unit requires no 
knowLedge of either the CU or PE execution unit's 
processor instruction set. The tagged memory 
scheme aLso aLLows the instruction compLement of 
the microprogrammed hardware to be deveLoped in
dependentLy. The PE instruction queue and bus 
width of 16 bits is quite manageabLe. The case 5 
queue may be Longer since it is word-by-word, but 
has a much narrower width that is aLways fuLLy 
utiLized. SimuLation resuLts of the MC68000-based 
system are presented in a Later section. 

IV. The MC68000-Based PE 

Referring to the modeL of a PE (Figure 2), con
sider incorporating the MotoroLa MC68000 processor 
as the PE execution unit. The processor itseLf, 
256K-bytes of PE memory, and some simpLe Latches 
(PE/network interface, condition code register) 
and Logic can easiLy fit on a singLe physicaL 
board. The organization of the modeL was chosen 
carefuLLy so that the number of wires running 
between the CU and PEs is minimized. The consoli
dation of speciaLized hardware in the CU makes 
each PE board simpLer and cheaper to construct. 

358 

The MC68000 is a state-of-the-art 16-bit mi
croprocessor [20, 7]. InternaLLy, it can operate 
on bit, byte, word (16-bit), and Long (32-bit) 
data formats. Its fast cycLe time and large ad
dress space (currentLy 24-bit addresses) make it 
ideaL for image processing appLications where 
speed and Large data set handLing capabiLities are 
a must. Its very reguLar instruction set, many 
addressing modes, and suitabiLity to high-LeveL 
language operations make it easy to program. 
WhiLe some of the MC68000's functions go unused 
when it operates in SIMD mode (e.g., branch and 
controL operations), these functions are essentiaL 
for MIMD "stand-aLone" processing. WhiLe the 
MC68000 is not quite as "powerfuL" as the Illiac 
IV [3] or PEPE [21] PE, it is considerably more 
complex than the STARAN [1] or MPP [2] processors. 

Each PE wilL be abLe to address any of three 
Logical address spaces. Physical PE memory ad
dresses (both ROM and RAM addresses) will 
represent one space. Addresses of 1/0 ports wilL 
be contained in the second space. The PE instruc
tion queue (for the case 5 configuration) wiLL 
have addresses in the third space. InitiaLly, all 
PEs will be enabled, and have their internal pro
gram counter set to the address of the beginning 
of the PE instruction queue space. When the PEs 
try to fetch the. first SIMD instruction, the ad
dress sent out by each of the PE execution units 
will be decoded by the "address decoding logic" as 
a reference to the PE instruction queue space. 
This logic will send an "instruction request sig
naL" to the FIFO instruction queue. When all PEs 
request an instruction, the buffer acknowledges 
the requests and puts an instruction word on aLL 
the PE data buses. Each PE decodes the instruc
tion and performs the operation or requests addi
tional operand words. If the logic determines 
that a PE memory or 1/0 device address is being 
referenced, the operation is performed normally. 

In SIMD mode, the PE program counter serves 
only to identify a request for an instruction 
word. The actual value of the PE program counter 
is irrelevant, as long as it references an in
struction in the PE instruction queue space. How
ever, the program counter is incremented automati
cally upon receiving an instruction from the PE 
instruction queue. EventualLy, the program 
counter will near the end of the instruction queue 
space and will need to be reset. The instruction 
queue address space is made large so that the 
overhead of resetting the program counter is 
minimal. 

When the PE enable vector specifies that a PE 
is to be disabled, the address decoding logic in 
that PE continues to send an instruction request 
signal to the PE instruction queue. However, the 
acknowledgement and data word from the queue is 
intercepted by the Logic so that the PE execution 
unit never "sees" the instruction. When the PE 
execution unit is re-enabled, processing can con
tinue. 

In order to avoid internal modifications to the 
PE execution unit, PEs will communicate via the 
interconnection network using a sequence of 1/0 
port read and write operations. A PE specifies 
where its data is to be routed by computing the 
address of the destination processor (PEs are ad
dressed 0 to N-1). The address is written to an 



external (n+1)-bit "network set" latch (the "ex
tra" bit wi II be described later). This action 
instructs the network to set switches to make a 
connection with the destination address [6J. Data 
transmissions will occur through two 16-bit exter
nal data latches called Data Transfer Registers 
(DTRs) [13J. One latch is connected to the net
work input (DTRin), and the other to the network 
output (DTRout). The data to be transmitted is 
written to the DTRin latch. Finally, a control 
word is written to an external 1-bit "network 
transfer" register, signaling to the network that 
the transfer should be made. Subsequent transfers 
route items to the same destination until the 
"network set" latch is modified. In SIMD mode, 
all PEs do these operations at the same time. In 
MIMD mode, PEs use the network asynchronously. 

At the destination PE, the network sets a flag 
indicating that the DTRout contains newly
transferred data and may be read. When the PE at
tempts to read DTRout, specialized logic examines 
this flag. If the PE attempts to read DTRout 
prematurely (the flag is not yet set), the PE is 
made to wait until the network has passed the da
ta. For this reason, other processing is often 
done during network transfers to maXlmlze over
lapped operation of the PEs and network. In MIMD 
mode, a PE might send data faster than the desti
nation PE requires it as input. In this situa
tion, the network-generated signal flag might be 
used to interrupt the receiving PE and instruct it 
to buffer the incoming data. 

When a PE is disabled, logic insures that the 
"network set" data does not create "conflicts" in 
the network switch settings. The "extra" bit in 
the "network set" latch is used to indicate that 
this network input should be ignored. A disabled 
PE may receive data normally since the DTRout is 
unaffected by the enabled/disabled status of the 
PE execution unit. When re-enabled, the PE can 
read DTRout. 

When a data conditional mask is needed, PE in
structions to evaluate the PE data condition are 
executed. Then the PEs write their status regis
ter (which contains the processor condition codes) 
to the condition codes register. Logic associated 
with the condition codes register can generate 
eight different conditional tests (e.g., equal, 
not equal, positive, overflow). Data condition 
select lines from the CU specify which of the con
ditional tests is to be returned to the masking 
operations unit as that PE'S component of the data 
conditional mask. 

From time to time, the CU fetch unit will en
queue a JUMP instruction to the beginning of the 
PE instruction queue space. This is to prevent 
the PE program counters from entering a different 
address space. The mechanism that the fetch unit 
uses to perform this function will be described 
later. When the machine is to change from SIMD to 
MIMD mode, the fetch unit broadcasts a JUMP in
struction to some address within the PE memory 
space. Typically, this would be the beginning of 
a program stored in ROM that would initialize the 
PE operating system for MIMD processing. While in 
MIMD mode, PEs do not access the PE instruction 
queue space since MIMD instructions and data are 
contained entirely within the PE memory. When the 
PE is ready to revert to SIMD mode, it jumps to 

the beginning of the PE instruction queue space. 
When all the PEs have done this, SIMD processing 
continues. 

V. CU Architecture Details 

There exist no off-the-shelf processors that 
can perform all of the functions of the control 
unit at a speed sufficient to keep the PE execu
tion units busy. Therefore, fast microprogramm
able bit-slice components will be used for all of 
the CU specialized functions. These functions in
clude the operations of the fetch unit, masking 
operations unit, and CU/PE interface. In order to 
simplify the programming of the system and to make 
data formats uniform throughout, the CU execution 
unit will also be an MC68000 processor. For com
parison, the execution component of the Illiac 
control unit is a powerful 64-bit integer/floating 
point processor [3J. The MPP "main control" and 
the .PEPE arithmetic control unit are also quite 
sophisticated [21, 2J. By contrast, the STARAN 
execution unit and MPP "PE control" unit consist 
of only a few dedicated registers for loop count
ing and handling of "associative array field 
pointers" [19, 2J. 

359 

The speed at which the bit-slice fetch unit can 
fill the PE instruction queue to capacity, and the 
large ratio of PE to CU instructions in algorithms 
programmed so far indicates that the MC68000 will 
be an acceptable CU execution unit. When the sub
set of MC68000 instructions actually used in nor
mal CU execution unit operations is defined 
through actual use and further simulation, and if 
there is a need for more speed, the MC68000 could 
be replaced with a bit-slice machine. 

CU memory will be comprised of 20-bit words. 
The most significant four bits will be interpreted 
by the microprogrammed logic portion of the fetch 
unit as a destination for the remaining 16. 

The CU fetch unit will contain two registers: 
the Fetch Unit Program Counter (FUPC) and the PE 
Space Counter (PESC). The FUPC gives-the address 
of the next instruction to be fetched from CU 
memory. The CU execution unit program counter 
serves only to identify a request for an instruc
tion word. The actual value of the CU execution 
unit program counter is irrelevant, except when 
branch instructions are executed. The FUPC and 
the CU execution unit program counters must be 
equal before a branch instruction is executed 
since computations using the program counter will 
be done (e.g., relative branches). 

The PESC begins at zero and is incremented each 
time a word is enqueued in the PE instruction 
queue. When the PESC reaches a threshold value 
close to the size of the PE instruction queue 
space, the fetch unit enqueues a JUMP instruction 
before the next PE instruction. (The first word 
of a PE instruction has a special tag.) The JUMP 
instruction causes the PE program counter to be 
reset to the beginning of the PE instruction queue 
space (see Section IV). When the JUMP instruction 
is enqueued, all PEs are temporarily enabled. The 
PESC register is also reset to zero. 

The 4-bit memory word tags will specify what 
sequence of actions the microprogrammed logic is 
to take. Examples of these actions are enqueuing 
a PE instruction opcode or operand, sending a CU 



instruction to the CU execution unit, mask decod
ing, and-ing and or-ing of masks, PE data condi
tion selection, initialization of the CU execution 
unit, masking operations unit, PEs, or I/O dev
ices, etc. 

The CU fetch unit never operates at the same 
time the CU execution unit is performing branch 
instructions or while the masking operations unit 
is operating. The CU execution unit may modify 
the program counter which the fetch unit maintains 
to know the "next" instruction. The masking 
operations unit may modify the PE enable vector 
which must be associated with each enqueued PE in
struction. 

The masking operations unit maintains a stack 
of N-bit masks generated by nested "where" condi
tionals and PE address masks [11]. The PE enable 
vector that is currently on the top of the stack 
is enqueued whenever a PE instruction word is en
queued. The details of the stack operations, 
stack hardware, and the interplay between SIMD 
programs and masks are discussed in [11]. 

The PE instruction queue (CU/PE interface) is a 
high-speed I/O buffer N+16 bits wide and 32 words 
long. This length allows about ten average PE in
structions to be queued. A head and tail pointer 
indicate the position of the next word to be de
queued or enqueued, respectively. The buffer de
queues a word if nonempty and when all PEs make 
the request (inactive PEs are always "request
ing"). The fetch unit may enqueue a word provided 
the queue is nonfull. 

In order for the instruction queue to be use
ful, the total time to fetch an average instruc
tion, decode its tags, and enqueue its constituent 
words shouLd not exceed the time needed by the PE 
to execute that instruction. Given that 
2900-series microprogrammable bit-slice components 
have a cycle time of 200 nanoseconds vs. the 
MC68000 basic memory cycle time of 500 
nanoseconds, there should be no problem in filling 
the PE instruction queue to keep the PEs "satis
fied." If the queue is sufficiently large, the ex
ecution of several consecutive CU execution unit, 
masking, or control instructions should not empty 
the queue and "starve" the PEs. 

For a prototype system of size N = 16 or 32 
PEs, the MC68000 execution unit could be used to 
simulate some of the CU operations in software and 
monitor the PEs. For example, the masking opera
tions unit and CU/PE interface could be implement
ed in software (but at a cost in system speed). 

The large address space of the MC68000 could be 
used to access any part of up to thirty-two 256K
byte PE memories if the hardware is so arranged. 
This scheme would be most useful in a prototype: 
the CU execution unit could load and unload PE 
memories, monitor the behavior of individuaL PEs, 
and so on. (A real system would not use this 
scheme because of speed and memory contention 
problems.) 

VI. MC68000 Simulation Results 

The simulation of the MC68000-based system was 
carried out using the same techniques as described 
earlier. However, these simulations required the 
writing of new SIMD algorithms in the MC68000 in
struction set, a specialized version of an MC68000 
assembler, and new PSST simulation programs. The 
PSST timing algorithms were largeLy unchanged, but 
a new table of instruction timing characteristics 
had to be prepared. 

The PSST simulator consists of two main 
coroutines: the simulation of an MC68000 processor 
and the simuLation of the CU microprogrammed Log
ic. The actions of the fetch unit and masking 
operations unit are incLuded in the CU micropro
grammed Logic simuLation. When the CU execution 
unit is to be activated, a copy of the "CU data 
area" is passed to the MC68000 simulator and pro
cessing is initiated. When a PE is to be activat
ed, a copy of the appropriate "PE data area" is 
passed to the MC68000 simuLator. The action of 
the CU/PE interface (case 5: overlapping of the 
instructions) is simulated by the timing routines. 

The PSST simuLator for the MC68000 system is 
LargeLy complete although it Lacks BCD arithmetic 
operations, trap and exception processing, inter
rupts, and MIMD operation (the asynchronous in
teraction of the PEs). It aLso cannot detect in
terconnection network "confLicts." Major effort 
wiLL be required to impLement interrupts and MIMD 
operation in both the simuLation and timing 
routines. 

Two versions of the SIMD image smoothing aLgo
rithm for a 16-PE system were simulated. The aL
gorithms are identical to those described in Sec
tion III. SimuLations of both algorithms were 
performed for a variety of image sizes ranging 
from 16x16 to 128x128 pixeLs. The compLete image 
can be superimposed onto an array of 4x4 (=16) PEs 
such that each PE processes a subimage of 4x4 to 
32x32 pixeLs. 

TabLe 3 compares the simulation and timing 

TabLe 3. Comparison of smoothing aLgorithm simuLation and timing 
characteristics. The "originaL" aLgorithm run time resuLts are normaL
ized to 1.00. The internaL cycLe time is 250ns. ALL of the simuLations 
are performed with N=16 PEs. 

ORIGINAL ALGORITHIl IIIPROVED ALGORITHII 
TOTAL SUBlllAGE SIZE 

IIIAGE SIZE (PIXELS INSTRUCTIONS TIllE TIllE INSTRUCTIONS TIllE TillE 

(PIXELS) PERPE) EXECUTED (CYCLES) (NORMALIZED) EXECUTED (CYCLES) (NORMALIZED) 

16x16 4x4 729 4002 1.00 796 4370 1.09 

32x32 8x8 2011 12588 1.00 2089 13079 1.04 

48x48 12x12 4101 26628 1.00 4060 26362 0.99 

64x64 16x16 6005 42196 1.00 5615 39875 0.94 

128x128 32x32 18443 146476 1.00 15493 123040 0.84 

360 



results for the two smoothing algorithms. The run 
time has been normalized such that the original 
algorithm run time=1.00. These results indicate 
that the original algorithm is more efficient for 
small subimages (fewer than 12x12 pixels per PE) 
than the "improved" algorithm. The improved algo
rithm would be used for real-world-size problems. 

The actual algorithm executi"on time can be cal
culated for a given algorithm/image size pair by 
multiplying the number of cycles by the cycle 
time. Assuming a standard 8MHz MC68000 processor, 
the internal cycle time is two clock cycle times, 
or 250ns. Thus, a 128x128 (=16K) pixel image can 
be smoothed by the 16-PE system in about 31ms. 
Note that this is algorithm execution time. The 
simulations do not include data load/unload time 
between primary and secondary memory (which will 
be highly implementation dependent, e.g., see 
[13J). 

The 128x128 pixel simulation required about 16 
minutes of VAX cpu time. This corresponds to an 
average execution rate of over 19 SIMD instruction 
per second of cpu time. Recall that the simulator 
executes a single PE instruction 16 times, once 
for each PE. Somewhat less than half of the cpu 
time may be saved if the "PE memory dump" follow
ing the simulation is inhibited. The writing of 

1282 numbers to disk files (for verification of 
the smoothed output) takes a considerable amount 
of time. 

A "serialized" (single PE) algorithm was con
structed from the original parallel algorithm to 
determine the "speedup." The serial algorithm 
operates on the entire image (rather than a subim
age) and thus does not need to perform masking or 
inter-PE transfer operations. When the number of 
masking and transfer operations per pixel pro
cessed (parallel overhead) is high, the parallel 
algorithm will not be very efficient. If no over
head is involved, the parallel algorithm should 
execute 16 times faster on a 16-PE machine than on 
a 1-PE machine. As shown in Table 4, the parallel 
algorithm performs relatively poorly for small su
bimage sizes, but approaches a perfect speedup for 
"real-size" tasks. 

Table 4. Determination of the speedup factor of 
the original parallel algorithm. All of the simu
lations are-performed with N=16 PEs. 

TOTAL IIlAGE SIZE SUBIMAGE SIZE SERIAL TIME 

(PIXELS) (PIXELS PER PEl PARALLEL TIME 

16x16 4x4 9.52 

32x32 8x8 13.16 

48x48 12x12 13.64 

64x84 16x16 14.32 

128x128 32x32 15.56 

It was observed that the MC68000 divide in
struction, which is executed once per pixel pro
cessed to scale the result, accounts for roughly 
35% of the total run time. The divide instruction 
requires about 75 machine cycles as compared to a 
typical add instruction requiring about 4 cycles. 

361 

If better run times were necessary, the algorithm 
could be restructured to smooth a window of eight 
nearest-neighbor pixels (as opposed to nine) and 
scale the data by shifting the result right by 
three bits. A typical 3-bit shift requires 7 cy
cles, or about 10% of the divide cycle time. How
ever, a load and add cycle (about 7 cycles) is 
saved since only eight pixels are used in the win
dow. Thus a 35% improvement can be gained by re
placing the divide instruction. 

The 75 cycles for a divide instruction is the 
maximum instruction time; the actual time required 
is data-dependent and is not considered by the 
PSST timing routines. If some PEs finish the in
struction before others, they will be made to wait 
until all the PEs have finished. Recall that a PE 
instruction is dequeued from the FIFO buffer only 
when all PEs make the request for the next in
struction. However, if all of the PEs finish the 
division before the 75 cycle maximum, the hardware 
will be able to exploit this and release the next 
instruction to the PEs. 

The simulation results presented may be extra
polated to determine timings and speedups for oth
er machine and/or image sizes. The run time of an 
algorithm depends on the relative sizes of the 
machine and the image, or equivalently, the subim
age size in pixels per PE. For the smoothing ex
amples, a minimum machine size of 4 PEs is neces
sary and sufficient so that all relevant inter-PE 
transfer and masking instructions are included. 
For example, a 4-PE SIMD machine can smooth an 8x8 
pixel image in the same amount of time as a 16-PE 
machine can smooth a 16x16 pixel image. In each 
case, a PE operates on a subimage of 16 pixels. 
Similarly, since 16 PEs can smooth a 
128x128 (=16K) pixel image in 31ms, a 64-PE system 
of the same design and using the same algorithm 
could smooth a 256x256 (=64K) pixel image in 31ms. 
(For larger machines, the number of stages in the 
Generalized Cube network will increase; however, 
assuming that the propagation delay of the network 
is overlapped with PE operations, the impact of 
the added stages is negligible.) In general, in
creasing the number of PEs by a factor of four al
lows four times as many pixels to be processed in 
the same amount of time. However, this does not 
mean that processing four times as many pixels 
will take four times as long for a fixed machine 
size. In the latter case, the fixed and variable 
costs of performing the particular algorithm must 
be taken into account. 

VII. Conclusions 

Based on the results of past simulation stu
dies, the design of an extensible SIMD/MIMD 
machine based on state-of-the-art microprocessors 
and off-the-shelf components was developed. The 
interface logic necessary for SIMD/MIMD processing 
was found to be minimal. Thus the high cost of 
designing and fabricating a custom VLSI PE has 
been saved. The architecture could be used as a 
single SIMD/MIMD machine, or as a building block 
for a larger multiple-SIMD or partitionable 
SIMD/MIMD system using the techniques described in 
[13J. Also, the design presented is easily modi
fied even after it is constructed since the CU 
does not decode any PE instructions. This is 



especially important since the MC68000 processor 
is not yet in the final stages of its evolution. 
The use of an MC68000-based control unit in a pro
totype has also been shown to be highly desirable. 
In a final design however, many of the CU func
tions will have to be implemented using bit-slice 
technologies. 

Given these considerations, it appears that a 
powerful SIMD/MIMD system having at least 128 pro
cessors could be built without encountering severe 
physical hardware restrictions (e.g., space, 
power, and cooling requirements, bus length res
trictions), and at a reasonable cost using current 
technology. Further, we have working SIMD machine 
simulators and trace-driven timing analysis algo
rithms that can be used to evaluate additional 
SIMD programs for image processing and pattern 
recognition in order to study various system ar
chitecture features. 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

References 

K. E. Batcher, "STARAN parallel processor 
system hardware," AFIPS 1974 Nat'l. Compo 
Conf., May 1974, pp. 405-410:--
K. E. Batcher, "Design of a massively paral
lel processor," ~ Trans. Comp., Vol. 
C-29, Sept. 1980, pp. 836-844. 
W. Bouknight et al., "The III iac IV system," 
Proc. IEEE, Vol. 60, Apr. 1972, pp. 369-388. 
M. Flynn, "Very high speed computing sys
tems," Proc. IEEE, Vol. 54, Dec 1966, pp. 
1901-1909. 
J. T. Kuehn and H. J. Siegel, "Simulation 
studies of PASM in SIMD mode," IEEE Computer 
Architecture for Pattern Analysis and Image 
Database Management Workshop, Nov. 1981, pp. 
43-50. 
D. H. Lawrie, "Access and alignment of data 
in an array processor," IEEE Trans. Comp., 
Vol. C-24, Dec. 1975, pp. 1145-1155. 
Motorola Semiconductor, MC68000 16-bit 
Microprocessor User',! Manual, MotorolaIc 
Division, Austin, TX, 78721. 
G. J. Nutt, "Microprocessor implementation 
of a parallel processor," 4th ~. Compo 
Arch., Mar. 1977, pp. 147-152-. - -
M. Pease, "The indirect binary n-cube mi
croprocessor array," IEEE Trans. Comp., Vol. 
C-26, May 1977, pp. 4;s=4~ 
H. J. Siegel, "Analysis techniques for SIMD 
machine interconnection networks and the ef
fect of processor address masks," IEEE 
Trans. Comp., Vol. C-26, Feb. 1977, pp. 
153-161. 

362 

[11 ] 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21 ] 

[22] 

H. J. Siegel and J. T. Kuehn, Parallel Image 
Processing/Feature Extraction Algorithms and 
Architecture Emulation: Interim Report for 
~ 1981, Volume .!!.: Arcti"i'"ti'ct'i:iri 
Emulation, School of Electrical Engineering, 
Purdue University, Technical Report, Oct. 
1981. 
H. J. Siegel and R. J. McMillen, "The mul
tistage cube: a versatile interconnection 
network," Computer, Vol. 14, Dec. 1981, pp. 
65-76. 
H. J. Siegel, L. J. Siegel, F. C. Kemmerer, 
P. T. Mueller, Jr., H. E. Smalley, Jr., and 
S. D. Smith, "PASM: a partitionable 
SIMD/MIMD system for image processing and 
pattern recognition," IEEE Trans. Comp., 
Vol. C-30, Dec. 1981, pp~4-~ 
L. J. Siegel, "Image processing on a parti
tionable SIMD machine," in Languages and 
Architectures for leage Processing, M. Duff 
and S. Levialdi, ., Academic Press, Lon
don, 1981. 
L. J. Siegel, E. J. Delp, T. N. Mudge, and 
H. J. Siegel, "Block truncation coding on 
PASM," 19th Ann. Allerton Conf. on 
CommunicaTIOil, COrltrol, and computTriQ, Oct. 
1981, pp. 891-900. 
K. G. Stevens, Jr., "CFD - A FORTRAN-like 
language for the III i ac IV," Conf. 
Programming Languages and Compilers for 
Parallel and ~ Machines, ACM, Mar. 
1975, pp. 72-76. 
H. Sullivan, T. R. Bashkow, and K. 
pholz, "A large-scale homogeneous, 
distributed parallel machine," 4th 
Compo Arch., Mar. 1977, pp. 105-124. 

Klap
fully 
.!l!!!P.. 

R. Swan, S. Fuller, and D. Siewiorek, "Cm*: 
a modular, multi microprocessor," AFIPS 1977 
Nat'l. Compo Conf., June 1977, pp. 637-644. 
K. J. Thurber, targe Scale Computer 
Architecture: Para lel and Associative 
Processors, Hayden Book Co.;-iochelle Park, 
NJ, 1976. 
H-m. D. Toong and A. Gupta, "An architectur
al comparison of contemporary 16-bit mi
croprocessors," IEEE Micro, Vol. 1, May 
1981, pp. 26-37. 
C. R. Vick and John A. Cornell, "PEPE 
architecture-present and future," AFIPS 1978 
Nat'l. Compo Conf., June 1978, pp. 981-992.""" 
W. Wulf and C. Bell, "C.mmp--A multiminipro
cessor," 1972 Fall Joint Computer Conf., 
Dec. 1972, pp. '"f65-"f7r:--



ANALYSIS OF THE PASM 
CONTROL SYSTEM MEMORY HIERARCHY 

David Lee Tuomenoksa 
Howard Jay Siegel 

Purdue University 
School of Electrical Engineering 

West Lafayette, IN 47907 

Abstract - Many proposed large-scale parallel processing 
systems (e.g., PASM) can operate in multiple-SIMD 
mode. The multiple control units in such a system 
share a common secondary storage for programs. The 
control units use paging to transfer programs to their 
primary memories. One design problem is determining 
the optimal service rate for the secondary storage, where 
the "optimal" is characterized by maximum processor 
utilization. The problem is approached by developing a 
queueing network model for the P ASM control system 
memory hierarchy. Based on assumed values for param
eters which characterize the expected task environment, 
an optimal service rate is derived from the model. The 
values of the parameters in the model can be varied to 
determine the impact these changes would have on sys
tem performance. Simulation results verifying various 
aspects of the model are presented. The results are 
shown to apply to the general model for a multiple
SIMD machine. 

I. Introduction 

A multiple-SIMD system (e.g., [9]) is a parallel pro
cessing system which can be dynamically reconfigured to 
form one or more independent SIMD (single instruction 
stream - multiple data stream) [5] machines of varying 
sizes. Handling the memory management problem for 
the multiple control units is an issue which must be con
sidered in the design of multiple-SIMD systems. One 
possible solution to the problem is the use of virtual 
memory [1]. If virtual memory is used in a multiple
SIMD system with common secondary storage for the 
multiple control units it is necessary to determine the 
optimal page request service rate for the secondary 
storage. The optimal is characterized by maximum util
ization of the processors. 

P ASM is a multimicrocomputer system being 
designed at Purdue University for a variety of image 
processing and pattern recognition problems [10]. It is 
the use of PASM in the multiple-SIMD mode of opera
tion which motivates this study. In this paper a queue
ing network model is developed for the memory hierar
chy of the multiple control units in P ASM and is 
analyzed to determine the optimal page request service 
rate for the secondary storage. The optimal service rate 
for the secondary storage can be determined from the 
average system page request rate using heuristics for 
serial multi programmed systems as a guideline. The 
average system page request rate can be determined by 
making assumptions about the task environment (e.g., 
number of processing elements which tasks require and 
the estimated execution time of the tasks). The system 

This research was supported by the Air Force Office of Scientific 
Research, Air Force Systems Command, USAF, under grant 
number AFOSR-78-3581 and by a Purdue University Graduate 
Fellowship. The United States Government is authorized to 
reproduce and distrihu te reprints for Governmental purposes not
withstanding any copyright notation hereon. 

0190-3918/82/0000/0363$00.75 @ 1982 IEEE 363 

idle time which results from the mUltiple control units 
waiting for page requests to be serviced is determined 
for the case where the system page request rate deviates 
from the average rate which was used to determine the 
optimal secondary storage service rate. The values of 
the parameters in the model can be varied to determine 
the impact these changes would have on system perfor
mance. Simulation results verifying various aspects of 
the model are presented. The model and analysis is 
related to a general model for a multiple-SIMD machine. 

Section IT is an overview of the P ASM multimicro
computer system. Terminology is defined in Section Ill. 
In Section IV a queueing network model for the PASM 
control system memory hierarchy is developed. The 
average system page request rate for P ASM is deter
mined in Section V. In Section VI the optimal service 
rate for the secondary storage is determined. Opera
tional analysis [3] is used to determine the average idle 
time for the multiple control units in Section VII. 
Simulation results are presented in Section VITI. In Sec
tion IX the analysis is related to the general model for a 
multiple-SIMD machine. 

II. P ASM Overview 

P ASM, a partition able S1MD / MIMD machine, is a 
large-scale dynamically reconfigurable multiprocessor 
system [10]. It is a special purpose system being 
designed to exploit the parallelism of image processing 
and pattern recognition tasks. P ASM can be partitioned 
to operate as many independent SIMD and/or MIMD 
(multiple instruction stream - multiple data stream) 
machines of. varying sizes. PASMOS is the operating 
system for P ASM. 

A block diagram of the basic components of P ASM 
is given in Figure IT.!. The Parallel Computation Unit 
contains N = 2n processors, N memory mOQules, and an 
interconnection network (see Figure IT.2). The Parallel 
Computation Unit processors are microprocessors that 
perform the actual SIMD and MIMD computations. 
The Parallel Computation Unit memory modules are 

SYSTEM 
, ...... _--. ........ CONTROL ""'..----. ........ , 

Figure IT.l: 

UNIT 

MICRO 
....... __ ~ .... CONTROL

LERS 

Block diagram overview of P ASM. 



,---
I 

-------1 - -

~ I 
PROCESSING ELEMENT 0 I 

J ~ I 
MEM.OA t>- MICRO-

00 

>- MEM.OB PROC.O I 00 
00 I ~ 
~ I 

ril 
..::l Z I PROCESSING ELEMENT 1 ..::l 

~ 
0 

I MEM.IA 
[>- MICRO- ~ 

~ 
0 PROC.l Z 
~ I 

MEM.lB 0 
• I 

0 

~ • 0 • I 

I 
~ >- PROCESSING ELEMENT N-l 0 

~ I .... 
o I" MEM. N-l At>- MICRO ~ 
~ PROC. I 
~ ~ MEM. N-l B N-l 

~ I I~ 
I INTERCONNECTION NETWORK J L: ________ ::J 

Figure 11.2: PASM Parallel Computation Unit. 

used by the Parallel Computation Unit processors for 
data storage in SIMD mode and both data and instruc
tion storage in MIMD mode. The interconnection net
work provides a means of communication among the 
Parallel Computation Unit processors and memory 
modules. The System Control Unit is a conventional 
machine, such as a PDP-H, and is responsible for the 
overall coordination of the activities of the other com
ponents of PASM. 

The Memory Storage System provides secondary 
storage space for the Parallel Computation Unit data 
files in, SIMD mode, and for both the Parallel Computa
tion Unit data and program files in MIMD mode. The 
Memory Management System controls the transferring of 
files between the Memory Storage System and the 
Parallel Computation Unit memory modules. It 
employs a set of cooperating dedicated microprocessors. 
Multiple storage devices are used in the Memory Storage 
System to allow paranel data transfer. 

The Micro Controllers (MCs) are a set of micropro
cessors which act as the control units for the Parallel 
Computation Unit processors in SIMD mode and orches
trate the activities of the Parallel Computation Unit 
processors in MIMD mode. There are Q = 2q MCs. 
Each MC controls N/Q Parallel Computation Unit pro
cessors [71. A virtual SIMD machine (partition) of size 
RN/Q, where R = 2r and 1 ~ r ~ q, is obtained by 
loading R Me memory modules with the same instruc
tions simultaneously. Similarly, a virtual MIMD 
machine of size RN{Q is obtained by combining the 
efforts of the Paralle Computation Unit processors and 
R MCs. Q is therefore the maximum number of parti
tions allowable, and N/Q is the size of the smallest par
tition. Possible values of Nand Q are 1024 and 16, 
respectively. 

Each MC processor is attached to a memory module 
which consists of a pitr of memory units. The second 
memory unit may be used to load the initial pages of 
the next task while the current task is executing 
instructions from the first memory unit. In this analysis 

364 

the steady-state condition is considered, i.e., the effect 
of preloading is ignored. Since a task which is executing 
uses only one memory unit, the paging analysis dose not 
consider the double-buffering. In SIMD mode, each MC 
fetches instructions from its memory module, executing 
the control flow instructions (e.g., branches) and broad
casting the data processing instructions to its Parallel 
Computation Unit processors. In MIMD mode the MCs 
may be used to help coordinate the activities of their 
Parallel Computation Unit processors. 

SIMD programs are stored in the Control Storage 
which is the secondary storage for the MCs (see Figure 
11.1). The loading of SIMD programs from the Control 
Storage into the MC memory units is controlled by the 
System Control Unit and Control Storage Controller. 
The Control Storage Controller is a dedicated micropro
cessor which manages the Control Storage file system. 
When large SIMD tasks are run, i.e., SIMD tasks which 
require more than N/Q processors, more than one MC 
executes the same set of instructions. Therefore each of 
the MC memory units must be loaded with the same set 
of instructions. The fastest way to load several MC 
memory units with the same set of instructions is to 
load all of the memory units at the same time. This 
can be accomplished by connecting the Control Storage 
to all the MC memory units via the MC Memory Sys
tem Switch. A block diagram of the control system 
memory hierarchy is given in Figure 11.3. The MC 
Memory System Switch is controlled by the Control 
Storage Controller. All interaction between the Control 
Storage and the System Control Unit is done through 
the Control Storage Controller. (In [10] an enhanced 
scheme for connecting the MC processors to the MC 

FROM SYSTEM CONTROL UNIT 

r--

I"-

'" l- t--~ • .... • Z 
;:J .:,.. 
Z ~ 
0 r--. .... .......... ~ 

l--< -~ • ;:J • 
Il. • 
~ ...-
0 -0 
..:I 
f;il 
~ ..:I 

I"-.... ..:I 

~ l- I--
• 

Il. • • 
I-~ 

~ 

Figure 11.3: 

II 
CONTROL KCONTRO~ STORAGE STORAGE . CONTROLLER 

-l-

L.... 

I- / 
MCMEM. 

MC OA := 
MICRO- 0 

"-PROC.O MCMEM-I- ~ 
OB ~ 

rn 

I- MCMEM._ ~ MC / SA 
~ MICRO- " MCMEM'I-
rn 

PROC.S '" >-;:! SB rn ..Q ... • >-'" QJ • ~ ;:! • 0 co 
QJ 

~ .. 
~ MCMEM. ~ MC / 16A 

MICRO- 0 
PROC.16 " ~ MCMEM. 

16B -
MICRO CONTROLLERS 

Overview of P ASM control system 
memory hierarchy for Q=16. 



memory modules is also considered. The analysis in this 
paper also applies directly to that scheme.) 

For some applications of PASM it is possible that 
the SIMD programs may be too large to fit into the pri
mary memory (memory unit) of a given MC. Virtual 
memory may be used to give the programmer the illu
sion that the primary memory is much larger than in 
reality. There are two methods for implementing vir
tual memory: paging and segmentation [IJ. In this 
paper, paging is considered. To implement paging as a 
part of the P ASMOS operating system, the system must 
provide a translation mechanism to map the virtual 
address, which is used by the programmer, to a physical 
address, which is used by the system. In P ASM, the 
translation is done by the MCs. When the J?age is not 
in the MCs primary memory (memory unit), it has a 
page fault. When an MC has a page fault, the MC 
sends a request on the request bus (see Figure 11.3) to 
the Control Storage Controller which then services the 
request by locating the page in the Control Storage and 
sending it to the appropriate MC memory units through 
the MC Memory System Switch. 

Consider the case where an SIMD task requires more 
than one MC. When a page fault occurs for the task, 
all of the MCs which are executing the task have a page 
fault. Since the faulted page is the same for all of the 
MCs which are executing the task, the page may be 
broadcast to all of the Me memory units simultaneously 
through the MC Memory System Switch. Hence, only 
one of the MCs must report the page fault tu the Con
trol Storage Controller, i.e., only one page request is 
generated. The MC which reports the fault can always 
be the same (e.g., logical 0 in the virtual SIMD machine) 
or may vary from one page fault to the next. 

When P ASM is operating as a number of indepen
dent virtual SIMD machines of varying sizes, the MCs 
are in effect a virtual MIMD machine. The secondary 
storage to this MIMD machine is the Control Storage. 
The model for the control system memory hierarchy is 
developed in Section IV. 

ill. Terminology 

In this section the terminology which is used in the 
analysis is defined. Virtual time is defined to be the 
time that a processor is executing a task not including 
the time that it is idle waiting for page faults to be ser
viced or the time which a task is not assigned to it. Real 
time includes all time. The real page fault rate, referred 
to as the "page fault rate," is defined to be the rate at 
which page faults occur over real time, i.e., the number 
of page faults for the processor divided by the real time. 
The virtual page fault rate is defined to be the rate at 
which page faults occur over virtual time, i.e., the 
number of page faults for the processor divided by the 
virtual time. The real page request rate, referred to as 
the "page request rate," and virtual page request rate are 
the rates which pages are requested from the secondary 
storage over real time and virtual time, respectively. 

For P ASM, the virtual page request rate for MC i is 
Vi' The MC utilization is the fraction of time an MC is 
executing. The utilization of MC i is Vi' The (real) page 
request rate for Mq is Ai = Vivi' The (real) system 
page request rate is the combined page request rates of 
all the MCs and is denoted by Asys ' 

IV. Model 

In this section a queueing network model is 

365 

MICRO 
CONTROLLER 

SUBSYSTEM 
CONTROL STORAGE 

SUBSYSTEM 
------

• >'sys -m[}-• ~ IN • OU T 

---- FIFO Server 
J.l Service Rate 

Q M' C II TJ Requests (0< TJ <T) lcro ontro ers - -
(MCa) 

T MCa Making Requests 
lO~T~Q) t Time Between Requests 

Figure 1V.1: Two-station cyclic network which 
describes the interaction between the 
MCs and the Control Storage. The 
combined page request rates of the MCs 
is Asys and the throughput of the net
work is Xo. 

developed for the PASM control system memory hierar
chy. The interaction between the MCs and the Control 
Storage can be modeled by the two-station cyclic net
work in Figure 1V.1 [3J. The MC subsystem contains 
the Q MC processor-memory unit pairs. Since only one 
of the MCs in a group of MCs executing a task makes 
page requests, there are only T MCs making requests 
where T is the number of tasks executing. Hence, the 
network is closed with T customers. The average time 
between page requests for each of the MCs making page 
requests is 1/ A, where A is assumed to be the virtual 
page fault rate for all tasks. The page request rate of 
the MC subsystem is the system page request rate Asys. 

The Control Storage subsystem services the page 
requests made by the MC subsystem. The service rate 
of the Control Storage subsystem is 11. The service 
queue at the Control Storage uses a FIFO queueing dis
cipline. The number of requests in the Control Storage 
subsystem at a given time is 1], where 0 ~ 1] ~ T. The 
throughput of the network is Xo. 

V. System Page Request Rate 

In this section the queueing network model is 
analyzed to determine the average system page request 
rate. If all of the MCs are executing a different task (Q 
tasks executing), then the virtual page request rate for 
each of the MCs is A, i.e., Vi = A, where 0 ~ i < Q. 
Therefore, the system page request rate is: 



Using the simplifying assumption that Uj = Urnc , a con
stant MC utilization, where 0:::; i < Q, then 
Asys = QUrncA. 

However, in the case of PASM, there are not usually 
Q independent tasks executing. For example, if an 
SIMD task of size RN/Q is being executed by the Paral~ 
leI Computation Unit, the same instruction stream is 
being used by each of the R MCs which are controlling 
the task. The virtual page request rate to the Control 
Storage by the R MCs can be reduced from RA to A by 
having one MC make the page requests and having the 
Control Storage broadcast the page to all R MC 
memory units simultaneously through the MC Memory 
System Switch (see Figure 11.3). 

To determine the actual average system page request 
rate it is necessary to determine the average number of 
independent instruction streams or tasks being executed 
by the MCs. This discussion will be limited to the exe
cution of SIMD tasks. There are q+ 1 different sizes of 
SIMD tasks which can be controlled by. the Q MCs, 
where q = log2Q. A task may require 2' MCs, where 
o :::; i :::; q.. Let the probability that_ an SIMD task 
requiring 2' MCs is created be Pj. Let Ej b~ the average 
execution time for tasks which require 2' MCs. The 
average value of. the processor-time product for a task 
which requires 2' MCs is defined as the product of the 
average £.xe~ution time and the number of MCs 
required, E j 2'. The processor-time product can then be 
used to weight the P j distribution. to determine R j, the 
probability that a task requiring 2' MCs will be execut
ing on any MC which has a task assigned to it. R j is 
defined as: 

PjEj 2j 
R j = ---'---'--

~P.E. 2j 
~ J J 
j=O 

The average execution time parameters may be varied 
based on system use experience. For this analysis it is 
assumed that tasks of all MC requirements have equal 
execution time, so Ej = E. Therefore, 

PiE 2i 
Ri=-'-:""--

tPj E2 j 

j=o 

Pi 2i 

tPj 2j 

j=O 

In the analysis in this paper, a PASM with 16 MCs is 
assumed, i.e., q=4. For this analysis it is also assumed 
that distribution of the number of MCs required by a 
task is uniform, i.e., Pi = 1/5, where 0 :::; i :::; 4. Once 
again, this assumption can be varied based on system 
use experience. The probability that a task requiriI.J.g 2' 
MCs is executing on a given assigned MC is Ri = 2'/31, 
where 0 :::; i :::; 4. The following theorem uses the .above 
result for the probability that a task requiring 2' MCs 
will be executing on any given assigned MC to deter
mine the average system page request rate. 

Theorem 1: The average system page request rate, 
X"sys, is: 

where A is the virtual task page fault rate, Urnc is the 
MC utilization for all MCs, and Ri is the probability 

366 

that a task which requires 2i MCs will be executing on 
any given assigned MC. 

Proof: Consider an SIMD task which requires 2i MCs. 
The set of MCs which is executing this task will be 
denoted by Sj. The virtual page fault rate for the task is 
A. When a page fault occurs, only one of the MCs in 
the set Si reports the fault to the Control Storage 
Controller. If MCt·, jfSi' is reporting the page faults, 
V· = A and Vk. = 0 or all kfSi and k i""j. Therefore, from 
the set Si of 2' MCs, only one page request is generated 
for each task page fault. Thus, 

The average virtual page request rate for MCj, where 
jfSi is defined as: 

The notation Avg[xJ denotes the average value of x. 
The average of the virtual MC page request rates, V, 
can then be calculated by taking the average value of Vj 
over all possible task sizes. Hence, 

q • q A 
V = Avg[vjJ = ERi Avg[vj I JfSjJ = ERj i . 

i=O i=O 2 

The system page request rate, A.ys' is defined as: 

Assuming that the utilization for all of the MCs is 
the same, i.e., Uj = Urnc ' where 0 :::; j 5.. Q, the average 
value of the system page request rate, Asys, is: 

_ <t:.l 
Asys = AVg[AsysJ = Avg[~UhJ 

j=O 
Q-l Q-l 

= EAvg[UjvjJ = E UrncV = QUrnc!7 . 
j=O j=O 

Substituting in the equation for 17, 

which is the desired result. 
o 

It is noted that the system page request rate is 
dependent on Q, the number of Micro Controllers and is 
independent of N, the number of Parallel Computation 
Unit processors. Theorem 1 is generalized to account 
for the fact that the task virtual page fault rate A may 
vary for tasks requiring different numbers of MCs in the 
following corollary. 

Qorollary 1: The average system page request rate, 
Asys, is: 



where At is the virtual page fault .rate for the instruction 
stream of a task which requires 21 MCs. 
Proof: Follows directly from the proof of Theorem 1. 

o 

When an MC is not executing, it is either waiting for 
a page request to be serviced by the Control Storage or 
it does not have a task assigned to it to execute. The 
virtual utilization is the utilization of the MC while it 
has a task assigned to it and is denoted by U~c' The 
assignment ratio is the fraction of time an MC has a 
task assigned to it. If A is the average MC assignment 
ratio, then Urnc = A U~c' Note that if the MCs are 
always assigned tasks, then Urnc = U~c' The (real) page 
fault rate for a task may now be defined as U~.,A since 
the virtual utilization only accounts for the time that a 
task is assigned to a group of MCs. 

The multitasking level, T, is defined to be the 
number of tasks which are executing on the system at a 
given time. The averaze system page request rate may 
be defiged in terms of T, the average multitasking level, 
and UJ!l,.,A, the (real) .t~sk pa~e f~ult rate, to be: 
Xs s = TU' rn.,A. Combmmg this with the result of 
Tgeorem 1, the average multitasking level is determined 
to be: 

__ ~ _ A XSYS __ ~ Q. 
T- ----A~R 

U~.,A Urnc A i=O 1 2i . 

Hence, instead of Q tasks executing, the average multi
tasking level is T, which for the uniform distribution 
case with all MC assigned tasks (A = 1) would be: 
80/31 and the average system page request rate is: 

- T' 80, , 
Asys = UrncA = 31 UrncA = 2.58 Urn.,A , 

where U~.,A is the task page fault rate. 
In conclusion, in the case where all 16 MCs are exe

cuting tasks it might be expecte<J that the av~rage sys
tem page request rate would 16Urn.,A, where UrncA is the 
page fault rate for the task running on each MC. In 
this section it has been determined that the average 
page request rate for the system is only 2.58U~.,A when 
there is a uniform distribution of task sizes. Hence, the 
average system page request rate is only 16.1 per cent of 
what might be expected when all 16 MCs are executing 
tasks. The worst case system page fault rate is 16UrncA 
which occurs when each MC is executing an indepen
dent task. On the other hand, when all MCs are exe
cgting the same task, the system page fault rate is 
Urn.,A. The average multitasking levels for a variety of 
Pi distributions are given in Table V.1. 

VI. Optimal Control Storage Service Rate 

Criterion for optimal memory management in mul
tiprogrammed systems have been given in [2,4,8J. The 
optimum is characterized by maximal system service 
rate, and in turn by maximal processor utilization and 
minimal response time [4J. O~e such criterion is the 
50% criterion. The 50% criterion for optimal memory 
management states that in a multiprogrammed system 
with page request rate A, the use of the CPU is "optim
ized" when the disk service rate p. = 2A so that the disk 
is 50% utilized [8J. SO for I' :5 2A, as I' is increased, the 
system service rate is increased significantly, and for 
p. > 2A, as p. is increased, the system service rate does 

367 

Table V.I: Average multitasking level, T, for a 
variety of task size distributions. The 
task size is the number of MCs a task 
requires. Pi is t.he probability that a task 
which requires 21 MCs is created. 

Po 
0.20 
0.00 
0.00 
0.00 
0.00 
1.00 
0.50 
0.33 
0.25 
0.23 
0.50 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.10 

PI 
0.20 
0.25 
0.00 
0.00 
0.00 
0.00 
0.50 
0.33 
0.25 
0.23 
0.00 
0.50 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
0.33 
0.25 

P2 
0.20 
0.25 
0.33 
0.00 
0.00 
0.00 
0.00 
0.33 
0.25 
0.23 
0.00 
0.00 
0.50 
0.00 
0.50 
0.00 
1.00 
0.00 
0.33 
0.30 

Pa 
0.20 
0.25 
0.33 
0.50 
0.00 
0.00 
0.00 
0.00 
0.25 
0.23 
0.00 
0.00 
0.00 
0.50 
0.50 
1.00 
0.00 
0.00 
0.33 
0.25 

P4 
0.20 
0.25 
0.33 
0.50 
1.00 
0.00 
0.00 
0.00 
0.00 
0.08 
0.50 
0.50 
0.50 
0.50 
0.00 
0.00 
0.00 
0.00 
0.00 
0.10 

T 
2.58 
2.13 
1.72 
1.33 
1.00 

16.00 
10.67 
6.86 
3.75 
3.38 
1.88 
1.78 
1.60 
1.14 
2.67 
2.00 
4.00 
8.00 
3.34 
2.96 

not increase significantly. Thus, I' = 2A is considered 
"optimal." 

For the class of systems studied in [8], it was deter
mined that the utilization of the secondary storage 
which resulted in optimal memory management was 
50%. In order to determine the appropriateness of the 
50% criterion for the P ASM MC secondary storage, MC 
utilization was used as a performance measure. Figure 
VI.I is a graph of the MC utilization as a function of 
the Control Storage utilization which was generated 
from simulation data (details of simulation are in [111). 
There are three optimal values for the Control Storage 
utilization in PASM: 32.5%, 50%, and 62.5%. They are 
all considered optimal since the increase in MC utiliza
tion resulting from a small decrease in Control Storage 
utilization is much less the the decrease in the MC utili
zation resulting from a small increase in the Control 

Z .640 

~ t---------~'
-< .660 

~ 
;J .480 

~ 
j .400 
o 
~ 
Z .320 
o o 
o 
~ .240 
o 
SJ 0.00.f--...---...--+-...---f------'.----.----.------. 

0.00 .126 .260. .376 .600 .626 .760 .876 1.00 

Figure VI.l: 

CONTROL STORAGE UTIT.IZATION 

MC utilization as a function of Control 
Storage Utilization. 



Storage utilization. The selection of the optimal Con
trol Storage utilization to be used may depend on fac
tors such as desired speed and cost of available secon
dary storage devices (e.g., disks). 

It is noted that even when the Control Storage utili
zation is 0% (all page faults are serviced instantane
ously), the MC utilization in Figure VI.1 is not 100%. 
This is due to other factors which impact the MC utili
zation besides the Control Storage utilization, such as 
availability of tasks to be scheduled [12] and fragmenta
tion of MCs (i.e., available MCs do not form allowable 
group). For example, the MC utilization in Figure VI.1 
could be increased if the task interarrival rate was 
increased, but its shape would remain similar. 

To apply the optimal result to PASM, the Control 
Storage service rate p must be selected so that 
Uco p = Xoxo = T U~c A, where _ Uc~ is the Control 
Storage utilization. Hence, I' = (T Urnc A) / Uco . If the 
optimal Control Storage utilization of 50% is selected, 
I' = 2 T U~c A. In the case where there is a uniform 
distribution of the sizes of tasks created (derived in the 
previous sections), p = 5.16 U~c A. If the virtual MC 
utilization i~ assumed to be one, then I' = 5.16 A. In 
actuality, Urnc would be less than one, and a value other 
than one could be used here. Therefore, based on the 
assumption of a uniform distribution of the sizes of 
tasks created, the Control Storage service rate should be 
set to 5.16 times the virtual task page fault rate. 

VII. Micro Controller Idle Time 

Since the MCs in P ASM are not multiprogrammed, 
there is not another task for an MC to execute while it 
is waiting for a page request from its current task to be 
serviced by the Control Storage. In this section, opera
tional analysis is used to determine the MC idle time 
which results from an MC waiting for a page request to 
be serviced by the Control Storage. Note that this does 
not include the time that the MC is idle while it does 
not have a task assigned to it. This derivation makes 
use of Little's Law and is similar to that of the 
"Interactive Response Time Formula" for a terminal 
system in [3J. Let iii be the mean queue length for a 
device (including the request which is being serviced); 
let Xo be the throughput of the device; and let R be the 
accumulated time at that device per request (time spent 
by the request in the queue of the device while waiting 
for service plus the service time of the device). Then 
Little's Law [3J is: iii = Xo R . 

Let I denote the average MC idle time and Z denote 
the average time interval between when an MC resumes 
execution after a page request is serviced and when its 
next page fault occurs. Hence, Z is the average execu
tion time or busy time between page faults for a given 
MC. Each task is executed by a group of one or more 
MCs. Since each MC can have at most one instruction 
stream associated with it, the system has a finite custo
mer population [6] (Le., there is a finite number of page 
requests waiting to be serviced by the Control Storage 
at any given time since each MC cannot have another 
page fault while it is waiting for its current request to 
be serviced). 

A task repeats "busy-idle cycles" while it has a 
group of MCs assigned to it. A busy-idle cycle has two 
phases: the busy phase, when the group of MCs which 
is assigned to the task is executing, and the idle-phase, 
when the group of MCs is waiting for a page fault to be 
serviced. The mean time for a task to complete one 
busy-idle cycle on a group of MCs is I + Z. Note that 

368 

Z is the average time spent in the MC subsystem and I 
is the average time spent in the Control Storage subsys
tem during each busy-idle cycle (see Figure IV.1). Since 
all tasks which are assigned to MCs are repeating busy
idle cycles, iii is equal to T, the average multitasking 
level. Let Xo be the th~ughput of the Control Storage. 
Applying Little's Law, T =Xo(1 + Z) . 

The throughput, Xo, is the product of the utilization, 
Uco, and the service rate, p. So the throughput of the 
Control Storage is Ucsp. The average execution time 
between page faults, Z, is l/v where v is the MC virtual 
page fault rate. Therefore, the average MC idle time is: 

TTl I=--Z=----. 
Xo UcoP v 

This maps to the "Interactive Response Time Formula" 
in [3J by letting the MC busy time correspond to .the 
user think time, the MC idle time correspond to the 
user wait time, the number of tasks executing (i.e., mul
titasking level) corresponds to the number of terminals, 
and the Control Storage throughput corresponds to the 
throughput of the central server. 

Suppose the results for the optimal service rate p 
from the previous section are used. Then the Control 
Storage service rate p = 5.16A and 

1 
A 

T - Ucs5.16 

Uc05.16A 

Next the worst case situation is considered. In the 
worst case the Control Storage is completely utilized, so 
Uco = 1 and 

1= if - 5.16 . 
5.16A 

If the Control Storage is completely utilized, the system 
page fault rate Aoyo must be greater than or equal to the 
Control Storage service rate p, so Aoyo;:: p. Hence, 
based on the 50% criterion and the assumptions used to 
selec!,. the Control Storage service rate p, Aws ;:: 5.16A 
and T ;:: 5.16. If during some time interval there ·are 16 
tasks executing (i.e., a multitasking level of 16), the MC 
idle time during that time interval would be: 

I = 16 - 5.16 = 10.84 = 2.1 1. . 
5.16A 5.16A A 

The time which an MC is busy executing a task is the 
time between page faults, l/A. The time which an MC 
is waiting for a page request to be serviced is its idle 
time, I. During a time interval when there are 16 tasks 
executing, the fraction of time which a given MC would 
be idle is: 

I = 2.1{1/A) = 0677 
1+ (l/A) 3.1(1/A) . . 

So, if during some interval of time the average multi
tasking level was 16 (i.e., worst case level), the MCs 
would be idle 67.7% that time interval. Based on the 
simplifying assumptions in Section V used to compute 
the optimal Control Storage service rate p, the probabil
ity of the worst case occurring is less than 0.1%. Note 
that if the probability had been greater, it would have 
impacted the calculation for the average system page 
fault rate XOY8 which would have resulted in a faster 



Control Storage service rate p. 

VDI. Simulation Results 

In this section results from the PASMOS simulator 
[111 are given. The. simulator has been run with a 
variety of average execution times and distributions for 
the number of MCs a task requires. The results of all 
runs agree with the analytical result of Section V. As 
an example, consider the following simulation run where 
a random number generator was used to produce a uni
form distribution (i.e., Pi = 0.2) for the number of MCs 
a task requires and the expected execution time for the 
tasks was fifteen seconds. The simulation ran for 
twenty thousand simulation seconds and over two 
thousand tasks were executed. The resulting distribu
tion for the number of MCs required by a task for the 
simulation was: Po = 0.191, PI = 0.204, P2 = 0.198, 
P 3 = 0.208, and p. = 0.199. The resulting average exe
cution time for a task which requires 2' MCs for the 
~mulation was: En.. = 15.006, EI = 15.518, E2 = 14.215, 
E3 = 14.~15z....and E. = 15.869. The average MC assign
ment ratIO A was 0.606 and the average multitasking 
level Twas 1.531 streams. (Further details of the simu
lator are beyond the scope of this paper and are given in 
[11]. A description of the task scheduling algorithm 
whIch was used by the simulator is given in [121.) 

Using the equation from Sectio~ V for Rj, the proba
bility that a task which requires 2' MCs is executing on 
a given assigned MC, with the E·s and p·s_ from the 
simulation, the results are found' to be: Ro = 0.030, 
RI = 0.066, R2 = 0.118, R3 = 0.256, and R. = 0.529. 
Substituting the MC utilization and the Rs into the 
equation for the average multitasking level: ' 

T = XERi ~ = (0.606)'E Ri 1~ = 1.530 , 
i=O 2' i=O 2' 

the average multitaking level in found to be 1.530. 
Hence, by using the analytical method of Section V 

with the system characteristics from the simulation it 
has been determined that the average number of 
independent instruction streams is 1.530. The simula
tion results give the average number of instruction 
streams to be 1.531. Therefore, the simulation results 
support the analysis in Section V. 

The simulator may also be used to confirm the worst 
case MC idle time result from Section VII. The Control 
Storage service rate and task page fault rate were 
selected so "that p = 5.16A. To create the worst case 
situation, the distribution of the number of MCs 
required by a given task was adjusted so that all tasks 
would require one MC. The average execution time was 
adjusted so that the assignment ratio for all MCs would 
be one and the a.verage number of .tasks executing,T, 
wou!d approach slXteen. The resultmg average multi
taskmg level was 16.0; the Control Storage utilization 
Ues , was 1.0; and the average MC was idle for 67.5% of 
the simulation time. This result agrees with the 
expected result from the analysis in Section VII where 
in the worst case {i.e., the multitasking level is '16) the 
average MC was Idle 67.7% of the time. Again it is 
noted that the probability that this worst case would 
occur is very small. 

IX. Relation to the General Multiple-SIMD Model 

. ~ general model of ~ multiple-SIMD system is shown 
m FIgure IX.1. There IS a pool of control units with a 

369 

COMMON SECONDARY STORAGE 

POOLOFQ 
CONTROL UNITS (CUs) 

INTERCONNECTION NETWORK 

Figure IX.l: A general model of a multiple-SIMD 
machine. 

common secondary storage, a pool of processing ele
ments, a switch which is used to connect a control unit 
to a group of processing elements, and an interconnec
tion network for communication among the processing 
elements. In the case of PASM, the switch is fixed in 
that each processing element is connected to exactly one 
control unit (MC), and large machines are created by 
combining control units (MCs). Other MSIMD systems, 
such as MAP [9]' use a crossbar type of switch to assign 
the processing elements to the control units. All of the 
control units are not always used. When P ASM is exe
cuting an SIMD task only one of the MCs which is exe
cuting the task is used to make requests for pages. 

The optimal service rate analysis may be applied to 
the general case by letting the used control units 
correspond to the MCs which are making the requests 
and the unused control units correspond to the MCs 
which are executing tasks but not making page requests. 
Thus the analysis applies to the general case where the 
SIMD machines have a power of two processing ele
ments. The power of two constraint may also be eased 
to allow any size SIMD machine. 

x. Conclusion 

In this. paper ~ qu~uei~,g network has been analyzed 
to determme the optImal page request service rate for 
the Control Storage of the P ASM multimicrocomputer 
system. It has been shown that the optimal service rate 
fo~ the PASM Control Storage is much lower than 
mIght be expected. Two possible methods for varying 
the Control Storage service rate include varying the 
nu~ber or type of disks, or changing the method of 
stormg pages on the disks. Simplifying assumptions 
were made abo~t .ave:age execution time, task page 
fault rate, the dlstnbutlOn of the number of MCs which 
a task requires, etc. Based on experience any or all of 
these assumptions can be changed to reflect actual or 
expected system characteristics. Operational analysis 
has been used to determine the MC idle time which 
resu~ts fro~ MCs .having to wait for page requests to be 
servIced. SImulatIOn results have been given which sup
port the analytical result for the average number of 
independent instruction streams and the worst case MC 
idle time. 

This study can also be applied to the use of PASM 
in the MIMD mode of operation or in a combination of 



the MIMD and SIMD modes. When P ASM is operating 
as a number of virtual MIMD machines of varying sizes, 
the MCs may be used to help coordinate the activities 
of the Parallel Computation Unit processors. The coor
dination activity of MIMD mode requires the MCs to 
execute significantly fewer instructions than in the con
trol activity of SIMD mode. Hence, the page request 
rate is significantly lower for MIMD mode than for 
SIMD mode. Since it is expected that in MIMD mode 
each MC will have its own instruction stream, it can be 
treated as one SIMD partition, and incorporated into 
the run-time statistics. 

In summary, a model has been developed for the 
PASM control system memory hierarchy. Using any 
combination of system feature assumptions and actual 
system characteristics (from experience), the model can 
be used to determine the "optimal" service rate for the 
Control Storage. Furthermore, using the model, values 
for the parameters which characterize the expected task 
environment and secondary storage service rate can be 
varied to determine the impact on MC utilization. The 
model can be adapted for use in any multiple-SIMD 
machine with common secondary storage for the multi
ple control units. 

Acknow ledgment 

The authors would like to thank Prof. Peter J. Den
ning, Prof. Dorothy E. Denning, George B. Adams III, 
and Robert J. McMillen for their comments and sugges
tions. 

[1] 

[2] 

[3] 

References 
P. J. Denning, "Virtual memory," Computing 
Surveys, vol. 2, pp. 153-189, Sep. 1970. 
P. J. Denning, "Working sets past and present," 
IEEE Trans. Soft. Engr., vol. SE-6, pp. 64-84, 
Jan. 1980. 
P. J. Denning and J. P. Buzen, "The operational 

370 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10J 

[l1J 

[12] 

analysis of queueing network models," Computing 
Surveys, vol. 10, pp. 225-262, Sep. 1978. 
P. J. Denning and K. C. Kahn, "An L=S cri
terion for optimal multiprogramming," Int'l. 
Symp. Compo Performance, Modeling, Measure
ment, and Evaluation, ACM, Mar. 1976, pp. 219-
229. 
M. J. Flynn, "Very high-speed computer sys
tems," Proc. IEEE, vol. 54, pp. 1901-1909, Dec. 
1966. 
L. Kleinrock, Queueing Systems, Vol. 1: Theory, 
John Wiley and Sons, Inc., New York, 1975. 
J. T. Kuehn, H. J. Siegel, and P. D. Hallenbeck, 
"Design and simulation of an MC6800O-based 
multimicroprocessor system," 1982 Int'l. Conf. 
Parallel Processing, Aug. 1982, to appear. 
J. Leroudier and D. Potier, "Principles of 
optimality for multiprogramming," Int'l. Symp. 
Compo Performance, Modeling, Measurement, and 
Evaluation, ACM, Mar. 1976, pp. 211-218. 
G. J. Nutt, "Microprocessor implementation of a 
parallel processor," 4th Symp. Compo Architec
ture, Mar. 1977, pp. 147-152. 
H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. 
Mueller, Jr., H. E. Smalley, Jr., and S. D. Smith, 
lOp ASM: a partitionable SIMD /MIMD system for 
image processing and pattern recognition," IEEE 
Trans. Comp., vol. C-20, pp. 934-947, Dec. 1981. 
D. L. Tuomenoksa, Design and Analysis of an 
Operating System for a Reconfigurable Multimi
crocomputer System, Ph.D. Dissertation, Purdue 
University School of Electrical Engineering, in 
preparation. 
D. L. Tuomenoksa and H. J. Siegel, "Analysis of 
multiple-queue task scheduling algorithms for 
multiple-SIMD machines," 9rd Int'l. Conf. Distri
buted Computing Systems, Oct. 1982, to appear. 


