
w

0 :z

w

C
J

ffi
:z

L

L

Ci)
:z

·
en

en
o

w

C
J

0
0

~
:z

......

o
~

_
C

w
-=

tz
a

:
~

W
i!=

:z
o

o
.

~
W
~
O

....J
5

0
-

w

.i'
0

!cc
....J

a
:

:z

....J
0

.
a

:
<

t
w

a

:
....

Cf
:z

-~

co
a>

,....

1983 INTERNATIONAL CONFERENCE
O

N PARALLEL PROCESSING
H. J. Siegel and Leah Siegel

IS
S

N
 0

1
9

0
-3

9
1

8

IS
B

N
 0-8186-0479-4

IE
E

E
 C

a
ta

lo
g

 N
u

m
b

e
r 83C

H
1922-4

L
ib

ra
ry o

f C
o

n
g

re
ss N

u
m

b
e

r 79-640377
IE

E
E

 C
o

m
p

u
te

r S
o

cie
ty O

rd
e

r N
o

. 479

ffi~
I->
:::lt-ui
llW

U
I

~
u
w

ooa:
:uui11

PROCEEDINGS
OF THE

1983 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING
August23-26, 1983

H. J. Siegel and Leah Siegel
Editors

Co-Sponsored by

Department of Computer and Information Science
OHIO STATE UNIVERSITY

Columbus, Ohio

and the

IEEE Computer Society

In Cooperation with the

/··~

·~
Association for Computing Machinery

ISSN 0190-3918
ISBN 0-8186-0479-4

IEEE Catalog Number 83CH1922-4
Library of Congress Number 79-640377
IEEE Computer Society Order No. 479

IEEE

COMPUTER
SOCIETY~
PRESS ~®

The papers appearing in this book comprise the proceedings of the rneeting mentioned on the
cover and title page. They reflect the authors' opinions and are published as presented and with
out change, in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors, IEEE Cornr11tcr Society Press. or the Institute
of Electrical and Electronics Engineers, Inc.

Published by IEEE Computer Society Press
1109 Spring Street

Suite 300
Silver Spring, MD 20910

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for
private use of patrons those articles in this vo!ume that carry a code at the bottom
of the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are
permitted to photocopy isolated articles tor noncommercial classroom use without
tee. For other copying, reprint or republication permission, write to Director, Publish
ing Services, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copy
right© 1983 by The Institute of Electrical and Electronics Engineers, Inc.

ISSN 0190-3918
ISBN 0-8186-0479-4 (paper)

ISBN 0-8186-44 79-6 (microfiche)
ISBN 0-8186-8479-8 (casebound)
Library of Congress 79-640377
IEEE Catalog No. 83CH1992-4

IEEE Computer Society Order No. 479

Order from: IEEE Computer Society
Post Office Box 80452
Worldway Postal Center
Los Angeles, CA 90080

IEEE Service Center/
445 Hoes Lane
Piscataway, NJ 08854

~ The Institute of Electrical and Electronics Engineers, Inc.

11

PREFACE

This volume is the Proceedings of the 1983 International Conference on Parallel Process

ing, the twelfth in a series of annual meetings. This year's conference represents the largest

yet, both in number of papers submitted and number of papers presented at the conference.

The previous records were 136 papers submitted (1981) and 67 papers presented (1982). This

year 240 papers were submitted! The final program contains 97 papers from twelve countries.

Academia, industry, and government research labs are all represented.

Because of the large number of excellent papers submitted, the task of arriving at a pro

gram was an extremely difficult one. For the first time, the Parallel Processing Conference

will have parallel sessions in order to accommodate more papers. Even at that, there were

many very good papers which it was not possible to include, and there were many papers sub

mitted as regular papers which were accepted as short papers. On the positive side, because

of the large number of submissions, all of the papers finally accepted and included in this

proceedings are of the highest quality. We sincerely thank all of the authors who submitted

papers for their interest in the conference.

Special thanks go to the 379 referees who read and evaluated the manuscripts. Each sub

mitted paper was sent to three referees. Without the efforts of these reviewers, the task of

arriving at a program would have been virtually impossible. The names of the referees are

listed in these proceedings.

We wish to thank Dr. Ben Coates, Head of the Electrical Engineering School at Purdue,

for his support and encouragement. We thank Dee Dee Dexter, Carol Edmundson, and Jenny

Hiatt for their excellent job in managing the massive amounts of paperwork involved in han

dling 240 submissions, 720 reviews, and 97 accepted papers. We also want to thank Wanda

Booth, Andy Hughes, Sharon Katz, Mickey Krebs, Nancy Lein, Pat Loomis, Vicky Spence,

and Linda Stovall for their assistance. Ken Batcher provided valuable information about the

running of the 1982 conference. We thank Ming T. Liu and Chuan-Lin Wu for handling the

reviewing of the papers submitted from Purdue.

Finally, we wish to acknowledge the efforts of Tse-Yun Feng. As always, he has been a

one-man conference organizing committee, handling publicity, local arrangements, budget, and

all other facets of the conference. We thank him for giving us the opportunity to chair this

year's technical program.

111

H. J. Siegel
Leah Siegel
Program Co-Chairs

Purdue University
June 1983

Ikram Abdou
M.A. Abidi
Amir Abouelnaga
Shrikant Acharya
W. Ackerman
George B. Adams III
Loyce Adams
Subhash Agarwal
Tilak Agerwala
Dharma Agrawal
Mohan Ahuga
S.J. Allan
Dave Anderson
John B. Anderson
Richard Antony
Bruce Arden
Clifford Arnold
V. Ashok
J.W. Atwood
T.S. Axelrod
Takanobu Baba
Hussein Badr
Jean-Loup Baer
T.R. Bashkow
Kenneth Batcher
Paul Bay
Stephan Bechtolsheim
Jon Bentley
Bruce Berra
Bharat Bhargava
L.N. Bhuyan
Gianfranco Bilardi
John Board, Jr.
Michael Bodner
Andre Bondi
P. Bounds
Faye Briggs
Edward C. Bronson
Mark E. Brown
Jim C. Browne
John Bruner
John Burger
John Burkley
F.J. Burkowski
Steven Butner
Bill Buzbee
D.A. Calahan
James Calhoun
Peter Cappello
Avinash Chandak
Chiou-Min Chang
Su-shing Chen
Ming-Yang Chern
Chung-Yang Chiang
Yetung Chiang
Francis Chin
Y.C. Chow
Carolyn Cline
Fred Cohen
Leonard Cohn
Hank Cook
Ed Coyle
Karel Culik
David Culler
Janice Cuny
Ron Cytron

LIST OF REFEREES

Scott Danforth
Edward Davidson
Al Davis
Carl Davis
Nat Davis
Doug DeGroot
E. Dekel
Narsingh Deo
B.C. Desai
Sanjay Deshpande
Dave DeWitt
S. Dhar
Daniel Dias
Nikitas Dimopoulos
Karl Doty
Robert Douglass
Edwin Drogin
David Du
P.F. Dubois
Ahmed Elmagarmid
P.G. Eltgroth
P. Enslow
M.D. Ercegovac
Lars Ericson
Adly Fam
Art Feather
Raphael Finkel
Allen Firstenberg
Paul Fi sher
Eugene Fiume
Raymond Ford
T .J. Forquer
J .A.B. Fortes
Alain Fournier
M. Franklin
King-Sun Fu
Henry Fuchs
George Fucik
D.S. Fussell
Daniel Gajski
John Gallant
E.J. Gallopoulos
Dennis Gannon
Oscar Garcia
J.L. Gaudiot
Pieter Geerkens
S.A. Ghozati
Gary Gladden
S.M. Goldwasser
Allan Gottlieb
James Graham
Marshall D. Graham
Peter Gregono
William Greiman
Nancy Griffeth
Gao Guang-Rong
John Gustafson
John Guttag
N.R. Hall
Susanne Hambrusch
Sang Han
Robert Haralick
C.D. Harber
Paula Hawthorn
Kye Hedlund
Don Heller

iv

frank P. Hiner, III
Daniel Hirshberg
Lawrence Ho
Yang-Chang Hong
G.S. Hope
William Hopkins
Edward Horvath
C.E. Houstis
Ching Hsiao
YuHen Hu
Paul Hudak
Michael Huhns
Kai Hwang
Yul Inn
Keki Irani
Mary Jane Irwin
Robert Israel
M.R. Ito
Bijan Jabbari
Bharadwaj Jayaraman
David Jefferson
Roy Jenevein
Lennert Johnsson
Harry Jordan
J. Robert Jump
Thaddeus Kadela
Avinash c. Kak
Gerald Kane
Alejandro Kapauan
Svetlana Kartashev
Krishna Kavipurapu
John Kearns
Robert Keller
T.M. Kinter
Gloria Kissin
Dave Klappholz
Hideaki Kobayashi
Aaron Konstam
Israel Koren
Suraj Kothari
J • S. K owa Li k
Clyde Kruskal
Annette Krygiel
James T. Kuehn
J.G. Kuhl
Robert Kuhn
William Kuhn
Ashok Kulkarn
Manoj Kumar
S.P. Kumar
H.T. Kung
S.Y. Kung
Ten-Hwang Lai
s. Lakshmivarahan
C. Lam
Duncan Lawrie
Daryl Lawton
c.w. Lee
Francis Lee
Hykyu Lee
Kyungsook Lee
Manjai lee
Wong-Hua Lee
William Leler
Bruce Lester
Steven Levitan

Hungwen Li
Pey-yun Peggy Li
Tao Li
Richard Lian
Karl Lieberherr
Gie-Ming Lin
Huai-An Lin
Woei Lin
Gary Lindstrom
G.J. Lipovski
Yury Litvin
Ming T. Liu
David Loendorf
Hubert Love, Jr.
Richard Lyon
Bill MacDonald
Gyula Mago
Srinivas Makam
Miroslaw Malek
O.P. Malik
Creve Maples
Peter Marinos
Gerald Masson
A.O. McAulay
Charlie McDowell
S.D. McEwan
Jim McGraw
Robert J. McMillen
P. Mehrotra
Joseph Mercurio
Dave Meyer
David Middleton
Russ Miller
0. Robert Mitchell
Joseph Mohan
Dan I. Moldovan
Robert Montoye
Karam Mossaad
Fred Mowle
Trevor Mudge
Phil Mueller
Tadao Murata
Barbara Naused
Vi ct or Ne ls on
Lionel Ni
Wesley Nurden
John O' Donne Ll
R.R. Oldehoeft
Ibrahim Onyuksel
J. Opartny
Eli Opper
Yavuz Oruc
Krishnan Padmanabhan
Christos Papachristou
Stott Parker
Janak Patel
Dave Paterson
Girish Pathak
A.R. Pleszkun
Jerry L. Potter
Dhiraj Pradhan
Terrence Pratt
S. Prei ser
Kendall Preston, Jr.
Noah S. Prywes
Krish Purswani
G.Z. Qadah
Donna Quammen
Michael Quinn

C.S. Raghavendra
T .A. Rahman
Bharat Rathi
S. Reddy
Daniel Reed
Anthony Reeves
R.A. Reynolds
John Rice
Tom Rice
Garry Rodrigue
Gruia-Catalin Roman
Azriel Rosenfeld
J. Rootenberg
Jerry Rothstein
Larry Rudolph
Sartaj Sahni
Ahmed Sameh
Nicola Santoro
Subhash Sarin
John Savage
Prashant Sawkar
Michael Schlansker
J .G. Schwartz
Herb Schwetman
Robert Seban
Zary Segall
Charles Seitz
Matthew Sejnowski
Sowrirajan Seshadri
David Shaw
John Shen
Heonshik Shin
Kang Shin
Howard Sholl
Dan Siewiorek
A. Si lberschatz
Harvey Silverman
Bart Sinclair
Dan Slotnick
Bradley Smith
Bruce Smith
Burton Smith
D.R. Smith
Gerald Smith
Kirk Smith
s. Diane Smith
Lawrence Snyder
Mary Soffa
Vason Srini
John A. Stankovic
Kenneth Steiglitz
Stephen Stepoway
Stanley Sternberg
L.J. Stockmeyer
Sal Stolfo
Albert Stone
Harold Stone
Quentin Stout
Philip Swain
Earl Swartzlander
Tsung-Wei Sze
Ji ro Tanaka
Steve Tanimoto
Fred Taylor
Suchai Thanawastien
Alexander Thomasian
C.D. Thompson
Kenneth Thurber
Ioannis Toll is

v

Kishor Trivedi
Roger Tsai
F.M. Tse
Yung Tsin
David Tuomenoksa
Leonard Uhr
Jeff Ullman
L. David Umbaugh
W.K. Van Nurden
John Van Rosendale
Andre van Tilborg
Peter Varman
Alex Veidenbaum
James Vellenga
Charles Vick
Newman Vosbury
Robert Voigt
Robert Wagner
Benjamin Wah
Abraham Waksman
Don Walker
Pong-Sheng Wang
D. Wann
Robert Wedig
Charles Weems
Rich Weiss
David Wells
Charles Wetherell
Andrew Whinston
Jack Wileden
Elizabeth Williams
Tom Williams
David Wilson
Larry Wittie
F.S. Wong
Nam Woo
Chuan-Li n Wu
Steve Wu
Yee-Hong Yang
Phil Yeh
W.C. Yen
Mark Yoder
Matthew Yuschik

Acknowledgment of Prior Work

Part of a chapter in our articli "Parallel Simulation by Means

of a Prescheduled MIMD-System Featuring Synchronous Pipeline

Processors", published in the Proceedings of the 1982 Interna

tional Conference on Parallel Processing under the subheading

''Processor Scheduling Strategy" is quite similar to the work

of D'Hollander. While we acknowledged the original work, due

to an oversight D'Hollander's paper was not mentioned and we

profoundly regret this omission. The references in our article

should therefore be augmented by: E.H. D'Hollander "Speedup

Bounds for Continuous System Simulation on a Homogeneous Multi

processor", Int. Conf. on Par. Proc. 1981, pp 176 - 182.

M. Tadjan, R. BLlhrer, W. Halg

Swiss Federal Institute of Technology

Author Index

Abdel-Rahman, T. 369 Hope, G.S. 172
Abdou, I.E. 255 Hoshino, T. 95
Abe, H. 95 Hsiao, c.c. 222
Adams, L. M. 44, 132 Hwang, K. 537
Agrawala, A. 244 Irani, K.B. 307, 338, 437
Agusa, K. 135 Ishizaki, M. 47
Ai so, H. 47 Israel, R.K. 503
Allan, S.J. 303 Jabbari, B. 151
Arnold, C.N. 530 Jayaraman, B. 416
Awervuch, B. 17 5 Jefferson, D. 384
Axelrod, T.S. 350 Jenevein, R. 51
Baba, T. 478 Jump, J.P. 10
Baer, J.L. . 429 Kageyama, T • 95
Bay, P. 421 Kamimura, T. 95
Bhuyan, L.N. 2 Kanai, H. 478
Bronson, E.C. 275 Kane, G.R. 261
Browne, J.C. 25, 51 ' 359 Kartashev, s.I. 206
Brundiers, H.-J. 511 Kartashev, s.P. 206
Bruner, J.D. 240 Kawai, T. 95
Buehrer, R.E. 511 Klappholz, D. 395
Burger, J.R. 547 Kleinoeder, w 325
Cappello, P.R. 448 Koren, I. 335
Cezzar, R. 395 Kothari, s.c. 76
Chandak, A. 395 Kuck, D. 524
Chern, M.-Y. 90, 79 Kuhl, J.G. 154
Chiang, y.p. 374 Kumar, M. 10
Crookes, D. 232 Kurokawa, T. 47
Dansf orth, s. 194 Lai, T.-H. 183
Davidson, E.S. 461 Lakshmi varahan, s. 76
Degroot, D. 19, 106 Lange, o. 544
Dennis, J .B • 331 Lawrie, D.H. 71' 524
Deshpande, s. 25, 51 Lawton, D.T. 492
Dhar, s. 59 Lee, c.w. 2
Dimopoulos, N. 520 Lee, D.c.H. 65
Doty, K.W. 158 Lee, W.-H. 506
Du, H.C. 429 Lee, Y.-H. 362
Dubois, P.F. 350 Leler, w. 341
Eltgroth, P.G. 350 Lester, B.P. 381
Forquer, T.J. 344 Li, H. 319
Franklin, M.A. 59 Li, P.-Y.P. 202
Freiss, H. 511 Lin, w. 114
Fritsch, G. 325 Linster, c.u. 325
Fu, K.-s. 374 Lipovski, G.J. 51
Fussell, D.S. 440, 458 Litvin, Y. 252
Gajski, D. 524 Logan, D. 514
Gallopoulos, E.J. 29 Makam, s .v. 496
Gao, Q.-s. 87 Malek, M. 506
Gold.wasser, S.M. 269 Malik, O.P. 172
Hashimoto, K. 478 Mancarella, P. 293
Hashimoto, N. 478 Maples, c. 514
Hiner, F. P. , III. 226 McDowell, C.E. 472
Ho, L.Y. 338 McEwan, S.D. 29
Hong, Y.-c. 315 Mehrotra, P. 132

Vll

Milligan, p. 232 Shen, J.P. 65
Mohan, J. 191 Siloach, Y. 175
Mudge, T.N. 369 Shin, K.G. 362
Murata, T. 79, 90 Shirakawa, T. 95
Newman, I .A. 367 Siegel, H.J. 117' 407
Ni, L.M. 537 Siegel, L.J • 275
Noor, A.I. 172 Siewiorek, D. 164
Oed, w. 544 Silberman, G.M. 335
Ohno, Y. 135 Silberschatz, A. . 440
Okuda, K. 478 Snyder, L. 222
Oldehoeft, R.R. 303 Stallard, R.P. 367
Onyuksel, I.H. 437 Steenstrup, M.E. 492
Oruc, A.Y. 126 Steiglitz, K. 448
Oyanagi, Y. 95 Stout, Q.F. 214
Padmanabhan, K. 71 Sugimoto, s. 135
Patrick, M. 132 Sze, T. 258
Perrott, R.H. 232 Tabata, K. 135
Perry R.P. 344 Tadian, M. 511
Pleszkun, A.R. 461 Takefuji, Y. 47
Potter J.L. 486 Takenouchi, K. 95
Pratt, T.W. 132 Thomasian, A. . 421
Purdy, W.R.M. 232 Tse, F .M. 144
Purswani, K. 151 Ts in, Y.H. 180
Qadah, G.Z. 307 Tuomenoksa, D.L. . 407
Raghavan, P. 154 Turini, F. 293
Raghavendra c.s. 496 Van Rosendale, J. . 44, 132
Ramakrishnan, I. V. 440 Varman, P.J. 458
Rathbun, w. 514 Voigt, R.G. 132
Rathi, B.D. 51 Volkert, J. 325
Reddi, A.V. 148 Walker, o. 51
Reddy, S.M. 154 Wang, R.-Q. 87
Reed, D.A. 161 Wann, D.F. 59
Reeves, A.P. 240 Weaver, D. 514
Reynolds, R.A. 269 Weems, c. 492
Roman, G.-c. 503 Wells, D.L. 261
Rong, G.G. 331 Williams, E. 404
Sahni, s. 183 Wilson, A. 164
Sameh, A. 524 Woo, N.S. 244
Sawkar, P.S. 344 Woodward, M.C. 367
Seban R.R. 117 Wu, C.-L. 114
Segall, z. 164 Yamazaki, K. 478
Sejnowski, M. 51 Yang, Y. 258
Sekiguchi, s. 95 Yasrebi, M. 25

viii

Table of Contents

Preface. iii

List of Referees iv

Author Index . . vi

Acknowledgement of Prior Work. • viii

SESSION 1: PANEL DISCUSSION: PERFORMANCE OF EXISTING SUPERCOMPUTERS
ON COMPUTATIONALLY INTENSIVE TASKS

SESSION 2A: MULTISTAGE NETWORK PERFORMANCE

An Interference Analysis of Interconnection Networks • • • • • • • • • • 2
Laxmi N. Bhuyan and c.w. Lee

Generalized Delta Networks • •
Manoj Kumar and J.R. Jump

10

Expanding and Contracting SW-Banyan Networks • • • • • • • • • • • • • • 19
Doug DeGroot

A Comparison of Circuit Switching and Packet Switching for Data
Transfer in Two Simple Image Processing Algorithms • • • • • • 25

Mehrad Yasrebi, Sanjay Deshpande, and J.C. Browne

SESSION 2B: NUMERICAL ALGORITHMS I

Numerical Experiments with the Massively Parallel Processor. • • • • • • 29
E.J. Gallopoulos and s.D. McEwan

An M-Step Preconditioned Conjugate Gradient Method for
Parallel Computation • 36

Loyce Adams

Minimizing Inner Product Data Dependencies in
Conjugate Gradient Iteration • 44

John Van Rosendale

New Matrix Equation Solvers in GF(2) Employing Cramer
with Chio Method • • • • • • • • • • • • • • • • •

Yoshiyasu Takefuji, Takakazu Kurokawa,
Masato Ishizaki, and Hideo Aiso

SESSION 3A: MULTISTAGE NETWORKS

Specification and Implementation of an Integrated Packet

Communication Facility for an Array Computer ••••••

Bharat Deep Rathi, Sanjay Deshpande, Matthew Sejnowski,
Don Walker, Roy Jenevein, G.J. Lipovski, and J.C. Browne

ix

47

51

Timing Control of VLSI Based NlogN and Crossbar Networks
Sanjay Dhar, Mark A. Franklin, and Donald F. Wann

Easily-Testable (N,K) Shuffle/Exchange Networks.
David C.H. Lee and John Paul Shen

Fault Tolerance Schemes in Shuffle-Exchange Type
Interconnection Networks • • • • • 11!1 • • • • If • • • • • • • • • • •

Krishnan Padmanabhan and Duncan H. Lawrie

A Condition Known to be Sufficient for Rearrangeability of the
Benes Class of Interconnection Networks with 2x2 Switches Is
Also Necessary • • • • • • • . • •

s.c. Kothari and s. Lakshmivarahan

SESSION 3B: NUMERICAL ALGORITHMS II

A Fast Algorithm for Concurrent LU Decomposition and
Matrix Inversion . . • • • • • • • •

Ming-Yang Chern and Tadao Murata

Vector Computer for Sparse Matrix Operations
Qing-Shi Gao and Rong-Quan Wang

Efficient Matrix Multiplications on a Concurrent

59

65

71

76

79

87

Data-Loading Array Processor • • • • . • • • • • • • • • • • • • . • • • 90
Ming-Yang Chern and Tadao Murata

Highly Parallel Processor Array "PAX" for Wide
Scientific A~plications •.••••••••••••••••

Tsutomu Hoshino, Tomonori Shirakawa, Takeshi Kamimura,
Takahisa Kageyama, Kiyo Takenouchi, Hidehiko Abe,
Satoshi Sekigu?hi, Yoshio Oyanagi, and Toshio Kawai

SESSION 4A: NETWORK CONNECTION CAPABILITIES

Partitioning Job Structures for SW-Banyan Networks
Doug DeGroot

Configuring Computation Tree Topologies on a

95

106

Distributed Computing System • 114
Woei Lin and Chuan-Lin Wu

Performing the Shuffle with the PM2I and Illiac SIMD
Interconnection Networks • • • • • • • 117

Robert R. Seban and Howard Jay Siegel

A Classification of Cube-Connected Networks with a
Simple Control Scheme. • . • • 126

A. Yavuz oruc

SESSION 4B: SPECIAL PURPOSE SYSTEMS

The FEM-2 Design Method. • • • • • • • • • • • • • • • •
Terrence w. Pratt, Loyce M. Adams, Piyush Mehrotra,
John Van Rosendale, Robert G. Voigt, and
Merrell Patrick

x

132

A Multi-Microprocessor System for Concurrent LISP. • • • • • • • • • • • 135
Shigeo Sugimoto, Kiyoshi Agusa, Koichi Tabata,
and Yutaka Ohno

A Multi-Micro System for I/O Intensive Applications. • • • • • • • • • • 144
F.M. Tse

Pipeline and Parallel Architectures for Computer
Communication Systems. • 148

Arumalla v. Reddi

An Interface Message Processor with a Multiprocessing
Architecture

Krish Purswani and Bijan Jabbari

SESSION SA: NODE-TO-NODE NETWORKS

A Class of Graphs for Processor Interconnection.
S.M. Reddy, p. Raghavan, and J.G. Kuhl

Dense Bus Connection Networks ••
Karl w. Doty

1S1

1S4

1S8

A Simulation Study of Multimicrocomputer Networks. • • • • • • • • • • • 161
Daniel A. Reed

Evaluation of Multiprocessor Interconnect Structures
with the Cm* Testbed • • • • • • • • • • • • •

Andrew Wilson, Dan Siewiorek, and Zary Segall
164

Slot-Based Multi-Access Protocol for Local Computer Network. • • • • • • 172
A.I. Noor, G.s. Hope, and o.P. Malik

SESSION SB: NON-NUMERICAL ALGORITHMS I

New Connectivity and MSF Algorithms for Ultracomputer
and PRAM • • • • • • • 175

B. Awerbuch and Y. Shiloach

Bridge-Connectivity and Biconnectivity Algorithms for
Parallel Computer Models • 180

Yung H. Tsin

Anomalies in Parallel Branch-and-Bound Algorithms. • • • • • • • • • • • 183
Ten-Hwang Lai and Sartaj Sahni

Experience with Two Parallel Programs Solving the Traveling

Salesman Problem
Joseph Mohan

SESSION 6A: TREE STRUCTURED SYSTEMS

DOT, A Distributed Operating System Model of a

191

Tree-Structured Multiprocessor. • 194
Scott Danforth

xi

The Tree Machine: An Evaluation of Strategies for Reducing
Program Loading Time. • • • • • • • • • •

Pey-yun Peggy Li and Lennart Johnsson

Optimal Routing Algorithms in Multicomputer Networks
Organized as Reconfigurable Binary Trees. •

Svetlana P. Kartashev and Steven I. Kartashev

SESSION 6B: NON-NUMERICAL ALGORITHMS II

Sorting, Merging, Selecting, and Filtering on Tree

. . . . • • • 202

. 206

and Pyramid Machines. • • • • • • • • • • • • • •••••••••• 214
Quentin F. Stout

Omni-sort: A Versatile Data Processing Operation for VLSI •••••••• 222
Ching c. Hsiao and Lawrence Snyder

Pseudo Associative Linking: A High-Speed Searching Algorithm
for Parallel Processors • 226

F.P. Hiner III

SESSION 7A: PARALLEL PROGRAMMING AND LANGUAGES

Implementation of an Array and Vector Processing Language • • • • • • • • 232
R.H. Perrott, D. Crookes, P. Milligan, and
W.R.M. Purdy

A Parallel P-Code for Parallel Pascal and Other High
Level Languages • • • • • • • • • • • • •

John D. Bruner and Anthony P. Reeves
• . • • • 240

The DC1 Flow Schema with the Data/Control-Driven Evaluation • • • • • • • 244
Nam Sung Woo and Ashok A. Agrawala

Top-Down Data Flow Programming. • 252
Yury Litvin

SESSION 7B: IMAGES AND SPEECH

A Pipeline Machine for Image Processing Applications ••••••••••• 255
Ikram E. Abdou

An Evaluation Study of Six Topologies of Parallel
Computer Architectures for Scene Matching • • • • • • • • • • • • • • • • 258

Yee-Hong Yang and Tsung-Wei Sze

An Architecture for Efficient Generation of Fractal
Surfaces. • • • • • • • • • • • •

Stephen L. Stepoway, David L. Wells, and
Gerald R. Kane

• • • • • • • • • • • 261

An Architecture for the Real-Time Display and Manipulation
of Three~Dimensional Objects. • • • • • ••••••••••••• 269

S.M. Goldwasser and R.A. Reynolds

Xll

A Parallel Architecture for Labeling, Segmentation,
and Lexical Processing in Speech Understanding. • • • • • • • • • • • 275

Edward c. Bronson and Leah Jamieson Siegel

SESSION 8A: EXPRESSING PARALLELISM

On the Algebraic Specification of Concurrency and
Communication • • • • • • • • • • .. • • • • • • • 281

J.P. Finance and M.S. Ouerghi

Introduction to the Poker Parallel Prograrilming
Environment • • • •

Lawrence Snyder
• . . • 289

A High Level Analysis Tool for Concurrent Programs •••••••••••• 293
Paolo Mancarella and Franco Turini

A Stream Definition for Von Neumann Multiprocessors • • • • • • • • • • • 303
S.J. Allan and R.R. Oldehoeft

SESSION 8B: DATABASE MACHINES/SIGNAL PROCESSING

A Database Machine for Very Large Relational Databases •••••••••• 307
G.Z. Qadah and K.B. Irani

Efficient Computing of Relational Join Operations by
Means of Specialized Hardware • • • • • • • • • • • ••••••••• 315

Yang-Chang Hong

A VLSI Modular Architecture Methodology for
Realtime Signal Processing Applications • • • • • • • • • • • • • • • 319

Hungwen Li

EMSY85 - The Erlangen Multi-Processor System for a
Broad Spectrum of Applications. • • • • • • • • •••••••••• 325

G. Fritsch, w. Kleinoeder, c.u. Linster,
and J. Volkert

SESSION 9A: DATA FLOW

Maximum Pipelining of Array Operations on Static Data
Flow Machine •••••••••••••

Jack B. Dennis and Gao Guang Rong

A Direct Mapping of Algorithms onto VLSI Processing

• • • • • • • • • • 331

Arrays Based on the Data Flow Approach. • • • • • • • • • • • • • • • • • 335
Israel Koren and Gabriel M. Silberman

An Algorithm for Processor Allocation in a Dataflow
Multiprocessing Environment • 338

Lawrence Y. Ho and Keki B. Irani

A Small, High-Speed Dataflow Processor •••••••••••••••••• 341
Wm. Leler

Xlll

Programmable Modular Signal Processor -- A Data
System for Real-Time Signal Processing. • •

Prashant s. Sawkar, Timothy J. Forquer,

Flow Computer
• • • • • • 344

and Richard P. Perry

SESSION 9B: SIMULATION/OPERATING SYSTEMS

A Simulation for MIMD Performance Prediction -- Application
to the S-1 MkIIa Multiprocessor ••••.•••••••••••••••• 350

T.S. Axelrod, P.F. Dubois, and P.G. Eltgroth

Vectorization of Discrete Event Simulation.
Avinash Chandak and J.C. Browne

Analysis of Backward Error Recovery
Processes with Recovery Blocks •••

Kang G. Shin and Yann-Hang Lee

for Concurrent

. • . . • . • • . . • . 3 59

. . . • ·- 362

Improved Multiprocessor Garbage Collection Algorithms •••••••••• 367
I.A. Newman, R.P. Stallard, and M.c. Woodward

SESSION 10A: MODELS

Efficiency of Feature Dependent Algorithms for the
Parallel Processing of Images • 369

T.N. Mudge and T. Abdel-Rahman

Matching Parallel Algorithm and Architecture ••••••••••••••• 374
Yetung P. Chiang and King-Sun Fu

Coherent Flow of Information in Parallel Systems ••••••••••••• 381
Bruce P. Lester

Virtual Time. 384
David Jefferson

SESSION 10B: SCHEDULING RESOURCES

Process Management Overhead in a Speedup-Oriented
MIMD System • 395

Ruknet Cezzar and David Klappholz

Assigning Processes to Processors

Systems • • • • • • • • •
Elizabeth Williams

in Distributed

Preloading Schemes for the PASM Parallel

• • • • • • • • • • • • 404

Memory System • 407
David Lee Tuomenoksa and Howard Jay Siegel

Constructing a Parallel Implementation from
High-Level Specifications: A Case Study Using
Resource Expressions . ••......•.•.•••..•.••.•..• 416

Bharadwaj Jayaraman

XIV

SESSION 11A: SYSTEM PERFORMANCE

Queueing Network Models for Parallel Processing
of Task Systems • . • • • • • . . . • • . . . • • • • • • • • • • • . 421

Alexander Thomasian and Paul Bay

On the Performance of Interleaved Memories
with Non-Uniform Access Probabilities .•.••••••..•••. 429

H.C. Du and J.L. Baer

A Markovian Queueing Network Model for Performance
Evaluation of Bus-Deficient Multiprocessor Systems. . • • • • • . 437

Ibrahim H. Onyuksel and Keki B. Irani

SESSION 11B: VLSI PROCESSOR ARRAYS

On Mapping Homogeneous Graphs on a Linear
Array-Processor Model • • . • • • • • • • • • • • • . • . . • • • • • 440

I.V. Ramakrishnan, D.S. Fussell,
and A. Silberschatz

Unifying VLSI Array Designs with Geometric Transformations ••.•.••. 448
Peter R. Cappello and Kenneth Steiglitz

Design of Robust Systolic Algorithms•.••..•••••••.• 458
Peter J. Varman and Donald s. Fussell

SESSION 12A: COMPUTER ARCHITECTURES

Structured Memory Access Architecture••.•..••.••. 461
A.R. Pleszkun and E.S. Davidson

A Simple Architecture for Low Level Parallelism •••••..•••..• 472
Charles E. McDowell

Hierarchical Micro-Architectures of a Two-Level
Microprogrammed Multiprocessor Computer ••••

Takanobu Baba, Katsuhiro Yamazaki, Nobuyuki Hashimoto,
Hiroyuki Kanai, Kenzo Okuda, and Kazuhiko Hashimoto

SESSION 12B: ASSOCIATIVE PROCESSING/DISTRIBUTED SYSTEMS

Alternative Data Structures for Lists in

. . • • . . . 4 78

Associative Devices
J.L. Potter

. 486

Determination of the Rotational and Translational
Components of a Flow Field Using a Content
Addressable Parallel Processor •••.•••••••••••.••••.. 492

M.E. Steenstrup, D.T. Lawton,
and c. Weems

Dynamic Relibility Modeling and Analysis of
Computer Networks . 496

Srinivas v. Makara and c.s. Raghavendra

xv

Functional Specification of Distributed Systems • • • • • • • • • • • • • 503
Gruia-Catalin Roman and Robert K. Israel

SESSION 13A: MULTIPROCESSOR SYSTEMS

MOPAC: A Partitionable and Reconfigurable Multicomputer
Array . 506

Wong-Hua Lee and Miroslaw Malek

The Multiprocessor EMPRESS: A Useful Tool for Studying
Parallelization Concepts ••••••••••••••••••••••••• 511

Hans-Joerg Brundiers, Richard E. Buehrer,
Hansmartin Friess, and Milan Tadian

Performance of a Modular Interactive Data Analysis
System (MIDAS) ••••••••••••••

Creve Maples, Daniel Weaver, Douglas Logan,
and William Rathbun

. • • • • • • • • . . 514

The Homogeneous Multiprocessor Architecture -- Structure
and Performance Analysis. • 520

Nikitas Dimopoulos

Cedar -- A Large Scale Multiprocessor. • • • • • • • • • • • • • • • • • • 524
Daniel Gajski, David Kuck, Duncan Lawrie,
and Ahmed Sameh

SESSION 13B: PIPELINING

Vector Optimization on the CYBER 205. • • • • • • • • • • • • • • • • • • 530
Clifford N. Arnold

Pipelined Evaluation of First-Order Recurrence
Systems • 5 3 7

Lionel M. Ni and Kai Hwang

The Solution of Linear Recurrence Relations on
Pipelined Processors ••••••••••••

w. Oed and o. Lange
• • • • • • • • • • • • • 544

Data-Stationary Instructions as a Way to Minimize Long
Distance Communications in VLSI • • • • • • • • • • • • • • • • 54 7

John Robert Burger

XVI

SESSION 1 - PANEL DISCUSSION

Performance of Existing Supercomputers

on Computationally Intensive Tasks

Sidney Fernbach, Chairman

Cray-I

Cyber 205

HEP-I

Michael Ess

Kevin Moriarty

Burton Smith

AN INTERFERENCE ANALYSIS OF INTERCONNECTION NETWORKS

Laxmi N. Bhuyan and C.W. Lee

Department of Electrical Engineering
University of Manitoba

Winnipeg, Manitoba, Canada R3T 2N2

ABSTRACT

An interference analysis of the Interconnec
tion Networks (INs) for a tightly coupled multi
processor is presented in this paper. The inter
connections considered are crossbars and delta
networks. Two situations are examined: when a
memory module is equally likely to be addressed
by a processor and when a processor has a favor
ite memory. It is shown that for a higher rate
of favorite requests, the delta networks perform
close to a crossbar.

INTRODUCTION

A multiprocessor architecture can be broadly
divided into two categories: loosely coupled and
tightly coupled. In a loosely coupled multi
processor, each processor has a local memory and
the communication between the Processing Elements
(PEs) is accomplished through an In terconnec ti on
Network (IN). A PE essentially consists of a
processor and its local memory. In a tightly
coupled system, the processors are connected to
one side of the IN and the memory modules are
connected to the other side. The IN is capable
of connecting a processor to any one of the
memory modules. The loosely coupled and tightly
coupled architectures are illustrated in Fig. 1.
In this paper, we consider an interference analy
sis of the INs for a tightly coupled multi
processor.

A crossbar interconnection [l] allows all
possible one-to-one and simultaneous connections
between the processors and the memory modules.
When two or more processors try to access the
same memory, only one of them will be connected
and the rest will be blocked or rejected. Band
width (BW) is defined as the expected number of
memory requests accepted per cycle or the average
number of memory modules remaining busy in a
cycle. Clearly, this is a parameter which speci
fies as to what extent an IN is efficient. The
interference analysis of an MxN crossbar for M
processors and N memory modules, when a processor
is equally likely to address any one of the N
common memories, is well known [2-4] • However,
in a practical situation, a processor is likely
to address a particular memory most of the time
except when an interprocessor communication is
necessary. If processor i (Pi) communicates
more often with a memory module i (MMi), we will
call MMias a favorite memory of Pi and pi as
a favorite processor of MMi • We will assume
that we have a prior knowledge of a factor m
which is the probability that Pi addresses MM.
provided that Pi generates a request. Whe~

0190-3918/83/0000/0002$01.00 © 1983 IEEE 2

m = l , a processor is equally likely to address
N

any one of the N memory modules and the favor-
ite case reduces to an equally likely case. In
this paper, we carry out an analysis for such a
favorite memory case for an MxN crossbar switch
when M = N , M ~ N and M < N •

Because of the O(N2) switch complexity of
an NxN crossbar, Multistage Interconnection
Networks (MINs) have been proposed recently for
large values of N • Several MINs such as Omega
[5], Indirect binary n-cube [6], Generalized cube
[7] and Baseline [8] are known. An NxN MIN
basically employs log 2N stages of 2x2 switches
with N/2 number of switches per stage. It is
capable of performing a subset of one-to-one and
simultaneous mappings while reducing the cost to
O(N log 2N) The mappings or permutations
achieved by one network, may be different tha~
another depending on the interconnection used
between the stages. However, these MINs are all
functionally equivalent in terms of their BWs and
the total number of permutations, achieved.
Interference analysis of such MINs have been
reported in a few papers [4, 9-11] for equally
likely cases. The VLSI performance of these
networks have also been studied [12,13] when the
whole network is fabricated on a single chip. In
terms of area*delay characteristics the MINs do
not perform that well compared to the crossbars,
as they do in an SSI implementation.

Delta network [4] is a self routing inter
connection network that connects M = an inputs
to N = bn outputs through n stages of a x b
crossbar switches. All the MINs form a class of
Delta networks with a = b = 2 • A still braoder
class of networks called Radix Shuffle Networks
(RSNs) was introduced recently [11] for connect
ing M processors to N memory modules for arbi t
rary values of M and N. If M and N can be
factored into 'r' components as M = m1 x m2 x •••
x mr and N = n 1 x n2 x ••• x n , an RSN con
sists of 'r' stages of switchesr with the ith
stage employing m. x n. crossbar modules.
Delta is a special ca1se of 1 the RSN when all m ·,s i
are equal to a and all ni's are equal to b.
All the above cited networks form a part of the
Banyan networks [14], introduced for partitioning
multiprocessor systems. Interference analysis of
the RSNs was also reported [11] when a processor
is equally likely to address a memory module. We
carry out here an analysis for the RSNs for the
favorite memory case. The results derived for a
crossbar are successfully applied to the RSNs.
Because of the complexity involved, we restrict
our analysis to NxN Delta networks only. The
citeoretical results match with tnose obtained
from simulations.

ANALYSIS OF CROSSBAR

A crossbar is capable of connecting M pro
cessors to N memory modules for any arbitrary
values of M and N [l]. The analyses given here
are based on the following assumptions.

1. The crossbar operates in a synchronous mode
i.e. the requests issued by the processors
begin and end simultaneously.

2. The requests are random and the request
generated by a processor is independent of
the request generated by another processor.

3. Requests which are not accepted are blocked
or rejeted.

4. The requests generated in a cycle are inde
pendent of the requests generated in the
previous cycle.

5. p0 is the probability with which a processor
generates a request. Thus p0 is the rate
of request of a processor per cycle.

6. m is the probability with which processor
Pi addresses memory MM 1 given that Pi
generates a request. Thus m•p0 is the rate
of request of a processor directed to its
favorite memory.

In an MIMD [15] operation, the memory
requests are asynchronous. Various simulations
[3, 4] indicate that assumption 1 does not bring
in a substantial difference in the results. When
asynchronous operation is assumed, buffers should
be provided in the switches [9], Assumption 4 is
unrealistic because the requests rejected in a
cycle will indeed be resubmitted in the next
cycle. This assumption leads to amazingly sim
pled closed form equations for a crossbar [3] and
produces negligible discrepancies in the result
[2]. Assumption 5 indicates that a processor
need not send a request in every cycle. Assump
tion 6 considers memory module MMi as a favorite
memory of the processor P1 . In an MxN crossbar
for an equally likely case, a procesror addresses
a memory with a probability of - • MMi is

N
rons idered a favor! te memory of pi only if m >
- • The values of p and m are program
N o
dependent and can be determined. With a prob
ability p0 of a processor generating a request,
the probability q(j) that j requests are
generated by M processors is given by:

wnere M

j

M) pj • (l _ p)M-j
0 0 j

is the binomial. coeiiicient.

(a) Equally likely case for MxN crossbar

This is a situation where a processor is
equally likely to address any one of the N
memory modules. The probability thyt a processor
addresses a particular memory is - , given that

N
the processor generates a request. Probability
that a memory module is addressed by k process
ors, given that j requests are generated by the
processors;

3

Pe(k,j) = (j)(l)k(l - l)j- k •
k N N

Subscript 'e' stands for equally likely case.

For various values of k ranging from 1 to j'
the rate of request at a memory module;

I j) (1)k(l 1)j-k
Pe(j) =

l<;k.;j k N N

I j)()k(l -)j-k - (1 1)j

O.;k.;j k N N N

- (1 - 1)j
N

With each processor having a probability p0 of
generating a request, the total rate of request
at a memory module is given by;

Pe I
O<;j<;M

q(j) • Pe(j)

I M . M . 1)j} j p~ (1 - p0) -J {1-(1
N O.;j.;M

1-(1-Po)M (1)
N

BW is the average number of memory modules
remaining busy in a cycle.
In other words BW = rate of request at a memory
module * the number of memory modules.
Hence, for equally likely case,

BW (2)
e

(b) Favorite memory case for NxN crossbar

Let m be the prbability that processor Pi
requests memory module MMi given that Pi

generates a request. Hence, the probability of
Pi requesting MM1 , Pi+ MMi = p0 •m •
Probability that Pi does not request MM 1 ;
pi~ Mi = 1-po•m •

Given another processor
which generates a request; Pj

= x say and PjT+ MM1 = 1 - x

P. for itj1 ,
+ kfi = (1-m)

N-1

In a situation when there are a total of j
requests of which k requests arrive at MMi

two distinct possibilities can occur;

Pi + MMi and (k-1) other processors + MM1

or P1.,4 MMi and k other processors + MMi

The rate of request at MMi given j
at the input side;

requests

Pf(j) = l {porn • (~=t) • xk-1(1-x)j-k
l<;k(j

+(l-pom)(jkl)xk(l-x)j-k-1}

. 1
1 - (l-p0 m)(l-x)J- (3)

The subscript
memory case.

'f' stands for the favorite

With a probability p0 of Pj generating a
request and with (N-1) other processors besides
Pi , the total rate of request at MMi;

With x 1-m . = 1 - (1-p m)(l-p 1-m)N-l (4)
N-1 ' Pf o o N-1

N { 1 - (1 - p •m) (1-p • 1-m) N-1} • (5)
o o N-1

Lim BWf
m+l

p 0 N , which means that if all the

requests were favorite, the BW is equal to the
number of requests generated; so all the requests
are accepted. Equally likely is a special case

of the favorite memory case with m = .!_ •
N

The BW of an NxN crossbar are plotted in
Fig. 2 both for favorite memory case with m =
0.8 and an equally likely case. With a favorite
memory, a processor remains busy with its favor
ite memory module most of the time. As a result,
less conflicts occur which in turn give rise to a
higher BW. A favorite case for NxN crossbars can
also be visualized as shown in Fig. 3a. Rate of
request at MMi due to P. ; PA = p0 m • Rate of
request at MMi due to CN-1) other processors;

1 - {l - Po(l-m) }N-1 (l) Ps = similar to eqn.
N-1 '

for (N-1) processors and (N-1) non-favorite
memories. Because of the assumption 2, these two
rates are statistically independent of each
other. Hence, the total rate of request at MMi ;

PAB PA + Ps - PA ' PB

pom + 1 - (1- p 1-m)N-1
o N-1

1-m N-1
- pom + Pom(l-po~-)

N-1

1-(1-p m)(l-p l-m)N-l = Pf in eqn. (4).
o o N-1

(c) Favorite memory case for MxN crossbars with
M;:.N

The situation is depicted. in Fig. 3b. The
processors are divided into two groups. Group A
consists of N processors having favorite
memories and group B consists of M-N processors
that are equally likely to address any onI of the
memory modules with a probability of - • The

N
rate of request at MMi due to the processors
belonging to group A

PA= l-(l-p0 m)(l-p0 l-m)N-l; same as in eqn. (4).
N-1

The rate of request at MMi due to the processors
belonging to group B;

4

1 - (1- ~)M-N ; from eqn. (1) •

Since the request rates are statistically
independent, the overall request rate at MMi ;

Pf = PA+ PB - PA • Ps

1-(1- p0 m)(l - Po
1-m)N-l(l _ Po)M-N . (6)
N-1 N

BWf
{ 1-m N-1 = N 1-(1-p m)(l-p -) (1

o o N-1
_ Po)M-N}. (7)

N

When M=N , eqn. (7) reduces to eqn. (5).

When m = .!_, BW = N{l - (1 - Po)Mj which
N N

is same as the equally likely case.

(d) Favorite memory case for MxN crossbars with
N;:.M

The situation is depicted in Fig. 3c. The
memory modules are divided into two groups A
and B • Group A consists of M favorite memories
and group B consists of (N-M) memories that are
equally addressed by a 1proce~sor with a
probability x = (1-m) • ~- , given that the

N-1
processor generates a request.

Given that there are j requests generated
by the processors including processor Pi , the
rate of request at MMi belonging to group A;

PA(j) = 1 - (1 - p0 m)(l-x)j-l from eqn. (3).

With the proessors having a probability of
request p 0 , the total rate of request at MMi
belonging to group A;

PA = l <~=i) P~-l (l - P0)M-j PA(j)
O.;;j-1.;;M-l

1 - (1 - Pom)(l - pox)M-1

With x l-m ; p = 1-(1 - p m)(l
N-1 A o

A processor addresses a memory modu\e belonging
to group B with a probability of ~. Prob

N-1
ability of generation of a request being p0 , the
rate of request at MMj belonging to group B;

PB 1 - (1 - p l-m)M ; from eqn. (1)
o N-1

Then
BWf PA • M + Ps • (N-M)

{ 1-m M-1) M l-(l-p0 M)(l-p0 -)
N-1

+(N-M){l-(1-po 1-m)M}
N-1

N-M(l-p M)(l-p l-m)M-l_(N-M)(l-p0 l-m)M •
o o N-1 N-1

(8)

Again with m = .!_ BWf = N-N(l - Po)M = BW
N e N

BWf obtained with M = 16 are plotted in Fig. 4

for various values of N. Compared to the BW for
equally likely case (BWe) , there is a fast
increase in BWf' with increase in N for N (
16 The rate of increase in BWf in Fig. 5 for
N fixed at 16, is also similar to that obtained
in Fig. 4. The difference between BWf and BWe
is maximum when M is equal to N • This is
reasonable because the maximum possible BW is
limited to Min{M,N} irrespective of whether a
favorite case or not.

ANALYSIS OF DELTA NETWORKS

A delta network [4] is a multistage inter
connection network that connects M =an inputs
to N = bn outputs through n stages of a x b
crossbar modules. The ith stage of the delta

network consists of M bi-l number of a x b
ai

crossbar switches and produces M(~)i outputs.
a

An interference analysis of these networks for
equally likely case is presented in [4]. The
analysis is based on a recursive computation of
the rate of request at a stage. The rate of
request on an output line of the ith stage is:

1 - (1 (9)

where p 0 is the probability of generation of a
request by a processor. With a given value of
p 0 , the final rate of request at an output line
of the delta network can be computed using the
above recursive equation. Then BW = N • Pn •
We develop here such a recursive analysis for
delta networks as applicable to the favorite
memory case. Because of the complexity involved,
we restrict our analysis to NxN delta networks
only. An NxN delta network with N=an , consists
of n stages of axa crossbar modules with N

a
such modules per stage. The interconnection
between the stages is an a-shuffle of the inputs.
Sa , the a-shuffle of an integer j is given
by;

Sa a j
j

mod(N-1) for
for

0 .; j < N-1
j N-1 (10)

Omega network [5] is a special case of delta
network with a=2 We define that a processor
is connected to its favorite module when all the
switches are in straight connection as shown in
Fig. 6 for an 8x8 omega network. When all the
switches are connected straight in a delta net
work with a-shuffle interconnection before each
stage, an identity permutation results. Hence,
MMi is a favorite memory of Pi for 0 <; i (N-1 •
The analyses presented below also hold for delta
networks which do not employ an a-shuffle inter
connection before each stage. In such networks,
the straight connections of the switches may not
result in an identity mapping and hence, the
favorite memories will be different without any
change in the actual performance. In addition to
the assumptions spelled out for the crossbar
analysis, we make an important additional assump
tion for delta networks. Whenever a number of
requests reach an output line of a switch, a
request is randomly accepted with an equal prob-

5

ability. We will call this as an Equal Accept-
ance (EA) rule.

Consider two switches A and B from two
adjacent stages of the delta network as shown in
Fig. 7. There can be only one connection from an
output of switch A to the input of switch B. The
other ouput lines of switch A will be connected
to (a-1) other switches of the (i+l)th stage.
The number of output lines being same at each
stage, the rate of request remains same for all
the output lines of a particular stage. However,
it may vary from stage to stage. Let pi be the
rate of request on an output line of the ith
stage of switches. Clearly, p0 is the input
rate of request which is equal to the probability
of a processor generating a request. Let mi be
the probability that there is a favorite request
on an input line to the (i+l)th stage, given that
there is a request on that line. Let mi be the
fraction of p, available due to a fcivurice
request at the input of switch A • So, mi , the
fraction of pi that comes from other inputs of
switch A is (1 - mi)·

From eqn. (4) ,

for 1 (i " n (11)

The rate of request at the output of switch A
due to a favorite request = mi Pi • Given k re
quests at an output line of switch A , a request
is accepted with a probability of 1 because of

k
EA assumption. All other requests are rejected.
In addition to a favorite request, (k-1) other
requests arrive at the output line of switch A.
If there are a total of j requests at the input
of switch A, the rate of request at an output
line due to a favorite request is:

where

For k varying between 1 to j , the rate of
favorite requests at an output line of switch A
is:

With Pi-l being the probability of request
generation for (j-l) input lines for an axa
crossbar at the ith stage,

With
1 - mi-1

xi-1 = a-1

Using
lim

1 1 Hospital's rule i.t can be shown that

pimi = Pi-l • This means all the
mi-1 + 1
requests are accepted if they were favorite. A
closer look at the operation of delta networks
(Fig. 7) reveals that mi-l consists of two types
of favorite requests to switch A • Let m(f)i-l

be the fraction of mi-l that consists of
requests to memory module MMi • m(nf)i-l is
the fraction of mi-l directed towards other
memory modules, but appears as a favorite request
to switch A. Assuming the requests due to
m(f)i-l and m(nf)i_1share ml , at the output of
switch A, as per their proportion; the fraction

m(f)i-1
of mi_ due to m(f)i-l is • ml and the

mi-1

fraction of ml due to m(nf)i-l is
m(nf)i-1

•mi_.

Out of the non-favorite part of ml a
fraction of requests will be directed towards
(a-1) other outputs of switch B (Fig. 7) and
the rest will appear as a favorite request.

1

In a delta network, a fraction of
~ - 1
ai

of this non-favorite rate of request appears as a
favorite request to a switch at the (i+l)th stage
for l ~ i (n-1 . Again, the fraction of the
rate of request iiil , at the output line of
switch A, consists of both favorite and non
favorite requests to switch B • The request rate
is equally directed to all the a out.put lines

of the switch B • Out of this, ai is the
N

fraction of the request rate that is directed to

favorite memory MM and (l - ai) is the
i a N

fraction of request rate, directed to other
memory modules but appears as a favorite request
to switch B.

Hence, at the input of the (i+l)th stage,

m(f)i-1 i
m(f)i • ml +~iii! (13)

mi-1 N i

N

ai+l 1
m(nf)i-1 (l -f.) m(nf)i • mj_ + iii!

N
]_

- 1 mi-1 a

ai
(14)

and
mi m(f)i + m(nf)i for 1 .:; i .:; n-1 . (15)

At the input of the first stage, m(f) 0 is the
probability that a processor requests its
favorite memory given that it generates a

6

~ - 1
request. Then, m(nf) _a __ • (1

o N-1
With given values of p0 and m(f) , pi_s and
mi_s can be computed recursively for Y < i ~ n-1.
The rate of request at the output of the final
stage, Pn , decides the BWf of an NxN delta
network.

BWf Pn x N (17)

Favorite Analysis of Omega Networks

An Omega network [5] is a special case of
delta network fo~ N = 2n. With a = 2 , the
above set of equations can be simplified as below
for 1 < i < n-1

m(f) 0 + m(nf) 0 •

(ll:l)

Pi = l-(l-pi-lmi-l)(l-pi-1 + Pi-1 • mi-1) (19)

mi_ 1 {mi-l(Pi-1 - ~ PI-1) + -2
1 PI-1 • mI-1)(20)

pi

-,
mi

m(f)i

1 - mi_

m(f)i-1

mi-1

N
;i.+1- 1

N - 1
2i

m'
2i

iii' (21) i + w- i

m(nf)i-1 (1 2i)_' __:::. __ ml + - - - m •• (22)
mi-1 2 N i

m(f)i + m(nf)i for 1 ~ i ~ n-1 (23)

(24)

The BWf , obtained for an Omega network, for
various values of N are plotted in Fig. 8 to
gether with the BWe for equally likely case. It
may be noted that for higher values of m(f) the
performance of an Omega network is close to 0 that
of a crossbar. With a straight connection of 2x2
switches in an Omega network, a favorite case
corresponds to an identity permutation. If most
of the time an identity permutation is desired,
less conflicts will occur which will give rise to
an increased Bandwidth. The above set of equa
tions, derived for Omega network, also holds good
for MINs like Indirect binary n-cube, Generalized
cube and Base line networks, as long as there is
one and only one path from a processor to a
memory module. The favorite memories may be
different depending on the permutations obtained
when all the switches are straight connected.
Fig. 9 shows a variation of p 's and m. 's at
various stages of a 1024x102\ Omega n~twork.
When i=O it represents the input side and
i=lO represents the output side of the Omega
network. Although pi reduces with increase in
i because of more conflicts, m. goes on
increasing. This means that for larg~ i , the
rate of request at the output is mainly due to
the favorite requests. The limiting value of mi

is. unity.

CONCLUSIONS

Crossbar and Delta networks were analyzed in
this paper for equally likely and favorite memory
cases. Equally likely is shown to be a special
case of the favorite memory analysis. With
favorite memories, the Bandwidth is much higher
because of less conflicts. The Delta networks
perform close to crossbars for favorite memory
cases, thus increasing the cost effectiveness.
In a multistage interconnection network, the rate
of reque~t at a stage (pi) reduces with
increase in the stages, but the rate of favorite
request goes on increasing, being limited to
unity.

The analysis has been restricted to NxN delta
networks because of the complexity involved. The
analytical results match with those obtained in
simulations.

1.

2.

3.

4.

5.

REFERENCES

W.A. Wulf and C.G. Bell, "Cnunp - A Multi
miniprocessor", Proc. AFIPS, Fall Joint
Computer Conference, Dec. 1972.

D.P. Bhandarkar, "Analysis
Interference in Multiprocessor",
on Computers, C-24, Sept. 1975,
908.

of Memory
IEEE Trans.

pp. 897-

W.D. Strecker, "Analysis of the Instruction
Execution Rate in Certain Computer
Structures", Ph.D. dissertation, Carnegie
Mellon University,_ 1970.

J.H. Patel, "Performance of Processor-Memory
Inter-connections for Multiprocessors", IEEE
Trans. on Computers, C-30, Oct. 1981, ---pp:-
771-780.

D.H. Lawrie, "Access and Alignment of Data
in an Array Processor", IEEE Trans. on
Computers, C-24, Dec. 1975, pp. 1145-1155.

6. M.C. Pease, "The Indirect Binary N-Cube
Microprocessor Array", IEEE Trans. on
Computers, C-26, May 1977, pp. 458-473.

7.

8.

9.

H.J. Siegel and R.J. McMillan, "The
Multistage Cube: A Versatile Interconnection
Network", Computer, Vol. 14, no. 12, Dec.
1981, pp. 65-76.

C.L. Wu and T.Y. Feng, "On a class of Multi
stage Interconnection Networks", IEEE Trans.
on Computers, C-29, Aug. 1980, pp. 694-702.

D.M Dias and J.R. Jump, "Analysis and Simu
lation of Buffered Delta Network", IEEE
Trans. on Computers, C-30, April 1981,--PP:-
273-282.

10. S. Thawawastien and V.P. Nelson, "Inter
ference Analysis of Shuffle/Exchange
Network", IEEE Trans. on Computers, C-30,
Aug. 1981, PP• 545-556.

7

11. L. N. Bhuyan and D. P. Agrawal, "Design and
Performance of a General Class of
Interconnection Networks", Proc. 1982 Int.
Conf. on Parallel Processing, Aug. 1982, pp.
2-9. Also to appear in IEEE Trans. on
Computers.

12. M.A. Frankl in, "VLSI Performance Comparison
of Banyan and Crossbar Communication
Networks", IEEE Trans. on Computers, C-30,
April 1981, PP• 283-291.

13. L.N. Bhuyan and D.P. Agrawal, "VLSI
Performance of Multistage ;_«tecconnection
Networks usiL15 4xtt switches", Proc. 3rd Int.
~onf. on Distributed Computing Systems, Oct.
1982, pp. 606-613.

14. L.R. Goke and G.J. Lipovski, "Banyan
Networks for Partitioning Multiprocessor
Systems", Proc. 1st Int. Symp. on Computer
Architecture, Dec. 1973, pp. 21-28.

15. M.J. Flynn, "Some Computer Organizations and
their Effectiveness", IEEE Trans. on
Computers, C-21, Sept. 1972, pp. 948-960.

PE

;----1
I I
I I
I I •••
I I
I I
I I
L- _...J

Interconnection Network (IN)

Fig. la. A loosely coupled multiprocessor

• • •

Interconnection Network (IN)

• • •

Fig. lb. A tightly coupled multiprocessor

10
16

Favorite memory case

9
14

8
likely 12

10

log2 (BW)S BW 8
0.8
16

1 4 5 6 8 9 10

log 2 N

Fig. 2. Bandwidth of N X N crossbars
Fig. 4. Variation of BW in an ~ x N crossbar

with M = 16

Favorite memory case

16

14

PA -------:..,..
Equally likely case

MMi 12

N-1
other proc

•
essors •

•

} -/~- • // PB

•
•

10

N-1
other memories BW 8

p = 1
0

m = 0.8
N = 16

~

Fig. 3a.

N processors
with favorite

memories {
M-N processors {
without ~avorite

memories

Fig. 3b.

4

Request at MMi in an N x N crossbar

• } PA ---.:;oi --- / • -- / /
• /

I
/ •

• }/~~ •
• • •

Request at MMi in an M x N
crossbar with M > N

•
M •

processors •

Fig. 3c.

1 3

Fig. s.
MM.

l

N-1
0 ther memories

} " ----__ ,,.
--c::: ______

PB

4 5 6

log2 M

Variation of BW in
bar with N = 16.

PA

• • •

• p
• B
•

l M favorite f memories

l N-M nonfavorite J memories

Request at memories in an M x N
cross bar with N > M

8

8 9

an M x N

10

cross-

a-1 {
other inputs

Fig. 6. Favorite memory connection for a 8 x 8
Omega network

Switch A
i th stage

Switch B
(i+l)th stage

Fig. 7. Requests at two adjacent stages of a Delta network

pi+l

}:~~"" uu<pu<e

10 1.0
p = 1

0 9

8

4

1

m(f) 0 = 0.8

1 2 3 4 5

Favorite memory
case

6 8

Eq ally iikely
case

9 10

Fig. 8. Bandwidth for N x N Omega networks

9

0.8

0.6

0.2 3.

0 9 10 3 4 5 8
i

(Stage)

Fig. 9. pi,mi at various stages of a 1024 x

1024 Omega network.

1. mi' favorite memory case; 2. pi,

favorite memory case; 3. pi, equaLly
likely case.

GENERALIZED DELTA NETWORKS

Manoj Kumar and J. R. Jump

Department of Electrical Engineering, Rice University
Houston, TX 77251

Abstract

The throughput of unbuffered delta networks
is related to the arrival rate by a quadratic re
currence relation. Lower and upper bounds on the
solution of this recurrence relation are derived
in this paper.

Two approaches for improving the throughput
of unbuffered delta networks are discussed in this
paper. The first approach combines multiple delta
subnetworks of size NXN each in parallel, to ob
tain a network of size N XN. Three distribution
policies, used to distribute the incoming packets
between the subnetworks, are discussed in this pa
per and their effect on the throughput is investi
gated.

The second approach replaces each link of the
simple delta networks by K parallel links
(K=2, 4, •••). The throughput of these networks
is analyzed and one possible implementation for
the crossbar switches to be used in these networks
is discussed. The throughput of such networks
with four parallel links is almost equal to the
throughput of crossbars.

l· Introduction

Delta networks have been considered frequent
ly for processor-memory and processor-processor
interconnection in modular computer systems such
as SIMD, MIMD and Data Flow Machines Ll, 3, 7, 8,

9, 11, 12, 14]. An NXN (N = 2n) delta network
can be constructed from basic switches of size

BXB (B = 2b), each capable of connecting its in
puts to any of its outputs (see Figure 1.1).

The network has n/b stages (numbered

1,2, .•. ,n/b) and each stage has 2n-b basic
switches. The outputs of switches in all stages,
except the last, are connected to the inputs of
switches in the next stage by the shuffle connec
tion or one of its minor variants. The network
shown in Figure 1.1 is an 8X 8 delta network con
structed from 2X 2 basic switches. The N inputs
of the switches in the first stage and the N out
puts of the switches in the last stage constitute
the inputs and the outputs of the network. A
truncated delta network is obtained 'by deleting
one or more stages from a regular delta network.

The modules at the network inputs generate
fixed sized packets to be transmitted over the
network. The arrival of packets at the network
inputs are independent and identical Bernoulli
process with parameter X. (the arrival rate).

in
These packets are directed equiprobably to all
network outputs.

All the switches in the network are synchron
ized by a single clock. A connection between two
switches which is capable of carrying one packet
in each clock cycle is called a link.

The switches in a buffered delta network have
internal buffers to temporarily store an incoming

This work was supported by the National Science
Foundation under the grant MCS 00-01667.

0190-3918/83/0000/0010$01.00 © 1983 IEEE 10

packet that cannot be forwarded in the current cy
cle. Unbuffered delta networks have no such
internal buffers. In this paper we will investi
gate the pertormance of unbuffered delta networks
only.

The network control is decentralized and each
switch in the network operates autonomously. In
addition to data, each packet carries its destina
tion address. A switch in stage i (1 ~ i ~ n/b)
uses bits bc[(i-l)b+l]'"""'bcli*b] of the desti
nation address (expressed as ~n binary number
b1b2 ••• bn/b) to route the packets to the appropri-

ate output port. These bits are called the con
trol bits for stage i. The operation of delta
networks is described in detail in [ll].

Packets arriving at two disi::inct network in
puts may require the use of a common link between
two stages. Since only one packet can use that
link in a clock cycle, one of the packets wiLl be
ignored in the current cycle and resubmitted at a
later time. Because of such conflicts there is a
degradation in the throughput (number of packets
transmitted/unit cycle) of the network.

The performance of unbuffered delta networks
has been investigated by Patel[l2] and Dias and
Jump [5, 4]. The throughput of an unbuffered del
ta network has been expressed as a quadratic re
currence relation [12]. Unfortunately, this re
currence relation fails to show the depenaence of
network throughput on the number of stages .in the
network, the basic switch sizej and the arrival
rate.

Kruskal and Snir provide asymptotic solutions
for this recurrence relation [10]. In this paper
we show that one of these solutions is a strict
upper bound on the performance of delta networks.
We also derive a strict lower bound on the perfor
mance of delta networks, which is much more accu
rate than the upper bound for networks constructed
from 2 X 2 switches. Botn these bounds incorporate
the dependence of network throughput on the number
of stages, basic switch size and the arrival rate.

The performance of unbuffered delta networks
can be improved by either using multiple delta
subnetworks in parallel as shown in Figure l .2a
[8], or by replacing each link in the delta net
work by multiple links as shown in Figure l.2b
[13 J.

In the first approach, various policies can
be used for distributing the incoming packets
between the subnetworks. Some of these ar~ dis
cussed in this paper, where the effect of distri
bution policy on the performance of the network is
investigated.

The throughput of multiple link delta net
works, constructed from 2X2 switches, can be ex
pressed as a set of coupled nonlinear recurrence
relations [lU]. These recurrence relations again
fail to show the dependence of throughput on the
number of stages in the network, the switch size
and the arrival rate. In this paper we analyze
multiple link delta networks constructed from
larger switches. The throughput of these networks
is expressed by coupled nonlinear recurrence rela
tions. An approximate solution with a simple

functional

throughput.

form is also derived for the

The above mentioned approaches also improve
the fault-tolerance of the network. In the first
approach, only one correctly functioning delta
subnetwork is required to allow c01IDDunication
between any input, output pair of the network. In
the second approach, only one out of each set of
links connecting two particular switches, is re
quired to function correctly.

In section two of this paper we will estab
lish fairly tight lower and ·upper bounds on the
throughput of simple delta networks. These bounds
have simple functional forms. In section 3 dif
ferent techniques for combining multiple delta
networks in parallel are considered and the im
provement in throughput achieved by the use of
different distribution policies is compared. In
section 4 the use of multiple links is investigat
ed. Switch implementations for supporting multi
ple links are described. The throughput of these
networks is compared with the throughput of
crossbars.

In sections 3 and 4, basic switches of size
2X2 only have been considered to keep presenta
tion simple. However, the results can be easily
generalized for BXB switches.

l_. Performance of Unbuffered Delta Networks

The following expression for the throughput
of a BXB crossbar switch was derived by Patel
[12]. If the arrival of packets at the inputs of
a switch are independent and identical Bernoulli
process with the same arrival rate Xin' then the

arrival of packets at each output (output process)
is a Bernoulli process with the parameter Xout

(output rate). Xout is related to Xin as follows

X =1-(1-X./B)B
out in

(2.1)

The output processes at different outputs of
a switch are identical but not independent. In an
NXN delta network constructed from BXB switches,
the output rate of switches in stage i is denoted
by xi. The arrival rate at the input links of the

network, Xin' is equal to x0, the arrival rate at

the input of switches in stage 1. The throughput
of the network, Xout, is equal to xn/b. It was

shown by Dias that the arrival of packets at the B
inputs of the same switch in any stage are identi
cal and independent Bernoulli processes [6].
Therefore the output rate xi of stage i

(1 ~ i ~ n/b) can be expressed by the quadratic
recurrence relation

x.
i

1 - (1 - x. I B)B
i-1

and 0 < X. < 1 - in -

(2.2)

Unfortunately, this recurrence relation pro
vides no insight into either the functional form
of Xout and its dependence on xin' N and B or the

upper and lower bounds on Xout. Such functional

forms or bounds would give a better idea of the
network throughput and allow us to compare the
throughputs of various networks without resorting
to computationally intensive or graphical tech
niques. The upper and lower bounds on xi are

derived as follows

Define yi = 1 I xi for 0 ~ i ~ n/b

11

then

2 3

(;)CBi) - (~)eBi) +

therefore
lim

Yi ~CD

Define e.
].

then

(2 .3)

2Bx. - (2B + (B-l)x.)(l - (1-x./B)B)

and

e.
].

]. i i

x. (1 - (l-x./B)B)2B
].].

i-1
i(B-1) + ~

y i = Yo + 2 B eJ.
j=O

(2.4)

(2.5)

Let n. and d. denote tne numerator and the denomi-
i].

nator in the expression for ei in equation 2.4.

., ,.., • [., m(:•)' ·{m(:')'

(!) (:') l + { lut <o=}] (2.6)

where the last term is { B (x./B)B-l - (x./B)B} iff
i].

B is odd and it is {(x. /B)B} otherwise. Since
i

each term witnin the braces is a positive quantity
(because xi is less than 1) we have tne inequaLLty

2 3
di~ 2Bxi - (B-l)xi (2.7)

Similarly, ni can be written as

n1 • 2 B *xi - (2B +(B-1) x1J [x1 - l m('.i)2

3 4

(~)(:9 }- { (!)(:i)
5

(~) (:i) }- ..
- {last term}]

where the last term

it is {B(x./B)B-l -
i

is {(xi/B)B} itf B

(x./B)B} otherwise.
i

(2. 8)

is odd and

Again, each term within the braces is positive and
therefore

simplifying this expression we have

n < x.3 [B2-l~ 2(!) 4
i- i 6B + 3 x

B

since 0 .S. xi .S. 1

n. < x. 3
i - i tB2- l 2 (!)~

6 B + 3
B

(2. 9)

using the bounds for ni and di we get the upper

bound for e.
i

3 t"-1 2(!)j x. 6 B + 3 i
B

e. .s. 2 3 i 2Bx. - (B- l)x.
i].

f"-1 ~ 6 B + 3
B (2.10)

.s. 2B*yi - (B-1)

If xi is positive then both ni and di are po

sitive (follows from equations 2.7 and 2,9), and
therefore xi+l and ei will be positive too. From

this lower bound on ei the following lower bound

on yi follows easily

Yi.?. Yo+ i(B-1) I 2B c2 •11)

In equation 2.10 the occurrence of yi in the

denominator can be replaced by the lower bound for
yi and the following inequality is obtained

e.
].

r:~l . 2:~)j
2B*yo + (B-l)*i - (B-1)

Simplifying this inequality we have

B2 - B + 2
e.

i
<
- 4B2[i + 2y0 B/(B-l) - l]

Therefore
i-1
~ e. <

j=O J -
(2.12)

Denote the right hand side of the above inequality
by Ei. Thus, the upper bound on y i is

12

Yi .S. Yo+ i(B-1J/(2B) + Ei (2.13)

The upper and lower bounds for xi are ob

tained by inverting the lower and upper bound~ for
Yi• Thus, we have the result

> 2B
- 2By0 +(B-l)i+2BEi

(2.14)

In Figures 2.la-2.ld the throughput of delta
networks, obtained from recurrence relation (2.2),
is compared with the lower and upper bounds given
by equation (2.14). For low arrival rates the
bounds are much more accurate than for high ar
rival rates. For networks constructed from 2X2
switches, the lower bounds are within 5% of the
actual throughput and the upper bounds are wi.tnin
10% of the actual throughput (for Xin = 1).

For larger switch sizes (sizes > 4X4) the
lower bounds are less accurate than the upper
bounds. The upper bounds are stiJ.l witnin lu% of
the actual throughput •

J... Connecting Delta Networks in Parallel

Three techniques for using K = 2k delta sub
networks or truncated delta subnetworks (con
structed from 2X2 switches) of size NXN each in
parallel, to obtain a network of size NXN, are
discussed in this section. These techniques
differ primarily in the disi:ributi.on policy used
to distribute the incoming packets between the
subnetworks.

Th f . h . . h . th . e i.rst tee nique is to connect t e i in-

put of the network (0 ~ i ~ N-1) to the ith input
of each delta subnetwork through a 1-to-K demulti-

plexer. Similarly the i th output of each delta

subnetwork is connected to the i th output of the
network through a K-to-1 multiplexer lsee Figure
l .2a). The demultiplexers forward an incoming
packet to any of the K subnetworks equiprobably.
If multiple requests arrive at the· input of a mul
tiplexer in the last stage, one of them is select
ed equiprobably and is forwarded to the output of
the network. ThJ.S network is called a !_andomJ.y
loaded parallel delta .J!etwork (Rn).

If Xin is the arrival rate at the input of

the network, then the arrival rate at the input of
each delta subn.,twork, x0, is equal to X. /K.

' . in

The output rate at the output links of each
delta subnetwork, xn' can be obtained from re-.

currence relation (2.2}. The output rate at the
output of the network, Xout' is given by the ex-

pression

x =1-(1-x l
out n

(3.~I}

If x1 and xu are the upper ~md the lower

bounds on xn' t.hen U1e upper and lower bounds on

Xout are

1-(1-x)It < X
1 - out

< 1-(1-x)K
- u

(3.2)

In the technique described above, a packet is
blocked within the subnetwork witn probability

1-xn. If every packet arriving at an input of

the network is forwarded to more than one delta
subnetwork simultaneously, then the probability
that all copies of the same packet are blocked
within the subnetworks is expected to be much less
than 1-xn. The reduction in blocking of packets

within the subnetworks will in turn increase the
throughput of the network. the second technique
for combining multiple delta subnetworks in paral
lel, utilizes this fact. In this technique the
packets arriving at the inputs of the network are
forwarded to all the subnetworks. This network is
called a ,Hul tiple loaded parallel delta .network
(Mn). Since the throughput of this network could
not be determined analytically, simulation tech
niques were used.

The last technique is to demultiplex the in
coming packets between K truncated delta subnet
works according to the destination address of the
packet. Each subnetwork has n-k stages and the
control bit for for stage i of the subnetwork is
bk+i· The subnetworks are numbered 0 through K-1.

The incoming packet is forwarded to subnetwork j
iff b1b2 ... bk, the first k bits in the binary

representation of the destination address, are
also the binary representation of j.

All the K outputs of the j th subnetwork,
whose binary representations differ only in the
first k bits are connected to one K-to-1 multi
plexer (see Figure 3.1). The output of this mul
tiplexer is the network output with binary
representation b1b2 ... bkok+lok+2 ... on, where

ok+lok+2 ... on are the common bits in the binary

representation of these subnetwork outputs and
b1b2 ••• bk is the binary representation of j. This

network is called a .§.electively loaded parallel
delta .network (Sn).

If Xin is the arrival rate at each input of

the network, then the arrival rate at the inputs
of the subnetworks, x0 , is equal to Xin/K. The

output rate at the output of each truncated delta
subnetwork will be xn-k' which can be obtained

from recurrence relation (2.2). The output rate,
Xout, at each output of the network is given by

the expression
K

Xout = 1 - (1 - xn-k) (3 .3)

The upper and lower bounds on Xout can be ob

tained by using the upper and lower bounds of xn-k

in the above expression.

In Figures 3.2a and 3.2b the throughputs ob
tained by using different distribution policies
are compared. The performance of Sn is better
than that of Rn because the subnetworks in Sn have
fewer stages and therefore fewer packets are lost
due to collisions in the subnetworks. The perfor
mance of Mn was expected to be better than that of
Rn, because in Mn all possible paths between an
input and an output are tried simultaneously.
However, each subnetwork in this situation is more
heavily loaded and the number of collisions in the
subnetworks are greater. The increased number of
collisions almost off sets the advantage of using
multiple paths simultaneously.

The throughputs obtained from a simple delta
network, from the use of multiple links (to be
discussed in the next section), and from an ideal
crossbar [12], are also shown in this figure to

13

illustrate the relative advantage of using the two
approaches discussed in this paper.

!!_. Using Multiple Links

In this section we propose the use of delta
networks with multiple links. In an NXN delta
network constructed from 2 X 2 crossbar switches,

each crossbar switch can receive up to K = 2k
packets at each of its input ports and it cau foL
ward at most K pacKets to any output port. Figure
l .2b shows an 8X 8 delta network implemented from
2X2 switches for K=2. To connect: tne input port
of a switch to the out put port of another, K in
dependent links are used (since each link carries
only one packet in a clock cycle). The input
ports of switches in the first stage of the net
work receive pacKets only on one of the K links,
which is the input link of the network (remaining
K-1 links are unused). The packets on tne K linKs
of the output are multiplexed on a single link
which is an output link of the network. A network
with K parallel links is denoted by DK.

Figures 4.la and 4.lb shuw one possible im
plementation of a switch for D2 and n4 • The

operation of the switch for n4 is described next.

The switch implementation can be easily general
ized for arbitrary values of K.

Each switch in D 4 contains two banks of four

l-to-2 demultiplexers, labeled the 'U' bank and
the 'L' bank. The inputs of the 'U' bank demulti
plexers receive packets from the upper input port
and those of the 'L' bank receive pacKets from the
lower input port. The outputs of the demulti
plexers are labeled 'O' and 'l'. The demulti
plexers are followed by four 4_input sorters, la
beled uu, ul, lu and 11 respectively. The 'O' and
'l' outputs of the demultiplexers in the 'U' bank
are connected to the uu and ul sorters, and tnose
of the 'L' bank are connected to the 1 u and 11
sorters. The sorters are followed by two banks of
four 2-to-l multiplexers, which are again labeled
the 'U' bank and the 'L' bank. The outputs of uu
and lu sorters are connected to the multiplexers
in the 'U' bank, and the outputs of ul and 11
sorters are connected to the multiplexers in the
'L' bank. The outputs of the 'U' and 'L' multi
plexers form the upper and the lower output of the
switch. The demultiplexers in the switch forward
the incoming packets to their 'O' output it tney
are directed to the upper output of the swit:ch and
to their 'l' output otherwise. The sorters move
the x packets arriving at their inputs (O ~ x ~ 3)
to their outputs labeled 0 through x. The sorting
network is constructed from Bitonic Sorters [2].

In a switch for D4 , each sorter contains six

switching elements shown as boxes with arrows. If
exactly one input of an switching element has a
packet on it, the packet is forwarded to the upper
output port it tne arrow in tne box points upwards
and to the lower output port if it points down.
If both the input ports of a swit:ching ele...ent
have packets on them, they are both passed
straight through.

If the outputs of the two sorters connected
to the same multiplexer bank have a total of K or
fewer (more than K) packets, the multiplexers in
the bank will forward all the (only K of these)
packets to the switch output.

We wiLl derive the expression for the
throughput of a 2X2 crossbar switch with K links
on each input and output port. This result will
be used to derive the throughput of a N XN delta
network constructed from such switches.

If j packets arrive at the K links of an in
put port with probability Xin(j), which is in-

<;Iependent of the arrival of packets on the second
input port, then the probability of finding m
packets on an output port is given by the expres
sion

K K
~ ~

i=O j=m-i
X. (i)X. (')(i+j) 2-(i+j)
in in J m

. >
J - 0 form= 0,1,2, ••• ,K-l

X (K)
out

(4.1)

In an N XN delta network made up of such
switches, let xi(m) (0 .S. m .S. K), denote the proba-

bility of finding m packets on the output of a
switch in stage i (for 1 .S. i .S. n) and let x0 (m)

denote the probability of finding m packets at the
input of a switch in stage 1

K

(m:O xi (m) = 1, for 0 .S. i.S. n).

the

If Xin is the arrival rate at every input of

network
x 0(0)

xo(l)

then
1 - X.

in
x.
in

x0(2) = x0(3) = •.• = x 0 (K) = 0

Since packets arrive at the two inputs of the
same switch in any stage independently (the rea
sons for this are cited in section 2), the proba
bilities of finding m (m <K) packets at the output
of a switch in stage s (i .S. s .S. n) can be ex
pressed by the following coupled recurrence rela
tions

x (m)
s

i=O

K
~ x < i) x < ')(i+j)2-(i+j)

s-1 s-1 J m
j=m-i
j ~ 0

x (K)= ~ ~ x (i) x (j)2-(i+j) iij(i+j)
s i=O j=K-i s-1 s-1 m=K m

(4.2)

The values of xn(O),xn(l), ••. ,xn(K) can be ob

tained by solving these recurrence relations [10).
The output rate at each output of the network,
Xout wi1l then be given by

Xout = 1 - xn(O)

If the modules connected to the output links

of the network are capable of accepting K

(1 .S. K .S. K) packets in each clock cycle, then the
throughput of the network will be given by the ex
pression

x
out

K
~ x (i) *MIN{i,K}

i=l n

In this case the K-to-1 multiplexers, at the
outputs of each switch in the last stage, must be

replaced by K-to-K concentrators.

As mentioned in section 2, the coupled re
currence relations (4.2) do not specify the func
tional form of Xout or its dependeuce on Xin and

n. To fina such a functional form we assume that

for each stage i between the kth and the last
stage, xi (j) specities a binomial disLribution

with mean K*pi' i.e.,

x. J - . p. 1-p. (') -(K) j ()K-j
i J i i

The first k stages can be ignored sin"e there can
be no conflict in these stages.

14

Due to the conflicts in the i th stage pi+l is

less than pi' but xi+l (j) (0 .S. j .S. n) is still

assumed to specify a binomial distribution. It
can be shown that

Pk = xin/K

and

Xout = 1 -(1- P~-1)2K
The following recurrence relation holds for the
values of pis (k .S. i < n)

= ~2 K(2K)(pi)j(_Pi)
2
K-j

p. 1 ~ . 2 1 2
i+ '=O J

(4.3)

Here p. /2 is the probability that a link at the
i

input of a switch in stage i (one of the K limes
at each input of a switch) carries a reque~t which
must be forwarded to a given output port. This
recurrence relation can be simplified to

_ .!. (2K) * 2-(K+l) * K+l
Pi+l =pi K K+l pi

+ high order terms

By deleting the high order terms of pi and denot-

K+l
ing the coefficient of pi by Q in the above

equation, the following recurrence relation is ob
tained

= _ * K+l
Pi+l pi Q pi

The forward difference function of this ditference
equation is used as differential operator to ob
tain the following differential equation

.9£ _ Q * K+l
di - - p

The solution of this differential equation at in
teger points in the domain wi1l be an approxima
tion for the solution of the difference equation,
and thus we have the following approximate solu
tion for equation (4.3)

pi = Po K / l 1 . K (4.4) '1 + KQ i Po

The analysis presented above can be general
ized to obtain the throughput, Xout, of N XN delta

networks constructed from BXB crossbar switches,
where K parallel linKs are used for each connec
tion between two switches. The actual throughput
is obtained from the set of coupled nonlinear re
currence relations listed below. In these equa
tions, I denotes the total number of packets ar
riving at all the inputs of a crossbar switch and
<i0 ,i1 , ••• ,iB_1> is a partion of I, which denotes

the number of packets arriving at each switch in
put.

Recurrence relation
p s (m) =

Initial Conditions

x 0(0) 1-Xin

xl(O) Xin

x/0) x3 (0)

Throughput
x

out

for m < K and s 1,2, ••. ,n/b

for s 1,2, •.. ,n/b

0

Similarly, by making the binomial approxima
tion, the following equations are obtained for the
throughput

x.
in

Po =T

~l 1 p. Po K i
+ KQ i Po

where Q .!. BK B-(K+l)
and K K+l

BK

x 1 _ (l - P(n~b-1))
out

Figures 4.2a and 4.2b show the throughput of
network D2 . The actual throughput obtained from

recurrence relation (4.2) and the through?ut esti
mates obtained from equations (4.3) and (4.4) are
shown together. Figures 4.2c and 4.2d show the
same for D4 • The estimates obtained by equations

(4.3) and (4.4) are within 10% of the actual
throughput for networks of sizes less than

225 x225 • Equation (4.4) turns out to be a very
good approximation for the nonlinear recurrence
relation (4.3).

From Figure 3.4 it is clear that the improve
ment in throughput obtained by replacing each link
of a simple delta network by K parallel links is

15

greater than that obtained by using K delta sub
networks in parallel regardless of the distribu
tion policy.

The throughput obtained by using four l rnKs
in parallel is very close to the throughput of a
crossbar.

2· Conclusion

Fairly tight lower and upper bound:; were
derived for the throughput of unbuffered delta
networks. These bounds have simple functional
forms and they illustrate the dependence of net
work throughput on the arrival rate, network size
and basic switch size.

Two approaches for enhancing the performance
of delta networks were discussed. For networks
obtained by combining multiple delta subnetworks
in parallel, three diBLribution policies were pro
posed for distributing the incoming packets
between the subnetworks. The effect of the dis
tribution policy on the throughput of the network
was investigated.

Then, networks obtained by replacing each
link of a simple delta network by multiple link:;
were considered. The throughput of these networks
was analyzed. One possible implementation for tne
basic switches to be used in these networks wai;
described.

References

[l] Barnes, G. H. and Lundstrom, S. F., "Design
and Validation of a Connection NeLwork for
Many-Processor Multiprocessor systems," Com
puter 1402), pp. 31-41 (Dec. 1981).

[2] Batcher, K. E., "Sorting NeLworks and their
Applications," Proc. of the Spring Joint Com
puter Conference , AFIPS press, Montvale, N.
J. (196 8).

[3] Dennis, J. B., "Data Flow Supercomputers,"
Computer 13(11), pp. 4&-56 (Nov. 1900).

[4] Dias, D. M. and Jump, J. R., "PacKet Switch
ing Interconnection Networks for Modular Sys
tems," Computer 14(1L), pp. 43-53 0981).

[5] Dias, D. M. and Jump, J. R., "Analysis and
Simulation of Buff erred Delta Networks," IEEE
Trans. on Computers C-3v(4), pp. 27J-282
(April 1981).

[6]

[7J

[8]

Dias, D. M., "Packet Switching in Delta and
Related Networks," Ph. D. Dissertation, Rice
University, Houston, Tx,. (May 81).

Feng, T., "Data Manipulating Functions in
Parallel Processors and Their Implementa
tions," IEEE Trans. on Computers C-23(3),
pp. 309-318 (Mar. 1974).

Goke, L. R. and Lipovski, G. J., "Banyan Net
works for Partitioning Multiprocessor Sys
tems," Proc. of the 1st Annual Symposium on
Computer Architecture , pp. 21-2 8, ACM, New
York, N. Y. 0 973).

L 9] Gottlieb, A., Grishman, R., Kruskal, C. P.,
McAullite, K. P., Rudolph, L., and Snir, M.,
"The NYU Ultracomputer - Designing an Mi.MD
Shared Memory Parallel Computer," IEEE Trans.
on Computers C-32(2), pp. 175-189 (Feb.
1983).

[lu] Kruskal, C. P. and Snir, M., "The Performance
of Multistage InLerconnection Networks for
Multiprocessors," Private communication •

[11) Lawrie, D. H., "Access and Alignment of Data
in an Array Processor," IEEE Trans. on Com
puters C-24(12), pp. 1!45-1155 (Dec. 1975).

[12) Patel, J. H., "Performance of Processor
Memory Interconnections for Multiprocessors,"
IEEE Trans. on Computers C-30(10), pp. 771-
7 00 (Oct. 1981).

[13) Schwartz, J. T., "The Burroughs FMP Machine,
Ultracomputer Note #5," Courant Institute,
NYU (1900).

[14) Siegel, H. J. and McMillen, R. J., "Using tne
Augmented Data Manipulator Network in PASM,"
Computer 14(2), pp. 25-33 (Feb. 1981).

Figure 1.1 An 8X8 delta network constructed

from 2X2 switches.

I 11· ·11---+I
demultiplexers delta subnetworks multiplexers

Figure l.2a: An NXN network constructed from

two NXN delta subnetworks

16

Figure 1.2b

"' c
H

~ .
"
~ 0 • "'
~
~ -;: c
0 ..,
" "" "" ..
" 0 0 ..
~

Figure 2.la

-" H
0

~ .
""' ~ 0
" "'
" i--:
-;: 0

....
0

...
6. "' "" . .. 0

!

Figure 2.lb

two parallel
multiplexers

\

An 8X8 delta network with double

links (D2 network)

10

Number of stages -

2X2

1. 0

20

Switch Size 4 X 4

Arrival Rate 1. 0

/upper bound

actual throughput

10 20

Number of stages

25

25

.-"

" ": 0

l .
c

1l
H . "' "' c
~

!
00

.. 0
0

" " " "' bO

" 0 0 " "' ,_.

Figure 2.lc

"'
c

~
0

l ~ .
c

1l
~ .
"'
~

~

!
'<-<
0

" "!

" " "' bO

" 0

" .c ,_.

Figure 2. ld

Number

Switch Size 16 x 16

10

of

10

!. 0

20

stages

Switch Size 16 X 16

Arrival Rate 0.5

throughput

20

Number of stages

25

25

I· ·111----->1 ,_ ___
demultiplexers truncated multiplexers

delta subnetworks

Figure 3.1 An 8X8 selectively loaded parallel

delta network constructed from two

8X8 truncated delta subnetworks.

17

~

"-:

"
, Network n2

" "
... Sn (K•4l

.c
bO

"
-Rn and Mn

(K=4)
0
~
.c ~ ,_.

~Sn (K=2)

-Rn an-1 Mn
(K=2l

';

Arrival rate 1. 0
delta

.... network

16 64 256 1024 4096

Network Size (logarithmic axis)

Figure 3.2a

{Crossbar and

~~~~~:;;:~~:;;;;;;;;;=::::::=:=::~===::~-~ networ~ o4 

' +-Network D?: 

µ 

" """ "' . bO c 

" 0 

i5 

Arrival rate 0. S 

16 64 256 1024 

Network Size (lo~arithmic axis) 

Figure 3.2b 

upper { inputs 

{ lower 

inputs 

demultiplexers 

multiplexers 

switching element 

- Sn (K=4) 
~Rn and Mn 

(K=4l 

-sn (K=2) 

' Rn and Mn 
(K=2) 

4096 

} upper 

outputs 

} lower 

outputs 

Figure 4.la A 2X2 crossbar switch for n2 



" fr 
~ g ;; 

k 
k 

~ j 
'--------------- -- -'O 

l1demultiplexer1j 1----,0-r_r_"_s---1 J• multiplexers ij 

Figure 4.lb : A 2X2 crossbar switch for n4 

Actual 

~Binomial Approximation 

force soln. l 
analytical soln. 

I parallel links 2 
Arrival Rate 1. 0 

10 20 25 

Number of Stages ----. 

Figure 4.Za 

I parallel links 2 
Arrival Rate 0.5 

- Binomial !i.Pproximation 

! 
t 

Actual Throughput 

10 20 25 

Number of Stages -

Figure 4.Zb 

18 

Binomial lproximation 

Figure 4.Zc 

i 
Actual Throughput 

I parallel links 4 
Arrival Rate 1.0 

10 20 

Number of Stages -

I parallel links 
Arrival Rate 

Binomial Approximation 

i 
i 

Actual Throughput 

10 20 

Number of Stages -

Figure 4.Zd 

4 
0. 5 

25 

25 



EXPANDING AND CONTRACTING SW-BANYAN NETWORKS 

Doug DeGroot 
I BM Thomas J. Watson Research Center 

P.O. Box 218 
Yorktown Heights, New York 10598 

Abstract 

SW-banyan networks are one of the most promis
ing class of multistage interconnection networks. 
Their advantages include simplicity of control, par
titionability, modularity, and expandability. Most 
SW-banyan interconnection networks that have 
been studied have been strongly rectangular nxn 
networks, constantly growing (expansion) net
works, or constantly shrinking (concentration) 
networks. A class of SW-banyans called expanding 
and contracting SW-banyans is formally defined. 
These networks are shown to offer certain signif
icant performance benefits over other multistage 
SW-Banyans. Because they require more 
hardware, they are more costly than certain other 
rectangular SW-banyans. However, they offer sig
nificant performance advantages, and thus may be 
suited for high-performance environments. They 
retain the advantage of n log n cost functions. 
More importantly, they retain the "unique-path" 
property. 

INTRODUCTION 

It is clear that interconnection networks com
prise a major architectural component of large, 
highly parallel computers. Although many net
works have been studied for their suitability to 
this environment [Siegel, Lawrie), one type receiv
ing much current attention is the "unique-path" 
multistage network. Given any two resources con
nected to opposite sides of the network, there is 
always one and only one path through the network 
between them (thus the name "unique-path"). The 
number of stages in these unique-path multistage 
networks is usually O(log n), with n switches 
(crosspoints) per stage, yielding a cost function of 
O(n log n) (as opposed to O(n 2 ) for crossbars). 
The Omega network [Lawrie2] is perhaps the best 
known example of a "unique-path" multistage net
work. Unique-path networks are in general much 
easier to control than multiple-path networks. 

Unfortunately, most of these unique-path net
works also contain only partial interconnectivity 
capabilities. Thus, given any two resources to be 
interconnected, if other interconnections presently 
exist, the two resources may not be able to be 
interconnected due to blockage by the other 
already active interconnections. This absence of 
'full interconnectivity can cause serious degradation 
in system performance if interconnection blockages 
cannot be held to a minimum by either the operat
ing system or the user application. Clearly, the 
less blockage inherent in the network the better. 
One large class of blocking, unique-path networks 
is the class of SW-banyan networks. It is shown 
below that expanding and contracting multistage 

0190-3918/83/0000/0019$01.00 © 1983 IEEE 19 

SW-banyans have less blockage inherent in them 
than other types of multistage SW-banyans. But 
what is just as important, they are also shown to 
possess the unique-path property. 

BANYAN INTERCONNECTION NETWORKS 

In this section a very large, general class of 
multistage interconnection networks called !:>~ans 
is described [Lipovski]. SW-banyans, a proper 
subset of banyans, are a particularly attractive, 
cost-effective, modular type of banyan that can be 
recursively synthesized from smaller SW-banyans. 
A number of single-valued functions are defined 
which describe certain structural and topological 
features of SW-banyans. 

Banyans 

Banyan networks, named for an East Indian and 
Hawaiian fig tree, are defined in terms of their 
graph representation. A banyan (or banyan 
graph) is a Hasse diagram of a partial ordering in 
which there is one and only one path from every 
base to every apex. A base is defined as any ver
tex with no edges incident into it; an apex is any 
vertex with no edges incident out of it; all other 
vertices are called intermediate vertices. Some 
examples of banyans are shown in Figure 1. In 
these diagrams, bases are at the bottom and apexes 
are at the top. In the following illustrations, the 
banyans will be drawn as undirected graphs. 

An L-level banyan is a banyan in which every 
base-apex path is of length L. In an L-level 
banyan, there are L levels (stages) of arcs but L +1 
levels of nodes. By convention, all following 
banyan illustrations will be numbered baseward, 
with apexes at level 0 and bases at level L. In an 
L-level banyan, arcs exist only between vertices in 
adjacent levels. 

In a banyan, the spread of a vertex is the num
ber of edges incident out of the vertex; the fanout 
of a vertex is the number of edges incident into the 
vertex. If every node level of a banyan is such 
that all vertices within the same level have identical 
spread and fanout values, the banyan is called uni
form; otherwise it is called non-uniform. In a uni
form banyan, the fanout values of the vertices may 
be characterized by an L-component vector f, 
called the fanout vector. Similarly, the spread val
ues are characterized by an L-component spread 
vector S. A rectangular banyan is a banyan for 
which F-= S. It is shown below that a rectangular 
banyan- has the same number of vertices at each 
level. Non-rectangular banyans have f -f _§_. 



If every component of the fanout vector F is 
equal to some constant f and every component of 
the spread vector is equal to some constant s, the 
corresponding banyan is called ~g_1:1~; otherwise 
it is called irregular. When f = s, by necessity E = 
S, and the corresponding banyan is both regular 
and rectangular; such banyans are called strongly 
rectangula_r-. An irregular rectangular banyan is 
called weakly rectangular. Figure 1 illustrates 
these concepts. From the above definitions it can 
be seen that a crossbar is a one-level regular 
banyan. 

SW-banyans 

SW-banyans are a particularly interesting prop
er subset of L-level banyans. They are especially 
suitable for partitioning and connection networks 
[Goke, DeGroot]. SW-banyans can be axiomatically 
defined [Premkumar]. Recall that a banyan is a 
Hasse diagram of a partial ordering in which there 
is one and only one path from every base to every 
apex. The level ~ reachability set for any base b, 
0 s x s L, is defined as the set of all nodes in lev
el x that can be reached by directed paths from 
base b. Similarly, the level x reachability set for 
any apex a, 0 s x s L, is defined as the set of all 
nodes in level x that can be reached by paths from 
apex a. A banyan is an SW-banyan if and only if 
for any two bases b and c, or any two apexes d 
and e, their level x reachability sets are either dis
joint or identical, for 0 s x s L. 

Constructing SW-Banyans 

In addition to the preceding axiomatic 
definition, a novel constructive definition of 
SW-banyans will now be given. This definition 
applies only to uniform L-level SW-banyans, but it 
can easily be extended to include non-uniform, 
non-L-level SW-banyans. It differs considerably 
from previous constructive definitions for 
SW-banyans and SW-banyan , networks [Goke, 
Goke2, DeGroot]. It can be used to generate regu
lar and irregular SW-banyans, and 
non-rectangular, strongly rectangular, and weakly 
rectangular SW-banyans, as well as the expanding 
and contracting SW-banyans presented here. A 
number of single-valued functions can be associ
ated with this definition, and they are given below. 
These functions define and describe certain struc
tural and topological features of SW-banyans. 

A uniform one-level SW-banyan is simply a 
crossbar. A two-level uniform SW-banyan can be 
constructed as follows. Consider any mxn 
crossbar, and select t of them. Choose any integer 
k > 0, and construct another SW-banyan as 
follows. Take the first (leftmost) apex of each of 
the t crossbars and connect them to k new nodes. 
Take the second apex of each crossbar and connect 
each of these apexes to k other new nodes. Con
tinue until all apexes have been connected to 
groups of k new nodes. Figure 2 illustrates this 
procedure. The resulting 2-level network is 
(km)x(tn). Clearly each of the km new nodes has 
one and only path to each of the t crossbars (see 
Figure 2). Further, each crossbar apex has one 
and only path to each crossbar base. Therefore, 
each of the km new nodes has one and only one 

20 

a) regular b) irregular 

N'- !:- ~ V, Vl ).1 

V, 
l'::J 

D<D< rx ~ D< D< rx 
c) weakly rect. d) strongly rect. 

Figure 1 

path to each of the tn bases, and thus the con
structed network is a banyan. It is easy to see 
that the constructed two-level banyan satisfies the 
axiomatic definition given above, and thus the 
banyan is also an SW-banyan. Now consider any 
mxn (L-1)-level uniform SW-banyan. Choose some t 
of these SW-banyans and some k > 0 as before. An 
L-level SW-banyan can be constructed using the 
same procedure as above. Because each (L-1)-level 
SW-banyan has one and only one path between each 
apex and base, so will the constructed L-level 
SW-banyan. This procedure can be recursively 
applied to construct an SW-banyan with any num
ber of levels. There will always be one and only 
one path between every base and every apex in the 
constructed SW-banyan, and it can be shown that 
the axiomatic definition will always hold. Figure 3 
illustrates this process. 

----~~--~.,,..--~----t; 2 

Figure 2 

} L lcwle 
L-1 { levels 

----
Figure 3 



SW-banyan Topological Features 

In a uniform SW-banyan, all vertices within a 
given level have identical fanout values and identi
cal spread values. The fanouts and spreads of a 
uniform SW-banyan are represented by the 
L-component vectors F and S. For example, the 
3-level SW-banyan in Figure 1-:-c has F = (2,3) and 
S = (2,2). The fanout of every node at level i is 
denoted f(i) for 0 :S i :S L-1; the spreads of these 
nodes are denoted s(i) for 1 :S i :S L. In other 
words, f(i) is the i+l'st component of F, and s(i) is 
the i'th component of S. For convenience, we 
define both s(O) and f(L) to be 1. The number of 
nodes in any level x of an L-level SW-banyan is 
defined as n(x). The number of apexes is n(O); 
the number of bases is n(L). 

In this section, a number of topological features 
of SW-banyans are described. These features are 
used in the following sections to describe expand
ing and contracting SW-banyans. Because the 
proofs of the theorems are so easy and obvious, 
and because they have appeared elsewhere in the 
literature ([Goke, DeGroot]L they are omitted 
here. 
Theorem 1: 
For any level x in an SW-banyan, 0 :S x :S L-1, 
n(x+l) = n(x)f(x)/s(x+l). 
Theorem 2: 
For any uniform L-level SW-banyan, n(x) < n(x+l) 
if and only if f(x) > s(x+l). Furthermore, 
n(x) > n(x+l) if and only if f(x) < s(x+l). And 
n(x) = n(x+l) if and only if f(x) = s(x+l). 
Theorem 3: 
In a rectangular SW-banyan, n(x) is constant and 
equal to B, the number of bases in the banyan, for 
O:Sx:SL. 
Corollary 3.1: 
If n(x) = n(x+l) for all x, 0 :S x :S L-1, then 
F = S. 
Theorem 4: 
Each base of an SW-banyan S reaches 
s(x+l)s(x+2) ... s(L) nodes at level x, 
O:Sx:SL-1. 
Corollary 4. 1: 
The number of apexes in a uniform SW-banyan is 
s(O)s(l) ... s(L). 
Corollary 4.2: 
Each node at level x, 0 :S x :S L, reaches 

.s(O)s(l)s(2) ... s(x) apexes. 
Theorem 5: 
Every apex in a uniform SW-banyan reaches 
f(O)f(l) ... f(x-1) nodes at level x, 1 ::::: x :S L. 
Corollary 5. 1: 
The number of bases in a uniform SW-banyan is 
f(O)f(l) ... f(L). 
Corollary 5.2: 
Each node at level x, 0 :S x :S L, reaches 
f(x)f(x+l) ... f(L) bases. 
Theorem 6: 
In a uniform SW-banyan, the number of apexes 
equals the numbers of bases if and only if 
f(O)f(l) ... f(L-1) = s(l)s(2) ... s(L). 

21 

EXPANDING AND CONTRACTING SW-BANYANS 

Most of the multistage interconnection networks 
that have been studied have been nxn multistage 
networks, that is, they have n inputs (apexes) and 
n outputs (bases). Furthermore, they have almost 
always been strongly rectangular nxn networks -
they have had n switches in every stage of the 
network. In this section, a certain type of 
non-rectangular nxn network is presented. These 
networks are called "expanding and contracting" 
nxn SW-banyan networks. They are shown to have 
certain performance advantages over the prevalent 
rectangular nxn networks. 

From Theorem 6 above, any nxn SW-banyan 
must have f(O)f(l) ... f(L-1) = s(l)s(2) ... s(L) = n. 
Furthermore, to be rectangular, (that is, to have n 
switches in every stage), it must be that 
f(i) = s(i+l) for 0 :S i :S L-1. It should be clear 
that we can take the f(i) and permute them and 
still have their product equal to n. For instance, 
if f(O)f( l)f(2) = n, then clearly f( 1 )f(O)f(2) also 
equals n. Therefore, given an nxn L-level 
SW-banyan with particular fan and spread vectors 
.E and ~' another nxn SW-banyan can be derived 
by simply permuting the components of F or S (or 
both). However, unless f(i) still equals s(i+lf; for 
0 :S i :S L-1, the nxn SW-banyan will no longer be 
rectangular (since .E will no longer equal~). 

For an example, consider the 8x8 weakly rec
tangular SW-banyan in Figure 4a. It has F and S 
both equal to (2,4). Because F = S, n(x)-is con-=
stant and equal to 8 for 0 :s: x ;; 2 (see Theorems 1 
and 3). Now consider what happens when F is 
changed to the vector (4,2). Clearly now F IS, 
and so the _resulting SW-banyan cannot be rectan
gular. However, we still have that 
f(O)f(l) = s(l)s(2) = 8. So the banyan is still 8x8 
(see Corollaries 4.1 and 5.1). But because 
f(O) < s(l), n(O) < n(l). In fact, n(O) = 8, but 
n(l) = 16. (From Theorem 1, n(l) = n(O)f(O)/s(l). 
And since f(O)/s(l) = 4/2 = 2, n(l) =·2n(O).) In 
other words, there are twice as many nodes at level 
1 than there are at level 0. The corresponding 8x8 
SW-banyan is shown in Figure 4b. Since 
f(1)/s(2) = 2/4 = 1/2, there are half as many 
nodes at level 2 than there at level 1. So level 0 
has 8 nodes (apexes), level 1 has 16 nodes, and 

a) 

Figure 4 

F=S=(2,4) 

F=(4,2) 
S=(2,4) 



level 2 has 8 nodes (bases). This banyan expands 
outward from the top (apexes) and then contracts 
back toward the bottom (bases), somewhat like a 
diamond. 

It is easy to see that it is also possible to con
struct expanding and contracting mxn SW-banyans 
in which m -f n. 

Preserving the Unique-path Property 

It has seemed perplexing to many that a multi
stage network can have twice as many nodes in an 
inner level than in the apex or base levels and yet 
still retain the unique-path property, that is, that 
there can still be one and only one path between 
every apex and every base. Figure 4b provides 
visual proof of one example of this possibility. To 
see how the unique-path property is maintained, 
recall the constructive definition of L-level 
SW-banyans given in Section 2.3. A uniform 
two-level SW-banyan can be constructed by select
ing t mxn crossbars and interconnecting them 
through km new nodes, for some k > 0. It is clear 
that doing so yields an SW-banyan with F = (t, n) 
and S = (k,m). If t > k, then there will be more 
level-1 nodes than· there are level 0 nodes. If 
n < m, there will be fewer level 2 nodes than there 
are level 1 nodes. However, the recursive con
structive definition assures us that the constructed 
network will in fact be an SW-banyan and will 
therefore possess the unique-path property. In 
this way, an expanding and contracting network 
can be constructed, and the unique-path property 
is maintained, as explained above. The above pro
cedure can be recursively repeated to produce 
expanding and contracting SW-banyans of even 
greater numbers of levels, with the unique-path 
property being easily proven by induction as 
before. 

A mathematical proof of the unique-path proper
ty of SW-banyans has been given in [Bhuyan]. 

Blocking Characteristics 

Most unique-path multistage interconnection 
networks suffer from various types of blockage. In 
this section, a special type of blockage is consid
ered. It is initially assumed that some sort of ded
icated, non-interfering connections are to be used 
to interconnect apexes to bases, as in circuit 
switched connections, for example. This assump
tion is later relaxed. 

When one apex is connected to a base by means 
of a dedicated communication path, no other new 
apex-base connection can be made if that new con
nection requires a node or link in use by the first 
connection. The second connection is said to be 
"blocked." This is a direct consequence of the 
unique-path property. Only when the first con
nection is undone can the second be made. Certain 
networks are inherently more prone to blocking 
than others. 

In this section, a function is defined which 
gives an indication of the amount of static blockage 
inherent in an L-level SW-banyan. This function 

22 

allows different SW-banyans to be compared to each 
other. The function simply relates how many pos
sible interconnections are rendered impossible (be
come blocked) by any single connection made on an 
empty network. Exactly how much run-time 
blockage this connection causes depends on many 
factors. 

Consider any single interconnection. It uses one 
and only one node at each level of the SW-banyan. 
The base and apex being interconnected are obvi
ously rendered unavailable; but because this would 
be true even in crossbars, their unavailability is 
not considered as blockage here. Consider the 
node in use at level x however, 1 s x s L-1. This 
node can be reached by s(l )s(2) ... s(x) apexes. 
Furthermore, this node can reach 
f(x)f(x+1) ... f(L-1) bases. But one of these apexes 
and one of these bases are the apex and the base 
in the given interconnection, so they are not con
sidered as being able to be blocked (they are 
already in use). For any x, 0 s x s L, define 
a(x), the number of apexes reachable by a node at 
level x, to be s(O)s(1) ... s(x) (see Corollary 4.2). 
Define b(x), the number of bases reachable by a 
node at level x, to be f(x)f(x+1) ... f(L) (see Corol
lary 5.2). Then bp(x), the number of blocked 
paths that pass through the busy node at level x, 
is simply (a(x)-l)(b(x)-1), for 1 s x s L-1. We 
define both bp(O) and bp(L) to be zero. The sum 
of all bp(x), for 1 s x s L-1, however, does not 
yield the total number of blocked paths generated 
by a single active path, since many blocked paths 
would get counted more than once with this sum. 
To avoid the multiple counting, we define the func
tion bl(x) as [a(x)-a(x-l)](b(x)-1), for 
1 s x s L-1. This equation counts the number of 
additional blocked paths that are encountered as a 
communication path is fo!!owed from an apex down 
to a base. The total blockage created by a single 
connection is then correctly given by the sum of all 
bl(x), for 1 s x s L-1. 

For an example, consider several possibilities of 
a 16x16 SW-banyan. The most popular such net
works are strongly rectangular ones in which 
either f=s=2 or f=s=4. An expanding and contract-· 
ing SW-banyan in which F = (4,2,2) and 
S = (2,2,4) is also considered. These networks are 
Tilustrated in Figure 5. The values for a(x), b(x), 
and bl(x) are shown for all three. Summing the 
bl(x)'s, it can be seen that the f=s=2 SW-banyan 
incurs a total blockage of 17 blocked intercon
nections for each connection made. The f=s=4 
SW-banyan incurs a total blockage of only 9, or 
almost half as few. But the expanding and contract
ing SW-banyan incurs a total of only 5. From these 
figures, it would seem that the expanding and con
tracting SW-banyan is the best performer of the 
three, followed by the f=s=4 and then the f=s=2. 
These results are consistent with recent studies 
[DeGroot, Malek, McMillen, Bhuyan]. 

For another example, consider a 64x64 
SW-banyan. Using 4x2 and 2x4 nodes, a 64x64 
SW-banyan can be built with F = (4,4,2,2) and 
~ = (2,2,4,4), as shown in Figure 6. Level 0, the 
apex level, has 64 nodes, level 1 has 128, level 2 
has 256, level 3 has 64, and level 4, the base level, 



Figure 5 

lvl a(x) b(x) bl(x) 
-0- --1- 16 -0-

1 2 8 7 
2 4 4 6 
3 8 2 4 
4 16 1 0 

lvl a(x) b(x) bl(x) 0_1_16_0 __ 

1 4 4 9 
2 16 0 

lvl a(x) b(x) bl(x) 0_1_16_0_ 
1 2 4 3 
2 4 2 2 
3 16 1 0 

F=(4,4,2,2) 
S=(2,2,4,4) 

Figure 6 

h?!s 64. For each connection made, this 64x64 
SW-banyan suffers only 33 blocked 
interconnections. The standard f=s=4 SW-banyan 
suffers 81, and the f=s=2 SW-banyan suffers 129. 
Clearly the expanding and contracting SW-banyan 
offers significant performance gains over other 
SW-banyans. 

It should be noticed that the increased perform
ance of an expanding and contracting SW-banyan 
does not come without cost. First, the number of 
stages in an expanding and contracting SW-banyan 
may be more than in other networks, leading to 
increased communication delays. In addition, 
expanding and contracting SW-banyans may easily 
require more network switches and wires. 

23 

However, importantly, the total cost of o,xpanding 
and contracting SW-banyans still grows at the rate 
of only n log n. 

Bandwidth Characteristics 

The above analysis considered all intercon
nections to be dedicated, non-interfering con
nections, as in circuit switching. This section 
considers the analysis of expanding and contract
ing SW-banyans in a packet switching environment. 
Bandwidth is defined to be the expected number of 
memory requests accepted per cycle. To calculate 
the bandwidth, it is necessary to calculate and sum 
the probabilities of an output occurring at each 
base (assuming apexes are the inputs). Bhuyan 
and Agrawal provide a simple recursive function 
for doing so [Bhuyan]. The probability of output 
of a node at network level i is simply 

p(i) = 1 - (1 - p(i-1)/s(x))f(x) 
We assume here that p(O)=l (see [Bhuyan]. for 
other relevant assumptions. The bandwidth of an 
SW-banyan is then simply n(L)p(L). For the 16x16 
SW-banyan then, the f=s=2 version has a bandwidth 
of 7 .2, the f=s=4 version has a bandwidth of 8.44, 
but the expanding and contracting SW-banyan with 
F = (4,2,2) and S = (2,2,4) has a bandwidth of 
9. 28. Clearly the expanding and contracting 
SW-banyan is the better performer in packet 
switching environments. Similar results are 
obtained for the 64x64 example. It should be easy 
to prove that this will always be the case for 
expanding and contr:icting SW-banyans. 

OTHER TOPOLOGICAL POSSIBILITIES 

It should be clear from Section 3. 1 that with the 
proper choice of t and k at each recursive step of 
the construction of an SW-banyan that arbitrary 
topologies can be achieved. Figure 7 illustrates 
some of the many possibilities. Each has the 
unique-path property. What the advantages of any 
of these topologies are, if any, remains to be 
investigated. 

Figure 7 



CONCLUSIONS 

It has been shown that nxn multistage 
SW-banyans can be constructed with more than n 
nodes in an internal level. This was not generally 
believed to be possible. Because they are 
SW-banyans, these networks have the unique-path 
property, that is, there is one and only one path 
between every apex and every base. Traditionally, 
nxn SW-banyans are constructed as 
strongly-rectangular SW-banyans. It has been 
shown here that the expanding and contracting 
SW-banyans possess significantly less inherent 
blockage than the corresponding rectangular 
SW-banyans. Such networks can be built from only 
two or three different types of switches. Although 
they require more switches and may result in more 
network stages than some strongly rectangular 
SW-banyans, they retain the advantages of a cost 
function of only O(n log n). As a consequence, it 
seems such networks may prove to be more suitable 
for interconnecting large numbers of system 
resources than the prevalent rectangular networks, 
especially when high performance is a major con
cern. 

Acknowledgements 

Thanks to Dr. Jack Lipovski for his help with 
this work. 

[Bhuyan] 

[DeGroot] 

[Goke] 

Bibliography 

"Design and Performance of a General 
Class of Interconnection Networks," 
Bhuyan, Laxmi N. and Agrawal, 
Dharma P., Proc. 1982 International 
Conference OOParaTiel Processing, 
Aug. 1982, pp:-2-9. 

!l~ing Computation Structures Onto 
SW-banyan Networks, Doctoral Disser
tation, Department of Computer Sci
ences, The University of Texas, 
Austin, 1981. 

Banyan Networks for Partitioning 
Multiprocessor SystemS.-Goke, Rodney 
L., Doctoral Dissertation, Univ. of 
Florida, 1976. 

24 

[Goke2] 

[Lawrie] 

[Lawrie2] 

[Lipovski] 

[Malek] 

[McMillen] 

"Banyan Networks for Partitioning 
Multiprocessor Systems," Goke, 
Rodney L. and G. Jack Lipovski, Firs! 
Annual ~m_p_'._ Q11 fom__e__,_ ~_r:_c;:!!__,_, Dec. 
1973, pp. 21-28. 

"Bibliography: SIMD/MIMD Computer 
Interconnection Networks," Lawrie, 
Duncan H., Distributed Processin_g 
Technical Committee Newsletter, Vol. 
3, No. 2, IEEE, June 1981, pp. 6-12. 

"Access and Alignment of Data in an 
Array Processor," Lawrie, Duncan H., 
Trans. on Computers, IEEE, Vol. 
C-24, No. 12, Dec. 1975, pp. 
1145-1155. 

"A Theory for Multicomputer I ntercon
nection Networks," Lipovski, G. Jack, 
and Malek, Miroslaw, accepted for pub
lication in Trans. on Computers, IEEE.· 

A 4x4 Modular Crossbar Design for the 
MultlStage Interconnection Networks, 
Malek, Miroslaw, DeGroot, Doug, 
Hung, A.C., and Juang, Ming-Shing, 
Dept. of Computer Sciences and the 
Dept. of Elec. Eng., The University of 
Texas, Austin, Texas, May 31, 1981. 

"Performance and lmpelmentation of 
4x4 Switching Nodes in an Intercon
nection Network for PASM," McMillen, 
Robert J., Adams, George B. 111, and 
Siegel, Howard J., Proceedings of 1982 
International Conference on Parallel 
Processing, Aug. 1981, pp.229-233. 

[Premkumar] ~ Theoretical Basis for the Analysis 
and Partitioning of Regular 
SW-banyans, Doctoral Dissertation, 
Dept. of Elec. Eng., The University of 
Texas, Austin, Texas, 1981. 

[Siegel] "A Survey of Interconnection Methods 
for Reconfigurable Parallel Processing 
Systems," Siegel, Howard J., Mueller, 
Phillip T., Jr., AFIPS Conf. Proc. 
1979 National Computer Conference, 
Vol. 48, June 1979, pp. 529-542. 



A COMPARISON OF CIRCUIT SWITCHING AND 
PACKET SWITCHING FOR DATA TRANSFER 

IN TWO SIMPLE IMAGE PROCESSING ALGORITHMS 
by 

Mehrad Yasrebi 
Communication Products Division 

IBM Corporation 
Research Triangle Park, NC 

and 
Sanjay Deshpande and J.C. Browne 
Department of Computer Sciences 
The University of Texas at Austin 

~ 
The communication costs for parallel versions of two simple 

algorithms used in image processing are compared in packet 
switching and circuit switching formulations. The two algorithms 
are smoothing and histogramming. The histogramming algorithm, 
the recursive doubling algorithm of Stone, is studied over a range 
of processor numbers and pixel intensity resolution. The packet 
and circuit switching properties of the interconnection networks of 
the multiprocessor systems are based on two network architectured 
multiprocessors which are well-documented in the literature, PASM 
and TRAC. Communication based upon circuit switching generally 
gives a somewhat lower communication cost with the advantage 
increasing with pixel intensity resolution. The results of the 
analysis suggest a high utility value for including both circuit 
switching and packet switching functionality in the networks of 
network architectured multiprocessor systems. 

Introduction and Overview 

This paper compares the communication costs for executing two 
algorithms used in image processing on three parallel computer 
architectures. The purpose of the comparison is to evaluate packet 
switching and circuit switching modes of data movement for 
interconnection network based multiprocessors. The two 
algorithms used for the comparison are computation of histograms 
of the intensity values of pixels of an image and smoothing of gray 
level data across the pixels of an image. 

The model for a packet switching architecture is the Partitionable 
SIMD/MIMD (PASM) System for Image Processing and Pattern 
Recognition· [Siegel81]. The model for a circuit switching 
architecture is the Texas Reconfigurable Array Computer (TRAC) 
[Sejnowski80]. The third architecture, all processors sharing a 
common bus [Bhuyan82], is given as a baseline for the comparison. 
An analysis of communication costs for the two algorithms 
executing on P ASM has been given in [Siegel81]. The results of an 
analysis of the execution of the two algorithms in a circuit 
switching formulation based on TRAC are given here. Space 
limitations preclude detailing of the analysis. 

Communication Analysis ~ ~ Algorithms 

The major factors determining communication cost for the 
execution of parallel algorithms on interconnection network (ICN) 
based multiprocessors include: (i) the topology of the ICN and the 
configuration of resources on the ICN, (ii) the mapping of the data 
movement requirements of the algorithm upon the ICN, (iii) choice 
of switching methodology, (iv) the latency and bandwidth 
properties of the ICN, and (v) the unit sizes and the total volume 
of the data to be moved. This paper focuses on the impact of 
switching methodology and data volume on communication cost. 

The choice of packet switching or circuit switching as the mode of 
network data path establishment can have a substantial effect on 
each of these architectural parameters. Packet switching tends to 
give fiexibility in topology but fixed unit transfer sizes. Circuit 
switching tends toward less flexibility in topclogy, greater flexibility 
in unit size for transfers, but a longer transfer latency time. Packet 
switching may also introduce bandwidth degradation due to path 
contention while circuit switching may introduce path blockages 
which limit realizable network topologies for all networks short of 
full cross-bars. 

0190-3918/83/0000/0025$01.00 © 1983 IEEE 25 

The measure of communication cost is elapsed time. The 
communication times given herein are reported as number of 
memory cycles. We assume, in order to normalize computation 
costs across architectures, that an integer addition takes a single 
memory cycle and that updating a histogram vector element 
requires two integer additions. The speed-up of a multiprocessor 
over a uniprocessor is the ratio of total execution times, TE• where 
TE= TcoMM + TcoMP· All LOG's in this paper are in base 2 
unless otherwise noted. The data paths of each ICN are taken to 
be one integer word in width. For the multistage ICN's of PASM 
and TRAC it is assumed that a unit of data moves through one 
stage of the ICN on each memory cycle. 

Definition 2f Architectures 

Communication cost for execution of the two algorithms is 
compared for three ICN-based multiprocessor architectures. The 
single shared bus architecture (Figure 1) has been characterized by 
Bhuyan and Agrawal ]Bhuyan82]. It is a baseline for ICN-based 
multiprocessors. There is no distinction between packet and circuit 
switching in this model of communication. The model for a packet 
switching data movement architecture is PASM [Siegel8lj. The 
ICN of P ASM connects complete processing elements as shown in 
Figure 2. 

0 
N 
T 
R 
0 
L 

Shared 
Memory 

Fig. 1, A Multiprocessor with a Shared Bus 

. . . 
Inter
c.onnec.tion 

Network 

Fig. 2. PE-to-PE Configuration 

Fig. 3. Processor-to-He111ory Conf igurnt ion 



The interconnection networks proposed for PASM are the 
generalized cube and the augmented data manipulator (ADM) 
"[Siegel79J.-·These two networks are optimal for· histograniming in 
the sense that all permutations for the algorithm can be realized by 
both networks in a single pass. Thus packet transfers can take 
place without blocking. 

The model for a circuit switching data movement architecture is 
TRAC [Sejnowski80J. TRAC places processors at the apex nodes 
and memories at the base nodes of its ICN (Figure 3). The ICN of 
TRAC is an SW-Banyan [Premkumar80J with nodes having spread 
of two and fanout of three for its ICN. Processor configurations 
are formed by establishing circuits in the ICN joining processors to 
memory units. Data riow between processors for different stages of 
the algorithms can be realized by dynamically switching memories 
between processor-memory configurations. This network also 
implements trees of circuits joining one memory to many 
processors in which any one circuit may be activated and/or 
deactivated by a single processor instruction. These tree circuits 
are called shared or switchable memory trees. Data rlow between 
processors may be implemented using this capability by a sequence 
of circuit activations and deactivations (among the circuits 
following the tree). 

The ICN of TRAC actually implements both circuit switching 
and packet switching but only the circuit switching mode of use is 
modeled in the equations given following. 

The Algorithms !!!.!!. ~ Mapping !2 the Architecture 

Histogramming and smoothing are among the basic operations of 
image processing, although not usually rate determining steps in 
the computations. Attention to detailed parallel formulations of 
major computational steps of image processing such as thresholding 
and edge detection is needed. It is assumed in the analysis 
following that the picture is M*M pixels in size (M=2m) and that 
N (N=2n) processors are available. The resolution of each pixel is 
>.bits. 

Histogramming Algorithm 

The parallel algorithm for histogramming is the recursive 
doubling algorithm of Stone [Stone75j. The structure of the 
algorithm is shown in Figure 4 for N=8. N partial histograms are 
computed in parallel at level 0. Each partial histogram is a vector 
of length z>.. The partial histograms are then added in pairs in 
parallel for LOG(N) stages to complete the algorithm. 

B 

Figure 4: Recursive Doubling Algorithm 

for Histogramming 

level 3 

level 2 

level 1 

level 0 

Partial histograms are shown at level 0 by A's and vector additions 
by B's. N/2i transfers of vectors are done between level (i-1) and 
level i. The computation time, T COMP• for this algorithm under 

the assumptions made here is proportional to TCOMP = M.2/N + 
2>-LOG(N). 

~ Packet Switching Formulation of Recursive Doubling 
Histogramming - Siegel et al !Siegel81jhave given a thorough 
analysis for the execution of this algorithm on PASM. We adopt 
the results of this study as our packet switching model of recursive 
doubling histogramming. It is commonly the case that further 
steps in the analysis of the image require thresholding so that the 
final histogram vector must be collected in one processor and the 
threshold value distributed. The total communication time for this 
formulation of the algorithm is --

26· 

TcoMM = [(LOG(N) + 2>-) + 2j x LOG(N). 

'--v--1 '--v--1 ~ 
travel time 
through the 
ICN 

switch number of levels 
setting in the ICN 
time 

~ Circuit Switch Formulation £! Recursive Doubling 
Histogramming Based .2!! Tree Circuits - Figure 5 illustrates the 
structure of the circuit switched data movement formulation of 
recursive doubling for an 8 processor-8 memory configuration. 

Processors • 

Tree circuits .. 

Memories = 

9 5P Y·~/x/ ....... ?~·;·Y cp,, Y tlf ~····cl]/ 4 .. 6 8·· ... 6 'tb 

:: :::::~:~~: : l 
-"} 

tree circuits (each circuit has a 
distinct "color") 

normal prvcessor-memory circuits 

Figure 5: Circuit Switching Using the 

Tree Circuit Formulation 

The M2 pixels are evenly partitioned among the 8 memories. Each 
processor computes a partial histogram vector and stores it in the 
corresponding memory. The computation is then completed in 
LOG(8)=3 stages of adding partial vectors with the full histogram 
computed by processor 3 and stored in memory 5. The tree 
circuits of Figure 5 implement the successive communication paths 
between levels in Figure 5. The •-• tree circuits implement the 
data flow between levels 0 and 1 in Figure 4, •00000• the data riow 
between levels 1 and 2 and • ..... • the data rlow between levels 2 
and 3. There is a regular pattern of using first the verticals and 
then the diagonals of each type of tree circuit. Each tree circuit 
type has a unique number (called COLOR in correspondence with 
graph theory). LOG(N) colors are required to implement the 
algorithm in this formulation. Path selection (activation and 
deactivation) in all tree circuits of identical COLOR can be done in 
parallel with a latency time proportional to LOG(N)/2. The ICN 
of TRAC can implement the tree circuit pattern of Figure 5 
without blockage. The total communication cost for this 
formulation of recursive doubling histogramming is 

LOG(N) 

TcoMM = [LOG(N)]"1 E N/2i [LOG(N) + LOG(N)j 

i= 1 '--v--1 \.......¢-J 
= (3/2)(N-1) time to latency 

switch all time 
memory with 
identical COLOR 

~ Circuit Switching Formulation £! Recursive Doubling Based .2!! 
DirectReconfiguration - Another formulation based on circuit 
switching can be developed by directly reconfiguring the lCN after 
each step (level in Figure 4) of the algorithm to conform to the 
data movement path required at each stage of the algorithm. Each 
configuration step involving establishment of a circuit between a 
given processor and a set of memories must be done serially. Thus 
use of the tree-circuit based algorithm is faster by a factor of 
LOG(K) where K is the number of COLORs available. 

·The· Smoothing Algorithm 

Smoothing is replacement of the intensity of each pixel by the 
mean of the intensity of the given pixel and its nearest neighbors. 

Packet Switching Formulation £! Smoothing - Siegel et al 
[Siegel81j have formulated and analyzed a packet data movement 
formulation of the smoothing al~orithm. They show a speed-up of 



about .8N for a 1024 processor configuration. This estimate is 
extremely conservatively based. A greater speed-up is probable. 

Circuit Switching Formulations 2f Smoothing - A circuit 
switching structure for the smoothing operation is suggested by the 
fact that each computation requires only nearest neighbors. 
Therefore if the pixels are stored by columns then a processor will 
need simultaneous access to three columns (say k-1,k,k+l) to 
execute the computations on column k. A realization of this 
representation of the smoothing algorithm is given in Figure 6. 
Extra zero valued rows and columns of pixel values are added to 
each formulation of boundary conditions. The solid lines of Figure 
6 are normal circuits. The dotted lines are tree circuits from which 
leaf-root paths can be selected. Processor 1 computes in sequence 
the smoothed values for the pixels in columns 1, 2 and 3. Processor 
2 will simultaneously and in sequence compute the smoothed values 
for the pixels in columns 4, 5 and 6. Pl and P2 must share access 
to pixel columns 3 and 4. The execution procedure described 
preceding allows this sharing to be accomplished without conflict if 
the required circuits can be established in the network. This two 
processor configuration obviously extends to an N processor 3N
memory configuration so long as the memory unit can hold an 
entire column of pixel values. A TRAC-like ICN can realize these 
configurations so long as these restrictions are met. It is also the 
case that the necessary data movement can be realized by 
reconfiguration of normal circuits. This is not the method of choice 
so long as the conditions for a tree circuit representation can be 
met. 

Processor• 

Circuit• 

00000000 
0 xll x12 o o o o - - - - - - - - - - - xl6 0 
0 x21 x22 - - - - - - - - - - - - - - - x26 Q 
0 xn - - - - - - - - - - - - - - - - xl6 Q 
0 X41 - - - - - - - - - - - - - - - - X46 0 
0 XSl - - - - - - -- - - - - - - - - ... - - - X)6 0 
0 161 - - - - - - ... - - - - - - - - - - - - 166 0 
00000000 

nonD&l c lrcuits 
tree circuits 

figure 6 A Storage Structure .end 
Circuit Conflguration for 
Perallel Smoothing 

It may be desired to use a degree of parallelism greater than M 
(N>M). Then the columns of pixels must be decomposed into 
vectors of length M/k where N=kM. In this case the 
establishment of circuits is dependent upon k and may not always 
be possible. A formulation using both circuit switching and packet 
routing capabilities for TRAC has been worked out. The pixels 
appearing at the boundaries created by partitioning of columns 
have their •nearest neighbors• sent to them by packet movement. 
This "mixed" communication mechanism is still of lower cost than 
a pure packet based mechanism. The case N<M (for N=2i, 
m=2j) is handled by assigning multiple (2k) columns to processors. 
This case raises no new problems. 

We give here numbers only for the circuit switching 
representation where N=M and data movement is via tree circuit 
activation and deactivation. Then the total communication cost is 
(N /2) LOG(N) (assuming deactivation and activation of all tree 
circuit paths is done in parallel). Ir N=M=512, then only 
256*9=2304 memory cycles are required for data communication. 

27 

This is negligible compared to the C*512*512 arithmetic operations 
on the pixels (CLIO and probably C> 102) since indexing must be 
accomplished as well as the addition and division of smoothing 
itself. 

We thus conclude that for smoothing data movement costs will 
be essentially trivial for both packet and circuit switching 
representations. 

Speed-up Analysis and Discussion 

Figure 7 shows the net speed-up versus the number of processors 
for M=I024 and X=8. There is, in this case, little difference 
between formulations based on different switching strategies for 
moderate numbers of processors. There is the suggestion that 
circuit switching will yield superior performance for large numbers 
or processors. 

Figure 8 shows the speed-up factor as a function of X for 
M=I024, and N=256. The amount of data transferred grows 
exponentially as X. Thus circuit switching data movement shows a 
strong advantage as X increases since the cost of data movement in 
the circuit switching strategy given here is constant with respect to 
data volume until the capacity of a memory unit is exceeded. 

Smoothing on the other hand shows advantage for packet 
switching since there are cases where a pure circuit switching 
formulation becomes rather complex. 

The bottom lir;e with respect to parallel histogramming is that 
circuit switching has an advantage resulting from flexibility in the 
unit size of transfers and in stability with respect to algorithm 
parameters but that well-designed architectures should give similar 
performance for small to moderate numbers of processors. 

Circuit switching and packet switching are both extremely 
efficient for parallel smoothing. Packet switching has an advantage 
over circuit switching with respect to application of degrees of 
parallelism with N>M for parallel smoothing. This advantage 
arises from the greater flexibility in communication topology. 

g ZcMPSB. Y"'PACKET, *""CIRCUIT, X-=LINEAR 

~ 

0 
0 

0 

"' ... 

0 
0 

g 

0 

o •_circuit switching based on trees 
*- c circuit .switching based on 

reconfiguration 

0 
o~~~~--.~~~~-.-~~~~r-~~~-,~~ 

0.00 40.00 80.00 120. 00 160.00 

Figure 7 Speedups versus the Number of Processors 
(M•1024, !.•8) 



There is suggestion from these two algorithms that 
implementation of both packet and circuit switching facilities in the 
ICN's for multiprocessors will give lower communication cost and 
greater net speedup than either used separately. 

Acknowledgements 

This work was sponsored by the Air Force Office of Scientific 
Research under Grant Number AFOSR-82-0091 and by the 
National Science Foundation under Grant Number MCS-8116099. 

M 
0 
M 

] ... 
~ 
ti 

1 

18 

16 

14 

12 

10 

3.06 

0.38 
0 

Z = HULTIPROCESSOR WITH A SHARED BUS 
Y"' PACKET, *"' CIRCl'IT SWITCHING BASED ON TREES, 
o '"' CIRCUIT SWITCHING BASED ON RECONFIGURATION 

Note: The range of values for the multiprocessor 
with a shared bus is 8160 to 522240. (Not 
drawn fully to provide better scale for 

.4. y viewing) 
I 
I 

l 
10 

' Fig. 8 Communication Time Versus A 
(N=256) 

28 

References 

!Bhuyan82J Bhuyan, L.N. and Agrawal, D.P., "Applications of 
SIMD Computers in Signal Processing•, AFIPS Conf. ~ 51, pp. 
135-142, 1982.) 

[Feng81J Feng, Tse-yun, •A Survey of Interconnection Networks", 
Computer 14(2), December 1981. 

!Premkumar79] Premkumar, U.V., et al, •Interprocessor 
Communication on the Texas Reconfigurable Array Computer•, in 
1st Int. Conf. 2!!. Distributed Computer Systems, 1979. 

[Premkumar80j Premkumar, U.V., et al, •Design and 
Implementation of the Banyan Interconnection Network in TRAC•, 
~ Conf. Proc., May 1980. 

[Sejnowski80J Sejnowski, M.C., et al, •An Overview of the Texas 
Reconfigurable Array Computer•, NCC Conf. Proc., 1980 . 

[Siegel79J Siegel, H.J., •Interconnection Networks for SIMD 
Machines•, Computer 12, June 1979. 

[Siegel81] Siegel, H.J., et al, "PASM: A 
SIMD/MIMD System for Image Processing 
Recognition•, IEEETC C-30(12), December 1981. 

Partitionable 
and Pattern 

[Stone75J Stone, H., Introduction !Q Computer Architectures, 
Science Research Associates, Inc., 1975. 



NUMERICAL EXPERIMENTS WITH THE MASSIVELY PARALLEL PROCESSOR(•) 

E. J. Gallopoulos 
and 

S. D. McEwan 

Department of Computer Science 
Uni11ersity of Illinois at Urbana-Champaign 

Urbana, Ill. 61801 

Abstract -- The use of the Goodyear Massively Parallel 
Processor (MPP), an array of 16384 Processing Elements, is 
described for the solution of the shallow-water equations in a 
spherical geometry. These partial differential equations arise 
in Numerical ·weather Prediction models and their fast 
solution is necessary. These are discretized with second order 
finite-differences on a latitude-longitude grid. Each physical 
grid point is mapped onto one MPP Processing Element. A 
set of difference equations results at each grid point, the 
same set at each grid point. This makes possible the use of 
a parallel algorithm for their solution at all grid points 
simultaneously. Only values from neighbourhood points are 
needed except for a few cases and thus routings between 
non adjacent Processing Elements are kept at a minimum. 
The resolution achieved with both available horizontal MPP 
dimensions is adequate and is comparable with fine 
resolution modeb currently in use. The exploitation of the 
MPP architecture is described and some of the problems 
facing the algorithm designer when confronting this novel 
computer architecture together with suggestions for 
handling them are indicated. Performance comparison 
estimates indicate that the MPP could achieve equal or 
better performance than more expensive supercomputers for 
such a problem. It is concluded that the MPP can 
competitively solve problems in the area of Numerical 
Weather Prediction. 

Introduction 

The Massively Parallel Processor system (MPP) [l] is a 
bit-serial SIMD computer designed and built as a 
collaborative effort between the NASA Goddard Space 
Flight Center and the Goodyear Aerospace Corporation, 
primarily, to support high-speed Image Processing. We 
intend to show here by means of a complete example how 
the MPP can be used very effectively to solve problems in 
computational physics, in particular the shallow-water 
equations occuring in numerical weather prediction. For a 
system like the MPP which was designed primarily for one 
particular area, namely Image Processing, we indicate how 
the available massive parallelism, if used carefully, can give 
excellent performance levels, comparable to, and for the 
example better than, current supercomputers. This 
application study shows that for some problems, the 
dimensionality constraints imposed by such an architecture 
are not a pro bl em. The efficient use of the MPP in even a 
small set of real problems in this area would help the 
modellers in need of new and faster computational tools. 
This is the first such study done for the MPP. It is based on 
a parallel algorithm first set out by Kalnay and Takacs in 

(•)Research supported in part by NASA under contract 
NAS5-26405 

0190-3918/83/0000/0029$01.00 © 1983 IEEE 29 

[2]. It is interesting to note, as mentioned in [2], that the 
father of Numerical Weather Prediction L. F. Richardson, in 
his pioneering work [3] had envisaged a "human parallel 
computer" for performing weather prediction. More 
recently, references [4, 5, 6, 7] contain studies on the use of 
unconventional architectures to solve problems occuring in 
that area. 

MPP Description 

The Goodyear Massively Parallel Processor (MPP) is a 
bit-serial Single-Instruction Multiple-Data computer 
currently being built under NASA contract to support high
spced Image Processing. It consists of four main components 
[fig. 1 ]: 

Array Unit (ARU) 
Array Control Unit (ACU) 
Program and Data Management Unit (PDMU) 
Staging Memory (SM) 

The AR U consists of a 128X128 array of bit-serial 
Processing Elements (PE) [fig. 2], each having a lK bit 
RAM, extensible to 64K, giving an overall 2Mbyte ARU 
memory capacity. The interconnection network is of 
nearest-neighbour type with possible open, cylindrical, 
toroidal and spiral connections for the edges, all under user 
control. The ACU cycle time is lOOns. The ACU [fig. 3] 
executes the applications programs, scalar and array 
operations, and manages the I/O. It consists of the PE 
Control Unit (PCU), the I/O Control Unit (IOCU) and the 
Main Control Unit (MCU). These three modules operate in 
parallel and thus array and scalar arithmetic and 1/0 can be 
overlapped. Scalar data and application programs reside in 
MCU memory. The PCU memory contains the routines 
that operate on arrays of data in the AR U. Each PCU 
instruction is 64-bit wide allowing several PE elementary bit 
operations to be performed simultaneously. PCU routines 
are called from application programs residing in the MCU 
memory. A call-queue is provided to queue-up the calls from 
the MCU to the PCU, enabling the MCU to work 
concurrently. Since most of the MCU operations consist of 
subroutine calls or scalar operations that take much less 
time than the array operations, the PCU rarely waits for a 
new call to be issued by the MCU. 

The S-registers on each PE can shift planes of data without 
interfering with the computations except when a bit-plane is 
to be written into or read from AR U memory. Hence only 1 
cycle for reading or writing is stolen every 128 PE activity 
cycles (The time needed to bring a new 128X 128 bit-plane 
in place in the S-registers.) The Staging Memory buffers 
data between the AR U and the secondary storage devices. 

The Program Development Software consists of two 
assemblers, one each for the PCU and MCU, a System 



Subroutine Library, a set of 1/0 Macros initiating 1/0 
functions, a Control and Debug module and a Linker. 
Additionally a parallel version of Pascal, Parallel Pascal [8], 
will be available. 

If assembly language is to be used in order to make the 
most efficient use of the bit-serial features of the MPP, then 
to make the task of large-scale programming feasible, a large 
number of utility routines must be available. These routines 
can be roughly classified as 

1) array unit arithmetic (signed and unsigned integer, 
floating point), 

2) scalar-array arithmetic (eg scalar by array multipli
cation), 

3) scalar arithmetic, 

4) array logical operations (all Boolean functions) and 
comparisons, 

5) routing operations, 

6) search operations, 

7) reduction operations, 

8) others. 

This is only a rough classification. Nevertheless it gives a 
flavour of the type of utility routines that should be 
available to the MPP programmer. At a somewhat higher 
level, the standard mathematical functions (as in Fortran) 
operating on array arguments, together with matrix and 
vector manipulators, must all be available in the utility 
library. The existence of efficient routines at that level is 
imperative for maximizing the performance. 

At the time of the experiment (Summer '82), the MPP 
was still under development. Therefore the experiments 
were done on an MPP simulator system [9]. This system 
coordinates the execution of programs to emulate the 
actions of the MPP system. The user can write his 
programs in the MCU and PCU assembly languages using 
any of the available library routines. The resulting modules 
are loaded in the system and then the program trace can be 
followed through the available Debugger. As such it 
provides an excellent development tool for routines 
developed for the MPP. Even when the MPP is available, it 
would be more convenient to use the simulator first for code 
debugging and testing. The simulator system records the 
number of MCU and PCU cycles used during the execution 
of the application programs. It is written in the C 
programming language and runs under the Unix [10] or 
VMS [11] operating systems. 

Problem description 

The problem under consideration is the solution of a 
simplified form of the Navier-Stokes equations suitable for 
weather prediction in meteorology. Our example here could 
well serve as a guide for modellers in the need of faster 
computer rates in other Fluid Mechanic areas. 

The physical processes occuring in the atmosphere and 
as a result their mathematical formulations are non-linear. 
Even with the occasional simplifications, the arismg 
equations cannot be solved analytically and require good 
numerical techniques. 

To decide on the suitable simplifications to make to the 
full set of equations describing the important physical 

30 

phenomena in the atmosphere one has to note that although 
what principally determines the long-term statistical 
properties of the atmosphere are the cumulative effects of 
heating and friction, these terms are locally small compared 
with the fluid-dynamical terms. Hence by concentrating on 
these latter equations and terms the modeller can draw 
important conclusions for the behaviour of the complete 
system. The model to be solved concentrates on these terms 
as a first step towards a complete model, similar to the one 
described in [12]. It has been found that the so called 
shallow-water or barotropic equations contain the essential 
numerical aspects of the large scale prediction equations [13] 
governing an incompressible, homogeneous and hydrostatic 
fluid. These are strictly two-dimensional and thus refer to 
phenomena at a single fluid layer. The spherical polar 
coordinates (>"¢) where >- is the longitude and ¢the latitude 
are chosen, as the most natural reference system for motions 
around the globe. At time t and at position (>-,¢>) the 
dependent variables for the model are the height h of the 
free atmospheric surface under consideration equal to 
hr - h.8 , and the Eastward and Northward velocity 
components u and v respectively. The equations, broken 
down to >- and ¢> components, are written as follows: 

ah ah ah 
3t = (31h + (31)¢ (la) 

ohu = ( ohu) + ( ohu) 
at at ~ at ' 

(lb) 

.£!!!!._ = ( ohv) + (.£!!!!._) 
at at ~ at ' 

(le) 

where 

ah 1 ( ahu ] 
( 31h = ~cos¢> m 

r , "'' 
(~h = __ l_t~J- -9!!__ C!llr +(!+ utan¢>)vh 

at a cos¢> a>- a cos¢> a>- a 

( ahv h = __ 1_ [~] 
at a cos¢> oA 

and 

(~) = __ l_[ohvcos¢> J 
at ¢ acos¢> 8¢> 

(~) = __ 1_ [ o(hvcos¢>)u J 
at ; a cos¢> 8¢> 

(~) =--l-[o(hvcos¢>)v]_.9.!!._8hr -(!+ utan¢>)uh 
Ot ; acos¢> 8¢> a 8¢> a 

where f = 2!1sin¢> (with fl the angular rotation frequency 
equal to 7.292X 10-5 sec-1) is the Coriolis parameter. The first 
equation comes from the law of mass conservation and the 
last two from the law of momentum conservation. They can 
be found in this form in [14]. For a model where bottom 
orography is not included, h8 = H, a constant, and thus the 
hr variable above can be replaced by h. This is the quasi
linear hyperbolic system that must be solved, given suitable 
boundary and initial conditions. The equations are written 
in flux form, using the time derivatives of the height-velocity 
products as this gives better results when discretized. The 
characteristic speed for the above system correspond to i) a 



pair of fast moving gravity waves having phase speeds of 
order of magnitude VgTT and to ii) a slow westward moving 
Rossby wave which is of most importance for large srale 
meteorological processes. The disparity of speeds between 
these modes creates important constraints for the choice of 
the integration time step. 

Computational Grid and Discretization 

A latitude-longitude grid with constant angular 
increments A>- and A</> has been used. The grid is non
staggered (all variables are defined at each node.) Each node 
lies at the intersection of selected latitude and longitude 
circles. In contrast to the GLAS model [12] and as in [14] 

the grid system is shifted by ~</> next to the poles. Bence 

the polar singularity which arises from the acos</> term in the 
equations above is avoided. For m longitude and n latitude 
circles 

the first and last latitude circles lying next to the north and 

south poles respectively, correspond to </> = ± (f- ~</> ). 
Boundary conditions are doubly periodic as with the GLAS 
model. In the East.-West direction for both scalar and vector 
elements s(>-+ 2ir,¢)=s(>.,¢>). In the Nort-South direction, 
when variables are needed across the poles, the values are 
taken from the first grid point encountered by moving along 
the same latitude circle 180° around the pole. To keep the 
equations consistent the signs of the vector variables and the 
trigonometric functions must be changed when combined 
across the poles [15]. Hence 

ti(>-,± ( f+ ~</> )) = 11(>-+ ir,± ( f- ~</> )) and 

ir A</> ir A</> 1 . f s(>-,± (2+ - 2-)) = s(>-+ ir,± (2--2-)). For the so ut10n o 

the system, a set of initial conditions for h, u, v at all 
locations must be available. For model testing, the 
conditions used were derived analytically as in [16], instead 
of extracting them from a weather map. 

The objective is to write finite-difference expressions 

and discretize the space derivatives ( :¢ , :A ) on the 

right-hand side of the equations (1). Then a time 
differencing scheme can be applied to integrate one step 
ahead in time and update the variables. The standard 
notation for the average and difference operators will he 
used: If a function s is defined on a grid having grid 
increment Az then the difference operator acting on s would 
be defined by 

and the average operator 

s:-z = 
' 

Si+..!. - 8;_!!... 
2 2 

Az 

. • + s_ • 1+- , __ 
2 2 

2 

where 8; means the value of the variable s evaluated at 
d d - - 08 point iAz. As a result, a secon or er approximation to {); 

at point iAz is given by 

8;+ 1 - 8;_1 !5,i;' = __ 2_A_z __ 

31 

Extension to more dimensions are immediate. 

I3y using the aforementioned operators, the right hand 
sides of (1) could be discretized suitably and consistently as 
follows: 

ah -l [ '""""] (-h>:::<-- 15xhu 
()t acost/J (2a) 

( o_hv h ~ _-_I_ [15x(W v'J] 
Dt acost/J 

(:le} 

and 

(.£.!i..),. ~ __::!___ [o .. (hvcos<t>•] 
()t acost/J 

(3a) 

(3h) 

Jht• -1 [ (~-..)] ghl5h~ (!+ utan¢)hu (3c) (-) .. >::=<--15 .. hvcost/J v - .. at o.cos</i a a 

where each variable and constant is evaluatPd at each grid 
point. To advance forward in time an explicit leapfrog 
scheme is used, giving that 

(4) 

where for notational simplicity s is the vector of unknowns 
[h ,hu ,hv ]T defined at each grid point. 

Such a time-differencing scheme is frequently used with 
current models. The relevant theory [17] imposes an upper 
bound on the timestep that one could use to avoid the 

phenomenon of linear instability. Roughly, the finer the 
resolution, the smaller that bound. In [14] a stability 
criterion is shown for the model. A latitude-longitude grid 
with the converging meridians at the poles, forces a time 
step much smaller at the polar regions rather than the 
equators. As a result that minimum time step should he 
used. The scheme is of second order in space and time . To 
start the computations, data from two time levels are 
needed since the chosen time-differencing scheme uses 
information from the previous two time levels. This is 
achieved by using a simple forward time scheme for a 

·fractional time step and then proceeding. 

MPP Implementation 

As mentioned above the problem was implemented on 
an MPP simulator. The simulator's overhead and the 
sequential processing done by the host machine, made 
infeasible the simulation of a 128X 128 ARU. Therefore a 
32x32 ARU was simulated. It will be noted where that 
difference would qualitatively alter the statements. 
Although assembly language was used for the program, the 
more elegant Parallel Pascal constructs will be used to 
indicate some features of the code. Explanations are 
provided for the parallel extensions whenever they are used. 
The spherical grid is mapped directly on the ARU: each PE 
and PE memory contained the variables and constants for 
the corresponding node. The northmost (southmost) PE row 
corresponded to the longitude circle immediately to the 
south (north) of the North (South) pole. 

The variable elements that are only functions of 
position like the Coriolis force component f, tan¢>, cos¢> etc. 



can all be precalculated before the start of the integration 
loop and are constant (with respect to time) arrays. The 
time dependent variables h, u, v and their combinations are 
also defined at each point. Hence the above values are 
stored in each PE memory at fixed locations and their 
corresponding type declaration in a high-level language 
environment supporting parallel constructs ( eg. Parallel 
Pascal) would be 

parallel array [I .. N, I .. NJ of real 
where N is the number of rows (columns) of the grid and 

corresponding AR U systems and where the parallel 
declaration indicates that the array would be used heavily in 
parallel operations and the compiler is informed of the 
preference of the user to have the array stored in the AR U 
memory for the sake of efficiency. The scalar data is either 
global to the problem and used in the actual equations (2, 3) 
or is used for counting purposes. To the former category 
belong g, !:J.t, !:J.¢>, t:i.>., a, fl etc. and to the latter all the 
variables keeping track of the number of steps and 
simulated time since the last important event 
(reinitialization, filtering etc. ) The limited available memory 
per PE (only 1024 bits) forces the programmer to look for 
ways to economize as much space as possible by using the 
Main Controller memory when appropriate. The availability 
of scalar-array arithmetic routines avoids any timing penalty 
for doing that. In order to avoid unnecessary repetition of 
floating-point operations some constant arrays and scalars 
can be combined from the initiation of the computations 
with the appropriate scale factors ( eg. !:J.t, t:i.>. etc. ) Thus by 
storing in the AR U precomputed constant data, the number 
of required floating operations, which are expensive, could 
be reduced. This is not a problem for the example. For a 

more complicated model however, as the first configuration 
of the AR U memory is limited, the SM must be used. The 
available East-West AR U topology readily provides for the 
East-West periodicity, the first and last PE columns 
corresponding to >. = 0 and >. = 2ir-t:J.>. respectively. The 
situation is slightly more complicated for the simulation of 
the periodicity across the poles, as that cannot be mapped 
to the available AR U topologies. To combine the 
appropriate elements, the variable arrays would have to be 
cylindrically rotated (using the same East-West 

interconnection as above) by ~ columns. For the N = 92 

case, the cycle count is underestimated for the routing 
operations viz. the N = 128 case. As it will be seen however, 
the operation is infrequent enough not to significantly 
change the full timing estimates. 

The corresponding angular increments for the 
simulated and the real ARU are t:i.>. = 2t:i.¢> ~ 11• and 
t:i.>. = 2!:J.¢ ~ 3° respectively. To compare, a currently used 
GLAS model utilizes t:i.>. = 5° and !:J.¢ = 4° whereas an 
'ultrafine' version has t:i.>. = 3° and !:J.¢ = 2.5°. We thus see 
that the MPP dimensions are adequate for the described 
problem. Hence no 'dimensional sacrifice' need be done to 
size down the problem for a parallel implementation, an 
unfortunate practice in some examples demonstrating the 
usefulness of parallel computers. 

The operations applied at each grid point (PE) for the 
derivation of the spatial differences are local operations. The 
only place where this is not so is at some of the calculations 
for the latitudinal differences. For the scheme used, which is 
of 24 order, only elements from the immediate neighbours 
are needed. For a more accurate 4th order scheme, like the 

32 

one used in [12) the elements involved for a calculation at 
PE(i,j) would lie in the surrounding PEs at distances of at 
most 2. 

The inner loop of the code would go through the 
following steps in order to derive the new values at 
t=(n+ l)!:J.I out of known data at the two previous time 
steps: 

I) From the available values for h, u, v at time level n 
use the equations (2,3) above to approximate the 
space derivatives and by adding the >. and ¢> contri
butions at each grid point (PE) as in (1) derive an 

approximation to 2!:J.I( ~~) for the current time 

level. 

2) Apply (4) to derive the values at the new time lev
el. This only needs one addition per component of 
the s vector. 

3) Update the variables and counters. 

The PE memory restriction of IK bits was observed: only 
680 bitplanes have been used and these could be further 
reduced down to 600. The numerical stability 
considerations mentioned above mean that in going from the 
simulated array to the real AR U a drastic reduction of time 
step must be performed in order to satisfy the CFL 
criterion. We have used t:J.t = 200sec for the case N = 32, 
but a rough stability analysis gives that for N = 128 t:J.t ~20 
seconds! This is a serious constraint in going to the real 
ARU. Moreover, the allowed time steps near the equator are 
much larger than the ones allowed near the poles, due to the 
convergence of the meridians at the poles. Methods that 

could be used to overcome this are the Fourier filtering of 
the unstable waves [18) or the use of an implicit time 
differencing scheme [19) with no stability restrictions. 
Alternatively, since the time constraint is relaxed by going 
to a coarser grid, the number of longitude circles can be 
reduced (eg halved.) Since the North-South interconnections 
are not used, two independent simulations could be run 
concurrently (using the same global constants hut different 
initial conditions). The one system would lie in the north 
half of the ARU (using half of the PE rows) and the other 
would lie in the south half. At the end of each computation 
cycle results for both systems would be simultaneously 
obtained. 

In order to avoid the phenomenon of non-linear 
in8tability [20], a filtering procedure (21] was used. Such a 
filter applied in the East-West direction to an array variable 

q· ·+ 1 - 2q·. + q·. 1 
q at location ( i, J), repeatedly calculates '1 '1 •J-

4 
and then combines the result with the original array values 
q;;· As explained above, things are slightly more 
complicated in the North-South direction. This filtering 
results in the elimination of 2!:J.x waves where !:J.z is the 
East-West grid distance which may introduce the instability. 
This procedure was applied every hour on h, u, v, eight 
times in each direction resulting in a 161A order filter. The 
MPP implementation of the above operator is very efficient, 
taking full advantage of the parallelism. 
In a Parallel Pascal environment 



con st 
order= 8; 

type 
arr= parallel array[l .. N, 1 .. J\I] of real ; 

var 
q, qsv, temp : arr ; 
i : integer; 

begin 
tz8V := Q; 

for i := 1 to order do 
begin 

temp := q - rotate( q, 0, 1 ); 
q :=rotate( temp, 0, -1)- temp; 
q := q/2.; 
q := q/2. 

end; 
q := qsv - q; 

end; 

The rotate( a, i, ;) function returns an array consisting of 
the elements of a circularly rotated by distances i, j along 
the two dimensions. The repeated divisions by 2 are done 
by special purpose routines. The bit-serial nature of the 
arithmetic makes divisions and multiplications by 2 and its 
powers considerably faster than if using the floating point 
division by 2 routines. 

Description of results 

The resulting simulation corresponded to east to west 
moving wave patterns for h, u, v. At selected time intervals 
the contents of the corresponding ARU memory locations 
were examined. A software interface was set between the 

simulator and a colour graphics display terminal and the 
real valued array variables were scaled and mapped on a 
gray scale. The resulting integer valued arrays produced an 
image of the moving wave. On the real AR U this 
correspondence can be handled very quickly. The scaling 
and integer transformations occur at each grid point and full 
advantage of the parallelism is taken. Thus even for this 
output oriented consideration the MPP can be used very 
effir,iently. Because of the extraordinary software complexity 
of the simulator and the slowness of the host machine, the 
simulation was only for a few hours. 

MPP Timings and Comparisons 

The number of consumed cycles for each routine and 
its function are given in the table. The number of PCU 
cycles is more important as the MCU works ahead and in 
parallel and takes less time. 

The number of cycles given for each routine includes 
the cycles spent by any called subroutines during the 
routine's execution. As can be seen from the timing table, a 
main step, consisting of the space derivative calculations 
dtcalc (by far the most time consuming routine amongst the 
frequently called ones) and of update takes about 43,000 PE 
cycles, or for 100 ns/cycle there are about 230 iterations/sec. 
With a 200sec time step and excluding any overhead, we get 
that about l day is simulated in 2 seconds. This of course is 
a very rough estimate. If filtering is needed, once per hour 
say, the time estimate above does not significantly increase 
despite the cost of filter. 

It is fair to say that there is little agreement on the 
way the performance of unconventional machines could be 

33 

Name Description MCU PCU 

{standard library floating-point routines) 

fmul multiplication 63 787 
fsub subtraction 61 381 
fadd addition 51 381 
fdiv division 101 1031 
fhalf division by two 100 266 
fmulsa scalar-array multiplication 64 791 

{user-written special purpose routines) 

bar! longitude averages 162 745 
harp latitude averages 176 1041 
ndifr longitude finite differences 136 1269 
ndifc latitude finite differences 163 1668 
filter Shapiro 161A order filter 18357 96408 

{user-written main step routines} 

dtcalc space derivatives 4706 38835 
ti_£_ date lea1ifr<>g_ update 390 3403 

evaluated and compared. The MOPS/MFLOPS rates are 
some of the most popular measures but even for those, their 
uniform validity across the machine spectrum is disputed. 
Other standards have also been proposed [22, 23, 24]. As 
long as we are interested in particular problems and not 
general evaluations a good strategy is to simply compare the 
timings for their solution on the examined machines [25]. 
Even this however may not be a fair criterion since the 

fastest algorithms for each machine would possess different 
numerical properties. Dimensions also would probably be 
chosen to suit the machine (magic numbers like 64 or 128 
for the Cray, the DAP or the MPP) rather than the 
modeller. Since our experiments have been conducted on a 
simulator it is only approximate comparisons that we could 
make. The DAP [26] array is 1/4 of the MPP array and also 
has considerably slower MFLOP rates. As a result, for this 
problem it would not compete with the MPP. On the other 
hand the currently used DAPs have 4K bits of memory per 
PE (to be extended to 16K) and hence it could be used to 
model a multi-level model, or one containing more equations, 
without the constraints imposed by frequent 1/0 exchanges 
which might be needed for the MPP in its initial memory 
configuration. Experiments on the CRA Y-1 [19] for a similar 
model with a resolution of ~A = ~</J = 12° required 
8.5x10-•sec/step, whereas with ~>-=~</J=4° the 
integration required 4.97XI0- 3sec/step. The ~A= 2~</J l'o;j 11• 
resolution achieved with the MPP simulator took about 
4.3 X 10-3 sec/ step. As the parallelism is almost fully exploited 
and redundancy is kept at a minimum by going to the full 
AR U this timing estimate would only increase slightly but 
the available resolution would be ~A = 2~</J l'o;j 3° which is 
superior to the finer resolution in the Cray model above. 
Therefore a better resolution and comparable or better 
timing would be achieved with the MPP. Moreover, it would 
be possible to have concurrent solutions, starting from 
different initial data as mentioned above. 

Conclusions 

We have discussed the use of the MPP for the 
integration of a set of non-linear PDEs frequently occuring 



in Numerical Weather Prediction. We have found that the 
MPP can be used for the solution of such problems. We 
have talked about the problems facing the algorithm 
designer and suggested methods for coping with them. The 
MPP gives much better performances for integer 
computations. It is thus worth investigating the possibility 
or using fixed or block floating point arithmetic in the 
computations. The use of the MPP makes efficient and 
possible the simulation of General Circulation models over 
the entire globe with adequate horizontal resolution. 
Consequently the modeller doesn't have to worry about 
imposing artificial lateral boundary conditions. A complete 
model would have multiple vertical levels. It would also take 
account of thermal phenomena which here were ignored, by 
incorporating more equations. A 4th order space differencing 
scheme would be preferable. For multiple level simulation 
the PE memory becomes inadequate. The addressing 
capability of the PE index registers is for 64K bits per PE 
memory and a future system could contain such memory. 
Nevertheless the first available MPP will have to use its 
Staging Memory as an immediate active buffer area. The SM 
capacity would initially be 4Mbytes and can be expanded to 
64Mbytes. In that configuration rates of 160 Mbytes/sec are 
achieved. The available permutation network has many 
capabilities for accessing subarrays or other patterns from 
and to the storage area. A few of the not too frequently used 
arrays for a large model could be stored in the stager and 
brought in the AR U under some paging policy designed to 
minimize interference with the computations. A preliminary 
theoretical study or the problems related with memory 
allocation and management for the Staging Memory can be 
found in [8]. Real or various analytical initial data would be 

gathered in a data base and from there it would initialize 
the MPP arrays. Multiple concurrent simulations could then 
be run as suggested above or a single fine-grid simulation 
could be instigated and the results at selected time steps 
would be displayed. For long predictions, periodic updating 
of the variables could be done by utilizing new observed 
data. Overall, the MPP would be a powerful computational 
tool for modellers. 

Acknowledgements 

This work was done while the authors were working 
with the Computer Development Section at the Goddard 
Space Flight Center. We would like to thank Ken Wallgren, 
Dr. Eugenia Kalnay, Larry Takacs, Jim Fisher and Dr. Jim 
Strong of the Goddard Space· Flight Center, Dennis Lynch 
or csc for the friendly environment and the helpful 
discussions, and Professor Dan Slotnick of the University of 
Illinois for making this summer project possible. 

References 

[1] K. E. Batcher, "Design of a Massively Parallel 
Processor," IEEE Tranaactiona on Computera, 
(September, 1980), pp. 836-840. 

[2] E. Kalnay-Rivas and Larry Takacs, "A Simple 
Atmospheric model on the Sphere with 100% 
Parallelism," A dvancea in Computer Methods for 
PDE'a, R. Vichnevetsky ed., Vol. IV, IMACS 1981. 

[3] L. F. Richardson, Weather Prediction by Numerical 
Proceaa, Dover, (1965), 236 pp. 

[4] A. B. Carrol and R. T. Wetherald, "Application of 
Parallel Processing to Numerical Weather Prediction," 

34 

Journal of the ACM, (July, 1967), pp. 591-614. 

[5] R. I. Wilhelmson, "Solving Partial Differential 
Equations Using the Illiac IV," Constructive and 
Computational Methods for Differential and Integral 
Equationa, Springer-Verlag, (1974), pp. 453-475. 

[6] M. Graham and D. L. Slotnick, An Array Computer for 
the Class of Problema Typified by the General 
Circulation of the Atmosphere, Department of 
Computer Science, University of Illinois at Urbana
Champaign, Report UIUCDCS-R-75-761, (December, 
1975), 289 pp. 

[7) J. B. Dennis and Ken K.-S. Weng, "Application of 
Data Flow Computation to the Weather Problem," 
High-Speed and Algorithm Organization, Academic 
Press, {1977), pp. 143-157. 

[8) A. P. Reeves and J. D. Bruner, The Language Parallel 
Pascal and other Aspects of the Mauively Parallel 
Proceaaor, School of Electrical Engineering, Cornell 
University, (December, 1982), 248 pp. 

[9) D. J. Kopetzky, An Array Simulator Generator, 
Department of Computer Science, University of Illinois 
at Urbana-Champaign, Report UIUCDCS-R-80-1031, 
{September, 1980), 63 pp. 

[10) E. Gallopoulos, Scott McEwan and Dianna Visek, MPP 
Simulator Manual, Department of Computer Science, 
University of Illinois at Urbana-Champaign, Report 
UIUCDCS-R-82-1075, {April, 1982), 35 pp. 

[11) D. Lynch, P. Jones, J.Reese, C. Weger, The Maaaively 
Parallel Processor System, Computer Sciences 
Corporation, Report CSC/TM-82/6034, (February, 
1982). 

[12) E. Kalnay-Rivas and D. Hoitsma, Documentation of the 
4th Order Banded Model, Laboratory for Atmospheric 
Sciences, NASA Goddard Space Flight Center, 
Technical Memorandum 80608, (December, 1979). 

[13) Akira Kasahara, "Computational Aspects of Numerical 
Weather Prediction and Climate Simulation," Methods 
in Computational Phyaica, Academic Press, (1977), pp. 
1-65. 

[14) M. Grimmer and D. B. Shaw, "Energy-Preserving 
Integrations of the Primitive Equations on the Sphere," 
Quart. J. Roy. Meteor. Soc., {1967), pp. 337-349. 

[15) D. L. Williamson, "Difference Approximations for Fluid 
Flow on a Sphere," Numerical Methods in Almoapheric 
Models, GARP Publication, (September, 1979), pp. 51-
120. 

[16] Norman Phillips, "Numerical Integration of the 
Primitive Equations on the Atmosphere," Monthly 
Weather Review, (September, 1959), pp. 333-345. 

[17) R. D. Richtmyer and K. W. Morton, Difference 
Methods for Initial-Value Problema, Wiley(Interscience), 
(1967). 

[18) D. L. Williamson, "Linear Stability of Finite-Difference 
Approximations on a Uniform Latitude-Longitude Grid 
with Fourier Filtering," Monthly Weather Review, 
(January, 1976), pp. 31-41. 

[19) R. L. Gilliland, "Solution of the Shallow Water 
Equations on the Sphere," Journal of Computational 
Phyaica, (September, 1981), pp. 79-94. 



[20] N. Phillips, "An Example of Nonlinear Computational 
Instability," The Atmosphere and Sea in Motion, 
Rockefeller Inst. Press, (1959). 

[21] R. Shapiro, "Smoothing, Filtering and Boundary 
Effects," Rev. Geophya. and Space Phys., (May, 1970), 
pp. 359-387. 

[22] L. J. Siegel, H. J. Siegel and P. H. Swain, "Performance 
Measurements for Evaluating Algorithms for SIMD 
Machines," IEEE Transactions m Software 
Engineering, (July, 1982), pp.319-331. 

[23] D. J. Kuck, The Structure of Computers and 
Computations, Wiley, (1978), 610 pp. 

[24] D. Hockney and J. Jesshope, Parallel Computers, Adam 
Hilger, (1982), 423 pp. 

[25] D. Parkinson and H. Liddell, "The Measurement of 
Performance on a Highly Parallel System," IEEE 
Transactions in Computers, (January, 1983), pp. 32-37. 

[26] P. M. Flanders, D. J. Hunt, S. F. Reddaway, and D. 
Parkinson, "Efficient High Speed Computing with the 
Distributed Array Processor," High Speed Computer 
and Algorithm Design, Academic Press, ( 1977), pp. 
113-128. 

STAGING 
MEMORY 

"' ... 
= .. .... 
:a 
"' 

MAGNETIC 
TAPE 

ARRAY UNIT 

CONTROL STATUS 

Fig. 1 MPP System 

STAGING 
MEMORY 

35 

N·BIT 
SHIFT REG. 

IN'2.&. 10.14 
18.22.2& OR 301 

FROM PE 
ON WEST 

NBR 
PE"S 

Fig. 2 MPP Processing Element 

PDMU 

PDMU 

PE 
CONTROL 
MEMORY 

MAIN 
CONTROL 
MEMORY 

PE 
·CONTROL 
UNIT 

OUEUE 

MAIN 
CONTROL 
UNIT 

1/0 

ARU 

CONTROL ARU 
UNIT 

Fig. 3 Array Control Unit (ACU) 



AN M-STEP PRECONDITIONED CONJUGATE GRADIENT METHOD FOR PARALLEL COMPUTATION 

Loyce Adams 
Institute for Computer Applications in Science and Engineering 

Hampton, Virginia 23665 

Abstract This paper describes a 
preconditioned conjugate gradient method that can 
be effectively implemented on both vector machines 
and parallel arrays to solve sparse symmetric and 
positive definite systems of linear equations. 
The implementation on the CYBER 203/205 and on the 
Finite Element Machine is discussed and results 
obtained 'using the method on these machines are 
given. 

Introduction 

In this paper we are concerned with ti.;:, 

solution of a sparse N x N system of symmetric 
and positive definite linear equations 

Ku = f (1.1) 

by preconditioned conjugate gradient (PCG) methods 
on both vector computers and parallel arrays. 
Several descriptions of these methods appear in 
the literature; see for example, Concus, Golub, 
O'Leary [1976] and Chandra [1978]. Also, Schrieber 
[ 19 78] discussed the implementation of conjugate 
gradient (CG) on vector computers and Podsiadlo 
and Jordan [1981] discussed its implementation on 
the Finite Element Machine under construction at 
NASA Langley Research Center. 

The PCG method solves the system Ku = f 
where 

" T -1 -T " T " -1 
K = Q M KQ , u = Q u, f = Q f, (1. 2) 

Q is a nonsingular matrix, and the symmetric and 
positive definite preconditioning matrix is given 
by M = QQT. The algorithm for the solution of 
u directly is described in Chandra [1978] and is 
given below where u, r, r, and p are vectors 
and (x,y) denotes the inner product xTy. 

(1) Choose 
0 

u 

(2) 0 = f - Ku0 r 

(3) M;o = ro 

(4) po = ;o 

(5) For k = 0 1 •• •k 
' ' max 

(1) a = (~k.i:k~ 
(pk,Kp ) 

(2) uk+l = uk + apk 

(3) 

(4) 

(5) 

(6) 

If lluk+l_ukll
00 

< E: then 

stop, otherwise continue. 

k+l k 
r = r 

k 
aKp 

s = (;k!l.i:k+lJ 
(rk,rk) 

( 7 ) Pk+l = ;k+l + Spk 
Algorithm 1. PCG Algorithm 

We note that the standard conjugate gradient 
algorithm results by choosing M = I. 

For vector machines, if M = I, all steps of 
the iteration loop except (1) and (6) can be 
vectorized. In particular, the multiplication 
Kp, for K sparse, vectorizes after a suitable 
ordering of the equations and will be discussed in 
detail in Section 3. The difficulty arises in the 
formation of the inner products necessary to 
calculate a and 13. These calculations require 
a phase in which N partial sums must be added 
together and therefore do not vectorize well. 

For parallel arrays like .the Finite Element 
Machine (Jordan [1978], Adams [1982]), the 
calculation of u,r, and p can be distributed 
to the individual processors and the necessary 
communication between processors can be performed 
on the dedicated local links. The convergence 
test in (3) can be performed by using the flag 
network. However, for a large number of 
processors, the calculations of a and S can be 
expensive since the number of values to be summed 
for each inner product is equal to P, the number 
of processors. Jordan [1979] realized that this 
was potentially detrimental to the efficiency of 
the method on this machine, and as a result, a 
special hardware circuit (sum/max) was designed to 
perform the P sums in O(log2P) time. 

Since Algorithm 1 has two inner products per 
iteration that will become costly as N (on 
vector machines) or P (on arrays) increases, a 
natural goal is to devise a preconditioner that 
will reduce the number of CG iterations, and hence 
the number of inner products, while being 
inexpensive to implement. In the next section 
preconditioners that are based on taking m steps 
of an iterative method are described. In Section 
3, the implementations of these methods on the 
CYBER 203 /205 and the Finite Element Machine are 

The research reported in this paper was supported in part by the National Aeronautics and Space 
Administration under NASA Contract No. NASl-46 while t4le author was at the University of Virginia, 
Charlottesville, VA. and in part by the National Aeronautics and Space Administration Contract Nos. 
NASl-15810, NASl-17070 and NASl-17130 while the author was in residence at ICASE, NASA Langley Research 
Center, Hampton, VA 23665. 

0190-3918/83/0000/0036$01.00 © 1983 IEEE 36 



given for a system of equations that results from 
an example structural engineering problem. 
Results for this problem on the CYBER 203 and the 
Finite Element Machine are given in Section 4. 

2. M-Step Parallel Preconditioners 
2.1 Choosing M 

The preconditioned conjugate gradient 
algorithm of the last section requires a symmetric 
and positive definite preconditioning matrix M. 
The question is how, to choose M so that the 
condition number of K, 

is as small as possible. 
The best choice for M in the sense of 

minimizing K(K] M = K but this gains 
nothing since Kr -~ ,. ~s just as difficult to 
solve as Ku= f, A ,P ~f preconditioners that 
appears to be easily imp~emented on parallel 
computers arises by choosing M to be a splitting 
of K that describes a linear stationary 
iterative method. As an example, the SSOR 
splitting of K yields 

(2.1) 

where D,-L, and -U are the diagonal, strictly 
lower, and strictly upper parts of K respective
ly. This splitting has been considered extensive
ly in the literature as a preconditioner; for 
example, refer to Concus, Golub, O'Leary [1976] 
and the references therein. Now, if the matrix 
K is ordered by the Multicolor oi;_dering (Adams 
and Ortega [1982]), the system Mr= r can be 
implemented on parallel computers as a forward 
followed by a backward Multicolor SOR iteration 

applied to K~=r with initial guess ;(o)=O and 
will be explained in more detail in Section 3. 
The question now arises whether it would be 
beneficial to take more than one step of a linear 
stationary iterative method to produce a 
preconditioner M that more closely approximates 
K. If this is done, the resulting preconditioning 
matrix is 

( m-1 )-1 M = P If{;+ ... +G • (2.2) 

Now, M must be symmetric and positive definite to 
be considered as a preconditioner. The necessary 
and sufficient conditions for M to satisfy these 
requirements are given in Adams [1982] and we only 
note here that if P is the SSOR splitting matrix 
these conditions are met. We also note that 
Dubois, Greenbaum, and Rodrique [19791 _fonsidered 
a truncated Neumann series for K as a 
preconditioner which corresponded to a Jacobi 
splitting where P = diag(K). 

Even though the precondit ioner in (2 • 2) for 
the SSOR splitting is symmetric and positive 
definite, the question of how well the resulting 
PCG method will reduce the number of CG iterations 
must be answered. In Adams [1982], for the SSQR 
splitting, the condition number of the matrix K 
of ( 1. 2) was proven to decrease as the number of 
steps of the preconditoner i~(if 2J 2) increases; 

however, the maximum ratio of ~( was shown to 
K ~) 

37 

be m. In practice, for larger m, this reduction 
may not be enough to balance the increase in the 
work that must be done by the preconditoner (as 
results in Section 4 verify). However, by 
parametrizing this preconditoner, the method is 
very effective. This parametrization is briefly 
discussed in the next section and the parameters 
for the SSOR splitting are given. 

2.2 Parametrizing M 
Johnson, Micchelli, and Paul [1982] have 

suggested symmetrically scaling the matrix K to 
have unit diagonal and then taking m terms of a 
parametrized Newmann series for K-l = (I-G)-l as 
the value for M-l This corresponds to a 
symmetric preconditioning matrix whose inverse is 
a polynominal of degree m-1 in G, 

(2. 3) 

derived from the Jacobi splitting, 

K = I - G (2.4) 

of K; hence, the solution to Mmr = r can be 
implemented by taking m st,eps of the Jacobi 
iterative method applied to Kr = r with initial 

guess ;(o) = O. Johnson, et.al. c~1ose the 
ai's so that the eigenvalues of Mm K, and hence 
those of ~· are positive on the interval 
[A 1 , An] that contains the eigenvalues of K and 
are as close to 1 as possible in some sense such 
as the min-max or thf least squares criteria. 
Clearly, if :'!_ = 1, M;;; K = a0K and the condition 
number of M;;; K is the same for all a 0 * O. 
Hence, we are only interested in m > 1. 

We now generalize this idea for any splitting 
of the matrix K, 

K = p - Q. (2. 5) 

If G = P-1Q, then by parametrizing (2. 2), the 
inverse of the m-step preconditioner becomes 

(2. 6) 

and will be symmetric if P is symmetric. We 
choose the values of ai so that the eigenvalues 
of M-l K are positive on the interval [Al. An] 
that ~ontains the eigenvalues of p-lK and are as 
close to 1 as possible in some sense such as the 
min-max or least squares criteria. For the least 
squares criteria, the values of ai that 
correspond to the SSOR splitting are given in 
Table 1 for m = 2,3, and 4. 

Table I. 
a Values for t:he -step SSOR PCG Method 

_!'! ao "'1 Ct2 a3 

2 1.00 5.00 
3 1.00 -2.00 7.00 
4 1.00 7.00 -24.50 31.50 

In the next section we describe how to implement 
the m-step parametrized SSOR PCG method on the 



CYBER 203/20S and on the Finite Element Machine 
and in Section 4, results on these machines are 
given. 

3. Implementation of the m-step SSOR PCG Method 

We first describe the algorithm for'solving 
Mr = r, where M is the preconditioning matrix 
given by (2. 6). To be concrete, this description 
will be given for the following test problem. 

The domain considered will be a rectangular 
plate discretized with triangular finite elements 
over which linear basis functions are defined. The 
nodes of the triangles are colored Red, Black, and 
Green so that nodes on a given triangle are 
different colors as shown in Figure 1. This 
coloring, as described in Adams and Ortega [1982], 
decouples the equations so that an implementation 
on either vector or array computers is possible as 
will become more apparent later in this 
discussion. 

Figure 1. Plate (Triangular Elements) 

The problem is to determine the displacements, 
say u and v, in the x and y directions 
respectively at each node in the plate whenever 
the plate is loaded on one edge and constrained on 
another. The partial differential equations of 
plane stress that govern these displacements are 
well known, see Norrie and DeVries [1978], but do 
not contribute to the discussion here. The 
important point to make is that the stiffness 
matrix K of (1,1) will be symmetric and positive 
definite and will have dimension 2ab x 2ab 
where a is the number of rows of nodes and b 
is the number of columns of unconstrained nodes (2 
unknowns at each node), and each row of K will 
contain at most 14 nonzero elements which 
correspond to the grid point stencil for linear 
triangular elements shown in Figure 2. 

•(u,v) l•(u,v) 

• ~ (u,v) •( ) 
(u,v) I u,v 

•(~•(u,v) 
Figure 2. Grid Point Stencil 

Observe from Figures 1 and 2 that while there 
is no coupling between the equations at two nodes 
of the same color,, the equations at a given node 
do couple. Hence, to completely decouple the 
system, six colors are necessary; namely, Red(u), 
Red(v), Black(u), Black(v), Green(u), and 

38 

Green(v). Now, if the equations at the nodes in 
Figure 1 are numbered by these six colors from 
bottom to top, left to right, the system Kr = r 
has the form, 

Dll B12 B13 B14 B1s B16 rl r1 

T 
B12 D22 B23 B24 B2s B26 r2 r2 

T 
Bl3 

T 
B23 D33 B34 B3S B36 r3 r3 

T 
B14 

T 
B24 

T 
B34 D44 B4s B46 r4 r4 (3.1) 

T T T T 
Dss Bs6 B1s B2s B3s B4s rs rs 

T T T T ... 
B16 B26 B36 B46 Bs6 D66 r6 r6 

where B12 ,B34 ,Bs6, and Dii' t = 1 to 6 are 
diagonal matrices. 

The SSOR iteration can be realized by a 
forward followed by a backward Multicolor SOR 
iteration, (Adams and Ortega [1982]), but is only 
as expensive as one Multicolor SOR iteration since 
a technique of Conrad and Wallach [1979] can be 
used to save results in an auxiliary vector, y, 
from the forward pass to be used in the backward 
pass. The procedure is given below for solving 
Mr = r of Algorithm 1. The relaxation parameter 
w of the SSOR method causes no problems in the 
implementation and will be set to one here for 
simplicity. 

(1) r = O· 
' 

y = 0 

(2) For s = to m 

(1) For c = 1 to 6 

c-1 
(1) Form x = -L BT rj 

j=l jc 

(2) Solve Dcrc x +Ye + ex m-src 

(3) Set ye = x 

(2) For c = s down to 2 

6 
(1) Form x = -L B r 

j=~+l cj j 

(2) Solve Dcrc = x +Ye + cxm-src 

(3) Set ye = x 

6 
(3) Solve Dlrl -L Blj;j + Y1 + .cxorl 

j=2 

Algorithm 2. m-step 6-color SSOR 

Notice that the values of cxm-s above are the 
parameters that were given in Table 1, and if no 
parametrization is desired, these are simply set 
to one. We also p,oint out that Algorithm 2 can 
easily be modified to solve problems whose domains 
are discretized by more complicated finite 
elements or finite differences as long as a 



multicolor ordering is use<l. For more details see 
Adams and Ortega [1982]. We now turn to the 
implementation of Algorithm 1 in conjunction wi.th 
Algorithm 2 on the CYBER 203/205. 

3.1 CYBER 203/205 Implementation 
On the CYBER 203/205, vectors consist of 

contiguous storage locations and maximum 
efficiency of vector operations is achieved for 
very long vectors. For vectors of length 1000 
around 90% efficiency is obtained, but this drops 
to approximately 50% or less for vectors of length 
100 and 10% for vectors of length 10. 

To achieve the maximum vector length for our 
test problem the u equations at the Red nodes 
(left to right, bottom to top) including the 
constrained nodes are numbered first, followed by 
the corresponding v equations at the Red nodes, 
then by the Black u, Black v, Green u, and Green 
v equations. The numbering of the constrained 
equations is necessary for ease of implementation 
given the CYBER's contiguous storage requirement 
but 1lso increases the vector length from l /3ab 
to 3a(b+l). Of course, the actual updating of 
the storage locations corresponding to these 
constrained nodes is prohibited by the control 
vector feature on this machine, see Ortega and 
Voigt [1977], and for large values of a and b 
little inefficiency is incurred. For a unit 
square plate, the maximum vector length for our 

a2 
test problem is 3 and is around 1000 when 

a ~ 55, or equivalently when the width 
triangle is equal to 1/54. 

The contiguous storage requirement 
with the manner in which the nodes are 

of each 

coupled 
colored 

imposes a restriction on the number of nodes that 
can be in each row of the plate. In particular, 
the last node in the first row must be Black so 
that the coloring R/B/G /R/B/G, etc. wraps around 
from one row to the next. 

Now, the calculations of Ku 0 and Kp k in 
Algorithm 2 can be done by a straightforward 
generalization of Madsen, Rodrique, and Karush's 

Figure 3a. 18 nodes/procesor 

B 

1 
G--+«---n 

[1976] 
since 
(3.2) 
well): 

matrix multiplication by diagonals scheme 
K of (3.1) has the structure shown in 

(and will be store<l by these diagonals as 

R B G 
u v u v u v 

u~ ~~~~~R 
v~~~~~~ 

K u~~~ ~~~B 
v~~~ ~ ~~ (3.2) 

u~~~~~~G 
v~~~~~ ~ 

Also, the multiplication of B1c;j and Bcjrj in 
Algorithm 2 can be performed by the same 
techniquek+l fhe subtraction in the convergence 
test llu -u 11 00 < e: vectorizes and the absolute 
value is performed by the vector absolute value 
function that is available on the CYBER. The 
inner products for the calculation of a and S 
are done by a call to an inner product routine 
which utilizes the machine's vector hardware; 
however, the ad<litions of the partial sums make 
this operation considerably slower than the other 
vector operations required in the algorithm. 

Next, we turn to the implementation of 
Algorithm 1 in conjuction with Algorithm 2 on the 
Finite Element Machine. 

3.2 Finite Element Machine Implementation 
The first task for the implementation on this 

machine is to assign the nodes (and hence 
equations at the nodes) of the plate to the 
processors. This is done by assigning each 
processor, as nearly as possible, an equal number 
of Red/Black/ and Green unconstrained nodes as 
illustrated in Figures 3a, 3b, and 3c, where in 
each Figure, the node colorings may repeat beyond 
the region shown. 

I 
9 nodes/processor 

1~~~~ 
Figure 3c. 

39 



In contrast to the CYBER implementation we need 
not be concerned with numbering the constrained 
nodes, but instead we should require that each 
processor receive an equal distribution of each 
color of the unconstrained nodes. 

Since memory is distributed on the Finite 
Element Machine, each processor stores the portion 
of u, p, ~. r and K that corresponds to its 
collection of nodes. For each equation that is 
assigned to a processor, 14 storage locations are 
reserved for the nonzero coefficients of K that 
correspond to the grid point stencil in Figure 
2. For more information about these data 
structures see Adams [1982). In addition, storage 
must be reserved in each processor for the portion 
of p that must be received from neighbor 
processors during the calculation of Kp each 
iteration. For example, in Figure 3b, processor 1 
must reserve storage for the components of p 
that correspond to the 3 border nodes in processor 
3 and the 3 border nodes in processor 2, but no 
components are received from processor 4 since no 
nodes in processors 1 and 4 share a common 
triangle. This same storage may be used initially 
for u0 during the calculation of Ku0 ~ 
Similarly, storage must be reserved for the r 
components associated with the equations at border 
nodes in neighbor procesors for the 

multiplications of 
Algorithm 2. 

T , 
Bjcr j and in 

The sending and receiving of the border p 
components i~ each CG iteration in Algorithm 1 and 
the border r components during each step of the 
preconditioner in Algorithm 2 is only (for 
rectangular regions) between neighbor processors 
and in particular for our test problem will 
require six of the machine's eight nearest 
neighbor links as shown in Figure 4 for processor 
P. 

·~-r ·--C!J--• 
I~ • • 

Figure 4. FEM Local Links 

Hence, the communication required for the m-step 
SSOR preconditioner on this machine is completely 
local and the amount of data that a given 
processor must communicate can be seen from Figu·re 
3 to be dependent on its number of neighbors as 
well as the dimension of the rectangle of nodes 
assigned to it. To reduce the time required for 
the I/O, the values of each color to be sent to a 
given neighbor can be packaged and sent as one 
record and likewise for the values of a particular 
color to be received from a given neighbor. If 
this is done, it becomes advantageous to think of 
the two equations at the same node as being the 
same color, because, on this machine, it does not 
matter that they couple since they will always be 
assigned to the same pro·cessor. 

The convergence test in Algorithm 1 is 
implemented by the signal flag network. Each 
processor raises its convergence flag whenever its 
portion of u values are within the stopping 
criterion. The processors are then synchronized 

40 

and tested to see if all flags are raised; if so, 
the iteration stops if not, all flags are 
lowered and the iteration continues. 

Lastly, we summarize our remarks about the 
Finite Element Machine implementation of Algorithm 
2 by providing a parallel version in Algorithm 3 
that will be executed by processor P· The 
subscript p denotes the portion of a vector that 
is assigned to processor p, the subscript n 
denotes the portion of the vector that is received 
from all of processor p's neighbors and the 
subscript t denotes the total vector which 
cons is ts of the components received by, as well as 
those assigned to, processor P· 

(1) rt O; Yp = 0 

(2) For s = 1 to m 

(1) For c = to 6 

c-1 T , 
(1) x = -{ B r 

. 1 jc j,t 
J= 

(2) D r c,p c,p x + Yp + am-srp 

(3) y = x 
p 

(4) If c 11).0d 2 = 0 then 

(1) S~nd border ,portion of 
rc-1,p and rc,p 

A 

(2) R~ceive rc-1,n and 

rc,n 

(2) For c = 5 down to 2 

6 
(1) x -l B r 

j=c+l cj j,t 

(2) Dc,prc,p = x + Yp + am-srp 

(3) yp = x 

(4) If c mod 2 -f. 0 then 

(1) S~nd border ,portion of 
rc+l,p and rc,p 

(2) R~ceive rc+l ,n and 
rc,n 

6 
(3) D1 r 1 = -l B1jrl t + yp + a r 

,p ,p j=2 ' 0 p 
Solve 

Algorithm 3. FEM m-step 6-color SSOR 

4.Results 

The example plane stress problem was run on 
the CYBER 203 at the NASA Langley Research Center 
for a unit square plate for varying mesh sizes• 
Table 2 gives the number of iterations, I, and 



time, T, in seconds to solve this problem using 
m = 0-10. The parametrized preconditioner results 

are denoted by P. the number of rows in the plate 
by a, and the maximum vector length by v. 

Table 2. CYBER 203 Iterations and Timings m-step SSOR PCG 

m I T 

v = 41 

a = 11 

T 

v = 132 

a = 20 

1. 

0 

2 

2P 

3 

3P 

4P 

SP 

6P 

7P 

BP 

gp 

112 

S2 

38 

31 

31 

24 

22 

19 

18 

.133 

.129 

.143 

.116 

.155 

.121 

.138 

.143 

.1S9 

1S7 

66 

so 
40 

39 

30 

24 

20 

18 

• 213 

.184 

.208 

.167 

• 216 

.167 

. 166 

.167 

.17S 

271 

111 

79 

61 

65 

46 

3S 

1..9 
25 

26 

21 

.S6S 

.4s4 

.478 

.369 

.520 

.369 

.3SO 

.347 

.348 

.413 

.37S 

lOP 

It should be noted that the inner product routine 
that was used for these results was developed at 
Langley and is optimized for the CYBER 203. 
Several observations can be made from these six 
test cases. 

(1) The parametrized preconditioner is 
better with respect to both the number 
of iterations and the execution time 
than the corresponding unparamet rized 
preconditioner. 

(2) The optimal number of steps of the 
parametrized preconditioner increased 
as the vector length increased. 

In relation to (2), an interesting question 
is to determine how many steps would be beneficial 
for a large problem. The answer to this is quite 
simple if the number of iterations, Nm, could be 
expressed as a function of m, since the execution 
time of the m-step method can be expressed as 

(4. 1) 

where A is the time for one outer conjugate 
gradient iteration and B is the time for 1 step 
of the preconditioner. Now if we assume that 
Nm+l < Nm, taking mtl steps is more beneficial 
than taking m steps whenever 

(1) (m+l )Nmtl - mNm ,;;; O. (This means 
the total number of inner loops is less for, 
steps) 

or (2) 
N - Nm+l 

B/A < m 
(mtl )Nmtl - mNm 

that 
mtl 

( 4. 2) 

41 

S36 

214 

1S2 

118 

124 

88 

67 

S6 

47 

43 

36 

33 

31 

v = S61 

a = 41 

T 

3.293 

2.373 

2.428 

l.88S 

2.S85 

1. 836 

1. 726 

1. 716 

1.670 

1. 739 

1.634 

1. 660 

1.709 

v = 1282 

a = 62 

788 

311 

221 

172 

181 

129 

99 

82 

70 

64 

S4 

48 

44 

T 

11. 84S 

7.832 

7. 773 

6.052 

8.174 

S.828 

S.471 

S.34S 

S.263 

S.4Sl 

S.139 

S.OS6 

S.070 

v = 2134 

a = 80 

I 

929 

39S 

280 

218 

229 

163 

124 

104 

88 

80 

69 

61 

SS 

T 

22.780 

17.194 

17.380 

13.S34 

18.469 

13. lSl 

12.306 

12.260 

12.011 

12.410 

11. 985 

11. 731 

11. S94 

The inequalities in (4.2) explain for larger 
problems when more steps of the preconditioner 
should be taken. For instance, the values of the 
left and right side of inequality (2) when m=9 
are (.81,.lS), (.68,.5), and (.76,6) for a= 
41,62, and 80 respectively. Hence, ten steps 
are preferable to nine only for a = 80. 

We now give the Finite Element Machine 
results. The example plane stress problem with 6 
rows and 6 columns of nodes (60 equations) was 
solved on a 1, 2 and then on a 5-processor Finite 
Element Machine using the m-step SSOR PCG 
method. For this problem the assignment of 
unconstrained nodes to the processors is shown in 
Figure S. 

Two Processors Five Processors 

Figure S. FEM Processor Assignments 

Observe from Figure S that for the two and five 
processor assignments each processor has an equal 
number of R, B, and G nodes as well as an 



equal number of border nodes to be communicated. 
Therefore, in the absence of communication time 
and any differences in processor speeds, a speedup 
of two (five) over the one processor case should 
be realized. 

The number of iterations and the 
seconds for the above assignments are 
Table 3. The speedups for the two 
processor assignments also are included. 

time in 
given in 
and five 

Table 3. FEM Iterations, Tiaings, Speedups m--step SSOR PCG 

.E....=-1. 
m I T I T 

0 

2 

2P 

3 

3P 

4 

4P 

SP 

6P 

48 

19 

13 

11 

11 

8 

10 

.£_ 

s 
s 

63.3S 

47.90 

48.7S 

41.9S 

S4.9S 

41.2S 

62.40 

39.80 

40.60 

47.0S 

48 

19 

13 

11 

11 

8 

10 

6 

s 
s 

33.01 

2S.8S 

26.6S 

22.9S 

30. lS 

22.7S 

34.30 

22.00 

22.so 
26.20 

Several 
(1) 

(2) 

(3) 

observations can be made from Table 3. 
The effectiveness of the preconditioner 
as a function of m was the same for the 
sequential and two and five processor 
cases (4p ,Sp, 3p ,2p, 1, 2, 3, 4). 

Taking more 
unparametrized 
advantageous. 

than one step 
preconditioner 

of 
was 

the 
not 

The overhead for the CG(m=O) algorithm 
was less than that for the PCG Algorithm 
because for two and five processors the 
communications for the preconditioner 
rather than for the inner products 
dominate the overhead. 

In regard to (3), if we keep the number of nodes 
per processor fixed and continue to add processors 
up to a certain number, say n , the overhead fo.r 
the preconditioner will still <\e more than that 
for the CG method and hence m = 3P or 2P may 
become optimal; however, as the number of 
processors increases beyond na, the value of 
B/A in (4.2) will continue to decrease until 
m ) 4p steps of the preconditioner will be 
optimal. The behavior of the m-step PCG Algorithm 
can be modelled as a function of the number of 
processors, the problem size, and the relative 
speed of arithmetic to communication times for the 
machine. For more details, see Adams [1982]. 

S. Summary and Conclusions 
The m--step multicolor SSOR preconditioned 

conjugate gradient method described herein has 
been shown to be effective on vector computers and 
for a small problem was effective on the Finite 
Element Machine. As more processors and the 
sum/max hardware circuit become available on this 
machine, the method will be tested on larger 

42 

Speedup 

1.92 

l.8S 

1.83 

1.83 

1. 82 

1. 81 

1.82 

1.81 

1.80 

1.80 

I 

48 

19 

13 

11 

11 

8 

10 

6 

s 

L.::-2. 
T 

17-70 

14.8S 

ls.so 
13.30 

17.6S 

13.2S 

20.20 

12.90 

13.2S 

Speedup 

3.S8 

3.23 

3.lS 

3.lS 

3.11 

3.11 

3.09 

3.09 

3.06 

problems. This method does not face the usual 
difficulty in choosing the optimal relaxation 
parameter, w, for the multicolor SSOR method, 
since for this ordering and few colors w = 1 is 
a good choice, see Adams [1983]. A problem still 
remains in applying the metho~ to irregular 
regions since the grid must be colored and for 
array machines must also be distributed to the 
processors in light of this coloring. 

REFERENCES 

Adams, L., Ortega, J. [1982]. "A Multi-Color SOR 
Method for Parallel Computation," Proceedings 1982 
Conference on Parallel Processing, Bellaire, 
Michigan. 

Adams, 
Sparse 
Ph.D. 
1982). 

L. (1982]. "Iterative Algorithms for Large 
Linear Systems on Parallel Computers," 
thesis, University of Virginia (Oct. 
Also NASA Contractor Report 166027, NASA 

Langley Research Center. 

Adams, L. [1983]. ''M-Step Preconditioned 
C.o.njugate Gradient Methods." To appear as an 
!CASE Report • 

Chandra, R. [1978]. "Conjugate Gradient_ Methods 
for Partial Differential Equations," Ph.D. thesis, 
Research Report # 129, Department of Computer 
Science, Yale University. 

Concus, P., Golub, G., O'Leary, D. [1976]. "A 
Generalized conjugate Gradient Method for the 
Numerical Solution of Elliptic Partial 
Differential Equations," Sparse Matrix 
Computations, eds. J. Bunch, D. Rose, Academic 
Press, PP· 309-332. 

Conrad, V., Wallach, Y. [1979]. "Alternating 



Methods for Sets of Linear Equations," Numerische 
Mathematik, Vol. 32, PP· 105-108. 

Dubois, P., Greenbaum, A., Rodrique, G. [1979]. 
"Approximating the Inverse of a Matrix for Use in 
Iterative Algorithms on Vector Processors," 
Computing, Vol. 22, PP· 257-268. 

Hestenes, M., and Stiefel, E. [1952]. "Methods of 
Conjugate Gradients for Solving Linear Systems," 
J. Res. Nat. Bur. Std., PP• 409-436. 

Johnson, o., Micchelli, <::., Paul, G. [1982]. 
"Polynominal Pre conditioners for Conjugate 
Gradient Calculations," IB'1 Research Report 40444, 
IBM Thomas J. Watson Research Center, Yorktown 
Heights, N.Y. 

Jordan, H. [1978]. "A Special Purpose 
Architecture for Finite Element Analysis," Proc. 
1978 Int. Conf. on Par. Proc., PP· 263-266. 

Madsen, N., Rodrique, G., Karush, J. [1976]. 
"Matrix Multiplication by Diagonals on a 
Vector/Parallel Processor," Information Processing 

43 

Letters, Vol. 5, No. 2, pp. 41-45. 

Norrie, D., De Vries, G. [1978]. An Introduction 
to Finite Element Analysis, Academ.lc Press, N.Y. 

Ortega, J., Voigt, R. 
Partial Different.lal 
Computers," Proc. 1977 
475-526. 

[1977]. "Solutions of 
Equations on Vector 

Army Num. Anal. Conf., PP· 

Podsiadlo, n., and Jordan, H. [1981]. "Operating 
Systems Support for the Finite Element Machine," 
Computer Science Design Group University of 
Colorado, Boulder, Colorado. 

Reid, J. [1971]. "On the Method of Conjugate 
Gradients for the Solution of Large Sparse Systems 
of Linear Equations," Proc. Conf. on Large Sparse 
Sets of Linear Equations, Academic Press, New 
York. 

Schreiber, R. [1981]. "Implementation of the 
Conjugate Gradient Method on a Vector Computer," 
Submitted to SIAM Journal on Scientific and 
Statistical Computation. 



MINIMIZING INNER PRODUCT DATA DEPENDENCIES 
IN CONJUGATE GRADIENT ITERATION 

John Van Rosendale 
Institute for Computer Applications in Science and Engineering 

Hampton, VA 23665 

Abstract 

The amount of concurrency available in 
conjugate gradient interation is limited by the 
summations required in the inner product 
computations. The inner product of two vectors of 
length N requir'es time c*log (N), if N or more 
procesors are available. 

This paper describes an algebraic 
restructuring of the conjugate gradient algorithm, 
which minimizes data dependencies due to inner 
product calculations. After an initial start up, 
the new algorithm can perform a conjugate gradient 
iteration in time c*log(log(N)). 

Introduction 

Conjugate gradient interation is a method of 
linear equation solution of great practical 
importance. It can be used to solve any linear 
system 

Au= b 

where A is symmetric, positive definite, and can 
be quite efficient when coupled with various 
preconditioning techniques. However, CG 
(conjugate gradient) iteration involves the 
computation of inner products at every 
iteration. On parallel computers with large 
numbers of processors, the data dependencies 
inherent in these inner product calculations will 
limit the speed of conjugate gradient iteration 
for large sparse linear systems. See, for 
example, Schreiber [1981] and Adams [1982]. In 
fact, given sufficiently many processors, the 
summation fan-ins in the inner product 
calculations will dominate the computation time on 
nearly all large sparse linear systems occurring 
in practice. 

Conjugate Gradient Iteration 

This paper presents a solution to this 
problem through an algebraic restructuring of the 
CG Algorithm. Consider first the standard CG 
iteration. One of a number of mathematically 
equivalent forms of it may be given as follows: 

u(O) arbitrary, 

(n+l) (n) 
+ ;\ (n) n=O,l,•••, u u np 

(n) 
(n) 

n=O, r 
p (n) (n-1) 

r + anp n=l,2,•••, 

r(n) /n-1) ;\ A ( n-1) 
n-1 p ' n=l, 2, • • •, 

a 
(/n) ,r(n)] 

n=l, 2, • • •, 
n ( (n-1) (n-1)) ' r ,r 

;\ 
(r(n) ,r(n)] 

n=O,l,•••. 
n (p (n) ,Ap (n))' 

The data dependencies here are severe. One cannot 

generate (r(n) ,r(n)) until an-l and ;\n-l are 

known. But these quantities involve inner 

products dependent on r(n-1). As pointed out 
above, an inner product on vectors of length N 
requires time c*log(N). Thus it would seem that 
a CG iteration could not be done faster than in 
time c*log(N). 

Idea of New Algorithm 

This natural seeming idea, that a CG 
iteration on vectors of length N cannot be done 
faster than in time c*log(N), turns out to be 
incorrect. To see why, consider the computation 
of a typical inner product required, 

By the formulas above, r(n) is given as 

r(n) = r(n-1) _ ;\ Ap(n-1). 
n-1 

Now suppose we know r(n-l) and 
not the value of "n-l. In this case 

p(n-l) but 

we would be 

( ( n) ( n) ) unable to evaluate r ,r , but we could 

Research supported by the National Aeronautics and Space Administration under NASA Contract Nos. NASl-
17070 and NASl-17130 while the author was in residence at ICASE, NASA langley Research Center, Hampton, 
VA 23665. 

0190-3918/83/0000/0044$01.00 © 1983 IEEE 44 



still perform most of the 
evaluating this inner product. 
can write the recurrence 

+ A2 (A (n-1) A (n-1)) 
n-1 p ' p 

work involved 
Specifically, 

in 
we 

and can proceed to evaluate all inner products on 
the right here. If subsequently someone told us 
the value of An-l we could compute the value of 

(r(n) ,r(n)) very rapidly, since only a few more 
real operations would then be needed to complete 
evaluation of the recurrence relation. 

It ls easy to see how this idea can be used 
to speed the computation of the CG algorithm on 
parallel computers. We have replaced an inner 
product computation requiring data not present 
until iteratin n with inner products of vectors 
present at interation n-1. Since these vectors 
are present sooner, we have that much longer to 
perform their inner products, to achieve the same 
parallel computation speed. Stated differently, 
assuming only the inner products limit the speed 
of the computation, the use of this recurrence 

relation for ( (n) (n)J r ,r and the analogous 

relation for (p(n) ,Ap(n)J will approximately 

double the parallel 
it is assumed that 
are available, and 
neglected. 

speed of CG iteration, where 
sufficiently many processors 
communications cost can be 

Recurrence Relations 

The recurrence relation just described is one 

(n-k) 
u 

(n-k) 
p 

r 
(n-k) 

(n-k+l) 
u 

(n-k+l) 
p 

r(n-k+l) 

of a large class of such relations which can be 
exploited to speed up CG iteration. These 
relations will be given in detail in Van Rosendale 
[1983], but for now we consider only the general 
form of such recurrence relations. Consider the 
typical inner product: 

( (n) (n)J r ,r 

The value of this inner product may be given in 
terms of the values of inner products of vectors 
occurring at any previous iteration together with 
the values of the real parameters 

For example, for any 1z > 0, one can derive 
recurrence relations of the form 

(r(n) ,/n) J = 
2k 
\ ( (n-k) Ai (n-k)) 
l ai r , r 

i=O 

+ 
2k 
\ ( (n-k) Ai (n-k)) 
l Ci p ' p • 

i=O 

The coefficients {a_i}, {bi}, {ci} occurring here 
are polynomials in tne parameters 

{a l'a 2····,a k'A l'A 2····,A k}. n- n- n- n- n- n-

Similar recurrence relattnns are 
other type of inner ,>£oduct 

iteration, (p (n) ,Ap (n)). 

(n-1) 
u 

(n-1) 
p 

r'.n-1) 

(n) 
u 

(n) 
p 

r 
(n) 

available for the 
occurring in CG 

inner product calculations 

Figure 1. Principal Data Movement in New CG Algorithm. 

45 



New Algorithm 

To construct a more parallel variant of CG 
iteration based on these recurrence relations, one 
begins by selecting a value for the constant k, 
which may be thought of as a look-ahead 
parameter. Then at iteration n - k, when vectors 

r(n-k) and p(n-k) become available one begins 
forming all of the inner products 

( (n-k) Ai (n-k)) r , r , i=0,1,•••,2k, 

( (n-k) Ai (n-k)) 
r ' p ' i=0,1,···,2k, 

( (n-k) Ai (n-k)) 
p ' p ' i=O, 1, • •• ,2k. 

The values of these inner products are needed in 
the recurrence relations for the inner products 

( (n) (n)) ( (n) A (n)) r ,r , p , p 

at iteration n. Thus we arrive at an algorithm 
whose data movements are sketched in Figure 1. 

Clearly the problems of the delays caused by 
the summations in the inner products is now 
solved. If we chose k = log(N), the inner 
product summation delays will have no inpact on 
algorithm speed. However, two new issues now 
arise. First, we have not dealt with the way in 
which the parameters 

{a l'a 2'a k'•••A l'A 2····A k} n- n- n- n- n- n-

enter into the recurrence relations. In 
principle, there could be severe data dependencies 
here. Second, there seem to be a large number of 
inner products required now, most involving a 
relatively high power of the matrix A. 

Neither of these problems is as serious as it 
first appears. For the first, it turns out the 

coefficients in the recurrence 

relations above are polynomials in the parameters 

{a a •••a A A •••A } 
n-1' n-2' n-k' n-1' n-2' n-k 

which are at most quadratic in each 
separately. This fact, coupled 
observation that the parameters 

a a ••• A A ••• 
n-k' n-k+l' 'n-k' n-k+l' 

parameter 
with the 

gradually become available, enables us to 
effectively perform the coefficient evaluations in 
a pipelined fashion. Thus at iteration n, when 

( ( n) (n) ) we need the inner product r , r , we can 
have the recurrence relation (*) completely 
evaluated, except for performing these summations, 
or the analogous summations in the recurrence for 

(p(n) ,Ap(n)). This requires parallel time 

log(k) = log(log(N)). 

The second problem mentioned above, the 
occurence of high powers of the matrix A in the 

46 

recurrence realtion (*), can be resolved by the 
use of additonal recurrence relations. First, 
observe that there is no need to compute powers of 
the matrix A, since we have the recurrences: 

Ai/n) Ai/n-1) A Ai+l (n-1) 
n-1 p ' 

Aip (n) Air(n) + a Ai (n-1) 
n p • 

Thus the set of vectors {Ai (n)}k d 

{Air(n) }~=0 
p i=O an 

can be updated with only one matrix 

vector product. 

Next observe that nearly all 
products needed can also be 
recurrences. We have 

of the inner 
obtained by 

( ( n) Ai ( n) ) _ ( ( n-1 ) Ai ( n-1 ) ) r ,r -r ,r 

- 2An-l(r(n-1),Ai+lp(n-1)) 

+ A2 ( (n-1) Ai+2 (n-1)) 
n-1 P ' P ' 

and similar recurrences Eor the other types of 
inner products occurring in relation (*). raven 
the values of the inner products 

{ (n) Ai (n) }2k 
r ' r i=O' 

{ (n) Ai (n)}2k 
r ' P i=O' 

{ (n) Ai (n) }2,k 
p ' P i"'O' 

at iterat'ion n, we can obtain nearly all of the 
inner products needed at iteration n+l. Only two 
inner products need to be computed directly. 

Computational Complexity 

As pointed out above, the summations in the 
recurrence relations (*) require time 

log(k) = log(log(N)). 

Thus if matrix 
row or column, 
time 

A has at most d nonzeroes per 
this algorithm requires parallel 

max(log(d),log(log(N))). 

The sequential complexity of this algorithm is 
essentially the same as that of the usual CG 
algorithm; we still need two inner products and a 
matrix vector product at every iteration. 

REFERENCES 

Adams, L. [1982]. "Iterative Algorithms for Large 
Sparse Linear Systems on Parallel Computers," NASA 
Contractor Report 166027, NASA Langley Research 
Center .• 

Schreiber, R. [1981]. "Implementation of the 
Conjugate Gradient Method on a Vector Computer," 
submitted SIAM J. Sci. Statist. Comput •• 



NEW MATRIX EQUATION SOLVERS IN GF(2) EMPLOYING CRAMER WITH CHIO METHOD 

Yoshiyasu TAKEFUJI, Takakazu KUROKAWA, 
Masato ISHIZAKI, and Hideo AISO 

Department of E.E. KEIO University 
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223 JAPAN 

ABSTRACT 

In our former paper [6] a parallel and pipelined 
fast matrix equation solver employing the conventional 
Gauss Jordan Elimination Method in GF(2) has been pro
posed where the elements are Os or 1s. In this paper 
two new solvers employing Cramer with Chio method [2] 
are proposed which are more suitable for VI..sI implemen
tation. The new solvers have a much more flexible ex
pandability toward the increase of the matrix size. 
O(n4 ) gates are required for realizing an n-pyramid 
solver through solving 

AX=lb 
where A is a regular matrix of n.n, 'li'. and lb are vectors 
respectively. The solvers can be applied to the real
time decryption [1][3][4][5], hashing, error 
correction/detection [1], and so on. 

1 • INTRODUCTION 

In our former paper [6] an ultra high speed solver 
for the regular matrix equations in GF(2)* has been 
proposed where the elements are Os or 1s. The parallel 
and pipelined solver composed of the iterative logic 
circuits which are suitable for VI..sI implementation can 
be realized by employing the conventional Gauss Jordan 
Elimination Method [6]. However, the solver has a 
drawback on flexibility in expanding hardware logic 
circuits according to the increase of the matrix size 
[6]. 

In this paper two new solvers employing Cramer 
with Chio Method are proposed which can overcome the 
drawback. The design of the new solvers is discussed 
from the viewpoints of the total number of gates and 
that of gate stages for computation. The proposed 
solvers can be applied to the decryption of encrypted 
codes [3], and hashing, and so on. 

In order to decrypt a polynomial from multiresidue 
polynomials in GF(2), a regular matrix equation 

A X = lb 
has to be solved where A is a regular matrix of n•n, 'li'. 
and lb are vectors respectively. In the next section an 
example of Cramer with Chio method is described. 

* Note that GF(2) means Galois Fields 2. 

0190-3918/83/0000/0047$01.00 © 1983 IEEE 47 

2. CRAMER WITH CHIO METHOD 

Cramer with Chio method [2] can be used for solv
ing the regular matrix equation 

A X = lb 
where A is a regular matrix of n.n, X is a vector of 

X = (x1 xzx3 · · · Xn)t 
and lb is also a vector of 

lb= (bi bzb3 · · · bn)~ 
It is believed that the Cramer scheme is unsuitable for 
the large size of matrices because the number of compu
tations becomes too large. When Cramer with Chio 
method in GF(2) is employed for solving 

A 'li'. =lb, 
the Cramer scheme is attractive because the number of 
computations can be drastically reduced by Chio method 
; O(n!) -¥ O(n4), and the basic operations become sim
ple in GF(2); multiplication and addition correspond to 
AND and Exclusive OR functions in GF(2) respectively. 

A simple example of Cramer with Chio method is 
shown as follows: 

< example 1 > 

find X (x x x ) where 
l 2 3 

[: , : l [::J [:I 
Solution: 

~ 
x 1 0 

2 

~ 
x 1 0 

3 

* column exchange 



3. 3-DIMENSIONAL MATRIX EXlUATION SOLVER 

A 3-dimensional matrix equation solver employing 
Cramer with Chio method is proposed in this section. 
The 3-dimensional parallel and pipelined solver for 
solving 

AX=ib 
where A is a regular matrix of n~n is composed of n py
ramids as shown in Fig. 1 • A pyramid which can produce 
one element of vector x consists of n-stage pipes. A 
single pipe of the ith stage shown in Fig.2 is composed 
of a panel of k•k D Flip Flops where k is n-i+1,. a 1-
detector, a column.exchanger, and a logic unit shown in 
Fig.3-6 respectively. The 1-detector in the ith stage 
detects the leftmost element to be 1 and produces the 
row number of the element for exchanging the leftmost. 
column with the column of the row number. The row 
number corresponds to the output of case i in Fig.4. 
The column exchanger exchanges the required two 
columns. The logic unit described in Fig.6 calculates 
the arithmetic operations in GF(2). In GF(2) the addi
tion and subtraction corresponds to the function of Ex
clusive OR logic and the multiplication to that of AND 
logic. The division corresponds to no-operation when 
the divisor is 1. In order to find x 1 for 

r 0 11 012 .. · bi .. · 01n J 
0 21 °22"' b2 ... 02n . . . ' . . . . 

l a'n1 a'n2 ... bn ... o~n 
. I 

i th. column 

the required data flows frc:m bottc:m to top through a 
pyramid and the x 1 can be obtained as shown in Fig.1. 
The proposed solver is suitable for VLSI implementation 
because of a high regularity of iterative logic cir
cuits. The solver has a flexible expandability to the 
increase of a matrix size. The solver for solving a 
regular matrix equation of 

AX =lb 
whereAisaregularmatrix of (n+1)•(n+1), can be 
easily realized by appending the (n+1)th pipe to the 
bottom of a pyramid cc:mposed of n-stage pipes. 

The total number of required gates for realizing a 
matrix solver to solve 

AX =lb 
where A is a regular matrix of n.n, is shown in Table l 
and Fig. 7. The total number of required gates and that 
of required gate stage for solving a regular matrix 
equation are described in Fig.7. O(n4 ) gates are re
quired for realizing a n-pyramid matrix solver where n 
is tne size of vector x. 

[ 
••• ,, ... b1 ... "'"] 0 21 a11 ••• bz ... o2n 

~"' o~z ··: ~r··. a~ 
1 lh. column 

ffiR 
~· 

DF.F 

[a;~ .. · a;;] 
a~i .. ~ ojl . . . 
~:·, •. : Ort 

[
1 a·;, . ~ • a\\ 1 
~ ~h : .. ~J1 
I 0 o 0 , . . . 
0 oa •• _. o\t 

, fl.-,---···:··· ajk= a;.+ oj,oj. 

[~!, g!; : : '. gl:] (mod2 I 
. . . . l'"'·'····,llJ•lt 
: : •• : ••1,1, .. .,1 

0!1 ala · · ·'air 

[
a,. a,. · ~"'.""";;,:']"""'' 
~11 ~n .' · · ~fl . . . . . . . . 
011 011 ••• o, 

Fig.l Cramer with Chio method 

1 detector I 
level i 

. I: 
I 

-column-- k ,. n-i+l 

Fig.2 A single pipe of the ith stage 

a,3 

Fig.3 A panel of D Flip Flops of the ith stage 

1 st row 

easel case2 case3 case k 

Fig.4 A 1-detector of the ith stage 

48 



I th row 

Lrl"*' 
C~1 

c.c..s.e l 

cas·e 1 

a11 a12 a1, a11 

k=n-i·1 
I= 1, 2, ··· k 

Fig.S A column exchanger of the ith stage 

~ 

>-« 
" 
~ 
"' ~ 
~ 
a 
~ 

00 

~ 
w 
I ,__ 

10 
10 

108 

I 
6 I 10 

104 
/ 

/ 

I 
/ 

/ 

2 No. 

10 

•o. 

0 

/ 

/ 

/ 
,/ 

/ 

/ 

I 

-----/ 

/ 
/ 

/ 
/ 

<""' l- n-py-r.:i:mid so Lver-

0' - - - - - -- cecurring solver 

i-·-·-·- n-p'fram.ici solver 
oi gate 

stages -------- recu rr i.ng so lvei:-

50 100 

THE SIZE OF A- MATRIX 

Fig.7 Evaluation of the matrix solvers 

Fig.6 A logic unit of the ith stage 

1<.=n-i+ 

k' k - 1 

l~2,J,···k 

l - 1 

Table 1 The number of required gates of the matrix solver 

A N D 0 R N 0 T x 0 R D F F 

PANEL OF 
0 0 0 0 ( n - i -t l ) 2 

[ff 

l - DETECTOR ". ' 0 " - ' 0 0 

Coclffi ()n-3i-tl) {n-1-tl) (2n-2i+l) (n-ii"l) 0 0 0 
EXC!-WIGER 

l.ooJC um ( n - 1 l 2 0 n { n - i J2 0 

TOT AL 4i 2 - (Sn-;-5) i 212 - (4n-t3l i 
11 - j i 2 -2ni+n2 12 - 2 (n-tl)i 

+ (4n2+5MI) "'" (2n~-t-Jnt-ll + (n 2+2n+l) 

PM'.UiT IF ~«£ ST NIS 

'Ihc n,:llb€r ot r'"'-JUired <Jates "' !j n~ + 2n3 + ~ n~ 6u 

49 

5 
,10. 

4 
10 

3 
10 

2 
10 

1 
10 

-< 
"' 
z 
c 
~ 
m 
~ 

a 
~ 

"' ~ 
~ 
~ ,, 
"' m 



HY 

Fig.8 A recurring matrix solver employing a pipe 

a11 012a1~ a1~ a· 11 a' 12 a· 1s 0 

a' a· a· -

a';1 a~~ o o 

a~·1 a~ -a 21 av a 1.:i a 20 , n 22 z_1 answer 
a 31 a l1. a 33 a,,, 

a.,1 a . .-;_ a~3 a..,, I 
a' a· a· -

01n-1 

Fig.9 Attached hardware for data iteration 

4. RECURRING MATRIX SOLVER 

A simplified recurring matrix solver is proposed 
in this section. The recurring solver for solving 

A 'I = lb 
where A is a regular matrix of n•n, is composed of a 
single pipe together with an attached hardware shown in 
Fig.8. Once the required data is set, the elements 
circulate from bottom to top where the attached 
hardware synchronously masks the needless elements for 
calculation. An example of masking is shown in Fig.10. 

The attached hardware is composed of an (n-1)
stage D Flip Flop circuit and AND-logic circuits shown 
in Fig. 9. Initial seed of the D Flip Flop circuit is 

<O"n O":rriCi'n-2 ••• "Oi ) = (0 1 1 1), 
and in the next clock 

(Qn Qn-1~ ···'Qi ) (0 0 1 1). 
The recurring matrix solver can drastically reduce the 
amount of required hardware for solving a regular ma
trix equation as shown in Fig.7. O(n2 ) gates are re
quired for realizing a recurring matrix solver where n 
is tne size of vector X. The number of required gate
stage is also shown in Fig.7. 

5. CONCLUSION 

The matrix equation in GF(2) should be solved in 
various application fields [6]. Two new matrix equa
tion solvers in GF(2) employing Cramer with Chio method 

50 

- : don't c a r e 

Fig.10 An example of masking 

were proposed. The one is an n-pyramid solver where n 
is tne size of vector X. A pyramid is composed of n
stage pipes. The other· is a recurring matrix solver 
employing only a single pipe for saving the hardware 
amount. The total number of required gates for realiz
ing the solvers and that of gate-stage are discussed. 
The proposed solvers can be implemented by 3-
dimensional VLSI circuits because of a high regularity 
of the iterative logic. The solvers have a flexible 
expandability to tne increase of the matrix size. 

6. REFERENCES 

[1] Nicholas S. Szabo, Richard Tanaka, "Residue Ar
ithmetic and its Applications to computer tech
nology," McGraw Hill (1967). 

[2] Louis A. Pipes, Shahen A. Hovanessian, "Matrix 
Computer Methods in Engineering," John Wiley & 
Sonns, Inc. (1969). 

[3] Yoshiyasu Takefuji, Koichiro Tsujino, Mari Ibuki, 
and Hideo Aiso, "A NOVEL APPROACH TO PARALLEL 
PROCESSING CRYPTOSYSTEM," Proc. of ICPP (1982). 

[4] Yoshiyasu Takefuji, PhD Dissertation, "A STUDY OF 
FAULT- TOLERANT HAROOARE," (1983). 

[5] Takakazu Kurokawa, BS paper, "A proposal of mul
tiresidue codes in polynomial ring applied to ci
pher codes," (1983). 

[6] Yoshiyasu Takefuji, Takakazu Kurokawa, and Hideo 
Aiso, "FAST MATRIX SOLVER in GF( 2)," Proc. of 
Computer Arithmetic (1983). 



SPECIFICATION AND IMPLEMENTATION OF AN INTEGRATED 
PACKET COMMUNICATION FACILITY FOR AN ARRAY COMPUTER 

Bharat Deep Rathi, Sanjay Deshpande, Matthew Sejnowski, Don Walker* 
Roy Jenevein**• G. J, Lipovski and J, C. Browne* 

Departments of Electrical Engineering and *Computer Science 
University of Texas at Austin, Texas 

**Department of Computer Science 
University of New Orleans 

ABSTilACT 

Four distinct packet communication 
requirements for network architectured computer 
systems are: system control, dataflow data type 
movement, SIMD, data realignment and movement of 
high volume data between MIMD configurations when 
memory sharing is unavailable or too costly. 
This paper defines and describes a packet 
switching mechanism which meets each of these 
requirements. Mechanisms are also defined and 
described for breaking and restoring SIMD 
execution structures which are required to 
complete the implementation of packet switching 
for SIMD execution. The mechanisms were defined 
and are described in the context of the Texas 
Reconfigurable Array Computer (TRAC), but should 
be in large measure adaptable to other network 
architectured systems. 

1.0 PROBLEM STATEMENT AND OVERVIEW 

A computer system incorporating a multistage 
netowrk can utilize either packet switching or 
circuit switching or both. The choice of modes 
may depend upon other architectural factors, such 
as whether the network couples processing 
elements to memories or processors to processors, 
or whether the system model of computation is 
SIMD or MIMD, and also may depend upon the 
selection of problems the system is intended to 
execute. 

The Texas Reconfigurable Array Computer 
(TRAC) [SEJ80] uses its network to create 
configurations by coupling processing elements to 
memories to form processors and then coupling 
processors to form SIMD tasks, if desired 
[BR082]. Tasks, whether SISD or SIMD, run 
independently from each other in MIMD fashion. 
TRAC is thus capable of SIMD and MIMD models of 
computation. The varistructure capabilities 
[LIP77] of the architecture are implemented 
through carry look-ahead techniques which are 
similar to SIMD synchronization techniques. The 
breadth of representation capability of TRAC has 
forced us into a thorough analysis of the 
requirements of network architectured systems for 
the packet switching mode of network 
communication. This paper reports the results of 
this study. 

There are four distinct communication 
requirements for network architectured systems 
which can be met by appropriate packet switching 
facilities. These are: 

1. system control (both 
intra-task communication) 

0190-3918/83/0000/0051$01.00 © 1983 IEEE 

inter and 

51 

2. data movement for dataflow models of 
computation (inter-task communication) 

3. data realignment for SIMD processing of 
arrays (intra-task communication) 
and 

4. movement of data between MIMD 
configurations when either circuit 
switching is not provided, or when the 
switch configuration required for 
establishment of circuits, needed to 
link specific process/data pairs, cannot 
be realized or realized only with 
excessive reorganization cost 
(inter-task communication) 

All of these communication requirements have 
been previously recognized and discussed in the 
literature. This paper defines a coherent 
integ_rated implementation of packet switching 
which serves all of these requirements. Some of 
the mechanisms and implementation schemes have 
been previously reported [TRI79,PRE79]. The 
overlap with this integrated discussion will be 
noted in the text at the appropriate places. 

Commonly, packets will be sent to some 
subset of the processors in an SIMD task. The 
selection of packet switching as a mode of 
communication thus requires an efficient 
mechanism for desynchronizing and resynchronizing 
SIMD tasks. Two such mechanisms are implemented 
as a part of the communication functionality for 
TRAC. This capability is particularly 
significant for TRAC since tasks of data width 
greater than a single byte may be constructed 
through SIMD synchronization of---single byte wide 
processors. However, both should be adaptable to 
other architectures. 

The next section states the requirements in 
the context ·of the TRAC architecture. Section 3 
gives an overview of the packet switching 
capabilities and their implementation. Section 4 
defines the desynchronizing and resynchronizing 
functions and their implementation. Section 5 
describes the implementation scheme including 
software requirements. Section 6 analyzes the 
design space for implementation and justifies the 
selections. 

2.0 REQUIREMENTS FOR PACKET SWITCHING FUNCTION
ALITY IN TRAC 
Although TRAC has been previously described 

[SEJ80,PRE79] we review the background for packet 



communication. We emphasize that software design 
and application s-tudies have been conducted in 
parallel and sometimes in advance of definition 
and implementation of architectural features. 
The integrated packet communication facilities 
are an example of the interplay of requirements 
and architecture. 

TRAC uses circuit switching to establish 
task spaces (partitions) of resources conforming 
to some desired model of computation. The tasks 
may be SIMD or SISD. Partitions run 
independently of each other in MIMD fashion. A 
circuit switching mode of communication and data 
movement is available within a task space. 
Circuits are used as broadcast buses for 
instructions and carry linkage. They are also 
used to implement explicit sharing of memory 
between processors, since any one of the 
processors can explicitly detach a memory, and 
another can explicitly select this memory in a 
single instruction. Reconfiguration of the 
network can also be used to move memory units and 
thus data between configurations. There would, 
however, be many restrictions on possible usage 
of the system if these circuit switch functions 
were all that were available for interprocess 
communication. System control functions could be 
executed only by extensive reconfiguration. It 
would be awkward to implement the dataflow model 
of computation, for more than a small number of 
processors (the number which can effectively 
communicate through a single switchable memory 
unit). Data realignment between phases of SIMD 
computations (such as transposing a matrix) would 
have to be serialized. Network blocking would 
restrict the set of configurations which could 
realize sharing among configurations and be 
useful for MIMD processing. On the other hand, 
packets provide complete processor-processor 
communication capability. However, the 
disadvantage of packet mechanism is that the 
packets arrive at the receiving process at a 
non-deterministic time, thereby forcing a set of 
receiving processors out of synchronisms, thus 
requiriing resynchronism overhead. 

Each of these functions requires somewhat 
different capabilities from the packet 
communication mechanism. System control requires 
small interrupting packets. Data flow and 
realignment requires carrying of addresses 
together with data. General data movement 
between MIMD configurations requires efficient 
transmission of large volumes of data. 

The mechanisms described in succeeding 
sections integrate implementation of all of these 
requirements. The succeeding discussion 
clarifies the mechanisms as inter- or intra-task 
depending on their functions. 

3.0 OVERVIEW OF TRAC'S PACKET SUPPORT 

On TRAC each task is assigned its own task 
space of processors, memories and I/O devices 
that are interconnected as required. One 
processor of each task space is called its 
task-head. This processor is chosen during task 

52 

set up time and implements the required 
synchronization, security, authorization 
mechanism and other operating system functions 
needed to support inter/intra task packet 
communication. When any task executes, the 
processors assigned to it execute in SIMD mode 
(in lock step). Therefore the processors 
assigned to this task are simultaneously informed 
about any intra-task communicat.ion. But for any 
inter-task packet communication, a sending task 
needs to inform the receiving task of its desire 
to communicate. This is done by the use of an 
inter-task protocol implemented strictly through 
interrupting packets (described below). 

On TRAC, packets can be transmitted within a 
task space and between task spaces. The packet 
network provides full interconnection between the 
•w• processors in the system. The SW-banyan 
network provides this communication using less 
than w**2 links; this implies that links must be 
shared. Transmission delays dependent on traffic 
patterns may be introduced by blocking in the 
network. 

The addition of a packet switching (store 
and forward) network increases the switch cost 
only marginally. This is due to the fact that 
the switch can be time multiplexed. The time 
slice devoted to packet forwarding on the switch 
corresponds to the period where primary memory is 
executing a read or a write cycle (i.e. when it 
cannot receive data nor send data on the circuit 
switch "bus"). The extra hardware needed 
consists of some control circuitry, and buffers 
to provide the store and forward function for the 
packet network. Thus this hardware requires some 
additional logic (chip area) which is relatively 
inexpensive. Further it does not require any 
additional pins, since the pins already used for 
circuit switching are data multiplexed. 

A packet consists of an address header and a 
number of data words. The addressing scheme for 
directing the packet movement in the banyan 
network is the one suggested by Tripathi and 
Lipovski [TRI79]. An improved method has been 
suggested by Siegel and McMillen [SIE81]. A 
processor Pi transmits a packet to another 
processor Pj by first loading relevant data into 
a packet generating unit, in a designated primary 
memory module in its private memory ensemble. As 
links and nodes become available the packet 
proceeds towards the target processor along a 
unique path. Some form of arbitration is 
provided at the switch nodes to resolve any 
packet conflicts. The details of this store and 
forward hardware on TRAC are given in [SEJ81]. 

The inter- and intra-task packet 
communication use this packet network. The 
primary difference between intra- and inter-task 
packets is the amount of context switching 
required for their reception at a target 
processor. Packets which cause interrupts upon 
reception are called interrupting packets, while 
packets which are explicitly sent and explicitly 
received are called mapping packets. 



Interrupting packets are used to transmit 
small amounts of control information. Mapping 
packets are used when movement of substantial 
amounts of data is required, but a small amount 
of controlling data movement is needed to 
initiate the activity. These two types of 
packets use the packet network at different times 
(i.e., the network is time-multiplexed). 
Therefore, in effect we have an interrupting 
packet channel and a mapping packet channel. 

Inter-task mapping packet communication is 
initiated by following a "request-acknowledge" 
protocol. This protocol requires that the 
sending task's task head send an interrupting 
packet to the receiving task's task head. This 
packet will indicate the desire for multi-byte 
wide data communication between these two tasks 
(since there are multiple processors in either 
task). On receiving such an interrupting packet, 
the receiving task head is interrupted along with 
all other processors of the receiving task. This 
task head then reviews and validates this 
interrupting packet and sends an "acknowledge" 
packet to the requesting task head. It then 
informs other processors in the receiving task to 
execute a "receive MAP" instruction. The sending 
task's task head receives the acknowledge and 
instructs its task's processors to execute a 
"send MAP" instruction. These "MAP" instructions 
are executed by microcode in the processors. 
Both instructions have a parameter, which is the 
number of bytes to be sent or received. After 
the multi-byte wide data communication is 
initiated, the processors of the sending and 
receiving tasks operate at their own pace. A 
processor sends a packet whenever its packet 
input port is free, and/or receives one when it 
arrives. This communication is terminated when 
the send/receive counts in the respective tasks' 
processors reach zero. Resynchronization to SIMD 
mode is needed because each processor can finish 
its MAP instruction at different times (due to 
blocking in the network). This synchronization 
of the processors is achieved by mechanisms 
defined later. 

Intra-task mapping packet communication does 
not require this "request-acknowledge" protocol. 
This is because the processors of the task are 
operating in lock step and therefore initiate 
this communication. together. This is done by 
initiating the execution of a "send MAP/receive 
MAP" instruction. This instruction handles the 
required sendi.ng and receiving of mapping 
packets·. It executes in a similar manner as the 
"send/rece.ive MAP" instructions described above. 

To support datanow implementation on TRAC, 
we might need multiple tasks to send to a single 
receiving task simultaneously. Since we cannot 
ensure that these sending tasks will enter the 
MAP fUnction at the same time, we need to 
implement the MAP instructions so that they can 
be interrupted by another sending task wishing to 
join the MAP function. This allows the sending 
tasks to join the MAP function "asynchronously" 
(they still have to follow the 

53 

"request-acknowledge" protocol described 
preceding). The advantage gained by this scheme 
is that the sending tasks are made to wait for 
the least amount of time (time required for a 
transmit acknowledge). The two other schemes 
are 1) to completely serialize the senders in 
the request order, and 2) to enable transmission 
(from all the senders) only after the last sender 
has requested transmit permission. The 
disadvantage with the first scheme is that it 
does not allow parallel communication and good 
dataflow implementation. The disadvantage in the 
second alternative scheme is that new senders 
have to wait upon the last sender. Another 
possible problem with this scheme is that the 
senders may have to wait indefinitely, if any one 
of them does not join the MAP request. 

TRAC packets are in fact trains of byte 
wide words and 8 bytes long. There are two basic 
formats for mapping packets. These formats 
(Fig. 1 and 2) allow us to communicate 
information for all the applications cited above. 
In the first format (called an address/data 
packet format) the memory address in the 
destination processor, where the data will be 
stored, always accompanies the data. Here we can 
either send one byte of data (Fig. 1{a)), or two 
bytes of data per packet (Fig. 1(b)). If we send 

Byte I MSS 4 bits LSB~~ 

~St. Proc. rn I 
---l 

0 Pkt., Typ. Info. 

0 

1 

2 

Dest. Addr. Hi~h bye~ 

Dest. Add r. L.:iw byte 

Data byte 

t 
(Security I Authorization 

Information) 

..{!l Address-data packet fornt type-1 

Pkt. Typ. Info. T Dest. Proc. ID J 
ls~ Dest. Addr. High byti! ! 
1st Dest. Addr. Low byte 

1st Data byte 

2nd Dest.. Addr. i!igh byte 

2nd Dest. Ac!dr. Low byte 

2nd Data byte 

(Secur:f.ty /Aut..'-iorization Information) 

fil Address-data packet foTI!lat type-2 

Figure 1: Address-Data Packet Formats 

0 Pkt. Typ. Info. 1 Dest. Proc. ID 

l 
Data/Control 

Information 

~ 
Figure 2: Data/Control Information 

Packet Format 



only one byte of data per packet, then the 
remaining three bytes in the packet can contain 
any security/authorization information if needed. 
In the second format (Fig. 2) the packet contains 
6 bytes of data/control information. The 
microcode in the receiving task implicitly knows 
the destination address for placing the packet 
data, or it is informed of this address prior to 
rece1v1ng this information. The microcode need 
not be aware of the contents of the packet data. 
This information is analyzed by the local higher 
level software construct. The format of Fig. 2 
is also used for interrupting packets. 

There is the need for the simultaneous use 
of both packet formats for mapping packets on 
TRAC. The address-data format of Fig. 1 looks 
attractive for supporting dataflow algorithms and 
data realignment in SIMD tasks. While the 
data/control packet format of Fig. 2 may be more 
suitable for transferring "large" amounts of data 
between tasks. Looking at the two formats we see 
that the formats in Fig. 1 are special cases of 
the format in Fig, 2. The two formats must be 
distinguished because these two formats require 
different microcode (or hardware) for handling 
them. 

Some information will be needed in each 
packet to indicate its format. The first byte of 
a packet contains 4 bits of destination processor 
ID, which is required to route the packet through 
the banyan to one of the sixteen processors (in 
the current configuration of TRAC). The other 4 
bits of this byte are used to indicate the packet 
type information required to indicate the 
packet's format to the microcode. This also 
facilitates the reception of multl-typed packets 
concurrently. For example tasks A and B send 
data simultaneously to task C using mapping 
packets. Then it is possible that task A sends 
packets of the type shown in Fig, 1(a) and task B 
sends packets of the type shown in Fig. 2. The 
microcode is thus required to recognize the 
packet type for each packet received. 

4.0 RESYNCHRONIZATION MECHANISMS 

The protocols for executing packet transfers 
require the use of the desynchronizing and 
resynchronizing mechanisms. The processors of .a 
SIMD task are desynchronized when a task is 
broken into subtasks, or during exception 
handling, or during the execution of an 
instruction that requires the processors of a 
task to operate independently (e.g., "MAP" 
instruction execution). There are two 
resynchronization mechanisms. One is intended to 
reassemble the sub-tasks into the original task 
structure when all the sub-tasks have terminated. 
The second is designed for use when a single 
processor requires to interrupt the synchronous 
execution of a single task. This mechanism can 
also be used to reassemble the original task 
structure. Both of these resynchronization 
mechanisms are supported in hardware. 

54 

4.1 Resynchronization Mechanism - A 

This mechanism is used to synchronize the 
sub-tasks into their original task, when the 
sub-tasks have terminated. It is used only when 
the circuit switched path linking the processors 
(called the instruction tree) of the task .has 
been broken to create the sub-tasks. The 
instruction tree is a tree-shaped broadcast path, 
rooted at a memory module, and can be recreated 
by a single instruction. The logic elements of 
the instruction tree of interest here are 
illustrated in Figure 3, 

After breaking a task into sub-tasks, the 
task head processor places the count of the 
number of processors to be resynchronized in the 
synchronization register in the memory module at 
the root of the instruction tree. After 
finishing asynchronous processing each processor 
acquires this memory module and decrements the 
count by 1. Mutual exclusion for such an access 
is provided by hardware in the interconnection 
network. If the count is non-zero the processor 
simply activates the part of the instruction tree 
that links it to the memory module at the root. 
It then executes an arithmetic operation so that 
it asserts a true propagate, but does not produce 
a generate in the carry-lookahead logic that is 
part of the instruction tree (Fig. 3), The 
processor then waits for the incoming carry to 
become true. The last processor to acquire the 

llet110ry module at the root of 
the tr19truction tree 

Generate signal 
Carry signal -~-r.1.1 

Processor 1110dulcs connected by 
the instruction tree 

Resynchronization Mechanism-! 

Switch modules 

(Only the carry-lookahead sit?nals following 
the instruction tree are shown here,) 

shared memory module sees a zero count in the 
synchronization register. It creates its branch 
of the instruction tree and then executes an 
arithmetic operation to assert the generate 
signal. All the processors of the original task 
see ~ carry due to this operation. This 
indicates that the original instruction tree has 
been recreated and that the processors are 
resynchronized. 



4.2 Resynchronization Mechanism - B 

The following hardware mechanism is used 
when a single processor wants to communicate an 
asynchronous event to the other processors of the 
desynchronized tasks. It can also be used to 
bring the processors back in synchrony. This 
mechanism can be used when the instruction tree 
is active or has been deactivated. 

When an asynchronous event which has to be 
communicated to the rest of the processors occurs 
in any one of the processors of a task, the 
processor recognizing the event, asserts a 
signal-A via a tree shaped single line (see 
Figures 4 and 5). This signal goes down to the 
root of the tree over line-A, gets turned around 
and comes back up along the broadcast tree to all 
the task's processors over line-B. This signal 
is recorded in all the processors, including the 
asserting processor, by setting of the SYNC 
flip-flop. 

As each processor completes its current 
"atomic" operation it tests this flip-flop. If 
it is set, it recognizes that an asynchronous 
event has occurred and that it needs to get back 
into lock step with its companion task 
processors. If the SYNC flip-flop is not set, it 
continues to execute the next "atomic" operation 
independently. On recognizing the occurrence of 
an asynchronous event it clears the SYNC 
flip-flop and waits for a wire-AND line (Fig. 5) 
to become TRUE. This line connects all the 
processors in a task. 

While in an asynchronous mode of operation 
the inverted output of the SYNC flip-flop is fed 
onto this wire-AND line. Before entering the 
asynchronous mode this flip-flop is cleared and 
the wire-AND line is set TRUE. Whenever any of 
the SYNC flip-flops attached to this wire-AND 
line is set, this line is set FALSE. Thus after 
the asynchronous event has occurred and this 
wire-AND line is TRUE, it is known that the 
processors once again are in lock step. They 
then proceed ahead in lock step to service the 
event. 

Figure 4: Resynchronization Hardware 
Mechanism 

55 

" 0 . . . 
~ 

0. 
0 

, k 
L__- ~ 

0 

" e; 

'-Fit ure 5 - Wire and Lo3ic 

The "MAP" instruction's microcode uses part 
of the second resynchronization mechanism to 
resynchronize the original task's processors. An 
overview of the "MAP" function's microcode 
operations and the use of the resynchronization 
mechanism by a processor is given in Fig. 6. 

Further analysis of the resynchronization 
hardware is very much dependent on the processor 
implementation. The implementation in TRAC is 
described in a report [RAT83]. 

5.0 IMPLEMENTATION OF THE MAP FUNCTION 

In this section we discuss the operands, 
data structures, operations and hardware 
mechanisms required for the sender in a MAP 
function. Here we state only the basic 
requirements and indicate the sequence required 
of the microcode to support such data 
communication. Then we propose a communication 
scheme to transmit the information required by 
the receiver. 

The two cases of multi-byte communication 
are the intra- and inter- task data 
communication/realignment. Their initiation and 
execution sequence has been discussed in Section 
3. 

In the two cases of task communication 
described above we found that we need a 



resynchronization mechanism at the end of the MAP 
function to bring the processors of the original 
task back in lock step. The resynchronization 
mechanism described in Section 4.2 is used for 
this purpose. 

~--~r------

Set SY~lC !'lip-Co~; 

MAP fucntlcn ir.i t.ia.t.ed 

Set S) :re 
flip-flop 

Transctlt/re.::eive a packet. i 

Get back i~ ~ock. 3 t.ep ~d I 
continue t::i.:>':< exec: .. r~i:.o:i I 

Figure 6: Overview of the use of the 
hardware resynrchronization mechanism 

to terminate the MAP function 

5.1 THE MAP FUNCTION SENDER 

Regardless of the mapping packet format used 
by any two communicating tasks the microcode 
requires the following minimum information for 
implementing the MAP function : 

1. Send Count Number of packets a 
processor will transmit. 

2. Receive Count Number of packets a 
processor will receive. 

3. Destination Processor IDs This is 
required by the packet network to route 
the packet to the required processor. 

4. A pointer to the memory of the sender 
task where the data to be transmitted is 
located. 

5. A pointer to the memory of the 
destination processor where the data is 
to be stored. This may be a specified 
index register or an absolute address in 
the receiving task's space. 

Some additional information may also be required 
to allow the operating system to exercise its 
data security·and authorization mechanisms. 

56 

This information can be provided by one of 
the following three schemes: 

1. Load time binding Here a compiler 

2. 

creates the template for the 
transformation or the data 
communication, and the loader binds the 
addresses, destination processor numbers 
IDs, and the send and receive counts. 
This is done for all communicating 
tasks. 

Dynamic binding The interrupting 
packet and/or the mapping packets are 
used to communicate this information. 

3. A combination of the above two schemes. 

The first scheme is suitable for the 
address-data packet format (Fig. 1), while the 
second/third scheme seems more suitable for the 
data/control information packet format (Fig. 2). 

5.2 COMMUNICATION TO THE RECEIVER 

We assume here that the required send 
counts, destination processor IDs and pointer to 
the data to be sent, have been specified to the 
sending task's processors in some fashion. We 
are concerned here with the specification of the 
packet receive counts for the receiving task. 

The receiving task receives an interrupting 
"request" packet when a sender wants to 
communicate with it. The task head recognizes 
this packet, and after checking authorization and 
security of this communication, it acknowledges 
the sender appropriately. If mapping packets are 
to be received it must inform its task's 
processors of this. After the processors of the 
receiving task are made aware of a sender, they 
initialize their packet receive counts and then 
start reading the MAP packets. It is possible 
that while servicing one sender other senders 
also may desire communication. As each new 
sender is allowed to communicate, all the 
processors of the receiving task must update 
their packet receive counts appropriately. 
Therefore a scheme is needed to allow us to do 
this initializing/updating of the packet receive 
counts properly. 

Four schemes were considered. They differed 
in whether the receiver would be given 
information at load time, by means of 
interrupting packets or by means of the mapping 
packet mechanism. They all required the sender 
have descriptors and templates set up at load 
time, requiring the loader to execute two passes 
to create and bind the operands for a MAP 
function. A detailed analysis of these schemes 
is available in a report [RAT83]. 

The scheme we have selected for 
implementation assumes that the MAP functions' 
"receive operands" are bound at load time in the 
sending task's space. When the sending task 
desires to execute a MAP function it must 



communicate the necessary "receive operands" to 
the receiving task dynamically, that is the 
"receive operands" are sent during execution 
time. These operands are sent over the mapping 
packet channel. 

The actual sequence of operations is as 
follows 

1 • 

2. 

The sending task's task head 
"request" interrupt packet 
receiving task's task head. 

sends a 
to the 

The receiving task head 
request and sends 
acknowledgement. 

validates this 
an appropriate 

3. On receiving a "transmit-enable" 
acknowledge the sending task head 
directs its task's processors to start 
MAP packet communication. 

4. Each sending task processor first sends 
a special "receive operand" mapping 
packet. This packet's type is set to 
indicate its contents. After sending 
this packet it continues to send the 
required data MAP packets. 

5. Each receiving task's processor on 
receiving a packet, checks the packet 
type. If it contains "receive operand" 
information it updates its receive count 
(maintained in its working registers) 
and destination address (if any) using 
the packet data. Otherwise on receiving 
a data packet it stores the data at the 
required location. 

6.0 ANALYSIS OF TRAC IMPLEMENTATION 

This section completes the 
integrated packet switching 
discusses the selections 
alternatives. 

definition of the 
mechanism and 
among design 

The packet formats (Figs. 1 and 2) must both 
be supported. Each is suitable for different 
applications (as cited in Section 3). When 
handling MAP packets the microcode must know 
which format it is transmitting or rece1v1ng. 
The sending task's processors have to know the 
format so that they can write the packet data 
appropriately, the rece1v1ng task's processors 
need to know the format so that they can read the 
contents properly, and also because they need to 
know the destination address to place this data. 
For the address-data packet format (Fig. 1) this 
address is specified in the packet. But for the 
data/control packet format (Fig. 2), the 
rece1v1ng task already knows this address 
implicitly, or has been informed of this prior to 
the multi-~yte data communication. This packet 
type information is indicated by 4 bits in the 
first byte of each packet (Fig. 1 and 2). 

It is necessary because of the way the 
destination addresses for the data/control packet 
format (Fig. 2) are specified to restrict the 
number of simultaneous senders of data/control 

57 

format MAP packets. While receiving this format 
the rece1v1ng task's processors holds the data 
destination address in an internal working 
register. An internal register needs to be used 
if the microcode has to receive the packet in 
reasonable time. On TRAC the number of internal 
registers available is limited. Therefore when 
multi-byte data communication is done, using MAP 
packets of data/control format, we restrict the 
receiver to receive them from only one sender at 
a time. This serialization of communication 
leads to loss of parallelism. It does now, 
however, affect the basic application. Such MAP 
packets were assumed to be used by the operating 
system and/or by tasks for transmitting "large" 
amounts of data between tasks. They will not be 
used to support dataflow or data realignment. 
Removal of the internal register restriction or 
providing the processor with a greater number of 
internal working registers would allow multiple 
senders to a single receiver increasing potential 
parallelism. 

It is possible to receive address-data 
packets (Fig. 1) from multiple senders, because 
the destination address for the data is specified 
in the packet. The microcode in the receiving 
task's processors does not have to use its 
internal working registers to store this address. 
Therefore there is no restriction imposed by the 
microcode on the number of simultaneous senders 
of address/data packets to a single receiver. 
Dataflow and data realignment can be effectively 
implemented with packets of this format. 

It is possible that while handling 
address/data senders, another sender requesting 
transmission of a data/control format packet 
requests to Join the transmission. It is 
possible for the microcode to receive packets 
from one such sender along with the other 
address-data packet senders. The receiving task 
will not allow a second data/control packet 
sender to JOln the transmission, until the 
previous such sender terminates. On terminating, 
the sending task's task-head indicates completion 
by sending an interrupting packet of a special 
format. On receiving this interrupting packet 
the rece1v1ng task enables another data/control 
packet sender if any are queued. In order to 
allow such a mix of packet formats to be 
received, the microcode must to identify the 
packet format for each MAP packet it receives. 

The restrictions of simultaneous packet 
reception can be implemented by the receiving 
task.head. Whenever a sending task requests 
mapping packet communication, it will specify the 
packet format to be used. This is specified in 
the "request" interrupting packet sent to the 
receiving task head. This receiving task's task 
head checks its mapping packet status data to see 
if it can allow packet communication in the 
request format. The task head will not allow two 
data/control packet senders to transmit at the 
same time. If the task head finds that the 
sender can join the MAP function, it acknowledges 
that sender. If not, the task head either sends 
a "transmit-deny" acknowledge to the sender 



immediately; or it queues this request and sends 
the acknowledge at the end of the current 
data/control format MAP function execution. In 
this case the task head will also have to inform 
its task's processors about this new sender at 
the end of the current MAP function. In the 
first case the sender will try to gain permission 
at a later time. If we choose this option, there 
is a possibility of congesting the interrupting 
channel with request-deny/acknowledge packets. 
This overhead is reduced in the second case since 
the request is queued and the sender waits to 
receive the transmit acknowledgement. 

The next implementation option to be 
reviewed is the specification of the MAP 
function's operands. These are the send count 
(number of packets to be sent), the destination 
processor ID and the source address of the data 
to be sent, for each processor in the sending 
task. Each processor of the task must know the 
receive counts (number of packets to be received) 
and the destination address of the data. These 
MAP function operands must be specified and bound 
at compile and load time. Special data 
descriptors and data structures (templates) are 
used to store them. The sending task's -operands 
are bound in its task's space. 

This scheme somewhat increases the 
complexity of the systems loader. The MAP 
information is bound at load time to the sending 
tasks address space and therefore requires a two 
pass loader. It does not require any space in 
the receiving task to store the "receive 
operands". It thus gives a small storage space 
overhead. Further it does •not congest the 
interrupting packet channel and uses only the 
mapping packet channel to communicate its control 
and data interrupted explicitly to transfer 
"receive operands" it does not require 
resynchronization within the MAP instruction. It 
does, however, require resynchronization to 
terminate the MAP instruction. 

7.0 CONCLUSION 

This paper has defined a multi-purpose 
packet data movement capability for a network 
architectured multiprocessor computer system. It 
has been shown that such capabilities can be 
effectively implemented in an integrated manner, 
and that the packet switching functions are 
compatible with and complimentary to a circuit 
switching functionality for the network. This 
integrated packet communication system is 
operational in the current four processor, nine 
memory configuration of TRAC. Exploration of the 
design space for implementation gave a clear 
resolution of desirable choices. The 
functionality and the implementation techniques 
are largely independent of the choice of network 
structures. The implementation concepts should 
be broadly applicable to network architectured 
multiprocessors. 

58 

8.0 ACKNOWLEDGEMENTS 

This work was sponsored by the National 
Science Foundation under Grant Number MCS-8116099 
and by the Department of Energy under Grant 
Number DE-AS05-81ER10987. 

REFERENCES 

1. [BR082] J.C. Browne and G.J. Lipovski; 
"Reconfigurable Network Architectured 
Computer Systems: An Environment for 
Parallel Computing", Int. Workshop on 
High-Level Language Computer 
Architecture; Fort Lauderdale, Florida; 
pp. 40-49, 1982. 

2. [LIP77] G.J. Lipovski and A. Tripathi; 
'A Reconfigurable Varistructured Array 
Processor'; 1977 Int. Conf. on 
Parallel Processing; pp 165-174; August 
1977. 

3. [PRE79] U.V. Premkumar, R.N. Kapur and 
G.J. Lipovski; 'Interprocessor 
Communication on the Texas 
Reconfigurable Array Computer'; Proc. 
of the 1st Int. Conf. on Dist. Comp. 
Systs.; Huntsville, Alabama; pp 51-62; 
October 1-5, 1979. 

4. [RAT83] B.D. Rathi, S. Deshpande, 
R. Jenevein, M. Sejnowski, D. Walker, 
G.J. Lipov~ki and J.C. Browne; 
"Inter/Intra Task Packet Communication 
on the Texas Reconfigurable Array 
Computer"; TRAC Technical Report; Dept. 
of Elect. Eng. and Comp. Sci.; U.T. 
at Austin; 1983. 

5. [SEJ80] M.C. Sejnowski, E.T. Upchurch, 
R.N. Kapur, D.P.S. Charlu, and 
G.J. Lipovski; 'An Overview of the Texas 
Reconfigurable Array Computer•; Proc. 
of AFIPS NCC Conf.; pp 631-641; 1980. 

6. [SEJ81] M.C. Sejnowski; 'Packet Support 
in the Texas Reconfigurable Array 
Computer•; M.A. Report; Dept. of Comp. 
Sci.; U.T at Austin; Texas-78712; 1981. 

7. [SIE81] H.J. Siegel and R. McMillen; 
"The Multistage Cube : A Versatile 
Interconnection Network"; COMPUTER 
Vol.14, No.12; pp 65-76; December, 1981. 

8. [TRI79] A. Tripathi and G.J. Lipovski; 
'Packet Switching in Banyan Networks'; 
6th Annual Symp. on Comp. Arch.; 1979. 



TIMING CONTROL OF VLSI BASED NLOGN AND CROSSBAR NETWORKS 1' 

Sanjay Dhar, Mark A. Franklin and Donald F. Wann 
Department of Electrical Engineering, 

Washington University, 
St.Louis, Missouri 63130. 

ABSTRACT 
Two basic data flow control methods for circuit 
switched, pipelined networks of the general NLogN 
and Crossbar (CB) topologies are modelled and 
their effects on overall data rates achievable are 
determined. The synchronous method uses a global 
clock and as network modules grow, clock skew and 
and clock tree charge/discharge times grow 
resulting in lower data rates. The asynchronous 
method relies on local request/acknowledge signals 
to control data movement and hence it's 
performance is less affected by system growth. 

1.0 Introduction 
Advances in VLSI technology have made 

available a number of low cost yet powerful 
microprocessor chips. This has led to a host of 
proposals ([8], [9], [10]) for the design of 
closely coupled multiple processor systems in 
which a number of processors are connected 
together by a communications network. The network 
handles interprocessor communication and enables 
resource sharing. Its design is a key factor in 
determining overall system performance. 

The principal issue of interest in this paper 
is the type of control scheme to be used for 
control of data movement in a large circuit 
switched interconnection network environment where 
the network is partitioned into a number of 
subnetwork chips [2], and data transfer through 
the network is pipelined. Two principal methods 
that can be used in controlling data movement 
along the network are referred to as the 
synchronous (or clocked) and the asynchronous (or 
self-timed) schemes [7]. The synchronous control 
scheme has been traditionally favoured, especially 
in small systems, because of its logic design 
simplicity. The presence of global clock signals, 
however, makes such systems difficult to expand 
and as the system grows, system performance may 
deteriorate due to the increases in clock skew. 
The absence of any global signals in an 
asynchronous system makes it inherently modular 
and expandable and hence it becomes attractive in 
systems where the size of the system cannot be 
predicted in advance, where a'number of subsystems 
operate independently, or where system size (and 
clock skew) require inordinately large clock 
periods for proper operation. 

The analysis in this paper follows that of 
[11], focusing here, however, on the data rates 
achievable in both CB and NlogN networks when 
asynchronous and clocked control schemes are 
utilized. The analysis provides a quantitative 
approach to making the C~/NlogN, 
asynchronous/synchronous design decisions. 
Decision curves are provided for a particular 
example to illustrate the procedure. 

* This work was supported in part by NSF Grant 
MCS-78-20731 and ONR Contract N00014-80-C-076l. 

0190-3918i83/0000/0059$01.00 © 1983 IEEE 59 

2.0 Protocol Issues 
A complete interconnection network requires 

control provisions for path establishment, 
transfer of data from source to destination, 
detection of a blocked path and indication of end 
of transmission with path clearing. We will 
assume that these requirements are satisfied as 
shown in [2] and that the network has been 
partitioned following a bit slice architecture 
approach with one bit per plane. The present 
analysis focuses on the data rates achievable 
after a path has been established from a source to 
a destination. Hence this analysis will hold for 
systems where the average message length is much 
larger than the average number of modules in a 
path in the network, that is, data tranfer time is 
much larg<0 r than path establishment time. 

For the asynchronous network, a delay 
insensitive control structure is adopted. That 
is, insertion of arbitrary delay between modules 
will not cause the network to malfunction. Also 
transit.ion sensitive logic is employed. Figure 
shows the interconnection between two asynchronous 
modules. A transition on Rl indicates the 
presence of a "l" data bit, while a transition on 
RO indicates the presence of a "O" data bit. The 
"A" line supplies the acknowledge response signal. 
Interconnection of two synchronous modules is 
shown in Figure 2. For the synchronous network, 
the standard two-phase level sensitive clock is 
used for the data transfer. Data at the input of 
a module is captured at phase one of the clock and 
is transferred to the output of the module at 
phase two of the clock. 

3.0 Asynchronous Banyan Delay Model 
The Huffman finite state machine 

representation of a logical implementation of the 
asynchronous module is shown in Figure 3. If we 
assume that the environment of the module can 
cause a change at the module input as soon as the 
environment receives a change at the module 
output, then it can be shown [l] that the 
sufficient conditions on the various delays to 
achieve race-free operation are given by the 
relations 

dF >= dL 
dO >= dF + dL 

(3 .1) 
(3.2) 

where dL is the maximum delay of the combinational 
logic. 

A pair of communicating modules i and j in a 
path k is modelled as shown in Figure 4. 
Considering module i, t.he maximum propagation 
delay from any input to any output of the 
combinational logic is dLi, the propagation delay 
of the feedback path is dFi and the propagation 
delay from module i to module j is dPij. 
Similarly for module j, we have dLj anrl dF j and 
dPji, the propagation delay in the acknowledge 
path from module j to module i. The delay from 
the output of the combinational logic of module i 



through the combinational logic of module j to the 
input of the combinational logic of module i, 
corresponding to the term dO of Figure 3, is given 
by 

dO = max(dFi,dPij) + dLj + max(dFi,dPji) (3,3) 
If we assume that condition (3.1) is satisfied 
(dFi >= dLi and dFj >= dLj), then dO given by 
(3.3) satisfies condition (3.2), 

The minimum delay in transferring two 
successive pieces of data (e.g. successive words 
which are part of the same message) between the 
pair of Asynchronous BA modules i and j is equal 
to the maximum loop delay as given below, 

dABAij = dLi + max(dFi,dPij) + dLj 
+ max(dFi,dPji) (3,4) 

Consider next all of the pairs of communicating 
modules along a particular path k in the network, 
Since data transfer is pipelined, we next 
determine the maximum delay between module pairs 
on that path. 

The path k is, modelled as shown in Figure 5 
where each pair of COl!llllunicating modules and the 
maximum loop delay associated with that pair is 
shown, Since the network is pipelined, the 
minimum time between transfer of two successive 
data items along the path k, dABAk, is given by 
the maximum of the delays dABA12, dABA23,,,.,, 
dABA(n-l)n. 

dABAk = 2dL + 2(max(dPk,dF)) (3.5) 
where dL and dF are the maximum values associated 
with the combinational logic and feedback delays; 
dPk is the maximum delay between modules for path 
k, that is ' 

dPk = max(dPij,dPji) for all (3.6) 
communicating modules i and j in path k 

Notice that dPk will be dependent on the 
particular path under consideration since this 
delay reflects the layout of module chips on a 
printed circuit board and that layout is in turn 
dependent on the topology of the network being 
considered. The average of dABAk over all paths 
(a total of M are present) in the network gives 
the average delay between successive data 
transfers. Assuming all paths in the network are 
equally used this average can be expressed as 

M 
dABA = ( LdABAk )/M (3.7) 

k=l 
We will assume here that the maximum delays 
associated with the combinational logic and 
feedback are equal for all paths in the network. 
Then if dPk >= dF for all k, equation (3,7) 
becomes: 

M 
dABA = 2dL + 2( LdPk)/M (3.8) 

k=l 
Letting dPBA be the average of dPk over all paths 
we obtain 

dABA = 2dL + 2dPBA (3.9) 
M 

where dPBA = L dPk/M 
k=l 

.3.1 Synchronous Banyan Delay Model 
A pair of synchronous modules in a path from a 

source to a destination is modelled as a finite 
state machine in Figure 6, A two phase clocking 
scheme is used to clock the memory elements 1 and 
2 of each module. Considering module i, the 

60 

maximum combinational logic delay is dLi, the 
memory delays are dMil and dMi2, the 
interconnection path delay from module i to module 
j is dPij, and the clock delays are.dCil and dCi2. 
Similarly for module j. 

The following three constraints on the clock 
period (obtained as in [11)) must hold to ensure 
proper operation: 

T >= dMil+dMi2+dPij+dLj+(dCil-dCjl) (3,10) 
T >= dMi2+dPij+dLj+dMjl+(dCi2-dCj2) (3,11) 
T >= dMil+dMi2+dLi (3.12) 

In most designs the third constraint on T is 
smaller than either of the first two and will not 
be considered further. The quantities (dCil-dCjl) 
and (dCi2 - dCj2) are the differences between the 
times the phases 1 and 2 of the clock arrive at' 
the corresponding memory elements of the two 
modules and are referred to as the clock skew, 
defined as 

deltaCl = dCil - dCjl (3,13) 
deltaC2 = dCi2 - dCj2 (3,14), 

If dM, dPBAmax, dL and delta represent maximum 
values which can occur over any data path, then 
the constraints of (3.10) and (3.11) can be 
written as 

T >= dL + 2dM + dPBAmax + delta (3.15) 
vhere dPBAmax is the maximum path delay between 
any pair of communicating modules over ,the entire 
network, that is, 

dPBAmax = max(dPij,dPji) far all 
communicating modules {3.16) 

Another constraint on the clock period relates 
to the clock tree charge/discharge time. For 
reliable operation of the system the clock period 
must be greater than the time required to charge 
and discharge the clock tree to voltage levels 
which can be reliably sensed by the gates in the 
network. Let this time be represented by tau and 
thus T >= tau. The worst case condition clock 
period for the Synchronous BA network, dSBA, is 
now given by 

dSBA = max(dL+2dM+dPBAmax+delta, tau) (3,17) 

3.2 Asynchronous Crossbar Delay Model 
The delay model for the CB network is obtained 

in a similar manner as for the BA network. The 
maximum Asynchronous CB loop delay for modules i 
and j is then obtained as 

dACBij = dLi + max(dPij,dFi) + dLj 
+ max(dPji,dFi) (3.18) 

Since data is pipelined as in the BA network, we 
obtain the average delay as dACB given by 

dACB = 2dL + 2*ma~(dPCB,dF) (3,19) 
where dPCB is the path delay between two 
communicating modules. It should be noted that 
because of the planar construction of the CB 
network, the distance between two interchip 
communicating modules is constant independent of 
network size. The maximum path delay between two 
communicating modules is a constant not dependent 
on any particular path being considered. This is 
a key difference in the analysis, , of the two 
networks, If dPCB >• dF then equation (3.19) can 
be written as 

dACB = 2dL + 2dPCB (3,20) 

3,3 Synchronous Crossbar Delay Model 
The synchronous delay model for the CB network 

is similar to the model develop;d for the BA 



network (Figure 6). The delay in the network is 
given by dSCB where 

dSCB = max(dL + 2dM + dPCB + delta, tau) (3.21) 
Note that in the CB network, dPCB is also the 

'maximum delay between two communicating modules. 

4.0 Delay Parameters 
Consider next the various delay parameters 

needed for evaluation of dABA, dSBA, dACB and dSCB 
in Equations (3.9), (3.17), (3.20) and (3.21) 
respectively. To estimate these values the 
synchronous and asynchronous modules were designed 
using NMOS technology with a minimum feature size 
of 2.5 microns. From these designs values for dL 
and dF were obtained (see section 5.0). 
Considering the path delays dPBA, dPBAmax and 
dPCB, the delay of on-chip paths is negligible 
compared to the delay of off-chip paths. The 
off-chip delay can be minimized by using 
exponential drivers and is given by [5]: 

dP = d*e*ln(CL/Cg) (4.1) 
where Cg is the capacitance of an elemental gate 
and CL is the load capacitance. The capaciatance 
CL consists of two pin capacitances (Cpin) and the 
external path capacitance, For the CB case, the 
maximum path length between communicating modules 
in any path is L2 (Figure 7), and (4.1) becomes: 

dPCB = d*e*ln((2Cpin+Cb*L2)/Cg) (4.2) 
where Cb is the capacitance per unit length of the 
printed circuit board. For the BA case dPBA and 
dPBAmax are derived in [12] as: 

dPBA = d*e*ln(2Cpin + Cb*Ll 
+ ((N**2+l)*(N-l)/2N**4)*N'*Cb*L2/Cg) (4.3) 

dPBAmax = d*e*ln(( 2Cpin + Cb*Ll 
+ (N-l)*N'*Cb*L2/N**4)/Cg) (4.4) 

where Ll and L2 are the spacing between chips used 
in the BA and CB networks as shown in Figure 7, N 
is the network size in a chip module and N' the 
overall network size. This more complex 
expression reflects the changing path lengths 
between banyan network stages. 

We next consider the clock skew. For this 
analysis it is assumed that the clock as presented 
to the individual chip modules has no skew and 
that all skew occurs within the chip. The clock 
skew can be attributed to : 

(a) Differences in line lengths. 
(b) Differences in the passive line parameters 

like resistance, dielectric constant that 
determine the line time constant. 

(c) Differences in the threshold voltages of 
the two modules. 

One possible clock distribution scheme that 
guarantees equal length paths, thus eliminating 
(a) from consideration is shown in Figures 8 and 
9. As shown in Figures 8 and 9, the section AB of 
the clock tree is common to all the modules in the 
chip and hence does not contribute towards the 
clock skew. Let the maximum and minimum time 
constants of the clock tree from B to all the leaf 
nodes be RCmax and RCmin. Then, given equal 
length paths the clock skew can be found as [11]: 

delta = RCmin*ln(l-(VTmin/Vdd)) 
- RCmax*ln(l-(VTmax/Vdd)) (4.5) 

where VTmax and VTmin are the maximum and minimum 
values associated with the threshold voltages of' 
the gates of the network and Vdd is the power 
supply voltage. RCmax and RCmin can be obtained 
as functions of the clock tree time constant RC 

61 

(e.g. RCmax=kl*RC, RCmin,=k2*RC). 
Determination of the clock tree time constant 

is a problem that has been solved in [4] and [6]. 
Using the development of [4] for the tree starting 
at B (Figures 8,9) we get RC as: 

3 
RC = 9*(1-1/N)*(N - l)*ROC0/7 (4.6) 

where RO and CO are the resistance and capacitance 
of the last (and smallest) section of the clock 
tree. The time constant (RCf) for the entire 
clock tree (starting at A) is: 

3 
RCf = (3 - 2/N)*(lON - 3)*ROC0/7 (4.7) 

The total time to charge and discharge the clock 
tree, tau, has been derived in [12] and is given 
by 

tau RCf*{ln(~~~=~=~~~~~~J+ ln(~=~~~~~~\} (4.8) 
Vdd-VTmax-Vn VTmin-vnJ 

where Vn is the noise margin rquired for reliable 
circuit operation. Notice that for this 
simplified analysis RCf is a function of the 
module size N and not the overall network size N'. 
That is, only the clock tree charge/discharge time 
within the chip module is considered. 

5.0 Example 
As an example let us consider a N'*N' network 

built from N*N size module chips which are laid on 
copper printed circuit boards. The pin 
capacitance for this type of construction is about 
4pF and the capacitance of an elemental gate is 
O.OlpF. The various delays are: 

d = 2 nsec; dM = 4 nsec 
dL = dF = 45 nsec. for synchronous module 
dL = dF = 34 nsec. for asynchronous module 

We will assume that the size of the largest chip 
available is lcm*lcm on which a single bit slice 
32*32 network can be implemented. Assume that 
only one layer of metal is available. Let a 
fraction q of the clock line be distributed in 
diffusion and the rest in metal. If Rd is the 
resistance per square of diffusion, Cd and Cm the 
capacitance per unit area in pF/sq.micron of 
diffusion and metal respectively, then the time 
constant of the last section of the clock tree 
ROCO is given by [12]: 

ROCO = ((10000/32)**2)*Rd*q*(2*q*Cd 
+ 3*(1-q)*Cm)/8000 nsec (5.1) 

The fabrication constants of the current NMOS 
technology have the following values: 

-4 
Rd 20 ohms/sq., Cm= 10 pf/sq. micron, 

-4 
Cd 0.3*10 pF/sq. micron 

Also, the variation of time constant and threshold 
voltage during fabrication is about 20% (i.e. 
RCmax=l.2*RC, RCmin=0.8*RC). We take the supply 
voltage Vdd=5 V, the typical threshold voltage as 
2.5 V and the noise margin as 0.5 V. Then 
VTmax=3.0 V, VTmin=2.0 V and Vn=0.5 V. For 
illustration purposes, take q=5%, Ll=l inch, L2=2 
inches and Cb=l pF/inch (note values of Ll and L2 
are dependent on board technology factors such as 
whether multilayer, wirewrap or other technology 
is used). The delays dABA and dACB for the 
asynchronous modules and the delays dSBA and dSCB 
for the synchronous modules of the BA and CB 
networks are plotted in Figures 10 and 11 against 



N', the network size. In ~·igure iz trre same 
delays are plotted against N, the module size. 

From Figure 12 we can make a comparison of the 
delays associated with the asynchronous and 
synchronous control schemes. It is clear that in 
the case of the Banyan network, for small N the 
synchronous control scheme results in a smaller 
delay. Consider a particular network size N'. 
From the intersection of the curves for the 
asynchronous and synchronous control schemes for 
this value of N', we can obtain the range of 
values of N for which a particular control scheme 
is better. For example, for N'=512 we get the 
following result: 

\ Synchronous control better for N < 20 
BANYAN I Asynchronous control better for N > 20 

Similar conclusions can be reached for the CB 
network. network curves. Notice that the CB 
network delays are independent of the network size 
because the intermodule distances are constant 
independent of the module or network size. Thus 

'we get the following result: 
I Synchronous control better for N < 24 

CROSSBAR ' l Asynchronous control better for N > 24 
6.0 Conclusions 

The Banyan and the Crossbar networks have been 
modelled ~ccording to the type of control scheme 
used. These models were used to obtain the delay 
associated with each type of network and control 
scheme. The delay equations were then used to. 
obtain the delay curves of Figures 10 and 11 and 
Figure 12. 

Comparison of the delays in the Banyan and the 
Crossbar network were, made for both types of 
control schemes, the synchronous and the 
asynchronous. It can be observed from Figure 10 
that the BA network delays increase with N', the 
network size, because of the increase in the 
physical inter-chip path lengths. The 
asynchronous network delay decreases with the 
module size because the implementation of a 
network of a given size requires fewer modules 
chips and hence the physical path lengths between 
communicating modules decrease. Physical path 
lengths decrease with N for the synchronous case 
also, however here large modules result in larger 
clock skew which dominates the inter-chip delay. 
The synchronous network delay is the maximum of 
two terms. For small module sizes the first term 
(includes inter-chip delay and clock skew) of 
(3.17) dominates, while for large module sizes 
(e.g. ~=32) the clock tree charge/discharge time, 
tau,dominates. Tau increases rather rapidly 
(O(N**3)) with the module size and this results in 
the steep rise in Figure 12 for large N. The 
behaviour of the delays of the Crossbar network 
were similar except that the planar construction 
of the network resulted in smaller delays. Notice 
also that only a single curve is obtained for the 
asynchronous case because of the modular and 
planar structure of the Crossbar network. This 
was also the reason for the de.lays in ·the Crossbar 
network for both types of control schemes being 
less than those in the Banyan network. Delay 
curves were obtained for a particular example 
clearly showing the delay tradeoffs for the Banyan 
and Crossbar networks, and the synchronous and the 

62 

\synchronous control schemes. 

REFERENCES 

[l] Fang,T.P. "On the Design of Hazard Free 
Circuits", Comp. Sys. Lab., Tech. 
285, Washington University, St.Louis, MO 
81). 

[2] Franklin,M.A., Wann,D.F. and Thomas,W.J. 

Mein. 
(Nov •. 

"Pin Limitations and Partitioning of VLSI 
Interconnection Networks", IEEE Trans. on 
Comp., Vol. C-31, No. 11, Nov. 1982. 

[3] Goke,L.R. and Lipovski,G.J., "Banyan Networks 
for Partitioning Multiprocessor Systems", 
Proc. 1st Annu. Symp. Comput. Arch., 1973. 

[4] Kung, S.Y. and Gal-Ezer,R.J. "Synchronous vs 
Asynchronous Computation in VLSI Array 
Processor", Proc. SPIE, Vol. 341, May 1982. 

[5] Mead,C. and Conway,L., INTRO. TO VLSI 
SYSTEMS, Addison-Wesley Pub.Co. Reading ,MA 
(1980). 

[6] Penfield, P. and Rubinstein,J. "Signal 
Delay in RC Tree Networks", Proc. 18th Design 
Auto. Conf., June 1981. 

[7] Seitz,C.L., "Self-timed VLSI Systems", Proc. 
Caltech Conf, VLSI, Jan.1979. 

[8] Sejnowski,M.C.,et. al. 'An overview of the 
Texas Reconfigurable Computer', AFIPS Proc., 
Nat. Comp. Conf. (1980). , 

[9] Sullivan,H. and Bashkow,T.R. 'A Large Scale 
Homogeneous, Fully Distributed Parallel 
Machine I', Proc. 4th Ann. Symp. on Comp. 
Arch. (March 1977). 

[10] Swan, R.J. et. al. 'Cm* A Modular Multi
Microprocessor', AFIPS Proc. Nat. Comp. 
Conf. (1977). 

[11] Wann, D.F. and Franklin, M.A. "Asynchronous 
and Clocked Control Structures for VLSI Based 
Interconnection Networks", IEEE Trans. on 
Comput., March 1983. 

[12] Dhar,S., Franklin,M.A. and Wann,D.F. 
"Timing Control of VLSI based NlogN and 
Crossbar Networks", Center for Computer 
Systems Design, Washington Univ., St. Louis, 
MO, Tech. Rpt. . CCSD83-101 (May 1983). 



Rl Rl 
Rl 

MODULE i MODULE j 

RO RO 
RO 

A 
A 

Figurl' I: Tntl'rconnection of two asynchronotn 
module. 

OATA DATA 
MODU'LE i MODULE j 

~i~ure 2: Interconnection of two synchronous 
modules. 

Figure 6: Model for two adjacent synchronous modules. 

INPUTS 

Figure 3: 

LOGIC 
dL 

FEEDBACK 
dF 

01.lTPUTS 

Huffman asynchronous circuit model 

LOGIC 
dLi 

max(dFi,dPij) 
LOGIC 

dLJ 

max(dFi,dPji) i----------' 

j--Ll-{ 
: : 

(a) Crossbar (b) Banyan 

Figure 7: 8*8 Crossbar and Banyan networks 
buil~ from 2*2 module chips. 

Figure 4: Delay model for two adjacent asynchronous modules. 

MODULE 1 

MAX. LOOP 
DELAY 
dABA12 

MODULE 2 

MAX. LOOP 
DELAY 
dABA23 

MODULE (n-1) 

MAX. LOOP 
DELAY 
dABA(n-2) (n-1 

MODULE n 

MAX. LOOP 
DELAY 
dABA(n-l)n 

Figure 5: Delay model for a path in the 
asynchronous Banyan network. 

63 

Figure 8: Clock distribution for a 
16*16 Banyan network. 



~ 

BANYAN NETWORK DELAY VS N' 

300.00 

..----+---"""*-----+-----+---"""* N=12 

2'0.00 

200.00 

> 
< 
iil 
0 tS0.00 

_---e----~ : \ 
•====t;;;;:::;:;==:~~~~~~~----==~~ __...e--:: ~ 16 Asynchronous - ;::::.....---&-__ .-..---------" 32 (solid line) 

--------------------------------* 16} 

100.00 

:=:::::::: ::::::: :::: :::: :::: :::::::: :::: :::: :::=::::::::::::::::::::::::::: :::::=::::::::: ::::!=:::::::::::: ! 2 Synchronous 
(dMhed line) 

,_ 
< 

50.00 
e.oo 11!.00 32.00 84.00 129.00 250.00 512.00 1024.00 

N' NETWORK SIZE 

L_ 
2048.00 

Figure 10: Delay variation of Banyan network as a function of 
network size N' with module size N as a parameter. 

300.00 

250.00 

200. 00 

Banyan 
async. 

DELAY VS N 

N' 

t im~--==-~=:=~--==:=-=~ 
~ ISO, 00 
0 

Crossbar 
async.----<>--------~~ --f;---;iflzf 1 

-· -· --· -----4 __ _,, 

100. DO 

Banyan 
sync. 

Crossbar 
sync. 

4 zP1 !Ud-------- i~ mE=:=:=:=:=:=:=:~~~~~~~~~t1 
----~-------~--------~ 

50.00 .__L__---·-·-·-·L----------
2. oo 4. oo e. oo 1 e. oo 32. oo 

N moduli;;i 

Figure 12: Delay variation of Crossbar and Banyan networks 
as a function of module size N with network 
size N' as a parameter. 

>
< 
_J 
UJ 

300.00 

250.00 

200.00 

CROSSBAR NETWORK DELAY VS N' 

..-----+---~----tt----+----. N=32 

a 1so.oo 
a--- ----&-

100. DO 

_,, 
Asynchronous 

(solid line} 

*- - - - .,a:-...=--=-= ....:S-..::-...::-...::-~-=-..::--=-:&:-...=-..=--=--1'"-=-....=--=-=a=--=-=-~ A~4 Synchronous 

(dashed I ine) 

50.00 .....L-
8.00 16.00 32.00 IM.00 129.00 258.00 512.00 1024.00 2048,00 

N' NETWORK SIZE 

Figure 11: Delay variation ofCrossbar network as a function of 
network size N' with module size N as a parameter. 

Figure 9: Clock distribution for an 8*8 Crossbar network. 



Easily-Testable 
(N,K) Shuffle/t::xchange Networks 

David C.H. l.ee· and John Paul Shen 

Department of Electrical Engineering 

Carnegie-Mellon University 

Schenley Park, Pittsburgh PA 15213 U.S.A. 

Abstract ·• This paper focuses on the testing of an important 
class of interconnection networks called (N,K) shuffle/exchange 
networks. A sequential circuit model is used for the basic switching 
element. A general fault model for the switching element is 
introduced. A testing strategy is presented which involves the 
exhaustive testing of each switching element without exhaustively 
testing the entire network. Each switching element is exhaustively 
tested via the application of a checking sequence. It is shown that 

input terminals 
a 

b 

control input 
c 

output terminals 
x 

y 

tt.e class of (N,K) shuffle/exchange networks is C-testable. A 
network is C-testable if it can be fully tested using a constant 
n(Jmber of test patterns. A test sequence of constant !e.1gth is 
constructed whici1 when applied to a (N,K) shuffle/exchange ner 
network will fully test the entire network. ou P 

state/ 
uts <xy> 000 

(a) The beta element 

input vector <abc> 

001 010 011 100 101 110 111 

1. Introduction 

Previous works 

In recent years, many multistage interconnection "networks have 
been proposed and extensively studied. Most research efforts 
focus on the network topologies, routing algorithms, and potential 
applications [?]. More recently, issuses involving reliability, fault 
tolerance and fault diagnosis are being addressed ["I]. There has 
been limited investigation of the testing and testability of such 
networks, which constitute the focus of this paper. 

Most of the previous works assumed each basic switching 
element to be a combinational circuit and each requires a separate 
control line. Most of the fault models assumed are quite restrictive. 

rent cur 
Sta te 

0 

1 

0100 0100 0/01 0/01 0/10 1/10 

1/00 0100 1110 0/10 1/01 1/01 

(b) The state table of the beta element 

Fig. 1. The fJ element and its state table. 

0/11 1/11 

1/11 1/11 

identiiied by a bin'1r)' number of m bit;. Starting from the top, 0ach 
{J-element can be identified by a binary number of m-1 bits. All the 
,B-eiements in the same sta11e examines synchronously the routing 
tag bits. A single control signal c can be used for al! the /J-elernents 
ir. the same stage. This scheme reduces the number of control 
signals needed from (N/2) down to one per stage. 

Frequently only fau!ls involving single line stuck at a logic value or 001----i 

single switching element stuck at a switch state are considered. A 
more general fault model is needed. 

011 

(N,K) shu'ffle/exchange networks 

101 

,6., fJ-element is a 2 x 2 switching element that can be set to one of 
two states, namely the "Through" (0) state or the "Cross" (1) state, 
corresponding to the two possible permutations of its two input 111-----1 

terminals; see Figure 1a . A {J-element can be impiemented as a 
two-state sequential circuit; see Figure 1b. Each P-element in a 
network can be independently set to either the O or the 1 state. To 
facilitate se!f-routing and to reduce the number of 1/0 pins needed, 
Levitt et al [6J propose a ft-element which uses the two data inputs 
a and b for transmitting data as well as destination address tag bits 
used for roming. A third input, c, determines whether the input 
t~:rminal lines contain ·data or routing tag bits. Similar routing 
scheme is asnurned in this paper. Details of it can b<2 found in {5]. 

" N x N shufll_~exr.hl:\!J.ClfLfilfil!.~ has N input terminals and N 
output terminals and consists of a p<:rfect shuttle connection [9] 
followed by (N/2) t3-elemenis. For convenience, N is assumed to 
be a power of 2. Let m ,. logil, then each terminal can be 

0190-3918/83/0000/0065$01.00 © 1983 IEEE 65 

at age 1 2 3 4 

Fig. 2. The (8,4) shuffle/exchange network. 

A CN.Kl shuffle/exchange network has N input terminals, N 
output terminals, and consists of a cascade of K identical N x N 
shuffle/exchange stages. The stages can be numbered rrom left to 
right as 1,2, ... ,K. The outputs from stage I are connected to the 
inputs of stage I+ 1 as ahown In Figure 2. (/J m-r2 flm_3 ... (JJ1 denotes 
the P-element CJJ,,..2 flm-a ... flJ in the Jth stage. 

It is assumed that the (N,K) shuffle/exchange network uses a 
routing scheme involving destination address tags [6]. Before 
inputing data at an Input terminal a K-bit routing address tag (d1 



dr.dKi' one for each stage, is used to set the switches so as to 
provide the desired connection path. The ,B-element in the ith 
stage examines di and sets its state according to the value of dr 

Many well known networks are (N,K) shuffle/exchange networks 
[7]. When K = log2N, the (N,K) shuffle/exchange network is the 
omega network, and is topologically equivalent to a class of well
known networks. These networks include the modified data 
manipulator, the flip network used in STARAN, the indirect binary 
n-cube network and the regular SW banyan network with spread 
and fanout of 2. When K = 1, it is the well known shuffle/exchange 
Mtwork proposed by Stone [9]. 

In Section 2, the fault model and the testing strategy is formally 
introduced. In Section 3, the concept of C-testability is introduced 
and applied to the testing of (N,K) shuffle/exchange networks. In 
Section 4, it is shown that the class of (N,K) shuffle/exchange 
networks is C-testable. A test sequence is constructed whose 
length is independent of the network size. 

2. Testing Methodology 

Beta-element fault model 

The state table of a sequential machine completely characterizes 
the machine's behavior. Since a ,B-element is modelled as a 2 state 
sequential machine, any ,B-element failure which causes an 
arbitrary change to the original state table is considered a fault. 
Qur fault model assumes: 

1. A fault in a ,8 -element is any arbitrary deviation from the 

fault-free state table of the ,B-element without 

increasing the number of states. 

2. There is at most one faulty ,8-element. 

3. The fault is permanent. 

t state/ nex 
OUtR uts <xv> 

c urrent 0 

state 

next 
outp 

state/ 
uts <xy> 

c urrent 
state 

state/ 

1 

0 

1 

next 
outp uts <xv> 

c urrent 0 
state 1 

• : faulty signals 

input vector <abc> 

000 001 010 011 100 . • • . • 
0/10 1/10 0/11 1 /11 0/10 

1101* 1io 1~ • . . 
1/11 1/11 1/01 

Fig. 3. Input line a stuck at 1. 

input vector <abc> 

000 001 010 011 100 

0/01~ . . 
0/01 0/01 0/01 0/11 

1/01' 
. . . 

0/01 1/11 0/11 1/01 

Fig. 4. Output line y stuck at O. 

input vector <abc> 

000 001 010 011 100 . . . .. . .. . .. 
1/00 1100 1/10 1/10 1/01 . . 
1/00 1/00 1/10 1110 1/01 

101 

1/10 

1/01 

101 

• 
1/11 

1/01 

101 .. 
1/01 

1/01 

Fig. 5. ,B -elament stuck at the 1 state. 

110 

0/11 

1/11 

110 

0/11 

1/11 

110 . 
1111 

1/11 

111 

1/11 

1/11 

111 

1/11 

1/11 

111 

1/11 

1/11 

As shown in Figures 3, 4 and 5, a conven~ional fault involving 
either a line stuck at some logical value or a ,B-element stuck at the 
0/1 state can be represented using this fault model. Many other 
fault types can be modelled. This fault model is quite compatible 
with VLSI implementations. On a .VLSI chip, faults tend to be 
arbitrary but confined to certain area of the chip. 

Exhaustive testing of beta elements 

Since the fault model allows a ,B-element to fail in an arbitrary 
way, each ,B-element must be exhaustively tested. A ,B-element, 
modelled as a 2 state sequential machine, can be e,hautively tested 
usinq the checking experiment approach. Hennie described a 
method for sequentia( machine identification using a checking 
experiment [3]. A checking experiment for a machine involves the 
construction of a checking sequence of the machine. A checking 
sequence consists of an input sequence and the. corres·ponding 
output sequence -which can uniquely characterize a sequential 
machine. The sequential machine must have a strongly connected 
state diagram and a distinguishing sequence in order for a 
checking sequence to exist. A distinguishing sequence is an input 
sequence the application of which allows the current state of the 
machine to be determineq from the output sequence. A checking 
sequence must perform the following three functions: (1) lnitialize 
the machine into a known state S. (2) Verify the number of states in 
the machine. (3) Starting from state S, for every entry in the state 
table, an input vector is applied to stimulate that entry and then a 
distinguishing sequence is applied to verify the state transition. 

If at any time during the checking experiment, the actual machine 
responds in a manner other than that dictated by the expected 
output sequence, the sequential machine must be faulty. If a 
,B-element behaves correctly throughout the checking experiment 
and assuming the number of states has not been increased by a 

010/01 

011/01 

011/01 

66 

100/10 
(a) State Transition Diagram 

(b) Distinguishing sequences: <010),<100> 

(c) Synchronizing sequences: <001>,<111 > 

Fig. 6. State transition diagram and some 

useful input sequences of the ,8-element. 



fault, then the state table of this machine must be the same as the 
fault free one. By carefully designing the input checking sequence, 
the length of the sequence can be reduced [3]. Figure 6 shows the 
state transition diagram and some useful input sequences of the 
{1-element. The diagram is strongly connected. It has two 
distinguishing sequences of length one, namely the two input 
vectors <abc> = <Oio> and <100>. Futhermore it has two 
synchronizing sequences, <001> and <111 >. also of length one. (A 
synchronizing sequence is an input sequence which when applied 
to a machine results in a unique final state independent of the initial 
state.) 

The checking experiment for the p -element involves the 
application of a synchronizing sequence (<001> or <111>) followed 
by the activation oi a state transition and then followed by a. 
distinguishing sequence (<010> or <100>) for each of the 16 entries 
or state transitions in the state table. A (N,K) shuffle/exchange 
network has N/2*K fl-elements. If the entire network is considered 
as a single sequential machine, it will have 2N12 • K states. It is 
infeasible to design a checking sequence for such a state machine 
even for relatively small N and K. Consequently, the appropriate 
testing strategy is to exhaustively test each p -element without 
exhaustively testing the entire network. The main task now is to 
construct the smallest possible sequence of network input test 
patterns which will result in the efficient simultaneous application 
and observation of the checking seqllences to all the fl-elements. 

;J_,_C-tcstabilitv and Test Vectors 

C-testability 

The problem of testing iterative arrays was first studied by Kautz 
[4), who assumed thctt an individual cell can be tested for all its 
possible faults only by applying all possible input vectors to that 
cell. The necessary and sufficient conditions were given by Kautz 
for testing an iterative array with a single faulty cell. Friedman [2] 
studied a class of one·dimensional unilateral combinational 
iterntive arrays which requires a constant number of tests to detect 
all faults, independent of the size of the array. He called them 
C-testable iterative arrays. He also assumed that there is only one 
faulty cell in the array. In this paper, the concept of C-testability is 
generalized and :.ipplied to two-dimensional (N,K) shuffle/exchange 
networks. Unlike the combinational arrays studied by Kautz and 
Friedman, a (N,K) shuffle/exchange network consists of celis which 
are sequential circuits. Applying Kautz's necessary and sufficient 
conditions to {N,K) shuffle/exchange networks we have the 
following: 

Defjnition 1: A (N,K) shuffle/exchange network is testable if the 
following conditions are met: 

1. For each ,B-element, all entries in the state table can be 

stimulated, i.e. all the stat'! transitions can be activated, 

and then verified. 

2. For each ,B-element, any faulty signal produced by a 

faulty P-element can be propagated to an observable 

network output. 

Condition 1 is necessary.and sufficient for the exhaustive testing 
of every P·elernent. Condition 2 ensures the detection of any faulty 
signal. 

Definiti.9..tL2..; A (N,K) stiuffle/exchange network is C-testable if it 
is testable and the number of network test vectors, or test,patterns, 
required is a constant and independent of the size of the network. 

67 

Four useful test vectors 

A test vector for the (N,K) shuffle/exchange network consists of 
two sub-vectors. The first sub-vector consists of the data inputs to 
the P-elements in the first stage, and the second sub-vector are the 
K control signals, c 1, ... , cK. Since all K control signals are 
normally inactive except when new communication paths are being 
established by routing tag bits, during which time the same active 
signal is applied to all K control lines sequentially, hence all K lines 
can be considered as one logical control line. T = <t0 t 1 ... tN-l >c is 
used to denote the test vector, where ti is the input to the ith input 
terminal of tile (N,I<) shuffle/exchange network and c is the control 
signal input. A shift register can be used to shift a c pulse to 
successive stages in synchronism with the arrival of destination 
address tag bits at the data inputs of successive stages. Tis used 
to denote <f0 f 1 ... fN_ 1>c, where f; = 0 (or 1) if i; = 1 (or 0). 

Qpfinit.iQn..._J_:_ The ith terminal of any stage with i = (P111 .1 
p 2 ... p0) is even.weighted if 1:rn- 0

1 p. = an even number, and is 
ITI· . m 1 J~ I 

pdd-wejfi.b.@.Q if 2.:i ~ 0 pi = an odd number. 

Four useful network test vectors are now introduced. Let (p 111_1 
p111_r·Pol be the binary representation for i, denoting the ith input 
tern1inal of the network. We defino the four test vectors as follows: 

2. T 1 c = < 11 ... De i.e. ti = 1 for 0 :::; i :::; N-1 

3. T 2 c o• (01 ... Dc where 

a. ti = O for all even-vmighted ti. 

b. ti = 1 for all odd-weighted ti. 

4. T3c = (10 ... o>cwhere 

a. ti = 1 for all even-weighted ti. 

b. ti = 0 for all odd-weighted ti. 

Note that T 0 c = ~ c and T 2 c = T 3 c. The four test vectors for a 
shuffle/exchange network with N = 8 are illustrated below: 

Input 
terminal T c 

0 
T c 

1 
T c 

2 
T c 

3 

0 0 0 0 1 0 1 
0 0 1 0 1 1 0 
0 1 0 0 1 1 0 
0 1 1 0 1 0 1 
1 0 0 0 1 1 0 
1 0 1 0 1 0 1 
1 1 0 0 1 0 1 
1 1 1 0 1 1 0 

Under the fault free condition, the test vector T 0 c will apply <OOc> 
to each P-element in the (N,K) shuffle/exchange network and the 
test vector T 1 c will apply < 11 c> to each P-element in the (N,K) 
shuffle/exchange network. When the P-elements in a 
shuffle/exchange stage are all in state 0, then the input terminal 
(p 111_1 p111_2 ... p0) to this stage is connected to the output terminal 
(P111_2 Pm_3 ... p0 P111_1 ) of the same stage [8]. When the P-elements in 



a shuffle/exchange stage are all in state·1, then the input terminal r, ... rN_,>o to the input terminals of the even stages. 
(Pm. 1 Pm.r·Pol to this stage is connected to the output terminal /3-elements remain in state 1. 
(Pm.2 Pm_3 ... p0 Pm_1) of the same stage [8]. 

All the 

Lemma 1 Under the fault free condition, the test vector T 0 1 will 
apply <001> ta each P-element and set all P-elements in a (N,K) 
shuffle/exchange network to the o state; the test vector T 0 ° will 
apply <OOO> to each P-element regardless of the current states of 
the P·elements. 

Proof: By definition, the test vector T 0 1 will a;iply <001 > to every 
P-element in the first stage. From the state table of a/3-element, the 
outputs should be <OO> and the next state will be state O. The 
output from the first stage are all O's, then the input to the following 
stage are all O's too. Hence every J3·element in the subsequent 
stages will receive the input vector <001>. T 0 ° will apply (000) to 
each P·element in the first stage. The same foregoing argun~wt 
applies except the next state is still the same as the current state. A 

Lemma 2 Under the fault free condition, the test _vector T 1 1 will 
apply <111> to each P-element and set all /3-elements in a (N,K) 
shuffle/exchange network to the 1 state; the test vector T1 ° will 
apply (110) to each /3-element regardless of current states of the 
/3-elements. 

Proof: Similar to the proof of Lemma 1. 

Ihr.orem 1 Under the fault free condition, if every P·element in a 
(N,K) shuffle/exchange network is in state o, then the test vector 
T 2 ° (or T 3 °J will apply the same input vector <t0 t 1 ... tN· l >0 to all I< 
stages. Every P·element remains in state O after the test vector is 
applied to the network. 

Proof: We know that the ith stage of fl-elements simply connect 
the input terminal (Pm·lPm:r-Pol of stage i to the output terminal 
(Pm.2Pm_3 ... p0pm_1) of stage. i, which is also the input terminal 
(pm_2Pm_3 ... p0pm_1) of stage i + 1, for ·all 1 :::; i < K. Since the ith 
stage only permutes the terminal (P,ft.1 Pm.r·P"ol. the input values t., 
O :::; j :::; N - 1, of the (i + 1 )th stage is the same as that of the ith 
stage. So if the test vector for the first stage is <t0 t 1 ... tN_ 1>0, then 
every subsequent stage will receive the same vector <t0 t 1 ••. tN_ 1>0 

under fault free condition. Since the control signal c is O, the 
p ·elements do not change states. !::. 

Figure 7 illustrates Theorem 1. The current state, x, and the next 
state, y, of each /3-element are denoted as x/y. 

0 0 0 0 

Fig. 7. Illustration of Theorem 1 using T 2 °. 
TheoJ:.em 2 Under the fault free condition, if every p-element in a 

(N,K) shuffle/exchange network is in state 1, then the test vector 
T2° (or T3°) will apply the input vector <t0 t 1 ... tN_ 1>0 to the input 
terminals of the firet stage of ,B·elements. For all the subsequent 
stages, T 2 ° (or T 3 °) will apply the same vector <t0 t 1 ... tN_ 1>0 to the 
input terminals of the odd stages, and the complemented vector <f0 

Proof: The proof is similar to the proof of Theorem 1. 

4. C·Testable (N.K) Shuffle-Exchange Networks 

Test Sequence I : Stimulation 

The stimulation of each entry in the state table of every 
,B-element is considered first. If the test sequence ~ = {T 0 ° T 1 ° 
T 2 ° T 3 °} is applied to a (N,K) shuffle/exchange network, with all its 
,8-elements in state 0, the entries with current state = 0 and input 
vectors (000), <010>, <100) and <110> will be stimulated. For 
convenience, the symbol [s,<xxx>] is used to denote the entry in the 
state table with current state s and input vector <xxx>. Thus the 
above stated entries are denoted as [O,<OOO>], [0,<0107], [0,(100>] 
and [0,(110>]. 

If all the p -elements are in state 1 , by Theorem 2, the test 
sequence ~2 = {T 0 ° T 1 ° T 2 ° T 3 °} will stimulate the following 
entries [1,<000>], [1,<010>], (1,(100>] and (1,<110>]. The 
stimulation of those entries in the state table involving state 
changes are now consjdered. Using similar arguments as in the 
proofs for Theorems 1 and 2, we can derive the following results. 

Theorem 3 Under the fault free condition with all the fl-elements 
in state o, the test vector T 2 1 will apply the same input vector to the 
input terminals of every stage of the network. All the fl-elements 

rn 2 fl 3 ... fl0) with ~~20p. = even will receive the input vector 
\/"m. m- I- I 2 
(011 > and remain in state 0 and the P·elements with ~~~- = odd 
will receive the input vector <101> and then change trdm slate Oto 
state 1. (See Figure 8.) 

Fig. 8. lllustrati"n of Theorem 3 using T 2 1 • 

0 
1 

1 
0 

1 
0 

0 
1 

Corollary 1 Under the same circumstance as in Theorem 3, the 
test vector T 3 1 will apply the same input vector to the input 
terminals of every stage of a (N,K) shuffle/exchange network. 
Every fl-element with };m_:2R. = odd will rece.ive the input vector 

. . l-O"J . a I 'th ""m·2a (011 > and remain in sta e 0, while every ,.,.e ement w1 ""i = 0,... = 
even will receive the input vector <101> and then change fro:n slate 
Oto state 1. 

Theorem 4 Under the fault free condition with all the ,8-elements 
in state 1, the test vector T 2 1 will apply the input vect~r <t0 
t ... t > 1 to all odd stages and the input vector <f0 f 1 ... rN:>, to all 

1 N· 1 . h . h .1 . ,.,m-2 n odd even stages. For a ,B·element int e Jt stage, 1 J + ""i=O,...i = , 
the ,B -element will receive the input vector (011> and change from 
state 1 to state 0, and if j + ~~~- = even, the P-element will 
receive the input vector (101) an~-ren\ain in state 1. (See Figure 9.) 

68 



Fig. 9. Illustration of Theorem 4 usin~J T 2 1. 

0 
1 

1 
0 

1 
0 

0 
1 

2. P-elements with Lm-2 a. = odd are in state 1 
. J=O'"'J 

o S 3 : 1. /3-elcments with L;:~fli = even are in state 1 

2. /?-elements with 2:m-~R. = .odd are in state O 
1~ G''1 

" S 4 : 1. every (j)i is in state O if i -1- 2:j°:-~13i = odd 

2. every (j)i is in state 1 if i + 2:;~-~/3i = even 

_<:;_o_r_oJLC!J:Y_g Under the same circurm:.tancc as in Theorem 4, the 
test vector T 3 1 will apply the input vector <f0 f 1 ..• fN.i 1 to all odd 
stii.ges and the input vector <t0 t1 .•• t~. 1 > 1 to all even stages. For a 
fl-element in the jlh stage, if j + 2:;':"0/3i = odd, the fi·element will 
receive tile input vector <101 > and remain in state 1, and if j + 

L:~·20p. = even, the /1-element will receive the input vector (011> 
J ·- I 

2. every (i)1• is in state O if i + Lm-2 a. = even 
J=O'"'J 

For each of the six possible network states, a set of network test 
vectcr(s) is needed to verify the current states of all the /3-elernents. 

and change frcm state 1 to state 0. 

From Lemma 1, Theorem 2 and Corollary 1, if all the fi-elernents 
in the network are in state O and the entire network is fault free, 
applying the test sequence ~; = {T 2 

1 T 0 
1 T 3 

1 T 0 
1} will stimulate 

the four entries, [0,<011>], [0,(001>], [0,<101> ], and [1,<001)], in all 
the /3-elements. After the test sequence, all the ,B-elements of the 
network will be back in state 0 as they were in before the 
application cf this test sequence. 

Another lest sequence ':1"'4 = {T 2 
1 T 1 1 T 3 

1 T 1 
1 } is useful when 

all the fl-elements are in ::;tute 1. Again assuming the entire network 
fa fault free, ihen from Lemm3. 2, Theorem 4 and Coroli'lry 2, this 
test sequence will stimulate the four entries, [1,(101>], (1,(111>], 
[1,(011>], and [0,<111>], in all the ,B-elements. In the process of 
applying 'f4 , all the /1-elements start in state i and ri:,turn 10 state 1. 
As can be seen, using the foregoing four test sequences, all sixteen 
entries in the state table of each /~·element can be stimulated. 
Figure 1 O illustrates the entries stirnul:lted by the four test 
sequences. 

xt state/ ne 
out puts <xy> 

current O 
state 

1 

input vector <abc> 

000 001 010 011 100 101 

~ 'J'4 ".!' 1 GJ'-i ~ ".14 

<;J2 ~ ~ <;J3 ~ ~ 

Fig. 10. Entries stimulated by ':1"'1, ':1"'2, 'Yf'3 , 'Yf'4. 

110 111 
'ff 

I ~ 
'12 'f{ 

3 

D•)fini!ion 4: A set of input vector(s) to a (N,K) 
shuffle/exchange network is a g]§tinguisi)l!:J.g !l.~.t 91 te~! Y._ectors or 
simply pistimLuishirig set if when they are applied to the network, a 
distinguishing sequence, i.e. the input vector (010> or (1li0), is 
applied to each /J·element in the network. 

Th~orem q_ {T2 °} is a distinguishing set, if the network is in state 
S0 or state S 1 . {T 3 °} i:; also a distinguishing set for state S0 or 
state S 1 . 

£.roof:. The /3-element (fl 111 _2fim_ 3 ... /1 1/3-;)• receives its input a 
from the input terminal (Of1m.2"''/3 1 fJ{}) and input b from the input 
terminal (1,Brn_ 2 ... /l 1/J0 ). When T_ is applied to a network, a 
P-element will receive a <010) if 2:n~:1!0 /1. = even and a <100> if 2:~~2 
o/I. = odd. Similarly, when T? o id a;iplibd, a p element will receive 
a (100> if 2:f~2 0 ,8 = e~en and a <010) iD:m~2 0 f1. = odd. From the 
discussion above/ it is easy to see that eith~r-T 2 °1or T 3 ° will apply a 
distinguishing sequence to each /3-element in the network if all the 
/3-elements arc in the same state. A 

To v0rify that all the fl-elements are in state 0, i.e. the netvJork is 
in S0 , we neecl to apply the distinguishi.1g set, T 2 ° (or T 3 °), to the 
network after the application of each of tile four test vectors in ~. 
Similarily, T 2 ° ( or T 3 °) is needed after each test vector in ':1"'2 to 
verify that all the /I-elements remain in state 1. Note that each of 
these disringuishing sets consists of only one input vector. 

Two particular test vectors, to be used for constructing 
di;;tinguishing sets, are now defined. A test vector called V odd = 
<vN_1 vN_2 ... v1 v0>0 is defined as follows: vi = O for all terminal i = 

Test Sequence II: Verification <pm_1 Pm-r·Po>. such that Li=odd pi = even, and vi = 1 for all 
terminal i such that L.=odd p. = odd. Similarily, another test 

Under the fault free condition, as the above te'3t sequences are vector co.iled V even is defined a~ follows: vi = 0 for all i such that 
applied, the entire network at any point in time can be-in only one of Li =even Pi = even, and vi = 1 for all i such that Li= even Pi = 
six possible states. Denote the jth /~·element of ith stage with (fJm.1 odd. 

Prn.r·flo>i where /3 111•1 fJm-r·/3 0 = j. These six states of the network J.heorem 6 {V odd} constitutes a distinguishing set for a (N,K) 

are: shuffle/exchange nctwork, if the network is ii") one of thH states, S2 , 

• S0 : all the fl-elements are in state o 

• S 1 : all the f3 ·elements are in state 1 

• 5 2 : 1. /3-elements with 2:;:~i = even are in state O 

S3 , S4 , and S5 , and log2N is odd. 

The proof of this Theorem is , dther" lengthy and is omitted here 
but is fully documented in [5]. 

Complete Test Sequence 

Before the construction of a complete test seqwmce, we must 

69 



show that any erroneous signal produced by a faulty }3-element is Each of the four states: S2 , S3 , S4 , a;id S5 , occurs only once 
always propagated to and visible at a network output. Any faulty during the application of the original 18 test patterns for stimulation. 
,B-element in a (N,K) shuffle/exchange network, will generate a Hence the distinguishing set {V odd'V even}' consisting of two test 
faulty signal D, denoting a logic O becoming a faulty logic 1, or p vectors, need to be applied only four times. Consequently, if log2N 
denoting a logic 1 becoming a faulty logic o, in response to the is even, the total number of test patterns needed for verification is 
network test sequence. If a D or D singal from a previous stage 22 instead of 18. Hence, 

arrives at an .. input terminal of a fault free ,B~lement, the. fault free Coni.fil<..tll.I~g A (N,K) shuale/exchange network, with lcg2N = 
.B-el~m~nt w~~-al":'a~~ propagat.e the D or D to one of :ts output an even integer, is C-testable and requires a test sequence of 40 
termma s: 1s is_ 1 ustrated in Figure 11 for the case _of the tesl vectors. 
propagation of D. Smee our fault model assumes that there 1s only 
one faulty /I-element in a network, the faulty signal D or O once The state table of a /I-element has 16 entries. In order to perform 
generated, will always be propagated to an output terminal of the the exhaustive testing of a /I-element, it is necessary and sufficient 
Kth stage. to stimulate all 16 entries and verify all the state transitions. A 

next state/ input vector <abc> 

outputs <xy> 000 001 010 011 ODO 001 1 DO 

current 0 0/00 0/00 01 01 0/01 010 D 010 D 0/1 D 
state 1 1/0 0 D!O D 1/1 0 0/1 0 1/ DO O!DO 1/ 01 

Fig. 11. Faulty signal propagation by a /I-element. 

1 01 

1/1 0 

1/ 01 

minimum of two test vectors are needed for every entry in the state 
table, thus a minimum of 32 test vectors are needed to exhaustively 
test a /I-element. Furthermore, the initialization of the {:?-element 
requires another two test vectors. Hence the minimum number of 
test vectors required for testing an entire (N,K) shuffle/exchange 
network is at least 34. The test sets obtained in this section 
consisting of 36 or 40 test vectors, depending on whether log2N is 
odd or even, is believed to be the actual minimum. 

Conjecture 3 The class of (N.K) shuffle/exchange networks is 
C-testable and the minimum number of test patterns required is 36 

We can construct a complete test sequence for a (N,K) if log2N is odd, and is 40 if log2N is even. 

shuffle/exchange networl< with no limitations on N and K by using A C-testable (l B 5) shuffle/exchange network has been 
the.test sequences discu_s~ed abov~- This complete test sequenc~, designed, using thre~ micron NMOS technology, and a layout has 
unoer the fault free cond1t1on, will stimulate and verify every entry in been generated. Details of this design are documented in [5]. 
the state table of every /I-element. First, use T 0 

1 to set all the 
/I-elements into state 0. The test sequence <J1 U '14 = {T 0°T1°T2 ° 
T 3 ° T 2 

1 T 0 
1 T 3 

1 T 0 
1 } is then applied. After the application of this 5. References 

sequence all the /I-elements should be in state O. Now T 1 1 is .. . _ . 
applied to set all the /I-elements into state 1. The test sequence g-2 [·1] Agrawal'. D.P., Test1.~g and Fault 1 olerance _of Multistage 
u c:r: .~ {T o T o T o T o T 1 T 1 T 1 T 1} is then applied. The lnterconnect1on Networks, Co1miuter, pp. 41-53, April, 1982. 
con{positio~ of ~he ibov~ tesf seq~enges p~ocluces a test sequence [2] Friedman, A.O., "Easily Testable Iterative Systems," !f-EETC, 
of length 18 consisting of the following 18 test patterns: T 0 u ".(1 u pp. 1061-:064, Dec, ~973. . . . 
G( U T 1 U ".( U 'J'. = {T 1 T o T o T o T o T 1 T 1 T fl T 1 T 1 (3] Hen me, F.C., Finite State Models for Lo_g!Q.fil_Machmell., Wiley, 
·4 b 2 3 fl 0 1 2 3 2 0 3 0 1 
T 0 T T 0 T 0 T 1 T 'T 1 T 1}. The applicaion of this set of 18 1968. 
te~t p~tter~s w~ll fufiy e~erc~e a1116 transitions in the state table of [ 4] Kautz, W.H., "Testing for Faults in Celluar Logic Arrays," ProQ,, 
every /I-element. Symp. Switch. and Autom., PP- 161-174, 1967. 

[5] Lee, D.C.H., "Fault Diagnosis of (N,K) Shuf!le/Exchange 
The application of each of the above 18 test patterns must be Networks," M.S. Thesis, EE Dept., CMU, Feb., 1983. 

followed by a distinguishing set to verify that all the /I-elements are [6] Levitt, K.N., M.W. Green and J. Goldberg, "A Study of the Data 
indeed in the correct states. We assume that m = log2N is odd. Commutation Problems in a Self-Repairable Multiprocessor," Proc. 
Based on Theorem 5, if the network is in either state S0 or S1 , the SJCC, pp. 515-527, 1968. 
distinguishing set {T2°} or {T3°} can be use_d. If the network is in [7) Masson, G.M., G.C. Gingher, and S. Nakamura, "A Sampler of 
one of the remaining four states: S2 , S3 , S4 or S5 , based on Circuit Switching Networks," Computer, pp. 32-48, June, 1979. 
Theorem 6, {V odd} can be used as the distinguishing set. Hence, [8] Shen, J.P., "Fault Tolerance Analysis of Several 
the complete test sequence must include the original 18 test Interconnection Networks," Proc. ICPP, pp.113-122, 1982. 
patterns for stimulating all the state table entries of each P-elt7ment [9] Stone, H.S., "Parallel Processing with Perfect Shuffle," 
and another 18 test patterns, i.e. distinguishing sets, for the JEEETC, pp.153-161, Feb., 1971. 
verification of network states. Hence the length of the complete -------------------------
test sequence, assuming m = log2N is odd, is 36 and is 
independent of the network size. The foregoing discussions lead to This research was supported in part by the Semiconductor 
the following result Research Corporation (SHC) under contract No. 82-11-007. 

Theorem 7 A (N,K) shuffle/exchange network, with log}~ = an 
odd integer, is C-testable and requires a test sequence of 36 test • Mr. David C.H. Lee is currently with the Digital Equipment 
patterns. Corporation, 200 Forest Street, Marlboro MA 01752. 

If log2N is an even integer, it is believed that the following -------------------------
conjectures are. true: 

Conjecture 1 {V odd'V even} constitute a distinguishing set for a 
(N,K) shuffle/exchange network, if the network is in one of the 
following states, S2 , s3, S4 , and s5, and log2N is even. 

70 



FAULT TOLERANCE SCHEMES IN 

SHUFFLE-EXCHANGE TYPE INTERCONNECTION NETWORKS 

Krishnan Padmanabhan and Duncan H. Lawrie 
Laboratory for Advanced Supercomputers 

University of Illinois at Urbana-Champaign 
Urbana, Illinois 61801 

ABSTRACT 

As a solution to the fault tolcrancl' problem of the 
shuffle-exchange type networks, a class of networks is 
proposed which provide non-unique paths between inputs 
and outputs. The topology of the multiple paths is 
specified by means of a redundancy >;raph and the pro
cedure to construct a multipath network with a specified 
redundancy graph is presented. We provide practical 
schemes for utilization of the alternate pathS' and evalu
ate how well they perform in the presence of faults in 
the network. 

1. INTRODUCTION 

Several topologically equivalent multistage intercon
nection networks have been proposed in the literature for 
applications in closely coupled multiple processor sys
tems [.3]. Such networks possess the property that 
between any input and any output there is a unique 
path made up of switching nodes. Breakdown of any 
such node or an edge thus makes some outputs inaccessi
ble to certain inputs. 

As a solution to this fault tolerance problem of the 
shuffle-exchange type networks, we introduce in this pa
per several classes of networks called Multipath Omega 
~etworks. Su~h networks provide multiple ways of get
tmg from an mput to an output and their close relation 
to the Omega topology [5] helps maintain all the connec
tion and control properties of the latter in a no-fault si
tuation. Multipath networks behave as gracefully de
grading_ systems, operating at a reduced level of perfor
mance m the presence of faults, but nevertheless provid
ing full connectivity. 

Several papers in the recent past have considered the 
idea of using more than one path to get from a source to 
a destination in multistage networks. Some networks in
herently possess this property ([2], [9]), while others are 
obtained by augmenting an existing network to provide 
the multiple paths [l]. The extra stage approach in [I] 
will be seen to be a special case of the class of networks 
we discuss in this paper. 

We present, in the next section, the theoretical 
development of the multiple path networks. We first in
troduce a convenient means of specifying the topology of 
the redundant paths, and show how a Multipath Omega 
Network of any size with a specified redundancy graph 
can be constructed. We then provide some schemes for 
implementing the networks and utilizing the alternate 

This work was supported in part by the National Science Founda
tion under Grants No. US NSF MCS81-00512 and US NSF MCS80-
01561, the US Department of Energy under Contract No. US DOE 
DE-AC02-81ER10822, and by the Department of Computer Science 
at the University of Illinois at Urbana-Champaign. 

0190-3918/83/0000/0071$01.00 © 1983 IEEE 71 

paths in practice, along with evaluations of their perfor
mance in the presence of faults. 

2. MULTIPLE PATH NETWORKS 

A nm x nm Omega Network [5] consists of m stages 
of B XB crosspoint switches with B*Bm 1 shuffles inter
connecting the stages. A P *Q shuffle is a permutation of 
PQ elements, OSiSPQ-I, whose effect when i is 
represented as a p+ q bit binary number is to rotate left 
the bits by p positions. A 16X 16 Omega Network con
structed out of 4X 4 switching elements is shown in Fig. 
l. In its general form, an Omega Network of N inputs 
and N outputs, where N is an arbitrary integer, is con
structed out of a set of switches the sizes of which 
correspond to a complete set of factors of N. 

In an Omega Network, there is exactly one path 
between any source S and any destination D. Such a 
path can be characterized by concatenating the 
n ( =log2N) destination address bits to the n source ad
dress bits [GJ: 

8 0 8 1··· 8n-1dod1···dn-I ... (1) 

In addition, the terminal (of a switch) that a path occu
pies at the output of stage i (OS i Sm) is given by the 
n-bit window in (I) starting at bit position bi where 
b=log2B: 

8081 · · · lsbisbi+ 1···sn-1dod1···dbi 1 ldbi · · · dn-1 ... (2) 

The existence of such a unique path between each 
source and destination is what leads to many of the use
ful properties of the Omega Network [5] and its distri
buted control algorithm. However, the uniqueness of 
paths implies that a fault anywhere in the network wiJI 
destroy its connectivity. While reinforcing the links and 
the logic within the switches will mask some failures as 
when they occur [6], a more fundamental form of toler
ance is provided by eliminating this uniqueness property 
and providing more than one way to get from a source 
to a destination. In this case, if one path is faulty, it 
may be possible to find an alternate route to the destina
tion. We now characterize the construction and proper
ties of Modified Omega Networks with multiple paths 
between sources and destinations. 

An ordered factorization of N corresponds to an f -
tuple <B"B2 , ..• ,B1 > of factors satisfying 8 18 2 ... 8 1 =N. 
The (I-path) Omega Network corresponding to such a 
factorization [5] consists of f stages of crosspoint 
switches, with stage i made up of B; X B; switches. In 
addition, each stage is preceded by the B; *!'!_ shuffle in-

B; 
terconnection. 

Define a pseudo/ actorization of N to be an /-tuple 
<B1,B2, .•. ,B1 > of integers, with B 1B 2 ... B1 =B, that satisfy 



the following conditions: 

B>N and Bf Bi ~ N l~j~f. 

Let B / N be equal to R. Then an R-path Omega Net
work corresponding to the above pseudofactorization 
consists of f stages of crosspoint switches with stage i 
consisting of B; X B; switches; each stage i is preceded 

N by k; B;X k·B- shuffles (k;~l) such that there are exact-

ly R ways t~ get from each. source .to each destination. 

We will refer to R as. the redundancy of the mul
tipath Omega Network. Fi~. 2 and 4 show two 4-path 
16X16 Omega Networks l corresponding to the pseu
dofactorizations <2,4,2,4> and <2,2,4,4> of 16). The 
two networks are different in the manner in which the 
four different paths from a source to a destination in
teract. The topology of the redundant paths is specified 
by means of a redundancy graph indicated below each 
network. 

2.1 Redundancy Graphs 

A redundancy graph is a flow graph with the follow• 
ing restrictions: 

(1) The set of nodes in the graph is divided into S 
classes corresponding to the S stages of switches in the 
network. 

(2) Each edge connects a node in class i to a node in 
class i+ 1, l~i~S-1. 

(3) ,The in-degrees of all nodes in a class are the same 
and so are the out-degrees of all nodes in a class. 

Three examples of redundancy graphs are shown in 
Fig. 3. Fig. 3a corresponds to a disjoint path network (all 
redundant paths are disjoint) [71, while Fig. 3c is the 
redundancy graph of a standard (1-path) Omega Net
work. The nodes in the graph correspond to switches in 
the network and the edges to links. In that sense the 
redundancy graph is a subgraph of the network and the 
subgraph connecting any input to any output in the net
work will be isomorphic to the redundancy graph. The 
number of faults a network can tolerate is given by .>..-1, 
where ).. is the line connectivity of its redundancy graph. 

The control scheme for setting up the paths in such a 
network is the distributed tag control scheme, much like 
the one for the standard Omega Network. Each stage i 
is controlled by b;=lo~B; bits so that the entire desti
nation tag consists of ~b; bits. The difference, of course, 
is that the destination tag in an R -path network consists 
of n+ r bits where r=log2R. Only n of these bits are 
the destination address bits d0 d1 •.. dn-l and a particular 
path out of the R alternates is chosen by a specific set
ting of the r redundant bits. We go into this in more de
tail in section 2.2. The broad scheme for using the mul
tiple paths is to backtrack, in the event of a fault, up to 
the point of the last fork and then take an alternate 
route. This backtracking can also be done in case of 
blocking along one of the paths. Referring to Fig. 3, it 
can be seen that the graphs for a given S and R differ 
basically in the following three' aspects: 

(1) The stage(s) at which fork/join is done 

(2) The magnitude of the fork/join done at each stage 

(3) The number of disjoint paths between source and 
destination 

72 

The effect of these variables on the performance and cost 
of the system is considered in [8]. 

2.2 Derivation of NW from Redundancy Graph 

A redundancy graph specifies both the number of 
stages S and the redundancy R. The total number of 
bits needed to control the network, irrespective of how it 
is constructed, is n + r. The only variables are the sizes 
of the switches used in different stages and the distribu
tion of the redundant bits among the S stages. Note 
that at any stage the smallest switch that can realize an 
out-degree (or in-degree) D is a D XD switch. 

The terminal an input-output path occupies at the 
output of stage i is given by the n-bit window defined 
earlier in (2). Consider such a window W; at stage i: 

WoW1 ·· · wn-b-1 w,._b ··· w,._1 
switch terminal 

For a fork size of D at this stage, exactly d=logD of 
the redundant bits r 0r 1 ... rr should be a part of the 
subwindow w,._b ... wn_1; this will ensure that from the 
same switch D paths. will fork out. Similarly, if at this 
stage there are k disjoint paths in the graph, i.e., there 
are k nodes at this stage in the redundancy graph, then 
logk of the redundant bits should be a part of the 
subwindow w0w 1 •.• w,._b-I· The above two conditions will 
yield the subgraph shown below at stage i: 

< I 

D 

I 
. 

. . D 
(-I I. 

Consider. joins now. A join of size D at stage i 
reduces the number of disjoint paths by a factor of D, 
i.e., d orthe redundant bits in window wi-1 are replaced 
by destination bits in W;. The b; tag bits at stage i al
ways replace the least significant b; bits in W;_1; hence 
the removal of the d redundant bits is achieved by 
choosing an appropriate shuffle to precede stage i. Thh 
may necessitate choosing shuffles other than the B; *B. 
~uffl~ I 

Parallel edges correspond to a join immediately fol
lowing a fork; in this case, the redundant bits introduced 
in the terminal sub window wn-b ... w,._1 in stage i-1 
should be replaced by d-bits at stage i. For a join in the 
absence of parallel edges, r-bits in the switch subwindow 
w0w1 ... wn-b-I should be replaced (resulting in a net 
reduction in the number of redundant paths). This can, 
in general, be achieved by choosing the shuffle connec
tion preceding the stage appropriately. 

Other than the above conditions and the inclusion of 
the right number of r-bits and a minimum number of 
d-bits at each stage, we have a lot of freedom in choos
ing the sizes of switches at each stage. 

Consider, as an example of the above procedure, the 
construction of a 4-path 16X16 Omega Network with 
the redundancy graph shown in Fig. 4. We have r=2 
(redundant bits r 0 and r 1) and n=4 (destination address 
bits d0, d1, d2, and d3). Since stages 1 and 2 involve a 



binary fork each, r 0 has to be a part of stage 1 and r 1, 
of stage 2. Stages 3 and 4 involve a join each and hence 
one r bit each should be replaced by d-bits in these 
stages; at stage 3, the r-bit introduced in stage 2 (in the 
terminal subwindow) should be replaced and at stage 4 
the r-bit introduced in stage 1 should be replaced. There 
are many ways to distribute the remaining two d-bits 
among the four stages. Consider the following distribu
tion as an illustration: 

rodo r1 d1 d2d3 

This would correspond to using 4 X 4 switches in the first 
and last stages and 2 X 2 switches in the intermediate 
stages. Let us determine the connections to precede each 
stage to realize the above redundancy graph. A 4 *4 
shuffle preceding stage 1 would give W1=s3s 4r0 d0 . Thus 
at the output of this stage, we have two alternate termi
nals (s 3s40d0 and s 3s 4ld0) that a path could occupy to 
get to the same destination. A 2 *8 shuffle preceding 
stage 2 will make W2=s 4 r0d0 r 1. Now the redundancy is 
increased to four, with the four paths occupying two 
different switches (s 40d0 and s 4ld0). In stage 3, r 1 must 
be replaced by d 1 (to ensure the join and parallel edges); 
hence stage 3 is preceded by the identity connection 
making W3=s 4r0 d0 d 1. Stage 4 is just preceded by the 
4 *4 shuffle leading to W4=d0 d 1 d2 d3 , the correct desti
nation. This results in the network shown in Fig. 4. 

3. IMPLEMENTATION SCHEMES FOR 
DISJOINT PATH NETWORKS 

Disjoint path networks have been dealt with in detail 
in [7J. They provide the highest tolerance to faults 
(among all multiple path networks) - an R-path network 
of this type can tolerate (R-1) arbitrary internal stage 
faults and potentially many more. The set of internal 
switches and links in such a network can be divided into 
R disjoint classes; a path from a source to a destination 
consists of (internal) switches and links from only one 
such class. In addition, the path has counterparts in each 
of the other R-1 classes. Classes containing no faults in 
essence support the paths that would encounter faults in 
the other classes. 

A modular organization of a B XB crosspoint switch 
is shown in Fig. 5a. A connection is established in the 
switch when an input module is connected to an output 
module. When a request is made to an input module i 
along with a base B address j, the input module i re
quests module j for connection; if the output module is 
not currently in use (and if it is not faulty - a situation 
we will consider shortly), such a connection can be set 
up. Following this setup, direct connections are available 
between input i and output j in the switch for all con
trol and data signals. The technique to set up a se
quence of such switches is the set-and-/ orward scheme. 
In cycle 2i-l, stage i is set up and in cycle 2i, the ad
dress for stage i + 1 is passed on to the next stage by 
stage i. In 2S cycles, the entire path is set up (if no ex
ceptions arise in between). 

Two exceptions could arise in the process of setting 
up such a path - a block, and a fault. A block is sig
nalled first by the BL line in the switch where the block 
occurred, and then propagated back to the source. Once 
a fault is detected, generation and propagation of the F 
signal takes place in a manner similar to that of the 
block signal. 

73 

3.1 Fault Recognition 

Most published research on fault analysis in networks 
([4], f 10]) have used as the model of a fault an entire 
switch being stuck at one of its states. We outline here a 
more realistic model used in [8). We shall consider each 
module along with the lines leaving it as our units, in 
the sense that we shall not be concerned with the logic 
within the blocks (Fig. 5c). Such a unit will be con
sidered to be faulty if any value of the input vector does 
not produce an appropriate output vector. 

Such a general class of faults can be detected by a re
plication check, where we duplicate or triplicate every 
module in the switch. (See [6J for such a design.) We pro
pose a self-checking scheme inherent in our protocol, 
which is less versatile than replication, but requires little 
increase in hardware. The purpose of every control sig
nal is to exercise a portion of the logic in the receiving 
module. If a plausible response is elicited for an output 
signal (resulting in a proper handshake as specified in 
Fig. 5b), it is reasonable to expect that the portion of 
the logic exercised by that signal works properly. Con
sider Fig. 5c. When an output module B initiates a 
handshake by asserting the REQ line, it monitors the 
three input lines ACK, BL, and F. If none, or more than 
one of these is asserted, the unit C is assumed to be faul
ty. If B did not assert the REQ line properly as it should 
have, it will not find any input signal asserted and will 
know of a fault. (Note that the return-to-zero protocol 
detects all line stuck-at faults.) Thus each module checks 
a portion of the logic in the next module as a path gets 
set up. When a fault is detected, two actions are taken 
by the detecting module. It makes a note of this by set
tine: a fault flag within the module. And it signals the 
fault back by asserting the F line which propagates back 
to the source. By setting the fault flag in the module, 
subsequent requests to the module are notified immedi
ately of the fault. (Note that the state-updating portion 
of the logic in the second module is not exercised by 
handshaking.) 

We have considered here only the control portion of 
each module. To ensure that data (which includes ad
dress and data bits) is transferred properly from module 
to module, an encoding scheme can be used. 

3.2 Fault Notification 

For the purposes of this section it is convenient to 
consider each sequence of the form output 
module-+link-+input module as a single entity called an 
element. The reasons for this are twofold. First, faults 
anywhere within such an element affect the operation of 
the network in the same manner. Second, the terminal 
an input-output path occupies in a stage is given by such 
an element. The network, in this view, consists of S+ 1 
stages of elements. There are several options for 
notification of faults back to the sources and the subse
quent action to be taken. 

Non-adaptive Routing: In this approach, each path 
learns of a fault only when it reaches the faulty element. 
When the fault signal reaches the source, it sends the 
same request out on the next alternate path, without re
taining knowledge of the presence of the fault along the 
path just tried. Advantages of this scheme are that non
faulty paths will be utilized to the maximum extent and 
that there is almost no additional hardware required. 
The drawback of the approach is that a long time could 



be spent trying alternate paths (especially if the faults 
are located in the later stages of the network). 

Adaptive Routing - Notification on Demand: In 
this scheme, knowledge of the location of the faults en
countered in various tries is maintained at the sources 
and is used in subsequent routing decisions. A source 
learns of a faulty element upon requesting it the first 
time. It can determine, by keeping count of the number 
of clock cycles after which the fault signal is received, 
where along the path (the stage and element) the fault is 
located. The ID's of the faults thus determined can be 
stored in a set of B tables associated with the B termi
nals that a source could branch into at the first stage. 
Trying a path now entails first checking the appropriate 
table to see if the path would encounter any of the faults 
currently in the table. 

Adaptive Routing - Broadcast Notification: This is 
a conceptual scheme that would be difficult to imple
ment in practice. However the network performance 
under this scheme will provide us a standard to evaluate 
the previous proposals. Under the broadcast scheme, 
notification of a fault is done immediately upon recogni
tion (or occurrence) to all the sources that could poten
tially use that element. Once the fault ID's reach the · 
sources, they are handled in exactly the same manner as 
in the demand notification scheme. 

In the two adaptive schemes above, the size of the 
fault tables maintained at the sources is an important 
parameter. When a table of size T is maintained, a ter
minal will have to be shutdown when more than T 
faults are reported at that terminal. A larger T increases 
not only the logic complexity and the storage required, 
but also the initial overhead associated with searching it. 
Reducing the table size would close down terminals fas
ter leading to increased traffic along fewer paths and ear
lier shutdown of the system. The effect of T on the per
formance is considered in the next section. 

3.3 Some Evaluation Studies 

Fig. 6 presents the average normalized delay in a 
64 X 64 network as a function of the percentage of faulty 
elements, for a variety of cases. Normalized delay is 
defined as the ratio of the actual delay to the minimum 
delay. (Faults are permitted only in the internal stages 
of the network.) The request rate m is the probability of 
a source making a new request in a cycle when it has no 
outstanding request; requests are not allowed to be 
queued at the sources. The 2-path network is construct
ed using seven stages , of 2 X 2 switches; the 4-path net
work uses four stages of 4X 4 switches. 

Let us briefly account for the shape of the curves first. 
Recall that the set of intermediate elements can be di
vided into R classes and that the non-faulty classes sup
port the paths that will encounter the faulty elements. 
As the number of faults increases, so does the number of 
paths that a non-faulty class supports. Effectively then, 
the load on the non-faulty paths is much higher with a 
higher redundancy. This accounts for the higher delay of 
the 4-path networks as F gets higher. Breakdown of the 
system is said to occur when all R paths from some 
source to some destination contain faults. To obtain the 
numbers in Fig. 6, we have kept the system running 
after such breakdowns. 

Th.e non-adaptive scheme performs very close to the 

74 

adaptive scheme and does better than the latter with 
very small table sizes because it uses non-faulty ele
ments to the maximum possible extent. The T=O op
tion in the adaptive routing scheme closes down termi
nals (or classes) much earlier than necessary leading to 
increased load on the rest of the alternates. This overkill 
results in it performing worse than the non-adaptive 
scheme. 

4. CONCLUSION 

We have, in this paper, introduced schemes for fault
tolerance in shuffle-exchange type networks based on 
redundant paths between inputs and outputs. The in
teraction of the multiple paths between each source and 
destination is specified by means of a redundancy graph, 
and the derivation of a network with a given redundancy 
graph is discussed. We have also considered some practi
cal schemes for using the multiple paths in practice and 
shown that some inexpensive schemes provide good per
formance in the presence of faults. 

REFERENCES 

[lJ G.B. Adams and H.J. Siegel, "The Extra Stage 
Cube: A Fault-Tolerant Interconnection Network for 
Supersystems," IEEE Trans. Computers, Vol. C-31, 
No. 5, May 1982, pp 443-454. 

[2] V.E. Benes, Mathematical Theory of Connecting Net
works and Telephone Traffic, Academic Press, New 
York, 1965. 

[3] Computer, IEEE Press, Vol. 14, No. 12, December 
1981. 

[4J T.-Y. Feng and C.-L. Wu, "Fault-Diagnosis for a 
Class of Multistage Interconnection Networks," 
IEEE Trans. Computers, Vol. C-30, No. 10, Oct. 
1981, pp 743-758. 

[5J D.H. Lawrie, Memory-Processor Connection Net
works, Department of Computer Science Report No. 
UIUCDCS-R-73-557, University of Illinois at 
Urbana-Champaign, February 1973. 

[6] C. Leung and J. Dennis, Design of a Fault-Tolerant 
Packet Communication Architecture, MIT Laborato
ry for Computer Science, Computation Structures 
Group Memo 196, July 1980. 

[7J K. Padmanabhan and D.H. Lawrie, "A Class of 
Redundant Path Multistage Interconnection Net
works," To appear in IEEE Trans. Computers. 

[8J K. Padmanabhan and D.H. Lawrie, Techniques for 
Fault Tolerance in Omega Type Interconnection Net
works, Cedar Document 11, Laboratory for Ad
vanced Supercomputers, University of Illinois at 
Urbana-Champaign, February 1983. 

[gJ D.S. Parker and C.S. Raghavendra, "The Gamma 
Network: A Multiprocessor Interconnection Network 
with Redundant Paths," Proceedings of the 9th An
nual Symposium on Computer Architecture, 1982, pp 
73-80. 

[lOJ J.P. Shen and J.P. Hayes, "Fault Tolerance of a 
Class of Connecting Networks," Proceedings of the 
7th Annual Symposium on Computer Architecture, 
rnso, PP 61-11. 



0----0---0----0 
(c) 

Fig. l. A 16X 16 Omega Network Fig. 3. Examples oC redundancy graphs 

Fig. 2. A 4-path Omega Network and its redundancy graph 

3.o-~~~~~~~~~~~~~~~~~~~~~ 

-- T=o(Adaptive 
·-······- T=4 -Demand 
- ··----Non-adaptive 
-·-·-T=4 Adaptive - Br. 

m - 0.1 

----::..-:::. ......... ------'"'": ..... . --- ······ -·---
=' :z,r;· ·<·E-=~·:z:.;-:;;;::~:~:::::-:3.·-:.3 ~:::.. :-::.·:::. -· -· -· - . 

1.5-'-~~~~~~~~~~~~~~~~~~~~ 

0 I 2 3 4 5 6 7 8 

Percentage of Faulty Elements 

Fig. 6 Average normalized delay in the network 

75 

Fig. 4. The 4-path Omega Network considered in sec. 2.2 

Fig. 5 

-f\/ I L :~~~N --j\,) I L 
ACK OUT 

REQ OUT 

(b) ADDR OUT 
SETUP ~WARD 

(c) 

' - - -
' ' 

t- -- -

Unit 

Switch 

a. Modular organization of a BX B switch 
b. Handshake protocol between switches 
c. Definition of unit and element 

EI 



A CONDITION KNOWN TO BE SUFFICIENT FOR REARRANGEABILITY OF THE BENES CLASS 
OF INTERCONNECTION NETWORKS WITH 2X2 SWITCHES IS ALSO NECESSARY 

S.C. Kothari and S. Lakshmivarahan 
School of Electrical Engineering and Computer Science 

University of Oklahoma 
Norman, Oklahoma 73019 

Abstract 

An NxN (N inputs and outputs) multistage in
terconnection network is said to be rearrangeable 
if it can realise all the possible connections of 
the N input terminals to the N output terminals in 
a one-to-one fashion. Starting with the pioneer
ing works of Clos and Benes to this date a variety 
of sufficient conditions for rearrangeability 
are known in the literature. In this paper it is 
shown that the well known sufficient condition due 
to Benes on the link permutation is also necessary 
for rearrangeability if the network is made up of 
2x2 switches. 

Introduction 

An NxN switching network (with N inputs and N 
outputs) is an arrangement of switches which is 
capable of performing certain permutations of in
puts. The combinatorical power (CP) of a given 
switching network is often measured [2] as the 
ratio of the number permutations the network can 
realise to the total number of possible permuta
tions of N inputs. Clearly O~CP~l. A switching 
network is said to be rearrangeable if CP=l, that 
is, there exist settings of its component switches 
such that, the switching network as a whole, can 
realise all the NI permutations. The well known 
NxN cross-bar switch has CP=l. Most of the early 
studies on (rearrangeable) switching networks have 
been exclusively in the context of telephone net
works [1][2][6]. The interest in multistage (re
arrangeable) switching networks revived recently 
in connection with the development of parallel 
computers and parallel algorithms [4][13]. At the 
present time there is considerable interest in the 
interconnection network as evidenced by the special 
issue on this topic [8] as well as the extensive 
bibliography in [6][12]. 

Clos in 1953[1] in a fundamental paper exhib
ited for the first time a three stage switching 
network which is rearrangeable. Benes in a·series 
of papers analysed a rich class of switch~ net
works from the point of view of rearrangeability. 
Among many other interesting results, Benes gave a 
method for the design of a multistage switching 
network made up of odd number of stages and with 
square (cross-bar) switches. We call this class 
of networks as the general Benes class (GBC). The 
contributions by Benes are succinctly summarised 
in his now classic book [2]. Most of our nota
tions follow those of Benes [2]. Consider the 
following subclass of the GBC defined recursively 
using 2x2 switches. For easy reference, we call 
this subclass as the class of block structured net
work (BSN). Let N=2n. 
Definition 1: An NxN block structured network is 
made of three (3) stages. The first and the third 
stages are each made of 2x2 switches and there are 
N/2 of them in each of these stages. The middle 

0190-3918/83/0000/0076$01.00 © 1983 IEEE 76 

stage however, has two copies of N/2 x N/2 block 
structured networks called blocks A and B. The N 
outputs of stage i are connected to N inputs of 
stage i+l by an interconnection scheme 0i called 
the link permutation i=l,2. Referring to figure 
1, let X1, X2 ••• XN/2 and Y1 ,Y2, ••. YN/2 denote the 
2x2 switches at the first and third stages. No
tice 2i-l and 2i are the inputs of Xi and 2j-l 
and 2j are the outputs of Yj. In the following we 
define a special class of link permutations. 
Definition 2: The link permutation 01(02) in the 
block structured network is said to be distribu
tive if the two outputs (inputs) of each of the 
switch Xi(Yj) are connected one to each of the two 
blocks A and Bat the input (output). Similarly, 
when the blocks are furthur reduced to three stage 
networks of proper sizes, the link permutations in 
each of these reductions could be required to 
satisfy the above condition of distributivity. 
From theorem 3.9 of Benes [2], it readily follows 
that a block structured network is rearrangeable 
if all the link permutations are distributive. In 
this paper, we prove that distributivity of all 
the link permutations is indeed necessary for the 
class of block structured networks to be rear
rangeable. 

Main Result 

Our main result is the contents of the follow
ing: 
Theorem: A block structured network is rearrange
able if and only if all the link'permutations are 
distributive. 
Proof: The if part follows from the theorem 3.9 
of Benes [2]. To prove the only if part, first 
assume that 01 is not distributive but 02 is. 
Referring to figure 2, let both the outputs of Xi 
be connected to the block A. Now any permutation 
which takes both the inputs to the switch Xi to 
the output of a single switch Yk (say) for any 
k=l,2 •.• N/2 is not realisable by the overall net
work. A similar argument follows if 02 or 01 and 
02 are not distributive [15]. 

The above analysis clearly esta~lish the fact 
that for the rearrangeability of the overall net
work it is necessary that 01 and 02 be distribu
tive. Now to show that all tne. l:link permutations 
that are embeded in the blocks A and B must also 
be distributive, assume witthout. loss of general
ity, there is a link permw.tation which is part of 
the block A that is not distributive. Then, by 
inductive hypothesis it follows that there exis.ts 
a. permutation n(on N/2 objects} which is not real
isable by block A, Since 01 is distributive, 
there exists subassig.nment 'f1 of the switches Xi 
i"'l to N/2 to the inputs of block A which are num
bered from 1 to N/,2. That is, referring to figure 
3 'l'1(X1)=j if an output of the switch Xi is con
nected to input j of block A under 0-i • Similarly, 
'l'2(r}•Ys if the output terminal r or"block A is 



connected to an input of the switch Ys under 02 . 
Define 

PA: {Xsls=l to N/2}+{Yrlr=l to N/2} where 

PA=~2·n.~1· Consider a permutation p (on Nob
jects) which takes the two inputs to switch xi to 
the two outputs of y. where PA(Xi)=Y·. This per-

t t . . 1 lJ . J mu a ion p is c ear y not realisable by the over-
all network since n is not realisable by block A. 
The proof that distributivity is necessary when 
n=2 (the basis for the induction) is very similar 
to the one presented above. Hence the theorem. 

COMMENTS 

1. In all the examples of the Benes network 
given in the literature [3][9][10], it is assumed 
that 02=01-l and 01 is distributive. Our result 
shows that one can choose 01 and 02 independently 
so long as they are distributive. 

2. One of the interesting open questions in 
the context of the shuffle-exchange-type networks 
is whether or not two passes of the Omega network 
is rearrangeable [14]. Looking at this problem 
from the point of view of necessary conditions, 
we found out, for N=8, by simply rewriting the 
network and fixing the states of certain switches 
as in figure 4, that two passes of Omega network 
is rearrangeable. In particular, the first and 
third switches in the 4th stage of figure 4 are 
set to the "straight" (S) state but the second and 
fourth switches are set to the "cross" (C) state. 
If the state of a switch is fixed, it can as well 
be replaced by permanent connections. The link 
permutation between stages 3 and 5 resulting from 
this elimination of switches in the 4th stage is 
shown in figure 5. The rest of the stages 1 2 3 
5, and 6 as well as the inputs to the stage i in' 
figure 5 are all obtained by permuting the switch
es in figure 4. A closer examination of figure 5 
reveals that it is a block structured network 
where all the link permutations are distributive. 
Hence, by our theorem it is rearrangeable. Since 
rearrangeable networks remain rearrangeable even 
if the inputs are permuted, the input terminals 
in figure 5 without loss of generality can be re
numbered in the natural order 1 through 8 instead 
of as shown in figure 5. It is interesting to 
note that while Parker [14] has also arrived at 
the same conclusion for N=8, he uses brute force 
enumeration method instead. 

[l] 

[2] 

[3] 

[4] 

[SJ 

[6] 

REFERENCES 

C. Clos. "A Study of Non-Blocking Switching 
Networks." The Bell System Technical Jour
nal, Vol. 32, 1953, pp. 406-424. 
V.E. Benes. Mathematical Theory of Connect
ing Networks and Telephone Traffic, Academic 
Press, 1968. 
A. Waksman. "A Permutation Network." Journal 
of ACM, Vol. 15, 1968, pp. 159-163. 
T. Feng. "A Survey of Interconnection Net
works." Computer, Vol. 14, 1981, pp. 12-27. 
H. J. Siegel. "Interconnection Networks for 
SIMD Machines." Computer, Vol. 12, 1979, 
pp. 57-66. 
K.J. Thurber. "Interconnection Networks-A 
Survey and Assessment." Proceedings of NCC, 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

77 

1974, pp. 909-919. 
N. Pippenger. "On Rearrangeable and Non
Blocking Switching Networks." Journal of 
Computer and System Science. Vol. 17, 1978, 
pp. 145-162. 
C. Wu. (Editor) "Interconnection Networks." 
Special Issue. Computer, Vol. 14, Issue num
ber 12, December 1981. 
D.C. Opferman and N.T. Tsao-Wu. "On a Class 
of Rearrangeable Switching Network, Part I 
Control Algorithm." The Bell System Techni
cal Journal. Vol. 50, 1971, pp. 1579-1600. 
R. W. Hockney and C.R. Jesshope. Parallel 
Computers. Adam Hilger Ltd., Bristol 1981. 
D.R. Lowrie. "Access and Alignment of Data 
In An Array Processor." IEEE Transactions 
on Computers. Vol. 24, 1975, pp. 1145-1155. 
J. T. Schwartz. "Ultra Computers." ACM 
Transactions on Programming Languages, Vol. 
2, 1980, pp. 484-521. 
H.S. Stone. "Parallel Processing with Perfect 
Shuffle." IEEE Transactions on Computers, 
Vol. 20, pp. 153-161. 
D.S. Parker Jr. "Notes on Shuffle/Exchange 
Type Switching Networks." IEEE Transactions 
on Computers, Vol. 29, 1980, pp. 213-222. 
S.C. Kothari and S. Lakshmivarahan. "A condi
tion know to be sufficient for rearrangeabil
ity of the Benes class of interconnection 
networks with 2x2 switches is also neces
sary." Technical Report, School of EECS, 
University of Oklahoma, January 1983. 

:f.~..&.1-:'..!_~i: BLOCK STRUCTURED NETWOHK 



[~~] 
--;:--_r 

[iJ 

78 

!'~_gure 4_._. TWO J•ASSES OF OMEGA NETWOH.K 

!l_~.!:~_2_._ A BLOCK STlWCTUREO NETWORK OBTAl!~tm FROM 8A 



A FAST ALGORITHM FOR CONCURRENT LU DECOMPOSITION AND MATRIX INVERSION* 

Ming-Yang Chern and Tadao Murata 
Department of Electrical Engineering and Computer Science 

University of Illinois at Chicago 
P.O. Box 4348, Chicago, Illinois 60680 

Abstract -- This paper presents an efficient 
algorithm for LU decomposition and matrix inver
sion based on the concurrent data-loading array 
architecture. The algorithm performs the LU 
decomposition of a strongly nonsingular matrix A 
initially loaded in the array, in parallel with 
computing the inverse matrices L-1, u-1, and A-l : 
the L-l and u-l can be taken out together with L 
and U; and A-l will appear in the array at the end 
of the computation. For an n x n matrix executed 
on the array of the same size, the total time 
required for the above computation is n(ta+tm+td); 
where ta, t~, and td represent the time for addi
tion, multiplication, and division, respectively. 
A simple augmentation of this algorithm can lead 
to the solution of a linear system of equations 
without additional time. The performance of this 
algorithm is analyzed and compared favorably with 
an improved version of systolic arrays. 

I. Introduction 

Many scientific and engineering problems can 
be reduced to the problem of solving linear sys
tems of equations (LSEs). The recent availability 
of low cost, high density, fast VLSI devices has 
opened a new avenue for using processor arrays to 
perform special-purpose parallel computations. 
Efficient algorithms and cost-effective hardware 
structures have been intensively searched. The 
VLSI computing structures related to solving LSEs 
have been suggested by several researchers. Kung 
(3,4] proposed systolic arrays which can be used 
for LU decomposition, matrix multiplication, and 
linear convolution. Preparata and Vuillemin (7} 
analyzed an implementation of triangular matrix 
inversion from small construction modules. Hwang 
and Cheng [5} presented a complete set of computa
tional structures for solving LSEs. This set 
includes some special modules for LU decomposi
tion, solving a triangularized LSE, triangularized 
matrix, and matrix multiplication. 

In Hwang and Cheng's design, the modulized 
construction units can also be integrated to LU
decompose large-scale matrices as reported in 
their partitioned matrix algorithms [6]. These 
modules and linear equation solvers were recently 
applied to a system for image processing and data
base management [9]. The usefulness of these 
modules is evident. However, the utilization of 
processing elements (PEs) in these modules is 
still low. Moreover, these modules, like other 

* This work was supported by the National Science 
Foundation under Grant ECS 81-05649. 

0190-3918/83/0000/0079$01.00 © 1983 IEEE 79 

systolic arrays, suffer from the data reshaping 
problem. The data of a dense matrix must be 
reshaped before being fed into the processor ar
ray. The scheme of using on-chip delay latches 
can solve the problem partially, but evoke a more 
severe problem in the array chip interconnection. 

The process of solving LSEs in the above 
designs is divided into several steps, where a 
different hardware module is used in each step. 
Some of these steps can not be executed con
currently. For example, the computation of u-l 
can not start unless the LU decompostion is com
pleted. In addition, the output data of a step 
may not be arranged in the same way as required by 
the input of the next computational module. Some 
special provision must be arranged. This may need 
extra hardware and cause extra time delay. 
According to [6], four types of VLSI arithmetic 
module chips are required. Four is not a large 
number. However, it is still desirable to use 
fewer types of module chips. 

This paper presents a highly efficient algo
rithm based on a Concurrent Data-Loading Array 
Processor (CDLAP) (2]. Only one type of module 
chip is required for the construction of LSE 
solvers. According to our algorithm, the CDLAP 
can perform LU decomposition a little faster than 
Hwang and Cheng's design [5], and the inverse 
matrices of U, L, and A can all be obtained in the 
same process. Further, the solution vector or 
matrix in a LSE can be concurrently computed on an 
associated CDLAP array. 

_!_!_· LU Decomposition an~ Matrix Inversion 

For LU decomposition of an n x n matrix A 

[aij], we consider only the case in which all the 
principal minor submatrices of A are nonsingular. 
This provides a necessary and sufficient condition 
to produce a unique lower triangular matrix 
L=[l .. ] with all 1 .. = 1, and a unique upper tri
angulJr matrix U = f{i .. ] such that L * U = A. 
Both L and U are n xirl nonsingular matrices. In 
Grout's reduction method [10], the matrix A = L * 
U is decomposed according to the following compu
tations: 
For i = 1,2, •...• , n, 

i-1 

uik a.k- L: 1 .. u 'k 
i j=l iJ J 

i-1 

lki C ~ • - L: lk . u .. ) I u .. 
i j=l J Ji H 

lii 1 . 

for i < k $ n; 

for i < k :5 n; ( 1) 



Equation (1) can be transformed into another 
form mo~e suited for parallel computations. We 
use a~ .>to denote the a .. vrlue in the kth recur
sion o"Pcomputation. SetJa.< .' = a .. at the begin
ning. Using "t" as a variJble hl denote the re
cursion sequence from 1 to n, we have the follow
ing algorithm equivalent to (1) : 
Fort= 1,2, ..... , n, 

ltl 
for j > (2.a) utj atj t 

lt) > (2.b) lit ait /utt for i t 

(t+D (t) 
1itutj for i,j > t (2.c) a .. = a .. -

l.J l.J 

In each recursion, the above three equations are 
executed in the order (2.a), (2.b), and (2.c). 
(The same convention will apply to the equations 
(4), (6), (8), (10), and (12) in thP. following.) 
When t equals n, the above computation ends after 
computing (2.b). Note that the co~putation of 1. 
in (2.b) is not necessary for i = t, since ltt f~ 
always equal to 1. 

To illustrate the co~yutation of the in~erse 
matrices of Land U, let L = M = [m. ·) and U 1= V 

l.J 
= [vi.]. Since Land U are nonsingular, both M 
and V do exist and are unique. It is easily veri
fied that M is an n x n lower tria1.gular matrix 
with all its diagonal elements equal to 1, just 
like L. Similarly, V is an n x n upper triangular 
matrix like U. To compute M, we make use of the 
relation L * M =I, where I is the identity matrix 
of order n. Thus we may write 

~k li-l fork= 1, 2, •.•• , n; { ( 3 ) 

mij - :E lik~j for 1 .$ j < i .$ n ) 
k=j 

As in the previous case, (3) can be transformed 
into the following recursive algorithm: 
Fort= 1, 2, ..... , n, 

mt t ID~~?. 1 

(t) 
mtj = mtj 

(t+ 1) (t) 
mij = mij - 1 itmtj 

for i > t; 
(4.a) 

for j < t. 

for i > t j < t (4.c) 

Note that (4.b) is missing. The labeling 
(4.c) is used instead of (4.b) for the convenience 
of later illustration. The computation of V based 
on the relation V * U = I can be written as: 

vkk= l/u~~l fork= 1, 2, .•.. , nn; I (S) 

( "" ) I for 1 < i < · < ( vij= - L...J vikukj ujj J -
k=i 

which in turn can be transformed into the follow
ing recursive algorithm: 
Fort= 1, 2, •..••.. , n, 

1 . 
' 

v (t) = 0 
tj 

for j > t (6.a) 

for i < t (6.b) 

for i < t , j > t (6.c) 

When t equals n, the inversions of L and U 
will be completed after computing the (a), (b) 

80 

portions of the above equations. 

To describe the inversion of matrix A, let S 
= fs" ·] = A-l. Since A= L * U, we have S = u-l * 
L- ~JV* M. Thus, for any i and j, 

n n 

siJ. = :E vik~J· = :E v.k~ · (7) 
k=l k=max{i,j} i J 

Transforming (7) into the recursive algorithm, we 
have: 
For t = 1, 2' ..... , n, 

(t) 
= 

(t) 
= 0 for i, j < t (8.a) sit stj 

(t+D (t) 
v itmtj for i, j < t (8.c) sij = s .. -

l.J 

After the above n recursions, set 

(8.d) 

(t+l) t = n Step (8.d) at t = n+l is added, since sij at 
is equal to - sij" 

III. Parallel Computation Architecture 

The Concurrent Data-Loading Array Processor 
(CDLAP) is introduced in [2). The architecture is 
most suited for the computations in which process
ing elements (PEs) in the same row or same column 
share the same operand data as in a column-row 
vector multiplication. By accumulating resultant 
values in the PEs, the array processor can be used 
for computations involving recursive algorithms. 
The CDLAP has been shown to have an excellent 
efficiency in performing matrix multiplications 
[2]. The one-dimensional case of the concurrent 
data-loading design is reported in [8]. 

The careful examination of the recursive 
algorithms in Section II reveals some important 
characteristics of the algorithms. Consider the 
following three groups of equations: 

{(2.a), (4.a), (6.a), (8.a)} 
{(2.b)' (6.b)} 
{(2.c), (4.c), (6.c), (8.c)} 

group (a) 
group (b) 
group (c) 

The equations in each of the above groups can be 
executed concurrently. For group (a) in each 
recursion, there are always 2n+l new superscripted 
variables assigned. All these variables are set 
to zero except m~t) and v ~t) , which are both set to 
1. In addition, fhe total number of the variables 

uti and mtj (without superscript) assigned is n+l 
for any t. For group (b), there are exactly n 
divisions sharing the same divisor (operand) utt• 
Group (c) has more complex sharing of operands. 
In the recursion of t = k, (n-k) x n and k x n PEs 
are required for concurrently executing equation 
sets {(2.c), (4.c)} and {(6.c), (8.c)}, respec
tively. Here each operand l.t or v. will be 
shared by exactly n PEs. Theisame chaf~cteristics 
can be observed for the other combination of the 
equation sets; that is, n x (n-k) and n x k PEs 
are needed for the equation sets {(2.c), (6.c)} 
and {(4.c), (8.c)}, respectively. Again, each 

operand utj or mtj will be shared by exactly n 
PEs. 



The CDLAP configuration suited for the above 
complex computation requirements is shown in Fig.l 
for the case n = 4. For the LU decomposition and 
matrix inversion of an n x n matrix A, the CDLAP 
must have n dividers and n x n adder/multipliers. 
The PEs in the same row can share the same operand 
and the PEs in the same column can share the other 
common operand. The shifts are in the diagonal 
direction to the upper-left PEs. At the upper 
boundary of this array, n+l bus registers are pro
vided. These registers are used to hold the data 
for output and for the concurrent data-loading in 
the corresponding columns. The dividers 
represented by circles in Fig. 1 have similar bus 
registers for output and for the concurrent data 
loading in the corresponding rows. Hence, there 
are totally 2n+l output channels. (One of them is 
not necessary, since it is always 1 for this com
putation.) At the bottom and right boundaries, 
there are a total of 2n+l input channels. The 
channels I 0 and I 5 w\£f alwaxr be set to 1 since 
they correspond to mtt and v~t), and the remaining 
input channels will oe set to zeros. 

In order to illustrate the computation pro
cess on the CDLAP, we may consider the case n 4 
without loss of generality. The recursive algo
rithms in Section II can be extended, grouped, and 
illustrated in the following detailed computation 
steps. 
Step 0: Initial data loading of matrix A: 

i.e., 

Step 1: Initial shift: 

(1) 
ulj = alj 

n> 
m11= m11 l; 

U} 
v 11 = l; 

(1) 
sll = 0 

Step 2: Division: 

Vil 

Step 3: 
(2) 

aij = 
(2) 

mij = 
<2) 

vij = 
C2) 

sij = 

Step 4: 

m I ail ull 

m I 
v il ull 

Multi plication 
(1) 

aij - lil ulj 
m 

mij - lil mlj 
(1) 

v ij - v il ulj 
(1) 

sij - Vil mlj 

Shift: 

(2) 
mi2 = 0 

for all i, j. 

for j 1, 2, 3, 4; 

for i > l; 

for j > 1; 

for i > l; 

for i 1. 

and accumulation: 

for i, j > l; 

for i > 1, j l· . 
for i 1, j > l; 

for i, j = 1. 

for j ~ 2; 

for i > 2; 

for j 5 2; 

81 

(2) 
v22 = l; 

(2) 
si2 = 

(2) 
2j = 0 

(2) 
v2 j = 0 

Step 5: Division: 

for j > 2; 

for i, j 5 2. 

for i > 2; 

for i < 2. vi2 

Step 6: 

(3) 

aij 
l3) 

mij = 

Multiplication and accumulation: 

<3> 
vij = 

(3) 
sij = 

Step 7: Shift: 

(3) 
u3j = a3j 

(3) 
m33 l; 

(3) - 0 
s3j -

Step 8: Division: 

vi3 

Step 9: 

<4> 
aij = 

(4) 
mij = 

(4) 
vij = 

(4) 
sij = 

rn I 
ai3 U33 

C3) I 
Vi3 U33 

Multiplication 
(3) 

aij - 1 i3 u3j 
{3) 

mij - 1 i3 m3j 
(3) 

vij - v13 u3 j 
(3) 

5 ij - vi3 m3j 

Step 10: Shift: 

(4) 
u4j = a4j 

(41 
m44 = l; 

<41 
V44 = l; 

<4> <4) 0 
5 i4 = 5 4j = 

Step 11: Division: 

C4l 
vi4 = vi4 I u44 

for i, j > 2; 

for i > 2, j 5 2; 

for i < 2, 2 > 2; 

for i, j 5 2. 

for j > 3; 

for i > 3; 

for j < 3; 

for j > 3; 

for i, j < 3. 

for i > 3; 

for i < 3. 

and accumulation: 

for i, j > 3; 

for i > 3, j 5 3; 

for i 5 3, j > 3; 

for i, j 5 3. 

for j > 4; 

for j 5 4; 

for i, j < 4. 

for i < 4. 

Step 12: Multiplication and accumulation: 

(5) (4) 
sij = sij - vi4 m4 j for i, j 5 4. 

Step 13: Sign change: 



for i, j ~ 4. 

According to the above computation steps, the 
operation of the CDLAP is repetitive and regular 
except the initial data loading and the sign 
change in the last step. In each recursion, the 
three steps corresponding to equation groups (a), 
(b), and (c) are executed sequentially; shift 
first, then division, and then multiplication and 
accumulation. For each shift step, all data will 
be moved one position in the upper-left direction. 
The labeling of each datum shifting within the 
(n+l) x n PEs is not changed. The initial values 
of all variables v :~) , m.<~l , and s .<~) are set to 
either 1 or 0 at ~he tfme these ~rtter the array. 
On the other hand, the data a~~) and m:~>become ut. 

d J h J .J an mtj at the time they enter t e output regis-
ters at the upper boundary. Similarly, after the 
division step, the 1. and v· values are sent to 
the output registers.it The a~ta in the output 
registers are also used as the operands in next 
step of multiplication and accumulation. 

Fig. 2 shows the data flow of the above com
putation process. The four snapshots display the 
position of variables at the beginning of Steps 3, 
6, 9, and 12, respectively. The L, U, L-1 , and 
u-l values can be obtained from the output ports, 
and the inverse matrix A-l will appear in the 
array at the end of the last step. Detailed input 
and output sequences are shown in Tables 1 and 2, 
where the last two columns under IA. and OA· will 
be refered to later in Section IV. J J 

IV. Solving Linear Systems of Equations 

Consider a family of linear equations A * X = 
B, where B = [b .. ] is a given n x m matrix and X = 
[xi.] is an n xiJ unknown matrix. When m 1, 
therl B becomes a vector b = [b.] and X becomes an 

- i 
unknown vector~= [xi]• 

Since A= L * U, we have L * U * X = B. Let 
U * X = D = [d .. ]. Then we have the relation L * D 

B. Using thlJ relation, we can write 
i 

bij = L: 1ikdkj 
k=l 

Since l.i = 1, we have 
i i-1 

dij= bi. - L 1.kdk. for any i and j. (9) 
J k=l i J 

Equation (9) can then be transformed into the 
recursive algorithm shown below. 
For t 1, 2, , n, 

d b (t) 
tj tj 

(10.a) 

Jt+lt b(t)_ 1 d 
ij ij it tj 

for i > t (10.c) 

This computation, similar to that for LU decompo
sition, will end at t = n after completing (10.a). 

For U * X = D, the algorithm is similar. 
Using the relation X = u-l*D = V * D, we can write 

82 

for any i and j. (11) 

Transforming (11) into a recursive form, we have: 
Fort= 1, 2, ...•. , n, 

(12 .a) 

for i < t (12.c) 

After completing (12.c) at t n, the following 
sign change must be done to obtain the correct x 
value. 

(n+l) 
xij = - xij for all i and j. (12. d) 

To perform the above computations, an extra 
n x m CDLAP will be needed. This extra array must 
be associated with the original array from which 
the l.t and vit data are transferred to the hor
izontal data buses of the associated array. The 
data of matrix B are initially loaded into this 
associated array and the shift must be in the "up" 
or "north" direction. The configuration can be 
implemented as shown in Fig. 3. The detailed 
steps for n = 4 are listed in the following (where 
j = 1, 2 , ..... , m) • 
Step 0: Data loading: 

b\l)= b 
ij ij 

Step 1: Initial shift: 

dlj 
b (1) 

lj ' 
<lJ - 0 

xlj -

Step 3: Multiplication 

bm= b:~) -
\1dlj ij iJ 

(2) 
= 

fl) - vildlj· xij x .. 
iJ 

Step 4: Shift: 

d2 j 
b (2) (2) 

0 x2j = 
2j 

Step 6: Multiplication 

b (3) = b .<~> - 1 i2d2j ij iJ 
(3) 

= 
(2) - vi2d2j x .. x .. 

iJ iJ 

Step 7: Shift: 

d3j 
b (3) (3) 

= 0 
3j x3j 

Step 9: Multiplication 

b ~~) = b~~) - 1i3d3j i] iJ 
(4) 

= 
(3) - vi3d3j x .. xij iJ 

Step 10: Shift: 

= b (4) 
d4j 4j 

(4) 
x4 j = 0 

for i 1, 2' 3, 4. 

and accumulation: 

for i > 1. 

for i < 1. 

and accumulation: 

for i > 2. 

for i < 2. 

and accumulation: 

for i > 3. 

for i < 3. 

Step 12: Multiplication and accumulation: 

for i < 4. 



Step 13: Sign change: 

(5) 
xij = - xij for i = 1, 2, 3, 4. 

The numbering of the above steps follows the 
system in Section III. Fig. 4 shows the data flow 
of this process in the asociated array. Referring 
to Tables 1 and 2, the input and output sequences 
are listed under IAj and OA~• respectively. The 
corresponding time unrts can De easily verified. 

To solve A* x = b directly, the associated 
array is actually not necessary. The computation 
process is the same as LU decomposition except 
that the E_ data must be input through the channels 
I 0 to I 3 at step 1. The snapshots of data flow 
for n = 4 are shown in Fig. 5. At the end of Step 
13, the solution vector x is obtained in the ar
ray. This scheme offers an efficient way to solve 
LSEs (for m = 1) without extra hardware. 

In analyzing the time required for one recur
sion of the above computations, it is necessary to 
consider the time required for setting up data 
signals on the data-loading lines before the data 
can be loaded. This data broadcast delay may be a 
controversial point about the CDLAP. However, the 
following estimates of this delay on some practi
cal design indicate encouraging results. The phy
sical parameters used in this estimation are as 
listed in Mead and Conway [l]: 

Metal 
diffusion 
poly 
gate-channel 

Resistance 
0.03 ohms/O 
10 ohms/O 
15-100 ohms/O 

Capacitance 
0.3 * 10-4pf/ym2 
1 * l0-4 pf/µm 
0.4 * 10-4 pf/µm2 
4 * lo-4pf/µm2 

Assume that we have a VLSI array chip of 1.2 
cm square, PE of 1 mm square, metal line of 6 µm 
(3 A) wide, metal line space of 6 µm, and 16 bits 
per word. The data-loading buses are mostly made 
of metal lines and partly connected by polysilicon 
or diffusion layer as shown in Fig.6. Then the 
width of the one data-loading channel would be 
about 200 µm or 0.2 mm. For the horizontal load
ing lines, there is a 0.2 mm diffusion link for 
every 1 mm of metal line. The diffusion link is 
assumed to have the same width as the metal line. 
Under this situation, the R1*c1 value of a verti
cal data line would be 0.13 nsec (R1= 60 ohms, c 1= 
2.2 pf); while for a horizontal lirie, it is about 
10 nsec (R = 3400 ohms, c 1= 3.0 pf). Here, R1 is 
the resistance along the data line, and c 1 is the 
capacitance due to the data line itself. The 
R1*c1 value gives us a rough estimate of the in
trinsic time delay due to the data bus itself; it 
is about two times that of the real time constant. 

Two-layer metal lines were used in a recent 
work [11] in which a 32-bit processor was fabri
cated. This technique allows smaller chip area 
and easier layout cross-over. Using this tech
nique in our implementation, both the horizontal 
and vertical loading buses will have the same high 
speed. Thus, the time delay is mainly caused by 

83 

the output impedance of the driver circuit and the 
capacitance of the gates and non-metal pathways. 
For the layout shown in Fig.6, the longest diffu
sion link needed to connect the data bus to the 
input buffer of a PE is about the layout width of 
the data bus, about 200 µm in our calculation 
above. Let Rg be the resistance along this diffu
sion link, and Cg be the capacitance due to the 
diffusion link and its associated gate area. 
Assume this diffusion link has the width of 4 µm 
(2 ;>._ ). Then the maximum Rg is about 340 ohms. 
The maximum capacitance due to this diffusion link 
is 0.08 pf. If the area of the gate and other 
diffusion re~ions connecting to this link is 
within 200 µm (which should be large enough), the 
Cg value for one PE would be less than 0.16 pf. 

Taking a practical estimate, the output 
resistance of a driver circuit in the chip is 
assumed to be lK ohms. The maximum resistance R 
to any gate area is thus 1000 + 60 + 340 = 1.4 K 
ohms. The total capacitance C associated with the 
single data line would be within (2.2 pf+ 0.16 pf 
* 10) 3.8 pf. Thus the R * C estimate of the 
time delay of the data bus is only 5.3 nsec. For 
the above matrix operations, the time required for 
one step of computation (one addition plus one 
multiplication, or one division) would be at least 
one order of magnitude longer than this delay. 
Therefore, the time required fo_£_the data broad
~a~ is n~J:hg_ible. 

The advantages of the algorithm in this paper 
can be easily seen by comparing the required 
structural complexity and time efficiency with 
those of other array processors performing the 
same functions. The systolic algorithm for LU 
decomposition presented in [1] is not as efficient 
as that in [S]. In Kung's paper [12], only the 
net processing time is counted. The LU decomposi
tion needs n(t +t +td) processing time. While for 
solving A* x ~ bm(by back substitution), it takes 
an additional n(t +t +t~) time, disregarding the a m 
data arrangement prob ems. Here, t , t , and td 
represent the time for one addition,a muTtiplica
tion, and division, respectively. 

A close examination of the CDLAP shown in 
Fig.l shows that the first two columns can be 
implemented as one column, since the dividers are 
not busy at the same time as the remaining PEs. 
On the other hand, the diagonal shift can be split 
into the vertical and horizontal shifts. And 
these vertical or horizontal shift lines can be 
used for loading and unloading n2 data in n shift 
steps without matrix data reshaping. Since the 
data shift is fast, the memory data rate is the 
most probable speed bottleneck, which must be at 
least fast enough to accomodate the I/O data in 
one unit of computation time. Therefore, the ini
tial data loading of n2 data would take less than 
n units of computation time. 

With an appropriate provision of cache memory 
or buffer registers, the initial data loading time 



' ' I 
1 

t 
I 

i 
I 

would be very short, just like the shift time in 
the case of systolic arrays. Thus we neglect the 
initial data loading time in our later analysis. 
The turnaround time required for LU decomposition 
in our design is (n-l)(t +t +td). This is less 
than that in [12]. For sol~in~ A* x E_, our 
algorithm needs only n(t +t +td)' while that in 
[12] requires 2n(t +t +td) ~ouWting only the net 
processing time~ m Hatrix inversion takes 
n(2t +3t +td) in [12], compared with only 
n(t ft +fd) turnaround time in our case. 

a m 

For the convenience of analysis, we assume 
that t = t + t • It is also reasonable to as
sume th~t theatimemdelay due to a shift, data 
broadcast, or sign change is negligible. A time 
unit can thus be defined as the time needed for a 
division or a multiplication plus an addition. 
The total time units spent up to each step is also 
shown in the 2nd column of Tables 1 and 2. From 
Table 2, it can be found that the computations of 
L, U, L-1 , u-1 , and A-l will take 2n-3, 2n-2, 
2n-2, 2n-l and 2n ti~e units, respectively. 

Hwang and Cheng's paper [5] offers a complete 
set of modules for constructing the LSE solvers. 
Their results are summarized in Table 3. Their 
turnaround times for obtaining u-1 , A-1 , and solv
ing LSEs from A are also computed and listed in 
the entries from (8{ to (11) in Table 3. Their 
computation of u- h~f to wait until the c~mple
tion of U, while for A the completion of U 1 is 
required. 

The performance of our algorithm and the 
required CDLAP structural complexity are also sum
marized in Table 3. The result of comparison is 
self-explanatory. Our design uses less hardware 
and less time to obtain L-1, u-1, or A-1, and to 
solve the LSEs. Further, only one type of module 
is required in our design, since the vertical 
/horizontal shift implementation of the CDLAP has 
the capacity of the associated array in Fig.3. 

VII. Conclusions 

The algorithm presented in this paper offers 
an efficient way to perform LU decomposition and 
matrix inversions concurrently in the same array. 
For an n x n matrix, it requires only n2 PEs. 
This algorithm uses fewer PEs and takes less time 
than existing algorithms on systolic arrays to the 
best of our knowledge. In addition, an n x m unk
nown matrix of an LSE can be computed by attaching 
an n x m associated array. The computation of the 
unknown matrix can be completed in parallel with 
the above process. All of the above can be 
achieved using only one type of module, which is 
suitable for mass production. 

The processor array on which the present 
algorithm is executed is a version of the CDLAP. 
A similar structure can be used for matrix multi
plications [2]. In all the cases mentioned so 
far, no data reshaping problem is encountered for 
dense matrices. This architecture has shown very 
encouraging results for the applications 

84 

considered so far. More applications are being 
investigated and will be reported later. 

References 

[l] c. Mead and L. Conway, Introduction to VLSI 
Systems, Reading, MA: Addison-Wesley, 1980. 

[2] M.Y. Chern and T. Murata, "Efficient matrix 
multiplications on a concurrent data-loading 
array processor", Proc. 1983 Int. Conf. on 
Parallel Processing. 

[3] H.T. Kung and C.E. Leiserson, "Systolic Arrays 
(for VLSI)", Sparse Matrix Proc., 1978, 
Society for Industrial and Appl. Math., 1979, 
pp.256-282. 

[4] H.T. Kung, "Let's design algorithms for VLSI 
systems", in Proc. Caltech Conf. VlSI, 
Jan. 1979, pp.65-90. 

[5] K. Hwang and Y.H. Cheng, "VLSI computing 
structures for solving large-scale linear 
system of equations", Proc. of 1980 Int. Conf. 
on Parallel Processing, pp.217-227. 

[6] K. Hwang and Y.H. Cheng, "Partitioned matrix 
algorithms for VLSI arithmetic systems"", IEEE 
Trans. Computers, Vol.31, Dec. 1982, pp.1215-
1224. 

[7] F.P. Preparata and J. Vuillemin, "Optimal in
tegrated-circuit implementation of triangular 
matrix inversion", Proc. of 1980 Int. Conf. 
on Parallel Processing, pp.271-279. 

[8] K.H. Huang and J .A. Abraham, "Efficient 
parallel algorithms for processor arrays", 
Proc. 1982 Int. Conf. on Parallel Processing, 
pp.271-279. 

[9] K. Hwang and K.S. Fu, "Integrated computer 
architectures for image processing and data
base management", Computer, Jan. 1983, 
pp.51-60. 

[10] P.D. Crout, "A short method for evaluating 
determinants and solving systems of linear 
equations with real or complex coefficients", 
in Proc. American Inst. Elec. Eng., Vol.40, 
1941, pp.1235-1240. 

[11] J.M. Mikkelson, L.A. Hall, A.K. Malhotra, 
S.D. Seccombe, and M.S. Wilson, "An NMOS VLSI 
process for fabrication of a 32-bit CPU chip", 
IE~E J. Solid-State Circuits, Vol.16, 
Oct. 1981, pp.542-547. 

[12] S.Y. Kung, K.S. Arun, R.J. Gal-Ezer, and D.V. 
B. Rao, "Wavefront array processor: language, 
architecture, and applications", IEEE Trans. 
Computers, Nov. 1982, pp.1054-1066. 



Fig. 1 CDLAP configuration for LU decomposition 
and matrix inversion; where squares, rectangles 
and circles represent PEs, output registers, and 
dividers, respectively. 

Step 3: Step 6: 

Step 9: Step 12: 

Fig. 2 The data flow on the CDLAP (of Fig. 1) 
for LU decomposition and matrix inversion. 

The 01 
CDLAP 

o.f 02 

Fig. 1 
03 

04 

1A1 IA.2 1Am 
Fig. 3 The CDLAP configuration for solving 

a family of linear equations. 

85 

I 
\ 

Step 3: Step 6: 

Step 9: Sup 12: 

Fig. 4 The data flow on the associated array 
of Fig. 3 for solving A * X = B. 

Step 3: Step 6: 

Step 9: Step 12: 

Fig. 5 The data flow on the array of Fig. 1 for 
LU decomposition and solution of A * ~ = E_. 

-
l 
I 

metal lines for 
16-bit data bus ,_,..__ 

__ j_ 
-
-

PE .. 
J., J 

bu.ff' er 

c::i 
'• I -; -

I 

' -
: : t::== l metal 

-+--~lines ----~200µm 

Fig. 6 A layout design for the data-loading buses 
(where dotted lines represent the diffusion links). 



Table 1 Table Z 
Input Sequence for LU Decomposition on the CDLAP Output Sequence for LU Decomposition on the CDLAP 

rstep TilllE uni 

1 1 o 
I 2 1 
I 3 2 

4 I 2 

5 3 
6 I 4 

7 I 4 

8 5 
9 6 

I 10 6 

l 11 7 
12 8 

IO Il I2 I3 I4 I5 I6 I7 I8 IAj I step la~lff I 01 02 03 04 05 06 07 08 I OAj 
(1) (1) (1) Cl) (1) (1) (1) (1) m 

mll m21 m31 m41 sll vll v12 vl3 v14 xlj I 1 I o I ull ulZ u13 U14I dlj 

I z I 1 I 121 131 141 vll -r--
lm22 

(2) (2) (2) (2) (2) (2) (2) (2) (2) 

m32 m42 6 1Z 6 ZZ v2Z v23 v24 s21 x2j 

I 

lm33 J~~ (3) (3) (3) (3) J3) (3) (3) (3) 
s13 s23 S33 V33 34 s31 s32 x3j 

I 
(4) (4) (4) (4) (4) (4) (4) (4) (4) 

m44 s14 Sz4 S34 S44 V44 s41 s42 S43 x4j 

I 3 l 21 J_ 
-~1 u22 u23 u24 m21I d2j 

5 I 3 I 132 14Z vlZ v2Z I 
6 J_ 41 J_ 

7 I 4 I u33 u34 m31 m32I d3j 

I 8 I 5 I 143 v13 v23 v33 I 
9 I 6 I l 

I 10 I 6 I u44 m41 m42 m431 d4j 

11 I 7 I v14 v24 v34 v44 I 
I 12 I 8 I I 
I 13 I 8 I appearing in the array : A-1 I x 

Table 3 : Summary of Structural Complexity and Computation Time 

I* For the design in [5] 
I 
I 

I (1) LU decomposition 
I 
!(2) Triangularization 
I of LSEs 
I (3) 
I 
I c 4) 
I 

Triangular linear 
system solver 
Inversion of U 

1

(5) Inversion of L 

(6) Matrix multiplication 
(to obtain A-1 ) 

(7) Solving a family of 
LSEs using A-1 

* The combined results 
from the above design 

no. of 
required 

PEs 

nz-n 

n2-1 

n 

(n2+n)/2 

(n2-n)/Z 

2n2-n 

nz 

(8) Solving A*~=_!'_ [(1)+(3)] 

(9) Obtaining u-l from A [(1)+(4)] 

(10) Obtaining A-l from A [(9)+(6)] 

no. of start-up 
I/O time 

channels 

4n-2 n-1 

4n n 

n+Z n 

2n l 

2n-Z 1 

4n-1 Zn-1 

nZ+2n n 

net com
putation 

time 

Zn-1 

Zn 

Zn-1 

2n-1 

Zn-3 

Zn-1 

n 

turnaround 
time 

3n-2 

3n 

3n-l 

2n 

Zn-2 

4n-2 

Zn 

turnaround 
time 
6n-3 

5n-2 

9n-4 

(11) Solving a family of LSEs using A-1 , 
with A-l computed from A. [(10)+(7)] 

lln-4 

** The algorithm based on 
CDLAP in this paper: no. of 

(12) LU Decomposition only 
P~s 
n -n 

(13) LU Decofposition nz 
plus L- , u-l 

nz (14) The above plus A-l 

l(l5) Tho abovo pluo oolving n2+nm 
A* X = B, with B of n x m. 

n2 (16) Solving A * ~ = _!'_ 

I/O 
channels 

3n-1 

4n+l 

4n+l 

4n+1+2m 

4n+l 

86 

initial 
lo2ding 

n data 

i~2nd:~:ps 
in2n steps 

n data 
i~ n steps 
n +nm data 

in ~ steps 
n data 

in n steps 

(after loading) 
turnaround time 

2n-2 

2n-l 

2n 

2n 

2n 



VECTOR COMPUTER FOR SPARSE HA'l'RIX OPERATIONS 

Gao Q.ing-Shi, Wang Rong-Quan 

The Instittite of Computing 'L'echnology, Academia Sinica 

Beijing, China 

Abstract 

A vector computer architecture for sparse 
matrix operations is introduced in this paper. 
ii.part from having all the functions of an ordi
nary vector computer, it can also efficiently 
mc..ke operations on the non-zero elements of the 
sparse vectors anci sparse matrices in pipeline 
manner. In comparison with the execution of 
sparse matrix operations in an ordinary vector 
computer,the computation speed can be increased 
several times or even over ten times. 

On the basis of extending the standard high
-level language to the vector high-level langu
age, the further extension to the sparse vector 
high-level language, the basic operations of 
sparse vector and sparse matrix and its imple
mentation in machine are discussed. 

Raising the problem 

A large number of applications, such as li
near programming,the numerical solution of dif
ferential equations, structural analysis, net
work analysis, genetic theory, behavior and so
cial science and so on, require solving the 
problems of higher order sparse linear equa
tion. With the rapid development of technology, 
large-scale sparse matrices will be constantly 
encountered in the ap0lication related to 
large-scale system pro bl ems. 

The $parse Matrix (SM) described in this pa
per refers to not only the matrix of which the 
non-zero elements take a small percentage, such 
as less than 5%, but also the matrix of which 
the non-zero elements take a considerable ratio. 
SM technology has been sti:ldied carefully in 
traditional computers and ordinary vector com
puters (2)--(4). Utilizing the SM technology, 
only non-zero elements are stored and calcula
ted, and this results in great reducing of the 
needed storage space and raising of the compu
tation efficiency. But these discussions are 
from the angle of algorithm. Although SM tech
nology can speed up calculation considerably, 
when non-zero element·s of SM are calculated it 
is necessary to spend more overhead such as co
mparing, ·41scriminating and controlling of su
bscripts of non-zero elements, and this results 
in treating an ordinary pipeline-vector compu
ter as a traditional scalar computer only. The 
Vector Computer for Sparse ~.atrix Operation 
(VCSMO) uses hardware to implement the above 
overhead operations from the angle of architec
ture. Thus the non-zero elements of SM can be 
effectively calculated in pipeline manner. The~ 
refore,.the VCSMO introduced in this paper can 
be several times or even over ten times faster 
than an ordinary vector computer in the imple
mantation of SM operations under the same tech-

0190-3918/83/0000/0087$01.00 © 1983 IEEE 87 

nological conditions. 

The Notation of ilpdrse Vector and 
Sparse Matrix 

The Sparse Vector (sv) can be re1.reuented as 
triad [ 1,S',l ],',v'i-iere 1 is a monotone-increasing
-integ-er-vector ci1lled sparse-integer-control-
-vector which is composed of the subscripts of 
non-zero elements of SV, y is a data vector 
which iu composed of the non-zero elements of 
SV, 1 is the len1;-th of~ or y. 

In the assembly language a vector can be 
represented with [D ,l] and a SV with a triad 
[Df,Dy,l], where n,Yand D are the initial ad
dresses of 1 and y respectively, and 1 is the 
length of 1 or y. It should be noted that 1 
varies constantly in the operation. ~ and y are 
usually strored in sequence. 

The SM can be represented with a triad 
(~,Y ,! ], which is composed of a group of order
ed sparse row vectors (~[i,*],Yfi,*],l[i)], 
j=1,2, • • • ,n. Generally speaking, if i;tj then 
1[ i] * re j]. 

In the assembly language, the sparse row 
vector is represented with [Dp(i], Dy!iJ, l[iJ], 
where i=1,2,···,n, Dp[iJ and DyfiJ are the ini
tial addresses of the row vectors ~(i,*l and 
Y(i,*l respectively. Therefore in the assembly 
langua~e the SM is respresented as r_n, ,ny,! J , 
where lJp =[D1[1], DpC2J, • • • ,Dp[nJ) and Dy=[Dy(1!,Dy(2), 
••• ,Dy[n]]. 

Generally speaking, ~and Y are continuously 
stored row by row and in sequence in the main 
memory. Therefore, SM can also be represented 
as (D,,Dy,!J in asse:nbly language, where Dp and 
Dy are the initial addresses of ~ and Y respec
tively. 

Non-sparse vector can use a flag bit ins-
tead of ~· 

SV and SM can also be reoresented with 
quadruple l1,y,l,L] and [~,Y,!:LJ. Where L is 
~pper boun~ of the length 1, L=[Ll1J,L[2J, • • • , 
L Cn)] and L[ i J is upper bound of l(i], the mea
ning of other parameters is the same as the 
triad notation. In some cases the calculation 
can be speeded up when the quad~lple notation 
is used. 

The standardization representation of zero
-vector or zero-Matrix is blanks. 

·rhe Extension of Standard Vector 
High-Level Language to SV and SM 

The High-Levle Language (HLL) system for 
SM operations must be extended on the basis of 
the standard HLL. First it must be extended to 
the standard Vector HLL (VHLL)'[1~and then fur-



ther to the language which includes sparse vec
tor operations and sparse matrix operations. 

The Extension of the Declaration Part 

On the basis of extending· HLL to 
VHLL, we introduce SPARSE VECTOR and 
ARRAY, the type of which can be REAL or 
or BOOLEAN. The mode is as follows: 

standard 
SPARSE 

INTEGER 

{
REAL } {ARRAY [<identifier>, 
IN'T:3Ci·EH SPArlSE 
BOOLEAN VECTOR[<identifier>, 

ddentifier>J[a1:b1,a2:b2;N]} 
(identifier~[a:b;NJ 

where "{ ~" denotes "or". The first identifier is 
the name of the sparse control matrix or sparse 
control vector of which the corresponding type 
is the integer. The second identifier is the 
name of the compressed matrix or compressed vec
tor.N is the upper bound of needed storage space, 
(b1-a1+1) and (b 2-a +1) is number of rows and 
number of columns of original matrix respective
ly, b-a+1 is the length of original vector. Se
veral sparse arrays or sparse vectors are permi
tted to be declared all at once, 

What requires our attention is that the co
lumn SV of SM is stored very irregularly and can 
not be noted directly with(n*,j],Y[*,jJ,ifj]J. 

The Sequence of Operations 

The priority of +,-,*,/,,,...,,f"V' comparison 
and other operations are the same as that in the 
standard HLL. 

Sign, Abs, Max, Min, !Maxi (absolute maximum), 
!Mini (absolute minimum), ~B(standardization), 
LJ(lower integer),rl(upper integer), ()(decimal 
part),#Z(extract main-diagonal vector of matrix), 
ltMI(matrix inversion), #IV(Inverted Sequence 
Vector),~E(extract a element), t(iterative addi
tion of vector), ~RT(retun operation) and etc. 
have the highest priority. 

:jj:IV and #MT(matrix transpose) and f belong to 
the same priority. *(inner product of vector) ,SM 
multiply SV and*,/ belong to the same priority. 
~Hli!(Sign replacing), iH+(Sign-bit addition) and 
+,- belong to the same priority • .>ef{NOR) and\'(OR) 
belong to the same priority, -A(NAND) and /\(AND) 
belong to the same priority. For the detail of 
the above operations, see next section. 

The Sparse Vector Expression and Sparse Matrix 
Expression 

If operation result of an expression is the 
expresentation form of SV or SM, the expression 
is respectively called the SV expression or SM 
expression. The SV expression or SM expression 
can make operation connections with the corres
ponding non-sparse expression. The expression 
formed after the connection is called sparse ex
pression or non-sparse expression depending on 
whether its operation results are sparse or non
-sparse vectors (matrixes), 

Assignment 

SV and SM can be assigned with SV expression 
and SM expression individually, Besides, non-SV 
and non-SM can also be assigned with SV expres-

88 

sion and SM expression individually and this is 
return operation. SV and SM can also be assig
ned with non-SV expression or non-SM expression 
individually and this is standardization.Non-SV 
and non-SM can be assigned with a constant, 
but in general, SV and SM can not be assigned 
with constant. 

Standard Functions 

In addition to normal standard functions of 
general HLL,further extended standard functions 
would contain length of original vector, number 
of column and row of original matrix, length of 
compressed vector, vector consisting of lengths 
of all compressed row-vector of matrix and 
needed maximal storage space of SM or SV. 

Basic Operations of HLL 

The SV computation system should include 
non-SV operations, scalar operations, SV opera
tions and the mixed operations of non-SV, SV 
and scalar. All the operations can be made un
der the control of the operation control vector 
[1]. The discussion here is concentrated on ba
sic operations of SV and SM. 

Standardization 

[ ~ 3'y3' 1 3] : =ID3 ( [ ~ 1 ':11 ' 11] ) • 
Where 1 is the number of non-zero elements of 
y , y 1s a compressed vector elernirni,ted zero-

1 '\ - - d' b -elernElnts of y 1, ~ 3 is a correspon ing su sc-
ript vector. 

The Operations of Addition, Subtraction, Multi
plication, Division, AND, OR, .Exclusive-OR,NAND 
and NOR 

[ ~3'Y' 3 ,1 3 1:=['f 1 ,y 1 ,1 11e( ~; _ } 
l (p2•Y2• 1 2} 

Where operator e is +,-,*,/,A.,V,ffJ,-Aand¥. When 
e is "/" the second operand has to be non-zero 
scalar or vector without any zero-element. The 
result of NAND or NOR is usually non-SV. 

Comparison 

The result of SV comparison operation (>,~, 
=,<,"') is a sparse bit-vector (zero-elements 
must be considered). The result of all satisfy
ing-comparison operation of SV is a bit-scalar. 

Inverted Sequence Vector ~IV) 

Assume X=(x1,x2,···,x ), ~IV(X)=(x ,x 1 , n n n-
• • ·, x 1) is a inverted sequence vector of X . 

[ ~3'Y3• 1 3l := =ltIV(11 •Y1 •11)' 
Where 13=1+1- *IV(~ 1 ), y3= #.IV(y1), 1 is the 

length of original vector fp1,y1,1 1]. 

Other Operations 

The result of vector inner-product is a 
scalar. The results of Iterative-addition of 
vector (ll:), NOT(•) and Retum Operation (tf:RT) 
are iLSually non-SV. In Max and Min operations 
zero-elements must be considered. In addition, 
there are #HF, #H+, Sign function (Sign), IMax1, 
IMin\,Abs,lJ,fl•d}• Extract subvector, Extract 



an element of 31/ and ·rransmission. 

Most of the above operations can be extended 
to SM. Besides, the other basic operations of SM 
also include #MI, :ji'Jv!I', #-Z, Extract the submatrix 
of SM, Multiplication of SM and SV or of SM and 
vector, k-th power of SM and so on. 

Implementation of Basic 
Operation of SV and SM 

System Hardware Structure 

System hardware consists of a very large me
mory, a memory controller, instruction control 
unit and sparse vector ALU. The block-diagram 
is shown in Fig.1. 

Instruc
tion 
control 
unit 

,--sv ALU--~- --- - -1 
I I 
I Integer Pipeline J 

unit I 

=--''---=-~ I 
I 
I 

~~==~~::::=:'..___I:::::c::::::'.I __ u 

Main memory 

Fig 1. Block diagram of system structure 

Accoding to the character of SV and SM, the 
vectical processing pipeline should be adopted. 
Therefore, one of the keys of hardware implemen
tation is to provide high-speed access to the 
memory to ensure data access rate needed for 
integer comparison unit and pipeline unit. To 
solve this problem we can use cache or multi-bus 
multi-bank interleave access technology. 

Vector Processing of the VCSMO 

The descriptor of a SV is used to provide the 
parameters of SV. The descriptor is stored in 
several successive locations of memory. It is 
placed into index registers before processing. 

There are two Vector Parameter Files,VPF0 and 
VPF1 , which are especially used for processing· 
vector operations. When one VPF is being used 
for processing the current vector instruction, 
another VPF can be used for preparing the para
meters of.next vector instruction. This struc
ture can minimize the effects of set-up time 
on computation speed in the vertical processing 
pipeline. 

An Example of Implementation of the Basic Opera
tion in Ma.chine 

The basic operations mentioned in the pre
vious section can be implemented directly with 
hardware. For example, Fig.2. presents block djA.. 
gram of machine implementation for operation of 

[Q3•Y3• 1 3]:=fp1'Y 1 ,1 1Jef~2 ,y2 ,1 2 ], where e may 

be +,-, V and Et) operation. 

89 

Y.t [kl: =oeY. r jJ; 
13lkJ: = l.fj]; 
k:=K+1; 
j :=j+1 

u: =Yi r :iJeY.c jJ; 
j:=j+1; 
if u~O then 
bel';in ~[k]:=u; 

PJfkJ: =1,ril; 
k:=k+1; 
i:=i+1 

end 

Fig. 2. 

Conclusion 

Yir kJ: =Yr r iJ; 
pp:kJ:='P.riJ; 
k:=k+1; 
i: =i+1 

end 

1'he hardware cost of the integer comparison 
unit of a VCSMO is very small in comparison 
with the pipeline unit. Nevertheless, this ma
kes it possible for the non-zero elements in the 
SV and SM to be operated in high-speed pipeline 
manner. Therefore, in comparison with the ordi
nary vector computer, the VCSMO increases the 
speed of SV operations and SM operations by se
veral to over ten times. The times of speed-up 
is closely related to the distribution and ratio 
of non-zero elements of the SM of a specific 
problem. 

Acknowledgement 

The authors would like to thank a;;sociate 
Prof. Zhang Xiang for stimulating discussion. 

Reference 

[1] Gao Q.ing-Shi, Zhang Xing, A General-purpose 
Cellular Supercomputer~Cellular Vector Co
mputer of Vertical and Horizontal Processing 
with Virtual Common Memory, Chinese Jouinal 
of Computers, Vol.2, No.1, January (1979) 
pp 1-13. 

[2]Tewarson, R.P., Sparse matrices, 
Press( 1973). 

Acade:'.liC 

[3]0gbuobiri, E.C., Dynamic Storage and rle
trieval in dparsi ty Programming. IEEE. 
Trans. Power Apparatus System, PAGf39,( 1970), 
pp 150-155. 

[4]Jennings, A., Solution of Variable Bandwidth 
Positive Difinite Simultaneous Equations, 
Comp. J.15. (1971). PP 446. 

[5]Bell, G.Fuller, S.H. and Siewiorek, D., The 
CRAY-1 Computer System, Communications of 
the ACM, Vol. 21, ii!o.1, Jan. 1978, PP 63-72. 

[6)Hintz, R.G. and Tate, D.P., CDC S'rAR-100 
Processor Design, Oompcon Proc., Sept. 1972. 
PP. 1-4. 



EFFICIENT MATRIX MULTIPLICATIONS ON A CONCURRENT DATA-LOADING 

ARRAY PROCESSOR* 

Ming-Yang Chern and Tadao Murata 
Department of Electrical Engineering and Computer Science 

University of Illinois at Chicago 
P.O. Box 4348, Chicago, Illinois 60680 

Abstract -- This paper introduces a VLSI
compatible architecture called concurrent data
loading array processor (CDLAP)-;- Many matrix 
operations on systolic arrays have the matrix data 
reshaping problem. The CDLAP can execute the mul
tiplication for dense matrices without data 
reshaping. A partitioned multiplication algorithm 
is also presented for matrices larger than the 
array size. Based on the design in this paper, 
the utilization of processing elements is virtual
ly the best achievable for large matrices. The 
CDLAP, with small variations, can be used for band 
matrix multiplications. The performance, taking 
into account the total computation time and data 
transfer bandwidth, is found better than systolic 
arrays. 

I. Introduction 

In recent years, VLSI architectures for high
ly parallel computations have been extensively 
investigated [l, 2]. The systolic array structure 
for matrix operations was first proposed by Kung 
[3-5]. Various versions of systolic arrays 
designed for different applications have been pro
posed. The computational structure for solving a 
linear system of equations (LSE) presented by 
Hwang and Cheng [6] involves some special modules 
for LU decomposition, solving a triangularized 
LSE, triangularized matrix inversion, and matrix 
multiplication. More recently, the wavefront con
cept and the wavefront array processor (WAP) were 
proposed [7]. Although the asynchrony and local 
memory of the WAP offer more flexibility in compu
tation, the data flow of the WAP is basically the 
same as systolic arrays. 

All the above systolic-type array processors 
for matrix operations suffer from the common prob
lem of data arrangement. For dense matrix opera
tions, the conventionally arranged matrix must be 
reshaped before being fed into the processor ar
ray. By providing on-chip delay latches, the data 
arrangement problem can be solved partially, but 
this evokes a more severe problem in the array 
chip interconnection. The on-chip delay scheme is 
suitable only for the case of a one-chip array, in 
which case the array size is too restricted. 
Secondly, the chip I/O circuit for a systolic 
array is complex in order to achieve an acceptably 
easy interconnection of array chips [8]. In gen
eral, the utilization of PEs in the above men
tioned arrays is half or less for matrix 

* This work was supported by the National Science 
Foundation under Grant ECS 81-05649. 

0190-3918/83/0000/0090$01.00 © 1983 IEEE 90 

operations. This leaves some space for further 
improvement. 

The use of global data communication, togeth
er with the systolic scheme, in a linear convolu
tion array has been presented by Kung [11]. Huang 
and Abraham [9] proposed some algorithms for ma
trix multiplications. For the case of dense ma
trices, one of their algorithms makes use of a 
one-dimensional data broadcast scheme and has an 
improved performance. However, it still has the 
matrix reshaping requirement and the utilization 
of PEs is only 50%. 

This paper presents an array architecture 
which removes the above mentioned deficiencies. 
In this architecture, a data broadcast scheme in 
two directions across the array is introduced. 
From the functional point of view, we categorize 
such a computational array as a concurrent data
~oading ~rray _Erocessor, or CDLAP-for short. 

.!_~· Den~_ Matri~ Multiplications 

The CDLAP for a dense matrix multiplication 
is configured as shown in Fig. 1. It is an array 
of n x n processing elements (PEs). The data, 
upon arrival at the data bus of each column or 
each row, can be concurrently loaded in or broad
cast to all PEs in that column or row, respective
ly. The functional block diagram of the PE is 
shown in Fig.2. Let the accumulator value of the 
PE at the ith row and jth column be denoted by d .. 
; D = [di.] will represent the accumulator matrril: 
of the prdcessor array. For the initialization of 
a computation, all accumulators can be set to zero 
by a common reset line. When the multiplexer M 
selects u. as the input of d .. , the .accumulator 
can acqurPe data from its right-neighbor PE. In 
another instance when the multiplexer M selects 
the output of the adder, the product of x. and y. 
will be accumulated for each step of com~utatiorl, 
i.e., d .. ~- d .. + x.y .• There are two schemes to 
output tfiJ accu~dlat6rJdata. The first is to con
nect the d. . output directly to the neighboring 
PEs on the lJft side; this output channel is 
denoted by u • The second is to transfer d .. to 
a buffer reg~¥fer t .. which will later sendiJout 
the data via the h6tizontal bus at an appropriate 
time. Under this scheme, the horizontal bus is 
used alternatively for input and output. The 
tri-state output of t 1 . is usually open-circuited 
unless the "output Jnable" is on. For the t
registers in the same row, the array can enable 
the output of only one at a time. To keep control 
simple, the array is designed such that all PEs of 



the same column will output their data at the same 
time. 

In order to illustrate a dense matrix multi

plication, consider A= [ai·l and B = [bi·], both 
N x N matrices. The reJultant N x N datrix is 

denoted by C = [cijl =A* B. 

Case 1 Assume that N n. Let A. be the 
ith column vector of A and B. be the jth rbw vec
tor of B. Then we may writeJ 

n 

C = I: Ak * Bk 
k=l 

This matrix multiplication can be carried out in n 
recursions, executing 

(1) 

recursively for k = 1,2,. ... ,n; where D <oJ [OJ 
and D<nl= C. The input data arrangement is shg~R 
in Fig.l. Note that the input operands Ak and Bk 
are loaded concurrently so that the (i,j)th PE has 
the input operands aik and bk. at the beginning of 
the kth recursion in (1). Du~ing t2e kth recur
sion, n2 multiplications and then n additions are 
performed at the n2 PEs, respectively, in parallel 
with loading Ak+l and Bk+l on the bus lines for 
the (k+l)th recursion. At tfie end of this compu
tation, when k n, the value of matrix C will 
appear in the accumulator array D. 

The data arrangement in this algorithm is 
concordant with the conventional way of storing 
matrices and thus eleminates the matrix reshaping 
problem. The time required to complete this ma
trix multiplication, with the result staying in 
the array, is n(ta+t ), where t and t represent 
the time to perform ~ne additio~ and o~e multipli
cation, respectively. The resultant matrix C can 
be transfered out of the array processor later, 
which will take some extra time. Or, it may stay 
in the array for further processing, which saves 
both the time of unloading C and the time of data 
loading for the next stage of a computation. The 
detailed performance evaluation is presented in 
Section VI. 

In practice, many matrices to be computed are 
larger than the available array size, and thus the 
computation extendability is important. 

Case 2 Assume that the matrix size N is 
larger than the array size n, and that m N/n is 
an integer. The matrix C = A * B then can be 
expressed in the following form: 

mn 

c .. = L a.k * bk. 
iJ k=l i J 

(2) 

Let i = (I-l)*n + i' and 
i' ,j' ~ n. The matrix 
pressed as IJci, .,. 
rewritten as J 

j = (J-l)*n + j' for 1 < 
element c .. can be ex
Then equaffon (2) can be 

91 

m n 

IJci'J., = L I: 
K=l p=l 

When expressed in the 

CIJ = [ IJci, j'] 

and 

(3) 

submatrix form, we have 

(4) 

where AIK , BKJ , a~d.CIJ are n x n submatrices 
of A, B, C at the positions (I, K), (K, J), and 
(I, J), respectively. 

The submatrix multiplication AIK * BKJ in (4) 
can be carried out on the n x n CDLAP as was shown 
in Section II. Since the resultant matrix can be 
accumulated in the array, it is conveni1Rf tO(](££f
pute CI 1 on the CDLAP. The recursions D = D 
+ A ~ BKJ are carried out apd accumulated until 
K= m:K The resultant matrix rlm is then transfered 
to CIJ' The processor will then reset the accumu
lator matrix D and continue its computation for 
the next I, J. 

The algorithm for our partitioned matrix mul
tiplication can be easily expressed in a high
level language as shown below: 

20 

DO 40 I 1 ,m 
DO 40 J 1 ,m 
reset D 
DO 20 
D = D + 

CIJ ~ D 
40 continue 

With the provision of output buffer registers, the 
array processor only initiates the action CIJ = D; 
it need not wait for ]_ts completion. The actual 
transfering of output data will take place in 
parallel with the next stage of a computation in 

the array. 

To avoid extra time delay caused by the data 
output, the output data transfer must be finished 
before the arrival of the next output data; that 
is, before the completion of the computation stage 
concurrently running on the array. In our case, 
an n x n submatrix multiplication is performed in 
n computational steps and there are n 2 data to be 
output. Considering the design simplicity and the 
acceptable data transfer bandwidth, n words of 
data will be output for each computational step in 
the CDLAP until all output data in the buffers are 
delivered. Neglecting the short time for array 
reseting and output initialization, the total 
time required for the case N = mn would be (m3+l)n 
units of (t +t ). The maximum data I/Orate is 3n 
words per u~itmof computation time. 

IV. ~nd Matrix Multiplications 

The CDLAP architecture can also be applied to 
the case of band matrix multiplications. 

Case 3 (Band matrix/dense matrix multipli
cation)--:---Ass~me that A is an N x N band matrix of 
width W n, where N is larger than n. The matrix 
C = A * B is to be computed, where B and C are 



both N x W matrices. In Fig.3(a), an example of 
this multiplication with W • n = 4 is shown. The 
CDLAP configuration and its associated data ar
rangement for this multiplication are shown in 
Fig.3(b). This computation algorithm using CDLAP 
is similar to that described in [9] except that a 
two-dimensional array is used in our case. The 
function of a basic cell is shown in Fig.3(c), 
where u = ui + xiy .. This function can be 
implementgatusingnthe cell shown in Fig.2. 

Since the accumulators of the CDLAP can be 
cleared by giving a "reset" signal before a compu
tation, the actual time required to complete the 
operation (including the data output) lies between 
N and (N + W) units of (t +t ). The array data 
I/O rate for this case is 2Wa+ W = 3n words per 
time unit. 

Case 4 The band matrix/band matrix multi-
plication on the CDLAP is illustrated by the exam
ple shown in Fig.4(a), where the widths of the 
matrices are Wl = 3 and W2 = 4. Note that in this 
case the data shift must be in the diagonal direc
tion as shown in Fig.4(b), while the function of a 
basic cell is still the same as in case 3, The 
time required to complete this operation is 
between N and (N + min{Wl, W2}) time units. And 
the data I/O rate is Wl + W2 + (Wl + W2 - 1) 
2(Wl + W2) - 1 words per time unit. 

V. Implementation Considerations 

The CDLAP can be implemented by cross
connecting microprocessors using some bus lines. 
In order to achieve mass production and low cost, 
however, the CDLAP should be implemented in VLSI 
chips. Since the systolic array architecture has 
been considered suitable for VLSI, the CDLAP is 
compared with systolic arrays in terms of their 
VLSI implementation characteristics. 

Like the systolic array, the CDLAP is regular 
and homogeneous. The basic cell (or PE) of a 
two-dimensional systolic array for matrix multi
plications has six I/O channels while that of the 
CDLAP needs at most four channels, as shown in 
Fig.2. For an n x n array implemented in one VLSI 
chip, the systolic array has a total of 8n-2 I/O 
channels from its border PEs [8]. For a dense 
matrix multiplication on the CDLAP, only 2n chan
nels are needed for data input and n channels for 
data output. In Case 3, 3n input and n output 
channels will be required. Only in Case 4, the 
CDLAP needs 6n-2 I/O channels, which are still 2n 
less than that required in systolic arrays. 
Therefore, we expect that the I/O circuits for the 
CDLAP chip will be less complex than those for 
systolic arrays. Taking similar I/O schemes pro
posed for systolic arrays [8], fewer numbers of 
I/O pins (bit-serial I/O scheme) or less time 
delay (byte-serial grouped I/O scheme) is expected 
for the CDLAP. 

For the mask layout, it appears that systolic 
arrays have very short interconnections between 

92 

neighboring PEs. However, a detailed study shows 
that data lines are still needed to link the I/O 
ports on the opposite sides of each PE in systolic 
arrays. These data lines may be laid across the 
PE or along the border of the PE, depending on 
design. Whatever the route is, we can at least 
implement the data-loading lines for the CDLAP 
along the data shifting route used in systolic 
arrays without occupying extra layout area. It is 
probable that a simple, straight route along the 
edge of a column or a row of PEs is a better 
choice. 

The most controversial point about the CDLAP 
may be the time delay due to the data-loading 
lines. However, our estimation (10] shows that 
this time delay is much less than the unit compu
tation time t +t , Therefore, the data broadcast 
scheme of th: l1!iiLAP should not be a speed 
bottleneck. 

VI. Performance Comparisons 

The advantage of the above algorithms can be 
seen by comparing their performance with existing 
algorithms on other array processors. We assume 
no pipelining in all PEs for the convenience of 
comparisons. We also assume that the access of 
system memory modules is fast enough and appropri
ately arranged. For the case of dense matrix mul
tiplications, we let P (number of PEs) be fixed as 
n2 • The time efficiency can then be seen from T 
(the turnaround time of the entire computation). 
Since a smaller T can possibly be achieved at the 
expense of heavy data communication and the com
munication cost is not low, the transfer bandwidth 
should be considered. Here the data transfer 
bandwidth, B, is defined as the maximum number of 
words which have to be transferred through the I/O 
ports of the border PEs in a unit of computation 
time. On the other hand, the larger the processor 
array is, the larger the B value would be. There
fore, the value of PBT2 will be used to evaluate 
the performance as in [9]. For an ideal case, we 
expect that an n x n array can complete the n x n 
dense matrix multiplication in n time units. With 
a uniform rate of data input and output, the data 
transfer bandwidth would be 3n. The PBT2 value, 
3ns, in this ideal case will be used ~s a refer
ence, and we define the ratio R = PBT /3n5 • 

For the first three algorithms in Table 1, in 
which the resultant matrix stays in the array, the 
CDLAP has the best R (= 2/3) as compared with the 
6 and 8/3 of the other two. Assuming that the 
CDLAP uses the output data rate of n words, its R 
will be 8/3. This ratio is better than those for 
the systolic array and the algorithm in [9] as 
shown in Table 1. In the case that the CDLAP out
puts in the same data transfer bandwidth as the 
input, a further improvement (T = 3n/2, R = 3/2) 
can be obtained. 

For the mn x mn matrices, the reference PBT2 
should be 3(mn) 5 • The tu~naround time T of the 
CDLAP in this case is (m +l)n, and the R value is 



Table 1 Performance of Parallel Algorithms for Dense Matrix Multiplications 
----, 

** for n x n matrices p T B PBT2 R matrix 
r-------------------- -- -----1 reshaping 

WAP[7] (with results in array) 

Broadcast algorithm in [9] (with 
results in array) 

CDLAP (with results in array) 

Systolic Array in [l] 

Algorithm in Section 4.4 of [9] 

CDLAP with the data output rate = n 

CDLAP with the data output rate =2n 

** for mn x mn matrices 
CDLAP (data output in parallel 

with computation) 

n 2 

m+(2/m2)+(1/m5). Comparing this T value with the 
actual computation time m3n of each PE, the PE 
utilization is virtually perfect for large m. 
(For example, if m equals 5, -the PE utilization 
would be 99.2%.) The R value (- m) reflects the 
repeated use of the same data (m times) in the 
input matrices. 

The band matrix multiplication on CDLAP is 
very similar to the broadcast algorithm in [9]. 
Both have exactly the same input/output data ar
rangement. Hence their PE utilization and the 
data transfer bandwidth would be the same. Since 
the CDLAP can be set to zero at the biginning of a 
computation, the total time duration may be equal 
to or a few time units (smaller than the minimum 
width) shorter than the algorithm in [9]. Since 
this algorithm has been proven to be better than 
the systolic algorithm in [5], the CDLAP should be 
better yet. 

VII. Conclusions 

Several cases of matrix multiplications on 
the CDLAP have been presented in this paper. 
Thei,r performance has been shown to be excellent 
from the PE utilization point of view. The time 
performance is either better or no worse than 
those for presently known algorithms on systolic 
arrays. For dense matrix multiplications, no 
matrix data reshaping is required; for band ma
trices, the data are arranged in a way similar to 
that of systolic arrays. The simple data arrange
ments on CDLAPs have made it easier to design the 
extended algorithms for large scale matrices. 

The preliminary feasibility study in Section 
V indicates some encouraging results on the VLSI 
implementation of the CDLAPs. This paper, togeth
er with other matrix operations presented in [10], 
has shown the high potential of the CDLAP as a 
cost-effective VLSI architecture. 

3n 2n 18n5 

2n 2n 8n5 

n 2n 2n5 

4n 6n 96n5 

2n 6n 24n5 

2n 2n 8n5 

3n/2 2n 9ns/2 

6 yes 

8/3 

2/3 

32 

8 

8/3 

3/2 

yes 

no 

yes 

yes 

no 

no 

(m3+l)n 3n - m no 

93 

References 

[l] c. Mead and L. Conway, Introduction to VLSI 
Systems, Reading, MA: Addison-Wesley, 1980. 

[2] L.S. Haynes, R.L. Lau, D.P. Siewiorek, and 
D.W. Mizell, "A survey of highly parallel 
computing", Computer, Jan. 1982, pp.9-24. 

[3] H.T. Kung, "Let's design algorithms for VLSI 
systems", in Proc. Caltech Conf. VlSI, 
Jan. 1979, pp.65-90. 

[4] H.T. Kung and C.E. Leiserson, "Systolic Arrays 
(for VLSI)", Sparse Matrix Proc., 1978, 
Society for Industrial and Appl. Math., 1979, 
pp.256-282. 

[5] H.T. Kung, "The structure of parallel algo
rithms", in Advances in Computers, Vol.19, 
New York: Academic, 1980, pp.65-111. 

[6] K. Hwang and Y.H. Cheng, "VLSI computing 
structures for solving large-scale linear 
system of equations", Proc. 1980 Int. Conf. 
on Parallel Processing, pp.217-227. 

[7] S.Y. Kung, K.S. Arun, R.J. Gal-Ezer, and D.V. 
B. Rao, "Wavefront array processor: language, 
architecture, and applications", IEEE Trans. 
Computers, Nov. 1982, pp.1054-1066. 

[8] M.Y. Chern and T. Murata, "Comparison of 
Various Chip-I/O Schemes for Interconnecting 
VLSI Systolic Array Processor Chips", to 
appear in the Proc. of 1983 Int. Conf. on 
Computer Design: VLSI in Computers. 

[9] K.H. Huang and J .A. Abraham, "Efficient 
parallel algorithms for processor arrays", 
Proc. 1982 Int. Conf. on Parallel Processing, 
pp.271-279. 



[10] M.Y. Chern and T. Murata, "A fast algorithm 
for concurrent LU decomposition and matrix 
inversion", Proc. 1983 Int. Conf. on Parallel 
Processing. 

(11] H.T. Kung, "Why systolic architectures?", 
Computer, Jan. 1982, pp.37-46. 

b nn 

Fig. 1 CDLAP configuration for dense matrix 
multiplication. 

output 
enable 

t. 

reset 

Fig. 2 The functional block diagram of 
a processing element in CDLAP. 

all 8 12 bl 1 bl2 bl3 bl4 cl 1 cl2 cl3 cl4 

8 21 8 22 8 23 b21 b22 c21 c22 

a31 a32 a33 b31 C}l 

8 42 •43 

•53 
0 bNl bN4 CNl CN:4 

Fig.3(a) Band matrix/dense matrix multiplication 
with W = 4. 

94 

a23 a33 a43 a53 

a12 a22 a32 a42 

0 a11 a21 a31 
i 

Fig 3(b) CDLAP configuration for Fig. 3(a). 

Y· 
,J 

Fig.3(c) 

uout*uin 
:xi uout = uin+ xiyj 

The function of a basic cell in Fig.3(b) 

[ 

bll bl2 b13 0 

b21 b22 b23 b24 

b32 b33 b34 

0 . . 

cl l cl2 C13 cl4 

c.21 c22 c23 c24 c.25 

"" CJ l c:32 c.33 C.34 

Fig.4(a) Band matrix/band matrix multiplication 
with Wl = 3 and W2 = 4. 

•• b32 b21 0 

• 0 b33 b22 b11 

• • b34 b23 b12 

•• b35 b24 b13 

Fig-4(b) CDLAP configuration for Fig. 4(a). 



HIGHLY PARALLEL PROCESSOR ARRAY "PAX" FOR WIDE SCIENTIFIC APPLICATIONS 

Tsutomu Hoshino, Tomonori Shirakawa, Takeshi Kamimura, 
Takahisa Kageyama, Kiyo Takenouchi, Hidehiko Abe, 

Institute of Engineering Mechanics, University of Tsukuba, Sakura, Niihari, Ibaraki, JAPAN. 

Satoshi Sekiguchi, Yoshio Oyanagi, 
Institute of Information Sciences, University of Tsukuba, Sakura, Niihari, Ibaraki, JAPAN. 

Toshio Kawai, 
Department of Physics, Keio University, Hiyoshi, Kouhokuku, Yokohama, JAPAN. 

Abstract -- Architecture of microcomputer array 
PAX is characterized by end-around nearest-
neighbor interprocessor connection, data 
broadcasting capability, asynchronous MIMD 
operation, and global synchronization control. 
The system with 128 processors was built, and has 
been dedicated to the scientific calculations, not 
only limited to the partial differential equation 
models, but also extended to the non-nearest
neighbor type, i.e. Monte Carlo simulation with 
interacting particles, linear equation solving of 
Gauss-Jordan and conjugate gradient methods, and 
fast Fourier transform algorithm. High 
efficiency upto 98 % was demonstrated in these 
applications on PAX with 32 processors. The 
parallel execution times were measured and 
summarized as the scaling law expressing the 
execution time as a function of problem size and 
the number of processors in the array. The 
proven scaling law permits us to extrapolate the 
present high performance to the super parallel 
machine with processors more than 1000. 

1. INTRODUCTION 

Scientific calculations are characterized by 
the universal principle "action through medium," 
stating that the physical actions come from the 
immediately neighboring medium or field. The 
principle assures that the interprocessor 
communication is limited in the nearest neighbor 
processors, if the original space is projected 
directly onto the array of processors distributed 
analogously to the physical space. The 
multiprocessor architecture that utilizes this 
inherent proximity property is the well-known 
nearest neighbor mesh (NNM) connection of the 
processors, which has been studied in machines 
such as ILLIAC-IV [l] and ICL-DAP [2]. 

This connectivity, however, has been supposed 
to be inefficient when the data exchange is 
required between any pair of processors, such as 
in the matrix calculus or in the general particle 
transport problems. The pessimistic conclusion 
for the matrix product or inversion [3] is based 
on the assignment of each matrix element to a 
processor, where the operational load for each 
matrix element (in O(N), N =size of the matrix) 
is by far less than that for the data move (in 
O(N2 )), However, if we partition the matrix row
wise, i.e. a single processor takes care of an 
unknown variable(s), the operational load has the 
same order, O(N 2 ) as that for the data broadcast. 
In the case of particle transport that requires 
global data circulation in the array, the 

0190-3918/83/0000/0095$01.00 © 1983 IEEE 95 

operational load shows even higher order 
dependence on the problem size than that of the 
interprocessor communication. In both cases, the 
users always demand to expand the problem size, 
far larger than the parallelism available at 
present and in near future, so that such a row
wise partitioning would be justified. 

We have started the project of developing an 
array of processors with NNM connection as well as 
data broadcasting capability, in order to clarify 
this question by implementing the practical models 
and by demonstrating the capability of the NNM 
architecture to a number of typical scientific 
problems. It is our standpoint that the 
applicability must be proven based on the concrete 
applications. It is because the relative value 
of the communication overhead to the net local 
calculation is a crucial factor, no matter how the 
absolute value of the overhead becomes large. 
Also from the practical viewpoint, not only the 
order dependence but also the coefficients of the 
dependent terms are important. 

The processor array developed was previously 
called "PACS", Processor Array for Continuum 
Simulations, [4]-[6], and two systems with 9 and 
32 procesors were actually built. The present 
system under testing is named "PAX-128", Processor 
Array eXperiment with 128 processors. A number 
of applications were implemented so far with 
successful performance; among them were partial 
differential equation models in aerodynamics [4], 
potential problem associated with Poisson equation 
[4], realistic nuclear power reactor calculation 
[4],[7], and Monte Carlo simulations of non
interacting plasma particles [4] and spin systems 
in fundamental physics [6]. These models are 
characterized by the proximity property inherent 
to the physical processes simulated. The 
applications were then extended to the models of 
non-proximity type, such as Monte Carlo problems 
with general particle interactions, and matrix 
calculations in linear equation solving. 

These application problems were implemented in 
PAX-32 system consisting of 32 microcomputers. 
The time for parallel computation was measured and 
analyzed in terms of the problem size and number 
of processors. The derived, "scaling law" is the 
proven base on which we proceed the plan for 
future super parallel system with processors of 
more than 1000 and speed of more than GFLOPS. 

2. SYSTEM ARCHITECTURE 

2.1 System Configuration 



Our series of parallel computer has, at 
present, two models, the prototype machine PAX-32 
[4]-[7] and the proof machine PAX-128. Both 
models employ 2-dimensional end-around NNM
connection, as well as data broadcating bus line. 
They comprised of three parts: Host computer 
(HOST), control unit (CU), and processing unit 
(PU) arrays. HOST and CU are connnonly used by 
both machines, as shown in Fig. 1. 

The PU array executes the parallel tasks, Each 
PU is essentially a single-board microcomputer. 
In the PAX-32 system, 32 PUs are implemented, 
constituting an 8 x 4 rectangular array, and in 
the PAX-128 system, 128 PUs constitute an 8 x 16 
rectangular array. The CU is a microcomputer 
that controls the PU array and connnunicates with 
the HOST computer, via a parallel interface, The 
CU can also broadcast the data to all PUs, The 
HOST is a general purpose minicomputer, Texas 
Instruments 990 model 20, It is used to 
compile/assemble the source program, load the 
object program into the CU and PU, initiate the 
parallel tasks, tranfer and receive the data to 
and from the CU, and output the computed results. 

2,2 Processing Unit 

Each processing unit consists of the components 
shown in Fig. 2, and described below. 

Micro processing unit (MPU), An 8-bit 
microprocessor. The Motorola MC6800 (1 MHz) and 
MC68BOO (2 MHz) are used in PAX-32 and PAX-128, 
respectively. It is in charge of the program 
execution such as 8-bit fixed point arithmetic and 
logical operations, 8-bit data transfer between 
memories, and the control of the arithmetic 
processing unit, Address space is 32 Kbytes, 

Arithmetic processing unit (APU), A 
microprogrannned attached processor that executes 
fixed-point arithmetic (both in 16-bit and 32-bit 
lengths), floating-point arithmetic (in 32-bit 
length), and the elementary function calculations, 
such as logarithms, square roots, etc. The 
Advanced Micro Device's Am9511 (2 MHz) and 
Am9511A-4 (4 MHz) are used in PAX-32 and PAX-128 
respectively. The data transfer to and from the 
APU and the initiation of every operation in the 
APU are perfectly controlled by the MPU, By 
taking the average times over the floating-point 
addition and multiplication in Am9511, we estimate 
the average floating-point execution time is equal 
to 65 micro-seconds, which means that 0.0154 
MFLOPS (Million FLoating-point Operations Per 
Second) can be performed by each PU. The PAX-32 
system's peak performance is thus estimated to be 
0.0154 MFLOPS x 32 = 0.5 MFLOPS, In PAX-128, it 
is expected to be 0.031 MFLOPS x 128 = 4.0 MFLOPS, 

Local memory (LM), The local memory for local 
data and program store. The MPU accesses to LM 
of 22 Kbytes in PAX-32, and 28 Kbytes in PAX-128. 

Connnunication memory (CM). The memory shared 
between neighboring PUs. This memory is used for 
the data transfer between the PUs, 

Control register (CR). This is 
transfer the control word from CU to PU. 

used to 
CR is 

96 

write-only for the CU and read-only for the PU, 

Status register (SR). This is used to report 
the PU state to CU. It is write-only for the PU 
and read-only for the CU. The PU informs its 
status by the code defined in the control 
software. 

2.3 PU Array Control by the CU 

Before starting the parallel tasks in PU array, 
the CU has to load the programs and data into the 
proper memories in the PU array, and also it has 
to start the MPUs. In order to control and 
terminate the parallel tasks, it is necessary for 
the CU to control and monitor the PU array without 
disturbing the task execution. Together with the 
microprocessor MC6800, and local memory (LM), the 
CU has the following registers to be used for 
control purposes. 

all PUs (SR-ALL). This 
AND and OR of the contents 

Status Register of 
indicates the logical 
of the SR registers 
information is used in 
of all SRs, in order 
synchronization quickly 

in the all PUs. This 
detecting the consistency 
to take the task level 

in all the PUs. 

Unit Reset register CURES). 
reset the MPU, and APU. 

This is used to 

Unit Halt register (UHLT). This is installed 
only in PAX-128, and used to halt the MPU. 

Unit Nonmaskable Interrupt register (UNMI). 
This is used to interrupt the MPU in the PU. 

Unit Select register(USEL). This is used to 
control the bus-switch between the CU-bus and the 
PU-bus. When a PU is selected by the USEL 
register, the CU-bus is connected to the PU-bus. 

Each function of URES, UHLT, UNMI, and USEL is 
achieved by writing to the particular register of 
the CU the code to select the row and column of 
the particular PU in the processor array. For 
example, the following selections can be made: PU 
in row 0 and column 1, all PUs in row 2, all PUs 
in columns of odd numbers, all PUs, no PUs, etc. 

By connecting the CU-bus with all PU-buses, CU 
can directly broadcast the data and the program to 
all PU memories. 

2.4 Hardware Implementation 

Special care was taken in the hardware 
implementation in order to minimize the connection 
wiring. The structure of PAX is topologically a 
torus. The conventional method, parallel 
placement of the boards and connection on the 
backplane would result in connections too long. 

Our implementation of PAX-32 is a "folded 
array" ; that is, the original torus geometry is 
folded, as shown in Reference [4], while the 
implementation of PAX-128 is exactly a "torus" as 
shown in Fig. 3. The CU bus and the connections 
between PUs use flat cables. These methods of 
implementation reduce wiring length to nearly 1/10 
of that in the conventional method. 



2.5 Software 

Software support for the PAX includes language 
processors and Fortran subroutines executed on the 
HOST, a parallel array monitor executed on the CU, 
and a library of control procedures executed on 
the PU. Source programs for applications are 
usually written by the use of Fortran for the 
serial part of the job executed in the HOST, and 
by the use of high-level language SPLM for the 
parallel part of the job that is executed in the 
PUs. The cross-assembler MASP is available, if 
necessary, to code the parallel part of the job 
and the control procedures. 

Parallel execution of tasks can be initiated in 
PUs and data can be transferred to or from the 
HOST by calling the PCMS subroutine in the user's 
FORTRAN source program. This subroutine sends 
several connnands to the CU to control the 
execution in PUs and the data transfer between PU 
and HOST. 

The high-level language SPLM, a structured 
progrannning-type language, was developed for 
parallel processing in the PAX system. Domain 
declaration is necessary to reserve specified 
memories for the storage of variables, constants, 
and program. The user must declare the domain 
CONST in order to reserve memory space for the 
program and constants. The domains for the 
variables are declared by the followings. 

VAR : For the local variables in LM memory. 
FRONT, BACK, LEFT, RIGHT : For the variables in 

CM memories used for inter-PU connnunications. 
Variables should be declared with their domains, 
types and size of array variables. The variable 
type can be either real, integer, or byte. 

In contrast to those languages used for SIMD 
architecture, the SPLM describes the function 
limited in a single PU; how the PU takes data from 
the CM area, how it processes the data, and how 
the data are returned to a CM. Usually the same 
program is loaded in all PUs utilizing the 
broadcast function of the CU. However, different 
programs can be sequentially loaded to PUs. The 
overall parallel computation proceeds as each PU 
executes its own program. The processing, 
therefore, inherently asynchronous. 

Task synchronization, however, is supported by 
software control. By the procedure SYNC, the 
task can be synchronized at any user-specified 
point. The synchronization is taken to ensure 
that the transferred data is correctly updated. 
It is also taken in such algorithms as SOR that 
uniform iteration is necessary for all PUs. 
Execution of the task resumes by exiting the SYNC 
procedure. It takes 107 and 57 micro-sec to 
synchronize all PUs of PAX-32 and PAX-128, 
respectively. 

Nonexpert users require more system software 
support than that already described. One of the 
inconveniences occurs in the determination of the 
PU boundary when a physical space is projected 
onto the PU array space. There are several 
subroutines that assist users in these situations. 
One example is a subroutine which distributes the 
multi-dimensioned array variable in the HOST to 

97 

the PU array mesh. 
providing the values of 
at the nearest neighbor 
to the PU boundary. 

Another is a procedure 
the dimensioned variable 

mesh points without regard 

Data can be routed in two directions in the PU 
array by the ROUT procedure. A general routing 
procedure GR exchanges data with arbitrary PU, 
using the tags indicating the destination of the 
data. Data are routed in two directions, and 
each PU catches the data with tags circulating in 
the array. 

Another possibility for the data move among PUs 
is the data broadcasting through the CU. By 
calling procedure BRDCAST, the user can move the 
data in any PU to all other PUs. 

3. APPLICATIONS AND SCALING LAW 

Three applications are introduced here; these 
are typical non-proximity type problems. The 
first example is a Monte Carlo simulation of 
moving particles that interact each other through 
the potential field that they create. Example 
was taken from the molecular structure simulation 
for the amorphous material. The second example 
is the well-known linear equation solving by 
typical schemes: Gauss-Jordan and conjugate 
gradient methods. The third example is the well
known fast Fourier transform algorithm. It is 
the final goal of the study to express the 
measured time of execution as a function of the 
problem size and the number of processors. 

3.1 Execution time and efficiency 

Let us define the efficiency of parallel 
processing by the array of P PUs as follows. 

rJ. = Ts /(PTp) 

where Ts = time for serial execution of the job by 
a single PU, Tp = time for parallel execution of 
the same job by P PUs, and P = the number of PUs 
constituting the array. 

Let us limit the discussion to the iterative 
processing, where one iteration is a sequence of 
(1) synchronization of all PUs, (2) data move, and 
(3) net calculation, as shown in Fig. 4. The 
process is iterated until convergence. The 
processor may fall into the idling state before 
the synchronization point, since the net 
calculation may be different from PU to PU. 

The overhead is defined here as those tasks 
that do not appear in the serial processing. 
Here it consists of the synchronization, the data 
move, and the processor idling before the 
synchronization. Then the following expressions 
are derived. 

Tp = 1141x Tj +max Tcj, Ts 
J j 

PTp= ~ Tj + t, Twj + J". Tcj, 
J J T 

cl= (Tp - Tw - Tc)/Tp 
(net calculation time)/(total 

L Tj, 
j 

processing time), 

where Tj time for the net calculation in the 
time for the data move and 

with the j'th PU, Twj = idling 
j'th PU, Tcj 
synchronization 



time of the j'th PU, Tw 
averaged over all PUs, Tc 
averaged over all PUs. 

idling time of PU 
data move time 

If the algorithm for parallel processing 
differs from that for serial processing, then the 
algorithmic degradation factor [8] must be applied 
to discuss the speed-up ratio over the 
conventional computer. 

3.2 Monte Carlo Simulation of Interacting 
Particles 

3.2.l Model 

Monte Carlo simulation models can be classified 
into three categories: 

1. Non-interaction type model, in which the 
particles move independently from each other. 
Radiation transport model represents this 
category. 

2. Nearest-neighbor type model, in which the 
particles or spins interact with those in the 
nearby space, but do not move. Spin systems or 
field models in the fundamental physics fall into 
this category. 

3. Interaction type, in which the particles 
interact with each other through the field that 
they create. This is the model of the most 
general type. The plasma particle simulation, 
molecular dynamics, and galaxy model belong to 
this category. 

The model of the third 3. category is taken as 
an example, i.e. the simulation of the structure 
of amorphous material [9]. The physical space is 
the 3-dimensional rectangular space with the 
cyclic boundary condition, i.e. one end of the 
space is connected with the opposite end. 
Simulation goes as follows: 

1. The particles are randomly distributed in 
the space. 

2. The potential and its derivative (i.e. 
force) are calculated between all pairs of 
particles. 

3. The particles are pushed by the force 
which they receive. The moving distance of each 
particle is determined so as to minimize the 
potential energy that the particle creates with 
the nearby particles. 

4. The physical parameters of interest, such 
as total energy are calculated. 

5. The procedures 2. and 4. are repeated 
until the overall potential energy reaches the 
minimum. 

3.2.2 Parallel Scheme 

The parallel partitioning of the simulation 
follows either one of the following two methods or 
the mixture of them. 

1. "Lagrangian scheme", where the particles 
are divided into subgroups of equal number of 
particles, each to be assigned to a PU, and the PU 
is in charge of everything that happens to the 
particles, no matter how the particles are moving 
in the physical space. 

2. "Eulerian scheme", where the physical 
space is divided into subspaces of equal size, 
each to be assigned to a PU, that takes everything 
happening in the subspace. 

98 

Analyzing the implemented program and measuring 
the execution time, we found Eulerian scheme 
unattractive, since the non-uniform particle 
distribution causes the degradation of the 
efficiency [10]. It was found, in the Eulerian 
scheme, that, as the number of particles N becomes 
large, the calculations of potential, force and 
particle move in the busiest PU dominate in the 
total execution time. The efficiency becomes 
asymptotic to l/f as P tends to infinity, where f 
is the peaking factor of the particle number 
distribution, i.e., ratio of the maximum over 
average numbers of particles per PU. 

Discussion will be centered on the following 
Lagrangian scheme. 

Parallel Lagrangian scheme. 
1. The particles are uniformly distributed in 

the PU array. 
2. The all particle data are circulated in 

the PU array. This task is carried out by 
synchronized routing of data, as follows: 

2-1. The particles ("data" is omitted 
hereafter) are routed in the RIGHT directions in 
all PUs, until each of the four PUs in the row of 
the array shares all particles located in this 
row. 

2-2. Then the particles are transferred in 
the FRONT directions in all PUs until all 
particles encounter each other in the array. 

3. The potential energy and force are 
calculated in each PU during the circulation of 
particles, that goes in parallel in all PUs. 

4. The new particle positions are calculated 
in each PU in parallel. 

5. The physical parameters such as the total 
potential energy, and average particle move during 
the iteration are calculated. These global sum 
quantities over all PUs can be calculated in 
parallel by the well-known cascade sum method 
[11], where log 2 32 = 5 additions and the nearest
neighbor data transfer of the distance of 10 PUs 
(i.e. data are routed twice in RIGHT direction by 
1, and 2-PU distances, and then routed three-times 
in FRONT direction by 1, 2, and 4-PUs). 

6. The procedures from 2. to 5. are repeated 
until the potential energy reaches minimum. 

3.2.3 Parallel Execution Time and Scaling Law 

Suppose we have N particles on the 2-
dimensional rectangular array of P Pl P2 PUs. 
A few parameters are defined; n=N/P, i.e. average 
number of particles per PU, d = the I-dimensional 
size of the physical space, d* = cut-off length of 
potential, i.e. the distance where the potential 
reaches zero, and c = d*/d. 

Parallel processing program and measured time 
are analyzed as follows. If not specified, 
execution time is measured in unit of msec 
throughout this paper. 

1. 
PUs; n 

2. 
RIGHT 
moved 
this 

Particles are uniformly distributed among 
particles per PU. 

The n particle data are transferred to 
neighbor in (Pl-1) times, and nPl data are 
to FRONT neighbor in (P2-l) times, so that 
global circulation of three coordinate data 



takes 
Tl = 1.2 n (P-1) + 3 ts. 

3. Potential and force calculations take 
T2 = 3.8 n N. 

4. Particle move takes time proportional to 
the number of particles within the reach of 
potential function d*, i.e. 

T3 = n (5.7 + 30.7 Ne). 
5. Three physical parameters which require 

the cascade sum and global data routing are 
calculated. It takes 

T4 = 3 (log 2 P (ts+ 0.753) + 0.17 (Pl+ P2 -2)). 

The scaling law: the total parallel execution 
time Tp is represented by 

Tp = Tl + T2 + T3 + T4, 

where Tc = Tl + T4, Tw 0, and the efficiency by 

cf.. = 1 - Tc/Tp. 

These are calculated for several parameter values, 
as shown in Table I. 

Table I. Measured execution time and efficiency 
in parallel Monte Carlo simulation of amorphous 
material (Lagrangian scheme) on PAX-32 array. 

N Tp (sec) Td (sec) cl.=1-Td/Tp (%) 

192 6. 77 ( 6 .87) 0.23 (0.24) 96 .60 ( 96 .48) 
224 9.29 ( 9.29) 0.27 (0.28) 97.09 (97.00) 
256 12.20 (12 .08) 0.31 (0.32) 97 .46 (97.38) 
288 15 .49 (15. 23) 0.34 (0.35) 97 .80 (97.68) 

N = Number of particles, Tp = Total execution time 
(sec), Td =Data. move and idling time (sec), <J. = 1 
- Td/Tp =Efficiency(%). The values in ( ) 
are calculated from the scaling law. 

Since we assume that number of particles per PU 
n = N/P is a constant parameter determined by the 
memory capacity of PU, the intra-PU calculation 
has the same dependence O(N) as the inter-PU 
communication. As the number of particles N 
increases, these terms with the dependence O(N) 
become dominant in the total execution time Tp. 
This makes the efficiency asymptotic to a 
constant factor, 30.7 nc /(30.7 nc + 1.2), as P 
tends to infinity. 

Again it must be noted that 
communication does not dominate over 
calculation. 

the inter-PU 
the intra-PU 

3.3 Linear Equation Solving by Gauss-Jordan and 
Conjugate-Gradient Schemes 

3.3.1 Job Partitioning into Parallel Tasks 

Parallel processing of linear equation has been 
extensively studied and parallelism of several 
levels has so far been exploited [11], [12]. 
However, it is still important to evaluate the 
parallel scheme of these well-known algorithms 
such as Gauss-Jordan and conjugate gradient 
methods, by implementing on the machine actually 

99 

operating. It is because, as pointed out in [3], 
not only the intra-PU operational tasks, but also 
the inter-PU data move may take major part of the 
time, leading to the very low efficiency. 

As briefly mentioned in the introduction, we 
made an approach to the matrix processing 
different from those assumed in Ref. [3]. Our 
partitioning of the linear equation problem is 
such that each PU takes care of one or several 
successive row(s) of matrix and corresponding 
elements of unknown and constant vectors, as shown 
in Fig. 5. Major reason is that the balancing is 
possible between work lqads of intra-PU and inter
PU ~rocessings as pointed out in the introduction; 
O(N ) work load of intra-PU process vs. O(N 2 ) load 
of broadcasting among PUs, where N =matrix size. 
This row-wise partitioning is appropriate as well 
in constructing the stiffness matrix in finite 
element analysis. If each PU takes care of the 
unknown variables associated with nodes or mesh 
points of the physical structure, the matrix 
generation itself can be made with high 
parallelism. 

For the practical use of the elimination 
schemes, the pivoting is important to get the 
reliable solutions. The maximum element being 
the next pivot element is found by the comparison 
among the column elements. Since each row vector 
is stored in each PU, this maximum finding is 
carried out by cascade comparison method, in which 
the data are routed similarily to the cascade sum 
method, but the comparison is made instead of 
summation. When a few rows are assigned to each 
PU, the cascade comparison scheme is made after 
the intra-PU comparsion. 

The inter-PU communication is made by utilizing 
the broadcasting under the control of CU, from 
local memory of any single PU to local memories of 
all other PUs. The circulation of data through 
the CM memory is not used for this linear equation 
solving, except the norm calculation over the 
distributed data in the array. This is because 
the work load for broadcasting uniformly 
distributed data to all PUs (i.e. making all 
combinations of data in the PU array) is the same 
as that for the same work by the data circulation 
via nearest data move. Suppose we have N data in 
P PUs, i.e. N/P data for a PU. The broadcasting 
N/P data P times takes time proportional to N, 
while the data circulation via nearest data move 
takes (N/P)(Pl-1) + (N/P2)(P2-l)=N(P-l)/P, where P 
= Pl • P2. In the present PAX system, single 
data move in both broadcast/nearest move takes two 
steps; data write to and read from the CU/CM 
memories. For P equal to or greater than 32, 
both works take nearly the same time. 

It must be noted that both methods do not give 
the same work load in the case of Gauss-Jordan 
elimination, because only the pivot row data are 
broadcasted to all other rows. This is the case 
where the broadcast method is superior to the 
circulation method. It must also be noted that 
there is no need to exchange the whole row vector 
data, because only the index number that tells 
where the row is located in the matrix must be 
altered. 

3.3.2 Parallel Scheme 



Variable assignment is made such that the 
matrix and vectors are divided into P blocks, each 
having N/P rows, and the i'th block is taken care 
of by the i'th PU. For simplicity, the 
explanation of algorithm below assumes N = P, i.e. 
one-row-to-one-PU correspondence. Figure 6 
illustrates how the scheme goes in parallel in 
PUs. 

Parallel Gauss-Jordan scheme. 
For k=l,2, ••• ,N, the following two-steps are 

sequentially executed. 
1. From the k'th PU, the k'th row of the 

matrix and the k'th element of the constant vector 
ti are broadcasted to the all PUs. 

2. The k 1 th PU executes 

(k) b(l<-11 (1(-f) 
bk •= k /aKI< 0 

(I<) 
aij := 

b.CK) : = 
\ 

The rest of the PUs execute 

a ~i:c-i> -
•J 

b~IH) 
\ 

a<ll'-•> 
iK 

(1(-1) 
ail< 

aC1<71l 
kJ 

b(lc-1) 
k 

I CK-I) 
a Kl< 

I U<-1) 
al<K 

When the partial pivoting is made, the k'th row 
is one that has the largest absolute value among 
atk, (k:S:l:S:N). 

Parallel conjugate gradient scheme. 
The conjugate gradient method searches the 

solution vector that gives the minimum value of 
the error norm. The scheme starts with the 
initialization, 

...,(o> .-.Co> -.co> ...,Co> ...,co> 
r := b - Ax , p := r , k = O. 

The following steps are repeated until either 
k>N or ("t(<e, where e error criterion. The 
matrix .A\ is assumed to be sysmetric and positive 
definite. 

d. (k) 

jt(KT1) := X(I() + o(. (Kl p(l<l , 

7C1<+1) := t£1<) _ ol (Kl A\ p(lcl' 

~ (1<) := crt<K+I). J!CKt-l»;ct<K>. J!Ck». 

p(K+l) := t'(K'l-1) + ~(IC) p(Kl, 

k :=k+l. 

Parallelization of the scheme follows the same 
partitioning of the variable as parallel Gauss
Jordan scheme. The vector and matrix 
calculations are executed as follows. 

1. Vector addition or subtraction is made 
independently in each PU. 

2. Scalar product of vector is made such that 
the partial product is calculated independently in 
each PU, and then the partial product is summed up 
by cascade sum method. 

3. The product of matrix A\ and vector x is 
made by such a way that, 

(a). the j'th element 
broadcasted from the j'th PU, and 

of "t, 
that, 

is 

(b). in the i'th PU, a·· x· is summed up 
•J J into the partial sum. 

These steps (a) and (b) are repeated 
sequentially for j=l,2, ••• ,N. 

3.3.3 Execution Time and Scaling Law 

Implementation of these two schemes on PAX-32 
system was made successfully for the problem 
sizes, N=32, 64, 96, 128, and 160. For the 
conjugate gradient method, the experiment was made 
for two matrices, one giving good convergence CASE 
(A), and the other poor convergence CASE (B). 
The scaling law is the function that expresses the 
time for parallel calculation in terms of the 
problem size N, the number of processors P, and 
the number of iterations M in the conjugate 
gradient method. The computation time was 
actually measured and summarized in Table II. 
The scaling law was derived from these measured 
data with good accuracy as shown below. 

Let us define several operation times for 
elementary processings; ts time for taking 
synchronization, tr time for real data move 
between nearest neighbor PUs, ti = similar time 
for integer move, ta time for data addition. 
The measured times for PAX-32 PU array are 
ts=0.107, tr=0.161, ti=0.126, ta=0.412 (msec). 

Time for cascade sum is expressed by 
Tcsum = (ts + ta) log2 P + (Pl + P2 -2) tr. 
Time for broadcasing k data from any PU to all 

other PUs takes 
Tbrd(k) = (0.160k + 0.02 k/64 + 0.261) + ts. 

Time for partial pivoting Tpiv can be obtained 
by a similar expression for Tcsum except that the 
time for addition ta is replaced by the time for 
compare and substitution, i.e. ta'=0.870 (msec). 
The data moved are one real number (an element of 
matrix) and two integers (PU and row numbers). 

The scaling law for the Gauss-Jordan scheme is 
expressed by using these measured total and 
elementary times, as follows. 

Tgj(N,P) = 0,011 (N/P+l) + 1.047 N /P + (Tpiv + 
0.495)N +1] Tbrd(k+l) + 0.157 N (N+l)/P. 

k 

The estimated time 
reproduce the measured 
II. 

by this 
values as 

scaling law can 
shown in Table 

The scaling law can be derived similarily for 
the conjugate gradient method. The time for the 
product of matrix and vector Tmat is derived as 
Tmat(N,P) 0.033 N/P + 2.43 + P (0.222 + 
Tbrd(N/P) + 0.094 (N/P-1) + 0.224 (N/P) ) 

The total parallel computation for conjugate 
gradient method takes 

Tcg(N,P,M) = (0.1 + 0.725 M) N/P + 0.379 M + 
(M+l) Tmat(N,P) + M Tbrd(l) + (3M + l)(Tcsum + 
0.173) + 0.5, 

where M=number of iterations. The estimated 
times by this expression is compared in Table II 
with the measured values. 

100 

The efficiency defined in 3.1 can be applied to 
these parallel executions as well. For the 
Gauss-Jordan scheme, the idling time immediately 



before the synchronization Tw is almost zero, 
because that the difference between the 
processings for pivot PU and non-pivot PU is 
small, and that the idling occurs in only a single 
PU, i.e. pivot PU. The efficiency is therefore 
approximated by o(gj = (Tgj - Tc)/Tgj, where Tc 
is the time for data move, which is represented by 
Tc = N (3 ts log 2 P + (Pl + P2 -2)(tr + 2ti) for 
Gauss-Jordan scheme. Similar expression holds 
for the conjugate gradient scheme: d cg (Tcg
Tc)/Tcg, where Tc = P Tbrd(n) + M Tbrd(l) + (3M + 
l){ts log2P + tr (Pl + P2 - 2)). . . . 

The evaulation of the efficiency is made 
assuming that n = N/P, the number of rows per PU 
is a fixed parameter. Asymptotic behavior of the 
efficiency is such that 

lim d.gj = n/ (n + 0 .510), for Gauss-Jordan, 
p-.oo 

lim<l(cg (n1 + 0.419 n + 0.57~)/(n2. + 1.14 n + 
1'-uo 2 .22), for conjugate-gradient. 

Efficiencies of both schemes become asymptotic to 
the values ranging from 46 % for n=l of conjugate 
gradient scheme (the worst case) to 95 % for n=lO 
of Gauss-Jordan scheme, and get to 100 % as n ... oo. 

Again the inter-PU communication does not 
devastate the efficiency of these parallel linear 
equation schemes. 

Table II. Measured execution time and efficiency 
in linear equation solving on PAX-32 array. 

« GAUSS-JORDAN SCHEME » 

N Tp (sec) d.. (%) Case 

32 0.585 (0.640) 55.44 (A) 
64 2.558 (2.485) 70.47 (A) 
96 6.636 (6.502) 79.28 (A) 

128 13 .853 (13 .656) 84.44 (A) 
160 25.676 (24.912) 87.69 (A) 

« CONJUGATE-GRADIENT SCHEME » 

N Tp (sec) o( (%) Ni Case 

32 0.509 (0.473) 50.69 9 (A) 
64 0.831 (0.777) 63.33 9 (A) 
96 1.286 (1.223) 72.52 9 (A) 

128 1.879 (1.812) 78.63 9 (A) 
160 2.602 (2.545) 82.77 9 (A) 

32 1.651 (1.586) 50.69 32 (B) 
64 5.337 (5.106) 63.22 64 (B) 
96 12.297 (11.957) 72.39 96 (B) 

128 23 .884 (23 .514) 78.51 128 (B) 
160 41.341 (41.151) 82.67 160 (B) 

N = Matrix size, Tp = Total execution time (sec), 
« = Efficiency (%), Ni = Number of iterations. 

Values in ( ) are calculated from the scaling 
law. 
Case (A) is a matrix example that gives good 

convergence in the conjugate-gradient scheme, 
while Case (B) is one that gives poor convergence. 

3.4 Fast Fourier Transform (FFT) 

We have also implemented a Parallel FFT (Fast 
Fourier Transform) on PAX, and have estimated the 
efficiency by observing the time of execution. 
Note that an FFT algorithm is in need of data 
exchange between distant PUs. 

Despite the existence of the specialized 
hardware for FFT, we were motivated to try the 
parallel processing of FFT on PU array, because 
that single processor array should work in two 
phases of interacting particle transport problems 
by the particle-mesh-method [13], where the 
potential field is solved Eulerian by using FFT, 
and the particles are pushed Lagrangian. If we 
use two systems: special FFT hardware and the 
processor for particle push, there must be wide 
band-width among these processors and common 
memory. If the PAX is proven fast enough in FFT, 
the whole problem can be solved on the processor 
array of PAX. 

3.4.1 Parallel FFT Algorithm 

Using the Cooley-Tukey [14] notation, FFT 
algorithm is written as follows. Consider the 
problem of calculating the complex Fourier series, 

N-1 "1< 
'f (j) = L X(k) wl • j =0,1, ••• ,N-1 (1) 

k•O 

where the given Fourier coefficients X(k) are 
complex and W is the principal N1 th root of unity, 
W = exp(21Ci/N). Suppose N is a power of 2, i.e. 
N=2n. Then let the indices in (1) be expressed 
as 

j jn-1 
n-1 

2 + jn-2 
2"-1 + + j I 2 + jo 

k kn-1 2"-1 + kn-2 2"-1 + + k, 2 + ko • 
where j.,. and k.,. are equal to 0 and 1. 
expression gives a unique representation of 
k. So, this allows Eq.(l) to be written as 

This 
j and 

C"p (jn-1 ' jn-2' ' j,' 

kn-2., ••• , kl' k0 ) wjK 

The innermost sum, over kn .. 1 , can be written as 

••• , k1' 

Proceeding to the next innermost sum, over kq .. 1 , 
and so on, one obtains recursive notation, 

A. (jo • • • • ' Jr-1 • kn-.t- f' • • • ko) = .... "£ At-1 (jo • 
-<. "II-! 

. 1-1 . ) 211-1 
(Je ... 1 2 +···+Jo k"n-e 2 ••• ,jt-z • kn-t' ••• ko) w ( ) 

for 1=1,2, ••• ,n. Equation (2) shows that N 
independent calculations are obtained at each l'th 
step. In Fig. 7, FFT data flow diagram is shown 
where N=8, in which 

. t-f . )""" 2n-.f 
W (Je-1 2 + ... 1" Jo "n-.r 

JOI 



is multiplied on --+ , and summed, over k11_• , on 
Ea • After n steps, the Fourier series can be 
evaluated at the right most side. Clearly 
independent N processes, -'I> and $ , can be 
separated by --- • 

Each PU(i,j) is corresponded with a non
negative integer p iPl + j, where the number of 
PU's is P, P=Pl • P2 (Pl ,P2 are also power of 2). 
Then each 'P(p), which means the PU(i,j), may have 
only one Fourier coefficient X(p) or At(p), if 
N=P. Note that - includes a data move 
operation between At-1 (j 0 , •••• jt-.t • O, kn-e-1 • 
••• 'ko) and At-1(jo, ••• , jt-2' 1, kn-l-1' •••' 
k 0 ), and this corresponds to a data routing 
between P(j 0 , ••• , jt-2., 0, k 11_,_ 1 , ••• , k 0 ) and 
P(jo, ••• • jt-2• 1, "kn-1-1 • •••• ko) • n-t 

Then the interval between these PU's is 2 , 
so this can be easily realized using the routing 
operation of PAX. 

The general case N>P, each PU must have N/P 
data which is 

X(pN/P + q) or A(pN/P + q), for q = 0,1, ••• ,P-l. 

First, calculate the pseudo Fourier series 
AN/P-l for the data distributed over each PU ~y 
using a serial FFT algorithm. Second, AN/P-1 LS 
considered as N/P sets of Fourier coefficients to 
be calculated, the q'th set is AN/P-l (pN/P + q), 
for q = 0,1, ••• ,P-1. 

3.4.2 Execution Time and Scaling Law 

We rewrite the parallel 
follows in steps 1 and 2. 

FFT algorithm as 

Parallel FFT. 
1. Calculate N/P data at each PU using the 

serial FFT algorithm, indicated by subscript 
1 seq'. 

2. Execute parallel FFT processing with all 
PU's; 

arithmetic part - operation and @ operation, 
both indicated by subscript 'op', 

routing part indicated by subscript 'r'. 

The execution time of each part is written as 
Tseq(N/P), Top(N), Tr(N,P), then Tpara, the total 
time of parallel FFT processing, is expressed as 
Tpara = Tseq(N/P) + Top(N) + Tr(N,P) • 

Table III. Measured execution time in parallel 
FFT algorithm on PAX-32 array, where P=32. 

Number of Parallel Serial Efficiency 
Data per PU Execution Execution rJ., =Ts/ (Tp P) 

N/P Time, Tp Time, Ts (%) 
(msec) (msec) 

1 11.5 258.0 70.00 
2 27 .2 612.6 70.31 
4 54.5 1358 .2 77 .81 
8 109.6 2996.6 85.31 

In Table III, the result of measurement is shown 
where P=32. Tseri, the time of serial FFT 
processing for N data with 1 PU, is the 
comparison, and it is clear Tseri = Tseq(N). 

There exists an overhead of parallelization 
while the values for Tseri/Tpara are all less than 
P. This overhead in the parallel FFT processing 
is caused by 

1. Idle PU' s as a result of unbalanced load 
calculation. 

2. Routing. 
Cause 1. is a result of measuring the execution 

time of the PU whose calculated load is the 
heaviest. Related to Cause 2. is Tr, the total 
time for routing, and is represented as Tr = ts 
log 2 P + tt(N/P) 3fP, where ts and tt are the unit 
time for synchronization and data transfer. Top, 
the time of the arithmetic part, is also 
represented as Top top(N/P) log2 P + constant, 
where top is the maximum execution time of one 
repitition. Moreover, Tseq(n), the total time of 
the serial FFT processing for n data with 1 PU, is 
Tseq(n) = tl n log 2 n + t2 n + constant. 
Define r;J. as the efficiency of parallelization, r;J. = 
Tseri / (Tpara • P). Assigning the measured 
parameters ts=0.14, tt=0.18, top=l.80, tl=l.82, 
and t2=1.20 (msec), we, then, get Cl( and the ratio 
of routing in Tpara as we increase P, the number 
of PUs, as shown in Fig. 8. Though d.-t 0 as 
P _,,co, parallel FFT processing on PAX is well 
practical, within the currently predicted limit of 
realization (about 10000 PUs). 

4. PERFORMANCE EXTRAPOLATION 

It is interesting to wonder whether high 
efficiency is still maintained, even if the number 
of processors gets very large, say more than 1000. 
Proven scaling laws permit us to extend the 
present performance to the super parallel systems. 

The hardware can be speeded up by the factor of 
100, which is realized by a microprocessor of 20 
MIPS and 45 nano-sec memory devices. Then the 
system performance could be raised accordingly by 
the factor of 100, except the synchronization time 
ts, that consists of a fixed time for detection 
plus a time proportional to the size of the array 
P is necessary for the synchronization signal to 
traverse twice the PU array. However, the size
dependent term does not become great within the 
implementation limit P<l,000,000 [6]. The signal 
skew [15] is not the primary limiting factor to 
the maximum number of processors, either [6]. 

The extrapolation of performance, therefore, is 
such that, for number of processors greater than 
1,000,000, the efficiency will decrease, while, 
for the realizable array size (P<l0,000), the 
size-dependent synchronization overhead does not 
affect the performance extrapolated from that 
obtained on PAX-32. 

The same statement as before must be repeated 
here: the inter-PU communication does not 
devastate the practical applicability. 

102 

5. CONCLUSIONS AND FUTURE PLAN 

The pilot machine PAX-32 demonstrated that the 
nearest neighbor mesh processor array operable in 
MIMD mode has been proven capable of executing the 



wide scientific applications, with the efficiency 
high enough for the practical use. The 
applications implemented on PAX machine cover 
those problems without proximity, such as particle 
transport problems with general interaction, 
linear equation solving with matrix and vector 
calculations, and FFT algorithm. It was proven 
that, in the practical limit of the size of the 
array, the efficiency is not devastated by the 
data move between processors, and the almost 
linear speed-up can be expected. 

The aim of our PAX development project is to 
demonstrate the practical usefulness of NNM array 
by physical means, i.e. by constructing the highly 
parallel NNM-connected PU array, and by solving 
the end-user's large scale scientific applications 
on it. The demonstration may only tells that the 
machine can be sufficiently good in such and such 
applications, (what we call sufficient condition 
approach), and it does not say anything about what 
is necessary for general applicability, (what we 
call necessary condition approach). Though the 
general applicability has not been established so 
far, we are going to pursue the sufficient 
condition for practical machine, and someday we 
will ask, "Is such a general-purpose machine 
really necessary that could cover applications 
wider than those covered by our PAX system ?" In 
short we hope to wipe out the widespread pessimism 
on the NNM array since ILLIAC-IV. 

In order to provide super computing power, by 
far greater than the presently available, in cheap 
cost for the end users, we have a plan to go 
through several developmental steps, from the 
present PAX-128 system, consisting of 128 one
board microcomputers, with approximately 4 MFLOPS, 
to our final goal PAX-IM, consisting 1 million 
VLSI-processors with 1 Tera FLOPS speed, that may 
be realized in early 1990's. 

We are optimistic in going our way. Optimism 
is sometimes dangerous, but no doubt motivates the 
progress. 

ACKNOWLEDGEMENT 

The authors are indebted to M. Okazaki and s. Itoh 
for their help in providing the Monte Carlo 
simulation program of amorphous material. Also 
they thank to M. Ejiri for her help in improving 
English. 

REFERENCES 

[l] G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, 
D.J. Slotnick, and R.A. Stokes, "The ILLIAC-IV 
computer," IEEE Trans. Comput. C-17 (1968), pp. 
746-757. 

[2] P.M. Flanders, D.J. Hunt, S.F. Reddaway, and 
D. Perkinson, "Efficient high speed computing with 
the distributed array processor," High Speed 
Computer and Algorithm Organisation. Academic 
Press, London (1977), pp. 113-128. 

103 

[3] W.M. Gentleman, "Some complexity results for 
matrix computations on parallel processors," J. 
ACM, 25 (1978), PP• 112-115. -

[4] T. Hoshino, T. Kawai, T. Shirakawa, J. 
Higashino, A. Yamaoka, H. Ito, T. Sato, and K. 
Sawada, "PACS, A parallel microprocessor array for 
scientific calculations," to be published in ACM 
Trans. Computer Systems, 1 1 (May 1983). ~~ 

[5] T. Hoshino, T. Shirakawa, and T. Kawai, 
"Parallel processing for scientific applications," 
International Symp. on Applied Mathematics and 
Information Sciences, Kyoto University, (March 29-
31, 1982), Kyoto, Japan, pp. 7-17--7-26. 

[6] T. Hoshino, T. Shirakawa, Y. Oyanagi, K. 
Takenouchi, and T. Kawai, "Super Freedom 
Simulator PAX," The 16'th IBM Computer Science 
Symp. Working Conf. VLSI enigneering, IBM Japan, 
(October 1-3, 1982), Hakone, Japan, pp. 43-55. 
(Proceedings will be published as a Lecture Note 
by Springer Verlag.) 

[7] T. Hoshino, and T. Shirakawa, "Load follow 
simulation of three-dimensional boiling water 
reactor core by PACS-32 parallel microprocessor 
system, 11 Nuclear Technology, 56 0982), pp. 465-
477. 

[8] R.W. Hockney, "Optimizing the FACR(l) 
Poisson-solver on parallel computers," Proc. IEEE 
1982 International Conf. Parallel Processing, 
(August 24-27, 1982), pp. 62-71. 

[9] T. Fujiwara, S. Itoh, and M. Okazaki, 
"Structural Model of Amorphous As2S3," J. Non
crystalline Solids, 45 (1981), pp. 371-378. 

[10] K. 
Parallel 
thesis, 
Science, 

Takenouchi, "Monte Carlo Simulation Using 
Computer PACS, 11 unpublished bachelor 

(in Japanese), College of Information 
University of Tsukuba, (February 1983). 

[11] R.W. Hockney, and C.R. Jesshope, Parallel 
Computers Architecture, Programming and 
Algorithms, Adam Hilger, Bristol (1981), 423 pp. 

[12] D. Heller, "A survey of Parallel Algorithms 
in Numerical· Linear Algebra," SIAM Review, 20 
(1978)' pp. 740-777. 

[13] R.W. 
Simulation 
pp. 540. 

Hockney, and J.W. Eastwood, Computer 
Using Particles, McGraw-Hill, (1982), 

[14] J.M. Cooley, and J.W. Tukey, "An algorithm 
for the machine calculation of complex Fourier 
series, 11 Math, Comp. 19 (1965), pp.297-301. 

[ 15] A.L. Fisher, and H.T. Kung, "Synchronizing 
Systolic Arrays," private communication Large 

(1982). 



HOST CONTROL 
COMPUTER 1----y-------1 UN IT 

PAX-128 Processing Unit Array 

PU 

CPI 

PU 

1 -

front 

to CU + 
CU-bus PU (m-1,n) left right 

I I 
- - -f - - - - FRONT CM - - - - ~ - - back 

I 
I 
I 

PU PU 
<m,n-1 l 

I 
I 
I 
I 

(m,n+1) 

PU-bus 
LEFT CM RIGHT CM 

I I 
PU (m,nl I 

I I 
- -+----BACK CM-------

1 I 
I 

PU (m+1,n) 

Fig. 2. Configuration of Processing Unit of PAX 
System. 

Tj Twj 
_--i ____ ~ 

SYNC 

Fig. 1. Configuration of 
PAX system. 

Tcj Tj Twj 
~ '-). '") J-__:__, ______ - - - - -- ---

2-------
j------- +-----------------

p--------
-----Tp-----

Fig. 4. Time Chart of Typical Iterative Scheme. 
Symbols Tcj, Tj, and Twj indicate the time 
intervals for co11111lunication, net calculation, and 
wait, respectively. Synchronization of all PUs 
is taken at SYNC. 

Fig. 3. Hardware Implementation of PAX-128 System. 

104 



ROW NO. MATRIX VECTORS 

A X or B 

a." a" b, Is t PU 

a" C!:_~_· _· ,.'___ ___ b, 2nd PU 

32 b32- - 32nd PU 

(a) Case of N 32. 

ROW NO. MATRIX VECTORS 

A x or B 

au a" 
Cl21 0.12 

f----- ---
a,, an 

b, 

~!st b, PU 

b, 
···--

4 a4, 0.42 

as, d.52 

q 61 a., 

b4 

]-2nd PU bs 

b, 

94 
a.9+,f Qq.;z .. 
il.i;-,1 O.q51 

aq,,, a,,, 

95 

96 

r 32nd PU 

(b) Case of N = 96. 

Fig. 5. Partitioning of Matrix and Vectors in 
Gauss-Jordan Scheme. 

·1. 

100 

N/P 

4 
2 
1 

50 
1 
2 
4 

0 

Fig. 8. Efficiency and Routing Ratio 
in Parallel FFT Algorithm. 

105 

Processing Units 

T p 

Time 

t 

t 

= 

= 

I 

I Initi1alization. ._I--~~--'-,----! 
I I 

Bro<ldcast of the 1st row 1 from the !st PU. ,. 
N .P .E. 1 ; 

I I bd 
I 

I ! ~------+----+--~ 
Broadcast of the 2nd row from the 2nd PU. 

N.P.E.1 P.E.1 N.P.E. 

~I I 
I I I I ! 

..... :· ..... ·:· ..... ~ ............ r ...... ·: ..... : ..... . 
I I I I I I 

• • • • "i" • • • • • ·1· • • • • ·.,. • • • • • • • • • • • r • • • • • ·, • • • • .1. • • • • • 
I I I I 
1 Broadcast of the i 1 th row from the i 1 th PU. 

N.P.E. P.E. 1 N.P.E. 
I 

I I 

I I > I ' I 
·····lo············-'············•·······1 ..... 1 ..... . 

I : I 1 I I 
r r 1 1 I r 

•••••,•••••••1•••••••1·•••••••••••r••••• 0 -l•••••1•••••• 

I Broadcast of the P'th row from the p I th PU. I 

I 1 N .P.E. I P.E. 
I 

Tp~- __L___ 

Fig. 6. PU-Time Diagram in Parallel Gauss
Jordan Scheme for the case of Matrix size = 
Number of PUs = P. Symbol P.E. stands for 
the pivot-row elimination and N.P.E for the 
non-pivot-row elimination. 

Fig. 7. Data Flow Diag~am in Parallel FFT 
Algorithm. 



PARTITIONING JOB STRUCTURES FOR SW-BANYAN NETWORKS 

Doug DeGroot 
I BM Thomas J. Watson Research Center 

P.O. Box 218 
Yorktown Heights, New York 10598 

Abstract 

Large multiprocessor systems interconnected 
by multistage SW-banyan networks may suffer 
from communication blockage if resources are not 
adequately allocated to processes within jobs. 
This communication blockage can quickly lead to 
performance degradation. Given a set of job 
structures, the problem is to map these structures 
onto the network in such a way that the amount of 
communication blockage induced by the mappings 
is held to a minimum. In general, this problem is 
very hard, bearing resemblance to the graph 
isomorphism problem. It has been solved forcer
tain structure types. This paper describes one 
general purpose mapping method that is suitable 
for structures that can be partitioned in a partic
ular manner. The structures are mapped onto 
regular SW-banyans in such a way that no commu
nication blockage can occur. 

INTRODUCTION 

In highly parallel multiprocessor MIMD systems 
interconnected by large, complex multistage inter
connection networks which possess the blocking 
characteristic, assignment of resources to proc
esses becomes a problem of primary significance. 
It is important, whenever possible, to assign the 
resources in such a way that the amount of com
munication interference is held to a minimum, both 
on a global scale (among all jobs) and on a local 
scale (among the processes within a job). The 
problem is an extremely complex one, one which 
includes a great number of orthogonal variables. 
These variables include job sizes and structures, 
job mix, system organization, network topology, 
and whether resource allocation is to be made on a 
dynamic or static basis, to name just a few. 

So that the systems being considered can be 
allowed to be scaled up to larger and larger sizes, 
it is necessary that resource allocation schemes 
for such systems exhibit satisfactory performance, 
preferably linear in the number of resources and 
job size, and certainly not much worse than loga
rithmic. It is also extremely important" for 
resource allocation schemes to exhibit as much 
flexibility as reasonably possible. The number of 
different job structures that will be presented to a 
system is usually potentially very large. It is 
impractical to develop and maintain a large col
lection of specialized resource schedulers, each of 
which is suited to only one or some small number 
of job structures. Instead, a small number of gen
eral purpose resource schedulers with great flexi
bility is desired. 

This paper discusses a resource scheduling 
scheme for use in such a scheduler. As previous-

0190-3918/83/0000/0106$01.00 © 1983 IEEE 106 

ly mentioned, any resource scheduler must incor
porate specific values of many variables. The 
resource scheduling scheme described here is use
ful for mapping process-structured computations 
onto multistage regular SW-banyan networ~s, both 
rectangular and non-rectangular. All processors 
are located on one side of the network. Communi
cation paths pass from one processor all the way 
to the other side and then back through the net
work to the desired other processor. All commu
nication paths are bidirectional. The nodes on the 
network side opposite that of the processors can 
be connected to memory modules, as in TRAC 
[Sejnowski] or the Ultra computer [Gottlieb], or 
they can simply be "bounce back points." It is 
intended that they will be memory modules, capa
ble of buffering communication. Communication 
can be either by packet switching or circuit 
switching - the resource allocation is the same. 
(However, as will be explained below, additional 
enhancements are possible in packet switching 
systems.) The jobs are assigned all resources at 
once but jobs may be scheduled dynamically. The 
structure of a job is arbitrary but must be strong
ly partitionable. This property is defined below. 
Applications of the resource scheduler to struc
tures which are not strongly partitionable are dis
cussed at the.end of this paper. 

DESCRIPTIONS OF THE VARIABLE SPACE 

This section defines the variable values for 
which the described resource allocation scheme is 
suited. Following this section, the allocation 
scheme itself is presented. 

SW-banyans 

SW-banyans are formally defined in [Goke]. 
Figure illustrates an SW-banyan. In this 
figure, the nodes of the banyan are arranged in a 
number of distinct levels, with level 0 being at the 
top, level 1 at the level below level 0, and so on. 
The last level is denoted "level L." Nodes in 
adjacent levels are connected together through a 
set of banyan crossbars. Within each level x, the 
fanout of a node is denoted f(x); the spread of a 
node is denoted s(x). The fanout of a node is the 
number of edges exiting below the node. The 
spread of a node is the number of edges exiting 
upwards. Nodes with fanout of zero are called 
bases; nodes with spread of zero are called 
apexes. There is exactly one path between any 
base and any apex; this is the "unique path" 
property of banyans. The nodes in each level are 
numbered from left to right, from 1 to n(x), 
where n(x) is the number of nodes in the level. 
SW-banyans are three dimensional structures that 
can be represented in many ways in two dimen-



Figure 1 

sions. Throughout this paper, all SW-banyans will 
be represented in a base-distance decomposition 
manner [DeGroot]. In such a decomposition, each 
level x of the banyan can be seen to contain f(x) 
sub-banyans (component banyans) below that lev
el. Thus in Figure 1, f(O), the fanout of the 
nodes at level 0 (the apex nodes) is 3; and at lev
el 1 there are three component SW-banyans. 
Although the class of banyans includes busses, 
trees, and crossbars, we are interested here only 
in multistage SW-banyans (i.e., SW-banyans with 
L > 1) that have f(x) ;::; 2 and s(x) ;::; 2 for all 
levels x. This class includes such well known 
networks as the Omega [Lawrie], binary n-cube 
[Pease], Flip [Batcher], Baseline [Wu], and Gen
eralized Cube [Siegel]. SW-banyans are called 
regular if for every level x, f(x) is the same for 
all nodes within level x, and so is s(x). If n(x) 
is the same for all levels x within an SW-banyan, 
the banyan is called rectangular. If f(x) and n(x) 
are the same for all levels x, then the banyan is 
called strongly rectangular; if all values for n(x) 
are the same but the values for f(x) differ 
between levels, the banyan is weakly rectangular. 
The resource scheduling scheme presented here is 
applicable to regular SW-banyans, and to either 
rectangular or non-rectangular ones. The sched
uling scheme is first described using only rectan
gular SW-banyans. It is shown later how 
non-rectangular SW-banyans may also be used. 

Process-Structured Computations 

All computations· are assumed to be 
process-strucfured computations. Such computa
tions consist of a number of disjoint processes (or 
tasks), each with its own memory and processing 
element. The processes do not share memory, but 
they may communicate over logical communication 
channels [Kahn]. It is possible that these chan
nels may be based in memory, as is the case, for 
example, in TRAC [Sejnowski]; but this is not 
necessary. In TRAC, the memory serves to buffer 
communication. A graphical representation for a 
process-structured computation would appear sim
ply as a set of nodes with each node representing 
one process. If two processes are to communicate 
with each other, then there will be an edge con
necting their two respective graph nodes. The 
number of processes must be determinable at com
pile time, as must the number and distribution of 
logical communication channels [Kahn, Hoare]. 

107 

Jobs are assumed to be able to arrive and com
plete at will, thus the job mix is a dynamic one. 
However, the mapping scheme presented here 
presently works best when it has its own partition 
of the banyan in which to work. If other jobs are 
already resident in the system, as would be true 
in any dynamic system, and a separate 
sub-banyan can not be found, the success of the 
mapping method presented would most likely suf
fer. The operating system must then clearly be 
relied upon to treat sub-banyans as a schedulable 
resource. Compensating for a partially busy net
work is considered at the end of this paper. 

System Organization 

The systems considered consist of a large num
ber of processors (say 100 to 1000 or more), all of 
which are located at one side, the apex side for 
example. Nodes on the base side may be con
nected to memory buffers or may be "bounce 
back" points. The interconnection network is an 
SW-banyan, and therefore the network is charac
terized by the "unique path" property. For 
processor A to communicate with processor B, A 
originates a message which travels down the net
work from the apex to which A is connected to 
some base node and then back upward through the 
network to the node to which processor B is con
nected. Any base node can be used for this com
munication. Consequently, there are many 
different possible communication paths between 
processors A and B, even though the network is a 
"unique path" network. However, once a base is 
selected, there is one and only one path from it to 
each of the processors A and B. The scheduling 
scheme presented relies heavily on both of these 
facts. 

SW-banyans, like most multistage intercon
nection networks, are blocking networks. Thus, 
given a set of communication paths to be estab
lished, it may not be possible for all communi
cation paths to be set up in the network without 
having two or more 'Of. the communication paths 
interfere with each other. In circuit switching 
paths, this type of blockage may in fact prevent 
the needed set of communication paths from being 
set up. Packet switching communication allows 
interfering communication paths to be set up, but 
as communication commences, packets from two or 
more communications may interfere with each 
other, thereby slowing down the rate of computa
tion of the processes that interfere with each oth
er. How much interference is encountered 
depends on run-time performance aspects. 

To avoid this run time communication delay, it 
is desirable to allocate communication paths in 
such a way that they will never interfere with 
each other. By so doing, process computation 
speeds can be kept at a maximum. Figure 2 shows 
the effect of communication blockage in an 
SW-banyan. In Figure 2.a, the.communication path 
between processors A and B shares links in the 



A B C D E F 

Figure 2 

network with itself (the downward path shares 
links with the upward path), but because these 
two processors are communicating with each other 
and are aware of each other's communication activ
ity over th is path, they do not interfere with each 
other. However, processors D and E can interfere 
with each other; if D wants to talk to C and E 
wants to talk to F simultaneously, their communi
cations will interfere with each other. The amount 
of delay experienced by the processors will vary 
~re'!1~ndously with the application and timings of 
md1v1dual processes. This is an example of com
munication blockage. It is this blockage which the 
mapping method presented herein prevents. 

THE PARTITIONING METHOD 

The partitioning method is presented in this 
section.. Given a computation struc"b.lre S, a 
strong bipartitioning of S into two substructures 
Sl and S2 is found such that no two edges in the 
cut set are connected to the same node. This 
strong partitioning is more restrictive than simple 
partitioning. The substructures Sl and S2 can 
then be mapped onto SW-banyans which have 
f(x) ~ 3 for 0 $ x $ L-1. Such banyans 
recursively have at least three component 
SW-banyans at every node level. To map S onto 
such a banyan, Sl is assigned to one of the three 
component SW-banyans at level 1, S2 is assigned 
to another, and a third is used to form the inter
connections. Figure 3 illustrates this process. 
Note that nodes at level 1 are used to form the 
interconnections between the processors assigned 
to Sl and S2. 

Once the first strong bipartitioning has been 
performed and the substructures have been 
assigned _to separate level 1 component banyans, 
th~ mappmgs of Sl and S2 are recursively solved 
using these component banyans. This process con
tinues until the substructures are no longer 

Figure 3 

108 

decomposable, that is, when each substructure 
consists of only a single processor. Nodes at lower 
and lower levels will be used to interconnect suc
cessive substructure decompositions. It is appar
ent that this mapping method requires as many 
levels of nodes as the number of strong parti
tionings plus one. This mapping method will 
become clear as a few examples of its application 
are presented. Following these examples, several 
ways of extending the method are presented. 

Partitioning the Cube 

One simple problem structure is the cube, con
sisting of eight nodes (processes) and 12 edges 
(communication channels). The goal of the 
resource scheduling scheme is to assign one 
processor (apex) to each process node and one 
base and communication path to each communi
cation channel. To begin with, the cube can easi
ly be strongly partitioned into two disjoint 
squares. Each square can then be further parti
tioned into two lines, and each line can be parti
tioned into two nodes (processors). See Figure 4. 
None of these partitionings violate the strong par
titioning interconnection constraints, that is, no 
two edges in any cut set connect to the same 
node. Using the strong partitioning mapping 
method, the two squares will be interconnected 
through nodes at level 1 since they are the sub
s_tructure results of· the first partitioning; the 
Imes of the square will be interconnected through 
nodes at_ level 2; and the nodes in the line seg
ments will themselves be interconnected through 
nodes at level 3. Clearly then, a banyan with at 
least four node levels (0 through 3) is required 
for mapping the cube using this method. Since 
every level x must have f(x) ~ 3, 0 $ x $ L-1, 
a~d since four levels of nodes are required, map
ping the cube using this method requires a 
banyan with at least f 3 = 3 3 = 27 bases. It is' 
shown later how this number can be lessened. 

Following the strong partitioning of a 
structure, processors and base nodes must be 
assi~ned to the ~ecomposed structure. This proc
ess 1s now explained below. Given a base distance 
decompo~iti?n of an SW-banyan [DeGroot], the 
nodes w1thm a given level x are numbered from 
left to right, from 1 through n(x). The numbers 
of the apex nodes of crossbars between levels L-1 
and L differ by 1. Crossbars between levels L-2 
and L-1 have their apex nodes diHering,. by s(L). 
Crossbars _between levels L-3 and L-2 haiw apexes 

4=71 
~ 

Q-v---·-
-.... --· 

... ---
Figure 4 

/: ,(I, 
I /·; 

I I' I b 
I• 11. I Ii vv 

, , , , , , 
/ "' 

, , . , , , ,, , 



differing by s(L-l)s(L), and so on. In general, 
crossbars between levels x and x+l have apex 
numbers differing by 

d ( x) = [ 1 , for x = L-1 
s(x+2)s(x+3) ... s(L), for 0 ~ x ~ L-2 

Figure 5 illustrates this property. This 
SW-banyan will be used to demonstrate the map
ping. In the cube partitioning, the line segments 
are formed by connecting together two processors 
through a node at level 3, and thus crossbars 
between levels 2 and 3 are used to form the map
pings of the nodes in these line segments. In the 
(3,3) SW-banyan of Figure 5, these crossbars 
have apex nodes differing by one. The line seg
ments are interconnected into squares through 
nodes one level up, at level 2, requiring crossbar 
interconnections between levels 1 and 2. The 
interconnected processors must th us have num
bers differing by d(l) = s(L) = 3. Similarly, the 
level 1 interconnections of the squares require 
that the interconnected processors differ by 
d(O) = s(L-l)s(L) = 9. 

The beauty of this mapping method is that only 
two arbitrary choices are required. For the cube, 
one line segment is selected and the nodes 
(processors) connected by it are numbered so that 
they differ by only one. Clearly many such num
berings are possible. Without loss of generality, 
processors 1 and 2 can be selected. Assignments 
to the processors in the other line segment in the 
corresponding square are made simply by assign
ing them numbers that differ from their nodes to 
which they are being connected by d(l) = 3. See 
Figure 6. Node 1 in the first line segment con
nects to node 1 + 3 = 4; node 2 connects to node 
2 + 3 = 5. Note that the new line segment 
processor assignments, processors 4 and 5, differ 
from each other by only one as required. Node 
assignments can now be made in the other square. 
To do so, nodes are simply chosen which differ by 
d(O) = 9 from their connecting nodes. The new 
node assignments clearly maintain the required 
node relationships, as shown in Figure 7. Once 
the nodes have all been labeled, the cube can be 
loaded onto the banyan. Figure 8 shows one pos
sible loading using the assigned processors. It is 
apparent from the figure that even with the given 
node labeling many loadings are possible simply by 
choosing different bases. In the figure, each base 
selected is only one of three possible. 

To see how the interconnections between two 
substructures are achieved, note that processors 
1 and 4 are interconnected at level 2 through node 
7, implying the use of base node 7 as well. Node 
7 differs from 4 by d(l) = 3, just as does 4 from 
1. Similarly, nodes 2 and 5, which differ by 3, 
are interconnected through node 5 + 3 = 8 at level 
2 and at the base. Nodes 1 and 10, which differ 
by 9, can be interconnected using node 
10 + 9 = 19, and so forth. The fact that the third 
node is always available for interconnecting the 
other two nodes is due to the constraint that 
f(x) 2: 3, 0 ~ x ~ L-1. This ensures that there 
will be at least three base nodes in every crossbar 
within the banyan. Each of the three nodes will 
naturally reside within three different component 

109 

N' 
V::J v 

y 
N 

~ 

~ ~ Li!! ~ Ii< . lM 

IXI 

' 
~ ~ ~ ~ 

Figure 5 

4 --- ----

Figure 6 Figure 7 

Figure 8 

banyans. By having assigned node numbers in the 
above manner, the availability of the third node 
for interconnecting the other two is ensured. 

A most important point to notice about the 
loaded structure is that given any communication 
path, if the two processors on th is path are com
municating, there can be no other two communicat
ing processors that interfere with the first two. 
This is true whether the communication is accom
plished with packet switching or circuit switching. 
An important point to notice about the mapping 
method itself is that it takes time linear with the 
number of processors and communication channels 
to be mapped once the partitionings have ·been 
determined. Determining the partitionings may be 
much more complicated, and in fact, it is unclear 
at present how effectively this could be 
automated. 



4-Nearest Neighbors 

Another common problem structure is the 
4-nearest neighbors strudure. In this structure, 
the nodes are organized in rows and columns, as 
elements of a matrix. Except for the outside ele
ments, node (i,j) is connected to nodes (i+l ,j), 
(i-1,j), (i,j+l), and (i,j-1). Strong partitioning 
can be performed on this structure just as well as 
it was on the cube. Figure 9 shows a set of suit
able strong partitionings of the 4x4 4-nearest 
neighbors structure. Because 4 levels of partition
ing are required, 5 levels of nodes are required. 
And again, because fanouts of 3 or more are 
required, at least 81 bases are required with this 
method. Node assignments can be made as before, 
with the restriction that the fourth level parti
tionings must have nodes that differ by 1, third 
level nodes must have nodes differing by s(L), 
and so on. In Figure 10, the needed differences 
are labeled along the connecting edges. Figure 11 
shows one possible node labeling using the 
required node differences. Finally, Figure 12 
shows this structure loaded onto the (3,3) 
SW-banyan. Again, it is important to notice that 
no two active communication paths can possibly 
interfere with each other. 

EXTENDING THE PARTITIONING METHOD 

This section describes several ways in which 
the partitioning method can be extended to make it 
more powerful. 

Higher Level Partitionings 

So far, example applications have recursively 
strongly bipartitioned a structure into two sub
structures at each step. These two substructures 
were assigned to two separate component 
SW-banyans and a third was used to interconnect 
the two. This process required at least three co'm
ponent SW-banyans at each step, or equivalently, 
f(x) ~ 3 for 0 s x s L-1. When f(x) > 3 for some 
node level, it might be possible to strongly parti
tion a given structure into more _than two sub
structures. If a structure is strongly partitioned 
into n substructures and mapped onto separate 
level x+l component SW-banyans, n-1 other com
ponent SW-banyans at the same level can be used 
to form the necessary interconnections between 
the substructures. The total number of required 
component SW-banyans at level x+l is then 
2n - 1. Thus the fanouts of the nodes at level x 
must be 2n - 1 or more. Note that 2n - 1 is 
always odd. Equivalently, if f(x) = n for some 
level x, 0 s x s L-1, a given structure can be 
strongly partitioned into (n+l )/2 substructures, if 
possible. Figure 13 illustrates the process of 
strongly partitioning a structure into more than 
two substructures. As an example of a structure 
that may be strongly partitioned into more than 
two partitions, consider the 6x6 4 nearest neigh
bors structure. A set of suitable strong 
bipartitionings and tripartitionings of this struc
ture is illustrated in Figure 14. 

110 

3 

I 

9 

I 

3 

I 

H---H 
0---jj OCJ 

d [j 

3 

9 

,-, 
' ' ' ._____, 

27 

21_ 

JL 

3 

27 

3 

9 

3 

Figure 10 

·; 

,-, 
~ : ,_, 

,-, 
' 

Figure 9 

1 

I .~-~~::~ 
l I I I 

~ 
I r ' 
I I I 
I r I 

l 

I 

llH----~·D, .,, 
U ____ _ 
10 11 38 39 

Figure 11 

Figure 12 

D= 

Figure 13 



In some cases, n substructures do not require 
n - 1 component SW-banyans for interconnection, 
thus allowing fanouts of less than 2n - 1. For 
instance, three substructures might easily be 
mapped onto three component SW-banyans and 
interconnected through only a fourth. As an 
example, consider the structure shown in Figure 
15 and the accompanying strong partitioning and 
node labelings. This structure is clearly the 
6-processor pipeline. Both the strong parti
tionings and the node labelings obey the con
straints described above. Figure 16 shows this 
structure loaded onto the strongly rectangular 
(4,2) SW-banyan. Note that at level 1 the struc
ture is strongly tripartitioned but that only four 
component SW-banyans are used to map the three 
substructures and interconnect them, instead of 
2x3 - 1 = 5. The mapping method is not formally 
described here for use with fewer than 2n - 1 
component SW-banyans, but it is apparent that it 
is sometimes possible. 

Sometimes a substructure is simple enough or 
small enough to be mapped by other methods than 
the partitioning method and may consequently 
require component SW-banyans with fewer levels 
than might be required by the partitioning 
method. One trivial instance involves substruc
tures with n or fewer processors interconnected 
by n or fewer communication paths. Such sub
structures can easily be mapped onto any crossbar 
of size nxn or more. For example, the cube can be 
strongly bipartitioned into two squares. Each 
square contains 4 processors and 4 communication 
paths. Clearly these squares (or rings) can be 
mapped onto 4x4 crossbars. Since only one strong 
partitioning is required to reduce the cube to 
substructures that can be mapped onto crossbars, 
only three levels of nodes are required. Figure 17 
shows the cube loaded onto such a banyan. 

Interior Bounce-Back Points 

It is possible to design communication networks 
in which all communication turns around in the 
middle of the network where the downward paths 
meet the upward paths instead of traveling all the 
way through the network to a base before turning 
around. In such cases, it may be possible to omit 
the allocation of certain base and intermediate lev
el nodes. Since it ~s the availability of nodes and 
links that determines in large part the success of 
a potential mapping in a busy system, the more 
nodes and links that are available, the better the 
chance of success for the mapping. In addition, a 
larger number of structures will be able to 
coreside on the network at a given time. The 
mapping method presented is presently unable to 
take advantage of idle nodes that have busy nodes 
above them, and thus is presently incapable of 
satisfactorily dealing with such networks except 
as regular networks. 

Packet Switching Enhancements 

When packet switching is used as the form of 
communication, greater flexibility is allowed in the 
mappings. If it is impossible to map a given struc-

III 

s--E---s 
~~~B 
[] [] [J

;-~~: []

[] [] []

qqq
odb
o • I I I •

: ' : I : :

ODD

Figure 14

Ln
I
I
I

2

1 2
Figure 15

5 6 9 10

Figure 16

Figure 17

0 10

ture, say because no suitable partitionings may be
found, then communication channels may be
dropped from the computation structure graph one
by one until partitionings are possible. This
reduced graph may then be mapped onto the net
work, and those communication channels which
were dropped may be arbitrarily assigned. These
arbitrarily assigned channels may result in inter
ference with the regularly mapped communication
channels, but the number of interfering channels
will hopefully be minimized by the partitioning
mapping method.

Loading Onto Busy Networks

If the system already has some jobs loaded onto
it, a gi~en node labeling for a partitioned struc
ture may not be loadable onto the network due to
the indicated nodes, links, or bases being in use.
In such cases, adding 1 modulo the number of
apexes to every labeled node produces another
labeling that still satisfies the needed labeling
constraints. Each such labeling can be tried until
all have been tried but failed or until one suc
ceeds. In addition, it is possible to try for inter
connections of substructures at higher levels. For
example, when a cube is decomposed into two
squares, these squares can be interconnected
th rough many different levels. Although doing so
is easy, how this is done has not been explained
in this presentation.

Mapping Onto Non-rectangular SW-banyans

As mentioned at the beginning of this paper,
the partitioning mapping method is suitable for
both rectangular and non-rectangular
SW-banyans. So far, all the examples have dealt
solely with rectangular SW-banyans. Figure 18
however shows a cube mapped onto an 8x27
non-rectangular SW-banyan. Given the particular
orientation of the banyan in the figure, it is easy
to see how certain processors in rectangular
SW-banyans are unnecessary for the partitioning
method. For instance, the rightmost component
SW-banyan at level 1 is used solely to interconnect
processors which are above the leftmost and mid
dle level 1 component SW-banyans. Therefore, the
processors above this third (rightmost) component
are not needed, and indeed, in most cases, will
probably be rendered useless by the mapping.
The same situation exists recursively within each
component banyan. As a consequence, it appears
that fanouts of 3 and spreads of 2 are best suited
to this mapping scheme. A network with this
topology was serendipitously selected as the TRAC
network early in the project.

Non Strongly-Partitionable Structures

Recent studies have shown that the partition
ing method is extendable to structures that are
not strongly. partitionable. Thus the number of
structures that may be mappable with the parti
tioning method is larger than first believed. Fur
ther research is needed in order to determine the
limitations of the partitioning mapping method for
non-strongly partitionable structures.

112

Figure 18

OTHER PARTITIONABLE STRUCTURES

As noted near the beginning of this
paper, the partitioning method as presented is
applicable to only a very restricted class of com
putation structures. These structures must be
able to be partitioned into a number of disjoint
substructures such that no two edges in any cut
set are connected to the same node. Fortunately,
there are many useful structures in this class.
Figure 19 illustrates just a few of the many such
structures. Figure 20 shows several structures
that do not fall into this class. These structures
will be mappable with an extended partitioning
method.

QQQQO 0

Figure 19

*
Figure 20

SUMMARY

A resource allocation scheme has been pre
sented for mapping certain classes of job struc
tures onto regular SW-banyan networks, both
rectangular and non-rectangular. Th is method
works best when the job structures to be mapped
are strongly partitionable. For a given partition
ing of a structure, an assignment of processors
and base nodes can be made in linear time. Many
possible resource assignments are possible for a
given partitioning, allowing greater probabilities
of loading a structure onto a busy system. Several
ways in which the basic partitioning method can
be extended have been discussed.

Acknowledgements

Thanks to Dr. James C. Browne and Dr.
Miroslaw Malek for their support in this work.

Bibliography

[Batcher] "The Flip Network in Staran,"
Kenneth E. Batcher, Proc. 1976
International Conference on Parallel
Processing, Aug. 1976, pp:---65-71.

113

[DeGroot] Mapping Computation Structures Onto
SW-banyan Networks, Doug DeGroot,
Doctoral Dissertation, Department of
Computer Sciences, The University of
Texas, Austin, 1981.

[Goke] Banyan Networks for Partitioning
Multiprocessor System$,
Rodney L. Goke, Doctoral
Dissertation, Univ. of Florida, 1976.

[Gottlieb] "Networks and Algorithms for
Very-Large-Scale Parallel
Computation," Allan Gottlieb and Jack
Schwartz, Computer, Vol. 15, No. 1,
Jan. 1982, pp. 27-36.

[Hoare] "A Calculus of Total Correctness for
Communicating Processes," C.A. R.
Hoare, Science of Computer Program
ming, Vol. 1, No. 1, pp. 49- 72.

[Kahn] "The Semantics of a Simple Language
for Parallel Programming," Giles
Kahn, Inf. Proc. '74, pp. 471-475,
IFIP, 1974. -- -

[Lawrie] "Access and Alignment of Data in an
Array Processor," Duncan H. Lawrie,
Trans. on Computers, IEEE, Vol.
C-24, No-:-12, Dec. 1975,

[Pease] "The Indirect Binary n-Cube Micro
processor Array," M.C. Pease,
Trans. on Computers, IEEE, Vol.
C-26, No-:-5, May 1977, pp. 458-473.

[Sejnowski] "An Overview of the Texas
Reconfigurable Array Computer,"
Matt Sejoowski, et al, AFIPS Conf.
Proc., Vol. 49, 1980, NCC, pp.
631-641.

[Siegel] "The Multistage Cube: A Versatile
Interconnection Network," H.J. Siegel
and R.J. McMillan, Computer, Vol.
14, Dec. 1981, pp. 65-76.

[Wu] "On a Class of Multistage Intercon
nection Networks," C. L. Wu and T. Y.
Feng, IEEE Transactions on Comput
ers, var:- C-29, August l980, pp.
694-702.

CONFIGURING COMPUTATION TREE TOPOLOGIES
ON A DISTRIBUTED COMPUTING SYSTEM

Woei Lin and Chuan-lin Wu
Department of Electrical Engineering
The University of Texas "t Austin

Austin, Texas 78712

Abstract

This paper describes an approach to connect
ing hardware resources for high-performance compu
tation. Two basic algorithms are designed for
configuring binary tree topologies. The configur
ing command can be issued from any processing mode.
The algorithms can select proper modes for connec
tion while maintaining good utilization of proces
sing nodes.

I. Introduction

Recently, due to VLSI technology, the cost of
hardware has been drastically decreased. Research
ers attempt to add more and more hardware to com
puting systems. In order to improve computing sys
tem, they are using multiple processor instead of
single processor to achieve higher performance.
And generally these processors are interconnected
by a communication network. However, an improper
communication structure is liable to incur exces
sive interprocessor communication that is referred
to as saturation effect [l]. And this excessive
interprocessor communication would seriously de
grade the overall performance of multiple proces
sor systems. Therefore, in designing a multiple
processor system, communication structure is a
major factor as well as to be considered.

In order to minimize interprocessor communi
cation and improve resource utilization, several
different techniques have been employed to con
figure processors into some topologies, such as
linear array, star, loop, cube, binary tree, etc.
[2-6]. However, a single topology is only suitable
for some specific tasks. And the performance will
be improved provided that processors can be dynami
cally reconfigured into suitable topologies needed
in the computation. The main idea behind this
work is to design two basic configuration algori
thms to connect processors into binary tree topo
logy through a communication subnet - starnet, which
is able to support some other configuration topolo
gies [7] . And configuration commands could be issued
by any processor. The remainder of this paper is
organized as follows. Section II presents both
system overview and mathematic models. In Section
III the configuration algorithms of binary trees
are presented. Section IV contains the con cl us ions.

II. System Overview and Models

A. Introduction to Star
Star is a collection of N heterogeneous proc

essing mode as well as a communication subnet
starnet through which processing modes are able to
communicate with each other. Generally, the num
ber of processing nodes (the size of starnet) is a
power of two, N=2n. The starnet is a cascade of a
baseline network and a bit reversal permutation P.

0190-3918/83/0000/0114$01.00 © 1983 IEEE 114

In star, processing nodes are numbered from 0 to
N-1. For convenience, each node is labeled with
an n-bit binary number, which is referred to as
address.
----The switching methodology employed in the
starnet is circuit switching, that is, a physical
path is actually established between processing
nodes.

To a specific destination node, all source
nodes issue the same routing tags no matter where
they are. And the routing tag is exactly the
address of destination. More precisely, let
source address S = Sn-l Sn_ 2 ... s0 and destination

address D = dn-l dn_ 2 ... d0 respectively. At stage

i, the requested switching element can be describ
ed by

where 0 < i < n-1. And the requested link can be
described by-

(dn-1 · · ·dn-i so···sn-i-l)i,

where 0 < i < n.

B. Description of Functions
In this subsection, we examine the problem of

conflict-free mapping on the Star. Before the
formal description of conflict-free mapping is
presented, two basic functions ¢ and ~ are intro
duced, which facilitates the detectlon of conflicts
among connections of starnet.
DEFINITION. Let U = U'M + u,V V'M + v where
U, V, U', V', M' u, v, are n-bit binary numbers
and u, v < M, M = 2m, 0 < m < n. A function ¢ is
defined as ¢(U, V) max [m],

where m makes U and V have u = v.
DEFINITION. Let U, V be n-bit binary numbers,
function ~ is defined as

~(U, V) = ¢(P(U), P(V)).

For example, if U = 0110110 and V = 010010 then
¢(U, V) = 3 and ~(U,V) = 2. Two extremes of¢
are (1) m = m, it leads to U = V (2) m = 0, one of
them is an even number and the other is an odd
number. Functions and ~ also have the following
properties. Note that the following bit manipula
tion is based on module-n.
LEMMA 1. If ¢(U, V) = k, then for any integer C,
HU + C) = k.
LEMMA 2. Let U = U'M + u and V = V'M + v. If
V > U, for any integer number M = zm, then V' > U'.
Morevoer, if V >U and u > v, then V' >U'.
LEMMA 3. If U, V are n-bit binary numbers and
¢(U, V) = k, then ~(U, V) < n _ k.

And if ljJ (U, V) = k', then
<ji(U, V) • n- k ' .

LEMMA 4. If <P(U,V) = k < n, then
¢(2U, 2V) = k + 1.

LEMMA 5. If di(U, V) = k and 0 < k < n, then
ljJ(U+l, V) < n-k.

for convenience, let an ordered pair (S,D)
represent a connection between two nodes S and D,
where S is source node •rnd D is destination node.
In starnet, a conflict of a 2x2 switching element
is defined as a situation in which two connections
from different input ports and with different
routing tags compete the same output port. 'J11ere
fore, if a set of connections (S 1 , D1), ... (Sk ,Dk)
do not cause any conflict, then they are mappa~~
on star.
THEOREM l. In star, a set of connections (Sr, D1),
~(Sk,Dk) are mappable if and only if for any
two connections (Si,Di) and Sj,Dj) where Sit Sj
and Di f Dj, the following inequality is satisfied

<P(Si, SJ·)+ ljJ(D., D.) <n.
. 1 J

_J_I.J~nary Tree

The following algorithm is used to configure
a number of processors into an n-level full binary
tree which could be rooted from any arbitray node
R. And the left son of a predecessor Si is denoted
as Di,l and right son is denoted as Di,Z·

ALGORITIIM 1. (Al)
Procedure top-down tree (R, n);
begin

for i: = 1 to n-1 do
begin .
k: = z.1-1;
for j : k to 2k - 1 do
begin
s.:

J
j + R 1;

for j : k to 2k - 1
begin

s.: + R - 1;
J

do

D j, l: 2j + R - 1;

Dj, 2: 2j + R;

end
end;

end; (* end of A3 *)
An example of a binary tree, generated by A,

i.s shown in Figure 1 (a). The following theorem
demonstrates the mappability of Al on Star.
THEOREM 2. Any full binary tree which is generated
i)y~is mappable on Star.
(For a proof, see Appendix).
The mapping of the previous example is shown in
Figure l(b). An alternative algorithm which gene
rates an n-level binary tree in a bottom-up
fashion is described as follows.
ALGORITHM 2 (A2).
Procedure bottom-up tree (R,n);
begin

for i = 1 to n-1 do
begin

k : 2i-l;
for j : k to 2k - 1 do
begin

·S. -j+R .1;
J

115

D. 1
J '

D. 2
J '

end;

-2j + R - l;

- 2j + r;

end; (*end of A4 *)
An example of binary trees which is genera

ted by A2 is shown in Figure 2(a).
TIIEOREM 3. Any binary tree which is generated by
A:r,"-is m-appable on Star.
(Proof is similar to Theorem 1). The mapping of
the previous example is illustrated in Figure 2(b).

IV. Conclusions

The main idea behind this work is to design
two configurabion algorithms for n-level binary
tree. First of all, the sufficient and necessary
condition of mappabi li ty is found. Then, by means
of the detection function, the mappability of Al
and A2 are demonstrated. The result is flexible
enough to allow any mode to be the root without
centralized control. Hence, Al and A2 provide a
solution to configuring processors into tree
topology in a distrubted fashion.

2

3

4

References

W. Chu, D. Lee and B. Ittla, "A Distributed
Processing System for Naval Data Communication
Networks", AFIPS Conf. Proc., Vol. 47, NCC
1978, pp. 783-793.

J. Deminet, "Experience with multiprocessor
algorithms," IEEE TRans. on Computers, Vol.
C-13, No. 4, Apr. 1982, pp. 288-295.

L. Goke and G. Lipovski, "Banyan networks for
partitioning multiprocessor systems," Proc.
1st Annual Symp. on Computer Arch., Dec.
19 7 3, pp. 21- 2 8 .

Y. Paker and M. Bozyigit, "Variable topology
multi computer," 2nd Symp. on Micro Arch.,
1976, pp. 141-151.

5 T. Feng, "A survey of interconnection net
works," Computer, Dec. 1981, pp. 12-27.

6 M. Liu, "Distributed loop computer networks,"
Advances in Computers, Vol. 17, Academic
Press, New York, 1978, pp. 163-221.

7 C. Wu, T. Feng, and M. Lin, "Star - A Local
network system for real-time management of
imagery data", IEEE Transactions on Computer~
Oct. 1982, pp. 923-933.

Appendix

Proof of Theorem 1:
Let (U, W) and (V, X) be two connections of a

binary tree generated by Al. In the following
discussion, only the condition that U t V is
considered.
(i) W, Z are left sons of U, V.

Let

and

From Al,

U' U - R + 1
V' V - R + 1

<P(U', V')

\\I
z

2U' + R
2V' + R

k.

1
1.

From LEMMA 1,
Hu', V')

¢(U'+R-l, V'+R-1)
= <l>(U, V)
= k.

From LEMMA 4,
<1>(2U', 2V')

Again,
~<1>(2U', 2V')

k + 1

= <1>(2U' + R-1, 2V' + R-1)
= <l>(W, Z)
= k + 1.

From LEMMA 3,
l/l(W, Z) < n - k - 1.

Combine the above two inequalities,
¢(U, V) + ~(W, Z) < n - 1 < n.

(ii) W, Z are the right sons of U, V.
In a similar way, it can be derived that

¢(U, V) + ~(W, Z) < n.
(iii) W is the left son of U and Z is the right
son of V.

Let
U' u - R + 1
V' v R + 1

and
¢ (U', V') = k.

From Al,
w 2U' + R - 1
z = 2V' + R.

(a)

(b)

Figure 1. An example of top-down tree

ll6

From LEMMA 1,
HU', v•)
¢(U'+R-l, V'+R-1)

(U, V)
k.

From LEMMA 4,
<1>(2U',2V')
¢(2U'+R-l, 2V'+R-l)
k + 1.

From LEMMA 5,
~(2U'+R-l, 2V'+R) < n - k.

Hence,
~ (W, Z) < n - k.

Combine the above inequalities,
¢(U, V) + ~(W, Z) < n.
As a result, any two connections of T are

conflict-free in Starnet. Therefore, T is
mappable on Star.

Q.E.D.

(a)

(b)

figure 2. An example of bottoJl),.,up t;r;-ee

Performing the Shuffle with the PM21
and Illiac SIMD Interconnection Networks

Robert R. Seban
Howard Jay Siegel

Purdue University
School of Electrical Engineering
West Lafayette, Indiana 47907

Abstract--Three SIMD single stage interconnection
networks which have been proposed and studied in the
literature are the Illiac, PM21, and Shuffle-Exchange.
Here the ability of the Illiac and PM21 networks to per
form the shuffle interconnection in an SIMD machine
with N processors is examined. A lower bound of
3../N/2 transfers for the Illiac to shuffle data is derived.
An algorithm to do this task in 2JN-1 transfers is
given. A lower bound of log2N transfers for the PM21 to
shuffle data has been published previously. An algo
rithm to do this task in log2N + 1 in transfers is
presented here.

1. Introduction

This paper extends SIMD interconnection network
studies presented in [28, 31]. In particular, the ability of
the PM21 and Illiac single stage interconnection SIMD
machine networks to perform the shuffle interconnection
is examined. In [28) it is shown that a lower bound on
the number of transters needed for the PM21 network to
perform the shuffle is log2N, where N is the number of
processing elements in the SIMD machine. The algo
rithm presented here requires only (log2N) + 1 transfers.
This algorithm is used as basis for an algorithm to do
the shuffle with the Illiac network in (2v'N)-1 transfers.
This compares favorably an earlier result of 4(VN-1) in
[25]. In addition, a lower bound 3VN/2 on the number
transfers required for Illiac to do shuffle is proved.

The model of SIMD machines used is described in
Section 2. In Section 3 the interconnection networks are
formally defined. An algorithm to shuffle data using the
PM21 network is given in Section 4. The lower bound
analysis and algorithm for performing the shuffle with
the Illiac network is presented in Section 5.

2. SIMD Machine Model

Typically, an SIMD (single instruction stream - mul
tiple data stream) machine [121 is a computer system con
sisting of a control unit, N processors, N memory
modules, and an interconnection network. The control
unit broadcasts instructions to the processors, and all
active processors execute the same instruction at the
same time. Each active processor executes the instruc
tion on data in its own memory module. The intercon
nection network, sometimes referred to as an alignment
or permutation network, provides for communications
among the processors and memory modules. Examples
of SIMD machines that have been constructed are the
Illiac IV [6] and STARAN [2, 3].

One way to view the physical structure of an SIMD
machine is as a set of N processing elements intercon
nected by a network, where each processing element (PE)
consists of a processor with its own memory. This type

This material is based upon work supported by the National Science
Foundation under Grant ECS-8120896.

0190-3918/83/0000/0117$01.00 © 1983 IEEE 117

Fig. 1:

CONTROL UNIT

INTERCONNECTION NETWORK

PE-to-PE SIMD machine configuration, with
NPEs.

of configuration is shown in Fig. 1. It is called the PE
to-PE organization. The network is unidirectional and
connects each PE to some subset of the other PEs. A
transfer instruction causes data to be moved from each
PE to one of the PEs to which the PE is connected by
the network. (Here only one-to-one communications will
be considered, i.e., broadcasting (one-to-many) connec
tions are not considered.) To move data between two
processing elements that are not directly connected, the
data must be passed through intermediary processing
elements by executing a programmed sequence of data
transfers. An alternative to the PE-to-PE SIMD
machine organization is to position a bidirectional net
work between the processors and the memories. The
PE-to-PE paradigm will be used here, however, the
results presented will be applicable to the other organiza
tion also.

The formal model of an SIMD machine used here
consists of five parts: processing elements, control unit
instructions, processing element instructions, masking
schemes, and interconnection functions. It is a
mathematical model that provides a common basis for
evaluating and comparing the various components of
different SIMD machines. This model is based on the
one presented in [31].

Each processing element (PE) is a processor together
with its own memory. There are NPEs, addressed (num
bered) from 0 to N-1, where N = 2m. It is assumed that
the processor contains a fast access general purpose
register A and a data transfer register (DTR). When
data transfers among PEs occur, it is the DTR contents
of each PE that are transferred. At any point in time,
each PE is either in the active or the inactive mode. If a
PE is active, it executes the instructions broadcast to it
by the control unit. IT a PE is inactive, it will not exe
cute the instructions broadcast to it.

The control unit stores the SIMD programs, exe
cutes control of flow instructions, and broadcasts pro-

cessing element instructions to the PEs. An example of
a control of flow instruction is the loop statement
"for i = 0 until N-1 do ... "

The processing element instructions consist of those
operations that each processor can perform on data in its
individual memory or registers. It is assumed the set of
processing element instructions includes the capability to
move data among the registers. The notation "Z <- Y"
means the contents of register Y are copied into register
Z. The notation "Z +---+ Y" means two registers
exchange their contents.

A masking scheme is a method for determining
which PEs will be active at a given point in time. The
PE address masking scheme uses an m-position mask to
specify which PEs are to be activated, each position of
the mask corresponding to a bit position in the binary
addresses of the PEs [28). Each position of the mask will
contain either a 0, 1, or X ("don't care"). The only PEs
that will be active are those that match the mask for all
i, 0 ~ i < m: if the mask has a 0 in the i-th position,
then the PE address must have a 0 in the i-th position; if
the mask has a 1 in the i-th position, then the PE
address must have a 1 in the i-th position; and if the
mask has an X in the i-th position, then the PE address
may have either a 0 or 1 in the i-th position. For exam
ple, if N = 8 and the mask is !XO, then only PEs 6' and
4 are active. Superscripts are used as repetition factors,
e.g., X3012 is XXXOll. Square brackets will be used to
denote a mask. Each PE instruction and interconnection
function (defined below) will be accompanied by a mask
specifying which PEs will execute that command. For
example, executing "A<- DTR pcm-10]" means that
each even numbered PE is active and loads its A register
from its DTR. Each odd numbered PE is inactive and
does nothing. Further information about the use and
implementation of PE address masks is in [18, 28, 31,
34).

An interconnection network can be described by a
set of interconnection functions, where each interconnec
tion function is a bijection (permutation) on the set of
PE addresses [28). When an interconnection function f is
applied, PE i sends the contents of its DTR to the DTR
of PE f(i). This occurs for all i simultaneously, for
0 ~ i < N and. PE i active. Saying that an interconnec
tion f.unction is a bijection means that every PE sends
data to exactly one PE, and every PE receives data from
exactly one PE (assuming all PEs are active). In this
model, it is assumed that an inactive PE can receive
data from another PE if an interconnection function is
executed, but an inactive PE cannot send data. To pass
data from one PE to another PE a programmed sequence
of one or more interconnection functions must be exe
cuted. This sequence of functions moves the data from
one PE's DTR to the other's by a single transfer or by
passing the data through intermediary PEs.

In summary, an SIMD machine can be formally
represented as the five-tuple {N, C,I,M,F}, where:
(1) N is a positive integer, representing the number of

PEs in the machine;
(2) C is the set of control unit instructions, i.e.,

instructions that are executed by the control unit
in order to control the flow of the program;

(3) I is the set of processing element instructions, i.e.,
instructions that can be executed by each active
PE and act on data within that PE;

(4) M is the set of masking schemes, where each mask
partitions the set {O, 1, ... , N-1} into two disjoint
sets, the enabled PEs and the disabled PEs; and

(5) F is the set of interconnection functions (i.e., the

interconnection network), where each function is a
bijection on the set {O, 1, ... , N-1}, which deter
mines the communication links among the PEs.

A particular SIMD machine architecture can be
described by specifying N, C, I, M, and F. In this paper,
N = 2m; C includes "for ... until ... do" instructions for
controlling the flow of loops in the program; I includes
instructions for moving data among the registers of a
given PE; M includes PE address masks; and F is varied.
The assumptions made about the SIMD machine to be
used as the model are intentionally minimal so that the
materi3J presented is applicable to a wide range of
machines.

3. The Interconnection Networks

A. Introduction
In this paper, three networks which can be con

structed from a single stage of switches are examined.
In a single stage network, data items may have to be
passed through the switches several times before reach
ing their final destinations. Conceptually, a single stage
network can be viewed as N input selectors and N out
put selectors, as shown in Fig. 2 [30). The way in which
the input selectors are connected to the output selectors
determines the allowable interconnections.

The following notation will be used: let N = 2m ,
let the binary representation of an arbitrary PE address
P be Pm-tPm-2 .•• p 1p0 , let Pi be the complement of Pi ,
and let the integer n be the square root of N. It is
assumed that -j mod N = N-j mod N, for j > 0.

B. The Illiac Network
The /Iliac network consists of four interconnection

functions defined as follows:
Illiac+ 1(P) = P+ 1 mod N

Illiac_1(P) = P-1 mod N

Illiac+n(P) = P+n mod N

Illiac_n(P) = P-n mod N

where n is assumed to be an integer. For example, if
N = 16, Illiac+n(O) = 4. This network allows PE P to
send data to any one of PEs P + 1, PE P-1, PE P + n, or
PE P-n, arithmetic mod N. This is often referred to as

118

r
N
p
u
T

Fig. 2:

0

N-1

lS
0

IS
I

OS
0

0

N-1

0
u
T
p
u
T

Conceptual view of a single-stage network.
"IS" is input selector, "OS" is output selec
tor.

e

g

h

Fig. 3:

0 b c d

g

h

e

0 b c d

Illiac network for N = 16. (The actual Illiac
IV SIMD machine had N = 64). Vertical
lines are +JN and - JN. Horizontal lines
are + 1 and -1.

a four nearest neighbor connection pattern, as shown for
N = 16 in Fig. 3. This network was implemented in the
Illiac IV SIMD machine, where N = 64 [l, 6].

Relating this to the conceptual model of a single
stage network shown in Fig. 2, for each i, 0 $ i < N,
input selector i has lines to output selectors i + 1, i-1,
i +n, and i-n, mod N. For each j, 0 $ j < N, output
selector j gets its inputs from input selectors j-1, j + 1,
j-n, and j + n, mod N. Since there is a single instruction
stream in an SIMD machine, all active PEs must use the
same interconnection function (connection) at the same
time. For example, if PE 0 is sending data to PE 1,
then all active PEs must send data using the Illiac + 1
connection.

This type of network is included in the MPP [4, 5]
and DAP [16] SIMD systems. Various properties and
capabilities of the Illiac network are discussed in [6, 13,
25, 28, 31, 32].

C. The Plus-Minus ~i (PM21) Network
The Plus-Minus 2' (PM2I} network consists of 2m

interconnection functions defined by:

PM2+i(P) = P+2i mod N

PM2-i(P) = P-2i mod N

for 0 $ i < m. For example, PM2+ 1(2) = 4 if N > 4.
Since P+2m-l = P-2m-l, mod N, for all P, 0 $ P < N,
the interconnection functions PM2+(m-ll and PM2_(m-l)
are equivalent. Fig. 4 shows the PM2 + i mterconnections
for N = 8. Diagrammatically, PM2_i is the same as
PM2 +i except the directi9n is reversed. This network is
called the Plus-Minus 2' since, in terms of mapping
s9urce addresses to destinations, it can add or subtract
2' from the PE addresses, i.e., it allows PE P to send
data to any one of PE P + 2' or PE P-2', arithmetic mod
N, o $ i < m.

In terms of the conceptual model of a single stage
network (Fig. 2), for the PM21 network, for each j,
0 $ j < N, input iielector j is connected to output selec
tors j +21 and j-2' mod N, for all i, 0 $ i < m. For
each j, 0 $ j < N, o.utput select9r j gets its inputs from
input selectors j-2' and j +21 mod N, for all i,
0 $ i < m. As with the Illiac network, all active PEs

119

(a)

(b) M

(c) @]

Fig. 4:

w
(fil ~ M ~ ~ ~

rp ~ ~ ~ ~ ~ ~
PM2I network for N = 8. (a) PM2+o connec
tions. (b) PM2+ 1 connections. (c) PM2+ 2
connections. For the PM2_i connections,
0 $ i $ 2, reverse the direction of the ar
rows.

must use the same PM21 interconnection function at the
same time.

A network similar to the PM21 is used in the
"Novel Multiprocessor Array" [24] and is included in the
network of the Omen computer [15]. The concept
underlying the SIMDA machine's interconnection net
work is similar to that of the PM21 [36]. The PM21 con
nection pattern forms the basis for the data manipulator
[10], ADM [33], and gamma [26] multistage networks.
Various properties of the PM21 are discussed in [11, 27,
28, 29, 31, 32].

D. The Shufile-Exehange Network
The Shuffle-Exchange network consists of a shuffle

function and an exchange function. The shuffle is
defined by:

shuffle(Pm-!Pm-2"·P1Po) = Pm-2Pm-3 00 ·P1P0Pm-l
and the exchange is defined by:

exchange(Pm-1Pip,-2· 00 P1Po) = Pm-1Pm-2· .. P1Po·
For example, shuffle\3) = 6 and exchange(6) = 7, for
N ~ 8. This network is shown in Fig. 5 for N = 8,

Consider the conceptual model of single stage net
works shown in Fig. 2. For the Shuffle-Exchange single
stage network, input selector P = Pm-J ···PiPo is con
nected to output selectors Pm-2 ... p 1p0Pm-l (= shuffle(P))
and Pm-1 ... p1p0 (= exchange(P)). Output selector
rm_1 ... r 1r0 gets its inputs from input selectors r0rm_1 ... r2r1
and rm_1 ... r1r0. As with the other networks, all active
PEs must use the same interconnection function at the
same time.

Mathematical properties of the shuffle are discussed
in [14, 17]. The multistage omega network is a series of
m Shuffle-Exchanges [21]. The shuffle is also included in
the networks of the Omen [15] and RAP [9] systems.

Fig. 5: Shuffle-Exchange network for N = 8. Solid
line is exchange, dashed line is shuffle.

Features of the Shuffle-Exchange are discussed in [7, 8,
11, 13, 19, 20, 22, 23, 27, 28, 31, 32, 35, 37]. (The ability
of each of the PM21 and Illiac networks to perform the
exchange function in just two transfers was presented in
[31] and is not considered here.)

4. Shuffiing with the PM21 Network

The following ground rules will be used in the
design and analysis of the algorithm to perform the
shuffle with the PM21 network.
(1) The model and definitions presented in Sections 2

and 3 will be the formal basis for the results.
(2) When simulating the shuffle, the data that is origi

nally the DTR of PEP must be transferred to the
DTR of shuffle(P), for all P, 0 ~ P < N.

(3) The time for each algorithm is in terms of the
number of executions of interconnection functions
required to perform the simulation.

The reason for (3) can be seen by considering the
way in which various instructions can be implemented.
The instructions in the simulation algorithms can be di
vided into three categories: control unit operations (in
C), register to register operations (in I), and interproces
sor data transfers (in F). Control unit operations, such
as incrementing a count register in the control unit for a
"for loop," can, in general, be done in parallel (over
lapped) with the previously broadcast PE instruction,
thus taking no additional time. Register to register
operations within a PE will probably involve a single
chip or, at worst, adjacent chips. The inter-PE data
transfers will involve setting the controls of the intercon
nection network and passing data among the PEs, in
volving board to board, and probably rack to rack, dis
tances. Thus, unless the number of register to register
operations is much greater than the number of inter-PE
data transfers, the time for the interprocessor transfers
will be the dominating factor in determining the execu
tion time of the simulation algorithm.

In the algorithm below ":" indicates a comment.
When discussing the algorithms, "Li" is used as an ab
breviation for "line i of the algorithm."

To understand the concept underlying the algorithm
to perform the shuffle, consider the "distance" the shuffle
moves a data item. The data item in the DTR of PEP,
0 ~ P < N/2, is moved to shuffle(P) = 2P, a distance of
shuffle(P) - P = P. The data item in the DTR of PE
P', N/2 ~ P' < N, is moved to shuffle(P') = 2P1 + 1
mod N, a distance of shuffle(P') - P' = P' + 1. This is
shown in Fig. 6 for N = 8. The algorithm uses the
PM2+0, PM2+ 1, PM2+ 2, •.. , PM2+m-I' and PM2+ 0
functions, in that order, to move the DTR data from PE
P a distance of P, 0 ~ P < N/2, and the DTR data
from PEP' a distance of P' +l mod N, N/2 ~ P' < N.
This is also shown for N = 8 in Fig. 6. Note that in L3

origin distance
PE moved distance moved

number by shuffle b PM21
0 = 000 +o
1 = 001 +l +1
2 = 010 +2 +2
3 = 011 +3 +1 +2
4 = 100 +5 +4
5 = 101 +6 +1 +4
6 = 110 +7 +2 +4
7 = 111 +o +l +2 +4

120

to L5, for 1 ~ j < m-1, all of the data of interest is in
even numbered PEs.

Algorithm to perform the shuffle with the PM21:

(Ll) A+- DTR ~-10] :even PEs save DTR in A
(L2) PM2 +o [xm-11] :odd PEs send to even PEs
(L3l for j = 1 until m-1.do .
(L4 A..._. DTRrxm-r11x1-101 :do if p· =: 1, Po = 0
(L5 PM2+· rxm-I(Jj :even PEs send 4-21
(L6) PM2 +o txm-10] :even PEs send to odd PEs
(L7) DTR +-A rxm-10] :reload DTR in even PEs

This algorithm used m + 1 inter-PE data transfers
and m + 1 register to register moves. The operation of
this algorithm for N = 8 is shown in Tab. 1. For exam
ple, consider the data item initially in the DTR of PE 5
(= 101). PE 5 does not match the mask in Ll ([XXO]).
PE 5 does match the mask in L2 ([XXll) and the data is
moved to PE PM2+ 0(5) = 6 (= 110). PE 6 does match
the mask in L4 when j = 1 ([XlO]) and the data is
moved to the A register of PE 6. The data is unaffected
by L5 when j = 1 (since it is not in the DTR). PE 6
does match the mask in L4 when j = 2 ([lXO]) and the
data is moved to the DTR of PE 6. PE 6 does match
the mask in L5 when j = 2 ([XXO]) and the data is
moved to the DTR of PE PM2+ 2(6) = 2. PE 2 does
match the mask in L6 ([XXO]) and the data is moved to
the DTR of PE PM2 +0(2) = 3. PE 3 does not match
the mask in L7 ([XXOl). Thus, the data from PE 5 is
moved to PE 3 = shuflle(5). This is shown by the dot
ted line in Tab. 1.

To prove the algorithm is correct, induction will be
used (assume all arithmetic is mod N). The induction
hypothesis (proven correct below) is that after executing
P~~ +j in ~l (for j = 0) or L5 (for 1 ~ j < m) the da~a
origmally m the DTR of PE G = gm_1 ... g1g0 will
currently be . in PE P = Pm-l···P1Po
(gm_1 ... gj+Zgj+t)*21+1 + (gj ... g1go)*2. fWhe~ j = 0,
P = (gm_1 ... gzgiJ*2 + (g0)*2.) The data will be m the A
register if gi = 0 and in the DTR if gi = 1.

Thus, when j = m-1, the data originally from PEG
is in PE (gm-I-··g1g0)*2. The data item from the DTR of
PE (gm-I-··g1g0)*2 is moved to PE (gm-I-··g1g0)*2 + 1 by
L6; which is correct since this data item is from a PE
where gi =gm-I = 1, so shuffle(G) = 2*G + 1. The
data item from the A register of PE (gm+··g1g0)*2 is
moved to the DTR of that PE by L7; this is correct
since this data item is from a PE where gj = gm-I = 0,
so shuffle(G) = 2*G.

To complete the correctness proof it must be shown
that the induction hypothesis is true.
Basis: j = 0.

+o
+l
+2 Fig. 6: The idea underlying
+3 the algorithm for the

+l +5 PM21 to perform the
+l +6 shuffle, shown for
+l +7 N = 8.
+l +o

ota

Tab. I: Example of the algorithm for performing the shuffle using the PM2I when
N = 8. It is assumed that initially the DTR of PE P contains the integer P,
0 :::; p < 8.

L4 L4
Initial LI L2 j=l j=l

PE DTR A DTR A DTR

000 000 000 111 000 111
001 001 - - - -
010 010 010 001 001 010
011 011 - - - -
100 100 100 011 100 011
101 101 ··' - - - -
110 110 "iib" "·101 .. '' 101 110
111 Ill - - - -

Case 1: The data item from the DTR of PE
G = gm_1 ... g2g10. This data item is moved to the
A register of that PE by LL Since g0 = 0,
G = (g;n_1 ... g2g1)*2 + (g0)*2 = P. This data is
not moved by L2. It remains in the A register
and g0 = 0. Thus, the induction hypothesis is
true for j = 0 for this case.

Case 2: The data item from the DTR of PE
G = gm_1 ... g2g11. This data item is not moved by
Ll. It is moved to the DTR of PE P = G + 1
by PM2 +o in L2. Since g0 = 1, G + I =
gm+··gzg1l + 1 (gm-1· .. gzg1)*2 + 2
(gm-1···gzg1)*2 + (go)*2 = P. The data item is in
the DTR and g0 = 1. Thus, the induction hy
pothesis is true for j = 0 for this case.

Induction Step: Assume true for j = k - I and show true
for j = k.

Case 1: The data item from the DTR of PE
G = gm-1 ... gzg1g0, where gk-l = 0. From the in
duction hypothesis when j = k-1, this data item
is in the A register of PE P = (gm_1 ... gk + 1gk)*2k
+ (gk-1 ... g1go) *2.

Subcase la: Pk = 1. The A register data is moved to
the DTR of PE P by L4 and then to the DTR of
PE P + 2k by LS. Recall P = Pm+··P1Po =
(gm-l ···gk+ 1gk)*2k + (gk_1 ... g1g0)*2. Since
~k-1 = 0, (Ogk_2 ... g1g0)*2 ~ 2k. Thus, if p~ = 1,
it must be that fk = 1. Smee gk = 1, P + 2 =
(gm-1···gk+11)*2 + (gk_1 ... g1g0)*2 + 2k
= (gm-1 ···gk + il*2k+ 1 + 2k + (gk-J-··g1go)*2 + 2k
= (gm-1···gk+1)*2k+l + (lfa-1···g1go)*2
= (gm-1···gk+1)*2k + 1 + (gkgk-J-··g1go)*2.
Furthermore, the data is in the DTR and gk = 1.
Thus, the induction hypothesis is true for j = k
for this subcase.

Subcase lb: Pk = 0. The A register data is kept in
the A register of PE P and not moved by L4 or
LS. As in Subcase la, since gk-l = 0,
(Ogk_2 ... g1g0)*2 < 2k. Thus, if Pk = 0, it must be
that gk = 0. Since gk = 0, P =
(gll}_1 ... gk+ 10)*2k + (gk+··g1g0)*2
= lgm-1···gk+1)*2k + 1 + (gk···g1go)*2.
Furthermore, the data is in the A register and
gk = 0. Thus, the induction hypothesis is true for
j = k for this subcase.

Case 2: The data item from the DTR of PE
G = gm_1 ... g1go, where gk-l = I. From the induc
tion hypothesis when j = k-1, this data item is in
the DTR of PE

LS L4 L4 i,S
j=l j=2 j=2 j=2 LB L7

DTR A DTR DTR DTR DTR PE

110 000 110 100 100 000 000
- - - - 100 100 001

111 001 111 :IOI· 101 001 010
- - - - ·. 101· ·101 011

010 010 100 110 110 010 100
- - - - 110 110 101

011 011 101 .. Ill Ill 011 110
-

121

- - - 111 111 111

P = (gm-1···gk+1gkl + 2k + (gk-J-··g1go)*2,
Subcase 2a: Pk = 1. The DTR register data is moved

to the A register of PE P by L4 and is not moved
by LS. Recall Pm-l ···PlPO = (gm-1···gk+ 1gk)*2k +
(~k-l···g 1 g0)*2. Since gk-l =:= 1, (gk-l··:g1g0)*2 =
2 + (gk_2 ... g1g0)*2. Thus, 1f Pk = 1, 1t must be
that gk = 0. Since gk = 0, P =
(gll}-1···gk+10)*2k + (gk-1 ···g1go)*2
= \gm-1· .. gk+1)*2k + 1 + (gk···glgo)*2.
Furthermore, the data is in the A register and
gk = 0. Thus, the induction hypothesis is true for
j = k for this subcase.

Subcase 2b: Pk = 0. The DTR register data is kept
in the DTR register of PE P (not moved by L4).
It is then moved to the DTR of PE P + 2k by
LS. Since gk-l = 1, (gk_1 ... g1g0)*2
2k + (gk_2 ... g1g0)*2. Thus, if Pk = 0, it must be
that gk = 1. Since gk = 1, P + 2k =
(gm+··gk + 1)*2k+ 1 + (gkgk+··g1g0)*2 as in Sub
case la. Furthermore, the data is in the DTR
and gk = 1. Thus· the induction hypothesis is
true for j = k for this subcase.

6. Shuffiing with the Illiac Network

In this section the use of the Illiac network to per
form the shuffle will be examined. First, it will be
shown that a lower bound on the number of transfers
(executions of Illiac interconnection functions) needed is
3n/2. Then, an algorithm requiring 2n-l transfers will
be presented.

To show that a lower bound on the number of
transfers is 3n/2, four of the N data moves which the
shuffle performs will be considered. These are:
a) from PE N/4 - n/4) to PE (N/2 - n/2)
b) from PE N/2 - n/2) to PE (N - n)
c) from PE N/2 + n/2 - I) to PE (n - I)
d) from PE 3N/4 + n/4 - I) to PE (N/2 + n/2 - 1)

For N = 64 these correspond to: (a) 14 --+ 28, (b) 28 --->

S6, (c) 3S --+ 7, and (d) 49 --+ 3S. All four of these
moves are done simultaneously when the shuffle inter
connection function is executed. It will now be shown
that the Illiac cannot do all four in less than 3n/2
transfers, i.e., at least 3n/2 transfers are needed. To
simplify the presentation, the N = 64 values will be used
to demonstrate the bound. The result obtained in this
way is directly generalizable by substituting (n-1) for 7,
(N/4 - n/4) for 14, (N/2 - n/2) for 28, (N/2 + n/2 - 1)
for 3S, (3N/4 + n/4 - 1) for 49, (N - n) for S6, Illiac+n
for Illiac + 8, and Illiac_0 for Illiac_8.

In order to more easily visualize the data move
ments in the Illiac network the "wrap-around" connec
tions (e.g., 7 to 8, 56 to 0) have been "unwrapped" by
drawing eight projections of the network, as shown in
Fig. 7. The actual network is labeled "C" for center,
and the eight projections are labeled NW (north west), N
(north), NE (north east), W (west), E (east), SW (south
west), S (south), and SE (south east). Thus, each PE is
represented nine times: once in the original (center) net
work, and once in each projection.

For example, consider the data movement from PE
7 to PE 8 using the Illiac+ 1 function. Normally, PE 7,
which is in the rightmost column of the Illiac network,
connects to PE 8, which is in the leftmost column, using
a "wrap-around" connection. For purposes of this dis
cussion, the data from PE 7 in C will be moved to C's
PE 8 equivalent in the E projection.

In order to draw the projections, two constraints
must be satisfied.
(1) Each projection has to be topologically isomorphic

to the Illiac network.
(2) Each projection must have the proper adjacency to

the C network and the other projections.
Proper adjacency means that two PEs, each from
different projections, are drawn adjacent to one another
if and only if they are connected in the original network.
As an example of this, consider 7 in C, 63 in N, 0 in NE,
and 8 in E.

One could continue generating more of these projec
tions "ad infinitum" to represent all possible implemen
tations of all possible moves. However, the goal here is
the show that the set of moves (a) through (d) above
cannot be done in less than 3n/2 steps. Therefore, pro
jections which would involve more than 3n/2 steps to do
any of (a) through (d) individually are not of interest
and are unnecessary.

The lower bound proof is organized as follows.
First it will be shown that there are only five sets of Illi
ac function executions that can perform both the
28 -+ 56 and 35 -+ 7 moves in less than 3n/2 steps (Fig.
7 and Tab. 2). Then it will be shown that there are only
five sets of Illiac function executions (which happen to be
different from the first five sets) that can perform both
the 14 -+ 28 and 49 -+ 35 moves in less than 3n/2 steps
(Fig. 8 and Tab. 2). Finally, it will be shown that no
single set of less than 3n/2 Illiac function executions can
perform all four moves (Tab. 3).

Tab. 2: All possible combinations of 28 -+ 56 and
35 -+ 7 paths that can be done individually
in less than 3n/2 steps.

28 56 -+

c E NE N
35 -+ 7 (4,0,0,4) (3,4,0,0) (0,4,5,0) (0,0,4,4)

c (0,4,4,0) (4,4,4,4) (3,4,4,0) (0,4,5,0) (0,4,4,4)
1 'l_ 2 'l_

w (0,0,3,4) (4,0,3,4) (3,4,3,4) (0,4,5,4) (0,0,4,4)
3 'l_ 4 _L

s w (5,0,4,0) (5,0,4,4) (5,4,4,0) (5,4,5,0) (5,0,4,4)

s (4,4,0,0) (4,4,0,4) (4,4,0,0) (4,4,5,0) (4,4,4,4)
5~

122

Tab. 3: All possible combinations of 14 -+ 28 and
49 -+ 35 paths that can be done individually
in less than 3n/2 steps.

14-+ 28
c N E

4g---+ 35 2,0,0,2 0,0,6,2 1,6,0,0

c (0,2,2,0) (2,2,2,2)
1

w (0,0,1,6) (2,0,1,6) (0,0,6,6) (1,6,1,6)
4

s (6,2,0,0) (6,2,0,2) (6,2,6,2) (6,6,0,0)
5

Fig. 7 shows all the paths from the source PE 28 in
the C network to its associated destination PE 56 in the
C network and in the eight projections. Also shown is
the source PE 35 in the C network and its associated
destination PE 7 in the C network and in the eight pro
jections. There are only four ways to go from 28 to 56
in less than 3n/2 = 12 moves and these are shown at the
top of Tab. 2. The four ways to go from 35 to 7 in less
than 12 moves are shown on the side of Tab. 2. The
four-tuple (w, x, y, z) means that the path consists of w
Illiac +s executions (moves), x Illiac + 1 executions, y Illi
ac_8 executions, and z Illiac_1 executions. Note that for
the purposes here the order of execution is irrelevant.
For example, 28 in C can go to 56 in the NE projection
by (0, 4, 5, 0), i.e., the path consists of four Illiac + 1
moves and five Illiac_8 moves. Any path between 28 in
C and 56 in NE must include these moves. This is true
in general, i.e., if the path from PE A to PE B is given
as (w, x, y, z) then (1) the moves specified by the four
tuple will send data from A to B, and (2) any path from
A to B must include the moves specified by the four
tuple. In what follows { ·} will denote the generalization
of the path from n = 8 to any n.

Each square in Tab. 2 shows the set of moves need
ed to do both the 28 -+ 56 and 35 -+ 7 moves for all pos
sible combinations of the individual moves which can be
done in less than 12 {3n/2} steps. The five combina
tions which can be done in less than 12 {3n/2} steps are
marked by a check (v'). For example, the 28 ---+ 56 path
(4, 0, 0, 4) {(n/2, 0, 0, n/2)} and 35 -+ 7 path (0, 0, 3, 4)
{(O, 0, (n/2)-1, n/2)} can be combined to require the
moves (4, 0, 3, 4) {(n/2, 0, (n/2)-1, n/2)}. These two
paths can both use the same four executions of Illiac_ 1
and so these four moves are counted only once. There-
fore, the total is 4 + 0 + 3 + 4 = 11 < 12
{n/2 + 0 + (n/2)-1 + n/2 (3n/2)-l < 3n/2}
moves. An example of a combination involving more
than 12 {3n/2} moves is the 28 -+ 56 (4, 0, 0, 4) {(n/2,
0, 0, n/2)} path and the 35 -+ 7 (0, 4, 4, 0) {(O, n/2,
n/2, O)} path. This combination requires the execut10n
of 4 + 4 + 4 + 4 = 16 > 12 {n/2 + n/2 + n/2 +
n/2 = 2n > 3n/2} Illiac functions.

The analysis for the 14 -+ 28 and 49 -+ 35 transfers
shown in Fig. 8 and Tab. 3 is similar. The five sets of II
liac functions which can do both of these transfers in less
than 12 moves are checked in Tab. 3.

The final step to the proof is to examine all combi
nations of the five sets found in each of Tabs. 2 and 3 to
see if there exists any set of transfers which can perform
all four transfers (28 -+ 56, 35 -+ 7, 14 -+ 28, and
49 -+ 35) in less than 12 moves. This is shown in Tab.

+I

6 ., fi
NW

48

56

w

48

56

SW

48

+I

~fi 56 ' - NW

28

35

48

56 w

~
~

48

56

28

~

48
SW

28 - 56 } MOVES 35--.7

63 0

7

N

55 ~§
63 0

7
c

28

35

55 [~
63 0

7

s

55 56

14 - 28 } MOVES
49- 35

63 0
N

~8
35

55

63 0 c

~8
~5

49

55 56

6l 0

28
35

55 56
s

7 8

56

63 0

7 8

56
63 0

7 8

5~
63 0

7 8

63 0

7 8

14

63 0
7 8

63 0

NE

E

SE

T

NE

28
35

E

[l!~

~5

~
~

SE

123

15

7

15

7

15

7

15

7

15

7

15

7

Fig. 7:

Fig. 8:

The source/destination rela
tionship for the moves
28 -+ 56 and 35 -+ 7 in an
"unwrapped" Illiac network.
The circle denotes a destina
tion which can be reached in
less than 3n/2 steps.

The source/destination rela
tionship for the moves
14 -+ 28 and 49 -+ 35 in an
"unwrapped" Illiac network.
The circle denotes a destina
tion which can be reached in
less than 3n/2 steps.

Tab. 4: Combination of relevant paths from Tabs. 2
and 3.

28 --+ 56
35 --+ 7

4 --+ 28 1 2 3 4 5 1
4 9 --+ 35 (3,4,4,0) (0,4,5,0) (4,0,3,4) (0,0,4,4) (4,4,0,0)

1
(2,2,2,2) (3,4,4,2) (2,4,5,2) (4,2,3,4) (2,2J,4) (4,41_,2)

2
(0,2,6,2) (3,4,6,2) (0,4J,2) (4,2,6,4) (0,2J,4) (4,4,6,2)

3
(1,6,2,0) (3,6,4,0) (1,6,5,0) (4,6,3,4) (1,6,4,4) (4,6,2,0)

..; v'
4

(2,0,1,6) (3,4,4,6) (2,4,5,6) (4,0,3,6) (2,0j,6) (4,4,1,6)

5
(6,2,0,2) (6,4,4,2) (6,4,5,2) (6,2,3,4) (6,2,4,4) (6,:i,2)

4. As demonstrated, there is no such set. There are
seven sets which require exactly 12 moves (indicated by
checks), but none which requires less than 12. For ex
ample, 28 -+ 56 and 35 -+ 7 can be done using (3, 4, 4,
0), and 14 -+ 28 and 49 -+ 35 can be done using (2, 2, 2,
2 , however, the combination of these two sets yields (3,
4, 4, 2), which is greater than 12 moves.

In summary, four of the moves performed by shuffle
(28 -+ 56, 35 -+ 7, 14 -+ 28, and 49 -+ 35) have been ex
amined. It has been shown that no set of Illiac function
executions can do this in less than 3n/2 = 12 moves. As
indicated above, this argument can be generalized direct
ly using the substitutions listed.

Consider an algorithm for performing the shuffle in
terconnection function with the Illiac network. This will
be done by replacing each PM2I interconnection function
in the above algorithm with Illiac interconnection func
tions. For L2, use "Illiac+1 pcm-11]," since
Illiac + l = PM2 +o· Similarly, for L6, use "Illiac + 1
rx:m-101." To do L5, first recall that only the even num
bered PEs contain the data of concern (after L2 is exe
cuted and before L6 is executed). Therefore, it is ac
ceptable to use "PM2 + · pcm]" in L5, since any data
movement among the odd numbered PEs is ignored (and
overwritten by L6). To perform "PM2 +i [Xm]," for
1 :::; j < m, with the Illiac network the algorithms
presented in [31] can be used. Specifically, to perform
"PM2 +j [Xm]" for 1 :S j < m/2 use:

. for i = 1 until 2l do Illiac + 1 pcm]
sinc.e 2l execution of llliac + 1 is equivalent to
+2l = PM2+j· Analogously, to perform "PM2+i pcm]"
for m/2 :::; j < m use: .

. for i = 1 until 2l /n do Illiac +n pcm]
sinc.e 2l/n executions of Illiac+n is equivalent to
+2l = PM2+j· The total number of Illiac transfers
needed is:
for L2: 1
for L6: 1 (mm-1
for L5, 1 ~ j < m/2: L; 2i = 2m/2 - 2 = n-2

j=l
for L5, m/2 ~ j < m:
m-1 . m-1 . (mm-1 .
E 2l/n = E 2r(m/Z) = L; 2l = n-1

j=m/2 j=m/2 j=O

124

Thus, the grand total is 2n-1 transfers. As mentioned in
Section 1, this compares favorably with the earlier result
of 4n-4 in [25].

6. Conclusions

The ability of the PM21 and Illiac single stage inter
connection SIMD machine networks to perform the
shuffle interconnect was examined. In [28] is was shown
that a lower bound on the number of transfers needed
for the PM21 network to perform the shuffle is log2N.
The algorithm described here and proven correct re
quired only (log2N) + 1 transfers. This algorithm was
used as basis for an algQrithm to do the shuffle with the
Illiac network in (2v'N)-1 transfers. This compares
favorably an earlier result of 4(VN-1) in (25]. A lower
bound analysis was presented showing that at least
3./N/2 transfers are required for this task.

These results are of both theoretical and practical
value. Theoretically, they add to the body of knowledge
about the properties of the PM21 and Illiac networks.
Practically, the algorithms presented could actually be
used to perform the shuffle interconnection on a system
that has implemented the PM2I or Illiac network.
Furthermore, the lower bound proof shows that it is im
possible to do the shuffle with the Illiac in any fewer
than 3VN/2 steps.

Acknowledgements: Some of the figures and tables in this
paper are from "Interconnection Networks for Large
Scale Parallel Processing: Theory and Case Studies," by
H. J. Siegel, to be published by D. C. Heath and Co.

[1]

[2]

[3]

[4]

[5]

[6]

(7]

(8]

[9]

[10]

References

G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck,
D. L. Slotnick, and R. A. Stokes, "The Illiac N
computer," IEEE Trans. Comput., Vol. C-17, Aug.
1968, pp. 746-757.
K. E. Batcher, "STARAN parallel processor system
hardware," AFIPS Conj. Proc. 1974 Nat'/. Com
puter Conj., May 1974, pp. 405-410.
K. E. Batcher, "STARAN series E," 1977 Int'l.
Conj. Parallel Processing, Aug. 1977, pp. 140-143.
K. E. Batcher, "Design of a massively parallel pro
cessor," IEEE Trans. Comput., Vol. C-29, Sept.
Hl80, pp. 836-840.
K. E. Batcher, "Bit-serial parallel processing sys
tems," IEEE Trans. Comput., Vol. C-31, Mar.
1982, pp. 377·384.
W. J. Bouknight, S. A. Denneberg, D. E. Mcintyre,
J. M. Randall, A. H. Sameh, and D. L. Slotnick,
"The Illiac N system," Proc. of the IEEE, Vol. 60,
Apr. Hl72, pp. 369-388.
P-Y. Chen, D. H. Lawrie, P-C. Yew, and D. A. Pa
dua, "Interconnection networks using shuffles,"
Computer, Vol. 14, Dec. 1981, pp. 55-64.
P-Y. Chen, P-C. Yew, and D. H. Lawrie, "Perfor
mance of packet switching in buffered single-stage
shuffle-exchange networks," 3rd Int'l. Conj. Distri
buted Computer Systems, Oct. 1982, pp. 622-627.
G. R. Couranz, M. S. Gerhardt, and C. J. Young,
"Programmable RADAR signal processing using
the RAP," 1974 Sagamore Computer Conj. Parallel
Processing, Aug. 1974, pp. 37-52.
T. Feng, "Data manipulating functions in parallel
processors and their implementations," IEEE
Trans. Comput., Vol. C-23, Mar. Hl74, pp. 309-318.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. P. Fishburn and R. A. Finkel, "Quotient net
works," IEEE Trans. Comput., Vol. C-31, Apr.
1982, pp. 288-295.
M. J. Flynn, "Very high-speed computing sys
tems," Proc. of the IEEE, Vol. 54, Dec. 1966, pp.
1901-1909.
W. M. Gentleman, "Some complexity results for
matrix computations parallel processors," Journal
of the ACM, Vol. 25, Jan. 1978, pp. 112-115.
S. W. Golomb, "Permutations by cutting and
shuffling," SIAM Review, Vol. 3, Oct. 1961, pp.
293-297.
L. C. Higbie, "The Omen computer: associative
array processor," IEEE Computer Society Compcon
72, Sept. 1972, pp. 287-290.
D. J. Hunt, "The ICL DAP and its application to
image processing," in Languages and Architectures
for Image Processing, M. J.B. Duff and S. Levialdi,
eds., Academic Press, London, England, 1981, pp.
275-282.
P. B. Johnson, "Congruences and card shuffling,"
American Mathematical Monthly, Vol. 63, Dec.
1956, pp. 718-719.
J. T. Kuehn, H. J. Siegel, and P. D. Hallenbeck,
"Design and simulation of an MC68000-based mul
timicroprocessor system," 1982 Int'l. Conf. Parallel
Processing, Aug. 1982, pp. 353-362.
T. Lang, "Interconnections between processors and
memory modules using the shuffle-exchange net
work," IEEE Trans. Comput., Vol. C-25, May
1976, pp. 496-503.
T. Lang and H. S. Stone, "A shuffle-exchange net
work with simplified control," IEEE Trans. Com
put., Vol. C-25, Jan. 1976, pp. 55-66.
D. H. Lawrie, "Access and alignment of data in an
array processor," IEEE Trans. Comput., Vol. C-24,
Dec. 1975, pp. 1145-1155.
D. Nassimi and S. Sahni, "Data broadcasting in
SIMD computers," IEEE Trans. Comput., Vol. C-
30, Feb. 1981, pp. 101-107.
D. Nassimi and S. Sahni, "Parallel permutation
and sorting algorithms and a new generalized con
nection network," Journal of the ACM, Vol. 29,
July 1982, pp. 642-667.
Y. Okada, H. Tajima, and R. Mori, "A
reconfigurable parallel processor with micropro
gram control," IEEE Micro, Vol. 2, Nov. 1982, pp.
48-60.

125

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

S. E. Orcutt, "Implementation of permutation
functions in Illiac IV-type computers," IEEE
Trans. Comput., Vol. C-25, Sept. 1976, pp. 929-
936.
D. S. Parker and C. S. Raghavendra, "The gamma
network: a multiprocessor interconnection. network
with redundant paths," 9th Annual Symp. Comput
er Architecture, Apr. 1982, pp. 73-80.
D. K. Pradhan and K. L. Kodandapani, "A uni
form representation of single- and multistage inter
connection networks used in SIMD machines,"
IEEE Trans. Comput., Vol. C-29, Sept. 1980, pp.
777-791.
H. J. Siegel, "Analysis techniques for SIMD
machine interconnection networks and the effects
of processor address masks," IEEE Trans. Com
put., Vol. C-26, Feb. 1977, pp. 153-161.
H. J. Siegel, "Partitionable SIMD computer system
interconnection network universality," 16th Annual
Allerton Conf. Communication, Control, and Com
puting, Univ. Ill., Oct. 1978, pp. 586-595.
H. J. Siegel, "Interconnection networks for SIMD
machines," Computer, Vol. 12, June 1979, pp. 57-
65.
H. J. Siegel, "A model of SIMD machines and a
comparison of various interconnection networks,"
IEEE Trans. Comput., Vol. C-28, Dec. 1979, pp.
907-917.
H. J. Siegel, "The theory underlying the partition
ing of permutation networks," IEEE Trans. Com
put., Vol. C-29, Sept. 1980, pp. 791-801.
H. J. Siegel and R. J. McMillen, "Using the Aug
mented Data Manipulator network in P ASM,"
Computer, Vol. 14, Feb. 1981, pp. 25-33.
H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T.
Mueller, Jr., H. E. Smalley, Jr., and S. D. Smith,
"PASM: a p:trtitionable SIMD/MIMD system for
image processing and pattern recognition," IEEE
Trans. Comput., Vol. C-30, Dec. 1981, pp. 934-947.
H. S. Stone, "Parallel processing with the perfect
shuffle," IEEE Trans. Comput., Vol. C-20, Feb.
1971, pp. 153-161.
A. H. Wester, "Special features in SIMDA," 1972
Sagamore Computer Conf., Aug. 1972, pp. 29-40.
C. Wu and T. Feng, "The universality of the
shuffle-exchange network," IEEE Trans. Comput.,
Vol. C-30, May 1981, pp. 324-332.

A CLASSIFICATION OF CUBE-CONNECTED NETWORKS
WITH A SIMPLE CONTROL SCHEME

A. Yavuz Oruc
Electrical, Computer and Sys~ems Engineering Department

Rensselaer Polytechnic Institute
Troy, New York 12181

Abstract -- The paper presents three classes
of cube-connected networks with individual stage
control based on a group theoretic representation
of interconnection networks. It is shown that
these classes of networks ha~e non-isomorphic
group properties. Although permutations realiz
able by such networks are rather limited in number,
the simplicity of their control scheme makes them
attractive for VLSI implementation. Moreover, the
interconnection power of these networks can be en
hanced by simulating the networks which belong to
one class by any member of that class. Thus it
becomes important to derive conditions under which
these networks become equivalent. The paper pro
vides a characterization for each class of networks
from which isomorphism maps can easily be obtained.
Methods are also presented to construct networks
belonging to each class.

I. Introduction

Interconnection networks for multi-processor
computers have drawn much attention from re
searchers in recent years [1,2,3]. Much of the
previous work concentrated on proposing networks
to implement a specific class of data routing al
gorithms in a parallel processing environment, Ex
amples of such networks can be found in [4,5,6,7,
8,9,10,11,12,13]. The availability of several net
works for similar tasks prompted further studies to
determine the interconnection power and capability
of certain networks to simulate various other net
works. These fall into two categories. The first
category deals with proving asymptotic bounds on
the number of distinct interconnections and steps
(passes) to realize them by a given network [14,15,
16]. Such bounds describe the worst case behavior
of a network and hence form a useful basis for its
evaluation. However, they do not reveal any in
formation as to what class of interconnections a
network can realize. To provide a comparative
evaluation of interconnection networks, others in
vestigated the capabilities of certain networks to
simulate various other networks [11,17,18,19,20,
21]. These led to a class of multistage intercon
nection networks, here called ·the edge-wise cube
connected networks, simply because their intercon
nection functions can be associated with the edges
of a cube. We demonstrate that under individual
stage control, edge-wise cube-connected networks
manifest themselves by pairwise commuting permuta
tions which represent their stages. This observa
tion essentially paves the waylfor obtaining two
new classes of cube-connected networks with the
same control scheme • We provide characterizations
of these classes of networks in terms of the cycle
structures of their permutations. These indicate
that an equivalence among two cube-connected net
works can be attributed to (1) the existence of a
group isomorphism among the permutations of two
networks and/or (2) a one-to-one onto correspond-

0190-3918/83/0000/0126$01.00 © 1983 IEEE 126

ence between the permutations representing the
stages of the two networks. The paper is organ
ized as follows. In section II we introduce a
network model which describes the behavior of in
terconnection networks under arbitrary control
schemes. In section III cube-connected networks
are described using this model. In section IV the
group properties of cube-connected networks with
individual stage control have been explored. It
is shown that there exist at least three classes
of such networks with non-isomorphic group proper
ties. In section V the .characterization of each
class of networks is provided in terms of the cycle
structures of their permutations. In section VI
an example is given for each class of networks.

II. Network Model and Definitions

In this section we introduce an interconnec
tion network model and basic definitions about in
terconnection networks. These will serve as a
basis for the analysis and presentation of cube
connected networks. To this end, we define an
interconnection network IN, as the five tuple (S,
D,M,F,g) where:

(a) Sand Dare finite sets whose elements are
called the source nodes and destination nodes re
spectively,

(b) M is a finite set whose elements are
called the control inputs,

(c) Fis a set of mappings f.,
interconnection functions such th~t
Si and Di belong to some partitions
spectiveiy,

called the
f . : S. -+D . where
of S1 ana D re-

(d) g, called the control function, is a sur
jection from F to M.

For convenience, the elements of S(D) are as
sumed to be integers modulo lsl<IDI) where Jsl<IDI)
is the cardinality of S(D).

IN is called a permutation network if f is a
bijection for all f.€F and Si=Di for all S.€~ and
D.€D. All the netw6rks described in this ~aper are
p~rmutation networks unless otherwise stated. The
cycle notation will be used to represent f i of a
permutation network. Thus we shall write
£i=(s 1 s 2 ••• sr) to imply d 2 =(s 1)fi' d 3=(s 2)fi, ... ,
d 1=(s)f. where si€S and d.€D. A cycle of r ele
mentsris1called an r-cycle! in particular, a cycle
2 elements is called transposition, The set of all
permutations on n symbols forms the symmetric
group S . A ~ G is a set with a binary opera
tion '• ,n on G, where '•' is associative, there is
an identity element e in G such that e•p=p•e=p for
all p€G and for each p€G, there is an inverse ele
ment, denoted p- 1 , in G with the property that
p-l·p=p•p-l=e, The group generated by permutations
p 1 , ••• ,p will be denoted by <pl•···•P >. G is
called c6mmutative if p•q=q•p for all ~,q€G and it

is called §yclic if all of its elements can be
generated y one element in G.

A network is said to generate a subgroup of
S in k passes if the permutations realized by k
cgnsecutive applications of its interconnection
functions over its source nodes form a subgroup
of S . Since every finite group is a closed set,
oncena network generates a group, it exhausts all
the interconnections it can realize. It follows
that groups play important roles in determining
the interconnection power of permutation networks.

Control inputs are integer-valued variables.
Each f. is further refined by the values of the
control input with which it is associated by g.
Thus, if m=(f.)g and mE{O,l} then f.(rn=O) and
f.(rn=l) denot~ the two cycles that f. will desig-

1 1 .
nate when rn=O and rn=l respectively. The map g co--
ordinates the composition off .. It partitions F
into disjoint subsets and assi~ns to each subset a
unique control input. Thus if for IN=(S,D,M,F,g),
F={f1,f2,f3}, rn1,rn2E{O,l}, (f1)g=(f2)g=rn1 and
(f 3)g=rn 2 then IN realizes the composition
f 1(rn 1=0)•f 2(rn 1=0)•f 3(rn2=1) when rn =O and rn =l. As
an example, let f1(rn1=0)=(021), fz(rn1=0)=(354) and
f3(rn2=1)=(67). The network with F={f1,f2,f3} and
the required setting to realize
f1(rn1=0)•f2(rn1=0)•f3(rn2=l) is depicted in Fig. 1.

-o o-
-1 1-

-2 2-

-3 3-

-4 4-

-5 5-

-6~
7-57-

Fig. 1. Network IN Realizing f=(021)(354)(67).

Note that the order of the composition is not
critical since f. are pairwise disjoint cycles.
Also note that tfie number of interconnections IN
can realize is the number of values that rn 1 can
take times the number of values rn 2 can take, which
is 4. In general if the number of values which rn.
can take is n. then the number of interconnection~

realizable by
1

IN is given by l~I n ••
i=l 1

Interconnection networks can be cascaded to
gether to form multistage networks. All n-input,
r-stage network, hereafter called an (n,r)-network,
is a cascade of r networks INi=(Si,Di,Mi,Fi,gi)
such that Si and D. are sets of integers rnodu.Lo n
and every interconfiection function f of the net
work is defined as the composition f=f 1 ••• f , that
is, (s 1)f=(s 1)f 1 ... fr' where (s 1)f 1 =d 1=s2 ,.:.,

127

(s)f =d, s.ES., d.ED. and f. is a composition of
th~ ifttefconfiecfion1 fufictions 1 of IN., for all i;
lsisr. As an example, let IN be a (5,2) network
where F1={f 11 ,f 21 }, F2={f 12 ,f 22 }. IN is shown in
Fig. 2. The contr.ol inputs are not specified al
though the rule described earlier applies to each
stage. Hence each permutation of IN must be of
the form f=(f 11 •f 21)•(f 12 •f 22)

-O{]o~oQo-
-1 1 1 1 --2 2

~202-
-303 3 3-

_4 4 4 4

Fig. 2. An (5,2) Interconnection Network.

We note that our definition of a multistage
interconnection network differs from that of Benes
[22] and many others in that the links between the
stages are not included in our model. This is due
to the fact that we assign the same label to a
source and destination node if and only if there
is a path between them when all interconnection
nodes involving them are set to the identity con
nections. Thus we do not need to use interconnec
tion functions to describe the links explicitly.

It is of interest to compute the number N of
disti.nct control schemes for an (n,r)-network. By
counting the number of surjections from Fi to Mi
[23], it can be shown that,

r M IM.I k IM.I IF.I
N= 71 {(-1) i•l: 1 (-1) •(1)•k 1 }/IM.I!

i=l k=O k 1

In particular, if IMil=rn, IFil=p for all i=l,. .. ,r,
then

{ rn rn k rn P} N = r (-1) • l:k=0(-1) • (k) • k /rn!

or,

N=r•S(p,rn) where S(p,rn) denotes the Stirling num
ber of the second kind [23].

III. Cube-Connected Networks

In this section, interconnection networks
with cube topology are presented. These consti
tute an important class of networks since their
interconnection functions are transpositions which
can easily be implemented by 2-input/output cross
bar switches. Various such networks can be found
in [5,6,9,11,12,13,19]. In what follows, we de
rive the conditions to generate a subgroup of S
through these networks in one pass under indivi8-
ual stage control (ISC).

Defi.nition 1. An (n,r) network with stages
IN.=(S~~D.,M.,F,g) is called cube-connected if
n=Zk for §om~ positive integer k and
F ={f .. :j=l, •.• ,n/2}, where f .. is either the
i~entity function or the tran§portation function
from 2-subset Si. of Sito 2-subset Di. of Di for
all i; lir. J J

As an example, a (4,2) cube-connected network
can be specified by the partitions P(S 1)={{0,l},
{2,3}} and P(S2)={{0,3},{l,2}}. The elements of
P(S.) can be viewed as pairing the nodes of the
2-cUbe labelled by integers modulo 4. The same
analogy holds between an (n,r) cube-connected net
work and the k-cube where k=logzn. In particular
if the end nodes of the edges of the k-cube are
labelled by integers whose binary expansions dif
fer in exactly one place, then the elements of
P(S 1)[P(S2)] correspond to pairing the end nodes
of the edges (diagonals) of the 2-cube.

IV. Cube-Connected Networks With ISC

In this section we present the group proper
ties of cube-connected networks with ISC. An (n,r)
network is said to be using ISC if IM.l=l for all
i; lir. As a rule, such networks c~n not gener
ate large subsets of S since the stage IN. of
these networks can rea~ize only two permutltions,
namely, fi (mi=O)=ei and fL(mi=l)=ci=_ci !" •• cin/ 2where
!\={mi}. Tlius the set or permutations reaTl'.zable
by an (n,r) cube-connected network with ISC in one
pass is given by the p'roduct <c 1 > ... <c > where
<c.>•<c.> {x•y:xE<c.>,yE<c.>}. Clearl~, the num
bef of permutationsigenerafed this way can not ex
ceed 2r. Despite this shortcoming, ISC is a very
simple control scheme and hence networks with ISC
are appealing in at least realizing subgroups of
small order of S . We now state some conditions
for generating sflch subgroups by these networks.

Theorem 1. Let IN be an (n,r) cube-connected
n~twork with ISC. IN generates a subgroup of order
2 of S in one pass if c. c.=c c. for all i,j;
lij$rnand ci+li<c 1> ... <Ei>Jfot ail i; lir-l.

Proof. The set of permutations G generated by
IN is the product G=<c 1> ... <cr>. Let x,yEG, where
x=x 1 ... x, y=y 1 ... y and x~,y.E<c.>. Then

(r r .ii
x•y= x 1 •.. xr)•(y 1 .•. yr). ince ci•c;•ci,
xi•xi=x.•x. for all i,j; li, jr, and hence
x•y=,x 1 ~y 1 Y ... (xr•y). But x.•y.E<ci>. Thus
(~iy)E~I and ~ 1 is cf~~ed. Al~o for any xEG,
x =xr .•. x 1 or x =xr .•. x 1=x 1 ... xr=x. Finally
e=e1 ... e . Thus G is a grou¥. To complete the
proof, w~ need to show IGl=2 . First, !Gl$2r since
G is a product of r 2-sets. The fact that JGl=2r
follows inductively from the observation thtt
G.=<c1> ••. <c.>, lir is a group of order 2 and
f6r ea~h XEG:, x•c.+l~G. since if x•c.+1=yEGi then
ci+l=x 1 yEG~, whiEh coktradicts the /iypothesis.

Theorem 1 provides a suffi.cient condition for
the realizability of a subgroup of S in one pass
by an (n,r) cube-connected network w~th ISC. How
ever, the commutativity condition among the c. of
an (n,r) cube-connected network is a strong c6ndi
tion to realize a subgroup of Sn by the network.

128

As such it always leads to commutative subgroups.
It is noted that all edge-wise cube-connected net
works which have appeared in [5,6,11,12,19] gener
ate isomorphic copies of the commutative group of
order 2r. The following therem is based on a
weaker condition and it indicates the presence of
non-commutative subgroups realizable by an (n,r)
cube-connected network.

Theorem 2. Let IN by an (n,r) cube-connected
network with ISC. IN generates a group G in one
pass if for every index pair i,j,where i<j there
exists k<j such that c.=c.•ck•c .•

i J J

Proof. (By induction).

Basis. r=2. In this case, G=<c 1>•<c 2>.
Clearly,~- 1 , c 2- 1EG. To prove that
(c1•c2)- 1=c2•c 1EG, let i=l and j=2. Then by the
hypothesis, there exists k=l<j such that
c1=c2•c1•c2 or c1•c2=c2•c 1. Thus
(c1•c2)- 1=c2•c 1=c 1 •c2EG and G is a group.

Induction Step. r=i>2. Suppose
G.=<c 1> ..• <c.> is a group. We wish to show that
c:+1=G. •<c ·+i> is also a group. Thus we must prove i i i I
that (ci+1·x)EGi+i for each xEGi. Let x=x 1 ••• xi
where XiE<ci>. Then ci+1•x=ci+i·(x 1 ••• xi). Now
since i+l>l by hypothesis there exists a k 1 <i+l
such that x 1=c x c or c •x1=x •c Thus

i+l kl i+J i+l k i+J.
ci+i"x=xk1 •ci+J •x2 •.. xi. After repeating the same

argument i-1 more times we obtain
c.+ 1 x=(xk• ... xk)·c·+i· Now since Gi is a group

i J i i

y=xk ... xk EG. and hence ci+1•x=y•ci+iEGi+i· The
I i i

assertion follows by the principle of induction.

A similar result can be stated as follows.

Corollary. 1. Let IN be an (n,r) cube-connect
ed network with ISC. IN generates a group in one
pass if for each i>j there exists k>j such that
ci=cj •ck•cj.

Proof. The proof easily follows from Theorem
2.

The previous results amount to providing con
ditions for realizing subgroups of Su in one pass
by an (n,r) cube-connected network with ISC. It i.s
also important to find conditions for which such
networks fail to realize a group since such condi
tions will lead to the construction of cube-connect
ed networks with multi-pass features. The next re
sult establishes such a condition. It is still a
conjecture for which a proof is under development.

Conjecture 1. Let INbe an (n,r) cube-connect
ed network with ISC and c. such that c1 •cj#c.•c.
for all i,j; lijjr. INican not realize a J i
subgroup of Sn in one pass.

The previous results assert that there exist
at least three classes of cube-connected networks
with non-isomorphic group properties:

(a) Networks which generate cmmnutative sub-
groups of s of order 2r in one pass,

(b) Ngtworks which generate non-corrunutative
subgroups of s of order 2r in one pass,

(c) Netwgrks which fail to realize any sub-
group of s in one pass. n

In the following section the characterization
of each class of networks is obtained.

V. Characterization of Network Classes

In this section we give two results to iden
tify the ci of a network belonging to one of the
three classes.

Theorem 3. Let c. and c. be produces of n/2
pairwise disjoint transfositio~ in corrunon, where
n=2m for some positive integer m. Then c.•c.=c.•c.
if for some partition of the transpositio5s tlf t. i
into pairs (akb~)(ckdk) there exists a partitioni
of the transpositions of ci into pairs (akck) (bkdk).

Proof. Suppose, c.=p 1 •.. pn/t. and c.=q1 ... qn/ 4'
where pk=(akb~)(ckdk) ana qk=(akck)(bkdk). Then
p,•q.=q.•p. since p. and q. are products of dis
ji'iint p;\.ir§ of tran§posititlns whenever i#j. Thus
ci•cj=(p 1•q 1) ..• (p 14 ·qn/4). But pk qk=qk pk' and
ci•c;=(q1···qn/4)·Yp1···Pn/4) or ci"?;=c;•ci.
Conversely, let (ab) be a transposition of c. and
(be) of c .. Then (a)c.•c.=c. Now suppose (~d) is
a transpoaition of c. ~ndJ(ad) is not of c .. Then
(a)c. c.lc. Hence c: c.lc. c. and the assirtion
folltlws1by contradictio~. J i

Theorem 4. Let c.,c. and ck be products of
n/2 pairwise disjoint tfanJpositions where n=2m
for some positive integer m~3, and suppose that
there is no transposition common to all of c.,c.
and ck. Then ci=cj·ck•cj if when; i J

2m-2
ci= s~l (asbs)(csds)(esfs)(gshs) and

2m-2
c.= s~l (ascs)(bsfs)(dsgs)(eshs),ckhas the form,

J

m-2
ck= s~l (asgs)(bshs)(csfs)(dses).

Proof. The condition given for c.=c.•ck·c.
is obviously sufficient. To prove thatiitJis al~o
necessary, suppose (xy) is a transposition of ci
such that (x)c.=w and (y)c.=z. Now suppose
(w)ck=z'lz. Tften (x)c.=(x,c.•c •c.=(w)ck•c.=
(z') c. #y. But this contfadictJ t~e Jssumptiort that
(xy) ls a transposition of c .. Therefore the as-
sertion must be true. i

VI. Examples

In this section we use the characterizations
given in the earlier section to construct three
CC.N's with ISC one from each class. Theorem 3 can
be used to construct the networks asserted in
Theorems 1 and 3, while Theorem 4 can be used to
construct the networks asserted in Theorem 2.
Three (8,3)-networks, INA' IN and INC are de
picted in Figs. 3, 4 and 5. ~o construct IN , its
ci are so chosen that they satisfy the hypottesis

129

of Theorem 3, that is, c 1= p 1•p 2 , c 2 =q 1•q2 , where
p 1=(01)(23), p2=(45)(67) and q 1=(02)(13),
q2=(46)(57). Similarly, c1=p1•P2 and c3=u1•u2,
where p1=(01)(45), p2=(23)(67) and u1=(04)(15),
u 2=(26)(37). Also, c2=p 1•p2 , c 3=u 1•u2 , where
p 1=(02)(46), p 2=(13)(57) and u 1=(04)(26),
u 2=(15)(37). Thus by Theorem 3, c 1 , c 2 and .c 3
pairwise commute and INA generates a connnutative
subgroup of order 8, as shown in Fig. 3. On the
other hand, INC is constructed such that no two of
its c. connnute and hence it fails to generate a
groupias indicated by - entries in Fig. 5. Finally,
the c. network INB are chosen according to the hy
pothe§is of Theorem 4 so that c 1=c 2c 1c 2 and
c 1=c 3•c 2•c 3 or c2=c 3•c 1•c 3, Thus the hypothesis
of Theorem 2 is satisfied and INB generates the
non-commutative group of order 8, which is shown
in Fig. 3.

Note that Theorems 3 and 4 can also be used
to test if two networks belong to the same class.
If the networks are specified topologically as in
Figs. 3, 4 or 5, first construct the permutations
corresponding to the stages of each network. Then
test if the permutations of both networks have the
same characterization in the sense of either of
Theorems 3 and 4. For example, if both have pair
wise commuting permutations, it is clear that both
belong to the class of commutative cube-connected
networks and hence they are equivalent, The ex
plicit construction of equivalence maps will be
deferred to another place.

VII. Conclusions

The paper has introduced a network model and
dealt with the classification of cube-connected
networks with ISC us~ng this model. It has been
shown that there exist at least three classes of
cube-connected networks with non-isomorphic group
properties. The characterization of each class
has also been provided. These results have three
implications. First, there are cube-connected
networks which generate all of their interconnec
tions in one pass. Moreover, some generate connnu
tative while some others generate non-commutative
groups. Therefore, a network in one class can not
simulate a network in the other class. Finally,
there are cube-connected networks which fail to
realize any group in dne pass. Hence, they have
the potential to generate groups of larger order
if they are operated under a multi-pass scheme.
As a further research, these results can be used
to obtain network synthesis techniques for the
three classes of networks presented in this paper.

Acknowledgements

I would like to thank Prof. N. Balabanian
and M. Yaman-Oruc for their help and suggestions.

References

[l] Feng, T., "A Survey of Interconnection Net
works," Computer, Vol. 14, No. 12, Dec. 1981,
pp. 12-27.

[2] Siegel, H.J., Mcmillen,R.J. and Philip, T.M.,

T.M., Jr., "A Survey of Interconnection Meth
ods for Re~onfigurable Parallel Processing
Systems," National Computer Conference, 1979,
pp. 529-542.

[3] Thurber, K.J., "Interconnection Networks - A
Survey and Assessment," AFIPS Conf. Proc. ,
Vol. 43, 1974, pp. 909-919.

[4] Stone, H.S., "Parallel Processing with the
Perfect Shuffle," IEEE Trans. Computers, Vol.
C-20, No. 2, Feb. 1971, pp. 153-161.

[5] Pease, M.C., "The Indirect Binary N-cube
Microprocessor Array," IEEE Trans. Computers,
Vol. C-26, No. 5, May 1976, pp. 458-473.

[6] Batcher, K.E., "The Flip Network in STARAN,"
Proc. 1976 Int'l Oonf. Parallel Processing,
Aug. 1976, pp. 65-71.

[7] Feng, T., "Data Manipulating Functions in Par
allel Processors and Their Implementations,"
IEEE Trans. Computers, Vol. C-23, No. 3,
Mar. 1974, pp. 309-318.

[8] Barnes, G.H., et al., "The Illiac IV Computer,"
IEEE Trans. Comp., Vol. C-17, Aug. 1968,
PP· 746-757.

[9] McMillen, R.J. and Siegel, H.J., "The Hybrid
Cube Network," Proc. Distributed Data Acquisi
tion, Computing and Control Symp., Dec, 1980,
pp. 11-22.

[10] Hi;irada, K., "Sequential Permutations Networks,"
IEEE Trans. Computers, Vol. C-21, No. 5, May
1972, pp. 472-479.

[11] Wu, C. and Feng, T., "The Reverse-Exchange
Interconnection Network," IEEE Trans. Comp.,
Vol. C-29, No. 9, Sept., 1980, pp. 801-811.

[12] Lawrie, D.K., "Access and Alignment of Data in
an Array Processor," IEEE Trans. Computers,
Vol. C-24, Dec. 1975, pp. 1145-1155.

[13] Tripathi, A.R. and Lipovski, G.J., "Packet
Switching Banyan Networks," Sixth Annual Sym
posium on Computer Architecture, June 1979,
pp. 160-167.

[14] Orcutt, S.E., "Implementation of Permutation
Functions in an ILLIAC IV Type Computer," IEEF.
Trans. Computers, Vol. C-25, No. 9, Sept. 1976,
pp. 929-936.

[15] Lang, T., "Interconnections between Processors
and Memory Modules Using the Shuffle-Exchange
Network," IEEE Trans. Computers, Vol. C-25,
No. 5, Mar. 1976, pp. 496-503.

[16] Adams III, G.B. and Siegel, H.J., "On the num
ber of Permutations Performable by the Aug
mented Data Manipulator Network," IEEE Trans.
Computers, Vol. C-31, No.4, Apr. 1982, pp. 270-
277.

130

[17] Siegel, H.J., "Analysis Techniques for SIMD
Machine Interconnection Networks and the Ef
fects of Processor Address Masks," IEEE Trans.
Comp., Vol. C-28, No. 12, De.c. 1979, pp. 907-
917.

[18] Siegel, H.J. and Smith, S.D., "Studv of Multi
stage SIMD Interconnection Networks"," 5th An
nual f:yJT>.posium on Computer Architecture, Apr.
1978, pp. 223-229.

[19] Wu, C. and Feng, T., "On a Class of Multi
stage Interconnection Networks," IEEE Trans.
Comp., Vol. C-29, No. 8, Aug. 1980, pp. 694-
702.

[20] Wu, C. and Feng, T., "The Universality of
Shuffle-Exchange Network," IEEE Trans. Comp. ,
Vol. C-30, No. 5, May 1981, pp. 324-332.

[21] Fisburn, J.P. and Finkel, R., "Quotient Net
works," IEEE Trans. Computers, Vol. C-31,
No. 4, Apr. 1982, pp. 288-295.

[22] Benes, V.E., "Mathematical Theory of Connect
ing Networks and Telephone Traffic," New York
Academic Press, 1965, pp. 99-102.

[23] Graver, J.E. and Watkins, M.E., "Combinatorics
with Emphasis on the Theory of Graphs," New
York, Springer-Verlag, 1977, p. 25.

=:u: :u: o-

1--·n,><u, g-

-3 3 3 3 3-

:ox11
4-

-5u5 a
-7 " " "

e e i cl c2 "i C4 C5 c6 C7

c1=(01) (23) (46)(57) cl e c4 c5 c2 c3 c7 c6

c 2 =(02) (13)(45)(67) c2 c4 e c6 cl c7 c3 c5

"3=(04) (15) (26) (37) c3 c6 c5 e c7 c2 cl c4

c4=(03) (12)(47)(56) c4 c2 cl c7 e c6 cs c3

c 5=(0S36) (1427) C5 c, ":i cl CG c4 e c2

c6=(0635) (1724) c6 "3 c., c2 cs e C4 cl

c7=(07) (16)(2S)(34) c7 cs CG c4 "i cl c2 e

Fig. 3. Networ-k INA and its Permutations

o-

1-

2-

3-

4-

5-

6-

7-

e I cl c2 c3 c4 cs c6 c7

c 1=(01) (23) (46) (57) cl e c4 cs c2 c3 c7 c6

c 2=(02) (14) (3S) {E7) c2 e c6 - c3 -
c3=(04) (lS) (26) (37) c3 e

c4=(0473)(1256) c4 cl c7 - cs -
c 5=(0S36) (1427) CS cl -
c6=(0631)(2457)

c6 I -
c7=(1652) (34) C7

c2 -

c4 -
'

Fi~. 4. Network INB and its Permutations

-ODO ODO
-1 1=><2 2

=:D: -;D~L-...\--...,L--

=:D: :D:-"-"~
-6D6-:><._sns

-7 7 7-LJ7----

4-

s-

6-

7-

e e I cl c
2 ":i c4 CS c6 C7

c 1={01) (23) (45) (67) "1 I e C4 cs c2 ":i C7 c6

c 2=(02) (D) (46)(57) c2 I c4 e c6 cl c7 ":i cs

c3 = (04) (15) (26) (3 7) ":i I cs
c6 e C7 cl c2 C4

c4=\03)(12)(47)(S6) C4 c2 cl C7 e c6 C5 ~

cs=(C5) (14) (27) (36) CS 1~ C7 cl "6 e C4 c2

c6=(06) (17) (24) (35) c6 I C7
":i c2 C5 C4 e cl

c 7=(07) (16) (25) (34) C7 c6 cs C4 ":i c2 cl e

Fig. 5. Network IN and its Permutations
c

131

THE FEM-2 DESIGN METHOD

Terrence W. Pratt
Department of Applied Mathematics and Computer Science

University of Virginia
Charlottesville, VA 22901

Loyce M. Adams
Piyush Mehrotra

John Van Rosendale
Robert G. Voigt

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA 23665

Merrell Patrick
Department of Computer Science

Duke University
Durham, NC 27706

Abstract - The FEM-2 parallel computer is
being designed using methods differing from those
ordinarily employed in parallel computer design.
The major distinguishing aspects are: (1) a top
down rather than bottom-up design process, (2) the
design considers the entire system structure in
terms of layers of virtual machines, and (3) each
layer of virtual machine is defined formally
during the design process. The result is a com
plete hardware/software system design. The basic
design method is discussed and the advantages of
the method are considered. A status report on the
FEM-2 design is included.

Introduction

The Finite Element Machine [1, 2] is an array
of microprocessors, originally designed as a
special purpose parallel computer for solution of
problems in structural analysis using finite
element methods. The authors are currently in the
process of designing a successor, FEM-2, aimed at
essentially the same applications.

Parallel Machine Design

In most parallel machine design, the basic
hardware decisions are fixed at an early stage of
the design, long before the software organization
and external environment have been considered in
detail. This approach often leads to major prob
lems at later stages, where the software and
external supporting environment must be distorted
to match the already fixed hardware organiza
tion. The general approach of early decision on
hardware, followed by later detailed software
design is seen in the original FEM [1, 2], and in
most other designs reported in the literature,
e.g., Blue CHiP [3], TRAC [4], MPP [SJ to name a
few. This design approach is basically a "bottom
up" approach.

This work supported in part by NASA Contracts
NASl-17130 and NASl-17070 while the authors were
in residence at ICASE. The first author was also
supported in part by NSF Grant MCS78-00763.

0190-3918/83/0000/0132$01.00 © 1983 IEEE 132

In the FEM-2 design, an alternative "top
down" approach has been adopted. While the use of
a top-down approach to system design is not novel,
the particular form this has taken in the FEM-2
design is novel, in the context of parallel
computer design. Two aspects are of note:

a. FEM-2 is considered to be composed of
layers of virtual machine. Each layer defines the
view of the system available to one class of
users. Four layers of virtual machine are
currently conceived: (1) The applications user's
machine (e.g., as defined by the interactive
command language), (2) the applications
programmer/numerical analyst's machine (e.g., as
defined by the applications language), (3) the
systems programmer's machine (e.g., as defined by
the operating system structure), and (4) the
hardware itself (which if microprogrammed may
include another layer of virtual machine).

b. Each layer of virtual machine is formally
specified during the design process, using the
methods of H-graph semantics [6] to construct a
formal model of each layer. The advantages of
this formal specification are explained. below.

A virtual machine is composed of· (1) various
types of data objects, (2) various operations on
those data objects, (3) various sequence control
mechanisms for specifying the order of the
operations, (4) various data control mechanisms
for controlling access to data objects by the
operations, and (5) storage management mechanisms
for determining the placement and movement of data
and code during program execution.

The FEM-2 Virtual Machines

Although complete virtual machine
descriptions cannot be given here, a brief sketch
will indicate the general type of results from
this design approach. Considering each of the
four levels of virtual machine, some typical data
objects, operations, control mechanisms, and
storage management methods are listed below.

Application User's Virtual Machine

The FEM-2 user would typically be a struc
tural engineer using the system as an interactive
workstation that allows him to store the descrip
tion of a structural model, to invoke applications
packages to analyze the model, and to display the
results. The following is a partial list of the
virtual machine components at this level.

Data objects:
Structure/substructure model
Grid description
Node/element description
Load set
Displacements of nodes
Stresses on elements

Operations:
Define structure model
Generate grid
Define elements
Solve structure model/load set for displacements
Calculate stresses
Data base operations (store model in DB/retrieve)

Sequence control:
Direct interpretation of user commands

Data control:
Workspace (user local data)
Data base (long-term storage; shared data)

Storage management:
Dynamic storage allocation for models, results,

workspaces, etc.
Data movement between data base and workspace

Numerical Analyst's Virtual Machine

The numerical analyst is a research user who
views the machine in terms of a high-level lan
guage that allows him to specify directly the data
structures, operations and their sequences, and
the parallelism in the linear algebra necessary to
implement efficiently a structural engineer's
application. We assume as a base a sequential
language such as Fortran, Pascal, or Ada, and only
mention some of the new constructs needed for
effective control of the parallel processing and
data distribution in the parallel system.

Data objects:
Windows on arrays (e.g., row, column, block

descriptors, for remote access to non-local
data)

Operations:
Tasks (programmer-defined parallel procedures)
Window operations: create window, access/assign

data visible in a window
Broadcast data to a set of tasks
Linear algebra operations: inner product, vector

operations, etc.

Sequence control:
Forall loops ~ do all iterations in parallel if

possible
Pardo ••• end ~ do all statements in parallel
Task control: initiate a task, pause, resume a

paused task, terminate
Remote procedure call - location determined by

location of data visible in a window

133

Data control:
All data owned by a single task
Data accessible non-locally only via windows
Windows may be transmitted as parameters, further

partitioned, stored as values of variables, etc.
Tasks may communicate through windows

Storage management:
Dynamic creation of data objects by a task
Data lifetime = lifetime of owner task
Dynamic creation of multiple task replications
Local data of a task retained over pause/resume

System Programmer's Virtual Machine

By specifying the run-time representation of
tasks, their scheduling, the communication between
them, and the storage reprtooentation of the data,
the system programmer's virtual machine is used to
implement the numerical analyst's virtual
machine. The following is a partial list of the
virtual machine components.

Data objects:
Code blocks/constants blocks
Task/procedure activation records (local data)
Window descriptors
Storage representations for scalars, arrays, etc.
Messages from tasks:

initiate K replications of a task of type T
pause and notify parent task
resume a child task
termirlate and notify parent
remote procedure call
remote procedure return
load code/constants

Operations:
Usual sequential operations: arithmetic, procedure

call, etc.
Library routines for linear algebra operations
Format and send message (one of the 7 types above)
Decode and execute message (e.g., an initiate task

message may require the following steps: find
code for task, allocate an activation record,
copy parameters from the message queue into
activation record, enter task in ready queue)

Sequence control:
Usual sequential language control structures

Data control:
Usual sequential language structures

Storage management:
General heap with variable size blocks

Hardware architecture

The requirements imposed by the upper levels
of virtual machine suggest that the architecture
should be chosen to effectively support:

Large scale dynamic task initiation
Remote access to local data (through windows)
Large messages (between tasks, and from a task

to the operating system)
Irregular communication patterns
Large storage requirements; dynamic allocation
Fast linear algebra operations (to extract the

low-level parallelism available in these
operations)

In addition, several additional requirements
are imposed independently:

Use off-the-shelf hardware/software if possible
Provide a way to extend the system to larger

configurations easily
Provide reconfigurability to isolate faulty

hardware components
Provide multi-user access

From these requirements, an architecture is
evolving that is configured as clusters of
processing elements organized around a shared
memory, Sets of clusters communicate through a
common communication network. Within each
cluster, one PE runs the operating system kernel,
which fields incoming messages and assigns
available PE's to process them. Messages arriving
in the input queue of any cluster can be processed
by any available PE. Since this architecture will
be described at length in other papers, no1
detailed design is given here.

Formal Specification of Virtual Machines

By formally specifying the data objects,
operations on those data objects, control
mechanisms, and storage management techniques of
each virtual machine level, a detailed
software/hardware design can be obtained that
specifies the function of each level as well as
its implementation on the next lower lever, Our
research uses the methods of H-graph semantics [6]
for making this formal specification. H-graph
semantics is a mathematical modeling method for
software/hardware systems that can be used to
construct a precise mathematical model of each
virtual machine level. The data objects are
modeled as hierarchies of directed graphs (H
graphs) in which the nodes represent abstract
storage locations and the arcs represent access
paths. Data types are modeled using formal "H
graph grammars," a type of BNF grammar in which
the "language" defined is a set of H-graphs
representing a class of data objects. Operations
(procedures) on the data objects are modeled as
"H-graph transforms," which are functions defining
transformations on the H-graph models of data
objects. H-graph transforms may invoke each other
in the usual manner of subprogram calling
hierarchies to determine the overall flow of
control in a model of a virtual machine.

In the FEM-2 design process, each layer of
virtual machine is designed first, starting with
the top layer and considering each layer as
defining the requirements that must be satisfied
by the design at the level below. Several
iterations through the four levels are made,
adjusting the design to find an appropriate mix of
hardware and software at each level. As the
design begins to "firm up", the individual virtual
machines are defined formally. The precise formal
definitions are then used as the basis for
simulations of the various virtual machine
levels. Simulations to measure the storage,
processing, and communication patterns in typical
FEM-2 applications and to determine the ease of
programming the machine at the various levels are
of particular importance. The ultimate result is
to be a detailed design of the hardware and

134

software, completely specified at each level in
terms of its function and its implementation on
the next lower level of virtual machine.

Conclusion

A major advantage of the top-down, layers of
virtual machine, design approach is that it forces
a design of the entire system structure, including
I/O (virtual) devices, global control strategies,
interfaces with the outside environment, etc. at
an early design stage. It also allows the
potential parallelism at various levels to be
considered in detail: parallelism in user requests
for simultaneous solution of several independent
problems, parallelism in the substructure analysis
of a larger structure, parallelism in the finer
structure of solution of a particular system of
simultaneous equations, etc. A third advantage is
that the entire design process may be iterated,
adjusting the design of each virtual machine
level, until the proper match of hardware and
software organizations is found.

Current Status

The FEM-2 design effort has been underway
since December 1982. At present the first
iteration of the design of the four layers of
virtual machine is nearing completion. Several
scenarios of use of the numerical analyst's
virtual machine have been carried out in detail,
using a detailed design of a typical algorithm to
get quantitative estimates of processing
requirements, storage requirements, and
communication requirements for a typical large
scale application. One such analysis is reported
in [7]. H-graph semantics definitions of the
various levels are being constructed.

References

[l] H. Jordan, "A Special Purpose Architecture
for Finite Element Analysis," Proc. 1978
IEEE Conf. on Parallel Proc.

[2] O. Storaasli, et al. 11The Finite Element
Machine: An Experiment in Parallel
Processing," Research in Struct, & Solid
Mechanics, NASA Conf. Pub. 2245, Wash. D.C.,
201-217, October 1982.

[3] L. Snyder, "Introduction to the
Configurable, Highly Parallel Computer,"
IEEE Computer, Jan. 1982.

[4] M. Sejnowski, at al. "An Overview of the
Texas Reconfigurable Array Computer", AFIPS
Proc. 1980 NCC, 631-641.

[S] K. Batcher, "Design of a Massively Parallel
Processor," IEEE Trans. on Comps., Sept.
1980' 836-840.

[6] T, Pratt, "Formal Specification of Software
Using H-graph Semantics," Rept. 83-2, Appl.
Math & Comp. Sci., U. of Va., Jan. 1983.

[7] L. Adams and R. Voigt, "A Methodology for
Exploiting Parallelism in the Finite Element
Process," Proc. NATO Advanced Research
Workshop on High Speed Computation, Julich,
West Germany, June 1983, Springer-Verlag.

A MULTI-MICROPROCESSOR SYSTEM FOR CONCURRENT LISP

Shigeo Sugimoto''t, Kiyoshi Agusalf, Koichi TabatalHf, Yutaka Ohnol<

lf Department of Information Science
Kyoto University

** University of Library and Information Science
Yatabe-cho, Niihari-gun

Kyoto 606, JAPAN

abstract

Recent advances of VLSI technologies have
made multi-microprocessor systems feasible to
construct. This paper presents a multi
microprocessor system for a LISP-based concurrent
programming language, Concurrent LISP. Concurrent
LISP is designed for user oriented concurrent
programs, especially for artificial intelligence
programs. The authors had developed Concurrent
LISP on single processor systems. The multi-micro
processor system proposed here is constructed on
the basis of these experiences. The multi
microprocessor system is constructed using general
purpose microprocessors and it has the language
oriented system configuration.

The multi-microprocessor system presented has
the nine processor elements and the large common
memory area. Reflecting the types of the data to
be stored and their access mechanisms, each
processor element has the specialized memory
interface circuits, and the common area is
separated into three sub-areas. The system
software is distributed to all the processor
elements and has the hierarchical configuration.
The system software, especially the operating
system, is simplified well to reduce the system
overhead.

1 Introduction

This paper describes a multi-microprocessor
system which has specialized memory interface
circuits for list processing and multiprocessing.
We have developed a LISP-based concurrent
programming language, called Concurrent LISP (C
LISP) [SJ. C-LISP has been developed to make use
of multi-process description mechanism for the
artificial intelligence problems instead of
conventional description mechanisms such as
backtracking and coroutines. C-LISP is user
oriented, and it has simple yet flexible
facilities to describe concurrent processes. We
had developed the C-LISP interpreter on a large
scale computer (FACOM M-200) [5] and on an MC68000
system [3]. Based on the experiences on these
interpreters, we are at work on the development of
a C-LISP machine composed of multiple 16-bit
microprocessors (nine MC68000's) and a large
common memory area (8 MB) [4].

C-LISP has flexible facilities to describe
explicit parallelism. A typical example program is
a multi-process search program for a game problem:
multiple cooperative processes search their own

0190-3918/83/0000/0135$01.00 © 1983 IEEE

Ibaraki 305, JAPAN

135

paths in the search space for the game. During the
execution of C-LISP programs, many concurrently
executable processes are normally created. C-LISP
programs need large computation power, as most of
LISP programs need much computation capacity
rather than I/O capacity. Multi-processor system
configuration is fruitful for C-LISP, since in
such configuration every processor element will be
utilized well by C-LISP processes.

The multi-microprocessor system presented is
an MIMD type system consisting of two different
types of processor elements and a very large
common memory area. C-LISP programs are stored on
the common memory area and executed by the
processor elements in parallel. The two types of
processor elements are Master Processor (MP) for
the management of the whole system and Interpreter
Processors (IP's) for interpretation of C-LISP
programs. The system monitor is distributed to MP
and IP's. Each IP has the interpreter which is
controlled by the system monitor. All IP's have
the same program and have no data of processes
except certain portion of processes.

We paid our attentions to two key problems
for designing our system. One problem is to make
the processor elements be dedicabed to
interpretation of C-LISP programs. Since many
concurrent processes are normally created, all the
processor elements are fully utilized by the
processes. The other problem is the well balanced
design of the system software and hardware. On the
general purpose system, the software bridges the
gap between the speciality of the applications and
the generality of the system. Therefore, the
overhead of the software is usually heavy. On the
other hand, we may get powerful C-LISP system if
we can construct the machine using special
hardware architecture or firmware. However, it is
expensive and time consuming to construct such
specialized systems. We designed this system using
general purpose microprocessors with small scale
additional hardware.

2 Overview of the System

2.1 Concurrent LISP

Concurrent LISP is a concurrent programming
language based on LISP 1.5. C-LISP completely
includes LISP 1.5 as its sequential part. C-LISP
has simple yet powerful concurrent functions to
create a process explicitly and to write inter
process communication. The definition of a process
of C-LISP is:

"A process is a self-contained entity which
evaluates a given form."

Processes are activated at top-level and at
STARTEVAL functions. The process activated at top
level is called the main process, and other
processes activated at STARTEVAL functions are
called sub-processes. A process which creates a
new process is called the parent process of the
created process. On the contrary, the created
process is called the son process. Processes have
properties such as identifiers, relationships
among processes, status, mailboxes, evaluation
results and so on.

The concurrent functions include three
primitive concurrent functions, which are
STARTEVAL for process activation, CR and CCR for
interprocess communication, and also includes the
basic functions for manipulation of process
properties. All of these functions are designed to
be fruitful for the language feature of LISP.

This definition allows users to use processes
as program components in their programs like
variables and procedures. Since C-LISP is designed
for writing problem solving programs which require
flexibility of both control and data structure, C
LISP is useful not only for writing application
programs in itself but also for constructing
application oriented languages on it.

The primitive concurrent functions STARTEVAL,
CR and CCR are presented below. The language
feature is described in detail in the references
[4][5].
* starteval[proc 1;proc 2;··· ;procn]

proci = list[namei;formijsharedi],
namei name of i'th son process,
formi form to be evaluated by i'th son

process.
sharedi =shared variables available for i'th

son process.
When a process executes STARTEVAL, the process
may activate n son processes. Each son process
has its own name specified by ~ and evaluates
form. The value of STARTEVAL is a list of names
of son processes;

starteval[proc1;proc2;···;procn]
list[name1;name2; • .. ;namen].

* cr[var;form]
A process evaluates form with the exclusive right
to access the variable var. During evaluation of
form, the process keeps the right. The value of
cr[~;form] is the value of form;

cr[var;form] = form.
* ccr[var;~ition;form]

A process waits until condition is neither NIL
nor F, and evaluates form with the exclusive
right to access the variable var shared among
processes. The value of ccr[var;condition;form]
is the value of form;

ccr[var;condition;form] = form.
C-LISP ~rocesses communicate with each other

via shared objects, These two primitives guarantee
mutual exclusion for the shared objects among the
processes. (The shared objects are variables
shared among processes, certain properties on
property lists, and mailboxes of processes.)

The following example program shows a program
for Fibonacci number. This program is not a
typical one but includes several concurrent

136

functions in a few lines. This function also shows
processes can be activated recursively.

(FIBONACCI (LAMBDA (N)
(COND ((LESSP N 2) 1)

(T
((LAMBDA (X)

(PLUS (FIBONACCI (SUBl N))
(CCR X (TERMP X) (PROCVAL X))))

(CAR
(STARTEVAL

((GENSYM)(FIBONACCI (SUB2 N)) NIL)))))
)))

The meaning of this function is as follows:
If n<2 then fibonacci[n]=l.
Otherwise, create a new process which executes
fibonacci[n-2]. The new process is given a name
generated by gensym[] and no shared variables in
the initial environments. The creating process
computes fibonacci[n-1] by itself. The creating
process waits until the created process
terminates. (termp[x] becomes true if process x
has terminated,) The creating process gets the
result of the created process by procval[x]. The
creating process adds these values and returns
it.

2.2 Overview of the System Configuration

2.2.1 C-LISP Interpreter

Fig.I shows the overview of the configuration
of the interpreter on single processor systems
[3][5], The interpreter has two program modules,
the schedule module and the interpret module. The
former manages all processes, i.e., management of
process activation, process switching and process
termination. The latter interprets given C-LISP
programs under the control of the former. For
quick process switching, the interpret module is
designed to load no private data of processes in
itself. We call this feature "transparency" of the
interpret module. Each process has its own private
data on the process control block (PCB), the
control stack, and the environment realized using
association list (A-list) method. For the
realization of the multiple control stacks and
environments, linked structure is utilized well in
the interpreter. Though continuous memory
allocation is usually more efficient in both

Process Management

A2 A3

~ ~
0 D 0 ' ' I l

pcb list

~/
I CS! CS2 CS3

Control Stacks
P-lists,
Arrays,,

A-lists Strings, etc.

Fig.I Overview of the C-LISP Interpreter

aspects of access speed and memory size than the
linked structure, it is difficult to arrange the
data of multiple processes into continuous memory
space. The performance of the interpreters already
developed is not so high because of the memory
management task for multiple processes. The
interface circuits described in this paper are
designed to solve this problem.

Based on the configuration of the
interpreter, we determined the basic design of the
multi-microprocessor system. The followings are
the basic concepts for the design.

1. C-LISP processes should be loaded on one
common space.

2. Processors which interpret programs should be
transparent for processes, i.e., C-LISP engine.

Consequently, followings are the basic problems
which must be solved.

1. The bus bottleneck problem must be solved to
connect considerable number of processors to
the common bus.

2. The access methods for specialized memory
areas should be reflected on the hardware
configuration to improve the access speed.

3. Each processor should determine its tasks by
itself to reduce overhead for the processor
processor interaction.

2.2.2 The Hardware Configuration

The multi-microprocessor system consists of
nine 16-bit microprocessors, MC68000 (M68K), and a
large common memory area (8MB). The processor
called Master Processor (MP) manages the entire
system, and other eight processors called
Interpreter Processors (IP's) interpret C-LISP
programs under the control of MP (Fig.2).
According to the access method and access
frequency, the common memory is separated into
three parts, each of which has the independent
common bus, to avoid the bus bottleneck.

Each processor element consists of the
processor part and interface part. The former is
designed as a general purpose single board
computer with one M68K (8 MHz), RAM (256 KB), ROM
(2/4 KB), one communication port, and IEEE 796 bus
interface. Each processor has its own programs on
the local memory, i.e., the system monitor
functions, the garbage collectors, and interpreter
functions. The latter includes intelligent
interface circuits to the common memory areas, and
interrupt interface circuits between processor
elements. The interface circuits play the very

~ +-+-~-+--+-+-~~~~~.....,f-+-l Common

Area

Cont.
Stack

PCB
&AA
Area

) Buses

Fig.2 Overview of the System Configuration

137

important role in this
the gap between the
structure of C-LISP
microprocessor.

system because they bridge
specialized information

and the general purpose

The three common memory areas are as follows.
1. Control Stack area: Control stacks of all
processes are stored. The control stacks contain
control information of processes such as return
address and temporary variables. The stack area
is divided into 1 KB blocks. Each process has
logically continuous control stack space which
is composed of one or more physical blocks.

2. List Cell area: List cells are stored. This
area is designed to have 1 Mega Cells. Each cell
has 48 bits, 20 bits each for CAR and CDR, and
8 bits for attributes.

3. PCB and Random Access (PCB & RA) area: Non
list data, such as character strings and arrays,
are stored. C-LISP system also uses this area as
working space for system management.

In the case of a multi-M68K system with one
common bus, no more than two processors can be
connected to the bus, since 62.5 % of one machine
cycle is necessary for memory access. In our
system, all M68K programs are stored on local
memory, whose access time is shorter than the
common memory, to decrease the access frequency to
the common area to half or less.

For inter-processor communication, this
system has the interrupt signal lines between MP
and IP's, i.e., star-connection configuration
whose center is MP. The interrupt lines are used
for synchronization of the processors, and the
communication messages are put on the interrupt
message buffers on the PCB & RA area. The usage of
the interrupt lines are restricted to several
purposes, which are described in the later
section, because of the overhead for the
synchronization.

2.2.3 The Software Configuration

The software which works on the multi-micro-
processor system is composed of

1) User Programs,
2) Interpreter,
3) Garbage Collector, and

C-LISP

Garbage
Collector

MP IPo

Interpreter

System
Monitor

Common
Space

Fig.3 Layered Configuration of the Software

4) System Monitor.
Fig.3 shows the layered configuration of the
software and the relationships bewtween the
software components and hardware components.

1) User Programs
User programs are put on the list cell area.

During their execution, the interpreter creates
and puts information necessary to execute user
processes on the common memory, i.e., association
lists and property lists on the list cell area,
control stacks on the stack area, and arrays,
strings, large numbers and process control blocks
on the PCB & RA area.

2) Interpreter
The interpreter on

programs on the common
should not possess data
local memory for quick
feature is called
interpreter.

3) Garbage Collector

every IP executes users'
memory. The interpreter
of user processes on the

process switching. This
"transparency" of the

This system has the garbage collectors for
every common memory area. The garbage collectors
are invoked by the events indicating shortage or
exhaustion of memory cells. The PCB & RA area
garbage collector squeezes garbages out of
allocated area, and reclaims free area. The stack
area garbage collector is invoked by exhaustion of
the stack blocks, and finds the garbage blocks
among the allocated ones. The list cell area
garbage collector is invoked by the FCP interrupt
which indicates that the exhaustion of list cells
will come soon.

List cell area garbage collection is designed
to be performed by all processors in parallel. We
use a modified mark-and-collect algorithm for our
system. The garbage collection is performed in two
phases: in the first phase, each IP marks active
cells from the roots of the processes allocated to
itself, and in the second phase, each IP collects
unused cells in its allocated portion, which is an
eighth part of the whole area. MP arranges the
synchronization of these activities at each phase,
and restores the collected cells to FCP. All IP's
execute their tasks in parallel under the control
of MP. In both phases, the load of the tasks is
distributed to all processor elements, so that the
response time of the garbage collection is
improved. Since no bad effect is caused by
overwriting marks on the same cells, IP's need not
access cells exclusively for marking and may mark
the same cells twice or more. As the exclusive
access usually takes a long time, this is an
advantageous feature. The on-the-fly garbage
collection algorithm [2] is not introduced,
because it obliges IP's to load no roots for
marking at all. Such complete transparency is
considered harmful for the system performance.

4) System Monitor
The functions of the system monitor (or the

operating system) are distributed to MP and IP's.
MP portion mainly performs housekeeping tasks, and
IP portion performs monitoring of user processes.
The MP portion manages state transition of waiting
and suspended processes, receives requests from
IP's and IOP (I/O Processor), and executes the
requested functions. On the other hand, the IP
portion selects a process and executes it.

138

Communication between these portions, i.e., intra
OS communication, is performed via either
interrupt interfaces between MP and IP's or
message buffers on PCB & RA area. The key problem
for the design of the system monitor is to let
IP's work as freely as possible. Therefore, the
direct intra-OS communication via the interrupt
interfaces should be restricted only to real time
communication to stop or to suspend execution of
running processes. The strategies to manage
processes and processors are presented in another
section.

3 Intelligent Interface Circuits

The multi-microprocessor system is composed
of general purpose microprocessors. Though memory
area is separated to avoid bus bottleneck, we must
provide specialized interface circuits between the
processors and the common memory components
because objects stored in the common memory have
specialized data structure and access mechanism
which may be different from those of the
conventional microprocessor.

3.1 List Cell Interface

3.1.1 Basic Idea

The followings are the basic requirements for
the C-LISP machine for efficient list cell access.
Address Translation: Since a list cell usually

has three portions in it, CAR, CDR and attributes,
the length of a cell is rather longer than the bus
width of processors. A list cell should be
accessed using cell address to decrease the
overhead for address translation by processors.

Quick List Read/Write: Quick list read/write
operation is indispensable for quick access to a
variable on an association list (A-list) and fast
list manipulation. For quick list manipulation,
the overlapped list read operation, i.e., list
pre-fetching, will work well, since the next cell
to be operated may be found on the interface
registers.
Free Cell Pointer Circuit (FCP): The pointer to

the top of free cell list must be accessed ex
clusively. Since heavy overhead is inherent in the
arbitration of the pointer by software, we should
provide special purpose circuit, which always
possesses the current top of the free cell list
and automatically updates it to avoid the
overhead.

Quick list cell manipulation is important for
the C-LISP system to reduce the system overhead
for the memory allocation problem. In sequential
LISP systems, continuous data structures are used
for efficiency, e.g., CDR-coding [l], shallow
binding and deep binding implemented using stacks.
However, to manage continuous structures is
difficult in the case of multiple
process/processor systems. For example, our system
uses A-list method to make environments of
processes. Though A-list method is said
inefficient compared with other sophisticated
methods, it is considered more efficient to put
multiple environments on the common area ..
Moreover, if we can get quick list access

facilities, we can make other components of the
interpreter in the form of lists because of the
flexibility of list structure.

3.1.2 the List Cell Interface Circuit

The cell interface circuit has 16 IFR's, the
sequence control logic, and bus interface logic,
Fig.4 shows the concepts of the overlapped
operation and the configuration of the interface
circuits. The width of an IFR is 24 bits
consisting of 20 bits cell address (i.e., up to 1
MCell) and 4 bits attributes. Since one cell
consists of 48 bits, two IFR's are occupied by one
cell. The IFR's are composed of high speed TTL
memory chips. The cell interface command is
encoded as an absolute address in the M68K's
memory space. Fig.5 shows the instruction schema.
The cell command has two attributes and four IFR
fields. The first IFR field, i.e., to-CPU field,
specifies the IFR to/from which M68K transfers
data. The second field, i.e., Cell-Address field,
specifies the IFR which contains the cell address

Overlapped
Operation\ ..

x
M68K List Cell I/F List Cell Area

Local Bus Common Bus

a. Concepts of the Overlapped Operation

to be accessed. The third and forth fields, i.e.,
CAR and CDR fields, specify IFR's to/from which
CAR and CDR data are transfered from/to the list
cell area. The R/W field specifies the direction
of data transfer between IFR's and the list cell
area. (R/W=R means that data is read from the list
cell area, and R/W=W means the reversed
direction.) The M/N field specifies that the
attributes of a half cell are masked at the data
bus buffer of the local bus. (M/N=M means "mask",
and M/N=N means "no-mask".) The following example
is an M68K's move instruction used for data
transfer on the list cell interface circuit.

MOVE.L [N,R,1,2,3,4),destination
The meaning of this instruction is:

The contents of IFRl is moved to the destination,
and CAR and CDR data of the cell specified by

bit
23 - 20, 19 18 ,17 -14,13 10,9-6,5-2, 1,0
Sel.Cell M/N R/W to-CPU Cell-Addr. CAR CDR 00

23-70 - Select Cell Area
19 - Mask or Non-mask
18 - Read or Write
17-14 - To-CPU Register Field
13-10 - Cell Address Register Field
9 6 - Car Register Field
5 - 2 - Cdr Register Field
1 0 Always zero for long word operation

* If zero, no data is transfered between
IFR's and cells.

** If zero, Test-and-Set operation is executed
on the target cell.

Fig.5 Instruction Schema of the List Cell I/F

U/L-Fl;
Car/Cdr-IT

I.Interrupt Address Buffer

2,Interrupt Signaling Logic

3.Local Output Buffer

4.Local Input Buffer

Local Bus

......_________~
IFR's

24bits x 16

selection
IFR
addr.

11 D

cont. signals

G~
Common Bus

5.Local Bus Control Logic

6.Local Address buffer

7.Register Address Multiplexer

8.Zero Detecter

9.Common Address Buffer

10.Common Output Buffer

11.Common Input Buffer

12.Sequence Control Logic

13.Common Bus Control Logic

Note:
*U/L=Upper word/Lower word
*Both buses satisfy IEEE 796

bus specification.
*A=Addr.,D=Data,C=Command

b. Block Diagram of the List Cell Interface Circuit

Fig.4 The List Cell Interface Circuit

139

IFR2 are read and moved to IFR3 and IFR4
respectively.

The interface register 0 (IFRO) has the special
role. If to-CPU field contains zero, it means
Test-and-Set operation is executed on the cell
specified by the Cell-Address field, If other
fields contain zeroes, it means those fields are
not used in the operation. In Fig.6, several
instructions are presented. In those instructions
except the Test-and-Set instrusction, the
operation on the common bus starts just after the
operation on the local bus has finished. Thus,
this interface manages the overlapped operation of
data transfer on the local bus and the common bus.

This interface circuit has the update-inter
rupt facility which is provided to detect an
update event on a shared variable. The address of
the updated cell is passed to M68K. The system
monitor receives this event and executes the
relevant tasks.

3.1.3 the Free Cell Pointer Circuit

This system is designed to have only one free
cell list in the common cell memory. The exclusive
access to the top of free cell list should be
maintained to deliver a new free cell to each
processor consistently. We provide the FCP circuit
for quick CONS operation, It is the simplified
circuit which has the register holding the next
free cell address, the register holding the
remaining free cell number and the interrupt
logic. (Fig.7 shows the configuration.) The former
register is called the free cell pointer register
(FCPR) and the latter register is called the free
cell counter (FCC). At each time a processor
element reads FCPR to get a new cell, FCP
automatically updates FCPR just after the read
operation. This schema is guaranteed by giving the
highest priority of the list cell bus to FCP. FCC
and the interrupt logic are provided for
initiating the list cell garbage collection. FCP
decrements FCC whenever FCPR is read. When FCC
indicates that the remaining cells are less than
certain amount, FCP interrupts MP to request

M68K IFRx A~B. Cell (A.B. = Addr. Buf ,)

MOVE.L [N,R,1,2,3,4],DO

IFRl DO
IFR2 Addr. Buf,
Cell IFR3 Car
Cell IFR4 - Cdr

~~
. :~·

~:
MOVE.L DO,[N,W,1,2,1,0]

DO IFRl
IFR2 Addr. Buf.
IFRl Cell - Car

. .
:--...; .
. :~.
~.
: I • . :

. . . . MOVE.L [N,-,0,1,-,-],DO

IFRl Addr. Buf.
Cell Cell - Test&Set

DO

: :---.; :
:~~
~
t r ' •

time Notes: IFRx means Interface Register x.
"-"means "don't care".

Fig.6 Flow of Data on the List Cell Interface

garbage collection. Exhaustive use of free cells
is inhibited to guarantee correct response for
read FCPR operation. FCP activities are summarized
as follows:
1. arbitration for exclusive access to the top of
the free cell list,

2, automatic update of the top of the free cell
list, and

3, detection of shortage of the free cells.
These activities are simple but heavy if executed
by software. Since CONS operation and the list
cell garbage collection are primitive operations
of LISP and CONS is executed frequently, FCP is
indispensable for our system.

3,2 Control Stack Interface

3.2.1 Basic Idea

Since the access frequency to control stack
is quite high, for example about 1/5 of the whole
memory access in the C-LISP interpreter on the
single M68K system [3], efficient access mechanism
is indispensable for this system.

The stack area is divided into 1 KB blocks,
which are allocated to processes block by block.
In the interpreter on the single M68K, since this
memory management is performed by software, it has
quite heavy overhead to test illegal access to
outside area of allocated blocks. Therefore, we
need memory management facilities on the processor
elements to provide logically continuous space for
each process. In addition to the memory management
problem, local buffer memory should be provided on
the processor elements to accelerate the access
speed to the control stacks.

3.2.2 the Control Stack Interface Circuit

The stack interface circuit consists of three
major portions; the limit registers, the buffer
memory (4 KB), and the DMA control logic. The
limit registers specify the upper and lower
boundaries of the portion of the control stack

140

List Cell Bus to MP

Addr.

Interrupt
Logic

Pointer
Register

Fig.7 Free Cell Pointer Circuit

loaded on the buffer. The DMA controller transfers
blocks between the buffer and the stack area.
Fig.8 shows the concepts of the operation and the
configuration of the stack interface circuit.

Each process is given its logically
continuous stack space. The interpreter accesses
to a control stack of a process using the logical
address. The accessed location is always found on
the stack buffer. This is guaranteed by the guard
areas located at the both ends of the loaded
portion on the buffer. (When either of the guard
areas is accessed, the system monitor makes the
next block available on the buffer.) When the
system monitor transfers a block from the buffer
to the common memory, it allocates a physical
block to a logical block. Consequently, the
interpreter is freed from the heavy overhead for
stack manipulation. We use this pseudo-page-fault
manipulation mechanism, since M68K has no page
fault facilities. Our method has the restriction
that the processor cannot access distant location
from the location accessed currently. (Since we
assume the width of the guard area is 256 bytes,
the processor cannot access the location whose

Control Stack
of a Process

Virtualized
Access

Real

M68K Stack Buffer

Stack I/F

+- -1- - ·-· -i-
i I I

Stack Area

Local Bus Collllllon Bus

a. Concepts of the Stack I/F Operation

Function
Selection Stack Buffer

1 KB/Block

DMA Over

<

offset from the location accessed currently is
more than 255 bytes.) However, this restriction
has little effect on the software, since the
control stack space has the very strict locality.

As described above, the stack interface
circuit has two major functions, i.e., memory
management for the logical stack spaces of
processes and buffering of the active portion of
the stacks for the common memory. The former
feature is indispensable to realize the multiple
process environments, i.e., virtualization of the
users' memory spaces. The latter has the buffering
effect but it disrupts the transparency of IP's.
By this disruption, process switching overhead
becomes rather heavy to swap out/in blocks.
However, if processor elements have no buffer on
the interface, the low access speed to the stack
area will cause severe effect on the system
performance since access frequency of the stack
area is quite high. In addition, the process
switching overhead is negligible, because it needs
about 2 ms to switch processes while switching
interval is designed to be long. (Notes: DMA
controller consumes 0.5 ms to transfer one block,
and four blocks are transfered in the average for
each process switching. LISP interpreter usually
consumes long CPU time, so that we assume one or
more seconds for the interval timer which triggers
process switching.)

3.3 Example Procedures

Fig.9 presents an APPEND and a SASSOC
procedure, which are typical procedures for list
manipulation. These procedures utilize the
interface circuits well.

This
monitor.
management,
management.
major tasks

Data

4 System Monitor

system "has the distributed system
The tasks of the monitor are process

processor management, and memory
I/O management, which is one of the

of operating systems, is executed by

l.Local Bus Control Logic

2.Lower Limit Register

3.Upper Limit Register

4.Address Comparator

5.Interrupt Vector Register

6.Interrupt Control Logic

7.Buffer Block Addr. Reg.

8.Common Block Addr. Reg:

9.DMA Counter/Addr. Reg.

10.DMA Controller

10
11.Data Buffer

Local Bus
Control
Signals

12.Address Buffer

Busl3.Collllllon Bus Control Logic

b. Block Diagram of the Stack Interface Circuit

Fig.8 The Stack Interface Circuit

141

the I/O processor (IOP), so that it is excluded in
this paper.

4.1 State Transition of C-LISP Processes

Fig.10 shows the state transition diagram of
C-LISP processes. All processes are monitored and
moved from state to state by the system monitor.
To move a process from the waiting state to the
ready state, the system monitor must test the
waiting condition written in C-LISP: the system
monitor evaluates the second parameter of CCR by
itself. Therefore, the state transition diagram
from the system monitor's view is different from
the users' view as shown in Fig.10.

MOVE.L
MOVE.L

a, [M, - , l, 0, - , -]
[-,R,n,1,2,3] ,dummy
[M,R,2,3,2,3] ,A7@
#NIL, [M,-,3,0,-,-]
Al

read list a
load first elem.
move elem. to CPU
end of list ?

Al:MOVE.L
CMP.L
BNE
MOVE.L b,[M,-,3,0,-,-] set b on IFR3

A2:MOVE.L
MOVE.L
MOVE.L

A7@+,[N,-,2,0,-,-] move elem. of a
FCP,[M,-,1,0,-,-l ; get a cell
[M,W,l,1,2,3] ,[N,-,3,0,-,-]

; CONS & set current list top on IFR3
CMPA.L #BOTTOM,A7 termination test
BEQ A2

finished

a. Append - append list b to a.

MOVE.L a,[M,-,1,0,-,-J
MOVE.L [-,R,n,1,3,4),dummy

Sl:CMP.L #NIL,[M,R,4,3,1,2)
BEQ S2
CMP.L [M,R,1,4,3,4],x
BNE Sl

set A-list
get first pair
termination test

variable match

4.2 Allocation of Processes to Processors

C-LISP processes are created by MP and reside
in the common memory area. For the process
management task, the system monitor has process
queues and process pools for every state. Fig.11
shows the relationships of those queues and the
system monitor. It shows that MP executes the
housekeeping tasks, and IP's execute the
interpretation tasks. MP creates new processes,
watches events, moves a process from pending/wait
to ready/condition-test-ready, and monitors
process termination, and IP's select processes and
execute them.

4.3 Inter-process Communication

C-LISP processes communicate with each other
via shared objects. All the shared objects are put
on the common memory, so that they are always
visible from MP and IP's. Communication messages
are, therefore, buffered on the objects, and no
direct communication between processor elements is
necessary. Mutual exclusion for the shared objects
is controlled by flags located at the shared
objects: whenever IP's interpret CR or CCR, they
test-and-set those flags.

The system monitor synchronizes the processes
for the inter-process communication. The
synchronization operation is triggered by event
messages put on the request message queue. IP's
put the event messages on the queue when they
recognize the local events such as update events
of shared objects and release events of shared
objects.

4.4 Inter-processor Communication

MOVE.L [N,-,2,0,-,-),value
finished

S2:CMP.L [M,R,1,0,-,-],x
BNE error

not match
get value Since the system monitor is distributed to MP

and IP's, the components communicate with each
last var. match ? other for cooperation. As this communication is
not match -> error performed inside the system monitor, it is called

MOVE.L [N,-,2,0,-,-],value
finished

get value Intra-OS communication. This system has two types
of the intra-OS communication; the indirect
communication via the request message queue and

b. Sassoc - find a dotted pair whose CAR is x in a. the direct communication via the interrupt
("-" means don't care.) interface circuit. (Fig .12 and Table 1 summarize

Fig.9 Example Procedures

l.Selected for execution
3.Suspended fo[I/O, etc.
S.Condition satisfied
7.Shared var. updated, etc.
9.Condition unsatisfied

2.Timeout
4.CCR wait
6.I/O completed, etc.
8.Selected for testing

Fig.10 State Transition Diagram of User Processes

142

the intra-OS communication.) The former is mainly
used to transfer request messages of processes and
event messages to MP. This type of communication

Created

MP Test Ready:

0

Wait

Fig.11 Process Management

Terminated
r,

IP's

.
~

in Execution

is one directional, since MP directly replies to
the relevant processes. The latter is used for
very restricted purposes, while the former is used
for many purposes. To let IP's be dedicated to
interpretation, the direct communication is used
only for the messages which must be transfered as
soon as possible.

4.5 Memory Management

The memory management is very simple because
no protection mechanism is needed. This system has
the simple memory allocation and reclamation
facilities. Each common area has memory allocatio~
status descriptor which has the master information
necessary for memory management, e.g. FCP. C-LISP
processes get memory cells under the control of
the managers of these descriptors. On the other
hand, the system has the garbage collection
facilities to reclaim the garbages in the
allocated area as described earlier.

5 Discussion and Conclusion

In this paper, we presented the special
purpose machine which comprises general purpose
microprocessors, C-LISP was designed to apply
multi-process description techniques to artificial
intelligence problems instead of the conventional
techniques such as backtracking and coroutines.
From the experience on the interpreters developed

Table 1 Intra-OS Communication

Direct Communication (Interrupt Driven Com.)
From MP to IP
Synchronization request for Garbage Collection
Kill request of running processes

From IP to MP
Synchronization acknowledgement of G.C.
Process termination report
G.C. request (intentional G.C.)

Indirect Communication (Buffered Communication)
From MP to IP

none
From IP to MP

I/O request
Pending report of CR and CCR
Event messages (Release shared objects, Update

shared objects, and etc.)

etc. Processes etc. IP's

Fig.12 Intra-OS Communication

143

earlier, the authors found that C-LISP programs
usually have enough parallelism for implementing
them on multiprocessor systems, in addition to the
fact that LISP programs usually require very large
computation power,

The hardware configuration of this system
strongly reflects the language feature of C-LISP.
However, our system includes several key problems
common among multi-microprocessor systems, such as
the bus bottleneck problem and the multiprocess
environment problem. We chose general purpose
microprocessors, since it was considered expensive
and time-consuming to make special purpose
processors by hardware or by firmware. Thus, the
system is constructed using the general purpose
microprocessor with small yet powerful circuits
for special purposes,

Special purpose multi-processor systems
consisting of general purpose processors will
become more popular. We consider specialized small
scale circuits may bridge the gap between the
generality of the processors and the speciality of
users' application on such multi-processor
systems.

Acknowledgements

The authors thank Mr.N.Sonobe, Mr.A.Yamamura
and Mr.T.Okada of Kyoto University for their
contribution to this paper. The authors also thank
Mr.T.Fukuda, Senior Engineer of Nihon Denki Kagaku
Inc. for his help and contribution to this
research.

References

[l] CLARK, D.W. and GREEN, C.C., An empirical
study of list structure in LISP, Comm. ACM
Vol.20, No.2, Feb. 1977

[2] DIJKSTRA, E., LAMPORT, L., MARTIN, A.J.,
SCHOLTEN, C.S., and STEFFENS, E.F.M., On-the
fly Garbage Collection: an exercise in
cooperation, Language Hierarchies and
Interfaces (Lecture Note on Computer Science
'.t§) Springer-Verlag, 1976

[3] SONOBE, N., SUGIMOTO, S., AGUSA, K., TABATA,
K., and OHNO, Y., Concurrent LISP on a
Personal Computer, 24th Annual Convention of
IPSJ, Mar. 1982 (in Japanese)

[4] SUGIMOTO, S., TABATA, K., AGUSA, K., and OHNO,
Y., Concurrent LISP on a Multi-Micro-Processor
System, IJCAI 81, Aug. 1981

[5] TABATA, K., SUGIMOTO, S., and OHNO, Y.,
Concurrent LISP and Its Interpreter, Journal
of Information Processing, Vol.4, No.4, Feb.
1982

A Multi-Micro System for I/O Intensive
Applications

F. M. Tse

American Bell
Denver, Colorado 80234

Abstract During the acceptance test of a
computerized product, it is desirable to be able
to test the load handling capability of the
system. This paper describes a load generation
system using a multiprocessor architecture to
generate the large amount of data needed to load
test the DIMENSION® AIS™/System 85.

The system described in this paper consists ·of a
total of 25 processors and employs a unique
bussing scheme. The system uses a master-slave
organization and includes several levels of
hierarchically ordered busses. The host processor
is used for high-level task execution and overall
timing control. The 24 slave processors are used
for parallel high-speed data collection and
compression.

INTRODUCTION

In today's business environment, the goal of
ensuring the product quality is becoming more
challenging and important. During the initial
acceptance test or subsequent reissues of a
computerized product, it is often necessary to
characterize or verify the performance of the
system under heavy load. However, as
semiconductor technology advances, systems are
getting faster, more powerful and harder to test.
Very often, it is quite difficult to generate
enough load to test the performance of a system.
Manual load testing has become a thing of the past
and automated testing has become a must.

The DIMENSION® AIS™/System 85a is the latest
product of the DIMENSION® family. It includes a
sophisticated digital switch capable of providing
both Voice and Data Management services. In order
to verify the operation of the switch under heavy
usage, a load-generation environment is required.
The Multi-Micro System is a part of this
environment - it is designed for load and system
testing of telephony features associated with
electronic voice terminals. To simulate the
actual operating environment, the system is
connected to the switch at places where electronic
voice terminals are normally connected.

The system performs two main functions: 1)
simulates heavy user activities on 96 electronic
voice terminals and 2) verifies the responses. It
implements these functions by performing the
following low-level I/O operations: Voice terminal
refresh data in the form of bit pulses is
collected from 96 data channels (at 63Kb/s burst
rate). This data is then collated, compressed, and
stored into a data base for query. In addition,
bit pulses simulating user activities must be
transmitted back to the 96 data channels at the
same time but at half the input data rate.

a. • Registered Trademark of AT&T. ™ Trademark
of AT&T.

0190-3918/83/0000/0144$01.00 © 1983 IEEE 144

As part of the design objective, it is desired
that·- the system be fairly compact, modularly
structured, and easily expandable. The Multi
Micro System satisfies these requirements. It
employs a distributed-intelligence multiprocessor
architecture with a total of 25 processors in the
system. There is one host processor responsible
for high-level task execution and overall timing
control. In addition, there are 24 slave
processors responsible for parallel high-speed
data collection and compression.

SYSTEM ORGANIZATION

The reason for choosing a multiprocessor
organization is simply because of necessity.
First, due to the complexity of the data
compression operation, it is obvious that random
logic cannot be used to implement the system and
keep the size reasonably small. Second, the use
of a single microprocessor is deemed inadequate
because most microprocessors do not have the
throughput to handle such a large amount of data.
Finally, the use of a single microprocessor to
interface with each of the channels would be
excessive. Based on these limitations, the choice
of using a microprocessor to interface with four
data channels is a reasonable compromise - it
requires each of the processors to process a
reasonable amount of data, but not at an
unattainable rate.

While there are many different approaches to
building a multiprocessor system (references [1] -
[3] describe several different alternatives), an
interesting hierarchically ordered interconnection
scheme is used. Figure 1 shows a block diagram of
the system organization and the following list
summarizes some of the important characteristics
of the system:

• The system uses a tightly coupled, master
slave type multiprocessor organization.
There is one Intel 8086 host processor and
twenty-four Intel 8089 slave processors[4] in
this system. Each of the processors has a
private local control store for efficient,
independent, and parallel operation.

• There are two levels of hierarchically
ordered busses in this system - one trunk bus
and two branch busses. These busses are used
for interprocessor communication only.

• The host processor resides on the trunk bus
and the slave processors are connected by
branch busses. A global memory communication
scheme is used between the host processor and
the slave processors.

• Each of the slave processors operates two
direct memory access (DMA) channels
simultaneously. One reads the input data
stream while the other transfers data to the

GLOBAL MEMORY Q

IOP#l 1-----,
I I
I I
L~!.~s __ ,

IOP #2 feo __ _
I
L~..!U!__j

•
•
•

- ...!_0.!:_#,!!_ - I lbt.oWI I 1W I I
I I

L~':.!~ - J

TRUNK BUS

I
I
I

Q GLOBAL MEMORY

IOP #1

L ____ .!
IOP #2

•
•
•

1 IOP #12 ; ,o-o;;• I I I
I I

I IOP BUS I - --- --

D CPU

~BUS SWITCH

Q MEMORY

E9 1/0 DEVICE

FIGURE 1. SYSTEM ORGANIZATION AND BUSSING SCHEME

output. Furthermore, there are four data
data streams multiplexed into each of the DMA
channels.

With these characteristics in mind, the system
architecture can be described as follows. There
is one host processor in this system and it is
connected to a trunk bus. The trunk bus is in
turn connected to two branch busses via branch bus
gateways. For simplicity, the branch bus uses a
simplified version of the Intel MULTIBUSb
interface. It is a multi-master global bus and
there are 12 slave processors connected to each of
the branch busses. Moreover, either the host
processor or one of the 12 slave processors
residing on that bus can become the bus master.
All data transfers on this bus are 16 bits wide
and it has a worst-case transfer rate of over 800K
words per second.

On each of the branch busses, there is a block of
16K bytes of global memory. Since this memory can
be accessed by any of the bus masters, it can be
accessed by either the host or any of the 12 slave
processors. To simplify the system hardware, a
simple software communication scheme is used - the
host processor is restricted to communicate with
the slave processors through the global memory
only.

b. MULTIBUS is a patented Intel bus.

145

During normal op.eration, the slave processors
continuously update the data base stored in the
global memory. When the host processor needs
information about the system, it looks up the
proper location in the global memory. Likewise,
when the host processor wants to issue an I/O
command to a slave processor, it writes the
command into specific locations in the global
memory.

This system architecture was chosen
application because it exhibits the
characteristics:

for this
following

• Information compression - one of the inherent
characteristics of a hierarchically ordered
system is the ability to filter out
unnecessary information before passing it up
the hierarchies. In this system, the slave
processors perform this filtering function.
In fact, the ratio of data read from the
channel versus those written into the global
data base is approximately 1000 to 1. As a
result of this information compression
action, the host processor control program is
simplified because it does not have to
perform the time critical tasks.

• Efficient communication mechanism in this
application, the combination of global memory
and dual branch busses offers more than
aqequate communication bandwidth and requires
little protocol overhead.

• System modularity - the bussing scheme is
expandable. In fact, the system is actually
equipped with four branch busses, of which
only two are currently used. If even further
expansion is needed, the implementation can
be reconfigured into a multi-dimensional
bussing arrangement interconnecting multiple
host processors.

SYSTEM HARDWARE

There are a total of 28 circuit boards in the
system, including a CPU board, a bus control
board, two branch bus gateways, and 24 IOP boards.

HOST PROCESSOR

The host CPU is an Intel 8086 operating in maximum
mode[4]. It is connected to two different busses -
an internal private bus called the host bus and an
external bus called the trunk bus. To simplify
the system timing control mechanism, to allow
parallel operations, and to provide some data
privacy among the processors, the host CPU
performs all of its instruction fetches and local
data accesses from on-board memories. The host
CPU accesses the trunk bus only when it has to
communicate with the IOPs.

BRANCH BUS GATEWAY

For each of the Branch Busses in the system, there
is an associated circuit board called the branch
bus gateway. The gateway board can be divided
into three sections: the trunk bus to branch bus
interface buffers, branch bus arbitration circuit,
and the global memory.

I/O PROCESSOR BOARD

The !OP board contains all the circuitry of a
slave processor and its associated peripherals.
The processor section contains an Intel 8089 I/O
Processor (IOP) operating in remote mode[4]. The
!OP can access two different busses - an internal
private !OP bus or the external global branch bus.
Normally, the !OP performs instruction fetches and
DMA operations on its local IOP bus. The branch
bus is used for data base updates and
communicating with the host processor only.

There are several advantages in using the 8089 !OP
to control the operation of the !OP board. The
IOP is specifically designed to operate as a slave
to the 8086 processor. Also, the !OP has two
built-in DMA controllers to facilitate high speed
data transfers. Finally, the !OP can actually
execute programs residing in either its private
store or the global memory. During the program
debugging phase, the machine code for the !OP is
downloaded through the host processor into the
global memory. The !OP program is transferred
into EPROMs only after it has been stabilized.
This feature is quite useful for the program debug
procedure.

Actually, the !OP can be considered
processors in one. There are two
channels inside the !OP and each of the

as two
identical
channels

146

can operate in either programmed mode or DMA mode.
In the programmed mode, a channel can operate as
'if it is a normal microprocessor running under the
control of a channel program. Moreover, a channel
can enter into DMA mode by the execution of a
single instruction. In the DMA mode, the channel
stops the execution of the channel program and
operates as a DMA controller. It can perform
port-to-port, port-to-memory, or memory-to-memory
transfers at high speed.

In the current design, both channels and both
modes are being used. One of the channels is
dedicated to collecting data from the input and
the remaining channel is dedicated to sending data
to the output.

The input data stream has several unique
characteristics. The data arrives in bursts at
25-millisecond intervals and the amount of data in
each burst alternates between two different
formats. For this reason, both of the channels
are designed to operate on 25-millisecond frames.
At the beginning of each frame, both channels
operate in DMA mode - one channel collects data
into its local memory while the other channel
sends data stored in local memory to the output
circuil;s.

When a sufficient amount of data has been
collected (usually between ~ to 20 milliseconds
into each frame), the system hardware generates an
interrupt signal to force the !OP to leave the DMA
mode. The !OP then enters into the programmed
mode, runs under the control of the channel
program, performs the collating and compression
operations, updates the global data base, executes
I/O commands from the host processor, and reenters
the DMA mode again.

SYSTEM SOFTWARE

An important part of th1s system is the global
memory communication structure. The host
processor can communicate with the IOPs only
through these software structures. As with all
multi-processor systems that use global memory for
interprocessor communication, it is important to
maintain process synchronization and data privacy
between the various processors. In this system,
privacy is ensured by having a separate local and
global memory.

The global memory consists of three major data
communication structures: a system status database
storage, a host-to-IOP communication interface,
and an !OP-to-host processor interface. To assure
data synchronization between the host processor
and the IOP, several simple but effective
techniques are employed. For example, some of the
data structures are restricted to be
unidirectional only. Other techniques employed
include semaphore constructs and event counters.

The source program for the 8086 CPU was developed
on a UNIX™-basedc VAX 11/780 minicomputer. Except
for the I/O drivers, most of the routines are
written in the "C" programming language[5]. The

c. ™ UNIX is a trademark of Bell Laboratories.

system is written to be task-oriented. In the
current implementation a task can be in one of
five states: it can be waiting for execution, in
execution, sleeping, waiting for response from
the IOP, or waiting on the output device.

To minimize execution time and program size, the
program for the 8089 IOP is written in assembly
language. It consists of two separate control
programs, one for each of the channels of an IOP.
Although these two channels can operate
independently, the DMA input and output transfers
are always kept in synchronization by signals from
the external hardware. As mentioned earlier, both
control programs are written to run on 25-
millisecond frames. Moreover, some of the
processing, such as the compressing function, is
spread over several frames. This approach reduces
the processing time within each individual frame
and enables the IOP to satisfy real-time
requirements.

SUMMARY AND CONCLUSIONS

The Multi-Micro System is currently being used for
in-house system testing. We believe that the
architecture described in this paper is well
suited for real-time critical and I/O intensive
applications. The use of private local storage in
each processor and multiple global busses in the
system are essential for efficient, independent,
parallel operations. Additionally, the highly
modular organization allows the users to add or
delete test resources easily. The built-in DMA
controller feature of the slave processor enhances
the throughput of the system significantly and
enables the designers to implement such a compact
tool.

In the future, more fault-tolerant features should
be added to the system. For example, overall
system reliability can be further increased by

147

adding a redundant host processor. Moreover, the
host processor software should be expanded to
include periodic maintenance routines to audit the
health of an IOP board and restart those that have
failed.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the contribution
of C. A. Conkey for implementing the program for
the IOP, C. Martin for sharing his experience on
data structures, and D. L. Fairchild for his
encouragement throughout this project.

1.

2.

3.

4.

5.

REFERENCES

G. A. Anderson,
Interconnection
Characteristics
Surveys, Vol
197-213.

and E. D. Jensen,
Structures:

and Examples,"
7, No 4, December

"Computer
Taxonomy,
Computing
1975, pp.

A. M. Despain, D. A. Patterson, "X-tree: A
Tree Structured Multiprocessor Computer
Architecture," The 5th Annual Symposium on
Computer Architecture-c~nce Proceeding;
April 1978, pp. 144-151.

D. Katsuki, et al, "Pluribus An
Operational Fault-Tolerant Multiprocessor,"
AFIPS Conference Proceedings, Vol 46, 1977,
pp. 637-644.

The 8086 Family User's
Corporation, October~9~

B. W. Kernighan, and D. M. Ritchie,
Programming Language, Prentice-Hall,

Intel

The C
1978.

PIPELINE AND PARALLEL ARCHITECTURES FOR COMPtJrER COMMUNICATION SYSTEMS

ARUMALLA v. REDD!
Department of CCllllputer Science and Engineering

Indian Institute ot Technology Bombay
Pewai, Bombay-lt00076, India

~~

Vario11S existing communication proce
ssor systems (CPSs) at different aodes in
computer communication systems (CCSs) are
reviewed tor distributed processing sys
tems. To meet· the increasing load or
messages, pipeline and parallel archi
tectures are suggested in CPSs. Finall7,
pipeline, array, multi and multiple-pro
cessor architectures and their advantages
in CPSs tor CCSs are presented and ana
lysed, and their performances are compa
red with the performance of uniprocessor
architecture.

P.f!RODUCTIOI

Over the past few years, we have seen
the emergence ot a new generation ot com
puter technology. This causes to increase
the availability or low cost mini/micro
computers, intelligent terminals, etc.,
and further greately reduces the cost for
unit of computing power. This leads t•
tremendous increase ot computer users and
their requirement for enormous computing
power to assist in day-to-day human life
and solve a number of problems in several
areas or science and technology. The best
way to meet all the requirements of' pre
sent user pepalation is through Distribu
ted Processing Systems (DPSs).
P~1tributed Pro2e11ipg S11tems

These DPSs bring the coraputing power
nearer to the computer users irrespective
of' their geographical distribution. Un
like centralized computer systems, these
systems are less expensive, and increase
processing power and shorten instruction
execution time with the addition of' new
computer users/terminals. The main
principle ot DPSs is to do the proce
ssing where the data is• This leads to a
reduction of the data communication tra
ffic, since data processing usually invol
ves data reduction• These DPSs increase
the redundancy, fault-tolerance, reliabi
lity and sharing or expensive resources•
They are more flexible, versatile1 dyna
mic, reconf'igurable and expandable, en
courage construction of dedicated systems,
distributed tatabases and multi-micro
processor systems, give more throughput
due to inherent pipelining and parall1•.
and require less inoremental cost than
centralized systems. They turther provide
remote access to a variety of resources,
access to databases, a facility tor

0190-3918/83/0000/0148$01.00 © 1983 IEEE 148

exchanging personal messages, etc. In
these systems with distributed control
it is more natural to communicate through
messages rather than through synchronized
signals. With proper autonomy an1 storage
in the message transport system, processors
do not communicate in future systems with
many processors.
Cgmputer Communication Szstems

Seeing the advantages of DPSs, the
demand for DPSs is growing very fast
along with the computer user population.
This trend increases the number of proce
ssing nodes as well as the complexity or
DPSs. At the same time the exchange or
messages between nodes is also increasing.
To streamline the passage Of messages in
between processing nodes. the requirement
for advance computer canmunication systems
(CCSs) is also increasing.

With the recent advances in computer
commwiications, protocols, computer net
works, communication software, operatinc
systems for networks, etc., many CCSs
like ARPANET, ALOHA, ETHSRNET, CYCLADES,
etc. have come into operation and they
are becoming very popular with their use
in DPSs. With the present adnnces in
ccss, the development or DPSs ia also
progressing.

As the computer user population and
the demand for DPSs is increasing, the
demand for high throughput CCSs is also
increasing• New techniques like multi
processing (1], parallel processing [2,3]
have been proposed to improve the throttgh..
put of ccss an1 provide service facilities
to all the computer users. At the same
time the de11and for high throughput
communication processor systeas (CPSs)
(~9 5] is also increasing to meet the de
mand for processing all the messages, at
any node, within reasonable time. Recent
advances in computer architectures, LSI,
VLSI, VHS! has caused significant changes
in the area of computer architecture.
These new developmEn.ts are encouraging the
growth or high throughfut and reliable
CPSs for CCSs in DPSs 5] • Many CPSs
capable of performing a wide range or
communication applications including cir
cuit switching and store-and-forward
switching or a combination of these two
in CCSs are under operation ()] •

CQ:IMUNIQATiON fROCES§Ol\ §YSTjMS
Bell Labs have developed •n1 systems

(6-9] tor stored program controlled

switching• The GTE Sylvania, Inc. has
proposed a CPS for combination or circuit
and store-and-forward switching (5]• A
multiprocessor, ETS-4(10) for circuit
switching and another multiprocessor, Cmmp
(11,12] as a switching node or the ARPA net
work tor combination of circuit and store
and-forward switching have been developed·
Applying associative and parallel proce
ssing techniques the Honeywell research
group (13) proposed an architecture for a
combination of circuit and store-and
rorward switching to implement demultiplexer
and multiplexer functions• The North
Electric company has proposed CPS (14]
for 1istributed ~rocessor system. The
Pluribus system L15',16) is 11Sed as a modular
switching node for the ARPA network.

Looking at the evolution or the CPS ar
chitecture, we can find that the trend
has bean from uniprocessor architecture to
multiple-processor architecture. As the
communication requirements continuously
increase, the complexity of CPSs will keep
growing and more functional modules would
be included in the system[17-19].

PROC&S30R ARCHIT3QTURES
At every node in a ccs, the CPS receives

the messages and stores them in its memory
and routes them to their next destination to
reach within the shortest possible time•
Before routing, the CPS performs operations
like frame decomposition, control packet
processing synchronization, field proce
ssing, control packet formulating, receive
and transmit tables updating, and frame
composition, on each message. If a sin6le
processor is used to do all these operations,
it will take longer time to process all
the incoming messages. The processing time
can be reduced by using more than one pro
cessor arranged in pipeline and parallel
processor architectures• Eventhough,
theoretically, the performance or n pro
cessor system will have throughput equal
to n times that or uniprocessor, due to
practical limitations it will always be
less than the theoretical value. The CPSs
having the pipeline an•i parallel archite
ctures handle very high loads and will
have very high throughput rate. In this
paper, some resoarce sharing architectu-
res having n processors to increase the
throughput of CPS are proposed and their
performances over a uniprocessor are
analysed•
llniprocessor

A uniprocessor CPS performs all the
operations on the messages in a sequential
manner. For example, if the CPS receives
• messages, each message requires n steps
to complete the execution or all opera
tions and each step requires an average
execution time ts seconds then the time
reqtaired to process all the m messages
on a uniprocessor is

149

t = mnt se.c • (1) u s
If different operations on each message
or different messages are simultaneously
executed on different processors then
the overall time required to process all
the messages will be reduced. This in
creases the speed or processing and
thro•ighput. To achieve this goal, the
following pipeline, array, multi and
mllltiple-processor architecture schemes,
more suitable to execute different opera
tions or messages simultaneously in a
number of processors, to increase the
overall throughput of CPSs are proposed.
Pipeline Processor

In this scheme all the operations to
be performed on each message are partiti
oned into n steps of equal average execu
tion time t and all the steps are execu
ted in n difrerent processors on n diff
erent messages simultaneously. All the n
processors are arranged in series,like a
pipeline and the messages pass through all
the n processors one after the other in
nt8 seconds, completing the execution of
al1 the n steps of operations on all n
processors. The total time required to
process m messages in a pipeline proce
ssor architecture having n processors is

tp = (m+n)t8 sec.

Sdmt1 sec. tor m >»n (2)
C011paring equations (1) and (2), one can
see that the· pipeline processor requires
only 1/n or th$ time required by the uni
processor. The avera_ge message process
delay, in this scheme, 1s eq11al to 1/n
or the message process delay caused by a
uniprocessor and its throughput will be n
times that of a uniprocessor. Since the
pipeline scheme has n processors an'i all
are connected in series! a processor fail
ure will effect the who e scheme and so
its reliability is much less than uni
processor. The higher reliability and
throughput can be achieved by applying
multiprocessor technique.
Mllltiprocessor

In this scheme, all the operations to
be perrormed on each message are partition
ed in to independent steps and all the
possible independent parallel steps are
simultaneously executed in n different
processors on the same message. Since
the execution time or all the steps are
not equal it requires complicated schedul
ing to get optimWD performance from all
the processors. In th:b case, throughput
will be nearly equal to n tiJles that or
uniprocessor, slightly less than that or
pipeline processor. This is because the
non-utilization or full n processors capa
city due to practical limitations. In this
case the failure or one processor vill not
errect the rUDCtioniog or other processors.

Bence, its reliability is mu.ch better than
pipeline and uniprocessors. In pipelineand
multiprocessors, the expandability cost will
be higher• A suitable architecture for
fast increasing loads with lower additional
cost for expandability is array processor.
Array Processor

In this all the n processors are arranged
in the form of an array and n different me
s sages are processed in n different proce
ssors simultaneo11sly. An 1nstr11etion is
exec11ted simultaneo11Sly in all the n pro
cessors on all the n messages present in
them. The throughp11t of an array processor
will be equal to n times than that or Wli
processor. In this case any one processor
failure will not effect the functioning
of other processors. This increases the
reliability and it is nearly equal to that
of m11ltiprocessor. Unlike multiprocessors,
in this case, addition of additional pro
cessors is easier and it does not take
complicated schedllling to share all the
resources optimally. The main draw-
back in this scheme is, at any time, two
or more processors can try to access same
resource. This creates additional opera
ting system design problems• This can be
overcome by using mllltiple-prooessor tech
nique.
MuJ.tip~!-proce~sor

In this scheme all the n processors
shares all the resources and operates in
dependently. At any time, n messages are
processed independently on n processors
and whenever two or more processors try to
access a single resource, then all those
requests are put in a queu.e and they will
be served on FCFS queue discipline. This
delays only those messages whose processor
requests are in the waiting queue and all
the other processors continue executions
without waiting. Due to this fact, the
thro11ghput or a mllltiple-processor will be
slightly less than that or pipeline pro
cessor, but its reliability and expanda
bility are greater than the others. The
average message processing delay, in this
case, is nearly eqll&l to that of the delay
caused in case or pipeline and array
processors.

QONCLUSJON
Out or all the above schemes, pipeline

m!FERENg~
(1] F·E· Heart, et al., A new minicomput-

er/multiprocessor tor ARPA network,
[2] AFIPS Cont.Proc.(June 1973),529-537•

D. Cohen,et al., A parallel process
ing approach to computer c0Jlllllunica-
t1on, in R·L· Grimsade and F·F· Kuo
(eds.), Computer Communication Net
works (1975), 181-191+.

[3] A· Faro, et al., Parallel processing
in computer comm110ications, Proc.
Int. Cont. on Parallel Processing
(Aug11st 1981), 291+-296.

[It-] C·B· Newport, et al., Communication .
processors, Proc. IEEE, Vol.60,
(Nov.1972), 1321-1332.

[5] D·P· Agrawal, et al., A survey or
communication processor systems, Proc.
COMPSAC (Nov.1978),668-673.

(6] w. Keister, et al., No.1 ESSa system
orp.nization and objectives, BSTJ,
Vol.43 (Sep.196lt), 1831-181+1+.

(7] P·C· Richards, et al., No.2, ESSz An
electronic switching system for the
suburban community, Bell Lab· Record
vo1.;1 (May 1973), 130-135. '

(8) B·A· Irland, et al., New developments
in suburban and rural ESS (No.2 and
No.3 ESS)t Int. Switching Symp. Rec.
(Sep.197it-J,512/1 - 512/6.

(9] A•E· Ritchie, et al., No.4 ESS system
objectives and organ!Zation~ BSTJ,
vo1.56 {Sep.1977), 1017.102~.

(10) J.J. Dank:oweki, at al•, ETS-4 System
overview, IEEE Int. Cont. on Comm.
Rec., Vol.1 (June 1975),14/1-llt-/6.

[-1] M. Barbacci, et al., The application
of multiple processor cemputer systems
to digital communication network, CMU
report (June 1976).

[12)

(13]

(lit-]

(15]

[16)

W.A. Wulf, et al., Cmmp1 A multi
processor, Proc. of FJCC(1972),7£5-77~
H·G· Schmitz, et al., Application or
associative processing techniques to
an integrated voice/data switching
~etwork, Honeywell systems and resea
rch centre report, (1976).

scheme has got higher thro11ghput and least (17]
reliability. 1f high reliable pipeline pro
cessors are available then this scheme is

North Electric Company, Comm11nications
processor system, Vol.I-VIII,TR (1977).
S·M· Ornstein, et al., Pluribus- a
reliable mllltiprocessor, Proc. AFIPS
Nat. Comp. Coor. (May 1975),551.559.
J•L• Baer, Multiprocessing systems,
IEEE Trans. on C<>11p. Vol·C-25
(Dec.1976),1271-1277•
C·H• Sequin, Message switching cir
c11its for multi-~icroprocessors, Proc.
COMPCON Spring (Feb.1980) 1 328-334.

very suitable where the throughput of CCS is (18]
almost steady and failure of CPS will not
cost much• On the other hand, array ,
mlllti and multiple-processors have high
reliability and expandability than pipe
line scheme and their throughput is also
nearly eqwU. to that or a pipeline processor
scheme. If' one considers throughput, relia
bility and expandability, then the best
suitable scheme will be mllltiple-processor
architecture.

150

[19]

K· Hwang, et al., Ccaputer architec
tures for parallel ~rocessing,
McGraw-Hill, HY (1963)•
&.T. Fath!, et al•, Multiple micro
processor systemsa what, why, and when.
!EBB computer, Vol.16, (March 1983),
23-32·

AN INTERFACE MESSAGE PROCESSOR
WITH A MULTIPROCESSING ARCHITECTURE

Kri sh Purs111ani
Department of Computer Science

Bijan Jabbari
Department of Electrical Sciences and Systems Engineering

Southern Illinois University, Carbondale, IL-62901.

ABSTRACT
This paper describes the architecture of a

multiprocessing system for voice/data s111itching.
The system consists of a Large number of units
called "Processing Elements," which have special
ized and dedicated functions. Due to their paral
lel operation, a high degree of concurrency can be
achieved.

The architecture of the system is described.
Simulation results pertaining to memory access
times are presented. The operating system is
described. Certain analytical results pertaining
to blocking probabilities of packets, and utiliza
tion of the Processing Elements are discussed.

INTRODUCTION
The Last decade has witnessed a tremendous

growth in the amount of information that is trans
mitted digitally. Besides the digital traffic
generated as a result of computer communication,
applications Like digitized voice, electronic
mail, etc. have further intensified the need for
efficient transmission of digital data. Integrat
ing these various kinds of data onto a single
channel is an attractive solution for an Inte
grated Services Digital Network due to the greater
channel utilization that is thus accrued [1].
However, due to a variety of switching schemes
that are found to be efficient for different types
of data [2J, and due to the differences in proto
cols used by different hosts, a fairly sophisti
cated switching and routing center is required.
Advances in VLSI have made it feasible to realize
systems with distributed architectures, making
integrated switching schemes economically viable
[3],[4].

SYSTEM ARCHITECTURE
It is desired to have an Interface Message

Processor capable of handling data generated by
sources of different kinds. These different kinds
of data need to be integrated in a way that would
optimize certain system parameters (cost, for
instance) subject to certain system constraints,
such as delay, error rate, etc. To achieve high
throughput, and to permit many different switching
strategies to be implemented concurrently, a mul
tiprocessing architecture is desirable [4].

The system that we describe has a large number
of units called "Processing Elements" (PE's>. A
set of PE's forms a "cluster." There are 25
"clusters" in the system. Each "cluster" consists

0190-3918/83/0000/0151$01.00 © 1983 IEEE 151

of a PE called the "Circuit Switching Element"
(CSE) and four other PE's called the "Packet Pro
cessing Elements" CPPE'sJ. These five PE's in a
"c Luster" are interconnected over a bus, ca L Led
the intra-cluster bus. Each "cluster" has a lo ca L
memory called the "cluster memory," which it uses
for storing instructions and data. Each "cluster"
exercises direct control over one Switching
Matrix. The CSE is responsible for controlling
the switching operations in the Switching Matrix,
whereas the PPE's are in charge of buffering and
transmitting packets.

The "clusters" are again connected, via a
global bus, to three memory banks (shared memory)
and a CPU (fig. 1). Two devices, called the Bus
and Interrupt Controller, and a Bus Multiplexor,
are used for efficient management of the global
bus and the memory banks respectively. The PE's
in a cluster use a token ring protocol to govern
the use of the intra-cluster bus.

The CPU acts primarily to disburse resources
for the different tasks in an orderly manner. It
constructs the "Switch Control Words," which are
executed by the CSE's. These are similar to the
Channel Commands in a general purpose machine.
The Switch Control Words are prefetched by the CSE
into its cluster memory, which, thus, acts as a
cache memory for the CSE. In executing the Switch
Control Words, the CSE connects one line to
another (circuit switching) or a line to a Packet
Processing Element (when packets need to be buff
ered). The number of lines is more than the num
ber of Packet Processing Elements. This is due to
the fact .that sometimes, certain kinds of data may
be circuit switched. A set of Switch Control
Words forms a "Switching Program," which, when
executed, implements a specific switching scheme.
The CSE also determines the manner in which pack
ets would be received by the PPE, and so on.

PERFORMANCE ANALYSIS
The system was simulated using GPSS-V. Spe

ci fi cal Ly, it was desired to estimate the time
required for an access from the shared memory. It
was observed that, for a memory with a cycle time
of 250 ns., the CPU, operating in a high-priority
mode, was able to access the memory within 300 ns.
77% of the time, and the Processing Elements only
33% of the time [4].

Certain analytical results
probability of blocking were

pertaining to
derived. For

the
the

purpose of analysis, it was assumed that a switch
ing matrix had N Lines, and the cluster that cont
rolled it had M PPE's. It was further assumed
that the traffic could be divided into two broad
categories, viz., circuit switched traffic (hence
forth referred to as voice-streams) or packet
switched traffic (henceforth referred to as data
packets). Fig. 2 shows the blocking probabilities
for circuit-switched traffic (voice-streams) and
packet-switched traffic (data packets), as a func
tion of the number of PPE's per cluster. It is
observed that as the number of Lines present
increases, the blocking probability of a data
packet increases. This is because as the number
of Lines increases, the blocking probability of
voice-streams (i.e. circuit-switched traffic)
decreases, and this makes the Lines Less available
for data packets. Blocking could occur for both
kinds of traffic. Fig. 3 shows the average number
of PPE's in use as a function of the number pres
ent in a cluster. The ratio of the average number
of PPE's in use and the number of PPE's present is
the utilization of the PPE's. It is observed that
as the number of Lines and the amount of data
traffic increases, the average number of PPE's
utilized increases, and approaches the ideal Limit
depicted as a straight Line in the figure. This
situation corresponds to 100% utilization of the
PPE's. For other cases, the average number of
PPE's utilized increases with the number of PPE's
present, but only upto a certain point.

SOFTWARE
A group of users who wish to communicate are

normally allocated Lines in one Switching Matrix.
This is to reduce the overhead of moving packets
from one cluster memory into another. The operat
ing system creates a series of processes for each
set of users that use a particular protocol, or
constitute a group whose members communicate pri
mari Ly with other members within the group. Dif
ferent system utilities serve to implement differ
ent protocols, which are executed to create a
particular pattern of "Switch Control Words" nec
essary to implement a particular protocol.

A routine called the Line Allocation Module
performs Line allocation. Users that need to com
municate frequently are allocated contiguous Lines
in the same switching matrix (to the extent possi
ble). Allocation of contiguous Lines to similar
users and the implementation of a specific proto
col by the CSE creates the effect of a dedicated
system.

Another important module called the "Memory
Management Module" is in charge of allocating/de
allocating the shared memory. It uses the Parti
tioned memory management scheme, and the best-fit
algorithm. It allocates the memory so as to bal
ance the occupancy in each bank, thus increasing
concurrency in memory accesses.

CONCLUSIONS
This paper discussed the architecture of a

multiprocessing system for circuit/packet switch
ing. Some of the simulation results were also
discussed. An overview of a part of the necessary

152

switching software was presented.

APPENDIX
We address the problem of determining the PPE

utilization. Specifically, if a Switching Matrix
has N Lines and the "cluster" that controls it has
M Packet Processing Elements CM < N), what is the
average number of PPE's being utilized at any
instant? We also attempt to find the probability
of a data packet or a voice-stream being blocked.
For the purpose of analysis, a stream that needs
to be circuit switched could also be viewed as a
packet to be transmitted instantaneously (without
buffering and without engaging a PPE). Assume
that the arriving traffic can be divided into two
broad categories, i.e., "packets" that need to be
circuit switched <voice-streams) or those which
need to be buffered (data packets). A voice
stream, hence, needs two Lines, but a data packet
requires a Line and a PPE. We further assume that
the arrival pattern is poisson, with a mean arri
va L rate of Av for voice-st reams, and a mean
arrival rate of Ad for data packets. Each packet
engages the Line(s) or the PPE for the Length of
time determined by the bit rate, and its size.
This is the service time, and is assumed to be
1/Jlv for voice-streams, and 1/µd for data packets.
The parameter of interest is r, the number of
Lines that are tied up at any instant; and s, the
number of PPE's engaged in service. This repre
sents the situation when s data packets and
<r-s)/2 voice-streams are being serviced.

Let pCn,q) be the probability of a cluster
being in a state Cn,q), which corresponds to 'n'
voice-streams, and 'q' data packets currently
being serviced by the cluster. This corresponds
to the case of r = 2(n) + q and s q. These
states are depicted in the Markov-chain in Fig. 4,
for the case of N = 8, and M = 4. A transition
can occur from the state (n,q) to the state (n+1,
q) with the probabi L ity Av (dt) in a time inter
val dt, provided Cn+1, q) is an accessible state.
This corresponds to an arrival of a voice-stream.
Similarly, a transition could occur from the state
Cn,q) to the state (n-1, q) with a probability of
nf.lv<dt). This is because the cluster might com
plete servicing any one of the n voice-streams. A
similar argument holds for data packets. Hence,
in Fig. 4, voice-streams cause transitions along
the columns, and data packets cause transitions
along the rows. Each of the accessible states
Cn,q) satisfies the following condition:
0 ~ q ~ M, and 0 < 2(n) + q ~ N (1)

Solving for the state probabilites yields the
following equation for p(n,q), the state probabil
ites for states Cn,q) that satisfy (1):

p(n,q) =

where K

~~n(6.~'i..!_ _!_
µJ\/:J.J n! Ci!

K
/N-j]

tt.~ """"/ J.

(2)

(3)

Hence ECs>, the average number of PPE's utilized
is:

N t¥J n q.

I 2= (~~ ~t ('f.
1-0!

E(s) = ECq) = 'f.•t n•o (4)

K
and, ECr>, the average number of lines utilized
is:

M t~~J n q.

Ll32n+'i.)~~ I I
Tii err

ECr) = EC2n+q) = 'f.•0 71•0

K
(5)

V, the probability of a voice-stream being blocked
is the sum of state probabilities of states at the
bottom of each column in the Markov-chain. Hence:

v (6)

and d, the probability of a data packet being
blocked is the sum of the state probabilites of
states in the last column Cq = M) and the states
for which N - C2n + q) = 0 and q < M. Thus:

d =

K
REFERENCES

N-'i.
2

(7)

C:1J M. J. Ross and C. M. Sidlo, "Approaches to the
Integration of Voice and Data Telecommunica
tions," Nat. Telecommun. Conf.,Nov. 1979.

C:2J M. J. Ross and Osama A. Mowafi, "Performance
Analysis of Hybrid Switching Concepts for
Integrated Voice/Data Communications," IEEE
Trans. on Comm.,Vol. Com-30,No. 5,May 1982,
pp. 1073.

C:3J M. J. Ross, and K. A. Garrigus, "A Distrib
uted Processing Architecture for Voice/Data
Switching," NAECON 1981, Vol. 1, pp. 350-356.

C:4J Purswani, K., and Jabbari B., "A Distributed
Architecture System for Switching High Volume
Integrated Voice/Data Traffic," Phoenix Con
ference on Computers and Communications, Phoe
nix, 14-16 March, 1983 pp. 26.

153

!J
c, ..

13

In te rface Msg • P roe.

Qi
~ 100 t-::=>..:::~-----::--:7-- Blocking Prob.
"' N • 24· of voice-strea ..
j
i: 10"2
;.
0 -·

16

~14

~12

'-'" 10 ...,
0..
0..

..... 8
0

.... i 6
c: 4 ..
CT

5 2
>

~-8.11
~--7.0
J4t

Ideal Upper Limit (lOOS (Case 3)
Utilization)

Case 3: :>../µv=O.O

A rlµ cfOO

(Case 1)

~ =8.1 ~t 7.0

N = 24

If • 50

< 0 _...,._ ~,.._,....., l"ll'"'..,.,--"!'lt'_""""__,l!---'lf'J~ ..
Nlllliler of Processing El-nts

Figure 3. Average nllllber of PPE's utilized.

M=4 & N=8
State :(n,q)

Chain

A CLASS OF GRAPHS FOR PROCESSOR INTERCONNECTION+

S.M. Reddyt, P. Raghavan* and J.G. Kuhlt

Abstract -- Two classes of graphs with N = 2n
nodes, diameter log2N, ~ N or < l.SN links and
node connectivity of 2 are presented. These
graphs appear to be suitable for interconnection
applications in computing networks. Even though
nodes in the graphs have different degrees (at
most n+l different degrees), the graphs have
structured interconnection patterns. The
maximum degree of the nodes in the graphs is n.

I. Introduction

Several researchers have studied the
problems of network topology for computing
networks based on the graph model (1-13). Some
of the properties of graphs that are important
to this application are diameter, node and link
connectivity, modularity, maximum degree of a
node, the number of links, routing algorithms
and the effect on diameter when a node(s) or
link(s) is removed. Most of the current
research in network topology has dealt with
regular graphs (graphs in which the degrees of
all nodes are equal) or "essentially regular"
graphs (1-13). In this paper we present two
classes of graphs with 2n nodes, diameter n and
node connectivity of 2. These graphs have nodes
with varying degrees (2 through n). In one
class of graphs, on an average, there are less
than 1.5 links per node and in the other class
of graphs, on an average, there is one link per
node.

A brief definition of the terms used
follows. The distance between two nodes, say i
and j, of a graph is the number of links in a
shortest path between i and j and the diameter
of a graph G is the maximum of the distances
between pairs of nodes of the graph. The node
(link) connectivity of a graph G is the minimum
number of nodes (links) that have to be removed
for G to become disconnected or reduce to a
single node. It is known that the link ,
connectivity of a graph is less than or equal to
its node connectivity. The t-node-deleted (t
link-deleted) diameter of a graph G is the
maximum of the diameters of the subgraphs of G

+The research reported was supported in part
by Airforce Off ice of Scientific Research
Grant AFOSR-78-3582 and NSF Grant ECS-8205188.

ts.M. Reddy and J.G. Kuhl are with Electrical
and Computer Engineering Department,
University of Iowa, Iowa City, Iowa 52242.

*p. Raghavan is with the Department of
Electrical Engineering and Computer Science,
University of California at Berkeley, Berkeley,
California. ·

0190-3918/83/0000/0154$01.00 © 1983 IEEE 154

that are obtained by removing some t nodes (t
links) (16). The size of a graph is the number
of links (edges) in it.

The diameter of a graph G gives a measure
of the worst case delay in a message switched
network and the connectivity of G gives a
measure of the fault-tolerance of the network
modeled by G.

II. Graph Construction

The degree of a·-node in a graph G gives the
number of communication links (physical or
logical) incident on a node. Clearly it is
important to keep the number of communication
links small to achieve the desired diameter and
connectivity. Most researchers have
concentrated on the construction of regular
graphs with small degrees. One of the most
widely studied class of regular graphs is for
degree 3 (3-5,7-9,11). A simple lower bound by
Moore (14) shows that the diameter of degree 3
regular graphs of N nodes should be ~ log2N.
The best known construction achieves a diameter
of 1.472 log2N (8,11). Note that the size of a
N node regular graph of degree 3 is l.5N. A
binary n-cube, which has also been proposed as a
possible topology for computing networks (13),
is a regular graph of degree n with 2n nodes and
node connectivity of n. However the size of the
binary n-cube is n*2n-l Another class of
popular graphs for computing networks is loops
[15). These graphs are regular with degree 2, N
links and have node connectivity of 2. The
diameter of the loops is however N/2. The
popularity of loops stems from the simple
routing, modularity (i.e. nodes can be added and
deleted without changing much of the network
connections) and tolerance to single faults
(15). For the number of links, maximum degree
of a node, diameter and node connectivity it can
be seen that the proposed graphs fall between
loops and binary n-cubes. We summarize this
comparison in Table I. Before we present the
details of the construction it is important to
consider reasons to construct graphs presented
here.

If one wants to construct graphs of small
diameter and minimum number of links, one
excellent solution is the graph shown in Figure
1. Diameter of this graph is 2 and its size is
N-1. However the node connectivity of this
graph is 1 and hence the modeled computing
network has a single point failure. A graph
with node connectivity 2 would require that the
degree of each node be at least 2. If it is
exactly 2, the graph would be a loop, with O(N)
diameter. Hence to achieve smaller diameters
one must allow the minimum degree of the nodes
to be greater than 2. However the maximum
degree of nodes and the total number of links

should be kept low, to keep the complexity of
the individual nodes and the complexity of the
interconnections reasonable. Systematic methods
to interplay maximum degree, size, diameter and
connectivity of the graphs appear to be
eKtremely difficult to obtain (this research
topic is called Extremal Graph Theory [14]).
The work presented in this paper can be viewed
as an emperical solution to this problem.

2.1 Class I Graphs

Next we give a class of graphs with N = 2n
and size less than 1.5 N. We call this class of
graphs Class I Graphs. The construction
procedure we give uses three basic graphs with
diameters 1, 2 and 3, shown in Figure 2. The
graphs with higher diameters are constructed
iteratively using these graphs. Since the
graphs we would construct have 2n nodes we can
use a binary n-tuple to label the nodes. The
labels to be used for the first three graphs,
are shown in Figure 2.

Let the labels of the nodes of the graph to
be constructed be xn-l xn-l xn-2···x1xo,
x- £ (o, l}. The set of nodes which have
iJentical values in some k fixed positions
constitute an (n-k)-ii~~e and.is a subcube of the
binary n-cube with 2 vertices. The subcubes
are denoted by placing dashes (-) in the (n-k)
positions where the values are not fixed. For
example 00--- represents the 3-cube
{00000, 00001, 00010, 00100, 00001,
00101, 00110, 00111}. This notion of the
subcube is useful in following the algorithm
given next.

Algorithm Graph Construct:

Let Gn be the graph to be constructed.

1. If n = 1, 2, 3, then Gn is defined by the
graphs in Figure 2. If n > 3, then for
each 3-cube ~-l~-2 ••• x3 --- include the
edges of the graph shown in Figure 2(c).
Note that there will be 2n-3 subcubes and
the edges in each subcube are placed by
referring to Figure 2(c) and neglecting the
first (n-3) components of the node labels in
each component 3-cube.

2. Apply step 1 recursively to the
+ n-3 + + n-3 +

(n-3)-cubes --- ••• -000 and --- ••• -100.

Figure 3 illustrates the construction
procedure proposed. In Figure 4 we give an
example of constructing the 32 node graph by
applying algorithm Graph Construct. Some of the
basic properties of the graphs constructed above
are investigated next.

2.1.1 Properties of Class I Graphs

Theorem 1: For any n) 1, algorithm
Graph Construct produces a 2n node graph with
diameter n.

155

Theorem 2: For n > 1, the number of links
in Gn, the graph constructed by applying
algorithm Graph~Construct, is

t [2n-2(n(mod3)) + [n/3]]+ 2[n/3]* (n(mod3))2,

where [x] is the interger part of x.

Corollary 1: The number of links in a N
node graph constructed by algorithm
Graph~Construct, is less than 1.5 N.

Theorem 3: In a N = 2n graph constructed
by algorithm Graph Construct, there are nodes
with different deg!-""ees and these degrees range
from 2 through n.

Theorem 4: For n > 1, the node
connectivity of a graph constructed by algorithm
Graph~Construct, is 2.

Theorem 5: For n > 2, the I-deleted
diameter of a N = 2n graph constructed by
algorithm Graph Construct, is at most n+2 if n ~
4 and for n=4 it is 7.

2.2 Binomial Graphs

The second class of graphs being proposed
are called Binomial Graphs. The construction of
binomial graphs is illustrated in Figure 5. The
number of nodes N in the graphs is 2n. Two
nodes, called the super nodes, have degree n and
the other nodes have degrees of 2 through
(n+l)/2, The nodes are arranged into (n+l)
levels, with (~) nodes in ith level,
O (i (n. Edges connect nodes in ith to nodes
in (i+l)th and (i-l)th level only,
1 (i ((n-1). Furthermore every node in the
ith level.is connected to exactly one node in
the (i-l)th level, 1 (i ([n/2]. Every node
in (n-1-j)th level is connected to exactly one
node in the (n-j)th level, 1 (j ([n/2]. For
n an odd integer a node in [n/2]th level is
connected to exactly one node in ([n/2] +l)th
level. As long as the connection rules given
above are sat.isfied, the details of which node
is connected to which particular node(s) does
not have an impact on the diameter and
connectivity of the Binomial Graphs. However to
keep the maximum degrees of nodes small, we also
require that the edges be distributed such that
the maximum difference between the degrees of
nodes, at the same level, be 1. Examples of
Binomial Graphs, for n=4 and 5, with the
additional restriction on the distribution of
edges, are given in Figure 6. Some of the
properties of the Binomial Graphs are given
next.

Theorem 6: The diameter of the Binomial
Graphs with N=2n is n and the I-deleted diameter
is 2n-l.

Theorem 7: The node connectivity of a
Binomial Graph is 2.

Theorem 8: The size of the Binomial Graph

with N=2n is N-2+ ([nf2]).

Corollary 2: The size of the Binomial
Graphs with N-211 nodes approaches N as n + ...

III. Remarks

We have investigated several variations and
extensions of the proposed graphs. For example
it can be shown that graphs with maximum degree
5, diameter log2N, connectivity 2 and size
approximately l.3N can be constructed. We have
also constructed graphs with connectivity
greater than 2.

The regular graphs studied earlier [l-13]
other than loop and binary n-cube lack structure
for conveniently adding and deleting nodes.
Loop has the best prope.rties for this problem,
since deleting or adding a single node only
perturbs at most two links. A network based on
a binary n-cube can be made to have such
properties by assigning longer labels, such that
many labels are possibly unused. Then one can
connect new nodes and delete old nodes without
perturbing more than approximately log2N
connections. The modularity properties of the
proposed graphs are good. For example many
nodes (3/4 nodes in Class I graphs and at least

([nf2]) nodes in Binomial Graphs)in the

proposed graphs can be deleted by perturbing at
most two links. Many nodes can also be added
while increasing the diameter by at most 1.
These results for Class I graphs are reported in
[17].

References

[l]

[2]

[3]

[4]

[5]

S. Akers, "On the Construction of (d,k)
Graphs," IEEE Trans. Electron. Comput.,
vol. EC-14, 1965, p. 448.

B. Elspas, "Topological Constraints on
Interconnection-Limited Logic," Switching
Theory Logic Design, vol. S-164, 1964, pp.
133-147.

E.P. Preparata, and J. Vuillemin, "The
Cube-Connected Cycles: A Versatile Network
for Parallel Computation," Communications
of ACM, vol. 24, no. 5, May 1981, pp. 300-
309.

B. Arden, and H. Lee, "Analysis of Chordal
Ring Network," IEEE Trans. Comput., vol.
C-30, 1981, PP• 291-295.

B. Arden, and H. Lee, "A Regular Network
for Multicomputer Systems," IEEE Trans.
Comput., vol. C-31, 1982, pp. 60-69.

[6] D.K. Pradhan, and S.M. Reddy, "A Fault
Tolerant Communication Architecture for
Distributed Systems," IEEE Trans. Comput.,
vol. C-31, no. 9, 1982, pp. 863-870.

156

[7] M. Imase, and M. Itoh, "Design to Minimize
Diameter on Building-Block Network " IEEE
Trans. Comput., vol. C-30, 1981, p;. 439-
442.

[8] W.E. Leland, "Density and Reliability of
Interconnection Topologies for Multi
computers," Ph.D. dissertation, Department
of Computer Sciences, University of
Wisconsin-Madison, May 1982.

[9] K.W. Doty, "Large Regular Interconnection
Networks," Proc. of the 3rd International
Conference mtDistributed Computing
Systems, October 1982, pp. 312-317.

[10] D.K. Pradhan, "On a Class of Fault
Tolerant Multiprocessor Netwo.rk
Architectures," Proc. of the 3rd
International Conference on Distributed
Computing Systems, October 1982, pp. 302-
311.

[11] M. Jerrum, and S. Skyum, "Families of
Fixed Degree Graphs for Processor
Interconnection," Report CSR-121-82,
Department of Computer Science, University
of Edinburgh, July 1982.

[12] L.N. Bhuyan, and D.P. Agrawal, "A General
Class of Processor Interconnection
Strategies," Proc. 9th Symposium on
Computer Architecture, April 1982, pp. 90-
98.

[13] H. Sullivan, T. Bashkov, and D. Klappholz,
"A Large-Scale Homogeneous, Fully
Distributed Parallel Machine," Proc.
Fourth Annual Symposium on Comp~
Architecture, March 1977, pp. 105-124.

[14] B. Bollobas, "External Graph Theory,"
London Math. Soc. Monographs No. 11,
Academic Press, London, 1978.

[15] M. T. Liu, et al., "System Design of the
Distributed Double-Loop Computer Network,"
Proc. 1st International Conference on
Distributed Computing Systems, October
1979, pp. 95-105.

[16] J.G. Kuhl, and S.M. Reddy, "Distributed
Fault-tolerance for Large Multiprocessor
Systems," in Proc. Seventh International
Symposium on Computer Architecture, June
1980, PP• 23-30.

[17] V. R. Kode, "A Class of Inhomogeneous
Graphs for Processor Interconnections,"
M.S. Thesis, Electrical and Computer
Engineering, University of Iowa, Iowa
City, Iowa 52242.

l!\l\L(I

CO!IPARI S0'1 Bll ~[Eli RI NARY 11-CIJDES, tnors ,,ND TllE PROPOSL'l GRt.f'HS

RINAHY

N-C.UBE Loor

NUMBER OF NODES ~J = t.'~

NUMBER Of l INl".S MN/2

t1JN l~1UM DF.C·REE

MAXIMUM DF.GREE

DIAMETER N/2

~~onE CCNNECT Iv I TY N-1

1-DEl.ETF.D DIAMETER N N-2
(FOR N:8l

0 o~-----iQ I

Fig. 2 (a)

00[]01
10 11

Fig. 2 (b)

IOI

PROPOSED oRAPHS

Bl NOl-llAL SIUIPHS

CLASS i (CLASS 11)

N = 2N II= 2''

•I.SN N-2•(~1)
·2 2

N<2 2N-]

0

Figure 1: The
graph with
diameter 2
and size N-1.

(c)

Figure 2: Basic graphs for Class I
graphs

Fig. 6 (a)

Fig. 6 (b)

Figure 6: Binomial Graphs with N 16,32

157

Figure 3: Class i Graph construction.

c:>oooo

IOOoo

Figure 4: N

..,super node

l•i'~

" Super node

_\

01000

11000

32 Class I Graph

L.EVEL.0

LEVEL 1

LEVEL 2

L.EVl!.LM-2

LEVEL M-1

1.EVEL M

Figure 5: Binomial Graph

DENSE BUS CONNECTION NETWORKS

Karl W. Doty
Systems Control Technology, Inc.

Palo Alto, California 94304

Abstract -- In designing interconnection
networks, two important criteria are minimiza
tion of the ndistance" between nodes and minimi
zation of the number of interconnections that
must be made among the nodes. When direct node
to-node connections are modeled, one problem
which has been extensively examined is maximiz
ing the number of nodes subject to restrictions
on the maximum internode distance and the
maximum number of connections per node. This
paper explores the same problem when more general
bus-like connections among more than two nodes
are allowed. New designs, including a general
ization of de Bruijn networks, are presented
with more nodes than previously proposed designs.

Introduction

There are many important factors involved in
the design of a computer interconnection network.
The distances between processors should be mini
mal, in order to have short delay times.
Physical limitations usually restrict the number
of connections for each processor. Network
performance should not be radically affected by
processor or link failures. Cost considerations
may reduce the possible number of connections.
Appropriate tradeof fs need to be made among
these factors.

A graph theory model of a computer network,
with nodes representing processors and edges
representing links, has been extensively used to
look at some of these factors. One problem which
has been examined by several authors is the
problem of finding the graph with the most nodes,
given constraints on the graph's degree (the
maximum number of nodes adjacent to one node) and
diameter (the maximum number of edges which must
be traversed between two nodes) [1-3]. In some
computer systems, however, the model of having
two nodes connected by an edge is not very
realistic. Instead, several processors may be
connected by a bus and may be thought of as being
equally distant from each other. At the same
time, each processor may be connected to several
buses. The result is a bus connection network.

The same factors are relevant in the con
struction of bus connection networks as in the
construction of standard networks. We will focus
on the property of the maximum distance between
processors, or the diameter. Specifically, we
will be looking for bus connection networks with
as many nodes as possible as a function of the
diameter, subject to constraints on the number of
connections for each node and bus. Such networks
should have smaller maximum communication delays
than networks of comparable size.

A Bus Connection Network Model

We will use a model discussed by Mickunas [4]

0190-3918/83/0000/0158$01.00 © 1983 IEEE 158

for a bus connection model. In this model, each
node is incident on a certain number of buses,
which we will call the node's degree. The
maximum of the degrees of the nodes will be
called the graph's nodal degree. Each bus has a
certain number of nodes on it, which will be
called the degree of the bus. The maximum of
the degrees of the buses will be called the
graph's bus degree. For notation, we will
denote the nodal degree by d, the bus degree by
b, the diameter by k, and the number of nodes
by n.

Two nodes will have a distance of one if
they are incident on a common bus. In general,
the distance between two nodes is the minimum
number of buses which must be passed through to
get between them.

We will use a representation of a bus
connection network as a bipartite graph. One
type of node represents the original nodes,
while the other type represents the buses. In
the figures in this paper nodes are filled-in
circles and buses are empty circles. An edge
in a figure represents a node incident on a bus.

Moore Graphs for Bus Connection Networks

For standard graphs, the bus degree b = 2.
In most of this paper we will assume b > 2,
since the other case is covered elsewhere [1-3].
When b = 2, the maximum possible number of
nodes a graph can have is

d(d-l)k - 2
d - 2

A graph with this number of nodes is called a
Moore graph.

An analogous concept can be defined for the
case of b > 2. From each node at most d buses
can be reached, from which at most d(b-1) nodes
can be reached. Thus the maximum number of nodes
in a diameter one graph is 1 + d(b-1). 2imilarly
in exactly two steps at most d(d-l)(b-1) nodes
can be reached, and in exactly j steps at most

d(d-l)j-l(b-l)j nodes can be reached. If we
define n(d,b,k) as the maximum number of nodes
in a graph with nodal degree d, bus degree b,
and diameter k, we have

k k
n(d,b,k) ~ 1 + d(b-l)(d-l) (b-l) - 1

- (d-l)(b-1) - 1
A graph with this number of nodes is called a
Moore geometry.

Since there are very few Moore graphs it is
natural to ask if there are any Moore geometries.
A Moore geometry with diameter 1 has 1 + d(b-1)
nodes. The simplest case here is where d = b
(the node dzgree equals the bus degree), so
there are d - d + 1 nodes and the same number of
buses. Every pair of nodes is on exactly one
common bus. The existence of such a graph

depends on the existence of a mathematical object
called a finite projective plane, a subject which
has been extensively examined. It can be shown
that such a plane exists if d-1 is a power of a
prime number [5].

For d f b, diameter 1 Moore geometries can
be based on balanced incomplete block designs, or
BIBDs. A design arranges n objects (analogous
to the nodes) into v blocks (analogous to the
buses) so that every object is in d blocks,
every block contains b objects, and every pair
of objects occurs together in exactly one block.
Several examples of BIBDs are given in [6].

The question of the existence of Moore
geometries with diameters greater than one is
more complicated. None are known if b > 2. Bose
and Dowling [7] give necessary conditions for
existence when k = 2, although they could find no
graphs satisfying those conditions. Fuglister
[8] showed that there are no Moore geometries
with k = 3. Another result which is easily
proved is that there are no Moore geometries with
d = 2 and b > 2.

Previously Proposed Bus Connection Topologies

Several construction methods for bus connec
tion networks have been proposed in the litera
ture. Perhaps the simplest bus connection network
is a hypercube. Such a network can be thought of
as a cube in d-dimensional space. Each row,
column, etc. of nodes corresponds to a bus. Each
node is on d buses, and aach bus has b nodes.
The graph has a total of b nodes.

A structure proposed by Wittie [9] is called
a dual bus hypercube. This is a hypercube with
many of the buses removed. Each node is connec
ted to two buses. One bus can be thought of as a
line in the same direction for all nodes. The
other bus is in the same direction for all nodes
in a single plane. A node corresponds to a
vector of the form (x1 , x2 , ... , ~· z) where the

x's aB$l z take values from 1 to b. Thus there
are b nodes. One bus that each node is on
connects all nodes with the samihz values and the
same x values except one--the z • The diameter
of the graph is 2b. Other proposed bus connection
networks include the "snowflake" and "star" graphs
introduced by Finkel and Solomon [10].

New Bus Connection Network Topologies

The first method we will consider is a
generalization of the hinging graphs of Friedman
[11]. In a standard hinging nodes are arranged
in a hierarchical fashion, then the nodes at the
bottom level of several hierarchies are connected.
These networks are bipartite so we can call one
class of the original nodes to be the new "nodes"
and the other class the "busses." The graphs can
be generalized so that the two classes have
different degrees. As an example, Figure l shows
a hinging for k = 3, d = 3, b = 4, and n = 40.
It can be proven that it is optimal (in the sense
of having more nodes) for the object (node or bus)
with .the higher degree to be on the hinge.
Formulas can be easily derived expressing n as a
function of d, b, and k, in which

159

n O([(d-l)(b-l)]k/ 2).

Figure 1
Example of a Bus Hinging Graph

When d = b, large networks can be found by
using chordal rings [l]. These are a general
ization of the chordal rings of Arden and Lee
[12]. A chordal ring is a graph which begins as
a ring on n nodes, then chords are added
connecting additional pairs of nodes. The
chordal lengths form a pattern, which repeats
around the ring. Again we need a bipartite
structure. With an even number of nodes, the
ring part is naturally bipartite. In order to
insure the graph remains bipartite, all chord
lengths must be odd. Table 1 lists the
characteristics of a few of the chordal rings
found by the author which can be used for bus
connection networks. In most cases these are
larger than the graphs which have been produced
by other methods. An example with 24 nodes and
buses, degree 3, and diameter 2 is shown in
Figure 2. The pattern length for this graph is 8.

Degree Diameter Number of Nodes Moore Bound

3 2 24 31
3 3 75 127
3 4 180 511
3 5 455 2047
4 2 72 121
5 2 128 341
6 2 242 781
7 1 35 43

Table 1
Chordal Rings for Bus Connection Networks

A Generalization of de Bruijn Networks

In this section we introduce a new contruc
tion which generalizes the de Bruijn networks [2].
In a de Bruijn network, each node is associated
with a vector of k components, each being one of
the integers between 1 and d/2 (k is the graph
diameter and d is the degree, which is assumed
to be even). The node (v1 , v2 , .•• , vk) is

connected to all nodes of the form (x, v1 , v2 ,
.•• , vk-l) and all nodes of the form (v2 , v 3 ,

••• , vk, x), where xis an integer between 1 and

Figure 2
Example of a Chordal Ring Bus Network

d/2. k The graph has (d/2) nodes.
In order to generalize this to bus connec

tion networks, let us examine the node connection
rule more carefully. All nodes of the form
(v1 , v2 , ••• , vd-l' x) are connect:d to all.nodes
of the form (y, v1 , .•. , vd_1). With the bipar
tite representation of grapfis, the interface
between two of these sets of nodes with d = 6,
k = 3 looks like Figure 3. When higher degree
buses are allowed, the appearance of the inter
face will change. The goal will be to choose
the interface so that the number of nodes per
set (the number of values per digit), which will
be denoted h, is as large as possible. This is
beca~se the total number of nodes in the graph
is h . In the standard case, h = d/2. An
example of a more complex interface is shown
in Figure 4 for d = 4, b = 6, k = 3.

Figure 3
Example Interface--Standard de Bruijn Graph

Figure 4
Example Interface--Generalized de Bruijn Graph

160

The same form of construction as in Figure
4 works whenever d and b ar~ bo~h even. We
will have h = (d/2)(b/2), and (d/2) buses for
each interface. The first b/2 nodes on the
"bottom" level of an interface (the ones whose
vectors will be shifted forward) whould be connec
ted to the first d/2 buses, the second b/2 nodes
to the second d/2 buses, etc. The first b/2
nodes on the "top" should be connected to those
buses which, if numbered left to right, are
congruent to 1 (mod d/2). The second should be
connected to those congruent to 2 (mod d/2), etc.
This makes every bottom node connected to every
top node via a bus. A similar construction is
used if either d or b is odd. Notice that the k
generalized de Bruijn graphs are of/2ize (db/4).
This is larger than O([(d-1) (b-1)]) when
db > 16. The generalized de Bruijn graphs also
inherit all of the advantageous properties of the
standard de Bruijn graphs. For example, a
simple algorithm allows one to pypass a faulty
node by taking only four additional steps.

References

[l) K. Doty, "Large Regular Interconnection Net
works," Proc. 3rd Int. Conf. Dist. Comp. Sys.
Miami, 1982, pp. 312-317.

[2] W. Leland et al, "High Density Graphs for
Processor Interconnection," Inf. Proc. Let.,
v. 12 (1981) pp. 117-120.

[3) J.-C. Bermond et al, "Tables of Large Graphs
with Given Degree and Diameter," Inf. Proc.
Let., v. 15 (1982) pp. 10-13.

[4] M. Mickunas, "Using Projective Geometry to
Design Bus Connection Networks," Proc. Wkshp.
Int. Net., 1980, West Lafayette, IN, pp.47-55.

[SJ O. Veblen and W. Bussey, "Finite Projective
Geometries," Trans. Amer. Math. Soc., v. 7
(1906), pp. 241-259.

[6] R. Fisher and F. Yates, Statistical Tables
for Biological, Agricultural and Medical
Research, Hafner Publ. Co., New York, 1963.

[7] R. Bose and T. Dowling, "A Generalization of
Moore Graphs of Diameter Two," J. Comb. Thry.
v. 11 (1971) pp. 213-226.

[8]

[9]

[10)

F. Fuglister, "On Finite Moore Geometries,"
J. Comb. Thry (A) v. 23 (1977) pp.187-197.

L. Wittie, "Communication Structures for
Large Networks of Microcomputers," IEEE
Trans. Comput. v. C-30 (1981) pp. 264-272

R. Finkel and .M. Solomon, "Processor Inter
connection Strategies," IEEE Trans. Comput.
v. C-29 (1980) pp. 360-371.

[11] H. Friedman, "A Design for (d,k) Graphs,"
IEEE Trans. El. Comp. v. 15 (1966) pp.253-254.

[12] B. Arden and H. Lee, "Analysis of Chordal
Ring Network," IEEE Trans. Comput., v. C-30,
(1981) pp. 291-295.

A SIMULATION STUDY OF MULTIMICROCOMPUTER NETWORKS

Daniel A. Reedt

Department of Computer Sciences
Purdue University

West Lafayette, Indiana 47907

Abstract: Recent developments in VLSI have made it
feasible to interconnect large numbers of single chip
computers to form a multimicrocomputer network.
Using task precedence graphs to represent the time
varying behavior of parallel computations, we investi
gate the performance of interconnection topologies for
multimicrocomputer networks.

Introduction
Current evolutionary trends in integrated circuit

fabrication suggest that it will soon be cost effective to
consider a new parallel processing paradigm based on
large networks of interconnected single chip comput
ers. The single VLSI chip comprising each network
node would contain a processor with a modicum of
locally addressable memory, a communication con
troller capable of routing internode messages without
delaying the processor, and a small number of connec
tions to other nodes.

Among the suggested application areas for these
multimicrocomputer networks are partial differential
equations solvers and divide and conquer algorithms.
The cooperating tasks of a parallel algorithm for solving
one of these problems would execute asynchronously
on different nodes and communicate via internode mes
sage passing. The limited node fanout implied by the
VLSI implementation, as well as the absence of shared
memory, make it crucial to select an interconnection
network capable of efficiently supporting message pass
ing .. Jn this paper we discuss computation paradigms
for multimicrocomputer networks and techniques for
assessing the performance of network interconnec
tions.

Models of Computation
In one view of parallel computation, all parallel

tasks are known a priori and are statically mapped
onto the network nodes before the computation begins.
In this case, queueing theoretic models can be used to
estimate the performance of a given multimicrocom
puter network executing a particular fllgorithm [4].

In the alternate view, a parallel computation is
defined by a dynamically created task precedence
graph. Tasks are created and destroyed as the compu
tation proceeds, and the mapping of tasks onto network
nodes is done dynamically.

Because most queueing theoretic models assume
steady state behavior, they are not generally applicable
to study of time dependent parallel computations. In
particular, models of time dependent computation
must account for time varying workloads, distribution
of data to multiple tasks, and dynamic mapping of
tasks onto network nodes using only partial knowledge
of the global network state. Because we know of no
analytic technique capable of accurately representing
this behavior, we have adopted simulation as a means
of study.

tPresent address: Department of Computer Science, University of
North Carolina, Chapel Hill, North Carolina 27014

0190-3918/83/0000/0161$01.00 © 1983 IEEE 161

Subsequent sections of this paper present five mul
timicrocomputer interconnection networks, outline a
task precedence model of time dependent computa
tion, and discuss the results of a parametric simulation
study of these interconnection networks when support
ing time dependent computations.

Interconnection Networks
Because of the computational expense of simula

tion, we limited our study to five interconnection net
works that earlier analysis suggested were worthy of
further investigation: the 2-D spanning bus hypercube
[6], 2-D toroid [4]. cube-connected cycles [3], 2-ary N
cube [l], and the complete connection. We have
included the complete connection to determine the
performance degradation attributable to incompletely
connected networks.

Task Precedence Graphs
As stated earlier, our model of time varying com

putation is the task precedence graph. A precedence
graph represents a computation as a series of depen
dencies. The results of all computations providing
input to a task, its antecedents, must become available
before the task is eligible for execution.

In each precedence graph, three types of tasks
can be distinguished: fork tasks, join tasks, and regu
lar tasks. A fork task has a single antecedent task and
one or more consequent tasks; it represents the com
putation prior t:o initiation of parallel subtasks to solve
a problem. A join task has one or more antecedent
tasks and a single consequent task; it represents the
combination of subproblem solutions to yield a solution
to an entire problem. Finally, a regular task is any
task that is not a fork or join task; it represents a sim
ple computation. If we interpret the juxtaposition AB
of tasks to mean "A is an antecedent of B", a task pre
cedence graph can be formally defined by the following
grammar.

<precedence graph> ::= <regulw task> I
<fork task> <precedence graph>+ <join task>

As summarized in Table I, the characteristics of a
precedence graph are determined by several parame
ters. Because the number of possible graph parame
terizations is so large, we have somew.hat arbitrarily
selected a set of values, also given in Table I. to be used
as a reference point in our study. By systematically
varying subsets of these parameters, we obtain
different performance results. By comparing these
results to those obtained using the reference parame
ters, we can estimate the effect of the variations.

Simulation :Methodology
For comparative purposes, we generated twenty

five task precedence graphs using the reference
parameters shown in Table I. All service times were
drawn from negative exponential distributions, the
number of consequents of each fork task was uniformly
distributed between B min and B m""'' and all graphs were

constrained to have between Maxtasks / 2 and M=tasks
tasks. Each node was assumed to possess complete
knowledge of the network state, and each task eligible
for execution was scheduled on the idle node nearest
its location. We will return to this assumption when dis
cussing distributed scheduling algorithms. Finally, to
model the fact that each network node is a single chip
with fixed bandwidth, we scaled the mean data com
munication times by the number of link connections to
each node.

The average parallelism P attained when evaluat
ing a precedence graph on a network has been taken as
the measure of performance. This is

Numta.sks
I; S;

p = i=l
parallel execution time

Simulation Experiments
Using the assumptions discussed above, we

explored five different variations of precedence graph
parameters and network characteristics and their
effect on network performance: precedence graph
structure, the event horizon of a distributed task
scheduler, the maximum task branching factor, the
mean computation time /communication time ratio,
and the number of network nodes. The first two of
these are discussed below; an analysis of the other vari
ations can be found in [5].

Precedence Graph Structure
Figure I shows the graph parallelism when each of

the twenty five graphs derived from the reference
graph parameters was simulated on the five networks
with 64 nodes. The precedence graphs were sorted in
increasing order of parallelism on the complete con
nection. Table II shows the average parallelism over
the set of graphs using each network.

Two features of Figure I are of particular interest.
The first is the way networks other than the complete
connection exhibit the same performance trends from
precedence graph to graph. This suggests that some
thing inherent to the graphs is affecting the time
required for their evaluation. To determine what this
might be, we examined two precedence graphs,
numbers nine and eleven in the figure, that
represented two extremes of behavior. Figure II shows
the time varying parallelism when the two graphs were
evaluated on a 2-D toroid with 64 nodes. The simula
tion of precedence graph nine exhibits a striking
decrease in the number of parallel tasks near time 90.
Because a similar simulation on the complete connec
tion exhibits no such decrease, we can only conclude
that this variation is caused by the collapse of a paral
lel subgraph requiring the transmission of results
across several communication links. During the delay
caused by this transmission, tasks otherwise eligible for
execution were forced to wait for these results.

Figure I also points out the performance
differential between the spanning bus hypercube and
the networks using dedicated links. Although, this
behavior may appear somewhat anomalous in light of
the apparently greater communication bearing capa
city of the dedicated link networks, this is not the case.
A detailed examination of the simulation results shows
that tasks generally execute on nodes near their point
of origin. In other words, the precedence graph evalua
tion exhibits considerable communication locality. For

162

this communication pattern and the 1:;1ven ratio of com
putation time to communication time for tasks, the
utilization of the communication links is low. Because
of this, the buses of the spanning bus hypercube permit
more rapid distribution of tasks to other nodes than
the dedicated links of the other networks. For the
same reason, distinct differences among the dedicated
link networks are also not apparent.

.Event Horizon of a Distributed Scheduler
Heretofore we have assumed that the task

scheduler at each node always possesses complete
knowledge of the global network state. In practice,
only limited information is available, and it is often no
longer completely accurate when it is received.

To determine a scheduler's operation in the face of
partial knowledge, we postulated the existence of an
event horizon for each network node. We assume the
scheduler at each node has no knowledge of network
activity at any nodes beyond its event horizon and that
it must schedule all eligible tasks on nodes within its
event horizon. Using the reference precedence graph
parameters, Figure III shows the average graph paral
lelism as a function of the distance to the event horizon
from a node. Similar results are obtained when the
ratio of computation times to communication times
varies from 1:1 to 100:1. Based on this limited evi
dence, it appears that state knowledge of nodes within
a small distance from each source node is sufficient to
achieve reasonable results. This is encouraging
because it suggests that efficient distributed
schedulers can be constructed for multimicrocomputer
networks.

Two final observations about distributed
schedulers should be made. First, this dynamic
scheduling strategy does not use the precedence graph
structure to aid its decisions. It should be possible to
design heuristics that take advantage of some graph
specific informaUon.

Second, the acquisition of state information from
nodes within an event horizon is decidedly more
difficult for networks connected by buses than for
those using dedicated communication links. This is pri
marily because so many more nodes are within a small
number of bus crossings from a source node. Commun
icating state information to other nodes on the same
bus could conceivably consume a significant portion of
the available communication bandwidth. Additional
work is needed to determine the cost of acquiring state
information.

Summary
We have presented a model of time dependent

parallel computation and studied the behavior of five
multimicrocomputer interconnection networks sup
porting computations similar to those of the model.
Among the issues considered were the relative perfor
mance of interconnection networks and the efficacy of
distributed scheduling using incomplete information.

For small, dynamically created tasks, the spanning
bus hypercube appears to have better performance
than the dedicated link networks because it can diffuse
work more rapidly. This is not always true; if message
routing does not exhibit enough locality (i.e., messages
must cross many links to reach their destination), the
smaller communication bearing capacity of the span
ning bus hypercube will be saturated, and the dedi
cated link networks will be preferred. Clearly, the

selection of a network must be made with knowledge of
communication patterns and task sizes required by an
algorithm.

Finally, dynamic task scheduling using only local
information seems successful for the class of algo
rithms represented by precedence graphs, suggesting
that efficient distributed schedulers can be designed.

References
[lJ F. W. Burton and M. R. Sleep, "Executing Functional

Programs on a Virtual Tree of Processors," Proc of
the 1981 Conf on Functional Prag Lang and Com
puter Arch, Oct. 1981, pp. lB?-194.

[2] M. C. Pease, "The Indirect Binary n-cube Micropro
cessor Array," IE'EE Trans on Comput, Vol. C-26,
No. 5, May 197"1, pp. 458-473.

[3] F. P. Preparata and J. Vuillemin, "The Cube
Conncctcd Cycles: A Versatile Network for Parallel
Computation," Comm of the ACM, Vol. 24, No. 5,
May 19131. pp. 300-309.

[4] D. A. Reed and H. D. Schwelman, "Cost
Performance Bounds for Multimicrocomputer Net
works," IEEE Trans on Comput, Vol. C-32, No. 1,
Jan. 1983, pp. 83-95.

[5] D. A. Recd, "A Simulation Study of Multimicrocom
puter Networks," Tech Rep CSD-TR-435, Depart
ment of Computer Sciences, Purdue University.

[6] L. D. Wittie, "Communication Structures for Large
Multimicrocomputer Systems," IEEE Trans 011

Comput, Vol. C-30, No. 4, Apr. 1981, pp. 264-273.

Table I Precedence graph parameters

Roference
Quantity Definition Value

Bmin minimum number
quents of a fork task

of conse- 1

Bma.z maximum number of conse- 4
quents of a fork task

CF mean data communication
time to initiate a fork or regu-

1

Jar task

CJ mean data communication
time to initiate a join task

1

Maxpath maximum length path through
the graph

60

Numtasks number of tasks in the graph 1024

SF mean fork task service time 10

SR mean regular task service time 10

s, mean join task service time I 10 I

Table II
Average graph parallelism for 64 node networks

using the reference precedence graph parameters

Network Average Ji'raction of
parallelism complete connection

Complete Connection 22.17 1.00

Cube-eonnect.cd Cycles 15.33

I

0.69

2-<liy 4-cube 15.42 0.70

2-D Spunning Bu~ Hypercube 16.04 0.81

2-D Toroid 14.75 I 0.67 I

163

26

El 24

"'
: 22
v
::: 20
<tl

~ 18
ll.

,; 16
p,

~ 14

"
12

10

O Complete Connection
O Cube-connected Cycles
6. 2-ary 4-cube
+ 2-D Spanning
<> 2-D Toroid

9 17
5 13 21

Task Precedence Graph

Figure I

25

Graph parallelism for 64 node networks
using the reference precedence graph par~meters

50

a 40
"'
....
v
.... 30
<tl ..
ol
ll. 20
,;
ll.
ol

:;, 10

0
0

20

El
., 18

.-<
Ii) ...
~ 16

--- Precedence C-raph Nine
- - ·Precedence Craph Eleven

140
70 210

Time

Figure II

280
350

420

Time varying parallelism for two
precedence graphs on a 64 node toroid

' ' ' 'o
.G ~-:-..

/ ·~·.:..-··- .. ·-/ ..
<tl
p, 'o-- ---B -- -·El

QI 14
llll
Ill ..
~ 12
<

10

2

--- Cube-connected Cycles
- - · - - · · - - - 2-ary 4-cube
- - - - - 2-D Spanning Bus Hypercube

- - - · - · 2-D Toroid

7 3 5
8 4 6

Event Horizon

Figure III
Average parallelism for 64 node networks

with varying amounts of scheduler information

Evaluation of Multiprocessor Interconnect
Structures With the Cm* Testbed

Andrew Wilson, Dan Sicwion::k and /ary Segall

Department of Flcctri~al Engineering and Computer Science Department

Carncgie-Mclhm University, Pittsburgh, Pennsylvania 15213

Abstract

This paper presents a method for emulating multiprocessor
architectures on Cm*, a 50 processor multiprocessor at Carnegie
Mellon University. Combined with other instrumentation tools
already developed at CM U the result is a flexible testbed for
multiprocessor architecture evaluation. An experiment to
demonstrate the 11sefulness of this testbed is presented along with
results for three architectures: ring, nearest neighbor and fully
connected. These results arc used to show how the testbed could be
used w <1id in nrnltiprncessor design. lt is shown that for this
partirnL1!· real-time applicaton a three processor fully connected
stn:cture prov ides more usc1blc compute power than a six processor
ring.

Introduction

Large nln:putatio11al probk111s such as weather forcc;1sti11g, fusion
nw<kling, a11d aircraft 'imul:1tion demand computing power far in
exec''· n:· that supplied by uniprticcssors. Thus n:sc:trchcrs have been
scekin[' alternative architectures to solve these pressing problems.
f\'1:1111 uf <hcsc pr"posals involv·e the construction of 111ultiprocessors,
systcns in which a shared address space is provided for
inter;mxcssnr communication and synchronization. ;\ very popular
iiirrn of mu!tiprncessor ,is the Multiple Instruction stream, rvlultiple
Data stream (MIMD) computer [5].

.\II multiproce'.>'>\1rs require an inwrconnection mechanism which
pliysicll:y implements the shared address space. Numerous proposals
for such structures appear in the literature. c:11 cring a wide range of
performance. cnst, and reliability [2, 4, 6, 15). Unfortunately few
working multiprncessors have xtually bcc·n buih so the principle
suurces nf comparative infor111ation come from modeling,
simulations, and educated guesses. Due to the complexity of parallel
program interaction, the complexity of modeling the hardware
systems and the iarge size of the design space, much of the results to
date :.rt' in;1dequate.

To help alleviate this situation, the construct.ion of a
rnultiprncessor test bed which could doscly emulate a number of
architectu;·es would b~ desirable. ScverJl testbeds arc currently
under de\·elopmcnt by other researchers, such as the network testbed

'l11c research dc;;.cribcd in this dorur.1CHI is funded in pnn by RCA, by the Balistic
Missiic Defense 1\gcncy under contract IJ,\SG!i0-80-C-0057. by the National Science
Fouud~tt!on under co:itract number 1'.CS-81~0270. and also by the Defense Advanced
Research Agency <DOD). ARPA Or<lcr No. 3579. monitored b" the Air Force
Avio:iio, Labora1ory under contrac\ FB6i5-78·C· J 55 t. We w;u!d alc.o like to
acknowledge the Digital Equipment Corporation for Equipment grants related to
cm•.

The view& and conclusions contained in 1his document arc those of the authors and
shouhi not be interpreted as representing the official policies, either expressed or
implied. nf the Dcfon:.c J\d\anced Research Agency or the US Government, or the
Digital Fquipmcnt Corporation.

0190-3918/83/0000/0164$0LOO © 1983 IEEE 164

at Mitre [3) and the multiprocessor te~tbcd at TRW [8). With a
versatile emulator. accumtc ;ncasurcments of th~ performance of
these itrchitccturcs under both synthetic and actual wut·kln::ds could
be obtained. Fortunately, as will be shown. Cm* [13. 141 can function
as such a test bed and he used to answer some of the questions
pl:lguing multiprocessor research.

The message passing portion of the Mcuusa operating system [9) is
quite suitable fl'r emulation of alternate architectures through
software rnuting sch~rncs. The time cost Df the routing software is
gcncrnlly less th:m the time to send the message. as would be the case
in a real system. To see how useful such an emulation system might
be. an experiment to model the com mun icMtons demands of an
ac<.u:1i multiprcccssor was implemented. Four versions. one using full
intcrwnnccti.1n directly implemented witil Medusa communication
orimitivcs, one using emulated full interconnection, one using
emulated nearest neighbor communication. and one using an
emulated ring were built. The ability to remove unwanted Cm*
charactcnstics and quantify emulation overhead was demonstrated,
To distinguish the different experiments, the direct implementation
will be refcred to as the basic experiment, while the other three as
direct connect nearest neighbor and ring experiments.

Descriptio_n of the Cm* Testbed Environment

The testbed described in this paper is being developed on Cm*, a
SO processor multiprocessor operating at Carnegic-i\1cllon University
[13, 14]. The processors arc I)igital Fquipn1cnt Corporation I .SI- l l's
arranged in a two level hierarchy of Computer Modules and Clusters,
as shown in Figure I. The custom built communications mapping
processors (Kmaps) handle interprocessor memory references and
provide low level operating system support. For simple memory
references beiween Cms wit:1in the same cluster acLTSS times arc
ahout a factor of three longer than those of intra-<;;111 ~references,
while hrtwccn duster references take nine times, ;is long. For
messages the distinction between intercluster and intraclust<.!r transit
times disappears, as will be demtlnstratcd shortly,

All of the experiments were performed using the Medusa
operating system. In Medusa. an experiment consists of a group of
cooperating activities (processes) which arc termed a task force. Each
activity is assigned to a Computer Module (Cm), in which it alone
executes, and giYen its own copy of code. Communication between
activities can be by shared memory, with the shared memory resident
on any Cm in the system. or hy message passing, using a block
transfer mechanism implemented in Kmap microcode. Messages arc
passed through Pipes which queue up waiting messages in FIFO
order, up to the capacity of the Pipe, In this respect they arc much
like Unix Pipes, except that they maintain the identity of each
message and will only deliver them as separate units. Routines
running on the LSl-lls invoke Kmap operations to send and receive
messages, with the choice of suspending execution when an
operation cannot be completed or quiting with an error indication.
The experiments make use of these facilities to emulate a
multicomputer system.

Figure I: Cm* Multiprocessor Structure1

ln emulating different architectures it is desirahlc to eliminate any
biases caused hy the underlying system. Cm* has a hierarchical
communication structure which can c;,usc variations in system
perfonnance depending on the relative locations of the
communicating processes. It turns out though that the Medusa
message p;1ssing system exhibits approximately rnn~tant delays,
regardless of subtask location, provided the Pipes arc properly
located. as di-;rnssed below.

In the Medusa message system. greatest me~sage throughput is
obtained when the Pipe is on a different cluster than the Sender and
Receiver subtasks. This surprising result was discovered while
measuring message system throughput for the emulations. lt appears
to be an d"fect of Kmap contention caused by the heavy processing
load placed on the Kmaps by the communication mechanism.
Placing the Pipe on a differen! cluster distributes this load over
several Km<1ps resulting in the observed ~peedup. If several messages
arc being transmiited by the system simultaneously there may be less
impact from distrihuti:ig the workload. but the effect has been
observed even under those conditions.

Figure 2 shows the effect of placing the Pipe on the same cluster.
For all three curves in the figure the Pipe was on duster one. 'l11e
cluster one transfers were considerably slower than those on clusters
two and three. If the cluster one transfer measurements arc redone
with the pipe on another cluster the transfer rate is identical to those
of the other two cluswrs. There is a small decrease in transfer rates
when the Sending and Receiving processes arc both on the same
cluster, as shown in Figure 3. The decrease is not significant,
however. If Pipes arc properly placed. a nearly flat communication
structure results, providing a base fix accurate emulation.

Multiprocessor Emulatio_J.1.§ Possible on~

The space of possible multiprocessor designs is large. Dimensions
on which multiprocessors may vary include the number of
independent instruction streams, speed of processors. bandwidth of
interconnection links, and degree of connectivity. The specific
attributes of these dimensions as regards to Cm* determine the space
of multiprocessors which the Cm* testbed can emulate.

A major area of research in multiprocessor architectures involves
the design and evaluation of the interconnection mechanisms used in
them. A few of the possibilities include multistage networks such as

1Figure courtesy of Pradccp Sindhu

165

the Augmented D:ita Manipulator [I] and Omeg;i [7]. point-to-point
networks such as Cube Connected Cycles [10] and nearest neighbor
meshes, and shared bus networks. such as the n. · ;h scheme originally
proposed for Cm* [12). _Interprocessor communb1tion may be
throagh direct memory rcfcrc•1ccs or through explicit messages. The
multistage networks tend to f.ivor direct memory refcrcnct-s or short
messascs while rhe more sparsely connected point-to-point networks
favor long mcs:;agcs with store and forw;~rd operation at the nodes.
Since ihr testbed dc8cribed in this paper uses software wuting and
explicit message p;;ssing, it is better suited tn emulating the point-to
point nnworks and ccrt~in types nf shared hus netwnrks. However,
special cases of multistage networks may also be feasible to emulate.
Some cyampk' of the nrnl!iprocc5sor interccrnncction networks
suiwblc for emulation on Cm* arc shown in Figure 4. Research is
cnntinuing on developing a testbed which can accurately emulate the
multistngc networks as well.

Since Cm* is a MIMD machine with asynchronously operating
computer modules. it would be inappropriate to attempt to emulate
multiprocessor~ without those features. In normal operation code
and local d.ita arc kept in the memory of the computN module using
them and arc accessed directly rather than through the
interconnection network. Whik it is possible to force all accesses
through the network, it is prnhably preferable to concentrate
experimentation on architectures which feature the same wmputcr
module structure. The rcsuits reported in this paper all assume local
access to code and non-shared data.

.+
+·

.+·
.+·

.+-·
.+·

.+···+· -+- i-"' +
.+· +- -+

.+···+· .--1--+-
_+·. +- -~

__.+--+- +· - . -+ Cluster 1 .-+·
+·

t' ~ ... - .y-
+ - + Cluster 2; cluster 3

0 20 40 60 BO 100 120 140 160
Message Length, words

Figure 2: Effect of poorly placed Pipes on throughput

(Pipe on Cluster 1)

(,) 3.500
GI e 3.ooo

.§· 2.500

~ 2.000
::i

~ 1.500
O> ::i 1.000

~ .500

0

t· - - -+ Cluster 1 ->Cluster 1
+ - + Cluster 1 -> CILster 2

20 40 60 80 100 120 140 160
Message Length, words

Figure 3: Mes~agc transfer, Intcrclustc:r vs lntraclustcr

0
Ring

Tree

Near-Neighbor Mesh Hypercube

Figurr 4: Typical Interconnection Networks suitahk for

Cm* Testbed Emulation

.Methods useli to Ernul(;lte
MyJliruocessor A 1~<;;.b.itectu res

The emulation package was implemented hy adding a subroutine
package to each of the subtasks to pcrfonn message routing and
delivery. In this scheme each subtask is only allowed to communicate
with logically adjacent subtasks as dctcnnincd by routing tables.
Messages for nonadjacent subtasks have to be forwarded by
intermediate subtasks.

Subtasks communicate through a set of virtual buffers
corresponding to the physical buffers used in the basic experiment.
Messages sent over the~c buffers arc rcutcd hy information
cnlliained in the first word of the message. This he<:dcr word contains
soun:<\ dc-.tination and logical buffer indices. Routing tables
computed partly at compile tiin,· and partly during initiafo.ation
dciennine the- exact path taken hy each message.

The- actual operation of the message system starts when a subtask
calls the SNDMESS subroutine in the routing package to send a
simulated message. This routine computes the routing word for the
messag<' and calls FR WRDMSS to i111tiate its transport through the·
network. 1:RWRDMSS determines the appropriate physical output
buffer and invokes the Kmap to send the message through it. Each
subta'ik repeatedly calls the Cl IKBUFS routine to determine if any
messages have .irrivcd Jnd to deliver or forward them as appropriate.
If the message is for the local suhtask INCRMESS is called to
increment a received message counter and check for overflow. A flow
control system is prov idcd to prevent deadlock which limits the
number of meso;:igcs in transit through the emulated interconnection
network<; to a sate number. Buffer overflow is determined by
examining the message mums for each virtual buffer maintained by
INCt(Ml'SS. Buffer ovcrl1ow in this scheme is analogous to buffer
overtlow in the basic experiment.

Using the emulation pack;:ge described above. a large variety of
interconnection structures can be modeled by simply changing
parameters in the routing tables. Since real messages arc passed
brtw een processors. actual working programs can be used to test the
srructurcs. This allows the data dependencies often associated with
real multiprocessor algorithm~ to be fully reflected in the observed
interconnection structure behavior.

166

_Q_esc ri.Qtion of Modeled System

The experiments consist of simulating the high le\ cl behavior of a
real-time 111ultiplc computer ,,y,,tcm on tiiiTerem emulated
interconnection structures. The actual sy,tcm consist<;_ of three
clusters (lf minicomputers. with four procc:;sors in cad1 cluster.
Within each cluster communication is through shared memory,
making c:ich cluster a small rnultipnKe~sor. Between dusters point
to-point communication paths arc used, resulting in a multicomputer
structure.

The multicomputer system is driven by inputs from external
sensors. 1 L~ outputs consist of status displays and actuators, The three
computer clusters perfonn distinct functions in the over.ill system
from which their mnemonics arc derived. The Actuator Control
Systrm (/\CS) has primary control over the mechanical devices used
in this syo:tem. A second computer cluster. termed lhe SPU, controls
a signal processing unit. The final cluster handles overall control and
mfonnation display, earning it the title of Control and Display
(C&D).

This is a real-time ·;ysr_cm which must rc-spond immctJiatcly to any
significant C\'<~Pt. Thus there arc minin1um thn•ughput reqiiircmcnts
as well a' umstraints on the maximum l,ncncy of r:crtai-1i (lperations.
The t>b.kct of th-.! experiment 1s hl emulate the• system behavior, with
Cm* l1'Cd a' ,1 test bed comparing the performance of different
<•rLhit~cturcs. The performance is measured by varying the synthetic
worklo.1d (which sinrnlates the high 1c1cl system behavior) and
mcss:1gc length while determining the maximum sustainable
crnrnnunications rate.

'!'hes;;: experiments were based on a high kvcl description of the
system. The com111unication5 requirement-; at the multicomputer
level. <m~ shown in Figure S. the requirements included information
on the average message rate between clusters and external devices,
bctw·~en different clusters. and the allowed minimum response time
for certain high lc\'d activities. The response t.imc limits proved to be
difficult to measure with the present level of Cm* instrumentation.
How('\'er the Message Event generator provided on 'cm* docs
facilitme the generation of messages at fixed time intervals which can
be used to stress the communications system. This generator is used
to simulate external inputs to the control system which would

DATA BITS WORDS MESSAGES DATA BITS

FLOW IN A IN A PER TRANSFERRED

DIRECTION WORD MESSAGE SECOND PER SECOND

C&O -- SPU
C&O out 32 256

C&O in 32 256 14
131K

ACS -- SPU
ACS out 32 138 49

ACS in 32 132 49
424K

C&O -- ACS
ACS out 32 256 16

ACS in 32 256 16
·262K

liigure 5: Communication Rates in Multicomputer System

nor111a!\\ detcrn1ine tot1l systc111 wo1-kload. Failure to meet real-lime
rcquirc1~cnh v.as in<licalt'd by mess .. gc buffer ovcrllows somewhere
in thc system.

The actual cxpcri111ent cPnsi>h or a L:1sk f(1:l·c rnn1poscd of one or
more Jll'cJCc;sors rq1resenting c;1ch m1iltiproccssor cluster. plus
-;c1 era I suppllrt ,1cti1 iLics. The expcri111cn1 utililcs resources fro111 the
Synthctic \V(lrkload Gcneratnr S)'Stc111 [l I] ;111d 11as intended to be
implcmcnLed with its "ll" language. In 1his rn1irnn111cnt, l'ipcs arc
tcnncd bum:rs and ;1cti1 itics 1cn11ed sublasb. Till' suppnrt subtasks
wnsist ofthc l'cg;1sus user intcrli1ce. th0 rncss:1gc c1ent generator and
;1 monitoring rouiinc. The w.cr intcrl~1cc prmides co111mu11ic;1tion
with the user's ten11in<11. umtrols operation of 1he 111css<1ge event
generator. and allt'"S c1111t1ol of user spccitkd 1ariablcs in the user's
subtasks. The message c1rnt gener<1tur lllllnitu1 s a rc<1l-timc clock
and scnds short (one word) mess<1ges to spe;jf.1c subtasks at specified
intervals. The 111onitor subt<1sk has "n a1-ray of integers when: other
subtasks may record the occurrence of errors. It repeatedly scans
these integers for evidence of c11anges and reports them t<J the user.
In the present experiment these integers record the occurrence of
message buffer ovcrllows, ;1s detected during attempted mes~age
send'>. Using shared me111ory instead of short error messages is a
much Jess expensive way ofco111111unicating this error information.

The modeled version of the RcaHi111e system is shown in Figure 6.
The si111ulatcd workload is driven by the mcs:;agc event generator,
which periodically sends event tokens to the SPL: 10 initiate a unit of
systc111 activity by triggering an SPU to C&D 111cssagc. This message
in turn generates other messages in such a manner that the average
communicmion rate on the data paths in the system is si111ilar to that
experic:nced by the real sysre111. This is done by gcnernting new
mc'isagcs to send to other nodes under the control of a random
number gcneratnr. The C&I) subwsk w·ill gener:ite two new messages
for each message received from SPU with 7% going back to SPU.
57% to ACS and 36% going nov,hcre. C&D messages which arrive at
the ACS subtask spawn f(Jur more messages, 25% of' which return to
C&D and 75% of which contim1c 011 to SPU. The Sl'U mc-;sages
r..enc1arr messages back w ACS. where they an: 1c-rmim1ted. The
resulting message rates .ire shown in parenthesis in tJ1c figure. and
correspond well to actual system rates.

In the real system the stated message traffic is only an average and
1·arics witl1 actual workload and computation paLterns. This effect is
simulated by using a uniform random number generator to
determine the routing of mess~1gcs whenever there is more than one
po:;sible des1ination. The generator provides a degree of random
clustering of messages such as a real system might sec, allowing the
effects of. buffer si7e Jnd message length to be observed.
Distributions other than uniform could be obtained if a particular
experiment required tJ1em.

When a message is received by a subtask it performs some
simulated work corresponding to that which the actual system would
have to do. This simply consists of executing a null loop a number of
times as requested by the experimenter through the Pegasus user
intcrface .. The number of loops per received message executed by
each subta~k 'is scaled by the average number of messages received
per second so that each subtask executes the same average· amount of
work. For cxarnpk. when actual system message rates arc used, the
SPL' subtask receives an average of 50 messages a second and
executes 256 loops for each message while the i\CS subtask receives
64 messages per second and executes 200 loops per message. Thus
both \Ubtasks execute 12800 loops per second. ·1 he random number
schemes C(iuld also be used here to prov iJe some variability if

167

(

I

Sf'!JCD

0
[-'
--~--J

I I>

= Subtask

= Message firing
probability

SPU

KEY

(>IA) - -

1) = Message Event
Generator

LD = Message Bullers

[~~~ = Number (n) of messages fired for messages received

Figure 6: Representation of Data Flow Used in the Experiment

desired. The experiments were conducted over a range of such
workloads, with all subtasks subject to approximately the same load.

The maximum sustainable message rate for each combination of
intrrconnection structure and synthetic work load was determined by
repeated runs at increasing intervals between message events until a
sustained period of operation in which nu buffer overflows occurred
was observed. Processing power was varied hy varying the number
of processors per subtask. Workload per message and message length
were also varied for e;1ch structure in order to aid in characterizing its
pe:·fonn,111cc. With each processor executing the same amount of
work. any overflows recorded were due tl' 111c,;s~1gc system saturation.
The comnrnnic;Hit>n abilities of the di1ect wnni.'ct, nearest neighbor
and ring network> were then compared.

The first experiment consisted of the basic point-to-point, fully
connected network similar to that u~ed in the actual system. One
subtask was used to represent each computer cluster of the system.
Three different message lengths were used, one-half. tine-fourth, and
one-eighth of those spedfied in the actual system. Unfortunately the
full message length proved to be too much for Cm* to handle, and so
was deleted from the experiments. The system was deemed to have
s<lturated when any message buffer overflowcd2 . Message system
saturation periods for six different symhetic work loads were found
for each rnes-;age length. The results, averaged over tJ1rce successive
run,;. arc shown in Figure 7. Ntitc tha~ the three curves are
essenti;,lly linear. However, small values of simulated work show a
di'iproportionatcly long<:r period between messages. due to the
increased significance 1Jf message activity. i\s message length

2usuatly the SPU to WCS buffer overflows first, probably because it is the busiest
buffer and the WCS subiask receives the most total mcs.-.ages.

u 100
Cb _.........+ .,

...........
E 80 _............

..+ "ti
...f-0 _....-i-·

;.·.:!·; ·;: 60 <:! a. __.i-·
;. . j:":.: t: 40 ___..--

;·.:!·:.: Cb--··· ::..
LU . ·j:·.:: +··-+ Scaie = 1/2 C> 20 + .. -+ Scale = 1/4

~ +- + Scale= 1/8
)(

~ 0 1 2 3 4 5
Synthetic Worlc Units (900 Lp/Mes)

Figure 7: Saturation Curves fo; the basic Experiment

decreases (decreasing scale factor) the plots become linear even at
low synthetic work load, again indicating the reduced effect of
messages. The non 1e.ro saturation message period observed at zero
synthetic work load is due to housekeeping tasks and message
send/receive invocations.

As messages get longer there is a disproportionate increase in the
small workload message event period. This is most likely due to the
operation of the message system. When a process sends or ~eceivcs a
message it is suspended for the entire duration of that event. Since in
Medusa messages take ahlhlt twenty microseconds per word to
transport, this value becomes significant at longer message lengths.
In these experiments the message rate tends to decrease as the
workload increases, since both workload and message passing
contribute to message system saturation. Thus tJ1e contribution from
the message system is large at low simulated workloads and small at
high simulated workloads. resulting in the non linear c•1rves evident
in the figures.

Before collecting data on the nearest neighbor emulation a
calibration experiment was attempted to check the accuracy of the
emulation scheme. /\ fully connected network was implemented with
lhe emulation package developed for the nearest neighbor
emulation. The logic<1l interconnection strncturc is shown in Figure
8. The circles lablcd SO to SS represent the message switching
subroutines used to route and forward messages. The other circles
represent the activities performing the actual processing. Each pair of
switching node and adjacent activity resides on a single Cm. The
experiments using one processor per subtask arc indicated by the
solid components. Additional experiments using two processors per
subtask include tl1~ dotted components as well.

The resulting message saturation data was compared with the
initial, noncmulated experiment. The curves exhibit a small offset
from tl1e basic experiment which is due tu the extra overhead of the
send and receive subroutines. and the periodic polling for incoming
messages. /\s .::an be seen from tl1c curves presented in Figure 9, this
overhead is a constant 4-6 milliseconds over a wide range of
workload and message length. Thus its effect can be easily factored
out. as will be demonstrated in the conclusions section.

'l11ese experiments were then. repeated for a Nearest Neighbor
emulation of the multicomputer system. Since there arc only three
subtasks used in tl1csc i'nitial trials, the intcm•nnection structure
actually consists of a line rather than a mesh. Figure 10 shows the
actual interconnection of tl1e subtasks, where the indicated
components correspond to those described above for the fully
connected emulation. The subtasks W('I\! arranged in the optimal
order as determined by their communication behavior. A comparison
was made with a less optimal order to sec how large the effect would

168

Figure 8: Fully Connected Emulation Experiment

_.........+
.-· _.........x ..,

...........
80 .·· -· .. +

: ._:_-~.-~:: __ · __ ·.~·~··~·~·~,2·~~.:.:·j
r:: 2 _.. +· · · · + Emulation, S = i /4 ,£! · x- .•• x Basic, S = 1/4

~ ! = ! ~~~~~!;~·~I~ 1 /8
::i

~ 0 2 3 4 5
Syntlretic Work Units (900 Lp/Mes)

Figure 9: Saturation Curves for the

Fully Connected Network Emulation

be. As seen in Figure 11 the message saturation period increased
dramatically. In future studies with more subtasks, different
arrangements will have to be tried to ensure optimality.

The measured workload curves for the nearest neighbor network,
as shown in Figure 12, again show a decrease in linearity with
increasing message length. The anomalous behavior of tl1e long
message length curve at low workloads (i.e. the shorter than expected
message period) is currently under investigation and appears to be an
isolated. th0t:gh repeatable ca~-e. Even with optimal configurations,
the saturation points occur at a significantly lower message rate (i.e.
Larger message period} than with the basic experiment. Some of this
is due to tl1e increased overhead of the message routing subroutines,
as cvicknced in the fully connected emulation results, and some to
the additional burdens of message forwarding, as would be expected
with tJ1c poorer connectivity.

After obtaining results for the three processor systems, a similar set
of cxperimems was tried with six processors. In addition a ring
1wtwork was added. Since the three processor ring configuration is
identical to the fully connected network, there was no need to collect
separate three processor data. A fully connected network of six
processors was included tD provide a baseline for the other
architectures and to determine the amount of overhead to subtract
from the six processor configurations.

0
Q)

"' ,§
"tJ
0 ·;;:
Q)

a.
c
~
c:
~
~
::i

~

I

I (More\
j_ I'-/

(S3 \~_

'1/

I

I (Sub \

j_ I'-/
_(S4 \~-

'1/

I

I (Tasks\

l./'- /
_(S5 \

'1/

Fit:nrc IO: Nearest Neighbor connection scheme

175 +

150 .+·

125
100

.+· -+
- +- --......... -+-·

- +- -75 _+ -
-+ -

50
+-- --+ CD-SPY-WCS

25 +- + CD-WCS-SPY

--'-
0 1 2 3 4 5

Synthetic Worlc Units (900 Lp/Mes)

Figure 11: Comparison nf different Subta>k placcme11t

With the six processor architectures each multiple processor
subrask is implemented with two processors. The assumption here is
that processors make intersubta~k references directly to the intended
proecssor. rather than through an arbitrary link processor in its
subtask group. It is also assumed that intrasubtask references go
through the shared memory of its computer group and do not enter
into these experiments. With increasing numbers of processors, the
relmivc merits of the proposed il'lcrconncct structures become
apparent.

0 120
Q)

"' ,§
"tJ
.Q ..
tt
c
~

100

80

60

40 -
__..+·--

.+--· -
- +

__..+-·-

+- · --1- Scale = 112
+- · - -+ Scale = 1/4
+ - + Scale ~ 1 /8

-- -+ _+

2 3 4 5
Synthetic Work l/nits (900 Lp/Mes)

Figure 12: Saturation Curves for lhe Nearest Neighbor Network

rigure 13 presents both the three and six processor fully
connected c11rves. Note that at large workloads the throu~hput of the
six processor cases ;ire approximately double tho~c of the three
processor cases, as would be expcCLcd f!',m chc dominance of

169

processing over message p.1s:;ing at large workloads. If the overhead
correction facmrs obtained carlkr from comrarisons of the basic and
fully connected three processor architectures arc applied, it is found
that a correction factor of 0:1c-half the Uirce pTOCl'Ssor correction
factor yields almost exactly a factor of two difference for large
worklt1ad~. ·:·hi> halving of the correction foctor i~ consi;;tent with the
notion that the o\·crhcad observed is due to the extra wmputation
reyuircd by U1c emulation ro•.1tinc5. 'vVith six processors instead of
three. the cmubtion O\'crhcad pc:r processor is halvi:d for any given
message rate. The correction foctors derived for three and six
processor ca:;c:s will bt' applied ro the raw data when 111;1king detailed
comparisons pf the interconnection structures later in the paper.

The raw data for the six processor nearest ncigllb,1r and ring
nct\1·orks arc 1Jrc~c1Hcd in Figure 14. The reduccd connccti' ity of the
ring 1wtwork is reflected in its poorer pcrfornwncc as compared to
the nearest neighbor at long message lengths. though they exhibit
similar bc·havior at shorter message lengths.

This paper has demonstrated a pos~,ible method for using Cm* as a
multiprocessor testbed. Of particular interest to designers of
multiprocessors is I.hr amount of uscfi.11 work they can obtain for a
given application on various architectures. To indicate how this
migilt be done an attempt was m:idc w compare the work available
for applications tasks on the various architectures. The emulation
overhead was first subtracted out as described in the res!1lts section,
then U1c percentage of time the processors were used for actual
computation was computed. The computation times were calculated
from the number of synthetic work loops executed per external
message and the measured external message rates. Finally
representative samples were plotted.

+· ·--+ 3 Prccessors, S = 1/2
+· - · · + 3 Processors, S = 1 ra

80 + - + 3 Processors, S = 1/8
+'.--)(- · --1< 6 P1ocessors. S = 1/2 _,,.,..,....

x· · • · K 6Proc.cssors, S = 1/4 --+·
J< 6pror::e'isors,S = 1/8 ----· . .+"

__.+•" .. +· ... ;.:.: ..+ -60

--+·. -- ~..:: -~- - ... -*-" ... -- ... 4(

40 ~-.o::.-::;f·_;-:;.-.;~:::-.:=.:: .. _,.. -;_:~:_.: ·:..: ·:..: ·:..:~
2a"-"'-:. - :..:·~-:..:-- ---- :_: . .:...: ·.:: . .:...:

0 1 2 3 4 5
Synthetic Work Units (900 Lp/Mes)

Figure 13: Saturation Curves for Both Fully Connected Networks

After calculating the usable processing time as described above,
the various network configurations can be compared. Figure
15 compares the long message length (scale of one-halt) results for all
network configurations after adjusonent for overhead. At first glance
it appears that the usable processing power of each processor when
two processors per subtask arc employed is substantially higher than
with only one processor. This is due to the fact tl1at each processor is
only involved with half of the mcssag<'s sent or received by the
subtask. Thus if the amow}t of processing done by each subtask is
directly detcm1incd by the incoming message rate, as it is in the
system modeled in U1csc experiments, the message rate per processor
needs to be considered. Figure 16 compares the tl1rcc processor
configuration of the fully connected network with tl1c six processor

-- 80 0
Q)
(/)

,§_ 60
i:i
0 ·.::
Q)

ct. 40
~+-

.. +
-+·... --r

_.,i--

----·~-·· -·· --·-·" --~--:"'"" -----·-·· -~
t:: 2 g

.:.j: • ;..s . - • _.. • =-= ·-:-:. ~ . .,..-:-;_ · · -+ Ring, S = 1 /2

• .:....:: • ::_:_ • :...:. : ~ • :-: • :---= • ~ • ~ • -:--: + - + Neighbor, S = 112

-.. · · · .;.;: *" · · · * Ring, S = 114

~
~

* - * Neighbor, S = 1/4
· · x Ring, S = 1 /8

~ Neighbor, S = 1 /8

U15 0 2 3 4 5
Synthetic Work Units (900 Lp/Mes)

--0-~
'-..
0
(/)
(/)
Q)
0
0 ..
0..
'-.)< ...
~
Q)

:Q
~
-~
:..
<t

Figure 14: Six Processor Nearest Neighbor and Ring Results

100

80

60

40

20

0

+- --+ 3 Processor Ne:i.rest Neighbor
+· - - -+ 3 P~oct:ssor Fully Connected

O Processor R11,g

x · · - - x 6 Proc:es:;;or Nco.rcst Neighbor
x - K 6 P;ocessor fully connected

~ 40 w
External Message Rate (Mes/sec)

Figure 15: Comparison of Adjusted Results for Scale= 1/2

con figuration, after accounting for the lessened message rate per
processor. Note thal the six processor architecture is actually using its
processors less efficiently than the three processor case.

Even though the experiments involved only a small number of
processors, some interesting results cati be seen. /\gain examining
Figure 15 it is seen that for this application a six processor ring
utili1es its processors no more effectively than a three processor
nearest neighbor. Of course more processing power is available since
two processors arc assigned to each subtask. Notice though that
above 20 messages per second a three processor fully connect system
has more than twice as much [,vailablc power per processor than the
six prucessor ring. Thus it would definitely be the prefercd system at
the high message rates. Below 20 messages a second the six processor
ring has more total processing power available and might be prcfcrcd
if large amounts pf processing were required. It would be cheaper
tiian either the six processor nearest neighbc'r or fully connected
systems. provided it supplied sufficient processing power.

Of particular interest is the relative performance of the three
multiprocessor architectures when six processors arc employed, since
ti1e relative connectivity of the interconnection structures will have a
more significant effect on the results. Figure 17 compares the curves
produced by all three structures when one-half and one-fourth length
messages arc used. The effects of emulation, overhead have been
factored out in ti1csc graphs, so that direct pcrformar.ce comparison
is possible. The ring and nearest neighbor networks provide similar
amounts of processing time to their application tasks, though at long
message lengths t11c nearest neighbor docs perform slightly better. In
all cases the fully connected architecture performs markedly better,

170

......
cl'
"--...
0
Vl
(/)
Q)
0
0 ...
a.
'-.)< ...
~
Q)

:0
~
-~
:..
'<t

......
cl'
'-..
0
(I)
(/)
Q)
0
0 ...
0..
'-.)< ...
~
Q)

:Q
~
<a :..
'<t

100

80

60

40

20

0

+
x

10 20 30 40
External Message Hate (Mes/sec)

Figure 16: Comparison of potential workload, adjusted

for per processor message rates

100

80

60

40

20

0

+- ·-----+ Ring, S "' 112
+· · -· + llt>.1rf!:,t Ne:ghbor, S = 1/:2
+ - + FvllyC.-:ii1nected,S"" 1/2

n•:ic:;. s"' 114
• >-: Newest !~01ghbo1-, S ·~ ~/4

><: r- u!1y Connected, S"' 1/4

'
'

20 40 60 80 JOO
External Message Rate (Mes/sec)

Figure 17: Comparison of ti1c interconnection schemes

performing almost as well at long message lengths as the other two
architectures at short messages kngths. J\t an external message rate
of 20 messages per second Lhe fully connected network provides
almost 2.5 times the processing potential of the nearest ncig:hbor
network. /\!though ti1c fully connected network requires fi~ccn

interconnection links to ti1e nearest neighbor's seven, it would
probably be the better choice.

l11csc experiments demonstrate that it is possible to use Cm* to
emulate other multiprocessor architectures. The methods employed
can easily be extended to emulate additional multiprocessors
covering a large class of interconnection mechanisms as well. Though
some of the tivcrhcad incurcd in emu lilting the routing algorithm's is
due to the emulation software, this can be measured by comparison
with nonemulated systems such as the basic experiment. Once the
overhead is subtracted detailed studies of comparative network
performance arc possible. It is expected that the Cm* testbed will
prove useful for studying general multiprocessor architecture issues
as well as designing specific mulliprocessors for specific applications.

References

I. G. B. /\dams and 1-1. J. Siegel. "On the Number of Permutations

Performable by the Augmented Data Manipulator Nct111ork." I m~·E

Tramactions 011 Co111pu1crs C-31, 4 (J\pril 1982), 270-277.

2. G. J\. Anderson and E. D. Jensen. "Computer Interconnection

Structures: Taxonomy, Characteristics, and Examples." Computing

Surl'l)'S 7, 4 (Dec. 1975), 197-213.

1. K. Brayer and V. Lafleur. "A Testbed Approach to the Design of

a Computer Communication Network." Computa 15. 10 (October

1982). 14-23.

4. T. Feng. "A Survey of Interconnection Networks." Compu/er 14,

12 (Dec. 1981). 12-27.

5. M. J. Flynn. "Some Computer Organimtions and Their

Effectiveness." /U:F Tra11sc1ctiu11s 011 Computers C-21. 9 (Sept.

1972), 948-960.

6. I .. S.1 laynes. R.I.. I .au. D.P. Sicwiorek, D.W. Mitzel!. "A Survey

of 11 ighly l'ar;dld Computing." Co111pu1er (January 1982). 9-24.

7. D. H. I .awric. "Access und Alignment of Data in an Array

Processor." //:'/:·1: Transaclions 011 Computers C-24, 12 (December

1975), 1145-1155.

8. W. C. McDonald and R. W. Smith. "A Flexible Distributed

Testbed for Real-Time Applications." Compuler 15, 10 (October

1982). 25-39.

9. J.K. Ousterhout. D.A. Scelza. and l'.S. Sindhu. "Medusa: an

experiment in distributed operating system structure."

Co111111u11icalio11s of the ACM 23, 2 (Feb. 1980), 92-105.

171

JO. F. P. Preparata and J. Vuillemin. "The Cube-Connected Cycles:

A Versatile Network for Parallel Computation." Comunications of

the ACM 24, 5 (May 1981), 300-309.

11. A. Singh. Pegasus-A Workload Generator for Multiprocessors.

Master Th., Carnegie-Mellon University, Department of Electrical

Engineering, 1981.

12. Ridwrd J. Sw,rn. The s11·ftchi11g structure and aclclrcssi11g

architcc/urr· 0./1111e.1trnsib/c1111iltiprocrssor, C11r•. Ph.D. Th.,

C:irncgic tvkllon Uni\cr.;ity, August 1978.

l.t R.J. Swan. S.11. Fuller. and i).I'. Sicwiord. "Cm* -- a modular,

mulli-rnicrnproccssor." National Computer Co11fcre11cr', l'roccedings,

A rt I'S 46 (1977). 637-44.

14. R.J. Sw:in. ,\. Bechtolshcim. K.W. l .ai, and J.K. Ousterhout.

"The impkmcntation of the Cm* multi-microprocessor." National
('011111111,•r ('u11ji·rc11ce. l'mcccdi11g1, A rt PS 46 (1977), 645-55.

15. K. J. Thurber. Interconnection Networks - A survey and

asscs~mc1~t. AFIPS Confl'rocecdings. 1974, pp. 909-919.

SLOT-BASED MULTI-ACCESS PROTOCOL FOR LOCAL COMPUTER NETWORK

A.I. Noor G.S. Hope O.P. Malik

Carleton University University of Calgary

ABSTRACT

This paper presents a novel protocol for a
Local Area Network with single channel conununica
tion. Users are grouped according to their physi
cal location and each group is assigned a channel
slot. Conflicts are resolved by an Assigned Slot
Carrier Sense Multiple Access Mechanism with
Collision Detection Capability (ASCD) protocol.
The maximum throughput and average delays are
evaluated. The results indicate that the perfor
mance of this protocol is better than many conten
tion type protocols widely used in Local Area Net
works. This protocol is best suited to transac
tion oriented messages, which are found in the
real-time process control industry.

1. INTRODUCTION

Current trends in hardware encourage the
abandonment of a single large computer in favour
of a number of small machines. The resulting de
centralization of computing power is, for many
applications a natural and obvious pattern. In
these applications, the information itself is dis
tributed in nature and is best managed by a net
work of machines. Thus, it has become very at
tractive to connect a number of microcomputers to
form a resource sharing computer network. Reli
ability and throughput are improved. Small pro
cessors can be designed and implemented more
quickly thus it becomes practical to update to the
latest and most cost-effective hardware technology.

Applications such as plant and laboratory
automation are made possible by computer network
ing. In these applications each microcomputer
station monitors and controls an elementary part
of the overall plant. Like any other conununica
tion network, this network must have a conununica
tion medium (channel). The microcomputer stations
require an interface in order to transmit/receive
messages using the channel. The need for channel
access protocol arises because the conununication
medium is shared by a number of stations. Con
flicts which arise when more than one demand is
simultaneously placed upon the channel give rise
to multi-access protocol. Contention type proto
col is attractive if each station independently
decides when to transmit. Carrier Sense Multiple
Access with Collision Detection (CSMA-CD) [l] is
a popular contention protocol. Each user senses
the channel and if the channel is idle starts its
transmission. When a collision is detected the
transmission ceases and the channel is januned for
a period (equivalent to 30 bits in Ethernet) [2]
to make sure that all the users are aware of the
collision. Colliding users each select a random
backof f delay after which retransmission is at
tempted. Metcalfe and Boggs [2] proposed a binary
exponential backof f algorithm. The performance of
this algorithm and similar backof f algorithms has
been investigated by various authors [3-6].

The main reason for collision is the absence
of coordination among users, and long distance
physical separation. One user does not know when

0190-3918/83/0000/0172$01.00 © 1983 IEEE

another user starts message transmission.

In this paper an alternative to CSMA-CD
protocol that eliminates the need of a collision
enforcement mechanism is proposed. This protocol
is designed to minimize the collision resolution
time and hence maximize the channel throughput,
by eliminating collision enforcement and the
probability of repeated collision.

In Section 2 of this paper the alternative
protocol is described. Section 3 describes the
simulation model. Sections 4 & 5 present the re
sult for simulation tests. Section 6 describes
the design of the microcomputer network, based on
this protocol.

2. ASSIGNED-SLOT-CARRIER SENSE MULTIPLE ACCESS
PROTOCOL WITH COLLISION DETECTION (ASCD)

In this proposed protocol users monitor the
conununication channel and record its state. A
user attempts transmission only when the channel
is in the idle state. If a collision is detected,
all but one user backs off inunediately, the unsuc
cessful user attempts retransmission when the
channel becomes idle.

Under this scheme the channel is divided into
time frames each containing an equal number of
slots. The users connected to the network are
divided into a number of groups. The users are
grouped according to their physical separation.
The two furthest members of a group can be d
kilometers apart

d < 1--'=-
3 f

where c velocity of light,
f the operating frequency of the communi-

cation medium.

Typically, f = 106 bits/sec and the distance, d,
is less than 0.1 kilometers. If this distance is
exceeded complete backoff is required.

Each group is assigned a slot in a time
frame. The members sense the channel and transmit
in its assigned slot. Sensing and transmission is
started at the slot boundary. There is still a
chance that two users in the same group sense the
channel as idle and start transmission at the same
time. In this event collision causes the users to.
backoff and reschedule their transmission.

112

Performance Measurement Criteria

The foremost. measure of the network's perfor
mance is (i) channel utilization, and (ii) average
message delay.

The channel utilization is the "ratio" of the
time the network is successfully carrying packets
and the time the network is busy. The. average
message delay is defined as the average interval
between a user's desire to transmit and the suc
cessful reception of the packet by the destined
user.

3. SIMULATION MODEL

A simulation program, to determine the per
formance of the protocol, was written in SIMULA
[7] and used the report generating facilities of
DEMOS [8]. The simulation program is based on the
following assumptions:

- Poisson message arrival.
- The packet lengths are uniformly distributed.
- The packet has a maximum length of 1024 bits.
- A user either transmits or receives.
- The channel is assumed noiseless.
- Colliding users backoff for a random time.
- A user can migrate to a slot without any delay.

Collisions are detected within one bit.

The parameter values used in the simulation
are given in Table I.

TABLE I

PARAMETERS VALUE

Speed of the channel 8 million bits per second
Maximum Packet length 1024 bits
Minimum Packet length 256 bits
Number of users 63
Number of slots 8
Length of the slot 8 bits
Number of Maximum Tries 32

4. SIMULATION RESULTS

Several observations are made about ASCD
protocol. Backoff probability plays an important
role. Figure 1 shows that channel utilization is
improved with higher sensing probability, p. As P
approaches 0, the delay gets arbitrarily large
(due to the large retransmission delays). For
p > 0.1 the relative change in performance becomes
small.

Average delay are shown in Figure 2. The
knee moves to the right as the packet size in
creases indicating higher utilization. The vari
able packet has an average delay of less than 0.5
milliseconds for average utilization of up to0.92.

In the real-time environment the average load
is not high, but faster consistent response is re
quired. Figure 3 shows both the mean and the
standard deviation of the delay due to uniformly
distributed packet size. This indicates that the
protocol can perform well without the loss of
stability.

5. PERFORMANCE SUMMARY

A number of observations are made in this
analysis and they are:

- The protocol is stable and utilization is a de
creasing function of load.

- The variance in response time is small.
- The slot switching mechanism improves the chan-

nel utilization and reduces the average delay.
- This protocol is better than other contention

base protocols, because of its shorter response
time and increased effective transmission rate.

Figure 4 compares the delay-load relation
ship of the ASCD protocol for various packet
sizes. For B = 64 and 128 there is an improvement
in performance over other protocols in the 104 to
105 packets/sec average arrival rate range. For

173

B = 512 and 1024 there is an improvement through
out the whole average arrival rate range due to
the effect of slot switching.

Figure 5 describes the channel utilization
for the ASCD over the arrival rate range. This
protocol has improved response and stability.

6. THE DESIGN OF THE PROTOCOL HARDWARE

The goal is to design and build an economi
cal, efficient network to interconnect user sta
tions. Each station is likely to have an 8/16
bit microcomputer, mass storage or peripheral
controller. Our particular application is the
real-time operation of an Electric Substation in
which certain messages must have priority. These
characteristics are found in other real-time pro
cess control applications which require a hierar
chical or super user relationship between stations.

The node has two parts. The first part is
the user module which is the plant processor part
of each station. The second part or Universal
Interface Module, (UIB) executes the communication
protocol. The UIB is built around an 8-bit micro
computer with special hardware to form a message
from a packet. The UIB formats the message from
the user's module into a packet with destination
address(es) and information identifiers. The mes
sage part is submitted directly from the memory of
UIB-processor. The remainder of the packet frame
and the collision control is provided by the com
munication medium interface. An 8-bit shift
register, identifies its time-slot and also iden
tifies adjacent time-slots for possible migration.

The UIB hardware is based on INTEL-8085 pro
cessor with 2K of RAM and 4K of ROM, memory-map
ping logic, programmable interrupt controller, and
programmable interrupt time. The complete hard
ware portion uses about 100 IC's.

CONCLUSION

This protocol has been developed for the
real-time application where messages are mostly
transaction oriented. Advantages as confirmed
through simulation are:

- shorter response times
- increased effective channel utilization
- message priority discussion

The cost of the UIB is anticipated to be reason
able since it has been implemented with about 100
IC's and a microcomputer. The general constraints
are limited physical distance between stations and
short messages.

REFERENCES

(1) R.M. Metcalfe, D.R. Boggs, EtheY'net: Distri
buted Packet Switching for Local Computer
Networks, Comm. ACM, Vol. 19, pp. 395-404,
July 1976.

(2) 7he Ethernet - A Local Area Network, Data
Link Layer and Physical Layer Specification,
Intel, Dec, publication, Version 1.0,
September 30, 1980.

(3) S.S. Lam, A Carrier Sense Multiple Access
Protocol for Local Networks, Computer Net
works, Vol. 4, pp. 21-32, February 1980.

(4) J. Shock and J. Hopp, Performance of an
Ethernet Local Nerwork - A Preliminary Re
port, In Proc. Local Area Communications Net
work Symposium, NBS and THE MITRE Corpora
tion, Boston, May 1979.

(5) F. Tobagi and B. Hunt, Performance Analysis
of Carrier Sense Multiple Access with Colli
sion Detection, Technical Report 1973, Com
puter Science Laboratory, Stanford Univer
sity, June 1979.

(6) W. Bux, Local-Area Subne-/Morks: A Perfor
mance Comparison, IEEE Trans. on Communica
tions, Vol. COM-29, No. 10, pp. 1465-1473,
October 1981.

(7) O.J. Dahl, B. Myhrhaug and K. Nygward, SIMULA
Information: Common Based Language, Norwegi
an Computing Centre, Oslo, Norway, 1970.

(8) A.B. Birtwistle, DEMOS Implementation Guide
and Reference Manual, Research Report No.
81/70/22, Department of Computing Science,
University of Calgary, Calgary, 1982.

~
2
;;-.

0

0

'" Q
L
0
>

C(

0. 01 ~ .. P

100

0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 LO

Utilization

Figure 1. The effect of channel utilization at
different backoff rate

400

300

o.o 0.1 0.2 0.3 0.1, o.s o.6 0.7 o.s 0.9

Uti l izution

Figure 2. Average delay as seen by fixed
and variable size packet

1.0

174

;;
~

- Norm

--- Standard Deviation

f 300

~

200 -

--.... --
I I I i___t __ ,__ _ _.

0. 1 0.2 0.3 0.11 0.5 o.6 o. 7 o.o 0.9 1.0

Ut i 1 iz,:it ion

Figure 3. Comparison of norm and standard devia
tion due to uniformly distributed
packets

u .
~
~

~
u

~

~ 104

~

::.
L
L
C(

&
~
" > <

103
5 10 100 1000

Average Delay {\.l sec)

Figure 4. Comparison of delay time against
various loads

f
.e:.
!
~

"'
~
>
L
L
<

&
~

" > <

104

0.2 0.3 o.4 0.5 0.6 0.7 0.8 0.9 1.0

Utilization

Figure 5. Channel utilization at various
network loads

NEW CONNECTIVITY AND MSF ALGORITHMS FOR ULTRACOMPUTER AND PRAM

B. Awerbuch Y. Shiloach
IBM - Israel Scientific Center

Technion, Haifa, Israel

ABSTRACT

Parallel ULTRACOMPUTER algorithms for finding
the connected components and a minimum spanning
forest (MSF) of an undirected graph are presented:
Both have depth of O((log n)2) where n is the
number of vertices in the graph and n2 processors
are used. Both algorithms are implementations of
PRAM algorithms that are presented first.

The connectivity PRAM algorithm is a simplifi
cation of the one appearing in [10]. A modifica
tion of thi.s algorithm yields a simple and effi
cient MSF algorithm. Both have depth of O(log n)
and they use 2E processors, where E is the
number of edges in the graph.

1. INTRODUCTION

The ULTRACOMPUTER (later denoted as UC) and
the PRAM are two models of parallel computation.
The first consists of a set of processors, each
having a local memory and random-access capabil
ities. They communicate via a shuffle-exchange
network. A detailed description of this model and
several basic algorithms in it, can be found in
[6] and [7]. In the PRAM model the processors
share a common memory and each of them has access
to each memory cell. Variants of this model differ
in the capability of performing concurrent READs
and/or WRITEs from the same memory cell. (See [9].)

In this paper we describe two UC algorithms,
for computing connected components and minimum
spanning forest in an undirected graph. The first
problem has an 0 ((log n)4) solution using n + E
processors. This algorithm is presented in [7]
following a PRAM connectivity algorithm of [3),
having depth of O((log n)2) UC steps. A faster
PRAM algorithm of O(log n) depth, is given in [10].
This algorithm and its proof are further simplified
in this paper. A new technique of PRAM simulation
by UC, realizes this algorithm on a UC in
O((log n)2) time using n2 processors. Similar
ideas lead to PRAM and UC MSF algorithms of the
same depth and number of processors as in the
connectivity algorithms.

Existing PRAM MSF algorithms have O((log n)2)
depth ([2] and [9]). These al~orithms can be im
plemented in a UC in O((log n)) time using ideas
similar to those described in [7]. No faster UC
MSF algorithm is known to us.

2. A SIMPLE PRAM CONNECTIVITY ALGORITHM

Our connectivity algorithm is a modification
of that appearing in [10] which has a much simpler

0190-3918/83/0000/0175$01.00 © 1983 IEEE 175

proof of logarithmic depth. It deals with exactly
the same model as in [10], i.e. simultaneous read
ing and writing are allowed. In the latter case
one processor succeeds but we don't care which.
Two processors P(i,j) and P(j,i) are assigned to
each edge (i,j).

The notions of 'rooted tree', 'rooted star',
'pointer graph', 'shortcutting' and 'hooking' are
the same as in [IO]. The father and grandfather
(= father of father) or a vertex i in the pointer
graph are denoted by D(i) and G(i) respectively.
Each step of the algorithm below is executed by
each processor P(i,j).

The Algorithm.

Step 1: Conditional hooking, (similar to Step 2 in
[10]). If G(i) = D(i) and D(i) > D(j)
then D(D(i)) + D(j).

Step 2: Unconditional star hooking.
If i belongs to a star and D(i) # D(j)
then D(D(i)) + D(j).

Step 3: If i belongs to a star then STOP.
Else D(i) + G(i) (Shortcutting).

The algorithm loops on the three steps above
until Step 3 does not produce any non-trivial
shortcuts.

COMMENTS:

1. In order to make the first iteration look like
its successors, the input graph is slightly
modified by connecting a dummy vertex i' to i
for all i = 1,. . .,n. Moreover, the pointer
graph is initialized by: D(i') = D(i) = i.

2. The condition 'i belongs to a star' is checked
by a simple STARCHECK procedure. A field ST(i)
is attached to each vertex i, indicating whether
it belongs to a star or not. STARCHECK is based
on the observation that a vertex i does not
belong to a star iff it has a nontrivial grand
father or grandson or nephew (= grandson of
father).

STARCH ECK

ST(i) + TRUE
IF D(i) # G(i) then ST(i),ST(G(i)) +FALSE
ST(i) + ST(G(i)).

Theorem 1 (partial correctness):

If the algorithm terminates then

a. The pointer graph consists entirely of stars.

b. The vertices of each star form a connected
component of the graph.

Proof:

a. Follows innnediately from the termination condi
tion in Step 3.

b. It is easy to see that the partition defined
by the pointer graph is always a sub-partition
of that defined by the connected components.
Moreover, a proper subset of a connected compon
ent cannot form a star in the pointer graph at
the beginning of Step 3 since stars are un
conditionally hooked in Step 2.

Theorem 2 (logarithmic depth):

a. Stars are not hooked on stars in Step 2.

b. The pointer graph is always a forest of rooted
trees.

c. If C is a connected component of G then the
sum of the heights of the trees in the pointer
graph consisting of vertices of C decreases
by a factor of 3/2, at least, after each applica
tion of the loop, until these trees form a star.

Proof:

a. A star at the beginning of Step 2 has not been
changed in Step 1 since the hooking in Step 1
produces trees of height two at least, (a result
of the initialization). At the beginning of
Step 2 there exist no edge with both endpoints
belonging to different stars. Otherwise one of
the edge processors should have attempted to
hook the larger root on the smaller one at Step
1 making it a µon-root at the beginning of
Step 2.

b. The statement is true initially. Steps 1 and 3
never produce any directed cycle. By a. stars
are hooked only on non-stars in Step 2. Since
non-stars are not further hooked on anything
in that step, cycles are not formed in Step 2
either.

c. As a result of the initialization step, all
the trees are of height one at least and there
fore hooking is never done on leaves. Thus,
hooking one tree on another yields a tree of
height not greater than the sum of the heights
of the original trees. Therefore, Steps 1 and
2 do not increase the sum of heights of any
set of trees. Let C be a connected component
of G. If the set of trees in the pointer graph
consisting of the vertices of C, has not shrunk
yet to a single star, then at the beginning of
Step 3 none of them is a star. Hence,at Step 3
their sum of heights decreases by a factor of
3/2 at least.

3. A PRAM MSF ALGORITHM

As in [8], our MSF algorithm is also an im
plementation of Sollin's algorithm that is brought
in [l]. Our improvement of their result is similar
to the improvement of [10] with respect to the
connectivity algorithm of [4]. The depth and
number of processors are the same as in the connect
ivity algorithm above.

This algorithm, however, assumes a stronger
model of computation in which the lowest processor

176

writes in case of concurrent writing to the same
location. As in the connectivity algorithm above,
two processors P(i,j) and P(j,i) are assigned
to each edge (i,j) of the graph. The algorithm
needs a preprocessing assignment phase in which
processors are assigned to edges in such a way
that processors with lower identity numbers cor
respond to edges with lower lengths. In the worst
case sorting of the edges with respect to their
lengths might be needed which takes O(log n) or
O((log n)2)) time according to the number of avail
able processors, (see [5] and [9]).

Previous results on this problem ([2] and
[8]) achieved depth of (log n)2 with n2 and
(n2) /((log n) 2) processors respectively ... Both
works assume the·'concurrent READ exclusive WRITE'
PRAM model.

The following variables are used.

D(i) denotes the father of i in the pointer graph.
TREE (i,j) is a Boolean variable corresponding to

P(i,j). By the end of the algorithm an edge
(i,j) belongs to the minimal spanning forest
iff TREE(i,j) = 1 or TREE(j,i) = 1.

ATTEMPT (i) is an auxiliary variable corresponding
to vertex i.

L(i,j) is the length of Edge (i,j).

MSF ALGORITHM

Initialization: TREE(i,j) + O, D(i) + i;
ATTEMPT (i) +NIL for all i,j.

Step 1: Star Hooking
If i telongs to a star and D(i) # D(j)
Then ATTEMPT (D(i)) + (i,j)

If (i,j) = ATTF.MPT (D(i))
Then TREE(i,j) + 1 and D(D(i)) +D(j)

Step 2: Tie Breaking
If i < D(i) and i = G(i)
Then D(i) + i

Step 3: If i belongs to a star then STOP.
Else D(i) + D(D(i))

The algorithm loops on these three steps until
Step 3 does not produce any real shortcut.

COMMENT:

All P(i,j) that want to hook D(i), try
competitively to write their identities into ATTEMPT
(D(i)) where the winner's identity i eventually
stores. Only the winner succeeds in hooking and
its edge is inserted to FOREST which is the set of
all edges (i,j) for which either TREE(i,j) or
TREE (j , i) are 1.

In order to prove the correctness and logarith
mic depth of the algorithm the following lemmas are
needed:

Lennna 1: At each step of the algorithms:

a. FOREST is a subset of an MSF.

b. The connected components of the pointer graph
are identical to the connected components of
FOREST and constitute a partition of the con
nected components of the graph.

c. The pointer graph is a directed forest with

the exception of self-loops at roots and cycles
of length Z that exist only between Steps 1
and Z.

Proof:

a. It can be assumed that edge lengths are all
different. This is achieved by taking the
length of an edge (i,j) as the triple L(i,j) =

(length of Edge (i,j), min (i,j), max (i,j))
and considering the lexicographic order. This
yields a unique MSF. Whenever TREE (i,j) + 1,
the edge (i,j) is the shortest edge emanating
from the set of vertices determined by the star
rooted at D(i,j). Thus (i,j) belongs to the
MSF, and therefore FOREST is always a subset of
the MSF.

b. This statement can be proved inductively since
whenever two connected components of the pointer
graph are connected, so do the corresponding
components of FOREST and the latter ones are by
definition a partition of the connected compon
ents of the graph.

c. Assume that the statement is true at the begin
ning of the current iteration. Consider an
application of Step 1. Any new edge added at
this step emanates from a star root to a non
leaf vertex in another tree. Suppose that a
directed cycle C was created by Step 1.
Since C must contain new edges, and since an
old edge cannot be followed in C by a new edge,
C must contain only new edges stitching the
star roots. Thus if C contains a new cycle
of length > Z so does FOREST - contradicting a.
Cycles of length Z are opened at Step Z. The
proof is completed by observing that Step 3
does not introduce any new cycles to the pointer
graph.

Theorem:

Upon termination FOREST is the MSF of the graph.

Proof:

It is easy to see that by the end of the algo
rithm the connected components of the graph coincide
with those of the pointer graph. Thus by statement
B above FOREST spans the graph and by A it is an
MSF.

Theorem:

The algorithm terminates after at most log n
iterations.

Proof:

The proof is similar to that of the correspond
ing statement in the connectivity algorithm and
therefore omitted.

4. SUPERCOMPUTER IMPLEMENTATION OF THE
CONNECTIVITY AND MSF ALGORITHMS

The SUPERCOMPUTER (later denoted as SC) is an
intermediate level between the PRAM and the UC. It
is a UC with a full communication network enabling
direct communication between any pair of processors.

177

Thus, each processor can read and write into each
other processor's memory. However, concurrent
READs and WRITEs from/to the same processor can be
executed only if one memory cell is accessed. In
case of WRITE the minimal value is written.

In this section we implement the PRAM algo
rithms above by an SC with n+ZE processors P(i,j)
and P(j,i). for each edge (i,j) and P(i,i) for
1=1, ... ,n. In the next section, the SC algorithms
will be further implemented by a UC.

Both SC algorithms use three basic instruc
tions READ, WRITE and TRANSPOSE.

READ has the form: READ (OLDFIELD from P(ADR,ADR)
into NEWFIELD). The exact effect of this
statement is that P(i,j) reads OLDFIELD in
P(ADR,ADR), and copies it into NEWFIELD which
is a new field of its own. (ADR itself is
a field in P(i,j)).

WRITE has the form: WRITE (OLDFIELP at P(ADR,ADR)
into NEWFIELD) which means that P(i,j) writes
the value stored in OLDFIELD into the new
field NEWFIELD at P(ADR,ADR).

TRANSPOSE has the form: TRANSPOSE (OLDFIELD to
NEWFIELD) and it transfers the value stored
at P(i,j) in OLDFIELD to P(j,i) into NEWFIELD.

Each processor P(i,j) stores the
variables in the fields:
Variables: D(i) D(j) G(i) ST(i)

L (i, j)

Fields: Dl DZ G ST
LENGTH

THE CONNECTIVITY SC-ALGORITHM

Step 1: READ (Dl from P(I,I) into Dl)
TRANSPOSE (Dl to DZ)
READ (Dl from P(Dl,Dl) into G)
If G = Dl and Dl > DZ

following

i ATTEMPT(i)

I ATTEMPT

Then WRITE (DZ at P(Dl,Dl) into Dl)

Step 2: STARCHECK /* See routine below*/
TRANSPOSE (Dl to D2)
If ST= TRUE and Dl f DZ
Then WRITE (D2 at P(Dl,Dl) into Dl)

Step 3: SHORTCUT

STARCHECK

If ST= TRUE then STOP
Else READ (Dl from P(I,I) into Dl)

READ (Dl from P(Dl,Dl) into Dl)

READ (Dl from P(I,I) into Dl)
READ (Dl from P(Dl,Dl) into G)
ST+ TRUE
If G # Dl
Then ST + FALSE

WRITE (ST at P(G,G) into ST)
READ (ST from P(G,G) into ST)

SC MSF ALGORITHM:

Step 1: STARCHECK
TRANSPOSE (Dl to D2)
If Dl f D2 and STAR= TRUE
Then WRITE (LENGTH at P(Dl,Dl) into ATTEMPT)

READ (ATTEMPT at P(Dl,Dl) into ATTEMPT)
If LENGTH = ATTEMPT
Then WRITE (D2 at P(Dl,Dl) into Dl)

TREE+ 1

Step 2: READ (Dl from P(I,I) into Dl)
READ (Dl from P(Dl,Dl) into G)
If G = I and Dl > I then Dl + I

Step 3: SHORTCUT
If ST =TRUE then STOP.
Else READ (Dl from P(I,I) into Dl)

READ (Dl from P(Dl,Dl) into Dl)

5. UC IMPLEMENTATION OF SC INSTRUCTIONS READ,
WRITE AND TRANSPOSE

In this section the three SC operations above
are simulated by an N = n2 - UC. Each operation is
simulated in O(log n) steps yielding total depth of
O((log n) 2) for both algorithms. To each ordered
pair of vertices <i,j>, a processor P(i,j) is
attached regardless whether (i,j) is an edge of G
or not. A single bit BIT stored in the local memory
of each processor, indicates whether P(i,j) is an
edge-processor or not. The edge-processors of UC
simulate the corresponding SC processors while the
non-edge UC processors serve for communication
purposes. Only edge-processors participate in
WRITEs. As usual for UC, n is assumed to be equal
to zk for some integer k, (thus -N·= 22k), The
simulation is still sub-divided into higher' and
lower level implementations.

5.1 The Higher Level

In this level READ, WRITE and TRANSPOSE are
implemented by lower level routines BROADCAST
CHOOSE and TRANS. These low-level routines a;e
implemented in the next subsection by the basic UC
routine GROUPSUM.

CHOOSE has the form : CHOOSE (OLDFIELD into NEWFIELD).
It chooses a minimal value among all non-NIL values
stored at OLDFIELD of P(i,j) for fixed i and all
j, and inserts it into NEWFIELD at P(i,i). If the
values in OLDFIELD are NIL for all P(i,j), l5j5n,
then the resulting value of NEWFIELD at P(i,i) does
not change.

BROADCAST has the form: BROADCAST (OLDFIELD into
NEWFIELD). It inserts the value stored at OLDFIELD
of P(i,i) into NEWFIELD of _P(i,j) for j = 1,, .. ,n.

TRANS has the form: TRANS ((lLDFIELD to NEWFIELD)
It inserts the value stored at OLDFIELD of P(j,i).
into NEWFILED of P(i,j).

Let FO, FN and AD denote OLDFIELD NEWFIELD and
ADDRESS respectively. '

READ (FO J;rom P(AD,AD) into FN):
BROADCAST (FO into Fl)
TRANS (Fl to F2)
IfjfAD
Then F2 +NIL

CHOOSE (F2 into F3)
BROADCAST (F3 into FN)

WRITE (FO at P(AD,AD) into FN):
If BIT = 0 then FO + NIL
CHOOSE (FO into Fl)
BROADCAST (Fl into F2)
If j.fAD
Then F2 + NIL
TRANS (F2 to F3)
CHOOSE (F3 into FN).

TRANSPOSE (FO to FN):
TRANS (FO to FN)

5.2 The Lower Level

Let '+' denote any associative binary operation
and let A=a1, .•. ,aN be any N-vector where ai is
stored in Pi for all i. The output of (LEFT) SUM is
the vector of partial 'sums' a1,a1+az,a1+a2+a3, ••. ,
a1+ ..• +aN such that a1+ ... +ai is stored in Pi for
all i. The LEFT GROUPSUM (LGS) operation is similar
to SUM. The difference is that here the vector a1•···•
aN is divided into several segments and the result
is that of SUM operating on each segment separately.
When the sunnnation starts from the rightmost element
of each segment we obtain the RIGHT GROUPSUM (RGS).

GROUPSUM of a vector of length N can be done in
log N time by an N-UC as shown in SCH-80.

Realization of CHOOSE and BROADCAST by GROUPSUM.

In the following realizations, our GROUPSUM
segments consist of all P(i,j) for a fixed i. Our
associative binary operation is defined by:
A+B = min(A,B) where NIL is considered as bigger
than any non-NIL value.

CHOOSE (FO into FN):
Fl + LGS (FO)

/* At this point the field Fl in P(i,n) contains
a minimal non-NIL element if such exists in its
segment and NIL otherwise. In the first case this
non-NIL element is inserted to FN at P(i,i). */

If P(i,j) = P(i,n) and Fl.fNIL
Then FN + RGS (Fl)

BROADCAST (FO into FN) :
If P(i,j) f P(i,i)
Then FN + NIL
Else FN + FO
LGS (FN)
If P(i,j) f P(i,n)
Then FN + NIL
RGS (FN)

TRANS (FO to FN):
FN + FO
DO log n times:
FN + SHUFFLE (FN)

/* SHUFFLE is the basic UC operation defined by:

2i if. i < N/2

SHUFFLE(i)

2i- N+l else

TRANS is exactly the matrix transposition algorithm
appearing in [6]. */

178

REFERENCES

[l] C. Berge and A. Ghouila-Houri, 'Programming,
Games and Transportation Networks', Wiley and
Sons, New York, 1965.

[2] F.Y. Chin, J. Lam and I. Chen, 'Efficient
Parallel Algorithms for Some Graph Problems',
CACM, Vol. 25, No.9 (Sept. '82), p. 659.

[3] D.S. Hirschberg, 'Parallel Algorithms for
the Transitive Closure and the Connected
Component Problem', Proc. of the 8-th Annual
ACM Symposium on Thoery of Computing,
Hershey, PA 1976, p. 55.

[4] D.S. Hirschbers, A,K. Chandra and D.V, Sarwate,
'Computing Connected Components on Parallel
Computers', CACM, Vol. 22 (1979), p. 461.

[5] D. Nassimi and S. Sahni, 'Parallel Permuta
tion and Sorting and an New Generalized
Connection Network', JACM, Vol. 29, No.3,
(July '82), p. 642.

179

[6] H. Stone, 'Parallel Processing with a Perfect
Shuffle', IEEE Trans. on Computers, Vol. 20,
No.2, (Feb. '71) p. 153.

[7] J.T. Schwartz, 'Ultracomputers', ACM TOPLAS
2 (1980), p. 484.

[8] C. Savage and J. Ja'Ja, 'Fast Efficient
Parallel Algorithms for Some Graph Problems',
SIAM J. on Computing, Vol. 10, No.4 (Nov. '81),
p. 682.

[9] Y. Shiloach and U. Vishkin, 'Finding the
Maximum, Merging and Sorting in a Parallel
Computation Model', J. of Algorithms, Vol. 2,
(1981)' p. 88.

[10] Y. Shiloach and U. Vishkin, 'An O(log n)
Parallel Connectivity Algorithm', J. of
Algorithms, Vol. 3 (1982), p. 57.

Bridge-connectivity and Biconnectivity Algorithms
for Parallel Computer Models

Yung H. Tsin
Department of Computing Science

University of Alberta
Edmonton,Alberta.Canada T6G 2H 1

Abstract

New algorithms for the bridge-connectivity and
biconnectivity problems are presented It is shown that these
algorithms can be implemented on any parallel computer
models on which an ordinary matrix multiplication algorithm
exists and that the hardware resources requiredlin terms of
the number of processors and the chip areal are no more
than those required by the matrix multiplication algorithm
The time required is at most a factor of maxllogd,logd")+ 1.
1$C/.d'':5n. greater than that needed by the matrix
multiplication algorithm Since most of the existing parallel
computer models have efficient ordinary matrix
multiplication algorithms. the algorithms presented here turn
out to be very efficient

1. Introduction
The result of this paper is motivated by the following
observations.
1. For most of the existing parallel computer models. there
exist few algorithms for graph theoretic problems. This is
especially true for those models which obey the VLSI design
constraints[B.9. 14] On the other hand. an important basic
operation. namely the matrix multiplication, has an efficient
algorithm on almost every parallel computer model[3,8,9. 11 l
Since graphs are usually stored in the form of matrices in
computers, it is conceivable that matrix multiplication or the
techniques it uses may be useful in developing efficient
algorithms for graph theoretic problems. As a matter of fact,
Dekel. Nassimi and Sahni have exploited this idea[3J

2. It usually happens that whenever an algorithm is presented.
it is designed with a particular model in mind. and its
complexity analysis is provided for that model only. Extra
effort has to be made in order to carry it over to the other
models. A typical example is Hirschberg's graph-connectivity
algorithm which was originally designed for the SIMD-SM-R
model[2.4l It was then implemented on the SIMD-MCC
model by Nassimi and Sahni[6]; on a SIMD-SM-RW by
Shiloach and Vishkin[13, 17] and finally on the PSN. OTN. and
OTC models by Nath, Maheshwari and Bhatt[7.8]. It would be
convenient if the complexity analysis of an algorithm could
be given in such a way that it would be valid for any model
satisfying certain reasonably moderate conditions.

In this paper, we shall design parallel algorithms for
the bridge-connectivity and biconnectivity problems. We
then analyze their complexities for any parallel computer
models on which an ordinary matrix multiplication algorithm
exists. Since almost every existing model has an efficient
algorithm for matrix multiplication, the condition imposed is
not severe. Let Oitln)) and Hin) denote the time and hardware
resourceslin terms of number of processors and chip area)
required by the ordinary nxn matrix multiplication algorithm
We will show that the time and hardware complexities of
our algorithms are bounded above by
Oit(n)*lmaxllogd.logd")+ 1)). 1'5d,d"Sn. and Hin) respectively
on those models.

2. Basic Definitions
The definitions of the graph theoretic terms used in this
paper are standard and can be found in various texts.
Definition: let TIV,£') be a directed tree and u,veV.

u~v if u is an ancestor of v in T.
u<v if u is a proper ancestor of v in T.

Definition: The lowest common ancestor • LCA(u,v). of two
vertices u, v in T is defined as:
LCA(u,v) = (max~){wlw;iu and w:iv}.

Definition: Let veV, the level of v in T is defined as:

0190-3918/83/0000/0180$01.00 © 1983 IEEE 180

level(r)= 1;
levellv)=level(F(v))+ 1, vt-r.
where r is the root of T and F(v) is the father of v in T.
Note that level(V)>O VveV.
We denote levellLCA(u,v)) by ILCA(u,v).

Definition: Let vEV and T is a directed spanning tree of an
undirected graph GIV,El.

HLCA(V)=(min-5)({LCA(v,w)l(v,w) is in G-T}u(v})
IHLCA(V) = /evel(HLCA(v))
a.M=min{/HLCA(w)lv:Sw}.

3. Outline of the Algorithms
Algorithm: Bridge -connectivity
1. Find a directed spanning tree TIV.E'I of G(V,£1;
2. Compute /LCA(u,v) V(u,v)EVXV;
3. Compute /HLCA(V) VvEV;
4. Compute a.(v) VvEV;
5. Test if level(v)!ioM Vlu,v)EE'. (* (u.v) is a bridge iff
leve!(V)sa(v) *I
6. Delete all the bridges in G and find the connected
components of the resulting graph. (* These are the
bridge-connected components of G *)

Algorithm:Biconnectivity
1. Find a directed spanning tree T(V,E'I of GIV,£1;
2. Compute ILCA(u,v) Vlu,v)EVXV;
3. Compute HLCA(V) and /HLCA(V) VEV;
4. Construct an undirected graph G''IE',£") such that

((Fiu),ul,IF(v).v)) E" iff HLCAM<du or HLCA(V)<uiv
or (u,v) is in G-T and u:l!.v, v:i!J.;.

5. Find the connected components {Ci} of G''. (* Each of
them uniquely determines a biconnected component in G and
vice versa. *) Find the roots {spt,} of the induced trees
{ TnC,:}. (* {spt;}- forms the set of separation vertices of

G. r is excluded unless r=spt ,. =spti for some ifj *)

4. Correctness of the Algorithms
The correctness is based on the following theorems.

Lemma 4.1: If e is a bridge in G, then eeE'.

Theorem 4.2: (F(v),v) E' is a bridge in Giff level(v~a(v).
Proof: If (F(v).v) is a bridge. then there is no fundamental
cycle containing (F(v),v) in G. Therefore for all descendants w
of v in T, IHLCA(w)b'evel(v). Hence level(v)1£Ji,v).
If IF(v),v) E' is not a bridge. then there is a fundamental cycle
C containing (F(v),v). Let C be determined by (x,y) where (x,y)
is in G-T. Without loss of generality. we assume dx Clearly,
oc(v)9HLCA(x)~ILCA(x,y)<leve/(v). O

Denote uRv iff ((F(u).u),(F(v),v))liE". It is easy to
prove the following lemma:
Lemma 4.3: If w 1Rw,, w,Rw,, , w.1._1Rw.1. , then (F(w1),w1)

and (Flw...,),w.L) belong to the same cycle in G.

Theorem 4.4: (Fiu),u) and (F(v),v) belong to the same
connected component in G" iff (F(u),u) and (F(V),v) belong to
the same biconnected component in G.
Proof: The 'only if' part is obvious due to Lemma 4.3.
Let (F(u),u) and (F(v),v) belong to the same biconnected
component in G. There exists a simple cycle C containing
(F(u),u) and (F(v),v). Let Cv C,, ... , CL be the set of fundamental
cycles such that C=Eil{Ci}"i•t((j) is the mod-two sum).
Without loss of generality, let (F(u),u)EC1, (F(v),v)EC.e , and
(F(wi l.w.:)<EiC.- and C.:+1 lSi<I. Let (a; .b.-) be the edge in
G-T determining Ci 1Si~I. then in each c, , one of the
following must hold true: (i) ai Rbi and (w.--1Ra, or
W;-1Rb,;) and (w,; Ra,- or w,: Rb.-); (iii a; Rw;_, and
a, Rw,; ; (iii) b;, Rw;-i and bi Rw, . In any of the cases, there

is a path from (F(w;-tl,w.--1) to (F(w•),w,:). In particular, there
is a path from (F(u),u) to (F(w1),w1) in C, and a path from
(F(w.e),w-4) to (F(v),v) in C . Joining all these paths together,
we have a path from (F(u),u) to (F(v),v) in G". Hence, (F(u).u) and
(F(v),v) belong to the same connected component in G". D

5. An Implementation Based on Matrix Multipliction
On the parallel computer models we consider, we assume
that there exists an ordinary matrix multiplication algorithm
and that each processor is capable of carrying out any of the
operations +,-,*,A,V,~.=,;»,5.,l. in constant time. 0 is used to
represent the boolean constant 'true' while 1 is used to
represent 'false'. Each processor contains a constant number
of registers. Communication between interconnected
processors and between registers within the same
processor takes constant time. The undirected graph is
represented by an adjacency matrix M such that entry M[i,j]
is stored in PE[i,j]. A register, say A, in PE[i,jJ is denoted
by A[i,j]. Without loss of generality, we assume G is
connected and V= { 1,2.3, .. .,n}

Definition: A function f is called an extended monadic
function w.r.t. i, j if the arguments of f are of the form
OP!i,jJ where OP is either the name of a register or a
function of i,). we denote it by f[i,j].

Definition: An ordinary matrix multiplication algorithm is
an algorithm which uses only the associativity of +.

Lemma 5.0: If an ordinary matrix multiplication algorithm for
two nxn matrices exists on a computer model, then the
following operation could be carried out on the same model
using the same order of magnitude of time and hardware
resources.

M[i,jJ:=f,(/~(g(f1[i,k]J,[k,j]))) V i,j._ 1 '5.i,j5-n: . .
where f,, f,. f, are extended monadic functions w.r.t. 1,k; k,J
and i,j respectively. g is a composite function of the
arithmetic and boolean operations mentioned above and h is
an associative operator.
Proof: Trivial. O

Lemma 5.1: The time and hardware resources needed to
broadcast the contents of register Mia.bl columnwise
(rowwise) is at worst the same as that needed by the
ordinary matrix multiplication algorithm.
Proof: To broadcast the contents of Mia.bl columnwise. we
perform

M[w,bJ = ~((M[w.k]*O)+(M[k,bl*(k=a))) 15.w5.n.
Clearly, M[w,bJ=M[a,bJ, 1.Sw.Sn. By Lemma 5.0, the lemma
follows. Broadcasting rowwise is handled in a similar way. D

Lemma 5.2: Suppose there exists an ordinary matrix
multiplication algorithm on a computer model. Then the
all-pair shortest path of an undirected graph G with diameter
d can be determined in O(t'(n)) time with H'(n) processors on
that model,
where t'(n)=t(n)*(Uogdl + 1) and H'(n)=H(n)
Proof: Construct matrix D such that

{
1 if M[i,j]= 1 and if.};

D[i,j] = 0 if i=j;
+a> if M!i,j]=O.

Compute the matrix Dd. as follows:
D1 =D
D~u.vJ=min(D',_. [u,wJ+Di-• [w,v]), i ~1.

Clearly, o4u,vJ contains the t.he shortest distance from u to v
containing ao more than 2' edges. Therefore after [iogdl
iterations, Dlu.vJ contains the shortest distance from u to v in
G. One more iteration is required to verify that Dd. has been
computed. By Lemma 5.0, t'(n)=t(n)*(nogdJ + 1) and H'(n)=H(n). D

Lemma 5.3: Computing the transitive closure M• takes O(t'(n))
time with H(n) hardware resources.
Proof: M•[a,bJ= 1 iff D" [a,b];/;+a>. O

A detailed implementation of Algorithm
Bridge-connectivity based on matrix multiplication.
(1). Given the n>m adjacency matrix M of G(V.E) where M!i,jl is
stored in processor PE[i,j] 1!,i,jSn. (*We shall construct
a directed breath-first search spanning tree for G *Jt

1.1 Compute the all-pair shortest path matrix D

181

(2).

(3).

(4).

(5).
(6).

1.2 Choose a vertex r (say 1) as the root.
/evel[r,v] := Do. [r,v]+ 1. (*level(v)=Jevel[r,v]*)
(Broadcast columnwise) /evel[k.v]:= /evel[r,v] VveV.
(Broadcast rowwise) level[v,k] := level[v,v] VvE:V.
(*At this point, /evel(v)=/evel[v,v] *)

1.3 Compute matrix F:
F'[v,j]:= VV eve![v.kJ=((1 +I evel[k,jll*(k= j))).

k(* F'[v,j]= 1 iff level(v)=leve/(j)+ 1 *)
F[v,j]:=m<j.x((F'[v,kJAM[v,k])*k+M[k,j]*O).
(*F(v)=F[v,v]. for v1'r. is chosen as the father of v *)

1.4 (* Construct the adjacency matrix T for the BFS
spanning tree. and T', the transpose of T *)

(Broadcast columnwise:) T[k.v] := F[v,vJ VvEV.
(Broadcast rowwise:) T'[v,kJ := F[v.v] VvEV.

T[w,v] := (w=T[w,v]) V v,wEV.
T'[v,w] := (w=T'[v,w]) Vv,we-V.

2.1 Compute the transitive closure T• and (T')• of T and T'.
(* Note that T•[v,vJ= 1 and (T')•[v,v]= 1 VveV *)
2.2 /LCA[i,j] := m,61X{(T')•[i,k]*(T•[k,j]*level[k,j])}
I* /LCA[v,v] = /evel(v) VvEV *)
3.1 Construct the adjacency matrix M' of G-T.

M'[i,j] := M[i,j] A (~(T[i,j] v T'[i,j])). (* M'[v,v]= 1 VvEV *)
3.2 /HLCA!i,jl = n]n{/LCA[i,k]*M'[k,jl}
(* /HLCA[v,v] = /HLCA(v) and /HLCA[v,v].5'/eve/(V) VvEV *)
4.1 (Broadcast rowwise:) /HLCA[v,wl := /HLCA[v,vl VweV.
4.2 ~i,j] := m,jn{T•[i,k]*IHLCA[k,j]} I* Note:Ol[v,v]=<l(v) *)
5.1 Bridge[u,v] := ymu.k]J\((a.[k,vJitevel[k,v])A(k=v)))
6.1 Compute the matrix M":M"[i,j]:= M[i,jJN,~Bridge[i,jJ).
6.2 Compute (M")•. O

The method used in step 1 to find a directed BFS
spanning tree was first 'implicitly' given by Savage[11 J. It also
appeared in [1,3]. The resource complexities are as follows:

Step time hardware resources
1. 1 O(t'(n)) H(n) Lemma 5.2
1.2 O(tln)) Hin) Lemma 5. 1
1.3 O(tln)) Hin) Lemma 5.0
1.4 O(t(n)) Hin) Lemma 5. 1
2. 1 O(t'(n)) Hin) Lemma 5.3
2.2 O(t(n)) H(n) Lemma 5.0
3. 1 0(1) H(n) trivial
3.2 O(tln)) H(n) Lemma 5.0
4. 1 O(tln)) H(n) Lemma 5. 1
4.2 O(t(n)) H(n) Lemma 5.0
5. 1 O(t(n)) H(n) Lemma 5.0
6. 1 0(1) H(n) trivial
6.2 O(t'(n)) H(n) Lemma 5.3

Theorem 5.4: Algorithm Bridge-connectivity takes
O(t(n)*(logd -t- 1 l)time with H(n) hardware resources.

A detailed implementation of Algorithm Biconnectivity
based on matrix multiplication.
Steps (1)-(3). Same as Steps (1)-(3) of Algorithm
Bridge-connectivity. I* After step 3, /evel[v,k] =level(v),
/HLCA[v.vJ=/HLCA(v), Vv,kEV *)
(4). 4.1 (Broadcast rowwise:) /HLCA[v.k] := /HLCA[v,v], VveV.

(Broadcast columnwise:)/ evel'[k, v]:=I evel[v, v]. Vve V.
(Broadcast columnwise:) /HLCA'[k,v]:=/HLCA[v,v] Vv!<V.

4.2 Construct an adjacency matrix M" for G"(E',E").
M"[u, v]:=(T')•[u. vJ "(I evel'[u, vJ> /HLCA[u. v]).
M"[u,vJ:=M"[u,vJ v (T+[<.1,v] "(leve/[u,vJ>IHLCA'[u.v]))
M"[u,v]:=M"[u,v] vM'[u,v]

(* Since each v uniquely determines F(V), we .use v to
represent (F(v),v) in the vertex set of G' *)

(5). 5.1 Compute (M'')+.
5.2 (* F(V)=F[v,vJ, VveV after step 1.4 *)

(Broadcast columnwise:) F[k.v] := F[v,v]. VvEV.
Compute the matrix subroot V v4'r :
subroot[v,j] := (l'llin:i) {((M")•[v.kl*F[v,k])+(F[k,jl*O) }.
(* subroot[v,k]. Vk~V. contains the root of the
subtree (of the BFS spanning tree) containing v *)

5.3 Vv'fr. C[v,w]:= n;)in((((M")•[v.k]*k)+((M")•[k,w]*O))-{Q}).
BC[v,wJ := (M'')•[v,w]"(w=C[v.w]).

5.4 VvEV such that v=C[v,w] and v#:
(Broadcast columnwise:) subroot[k,vJ:=subroot[v,vJ;
BC!w.vJ:=BC[w.v]V(w=subroot[w,v]);
(* BC[u,vJ=BC[w,vJ= 1 iff u and w belong to the same
biconnected component represented by v in G *)
(* Flag[w,vJ:=O Vw,veV initially*)
Flag[w,vJ:=(w=subrootlw,v]).

5.5 Flagsum[u,vt.= ~ (Flaglu,kJ+(Flag[k,v]*Olll

{
Flagsurmv,vJ>O, v:t:r;

Spt[v,vJ:=
Flagsumv.vl>1, v=r.

(* Spt[v,vl= 1 iff vis a separation vertex*) D

The correctness is easily verified. the resource
complexities are as follows: ·

Step . time hardware resources
(1) to (3) O(t'(n)) H(n)
4. 1 OWn)) H(n) Lemma 5. 1
4.2 0(1) H(n) trivial
5.1 O(t(n)*logd") H(n) Lemma 5.3
5.2 O(t(n)) H(n) Lemmas 5.0,5. 1
5.3 O(t(n)) H(n) Lemma 5.0
5.4 O(t(n)) H(n) Lemmas 5.0,5. 1
5.5 O(t(n)) H(n) Lemma 5.0
(* d" is the diameter of G', 15.d"S.n. *)

Theorem 5.5: Algorithm Biconnectivity takes
O(t(n)*(max(logd,logd")+ 1)) time and H(n) hardware resources.

6. Implementation on Existing Models
The models we consider are the following:
MCN(VLSI) : Mesh connected Networks[1,3).
PSN(VLSI): Perfect Shuffle Networks[3, 141.
CCC(VLSI) : Cube Connected Cycles[9].
OTN(VLSI) : Orthogonal Tree Networks[8].
OTC(VLSI) : Orthogonal Tree Cycles[SJ.
SIMD-CCC : SIMD Cube Connected Computers[3].
SIMD-SM-A : SIMD Shared Memory model with read

conflicts permitted[11, 12). This includes the P-RAM[18].
SIMD-SR-AW : SIMD Shared Memory Model with read and

write conflicts permitted.[5, 13].

From the references cited above and Theorems 5.4,
5.5, it is not difficult to verify the results stated below:
The time and hardware resource complexities of the
previously known bridge-connectivity and biconnectivity
algorithms .2n various existing models.
model time chip area A T2 # of processors
MCN(VLSI) ornr- n2 O(ii•) - - --- t 1]
PSN(VLSI) 0(1og2nloglogn) n•llogn 0(n61og'nlog21ogn) --- [7]•
CCC(VLSI) 0(1og2n) n'/log'n O(n'log'n) --- [7]•
OTN(VLSI) 0(1og2nloglogn) n'log'n O(n'log'nlog'logn)--- !SJ•
OTC(VLSI) O(log'n) n' O(n'log'n) --- [7]•
SIMD-CCC 0(1og2n) nrn'/log_nJ 131•
SIMD-SM-A O(log'n) 1'73/lognl I 121

or 0(1og2n) mn+n' I 18]•
SIMD-SM-AW O(logn) n' [5]•

or O(logn) n2+2nm [13]•
(* Note: m is the number of edges in the graph; • indicates
that the simple-minded algorithm based on the
graph-connectivity algorithm or the matrix multiplication
algorithm applies *)

The time and hardware resource complexities of .2!!!:
algorithms on various existing models.
model time chip area AT2 # of processors
MCN(VLSI) O(n) n' Dli74l - - --- [19]
PSN(VLSI) O(logn*l) n'!log'n O(l'*n'llogn) --- 131
CCC(VLSI) O(logn*l) n•flog'n Oln'*l') --- [91
OTN(VLSll O(logn*l) n•log'n 0(n41og4n*l2) --- 171
OTC(VLSI) O(logn*l) n• 0(n'log2n*l1) --- !71
SIMD-CCC O(logn*l) rn'/logm !31
SIMD-SM-A O(logn*l) fn3/lognl [11 I
SIMD-SM-AW O(L) n• 151

(* l = logd+ 1 for bridge-connectivity;
=max(logd,logd")+ 1 for biconnectivity. 1$.d,d'~n. *)

The efficiency of our algorithms should be evident

7. Conclusion
In Section 1, we indicated that the time and hardware
resource bounds of our algorithms are bounded above by
O(t(n)*l) and H(n) respectively. This means that our algorithms
have the potential of achieving other good complexity
bounds if more elaborate techniques are used. As a matter
of fact, it has been shown that: (i) for the SIMD-SM-A
model, our algorithms could acheive the 0(1og2n) time bound
using only nfi1llog2n1 processors. This result is optimal for
dense graphs[15); (ii) for the conventional sequential

182

computers, our algorithms could run in optimal time and
space[161. It could be shown that using Reif's recent result
on the minimum spanning forest[1 OJ, our algorithms could
run in O(logn) time with probabilistic error E, O<E<1, using
IEln'logn processors. Similarly, using Awerbuch and
Shiloach's recent result on the minimum spanning forest[20J.
our algorithms could run in O(logn) time with fn'llogrij
processors on SIMD-SM-AW.

The strategy we use in this paper, when applied to
Savage and Ja'Ja's' algorithms[121 on any of the computer
models other than the SIMD-SM-A, does not result in
algorithms better than the simple-minded algorithm.
However, we do observe that Atallah and Kosarajus'
algorithms[1 J could adopt our strategy and achieve the same
hardware resource bound and a slightly higher time bound as
ours on all the computer models discussed in the preceding
section. However, their algorithms are inferior to ours for
the following reasons: Besides being more complicated, their
algorithms rely on the algorithm for finding the transitive
closure of a 'directed' graph and thus has the same time and
resource bounds as that algorithm. As the resource bounds
of the transitive closure problem are difficult to improve, so
are the bounds of their algorithms. In fact, we do not think
that their algorithms can be modified to acheive the optimal
bounds we have achieved on the SIMD-SM-A and sequential
models. Perhaps even more importantly, their algorithms do
not lead to OOogn) time probabilistic algorithms for the
P-RAM as ours do.

References
1. Atallah,M., Kosaraju, S.. "Graph Problems on a

Mesh-connected processor array", 14th ACM SOTOC,
San Francisco, CA, May 1982, pp.345-353.

2. Chin,F.Y .. J.Lam, I-Ngo Chen, "Efficient Parallel Algorithms
for Some Graph Problems", CACM, Sept 1982,
pp.659-665.

3. Dekel,E.. D.Nassimi, S.Sahni, "Parallel matrix and graph
algorithms", SIAM J.Computing, Nov. 1981, pp.65 7-675.

4. Hirschberg,D.S.. F.P.Preparata, D.V.Sarwate, "Computing
Connected Components on Parallel Computers", CACM,
Vol.22,Aug. 1979,pp.461-464.

5. Kucera,L.. "Parallel computation and conflicts in memory
access", Info. Processing Letters, April. 1980, pp.93-96.

6. Nassimi,D .. Sahni.S., "Finding connected components and
connected ones on a Mesh-connected parallel
computer", SIAM J.Computing, Nov 1980,pp.744-757.

7. Nath,D., S.N.Maheshwari, P.C.P.Bhatt, "Efficient VLSI
networks for , parallel processing based on orthogonal
trees", Technical Report No.EEB 113. 1.1.T. New Delhi.India

8. Nath,D., S.N.Maheshwari, "Parallel algorithms for the
connected components and minimal spanning problems",
Info. Processing Letters, Mar.1982, pp.7-11.

9. Preparata,F.P., J.Vuillemin, "The Cube-connected Cycles :
A Versatile Network for Parallel Computation", CACM,
vol.24,May 1981,pp.300-309.

10. Reif,J.H., "Symmetric Complementation", 14th ACM
SOTOC, San Francisco, CA, May 1982, pp.20 1-214.

11. Savage,C.D., Parallel Algori,thms for Graph Theoretic
Problems, Ph.D. Dissertation, U. of Illinois, Urbana, 1977.

12. Savage,C.D.. J.Ja' Ja'. "Fast, Efficient Parallel Algorithms
for Some Graph Problems", SIAM J.Computing,
Nov.1981, pp.682-691.

13. Shiloach,Y .. U.Vishkin, "An O(logn) Parallel Connectivity
Algorithm", Journal of Algorithms,3.1982, pp.57-67.

14. Stone,l:iS., "Parallel processing with the perfect
shuffle", IEEE Trans. Comput Feb 1971,pp153-161.

15. Tsin,Y.H., F.Chin, "Efficient parallel algorithms for a class
of graph theoretic problems", to appear.

16. Tsin,Y.H., "A generalization of Tarjan's depth first search
algorithm for the biconnectivity problem", TR82-2,
University of Alberta, April 1982.

17. Vishkin,U., "An optimal parallel connectivity algorithm",
Research Rerort, IBM Yorktown Heights, 1982.

18. Wyllie,J .. The Complexity of Parallel Computations,
Ph.D.Thesis,Cornell University, 1979.

19. Van Scoy,F.C., "The parallel recognition of classes of
graphs".! EE E Trans.Comput.July 1980,pp.563. ·

20. Awerbuch,B.. Y.Shiloach, "New Connectivity and MSF
Algorithms for Ultracomputer and PRAM", submitted.

Anomalies In Parallel Branch-and-Bound Aftorithms•

Ten-Hwang Lai and Sartaj Sahni

The Ohio State University

Abstract

We consider the effects of parallelizing tranch-and

bound algorithms by expanding several live nodes simul

taneously. It is shown that it is quite possible for a

parallel branch-and-bound algorithm using n 2 proces

sors to take more time than on0 trning n 1 proce~soro

even though n 1 < n 2 . Furthermore, it is alsopossible t"

achieve speedups that. are in excess of the ratio n 2/n;

Experimental results with the 0/ 1 Krni.psack md Travc1

ing Salesperson problems are also prP.SP.nted.

Key Words and Phrases

Parallel Algorithms, branch-and-bound, anomalous

behavior.

l. Introduction

Branch-and-bound is a popular algorithm design tech

nique that has been successfully used in the solution of

problems that arise in various fields (e.g., combinatorial

optimization, artificial intelligence, etc.) [1, 6 - 12]. We

!hall briefty describe the branch-and-bound method as

used in the solution of combinatorial optimization prob

lem8. Our terminology is from Horowiz and Sahni [7].

In a combinatorial optimization problem we are

required to find a vector x = (x 1' X2, .. ., Xn) that optim

iies some criterion function f(x) subject to a set C of

constraints. This constraint set may be partioned into

bvo subsets: explicit and implicit constraints. Implicit

constraints specify how the x;s must relate to each

at.her. 'T'wo examples are:

Explicit constraints specify the range of values

each :i; can take. For example:

• This research was supported in parl by the Office of

Naval Research under contract N00014-80-C-CB50.

0190-3918/83/0000/0183$01.00 © 1983 IEEE 183

University of Mhnesota

1) x, E !O, lj

2) X; ~ 0

The set of vectors that. satisfy the explicit con

:traints defines the solu.Non space. In a branch-and

bound approach this solution space is organized as a

graph which is usually a tree. This resulting organiza

tion is called a stale space graph (tree}. All the state

~ace graphs used in lhis paper are trees. So we shall

henceforth only refer to stat.e space trees. Figurr 1

mows a state space tree for t.he case n = 3 and x; 1:)0,

1!. The path from the root to some of the nodes (in this

case the leaves) defines an element of the solution

space. Nodes with this property arc called solution

nodes. Solution nodes that satisfy the implicit con

straints are called feasible solution nodes or answer

nodes. Answer nodes have been drawn as double circles

in Figure 1. The cost of an answer node is the value of

the criterion function at that node. In solving a com

binatorial optimization problem we wish to find a least

cost answer node.

Figure 1 A state space tree

For convenience we assunic that we wish to minim

ize f(x). With every node N in the state space tree, we
associate a value f m.in(N) = minH(Q) : Q is a feasible

solution node in the subtree NJ, (If there exists no such

Q, then let I mm(N) = oo,)

While there are several types of branch-and-bound

algorithms, we shall be concerned only with the more

popular least cost branch-and-bownd (lcbb). In this

method a heuristic function g() with the following pro

perties is used:

(Pl) g(N) ~ f min (N) for every node N in the state space

tree.

(P2) g(N) :: f(N) for solution nodes representing feasible

solutions (i.e., answer nodes).

(PS) g(N) :: "" for solution nodes representing infeasible

solutions.

(P4) g(N) ;e,, g(P) if N is a child of P.

g() is called a bound:i:n.g fwnctian. lcbb generates

the nodes in a state space tree using g(). A node that

has been genereated, can lead to a feasible solution,

and whose children haven't yet been generated is called

a live node. A list of live nodes (generally as a heap) is

maintained. In each iteration of the lcbb a live node, N,

with least g() value is selected. This node is called the

current E-nod.e. If N is an answer node, it must be a

least cost answer node. If N is not an answer node, its

children are generated. Children that cannot lead to a

least cost answer node (as determined by some heuris

tic) are discarded. The remaining childrnn are added to

the list of live nod.es.

The probl.em of parallelizing lcbb has been studied

earlier [2 - 5, 13]. There are essentially three ways to

introduce parallelism into lcbb:

(1) Expand more than 1 E-node during each iteration.

(2) Evaluate g() and determine feasibility in parallel.

(3) Use parallelism in the selection of the next E-

node(s).

Wah and Ma [13] exclusively consider (1) above

(though they point out (2) and (3) as possible sources of

parallelism). If p processors are available then q ::

min!p, number of live nodes! live nodes are selected as

the next set of E-nodes (these are the q live nodes with

smallest g() values). Let 9min be the least g value

among these q nodes. If any of these E-nodes is an

answer node and has g() value equal tog min then a least

cost answer node bas been found. Otherwise all q E

nodes are expanded and their children added to the list

of live nodes. Each such expansion of q E-node counts

184

as one ite.ration of the parallel lcbb. For any given prob

lem instance and g, let I(p) denote the number of itera

tions needed when p processors are available. Intuition

suggests that the following might be true about I(p):

(11) I(n 1) ;e,, I(n 2) whenever n1 < n2

() I(n1) n2
12 --<

l(n2) - n1

In Section 2, we show that neither of these two rela

tions is in fact valid. Even if the g()s are restricted

beyond (Pl) - (P4), these relations do not hold. The

experimental results provided in Section 3 do, however,

show that (11) and (12) can be expected to hold "most"

of the time.

Wah and Ma [13] experimented with the vertex

cover problem using 21c, 0 ~ k ~ 6 processor. Their

results indicate that I(l)/I(p) "" p. Our experiments

with the O /1-Knapsack and Traveling Salesperson prob

lems indicate that 1(1)/I(p) ""p only for "small" values
of p (say p~ 16).

2. Some 'lb.corcms For Parallel Branch-and-Bound

As remarked in the introduction, several anomalies

occur when one parallelizes branch-and-bound algo

rithms by using several E-nodes at each iteration. In

this section we establish these anomalies under varying

constraints for the bounding function g(). First, it

should be recalled· that the g() functions typically used

(eg. for the knapsack problem, traveling salesperson

problem, etc. cf. [?]) have the following properties:

(a) g(N) ;e,, g(M) whenever N is a child of node M. Thus,

the g() values along any path from the root to a

leaf form a nondecreasing sequence.

(b) Several nodes in the state space tree may have the

same g() value. ln fact, many nonsolution nodes

may have a g() value equal to r• .. This is partio'!I

larly true of nodes that are near ancestors of solu

tion nodes.

In constructing example state space trees, we shall

keep (a) in mind. None of the trees constructed will

violate (a) and we shall not explictly make this point in

further discussion. 'l'he first result we shall establish is

that it is quite possible for a parallel branch-and-bound

using n 2 processors to perform much worse than one

using a fewer number n 1 of processors.

Theorem 1: Let n 1 < n 2. For ar1y k > 0, there exists

problem instance such that kl(n 1) < l(n 2).

Proof: Consider a problem instance with the state

space tree of J<'igure 2. AU nonleaf nodes have the same

g() value equal to f*, Lhe f value of the least cosL answer

node (node A). When n 1 processors are available, one

processor expands the root and generates its n 1 + 1

children. Let us suppose that on iteration 2, the left n 1

nodes on level 2 get expanded. Of the n 1 children gen

erated n1 - 1 get bounded and only one remains live.

On iteration 3 the remaining live node on level 2 (B) and

the one on level 3 are expanded. The level 3 node leads

to the solution node and the algorithm terminates with

I(n 1) = 3.

level

I

O···O'I • • •)"-1
• • - levels . . .
00···0
k---- nz --~

Hgurc 2: Instance for Theorem 1

When n 2 processors are available, the root is

expanded on iteration 1 and all n 1 + 1 live nodes from

level 2 get expanded on iteration 2. The result is n 2 + 1

live nodes on level 3. Of these, only n 2 can be expanded

on iteration 3. These n2 could well be the rightmost n 2

nodes. And iterations 4, 5, ... , 3k could very well be lim

ited to the rightmost subtree of the root. Finally in
iteration 3k + 1, the least cost answer node a is gen-

erated. Hence, I(n2) = 3k + 1 and kI(n 1) < I(n2). []

In the above construction, all nodes have the same

g() value, f•. While this might seem extreme, property

(b) above states that it is not unusual for real g

functions to have a value f* at many nodes. The exam

ple of Figure 2 does serve to illustrate why the use of

additional processors may not always be rewarding. The

use of an additional processor can lead to the develop

ment of a node N (such as node B of Figure 2) that looks

"promising" and eventually diverts all or a significant

number of the processors into its subtree. When a

185

fewer number of processors are used, the upper bound

U at the time this "promising" node is to get expanded

might be such that U ,:;; g(N) and so N is not expanded

when a fewer number of processors are available.

The proof of Theorem 1 hi.ngcs on the fact that g(N)

may equal f* for many nodes (independent of whether

these nodes are least cost answer nodes or not). If we

require the use of g-functions that can have the value f*

only for least cost answer nodes, then Theorem 1 is no

longer valid for all combinations of n 1 and n 2 , n 1 < n2.

In particular, if n 1 ::: 1 then the use of more processors

never increases the number of iterations (Theorem 2).

Definition: A node N is criiiGal iff g(N) < f*.

Theorem 2: If g(N) 7' f* whenever N is not a least cost

answer node, then I(l):?: I(n) for n > 1.

Proof: When the number of processors is 1, only critical

nodes and least cost answer nodes can become .E-nodes

(as whenever an E-nodc is to be selected there is at

least one node N with g(N) ,;; f• in the list of livf' nodes)
Furthermore, every critical node becomes an E-node by

the time the branch-and-bound algorithm terminates.

Hence, if the number of critical nodes ism, I(l) = m.

When n > 1 processors are available, some noncriti

cal nodes may become E-nodes. However, at each itera

tion, at least one of the E-nodes must be a critical node.

So, I(n),;; m. Hence, 1(1) 2 I(n). []

When n 1 # 1, a degradation in performance is pos

sible with n2 > n 1 even if we restrict the g()s as in

Theorem 2.

Theorem 3: Assume that g(N) # f* whenever N is not a

least cost answer node. Let 1 < n 1 < n 2 and k > 0.

There exists a problem instance such that l(n 1) + k ,;;:

I(n2).

Proof: Figures 3(a) and 3(b) show two identical sub

trees T. Assume that all nodes have the same g() value

and are critical. The numbers inside each node give the

iteration number in which that node becomes an E-node

when n 1 processors are used (Figure 3(a)) and when n 2

processors are used (Figure 3(b)). Other evaluation

orders are possible. .However, the ones shown in Figures

3(a) and 3(b) will lead to a proof of this theorem.

We can construct a larger state space tree by con

necting together k copies of T (Figure 3(c}). The B node

of one copy connects to the A node (root) or Lhe next.

Each triangle in this figure represents a copy of T. 1-he

least cost answer node is the child of lhe B node of the

last copy of T. It is cl.ear that for the state space tree of

Figure 3(c), I(n 1) ::: jk while 1(n2) = (j + l)k Hence,

I(n 1) + k::: I(n2). fl
LJ

The assumption that g(N) ?' f• when N is not a least

cost answer node is not too unrealistic as it is often pos

sible to modify typical g()s so that they satisfy this

requirement. The example of Figure 3 has many nodes

with the same g() value and so we might wonder what

would happen if we restricted the g()s so that only least

cost answer nodes can have the same g() value. This

restriction on g() is quite severe and, in practice, it is

often not possible to guarantee that the g() in use

satisfies this restriction. However, despite the severity

of the restriction one cannot guarantee that there ·will

be no degradation of performance using n 2 processors

when n 1 < n2 < 2(n 1 - 1). We have unfortunately been

unable to extend our result of Theorem 4 to the case

when n 2 ::;,- 2(n 1 - 1). So, it is quite possible that no

degradation is possible when the number of processors

is (approximately) doubled and g() is restricted as

above.

Theorem 4: Let n 1 < n 2 < 2(n 1 - 1) and let k > 0. There

exists a g() and a problem instance that satisfy the fol

lowing properties:

(a) g(N1) #' g(N2) unless both of N 1 and N2 are least

cost answer noel es.

Proof: Consider the state space tree of Figure 4(a). The

number outside each node is its g() value while the

number inside a node gives the iteration in which that

node is the E-node when n 1 processors are used. It

takes n 1 processors 4 iterations to get to and evaluate

node B. When n 2 processors are available 1 n 1 < n 2 <
2(n 1 - 1), the iteration numbers are as given in Figure

4(b). This time 5 iterations are needed. Combining k

copies of this tree and setting the g() values in each

copy to be different .from those in other copies yields

the tree of Figure 4(c). For this tree, we see that I(n 1)

+ k = I(n2). []

186

n2

'Q
(a)

I
I

(c)

(b)

Ji1gure 3: Instance for Theorem 3

(a)

(c)

(b)

Ji1gure 4: Instance for Theorem 4

The remaining results we shall establish in this sec

tion are concerned with the maximum improvement in

performance one can get in going from n 1 to n 2 proces

sors, n 1 < n 2 . Generally, one would expect that the per

formance can increase by at most n 2 I n 1 . This is not

true for branch-and-bound. In fact, Theorem 5 shows

that using g()s that satisfy properties (a) and (b), an

unbounded improvement in performance is possible.

The reason for this is much the same as for the possibil

ity of an unbounded loss in performance. The additional

processors rn.ight enable us to improve the upper bound

quickly thereby curtailing the expansion of some of the

nodes that might get expanded without these proces

sors.

Theorem 5: Let n 1 < n2. For any k > n 2/n 1, there

exists a problem instance for which J(n 1)/ J(n 2) ;-;,, k >
n2/n1.

Proof: See [14). •

As in the case of Theorem 2, we can show that when

g(N) 7' f* whenever N is not a least cost answer node,

1(1)/I(n),;; n.

Theorem 6: Assume that g(N) ~ f• whenever N is not a

least cost answer node. 1(1)/I(n),,; n for n > 1.

Proof: From the proof of Theorem 2, we know that 1(1)

= m where mis the number of critical nod.es. Since all

critical nodes must become E-nodes before the branch

and-bound algorithm can terminate, I(n) ;:,,, min. Hence,

1(1)/l(n),,;;; n. []

When 1 < n 1 < n 2 and g(N) is restricted as above,

I(n 1)1I(n2) can exceed n21n 1 but cannot exceed n2.

Theorem 7: Assume that g(N) 7' f• whenever N is not a

least cost answer node. Let 1 < n 1 < n 2 . The following

are true:

(1) I(n1)II(n2),,;;; n2.

(2) There exists a problem instance for which

I(n 1)/I(n:J > n2/n 1•

Proof: (1) From Theorems 2 and 6, we immediately

obtain:

(2) See [14). •

In order to determine the frequency of anomalous

behavior described in the previous section, we simu-

187.

lated a parallel branch-and-bound with 2"' processors

fork= 0, 1. 2, 9. Two test problems were used: 0/1-

Knapsack and Traveling Salesperson. These are

described below.

0/ 1-Knapsack:

In this problem we are given n objects and a knapsack

with capacity M. Object i has associated with it a profit

P; and a weight wi. We wish to place a subset of the n

objects into the knapsack such that the knapsack capa

city is not exceeded and the sum of the profits of the

objects in the knapsack is maximum. Formally, we wish

to solve the following problem:

maximize f;Pizi
•=1

(a) binary tree
(b) J-ary tree

Fipre5

Horowitz and Sahni [7] describe two state space

trees tmt could be used to solve this problem. One

results from what they call the fixed tuple size formula

tion. Tlis is a binary tree such as the one shown in Fig

ure 5(a) for the case n = 3. The other- results from the

variable tuple size formulation. This is an n-ary tree.

When n = 3, the resulting tree is as in Figure 5(b}. The

boundin& function used is the same as the one

described in [7]. Since the bounding function requires

tn.t objects De ordered such that A I 'ti.It :z.: A+1 I °W>+l•

1 ~ i < n, we cenerated our test data by ftrst generating

random w.;s. The p.s were then computed from the w.;s

ti,' using a random nonincreasing sequence / 1, / 2,

/,. and the equation Pi = /;w;. We generated 100

mstances with n = 50 and 60 instances with n = 100.

1hll9e 180 inltAnces were llOM!d. using the binary state

space tree described above. (We also tried the n-ary

state space tree but found that it would take several

weeks of computer time to complete our simulation.

The reason it will take so much time is that when n-ary

state space trees are used a great number of nodes will

be generated and the queue of live nodes will exceed the

capacity of main memory and has to be moved to the

secondary storage. In our program, it is time consum

ming to maintain a queue of live nodes that must be

partly stored in secondary storage.)

n = 50 n = 100

p II l(p) Lill__
rI;;S_

[hl
]l~ l(p) lilL

JL;I
[hl

-112n3:
I 363 1.00 1.87 2814 1.00 2.19

ii 188 1.87 1.68 1351 2.19 1.85
106 .. 3.17 1.42 754 3.69 1.75
70 4.66 1.22 402 6.47 1.60

151 56 5.97 1.09 232 10.58 1.35

~q 51 6.84 1.03 162 14.94 1.22
50 7.23 1.00 126 19.35 1.14

128 11
50 7.26 1.00 108 23.68 1.05

. 256 l 50 7.26 1.00 102 25.84 1.02
512 11 50

I
7.26 1.00 100 27.06 1.01

102~ ii 50 7.26 100 27.68

Table 1: Experimental results (knapsack)

Table 1 gives the average values for l(p), 1(1)/l(p)

and l(p)/l(2p). From Table 1, we see that when n = 50,

1(1)/l(p) is significantly less than p for p > 2 The

observed improvement in performance is not as high as

one might expect. Similarly, the ratio l(p)II(2p) drops

rapidly to 1 and is acceptable orJy for p = 1 and 2 (sec

also Figure 6).

In none of the 100 instances tried for n = 50 did we

observe anomalous behavior. I.e., it was never the case

that I(p) < 1(2p) or that I(p) > 21(2p).

When n = 100, the ratio I(l)ll(p) is significantly less

than p for p > 6 (see also Figure 7). Of the 60 instances

run. 6 (or 10%) exhibited anomalous behavior. For all 6

of these there was at least one p for which l(p) > 21(2p).

There was only one case where I(p) < 1(2p). The values

of I(p), I(l)/I(p), and 1(p)/1(2p) for these six instances is

given in Table 2. It is striking to note the instance for

which 1(1)/1(2) = 14.6 and 1(2)11(4) = 0. 15.

7he '!'raveling Salesperson Problem.:

Here we are given an n vertex undirected complete

graph. Each edge is assigned a weight. A tour is a cycle

that includes every vertex (i.e., it is a Hamiltonian

cycle). The cost of a tour is the sum of the weights of

ll!D
YT2PT

JO

20

10

2
lliL
1T2PT

0

1

2

2

2

2

p

4 8 16 J2 64 128 256 512

P• number of processors

p
8 16 J2 64 128 256 512

P• number of processors

F'iflure 8 Knapsack with 50 objects

4 8 16 J2 64 128 256 512 1024

p, number of processors

4 8 16 J2 64 128 256 512

p, number of processors

Ji'i.gu:re 7 Knapsack with 100 objects

188

p I(p) .illL filT)~ T{";;Y
1 2131 i'.Oo 1-:79
2 1191 1.79 2.23
4 533 4.00 1.49
6 357 5.97 2.01

16 178 11.97 1.09

1 1009 1.00 2.19
·2 461 2.19 1.57

1. 21593 1.00 1.99
6 3060 7.06 2.04

16 1503 14.37 1.61

1 4119 1.00 2.03
2 2034 2.03 2.06
4 967 4.17 1.84

1 5251 1.00 3.04
2 1725 3.04 1.90
4 909 5.78 1.41
8 646 6.13 1.74

16 372 14.12 2.01
32 185 28.38 1.42

1 7510 1.00 14.64
2 513 14.64 0.15
4 3346 2.24 2.65
6 1174 6.40 2.23

16 527 14.25 0.95
32 552 13.61 1.71

Table 2: Data exhibiting anomalous behavior

the edges on the tour. We wish to find a tour of

minimum cost.

The branch-and-bound strategy that we used is a

simplified version of the one proposed by Held and Karp

[6). Vertex 1 is chosen as the start vertex. There are n

- 1 possibilities for the next vertex and n - 2 for the

preceding vertex (assume n > 2). This leads to (n - l)(n

- 2) sequences of 3 vertices each. Half of these may be

discarded as they are symmetric to other sequences.

Any sequence with an edge l:1avi.ng infinite weight may

also be discarded. Paths are expanded one vertex at a

time using the set of vertices adjacent to the end of the

path. A lower bound for the path (i 1, i:l , ii,) is

obtained by computing the cost of the minimum span

ning tree for ! 1, 2, ... , nj - !i1, i2, ... , ii,! and adding an

edge from each of iJ. and ii, to this spanning tree in

such a way that these edges connect to the two nearest

vertices in the spanning tree.

In our experiment with the traveling salesperson

problem we generated 45 instances each having 20 ver

tices. The weights were assigned randomly. However,

189

each edge had a finite weight with probability 0.35. l!se

of a much higher probability results in instances that

take years of computer time to solve by the branch

and-bound method.

Those 45 instances were solved using p = zl:, O ~ k

,;:; 9 processors. The average values of I(p), I(l)II(p),

and I(p)II(2p) are tabulated in Table 3. As can be seen,

for p ~ 32 the average value of 1(1)/l(p) is quite close to

p and the average value of I(p)/.1(2p) is quite close to 2

(see also Figure :8). No anomalies were observed for

any of these 45 instances.

p I I(p) ff~~- trkPJ_)_
1 3974 1.000 1.996
2 1989 1.996 1.990
4 996 3.973 1.976
8 500 7.649 1.943

16 252 15.258 1.873
32 129 28.685 1.753
64 68 51.126 1.609

126 39 65.378 1.417
256 25 129.411 1.252
512 19 177.459

Table 3: Experimental results (traveling salesperson)

4. Conclusions

We have demonstrated the existence of anomalous

behavior in parallel branch-and-bound. Our experimen

tal results indicate that such anomalous behavior will be

rarely witnessed in practice. Furthermore, there is lit

tle advantage to expanding more than k nodes in paral

lel. k will in general depend on both the problem and

the problem size being solved. If we require I(p)/I(2p)

to be at least 1.66, then for the knaeksack problem with

n = 50, k is between 4 and 8 whereas with n =100 it is

between 6 and 16 (based on our experimental results).

For the traveling salesperson problem with 20 vertices k

is between 6 and 16. If p is !urger than k, then more

effective use of the processors is made when they are

divided into k groups each of size approximately p/k.

Each group of processors is used to expand a single E

node in parallel. If s is the speedup obtained by expand

ing an E-node using q processors, then allocating q pro

cessors to each E-node and expanding only p/q E-nodes

in parallel is preferable to expanding p E-nodes in paral

lel provided that sl(l)/I(p/q) > 1(1}/I(p).

6. M. Held and R Karp, "The traveling sale:sanan prob

lem and minimum spanning trees: part II," Mat!

128 Prag., 1, pp. 6-25, 1971.

64

J2

16

8

2

1 2 4 8 16 J2 64 128 256 512

p, number of processors

p, number of processors

F'i.gure 8: Traveling salesperson

References

1. N. Agin, "Optimum seeking with branch-and bound,'

Manage. Sci., Yol. 13, pp. Bl 76-B185.

2. B. Desai, "The BPU, a staged parallel processint

system to solve the zero-one problem," Proceed

i:ngs af JCS '78, 1978, pp. 802-817.

3. B. Desai, "A parallel microprocessing system,'

Praceed1:ngs of thB 1979 International Conference

an Pa:rallel Processing, 1979.

4. 0. El-Dessouki and W. Huen, "Distributed enumera

tion on network computers," IEEE Tra:nsactions en

Computers, C-29, 1980, pp. 818-825.

5. J. Harris and D. Smith, "Hierarchical multiproces

sor organizations," Procead:i:ngs of the 4th Annuc1

Symposium on Computar Architecture, 1977, pp

41-48.

190

7. E. Horowitz and S. Sahni, F'i1.n.dam.P.nfaL<: nf Cnmc

puter Algarithm.s, Computer Science Press, Inc.,

1978.

8. E. Ignall and L.Schrage, "Application of the branch

and-bound techni.que to some flow-shop schedulint

problems," Oper. Res., .13, pp. 400-412, 1965.

9. W. Kohler and K. Steiglitz, "Enumerative and itera:

tive computational approaches," in E. Coffman (ed.!

Computer and Job-Shop Sched:ul.1.ng Theory, Joh.it

Wiley & Sons, Inc., New York, 1976, pp. 229-287.

10. E. Lawer and D. Wood, "Branch-and bound methods

a survey," Oper. Res., 14, pp. 699-719, 1966.

11. L. Mitten, "Branch-and-bound methods: general for

mulation and properties," Oper. Res .. lB, pp. 24-34,

1970.

12. N. Nilsson, Problem Salving Methods 1:n Artificial

Intelligence, McGraw-Hilt, NewYork, 1971.

13. B. Wah and Y. Ma, "NANIP - a parallel computer sys

tem for implementing branch-and-bound algo

rit:Qm," Praceed:in.gs o/ The 8th Annual Sym:posiurn

on Computer Architecture, 19B2, pp. 239-262.

14. T. Lai and S. Sahni, "Anomalies in parallel branch

and-bound algorithms", University of Minnesota,

Technical Report, 1982.

Experience with Two Parallel Programs Solving the Traveling Salesman Problem

Jo<rph \Johan

Department of Computer Science

Carncgic-\fcl!on CniYcrsity

Pithburgh. PA 15213

,\h..;lr:H:i: lhc t1;ncling :--:ilc.-.rn;in problem 1-.: c,ol\cd on ('r~1*. a multiprocessor
-..~ . ..;tcm. ~l\lllL' tv,o p;11<1ilcl .-.L·;1rd1 Jll"Ol:1:rn1.., ba!-.l'd 01: !he b1a11l'l1 and bound algorithm
or I 1t1k. \!urt}. SwL·~n:- and K;ircl 011e 11r thc~l' proFrarn~ i-; "> 11c-hro110us ;md has a
ma-,tl'1·-:-.J;1n: p:occ;.." strur:Lu1c. v.h11c U1c other 1.-. ns~ 11c-hronouc; and has ;rn egalitarian
st1uc1u1c ·1 he ab~nlutc cxcrut1nn t1111c\ and ll1c .<-.pccdups of the two programs differ
:-1~~111l\ra:1tly rJ1cir C\l'l'lllloil lillll''I cliffrr hl'l'<lll.\C of t!lc difference Ill their proCCSS

slrUL'lurc '!heir ;-,pccdun" differ bcc\1u..,c the:. require different amounts of

coniput;Hior: to o..;ohc the .~imc problem l'hl' .. d1lfcrcncc in the amount of
cornjrn!at1on 1~ C\pl<iincd h~ then d1ffe1L'lll hcuri:.11c gr:rnularnies 'Ilic difference
bd\1.t'tn the ..,pcedup l)r the <l:-..>nchronou~ :-..LTDnJ p1uL:r:i111 ;rnd hncJr speedup is
a!lribt11cJ tc1 p1oce~~tlf'> 1Jl111g ow1r1g to rc\ourcc contc11t1on

1. Introduction
ll1e 1r;1,ei1ng ·-x1lL\m:in problem (1s1-'_ fm short} F lO find the round-trip tour that

\ i.'>ll\ r;ll'h of \' c1t1i..':. once. for the mirnmum co-,t, g11.c11 an NXN matrix of the costs
oftrn•i::lil~l~ fr(>Tll one en;. to another Thc1e a1c ~c1.crr;l 'ariations to 1hc problem. I
chc•sc to f1nJ lhc ..::1.:1ct solution 10th<.' a~~ mrnetrJc non-euclidean lSP bcC3.usc it is the
mo:-.t gc11N;1l of 811 \Jf!<Wons

\~:111:- al~rnithlll" b;i'-l'd on the 1cc!1111quc..; or d\ ri:1n1ic prol_'.l:lll1llllnf:'. ;ind branch
<Jlld hound <..o!\c tJ·,e J'.-,f' J"J1c pro~r;Jlll:' '>lUdicd hc1e 3!'C ba:..ed on the branch and
brnmd alror1thm uf I 11lk \'flll"I) s\ ... C<..'11) and K;ircl [.'>] ll1i:i alg,orilhm \'/ill be

c-<1!lcd the J '.J1r-. :1!~:1ll 1thm hcrcaflL>r ·1hL'1wo rrngrani-.. that were implemented he on
"I~!nilkantl;. ditfrrl'!lt point:.. in the 1rnpk111cnt;l\ion spectrum so that a comparative
21n:il)<..1" of their rL·rfrnm:111cc v.111 ~heel :iomc light on lhc relation between
pc.rrrn;:i:1;1cc ai1d ;1;11alld prog1wn ;Htnbutcs An c\1rl1cr tcchnir.11 report [4] contains
more dc:tni!\ 011 !he :i!gornhm and tl11.: 1mpkmcnlations

'Ilic cxpc 1 1m21J!EI were conducted on the mul!iprocc-.,sor ~y "item Cm* [6], running
tile opcratl!lg ~.~ :..t,_::n: St:.rOS [iJ. cm~· h~ndv,arc con:-..1<..L< ol fill) f)Jgital F1.1uipmcnt

l lll''>C prncc:..spr-mcmoi y p:1i1 s. called Cm\ arc con11t~c!cd b) a
h1l·1;irrh1ctL .ll-..:nhut'.'d s•,1,1tch111g .'>trw ltill' ('m"' i'> p:ut1tioncd into five clusters of
~111 it·· J .: (·111\1.':1,1·1: tlil' ('n' ·, 111 ;111 H.cll\ 1du;ll clu-;tc1 arc cnn:icctcd \ ia ;-i mnp bu'i to a
:m~ll1lllt- :Hot'l'\.\1ll. cilk·c ;l An111p, tl1r(lt1):!ll \\ll1ch they cornnrnnic1lc w1lh each
oilier !!i.... L'lti-..\Ci" 1lic1;1.,chc-, ;JJL' uHrncctcd 1,1,i 1nrcrclwrcr bu.1·.1es. Any Cm can

JClc!Cl,\'C llJL'lllOr> :111.\ u,.ilL'1C Ill 1h· \~<..l\'!11 I [m\C\CI !Ile Cill\(Cl" ~ll'UC'lLirC induces an
acc \~ l1h.'iiirrl1~ 1'.,plciil_ :1CC(<..'\ to Ilic !llCJllOr} or dllOlilcr Cm iii the .'\.:l!llC cluster
cn:,t:, about !h!'cc time'> the ;ircc·," io !he Cm\ ,,,~n (loc;li) memory and access to
1cmo\(' clustc1:i cu:ih ahnH t\\Ll\c t~rtic~[!] S1:uOS 1-; an nhJL·rt-orientcd. 111cs1.,agc

l1~~<..crJ opc1alir1!_.: s~ -;tell; to -;11pport culkclldns or p1 tKc-;sc-.. that cooperate to solve
problem~.

2. LMSK Algorithm
'll1c: 1 ~',)r-:. ;1l~~orithm v.«11 k:. h2. partitioning the ;.;ct of all possih!e tours into

p1og,1T:<;\t\cl:, :irn:illcr subc;cl.\, wil:ch :ire rcpre.',cntcd on the nodes of a state-space
\fee. :ind then c\p:rnd1r~g the ~t:ltc-..,p:m.:: :rec mcrcmcm;ill) lowa1d the goal node
u-..mg hcllri)\lC' lo guide t11c \l':trch ll1c algonthm u<...e:-. two hcun')lic~ lO guide its
:,c;Jrcl1 toward the '>olu11on 11odc l he nudc-1c/ccr101' liiu,.i.wc choo..,c:._ frnrn among

all the lc;if node-; of !ht' current lfCl:, that !car node- \\hmc c:,timatcd kw.er-bound
tour co.-.t i<.. tlw ica~t !'lie edge- 1c!ccnnn /;(rm.1r1c computes Lhc increments in tour
cml v,hui cl1ffLrcn1 edge.~ .11c cx:Judcd !'rum the tou1_ and choo~c::. the edge that
cau~cs the 111a\1111u1l1 1ncrcmcnt lhc d-::'>c1ip11on of l11c algorithm bclrn.· explain~
hov. U1e nude.., and edge.~ thus cho:..cIJ arc used

Stanmr with a tree consi:.ting or ju t tJ1e root node, \~hich reprc.:.cnts the :-.ct of ali
tou1~ the ,Jlg011thm rt/)('ofn/~1 nccutc:i thc~c ~.1cps m W'q1tencc: it first chooses, from
;:ill the leaf ncir!c:. of the cuirent l!c..::, the node that 1~ most likely lu lead to the
:iolution (u~inb'. the nodc-:..clcction hcuri<..tic) :md dc<.;1gnatcs it to be the next
C\p~rnsiun nmk: ii 1hc11 cl1oo~c" one: or more edge~ (lcgr;; of a tour) usmg the
cdgc-~clcctio1\ hL"ur1<.,1ic: 1l :icl" up the child node~ \\oith :ill the different wmb!n2.lions

·n1is rc~carch w:l'.: ~upportcd :n pnn b;, the '.\at1(rnal Science Foundation

under grant ECS·S 120270.

0190-39i8/83/0000/0191$01.00 © 1983 IEEE 191

of !!lC'lihinn <.rn~J l'XCIU\ion nf 1Jll' ·,elected l'dgl'.~: illld !~lllillJ:, II Wn1)1UtC:-l for each
cl1J!d node the lln,c1-buu11d co~t or ·!ll tours in the '...Ub:..ct dcflm:d b\ the child node.
11~C ,ligor;th!ll ll'!lllll1,lll':, \\hL'tl ,J leaf llOcil: l~ round !!la! ICJ)fl::,ell\'.'.. <l ... ing_\c COlllplctC
tmir v.nh a C{hl lc<..s th<ln or equal to the lmi,.cr-bound costs or :111 possible tours,
\I. hicll arc reprc-,cnted by the leaf nodes of the current statc-:ipacc tree.

I lcrc i:i ;:i high le\ cl rcprc:..cntation of the algorithm:
repeat

!: ,')'l'lf'ct node in state space tree usmg nodc-sc/rction heuristic;

2: St'!t'l'f one or more edge.\ wmg nh.:.c·scfet'fw11 heuristic;

3: For each child 1·orrnpor:ding to one inch1.\ion/cxcluswn

combination of the W'lccred edge~;

3.1: ('rcatc a node and link it to tree;

3.2. JJcnrc co.\t motrirfor child node;

3.3: Rt'tiflff matrix und find llCI'. /01icr bowrd for all tours

dc:/imd b) child node;

until a full ro1u. \11th n cost less than or equal to the /o,..cr bounds on all

prm·1hfr tours, is ubtwncd

3. Implementations
One tcdrniquc for ad;i_p1111g an algorithm for parallel execution is unfolding a loop

:ind kt ting multiple proce<.;:..es v.ork on different iteration:.. or the unfolded loop. This
technique 1~ adopted here m two different wa~:.. to get two parallel programs, which
unfold different loops of the algorithm One progrJ.m, ISPI, unfolds the/or loop that
~cb up chi!d node~ htcp J of algorithm in JHC\'1ous section), v.hik the other, rsP2.

unfold~, the outcnno:il (repeat) loop

ll1e fir.~! pr 01·rnm. ·1 \!'I, is a \rnchronous n:wte1~ \'/arc program. rhc master process
1mpkrnc111~ !Ill' t>Uler kinp or !he ;ilg(11ill1n1. :..tcp:.. I a11d 2, and thL' loop control of
~t..::p J !'he <.,];i1.e p1orc:i\L'S (rn1c for c:1d1 cl11IJ) inip!cmcnl the :..tcp~ within Ilic inner

lrn)p. 1!1:11 1-;, c;ll'Jb l I. 3.!, J.nd 1.3 ·1 (J (Jbta111 a p.ir:illc!1.-,1n or /V during an execution,
log, IV L'd,e.::~ arc ... elected b) the ma.<..lcr durmg c..1ch 1tcrat1on, eau~mg N child nodes
to be ~cl up b} 1\1 ~l;l\c:... one child no(k by each slave.

J"hc othc1 program, ISPL, is implemented as a collection of mynchronous

coopc;:ding p!Pl'cs:ics with no 1rn.i:-.tcr-~l;l\c rcl;1tionsh1p :1rno11g tJ1cm: such 3 process
structure!~ rcrnrcd to here as ('r,0!1ranon. 1:~1ch proce:is. during c1ch of it~ iterations.
:icket:i or.ii..: edge ;rnd set~ up two child nodes: one node includmg, the edg,c in !he tour,
and the ('1 her c\ eluding 11. E.lch proccc;s execute:.. :ill !hr :-.tcp" in the algonthm and
docs '-O 1cpc.:itcdly until !l is determined by con:icn:..11s that a lour has been found.

4.Speedup
In lhi:.. :irct1on the S!)CCdur~ urthl' t\\o) p!"Ogtams will be presented. Speedup is the

ratin ol' scnal execution t1111c to parallel execution time It reflects the effective
parallelism ach1c\cd at a g1\Cn nominal parallelism.

4.1. TSP1
Figure 1 plots speedup against parnllch~m for "ISP!. As explained before, the

degree of parallcl!:..m for this program can a:isumc only values that arc powers of 2.
l !owe\ er dJt.a pomt~ in all the figures in this section arc shown interpolated to depict
trend:-. of :-rnoothcned value~. Speedup at a gi\en parallelism is computed a'I

2 *solution time for parnllcli.-;m oft\\.o I :iolut1on time for given parallelism,

(J'h1s slightly non-standard definition of speedup is <:idopted here for practical
rea..,om.) ·nie :..olution lime i:; taken to be the ehp.-.ed time for sohing the problem.
C\cludinq the time spent crc:lllng the slave procc:..scs. The execution times va;;,'
depending on the distribution of processes among the clusters because of the

h:·crar('h1c~1l mc111ory- 2cccs~ :itructurc of Cm* ·ro factor out thi:.. phenomenon. only
tlic bcs1 time-;_ among all th\"'. different placemcnt:i for. which the experiments were
performed. were used when calculating ~pccdups.

The dashed li:1e shows liocar speedup (speedup equals parallelism) and the solid

12

10

a
6

0

--• Speedup of solution time (actual) / +
0-0 Speedup adjusted for nodes generated

/

/
/

/
/

/
/

- ---<> --/ --/

/ ~
/ /
~~

~---~~•tt-~~~~~--·
+

2 4 6 8 IO 12 u 16
Parallelism

Figure I: Speedup versus parallelism for TSP!

line plots the actual 'peedup achieved for this program. The actual 'peedup is
· reasonable between parallelisms of 2 and 4 (speedup at a parallelism of 4 is 2.8).

However it stans going down a!ler a parallelism of about 6. and remains constant at a
speedup of 2.6 after a parallelism of about 8. "Ibis droop is explained by the greater
total amount of work done al a greater paralleli'm for this program and by the
saturation of system bottlenecks when greater amount of simultaneous computation
occurs in the system. The dot-dashed line in the graph factors out the effect of the
greater amount of work done with greater parallelism. lbis curve would have been
the speedup curve of this program. if the total computation for solving the problem
did nm increase with increasing parallelism. The primary work of the algorithm
consisL' of setting up and reducing the cost matrix corresponding to the nodes of the
state-space tree. "!bus the number of nodes generated is a measure of the total
computation per formed for soiving the TSP. Assuming that total computation for
solution was directly proportional to the number of nodes generated,

speedup adjusted for nodes generated corresponding to parallelism N
= 2 • solution time per unit computation with 2 processes I

solution time per unit computation with N processes

= 2 •(solution time with 2 processes I number of nodes generated

with 2 processes) I (solution time with N processes I

number of nodes generated with N procc.'-·«~s)

"!be curve corresponding to the adjusted •peedup behaves much better: it is a lot
nearer to the linear •pccdup line. docs not show any signs of peaking or saturation
and continues to increase reasonably till a parallelism of 16, which was the maximum
parallelism of the experiment. "Jbc difference between the linear speedup line and
this curve corresponds to loss of proccs"SOr time owing to the synchronous control of
the program and to contention for system resources •11ch as the Kmaps, various

· system busses, SI .ocals, and the Object Manager.

4.2. TSP2
Figure 2 plots speedup against parallelism for TSP2. Since for this program single

process execution ;,, possible, actual speedup at a given parallelism ;,, computed as

solution time for parallelism of one I solution time for given parallelism.

"lbe speedup curve looks much better than that for TSP!. It is close to the linear
speedup line until a parallelism of 6 and docs not show any signs of peaking or
saturating at higher parallelisms. It is almost identical to the speedup adjusted for

. nodes generated in TSPJ. This adjusted speedup was what the system wa.• capable of
achieving, if the total computation for solving the problem had remained constant
with increasing parallelism. "!bi.• close correspondence of the two curves suggests
that the amount of computation docs not increase with parallelism here. 1bis
inference ;,, reinforced by the number of nodes generated by TSP2 remaining nearly
constant for all parallelisms.

The absolute execution limes for TSP2 arc lower than for TSP! by about 25% at a
parallelism of 2 and by about 80% at a parallelism of 16. For a parallelism of 2, the
nodes generated and the nodes expanded for both programs arc the same, suggesting
thal the total amount of wmpu.tation done by all processes for solving, the problem is
about the same for both the programs. Consequently one has to look for some
explanation other than increased computation for the 25% decrease in absolute
execution time at this parallelism. 1be following arc two possible explanations for

192

:Ir 16

~ 14
~

12

10

0

•---e Speedup of solution lime (actual) +
/

/
/

/
/

/
/

/

4 6 8 10 12 14 16
Parallelism

Figure 2: Speedup versus parallelism for TSP2

this behavior: First, in TSP! (with its master-slave structure), when the master is busy
deciding on which node to expand next. the .laves idle (after creating a look-ahead
node for the next iteration) wasting processor time. Because of the egalitarian process
structure ofTSP2, processes here do not idle waiting for more work. Secondly, in TSPl
(with its synchronous program control), some time is ·wasted because of a lack of
absolute work balance between the slave processes. On the other hand. in "11iP2, with
its asynchronous control. absolute work balance between processes is not critical, and
therefore no time is lost because of imbalance.

Figure 3 factors out the effect' of clus1er level contention on speedup. Ouster
level contention here refers to contention for resources that arc replicated for each
cluster in the run-time system: these resources include the Kmaps. the Map bus.'ICS,
and the Object Manager. Cluster level contention is distinguished from system level
contention. that is, contention for system-unique resources of the run-time
environment and of the application program itself. Examples of system-unique

. resources arc the intcrcluster bus and user locks. Speedup for this figure is computed
' using solution times with the same number of processes in each cluster to ensure that

12

IO

0

•- · - l process per cluster
<>---o 2 processes per cluster
.__... 4 processes per cluster

2 6 8 IO

/

+
/

12 14 16
Pamllelism

Figure 3: Speedup (nom1alized for cluster level contention)

versus parallelism for TSP2

cluster level contention is nearly the same for all data points on a given curve. The
curves hug the linear speedup line closely except near a parallelism of 16: this
suggests that below a parallelism of 12 there i• hardly any system le_vel contention and
most of the loss in execution time seen in the previous speedup figure is attributable
to cluster level contention. Near a parallelism of 16, system level contention affecl$
performance adversely to a more significant extent

5. Work and Heuristic Granularity
Work of a program, here. refers to the total amount of basic computation done by

all the processes of the program to solve the given problem cooperatively; work
excludes processor idling. resource contention, and overhead costs, such as the costs
of locking and communication. Though these excluded costs arc expected to change
with the implementation strategy trat is used to map a general algorithm into a
parallel program, work itself. as defined above, is usually assumed to remain
constant. In practice, however, the mapping decisions can affect the work of a

program Farlicr cxpcl!lncnts hy other researchers[<] showed that work run change

with the degree of parnllclism of an cxccuti0!1 inslancl~ of a program and with other
J)fOc'_;·;111 attrihutcs. such a~ control synchronism The two implementations of the
I MSK algorithm illustrate this phenomenon further.

".1000
~
.!;

~ 2500

" "Q-i 2000

<:
1500

/000

-- Nodes generated hy TSP 1
Nodes generated by TSP 2

• -~------lC.--------------x

12 14 16
Pam lie/ism

Figure 4: Work variation in TSP programs

As observed before, Lhc primary reason for the better speedup performance ofTSP2

is directly attributable to its work remaining constant wlth parallelism (compare
Figures l and 2). For the LMSK algonthm, the total number of nodes in the final
state-space tree is an indicator of work done by the programs. Figure 4 shows how
the W(Jrk for thC' two programs varies with parallelism. For I'SPl, work increases with
paralleiism. while for 1SP2 it remains nearly constant.

Where docs this difference in work between the two programs arise from? The
amount of work done by a heuristic search algorithm. such as the LMSK algorithm, is
detcnnincd by the effectiveness of the heuristics in bounding the search. This
difference in work can be explained by the difference in their heuristic granularities.
For a heuristic search program, the average amount of computation by all its ,

processes bct\vccn points of heuristic application is the heuristic granularity of that

progrnm [5]. For the TSP programs, one kind of heuristic granularity can be
as~ociatcd with the node-selection heuristic. and another with Lhc cdgc·sclcction

heuristic. 1:igurc 5 depicts how the two kinds of heuristic granularilics of the TSP

proj,;'_1;1111s vary with parallelism. Since the major amount of computation in an

iteration goes into setting up new nodes, grnnularity here is expressed in tcm1s of the
amount or computation needed to sci up one new node_ The heuristic granularity

corresponding to the node-selection heuristic and that corresponding to the cdge
sdcction heuristic will be examined separately below.

-:;. 16
§>
~ 14

1 12

~JO
]
~ 8

<3 6

4

2

0

e----e Sode heuristic granularity, TSP I
o - El Edge heuristic granularity. TSP I

Both heuristic granularities, TSP.

- - -o- - -
- ()

-a-·-·-·*·-------·-·-·-t<

2 4 6 8 10 12 14 16
Pam/le/ism

J<'igure 5: Granularity variation in TSP programs

First. let us consider the node-selection heuristic. Both programs apply this
heurdic once every iteration. Jn TSP!, the number of nodes set up by the master I
process in one iteration equals the degree of parallelism and hence the heuristic I
granularity equals the degree of parallelism. lhc heuristic granularity then increases :
linearly with parallelism. In TSP2. however, for each iteration two nodes are set up by
each process, irrespective of parallelism. lberefore heuristic granularity for this
prograll1 remains constant at two nodes.

193

'lbc cdgc-sclectinn heuristic is applied once for each edge selected in both

progrnms. In TSP!. for a parallelism of N, during each iteration log1 N edges arc
selected by applying the heuristic once for each edge selected and N nodes arc set up.
The heuristic granularity corresponding to this heuristic, then, is NI log1 N when the
parallelism is N. In TSP2, irrespective of parallelism, each process applies the

cdgc-sclec!ion heuristic once to select an edge and sets up two nodes during each
itcrntion. The heuristic granularity for this program thus remains constant at two

with changing parallelism.

A comparison of Figures 4 and 5 will reveal the close parallel between the
''ariation in the heurislic granularities of the two programs and the work done by
them. The heuristics in these programs serve to limit the extent of the search needed
to solve the prohlcm. An increa.se in heuristic granularity decreases the effectiveness
of the heuristics in limiting 1he search and consequently leads to an increase in the
total amount of computation needed to solve the problem. The relation between
work of a heuristic search program and iL~ heuristic granularity (or alternatively the
frcquC'ncy or application of heuristics) should not come a..:; a surprise. I lowcvcr, the
possibility of heuristic granularity changing with the degree of parallelism is peculiar
to parallel heuristic programs .

6. Conclusion
In general when a programmer sets out to implement a parallel program based on

some algorithm, he can design many parallel programs with different attributes.
These attributes will depend on the design decisions he makes when mapping the
algorithm to a program and. in panicular. on the parallelization strategy that he
adopts. As this work demonstrates, some attributes of the resulting program will
influence its execution time and speedup characteristics to a significant extent. A
programmer has to analyze the cffccLS of not only the obvious program attributes
such as the control synchronism and the pattern of resource usage, but also the more
subtle ones such as the granularity of program cvcnLs and the amount of computation
the program needs to solve the problem at different degrees of parallelisms.

Acknowledgements
I would like to thank many for their help during this work. Anita Jones and Zary

Segall were the research guides and spent many hours supervising the work. Gerald
·111ompson and Robert Whiteside helped me hone many of the ideas by their

discussions with me. Cynthia 1 libbard gave many suggestions to improve the prose

of this paper.

References

[J] A K.Joneset.al.

[2]

[3]

[4]

[5]

!6]

StarOS, a Multiprocessor Operating System for the Support of Task Forces.

In Proceedings of 1hc Seventh Symposium on Opcrming Systems Principles.

ACM/SIGOPS, December. 1979.

Anita K. Jones and Edward F Gehringer [eds.].

111e Cm* mulfip(ocessor project: A rrsearch review.

Technical Report CMU-CS-80-131. Computer Science Depanment.

Carnegie-Mellon University, July, 1980.

Little J. D. C .. Murty K. G., Sweeney D. W,, and Karel C.

An Algorithm for the Traveling Salesman Problem.

Opera/ions Research 11, 1963.

Mohanl

A Study in Parallel Computation-the Traveling Salesman Problem.

Technical Rcpon CMU·CS·82-l 36, Computer Science Department,

Carnegie-Mellon University. August. 1982.

Mohan J .. Jones A,, Gehringer F., and Segall Z.

Granularity of Parallel Computation.

In Computer Science Research Review. Carnegie-Mellon University, 1982.

Richard J. Swan.

The switching structure and addressing architecture of an extensible

multiprocessor, Cm*.

PhD thesis, Carnegie-Mellon University, August.1978.

DOT, A DISTRIBUTED OPERATING SYSTEM MODEL OF A
TREE-STRUCTURED MULTIPROCESSOR

Scott Danforth
Department of Computer Science

University of North Carolina, Chapel Hill 27514

Abstract -- This paper describes DOT, a model of an
architecture implementation specifically designed for
direct and maximally parallel execution of FFP {formal
functional programming) language programs. The model
is represented using tasks and abstract data types in C
and is running on UNIXCI!

DOT is a refinement and extension of the architec
ture proposed by Mago [1,2]. User programs consisting
of FFP language symbols are placed in a linear array of
cells {the leaves of a binary tree of processors), and seg
ments of this array that contain innermost FFP applica
tions execute system programs in order to perform the
required reductions. The system programs are written
in LPL, a low-level concurrent programming language
used to implement FFP primitives on the architecture.

INTRODUCTION

This paper deals with a language•driven architec
ture. Over the last decade there has been increased
interest in this area, and a number of machines
oriented toward efficient support for high level
languages have been designed. This approach has been
used for support of sequential languages such as Basic
[3], Lisp [4], and Pascal [5].

With the increasing potential of VLSI implementa
tion technologies, highly parallel architectures that hold
great promise for increased performance have become
feasible. Although a number of parallel computer archi
tectures have been proposed, few of these have been
directly associated in the above sense with a general
purpose programming language. This is due to the low
level sequential transformation of states and reliance on
global memory embodied in most languages, which
make it difficult to express a direct mapping between a
language and its execution on a parallel architecture.
Notable exceptions to this are data flow languages [6],
and functional languages [7].

Data flow languages arose from the search for a
general model of parallel computation, and it is there
fore not surprising that a variety of parallel architec
tures for their support have been proposed and some
implemented [B]. Functional languages, on the other
hand, arose from the search for an algebra of programs,
as described by Backus [9,10]. In this case, sequential
transformation of states and global memory were ban
ished because of their unsatisfactory properties with
respect to program semantics, and as a serendipitous
result, functional languages are promising candidates
for parallel support.

Among possible architectures for this purpose are
those suggested by Keller et al. [11], Treleaven [12], and
Mago [1,2]. This paper is based on the work of Mago,
which differs from other proposals in its use of fine
gra.in pa.ra.llelism. This approach removes assumptions
of global memory and overall processor state from the
language. support level as well, and completely realizes
the parallelism allowed by functional programs.

This work was supported by the National Science Fo=dation under
grant llCS80-04206, and by a grant from the Harris Corporation.

0190-3918/83/0000/0194$01.00 © 1983 IEEE 194

We now present a programming system composed
of three logical levels. As shown in Figure 1, the top
{user) level is that of FFP languages, and the middle
{system support) level is that of LPL, the concurrent
programming language used to define and implement
arbitrary FFP operators on the architecture. DOT is
both a design and an implementation model of the
desired parallel architecture, and is the lowest level.

Figure 1 -- Three System Levels

FFP -- User Level

LPL--
DOT--

Operator Support

LPL & FFP Support

FFP LANGUAGES

FFP languages have been formally defined by
Backus [13]. Informally, an FFP language program is a
linear sequence of symbols, of which four types of sym
bol are specially distinguished for the purpose of provid
ing structure: opening and closing application-forming
symbols for a.pplica.tians, and similarly balanced list
forming symbols. An application is composed of an
operator and exactly one operand. Both operator and
operand may be lists and may contain further {i.e.,
nested) applications. A non-trivial FFP program is an
application, and execution proceeds by successively
reducing innermost applications according to the
semantics of their respective operators until there are
no further applications. The ultimate result is a con
stant {i.e., non-reducible) expression. This is called
reduction style execution, since the program source is
rewritten in a succession of semantically equivalent
forms until the final result is achieved.

FFP reductions are completely local in nature and
are tightly encapsulated with respect to the rest of the
program. This fact allows immediate, completely paral-·
lel and non-interfering execution of all innermost appli
cations {hereafter referred to as reducible applications,
or RAs}, and it is this property of FFP languages that
makes them so attractive for multiprocessor support.

Figure 2 shows an FFP program which calculates
the inner product of two vectors. The application sym
bol in our representation is a parenthesis "(", and the
list-forming symbol is an angle bracket "<". Within DOT,.
all program symbols have an associated FFP text nest
ing level, which removes the need for the balancing sym
bols ")" and ">" .. Examples of this representation are
found in Figqre 4 (at end).

FIGURE 2: Inner Product of< 1 2 3 >with < 4 5 6 >

-- The original FFP program is:
(+(<a•>(r<<123><456>>)})

-- r (matrix transpose) is innermost
(+(<a*><<14><25><36>>))

-- <a * > (apply-to-all multiply) is innermost
(+<(•<14>)(•<25>)(•<36>)>)

-- three multiplications are innermost
(+<41016>)

+ (n-ary add) is innermost
32

which is the answer

Mapping FFP onto a Linear Array of Cells

The advent of VLSI has encouraged the design of
content addressable storage and other types of "intelli
gent" memory [14], and it is only natural to attempt to
envision an intelligent memory in which a program
might be loaded and then executed in place. The locality
properties of FFP languages indicate they would be good
candidates for such treatment, and this would avoid the
CPU bottleneck associated with von Neumann proces
sors. The usual idea of memory is a linear address
space, so as a first step we can imagine placing the sym
bols of an FFP program into a linear array of cells
(hereafter called lcells), each of which comprises pro
cessing power as well as memory.

Reduction of an FFP RA within a group of contigu
ous !cells will produce a new FFP program segment in
place of the original RA. Each symbol of this new seg
ment is a function of the original contents of the !cells
comprising the RA, and the semantics of the operator of
the reduction. We therefore need a way of specifying the
actions to be taken within the !cells of an RA that will
result in the correct (operator-defined) transformation,
i.e., we need an lcell programming language, or LPL.
Once an RA has been detected, the !cells of its contain
ing segment will each execute the LPL program
appropriate to the operator of the reduction.

The particular FFP primitives chosen and their LPL
implementations will be the concern of a system
manager, possibly in communication with knowledge
able users. The compiled LPL code modules, which may
be thought of as system software support routines, are
held in a library available to the IO subsystem, and are
broadcast to the !cells when they are required.

A Tree-Structured Architecture

The existence of such FFP operators as apply-to-all
(shown in Figure 2) implies global communication within

an RA, and the topology chosen to support this commun
ication is that of a binary tree with dynamically
reconfigurable routing. Non-leaf nodes of this tree are
hereafter called tcells, and the leaves will be the lcells,
as already discussed.

Figure 3 -· DOT MODEL STRUCTURE

195

Figure 3 shows the logical structure of DOT. In
addition to the usual parent-child links associated with
binary tree structures, we make use of lateral connec
tions at the !cell level in order to facilitate shifting the
FFP text about to accommodate its expansion and con
traction. While these connections are not strictly neces
sary, they simplify the model and seem feasible within a
hardware implementation.

LPL -- LCELL PROGRAMMING LANGUAGE

The aim of an LPL program is to define an FFP
primitive. This is done by specifying appropriate actions
for each !cell of an application. LPL is therefore
designed to manipulate local !cell registers, and possi
bly invoke simple global operations (e.g., message pass
ing) with which LPL statements in other !cells of the
same RA may interact. In practice, various groups of
!cells within the RA are given the same instructions
(e.g., all elements of a sequence), so an LPL program
consists of code segments -- one for each such group.

The most interesting aspects of LPL include the
message interactions between the !cells of an RA
(send/receive/endfilter), and the way in which LPL con
texts may spawn copies of themselves (fork) in order to
create additional FFP text symbols within the !cell
array. With these capabilities, LPL programs can imple
ment powerful FFP operators such as matrix transpose,
and parallelism within the tree structure can be used
very effectively. For example, sorting is @(n), and max is
@(log n).

LPL Environment

There are no local (stack-based) variables in LPL.
Instead, a fixed number of LPL environment variables
within local !cell registers may be referred to. Many
environment variables are set up by DOT before LPL
statements are allowed to execute. Among these are
the local FFP symbol (called symbol), its nesting level
within the FFP program (called aln for absolute level
number), its nesting level within the RA (called rln for
relative level number -- i.e., relative to the aln of the
application symbol) and the "directory," which is used
to specify the location of the FFP symbol within the RA.

The directory is composed of two parts: the first
part is a symbol_jndex, specifying the position of symbol
within the RA; the second is a 4-tuple that encodes the
symbol location based on up to four levels of hierarchi
cal nesting within the RA. Figure 6 shows the directory
during execution of an example FFP program. In addi
tion to its use by LPL statements, the directory 4-tuple
is also used by DOT to choose which segment of an LPL
program should be executed within an individual !cell.
This will be explained in conjunction with the LPL desti
nation statement.

When the !cells in an RA have all completed execu
tion of their LPL program segments, the reduction is
"stepped forward" to its result. This is done by DOT with
the aid of the environment variables nsyrnbol_gnt,
nsyrnbol, and naln. The "n" prefix stands for "next,"
and these variables are set up in each !cell of an RA by
the LPL program. If nsymbol_snt is zero when the RA is
stepped forward, the containing !cell becomes empty
(i.e., there is no FFP symbol in the !cell). Otherwise
nsymbol is moved to symbol, and naln is moved to aln.
Thus, the LPL programmer is primarily concerned with
creating code which {for each !cell of the RA) will load
nsymbol and naln with the symbol and aln values which

should next appear within the lcells of the RA in order to
implement the required reduction.

Having described the objective and environment of
LPL programs, we now briefly consider their structure
and the more interesting statements.

LPL Statements

program/endprogram. A program statement is the
first statement of an LPL program. Its form is.
program x where "x" is the (numeric) identifier of the
FFP operator whose operation this LPL program is
intended to implement. The assembler creates a library
object file for subsequent use whose name is based on
this identifier. The end of an LPL program is signalled
with an endprogram statement.

destination/endsegment. The same sequence of
LPL statements is not executed in. each lcell of an RA.
Instead, an LPL program defines code segments and
specifies their respective lcell destinations through the
use of the destination statement. The first segment of
an LPL program whose destination matches an lcell's
directory 4-tuple is the segment that the lcell will exe
cute, and all following segments are ignored. The form.
of the destination statement is destination dl d2 d3 d4
where "dl" through "d4" are either an integer, or an
integ.er followed by "*". A match, as referred to above,
occurs if each of the lcell 4-tuple directory entries is
either equal-to (no"*" used) or equal~to-or-greater-than
("*" used) the the respective destination value. The end
of a program segment is signalled with an endaegment
statement.

fork. This statement is the means by which addi
tional lcells are allocated to hold expanding FFP text.
The name "fork" is given this statement because each
lcell may be thought of as a !!ingle process that executes
a sequential LPL program segment. A fork spawns copies
of its program segment and its execution context to
create new processes in the requested number of con
secutive lcells. Execution continues after allocation and
loading of these lcells by DOT {during storage manage
ment). The form of the statement is fork forksize where
"forksize" is the {non negative) number of lcells desired.
The fork_jd environment variable is set by DOT during
support for this operation. The "parent" of the fork
operation is always given fork_Jd = 1, while the children
are given fork_Jd = 2 through forksize in left-to-right
ordering. This fact can be used in subsequent LPL state
ments to condition execution. Copying or moving
groups of FFP symbols into new locations within the FFP
text is done using fork followed by send/receive.

send/receive/endfilter. These statements are the
means by which global communication within an RA is
carried out. They are supported by DOT processes within
both lcells and tcells. Messages are sent and received

' during globally sequenced activities called messa.ge
· wa.ves, and all the lcells of an RA have the option of par
~icipating in any of them. A limited amount of process
mg can take place within the tcells during transmission
of a message wave, and appropriate instructions to the
tcells concerning processing requirements are sent up
by the lcells to introduce each new message wave. (This
information is supplied in the send statement.) The LPL
messages within a message wave travel from the lcells
up through the tree structure above them until they
reach the lowest common ancestor of all lcells within
the RA {called the top of a.rea. or toa.). At the top of
area, all messages that have come this far {messages

196

may be combined, or passed selectively on the way up)
turn around and are broadcast to all lcells in the RA.
Those lcells doing either a send or a receive for that
particular message wave then "see" all returning mes
sages on that wave. Send and receive statements have a
filter portion that describes the actions to be taken for
each incoming message, and a local DOT message pro
cess invokes this filter for each arrival after first moving
the message into a reception area within the lcell. The
difference between send and receive is that a send
sends a message {then filters incoming messages,
including its own), while a receive merely·filters incom
ing messages. Their forms are as follows:

send mweve order combine-op keyl key2 arg_cJUt

filter-statements

endfilter

receive mwave

filter-statements

endfilter

..

The mwave argument is the index of the message
wave desired. The order argument indicates the order in
which two messages of differing key values should be
sent up from a tcell where they meet; {Keyl is given
precedence over key2.) When two messages arriving at a
tcell both have the same key values, this indicates that
the respective messages should be combined according
to the combine-op argument. "Arg-cnt" is the number
of additional message arguments {in addition to the key
values) which are to be sent. The additional arguments
are taken from lcell registers with names m_a.rg.1 ...
m_arg5. When messages are combined arithmetically, it
is the m_argl values which are actually combined.
r_Jceyl, r_Jcey2, r_a.rg1 ... r_a.rg5 are the lcell registers
into which a mess11-ge is placed by. DOT prior to execut
ing a filter.

LPL Program Example
This section presents the LPL program· for n-ary

add which supports the FFP program whose. execution
trace is given later.

progrcm 004 /* FFP N-ARY ADD OPERATOR */

destination 0 0 0 0 /*The application s;nbol
keep
receive 1 /* receives the result.

rrov r_argl ns;nbol
endfilter

endse!JIEnt
destination 1* 0 0 0 /* Operator, seq s;nbols

endse1JIEnt 1·· go away.
destination O* O* O* O* /* Nmbers to be added

rrov s;nbol m_argl /" send than;el ves
send 1 + + #0 #0 1 /* using addition

endfilter
endse!JIEilt

endprogra:n

DOT -- SUPPORT FOR LPL and FFP

We have described the functions and controlled
environment made available to LPL by DOT. It is now
necessary to examine how these are provided while also
supporting the innermost reduction semantics of FFP
languages.

The B!'lsj() Machine Cycle
A DOT machine cycle starts with looking at the lcell

array to see what is in it. In the course of this operation,
RAs are discovered, and the machine is partitioned so as
to correctly allocate communication channels and tcell
processing power to the discovered RAs. The first time a
particular RA is encountered {RAs may exist over a
period of many machine cycles), DOT processes within
the tcells and lcells build the lcell environment direc
tory, and the LPL program is loaded using the 10 subsys
tem. After these operations, all of which take place in
the partitioning phase of the machine cycle, the LPL
programs in RAs are started {or restarted). This hap
pens seperately within each RA, so RAs that do not
require a new directory and LPL code can be restarted
earlier.

At this point, the notion of a single machine is
misleading; each RA has its own dedicated hardware and
is completely independent of the others. Nevertheless,
after the RAs are started {or restarted), the machine
may be thought of as being in an execution phase. The
LPL programs run, with the aid of DOT-provided ser
vices, until they become blocked or are preempted by
DOT for the purpose of storage management.

The storage management phase includes stepping
forward any RAs that have finished, determining the new
storage requirements of the FFP programs within the
lcell array (due to LPL fork statements that have been
executed), and shifting LPL program segments and their
contexts within the !cell array to make room for newly
required symbols. The shifting process is performed
using the lateral !cell connections {shown in Figure 3)
and may result in the overflow of contexts into the
overflow subsystem if enough lcells are not· available,
reentry of previously overflowed lcell contexts back into
the physical lcell array if there is room, or entry of new
FFP programs if there is room after previous overflow
has been taken care of. The prescription for exactly how
the !cell contents are to be shifted about is called the
specification for storage management.

The basic machine cycle is thus partitioning, execu
tion, and storage management. These phases will now
be described in more detail.

Partitioning Phase

Partitioning creates active areas, each of which is a·
binary tree dynamically imbedded within the overall
tree-structured architecture. Each active area is com
posed of the dedicated communication channels, and
the lcell and tcell hardware required for supporting
computation in an individual RA. Partitioning begins in
the !cells and is continued in the tcells. Each tcell
receives (from its childen) and sends (to its parent) a
code containing the information necessary for an initial
partitioning of the tcells.

The initial partitioning allocates and connl!cts dedi
cated area communication channels (called area chan
nels) and dedicated tcell processing power {called area..
nodes) to each underlying group of lcells that may con
tain a different RA. While the area channel connections
are changed with each partitioning, the information
required for tl;te initial partitioning travels upwards on
cell manager channels whose connections never change.

The initial partitioning is terminated within the IO
subsystem, which may be thought of as the parent of
the root of the tree. {In addition to its IO-related activi-

ties, the IO subsystem offloads special termination pro
cessing from the tree root.) RAs are finally located and
their corresponding active areas created with the aid of
concurrent downsweeps within each of the candidate
areas created by the initial partitioning. Figure 4 (at
end} shows the area channels and nodes for a parti
tioned DOT processor.

197

Area Nodes. As suggested by Figure 4, a tcell need
only provide processing power for one active area. This
is because even though area channels for more than one
active area may pass through a given tcell, it is always
possible to directly route through the tcell (via what
may be considered a straight wire connection} all but
one set of area channels, which, if it exists, is composed
of the area channels leading to two children and possi
bly a parent, all in the same area. During partitioning,
such a set of area channels is connected to a tcell area
node whose primary purpose is to support all subse
quent area-related processing within the tcell.

This support begins with completion of the parti
tioning phase (i.e., discovery of active status, discovery
of the FFP operator if the area is active, pruning of
channels that are for one reason or another not
required for area processing, creation of the t~a where
messages will turn around, and directory creation). Par
titioning is then followed in an active area by support
for the LPL send and receive operations. This is then fol
lowed by correctly shutting down operation prior to the
storage management phase of the machine cycle. This
shutdown must disconnect area channels (which were
created during partitioning}, but only after stopping
messages in such a way as to guarantee that all lcells in
the area will have seen exactly the same messages dur~
ing the execution phase. This must be done in order to
guarantee a consistent restart following storage
management and re-partitioning.

Directory Creation. Following the initial partitioning
upsweep, each toa returns to its descendent lcells
notification of their active status and the LPL program
to be used if one is necessary. Given this information, an
lcell will decide to create a directory if it is contained in
a new RA. This requires an upsweep and a downsweep
within the area channels, and the result is to load
symbol_jndex, and the 4-tuple directory, dl ... d4, with
the correct values. If the RA is not new, the old direc
tory is still valid and execution may begin immediately
without this step.

Loading LPL Programs. The LPL programs are
delivered from the IO subsystem on io channels that fol
low the hardware tree structure. Within a tcell, each
parent io channel splits into two child io channels and
data movement is as follows: input to the lcell array
comes from "above" and is broadcast to all lcells by suc
cessively splitting data so what comes in from a parent
input chanrtel is sent down both child input channels;
output comes from "below", and is sequenced by han
dling the child output channels in cyclic left-to-right
order. There are ·two very simple processes in the tcell
that perform these functions. At present, the input
channels are used to deliver LPL ·programs from the
library, and output channels are used to return· execu
tion results and trace information to the outside world.

Execution PQ.ase
The lcell LPL interpreter is a process that receives

starting addresses from a queue. It begins execution at
the requested address, performs local data movement

and manipulation as indicated by the loaded LPL object
code, and continues until encountering one of the fol
lowing DOT service requests which require special han
dling: send, receive, endfilter, fork, and endsegment.

These special services are initiated by setting up an
LPL context area associated with the particular service
required. These areas are checked by the DOT
processes whose job it is to provide the services. Having
set up the service request area, the interpreter then
cycles back for another start address. The reason for
this approach will be seen in the following discussion of
message support.

Lcell Message Support. Whenever a message arrives
which should be filtered (due to a send or receive for
the present message wave), the DOT lcell message input
process first puts the newly received message into a
receive area {accessible to filter statements using
named variables such as r_argl), and then uses informa
tion deposited earlier (by the interpreter) in the LPL
program context to insert the beginning address of the
message filter statements into the interpreter start
address queue. The interpreter executes the message
filter for the message instance, and then encounters the
endfilter statement, which then halts the interpreter as
described above. This is done for each message that
arrives on the present message wave .. When the wave has
completed, the lcell message input process places the
continue address (i.e., the address of the first statement
following the endfilter statement) into the interpreter
start address queue, and LPL execution then continues.

Message waves are sequenced activities whose com
pletion requires agreement among all of the lcells of an
RA. The basis of this agreement is an end-of-wave mes
sage or eow that is sent for each message wave by all
lcells of an RA, merged into a single message by the
time it reaches the toa, and then returned to the lcells
in the RA. Lcells keep a counter which contains the
present message wave number.

Whenever the mes~age wave counter is incre
mented in an executing lcell (due to receiving eow), the
LPL program context is checked for a send or receive
request for the new wave number. If there is such a
request, an eow is sent (after message transmission if
the request was send). If the request is for a send or
receive on a higher numbered wave, eow is also sent. If,
however, the last message request is for a lower num
bered message wave, a fork has been executed. In this
case, the eow is not sent. Instead, we wait for storage
management to complete the fork operation. The result
is that the new message wave cannot pass through the
toa until after storage management (and completion of
the fork operation).

Following storage management, everything is res
tarted correctly so a message wave interrupted by
storage management may complete, and the next one
begin (all transparent to the LPL program). This allows
implicit synchronization of a fork operation with a
corresponding send designed to copy information.

Fork Support. A fork statement halts execution
within the requesting lcell until the operation can com
plete during storage management {when LPL program
contexts are shifted in the lcell array). Execution then
resumes in the child lcells as well as the parent. LPL
program contexts begin each execution phase acting as
if they had requested a forksize of 1. The fork state
ment merely modifies the lcell variable (not directly
available by name to an LPL program) in which this

198

value is stored so that multiple copies of an LPL pro
gram context are shifted rather than just one during
the next storage management.

Storage Management Phase

This phase is necessary to accommodate growth
and compaction of the FFP text while retaining the
necessary ordering of FFP symbols. It is unfortunate
that execution of LPL programs should in general
require interruption in order to implement this phase
of the machine cycle. One alternative is to let all LPL
programs complete (or become blocked as in a fork
operation) before storage management is performed,
but this could put RAs with quickly executing LPL
programs at a disadvantage, and would likely result in
inferior utilization of the available processing power in a
large machine.

Attempts have been made to do storage manage
ment in locally restricted segments of the !cell array (as
computation proceeds elsewhere) by Tolle [15], but the
complexity of the overall solution is considerable, and
the resulting performance is not always superior to the
preemptive approach that we use.

In the present design, lcells send permission to
start storage management upwards on the cell manager
channels to the IO subsystem. Lcells which are not
active do this following partitioning. Active lcells wait for
the LPL program to complete, or fork before sending
permission. These sm_JJrant messages are merged on
their way up the tree, and upon reaching the IO subsys
tem, result in generation of a stop message which then
travels down the tree and shuts down message activity.
This approach is attractive, since it places control of the
processing cycle explicitly within LPL, and allows a sys
tem manager to tailor FFP operators for large operands
if this is desired. Another possibility would be to allow
the IO subsystem to use heuristics based on !cell con
tents (discovered during partitioning) to determine an
appropriate cycle time.

The Specification for Storage Management. Once
the LPL programs are shut down, a specification for
storage management must be computed. This is done by
sending and merging forksize information up the cell
manager channels until it arrives at the IO subsystem,
where, as in partitioning, the upsweep is terminated.
There, a specification for storage management is com
puted, and sent back down the tree in such a way as to
distribute the necessary information to each !cell. A
variation on the scheme suggested by Mago [1] is used,
so that total compaction will be performed only when
necessary.

Overflow and Program Entry. The virtual memory
concept used in the model is based on the work of Sid
dall [16] and Frank [17], who have examined various
ways to accommodate overflow from the lcell array. The
approach used is to allow storage management into and
out of the left lcell tree boundary. To the left of this
boundary is a deque structure (interfaced with a file
system}, that receives from its right any !cell contents
that overflow from the tree, and from its left new pro
grams for execution in the tree. The state of the
overflow and program entry subsystem (e.g. if there is
presently overflow in virtual memory, if so how much,
how large the next FFP program to be entered is, etc.)
is used by the IO subsystem in its determination of the
actual storage management specification to be used.

REPRESENTING DOT

In order to specify a detailed implementation for
the architecture, we required a powerful representation
language capable of expressing the parallel activities of
the envisioned architecture with precision. We have
access to a UNIX®system, so we decided to use the C
language augmented with abstract data types (classes
and tasks [18]) in order to produce a comprehensive
and executable model.

The DOT !cell and tcell classes are shown in Figure 5
(at end). The complete DOT model representation
includes 25 classes. When the model is executed, a tree
height parameter is given, and the required number of
these classes are instantiated and connected to form a
machine of the desired size. Operation then begins with
partitioning of the (empty) machine. DOT models for
machines containing hundreds of lcells may be created
and observed within computationally reasonable time
periods.

To illustrate operation of the model, Figure 6 (at
end) contains trace output from the example FFP pro
gram:
(+ (< apply-to-all "' > < < 1 3 > < 2 4 > >))

Column headings are for the user program id, !cell
symbol, !cell state (O=ground, l=executing, 2=com
pleted), fork_jd, aln, rln, symbol_jndex, and the direc
tory 4-tuple. Columns to the right of the arrow are used
to indicate the result of stepping a completed reduction
forward. Empty !cells do not appear, and cells with
symbols in them are listed in left-to-right order. Output
is at the end of each cycle.

CONCLUSIONS

This paper has described a complete and opera
tional model of a multiprocessor architecture designed
for maximally parallel execution of FFP programs. The
word "complete" is relative to (among other things) the
level of detail chosen, and we have deliberately stopped
before the hardware level. Nevertheless, all necessary
algorithms (sequential and concurrent) have been con
cretely represented within DOT, as have all external
interfaces, and many other design details. LPL has been
defined, and an assembler written. The resulting model
is as close to a true machine (at levels above the
hardware) as is possible. Major improvements (with
respect to both simplicity and performance) on the ear
lier design by Mago have been realized. These further
increase the desirability of the architecture.

Representing the model in a concurrent program
ming language has allowed testing and verification of
DOT. The importance of verification is obvious when the
model is to be imbedded in hardware. Other benefits of
a complete software model include the possibility of
performance simulation, and estimation of hardware
complexity.

An analytic model of program execution time on
such a tree machine has been proposed by Mago et al.
[19]. Using this as a guide, a similar model based on the
DOT model has been developed. This work, and other
details not included here will be found in a forthcoming
dissertation [20].

If performance simulation supports the belief that
an architecture based on the model· we -have described
is a good idea, the next hurdle is mapping the DOT
design into hardware. DOT has been created with VLSI

199

technology in mind. Binary tree structures map well
onto VLSI, the processing cells are self-timed, and active
tasks in a model instance should correspond to
hardware areas specifically designed for their support.
The lcell interpreter is probably the most traditional
and straightforward of these, while the tcell IO relay
mechanisms and downward message handler will likely
be trivial due to their simplicity. All of the data and
message movement in the machine has been designed
with a bit serial pipelined approach in mind.

ACKNOWLEDGEMENTS

The work described in this paper relied heavily on
previous work done in connection with this architecture
here at UNC Chapel Hill. Much of this work has been
explicitly referred to within the paper, however I would
also like to express my indebtedness to George Enten
man and David Middleton for their active, creative, and
invaluable participation in our meetings with Gyula
Mago. In addition, previous work on partitioning by
Peter Chen was helpful.

REFERENCES

[1] G. Mago, "A Network of Microprocessors to Execute
Reduction Languages," International Journal Qf
Computer and Information Science, (October,
December, 1979), pp. 349-385 and 435-4 71.

[2] G. Mago, "A Cellular Computer Architecture for
Functional Programming," IEEE Computer Society
COMPCON. {Spring, 1980), pp. 179-187.

[3] H. Burkle, A. F'rick, and Ch. Schlier, "High Level
Language Oriented Hardware and the Post-Von
Neumann Era," Fifth Annual Symposium on
Computer Architecture, ACM-SIGARCH Newsletter
{April, 1978), pp. 60-65.

[4] G. Steele, and G. Sussman, "Design of a LISP-based
microprocessor," CACM, {November, 1981), pp.
628-645.

[5] W. Carlson, "The Pascal Microengine", Workshop on
High-Level Language Computer Architecture, Los
Angeles, Ca., 1981.

[6] W. Ackerman, "Data Flow Languages," Computer,
(February, 1982), pp. 15-25.

[7] J. Backus, Programming Language Semantics and
Closed Applicative Languages, IBM Research Report
RJ1245, Yorktown Heights, New York, (July, 1973).

[8] J. Dennis, "The Varieties of Data Flow Computers,"
First Intl Conference on Distributed Computing'
Systems. (October, 1979) pp. 430-439.

[9] J. Backus, "Is Computer Science Based on the
Wrong Fundamental Concept of Program? An
Extended Concept," in Algorithmic Languages.
Bakker/Vliet (eds.), IFIP, North-Holland Publishing
Co., (1981), pp. 133-165.

[10] J. Backus, "Function Level Computing," IEEE
Spectrum. (Vol. 19, #8. 1982), .pp 22-27.

[11] R. Keller, G. Lindstrom, and S. Patil, "A Loosely
coupled Applicative Multi-processing System,"
AFIPS Conference Proceedings, (Vol. 48, 1979), pp.
613-622.

[12] P. Treleaven and G. Mole, "A Multi-processor
Reduction Machine for User-defined Reduction
Languages," Seventh Annual Symposium on
Computer Architecture. {May, 1980}, pp. 121-130.

[13] J. Backus, "Can Programming be Liberated from
the von Neumann Style? A Functional Style and its
Algebra of Programs," CACM. {August, 1978), pp.
613-641.

[14] H. Fuchs, J. Poulton, A. Paeth, and A. Bell,
"Developing Pixels-Planes, A Smart Memory-Based
Raster Graphics System," MIT Conference on
Advanced Research in VLSI. {January, 1982), pp.
137-146.

[15] D. Tolle, "Coordination of Computation in a Binary
Tree of Processors: An Architectural Proposal,"
Ph.D. dissertation, Department of Computer
Science, University of North Carolina at Chapel Hill,
{1981). .

·16] W. Siddall, "Virtual Memory Algorithms for Tree
Structured Processors," Ph.D~ dissertation in
preparation, Department of Computer Science,
University of North Carolina at Chapel Hill.

[17) G. Frank, "Virtual Memory Systems for Closed
Applicative Language Interpreters," Ph.D.
dissertation, Department of Computer Science,
University of North Carolina at Chapel Hill, (1979}.

[18] B. Stroustrup, "Adding Classes to the C Language:
An Exercise in Language Evolution," to appear in
Software: Practice and Experience.

[19) G. Mago, D. Stanat, and A. Koster, "Program
Execution in a Cellular Computer: Some Matrix
Algorithms," in preparation.

[20] S. Danforth, Ph.D. dissertation in preparation,
Department of Computer Science, University of
North Carolina at Chapel Hill.

Figure 4-

Partitloning for (+ < (.. < 1 3 >) (• < 2 4 >) >)

200

Figure 5a -- The DOT TCELL Class Figure 5b -- The DOT LCELL Class

®.100 io
up

CLASS 8
~oo~\:) msg

up

CLASS

10~ io
up.

LAS

Rgure 6 -- TRACE OUTPUT

PGl1 SYIVB S F ID ALN RLN NDX- DIR c -> N$'¥M NALN
001 (0 001 000 000 000 0000
001 #004 0 001 001 000 000 0000
001 (1 001 001 000 000 0000
001 < 001 002 001 001 1000
001 #008 001 003 002 002 1100
001 #012 001 003 002 003 1200.
001 < 001 002 001 004 2000
001 < 001 003 002 005 2100
001 #001 1 001 004 003 006 2110
001 #003 1 001 004 003 007 2120
001 < 1 001 003 002 008 2200
001 #002 1 001 004 003 009 2210
001 #004 1 001 004 003 010 2220
PGv1 SY1VB S F ID ALN RLN r-.DX- DIR - -> NS't'M NALN
001 (0 001 000 000 000 0000
001 #004 0 001 001 000 000 0000
001 (2 001 001 000 000 0000 < 001
001 < 2 001 002 001 001 1000 002
001 #008 2 001 003 002 002 1100
001 #012 2 001 003 002 003 1200 #012 003
001 < 2 001 002 001 004 2000
001 < 2 001 003 002 005 2100 < 003
001 #001 2 001 004 003 006 2110 #001 004
001 #003 2 001 004 003 007 2120 #003 004
001 < 2 001 003 002 008 2200 (002
001 < 2 002 003 002 008 2200 #012 003
001 < 2 003 003 002 008 2200 < 003
001 #002 2 001 004 003 009 2210 #002 004
001 #004 2 001 004 003 010 2220 #004 004
PGv1 SYIVB S FID ALN RLN NDX-DIR - -> NS'IM NALN
001 (0 001 000 000 000 0000
001 #004 0 001 001 000 000 0000
001 < 0 001 001 000 000 0000
001 (2 001 002 000 000 0000 #003 002
001 #012 2 001 003 001 001 1000
001 < 2 001 003 001 002 2000
001 #001 2 001 004 002 003 2100·
001 #003 2 001 004 002 004 2200
001 (2 001 002 000 000 0000 #008 002
001 #012 2 001 003 001 001 1000
001 < 2 001 003 001 002 2000
001 #002 2 001 004 002 003 2100
001 #004 2 001 004 002 004 2200
PGv1 SYIVB S FID ALN RLN NJX-DIR - -> NS't'M NALN
001 (2 001 000 000 000 0000 #011 000
001 #004 2 001 001 001 001 1000·
001 < 2 001 001 001 002 2000
001 #003 2 001 002 002 003 2100
001 #008 2 001 002 002 004 2200·

201

End of Cycle 1 ######
This application not innermost

4 is the op-code for n-ary add
This application is innermost
so state= executing

8 is the op_code for apply-to-al I
12 is the op_code for 1T1Jltiply

This synt>ol forks and receives
a copy of the operator (ITIJ It)
as required by apply-to-al I
End of Cyc I e 2 ######

The reduction has corrpleted
and so is stepped forward.

The result is a sequence of
par a I I e I ITlJ I t i p I i cat i on s .

Note that the fork_id tel Is
how "<" shou Id step forward
for these three synt>ols.

End of Cyc I e 3 ######
Figure 4 gave a partitioning
for exactly this FFP text, with
its two para I lei Rt\s and two
supporting active areas.
Both multiplications corrplete
in one cycle, and are stepped
forward.

End of Cyc I e 4 ######
Add is now innermost, and it
also corrpletes in one cycle.
11 is the answer.

THE TREE MACHINE
AN EVALUATION OF STRATEGIES FOR REDUCING PROGRAM LOADING TIME

Pey-yun Peggy Li and Lennart Johnsson
Computer Science

California Institute of Technology
Pasadena, CA. 91125

Abstract -- The Caltech Tree Machine has an ensemble
architecture with processors interconnected as a binary
tree. The program code has to be loaded to the Tree
Machine through the rnot processor. By exploiting the
regularity of the user defined tree structure, the down
lo~ding time can be reduced from O(N) to O(log2N), where
N is the total number of nodes in the tree.

This paper presents three algorithms for loading the node
types of the tree. All algorithms have a best case loading
time of O(log2N). Two of them, which take a binary tree
d~s~tions as in){ut, have a worst case performance of
ONN /f) and O(N1 ogzt) for regular trees of fanout f. The
third algorithm has a worst case performance of O(log2N).

Introduction

The Caltech Tree Machine has an ensemble architecture,
[l],[2] with processors interconnected as a binary tree.
Each node is a complete, although small, von Neumann
machine that can execute its own program. Synchroniza
tion is made by message passing between adjacent nodes.
Hence, it is significantly different from other tree
machine projects such as [3], [4]. The Tree Machine is an
attached machine. The host compiles and loads a pro
gram into the Tree Machine, loads data into it and in
teracts with it during execution. The root is the only
point of communication with the outside world [5].

To program the tree machine, a user has to be aware of
the tree structure. It is necessary to devise a tree data
structure and algorithm for the problem to be solved. The
tree may have arbitrary fanout and arbitrary size. Map
ping onto the binary tree configuration of the Tree
Machine is performed by the software system. A fanout
greater than two is achieved by introducing so called pad
ding nodes as descendants to a Tree Machine node until
the specified fanout is realized by the descendants of the
last level of padding nodes. Padding nodes are inserted
in the left and right subtrees in alternating order, at
every level, to minimize the unbalancing. Padding nodes
as well as their code is generated by the ::;oftware system.

In many tree machine algorithms devised so far [1],[6],
the user defined logical tree is often designed to have
only two or three node types, one for the root, one for the
leaf processors, and one for the intermediate processors
of the tree. Only different pieces of code, i.e., one copy of
the code for each node type need to be supplied to the
root. Replication of program code is easily accomplished
by having the processor copy the code it receives, if it is
of its type, and always pass it on to its two descendants.

Assigning node types in the Tree Machine

All considered algorithms load types into tree nodes by
recursively and concurrently expanding a description re
ceived by the root. A naive approach is to simply load the
types of all nodes in a left to right, root to leaf order. The
length of the input of node types is proportional to the
size of the tree. This fully explicit description rapidly be
comes too costly.

The size of the tree descriptions we propose is at best

0190-3918/83/0000/0202$01.00 © 1983 IEEE 202

proportional to the number of different node types, which
in many cases is very small, and independent of the tree
size. However, it should be recognized that the binary
tree that results from mapping a regular, arbitrary
fanout tree onto a binary tree, in many cases is much
less regular than the original tree, Figure 5.

Two different forms of the tree description supplied to
the root of the Tree Machine are analyzed:

-- a binary tree, i.e., the host performs the mapping.

-- a logical tree, i.e., the mapping onto a binary tree is
performed by the Tree Machine itself.

The tree description supplied to the root is constructed
by the host from the specification given in a Tree Machine
program. In creating this description the host is travers
ing or scanning the tree in a predefined order. Nodes of
identical type and fanout appearing consecutively in scan
order only need to be represented once, together with a
number specifying the number of occurrences. Subtrees
can be defined to achieve an extremely compact input for
regular trees having few node types.

Two scan orders are studied, normal and bit-reversed.
Both orders progress from root to leaves, level by level.
Normal scan order implies that nodes within a level are in
left to right order, Figure l .a. In bit-reversed scan order,
nodes within a level are visited in bit-reversed order, F'ig
ure l.b, This ordering implies that for any node its left
and right subtrees are visited alternately.

Ji\gure L No:rmal and bit-reversed scan order

The scan order used in generating the description affects
both its length and the complexity of the loading algo
rithm. The bit-reversed ordering results in a simpler
loading algorithm because a node only needs to set a flag
to indicate that the next input should go to either the left
or the right port. With normal scan order, a Tree Machine
node needs to monitor when the left half of the level
currently being treated has been exhausted, and type as
signment should progress to the right subtree, as well as
when that is exhausted and the next level of the left sub
tree shall be assigned types. The decoding of the tree
description is more complex in this case.

I. Binary tree as input

For this case the host is assumed to perform the mapping
onto a binary tree, if required. The padding processors
are inserted in bit reversed order to keep the tree bal
anced.

Identical consecutive nodes in the given scan order are

represented by a pair, (NUM, JD). NIJM is the number of
consecutive occurrences of nodes of type JD. The same
node type may appear several Limes in Lhe description.
Two special delimiters, '(' and ')', are introduced to allow
subtrees t.o be grouped together in the input. Identical
subtrees encountE'red consecutively in scan order only
need to be specified once.

Length

NO: 3 A, 4 B 4

BRO· 3 A, 4 B 4

Length

NO: 1A,2(2P,3B) 9

BRO: 1A,4P,4B,2b,2B 10

Flgure 3. A two-level, 6-ary tree with padding nodes

Lengt.h

NO: 1A,2P,3(2P,3B), 1(1P,2B) 18

BRO: 1A,9P,8B,5b,3B 10

BBb BBb BBb b b

Figure 4. A two-level, 11 -ary tree with padding nodes

Length

NO: lA, 1P,3(1B, 1P,3C) 13

BRO: 1A,1P,2(1B,1P,2C,lb,1C), 32
lb, 1(lB, 1P,2C, 1 b, lC)

Figure 5. A three-level. 3-ary tree with padding nodes

The two different scan orders, in the following refered to
as NO and BRO, are analyzed on three simple cases:

Case 1. A binary tree with identical nodes at each level:
Different levels may have different node types. The two
scan orders render the same description. Its length is at
best twice the number of different types, at worst twice
the tree height since all nodes on a level of the tree is as
sumed to be of the same type, Figure 2.

Case 2. The binary tree description converted from a. two
level f-ary logical tree: To simplify the analysis all leaf
nodes are assumed to be of the same type.

For normal scan order and f.::; 10, a tree description can
always such that the leaf node type only appears once in
it. Under this condition, all the leaf nodes either appear
consecutively in normal order in the binary tree, or there
exists one subtree in which the leaf nodes appear con
secutively in scan order and repeated use of the subtree
covers all the leaf nodes, Figure 3.

For f > 10, the number of occurrences of leaf nodes in the
tree description increases with f, Figure 4. Case 1 gives a

203

lower bound. A fairly tight upper bound is derived below.

In seeking an upper bound for the number of occurrences
of leaf nodes in the binary tree description of a two-level
f-ary tree with all leaf nodes being identical, it is first ob
served that the worst case fanout must be odd. If f is
even then the f-ary tree can always be described as two
identical subtrees, which are represented only once using
the subtree notation. If f is odd then there i.s one subtree
instantiating an odd fanout, and one subtree representing
an even fanout. They differ in fanout by one, and appear
with the subtree representing the larger fanout to the
left. The subtree notation can not be used to reduce the
description at this level, but there are common subtrees
at lower levels.

The worst case occurs when the f-ary tree is described by
one subtree of odd fanout at distance two from the root,
and one subtree also of odd fanout at distance three from
the root, and both these subtrees have a maximum
number of occurrences of leaf nodes. Let xk = max!Ieaf
occurrences! zk~f<2k+lj. Then, it follows that xk~ xk_2+
xk_3 , with initial conditions x0 =x1=x2=1. There exist
fanouts for which equality holds. Some of the worst case
fanouts dk can be derived by the recurrence equation
dk=2*dk-l + (-l)k-l, d2 =5. An upper bound for the third
order recurrence equation xk=xk_2 +xk_3 is given by'\/f/2.
The length of NO is proportional to xk, i.e., NO is 0('1f) in
the worst case. However, the number of occurrences of
the leaf nodes grows much slower on the average.

In BRO the number of occurrences of a leaf node equals 1
if f is a power of two, otherwise 2. These bounds are a
consequence of padding nodes being inserted in bit
reversed order. Padding nodes are always encountered
first. However, even though leaf nodes appear last, they
form one group only when f is a power of two. The reason
is that leaf nodes are attached pairwise to the padding
nodes of the previous level. With bit-riversed scan order
all left descendants of the previous level are treated be
fore any right descendant is assigned a type. Empty
nodes are always encountered, except when the last level
of the binary tree is fully populated. Thernfoi"c, BRO is of
fixed length, 6 words if leaf nodes appear once in the tree
description, otherwise 10 words, figures 3 and 4.

Case 3. The binary tree description converted frmn a k
level f-ary tree: Aii nodes at one level of the f-ary tree
are assumed identical. Figure 5.

As the number of levels in the tree grows, leaf nodes are
replaced by subtrees. This replacement is easily accom
modated in the description using the subtree notation. If
the number of occurrences of the leaf node type in a
two-level subtree is x, and the length of the two-level sub
tree description is s, then adding one level to the tree in
creases the description by x*s, since each occurrence of
a leaf node is replaced by s. Therefore, there are totally
x2 occurrences of the leaf node type in the resulting· 3-
level tree. Repeating this substitution process, the se
quence length for a k-level, f-ary tree is
s(l+x+x2+x3+ +xk-2) = s(x1<-L1)1(x-l) = r.

For x=l, i.e., the leaf node type occurs only once in the
description of a two-level f-ary tree, the sequence length
is s*(k-1). It is proportional to the height of the tree. It
is the minimum length possible. For x=2, the worst case
for BRO, the sequence length is s*(zk-!_1). For x>2, s is
proportional to x, which for NO is bounded by '\ff: The se
quence length r is bounded by\IN71', where N=fk.

In conclusion, the length of both scanning orders, as well

as the processing time at the root processor is at best
O(loe&N). The worst case for f~~rees with all nodes at
one level beiqg identical is O('\IN If) for normal ordering,
and O(N1110g2f) for bit-reversed ordering. In addition it
should be noticed that there is always a minimum propa
gation time of O(log~) from the root to the leaves

II. Arbitrary fanout tree as input

In this second case, the input consists of a description of
an arbitrary fanout tree. The Tree Machine nodes insert
padding nodes to create the necessary fanout. Identical
nodes are represented only once if they appear consecu
tively in the scan order. However, for this algorithm we
limit the grouping of nodes to one level of the arbitrary
fanout tree. The tree description will contain at least one
entry per logical tree level.

An entry in the type file is of the form (NUM, ID, FANOUT),
where NUM is the number of nodes of the same type and
with fanout FANOUT that appears in succession in the
scan order in one level of the input tree. Normal scan
order is assumed. Subtrees can be defined. They are
contained within '(' and ')' and can be nested. 1',igure 6
shows an example of a tree description for Algorithm II.

Input string:

1 A 3, 3 B 3, 9 B 3, 27 C 0

P1gure 6. A 4-level, 3-ary logical tree

The basic characteristics of this algorithm are:

- A node in the Tree Machine defines, as required, one or
both of its descendants to become padding nodes. Gen
erated padding nodes may have a fanout greater than
two. Every node accepts a description of an arbitrary
fanout tree as input. The padding node is no different
from other nodes. It generate its own padding nodes.
Every node uses the first entry it receives to determine
its own type.

- A Tree Machine node has to monitor the structure of the
logical tree in order to dispatch the input to proper
descendants. The nodes in one level of the input tree
may have different fanouts. The total number of nodes
at one level of the input tree equals the sum of the
fanouts of all the nodes at the preceding level. A Tree
Machine node needs to keep and update information of
one level of the input tree, including the total number
of nodes in the input tree at the level which the current
input entry is filling, the accumulated total fanouts of
those nodes, the number of nodes at the current level
of the input tree that shall be placed in the left and
right subtrees of a Tree Machine node, and how many of
those that still remains to be placed.

In the process. of dispatching one input entry, two mul
tiplications are required to calculate the total fanouts
of the nodes going to the left and to the right subtrees
of a processor. The multiplication time is proportional
to log2f.

The length of the input for this algorithm is at best
O(log1N) for a regular logical tree of fanout f. At worst it
is O(N). The total loading time is at best O(log2N).

204

Summary and Conclusions

Table 1 contains the loading times in instruction cycles
for; Algorithm I.a, binary tree input using normal scan
order; Algorithm I.b, bit-reversed order; and Algorithm II,
arbitrary fanout tree input. The first figure for the exe
cution time is the time to finish processing the input at
the root. The second figure is the total time elapsed until
all leaves are assigned a type. The difference between
these two figures corresponds to the propagation time of
the last input entry. The program code is loaded immedi
ately after downloading the tree description. The propa
gation delay can be reduced by pipelining the code load
ing phase with the node typing phase.

Algorithm I .a I.b II

Loader 123 words 72 words 80 words
size

input time input time input time
words inst. eye. words inst. eye. words inst. eye.

Ex 1 4 75/141 4 64/122 12 137/201
Ex 2 18 255/471 18 220/408 27 413/621
Ex 3 27 269/433 164 1420/1661 15 186/370
Ex 4 6 123/339 6 64/252 6 51/235

Ex 5 69 627/836 10 116/306 6 51/235

Ex 1. 4-1 eve I bi nary tree w i th two di fferent node types
Ex 2. 9-level binary tree, one node type per level
Ex 3. 5-level 3-ary tree, one node type per level
Ex 4. 2-level 28-ary tree, best fanout for I.a and I.b
Ex 5. 2-level 171-ary tree (worst case fanout for

Algorithm I.a, z7,.;;f<28i

Table 1. Comparison of Algorithms I.a, I.b, and II for some ·
simple trees

The ratios of program sizes of Algorithms Ia,Ib, and II are
1.7:1:1.3. The smaller program size for Algorithm II com
pared to Ia is a consequence of the decision to require at
least one entry per level in the logical tree in Algorithm
II. This constraint reduces the program complexity
significantly. The program of Algorithm I.b is the shor
test among the three because the bit-reversed ordering
simplifies the logic of the algorithm.

Algorithm II is the slowest of the three algorithms for
binary trees, Examples l, and 2. Its processing at the
root requires about 50% longer time than Algorithm I.b
for binary trees with all nodes at a level being equal. The
processing time increases linearly with the height of the
binary tree for all three algorithms.

Examples 2, 3, 4, and 5, are all mapped onto a 9-level
binary tree. The total number of nodes in each logical
tree is 511, 121, 257 and 172 respectively. The total
number of used nodes in the binary tree, including the
padding nodes, is 511, 161, 511 and 341 respectively. Be
cause of the difference of the logical tree structures, the
execution time differs significantly for different algo
rithms. Notice in example 3(5), Algorithm I.b (Algorithm
I.a) has a performance much worse than the other two al
gorithms. On the contrary, Algorithm II always yields a
satisfactory performance for a large fanout.

The length of the input is independent of the fanout for
Algorithm II. whereas the length of the input for Algo
rithm I.a and l.b depends on the fanout, Figures 7 and 10.

For fanouts equal to a power of two the corresponding
binary tree is always balanced. The input length for Algo
rithm I. b as well as the total execution time is less than
that of Algorithm II, except for a two level tree, Figures 7
and 8. Algorithm II is more efficient than Algorithm I.a
for fanouts equal to a power of two.

T (2)

250

200

--- I.a
----- I.b

-- -- II
150

100

50

Figure 7. Instruction cycles for the root (1) and for
completing the loading phase (2) for a 2-level 2n-ary tree.

Successive levels having different node types.

T
(2)

500

400

-I.a
300 --,.--- I.b

-- --rr

200

100

0

Figure 8. Instruction cycles for the root (1) and for
completing the loading phase (2) for a 3-level 2n-ary tree.

Successive levels having different node types.

T

1000

900

800

700

600

500

400

300

200

100

(2) I (1)
I I

I I
I I

I I
I I

I I
I I

I I
I I

I I
I I

,' I

(2)

I. a

----- I.b

./""'" (2) -- -- II

(1)

0 '--~-------<>----...----+---+-•
4 6 7 n

Figure 9. Instruction cycles for the root (1) and for
completing the loading phase (2) for a n-level 3-ary tree.

Successive levels having different node types.

However, Algorithm II performs in a superior manner for
most fanouts. Algorithm I. b has an exponential growth
with the height of the tree, Figure 9, except for fanouts
equal to a power of two, Figure 8. The exponential growth

205

rate is independent of the fanout. The growth rate for Al
gorithm I.a varies from linear to exponential depending
upon the fanout. It may be better or worse than Algo
rithm I. b, Figures 9 and 10. The growth rate of Algorithm
I.a as a function of the worst case fanout in each interval,
zn,,,,; f < 2n+l follows a square root function, Figure 10.

T

llOO

1000

900

800

700

600

500

400

300

200

100

0
4

11 21
6

43
8

85 171
n
f

----I.a
-----I.b

-- --II

Figure 10. Instruction cycles for the root (1) and for
completing the loading phase (2) for a 2-level f-ary tree.

Successive levels having different node types.

The asymptotic loading times are summarized in Table 2.
These time bounds are also bounds for the length of the
input, except for Algorithms I.a and Lb, for which the in
put can be reduced to 0(1) for a binary tree with all
nodes identical.

Algorithm

Best case

Worst case

I.a I. b II

O(log~) O(log2N}

O(N1 !log2f) O(log2N)

Table 2. Estimated loading times fork-level, f-ary trees,
of N nodes. All nodes of a logic level are of the same type

In conclusion, for a non-binary logical tree, Algorithm II
has the best asymptotic properties, O(log2N), is also
efficient for small trees, and has a compact, simple code.
Its performance for binary trees is close to that of the
other two algorithms.

References

[1] Browning, S.A., "The Tree Machine: A Highly Con
current Computing Environment", TR3760, Ph.D.
Thesis, Computer Science, Caltech, Jan. 1980

[2] Seitz, C.L., "Ensembl.e Architectures for VLSI - A Sur
vey and Taxonomy" Proc. of Conf. on Advanced
Research in VLSI, pp. 130-135, 1982

[3] Mago, G.A., "A Cellular Computer Architecture for
Functional Programming" in "Proc. Compean Spring,
1980", pp 179-187, IEEE Computer Society, 1980

[4] Shaw, D.E., "The Non-Von Supercomputer", Technical
Report, Columbia University, August, 1982

[5] Li, P, "The Tree Machine Operating System", TR4618,
Computer Science, Caltech, July 1981

[6] Johnsson, S.L., "Highly Concurrent Algorithms for
Solving Linear Systems of Equations" in "Elliptic Prob
lem Solver II", Academic Press, 1983

CJ>Tlt-W. IUJTING ALCIRillMi IN MJLTICCMUTER Nm.oRK.5 Cffi!\NIZED AS
REIDIFIGJRABLE BINARY TREES

Svetlana P. l<artashev (University of Nebraska, Lincoln)

and

Steven I. l<artashev (Dynamic Carputer Architecture, Inc., Lincoln, Nebraska)

Abstract

This paper discusses efficient routing algorittm; for
rrultic:arputer neoorks organized as f/.2.CO~e hi.mJuj
-Vr.ee6. Camunication techniques introduced are optirra l fran
both vie\'4)0ints: the total bit size of routing infomtion
code, BS(RI), that routes the rressage anoog various transit
nodes of the coom.mication path and the total tirm of canruni
cation. . It is sl1C7t\fl that BS(RI) ~ log2 K + 2 log2 log2 K,
l'ilere K is the total nl.llber of nodes in a reconfigurabTe bin
ary tree. Further, since each transit node N selects its
either right or left successor in the coom.mication path via
sirrple logical operation that takes tine of one gate delay,
the total tirre, CD, of the Ns +Nd canrunication al so ap
proaches the theoretical mini11UTI where Ns is a source node,
'Nd is a destination node.

1. Introduction

Binary tree is a very popular irrplarentation for a dis
tributed cooµ.1ting systan in l'ttlich each tree node is irrple
nented as a separ'?te. and autonarous cmµutationa l node [1,2,3].
The reason for this is that for conventional C<JTµJtations the
tree structure describes a variety of control and C<JlllUtation
a l al gori ttms.

Especially irrportant is the use of binary trees in dis
t~buted da~ bases •. since rrost of the file accesses al go
nttm; for h1erarch1ca l data bases are based on queries organ
ized as a binary tree [4]. Trees have oo types of nodes:
.teave.s and non-.tea.ve.s, l'ilere a leaf is understood as a node of
the l<W!st level, i=O, and a non-leaf node has level i;::l,
where i~ for then- level tree. In this tree the node of the
highest (n) level is called .:the.l!Oo:t.

A rrulticmµuter neoork that reconfigures into trees as
\\ell as other useful structures (stars and rings) can be organ-
ized if its nodes identified with C<JTµJter elarents, CE, are
interconnected with the rrerrory-processor bus (or OC-bus) de
scribed in [5,6]. To organize a data broadcast arrong a pair
of nodes N and N* interconnected with the OC bus, it is suffi
cient for neoork node N to generate the position code or
address of N*.

Activation of data path reb.een N and N* will be denoted
as .:tJian.6,(;(;in N + N* rmaning that N wi 11 generate the position
code or address of N*; and N wi 11 estab l i sh a data path be
tw:en N and N*.

It is assurmd that during reconfiguration, the rraintained
direction of succession is fran leaves to the root, whereby
each node N .generates only one position code N* of its illllEd
iate successor in the binary tree. This organization will min
imize the total tirre of reconfiguration

During regular node to node C00111.1nications, both transi
tions N + N* and N* + N wi 11 be rraintained.

0190-3918/83/0000/0206$01.00 © 1983 IEEE 206

The fol lowing procedure wi 11 be used to generate various
tree structures that can be assurmd by a distributed cmµuting
systan. (This procedure is a particular case of rrore general
procedure described in [6,7] that can generate not only trees,
but al so rings and stars.)

Fig. 1 Generation of reconfigurable
binary tree with the use of the SRVB-register

Assurre that each tree node N is provided with a special
shift-register of length n l'ttlich stores its position code N,
l'ilere n is the size of the code (Fig. 1). Then for each type
of cannunication betl\een N and N* (PE-PE*, PE-ME*, ME-ME*),
node N uses the fo 11 owing f/.2.COYlfrlg;!ra,ti.on equation to generate
the position code N* of its single successor in the binary
tree:

N* = l[N]0 + B (1)

where l [N]g is one bit non-circular shift of N to the left and
Bis an n- it reconfiguration constant called b<a.6 and brought
with the reconfiguration instruction to aU,. ne.:lwollk. nodQh :tha;t
aNL ~ nOI!. 11.WJYlfrlg;!ra,ti.ori. The shift-register of Fig.
l is called a .6hifrt-~ wi;th :th£ vaJriab.te b<a.6 (SRVB).
Thereafter, subscript o will be anitted in this paper because
it is always 0 for reconfigurable binary trees. For other
neoork structures, the SRVB rray perfonn a circular shift
l'h!reby the gate that fol lCMS the least significant bit is fed
with signal l [6].

In Fig. 2, the neoork of thirty oo nodes receiving bias

B=llOlO reconfigures into the 5- leve I with the root R=lOllO.
Since there are t1 different biases, it is possible to gener
ate t1 different trees with these techniques.

In any reconfigurable binary tree, organization of effi
cient camunication arrong tree nodes presents a 1TBjor problATI
because position codes of tree nodes in the hierarchy of tree
levels rray change. Therefore, to route a camuni cation rres
sage fran a source node, Ns, to a destination node, Nd, re
quires to store the position codes of a 11 transit nodes of the
Ns _,.Nd cClTTTl.Jnication path. This routing inforrration RI can
ce either stored in a cClTTTl.Jnication rressage CM or distributed
arrong transit nodes so that each transit node stores the posi
tion code of its successor in the Ns _,.Nd camunication path.

00101 11101 0\101 10001

Fig. 2 Reconfigurable binary tree having
bias 8=11010 and root R=lOllO.

Both these alternatives are infeasible since they lead to
a large bit size of the RI-code and a long tirre of intemode
camunication associated with the large size of RI.

This paper is dedicated to solution of camunication prob
lan in a reconfigurable binary tree that al]CMS a dramatic re
duction in both the total bit size of the RI code and the over
all tirre of camunication. Presented routing techniques al low
one to obtain the fo 11 Olfi ng upper bound on bit size of RI:

(3)

Al so, each transit node delays a CM-rressage by not rrore
than 3td. Therefore, the ITBXimal ccmrunication delay CD for
the longest Ns _,.Nd camunication path that includes 2 log2
K-1 tree nodes is upperbounded as follCMS:

CD .s_ 3td (2 Jog2 K-1) (4)

Therefore, introduced camunication a 1 gorithns are opti
rre.l fran both viewpoints--bit size of the routing inforrration
and total coom.mication delay.

The relationship of this paper with other >-KJrk in the
area is as fol lCMS:

First, by introducing original routing algorithns for
distributed reconfigurable carputing systans organized as bin
ary trees, it is connected with other >-KJrks on reorganizations
and reconfigurations discussed in [8-13].

Second, by using the shift-register theory to develop re
configurations of binary trees, it is connected with the lit
erature on shift-register sequences [14-19].

Third, by discussing distributed coovuting systans organ-

207

ized as binary trees, it is associated with [1-4].

b_ Synthesis of~ Tree Node of Level n-i

To form efficient routing al gorithl5, it is necessary to
develop a sirrple synthesis procedure airred at finding a tree
node of level n-i, i<n. If i=O, the node found is the root,
R, of level n; if i>l, it is any other node of the tree; if
i=n, it is the node of level 0, i.e., a leaf. To find the
root. R. v..e define the bias structure for a non-circular SRVB
as follCJ.\ls: ~iv~n bias B = ~l + ... + ~t l'vtlere GP;
(i=l, ... , t) is its ones position otherwise called gerteM.t
hig pof.i.ilion. Let a 1, a.2!_ ... '. at be b.i.aLi cUbtanr.e6 defined
as fol lCMS: GPi+l = a;LGP;], i.e., a; sha.vs the nurrer of
left-hand shifts tletl-.een GP; and GP i + 1, l'vtlere i changes fran 1
to t-1. For GPt, at[GPt] = 0, since v..e are having a non
circular shift \Fig. 3aJ.

(a)
f--- aq·l ay2 ~-- 02"1-+----01=2 ~
I I

toto+otot9+9f'
Fomntlcn of ire root It 11'4 (lO. 11' ~
B =GP +ff' +(f': +G' I _jl_ l l 0 _l_

BL (GPtJ l'f'1+Hff'1l 0 0 0 0 I I

BL (Gf'2) = G'2 0 0 0 I 0 0

Bl (Efj:J ·IP,•HIP,l 0 I I 0 0 0

BL ((P4l = r:f'q I 0 0 0 0 0

FO:lt R = Bl{ff'J l + BUff'3l 0 I I 0 I I

R ls succee:Ed bf· ' ' I I I
I I ' I I I ,. l[RJ + B , \there I ' I I ' I
I : 0

I I I ,. J[RJ I I l 0

'B l 0 l I 0 I

R - 0 l l 0 I l

(b)

(a) Bias structure.

G[

WA

01=2

°'"'
a,-2

°""'
NIA

dJ ~ riJ
"' b1 1\J
RS3(2) = X1 ' X3 -

X3 + RS1

'1 "2 "3
lei [Q EJ ~

RS3(3) - X3+ RS:2(2l

~(2) =~+RSI(!)

RSL(J) ~ XI

Fig. 3 (b) Formation of BL-sums and the root.
(c) Recursive sums.

For each generating position, GP;; let us form a rrod 2
sun of all left j-bit shifts of GP; ranging fran j = 0 to j =
ai-1, l'vtlei:e a; is the bias distance such that a;[GP)] = ~i+l·
Denote this sun as BL(GP;) = GP; + l[GP·] + ... + \a;-1)[lY'iJ.
By construction, GPj is an addend of BL(GPi) and GP;+l is not
an addend of BL(GPiJ (Fig. 3b). Form BL suns for odd generat
ing positions of the bias as BL(GP1), BL(GP3), ..• , BL(G\)
l'vtlere k=t if t is odd and k=t-1 if t is even. Then the root R
is:

(4-1)

The significance of this formula is illustrated by Fig.
3b.

As v..e have seen, the technique for constructing the root
is very sirrple and can be easily performed by the programrer
l'o.t1o can find the root for the given bias B and then store it
in the instruction that reconfigures the neoork into the giv
en single binary tree or the root R can be formed inside tree
node via a dedicated logical circuit that includes oo shift
registers' interconnected with the rrod 2 counter.

01ce a tree node N finds the root, R, it can form the
position code of any other node N' of level n-i, using a so

called '1.e.Cll/r..Uve. -btmi code RS; (k) defined as fo llCYtlS vi a a
sirrple inductive procedure:

Bu.<..6: RS0 (0) = 0, i = 0, k = 0

1ru:1J.;e;Uve. Step: RS; (k) = X; + ~ (k-1), W'lere k ~ i,
X; = 2'1-1 , and m < i.

Therefore, if SRVB stores RS; (k), its position ~-i is
always 1, and (k-1) is the tota 1 nurl:Jer of other more signifi
cant ones positions (Fig. 3c).

For instance, RS3 (3) = x1 + x2 + x3 can be represented
as follCYtlS via this definition: RS3 (3) = x3 + RS2 (2);

RS2 (2) = x2 + RS1 (1) RS1 (1) = x1

For a recursive sum, RS; (k) = X; + ~ (k-1), X; wi 11 be
called a le.vet va!Uabe.e.

/ls stn-.n belCM level variable X; = 1 uniquely speci-
fies a tree node N(n-i) of level n-i as follCYtlS: N(n-i) = R +
RS; (k) where k~i, R is the root. (4-2)

\ \ / \ /
\\ \ / \ /

.. ,.,........ •• «>·--" \7 "'"'"'"""'
"•""""''" /'"""'"''"

N (6) = 0001001

0 R==1001001

Fig. 4 Construction of tree nodes
of arbitrary levels.

Level 4

level S

Level 6

Level 7

Exanpte. Given bias B = 1011011. Let us construct all
the nodes of levels n-i = 7, 6, 5, and 4 (Fig. 4). I-ere, n=7.
Thus the root is of level 7: R = BL(GP1) + BL(GP3) + BL(GP5)
and GP1 = 1, GP.3 = 8, and GP5 = 64; BL(GP1) = GP1; BL(GP3) =
GP3, arid BL(GP5J = GP5, thus, R = 1001001. Indeect, the suc
cessor N* of R is N* = l[R] + B = 1[1001001] + 1011011 =
0010010 + 1011011 = 1001001 = R = X1 + X4 + X7.

The node of level 6 is: N(n-1) = R + RS1 (1) = R + x1 =
OOJ1001 = x4 + x7. This node is succeeded by the root because
N* = l[N(6)] + B = 0010010 + 1011011 = 1001001 = R. There are
oo nodes of level n-2 = 5: N1(5) = R + RS2(1) = R + x2 =
1101001 = 105 and N2(5) = R + ~2(2) = R + X1 + X2 = Xz + X4 +
X7 = 0101001. Indeed, N1(5) is succeeded by N* = l[N2\5)] + B
= 1010010 + 1011011 = CXXJlOOl = N(6) = 9. Likewise, N2(5) is
succeeded by the same N* = l[N2(5)] + B = 1010010 + lOilOll =
N(6), etc.

Similarly, one can construct all the other nodes of this
tree.

3. Generation Inside a Transit Node, N of its Imrediate
Neighbors in~ RecOnfigurableBinary Tree

lllring reconfiguration into a rlS'I tree, each ~ node
N is the source of the N -+ N* transition and the destination
of the LN -+ N and RN -+ N transitions (Fig. 5a). Since LN and
RN are on the same level, they are specified with the saJTE
level variable X·, i.e., LN = R+RS; and RN= R+RSi. /lssure
that the left rJie LN is always greater than the right node,
RN, i.e., LN>RN. To order LN and RN, 1-.e have to order recur
sive sums. Assure that they are ordered as follCYtlS:

Left Node Right Node
(a)

Root Register

oouo • '""'

Transit 10

Reconfiguratlo u 11"
l<'))tR 01001''

llCll'

Reeonflguratlon
Si>Ccessor N"

Leitnodo _
LN ~cx,,oo

Rlahl ·-RN (xl(R)

208

Fig. !:i

(b)

(a) Transit node N an'ct its closest
neighbors in the reconfigurable
binary tree (Root R=OlOOl, bias
B=llOll).

(b) Generation inside node N of the
position codes for its immediate
neighbors in the reconfigurable
binary tree having bias 8=11011 and
root R=OlOOl.

PL RS; > RSj if X; > xj W'lere X; = 2'1-i' xj = 2'1-j and

P2. RS; > RSi if RS; + X; > RSi + X;

Application of Pl and P2 rules gives us LN = R +RS; and
RN = R + RS; + x1, i.e., LN + RN = X1. Furthenrore, since the
root, _R = R + RS0 _ an? RS0 i~ ~reater than any ot~r recursive
sum~ maSllllch as 1t 1s spec1f1ed by the level variable Xa =
2'1- = 2'1, w:! obtain_ that the left Q9de LN necessari l y has
the same meaning of x1 variable as x1 of the_root R. ()) the
other hand, the right node RN always has its x1 variable re
versed, i.e., opposite the one of the root.

Therefore, 1..e can use the fol l<Ming techniques for gener
ating LN and RN codes inside node N: Using reconfiguration
equation (1), v.e find that l[LN] = N + B. Thus,

(5)

where i-1 [...] is non-circular shift to the right and X1 (R)
is the meaning of the most significant variable in the node LN.

Similarly, since l[RN] = N+B,
-

~ = X1 (R) + i-1[N+B] (6)

Thus, LN and RN are obtained inside node N via the llight
,chi.{,terl non-ciJLc.uealt SRVB receiving bias B, whereas N* is

obtained conventionally inside node N using the left-shifted
non-circular SRVB receiving the sane bias B (Fig. 5b).

~ Carm.mication Circuits Inside Transit Node

To perform fast internode canrunications, each tree node
rustbe provided with the camunication circuits that al l<M
its effective functioning as a transit node, i.e., the one
which is provided with three illlll!diate neighbors LN, ~ and N*
(Fig. 5) or \\flich rrere ly passes canrunication REssages to one
of its neighbors LN, ~ or N*. Since REssages llBY fl~ in the
oo directions, TOR and TOL, \\tlere TOR REans to the root and
TOL REans to the leaves, each transit node has T and D term
inals respectively designated for Tm broadcast if 11ESsage
passes fran T to D, or for TOL broadcast otherwise.

To 11Bintain concurrent ccmrunications \\tlereby a rressage
received by the D-terminal is al laEd to fl™ concurrently to
the left and right neighbors of the given node N, each transit
node is provided with the oo T-terminals, LT and RT, that con
nect given node N with LN node and ~ node, respectively (Fig.
6).

Ht ··· ft I Conflict decoder J

+ t t t t t
CMlCMRCMo,SMLSMRS''"

addre~s f"R

o~outputwo~
: t :
k~inputword

' ' '

CMorSll N N*

'' .
~::~

r(MSEN•)i t,(...iSEN)

Fig. ti Communication circuits inside
each tree node.

Each connection of the transit node N with its successor
N* and the oo predecessors LN and ~ in the tree is performed
via a pair of connecting elerrents, MSE, selected during recon
figuration.

4.1. Conflict Reso 1 ution fmlng Concurrent Massages

Since there are three independent termina 1 s in each tran
sit node, it nay receive up to three concurrent REssages at a
tiRE: CML, CMR and Ct-fr Since it rrey pass in transit only
one 11ESsage at a tiRE, the node performs the confl ict reso 1 u
tion via special logic ca 11 ed corrfi.f.i.& dwxklt, CD (Fig. 6).
Conflict decoder is a logical circuit that has a separate
output for each conflict situation.

The decisions llilde by the conflict decoder are based on
the folloong rules:

l Of several REssages that rust use node N in transit,
only one 11ESsage is al laEd to pass at each clock period. The
ramining REssages are saved. Since a transit node has three
terminals (LT, RT, D), each terminal is provided with the indi
vidual push-ck7itT1 stack of save registers used to store saved
rressages, SM.

2. If a saved REssage, SM, is concurrent with a current
REssage, CM, a decision to pass is given to a SM REssage and a
CM REssage is saved.

209

l If a REssage received via D-terminal (saved, SM0, or
current, CMiJ), is concurrent with left or right REssages, a
decision to pass is in favor of a REssage received via D-term
inal. The rermining rressages are saved.

4. Of the oo concurrent left and right rressages, the
decision to pass favors left REssage at even clock periods and
right REssage at odd clock periods.

Exanpf.e: Suppose that a transit node N has six concur
rent REssages CQ1lleting for transit: CML, C~, CMiJ, S~, S~
and Sf.18, \\tlere upper subscript for saveaREssages sh<Ms their
addresses in the register stacks. IE assURE that each stack
has only one saved rressage and no current REssage arrives un
ti l a 11 REssages are passed. At nment T , confl ict decoder
al }CMS sMB to pass; CMn, is saved as new~~ CMi_ is saved as
SML; C~ ls saved as sf.f~; at nment T1, S is anat.ed to
pass; d<W1 stack has no saved rressages; le t and right stacks
store oo REssages each (Fig. 7). At even nment T2, ~
passes; left stack retains one saved REssage; right stacl< re
tains oo REssages; at odd nment T3, S~ passes; left and
right stacks retain one REssage eacn, etc. The entire REssage
transit ends at T5•

Time

Initial
ondition

To

Tl

T2

T3

T4

T5

yassed Saved Mess~es
MeSS!!l_eS Lffi Stack ~t Stack Down_i!;ack Current Mess~es

- SM~ SM~ s~ CML, CMR' CM0

SM8 SMr, SM~ SM~, SM~ SM~ -
sMB S~, SM~ S~, SM~ - -

s~ s~ SM~. SM~ - -

s~ SM~ s~ - -

SMr - SM~ - -

SM~ - - - -

Fig. 7 Conflict resolution among
communication messages.

4.2. ~Activation of Transfer l'odes
in Connecting El Em!llts

As was indicated above, each transit node N is connected
~th its predecessor (LN or ~) or successor ~ via a cle<;li
:ated pair of connecting elerrents selected durrng reconf1gu
ration (Fig. 6). For the N + N* broadcast, (MS£rrMS~)-pair
belongs to N; for N + LN broadcast, (~MSELN}-pair belongs
to LN; for N +R'l broadcast, (MS~~rpairllelongs to~
(Fig. 1). The m:xle of transfer dl' eac'fi'pair of connecting ele
rrents depends on the direction of broadcast. For the ~ can-
11U1ication N + N*, fran N to its successor, N*, connect1ng
elerent MSEf.i should be activated in the Wl!.(;te direction
(w(~)) a.nO MS~ should be activated in the.1tead direc:tion
(r{M5£N*)). For the Tel. canrunication N + LN, the direction
of transfer in MSEN and MSELN reverse to read for ~ and
write for MSELN (~1g. 6). Slini l ar directions are true for the
N + ~ broadcaSt.

Since at each clock period, a transit node N rrey change
the direction of broadcast, ie assURE that the m:xles of trans
fer in connecting elerrents will be activated dynamically by
the rmssages that are a 11 C7tEd to pass through a given output
terminal.

For the TCR broadcast via D-tenninal, such activation
will be' perfonTEd by the Lr logic 'l'klich nicetv~ several

M£tttc.. ~ and one dynamlc input from the a 11 CMed rressage
(saved or current). Static inputs are: code N for selecting
MSEtJ; code N* for selecting MS9'1*; r-signal for r(MSEN*) and
w-s~gnal for w(MS~). ~Li. logic is ac_ti~ated concurrently
during TOR rressage ·transit via N; thus, 1t introduces no ad
ditional delay into a rressage transit. For the TOL left broad
cast via LT-terminal, this dynamic activation is perfonred by
the L2 logic l'A'lich issues r(MS~) and w(MSELN).

Similarly, for the TOL right broadcast via RT-terminal,
L3 logic performs dynamic activation of oo connecting ele
rrents MSEN and MSERN, as r(~£~) and w(~£ERN).

Since the Sill'le pair of connecting elarents MSEtJ and MSEN*
that connect N and N* may be activated by N and N* in the oppo
site directions, MSfN and MSEN* are provided with a simple
logic to resolve these conflicts. The organization of this
logic is similar to the one discussed above for resolving con
fl icts among concurrent rressages. The only difference is that
it is much simpler, since there is only one type of conflict
that may arise. Thus, the conflict logic will be reduced to a
single 2-input gate.

5. Individual Canrunications
Below, \'.e will introduce coom.mication algorithns l'A'lich

allow efficient intemode ccmrunications. T\\O types of coor
munication will be considered:

1. Node-Root communication, and

2. Node-Node carrrunication.

5.1. Node-Root Communications

There are oo types of node-root carrrunication: (a) node
+root and (b) root+ node.

5.ll. Node to Irot cx:mrunicaticn, !!.c; ~B.· For the Ns +
R carrrunication, Ns is the source, R is the destination;
Ns generates carrrunkation rressage CM that stores the position
c6de of the root, R, defined in Eq. (4-1). In passing this
rressage, each transit node, N, carpares R with its Ml posi
tion code, N. If N = R, the rressage reaches the destination.
If N ~ R, it is passed top dMJ from one of the top terminal
(LT or RT) to the only one D-tenninal.

5.1.2. ~t-Node camvni.caticn, B_ ~ ~ For this case,
the rressage is generated by the root, i.e., R is the source,
Nd is the destination. M:!ssage, CM, stores a so-called ad
dress code of Nd defined as follOll'S:

By the addl!£M c.ode, ~ of the node N, 1-.e define such a
binary \\Ord which contains al r the routing information that
a 11 Oil'S a carrruni cation rressage to reach node N from the root
via the minimal carrrunication path (i.e., the one l'A'lich tra
verses each node of the tree only once).

Below, w:! define a procedure which al lONS one to obtain
the address code, PC, of node Nd via simple logical opera
tion perfonred over its recursive sum. RSi introduced in

Eq. (4-2)
As was specified by Eq. (4-2)node Nd of level

(n-i) is defined as follows:

Nd = RtRSi, l'Alere RS; is the recursive sum.

The irmediate more significant successor of this node in
the tree otherwise cal led reconfiguration 1-successor, can be
found via the reconfiguration equation (Equation 1) as:

210

N* = l[Nd] + B = l[R] + l[RS;] + B.

Since for the root, R,

R = l[R] + B,
N* = l[R] + l[RS;] + B = R+l[RS;] = R+RS;-1

Therefore, N* (the reconfiguration 1-successor of Nd) is
.the node of the next rore significant level, n-(i-1), defined
via recursive sum RSi-l l'A'lich is a one-bit shift to the left
of the original recursive sum RS; that specifies node Nd.
Simi 1 arly, it is easy to show that the reconfiguration 2-suc
cessor of node Nct in the communication path with the root is
specified by recursive sum RS;~2.1'A1ich is 2-bit shift of RS;:
RS; _2 = 2[RS;], where RS; spec1 f1 es node N.

Since by definition, level variable Xi=l specifies the
least significant position of RS; of the node Nd it wi 11 be
the last one which wi 11 be shifted out during consecutive
shifts of RS;. Further, since X;=l in RS;, it will always
specify the only routing a 1 temati ve from the root R to the
next less significant node R+X1 of level n-1 (Fig. 2).

The value of Xj-l in RSj \'A'lich is next to Xi specifies
the route from level n-1 to level n-2.

If X;_1 =1, the only node R+X1 of level n-1 is fol lo.-.ed
by the right riode, RN= R+X1+X2 of level n-2. If Xi-l = 0,
node R+X1 is fol lo.-.ed by the left node LN = R+X2 of level n-2.
Similarry, it is easy to show that variable X;_2 is
responsible for selecting the route from level n-2 to level
n-3, etc. Therefore,_as foj 1 Oil'S frQJl this analysis, consecu
tive variables Xi,_xi-l• Xj_2, ... , x1 that are present in RS;
where Xi = 1 and Xj=o or 1 are responsible for the entire
route selection from one l eve 1 to the next in the minima 1
coom.mJcation path from the root R to the destination node Nd.

1 1 0 1 0 0 I 0 RS4•X4+RS2 CL•l-(3-l)•S

AC = rot(RS4)

l,...,..-~~.--lc,~~b~it~4~b~it~5--'-.cbi~t~6~b=it_..,...J7

"'" ~
destination CL=6 level n-5=0

CLdlCL AC•llOlQ CL"5 level n-4=1

X4
AC•llOlO CL•4 level n-3=2 CLct1CL _

CLd/CL AC•llQlO CL•3 level n-2"'3

CLctf CL 2 AC=l.!_010 Cl=2 level n-1=4

CL /CL Xl AC•llOlO CL•l level n=5
d R•lOllO

routing infomiation code, RI

output, terminals
LT RT

n

(a)

(b)

(0)

Fig. 8 (a) Formation of the address code /lC=lOllCXX) fran
the recursive sum RS=1101CXX).
(b) Construction of the path from the root R=10110
to node NcflllOl. le) Routing information code.

Al so, the recursive SllTI RSi = RtNd contains al_ l the routing
infomation necessary to forward the rressage issued by the
root to the destination node Nd. Narrely, the address code ACd
rray be obtained fran RSi = Nd+R by llDVing its bit Xi to the

bit 1 of AC; xi-1 has to be llDVed to bit 2, ... , Xi to bit i
of AC (Fig. Ba). This sirrple logical operation win be called
Jwtn;te or sJ11ix>lically, AC= rot(RSi) (Fig. Ba).

Therefore, as was shat.fl, the address code ACd_of the des
tination node Nd obtained fran its recursive SllTI RSi = ~+R
via sirrple rotation, as ACd =rot (RSi) contains all the rout
ing infomation necessary to route the rressage fran R to Nd.
lb.ever, to reduce the routing algorithn to execution of a
s i rrp 1 e l ogi ca 1 operation in each transit node, l"E wi ll sti pu-
l ate that each node of level n-j wi 11 store a so-cal led cmpee.
mented level. c.ock, CL (Fig. 8b) of the size log2n=logzlog2K
that shatls which bit of the address code 111Jst be se l ectecf for
finding the route fran the given node to the next node in the
path. To find CL, each node finds its indi vidua 1 recursive
SllTI as RSi = RtN, then shifts RS· to the LSB until LSB = 1 and
counts the nllTiber of shifts k; cl = n-(k- l), where n is the
nllTiber of levels in the tree. Each node finds its CL when a
new tree configuration is established. Thereafter, it is
stored in a special register CL, of size log2 n, since it will
select the routing bit in a 11 cOOllllnications that wi 11 pass
through a given transit node (Fig. 6).

~ AlgolLi!frn f,oJr. g_ + ~ C~n. Given: root
R, destination node Nd; CL value stored m each node of the
tree. The algorithn routes the rressage issued by R to a des
tination node Na The al gorithn contains oo steps: /Wot
.6:tQp and :t!r.o.nblt .6tep. The root step is airred at finding the
address code, ACd of the destination node, fonning the RI code
for the cOOllllnication rressage, CM and passing CM to the only
node of level n-1. Transit step is executed iteratively in
each transit node of camunication path. It is airred at find
ing the next transit node of the cOOllllnication path and llDVing
the CM rressage to this node.

The entire execution of this algorithn is shat.fl in Fig.
8(a,b,c}, for finding the route fran the root R = 10110 to
node Nd = 11101 (Fig. 2). Fig. Ba fonns the address code ACd
of the node Nd. Fig. 8b shatls ho..I to find CL code in each
transit node of the path R +Nd. Fig. &; fonns the RI code
and shatls what actions are perfonned in each transit node N

C~rn 2 CLU , /llu - IOO!llllXXJ (a)

-1U axE ------1
-•-l-•--1~10-
4 Iw2Ioo;,I024 K 1024 -s

IO - Joo;, K - !O<J:21024

Tree tXJS 1!124 rxrt!ss
RI - 18 liits

that receives CM rressage fran its predecessor in the cOOllllni
cation path.

5.2. Node-Node Camunication, !!s ~fu
The node-to-node camunication is a 11Dre general case of

N + R and R +Nd cOOllllnications considered where Ns is the
~urce node, Nd is the destination node. Indeed, for any N5 +
Nd COOllllnication, the task of an optirral routing technique is
t6 find a so-ca 11 ed .the ci.o.6eM. .ini:2111re.&11.t1uwot, CIR, l'kli ch
is understood as the tree node that connects Ns and Nd with
the minirra l cOOllllnication path ~ T CIR, CIR +Nd (Fig. 9),
i.e., for Ns + R, R +Nd, CIR = K. Thus, by developing effic
ient node-to-node camunication techniques that bypass the
abso l ute root, R, l"E wi 11 reduce the arrount of traffic that
goes to and frun the root, R, and minimize the total length
and the total delay of the camunication path that connects Ns
and Nd.

A particular case of the Ns +Nd cOOllllnication is when

(1) N5 is a transit node on the path that connects the
root, R, with Nd, or

(2) Nd is a transit node on the path that connects the
Ns with the root, R.

The first case is reduced to the R + Nd COOlllJn icat ion,
whereas the second case is reduced to the Ns + R COOllllnica
tion considered above in Section 5.1. Therefore, our discus
sion will concentrate on finding the minirral N +Nd camuni
cation path in wtiich neither Ns nor Nci are on k subpath that
connects the root with another node (1\j or Ns) .

5.2.1. Closest Intennedia.te lb:Jt. To find the minirra l
Ns +Nd camt.1nication path, l"E have to find first, the closest
internEdiate root, CIR (Fig. 9).

Since CIR is on the subpath that connects the root, R,
with both Ns and Nd, the address code, t\Ccrn of the CIR is a
left prefix of the oo address codes, ACS and ACd, because if
root, R, generates camt.1nication rressage to Ns or Nd, then the
CIR is the transit node on both paths, R + ~· R +Nd: Thus,
every rressage issued by the R root passes CIK before it
reaches Ns and Nd. Therefore, the address code of CIR, J!CcIR•

Ns ' llOIIIDIOO

LOCal CL COdes ECUllltY E'1LOl!t:Y
Cordltloos coo:Jitloos

Q 0 !J fORrrove Ta...nuve

Q •IO QI C~IR

Selected
Varlctiles

XcL

Positioo of
fllx~ the

----- --- - -- -- - --- rore,
destimticn

Q•4 CLl~IR CLIQd

Q•l CLl~IR QICl,i

clii-- --- - - ---- - - ___!:L.:l_ - CL·~rn CLI~

Rool - - - - - - - - -

Fig. 9 (a) The RI-code for the Node Ns +
Node Nd communication path.

211

Q-1

(b) Formation of the Ns + Nd
communication path.

Ill - 1001

Ill - ICQI

Ill. 1001

is the ccmron rrost significant portion or the ccmron le.fl. yYl.Q,

fP, of ACS and ACd.

The nurl:ler of bits in J\CcIR can be detennined as follCMS.
First, 1..e find MS = ACS + ACd, and the nurl:ler of conhe.cu.tlve.
rmM ~ zeJwJ; in MS: This wi 11 give us the nurl:ler of
bits in the ccmron left prefix of both AC5 and ACd or the bit
size of ACcIR· Thus, the fol lOlling technique can be used for
finding the address code of the closest intenrediate root,
ACcIR• and its carplarented value, C4:IR·

Algon,i,thn f,otr.. F ,{nd(ng !fc1R and f!:c1R

Given: Ns, Nd and R

Result: ACcIR and C4:IR

~ J_: Find ACS and ACd.

step !: Find ACS + ACd = ttS.

step 3: Find the nurl:ler of consecutive and rrost
significant zeros, LO, in MS; ACrIR is the left prefix of ei
ther /lCs or /lCd that contains Lcl'bmary digits. Carplarented
level value of CIR, C4;IR = LO+l.

Exarrple.: Let us find /lCcIR and CLcIR for Ns and ~given
by the follOlling position codes:

Ns = 1101110100, Nd = 1011011011 Assl.ll'e that these are
tree nodes in a binary tree having root R = 0010011011 and
bias B = 0110101101 (Fig. 9). First, 1..e find address codes
AC5 and /lCd. To do so, 1..e have to find recursive slJT\S RS(Ns)
and RS(Nd):

RS(Ns) = Ns +R = 1101110100 + 0010011011 = 1111101111;

RS(Nd) = Nd+R = 1011011011 + 0010011011 = 1001000000.

Address code of Ns is found by rotation of RS(Ns):

ACs = rot (RS(N)) = llllOlllll. Similarly, ACd = rot
(RS(Nd)) = lOOlcxXmr Let us find MS = /lCs+ACd = llll011111
+ 1001000000 = 0110011111 In the MS, the nl.ITl:Jer of
consecutive rrost significant zeros, LO = 1.

Therefore, ACcIR = 1000000000 and C4;rn = LO+l = 1+1 = 2.

Position code of CIR can be found by rotating its addres!
code to obtain its recursive sun: RS(CIR) = rot(ACrrn) =
1000000000. Thereafter, the CIR position code is CTR=
R+RS(CIR) = 0010011011 + lOOOCXXXJOJ = 1010011011.

5.2.2. !Ys ~!!.a Ci:ilmmicaticn Path. To reach destinatior
node Nd, the source node N5 has to form ccmrunication rressage
that contains the fol lOlling routing infonration code: RI =
CL.rm C[u ACd (Fig. 9) where C4;IR is the carplarented level
value for CIR-node; C~ is the cmµlarented level value for
destination node, Nd, and ACd is the address code for Ncr All
these values can be found using the techniques presentea
above.

Each ccmrunication path fron Ns to Nd includes oo sub
paths N5 +CIR, and CIR+~· where Ns +CIR is the direction
of TOR \tc1Nards the root R) and CIR+ Nd is in the direction
of TOL (toNarcls the leaves) (Fig. 9b). 1n rroving in the TOR
direction fran Ns to CIR, a carrrunication massage uses the
code C4;rn._ to reach CIR. Narre ly, in each transit node N of
the ~+CIR subpath, C4;rn stored in the massage is CCJ!lXlred

212

with the local c~. If CLCIR 'f C~, coom.mication massage is
fon-.arded to the next node m the path. If C4;rn = c~, the
destination node, CIR, of the Ns +CIR path is reached. Hav
ing reached CIR, the rressage begins the TOL rrovarent (toNards
the leaves) using ACd and C~ portions of the RI code (Fig.
9b). Narrely, in each transit node, N, of the CIR+ Nd path,
CLu is carpared with the local c~. If CLn t- c~, the node N
finds the value XcL of the address code, ACd brought with the
massage, where CL 1 s the local level value code. If XL = 1,
the massage is forwarded to the next right node. If XL = 0,
the mass~ge is for.:ia~d ~ the next left node. If Cl,j = C~,
N =Nd, 1.e., dest1nat1on 1s reached.

Exarrple.: For the Ns + Nn ccmrunication path of Fig. 9a,
the routing infonration cOde, 1U, of ccmrunication massage is
sh<Mn in Fig. 9a. As seen, C4;rn = 2, CLn = 5 and ACd =
1001000000. For the TOR broadcast Nd + C1R, the massage
reaches CIR having CL= 2. Thereafter, it starts the TOL
transfer, CIR + Nd. For the CIR-node, C4;IR = 2. Therefore,
the 2nd bit of the /lCd = 1001 shows what ri6cle of the tree fol
l OHS the CIR-node. Smee X2 = 0, CIR is fo 11 o.-.ed by the 1 eft
node LN. In the LN node, CCLN = 3 and X3 = 0 in ACd = lOQl.
Thus, LN is fo 11 o.-.ed by the next left n6de, LN, of the path,
etc. The destination is achieved in the node N having C~ =
c~.

As fo 11 OHS for the Ns +Nd ccmrunication, the bit size of
the routing infonration cooe, RI, is upperbounded as follCMS:

BS(RI) ~ n+21og2° = 1og2K+21og2log2K

where n is the nurl:ler of tree levels and K is the nurl:ler of
tree nodes.

Conclusions

In this paper, 1..e discussed efficient ccmrunication algo
rithns for nulticarputer netv.orks organized as reconfigurable
binary trees.

Organization of optilTfll node to node ccmrunications, Ns +
Nd was considered where Ns is an arbitrary source node Nd is
an arbitrary destination iiode.

Ccmrunication betl..een Ns and Nd is organized via the min
ilTfll ccmrunication path, i.e., the destination node Nd is
achieved in such a way that each transit node of the coom.mi
cation path is included only once in the path Ns + Nd. Can
nunication techniques introduced are opti!Tfll fran both view
points: the total bit size of the routing infonration code,
BS(RI), that routes the massage arrong various transit nodes of
the ccmrunication path and the total tima of coom.mication,
CD. It is shown that BS(RI) ~ log2K + 2log21ogl, v.tiere K is
the total nurl:ler of nodes in a binary tree. Also, since ooly
one bit of the RI code is responsible for selecting the next
node in the path of the oo possi b 1 e a 1 ternati ves LN or ~.
the BS(RI) achieves abso 1 ute theoretical mininun, because it
is inµ>ssible to have 0 bits assigned for such a selectioo.
Further, since each transit node N selects its successor RN or
LN in the ccmrunicatioo path via logical operation that takes
tirre of one td, the total tima of Ns + Nn canrunication a 1 so
approaches the theoretical minirrun. It Should be noted that
the inµ>rtance of these binary trees for CCJJµItation cannot be
underestilTflted, because of the follOlling unique attributes
they possess: (a) reconfiguration into a new binary tree
takes the tima of one clock period and requires only one con
tro 1 code (bias, B) to be received by a 11 tree nodes requested
for reconfiguration; (b) these trees are extrarely fault-tol
erant, since during one clock period, one can purge out all

faulty nodes and form a gracefully degraded tree out of fault
free nodes [21]; (c) as was shot.in in this paper, caTT11Jnica
tions in such trees are a 1 so extrare ly efficient fron both
tine viewp:>int and the bit size of the routing infonnation
code.

Therefore, one can uti 1 ize broadly unique properties of
these reconfigurab 1 e binary trees for various CCJlllutationa 1
and control algorithns without paying the price of consider
able reconfiguration overhead lltien no CCJlllUtation can be per
fonred and 1 arge size of the address portion of caTT11Jnication
nessage which are the attributes of conventional reconfigur
able binary trees.

References

1. A. I:espain and D. Patterson, "X-Tree: A Tree Structured
Multi-Processor CooµJter Architecture", Proceedings Fifth
Annua 1 SjflJJOSillll on Coop.Jter Architecture, 1978, pp. 144-
150.

Z Y. Paxer and M. Bozygit, "Variable Topology MulticCJlllU
ter", Proceedings of the Second Euronicro SJ11JJOSillll on
Microprocessing and Microprograrnning, Venice, 1976, pp.
141-149.

3. L D. Wittie and A. M. van Ti 1 borg, "MICROS, A Distrib
buted ~rating Systan for MICRrnET, A Reconfigurable
Neoork CooµJter'', IEEE Transactions on Coop.lters, Vol.
C-29, DecartJer, 1~. pp. 2233-1144.

4. David J. Dewitt and Dina Friedland, "Exploiting Parallel
; sm for the Performmce Enhancenent of Non-nuneri c App 1 i
cations", The AFIPS Conference Proceedings, Vol. 51,
1~2. National CooµJter Conference, pp. 207-216.

5. S. I. Kartashev and S. P. Kartashev, "Problems of I:esign
ing Supersystems with Dynamic Architectures", IEEE Trans
actions on Coop.Jters, Vol. C-29, Decerrl:ler, 1~. pp.
1114-1132.

6. C. Davis, S. P. Kartashev, and S. I. Kartashev, "Recon
figurable M.ilticCJlllUter Neoorks for Very Fast Real-tine
Applications", 1~ AFIPS Conference Proceedings, Vol.
51, AFIPS Press, pp. 167-185.

7. S. P. Kartashev and S. I. Kartashev, "Reconfiguration of
Dynamic Architecture into M.JlticCJllluter Netw:>rks", Pro
ceedings of the 1~1 International Conference on Parallel
ProcessinQ, August 25-28, 1~1, Bel leaire, Michigan, pp.
133-141.

213

8. H. Garcia-Malina, "Elections in a Distributed (CJ1llUting
Systan", IEEE Transactions on Coop.lters, January, 1~2,
Vol. C-31, No. 1, pp. 48-60.

9. H. Garcia-Molina, "Performmce of Update Algorithns for
Replicated Data in a Distributed Database", l:epartllEnt of
Coop.Jter Science, Stanford University, Stanford, Ca.,
Rep. STAN-CS-79-744, June, 1979.

10. L l.arrport, ''The IlllJ 1 enentation of Re 1iab1 e Distributed
Systans", CCJllluter Neoorks, Vol. 2, pp. 95-114, 1978.

11. B. W. L.arrpson and H. E. Sturgis, "Crash Recovery in a
Distributed Data Storage Systan", Xerox, Pm:, ~ 1979.

12. D. A. Menasce, G. J. Popeck and R R Muntz, "A Locking
Protocol for Resource Coordination in Distributed Data
bases", ACM Transactions on Database Systems, Vol. 5,
pp. 103-lll, June, l~. - --

13. R J. McMi 11 en and H. J. Siege 1, "Routing Schanes for the
Augrented Data Manipulator Neoork in an MIMD Systan'',
IEEE Transactions on Coop.Jters, Vol. C-31, Decerrl:ler,
1~2. pp. 1202-1214.

14. B. El spas, ''The Theory of Autonarous Linear Sequentia 1
Neoorks", IRE Transactions on Circuit Theory, January,
1959, pp. 45-60. - --

15. N. Zierler, "Linear Recurring Sequencer", ~Siam, 7(1),
1965, pp. 31-48.

16. W. H. Kautz (Ed), Linear Sequentia 1 Switching Circuits,
1-blden-Day, 1965. --

17. S. W. G:Jlarb, Shift Register Sequences, 1-blden-Day, 1967.

18. T. L Booth, Sequentia 1 Machines and Autooata Theory,
1967.

19. S. P. Kartashev, "Theory and I!ll>lenentation of p-M.Jlti
ple Sequential t-bchines", IEEE Transactions on Cooputers,
t-by, 1974, pp. 500-523.

20. S. P. Kartashev, ''State Assignnent for Realizing Modular
Input-free Sequentia 1 l.ogica 1 Netw:Jrks Without Inverters",
Journal of Coop.Jter and Systan Sciences, Vol. 7, No. 5,
October, 1973, 522-542.

21. S. P. Kartashev and S. I. Kartashev, "Reconfigurable
Fau 1t-To1 erant MulticCJlllUter Netw:>rks", AFIPS Conference
Proceedings, Vol. 52, l~ Nationa 1 (CJ1llUter Conference,
AFIPS Press, pp. 595-610.

SORTING, MERGING, SELECTING, AND FILTERING

ON TREE AND PYRAMID MACHINES

(Preliminary version)

Quentin F. Stout
Mathematical Sciences
State University of New
Binghamton, NY 13901

York
USA

ATISTRACT: \,Te develop some fundamental
algorithms for d-dimensional pyramid com
puters, where a 1-dimensional pyramid is
typically called a tree and a 2-dimen
sional pyramid is what is commonly meant
by a pyramid computer. We give optimal
e(n/lg(n)) algorithms for sorting and
merging n items stored in a tree, and
show that for higher dimensional pyramids
well-known algorithms are optimal. We
give a selection algorithm, suitable for
pyramids of all dimensions, which runs in
less than ni""s time for any s > 0 •
He also consider median filtering of a
noisy digitized picture, giving an opti
mal algorithm whose running time is 8(D)
when using a D x D window.

1. INTRODUCTION

Sorting, merging, and selection
(i.e., finding the k'th item) are funda
mental problems, and for almost anv
machine architecture efficient algorithms
have been devised for them. However, for
certain tree and pyramid computers we
show that when the data is already in the
base of the computer the "obvious" algo
rithms are not always optimal, and we
present algorithms superior to any previ
ously published. Some authors [2,3,8,11]
have presented optimal sorting algorithms
for tree machines in which the data
passes through the root, but we are
interested in situations where the data
is already present and must be rear
ranged. Such situations arise when a
different key is now being used to deter
mine the ordering, or when data can be
entered directly into the base. This
latter possibility has been raised for
pyramid machines devoted to image proces
sing, for which the speed-ups introduced
here mav be of use. If the data must
pass through the apex then all algorithms
are at best linear in the number of
items, and [2,3,8,11] showed that linear

Partially supported by NSF Grant Number
MCS-8301019.

0190-3918/83/0000/0214$01.00 © 1983 IEEE 214

algoritl-i::is exist. However, in our situ
ation one can obtain suhlinear algorithms
for sorting and merging, where the speed
up denends tmon tl-te dimension of the
pyramid (defined below). For selection we
show that the possible sneed-up is even
more impressive, giving an algorithm
which finds, on a pyramid of any dimen
sion, the k'th item among n in o(n**s)
time for any s > 0 .

Our interest in pyramid machines
stems from our belief, and that of many
others, that their geometric basis makes
them a natural parallel architecture to
consider for various database [2,3,11]
and image processing [4,5,6,q,12,13,15,
16,17,19] applications, applications in
which significant parallelism is possi
ble. Pyramids are more attractive than
meshes because they have the potential
of logarithmic algorithms. Furthermore,
the regularity of a pyramid structure
makes it feasible to construct such ma
chines with a large number of processing
elements. Several tree and pyramid ma
chines are in various stages of design
[Z,3,8,11,15], and we expect that more
advanced machines, with a very large
number of processing elements, will he
constructed.

Our results are primarily of theo
retical use, in that the algorithms are
somewhat complicated, hut they do at
least show that certain problems have so
lutions which are asymptotically better
than was previously thought. Further
more, our algorithms tend to use the
pyramid structure in ways that are dif
ferent from previously published algo
rithms, and perhaps such techniques will
prove useful in other problems.

Throughout we will use lg to de
note log base 2, and e, ~ , 0 , and o
to denote "order exactly", "order at
least", "order at most", and "order
strictly smaller than", respectively.
Optimal will always mean optimal to with
in a multiplicative constant.

2. MACHINE MnDELS

Several different models have been
proposed which mi);ht naturally be called
"tree" or "rvrami.d" macl-iines -(2,3,4,5,6,
R,g,11,15,17,19]. The machines consid
ered here can he viewed as layers of
mesh-connected machines, with connections
hetiwen the layers. To define a pyramid
of arhitrarv dimension, we first define a
mesh-connected computer of arhitrarv di
mension. Throur;hout we will use d to
indicate the dimension. A d-dimensional
mesh-connected computer of size n**d la
?.-MCC of size n''"''d} consists o-r-rl''"''d
cocies of a single processing element
(PE) , arranged in a rl-rlimensional cuhic
lattice. PEs have indices of the form
(Il, ... Id) , where () '.". Ii '.". n-1 for
1 '.". i :£ d. Pf<:s (11, ... ,Id) and
IJl, ... ,Jd) are neighbors if and only if
l~=l[Ik-Jk [= 1 . Each PE_ (except

those on sides) has 2*d neighbors and
lias a unit-time communicatton-link to
each of them.

A ct-dimensional avramld computer of
size n·b'rd (a d-PC ' of size n~"°'rl) con
sists Of"8:' d-1\!CC of size n''"'•d , a
d-MCC of size (n/2l**d, ..• , and a
d-MCC of size 1, along with additional
communication links saecified below.
(Note that a d-MCC ~f size n**d has
exactly n**d PEs while a d-PC of size
n··'"•d has between n'"'''d and 2'"n""'d
PEs.) The d-MCC of size n**d is
called the base of the pyramid, and the
d-MCC of s'I"Zel is the apex. The d-MCC
of size (n/2"•*k)'H'd is---ai:-level k ,
e.g., the base is level n ana-t'he apex
is level lg(n) . A PE at position
(Il, •.. ,Irl) on level k is connected to
all 2""''d of its sons, which are those
processors on lever--K-1 which are at a
position of the form (Jl, ... ,Jd) , where

level 3

level 2

level 1

level 0

A 1-PC of size 8
o.)

each Ji is either 2*Ii or 1+2*Ii .
Thus, except for processors along the
sides, each PE is connected to 2**d +
1 + 2*d others, namelv its 2**d sons on
the level below, its p~rent at the level
above, and 2*d neighbors at the same
level. Figure la shows a 1-PC , typical
lv called a tree machine, and Figure lb
shows a 2-PC , which is often what is
meant by a pvramid machine. To date we
know of. no ~erious interest in pyramids
of hir,her dimensions, but since our
algorithms naturally extend to higher
dimensions we have ~one so. We also note
that there is heginning to be some inter
est in 3-dimensional digitizations [7],
and 3-PCs are a natural architecture for
such prohlems.

We assume that the PEs have a fixed
number of registers, each of which holds
a word of length 8 (lg(n)) , and all
operations take unit time. All communi
cation links are bidirectional, and any
PE can send and receive a word along any
or all links simultaneously, all taking
unit time. We also assume- each processor
holds its level and its coordinates with
in that level. If this is not the case,
it can easily be performed in 8 (lg(n))
time. mote: all analyses of time
assume d is fixed and consider time as
a function of n . While some authors
[10] also consider d as a parameter,
this is made difficult by the fact that
a PE in a d-PC is fundamentally
different from one in a (d+l)-PC) .
Earlier pyramid models (4,12,13,19]
assumed that the PEs were copies of a
finite state automation which was
designed independent of n , in which
case a single PE could not store the
level it was on nor its position within
that level. Using finite state automata
also drastically changes the nature of

base

A 2-PC of size 16
I>)

Figure 1

215

sorting, merging, and selection since
there can only be a fixed number of keys,
independent of n

3. SORTING AND MERGING

[2,3,8,11] considered the problem of
using machines similar to a 1-PC to
perform selection, insertion, deletion,
and retrieval operations. Requests
arrive at the apex at unit time intervals
and are performed on-line, although there
is a logarithmic delay between the time a
request arrives and its answer appears.
This approach sorts n items in 8(n)
time, and is optimal if all items are
required to pass through the apex. How
ever, we are interested in situations
where the data is already in the pyramid,
stored one item per PE in the base.
For example, i..n a d-PC of size n'<*d
we can sort n**d items in B(n) time
by ignoring everything except the base
and using the d-MCC sorting algorithm
in [18]. This compares quite favorably
with the Q(n**d) time required if all
items pass through the apex, and it is
natural to ask if we can do even better
by utilizing the rest of the pyramid.
We prove that further speed-up is pos
sible if and only if d=l .

Suppose we have a 2-PC of size
n'""'2 sitting "naturally" in 3-dimension
al space, by which we mean the layers are
all square grids parallel to each other,
with each parent above the middle of its
four offspring. If we consider a plane
cutting perpendicular to both the base
and one of its edges, and passing just to
one si<le of the apex, we see that the
plane will cut n wires at level 0 ,
n/2 wires at level 1, ... ,2 wires at
level lg(n)-1 , and 2 wires connecting
the apex to level lg(n)-1 , cutting a
total of 2n wires. To sort n**2
items stored one per PE in the base it
may be that all of them must pass through
the plane, giving a worst case time of
g(n) . Furthermore, on average half of
the items must pass through the plane,
giving an expected time of g(n) also.
Since one can sort in B (n) time using
only the base, we see that the rest of
the pyramid is of no significant use.
This argument holds whenever d ~ 2 .

However, if we consider a 1-PC of
size n and cut it by a line slightly
off-center, the line will cut lg(n)+l
wires. This gives a Q(n/lg(n)) lower
bound for the worst case and expected
case sorting times, a bound which is un
attainable using the base alone.

Theorem 1 The algorithm outlined below
for sorting on a 1-PC of size n has a

216

worst case and expected case time of
B(n/lg(n)) , and is thus within a con
stant multiple of optimal.

Our algorithm is a simple merge sort,
utilizing the fact that the two sons of
the apex can be viewed as the apexes of
disjoint subpyramids.

To sort on a 1-PC of size n ,
n ~ 1 , sort each half (separately
and in parallel), and merge.

If S(n) denotes the worst case sorting
time, we have -'

S(l) = 0
S(n) = S(n/2) + M(n) n > 1

where M(n) is the worst case time to
merge two runs in a 1-PC of size n .
We see that

S (n) = I~!~n) M(n/2**k)

In Theorem 2 below we show that M(n)
B(n/lg(n)) , which proves Theorem 1.

MERGING

Suppose we have a run Rl of items
in processors o .. k of the base, and a
run R2 of items in processors
(k+l) •. (n-1) . We merge these into a
simple run as follows:

1. Find the median of all the items
(since n is even we will just
use the n/2'th item).

2. There are 4 subruns to consider:
those items in Rl less than or
equal to the median (called sub
run Sl), those items in Rl
greater than the median (S2) ,
those items in R2 less than or
equal to the median (S3) , and
those items in R2 greater than
the median (S4) . Sl and S4
stay in place, S3 moves behind
Sl , and S2 moves in front of
S4 . Notice Sl and S3
together hold half of the items,
as do S2 and S4 .

3. Merge within each half (sepa
rately and in parallel).

Theorem 2 The above algorithm for merg
ing on a 1-PC of size n has a worst
case time of B(n/lg(n)) , and hence is
within a constant multiple of optimal.

Proof: As for sorting, the worst case
time must be Q(n/lg(n)) • To show that
this is attained we analyze the time
spent in each step. Step 1 can be done
by a simple binary search. First the
median of Rl is sent up to the apex and

hack down to the hase, at which time each
processor whose item is less than or
equal to this sends up a 1 . These are
summed, after which it is known if the
value is too high or low. Then tli.e
median of R2 is sent up, then an appro
priate quartile point of R1 , then a
quartile point of R2 , etc. There are
at most 6(lg(n)) probes, each taking
6(lg(n)) time, for a total of
6(lg(n)**2) time for step 1.

It is step 2 which takes most of the
time. It can he reduced to two appli
cations of the following problem: how
fast can a run be moved to its destina
tion? To do this rapirlly we divide the
hase into M = Llg(n) /2J blocks. PEs
O •. Ln/"'!j-1 are in block 1,
Ln/MJ .. 2"' l.n/"'1J-1 are in block 2, etc.

We define a sequence of processors
G1, ... ,G~ by taking Gl to be the apex
anv G(i+1) as Gi's right son. For
each i we construct a path Pi con
necting Gi to the leftmost processor in
block i , with the property that all
paths are rlisjoint. The paths are con
structed recursively, with Pl being the
leftmost edge of the pyramid. For i > 1,
Pi is construced from the base upwards,
at each processor going upwards if it
does not run into P(i-1) , and otherwise
going right. (See Figure 2.) It can be
shown that the longest path has length
o(n/lg(n)) , and in o(n/lg(n)) time
each processor can decide which, if any,
path it is on and which of the processors
it is connected to are on the same path.

We notice that when a run needs to
move, for any block i containing some
items in the run there is a j such that
either all of ~hose items are to be moved
to block j , or else some go to block j
and the others go to block j+1 • We

call block j the goal of block i ,
and move all the ru~items from block
i to block j . If some of these belong
to hlock j+l then we move them along
the base from block j to block j+1 .
We construct a path Qi from the left
most PE in block i to the leftmost
PE in block j as follows: let
k=min(i,j) . Qi follows Pi up to
level k , then moves sideways to meet
Pj , and then goes down Pj . Since any
block is the goal of at most two blocks,
it is easy to see that any procesor is in
at most 3 of the Q paths. An item
starting in block i moves left until it
reaches the start of Oi , then follows
qi , and then moves right in block j
and also in block i+1 if that is its
destination. The total distance is
O(n/lg(n)) , and since no procesor is in
more than 3 paths the data movement can
he arranged so that the worst case time
for step 2 is 6(n/lg(n)) .

Therefore M(n) , the worst case
time to merge two runs in a 1-PC
size n , satisfies the equations:

M(1) = 0

of

M(n) s A*l~(n)**2 + R*n/lg(n) +
M(n/2) n > 1

which gives M(n) = 6(n/lg(n)) This
completes the proof of Theorem 2.

4. SELECTION

In this section we consider the pro
blem of finding the k'th smallest item.
To simplify notation we will discuss only
1-dimensional pyramids (i.e., trees), but
all of our results hold for pyramids of
higher dimensions. We will also simplify
discussion by assuming that all the items
have rlistinct keys.

6.1

··~
Blu.k

M

Figure 2

217

The easiest selection problem is
k=l , which can he solved by having each
hase processor pass up its item, and each
higher processor pass up the smallest
item received. This will take 8(lg(n))
time, and Tanimoto (16] ohserved that if
the apex repeatedly discards the smallest
item and asks the son which passed up
that item to pass up another then one can
find the k'th smallest item in
8(lg(nl+k) time, which in the worst case
requires 8(n) time to find the median.
We can do better by sorting the base and
passing up the middle item, taking
8(n/lg(n)) time. For d > 1 the dif
ferences are more dramatic, going from
8(n 7"''d) down to 8(n l . (Tanimoto had
noted this improvement for d > 1 .) Ry
abandoning sorting we are ahle to do far
better, finding the k'th item in o(n**c)
time for any E > 0 .

To solve the selection problem we
need to solve the weighted selection pro
blem, in which we are given k and N
pairs (vi,wi) , where vi is the value
of the oair and wi is its positive
integrai weight. The vi are all dis
tinct, and we want to find the vI such
that

I{wi:vi-s:vl} ?k and I{wi:vi<vI} < k.
Sach of the original items in the base
has a weight of 1, and intermediate cal
culations produce items with greater
weip;hts.

Initially each item is "active", and
may later become inactive when it is
known that it cannot be the answer. The
algorithm is:

if n=l
eTse if

then the item is the answer
n=Z then both items are

sent to the apex,
which determines
the answer

else repeat
Stage 1: Each processor at level
lg(n)/2 takes as its value the
median of the active items beneath
it, and as its weight the number
of active items beneath it.

Stage 2: The apex finds the
weighted median of the items found
in the previous stage, call this
W , and transmits it to all pro
cessors in the base.

Verification: Each base processor
sends up a 1 if its item is less
than or equal to W . These l's
are summed on their way up to the
apex, which determines if W is
the k'th item or is too large or
too small. In the last two cases
it sends down a message which
deactivates all items~as large as

218

u , if W is too large, or all
items as small as w if it is too
smal 1.

until the k'th item is founc1.

(This algorithm is similar to one in
[llf] , which was for a mesh-connected com
puter with broadcasting.) An important
feature of this algorithm is the fact
that on each iteration at least 1/4 of
all active items become inactive, and
hence at most log4; 3 (n) iterations are
required. To see why the 1/4 appears,
suppose on some iteration W was too
high. The weights guarantee that at
least 1/2 of all active items are beneath
a processor of height lg(n)/2 which,
during stage 1, picked an item at least
as la~ge as W . For each such processor
on the middle level, at least half of the
items beneath it are as large as W .

To see how much time this algorithm
takes it is easiest to work with the
height of the tree (ie, lg(n)) instead
of its width. If T(h) denotes the
worst case time on a 1-PC of height h ,
then

T(O) 0
T(h) <; h 7'log4; 3 (2) '" (2'''T(h/2l +

B*h] h > 0
The solution of this is
0((C'''h]h'' (lg(h/2]) , where
C = 2'''(lo&,; 3 (2)]'"'''2, which is o(n°'d·c)
for any E > 0 •

Theorem 3 In o(n**c) time, for any
c > 0 , -the above al[(orithm finds the

k'th item among n items stored in the
base of a 1-PC of size n •

We make no claims about the optimal
ity of our algorithm. In fact, if one
uses lg(lg(n))/2 stages, instead of the
2 used above, each determining the
weighted median of items determined below
in the previous stage, then one can <lo
selection in
o(lg(n)**(lg(lg(n)J/lg(lg(lg(n)))])
time. Further fine-tuning of this
approach does not seem veiy interesting.
We conjecture that B(lg(n)) is unat
tainabl~ as a worst case time for selec
tion, but have been unable to prove this.
There is also the question of expected
case time, and we do not even know the
expected time of our algorithm.

5. MEDIAN FILTERING

In this section we consider the
problem of median filtering of a noisy
digitized picture stored one pixel per
PE in the base of a 2-PC . In median
filtering the idea is to replace each
pixel with the median of the pixel values

in a D x f' square, 1) ocld, whose
center is t\ie orir,inal pixel. 1,)e call
this souare a window. Median filtering
is a we l l-1<nown technique (see, for ··
examnle, [?n) anrl the references therein)
and is applicable to data of any dimen
sion. nur reason for concentrating on
the 2-dinensional prohlem is a paper of
Tanimoto 116] which gives a simple algo
rithm. Our goal is to ninimize the run
ninr, time as a function of n , where \}e

show below how to eliminate any depend
ence on the size of the 2-PC • We give
an optimal algorithm, but we r.iust mention
that our asvmptotic result is misleading
since in practice n is quite small. ·

Tanimoto (16] noted that any depend
ence on the size of the pyramid could be
eliminated by partitioning the image into
a set of nonoverlapping regions of area
8(D,'d•2) . Processors at height n_g(Dll
are viewed as the apex of a subpyramid in
which filterinr, is performed, with each
subpvramid responsihle for computing the
new value for each pixel within it. µin
dows around pixels in one subpyramid can
include pixels from an adjacent subpyra
mid, so first all necessary information
is exchanged between adjacent suhpyra
mids. This exchange can easily be done
in e(n) time.

4ithin each suhpyramid Tanimoto com
puted the new pixel values one at a time.
The total time for this method is
8(D'h<2 ;, T(D)) , where T(D) is the time
needed to compute the median in a 2-PC
of size D**2. . The procedure he first
mentions finds the rne~ian in B(D**2)
time, Biving a total time of 8(D**4) •
He also notes that by just sorting in the
base the median can he found in 8(D)
time, giving 8(D**3) total time. Hy
instead using the selection algorithm of
the preceeding section one can perform
median filtering in o(D**[2*E]) time
for al 1 E > 0 •

However, Tanimoto's approach is not
very efficient as it ignores the fact
that calculating the median at one point
is closely related to calculating the
median at any adjacent point. Hy ex
ploiting this we are ahle to give an al
gorithm taking B(D) time. A straight
forward data movement analysis, as in
section 3, shows that this is an optimal
worst-case time. It seems that this is
also an optimal expected-case time.

Theorem 4 In a 2-PC or a 2-MCC ,
using a -D x D window, median filtering
can be accomplished in 8(D) time.

The theorem is proved by the follow
ing algorithm, which is only briefly
sketched. We use only the base of a

219

Figure 3

2-PC , partitioned into D x D blocks •
Within each hlock each processor will
determine its new pixel value. Because
windows of pixels in the block can fall
outside the block, the block need& to
know all pixel values in a (2D-1) x (2D-1)
square called a neighborhood. Also, for
reasons that will be explained later, the
block actually must simulate the actions
of processors" lying in a (3D-2) x (3D-2)
square called a region. (See Figure 3.)
Each processor in the block slmulates the
actions of a square of 9 processors from
the region, with the algorithm being de
scribed as if all of the processors in
the region are assisting the block.

Via sorting, each neighborhood pro
cessor determines the order position of
its pixel value, e.g., a processor may
determine that its pixel value is the
fifth smallest in the neighborhood. Each
neighborhood processor x sends this
order position to the form processors
c1,c2,c3,c4 indicated in Figure 4.
These four processors are the corners of
the square of all processors whose win
dows include x . Notice that the region
has been chosen so that if x is in the
neighborhood then cl,c2,c3, and c4 all
lie within the region.

Using these corners, given any order
interval there i.s a "spreading wave" pro
cess taking 8 (D) time, after which each
processor in the block will know how many
pixels values in its window fall in the
order interval. There are 4D**2 - 2D + 1

•IC----D ---->!

~

Figure 4

pixels in the neighborhood, so by using
4D order intervals each has at most D
values. We repeat the spreading wave
process 4D times, pipelining the waves
so that it takes only B(D) time. When
finished, each processor in the block
knows which order interval contains the
median of its window. The processor also
knows a relative description of which
pixel value in the order interval is the
median of its window, e.g., the processor
may know that in the appropriate order
interval it is looking for the third
smallest pixel value belonging to its
window. A final combination of sorting
and searching, also taking e (DJ time,
finishes the algorithm.

The algorithm sketched above can be
modified to-provide an optimal
B(D/log(D)) median filtering algorithms
using a window of size D , for !-dimen
sional data, stored in the base of a
1-PC It can also be adapted to d-PCs
and d-MCCs , d ;:,, 2 , using windows of
size D**d , but the adaptions give
B(l)•h'< (d/2)) algorithms. The only lower
hound known to the author is B(D) , so
it seems that optimal algorithms for
higher dimensions will require different
techniques.

6. CONCLUSION

Our results can be rearranged to
allow a better comparison between pyra
mids of different dimensions. If we have
a d-PC of size n , with one item per
base processor, then these n items can
be sorted in B(n/lg(n)) time if d=l ,
and B(n>'ck(l/d)) time if d > 1 . (This
holds for both worst case and expected
case times.) The 1-PC algorithm is

220

new, while the others are well-known, and
all are optimal to within a constant
multiple. Our 1-PC sorting algorithm
depended on a new optimal merging algo
ri thril. While there was no time to ex
plore further here, the 1-PC sorting
algorithm gives several other optimal~
B(n/lo~(n)l algorithms.

We also considered selection, pro
viding an algorithm much faster than
previous ones. Previous algorithms
utilized sorting, which does not fit the
pyramid structure very well. Pyramids
provide logarithmic paths between any two
processors, but if there is too much data
movement, such as occurs with sorting,
then the apex becomes a bottleneck. By
re<lucing the amount of data being moved
we reduced the time to o(n**E) for any
E > 0 . Thus seletion is faster than ·
sorting on serial computers [1], mesh
connected computers with broadcasting
(llf] , and pyramids.

Our selection algorithm also gives a
faster median filtering algorithm which,
when using a D x D filtering window,
takes o(D'~"'[2+E]) time for any E > 0 .
However, by making better use of the fact
that windows of adjacent processors over
lap extensively we are able to give an
optimal B(D) algorithm. In a future
paper the author will consider a variety
of windowing operations on data stored in
mesh-connected computers and in pyramid
computers.

R.EFERE:11CES

1. A.V. Aho, J.E. Hopcroft, and J.D.
Ullman, The Design and Analysis of
Algorithiii'S-;- Addison-Wesley, 1974:-

2. ~.J. Atallah and S.R. Kosaraju, A
generalized dictionary machine for
VLSI, Dept. E.E. Comp·. Sci., Johns
Hopkins Univ.

3. J.L. Bentley and H.T. Kung, Two
papers on a tree-structured parallel
computer, Dept. Comp. Sci., Carnegie
Mellon Univ., Rep. CMU-CS-79-142,
1979.

4. C.R. Dyer, A fast parallel algorithm
for the closest pair problem, Info.
Proc. Let. 11 (1980), 49-52.

5. C.R. Dyer, A quadtree machine for
parallel image processing, Dept.
Comp. Sci. Univ. Illinois at Chicago
Circle, Tech. Rep. KSL 51, 1981. ~

6. A.R. Hanson and E.M. Riseman,
Preprocessing cones: a computation
al structure for scene analysis,
Univ. Mass., COINS Tech. Rep. 74C-7,
1974.

7. C.E. Kim and A. Rosenfeld, Convex
digital solids, IEEE Trans. P.A.M.I.
4 (1982), 612-618.

8. C.E. Leiserson, Systolic priority
queues, Dept. Comp. Sci., Carnegie
Mellon Univ., Rep. CMU-CS-79-115,
1979.

9. R. Miller, An efficient data movement
technique for the pyramid computer,
to appear.

10. D. Nassimi and S. Sahni, Finding
connected components and connected
ones on a mesh-connected parallel
computer, SIAM J. Comput; 9 (1980),
744-757.

11. T.A. Ottmann, A.L. Rosenberg, and
L.J. Stockmeyer, A dictionary
machine (for VLSI), IEEE Trans.
Comput. 31 (1982), 892-897.

12. B. Sakoda, Parallel construction of
polygonal boundaries from given
vertices on a raster, Dept. Comp.
Sci., Penn. State Univ., Tech. Rep.
CS81 1-21, 1981.

13. Q.F. Stout, Drawing straight lines
with a pyramid cellular automation,
Info. Proc. Let. 15 (1982), 233-237.

221

14. Q.F. Stout, Mesh-connected computers
with broadcasting, IEEE Trans.
Comp., to appear.

15. S.L. Tanimoto, Towards hierarchical
cellular logic: design consider
ations for pyramid machines, Dept.
Comp. Sci., Univ. Washington, Tech.
Rep. 81-02-01, 1981.

16. S.L. Tanimoto, Sorting, histogram
ming, and other statistical opera
tions on a pyramid machine, Dept.
Comp. Sci., Univ. Washington, Tech.
Rep. 82-08-02, 1982.

17. S.L. Tanimoto and A. Klinger (eds.),
Structured Computer Vision: Machine
Perception Through Hierarchical
Computation Structures, Academic
Press, 1980.

18. C.D. Thompson and H.T. Kung, Sorting
on a mesh-connected parallel com
puter, Comm. A.C.M. 20 (1977), 263-
270.

19. L. Uhr, Layered "recognition cone"
networks that reprocess, classify,
and describe, IEEE Trans. Comp. 21
(1972)' 758-768.

20. Two Dimensional Digital Signal Pro
cessing II, Transforms and Median-
Filters,-S-pringer-Verla~1981,
particularly the articles by B.I.
Justusson and S.G. Tyan.

Omni-sort: A Versatile Dat.a Processing Operation for VLSI (a)

Ching C. Hsiao
Western Electric

Engineering Research Center
P. 0. Box 900

Princeton, New Jersey

ABS'IRACT -- Omni-sort is a versatile operation proposed ro
perform basic database operations such as union, intersection,
difference, duplicate-removal, and sorting. We present
adaptation schemes ro implement the omni-sort by modifying
parallel sorting algorithms. While the modification cost is
small, the initial expenses of design and test development is
offset by the increased usage. In the algorithmic point of view,
the omni-sort also provides potentially much faster algorithms
for those data processing operations than before.

1. INTRODUCTION

Since sorting is one of the most important operations in data
processing, high-speed parallel sorting methods are very
desirable. In the last fifteen years, many parallel algorithms
have been proposed and developed for sorting. Because of the
advances in VLSI technologies, highly parallel computing
systems consisting of hundreds of thousands of processing cells
are feasible. With the technologies, those sorting algorithms ·
may be realized as algorithmically specialized processors 17] or
as parallel programs in general-purpose computing systems. In
both cases, initial cost of design and test development is so
high that it had better be offset by mass production or heavy
usage.

In this paper we propose a powerful operation called omni
sort (b) which can selectively perform multiple data processing
functions. The functions performed by the omni-sort are five
basic data processing operations: union, intersection, difference,
duplicate-removal, and sorting I 10]. Omni-sort can be
implemented by slightly modifying the already developed
parallel sorting algorithms. We do not distinguish sorting

algorithms ro be implemented as specialized processors from
those to be programmed in general-purpose computing systems,
since the results shown are applicable ro both.

Here we also present schemes ro extend sorting algorithms
to implement the versatile omni-sort. The key point is ro
compose elegantly the sorting capability and some minimal,
extra computation capabilities. Using the schemes, sorting
algorithms can be modified ro perform the omni-sort such that
the modification overhead is small and the performance
overhead is negligible. Based on some sorting algorithms, the
omni-sort offers faster or even optimal algorithms for
duplicate-removal, union, intersection, and difference.

2. THE OMNI-SORT OPERATION

In this section we first give definitions of the five data
processing operations and the omni-sort. We then show that
any sorting algorithm can be extended ro perform the omni
sort. A step-by-step synthesis is given ro demonstrate what and
how extra capabilities are attached ro a bare sorting algorithm.
The added-on capabih 'ies are endeavored ro be easy for
implementation as well as minimal in introducing overhead.

(a) The research described herein Wa.5 conducted ~ pa.rt ~f the Blue CHiP
project at Purdue University, West La.fa:vette, Ind1a.na. while the fin~t author
w~ a. graduate student there. Funding Wa.3 orovided in pa.rt. by: the Office of
Naval Research under Contra.ct N00014-8V-K-0816 and Contract N00014.-
81-K-0360, Special Research Opportunities Program Task SR0-100.

(b) Omni-sort w.., previously called POP-SORT (Primitive-OPerauon SORT) in
[21.

0190-3918/83/0000/0222$01.00 © 1983 IEEE 222

Lawrence Snyder
Purdue University

Dept. of Computer Sciences
West Lafayette, Indiana

2.1 DEFINITION

Sorting, duplicate-removal, union, intersection, and
difference are basic operations in relational database processing
po]. One can find their conventional definitions in many
database textbooks. However, among the five operations, four
are defined differently here from their sequential counterparts
except sorting. Omni-sort is a new operation defined ro
perform all of the five operations selectively.

LetX={x 1, x2, .. , x,}and Y={Yi. Y2, .. , Ym}be multisets.
By multiset it is meant that there may be duplicate items. This
is in contrast ro the mathematical definition of a set in which all
the elements are distinguishable. From k equivalent data items
in a multiset, k- 1 items are arbitrarily chosen to be duplicates.
Throughout this paper we will assume that a sorted sequence is
always in ascending order. The form al definitions of these
operations are given as below.

sort(X)

dup_rm(X)

union(X, Y)

inter(X, Y)

di/fer(X, Y)

to re-order the sequence Xi, x2, · · • , Xn

such that Xp(I) ~ Xp(2) ~ •.• ~ Xp(•) ~
• • • ~ Xp(n)> where p(l)p(2) · · · p(n)

is called a permutation.

ro determine the bit stream
q(l)q(2) · · · q(i) · · · q(n) such that if
q (i) =1 then x, is a duplicate.

ro compute the union set of X and Y,
i.e. dup_rm(X) LJ dup_rm(Y).

ro compute the intersection set of X and
Y, i.e. dup_rm(X) n dup_rm(Y).

ro compute the difference set of X and
Y, i.e. dup_rm(X) - dup_rm(Y).

omni-sort(! ,X, Y) ro perform one of the above five
operations which is selected and
controlled by the argument f.

f ~I

: ~'--~-~-R_T_-_,~ n<Wt

Figure 1. Controlling the functions performed by the omni-sort.

The duplicate-removal operation defined above simply
identifies the duplicate items, or marks certain items as
duplicates. This definition is reasonable for parallel processing
I 4]. If actually eliminating the duplicates is required, an
additional operation of packing and segregation I 6] can be used
ro separate marked and unmarked data items. Alternatively,
marked data items can be filtered off while outputting the
sequence.

The operations union, intersection, and difference defined
above are more general than standard set operations. They are
relaxed from the restriction that operands must be sets of
distinguishable elements. This generalization has its practical
merit in relational database processing. Multisets are artifacts of
relational operations like projection and concatenation. Evidently

many query languages (SEQUAL, QUEL, and QBE) provide
operations for working with multisets I IOI. It is not unusual
that duplicate-removal and a set operation need to be executed
subsequently. With the more powerful multiset operations, this
can be done by invoking only one single operation. Integrating
two operations together gives opportunity to eliminate the
communication needed between operations.

2.2 A GENERAL ADAPTATION SCHEME

Assume that a multiset X is sorted in ascending order by
some highly parallel sorting method such that x 1 ~ x 2

~ ~ Xn.

Definition 1. Marking- minus is a parallel process that marks
cert3.in elements in the sorted multiset X as "minus". It
compares all the pairs of x, and x,+1 for 1 ~ i < n; if equal, it
marks x, as x 1-.

A process called marking-plus can be defined similarly on a

sorted multiset Y. Either marking-minus or marking-plus can
detect all the duplicate elements in a sorted multiset. For the
union operation, the distinction between its two operands is not
import'1nt and it can be implemented as duplicate-removal.

To unify all the five operations, however, there is a problem
of incompatibility on the number of operands among them;
distinction of operands is necessary to perform intersection and
difference. To resolve the incompatibility, we propose that tags
be attached to data items so that X-elements can always be
distinguishable from Y-elements. To perform sorting on two
multiset operands, the operands are simply put together and
sorted as if the tags were transparent. The use of tags is also
useful to extend the sorting algorithm to have a feature defined
below. This feature is crucial to the easy adaptation of sorting
algorithms to perform the omni-sort.

Definition 2. Given two multisets X and Y and a sorting
algorithm to sort them together, the sorting algorithm is called
quasi-stable if x precedes (follows) y in the final sorted
sequence for all x =y, x EX and y E Y.

We summarize the general procedure to extend any sorting
algorithm to implement the omni-sort as follows. First, two
different tags are attached to X- and Y-elements and a quasi
stable sorting algorithm is executed on X + Y. The marking
plus process then detects all the duplicates in Y and the
marking-minus detects duplicates in X. Notice that the result
sequence now has the following pattern:

.. ,,- . x- x y y + . y + ..

where x = y and x E X, y E Y.

All the equivalent data items, from both X and Y, must be
marked off except possibly pairs of x and y as shown above.
The unmarked data x and y must be "neighbors" and only x is
considered a candidate of valid data in the final result. Then
some more neighbor-communication and local processing is
enough to implement the operations intersection and
difference.

2.3 IMPLEMENTATION

According to Section 2.2, a general omni-sort algorithm may
consist of four processing stages:

(1) Initialization - Each data item is attached a tag to identify
which operand it belongs to.

(2) Sorting - A quasi-stable sorting algorithm is executed.

(3) Marking - The two marking processes are performed on
separate operands.

223

(4) Completion - Data tags may be further modified to reflect
the final result of the intended operation.

To implement the omni-sort, we use a two-bit flag for each
data item. The flag bits are appended to each data item as the
leaot significant bits. Initial values of X-tag and Y-tag are
carefully designated to be (0,1) and (1,0) respectively. With the
meticulous initialization of the flag bits, any sorting algorithm is
quasi-stable! For sorting or duplicate-removal, we arbitrarily
choose X-tag for its single multiset operand. Similarly, the two
m ultisets of the union operation can be put together and
treated as X operand.

Let ak .. a0a_ 1 a_ 2 be the bit representation of data item a
where a_ 1a_ 2 are the flag bits. The bit representation
bt .. b0 b_ 1b_ 2 is defined similarly for the data item b. Suppose
that a and b are the neighboring data items, with b toward the
larger end of the sorted sequence. To implement the marking
minus or marking-plus, all the pairs of a and b are compared
and the flag bits are modified as following:

Marking-minus: if a =b and a_ 1 a_ 2 = (0,1)
then a_ 1a_ 2 = (O,U);

Marking-plus: if a =band b_ 1L2 = (1,0)
then b_ 1b_ 2 = (1,1);

Now all the data with the flag bits (0,1) constitute the final
result of the operation sorting, duplicate-removal, or union.
However data items with the Hag bits (0,1) are just candidates
for the result of the operation intersection or difference. To
complete the operation intersection or difference, the program
segments shown below further screens those data with the Hag
bits (0, l) to produce the correct result.

/*intersection •/
if ak .. a0 =f bk··bo and a_ 1a_z = (0,1) and b_,b_2 = (1,0)

then a_ 1a_ 2 = (0,0);

/* di ff ere nee * /
if ak .. a 0 =bt .. b0 and a_ 1a_z = (0,1) and L 1 b_ 2 = (1,0)

then a_ 1a_z = (0,0);

2.4 OVERHEAD

The modification overhead of the general adaptation scheme
to extend a sorting algorithm to perform the omni-sort is the
following:

• two Hag bits for each data item,

• some bit manipulation capability of the Hag bits,

• maybe some additional capability for performing the local
pair-wise comparison, and

maybe the linear interconnection between processing cells
for the neighbor-communication.

The last two items are not necessarily overhead. Comparison
function is usually needed to implement sorting anyway and
linear interconnection of processing cells is available for many
sorting systems. The first two items affect only local circuit;
they never create significant overhead since it is the
interconnection circuit for communication that occupies most
of the chip area.

The time overhead is even more exciting. The initialization
stage takes only constant time. The marking stage and the
completion stage also take only constant time if the
interconnection is available for the neighbor-communication.
This time overhead is negligible as compared with the
minimum requirement of O(log2(n+m)) time forsortingX+Y
[llj.

3. EXA-MPLES

In this section we discuss more specific adaptation schemes
to turn sorting algorithms in to an omni-sorter. Two families or
sorting methods (enumeration sort and merge sort) and one
type of linear-time sorting systems are considered. From the
two sorting methods, we can derive faster-than-ever omni-sort
algorithms for duplicate-removal and the three multiset
operations. The linear-time sorting systems, which emphasize
overlapping sequential I/O time and sorting time, provide a
most feasible and practical solution to high-speed hardware
sorter.

The general adaptation scheme shown in the previous
section implies four processing stages, with the marking stage
distinctly separated from the sorting stage. We call this the
open-form scheme. For the two families or sorting methods,
closed-form schemes requiring less overhead than the open
form scheme are presented. The close-form schemes
completely integrate the marking stage into the sorting stage by
primarily using a new comparison function in the sorting stage.

3.1 ENUMERATION SORT

In the enumeration sorting methods, each data is compared
wilh all the others [31. In other words, they perform at least the
lf2 n(n-1) comparisons to sort a sequence or n data items.
Usually enumeration sorting methods consist or two
computation phases.

• Rank computation - From the result of the lf2 n(n- 1)
comparisons the ranks or data items are determined.

• Data rearrangement - Each data is moved to its final
position according to its rank.

Of course the open-form scheme can be applied to adapt any
enumeration sorting algorithm to become omni-sort algorithm.
It might be easier for enumeration sorting systems to
incorporate the marking capabilities into the sorting stage. The
following program describes how easily the marking capabilities
can be embedded in the rank computation phase.

1. for i = 1 to n do rank, := 1; /*the smallest*/
2. for i = 1 to n do

for j = i+ 1 to n do
3. if x, > X; then rank, :=rank, + 1

else rank; :=rank;+ l;
4. if x, = x; then

if a_ 1a_ 2 = (0,1)
then a_ 1a_ 2 = (0,0);

if a_ 1a_ 2 = (1,0)
then b_ 1b_ 2 = (1,1);

/*a=x,*/
/* marking-minus */
/*b=X;*/
/*marking-plus */

Assume that all the data are tagged with the Hag bits (0,1) or
(1,0) appropriately in the initialization stage. Step 4 of the
above program essentially performs the two marking functions.
In step 4 the modification of Hag bits is carefully programmed
to be consistent with the rank computation in step 3.

In [51 a sorter based on the enumeration method was
shown. The sorter is optimal in the sense of reaching the lower
bound time complexity O(log2(n+m)) [111. Using this kind or
sorter as the base for omni-sort, all the five operations would
be executed in optimal time.

3.2 MERGE SORT

In the merge sorting methods, smaller sorted sub-sequences
are merged into larger ones and the merging process is repeated
until there is only one final sorted sequence left. To merge

224

sub-sequences, pair-wise comparisons are performed in parallel.
A standard pair-wise comparison is usually defined by two

operators, max and min, as shown in the following [31.

a~max(a,b)
b --=-Lj--7· min(a,b)

if a~ b then { max(a,b) :=a; min(a,b) :=b}
else {max(a,b) :=b; min(a,b) :=a}

In Definition 3, we define a new pair-wise comparison function,
compare-and-mark, which combines the two marking
mechanisms with the above comparison function. By using the
the compare-and-mark function in a merge-oriented sorting
algorithm, we can prove the result described in Theorem 1 by
induction [21.

Definition 3.. Compare-and-mark is a comparison operation
that manipulates the Hag bits as below and also performs the
standard comparison function.

if a =band a_ 1a_ 2 = (0,1) then a_ 1a_ 2 := (0,0);
if a =band a_ 1a_ 2 = (1,0) then a_ 1a_ 2 := (1,1);

Theorem 1. Using the compare-and-mark operation, any merge
sorting algorithm can sort in the quasi-stable manner and
perform the marking-plus and marking-minus functions
correctly.

The marking processes performed by the compare-and-mark
function in a merge-oriented sorting algorithm are idempotent;
they are depicted as a state diagram in Figure 2. Once data
items reach the state (0,0) or (1,1), they remain in that state.

Figure 2. State diagram for the marking processes.

Without using sorting, algorithms to perform the operations
such as duplicate-removal, union, intersection, and difference
were proposed on systolic arrays [41 and a tree machine [81.
Those algorithms all require linear time 0(n +m). Bateher's
bitonic merge sort [ll were adapted to several computing
systems with different interconnection patterns. Even with the
mesh interconnection [91, omni-sort promises sublinear time
performance 0(./n+m) for those operations. If a large
bandwidth of I/O is provided then omni-sort algorithms are
definitely preferred to those in [4,8].

3.3 LINEAR-'llME SORTER

Here the linear-time sorter refers to those which inputs data
sequentially and produces a sorted sequence while outputting it.
The open-form scheme can be applied to adapt the linear-tim'e
sorter to the omni-sorter. First, data items are properly tagged
and fed into the linear-time sorter. Then the computation in

the marking and the completion stages is performed while
outputting the sequence. This can be easily done by adding to
the sorter a special post-processor.

4. OTIIER APPLICATIONS

In addition to its power of performing multiple functions,
the omni-sort has other useful applications. We describe briefly
in this section its two important applications in relational
database processing. One is to pre-condition data items for
carrying out the equi-join operation efficiently. The other is to
process a class of relational queries involving only the five
operations in a novel way. Readers interested may refer ro j2J
for more details.

Sorting has been very useful in improving the performance
of the join operations (especially the equi-join operation.) A
common approach is to presort database relations A and B on
attr;butes T if they are to be joined on the attributes T. Then
a join algorithm can take advantage of the well ordered
sequences in A and B. Now, since omni-sort has the nice
feature of being quasi-stable, the relations A and B can be
sorted together on the attributes T. All the database tuples that
should be joined therefore are grouped together as aggregates.
Besides, all the A tuples in an aggregate precede their to-be
joined B tuples. Then a simple process to shift and join tuples
is enough to implement the equi-join operation.

We demonstrate the application of the omni-sort to query
processing by an example. Suppose that a database query
involves four relations A, B, C, and D, and requires the
processing of (n(A) LJ B) - (n(C) n n(D)), where n is
the projection operation with the requirement to remove
duplicates. The processing of this query can be implemented
by a merge-oriented omni-sort as follows:

(1) R 1 =omni-sort(Ji.fi(A),B) and
R 2 =omni-sort(f2,fi(C),n(D));

(2) R 8 =omni-merge(! 8 ,R "R 2).

In the first step two runs of omni-sort on different operands can
be executed in parallel, where n is the projection operation
without the requirement to remove duplicates. The control
argument f 1 should be set to select X-tag and the union
operation, and f 2 to select Y-tag and the intersection operation
(Section 2.3). Then in the second step a merge stage is
sufficient to perform the difference operation sinc-e the
intermediate results from the first step are already ordered
sub-sequences and appropriately tagged.

5. SUMMARY

Omni-sort is a new operation defined to selectively perform
the five important database operations: union, intersection,

difference, duplicate-removal, and sorting. Adaptation schemes
are presented to modify sorting algorithms to implement the
omni-sort operation. We show a general adaptation scheme
that is independent of the sorting algorithm and discuss its
implementation. We also present specific schemes for two
families of sorting methods and a type of linear-time sorter.

A highly parallel sorting algorithm may be proposed to be
implemented as a specialized processor or to be programmed in

225

a general-purpose computing system. In the former case, the
adaptation schemes presented in this paper can be applied to
modify the sorting circuit to implement the omni-sort. In the
latter case, the parallel program for sorting can be extended to
perform the omni-sort in accordance with the adaptation
schemes. The benefit is to offset the initial expenses of design,
development, and testing of a sorting system by increasing its
usage.

Sorting is one of the most important data processing
operations. Many sorting algorithms have been invented and
developed. The modification cost is small to extend the sorting
algorithms to implement the omni-sort using the adaptation
schemes proposed. Besides, the performance overhead is
negligible; an omni-sort algorithm should share the same time
complexity as its underlying sorting algorithm. Based on some
parallel sorting algorithms, omni-sort also provides faster-than
ever algorithms for performing the other four data processing
operations.

6. ACKNOWLEDGEMENTS

We would like to thank Tientien Li for his careful reading
of a draft of this paper and his valuable suggestions to improve
its organization.

REFERENCES

I. K. E. Batcher, "Sorting networks and their applications,"
Proc. 1968 National Computer Conference, AFIPS, 307-313.

2. C. C. Hsiao, "Highly parallel processing of relational
databases," Ph. D. thesis, Department of Computer
Sciences, Purdue University, Dec. 1982.

3. D. E. Knuth, The art of computer programming, Addison
Wesley, Vol. 1 & 3.

4. H. T. Kung and P. L. Lehman, "Systolic (VLSI) arrays
for relational database. operations," ACM SI GM OD Intl.
Conference, 1980.

5. D. E. Muller and F. P. Preparata, "Bounds to
complexities of networks for sorting and for switching,"
J. ACM, 22:2, April 1975, 195-201.

6. J. T. Schwartz, "Ultracomputer," ACM Trans. on
Programming Languages, 2:4, October 1980, 484-521.

7. L. Snyder, "Introduction ro the Configurable, Highly
Parallel computers," IEEE Computer, 15:1, 47-56.

8. S. W. Song, "A highly concurrent tree machine for
database applications," IEEE Intl. Conj. on Parallel
Processing, 1980.

9. C. D. Thompson and H. T. Kung, "Sorting on a mesh
connected parallel computer," Comm. ACM, 20:4, 1977.

10. J. D. Ullman, Principle of Database Systems, Computer
Science Press, 1980, Chapters 4 & 6.

11. Leslie G. Valiant, "Parallelism in comparison problems,"
SIAM Journal of Computing, 4:3, September 1975, 348-
355.

PSEUDO ASSOCIATIVE LINKING: A HIGH SPEED SEARCHING ALGORITHM FOR PARALLEL PROCESSORS

F.P. Hiner Ill
Data Systems Division

Litton Systems, Inc.

8000 Woodley Ave.
Van Nuys, Calif. 91406

Abstract -- The task of correlating a large number of radar reports

with a large number of stored radar tracks has long been identified as a
natural application of Single Instruction Multiple Data (SIMD) computers.

As practical/deployable parallel processors are often limited in power
and number of processing elements, searching techniques have been
sought that would provide faster execution times than that obtained by
brute force searches in an SIMD machine. Specifically we sought some

means of utilizing the power of the parallel processor in the creation
and searching of a data structure that would give us a species of
associativity such as enjoyed by a machine with a far larger number of

processing elements (PEs).
A data structure and set of searching algorithms have been developed

which we name Pseudo Associative Linking (PAL). With this technique

one can, in effect, multiply the power of the SIMD machine on itself. The
developed algorithms have been successfully used in the implementation of
the Litton Advanced Tracking System (ATS) developed for Rome Air

Development Center which uses the 16 element Tracking Array Processor
(TAP) as the parallel processor. The Litton ATS has already demonstrated
a track processing capability of over 10,000 tracks.

1 .0 Background
A need has arisen for radar trackers which will not only track

hundreds and even thousands of radar targets but perform th is task

without producing an untenable number of false alarms. Such a system
has never truly been implemented as a standalone system.

The Tracking Array Processor (TAP) [1] was originally designed
with the object of providing a physically small computer which would

be able to perform tracking in the 'track while scan' sense on up to 2000
radar tracks. It soon became apparant that, despite possessing a parallel
processor, achieving these speeds might be possible if and only if we used
some searching technique analogous to the double linked lists employed in

sequential computers and sort on both azimuth sectors and cartesian sort
boxes. Such techniques can be implemented in SIMD machines and can
be effective but they suffer from the bane of susceptibility to soft memory
failures and they produce messy /complex programs. This latter flaw is not

trivial. We thus early on began seeking an alternate to the well known
sequential computer searching techniques.

The answer that we found was the Pseudo Associative Link (PAL)
memory system. The name derived from the clearly 'pseudo associative'
nature of any searching algorithm that requires programming coupled with

the notion of linked lists. The technique to be described has been
implemented in a number of different fashions within the operational
Advanced Tracking System (ATS) built by Litton and tested at Rome

Air Development Center. The PAL technique has in fact allowed us to not
only reach the 2000 track number but to implement a system capable of
dealing with well over 10,000 tracks!

2.0 The Tracking Array Processor (TAP)
The Tracking Array Processor is a classic SIMD machine designed

expressly for the radar tracking problem_ During its inception there was no
interest in applying this machine to general purpose problems. Rather, it's
design followed studies which demonstrated that an array of processors
might provide an optimum method of doing radar tracking. Thus, the TAP

consists of a maximum of 16 PEs, each possessing 64 K of dynamic RAM

0190-3918/83/0000/0226$01.00 © 1983 IEEE 226

memory and each processing 16 bit data words at a speed of from 3 to

5 MIPs.
Since the TAP's function is the parallel processing of disparate data

sets an extremely simple interconnect network (a linear bus) was deemed
and later found to be acceptable. Programming is performed in a high
level, english-like assembly language [2]. The language and the archi

tecture allow, at each step, for selective enabling of any combination of
the PEs and the execution of conditional instructions based on polled
responses from the enabled PEs. A WAIT statement allows any given PE

to bypass batches of code based on local tested conditions_ Included in
the instruction set are Top Down programming constructs such as RE
PEAT-UNTl L, WHILE statements and IF THEN ELSE.

3.0 A Type I PAL
Consider a system which consists of a 2-dimensiona! array of

memory elements, N rows by m columns. An SIMD processor of m PEs
with each PE containing N addresses of memory forms such a
2-dimensional memory (See Figure 1). When characterizing the SIMD

machine as 2-D memory, the Arithemetic and control logic of each PE
functions only to feed and care for the memory elements in a given

column.

0 REG __,,--------,
INPUT

F--1"------'

16384 4096 >--+--+---+-+--+--t--t--+--+---t-+--+--t--t--+----<
PE
MEMORY:

3276 8 8192 >--+----+---t-+--+--t--+---+----+---t-+--+--t--+---+----< 1 16 K

MINIMUM
49152 12288 >--+----+---t-+--+--t--f--+----+---t~+--+--t--t--+----< I

Figure 1. Tracking Array Processor 2-D Memory Structure

A section of the parallel processor memory will be designated a PAL
memory. Nominally this section of memory will consist of Nl rows, each
one memory cell deep by m columns wide where m is the number of PEs.
The PAL memory will be used to point at rows in parallel processor
memory defined as the object memory (See Figure 2). This memory is
used to store the data being sought. Thus each row in this memory is

N2 rows deep. If N3 data items are to be maintained in this memory then
the number of actual rows in memory is (N2) (N3) /m. The PAL memory

is required however to point at only N3/m rows.

TRACK FILE PAL MEMORY

Pe Pe Pe Pe Pe Pe Pe Pe Pe Pe

L r9~8~7~6~5~4r3-f-2->r1-c0--;
Pe Pe Pe Pe Pe Pe Pe Pe Pe Pe
9876543210

ROW 0

r
100

ADRESSES

I f '

(OBJECT MEMORY)

Row-i1
1 AOORESS

" 100 16 BIT WORDS
FOR A TRACK IN
AZIMUTH SECTOR 2

EXAMPLE:

THE PAL MEMORY POINTS
TO ALL ROWS OF THE
TRACK FILE ASSIGNED TO
AZIMUTH SECTOR 2

83919 2

Figure 2. PAL Memory to Object Memory Link Structure

3.1 Description of the Type I PAL

We now make the following definitions:

1. We here assume that association will be performed for one

field of the data only.
2. All data to be stored in a row of the object memory will be

loosely associated. (e.g. if the data to be associated is, say,

radar azimuth, then all data stored in the same row might be
contained within a 10 degree azimuth wedge).

Upon initializing the system, each i, j memory location of the PAL

memory is placed into permanent 1 :1 correspondence with a row of the
object memory. This is performed by placing the actual address of the row

of the object memory into the PAL memory's location. Additional data

stored in this memory location are (See Figure 3):

a. A bit which indicates if this PAL location (= row in object

memory) is in use.

b.

c.

A bit which indicates if the row in object memory is full.

A field which defines the value of the association data being

stored in the row in the object memory.

(example: if the data is radar tracks and we are storing them in

a 5.25 degree azimuth sector then the value of the association

data will be a 6 bit word defining one of the 64 azimuth

sectors.)

AZIMUTH
SECTOR NAME

IN USE FLAG

9 I a

PERMANENT
ROW IND EX

, I

[1 = ASSOCIATED ROW IS FULL
0 =ASSOCIATED ROW IS NOT FULL

[0

ASSOCIATED ROW HAS BEEN
ASSIGNED TO THE AZIMUTH
SECTOR NAME

ASSOCIATED ROW IS
UNASSIGNED

83919·3

Figure 3. PAL Memory Word Format

227

Following system initialization the object memory is empty and this

of course is indicated by the flag bits in the PAL memory. When the first

datum arrives for storage, the program first looks in the PAL memory to

see if there is any data with the same 'name' (i.e. association field). This

look is done by reading each row of the PAL memory in parallel and

looking for a data match. If an "unused" bit is found set during this

search, the search can stop. Thus if the memory is empty, the search stops

immediately as inspection of the first row of the PAL memory indicates

no match on the association field value and at least one empty row flag

set.

If there is no association field match, the next available i, j memory

location in the PAL memory is assigned. This is carried out by,

a. setting the "in use" flag in the PAL i, j location, and

b. inserting the association value into the PAL location's assoc·

iation field.

The pointer into the object memory is now extracted from the PAL

memory location, and the indicated row in the object memory is examined

to determine where the next empty location exists (there must be at least

one). The new data is now written into the next empty location in the

indicated row in the object memory. If this location fills the row the

"full" bit in the PAL flag word is set true.

In this fashion each piece of data which lies in the same azimuth
sector will be stored in rows in the object memory such that all data items

in this row are loosely associated. The number of rows assigned to any

particular azimuth will of course be a random function of the input data.

It is to be hoped that the association variable has been chosen such that

the likelihood of input data being concentrated on one or just a few values

is small. In other words, this value must be picked with the advanced
intelligent expectation that the data has a high probability of spreading

over a number of values.

The principal virtue of the PAL technique comes not from the ease

of finding data but in the speed of rejecting data! Consider the act of

finding a particular track lying within azimuth sector S. We first look at

row 1 of the PAL memory and ask if any of the locations are pointing to a
row in the object memory containing azimuth sector S data. If the answer

is no, we look at row 2 of the PAL and ask the question again. If we get

the answer that there is at least one, we may check the first candidate row

that comes to view.

Checking the candidates means going into the object memory at the

indicated row and checking m candidates simultaneously. If the sought for

datum is not found, we go back to the row of the PAL memory and see if

the row we are in points to any more candiate rows in the object mem9_ry.

If so, we check them. The important thing is that;

a. If the PAL memory does not point to any candidate rows in

the object memory, then we have in fact checked and discarded m x m

memory locations in the object memory!
b. If a row contains just one pointer to a candidate row in the

object memory then we have excluded m x (m· 1) memory locations and

now go to perform a detailed check of the single candidate row at the

normal speed up factor of m (the number of PEs).
Thus if we can guarantee the association parameter produces values

which spread over some range we can search the parallel processor at a

speed somewhat less than m squared times an equivalent sequential

computer and considerably greater than m times the equivalent sequential

computer.

3.2 Basic PAL Operation

Each time data is to be accessed from a PAL governed memory one

goes into the PAL itself and reads each row of the PAL until either the end
of the PAL is reached or a PAL location is detected which contains an

unused object row flag.

When data is to be stuffed into a PAL governed memory one must

read every row of the PAL memory until a location is found which points

to a row in object memory which is not full and possesses the same

association value. If no such row is found, one must be created.

If the data stored in the object memory has an association value that

changes due to periodic access and recalculation, then upon each

recalculation this. data may have to be moved within the PAL memory.

3.3 Garbage Collection in a PAL System
In order to use a parallel processor effectively it is necessary that

virtually all PEs are utilized a very high percentage of the time. Thus,
during searches we wish to guarantee that every PE, at every step, contains
data that is maximally likely to be associated with neighboring PE's data.
A similar consideration applies to the act of computing on data in object
memory.

The PAL memory structure has as its purpose the job of
guaranteeing that data will be optimally stored in memory so as to allow
parallel access. If data were only loaded into memory, the PAL system so
far described would suffice. In the real world, however, data must be
randomly deleted from memory. If data is deleted from a row in the
object memory that was formerly full then the system following the
deletion, is left with two rows in the object memory containing data with
the same association value which are not full. Now clearly if there are m
PEs and the data is effectively random over the association value then
there is a probability of (m-1)/m that on loading the PAL/object memory
that one row of PAL object memory or any association value will not be
full. This is unavoidable. If there is a great deal of data we are simply stuck
with one of many rows which is not full and hence processor effectiveness
is only slightly impaired.

If however, there is more than one row not full per each association
value our efficiency could fall off dramatically; in fact, we have defeated
the purpose of the PAL system. As data continues to be randomly deleted
from the system we could reach a state where a great many rows contained
but a single datum all with the same association value.

All of this merely goes to say that a form of garbage collection must
be implemented. In this case we perform the following algorithm on any
data deletion:

3.4 Garbage Collection Algorithm
1. Upon finding and deleting the data, test this row in the object

memory to determine if it was already less than full. If so, test if this
deletion empties the row. If emptied, return to the PAL and reset the 'in
use' bit and exit.

2. If the object memory row was full before the deletion then
search the PAL memory to find if there exists a row in object memory
which is less then full.

Remove a datum from the row which is already less then full and
move this datum so as to fill up the hole just made by the deleted datum
and check if this deletion now makes the row from which it was removed
empty; if so, clear the association value from the I inked PAL location and
set the full/empty flag to empty.

3.5 Computation Times For A Type I PAL
We shall continue to draw our examples from the radar case which

after all was the heuristic behind this work. Let us consider the case where
a type I PAL is storing radar data and is accessed by azimuth wedges. Then

Trt = (Nr) [Nt/(Aw/Ac)] (Os) (1/m) (Tl) (1)

where,

Trt
Nr
Nt
Aw
Ac
m

Os
Tl

the plot to track correlation time
the no. of reports
the no. of tracks
the azimuth wedge containing all data.
the azimuth cell size
the number of PEs
overlap scalar
the time to correlate one report against one track

Obviously computation time is a function of how the targets tend to
cluster in azimuth cells. (NOTE: As targets may lie on the edge of azimuth
sectors it is often necessary to search more than one sector. The overlap
scalar (Os) indicates the number of sectors that must be searched.)

To illustrate the timing we shall assume Nr = Nt = 2000, Ac= 3
degrees, Os = 2.25, and Tl = 10 microseconds. Figure 4 was generated by
assuming that all of the tracks were distributed randomly in a fixed

228

azimuth wedge as indicated on the abcissa. Thus if the data is randomly
distributed over the entire 360 degrees we have the point(s) on the far
right of the figure. If all the tracks are contained within a 120 degree
wedge, we get the indicated point.

4.00
CORRELATION,
TIME IN 3.00
SECONOS

2.00

1.00

(M =NO. OF PEs)

40 80 120 160 200 240 280 320

ANGULAR WIDTH OF THE AZIMUTH WEDGE
CONTAINING ALL TARGETS (IN OEGREES)

360

83919-4A

Figure 4. Report to Track Correlation Times for a Type I PAL Organized
with Report/Track Azimuth as the Association Field. (m =the no. of PEs)

4.0 A Type II PAL
Suppose we have quite a large number of tracks and try to perform

our searching with a type I PAL. Certainly there is a point, depending
upon our system constraints at which we will run into problems. Assume,
for example, that we must process 20,000 trial tracks and there are 3000
radar reports which must be correlated with these tracks. As a method of
comparison let us compare the time to search the entire track memory for
correlation if there exists no matching association field. If we use a type I
PAL, then;

Tncl = (Nr) [Nt/m 2 J tc (2)

where:

Tnc1

Nr
Nt
m

tc

the time to search a type I PAL and get
NO correlations.
the number of reports
the number of tracks
the number of PEs
the time to check and reject one
row of the PAL

If Nr = 3000 reports and N = 20000 tracks and m 16 and tc = 3
microseconds then,

tncl (3000) [20000/(256) l
(.000003) = 0. 7 seconds

(3)

Can a PAL operate on another PAL system so as to produce another
order of magnitude of improvement? The answer is yes and this system we
arbitrarily refer to as a type II PAL. Besides being of intellectual interest,
the type 11 PAL became of practical necessity when the number of tracks
that we had to process rose beyond the several thousand level. At this
number of tracks we had but 16 PEs to play with and we found that the
overhead operation of searching for empty rows in the object memory and
the basic search was consuming far too much time.

Consider the system illustrated in Figure 5. Track data is stored in
cartesian boxes in the object memory defined by an association field
which specifies 16 mile by 16 mile squares in the x-y plane. There are two
PAL memories, a level 0 PAL and a level 1 PAL. Each memory location of
the level 0 PAL points to a row in the level 1 PAL. And every memory
location of the level 1 PAL points to a row in the object memory.

1250
ROWS

TRACK DATA

OBJEl:T MEMORY

SORT BOX J +-+-+-+--+--+-+-+--+-<
SORT BOX M t-+-+-t-++-t-+-H

SORT eox PAL1

Figure 5. A Type 11 PAL Structure

As with the type 1 PAL each row in the object memory contains
data which is loosely associated by the assocation field. Each such row is
pointed to by a memory location in the level I PAL. By our definition,
each row of the level I PAL is allowed to point to the rows in the object
memory containing the same sort box (i.e. 16 mi. x 16 mi. area). This
defines a maximum of m x m tracks that may be contained in any given
sort box.

Each row of the level O PAL is addressed by a truncated version of
the sort box address. Thus if there are 16 PEs, each row of the level 0 PAL
points to a 4096 sq. mi. region.

In summary, we provide in excess of 20,000 memory locations in
the object memory arranged as 16 columns (PEs) by at least 1250 rows.
Each row in the object memory is pointed to by a location in the level 1
PAL. Each row in the level 1 PAL is dedicated to a single 16 mi. x 16 mi.
sort box in the correlation space.

Each location of the level 0 PAL points to a single row of the level 1
PAL and consequently is pointing to 256 tracks. If there are 20,000
memory locations then there are least 20,000/m rows in the object
memory. If m, the number of PEs. is equal to 16, then the number of rows
is 79. Assume the maximum range is 256 miles. Thus as each element of
the level 1 PAL points to 16 16 mi. x 16 mi. sort boxes there must be
1250/16 = 78.125 rows, implying 79 rows, in the level 1 PAL. As each row
of the level OPAL points to 16 16 mi. x 16 mi. sort boxes there must be
79/16 = 4.94 rows, implying 5 rows, in the level 0 PAL.

Let us consider now the same timing problem that brought us into
this solution. The timing formula to search the entire track file is now

Tnc1 = (Nr) [Nt/(m3)J (tc)

If Nr=3000, Nt = 20,000, m= 16 and tc = 3 x 10 -6 sec.,
then,

Tnc1 = (3000) [(20000)/4096]
(.000003) = 0.029 seconds

(4)

(5)

Let us now directly compare the PAL I and the PAL 11 systems
utilizing the task of performing radar report to stored track correlation. As
a means of making our comparison, we for purposes of analysis, shall
assume that all reports and tracks are constrained to lie within a defined
azimuth wedge whose size, we, in our analysis can vary. The targets/tracks
shall be assumed to be uniformly and randomly distributed throughout the
entire defined wedge. To facilitate our analysis we have calculated the
area contained in each such wedge and divided the area of the cartesian
sort box into this wedge area to obtain the number of sort boxes,
containing the track/report data. To further simplify matters the number

229

of tracks per sort box is assumed to be the total number of tracks divided
by the number of sort boxes. This calculation is expressed by the formula:

Ntsb = Nt/[2(7T) (R 2) (Aw/360 deg)/(sort box area)] (6)

where,

Ntsb
R

Aw
Nt

the No. of sort boxes
the maximum range of the radar
the angular width of the azimuth wedge in degrees
the total number of tracks currently active in the
system

Any formula for the computation time expended in correlating radar
reports with radar tracks must address two principal tasks;

a) Every report must scan the entire PAL system to find any
possible links. In the PAL I system, given that there are a maximum of
20,000 tracks, each report must look at 20,000/ (m2) rows in the PAL
memory. If m = 16, then 79 rows in the PAL memory must be examined
by every report.

bl Every report that finds a link into the track memory must be
correlated against at least one row of m tracks, with m = the number of
PEs.

The correlation time for the PAL I system is expressed by:

Tr1 Nr [(Ntsb/m) (Os) (T1 x T2) +
(Nmx/(m 2)) T2]

For the PAL 11 system,

Tr2 Nr [(Ntsb/m) (Os) (T1 I +
(Nmx/(m3)) T2]

Where;

The no. of reports
the no. of tracks per sort box

(7)

(8)

Nr
Ntsb

T1 the time to correlate one report against one row
of tracks

T2
Nmx

m

Os

the time to check one row of a PAL memory
the maximum no. of tracks the system can hold
the no. of PEs
The overlap scalar

Figures 6a and 6b plot the correlation time for both of these PALs
given Nr = 3000 reports, Nt = 10,000 tracks, Nmx = 20,000 tracks, Os=
2.25, T1 = 20 microseconds and t2 = 4 microseconds. Figure 7 provides a
direct comparison of the results for the two PAL systems with the number
of PEs set to 16.

2.00
CORRELATION,
TIME IN 1.50
SE CO NOS

1.00

0.50

M = 12

M = 16

40 80 120 160 200 240 280 320 360
ANGULAR WIOTH OF THE AZIMUTH WEOGE
CONTAINING ALL TARGETS (IN OEGREES)

83919-SA

Figure 6A. Type I PAL Results

2.00
CORRELATION.
TIME IN 1.50
SE CON OS

1.00

0.50

M=B

M= 12

40 80 120 160 200 240 280 320 360
ANGULAR WIDTH OF THE AZIMUTH WEDGE
CONTAINING ALL TARGETS (IN DEGREES)

83919-7A

Figure 6B. Type II PAL Results

Figure 6. Plots of Report to Track Correlation Time for Type I
and Type 11 PALs Using Target x, y as the Association Variables.

5.0 A Type Ill PAL
The data structure described in the previous section is clearly faster

than the Type I PAL yet in the tracking application it contains a not
insignificant defect. By only allowing 79 rows (in our example) in the PAL
I memory we in fact are allowing only 79 sort boxes. There are, in fact,
nearly 1000 possible sort boxes. Once our allowed 79 have been assigned,
any new track falling outside of this set is not accommodated in the just
stated system. One could have a very sparse track load yet not be tracking
all the aircraft.

The solution is our third and last PAL system; the Type Ill PAL
structure. In this system we provide a PAL structure wherein there exists
a row in the PAL I memory (here called the PAL Sl memory) for every
possible sort box. Each row in this PAL Sl memory may now be addressed
directly by the data field as the data field is the address of a row. The
individual locations within the PAL Sl memory row are not linked
permanently to rows in the object memory as was the case in the Type I
and Type II systems. Instead, such a linking is made if and only if a datum
occurs within the indicated sort box. This means that upon each new
track entering the system, we must search every row of the object memory
and find the first unassigned row in the object memory and assign it to the
appropriate location in the PAL Sl memory. Since there are at least 1200
rows in the object memory this search itself becomes the major time sink.
Thus we complete this system by incorporating a Type II PAL structure
into this system whose sole purpose is to point to unused rows in the
object memory. Figure 7 illustrates the complete Type 111 PAL system.
The included Type II PAL structure (PAL UO and PAL Ul) upon system
initialization permanently link themselves to the object memory such that
each location of PAL U1 points to a single row of the object memory and
each location of PAL UO points to a single row of the PAL Ul memory.

SORT BOX INITIAL ENTRY WINDOW, {
TENTATIVE TRACK,

RECORD OR TRACK CORRELATION RECORD

ltl Ilil
ill.]

) :
}-.... I

SDRT BOXO
~ SORT BOXI

I

SCIRT BOX 1123
PAL St

~~~! l "'' ROWS 

IIIIl 14' 

PAL.110 

OIJECT MEMORY PALµI 

Figure 7. A Type Ill PAL Structure -The Sort Box PAL and PALO are 
Used to Correlate a Report Against a Track. The PALuo Structure is 

Used to Locate Empty Rows in the Object Memory. 

When searching for unused object memory rows the alogorithm first looks 
in the PAL UO memory. If there are any unused rows in the first 256 rows 
of the object memory at least one location in this first row will have a bit 

230 

set indicating the fact. The algorithm then draws out the first indicated 
word from the PAL U1 memory and at least one of its locations (PEs) 
will point to an unused row in the object memory. Upon using the row, 
the algorithm now resets the 'unused row' bit in the PAL Ul location 
indicating the linked row is now in use. If this was the last location of 
that row in the PAL Ul which had been empty, the appropriate flag bit 
must be reset in the PAL UO row/column location. 

The actual report-to-track correlation time is now very rapid as the 
algorithm is able to address the PAL S1 memory directly which in turn is 
pointing directly to all rows in the object memory containing tracks in the 
referenced sort box. 

The correlation time for the Type 111 PAL system is 

Tr3 = Nr (Ntsb/m) (Os) (Tl) (9) 

Using the UO and Ul structure to find an unused row in the object 
memory occurs only upon a new track being loaded into the system or 
when an existing track moves into a previously unused sort box. The 
computation time to find a unused row in the object memory is, 

Nmx 
Tns = (T2) (10) 

For Nmx = 20000, m= 16 and T2 = 4 microseconds, we have Tns = 
19.5 microseconds. 

Figure 8 indicates the performance of the Type 111 PAL and Figure 9 
contrasts the performance of the three PAL types. Both of these plots 
were generated using the same input conditions as the plots of Figure 6a 

and 6b. 

2.00 
CORRELATION, 
TIME IN 1.50 
SECONDS 

1.00 

0.50 

0 40 80 120 160 200 240 280 320 360 
ANGULAR WIDTH OF THE AZIMUTH WEDGE 
CONTAINING ALL TARGETS (IN DEGREES) 

83919-13 

Figure 8. Plots of report to track correlation time for a Type Ill PAL 
using target x,y as the association variable. 

1.20 
CORRELATION, 
TIME IN 0.90 
SECONDS 

0.60 

0.30 
TYPE Ill PAL 

TYPE I PAL 

M = 16 

TYPE II PAL 

0 40 80 120 160 200 240 280 320 360 

ANGULAR WIDTH OF THE AZIMUTH WEDGE 
CONTAINING ALL TARGETS (IN DEGREES) 

Figure 9. Performance contrasts for the three types of 
PAL structures described. 

83919·14 



6.0 Summary 
A natural application of an SIMD machine is in parallel searches in 

algorithmic operations such as correlation, where a large amount of input 
data must be associated with a mass of stored data where there is ideally 
only one match for every stored datum. If one is blessed with an enormous 
number of processing elements and memory then there is no problem; one 
may attack the problem in a truly parallel sense. Real world cost and 
finite size limitations usually restrict the number of processing elements to 

far less than a desired number. 
The PAL technique was devised as a practical method where the 

inherant power of the parallel processor might be multiplied by itself one 
or two times producing very great effective speedups. This is essentially 
accomplished by trading off memory which is now cheap against 
processing elements which are still not cheap. The PAL system allocates a 
section of two dimensional memory (The PAL memory) wherin each 
element points permanently at a row elsewhere in the 2-D memory (called 
the object memory). The contents of each row in the object memory are 
loosely associated under the association variable. By testing a row in the 
PAL memory and not finding a match, m rows of the object memory may 
be discarded and consequently m x m potential candidates may be 
discarded. The key element of the trick is obviously choosing the 
association variable so that at any time a correlation candidate only finds a 

few rows against which to be correlated. 
The PAL technique has been implemented in a now operational 

radar tracker (The Advanced Tracking System) utilizing a 16 PE parallel 
processor, the TAP. The result has been a machine which is able to 
maintain over 10,000 radar trial tracks and is consequently able to tolerate 
considerably higher input false alarm levels than here-to-fore possible. The 
resulting tracker is consequently able to maintain over 1000 actual tracks 

231 

in very noisy environments and has substantially altered the expectations 

of tracking systems and changed the notion of their limitations. 

7 .0 Acknowledgements 
The first programmed implementation of the PAL technique was 

performed by Mr. Daie Frederick who also helped design the TAP 
programming language. The language and compiler design were completed 
by Mr. Leigh Murphy who, even more significantly, was the first person to 

utilize the PAL type I and type 11 data structures and algorithms in the 
construction of the operational Litton Advanced Tracking System. 

8.0 References and Bibliography 
(1) F.P. Hiner Ill, F. Erickson, D. Frederick, D. Johnson, "The Tracking 

Array Processor", Second Tactical Air Surveillance and Control 
Conference, RADC, Griffiss Air Force Base, New York, 1980. 

(2) F. Erickson. A description of the Building Block Signal Processor 
Assembly Language (BUBAL). Litton internal Report. 

(3) F. Hiner Ill, ''The Tracking Array Processor", Proceedings of the 

1978 International Conference on Parallel Processing". 

(4) F.P. Hiner 111, 'The L2000, A Remote Radar Tracking Station," 
International Conference "Radar-77" London, Oct 1977. 

(5) H. Gregory Schmitz and Cheng-chi Huang, "An Efficient 
Implementation of conflict Prediction in a Parallel Processor", Lecture 
Notes in Computer Science, pg. 383-399, 1974, Springer-Verlag. 



IMPLEMENTATION OF AN ARRAY AND VECTOR PROCESSING LANGUAGE 

R.H. Perrott, D. Crookes, 
P. Milligan and W.R.H. Purdy 

Department of Computer Science 
The Queen's University of Belfast 

Belfast, BT7 lNN, N. Ireland 

ABSTRACT -- A compiler for a Pascal based 
language Actus is described. The language is 
suitable for the expression of the type of 
parallelism offered by both array and vector 
processors. The implementation described is for 
the Cray-1 computer. An objective of the 
implementation has been to construct an 
optimizing compiler which can be readily adapted 
for a range of array and vector processors. As a 
result the machine dependent sections of the 
compiler have been clearly identified. 

IRDEX TERMS -- array processors, vector 
processors, graph transformations, abstract 
representation, optimization. 

IRTRODUCTIOR 

The programming languages which have been 
designed and implemented for array and vector 
processors rely on strategies which can be 
divided into two categories: 

( i) 

(ii) 

detection of parallelism, in which a 
programmer constructs a problem solution in 
a sequential programming language (usually 
FORTRAN), and a compiler tries to detect 
any inherent paralleli~m [3, 6]; 
expression of machine parallelism, in which 
the syntax of the language reflects the 
underlying parallelism of the hardware, 
either directly, or by means of subroutine 
calls [ 1, 7) • 

A third category has recently been proposed, 
which aims to exploit the parallelism inherent in 
the problem; the program and data structures of 
the language enable a programmer to express 
directly the parallel nature of a problem, 
without reference to specific architectural 
features [4]. 

The implementation of these languages present the 
compiler writer with problems of varying degrees 
of difficulty. In the detection category, the 
compiler must determine which statements can be 
grouped together and executed in parallel. In 
the second category, the syntax assists the task 
of compiler construction, since it is designed to 
map directly onto the instruction set of the 
machine. The third category, which neither 

0190-3918/83/0000/0232$01.00 © 1983 IEEE 232 

relies on there being a direct hardware 
correspondence, nor a detection mechanism, 
requires a new approach for the construction of a 
compiler for these parallel machines. In this 
paper, we consider a compiler which is being 
constructed for the Pascal-based language Actus, 
on the Cray-1 [6]. The aim has been to construct 
an optimizing compiler which can be used as the 
basis for a range of Actus implementations. As 
this aim ultimately conflicts with the task of 
exploitation of the hardware, the 
machine-dependent sections of the compiler must 
be clearly identified. 

LARGUAGE DETAILS 

Actus provides the scalar structtlred programming 
concepts of Pascal. In addition, the declaration 
part of a block is used to indicate the maximum 
extent of parallel processing which can be 
applied to a structure. For example,in the 
declarations 

var a, b 
cc 

array [1:100] of real; 
array [1 •• 3, 10:90] of integer; 

the extent of parallelism (eop) is indicated by 
parallel dots : and is 1:100 for the arrays a and 
b, 10:90 for the array cc. The elements of an 
array such as a may be referenced in parallel by 
means of an expression such as 

a[i:j] 

where i <= j: and both variables are in the range 
1 •• 100. A non contiguous set of elements may be 
referenced by establishing (static) index sets 
such as 

index 
odds 1:[2]99; (* 1,3,5,- - -,99 *) 
primes = 2:2+3:3+5:5+7:7+11:11+13:13+17:17; 

and using the index set identifiers as follows: 

a[odds] 
b[primesl. 

Other more complex index sets can be established 
during execution of a program by combining index 
sets using the operators+ (union),* 
(intersection) and - (difference). 



During the course of program execution, the 
extent of parallel processing can be manipulated 
dynamically by the language statements. Actus 
thus provides the concept of a dynamic eop, which 
can be set and adjusted by the following 
statement types: 

assignment, 
if' 
case, 
while, 
for, 
with, 
within. 

Three examples which are relevant to other 
sections of the paper are: 

(i) if statement 

In a parallel if statement, the eop within the 
then clause refers to the indices of only those 
elements of the parallel condition which were 
true. If there is an else clause, the eop refers 
to the complement set of indices i.e. those 
indices which were false. 

For example: 

if a[2:50] > 0.0 then ccli,#] := 0 

The anonymous sharp symbol # is used to represent 
the current eop. In this example it is 
determined by the Boolean expression 

a[2:50] > 0.0 

i.e. if a[2] > 0.0 then 2 is in the set # , 
if a[3] > 0.0 then 3 is in the set #, etc. 

(ii) while statement 

During a parallel while statement the eop is a 
non-increasing set which is re-evaluated on each 
iteration until it is empty. For example, 

while a[l:lOO] > 0.0 do 
begin 

b[#] := b[#] +a[#]* a[#]; 
a[#] := a[#] - 1.0 

end 

The statements are applied to only those elements 
of a which are currently in the eop and which are 
positive; this determines the set as represented 
by the # on each iteration. 

(iii) within statement 

The within statement can be used to indicate the 
eop for a series of statements in which the eop 
will not change. It sets the eop as follows: 

within 50 :70 do 
begin 

a[#] := 0.0; 
ccl2,#] ·= 1 

end 

233 

If any of these extent setting constructs is 
nested, the eop is stacked as each new construct 
is entered, and unstacked upon exit. In addition, 
the scalar equivalents of these statements 
(except for the within statement) are available. 

Data alignment 

There are two data alignment operators which can 
be used to move data within a parallel structure 
namely, 

(i) the shift operator which enables the 
alignment of data within the range of the 
declared extent of parallelism. 
For example 

var a, b: array [1:10] of real; 

a[l:3] := b[l:3 shift l] 

assigns 

a[l] := b[2], a[2) := b[3], a[3] := b[4]. 

(ii) the rotate operator which enables the data 
to be shifted circularly with respect to the 
extent of parallelism. For example 

a [ 1 : 3] : = b [ 1 : 3 rotate 1 ] 

assigns 

a[l) := b[2], a[2] := b[3], a[3] := b[l]. 

The general form of an index expressions using 
these operators is 

eop alignm~nt operator distance 

where eop is either an explicit definition of the 
extent of parallelism or an index set, and 
distance is an integer expression whose value can 
be positive or negative. 

This brief summary of Actus has described only 
some of the features of the language which are 
relevant to the discussion which follows. 
Further details can be found in [4, 5]. 

STRUCTURE OF THE COMPILER. 

The Actus compiler is implemented in Pascal and 
based on a multipass scheme. On the first pass, 
syntactic and semantic analysis is carried out by 
the analyser and a pseudo-analyser constructs an 
abstract representation of the program. On the 
second pass, the pseudo-analyser transforms this 
representation to include both machine-dependent 
and machine-independent optimizations. Although 
the machine-dependent transformations will be 
described before the machine-independent ones, 
this is not necessarily the order of application. 
Indeed, the machine-dependent transformations are 
generally applied first, because they can often 
introduce additional code structures which 



require optimization. Once the graph has been 
transformed, code synthesis follows. Certain 
aspects of the code generation process have been 
rendered machine-independent by the construction 
of an abstract description of the target machine 
(described in a later section). 

Program representation 

The abstract representation of a source program 
is a graph, which is constructed by the 
pseudo-analyser. However, the graph is not 
designed to reflect exactly the constructs of the 
source program as is usually the case for 
graph-based compilers (2,9]; rather, the 
node-types are chosen so as to facilitate the 
transformations to be effected during code 
synthesis. For example, in Actus several 
structures set the extent of parallelism and 
there are several forms of loops; on the graph 
only one node-type may set the extent of 
parallelism and there is a reduced number of loop 
structures. 

(i) Control flow structures 

There are five semantically distinguishable loop 
structures in Actus, namely the scalar and 
parallel for statement, scalar and parallel while 
statement and the scalar repeat statement. One 
of the loop structures on the graph is equivalent 
to the language construct (not actually available 
in Actus) 

repeat 
statement 

while boolean expression 

which is chosen for the consequential simplicity 
in removing loop invariants. To express a while 
statement in terms of this structure requires 
duplication of the terminating condition in an 
enclosing if statement: 

while test do statement 

becomes 

if test then 
repeat 

statement 
while test 

This transformation would be applied when loop 
invariant removal is applicable. Although it 
will increase the size of the object program, it 
does not impair run time speed. Similar remarks 
apply to representation of for statements. 

(ii) The extent of parallelism 

The pseudo-analyser simplifies references to the 
extent of parallelism on the first pass. The 
following statements illustrate the diversity of 
references to the eop. 

234 

(1) a[l:lO] := b[l:lO]; 

(2) within 1 :10 do aUtl := b(if]; 

(3) if a[l:lO] > 0.0 then 
a[4tl b(ifl; 

In (1), the eop is set explicitly and explicitly 
referenced on every use. In (2), it is set 
explicitly but referenced by implication. In 
(3), its production is based on calculation and 
its reference is again by implication. 

Actus index sets are static and therefore are 
unsuitable for representing the dynamic eop on 
the graph. For this purpose the graph uses a 
"run-time-set" construct, which contains 
information on the base value, stepping value, 
length and regularity of a parallel index. A 
regular parallel index is one which has a 
constant increment between all ordered adjacent 
values. 

In addition to the usual set arithmetic 
operations, the pseudo-analyser uses four 
operations in constructing and handling 
run-time-sets. These are 

(1) setfrom (index set expression) - converts 
an index set expression to a run-time-set; 

(2) truevalues (vector expression) - returns a 
run-time-set corresponding to those members 
of the current eop which yield '~rue" when 
substituted for the parallel index in the 
vector expression; 

(3) anymembers (run-time-set) - returns a 
boolean value determined by whether the 
"run-time-set" is empty or not. 

(4) setcomplement (run-time-set) - complements 
a run-time-set within the current eop. 

"Setcomplement" and "truevalues" are always 
subsets of the run-time-set of the current eop. 
Set calculations are performed by "setassign" 
structures on the graph. 

Given this facility for calculating and storing 
the extent of parallelism, we require a unique 
means for setting the eop and a unique means for 
accessing it. The pseudo-analyser provides a 
"new-eop-scope" structure for setting the eop and 
uses a "sharp" node to refer to it thereafter. 
The new-eop-scope structure has the form 

eop run-time-set do statement 

Using these structures, a parallel form of the if 
statement reduces as shown in the following 
example. 



Example 

Illustrating the graph for a parallel if 

statement. 

( "1trts-n41" denotes a run-time-set identified as 
n.) 

if a[l:lO] > 0 then 
aUFl a[4fl - 1 

becomes 

begin 
#rts-0# := setfrom (1:[1]10); 
eop 4frts-M do 

begin 
#rts-1# := truevalues (a[#] > 0) 
if anymembers (#rts-1#) then 

end 
end 

eop hts-141 do 
begin 
a[#] a[#] - 1 ; 
#rts-1# := truevalues (a[#] > 0) 
end 

The structures described above are built on the 
first pass of the compiler. Calls to the 
pseudo-analyser are embedded in the corresponding 
analyser recognition procedures. To reduce 
storage requirements, the unit of compilation is 
currently one block. When the graph for a block 
has been constructed, it is passed on for further 
transformation and code synthesis. 

Machine-independent transformations 

The purposes of these transformations can be 
classified into two main areas: 

(1) allocating storage units to variables; 
(2) program optimization. 

Scalar variable allocation 

The time consuming task of fetching variables 
from memory is one which the compiler must 
eliminate whenever possible. Thus an efficient 
register maintenance scheme is essential. In the 
Actus compiler, storage for scalars is not 
allocated statically. Each time a varia)le 
assumes a new value it is allocated fresh storage 
which becomes free immediately the last access to 
that value has been made. When there is 
redundancy it is possible to allocate more scalar 
variables to registers than there are registers 
on the machine. Resulting housekeeping 
operations (such as dumping values to temporary 
store) are kept to a minimum. 

A variable may have many "lifetimes" in its scope 
and thereby be allocated storage many times. 
Consequentially, one major difficulty in the 
implementation of this scheme is to ensure 
consistency of the allocation, particularly 
through the conditional statements sequence of 
the program. To fulfil this, all nodes 

235 

corresponding to scalar variables on the graph 
refer the pseudo-analyser to a version number for 
this variable by means of a pointer. Each time a 
new value is assigned to the variable, a new 
reference area containing a new version number is 
created. Until the last reference to this value 
has been made, all nodes for the variable will 
refer to this area. The pair (variable, version 
number) is referred to as a key. Storage is 
allocated to the keys, rather than to variables. 

The consistency problem is now to ensure that 
each variable produces the same key (nodes refer 
to the same version number) whether or not a 
conditional statement sequence is executed. 
Variables which are changed in this statement 
sequence will have been allocated new version 
numbers and are compelled to conform. The 
reference area set up by the last assignment to 
the variable in the statement sequence is 
rewritten with the version number of the variable 
before the condition was evaluated; all nodes 
referring to this value will therefore produce 
the original key and hence be allocated the same 
storage. 

Particular care has to be taken when allocating 
version numbers to variables in the alternative 
control paths through parallel conditional 
statements (if •• then •• else, or case). This is 
because each alternative path is executed in turn 
(though each with its own eop), but each path 
assumes that the variables initially have their 
'start-of-statement' values. For instance, in 
the statement 

if a[#] < 0 then 
begin 

i := 
end 

else 
begin 

j := .. expression using 'i' •. 
end 

the second assignment must use the original value 
of i, so the first assignment must not update the 
orig ina 1 location. In general, one solution to 
this problem is to stipulate that alternative 
paths through such a statement must delay 
updating those assigned variables which are 
referenced in later paths until the end of the 
statement. 

Access of structured variables, such as arrays or 
records, is controlled by address calculations 
represented explicitly in the graph. Such 
schemes are commonplace and will not be discussed 
here. 

Program optimization 

Most of the optimizations traditionally 
associated with sequential languages are 
applicable (eg., removal of loop invariants, 



constant folding, common sub-expression 
elimination, etc.). Since such optimizations can 
be thought of as a manipulation of the program 
text, their implementation is 
machine-independent. Techniques for these 
optimizations are well documented elsewhere. 

Machine-dependent transformations 

The fixed length of the vector registers on the 
Cray-1 necessitates splitting long vectors into 
64-word slices (and usually a remainder), 
referred to as vector slicing. Each 
"new-eop-scope" construct will be governed by 
some loop structure; so each nested structure is 
encountered more than once. This creates 
difficulty when any part of the enclosed 
structure has a different extent of parallelism. 

(i) Creating slicing loops. 

The run-time-set describing the eop will come 
from one of two sources: 

(a) A "setfrom" operation, which defines a 
base, step and length of an eop from an 
index set expression and determines its 
regularity; 

(b) A "truevalues" operation which defines an 
irregular subset of an enclosing regular or 
irregular eop. 

The "truevalues" operator does not affect the 
choice of elements to be processed on the Cray-1; 
rather, it defines which elements of the result 
vectors are meaningful and,thereby , which 
elements of the parallel variables are to be 
updated after the calculation is completed, using 
a vector merge operation. These elements are 
always a subset of the current eop. On the other 
hand, "setfrom" defines a vector length, which 
may be arbitrarily large. The target machine 
restricts the vector length to a maximum of 64 
elements, so a "setfrom" operation must always 
define a slicing, which will remain unaffected by 
any nested "truevalues" operations. Therefore, 
"new-eop-scope" constructs setting new extents 
which were defined by "setfrom" operations may 
not be nested. These extents must be stacked 
explicitly and recovered explicitly, as the 
language scope rules dictate. Extents set by 
"truevalues" operations are held and nested as 
before; we note the necessity of merging the 
original and result vectors according to the 
extent at the close of every "truevalues" scope. 

Finally, we emphasize that these transformations 
are machine-specific, whereas the selection of 
the graph operations "set from'' and "truevalues" 
is not. Although they bear an inexact analogy 
with hardware features specific to the target 
machine (respectively the VL- and VM-registers), 
their properties were dictated by the 
requirements of the language, as described in the 
previous section, not for the convenience of the 
target architecture. 

236 

Problems associated with the implementation of 
this plan fall into two categories. We must 
decide how to deal with structures which cannot 
be successfully sliced, such as certain scalar 
assignments, procedure calls, gotos and nested 
slicing loops; and we must be able to make good 
all implications of execution order expressed in 
the language. 

(ii) Statements with non-conforming extents of 
parallelism. 

When the compiler discovers a structure 
equivalent to 

within 1 ; 100 do 
begin 
a[/i] := b[ifi] + i 
i := i + 1; (* a scalar statement *) 
b[#] ·= j * a[#] 
end 

the scalar statement cannot be included in any 
slicing loops which are created (otherwise i 
would be incremented a number of times). To try 
to reduce the slicing overheads, the compiler 
will attempt to perform a (machine-specific) 
optimization equivalent to 

within 1: 100 do 
begin 
a[/fol := b[#] + i 
b[ffol := j * aUfl 
end; 

i ;= i + 1 

where the integrity of the implied loop is 
preserved. Problems would arise if the scalar 
factor in the second assignment were i, not j; 
the loop would have to be broken to produce 

within 1:100 do a[#] := b[#] + i 
i := i + 1; 
within 1:100 do b[#] := i *a[#] 

Although this example could be resolved by 
precalculation, in general we cannot restructure 
to maintain a single slicing loop. We note that 
the scalar statement must be moved outside all 
the slicing loops. This is non-trivial if 
several nested conditional ("truevalues") scopes 
are to be interrupted; all must be stored to 
maximize the effectiveness of the slicing when 
resumed and to ensure that result vectors are 
composed correctly. 

(iii) Shift operator 

Two problems are considered here. The first 
occurs in statement sequences such as 

within 1 :100 do 
begin 
a[#] := b[#] + 1 ; 
c[#] := a[# shift l] 
end 



where the difficulty derives from the statement 
order. Contending that the Cray-1 performs the 
body of the construct in two slices using eops of 
1:36 and 37:100, we find on the first pass the 
second vector statement attempts the assignment 

d36] := a[37] 

thereby assuming that a[37] has been set up 
previously. In fact a[37] is part of the second 
slice of the vector and would normally be set up 
on the second pass. Again, splitting the slicing 
loop is necessary to accommodate the general 
case, as below. 

within 1:100 do a[lf] := b(/fl + 1; 
within 1:100 do c[#] ·= a[# shift l] 

Second, problems arise when performing a 
statement such as 

within 1: 100 do 
a[#] := a [#shift -1] 

To avoid overwriting a[36] (with a[35]) before it 
is copied into a[37], it is necessary to 
introduce a temporary storage array (a'), and 
implement the statement as 

within 1: 100 do 
a' [ #] : = a [If shift -1] ; 

within 1 :100 do 
a[/f] := a'[/f] 

(iv) Set operators 

The last problem described here involves the use 
of the "setfrom" operator. Consider the 
statement 

within (i:[2]j + p:[3]q) do 
a[/f] := a(/fl + 1 

where the variables i, j, p and q have, for 
example, the values -1 17, 1 and 25 
respectively. 
The problem arises in that the run-time-set is 
difficult to construct for efficient use. We 
require a run-time-set representation of the set 

{ -1, 1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 
17 ' 19' 22 ' 25 } 

which is far from regular. If the index set 
segments were non-intersecting, they might be 
processed separately. Otherwise, as in this 
case, a set must be built in steps (at best) of 
the highest common factor of the two supplied 
steps, and using the maximal bounds. This may be 
an expensive operation, and could produce a 
run-time-set with many more slices than the 
individual components required. 

237 

The compiler generates code for a target machine 
via an abstract description of the machine. 

The incentive for building an abstract 
description of the target machine was not only 
the desire for machine independence. It arose 
also from the nature of the Cray-1 architecture, 
and from the fact that its instruction set 
contains a large number of special cases. For 
instance, the CAL instruction 

A· l. 

stores the integer sum of registers Aj and Ak in 
Ai, unless either j or k is zero. If j is zero, 
the instruction uses the number 0 instead of Ao; 
if k is zero, 1 is used instead of Ao. These 
special cases are common to much of the 
instruction set, and it would be inefficient for 
the compiler to look for every such case 
explicitly. Instead, the compiler sets up an 
abstract description of each instruction, and 
treats special cases as different instructions. 
An instruction is defined in terms of the 
register classes it accesses and an Aope~ation. 

A register class is a set of target machine 
registers which are addressed identically by a 
field in a target machine instruction. Immediate 
constants are conceptually held in registers and 
are classified in exactly the same way. The 
description of a register class is supplemented 
by the types of values it can hold and by the 
number of target registers of that class. 

For the Cray-1, an examination of the instruction 
set produces the register type description 

Aregclass = ( AO, Alto7, AOto7, SO, Slto7, 
S0to7, B0to63, TOto63, V0to7, 
VL, VM, Amemory, AconstO, 
Aconstl, --- ); 

AO and SO are on occasion separated from their 
respective superclasses as their appearance in 
some instructions implies use of a special value 
(as illustrated above); also they are the only 
registers which may be used in determining 
conditional branches. From the information 
already on the graph, it is possible to determine 
the set of register classes which could hold the 
value expressed by any expressional node. 

The Aoperations implemented on the abstract 
machine are derived from the operators present in 
the language. They are described by the type 



Aoperation (* Arithmetic operations *) 
Aintplus , Aintminus , 
Arealplus, Arealminus, 
Aor Aand 
Asetplus , Asetminus , 

(* Relational operators *) 
Arealgt , Arealge 
Aintgt , Aintge 

(* Standard functions *) 
Asin , , Afloat, 
Asumreal , -- , Afirst, 

(* Eop manipulation *) 
Asetfrom, Atruevalues 
Asetcomplement, Aanymembers ); 

An instruction description includes information 
on the mnemonic, etc., and also the (two) source 
and (one) destination register classes. 
Instructions are classified by the Aoperation 
which they implement. For instance, the above 
CAL instruction would appear in the abstract 
machine as two instruction descriptions, with the 
destination and source classes: 

(A0to7 
(A0to7 

Alto7 + Alto7 
Alto7 + Aconstl) 

With the instruction set described thus in an 
abstract way, the choosing of instructions for 
each expression-evaluating operation on the graph 
can be performed by the procedure 

procedure chooseinstructions; 

This associates an iristruction with each 
Aoperation in an expression, and assigns a unique 
register class to each valued node, taking into 
account future uses of the result. Its operation 
is machine-independent. 

An Aoperation for which there is no single 
instruction is implemented by an abstract code 
sequence. Included in the abstract description 
of a code sequence is a set of registers, called 
Pregisters, which refer the description to 
registers used by the code sequence (for passing 
values to and from the code sequence, or for 
working space needed by the code sequence). The 
purpose of these Pregisters is to 'parameterize' 
the code sequence, so that the registers which 
they use do not need to be pre-allocated, and do 
not need to be fixed for all invocations of the 
code sequence in a program. 

The Pregisters are described by the type 

Pregister =(Ans, Argl, Arg2, Dummy, Local!, 
Local2, Local3, -- ); 

Each code sequence is held in a record of type 
"codedescription" which describes the register 
classes of each Pregister used by the code 
sequence and timing information, in addition to 
the code sequence itself. An instruction 
description is set up to look like a code 
sequence of length one. 

238 

The code sequences for Aoperations are held by a 
variable 

Acodesfor array [ Aoperation ] of 
Acodelist ; 

A list of sequences is held to enable the 
compiler to choose the implementation most 
appropriate to the source and destination 
register classes. To generate machine code for an 
expression, an actual register of the required 
class is found for each Pregister and this 
replaces the Pregister in the abstract sequence, 
leaving target machine code. 

Abstract code sequences are also used to 
represent data transfer between register classes 
using the array 

Path : array [ Aregclass, Aregclass ] of 
Acodesequence ; 

as some moves are non-trivial. The same means may 
be exploited in representing run time support 
code, such as subrange or array subscript checks. 

The allocation of actual registers to expression 
values treats program variables and temporary 
storage alike; the allocation of registers to 
keys for scalar variables allows a variable to be 
allocated different store from one use to 
another. While this produces efficient register 
use, it leads to considerable overheads in the 
production of meaningful diagnostics. 

The most critical regions of a block are the 
bodies of the innermost loops as these are the 
sections which will be executed most frequently. 
Register allocation is therefore performed from 
the innermost level of loop nesting, working 
outwards. 

CONCLUSIONS 

This paper has described the approach taken in 
the construction of a compiler for an array and 
vector processing language. The compiler has the 
task of compiling machine-independent programs, 
while at the same time exploiting special-purpose 
architectural facilities. 

It has been found that a large proportion of the 
compiler is machine independent, partly because 
of the abstract representation which have been 
used to represent both the source program and the 
target machine. 

ACKNOWLEDGEMENTS 

The work described in this paper was supported by 
the U.K. Science and Engineering Research Council 
under grant number GR/B/23601. 



1. 

2. 

3. 

4. 

REFERENCES 

Star Programming manual, Control Data 
Corporation, 1976. 

J.J. Donovan, "Systems Programming", 
McGraw-Hill, New York, 1972. Chapter 8. 

R.F .. Millstein, "Control Structures in 
Illiac IV Fortran", Commun. Ass. Comput. 
Mach., Vol. 16, pp 622-625, Oct. 1973. 

R.H. Perrott, "A language for array and 
vector processors", ACM Trans. on 
Programming Langs. and Systems, Vol 1, pp 
177-195, Oct.1979. 

5. R.H. Perrott, "Actus user manual", Dept. of 
Computer Science, Queen's University, 
Belfast. 1982 

6. 

7. 

8. 

9. 

239 

R.M. Russell, "The CRAY-1 Computer System", 
Commun. Ass. Comput. Mach., Vol 21, pp 
63-72, Jan. 1978. 

K. Stevens, "CFD - a Fortran-like language 
for the Illiac-IV", ACM SIGPLAN Notices, pp 
72-80, Mar. 1978. 

W.M. Waite and L.R. Carter, "An 
analysis/synthesis interface for Pascal 
compilers", Software - Practice and 
Experience, Vol 11, pp 769-787, Aug. 1981. 

W .A. Wulf, "PQCC : a machine-relative 
compiler technology", Carnegie-Mellon 
University, Pittsburgh, 1980. 



A PARALLEL P-CODE FOR PARALLEL PASCAL AND 
OTHER HIGH LEVEL LANGUAGES 

John D. Bruner 
Lawrence Livermore National Laboratory 

Livermore. CA 94550 

Anthony P. Reeves 
School of Electrical Engineering 

Cornell University 
Ithaca. NY 14853 

Abstract -- Paralle 1 P-code is an intermediate 
compiler language for parallel processors. It was 
originally designed as part of a Parallel Pascal 
compiler for NASA's Massively Parallel Processor 
(MPP) • However, it should also be suitable for a 
wide. variety of high level languages and parallel 
architectures. Parallel P-code is based oti a P
code .language for serial processors; this paper 
describes the extensions which were necessary for 
the parallel environment. 

Introduction 

Parallel Pascal was designed to be a high-level 
programming language for the MPP [l] and other 
parallel processors. Parallel Pascal is 
characterized by having very few extensions to the 
basic Pascal language in an attempt to provide the 
programmer with good primitive tools rather than 
canned solutions. 

Since its initial specification [3]. the design 
of Parallel Pascal has been refined and simplified 
through experience with a Parallel Pascal to 
standard Pascal translator [2] and the development 
~f a compiler• The final language specification 
includes array expressions. conditional array 
assignment with a lillll.e.r.e. statement and the 
manipulation of subarrays with consecutive 
elements. Portability of the language to other 
parallel architectures is enhanced by implementing 
permutation operations with standard functions. A 
complete specification of the language is given in 
references 4 and 5. 

The Parallel Pascal compiler consists of a 
syntax analysis "front end" and a code generation 
"back end." These two phases of the compiler 
communicate through an intermediate language 
called Parallel P-code. The compiler and its 
intermediate language are based upon the P-4 
Pascal compiler [6]. 

The most significant difference between 
standard P-code and Parallel P-code is the way in 
which they treat data types. In standard P-code 
only a few data typei; are supported - integer, 
real. Boolean. character, set. and pointer. 
Parallel Pascal, however. permits (and in fact 
encourages) the manipulation of arrays as 
aggregates, requiring additional data types. 
Parallel P-code therefore defines a set of base 
types and provides facilities for constructing 
more complex data types. 

The base types 
standard P-code: 

are very similar to those in 
integer, real, character. and 

0190-3918/83/0000/0240$01.00 © 1983 IEEE 240 

Boolean. With the 
statements, these base 
all structured types. 

appropriate definition 
types are used to define 

The definition of subrange types. set types, 
file types, and pointer types is fairly 
straightforward. Objects of these types can be 
directly manipulated because their behavior is 
known at compile time. They are defined by 
statements of the form: 

.RANGE 

.SET 

.FILE 

rng.1,5 
sst,5,8 
ftype.char 

;define subrange 1 •• 5 
;define ~ llf. 5 •• 8 
;define file. llf. char 

Array and record types cannot be so 
manipulated. because they are not 
manipulated as entire entities. 

easily 
always 

When arrays are manipulated in standard P-code, 
almost all operations are performed on scalar 
elements. (The exception to this rule is a 
provision for moving blocks of data from one place 
to another.) Parallel Pascal, however. requires 
operations to be performed upon arrays as 
aggregates. It was necessary to provide a 
formalism for specifying these parallel operations 
in the intermediate language. 

In order to process array operations. the code 
generator must know at least the size of the array 
and the type of elements. For more sophisticated 
operations (e.g. operations which involve only a 
subset of the array) it must also know the layout 
of the array - the number and range of array 
dimensions. This information can be divided into 
two portions. ~and dynaroic, 

The static portion represents information that 
is known at compile time. It consists of such 
things as the base type (i.e. the type of the 
array elements). the number of dimensions. and the 
low and high bounds of each dimension. This 
portion can be considered the loiical 
specification of the data. 

The dynamic portion of an array type consists 
of the address of the array and the specification 
of which elements are to participate in an 
operation. This portion therefore represents the 
physical specification of the data - where it is 
stored and what portions of it (e.g. which array 
elements) are to be affected. 



The static and dynamic information is 
collectively referred to as an a.x.m descriptor. 
These descriptors are essentially generalized dope 
vectors which specify not only the type and size 
of the data but also the subset upon which 
operations are to be performed. An important 
consideration is that while Parallel P-code 
performs transformations upon descriptors. it does 
not specify their exact format. In fact. a 
typical code generator will probably treat the 
descriptors as conceptual entities which have no 
physical counterparts at run time. (A possible 
exception to this would be the treatment of array 
arguments to user-defined functions and 
procedures.) 

The static portion of an array descriptor is 
specified in Parallel P-code via the ",A!lRAY" 
pseudo-operator, The base type (i.e. array 
element type). number of dimensions. and range of 
all dimensions are specified. For instance. the 
array type defined by 

arr = a.x.m [l •• S.2 •• 6] l2.f. integer; 

would be defined in Parallel P-code with the 
statement: 

.ARRAY arr.integer.2.1.s.2.6 

Parallel Pascal provides the parallel reserved 
word for declaring that an array should be 
allocated in the parallel array memory rather than 
the sequential control unit memory. If an array 
is declared parallel• this fact is reflected in 
Parallel P-code by a negative rank. 

Records 

In order for arrays of records to be 
intelligently processed. it is necessary for the 
intermediate language to define descriptors for 
records as well as arrays. Like array 
descriptors. record descriptors consist of a 
static and a dynamic port ion, The static port ion 
specifies the record: the fields and their types. 
The dynamic portion specifies the address of the 
record and the field which has been selected for a 
particular operation. 

Because the structure of a record is not as 
regular as the structure of an array. a single 
type definition statement for the static portion 
of a record would be cumbersome. For that reason. 
Parallel P-code defines records according to the 
fields which they contain. The pseudo-operator 
used to define record components is ".RECORD". 
One ".RECORD" is generated for each field. 

Parallel Pascal• like standard Pascal• permits 
variant records. When a record has variants. 
several components will share the same memory 
allocation. (Only one is in use at any given 
time,) Parallel P-code , permits the specification 
of an offset with each field declaration. A 
record definition in Parallel P-code consists of a 
sequence of ".RECORD" statements, - Normally. each 
successive field in the same record is assigned a 

241 

sequential location in memory. However. this 
behavior can be overridden so that a field is 
aligned at the same offset as a previous field. 

The general syntax of the ".RECORD" pseudo-op 
is 

.RECORD rname.fname.offset.ftype 

where "rname" is the name of the record being 
defined. "fname" is the name of the field being 
defined. "Hype" is the type of the field• and 
"offset" is either "nil" or the name of a 
previously-defined offset. If "offset" is the 
literal string "nil" the next sequential memory 
location is assigned; otherwise. the new field 
"fname" is aligned with the existing field 
"offset". As an example. the record defined by: 

rec=~ 

x: integer; 
y: teal; 
,l;Jlll Boolean l2.f. 

false: (zf: integer); 
true: (zt: real) 

e.ns;L; 

would be translated to 

,RECORD rec.x.nil.integer 
.RECORD rec,y,nil,real 
.RECORD rec.zf ,nil,integer 
.RECORD rec.zt.zf .real 

Variable Allocatipn 

In order to examine the specification of the 
dynamic portion of array and record descriptors it 
is necessary to first consider the way in which 
Parallel P-code allocates and references local 
variables. 

Corresponding with each called function or 
procedure is an area on the runtime stack called 
the .&J;,w;k fDlme, (or actiyatipn ~). In 
addition to the arguments to the function or 
procedure. the local, variables. and space for 
temporary results• the stack frame includes some 
linkage information. In standard P-code this 
includes the return address. space for a returned 
function result (this field is unused for 
procedures). and two locations for the static and 
dynamic links. The static and dynamic links point 
to the appropriate previous stack frames. The 
hypothetical machine which implements P-code 
contains a non-user-accessible register called the 
"frame pointer" which hold the address of the 
current stack frame. 

Parallel P-code • like standard P-code • 
addresses operands according to the lexical level 
at which they are defined. However. in order to 
deal with objects on an abstract basis (and 
thereby avoid specifying memory allocation in the 
intermediate language)• physical address offsets 
are not used, Rather• variables are referred to 
by a logical index. so that the lexical address is 



(level.index) 

Hence, Parallel P-code does not define the exact 
format of a stack frame; this is left to the 
implementation. 

An index is assigned to all local variables• 
procedure or function arguments. and the function 
return value (if the routine is a function), All 
of these share the same set of indices. The index 
zero is reserved for the result of a function. 
Arguments are assigned indices starting at 1, and 
local variables are assigned indices beginning 
immediately after the last argument. 

Although function (or procedure) arguments and 
local variables share the same set of indices, 
they require somewhat different treatment when 
they are defined. Thus, two statements are used 
for arguments and local variables. The definition 
statements are: 

.ARG 

.LOCAL 
index,type.rv 
index.type.overlay 

where "index" is the index number, "type" is the 
argument type, and "rv" (for ".ARG") is zero if 
the argument was passed by value or one if it was 
passed by reference. The "overlay" field (for 
".LOCAL") is similar to the "align" field for the 
".RECORD" pseudo-operator, It is normally zero, 
indicating that the local variable should be 
allocated the next available memory location (or 
locations). If it is non-zero, it specifies a 
previously-defined local variable (at the same 
lexical level); the new variable is to be overlaid 
on the memory allocated for the specified old 
variable. 

Parallel P-code provides two statements, 
".ENTRY" and ".EXIT" to define the lexical level 
of the procedure they enclose. 

Runtime Operation 

In Parallel P-code, as in standard P-code, all 
operations are performed by means of a :r.un-t.im.e. 
.ll..UiJ::.k., Data is loaded onto the top of the stack, 
manipulated on the stack, and stored from the top 
of the stack. In standard P-code, data is 
manipulated in one of two ways. The first way is 
to load the data onto the stack and manipulate it 
directly. This is the most common method (in 
standard P-code) and it works well because Pascal 
usually deals only with one item at a time. An 
alternate way is to perform a data transfer of a 
compile-time specified number of elements between 
two addresses which are computed at runtime. In 
this second case (used in assignment statements 
where both sides are identical arrays or records) 
the addresses, not the data, reside on the stack. 
They could be called very simple descriptors 
because they describe where the referenced data is 
(or is to go). 

Parallel P-code also makes use of these two 
mechanisms. When an operation is performed on 
scalar data, the data itself is loaded onto the 
runtime stack, manipulated, and stored from the 

242 

stack. When an operation involves an array or 
record, or some combination thereof, the second 
method is called for. However. because Parallel 
Pascal provides more flexibility in aggregate 
operations, an address alone is not sufficient; 
rather, information must be provided about the 
shape and type of the data. The type information 
is supplied by the static descriptor (i.e. by an 
".ARRAY" or ".RECORD" definition). The runtime
dependent shape information is provided by the 
dynamic descriptors on the runtime stack. 

The runtime nature of an array is determined by 
two dynamic attributes: the address of the array 
and the index ranges of its dimensions. The 
dynamic (physical) portion of the array descriptor 
which resides upon the runtime stack specifies 
these attributes. This information is constructed 
by loading a "blank" descriptor (one which 
specifies the array address but does not specify 
index ranges) and then "filling in" the index 
ranges using one of three operators corresponding 
to Parallel Pascal's array indexing modes: "IXO" 
(select entire index range), "IXl" (index by a 
scalar), or "IX2 11 (index by a subrange). Each 
successive index instruction is applied to the 
next unspecified array index range. The 
intermediate language does not specify the format 
of the dynamic array descriptor; this is solely 
the domain of the code generator. 

In contrast with arrays, only one component of 
a record may be specified at a time. However, 
unlike arrays, the fields in a record are non
homogeneous. The manner in which the target 
machine stores the fields of the records will 
affect how a record field is specified; the 
compiler cannot simply calculate a constant offset 
(as is done in standard P-code). All record field 
selection in Parallel P-code is performed with 
symbolic names. The names correspond to the field 
names defined in ".RECORD" statements. 

The exact format of a record descriptor is not 
known to the compiler "front end." Instead, the 
record descriptor is constructed with the aid of 
the "select" ("SEL") instruction. A descriptor 
that specifies the entire record is loaded onto 
the stack; this is similar to the "blank" 
descriptor described above for arrays but may be 
used without further modification to access the 
entire record. The "SEL" operator is used to 
select a field from the record. This replaces the 
record descriptor on top of the stack with a 
modified descriptor that indicates the address of 
the record and the selected field. If that field 
is itself a record, another "SEL" is then used to 
select a field within that sub-record. 

Descriptors for more complex structures (e.g. 
arrays of records, arrays within records) are 
constructed by repeated application of the 
techniques described above. 

When an operation is performed on scalars. the 
address where the result is to be stored is loaded 
onto the stack, the scalar expression is 
calculated, and a "store indirect" is performed to 



store the result of the expression (on top of the 
runtime stack) at the specified address (the 
second item on the runtime stack). 

When an operation is performed on a structured 
type, the result must be stored in a temporary 
area and a descriptor for that temporary placed 
upon the runtime stack. The automatic al location 
of the temporary storage to which the descriptors 
refer is the responsibility of the implementation. 

Parallel Control 

Parallel Pascal provides the standard Pascal 
control statements if., .c.a..a.e.. ~. lil!hile.. and 
~-.wu.il.. The implementation of these 
control-flow constructs in Parallel P-code is 
identical to the implementation in standard P
code. Parallel Pascal also provides a construct 
to allow masked assignment of arrays - the JidleJ.:.e. 
statement which cannot be (efficiently) 
implemented with the scalar-oriented control 
mechanisms of standard P-code. 

Since the JidleJ.:.e. statement controls array 
assignments, the implementation in Parallel P-code 
will only affect stores. In general, SIMD-class 
parallel processors associate with each processing 
element a flag known as the "mask bit" or 
"activity bit .n This bit controls whether or not 
the processor is enabled or disabled. The 
collection of mask bits for each processor can be 
considered to be a Boolean "mask array." The 
controlling expression of a JidleJ.:.e. statement in 
Parallel Pascal is a Boolean array; hence, it is 
natural to implement the JidleJ.:.e. statement by using 
this array as a mask array. 

The current conditional status of a set of li 
nested conditionals can be determined by using a 
stack of length li bits. If the current 
conditional state is A and a JidleJ.:.e. statement is 
encountered which evaluates to B, the new 
conditional state is AB (the Boolean product of A 
and B). At some later point, if an otherwise is 
encountered, the desired conditional state is 
A(-B). This can be computed by 

The stack implementation is defined as follows. 
Initially the stack is empty and all processors 
are enabled. When a Jih.ex.e. conditional is 
encountered. a Boolean "and" is performed with the 
current top of the stack (if the stack is non
empty) and the result is pushed onto the stack. 
When an otherwise is encountered, a Boolean 
"exclusive-or" is computed between the top two 
elements of the stack and the result replaces the 
top of the stack. (If the stack contains only one 
item, it is complemented.) When the end of the 
conditional is encountered, the stack is popped. 

243 

These three operations - pushing a new mask, 
complementing the current mask, and popping the 
mask - are provided in Parallel P-code by the 
"WHR", "OTW", and "ENW" operators. 

Conclusion 

Parallel P-code has the following extensions 
relative to standard P-code for parallel languages 
and processors. First, it provides a mechanism by 
which non-primitive types may be specified. 
Second, it provides an abstract addressing scheme 
for allocating and referencing automatically
allocated variables. Third, it provides 
mechanisms for operating upon arrays, array 
subsets, and individual array elements. Fourth. 
it provides a symbolic mechanism for defining and 
referencing the fields of a ~ structure. 
Finally, it facilitates conditional assignment by 
providing mechanisms for establishing, altering 
and removing a Boolean mask array. 

Acknowledgement 

This work was funded in part by NASA grant NAG 
5-3. 

References 

1. K. E. Batcher, "Design of a Massively Parallel 
Processor," IEEE. Transactions QD. Computers, 
vol. C-29 (9), PP• 836-840. 

2. A. P. Reeves, J. D. Bruner and T. M. Brewer, 
"High Level Languages for the Massively 
Parallel Processor." TR-EE 81-45, School of 
Electrical Engineering. Purdue University. w. 
Lafayette, IN (November 1981). 

3. 

4. 

A. P. Reeves. J. D. Bruner, M. S. Poret, "The 
Programming Language Parallel PASCAL," 
Proceedings, International Conference QD. 

Parallel Processing. PP• 5-6, (1980). 

D. Bruner, "The 
Other Aspects 

Processor." 
Engineering 

A. P • Reeves and J. 
Parallel Pascal and 
Massively Parallel 
University, Electrical 
report (1982). 

Language 
of the 
Cornell 

technical 

5. J. D. Bruner, "Efficient Implementation of a 
High-Level Language on a Bit-Serial Parallel 
Matrix Processor," Ph.D. thesis. Purdue 
University (1982). 

6• K. V. Nori. u. Ammann, K. Jensen. and H. 
Naegeli, Ille. I.a.&..c..a.l. (~) Compiler 
Implementation ~. Institut fur Informatik. 
Eidgenoessische Technische Hochschule, Zurich 
(1975). 

This paper was written under the auspices 
of the U.S. Department of Energy at the 
Lawrence Livermore National Laboratory, 
under Contract W-7405-ENG-48. 



The DC1 Flow Schema with the Data/Control-driven Evaluation 

Nam Sung Woo 
Ashok A. Agrawala 

Department of Computer Science 
University of Maryland 
College Park, MD 20742 

Abstract 

This paper introduces the DC1 flow schema, a 
pragmatic asynchronous parallel computation 
model. The disadvantages of the currently exist
ing flow schemas are discussed. The representa
tion and the evaluation of computation in the DC1 
flow schema are described. The operations of the 
primitive operators are described. Two applica
tions of the DC1 flow schema are shown. These 
are the representation and evaluation of the non
deterministic programs, and of the programs pro
cessing the infinite data structures. The DC1 
flow schema is compared with the data flow schema 
and the demand-driven computation in those appli
cations. 

Keywords 

flow schema, computation model, 
computation representation, 
computation evaluation, 
DC1 flow schema, data flow schema, 
demand-driven computation 

1. Introduction 

The von Neumann architecture has been the 
basis of most of the computers built to date, 
even though this architecture imposes several 
unnecessary restrictions [Back78] [Myer78]. For 
example, the thinking and programming are done in 
the 'primitive word-at-a-time' style. Further, 
the evaluation of the programs has the 'von Neu
mann bottleneck' between the CPU (central pro
cessing unit) and the store [Back78]. 

Based on the recognition, there has been 
some new approaches for computation. The new 
approaches usually use the side-effect free 
(functional) languages as programming languages. 
They also use asynchronous parallel computation 
models to represent and evaluate programs. One 
of the objectives of these computation models is 

to exploit the implicit concurrencies in pro
grams. We concentrate on the asynchronous paral
lel computation models in this paper. 

A computation model may be called a 'flow 
schema'. The flow schema is defined as follows: , 

The flow schema is an operational model 
of computation. It consists of a 

0190-3918/83/0000/0244$01.00 © 1983 IEEE 244 

representation of computation and an in
terpretation which operates on the 
representation. 

The interpretation in this definition may be 
called the "evaluation". 

The currently existing asynchronous parallel 
computation models include the data flow schema 
[DEMi75] [AgAr82] and the demand-driven computa-
tion [KLP 79] 2 • The data flow schema can be 
classified as the static data flow schema and the 
dynamic data flow schema on the basis of enabling 
rule. In this paper the demand driven computa
tion, the delayed evaluation and the lazy evalua
tion [Hend80] [FrWi76] are used interchangeably. 

There are some drawbacks in the above exist
ing flow schemas. The demand-driven computation 
is usually inefficient compared to the data flow 
schema. It is because the 'demand' signal should 
propagate [DaKe82]. As a result, the propagation 
delay time is included in the execution time. 
Also, the amount of communication among the nodes 
is doubled, which results in the inefficiency of 
evaluation. The static data flow schema usually 
exploits less concurrency than the dynamic data 
flow schema. It is because the enabling rule of 
the static data flow schema is stronger than that 
of the dynamic data flow schema. While the 
dynamic data flow schema is the most efficient, 
it may not be safe when it evaluates the programs 
that process the infinite structure [ArPi82]. 

In this paper we propose a new flow schema, 
called the DC1 flow schema 3. The representation 
and evaluation of computation in the DC1 flow 
schema are described. Some applications of the 
DC1 flow schema are given. They are the 
representation and evaluation of the nondeter
ministic programs, and of the programs which pro
cess infinite data structures. Through these 
examples it is shown that the DC1 flow schema is 
as efficient as the dynamic data flow schema 4 

1 This definition is a modification of that in 
[Weng79]. In that paper, this term was used to 
define the data flow schema. 

2 Since the demand-driven computation is a 
standard terminology, we use it rather than the 
the demand flow schema. 

3 The DC1 is an acronym of Data Control flow 
schema version 1 • - -

4 For some c~ses such as the nondeterministic 
program evaluation, the DC1 flow schema is more 
efficient than the dynamic data flow schema as 
shown later in this paper. 



Also, it is shown that the DC1 flow schema is 
safe in evaluating the programs that process the 
infinite structures. 

2. The DC1 flow schema 

The computation is represented as a directed 
graph in the DC1 flow schema. This graph is 
called the "DC1 graph" in the sequel. Evaluation 
of the computation is done by following the two 
rules: enabling rule and execution rule. These 
are described later in this section. 

2.1. The DC1 Graph : Structure and Characteris
tics 

The DC1 graph is a directed graph consisting 
of a set of nodes and a set of directed arcs. 
The nodes in the graph are instances of the node 
schemas of the DC1 flow schema. These node sche
mas are shown in figure 2-1. The node schemas 
shown in figure 2-1 (a) , ( c) , ( e) , ( f) , ( g) and ( h) 
are similar to the actors in the data flow schema 
in [Weng79]. One difference is that every node 
in the DC1 flow schema may have input/output con
trol signal arc(s) besides the data arcs. Note 
that the LINK node and the SINK node can handle 
both control signals and data in the DC1 flow 
schema. (See figure 2-1( b) and ( d) ) • The RS 
(Random Selector) node schema, shown in figure 
2-1(i), is introduced in the DC1 flow schema. It 
is a nondeterministic node. The operation of 
each type of node is described in section 2.2.3. 

~-~ -- : 
~~ 

. 
(a) LINKd 

' ... I 
\ I 

tJ 

I 

8 I 

6 
I \ 

"' ••• l{ 
(b) LINK0 (c) SINKd 

~ 
.. 

-~ -~ - - : - - Arfl; ~ -..,,. -+ 
.. ,,. . .. 

(e) OPERATOR (f) APPLY 

-;-" -+ ±{- ~ .. 
-- -·· -- _c.. -- :~.\ 

(g) SWITCH (h) MERGE (i) RS 

Figure 2-1 The Node Schemas in the DC1 Flow Schema 

245 

There are two types of information 
representable in the DC 1 graph. The first type 
is the data type. The data type may be integer, 
real, boolean, string, error, structure, etc. 5• 
The value in one of the first five types is 
called the simple value. The structure may be 
represented as the stream value internally. All 
the variables in the DC1 flow graph is either the 
simple value or the stream value. The second 
type is the control signal type. There are two 
control signals of the control signal type in the 
DC1 graph : DELAY-ENABLE and FORCE-ENABLE. The 
DELAY-ENABLE control signal is used to delay the 
enabling of a node whose inputs are available. 
The DELAY-ENABLE control signal may have one of 
the two values : EN and NEN. The FORCE-ENABLE 
control signal is used to force a node to be 
enabled. ,These two control signals provide the 
DC1 graph with additional means for sequencing in 
addition to the data dependent sequencing. 

In the DC 1 flow graph we restrict the usage 
of the two control signals as follows: 
(i) a node cannot have both types of control 
signal inputs at the same time, 
(ii) a node cannot have both FORCE-ENABLE control 
signal input arc and data input arcs at the same 
time. 

There are two types of arcs in the DC1 flow 
schema. The first type is the data arc. It 
transmits data tokens which contain values. It 
is represented as an arrow with a solid line. 
The second type is the control signal arc. It 
transmits control signal tokens which contain 
control signals. It is represented as an arrow 
with dashed line. 

2.2. Interpretation in the DC1 Flow Schema 

The interpretation of the DC1 graph consists 
of the enabling rule and the execution rule. The 
enabling rule governs when a node becomes 
enabled. The execution rule governs how an 
enabled node is executed. The interpretation in 
the DC1 flow schema is called the "DC1 evalua
tion". 

2.2.1. The Enabling Rule of the DC1 Evaluation 

An actor in the DC1 flow schema is enabled based 
on the following three rules. 

(E1) If a node has no input control signal arc, 
it is enabled when all its necessary input 
data are available. 

(E2) If a node has a DELAY-ENABLE input control 
signal arc, it is enabled when all its 
necessary input data are available and the 
control signal is available (regardless of 
the value of the delay-enable control sig
nal). 

5 As in the Id [AGP 78), it may include pro
cedure definition, manager definition, and 
manager object in the data type. 



(E3) If a node has a FORCE-ENABLE input control 
signal arc, it is enabled if the control is 
available. 

Note that the enablirtg rule for nodes without any 
input control signal arc is purely data dependent 
(by rule E1). The DELAY-ENABLE input control 
signal arc for a node may be used to delay the 
enabling of the node when its input data are 
available (by rule E2). The FORCE-ENABLE control 
signal forces a node to be enabled (by rule E3). 

2.2.2. The Execution Rule of the DC1 Evalua
tion 

A node in the DC1 flow schema is executed on 
the basis of the following execution rules in the 
DC1 evaluation: 

(X1) Enabled nodes are executed concurrently or 
in random order. 

(X2) Tokens on the input arcs are consumed before 
execution. After execution, tokens may be 
generated on the output arcs of the node. 

(X3) The execution of the operation of the node 
is performed as follows: 

(X3.a) A node without any input control sig
nal arc : performs the operation of 
the node on the input data, 

(X3.b) A node with the FORCE-ENABLE input 
control signal arc : performs the 
operation of the node, 

(X3.c) A node with the DELAY-ENABLE input 
control signal arc : if the control 
signal value is EN, it performs the 
operation of the node on the input 
data; otherwise (i.e., control signal 
value is NEN) do nothing. 

A node with the input FORCE-ENABLE control signal 
arc performs its operation which does not require 
any input data (see rule X3.b). Examples of this 
type of node include a constant generation func
tion, which generates a constant, and a RS node, 
which is described later in the next section. 
Following the execution rule (X3.c), a node with 
the DELAY-ENABLE input control signal consumes 
token(s) but not generate one if the control sig
nal value is NEN. 

2.2.3. 
schema 

Operation of Nodes in the DC1 flow 

The nodes in the DC1 flow schema can be 
classified as the deterministic and the nondeter
ministic nodes. There are two types of the non
deterministic nodes: MERGE and RS(Random Selec
tion). The other nodes are the deterministic 
nodes. 

The operations of the deterministic nodes 
are similar to those of the corresponding actors 

246 

in the data flow schema in [Weng79], if we 
neglect the control signal arc(s) of the nodes. 
The operation of any deterministic nodes shall be 
described when it is necessary in this paper. 
The operations of the two nondeterministic nodes 
are described below. 

The nondeterministic MERGE nodes in the DC1 
flow schema may operate on the simple values as 
well as the stream values 6• The operation of 
the MERGE node is to reproduce an input data 
token (in an input data arc) onto the output data 
arc as soon as one is available. This operation 
implies that the output of a MERGE node depends 
not only on the input data values but also on the 

time when the input data tokens arrive to the 
node. Thus the operation of the nondeterministic 
MERGE node is not a function. 

A RS node which has the FORCE-ENABLE control 
signal arc as its input arc is called the RS 
node. A RS node which has the DELAY-ENABLE d6i
trol signal and/or the data arc(s) as its input 
arc ( s) is called the RS d node. For the purpose 
of explanation in this p~per only the operation 
of the RScs node is described below. 

<Operation of the RScs node> 

(a) selects one output control signal arc ran
domly among the output control signal arcs, 

(b) sends a EN control signal on the selected 
output arc; sends a NEN control signal on 
each unselected output arc. 

Only one output arc of the RS node transmits 
the EN control signal. All thisother output arcs 
transmit the NEN control signals. 

3, The DC1 Flow Schema for the Nondeterministic 
Programs 

A program is said to be nondeterministic if 
a given input state can lead to more than one 
possible terminal state [Gold82]. It may happen 
if the program is permitted to make a random 
choice of its next action from a number of possi
bilities. In this section we will describe the 
DC1 graph and the DC1 evaluation for the non
deterministic programs 7, 

The or operator in [Hend80] is used to 
represent""°'the random choice operation in this 
paper. Consider a program as follows: 

6 This is a difference between the MERGE node 
in the DC1 flow schema and that in the data flow 
schema in [ArBr82]. In [ArBr82] the MERGE actor 
operates only on the stream values. But it is 
necessary for the MERGE node to operate on the 
simple values in order to collect values generat
ed mutually exclusively. 

7 In fact, these programs may be called the 
indeterminate programs 



The value of the function f may be any one of the 
values of the functions g 1, ••• , gn. 

A DC 1 graph for the program < 1 > is shown in 
figure 3-1. Each function gi, 1 ~ i ~ n, is 
represented as a node in the figure. (This 
representation is sufficient for the description 
below). There are two initial tokens; one is a 
data token which contains the value of x and 
another is a control signal token of the FORCE
ENABLE control signal to the RScs node. 

This DC1 graph is evaluated as follows. 
Initially, only the RS node is enabled. (by 
the FORCE-ENABLE contro':l.s signal). Being executed 
this RS node generates an EN control signal and 
(n-1) NE~ control signals. A function, say g., 
whose input DELAY-ENABLE control signal value 1is 
EN is enabled next. Other functions absorb both 
the data token and the control signal token. 
After the function g1 completes its operation its 
result is transmittea as a data token from the 

;~~~t~~~d~~e!0 a t:;ke~E'R~~o~~d~;1u!h~~ 't~:e s:::G:s 
that of an input data token, which is the result 
of the graph. And the evaluation is completed. 

As a more practical example, we show a DC1 
graph and DC1 evaluation for the following non
deterministic program a. 

choice(n) = if n=1 then 1 
else ( choice(n-1) or n ) 

x. 

d-e ' 'PELA'j - tMA8Lf 

t·e• FoKcf • 'EWASt.E 

Figure 3-1 A DC1 graph for the program <1> 

8 This program is from [Hend80]. 

247 

Given a positive integer number, the program 
renders an arbitrary integer ranging from 1 to 
the given input value. 

A DC1 graph representation of the above pro
gram is shown in figure 3-2. The node EQFFE in 
the graph is a predicate operator which generates 
a data token and a control signal token. The 
control signal generated at the EQFFE operator is 
used as an input FORCE-ENABLE control signal to 
the RScs node. A small square box with a con
stant value in it in the DC1 graph represents a 
constant generating function. A subgraph in the 
inner box represents the nondeterministic selec
tion of a value. As shown in the figure, there 
are two initial tokens. One is a data token which 
contains the value of n. Another is a data token 
whose value is the function definition of the 
'choice' function, which is represented as 
{choice}. 

The operation of the APPLY node is invoking 
the recursion. The operation of the LINKd node 
is to reproduce its input data token on tne out
put data arc(s). The operation of the EQFFE 
operator is described as follows: 

compare the two data inputs; 
if equal 

then generate 'true' value 
on the output data arc; 

else generate 'false' value 

endif 

on the output data arc; 
generate a token 

on the output control signal arc; 

n f choice} 

c:l-e : t>eLA)'-alA&Lf 

~-e ' fo~E - EIJABl.E 

Figure 3-2 A DC1 graph for the 'choice' program 



The evaluation of the DC1 graph in figure 
3-2 is done as follows. The first node enabled 
and executed is the EQFFE operator. 
(1) Case 1: If the two inputs to the EQFFE opera

tor are the same (i.e., n=1) then a 'true' 
value is generated as an output data token of 
the operator. Then, the SWITCH node SW1 
passes its input value onto its output arc. 
And the output value of the DC1 graph becomes 
1. 

(2) Case 2: If the two inputs to the EQFFE opera
tor are not the same then a 'false' value is 
generated as an output data value of the 
operator. At the same time, the EQFFE opera
tor generates a control signal token, which 
forces the RS node to be enabled. Since 
the SWITCH nocfJ's SW2 and SW3 pass their input 
values, a value which would be chosen by the 
RS node (and be passed by the MERGE node) 
isc:ither n or choice(n-1) 9. Therefore, an 
output of the graph is either n or choice(n-
1). 

From the above evaluation it is clear that the 
graph performs the operation specified by the 
program 10 

In this section, we described the applica
tion of the DC 1 flow schema for the nondeter
ministic programs. We considered two examples of 
the nondeterministic program. 

4. The DC1 Flow Schema for the Programs process
ing the Infinite Data Structures 

It has been observed that the incorporation 
of infinite data structures into programming 
languages provides the programmer with a powerful 
tool for writing structured and elegant programs 
[ArPi82]. One example of the programs using the 
infinite data structure is the 'sieve' function 
which generates the prime numbers. Details of 
the function can be found in [Weng79], [Hend80]. 

However, it has been noticed that the data
driven evaluation of infinite data structures 
tends to usurp system resources unnecessarily 
[DaKe82]. Furthermo~e, without a mechanism of 
enforcing the 'fair scheduling' policy among the 
enabled nodes the data-driven evaluation may not 
be safe for programs which process infinite data 
structures [ArPi82] 11 • 

9 If the choice(n-1) is selected by the RScs 
node, the recursion does occur. 

10 Of course, there may be a formal correct
ness proof for the graph. However, we will not 
pursue this topic in this paper. 

11 One way of enforcing the fair scheduling 
policy is to limit the number of tokens on each 
arc. This approach is adopted in the static data 
flow architecture in the Dennis' research group 
in the MIT [Denn80], [DeMi75]. In the MIT static 
data flow architecture each arc can contain at 
most one token. But enforcing the limitation re
quires much overhead in the execution time. It 
is because, in addition to the (data) tokens, the 

248 

On the other hand, the demand-driven evalua
tion is safe in evaluation of the programs which 
process the infinite data structures 12 • How
ever, in addition to the run-time overhead men
tioned in section 1, there is additional run-time 
overhead of time and memory space to evaluate the 
infinite data structures processing programs. 
This run-time overhead results from generating 
the suspensions for structure construction opera
tors and coercing them for the operators which 
use the structures [FrWi76]. 

The basic mechanism of dealing with the 
infinite structures in the DC1 flow schema is to 
control the infinite structures generating opera
tors. An infinite structure may be generated 
either by iteration (i.e., infinite loop) or by 
recursion (i.e., infinite invocation of the 
recursion). Therefore, the iteration operator or 
the recursion invocation operator is controlled 
(by the DELAY-ENABLE control signal) in the DC1 
flow schema to evaluate the infinite structure 
processing program. 

In order to illustrate the DC1 flow schema 
for the programs processing the infinite data 
structures, we use the following program 13 

integers from (m) = cons (m, integers from (m+ 1 )) 

getfirst (k, x) 
= if k = 0 

then NIL 
else cons (car(x), 

getfirst(k-1, cdr(x)) 

Note that the function 

getfirst (k, integersfrom(m)) <2> 

yields a finite list with k elements, k~O, 

although the integersfrom(m) function renders an 
infinite list. 

A DC1 graph for the function <2> is shown in 
figure 4-1. It consists of a DC1 graph for the 
'integersfrom' function and one for the 

status signal (,which is called the Acknowledge 
signal in Dennis' group,) should also be 
transmitted between operators and processed. As 
a result; a data-driven evaluation which enforces 
the fair scheduling may be inefficient. 

12 In the demand-driven evaluation, the 
evaluation and construction of the infinite data 
structures are delayed and part of the infinite 
structures are evaluated if they are required by 
some other expression(s). Thus, the evaluation 
of the programs processing the infinite data 
structures is possible in the demand-driven 
evaluation as long as the users use a finite part 
of them. 

13 This program is from [Hend80]. 



'getfirst' function. The FIRST and REST opera
tors are stream operators; i.e., operators whose 
input/output data are streams. The EQTNE opera
tor generates control signal output as well as 
data output. Note that the output control signal 
arc of the EQTNE node is connected to the DELAY
ENABLE control signal input of the APPLY1 node. 

The list generated by the 'integersfrom' 
function is represented as a stream internally 
14 The functions of the stream operators FIRST 
and REST are similar to the LISP functions CAR 
and CDR, respectively. (Details of the opera
tions of the FIRST and REST operators can be 
found in [ArThBOJ, [AGP 78].) The CONS operator 
is a stream operator, too. It generates an out
put data if its simple value input data is avail
able. The operation of the EQTNE node is summar
ized below. 

compare the two data inputs; 
if equal 

then generate 'true' as data output; 

d·e' "PEL/l'{·ftJftBl.l. 

f ·e 1 FDIC ct· €AIA&t 

Figure 4-1. A DC1 Graph for the function <2> 

14 This stream representation allows the con
current operations in manipulating the list 
[Weng79]. 

249 

generate 'NEN' as control signal output 
else generate 'false' as data output; 

generate 'EN' as control signal output 
endif 

The initial token distribution is shown as dots 
in figure 4-1(c). 

The evaluation for the DC1 graph in figure 
4-1Cc) is as follows. Suppose that we consider 
the jth instance (j = 0,1, ••• ) of the recursion 
of the 'getfirst' function. The nodes enabled by 
the initial tokens are CONS1 and EQTNE nodes. 

( 1) Case 1: Assume the two data inputs to the 
EQTNE are equal. Then, 
(a) The SWITCH node SW1 passes its input data 

onto its output data arc. Thus output of 
the DC1 graph becomes [] (or est), which 
is a null stream. It is the last element 
of the output stream of the DC1 graph. 

(b) The APPLY1 node absorbs its control sig
nal token as well as data tokens because 
the DELAY-ENABLE control signal is NEN. 
It prevents the APPLY1 node from being 
enabled further. As a consequence the 
elements of the infinite list are not 
evaluated any more. 

(c) The three SWITCH nodes SW2, SW3, and SW4 
absorb input data tokens. 

(2) Case 2: Assume the two data inputs to the 
EQTNE node are not equal. Then, 
(a) The SWITCH nodes SW2, SW3 and SW4 pass 

their input data onto their output data 
arcs. 

(b) Thus a value (m+j), which is to be the 
(j+1 )th element in the output stream, 
goes through the FIRST and CONS nodes. 
It then becomes the output of the DC1 
graph at this jth instance. 

(c) The APPLY2 node is enabled and executed 
so that the (j+1)th recursion of the 
'getfirst' function can occur. 

(d) Also, an EN of the DELAY-ENABLE control 
signal allows the APPLY1 node to cause 
recursion of the 'integersfrom' function. 
As a consequence, the next element of the 
infinite list generated by the 
'integersfrom' function will be available 
in the (j+1) th recursion instance of the 
'getfirst' function. 

Note that the infinite list is not evaluated and 
constructed at one time by the 'integersfrom' 
function. Rather, part of the infinite list is 
evaluated incrementally. In fact, each element 
of the infinite list is evaluated at each 
instance of the recursion of the 'getfirst' func
tion. Also, the generating and consuming opera
tions of an element of the list (i.e., stream) is 
interleaved so that more concurrency can be 
achieved. As is clear from the above descrip
tion, the DC1 evaluation evaluates (k+1) elements 
of the infinite list of integers which starts 
from m. The first k elements are passed as out
puts of the DC1 graph. The last one element is 



absorbed by the SWITCH node SW3 at the kth 
instance of recursion of the 'getfirst' function. 

5. Concluding Remarks 

In this paper we proposed the DC1 flow 
schema, a pragmatic parallel asynchronous compu
tation model. It contains two kinds of control 
signals as well as the data values. It is an 
asynchronous evaluation scheme and it can exploit 
the implicit concurrency of the computation. Its 
sequencing is based on both the control signal 
and the data availability. 

The properties of the DC1 flow schema are 
studied elsewhere [Woo 83), There it has been 
proved that the DC1 flow schema is determinate. 

The application of the DC1 flow schema to 
the nondeterministic programs is shown in this 
paper. If the (pure) data-driven approach is 
used to evaluate the program <1>, all of the n 
functions would be performed. It is because the 
input, which is x, to every function is avail
able. One of the results of all functions is 
randomly chosen as the result of the program. 
Now, let us compare these two flow schemas for 
the general nondeterministic program in <1>. In 
the DC 1 flow schema only one function, which is 
chosen by the EN value of the DELAY-ENABLE con
trol signal, out of the n functions is evaluated. 
On the other hand, in the data flow schema, all 
of the n functions are evaluated. As a conse
quence, in general, the DC1 flow schema performs 
the nondeterministic programs more efficiently 
(using less time and hardware resources) than the 
data flow schema. In addition, the DC1 flow 
schema has better convergence property in the 
evaluation of the nondeterministic program. The 
reason is as follows. The function f in the pro
gram <1> diverges in the data-driven evaluation 
if any one of the n functions diverges. However, 
the function f converges in the DC1 evaluation 
even though there are some diverging functions 
among the n functions, if those diverging func
tions are not selected by the RScs node. 

The application of the DC1 flow schema for 
the infinite structure processing program is dis
cussed in this paper. It is shown that the DC1 
flow schema is safe in evaluation of the programs 
which process the infinite data structures. 
Therefore, the DC1 evaluation has advantage over 
a data-driven evaluation. Furthermore, the DC1 
evaluation need not any run-time overhead to 
evaluate those programs. Thus the DC1 evaluation 
has advantage over the demand-driven evaluation, 
since the latter requires the run-time overhead 
as discussed above. 

The technique of controlling the infinite 
structure constructing operator can also be used 
to make the for each - while loop self-cleaning 
[AGP78]. Detailed description about this can be 
found in [Woo 83], 

It is noted that the computer architecture 
for the DC1 flow schema may be similar to the 
data flow architecture except several (minor) 
modifications [Woo 83], Building a simulator for 

250 

the DC1 flow schema is planned. 

Acknowledgement 

This research was supported in part by the 
National Science Foundation Grant MCS 81-12896 at 
the University of Maryland, College Park. 

References 

[AgAr82] 
Agerwala T., Arvind, "Data Flow Systems," 
Computer, Feb. 1982, pp. 10-13 

[AGP 78) 
Arvind, Gostelow K., Plouffe w., An Asyn
chronous Programming Language and Computing 
Machine, Dept. of Information and Computer 
Science, u.c. Irvine, Dec. 1978. Revised 
June 1980. 

[ArBr82] 

Arvind, Brock J., Streams and Managers, 
Computation Structures Group Memo 217, MIT, 
June 1982. 

[ArPr82] 
Arvind, Pingali K. , 
Evaluation, Laboratory 
ence, MIT, April 1982 

Safe Data driven 
for Computer Sci-

[ArTh80] 
Arvind, Thomas R., I-Structures 
cient Data Structure for 
LiUigUages;--MIT/LCS/TM-78, MIT, 
1980, revised in October 1981. 

[Back78] 

: An Effi
FunctIOnil 
September 

Backus J., "Can Programming Be Liberated 
from the von Neumann Style ? A Functional 
Style and Its Algebra of Programs," CACM, 
Vol.21 No.8, August 1978, pp.613-641 --

[Dake82] 
Davis A., Keller R., "Data Flow Program 
Graphs," Computer, Feb. 1982, pp. 26-41 

[DeMi75] 
Dennis J. , Misunas D. , "A Preliminary 
Architecture for a Basic Data-Flow Proces
sor," The 2nd Annual Symposium ~ Computer 
Architecture, 1975, pp. 126-132 

[Denn80] 
Dennis J., "Data Flow supercomputers," Com
puter, November 1980, pp. 48-56 

[FrWi76] 
Friedman D., Wise D., "CONS Should Not 
Evaluate Its Arguments," Michaelson s., 
Milner R., eds. Automata, Languages and 
Programming, Edinburg Univ. Press 1976, 
pp.257-284 

[Gold82] 
Axiomatising the Logic of Computer Program
!!!!!!&• Goldblatt R., Lecture Notes in Com
puter Science 130, Springler-Verlag, 1982 



[Hend80] 
Functional Programming : Application and 
Implementation, Henderson P., Prentice
Hall, 1980 

[KLP 79] 
Keller R., Lindstrom G., Patil S., "A 

multi-loosely-coupled applicative 
processing system," AFIPS Conference 

Proceedings, Vol.48,, 1979, pp. 613-621 

251 

[Myer78] 
Myers G., Advances in Computer Architec
ture, John Wiley & Sons, 1978 

[Weng79] 
Weng K., An Abstract Implementation 
Generalized Data Flow Language, 
thesis, MIT/LCS/TR-228, MIT, 1979 

[Woo 83] 

for a 
Ph.D. 

Woo N., Ph.D. dissertation, in prepara
tion. 



TOP-DOWN DATA FLOW PROGRAMMING 

Yury Litvin 

GTE Laboratories, Inc. 
Waltham, MA 02254 

Abstract -- A simple control mechanism for non
functional data flow languages is described. It 
is based on hierarchical structuring of data flow 
programs. The hierarchy is described 
metaphorically using the notion of "execution 
time" for program statements and blocks. It is 
postulated that statements within a block are 
executed "infinitely" faster than hierarchically 
superior statements. Resulting program structure 
corresponds to the intuitive top-down structure of 
the program. A parallel language based on this 
principle would bridge the gap between correct and 
"correctly" structured programs. 

1. Introduction 

The advantages of the top-down structuring of 
programs and the style of programming by stepwise 
refinement hardly need to be reiterated. In 
sequential von Neumann programs, top-down 
structure is more a matter of style: generally 
speaking it may not be required by the semantics 
of the programming language. In this brief paper 
I attempt to define simple semantics for a non
functional data flow language. The analysis of 
this problem immediately shows that one or another 
form of hierarchical program structure is 
necessary. Thus, top-down programming is optional 
for sequential programs, but is essential for 
high-level data flow programs. In Section 2 I 
discuss briefly why this is so, and in Section 3 I 
describe a data flow control mechanism based on 
the hierarchical program structure. The hierarchy 
is implemented using the metaphor of "execution 
time." It is postulated that statements within a 
program block are executed "infinitely" faster 
than hierarchically superior statements. A 
parallel language based on this principle would 
bridge the gap between correct and "correctly" 
structured programs. The problems of a plausible 
syntax for such a language are not addressed in 
this paper. A (rather naive) attempt at language 
definition including syntax is described in [7]. 

~· Two Components of Determinism 

For abstract analysis it is convenient to view 
computations as relaxation in a transition system. 
I use the term "relaxation" to refer to a sequence 
of transitions leading from a given state to a 
terminal state. For our purposes I use the 
following definition of determinacy: the system 
is called deterministic if for any initial state 
all relaxations from this state lead to the same 
terminal state. Asynchronous data flow 
computations are possible due to the determinacy 
of computation graphs [10]. In general, in data
driven systems determinacy depends on two 
conditions: 

0190-3918/83/0000/0252$01.00 © 1983 IEEE 

l. Availability of arguments: all designated 
inputs (or a function or an activity must be 
available before the computation can 
proceed. 

2. Preservation of results: all results must be 
made available to their "users" before they 
are overwritten or erased. 

The first condition is the essence of data-driven 
computations. There is some freedom, however, in 
the choice of a formalism to satisfy the second 
"preservation-of-results" condition. In data flow 
graphs, for example, it can be done by 
(a) providing FIFO queues on all arcs; 
(b) allowing a node to fire only when all output 

arcs are vacant; 
( c) explicit scheduling or partial scheduling of 

activities and their durations; 
(d) setting synchronized "locks" at the entrances 

of computation blocks (iterative loops, in 
particular) so that each arc is enabled 
(carries a value) only once for each cycle 
through the' "locks". 

Theoretically any one of these mechanisms could be 
used as a basis for defining the semantics of a 
high-level data flow language. But (a) and (b) 
would result in a totally incomprehensible 
programming logic, and ( c) would contradict the 
spirit of asynchronous computations. 

Option ( d) is successfully implemented in the 
ID [3] and other languages [6]. This approach is 
based on hierarchical structuring of programs. A 
chunk of a program designated for repetitive use 
(e.g. an iterative loop) must be defined formally 
as a block with certain inputs and outputs. The 
inputs are synchronized through a chain of 
synchronized locks, so that only one datum can 
enter through each input arc before all output 
arcs receive the results. 

~· Designing~ Procedural Data Flow Language 

Painful experiences with software development 
and maintenance stimulated efforts to impose 
severe restrictions on languages. The freedom of 
programmers was curtailed by the elimination of 
global variables, GOTO statements and other 
drastic measures. The most radical approach 
advocates pure functional languages without side 
effects [4]. These efforts have resulted in 
dramatic improvements in progr'amming productivity· 
The impetus of restrictive measures was to force 
some order and structure into conventional von 
Neumann programs. It is not obvious, ho:-iever, 
that the same strict measures must be applied to 
data flow programs. First, as discussed earlier, 
proper definition of semantics of a data flow 
language may automatically require proper 
structuring of programs. Second, attempts .at 
functional or "value-oriented" programming 
languages for data flow computers, such as VAL 
[2, 9], are not free from difficulties and 
compromises, especially with. regard to . handling 
iterations and history-sensitive computations [8]. 
Third, object-oriented programming offers,a viable 
alternative to value-oriented programming: its 
semantics may be more comprehensible for a 
mathematically-naive programmer. 

252 



A detailed comparison of functional vs 
"procedural" data flow languages is beyond the 
scope of this paper. Our objective is merely to 
show that a "procedural" data flow language is 
possible. Note that pure functional programs are 
top-down structured in a natural way [5] 
provides an example. A comprehensive review of 
properties and constraints for data flow languages 
can be found in [1]. 

My intention is to define simple semantics for 
a language with as few restrictions as possible. 
The language should allow global variables, 
partial execution of blocks under certain 
conditions, loosening of the single assignment 
rule and same variable on both sides of the 
assignment statement, etc. More restrictive 
semantics or programming styles can be 
superimposed on this basic language. The price 
paid for this freedom is the necessity to 
introduce the metaphor of stepwise computation 
with external timing pulses signalling the 
beginning of each cycle. 

The task of defining language semantics 
includes two subtasks. The ·first is to represent 
data flow graphs in the textual form, the second 
is to define a control mechanism. The first 
subtask is straightforward. Each node of the data 
flow graph is more than simply a node: it 
corresponds to a function with some ordered set of 
arguments and one or several results. We can 
assign names to the arcs of the graph (several 
arcs may get the same name). The graph then can 
be represented as a set of nodes with labelled 
"receptacles" and "transmitters", and then 
translated into a list of statements (Figure 1). 
That is, of course, where the data flow graphs 
originally came from. 

The single assignment rule requires that arcs 
with the same name must come out of the same node. 
This makes connections of the type 

~ illegal. 
It may be convenient in some cases to relax this 
constraint and permit such connections with the 
understanding that nodes Fl and F2 can fire only 
under mutually exclusive conditions, but not 
simultaneously. This, of course, would place 
additional burden of avoiding conflicts on the 
programmer. 

The second subtask is to define the control 
mechanism. It would be unwise to use conventional 
data flow control, which requires that a node can 
fire only when all output arcs are free. This 
would violate the principle of locality, since 
intermediate results can be "consumed" in remote 
places and times. Another alternative, as 
mentioned earlier, is explicit scheduling. The 
control mechanism proposed here is a compromise. 
It is based on the metaphor of "execution time" 
for statements. It is postulated that each 
statement takes "the same time" for execution. 
Operations proceed in a stepwise manner and are 
synchronized with an imaginary external timing 

253 

pulse. All enabled (possessing all arguments) 
statements are executed at each cycle, and all the 
arguments of executed statements are consumed by 
the end of the cycle. Suppose we have an 
iterative loop, and computations in the body of 
the loop take more than one cycle: 

I:=I+l 
X:=Fl(I) 
Y:=F2(X) 

How can we synchronize the increment operator 
I :=I+l (which fires at each cycle) with the body 
of the loop? To accomplish this we combine the 
statements of the body into a program block and 
postulate that the "execution time" for the block 
is the same as for peer elemental statements: 

I:=I+l 
[ X:=Fl(I) 

Y:=F2(X) 
The statements within the block then must be 
executed faster than outside statements. In fact, 
they must operate "as fast as necessary" or 
"infinitely" faster to keep pace with 
hierarchically superior statements. The 
computation within the block is a relaxation from 
the initial state -- variables defined at the 
beginning of the (external) cycle -- to a terminal 
state where all statements in the block are 
disabled. The whole process takes exactly one 
cycle when viewed from the next superior level of 
the hierarchy. Figure 2 illustrates a data flow 
program with this control mechanism. For 
simplicity, only one level of nested blocks is 
used in this example. At the upper level, 
statements X:=X+DX, PRINT(X,Y) and the block are 
executed at each cycle. At the lower level, 
computations within the block take 6 "subcycles". 

4. Conclusions 

Simple semantics for a data flow language have 
been described. The objective was to define 
semantics of the data flow language with as few 
constraints as possible: to allow global 
variables, partial execution of blocks and 
relaxation of the single assignment rule. The 
control mechanism is based on the "execution time" 
hierarchy. It turns out that for a properly 
programmed algorithm the hierarchical "execution
time" structure closely corresponds to the 
intuitive top-down structure. Therefore the 
proposed control mechanism bridges the gap between 
correct and "correctly" structured programming. 
Hierarchical structuring also permits structured 
debugging. The programmer can monitor program 
execution step by step at any given level in the 
hierarchy. 



References 

[1] Ackerman, W.B. "Data Flow Languages." MIT 
Laboratory for Computer Science, Computation 
Structures Group, Memo 177-1, May 1979. 

[2] Ackerman, W.B., J.B.Dennis. "VAL - A Value
Oriented Algorithmic Language: Preliminary 
Reference Manual." MIT Laboratory for Computer 
Science, LCS/TR-278, June 1979. 

[3] Arvind, K.P.Gostelow, W.Plouffe. "An 
Asynchronous Programming Language and Computing 
Machine." Dept. of Information and Computer 
Science, Univ of California, Irvine, 
California, TR 114-a, Dec 1978. 

[4] Backus, J. "Can Programming be Liberated from 
the Von Neumann Style? A Functional Style and 
its Algebra of Programs." Comm. ACM, 21, No.8, 
Aug 1978, pp. 613-641 

(5] De Jong M.D, C.L.Hankin. "Structured Data Flow 
Programming," ACM SIGPLAN Notices, 17, No. 8, 
Aug 1982, pp. 18-27 

[6] Kotov, V.E. "On Basic Parallel Language." 
Information Processing 1980. Proceedings of 
the IFIP Congress 80, Oct 1980, Tokyo, Japan, 
pp. 229-240 

[7] Litvin, Y. "Parallel Evolution Programming 
Language for Data Flow Machines." ACM SIGPLAN 
Notices, 17, No.11, Nov 1982, pp. 50-58 

[8] McGraw, J.R. "Data Flow Computing: Software 
Development." IEEE Trans. Computers, C-29, 
No.12, Dec 1980, pp. 1095-1103 

[9] McGraw, J.R. "The VAL Language: Description 
and Analysis." ACM Trans. on Programming 
Languages and Systems, ~' No.l, 1982, pp. 44-82 

(10] Miller, 
Theoretical 
IEEE Trans. 
710-7~ 

R.E. "A Comparison of Some 
Models of Parallel Computations." 
Computers, C-22, No.8 Aug 1973, pp. 

.li.e !!>He 
~ ~ 

A:=Fl 
D:=F2(A,B,C) 
E:=F3(D,E) 

(B,C):=F4(A) 

(c) 

e. Fl 
(b) 

Figure 1 
"Receptor/transmitter" and textual representations 
of directed graphs: (a) arc labelling; (b) 
"receptor/transmitter" representation; (c) textual 
representation. 

254 

.1 

DX 

:f y 
@ 

PRINT 

F(X,Y)*DX 

F(X+DX/2,Y+Wl/2)*DX 

F(X+DX/2,Y+W2/2)*DX 

F(X+DX,Y+W3)*DX 

Wl+2*W2+2*W3+W4)/6 
b'I 

PROGRAM RUNGE KUTTA(XO,YO) 

CONSTANT DX=.1, A=l. 
X:=XO 
Y:=YO 

% Initialization section 

============================================== 
X:=X+DX I X<A % Execution section 
[ Y:=Y+DY 

DY:=(W1+2*W2+2*W3+W4)/6. 
Wl:=F(X,Y)*DX 
W2:=F(X+DX/2.,Y+Wl/2.)*DX 
W3:=F(X+DX/2.,Y+W2/2.)*DX 
W4:=F(X+DX,Y+W3)*DX ] 

PRINT X,Y 
============================================== 

% Comments: 
This program implements one of the Runge-Kutta 
methods for numerical solution of a differential 
equation. The initialization section serves to 
define constants and initialize variables. The 
program is executed according to the "execution 
time" hierarchy: all statements within the block 
enclosed in brackets are executed "infinitely" 
faster than statements outside the block. This 
hierarchy is used to synchronize X:=X+DX and 
Y:=Y+DY. 
============================================== 

Figure 2 
A data flow graph and a corresponding program with 
the "execution-time" hierarchical structure. 



A PIPELINE MACHINE FOR IMAGE PROCESSING APPLICATIONS 

Ikram E. Abdou 
Aydin Computer Systems 

Fort Washington, PA 19034 

Abstract~The design of a general purpose image 
processing machine is currently one of the most 
active research areas. This paper introduces a 
pipeline machine designed for such applications. 
The architecture of the machine can be described 
as a simplified form of a data flow machine. This 
new design combines the advantages of the fast 
throughput needed for image processing applications 
with a simple and easy-to-implement instruction 
set. To achieve these normally mutually exclusive 
features, the machine is based on a pipeline archi
tecture which is configurable at execution time. 
This allows the user to include only the hardware 
components which are needed for a given application. 
The instruction fields are selected accordingly, so 
the user is only concerned with the fields of the 
components he has included. The design is optimi
zed for array or vector manipulation. The paper 
begins with a description of some of the image 
processing algorithms. The hardware components 
needed to implement each algorithm are combined to 
form a basic data processing module. A brief des
cription of the microcode used in the machine is 
given. The paper concludes with a summary of the 
important features of this new design. 

Introduction 

Recently, there has been an intensified effort 
toward the design of general purpose image process
ing machines. A survey of these efforts is given 
in reference [1]. Most of the existing machines 
are similar in the fact that they are based on fast 
multipliers and rely on pipeline processing to 
achieve high throughput. A major disadvantage of 
these machines is the complicated programming pro
cedures that are normally needed to execute the 
desired functions. The following sections introdu
ce a signal processing machine that combines the 
advantages of the fast throughput needed for image 
processing applications, with a simple and easy-to
implement instruction set. 

Since the machine is tailored specifically for 
image processing applications, the data is represe
nted using a block floating point format. This 
format provides a sufficient accuracy for most 
image applications, while allowing a fast and simple 
data manipulation. The paper begins with a survey 
of the various image processing functions. Based 
on these functions, the necessary hardware elements 
are defined. The microcode used in the machine is 
introduced, and some of the basic features of the 
machine are discussed briefly. 

Survey of Image Processing Functions 

This section surveys the various functions 
needed in any image processing machine. For a 
better understanding of these functions, the reader 
should consult references [2], [3], and [4]. 

0190-3918/83/0000/0255$01.00 © 1983 IEEE 255 

Digital images are large arrays of data. Pro
cessing these images requires the implementation 
of functions which can be classified into one of 
the following groups: 
1) Simple functions of a single variable. 
2) Simple functions of two variables. 
3) Compound functions of a single variable. 
4) Compound functions of multiple variables. 
In the following, a discussion of each group is 
given. 

Group 1, Simple Functions of a Single Variable 

These functions are defined as follows: 
Given an input array F, the output array G is 
given by 

G = T(F). ( 1 ) 

Where T is any linear or nonlinear mapping 
function. The mapping function is implemented 
through a Look-Up Table (LUT), stored in a Progra
mmable Read-Only Memory (PH.OM), or down loaded into 
a Random Access Memory (RAM). 

Some of the single variable functions used in 
image processing are intensity mapping, contrast 
enhancement, and pseudo coloring. 

Group 2, Simple Functions of Two Variables 

The functions of interest in this group are 
defined as follows: Given two input arrays F1 and 
F2, the output array G is given by 

G = O(F1,F2), (2) 

where 0 is any dyadic operator. The most important 
of these operators are the logical and arithmetic 
functions. An Arithmetic Logic Unit (ALU) is 
needed to implement the functions: Add, Subtract, 
OR, AND, and Exclusive-OR. Multiplication is 
implemented using a special hardware such as the 
TRW Multiplier to achieve the required speed 
performance. Division is implemented using look
up tables. 

The functions of two variables are used to 
compare two images, to modify one image according 
to a spatial function described by another image, 
or in general to combine two input images into one 
output image. 

Group 3. Compound Functions of a Single Variable 

One important function that belongs to this 
group is the histogram calculation. The histogram 
is a function showing for each possible value of 
an input array F, the number of elements that have 
this value. To calculate the histogram, the array 
Ji' is stored in a HAM and used to address the 



cumulative count in another RAM. Every time an 
element is addressed it is incremented by one, and 
the incremented value replaces the original value. 

The histogram is used to determine the proper 
mapping function for contrast enhancement. It is 
also used in pattern recognition. 

Group 4. Compound Functions of Multiple Variables 

Image processing functions that belong to this 
group are normally compute bound. An efficient 
implementation of these algorithms is a measure of 
the performance of any image processing machine. 
Some of the important functions that belong to this 
group are: 

Sum of an Array. Giv.~n an input array, f1, ••• , 
fn, the output g is defined as 

g = f1 + f2 + • • • + fn. (3) 

This function is implemented using an ALU with 
Accumulator. It is used to minify an input image 
by averaging. Also, it is used to average more 
than one image for noise cleaning. 

Sum of Products. Given a set of weighting 
coefficients, a1, ••• , an, the output g is defined 
as 

g = a1*f1 + a2*f2 + ••• + an*fn. (4) 

This function is implemented using a Multiplier/ 
Accumulator Unit. The sum of products is used in 
convolution, recursive filter, and interpolation. 

Data Processing Module 

Combining the hardware components needed for 
the various image processing functions, produces 
the data processing module shown in Figure 1. The 
machine consists of the following elements: 
1) Two large Random Access Memory units RAMA and 

RAMB, used to store the processed data and the 
coefficients. 

2) A small register file RAMF, for temporary 
storage. 

3) A Read Only Memory PLUT, that stores the inverse, 
sine, cosine, and square root tables. 

4) Two Arithmetic Logic Units ALUA and ALUB. In 
addition to the normal ALU functions, these two 
units have the capability to accumulate the sum 
of an array. 

5) A Multiplier/ Accumulator Unit, MAC. 
6) A Scaler Unit that reduces a 35-bit multiplier 

output into a 16-bit number. 
7) A third Arithmetic Logic Unit, ALUC. This unit 

has a divide-by-two capability. 

The connections between the various units in 
this machine are determined by the 4-way multiplex
ers at the inputs of RAMA, RAMB, RAMF, Multiplier, 
and ALUC. As an example, if this machine is used 
to multiply two images, the data path is configured 
such that the outputs of RAMA and RAMB are connee.t
ed to the multiplier input. The output of the 
Scaler is connected to either RAMA or RAMB. In 
this application, RAMF, PLUT, and the three ALUs 

256 

are not included in the data path. If in another 
application the machine is used to add two images, 
the multiplexers are controlled such that the out
puts of RAMA and RAMB are connected to ALUC and 
the output of ALUC is written back to either RAMA 
or RAMB. Other applications may require more than 
one configuration of the machine. In these cases, 
all the processing that belongs to one machine 
configuration is finished before the machine is 
reconfigured. 

Introduction to Microcode 

The instruction used in this machine, is 
divided into the following eight fields: 

Field 
1 
2 
3 
4 
5 
6 
7 
8 

Function 
Sequence controller. 
Address generator control. 
Read RAMA, RAMB, RAMF, and PLUT. 
ALUA and ALUB operations. 
Multiplier operation. 
Scaler operation. 
ALUC operation. 
Write RAMA, RAMB, and RAMF. 

Table 1. Machine Instruction Fields. 

Time 
0 t 
1 t 
3 t 
4 t 
5 t 
7 t 
9 t 

10 t 

ALUB 

ALURB 

05-5728 

Figure 1. Data Processing Module. 



Field 1 determines the sequence of instruction 
being executed. It controls the increment, repeat, 
or branching of the instruction sequence. Fields 
2 through 8 control the.address generation and 
processing of data. The elements of the instruct
ion resemble those of any microcoded machine. The 
most important diference between this design and 
many existing machines is the time delays shown in 
the right column of the table. Executing a single 
instruction is not done in one machine cycle. It 
is spread over many cycles with the various fields 
being executed at the relative delays given in the 
above table. These delays allow the instruction to 
follow the data it has originally created, through 
the read command, till this data is written into 
RAM. The ability of ALUA, ALUB, and the MAC unit 
to accumulate data, allows the user to store the 
intermediate results of a summation in the machine 
registers. Thus, reducing the need to access the 
RAM units during processing. This feature is 
important in many image processing applications 
such as convolution and edge detection. It should 
be noted that the machine is a special case of the 
data flow machine, in which the data is always 
synchronized with the instruction, and all the 
data processing elements operate at a fixed rate. 
The general case of the data flow machine is 
discussed in reference [5]. 

Also, because of the pipelined nature of the 
machine, a new instruction can be started every 
machine cycle. After the initial time needed to 
fill the data pipe 7 all the included components of 
the machine will be simultaneously processing 
different data elements. The overhead needed to 
fill the pipe is usually a very small percentage of 
the total processing time. At execution time, the 
instruction is modified to resemble the hardware 
configuration being implemented. This modification 
is achieved through a set-up procedure that is 
executed once at the beginning of every new config
uration. As an example, if the machine is config
ured for convolution, the set-up procedure controls 
the instruction flow such that only the fields 
related to convolution are included. These fields 
are the following: 

Field 
1 
2 
3 
5 
6 
8 

Function 
Sequence controller. 
Address generator control. 
Read RAMA and RAMB. 
Multiplier operation. 
Scaler operation. 
Write RAMA or RAMB. 

Table 2. Instruction Fields for Convolution. 

Time 
0 t 
1 t 
3 t 
4 t 
6 t 
8 t 

In this case, the relative delay is determined only 
by the components being included in the configura
tion. 

The microcode needed for convolution cosists of 
three instructions: The first is Read and Multiply 
instruction; the second is Read, Multiply, and Acc
umulate instruction; the third is Read, Multiply, 
Accumulate, and Write instruction. The most impor
tant feature of this code is its compactness. This 
feature simplifies both the coding and the debugg
ing effort. The compactness of the code is a result 

257 

of the data flow nature of the machine which mini
mizes the interaction between various instructions. 

Conclusion 

In this paper, a general purpose image process
ing machine was introduced. The machine is based 
on a pipelined architecture with the various 
machine elements connected through multiplexers. 
This structure offers independent data paths, thus 
preventing the bus contention problem. In addition 
these multiplexers are used to configure the mach
ine at execution time. Therefore only the hardware 
needed for a given application is included, and 
the data follow the shortest possible path. The 
instruction fields are modified accordingly. These 
fields control the processing sequence starting 
with reading the data; then modifying it using the 
ALUs, the Multiplier, and the Scaler units; and 
finally writing it back. The structure can be 
described as a synchronous data flow machine. 

These features produce a machine that is as 
fast as any specialized image processing machine, 
while maintaining the flexibility of a general 
purpose array processor. In addition, the machine 
is capable of handling many image processing appli
cations in both the spatial and the frequency 
domains. Another advantage of the machine is its 
simple and compact code, that makes the machine 
easy to program. 

Acknowledgements 

I wish to thank the management at Aydin. Also, 
I would like to thank the dedicated team of hard
ware and software engineers who are currently 
working on this project. 

References 

[1] P. Danielsson and s. Levialdi, "Computer Archi
tectures for Pictorial Information Systems," 
Computer (November, 1981), pp 53-67. 

[2] W.K. Pratt, Digital Image Processing, Wiley 
Interscience, (1978), 750 PP• 

[3] E.L. Hall, Co uter Ima e Processin and 
Recognition, Academic Press, 1979 , 584 PP• 

[4] K.R. Castleman, Digital Image Processing, 
Prentice-Hall, (1979), 429 PP• 

[5] Special Issue on Data Flow Systems, Computer 
(February, 1982), 



AN EVALUATION STUDY OF SIX TOPOLOGIES 
OF PARALLEL COMPUTER ARCHITECTURES 

FOR SCENE MATCHING 

Yee-Hong Yang 
"ellon Institute 

Computer Engineering Center 
4616 Henry Street 

Pittsburgh, PA 15213 

ABSTRACT 

Six topologies of parallel computer architectures were 
evaluated for implementation of scene matching. These 
topologies are: (1) cluster-connected, (2) mesh-connected, 
(3) cluster-cluster-connected, <4> cluster-mesh-connected, 
(5) mesh-cluster-connected, and C6> mesh-mesh-connected. 
Analytic results indicate that the mesh-connected 
architecture is the best candidate. However, under the 
constraint of the physical pin-out number, the mesh-mesh
connected is a good alternative. 

l· Parallel Computer Architectures 

During the past twenty years, a significant number of 
high speed computer architectures have been proposed. Some 
of these architectures that were thought to be impractical 
to build are now considered not only viable but also 
necessary for speeding up computation. This is made possible 
by the advancement of solid state technology. Signal/Image 
processing requires a large number of ~amputations. This is 
particularly true for scene matching algorithms. Scene 
matching is the process of locating a subimage in a sensed 
image using a template [Hall,79J. Scene matching algorithms 
have potential applications in cruise guidance missles 
[Berry,80]. A limitation to their use is in the intense 
computational requirements. One of the advantages that all 
scene matching algorithms have is that independence of 
computations exist in the algorithms. This independency 
offers opportunities for concurrency and thus favors the use 
of innovative parallel computer architectures for speeding 
up the processing. A tradeoff study which will be discussed 
in the following can show the advantages and the 
disadvantages of six promising computer architectures with 
respect to the implementation of a scene matching algorithm. 
The analysis parallels the technique used by Feather et 
al.CFeather,80]. 

£• .!!.!!. Promising Computer Architectures 

Six types of architectures were analysed, namely, Ci) a 
cluster-connected architecture CCCA), Cii) a mesh-connected 
architecture CMCA), Ciii) a cluster-cluster-connected 
architecture (CCCA), (iv) a cluster-mesh-connected 
architecture CCMCA>, Cv) a mesh-cluster-connected 
architecture CMCCA), and Cvi) a mesh-mesh-connected 
architecture (MMCA>. Schematic diagrams of these six 
architectures can be seen in Figure 1(a)-1(f). 

CCA <Cluster-Connected Architecture) is an 
.architecture having a common bus. Each processing element 
(PE) has its own local memory. The PEs are controlled by a 
central controller. In the following analysis, we will 
demonstrate the limitation to this approach. 

Let the sensed imaae be of size 2Lx2L while the 
template be of sizek _2_ x2m. Let the number of processing 
elements <PEs) be 2~x2 •· Let the image be ~f!ijtiyr!~) such 
that each PE occupies a subimage of size 2 x2 • In 
the following analysis, ,it is assumed ~h't the sensed image 
is surrounded by a boundary of width 2 • Hence no special 
processing is required by PEs located on the boundary 
partitions of a sensed image. It is assumed that the 
template infor•ation has already been stored in the local 
memory of each PE. Therefore, no time is required to 
transmit template information to individual PEs. In order 
for ~ach PE to perform a scene ~atchino algorithm, 21·t_has to 
acquire a subimage of size c2•L "'+2•>z of which 2 L kJ is 
already in its local memory. 

It can be shown that the total time required to obtain 
the best match is: 

TCCACL,k,m)=txfr(22kc2<L-k+m+1>+22., 

+tcc 2 2<L-k+m>+22kl 

This work was supported by the United States Department of 
Defense, contract number N00039-80-C-0640, and monitored by 
the Naval Air Development Center. 

0190-3918/83(0000/0258$01.00 © 1983 IEEE 258 

Tsung-Wei Sze 
Department of Electrical Engineering 

University of Pittsburgh 
Pittsburgh, PA 15261 

'" 
,., 

~ 
n~ 

. ... ¢ .. :.: ..... ,· 
Q-Q-0 -01 

"' 

~ 

6~ ,,, 

gQ ___ ::.-9..i 
Cdl 

r ··.~ 

.. y 
rg:J.·:···--~1 

lg:::.-.:.-.. :.-9! 
Cf) 

f\gurt 1 V11ou1 trchitectures for 1n1ly1h. 
(1] Cluster•Connecttd Archhec ture, 
(b) fllesh-Conn.cttd Architecture, 
(c) Cluster-Cluster•Connecttd Arch1 tecture, 
(d) ct us ter-"• sh-tonne c ted Arc hi te c tur•, 
tel fllesh·Cluster·Connected Architecture ind 
(f) J11esh·Me1h·Connected Archttecture. 

Let us define the speed up factor S as the ratio of the 
time to perform the computation sequentially er.> over the 
time to perform it in parallel. Then: 

T 
SCCA <L,k,m>=r· 

CCA 

Using the above values of t f and t , the variation of 
log 10 s C is plotted versul ~ with L=~O and m=S (see Figure 
2>. O~ fhe same figure, the speed up S per PE, which is 
defined as the PE utilization factor F, is also plotted. 

The results can be interpreted physically as follows. 
When k is small, that is, when the number of PEs is small, 
the time spent is mostly on computation. When k increases, 
s will increase because of the decrease in computation 
required by 11ch PE. However, when k reaches a certain 
value, the time required to align the data becomes dominant 
and hence causes S to decrease. The implication of this 
observation is important. Suppose the size of a template is 
large, one might want to increase the number of PEs hoping 
to decrease the computation time. The computation time 
decreases. However, the overhead is so dominating that the 
net effect will degrade the performance of the whole system. 
This is very crucial because the system is not extendible to 
•eet unpredictable needs. Furthermore, on the same figure, 
one sees that the PE utilization factor F decreases 
significantly after k=6. This indicates that the PEs are 
not utilized efficiently. 

£•£• Analysis E.!, .!!!.! ~ 
The proposal for this 

given by Unger CUnger,54J. 
surprisingly, only a few 
architecture were actually 

kind of architecture was first 
Over the past twenty nine years, 

computer systems having this 
built. The main reason for such 



6'0.-------------------. 

0 5. 

0 

4. 

" 

!. 

1. 

-10910 (SpeedUp) 

--- Speed Up Per Pr 

\ 

\ 

I 
I 
\ 
I 
I 
\ 
I 

I 
I 
I 
I 

\. 

1.0 

0.5 

o.~---..----..----...---·-·.c:-=--...,...----t o.o 

Ftgur1 Z Performance analysis of Cluster~connected 
Architecture. 

10 

' 

. 
~ 

~ 

, 
~ 

a delay can be attributed to the complexity and cost 
involved in building any mesh-connected computer system. 
Representatives are ILLIAC IV (Barnes,78] DAP by ICL 
[Hunt,79J, CLIPP [Preston,79J, and MPP [Batcher,BOJ. 
Among them, the OAP the CLIPP 4 and the MPP are recently 
bui Lt machines. 

A similar analysis shows that the time required to 
locate the best match in this architecture is: 

TMCA<L,k,m>=<2L-k+m-1+22m+2kltxfr 

+<2 2 (L-k+m)+2klt 
c 

Using the same values of t 1 and t , the variation of 
SMCA and FMCA with k can bexs,en in ~igure 3. It can be 
seen that log10 sMCA increases linearly with k while the PE 
utilization f ctor F remains relatively constant from k=O to 
k=8. When k>8, FMCA decreases because of the overhead in 
aligning the data. 

In the following, we wi LL analyze four 
the above architectures. 

!·l· Analysis tl .!.!!.!. ~ 

derivations of 

A schematic diagram of the CCCA (Cluster-Cluster
Connected Architecture) can be seen in Figure 1(c). In this 
architecture, it is assumed that there are two levels of 
clusters. Each cluster at the first level has 2Px2P PEs 
while each cluster at the second level has 2qx2q PEs. The 
advantage of this interconnection is that the communication 
load at the first level is reduced. A representative of 
this architecture is the cM*cswan,77J. 

Using similar analyses, it can be shown that the time 
to complete the scene matching algorithm is: 

I I (2L+m+p+1 +22m+2p I 
I t x fr I 

T (L >=1+ 2L+m-p+q+1+22m+2q+ 22p+ 22q>I 
CCCA ,p,q,m I I 

I +t (22 <L+m-p-q) +22P+22q> I 
I c I 

And hence the speed up S: 

Ts 
ScccA<L,p,q,m)=TcccA 

Since SCCCA varies with both p and q. We assume that 
for a given p, q can be chosen to maximize ScccA· With this 
assumption, the variation of SCCCA and the PE utilization 
factor FcccA with respect to p can be seen in Figure 4. It 
can be seen that SCCCA has a similar trend as the SCcA· 

The variation of FCCCA with respect to p is more 
difficult to interpret physically. However, one can 
conclude that when p>2, there is no good way to utilize the 
PEs efficiently using this architecture. In the above 
figure, the analysis is valid up to p=9 because when p=10, 
it is not meaningful to have a second level of PEs. 

259 

.. 
Speed Up Per PE 

... --- ----- ----------- ---- -

" 

2. .5 

1. 

o.~'.......-----~----.----.----f-0.o 

f1gur• J 

10 

' Perform.since analys1s of the Mesh-Connected 
Arch I tecture. 

6.0~-----------------~ 

o.o .j....------~--_;;:_.:r~--r------:-,1::' .o 
p 

Figure 4 Performance analysl s of the Cluster-Clus.ter
Connected Arc hi tee tu re. 

Analysis .2J.l.!!.!.~ 

, 
~ 

One may think that by changing the second level of 
architecture to a MCA then a better performance may be 
attained. The following analysis shows that this 
expectation is completely incorrect. By repeating the above 
analysis, one obtains: 

Then: 

I 
( 2L+m+p+1+22m+2p I 

txf r I 
L+m-p+q+1 2m 2p 

TCHCA<L,p,q,ml=I 2 +2 +2 +2ql I 
l+t ( 22<L+m-p-ql+ 22p+ 2ql I 
I c I 
I I 

T 
s = s 

CllCA TCMCA 

The variation of SCMCA with respect to p can be seen in 
Figure 5. It can De seen that SCMCA decreases monotonically 
with increasing p and the PE utilization factor FCHCA is 
very low. Therefore, this rearrangement is not a suitable 
one. 

!·1· Analysis~.!.!!.!.~ 
It is interesting to see the effect of interchanging 

the architectures in the two levels, i.e. having the MCA at 
the first level and a CCA at the second level. A schematic 
diagram of this topology can be seen in Figure 1(el. With 
similar analysis, one can deduce that: 

5MCCA=, t ( 2L+m-p+1 +22m+ 2L+m-p+q+1 I 
I x fr I 
I +22M+2q+ 22q+2pl +t <22 <L-p-q+ml +.22~ 
I c I 



We again assume that for a given p, the best q is selected 

~ 
~ 

~ . . 
~ 

c 

0 

1og 10 (Speed Up) 

Speed Up Per PE 
5.0 

4.0 1.0 

3.0 

2.0 0.5 

1.0 

o.o .._'----==.="""-~---~--~----+o.o 

Figure 5 Performance analysis of the Cluster-Mesh
Connected Architecture, 

10 
p 

~ 

~ 

, 
;:: 

to maximize the speed up S. Then the variation of S versus 
p can be seen in Figure 6. 

It is surprising to see that by interchanging the 
architectures of the two levels, a significant change can be 
observed in performance. It can be seen that SMCCA varies 
linearly with p. It has a different slope tha~ the SMCA" 
For some co•binations of p and q, the FMCCA is higher ~Han 
that of other combinations of p and q. This fact can be 
used in the actual design of a MCCA machine to fine tune its 
performance. 

!•!• Analysis .2f l!!..! ~ 

The final architecture that will be analyzed is the 
MMCA <Mesh-Mesh-Connected Architecture). A schematic 
diagram of this architecture is shown in Figure 1Cf). The 
SMMCA can be shown to be: 

The variation of log 10 sMMCA and FMMCA with p can be 
seen in Figure 7. It can be seen that the speed up is 
relatively constant. This can be attributed to the fact 
that at the second level, a lot of concurrency is already 
made use of. Jn order to maximize S at the second level, 
each PE at the second level has only one pixel to perform 
the scene matching algorithm. The peak of F can be used to 
fine tune the system for maximum utilization. It can be 

seen from the figure that the peak occurs when p=7. In 
other words, q has to be equal to 3. This result has an 
interesting implication and application which will be 
discussed in the following. 

1• Discussion 

It is known that with current VLSI technology one of 
the major problems is the packaging problem. The pin-out
number problem restricts the designer to limit the amount of 
input information to a chip at any specific time. 
Therefore, one of the solutions is to partition a design 
such that a maximum amount of functionality can be 
imp{emented on the chip without increasing inter-chip 
communication. Suppose an MCA machine is to be built; it is 
obvious that one cannot put 1024x1024 PEs onto a single 
chip. Even if IC technology permits it, the packaging 
technology will impose severe limitations on the way 
communications are to be made with the outside world. 
However, by breaking a MCA machine into two levels, either a 
MCCA or a MMCA topology, the implementation problem will 
then be •ore feasible. For instance, using the MMCA, with 
q•3, i.e. by putting 8x8 PEs on one chip and by 
interconnecting 128x128 such chips to form a MMCA machine, 
the overall performance is comparable with a strict MCA 
•achine. 

From the above analysis, We can conclude that the MCA 
is the best candidate for implementing scene matching. The 
second choice will then be either a MMCA or a MCCA topology. 

260 

6.0 

5.0 

~ 
~ . 
~ 4.0 
~ 

c 

0 

3.0 

\ / 
,\ 

I I 

log 10 (Speed Up) 

Speed Up Per PE 

l.O 

. 
~ 

c 

2.0 \ / 
I I 

\ I /\ /'\ 
0.5 ~ 

. . 
~ 

c 

0 

\' 

l.O 

' I I 

' ' I I 

~ ,,' 
1.-' 

I / I 
I I I 

\ ' ' \I \ ' " \~/ 

o. o +----,,,-----,..,,..---.,,---,..-..,,----r.o o. o 

5.0 

4.0 

J,O 

Figure 6 Performance analysis of the Mesh-Cluster
Connected Arch1 tecture. 

- loglO(Speed Up) 

~--Speed Up Per PE 

p 

1.0 

. , 
2.0 .5 ~ 

1.0 

o.o -1----.----~---...----.-----+o. o 
0 10 

Figure 7 Performance 1nalys1s of the Mesh·Mesh- P 
Connected A.rch1tecture. 

ACKNOWLEDGEMENT 

The authors would like to thank Dr. Ronald L. Krutz and 
Mrs. Lorna Cheng of the Computer Engineering Center, and Mr. 
John Lawler of the Naval Air Development Center for their 
support ~nd encouragement throughout the project. 

BIBLIOGRAPHY 

Barnes, G.H. et al., "The ILLIAC IV Computer," .!!!.! l!:..!!!.!• 
c-11, 1968, pp. 746-757. 

Batcher, K.E., "Design of a Massively Parallel Processor," 
IEEE Trans. C-29, 1980, pp. 836-840. 

Berry;-J:"E:;-"ii'fhree-Dimensional Autonomous Scene Matching," 
in Proc. SPIE, Vol. 238, 1980, pp.138-145. 

Feather,--r:e.;-l.J. Siegel and H.J. Siegel, "Image 
Correlation Using Parallel Processing," !!.!:!.. !!!.!.!.!.· 
Conf. on Pattern Recognition, 1980, pp. 503-509. 

Hall,-r.L.;- COiiiji'irtOr ~ Recognition and ~ 
Processing, Academic Press, 1979. 

Hunt, D.J., 11 Application Techniques for Parallel Hardware, 11 

Infotech State of the Art Report on Supercomputer, Vol. 
2 1979. ----- -

Preston, K., et al., "Basics of Cellular Logic with Some 
Application in Medical Image Processing," f..!:.2£.• .!!!.!, 
Vol. 67, 1979, pp. 826-856. 

Swan, R.J., S.H. Fuller and D. Siewio~ek, ''Cm* - A Modular 
Multimicroprocessor, 11 llif.! Conf. f..!:.2£.., Vol. 46, 1977, 
NCC, pp. 637-644. 

Unger, S.H., "A Computer Oriented Toward Spatial Problems, 11 

~· .2f l!!..! ,!!!, October 1958, pp. 1744-1750. 



AN ARCHITECTURE FOR 
EFFICIENT GENERATION OF FRACTAL SURFACES 

Stephen L. Stepoway 
David L. Wells 
Gerald R. Kane 

Department of Computer Science and Engineering 
Southern Methodist University 

Dallas, TEXAS 75275 

Abstract -- Fractal surfaces have been shown to be 
a useful model for generating images of terrain in 
computer graphics. Unfortunately, the generation 
of fractal images is very costly in CPU time. A 
multi-processor architecture is described which 
takes advantage of the parallelism inherant in 
fractals to speed the generation of images. The 
performance of the processing array is analyzed 
along with the suitability of implementation in 
VLSI. 

Introduction 

Modeling Objects in Computer Graphics 

One challenging problem in computer graphics is 
the generation of images which closely resemble 
objects in the real world. Images are acceptable 
if they are readily recognizable and are not 
obviously synthesized, that is if they might be 
objects in the real world. Many approaches, 
ranging from describing objects by a collection of 
planar .. polygons to descr:j.bing them by Bezier 
LBezi74] or B-spline [Gord74] surface patches, have 
been used •. Although these techniques have proved 
adequate for modeling artificial objects, most 
natural objects (such as clouds, terrain, 
mountains, and the like) have few regular features 
and no simple detail. The results of using these 
techniques are usually "obviously synthetic," and 
are not sufficiently realistic to be 
indistinguishable from a scene in nature. 

Other techniques have been proposed for 
modeling natural objects which partially avoid this 
problem. Objects are sometimes modeled by a 
collection of polygons with some texture mapped 
upon them. This technique suffers from the fact 
that the texture on the polygons tends to have a 
great deal of regularity, and thus objects appear 
artificial. 

Another approach is to use sufficient detail in 
the model to make the scene appear realistic with 
no added texture needed. Although this will result 
in realistic scenes, it requires very large 
databases containing sufficient data to display a 
realistic scene from any viewpoint at the maximum 
desired level of resolution. 

0190-3918/83/0000/0261$01.00 © 1983 IEEE 261 

All of these techniques for modeling natural 
objects have a similar drawback: they define an 
object at a single, pre-determined level of detail. 
Little computational advantage is gained from 
displaying the scene as seen from afar, as the 
detail needed to display a close-in view must be 
stored regardless of the detail desired in the 
displayed view. In addition, these techniques do 
not allow going arbitrarily close to an object, 
since views which require more detail than the 
model contains will present the same problems as 
with the previous techniques in which the model had 
little detail. 

A common feature of most computer models of 
objects, and one of the significant drawbacks of 
the techniques previously described, is that the 
models are defined in terms of deterministic 
functions. There have been a few exceptions, 
however. Mezei et al. [Meze74] generated textures 
~nd sha~es by using random techniques, and Blinn 
LBlin77J has improved shading methods by using a 
model based upon probabilistic assumptions. 

Stochastic Models 

A more general technique for the definition of 
natural objects is to use a random, or stochastic, 
process to generate detail on surfaces [Four80, 
Four82]. This idea is inherent_ in the concept of a 
fractal surface [Mand77, Mand82]. The concept of a 
fractal surface has been shown to be an ~ccurate 
model for many processes in nature LFour80, 
Four82]. In particular, terrain and weather 
phenomena may be represented by a stochastic, 
fractal process. Images synthesized using these 
techniques are impressive for their resemblance to 
the real world they purport to represent. 

In this method of modeling surfaces, a basic 
model is constructed using traditional techniques, 
such as defining a surface in terms of polygons. 
The stochastic modeling method adds detail to this 
basic surface definition by recursively breaking 
the polygons into smaller, but slightly 
non-coplanar, polygons. This method of modeling 



surfaces has several advantages over traditional 
techniques. 

First, the definition of an object is simple. 
Complex terrain may often be modeled by only a few 
dozen polygons. The realism is added to this 
definition by the sto~hastic process. 

Second, the object is not defined at a 
pre-determined level of resolution. If additional 
resolution is needed for a particular scene, it may 
easily be generated by continuing the recursive 
texture generation algorithm to a greater depth. 
Thus, moving the viewpoint closer to an object or 
further away from it is easily handled. Because of 
this ability to generate texture to whatever level 
of resolution desired, this technique has the 
significant advantage of requiring computational 
effort proportional to the complexity of the image 
on the screen. It is not necessary to compute or 
store texture which is not needed for the 
resolution desired. 

Unfortunately, even though the effort required 
is proportional to the on-screen image complexity, 
the generation of a fractal surface is still very 
expensive, with scenes of moderate complexity 
requiring between 30 minutes and several hours of 
CPU time for a single frame. 

Because of the complexity of generating images, 
fractal surfaces cannot now be used in applications 
which require real-time generation of images. 
Although their use in simulators would make the 
trainee's view of his "world" more realistic, the 
computational effort required would be prohibitive. 

Even in non-real-time applications, such as the 
generation of motion pictures, the use of fractal 
surfaces is limited. To generate motion pictures 
using these techniques is, for the most part, 
infeasible, due to the cost of generating thousands 
of such frames. A few organizations do have the 
necessary computational power to generate movies 
using these techniques, and the results have been 
impressive, for example the movie "Star Trek II", 
but the use of these techniques remains severely 
limited. 

Architectures for Graphics Computation 

To make possible the real-time use of fractal 
surfaces, or the large scale generation of motion 
pictures using fractal generated terrain, it 
clearly is necessary to find a method of generating 
fractal surfaces m.ore quickly than is now possible. 
One possible approach to this problem is to find 
multi-processor architectures which are suited to 
the efficient generation of fractal surfaces. 

We describe a new multi-processor architecture, 
suitable for implementation in VLSI, which is 
capable of generating fractal surfaces much more 
rapidly than existing software fractal systems. 
Preliminary estimates indicate a reduction in the 
time required to generate a frame by at least two 
orders of magnitude, and perhaps a sufficient 
reduction to allow the generation of fractal images 
in real-time. 

Although a number of experiments with 
multi-processor based systems for computer graphics 
have been conducted, none have investigated their 
use in generating fractal textures for surfaces. 
Moreover, the architectures which have been 

262 

proposed have been based upon rectangular grids. 
This is reasonable for most applications in 
graphics, since objects tend to be defined in 
rectangular coordinate systems, and since the 
eventual display is, in almost all cases, a 
rectangular screen. 

The generation of fractal surfaces is most 
suited, however, not to rectangular grids, but to 
~exago~al ones. This.is ~rimarily due to the way 
in which a fractalization algorithm decomposes a 
surface (which we will define in terms of 
triangles) to generate the fractal surface. The 
proposed architecture arranges processing elements 
on a hexagonal array, with interprocess 
communication between adjacent processors and 
across certain diagonals. The interconnection 
network, although complex, does describe a planar 
graph. Thus the architecture may be implemented 
easily in VLSI. 

The regularity of the processor connections 
also gives the advantage of easy expandability. A 
fractal processor may be increased in power and 
speed by interconnecting several processing units 
in the appropriate manner. Thus the computational 
power of a fractal processor may easily be tailored 
to the application. 

In the next section, we will describe fractal 
surfaces and the techniques used for generating 
them. We then will show how a multi-processor 
architecture can be developed which takes advantage 
of the regularity of fractal surfaces to generate 
fractal surfaces efficiently. Finally, we will 
examine some of the performance issues associated 
with this multi-processor architecture, and discuss 
some of the preliminary results of our performance 
studies. 

Fractal Surfaces 

Generation of Fractal Surfaces 

The generation of a fractal surface usually 
starts with a coarse description of the object in 
terms of triangular polygons*. Only the general 
shape of an object usually needs to be specified, 
since all detail is added by the texturing 
algorithm. 

The triangular definition of the object is 
broken into smF~.er triangles which are slightly 
non-co-planar. 'i.1ese smaller triangles are then 
broken into even smaller triangles, with the 
subdivision process continuing until the t~iangles 
generated are no larger than a pixel in size. At 
that point, the pixel-size triangles may be painted 
onto the screen. The color selection for each 
pixel is based upon the color of the original 
triangle and its orientation using conventional 
techniques. 

The processing of an object definition is most 
easily described in terms of a recursive procedure: 

* Although surfaces intended for fractalization may 
be described by quadrilaterals as well, we will 
restrict our inquiry to triangular definitions. 



procedure fractalize( triangle ); 
begin 

if the triangle is less than a pixel in size 
then paint the triangle onto the screen 
else 

begin 
for each edge of the triangle do 

begin 
find the mid-point of the edge 
pick a point a random distance from the 

edge midpoint in the direction of 
the normal of the triangle* 

end 
connect the three displaced midpoints 
connect each displaced midpoint with the 

vertices of the original triangle 
adjacent to it 

fractalize each of the resulting triangles 
end 

end 
begin 

for every triangle t in the object definition do 
fractalize( t ) 

end 

This procedure recursively subdivides each 
triangle in the object definition into smaller 
triangles, all approximately similar, but slightly 
non-coplanar. Thus the procedure is replacing the 
object definition with one which is progressively 
more textured. 

Figure 
Subdivision of a triangle 

Anomalies in Fractal Surfaces 

This algorithm, although simple, has an 
unfortunate property: it generates fractal 
surfaces with anomalies. If the fractalization 
process is carried out on two adjacent triangles 
independently, there is no guarantee that the 
fractal surfaces will meet along the common edge 
that the triangles share. In fact, using this 
technique, it is guaranteed that the surfaces will 
not meet, since the displacements for each have 
been made parallel to their respective normals. 
This kind of anomaly may be seen in Figure 2. 

* Or in a direction related to the normal 
below. 

see 

263 

Figure 2 
Anomalies in triangular fractals 

A solution to this problem is to require that 
the displacements for the new mid-point of each 
edge be in the direction of the average of the 
normals of the two triangles which share that edge. 
If, in addition, it can be guaranteed that the 
distance of the displacement will be the same for 
each of the two triangles, the fractal surfaces 
resulting from the two triangles will match, and no 
gaps or other anomalies will result. For an 
example of how this technique works, see Figure 3. 
The vector indicated from the midpoint of the 
common edge is in the direction of the average of 
the surface normals of the two triangles. 

These requirements, although sufficient to 
guarantee that fractal surfaces are free from 
anomalies, do pose difficult problems for the 
implementation of a software fractal system. These 
conditions must be made to hold without imposing 
prohibitive memory or computational requirements. 
These difficulties are avoided in our fractal 
architecture by allowing the processors to 
communicate and to come to a mutual agreement 
concerning the size and direction of the 
displacements. 

Using the techniques described here, fractal 
surfaces may be generated for arbitrary surfaces 
defined using triangles. The surfaces are 
guaranteed to have no gaps or other anomalies. 

Figure 3 
Subdivision of two triangles 



An Architecture for Generating Fractal Surfaces 

Introduction 

A study of the generation of fractal surfaces 
will reveal that a great deal of the work may be 
done in parallel if an appropriate multi-processor 
architecture is used. The multi-processor 
architecture we propose will gain its speed from 
assigning one processor to each triangle to be 
subdivided. Once a triangle has been split, the 
processor responsible for that triangle activates 
three new processors, assigns one of the generated 
triangles to each of them, and processes the 
remaining triangle itself. Each of the four 
processors then subdivides its triangle in the same 
manner used by the initial processor to subdivide 
the first triangle. Thus the number of processors 
active is equal to the number of triangles created 
by the division process, and the number of 
processors required to completely fractalize one 
triangle in an object definition is equal to the 
number of pixels that triangle will cover on the 
screen. 

Although the number of processors required is 
large, the i~dividu~l processors are very simple. 
Using the increasing densities of VLSI 
technologies, it may be possible to place several 
hundred processors on a single custom chip. Thus a 
fractal generator of several thousand processors 
may be constructed using a small number of chips. 

Geometry of a Fractal Processor 

Triangles to be processes come in many shapes, 
but for the purpose of subdividing them into 
smaller triangles their shape is immaterial. Since 
the fractalization process automatically stops 
subdivision when pixel-sized triangles are 
generated, the fact that a triangle is not 
equilateral will not be of concern. Only the 
topology of the triangles matters, and that is 
regular. Thus the geometry of a multi-processor 
fractal generator is regular. All processors 
reside at the intersections of a regular hexagonal 
grid, with communication paths along the grid and 
across certain diagonals of the grid. 

Figure 4 
Processor arrangement 

The arrangement of processors for the first 
three levels of the fractalization process is shown 
in Figure 4. The central processor, numbered 1, 
initiates the processing of the triangle. It 
subdivides the triangle, and spawns the three 
processors numbered 2. These processors and the 

original processor in turn subdivide their 
triangles and spawn the processors numbered 3. 

In addition to the parent-child communication 
paths shown by solid arcs, it is necessary for 
certain "cousins" to communicate to ensure that the 
triangles they generate will meet along their 
common edge. Thus, in addition, there must be the 
communication paths shown by dashed arc~. Although 
communication paths may form the diagonals of 
hexagons, it is never necessary for them to oross; 
the graph described by the processor 
interconnections is planar. 

If we examine the pattern of processors to a 
greater depth, we see a potential pro~lem. For 
example consider the pattern of the children of 
process~r 1 to a depth of 4, as shown in Fi~ure.5. 
Some processors at level 4 lie on.the communi~ation 
path from 1 to its level 2 children. If it was 
necessary for 1 to communicate with both a !eve~ 2 
child and a level 4 child at the same time, 
communication could become a serious problem, since 
these communication paths run in the same 
directions. 

2 

3 4 3 
"-..1/ 

4 .... l '4 

2/ I ~2 
3 

Figure 5 
Children of processor 

If the inter-processor communication needs at 
the various levels are examined, is seen that this 
case does not arise. If multiple communications 
are required along a single ray, the paths are 
completely disjoint. We will r~quire that the 
communication paths be between adJacent processors 
only, and that messages which must travel a greater 
distance, such as 1 to 2, be relayed by each 
processor along the path. 

Processor Operation 

264 

Since the operations performed by all 
processors are the same at any point in time, the 
processor array within a single chip may be run 
synchronously, with all processors running .in 
lock-step. If an application requires a processing 
array of more than one ch~p, the spe~d of the 
communication lines between chips may require that 
the different chips run asynchronously. 

We will consider the processors to be in either 
of two phases of computation*: subdivision and 
broadcast. During the subdivision phase, each 

* Three phases, if we include reading out the final 
data; see below. 



processor subdivides the triangle it is currently 
working on. There is some interprocessor 
communication involv.ed since processors sharing an 
edge must ensure that they pick the same point as 
the new mid-point. This communication is only 
between processors which have no active processors 
between them. 

To ensure that no anomalies are generated, it 
must be possible to guarantee that the two 
processors subdividing adjacent triangles will 
choose a displacement in the direction of the 
average of the two normals. This may be 
accomplished by having each compute the normal to 
its triangle and send its computations to its 
neighbor, and then having both processors average 
the results of its computations and its neighbor's. 
At the end of this sequence, both processors have 
computed the average of the normals. 

If only single frames are to be generated, this 
exchange of normals is sufficient to remove all 
anomalies. If motion pictures are to be generated, 
however, it must be possible to guarantee that, in 
successive frames of the film, the direction and 
distance of the displacements will be the same. If 
not, the features introduced by the fractal process 
will change from frame to frame, and the surface 
will move as a result. This problem may be removed 
by having the seed of the random number generator 
be the coordinates in object space of the midpoint 
of the line to be divided. Thus the random numbers 
are independent of eye position. It can in this 
way be guaranteed that the same surface will result 
every time the object is processed. 

The second phase of computation is the 
broadcast phase, when newly created triangles are 
sent to the processors which will subdivide them. 
This communication may be done by observing that 
the distance that a triangle definition must be 
sent to reach the processor which will be 
resposible for it is uniform at a given level. We 
may then use a broadcast phase which consists of 
the appropriate number of "relay-triangle" pulses 
to all processors. If each processor relays the 
messages in the appropriate direction, the triangle 
definition will reach the correct processor when 
the last "relay" pulse arrives. The array then 
returns to the subdivision phase, during which the 
new allocation of triangles is broken up. 

This sequence of subdivision followed by 
reassignment continues until all of the created 
triangles are less than a pixel in size. This may 
be detected by having each processing element send 
to its parent a message when it finds that the 
triangle it is to subdivide is pixel-sized. Once 
the parent has received such a message from each of 
its children, and its own triangle is pixel sized, 
it sends a similar message to its parent. Thus the 
central processor (level 1 processor) can be 
notified that no more subdivision is required, and 
that the data is ready to be extracted. At this 
point, the data describing the fractal triangles 
may be used to determine shading for the 
corresponding point on the screen. To accomplish 
this, some method must be available to extract the 
data describing the position and orientation of the 
fractal triangles from the processors of the 
fractal processor. 

A solution to the problem of extracting data 
from the array is to notice that communication 
paths already exist between the processing 

265 

elements. If the existing paths can be used, the 
complexity of the processor can be substantially 
reduced. 

We will therefore add a data extraction phase 
to the processing. All data computed can be 
extracted by simply reversing the direction of flow 
of the existing data paths. Details of this 
technique will be described later. 

In use, the host will load a single triangle 
definition into the central element (level 1) of 
the fractal processor. The host then issues a 
command to the array that processing should 
commence. The fractal processor then runs 
independently of the host until processing of that 
triangle is complete. The fractal processor then 
issues a signal to the host indicating that, and 
the data extraction commences. 

Performance 

Restrictions and Assumptions 

Since the goal of this work is to develop a 
processor architecture capable of generating 
fractal surfaces at high speed, we must pay 
considerable attention to the question of how fast 
this proposed architecture actually can run. 
Although exact numbers cannot be predicted without 
a great deal of experimentation, some estimates of 
performance can be made. 

Before making these estimates, we must first 
make some assumptions which will simplify the task 
of estimation. These concern whether the fractal 
processor must be capable of performing floating 
point arithmetic or only integer, and the number of 
processing elements in the array and its 
relationship to the size of triangles to be 
processed. 

The goals of the arithmetic system used are 
two-fold, and somewhat contradictory: speed and 
accuracy of computation. That speed is required is 
obvious if pictures are to be generated quickly. 
Accuracy is also required if errors induced by the 
number system are not to appear in the final 
pictures. 

Although floating point numbers have good 
accuracy and can represent a wide range of numbers 
simultaneously, they suffer from severe performance 
problems. Because of this, floating point numbers 
are not appropriate for this system. 

Integer number systems and arithmetic units, on 
the other hand, are much faster and simpler than 
floating point units, and are thus much more suited 
to use in this system. An integer number system of 
24 to 32 bit numbers can handle the computations 
required. 

If the triangles to be processed are too large, 
the fractal processor will be unable to completely 
decompose them before running out of processors. 
If this occurs, the fractal processor must stop the 
subdivision, unload all triangle definitions from 
all processing elements, and restart the array on 
those triangles, one-by-one. Not only does this 
eliminate the parallelism of processing triangles 
simultaneously, it also imposes the considerable 
overhead of unloading the processor. If the 
requirements for processors are examined, we find 
that this can be guaranteed not to arise if the 



triangles sent to 
requirement that: 

the processor 

log(longest side of the triangle) 
<= depth of the processor array 

meet the 

where the size of the triangle is measured in 
pixels, and the log is taken base 2. 

Prior to sending any triangle to the processing 
array, the host machine may apply this test and 
subdivide the original triangle into several 
smaller ones which meet this requirement. Since 
this is being done in the host, it may be done in 
parallel with the decomposition of other triangles 
by the fractal processor. Thus this requirement 
will not impose a serious burden upon the system. 

Given this restriction that guarantees that the 
fractal processor will be capable of subdividing a 
triangle into pixel-sized triangles without 
interruption, the time required to completely 
subdivide one triangle from the object definition 
is bounded by 

depth * ( subdivision + broadcast ) + readout 

where depth is the depth of the processor array, 
subdivide is the time required for one triangle 
subdivision, broadcast is the time for one triangle 
relay, and readout is the time to extract the final 
information from the processor. We now must 
examine each of these time requirements in detail. 

Subdivision Phase 

The subdivision of a triangle requires that 
each processing element compute the normal to its 
triangle, the average of the normal of its triangle 
with the normal of adjacent triangles, the 
midpoints of each edge, and three random numbers. 

The cost of the random numbers we will ignore, 
but should not be significant compared to the other 
costs of subdividing the triangle. Since the 
random numbers must be a function of the position 
of the midpoint (to ensure repeatability, as 
mentioned earlier), they may be computed by a 
combinatorial circuit using the <x, y, z> object 
space coordinates of the midpoint as inputs. 
Although such numbers may not meet strict 
mathematical tests for randomness, they are 
sufficient for our purposes. 

The processor then exchanges the normal and 
random number information with each of its three 
neighbors. The processor averages its normal with 
the normals received from each of its neighbors, 
and averages the random numbers to determine the 
distance of displacement for each of the new 
midpoints. The new midpoints then are computed. 
Once this is accomplished, the processor only needs 
to send the computed information to the appropriate 
processors for further subdivision. 

Many of the operations required to subdivide a 
triangle may be performed in parallel. If this is 
done, and the hardware has the needed parallelism 
to perform computations on edges simultaneously, 
the number of serial operations required to 
subdivide a triangle is 6 multiplications, 22 
additions and subtractions, and 10 shifts. The 
time required to perform these operations depends 
heavily upon the technology used to implement them, 
but reasonable estimates can be made based upon 

266 

commercially available micro-processors and other 
devices, and are shown in 'l'able 1. 

MOS Bipolar EGL 

Add 1 micro-sec. 0.3 micro-sec. 0.1 micro-sec. 
Shift 1 micro-sec. 0.3 micro-sec. 0.1 micro-sec. 
Mul t. 9 micro-sec. 3.5 micro-sec. 1. 0 micro-sec. 

Table 1 
Performance of Integrated Circuits 

Using these estimates, it can be seen that the 
task of subdividing a triangle can be performed in 
less than 86 micro-seconds. To be pessimistic in 
the computation of an order-of-magnitude figure we 
will assume this step requires 100 micro-sec;nds 
using MOS technology (35 micro-seconds using 
Bipolar, or 10 micro-seconds using EGL). 

Broadcast Phase 

The time required to broadcast the triangle 
definitions to the processors which are to 
subdivide them is not easily computed. The primary 
difficulty is that the time required depends upon 
the inter-node communication technique. If 
processing nodes must communicate via a serial data 
path, the time requirements will be substantial· 
if the communication is via a parallel, or even vi~ 
mixed serial-parallel, the overhead of broadcast 
may be greatly reduced. To get estimates of this 
requirement, we will examine several possible 
communication techniques. Only after we have some 
estimates of the node-to-node commmunication times 
can we examine the total time required to send 
triangle definitions to their destinations, which 
in general will not be the adjacent processing 
element. 

Serial Links. If serial links are used, all 
data defining the triangle to be subdivided must be 
sent in serial fashion over a single line between 
processing elements. Each triangle to be sent 
requires the sending of three points, each of which 
consists of three values. If the values are 
defined by 32 bit integers, the transmission of a 
single triangle will require 288 bits transmitted. 
Altho~g~ each processing element must send triangle 
definitions to three children, this can be done in 
parallel, if maximum hardware parallelism is used. 
I~ we assume that on-chip serial communication 
links can transmit information at a rate of 10M 
baud, the transmission of a triangle definition 
from one processor to the adjacent one will take 
28.8 micro-seconds. 

Mixed Serial-Parallel Links. Using this 
technique, several lines run in parallel between 
adjacent processing elements. The data to be 
transmitted is sent in several stages, with pieces, 
for example 8 bit wide sections, sent in parallel. 
Although the same number of bits must be 
transmitted, this technique will reduce the number 
of transfer cycles from.288, with pure serial, to 
36. Thus this method will reduce the node-to-node 
transfer time by a factor of 8 to 3.6 
micro-seconds. Since speed is critical, this may 
be worth the extra communication lines involved. 

Parallel Links. Due to the number of bits to 
be transmitted a pure parallel tran~mission system 
is impractical. This would require 288 lines 
between each pair of adjacent processing elements. 
It may be possible, however, to have integer-wide 



communication paths, capable of transfering 32 bits 
in a single transfer cycle. This technique would 
require only 9 cycles to transfer one triangle 
definition, and thus would take only 0.9 
micro-seconds, but would be extremely expensive in 
terms of communication lines (and thus in chip 
area). 

Multi-Chip Implementations. Although the mixed 
serial-parallel scheme may be possible for 
communication between processing elements on a 
single chip, attempting to transfer data between 
elements on separate chips using it would be 
impossible. Such chip-to-chip transfers require 
the transmission of data between many pairs of 
processing elements (see Figure 6); the pin-outs 
required would be tremendous. For that matter, the 
mixed serial-parallel technique requires too many 
lines for transmitting data between chips. Thus 
the pure serial technique is probably the only one 
feasibible, and that at a substantially reduced 
bandwidth. 

Figure 6 
Chip-to-chip Communication 

Distance of Transmission 

The appropriate processor to subdivide a 
triangle may be several nodes away along the 
communication path. It is necessary for triangle 
definitions to be relayed by elements along the 
path from the generator of a triangle to the 
processor which is to subdivide it. The time 
required to broadcast triangle definitions to the 
appropriate elements is the product: 

number of relays * time per relay. 

The number of relays required decreases as a 
processing proceeds since the processor which 
should subdivide a triangle is closer to the 
processor which generated it. For the purposes of 
a coarse estimate, however., the depth of the 
processing array is a bound for the number of 
relays. 

Extraction Phase 

The final crucial stage in generating a fractal 
surface is to extract the computed data from the 
fractal processor array. This may be accomplished 
by reversing the direction of data flow from that 
used during the computation stage of processing. 

Instead of triangle definition information 
being sent from a level i processor to a level i+1 
processor, the computed data is sent from level i+1 
elements to level i processors. The level i node 
then sends the data on to its parent, until the 
triangle definition reaches the level 1 element, 
which sends the data on to the host cpu for 

267 

display. The time required for the readout phase 
is bounded by: 

#elements in the array * time for one transfer. 

As an estimate, we may assume that the time 
required for one transfer is the same as that 
required for a relay of a triangle definition. 
Although this technique is slow, it has the virtue 
of simplicity. All the needed communication paths 
exist, and the added complexity to each processor 
is slight. 

Overall Performance 

Using the estimates developed in the previous 
several sections, and noting that the number of 
elements in an array is 4**(depth - 1), the time 
required to generate and extract data for a single 
triangle from the definition is: 

depth * (subdivision + depth * relay) + 
4**(depth - 1) *relay. 

Using our estimate of the time to relay a 
triangle definition using the mixed serial-parallel 
interface, the total time required to process one 
triangle from the object definition to pixel sized 
triangles may be computed. Some of these times are 
summarized in Table 2 for processing arrays of 
various sizes and for various implementation 
technologies. It should be noted that a speed-up 
by a factor of three has been assumed for relay 
times for Bipolar, and a factor of three speed-up 
over that for ECL. 

Depth = 4 6 8 
Pixels Covered = 64 1024 16,384 

MOS 0.688 msec. 4.416 msec. 60.012 msec. 
Bipolar 0.236 msec. 1.482 msec. 20.017 msec. 
ECL 0.072 msec. 0.484 msec. 6.659 msec. 

Table 2 
Object Triangle Fractalization Times 

It may be noted that, for increased depths, the 
time required for transfer of data out of the array 
becomes the primary delay. Although this may be 
reduced by using a more complex data extraction 
technique, the limiting factor for the speed at 
which the data may be extracted is the speed of the 
host, not of the fractal processor. The fractal 
processor is capable of supplying data at rates 
exceeding that at which the host can compute 
shading and place the data into the frame-buffer. 

Conclusions 

Great interest is ?eing shown in generating 
~mages of terrain using fractal surfaces. Such 
images are often indistinguishable from natural 
terrain, if seen at comparable resolution. This 
technique shows great promise for the generation of 
realistic scenes of great complexity. 

Fractal surfaces have several advantages over 
other techniques for modeling in computer graphics. 
Object definitions may be very simple and contain 
little detail; all detail in the final image is 
generated by the fractal process. In addition, 
images may be generated to any level of.resolution 
desired; no limit is imposed by the object 
definition. 



Unfortunately, fractal algorithms suffer from 
the m~jor drawback of being computationally very 
expensive. Until this barrier is overcome the use 
of fractal images will be limited to stili images 
or to motion pictures generated only by those with 
the large computing resources needed. Their use in 
real-time applications, such as simulators, will be 
impossible. 

Much of this problem with fractal surfaces 
stems.from ~he fac~ that the computer must generate 
t~e pixel-sized triangles of the image one at a 
time. If the technique of generating them is 
examined, however, it may be seen that much of the 
work may be done in parallel, if the appropriate 
multi-processor architecture is used. 

This paper proposes an architecture designed 
for the generation of fractal surfaces. The 
processor array consists of a large number, perhaps 
several thousand, processing elements, each of 
which is designed to subdivide one triangle. These 
processing elements are connected via a hexagonal 
grid, with communication lines along the lines of 
the grid and across certain diagonals. 

This grid architecture forms a planar graph, so 
its implementation in VLSI is easy. With such an 
implementation, several hundred, perhaps a 
thousand, elements could be placed on one chip. 
Thus a complete fractal processor· could be 
implemented in a handful of chips. 

The advantages of this arrangement are many. 
This architecture would make possible the 
generation of fractal images of moderate complexity 
in a few seconds. This is at least 2 orders of 
magnitude faster than current software-based 
systems. 

This architecture is simple. Each node in the 
processing array is functionally identical to every 
other node. The only differences lie in their 
communication links to other nodes. Moreover, the 
nodes only need to be able to perform a simple 
function - the subdivision of a single triangle. 

The architecture is easily expandable. The 
fractal processor may be increased in power and 
performance by replicating the basic unit four 
times, and placing appropriate communication links 
between the edges of the units. The fractal 
processor so obtained appears to the host computer 
to be identical to the original, smaller unit, 
except that it can proces larger triangles. 

The architecture described here makes possible 
the generation of fractal surfaces with reduced 
computational expense, and will thus make fractals 
much more useful in a range of application from 
motion pictures to high-performance aircraft 
training simulators. 

References 

Bezi74 Bezier, P., "Mathematical and practical 
possibilities of UNISURF," Computer Aided 
Geometric Design, Barnhill, R. E. -arur 
Riesenfeld, R. F. (eds.), Academic Press 
(1974). 

Blin77 Blinn, J. F., "Models of light reflection 
for computer synthesized pictures," 
Proceedings of SIGGRAPH '77, also published 
as Computer Graphics, vol. 11, no. 2 
(Aug. 1977), pp.192-198. 

268 

Four80 

Four82 

Gord74 

Mand77 

Mand82 

Meze74 

Fournier, A., "Stochastic modeling in 
computer graphics," Ph.D. Dissertation, 
University of Texas at Dallas (1980). 

Fournier, A., Fussell, D., 
L. , "Computer rendering 
models," CACM, vol. 25, no. 
PP• 371-~ 

and Carpenter, 
of stochastic 

6 (June 1982), 

Gordon, W. J. and Riesenfeld, R. F., 
"B-spline curves and surfaces," Computer 
Aided Geometric DeFig(, Barnhill, R. E: and 
Riesenfeld, R. . eds.), Academic Press 
(1974). 

Mandelbrot, B., Fractals: Form{ Chance, and 
Dimension, W. H. Freeman (f9'Ft; .--- --

Manbelbrot, B., The Fractal Geometry of 
Nature, w. H. Freeman (1982). 

Mezei, L., Puzin, M., and Conroy, P., 
"Simulation of patterns of nature by 
computer graphics," Information Processing 
74, PP· 52-56. 



AN ARCHITECTURE FOR THE REAL-TIME DISPLAY AND MANIPULATION OF THREE-DIMENSIONAL OBJECTS 

S.M. Goldwasser 

Department of Computer and Information Science 
The Moore School of Electrical Engineering 

R.A. Reynolds 

Medical Image Processing Group 
Department of Radiology 

University of Pennsylvania, Philadelphia, PA 19104 

Abstract 

A special purpose multiprocessor architecture 
has been developed which facilitates the high 
speed display and manipulation of shaded three 
dimensional objects or object surfaces on a 
conventional raster scan CRT. The reconstruction 
algorithms exploit the capability to divide object 
space into totally disjoint cubical regions 
permitting multiple display processors to access 
independent memory banks concurrently without 
conflict. All of the geometric parameters 
describing rotation, translation, and scaling are 
incorporated into one short table facilitating 
very rapid manipulation of the image display 
presentation. 

Introduction 

The desire to generate realistic 
presentations of three dimensional objects has 
stimulated a great deal of interest in special 
purpose hardware and software systems. 
Applications for such technology include 
industrial simulation, three dimensional 
modelling, and medical imaging for clinical 
diagnosis. Currently, systems that operate in 
real time (i.e., 15-30 frames/second or more) fall 
primarily into two classes: The first are based 
on random scan display generation and thus provide 
only wireframe images with little realism. Other 
techniques based on polygons or other geometric 
primitives are being developed for use in such 
systems as high performance aircraft simulators. 
Systems of this type are not entirely suitable for 
images derived from experimental data but are 
be·ing increasingly utilized for synthesized 
computer graphics. 

Software based systems which generate 
realistic images of natural structures are 
extremely slow. These include the DISPLAY 
software package developed by Herman et al [l]-[4] 
for medical applications; other systems have been 
proposed independently [5]-[7]. The Lexidata 
SOLIDVIEW system [8] is a commercial product which 
combines hardware and firmware to offload hidden 
surface removal and shading algorithms from user 
software. Even with such hardware assist, a 
single view may take several minutes to be 
generated. 

One important application of such a system is 

0190-3918/83/0000/0269$01.00 © 1983 IEEE 269 

in the area of medical image processing using CAT, 
PET, or NMR scanning and reconstruction 
techniques. A system permitting a physician to 
visualize and interact with a shaded 3-D 
representation of an organ would greatly 
facilitate the examination of anatomical 
structures in conjunction with medical research, 
clinical diagnosis, and the planning of surgical 
procedures. 

In this paper we present one possible 
architecture which will permit the high speed 
display and manipulation of solid objects 
represented as a voxel (volume element) database 
with grayscale. Our objective is to provide 
certain capabilities at or near video rates 
facilitating extensive real-time interaction. The 
architecture is highly modular permitting a cost 
tradeoff to be made to achieve a given level of 
performance. It also includes a great deal of 
regularity in its structure making it directly 
suitable for VLSI implementation. A key feature 
is that no computational operations more complex 
than addB; shifts, and comparisons are required in 
real time. 

The DISPLAY Algorithm 

The overall display processor architecture is 
based on the DISPLAY software package described in 
[l] and utilizes modified versions of those 
algorithms. The modified software generates 
surface views by mapping 3-D object space into 2-D 
image space using either a Z-buffer or equivalent 
time-ordered display procedure for hidden surface 
removal. In the latter version, for a given 
orientation of the object, pixels are written into 
the 2-D image (display) buffer in time-order 
corresponding to reading out voxels from the back 
to the front of the object. This "painter's 
algorithm" guarantees that any point that should 
be obscured by something in front of it will in 
fact be invisible in the final reconstruction. 

Figure l illustrates a simple two dimensional 
analog of the back-to-front readout technique. It 
can be seen that for any orientation (rotation) of 
the object, there exists a readout sequence (and 
hence a processing time sequence) such that voxels 
early in the sequence (which should be hidden) 
will be overwritten by voxels later in the 
sequence. This architecture addresses the 
recursive decomposition of the sequence in such a 



way that (1) a near real-time update rate is 
possible, (2) common geometric modifications are 
instantaneous, and (3) a modular structure is 
created. 

,.,,_.,_, • .,_I - :?_-D_ll_1~e~ Surf,v~e Po:.~·.,.:11L. 

In order to reduce the problem of real-time 
display of 3-D objects to manageable proportions, 
it is necessary to partition either the input 
(object) space or output (image) space - or some 
combination of these. In a multiprocessor 
implementation, partitioning input space and 
assigning each partition to a separate processor 
will avoid object memory access conflicts, whereas 
partitioning output space will avoid image memory 
access conflicts. The former technique is clearly 
superior and will minimize conflict since a 
substantial amount of data reduction occurs in the 
projection from 3-D to 2-D space. 

Representation of 3-D Objects 

We assume the input to the system (object 
space) is a 3-D scene subdivided by three sets of 
parallel planes into cube shaped volume elements 
or voxels as shown in Figure 2. While the 
algorithms which will be described can be 
generalized to any uniform parallelepipeds, 
throughout this paper we will generally assume a 
cubical object space. Furthermore, note that the 
voxel dissection is a special case of a general 
representation based on convex polyhedrons [9]. 

Associated with each voxel is a numeric 
quantity called the density which may correspond 
to color or brightness, or some other point 
property of the object. One use of density is to 
distinguish between different and distinct objects 
or parts of objects making up the input scene. A 
natural data structure for such a scene is a 3-D 
array, indexed by X, Y, and Z where the value of 
each element is the density of the corresponding 
voxel. A binary (two level) object would require 
one bit per point. Typically, however, the 
sto.rage format is one byte per point supporting up 
to 256 density levels. · 

Such a 3-D array is spatially presorted in 
the sense that for any viewpoint, voxels can be 
read out and displayed in a sequence which 
guarantees that voxels retrieved early in the 
sequence cannot obscure voxels retrieved later in 
the sequence [10]. This property leads to the 
simple method of hidden surface removal described 

270 

above. However, no data compression is achieved. 

Two other possible data structures that can 
be used are octrees [7] and unsorted lists of 
voxels. The octree representation has the same 
spatial presorted property as the 3-D array. 
Octrees achieve excellent data compression when 
large regions of the scene contain the same 
density as, for example, in a binary scene. 
However, in our experience, the advantages fpr 
real world (particularly medical) objects are more 
than offset by the computational overhead 
associated with traversing the tree structure. 

The second method is to store the voxels in 
random order, using 4 locations for each voxel (X, 
Y, Z, and density). This method is advantageous 
when a single small object has already been 
separated from the surroundings by means of 
thresholding or segmentation. However, a true 
Z-buffer is required for hidden surface removal. 
We have not found it appropriate for a real-time 
system capable of displaying entire scenes. 

Display Processor Organization 

The basic hardware realization of the DISPLAY 
algorithm consists of five components as 
illustrated by the block diagram in Figure 3: 

64 
Processing 
Elements 

8 
tntemedtate 
Processors 
w/8uffers 

ftgure 3 ~ Overa11 Display Srstem Arcl1itecture 

* Display processor array (64 PEs), each with 
associated object subcube memory module, and 
double l28xl28 image buffer. 

* Intermediate processors (for groups of 8 PEs) 
feeding double 256xZ56 intermediate image 
buffers. 

* Output processor (for group of 8 intermediate 
buffers) feeding double 512x512 image buffer. 

* Video postprocessor and video interface. 

* Host computer interface and microprocessor 
based system controller. 

Briefly, the processing strategy consists of 
the following. The processing elements (PEs) 



compute the 2-D subimages from each 64-subcube 
(64x64x64 voxels) of the overall 256-cube input 
object. Each PE contains a double buffer, each 
half of which is sufficient to hold the largest 
image that can be created from its associated 
64x64x64 cube. 

The reconstructed image will consist of two 
components. The first of these is the density of 
each active point in the object - those which have 
not been removed through thresholding, for 
example. Depth or Z coordinate - the distance 
from the point to the front end of object space -
is buffered also for use by the shading 
postprocessor. 

Each of the eight intermediate processors 
merges the 2-D subimages generated by its set of R 
PEs into the appropriate position in the eight 
intermediate double buffers following priority 
rules determined by the sequence control table 
(see below). Finally, the contents of the 
intermediate buffers are merged into the double 
512x512 frame buffer, following the same priority 
rules. The two halves of the double frame buffer 
are filled alternately - one is computed while the 
other is displayed. Postprocessing consists of a 
global tone scale lookup table, shading algorithm 
implementation, and final brightness and/or 
pseudo-color lookup table. 

A high speed interface permits communications 
with a host computer system for the purpose of 
image loading and readback. The host will also be 
responsible for archiving and retrieving 
appropriate <la ta files, and converting formats to 
the internal object representation. The system 
controller is responsible for coordinating the 
activities of the 64 PEs by generating the 
sequence control tables for each desired object 
orientation. The control table includes X, Y, and 
Z position offsets for each of the subcubes making 
up object space. This information is used to 
recursively compute the absolute offsets for every 
point in the output image as well as the order of 
processing of voxels for the hidden surface 
removal algorithm. 

To display any set of objects with a scale 
factor of 1:1 within a 256-cube object space 
requires 16 M Bytes of high speed RAM (assuming 8 
bit quantization for each point). While this may 
seem to be an extremely large amount of high speed 
memory, it should be recognized that the steep 
decline in MOS memory prices is expected to 
continue for some time. In addition, even at 
current prices, the cost of the overall display 
device (which is dominated by the cost of this 
memory) should be relatively small compared to the 
cost of a complete medical imaging system such as 
a CAT scanner. 

Since the object space is divided into 64 
equal subcubes, each PE requires 256 K Bytes of 
associated memory. Suitable memory management 
hardware located between the host and the 

271 

PE-memory system facilitate direct computer 
accesses to restricted regions of object space 
such as X, Y, or Z planes or variable size cubical 
areas. 

In each memory module, data are organized 
into groups of eight voxels occupying a pair of 32 
bit words. Each such group constitutes a 2-cube. 
Five bits are required to specify a 2-cube index 
for each coordinate axis. Each memory access 
retrieves a word pair which is buffered in a 
register between the memory and the processing 
element permitting an entire 2-cube to be 
traversed in any order. The sequence control 
table is used to generate addresses for the memory 
access controller. 

Display Processing Elements 

Each processing element consists of a 
pipelined arithmetic processor, input density 
lookup table, its copy of the sequence control 
table, and a dual 128xl28 image buffer memory. 
Figure 4 illustrates the overall organization of 
the PE and its associated 64-subcube input object 
memory module. 

64-Subcube 
Ml!ll'(lry 

256 K Bytes 

Memory 
Access 

Controller 

Ffqure 4 - Processing Element (PE) Qrg;rnliation 

l of 8 
Intermediate 

Busses 

The density lookup table is used to 
preprocess the voxels retrieved from memory for 
various purposes including selective masking, 
thresholding, or image enhancement based on 
density value. 

The arithmetic processor is responsible for 
computing X, Y, and Z offsets for each pixel of 
the image based upon the position of the 
corresponding input voxel. This is accomplished 
with no multiplies, divides, or other time 
consuming arithmetic or logical operations. As 
can be seen in Figure 5, the most complex 
operation is arithmetic addition. To obtain 
s11ccessively finer position offsets requires 
shifts but these are performed within the wiring 
of the pipelined system. Only the data paths for 
position computation along one coordinate axis are 
shown - the other two are similar. 



Object 
Density~---------->I 
Data Jn 

Position 
Offset 

Address 
toJole.roory 

Object 
>------------Data to 

Buffer 

Sequence Control Table Oah 

Position 
to Buffer 

The operation of the arithmetic processor is 
based on the time-ordered display algorithm used 
for hidden surface removal. The fundamental 
concept which simplifies the hardware 
implementation is that regardless of object 
orientation, each subcube is entirely independent 
and all 64 subcubes may be processed in parallel 
since for any given subcube, every other subcube 
is either entirely in front of it or entirely 
behind it. The same characteristic also permits 
the overall computation of X and Y positions to be 
accomplished recursively, starting with the 
largest subcubes and working down to individual 
voxels, dividing by 2 at each step. For any 
particular voxel, the position offset along a 
given axis (X, Y, or Z) can be computed by simply 
adding the appropriately shifted control table 
entries. Thus, for a single orientation, only one 
control table of position offsets is sufficient 
for computation of all X, Y, and Z positions. 

The precise X and Y destination coordinates 
in the 128xl28 buffer are computed and converted 
to a memory address where the video (density and Z 
value) will be stored. A double buffer enables 
computation to proceed while the alternate buffer 
is being merged in subsequent stages of 
processing. 

Anti-Aliasing 

For magnifications from o~ct space to image 
space greater than 1.732:1 (l/t1' ), holes would 
appear in the output image at certain orientations 
if anti-aliasing techniques were not utilized. 
Two methods have been investigated thus far: 
display of the centers of the visible faces of 
each voxel (1-cube) and double resolution 
interpolation with resampling. The first of these 
represents the singular case of the DISPLAY 
algorithm where the object cube faces have a size 
of exactly one pixel. At most, there will be 
three faces visible from any orientation. 
Interpolating out to a double resolution 3-D grid 
and resampling is similar to anti-aliasing 
techniques used in graphics display processors. 
Both of these require more sophisticated 
processing and additional buffer memory in each of 

272 

the PEs, but can be accomplished within the 
pipelining time constraints. 

Sequence Control Table (SCT) 

The SCT contains 8 entries sorted in the 
required time-order defining the X, Y, and Z 
offsets of the centers of the 8 largest subcubes 
with respect to the center of object space. 
Offsets for successively smaller subcubes are 
determined by shifting the table entries by an 
appropriate amount (between 0 and 7 places to the 
right). Adequate precision must be maintained in 
the table to achieve consistency of the offsets 
and prevent objectionable boundary errors from 
appearing in the final image. In addition to 3-D 
rotation, many other interactive capabilities can 
be implemented through modifications of the 
entries in the sequence control table and simple 
additions to the display processor hardware. A 
few of these are described below. 

General anamorphic scaling is accomplished by 
simply multiplying the X, Y, and Z values stored 
in the table by the appropriate scaling factors 
with suitable interpolation of the input density 
data. Translation in 3-space is easily supported 
by adding X, Y, and Z offsets to the addresses of 
the output image buffer. 

The display of up to 64 independently 
configurable objects can be achieved by loading 
object specific SCTs into each of the individual 
PEs or selected groups of PEs and modifying the 
implementation of the merge algorithms. This 
would permit complete control for objects within 
their own subcubes. These "sub object spaces" 
could include any 3-D rectangular region 
comprising multiples of the basic 64-cube. Other 
display parameters can be associated with the 
individual PEs including a translation offset and 
the tone scale mapping to be used for the input 
data. 

Intermediate Processors and Buffers 

Each of the images produced by the display 
processing elements consists of a two dimensional 
array of 112xll2 points (in a 16384 word - 128xl28 
point memory - 1:1 scale factor) corresponding to 
the largest possible 2-D projection of the 
64-subcube. These 64 images must eventually be 
merged into the output 512x512 frame buffer. This 
is accomplished in two steps. First the 64 images 
are combined 8-fold into the 256x256 point 
intermediate buffers, and then these are combined 
again 8-fold into the final output buffer. The 
first step is performed in parallel by the eight 
intermediate processors. Each of these merging 
processes requires the computation of position 
offsets as described for the individual PEs, 
above. Double buffers permit the merging and 
readout operations to be taking place 
concurrently. As described above, the same SCT 
determines both the order of computation within a 
PE and the order of combining for the merge 
operations. Figure 6 shows the second stage merge 
operation. The first stage data flow is similar. 



PGs represf'nt procenorgroups 
which Include 8 PEs and their 
usoctatedlnten11edlate 
Proce~sor and Buffer. 

The final buffer stores the output image and 
Z depth values for use by the shading hardware. 
The major function of this memory is to permit 
scan conversion to standard video format for 
display on a monochrome or color raster scan TV 
monitor. This memory is directly accessible by 
the host. Since the output buffer is larger than 
the size of any projection of the 256-cube object 
(assuming no scaling), space is available to 
display other pictorial data or text. Any 
displayed image may be read back to the host for 
archiving or further processing. 

Computation Pipeline Timing 

Using the architecture outlined above, we can 
calculate the expected performance and throughput 
of the system. We assume that the required 
processing time is 100 ns per primitive 
calculation. This represents a conservative 
design guideline for discrete TTL or high 
performance NMOS VLSI technology. 

* 

* 

* 

The time required to generate a subimage (by 
the PE) from the 64-subcube is 256 K x 100 ns 
or -25.6 ms. 

The time required to merge groups of 8 subimage 
buffers into a 256x256 intermediate buffer is 8 
x 112 x 112 x 100 ns or -11 ms. 

The time required to merge 8 intermediate 
buffers into the output buffer is 8 x 224 x 224 
x 100 ns or -40 ms. 

Thus, the limiting time is the last -
corresponding to a frame update rate of 1000/40 or 
approximately 25 frames/second. Note that because 
of the pipeline latency, however, a response to a 
change in orientation will require a total of 
three frame times to become visible. 

Assuming output to a standard NTSC compatible 
video monitor, the full 25 frame per second 
throughput rate can be exploited by switching 
buffers whenever a new frame has been completely 

273 

loaded. Alternately, a dual port memory system 
may be used for the output buffer. However, 
visible image changes (breaks) may occur for fast 
changing objects during the frame display. An 
effective update rate of 20 frames per second can 
be easily achieved by displaying each frame 
generated by the display system 1-1/2 times 
corresponding to 3 video fields using 2:1 
interlaced scanning. 

Postprocessing 

Two types of postprocessing are to be 
implemented in real time: tone scale lookup 
tables for the video intensity and other display 
parameters, and some form of shading to enhance 
the appearance and realism of the image. 

Tone scale transformation hardware will 
permit the class of point type image processing 
functions which are traditionally used with image 
processing systems to be implemented on the output 
image in real time. Examples of these operations 
include contrast enhancement, interactive 
thresholding, and pseudo-color processing. 

Figure 7 - Examples of Software :..;L.mlation using 

Depth-only Shading 

Realistic shading of the output image is 
essential to provide depth cues and other visual 
information about object structure. We have 
conducted software simulations using 
"distance-only" shading, "constant" shading, 
"contextual" shading [3] and Phong shading [ 11]. 
In distance-only shading, the intensity of a point 
of the image is determined by the distance of the 
corresponding point of the object from the light 
source. This is simple to compute and gives 
pleasing results (Figure 7). The other shading 
models take direction into account by computing 
the inner product of the normal to the surface 
with a unit vector along the light ray reaching 



it: this provides curvature information. In 
constant shading, the normal assigned to a point 
is independent of its neighbors, whereas in 
contextual shading the overall configuration is 
taken into account. Phong shading, which is an 
extension of Gouraud shading (12], is an attempt 
to make the intensity vary smoothly from point to 
point. 

The distance-only shading algorithm simply 
uses the Z coordinate (depth) to obtain the 
brightness of each output point. Most, other 
shading schemes are more difficult to implement 
since they are non-local operations requiring 
knowledge of neighboring voxels. One solution 
would use a gradient operator on the Z coordinates 
to obtain the surface normal at each point. 
Alternatively, local direction information can be 
stored in each voxel (along with the density) and 
passed to the shading postprocessor. This 
approach has bee used effectively for the DISPLAY 
software package. A hardware implementation of 
directional shading would, however, necessitate 
expanded object and buffer memory capacity and 
wider data paths in addition to the shading 
postprocessor. 

Summary and Conclusions 

The hardware architecture for a high speed 
image display system which would permit the 
real-time manipulation of 3-D objects obtained 
from real world data has been developed. A key 
feature of this system is support for interactive 
manipulation of the object in 3-D space including 
rotation, translation, and scaling. 
Straightforward algorithms containing no complex 
arithmetic or logical operations are utilized 
throughout. The hierarchical organization and 
high degree of modularity will facilitate an 
effective implementation with VLSI technology. 

Functional simulations of the display 
processor have been performed based on the 
existing DISPLAY software package. Current 
efforts are directed toward development of 
effective 3-D anti-aliasing techniques and 
investigation of more sophisticated shading 
algorithms which are appropriate for hardware 
implementation. 

We are planning to prototype real-time 
hardware for one 64-subcube of the overall system 
using Schottky TTL devices and MOS dynamic RAMs. 
The prototype will permit experience to be gained 
from actual use by medical researchers and 
clinicians. For some types of imaging techniques 
where the current attainable resolution is 
relatively low, this subset of the overall system 
may prove adequate. The prototype effort will be 
followed by the full system implementation with 
heavy reliance on VLSI technology. 

Acknowledgements 

We wish to express our appreciation to 
Professor Gabor T. Herman and Dr. J.K. Udupa for 
their helpful comments and for permission to make 

use of the DISPLAY software package. The hidden 
surface removal algorithm was implemented and 
tested in software with the help of Mark Lipshutz 
and Roger Sessions. Part of our work was supported 
by NIH grant HL28438. 

References 

[l] Udupa, J.K., "DISPLAY82 - A System of 
Programs for the Display of 
Three-Dimensional Information in CT Data", 
Medical Image Processing Group Technical 
Report MIPG67, Department of Radiology, 
University of Pennsylvania, April 1983. 

[2] Herman, G.T., and Liu, H.K., 
"Three-Dimensional Display of Human Organs 
from Computed Tomograms", Computer Graphics 
and Image Processing 9 (1979), pp. 1-21. 

[3] Herman, G.T., and Udupa, J.K., "Display of 
Three-Dimensional Discrete Surfaces", 
Proceedings SPIE 283 (1981), pp. 90-97. 

[4] Artzy, E., Frieder, G., and Herman, G.T., 
"The Theory, Design, Implementation, and 
Evaluation of a Three-Dimensional Surface 
Detection Algorithm", Computer Graphics and 
Image Processing 15 (1981), pp. 1-24. 

[5] Batnitzky, S., Price, H.I., Lee, K.R., Cook, 
P.N., Cook, L.T., Fritz, S.L., Dwyer, S.J., 
and Watts, C., "Three-Dimensional Computer 
Reconstruction of Brain Lesions from Surface 
Contours provided by Computed Tomography", 
Neurosurgery 11 (1982), pp. 73-84. 

[6] Sunguroff, A., and Greenberg, D., "Computer 
Generated Images for Medical Applications", 
Computer Graphics 12 (1978), pp. 196-202. 

[7] Meagher, D.J.R., "High Speed Display of 3D 
Medical Images using Octree Encoding", 
Rensselaer Polytechnic Institute Technical 
Report, September 1981. 

[8] SOLIDVIEW System, Lexidata Corporation, 
Billerica, Massachusetts. 

[9] Fuchs, H., Keden, Z.M., Naylor, B.F., "On 
Visible Surface Generation by A Priori Tree 
Structures", Computer Graphics 14 (1980), 
pp. 124-133. 

[10] Herman, G.T., Reynolds, R.A., and Udupa, 
J .K., "Computer Teehniques for the 
Representation of Three-Dimensional Data on 
a Two-Dimensional Display", Proceedings SPIE 
(1982), to appear. 

[ 11] Phong, B-T, "Illumination for Computer 
Generated Pictures", Communications ACM 18,6 
(June 1975), pp. 311-317. 

[12] Gouraud, H., "Continuous Shading of Curved 
Surfaces", IEEE Transactions Computers, C-20 
(June 1971)~. 623-628. 

274 



A PARALLEL ARCHITECTURE FOR LABELING, SEGMENTATION, 
AND LEXICAL PROCESSING IN SPEECH UNDERSTANDING 

Edward C. Bronson 
Leah Jamieson Siegel 

Purdue University 
School of Electrical Engineering 

West Lafayette, IN 47907 

Abstract -- Speech understanding is a complex task 
which requires extensive computation. ~o increase t~e 
processing speed, a speech understandmg system 1s 
decomposed into tasks which can be performed b.y a 
series of distributed processing sub-systems. An architec
ture to perform labeling, segmentation_, and lexic~l P.ro
cessing is described. Using a par3:~etr1c charactenza~10n 
of the speech signal, this system d1v1des an utterance mto 
labeled homogeneous regions. The system then performs 
dictionary lookups based on all probable labelmgs and 
segmentations in order to generate a c<;>mplete set of .w<;>rd 
hypotheses. Using realistic assumptio~s . from ex1stmg 
speech understanding systems, a statistical model. of 
speech input, and simulations of the speech processmg 
algorithms, the attribute~ of the para!lel system ~o per
form labeling, segmentat10n, and lex.1cal processmg for 
real-time speech understanding are derived. 

I. Introduction 

A speech understanding system accepts speech input, 
derives a conceptual understanding of the input, and gen
erates an appropriate response. In a typical system, a 
number of knowledge source components interact to 
resolve the errors and ambiguity inherent in human 
speech. These knowledge .sou!ces perfor~ .operations 
such as acoustic parametenzat1on, phonetic mterpreta
tion, lexical processing, syntactic. analys~s,. semantic 
interpretation, and response generat10n. Ex1strng speech 
understanding systems that have been developed are 
described in [19, 21, 25]. 

The extensive computation required precludes real
time speech understanding on a ~onventional seri3:1 com
puter. To improve the processmg speed, the different 
knowledge sources can act in parallel (possibly on 
different portions of an utterance), and in addition, com
putational tasks within each knowledge source can be 
performed in parallel. Advances in technology ha".e made 
it realistic to consider large-scale parallel processmg sys
tems [e.g., 1, 10, 24, 29]. By designing multiprocessor 
knowledge sources, real-time speech understanding (with 
a constant delay) should be achieva~le. The next.section 
briefly outlines a general configurat10n for a multiproces
sor system for speech understanding. In sections III and 
rv, the speech understanding operations of labeling, seg
mentation, and lexical processing are outlined. Section V 
describes the organization of the system described in this 
paper. An example simulation of labeling, segmentation, 
and lexical processing is presented in section VI. Section 
VII describes the parallel algorithms and the parallel 
architectures that comprise the system. 

This material is based upon work supported by the National Science 
Foundation under Grant ECS-8120896. 

0190-3918/83/0000/0275$01.00 © 1983 IEEE 275 

HUMAN SPEECH 

INPUT PROCESSING 

ACOUSTIC PROCESSING 

LABELING 
SEGMENTATION 

LEXICAL PROCESSING 

SYNTACTIC PROCESSING 

SEMANTIC PROCESSING 

PRAGMATIC PROCESSING 

Fig. I. The distributed speech understanding system. 

IT. A Parallel Architecture For Speech Understanding 

An architecture proposed to handle the speech 
understanding task consists of a distr~buted series of 
compustations [2, 3]. Each compustation corresponds 
roughly to a speech underst'.1-nding ~no~ledge sourc.e. 
This distributed parallel architecture 1s diagrammed m 
Fig. I. The interconnection of knowledge sources forms a 
linear pipeline. 

Each compustation may itself be a parallel system. 
A typical compustation consists of an input memory 
buffer (MB), an output MB, control u~its JCUs), and pro
cessing elements (PEs). The orgamzat10n '?f the PEs 
within each compustation is selected. to exploit 'Yhatever 
parallelism is inherent in the specific task bemg per
formed by that station. The proce~sing time for.each sta
tion is a function of the computational complexity of the 
tasks to be performed and the amount and arrival rate of 
input data. Assuming a maximum input rate, the P.ro
cessing speed requirements can be met by employmg 
parallelism within the task algorithms and also among 
the tasks to be performed. Minimum processing tii_ne for 
the compustation will be insured. w.hen t~e data m the 
input MB is processed as soon as 1t. 1s available. When. a 
subset of PEs has finished a processmg task and stored its 
result in the output MB, it is available to be assigned 
another task by the compustation's control unit. 

Each compustation is specialized to meet perfor
mance (speed) requirements of th~ overall system .. Pro
cessing proceeds asynchronously w~th r~spect to adjacent 
compustations. When the processmg time for each sta
tion is approximately equal, then no bottlenecks occur 



and data flow through the system will be continuous, pro
viding real-time performance (with a constant delay). 
Because the parallelism within each compustation permits 
processing of all probable utterance hypotheses simul
taneously, there is no need to backtrack once any partic
ular hypothesis has been determined improbable. Thus, 
extensive parallelism is being used at each stage of the 
speech understanding process in order to simplify the 
interaction among the various knowledge sources. 

ill. Labeling and Segmentation 

Speech labeling is the task of analyzing a speech 
utterance and assigning identifying labels to regions of 
the utterance. Speech segmentation is the task of locat
ing boundaries between homogeneous regions (segments) 
in a speech utterance. In some systems, labeling precedes 
segmentation; in others, segmentation precedes labeling. 
Together, the labeling and segmentation processes divide 
a speech utterance into labeled homogeneous regions. 
Speech labeling and segmentation are described in [27, 28, 
36]. Detailed descriptions of methods used in specific sys
tems are presented in [8, 13, 34]. 

The input to the labeling and segmentation process 
will be characteristic parameters computed for each frame 
of speech during acoustic processing. In general, each set 
of characteristic parameters represents an interval of 
speech ranging from 5 to 20 ms. The acoustic parameters 
describe each speech frame in terms of its characteristic 
time and frequency domain features [4, 36]. Labels can 
be assigned either to fixed duration frames (before seg
mentation) or to larger homogeneous segments (after seg
mentation). The labeling is typically done using pattern 
classification techniques. The criteria used and the 
number of different labels assignable to the regions must 
be consistent with the word representations used within 
the lexical database. The labeled segments produced will 
be used by the lexical processing component of the sys
tem to obtain word hypotheses. 

The labels used correspond to elements of a finite set 
of speech sounds which can be identified by definite 
acoustic characteristics. The most commonly used set of 
speech sounds are phonemes [12]. A phoneme is a group 
of sounds that function simifarly and are not meaning
fully distinctive among the group for a given language. A 
language will contain from 20 to 60 phonemes. Examples 
of different phonemes are the "oo" sound in "foot," the 
"oo" sound in "boot," and the "s" sound in "sit." It is 
often difficult to identify phonemes and their boundaries 
accurately from acoustic data [27]. Many intervals of 
speech will appear similar to more than one phoneme. 
These problems are handled in existing speech under
standing systems by permitting multiple classifications for 
a given speech interval and then applying a more exten
sive lexical analysis. 

Techniques to perform labeling and segmentation are 
either context independent or context dependent. A con
text independent scheme looks at the acoustic parameters 
for the speech frame, compares these parameters to previ
ously stored templates corresponding to the speech 
sounds label set, and .:ssigns a label to the speech frame. 
A correctness score could be associated with the label. In 
some systems [34], the multiple labels for each frame are 
stored in a structure called a segment lattice. This 
preserves. all probable frame labels and provides the 
option for the system to backtrack and consider less 

probable labels when the word hypothesis based upon one 
lab,eling becomes unlikely. 

A context dependent labeling and segmentation 
scheme uses information from the current and surround
ing frames or segments when labeling a given speech 
interval. Some systems use a combination of both con
text dependent and context independent methods. 

N. Lexical Processing 

Lexical processing is the task of combining various 
lengths of contiguous sequences of segmented and labeled 
speech data, comparing these intervals to a word diction
ary or lexicon, and generating probable word hypotheses. 
Noise, variable pronunciations, mispronunciations, 
regional dialects, and variable speaking rates make it 
difficult to map acoustic events directly to word 
hypotheses. Lexical processing must take into account 
possibilities such as mislabeled input segments and varia
tions in pronunciation when attempting to match an 
input utterance to entries in the word dictionary. Lexical 
processing is described in [18, 32]. Detailed descriptions 
of methods used in specific systems are presented in [11, 
31, 34]. 

A number of lexical processing approaches exist. One 
method for determining possible words within continuous 
speech, called "bottom-up" word hypothesizing, uses 
acoustic information from the input utterance to propose 
words. In one possible implementation, the system 
includes a data structure constructed from acoustic 
descriptions of all words comprising the system's vocabu
lary. The acoustic information obtained form the input 
utterance will control the search through the data struc
ture to hypothesize a word. 

The output of lexical processing will be word 
hypotheses accompanied by likelihood scores. This infor
mation is passed to other knowledge sources such as syn
tax and/or semantics for further processing. 

V. The Distributed/Parallel Organization 

As described in sections ill and N, there are many 
different methods that can be used to perform the opera
tions of labeling, segmentation, and lexical processing, 
and the boundaries between these operations are not 
necessarily clear. It is therefore appropriate to consider a 
single architecture to perform all of the operations 
involved in labeling, segmentation, and lexical processing. 

The merging of compustations is depicted in Fig. 1. 
and the organization of the architecture is shown in Fig. 
2. The portion of the figure marked by @ indicates the 
PEs performing parallel labeling and segmentation. 
These PEs accept sets of time and frequency domain 
characteristic acoustic parameters which represent a 12.8 
ms frame of speech. These parameters are stored within 
the input MB by the Acoustic Processing Compustation. 
(A design of an Acoustic Processing Compustation was 
presented in [4].) The labeling and segmentation opera
tions produce a segment lattice. The segment lattice will 
contain multiple phoneme labels for each frame of speech. 
This data set is indicated by © in Fig. 2 and would 
reside in a MB. The second set of PEs, indicated by @, 
will use the segment lattice data to perform parallel word 
hypothesization. The multiple word hypotheses, indi
cated by ®, are stored in the output MB and will be 
used by the Syntactic Processing Compustation to per
form syntactic analysis. 

276 



characteristic acoustic parameters 
per 12.8 ms or speech 

···1-T-j 1-B-+-IY-+F+-AO+-R--1 

l-B+-IY--1 1-F-j fAO+-R~ 

1-TH+-IY--i 1-N-j ... 

l-H-!-JY-j 1-Mi 

l-IY-1 fAO+--R~TH-1 

-time 

f2\ "'f 1
1 

ght before the next 
~ ght beef or he net 

he ght be for neck 
forth met 

conference··· 
on fence 

@ 

Fig. 2. Organization of the parallel architecture. (A) 
Parallel labeling and segmentation. @ Parallel 
word hypothesization. (!) Phoneme segment lat
tice. ® Multiple word hypotheses. 

VI. An Example Simulation 

To determine the requirements of a parallel architec
ture to perform real-time labeling, segmentation, and lex
ical processing, a specific set of algorithms was chosen 
and the operations of the algorithms were simulated. In 
this section, the algorithms and operation are described 
and the approach used in the simulation is outlined. 

Algorithms and Operation 

For each 12.8 ms frame of input speech, the 
compustation obtains a set of characteristic acoustic 
parameters from the input MB. The compustation 
determines the similarity of these input parameters to 
stored phonetic templates and produces a set of probable 
phonetic labels for the frame based upon this similarity. 
In the algorithm considered here, the probable labels are 
determined by classifying the speech-spectra using a 
minimum distance measure with linear mean correction 
[30]. This technique computes a distance measure 
between 40 power spectrum values representing the input 
speech and a set of 40 template values stored for each of 
33 possible phoneme labels. The distance measure results 
are then sorted to determine the most probable labels for 
the frame. Each distance measure is compared to a 
threshold and from one to five most probable labels are 
assigned to the frame. By keeping up to the five most 
probable labels for the frame, the correct label will be 

included Q5% of the time [OJ. This step is a form of 
context independent labeling on fixed duration frames. 

Once labels have been assigned to a frame, the previ
ous and following frames are examined for occurrence of 
each phoneme label. If a phoneme label does not occur in 
either of the neighboring frames, the label is eliminated 
from the set of labels for the frame. If all of the labels 
for a frame are non-existent in neighboring frames, then a 
new symbol indicating an unknown phoneme label is as
signed to the frame. This context-dependent label remo
val introduces an additional one frame (12.8 ms) delay to 
the speech processing. 

Considering an interval of speech containing a 
number of segments, the multiply labeled frames over 
that interval form a phoneme segment lattice (e.g., ©in 
Fig. 2). The paths through the lattice define the possible 
words within the speech input. The lattice is searched to 
generate all possible strings of phonemes. Bottom-up lex
ical processing is then performed, in which these strings 
are compared to a lexical database of phoneme strings 
which represent the words known to the system. From 
this comparison, word hypotheses are determined. 

The lexical database assumed represents a word vo
cabulary of 6,843 common English words. Each word is 
stored by its phonetic representation, with the longest 
phonetic representation consisting of seven phonemes. 
These words were taken from a vocabulary of 10,065 En
glish words with phoneme string representations of up to 
fifteen phonemes [16, 26]. In the simulation, the strings 
generated from the speech input range in length from 
three to seven phoneme segments. (One and two 
phoneme strings are handled as special cases.) When the 
frequency of use of the words within the database is tak
en into account [16, 26], the 6,843-word vocabulary (i.e., 
the words of seven or fewer phonemes) comprise Q5% of 
the words actually used. Multiple representations of a 
single word are included in the lexicon. It is assumed 
that these are generated by applying contextual and pho
nological rules to the theoretical word representation. 
The rules will account for pronunciation deletions, inser
tions, coarticulation, and multiple mispronunciations [7, 
35]. This lexical expansion will result in an approximate
ly three-fold increase [35] in the lexical database size. 
The resulting database contains 20,52Q entries. 

Because all paths through the phoneme lattice are 
compared to the database, multiple conflicting word hy
potheses may be generated. In addition, every point in 
the lattice at which there is a transition from one 
phoneme to another represents a potential end of one 
word and beginning of the next. Word hypotheses based 
on all such word boundaries will be generated. A special 
case of this may give rise to multiple possible start and 
stop times for a single word. The multiple word 
hypotheses and the range of start and stop times will be 
stored in the output MB and resolved by a later 
compustation. 

Simulation of the Algorithms 

The operations of the algorithms to perform labeling, 
segmentation, and lexical processing were simulated on 
dual-processor Vax 11/780 computers [14] which are part 
of the Engineering Computer Network of Purdue Univer
sity [17]. The components of the simulation are di
agrammed in Fig. 3, and are discussed in the following 
paragraphs. The bold arrows indicate the flow of the 
simulation. 

The input to the simulation was a stream of 
phonemically labeled frames which model speech input. 

277 



speech 
statistics 

data 

labeling 
and 

segmentation 
confueion 

data 

labeling 
and 

segmentation 
algorithms 

lexical 
database 

data 

lexical 
processing 
algorithms 

Phoneme 
Stream 

Generation 

Phoneme 
1-------1~ Statistical 

Analysis 

Multiple 
Phoneme 

Label 
Generation 

Labeling 
and 

Segmentation 
Simulation 

performance 
data 

verification 
data 

Phoneme 
String 

Generation 

Fig. 3. Components of the simulation. 

The statistical distribution of the phonemes in the input 
is based upon a statistical linguistic analysis !26j of a vo
cabulary of 10,065 English words [16J. This mformation, 
combined with the average duration of each phoneme [15, 
33J, was used to model the input stream as a stochastic 
process [6J. A 33-state Markov chain was used to gen
erate the phoneme stream. The phoneme stream statisti
cally models the percent occurrence of each phoneme or 
silence, the duration of each phoneme or silence, and the 
transistion probability of two adjacent phonemes. A sta
tistical analysis was performed upon the generated 
phoneme stream to verify the accuracy of the speech 
model. The statistically generated phoneme input was 
used to avoid the difficulty of performing computationally 
intensive acoustic parameterization on the enormous 
amount of speech input data which would be required to 
obtain representative phoneme distributions and patterns. 
Details of the phoneme stream generation can be found in 
[5J. 

The generated phoneme stream contains one 
phoneme label per input frame of speech. The results of 
the labeling algorithms are simulated by generating mul
tiple phoneme labels for each frame, based on labeling 
performance data which indicates the probability of 
confusing the true input phoneme with acoustically simi
lar phonemes {30j. 

The resu ting multiple phoneme label input stream 
corresponds to ,the segment lattice data and is used as an 
input to simulate the complexity of the labeling and seg
mentation algorithms. The segment lattice also provides 
the input to the lexical processing simulation. In particu
lar, the "Phoneme String Generation" process provides 
statistics on the number of strings of various lengths that 
will be compared to the lexicon. 

Complexity data from the labeling and segmentation 
simulation, results of the phoneme string generation, and 
the lexical database statistics are used to simulate the 
operations of lexical processing. 

VII. The Parallel Architectures 

In this section, the parallel sub-systems to perform 
labeling, segmentation, and lexical processing are 
described. The PE model used in the architecture design 
is presented in [20J and is based upon the Motorola 
MC68000 microprocessor [23]. Processor timing calcula
tions were made with the MC68000 running Motorola's 
68343 fast floating point software [22J. The execution 
times were calculated for the MC68000 running with a 
12.5 MHz clock frequency. 13,100 frames of speech data 
were simulated to obtain the operations counts and data
base sizes. 

For the architecture design presented here, it was as
sumed that each sub-system must attain real-time perfor
mance based on the average arrival rate of data to its in
put MB. This implies that, on the average, real-time per
formance will be achieved as long as excess data can be 
buffered and processed later. A more stringent analysis 
would require the processing to meet maximum data 
rates. Because of the very large variance in the data 
rates from one frame to another, this approach is not 
practical and is not considered here. 

Labeiing 

The labeling sub-system must compute the distance 
from the set of input acoustic parameters to the tem
plates for each of the 33 possible phonemes, select the (up 
to) five most probable phonemes, and perform the con
text dependent removal of isolated (single frame) labels. 
The context independent labeling must be performed 
within 12.8 ms so that this labeling is completed by the 
time the next set of input parameters is available. Once 
the subsequent frame is labeled, the context independent 
labeling must also be completed within 12.8 ms. Based 
on the operations required, the architecture to perform la
beling is an eight PE MIMD system with one CU. The 
comparison of the input parameters to the 33 templates is 
distributed across the PEs, with each PE computing the 
distance to four templates. The CU computes the 33rd 
distance and performs the final phoneme selection and 
context dependent labeling. Communication is between 
the CU and the PEs, first to disseminate the acoustic 
data then to collect the computed distances. No inter-PE 
communication is required. 

Segmentation 

Once a frame is labeled, the segmentation sub
system must determine what new strings exist in the 
phoneme segment lattice as a result of the possibly multi
ple labels for that frame. This. involves appending each 
new label to every length six or shorter string in the lat
tice and determining what new strings result. The 
phoneme segment lattice is updated (i.e., the new strings 
are added to the lattice) and the strings which are 
identified as possibly complete are passed to the lexical 
sub-system as potential word hypotheses. Processing 
should be completed by the time the next set (frame) of 
labels is available. In general, the architecture to perform 
segmentation consists of an input CU and seven sub
systems, each an MIMD system consisting of a CU and a 
set of PEs. The input CU monitors the arrival of new in
put label sets and broadcasts the input MB contents to 
the sub-system CUs. Sub-system Q holds the lattice en
tries of length g, 1 ::=; Q ::=; 7. Using the labels for the new 
frame, sub-systems 1 through 6 form length Q + 1 strings 
and pass these to sub-system ~ + 1 for possible addition to 

278 



the length ~ + 1 lattice database. Similarly, sub-systems 2 
through 7 receive length P strings formed in sub-system 
P - 1 for possible addition to the length P lattice data
base. 

If sub-system Q has Pi PEs, then the length Q strings 
will be distributed approximately evenly evenly across 
the Pi PEs. Each PE forms new strings using the new 
labels and its portion of the database. Similarly, each PE 
searches its portion of the database when determining if a 
string already exists in the database. Although the PEs 
perform essentially the same algorithm, MIMD operation 
is used to allow the string comparisons to abort as soon 
as possible. No communication is required among the 
PEs. The CU must be able to broadcast data and control 
signals to the PEs and must be able to poll the PEs for 
the status of their operation. Communication from sub
system Q to sub-system P + 1 is performed through an in
termediate MB between the CUs. Finally, CU P will pass 
length P strings to the lexical processing sub-system for 
dictionary lookup. This communication also proceeds 
through an intermediate MB. 

Using the simulation results, the processing for the 
length one, two, three, and four strings can be handled in 
real-time by a single processor. In order to maintain the 
average processing rate in real-time, sub-systems 5, 6, and 
7 are MIMD systems with P 5 = 2, P 6 = 5, and P 7 = 21. 
Each of these sub-systems has its own CU. The architec
ture for segmentation therefore consists of four sub
systems. The maximum amount of PE memory required 
for storage of the phoneme segment lattice ranges from 
5.6K 16-bit words for the 1/2/3/4 sub-system to 117K 
words for the length 7 sub-system. The total memory 
needed for storage of the lattice is 169K words. 

Lexical Processing 

The lexical processing sub-system compares strings 
from the phoneme segment lattice to the stored lexicon 
and outputs word hypotheses. For real-time operation, 
the rate at which the sub-system can search the lexicon 
must equal the rate at which strings arrive from the seg
mentation sub-system. Based on the simulations, the 
average rate will be 177 strings per 12.8 ms frame. The 
general architecture for lexical processing consists of an 
output CU and seven sub-systems, each an .MIMD system 
consisting of a CU and a set of PEs. Sub-system P holds 
the length P portion of the lexicon, 1 $ q $ 7. Within 
sub-system P, the lexicon entries are ordered and are dis
tributed across the Pi PEs, so that PE p holds item 
p mod Pi, 0 $ p < P1. A MB resides between segmen
tation CU P and lexical processing CU Q and receives the 
search request strings. Lexical CU q broadcasts each 
string to its PEs, each of which performs a binary search. 
The CU must be able to broadcast data and control sig
nals to the PEs and must be able to poll the PEs for the 
status of their operation. No inter-PE communication is 
needed. Located word hypotheses are passed from the 
sub-system CU via an intermediate MB to the output 
CU, which writes the hypothesized word and its associat
ed information in the compustation output MB. 

Based on the simulations and the assumptions about 
the lexicon size, and requiring lexical processing to match 
the average arrival rate of strings from the segmentation 
sub-system, a single PE is capable of performing the dic
tionary searches in real-time. Four factors contribute to 
this result. (1) Relatively few strings need to be looked 
up (on the average, 177 per frame); (2) the binary search 
is very efficient; (3) within the binary search, it is rare 
that all of the characters in the two strings need to be 

279 

compared; ( 4) the time for a symbol comparison on the 
MC68000 is quite short. Therefore, for the specific as
sumptions made here, the lexical sub-system can consist 
of one PE which scans the intermediate MBs holding the 
segmentation output, performs the lookups, and writes 
the located strings into the output MB. If a different lex
ical database were assumed, allowing, for example, longer 
strings, larger vocabulary, or more variability in pronun
ciation, the multiprocessor architecture would be applica
ble. Using the assumptions outlined here, the memory re
quired for storage of the lexical database is 139K 16-bit 
words. 

VIII. Summary 

A parallel architecture to perform the speech under
standing operations of labeling, segmentation, and lexical 
processing has been described. The overall architecture 
consists of a total of 43 (42 + 1) processors organized 
into three major components, corresponding to the three 
principal operations performed. Within the component 
systems are MIMD or uniprocessor sub-systems. The ar
chitecture characteristics were derived using realistic as
sumptions about both speech data and speech processing. 
Extensive simulation was performed to determine the re
quired processing and data rates. 

The algorithms chosen represent one set of the many 
different techniques used in labeling, segmentation, and 
lexical processing. Clearly the architectural details will 
reflect the algorithms chosen. This specific study demon
strates the viability of the use of parallelism in speech 
understanding systems and explores techniques for deter
mining system characteristics from specific applications 
requirements. Future work includes analysis of addition
al speech processing methods and knowledge sources. 

IX. Acknowledgments 

The authors thank E. J. Coyle and J. T. Gandour 
for their comments and assistance with this paper. 

[l] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

X. References 

K. E. Batcher, "The design of a massively parallel 
processor," IEEE Trans. Comp., Vol. C-29, Sept. 
1980, pp. 836-844. 
E. C. Bronson and L. J. Siegel, "A parallel architec
ture for speech understanding," 1981 IEEE Int. 
Con/. Acoust., Speech, Signal Processing, Mar. 1981, 
pp. 1176-1179. 
E. C. Bronson and L. J. Siegel, "Overview of a dis
tributed parallel architecture for speech understand
ing," 15th Hawaii Int. Con/. System Sciences, Jan. 
1982, Vol. I, pp. 350-359. 
E. C. Bronson and L. J. Siegel, "A parallel architec
ture for acoustic processing in speech understand
ing," 1982 Int. Con/. Parallel Processing, Aug. 1982, 
pp. 307-312. 
E. C. Bronson and L. J. Siegel, "Modeling of En
glish speech for the design of a distributed speech 
understanding system," in preparation. 
E. Oinlar, Introduction to Stochastic Processes, 
Prentice-Hall, Inc., Englwood Cliffs, NJ, 1975. 
T. C. Diller, "Automatic lexical generation for 
speech recognition," 1977 IEEE Int. Con/. Acoust., 
Speech, Signal Processing, May 1977, pp. 803-806. 
R. N. Dixon and H. F. Silverman, "A general 
language-operated decision implementation system 
(GLODIS): its application to continuous speech seg-



[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

mentation," IEEE Trans. Acoust., Speech, Signal 
Processing, Vol. ASSP-24, Apr. 1976, pp. 137-162. 
N. R. Dixon and H. F. Silverman, "The 1976 modu
lar acoustic processor (MAP)," IEEE Trans. 
Acoust., Speech, Signal Processing, Vol. ASSP-25, 
Oct. 1977, pp.367-379. 
M. J. B. Duff, "Parallel algorithms and their 
influence on the specification of application prob
lems," in Multicomputers and Image Processing, K. 
Preston and L. Uhr, eds., Academic Press, NY, 
1982, pp. 261-27 4. 
L. D. Erman et al., "The HEARSAY-II speech 
understanding system: integrating knowledge to 
resolve uncertainty," Computing Surveys, Vol. 12, 
June 1980, pp. 213-253. 
W. N. Francis, The Structure of American English, 
The Ronald Press Company, NY, 1956. 
G. Gill et al., "A recursive segmentation procedure 
for continuous speech," Dept. Comp. Sci. Tech. 
Rep. CMU-CS-78-134, Carnegie-Mellon Univ., Pitts
burgh, PA, May 1978. 
G. H. Goble and M. H. Marsh, "A dual processor 
VAX 11/780," 9th Annual Symp. Computer Archi
tecture, Apr. 1982, pp. 291-298. 
J. N. Holmes, I. G. Mattingly, and J. N. Shearme, 
"Speech synthesis by rule," Language and Speech, 
No. 7, 1964, pp. 127-143. 
E. Horn, A Basic Writing Vocabulary, University of 
Iowa Monographs in Education, No. 4, The College 
of Education, University of Iowa, Iowa City, IA, 
Apr. 1926. 
K. Hwang et al., "A Unix-based local computer net
work with load balancing," Computer, Apr. 1982, 
pp. 55-65. 
D. H. Klatt, "Word verification in a speech under
standing system," in Speech Recognition, D. R. 
Reddy, ed., Academic Press, NY, 1975, pp. 321-341. 
D. H. Klatt, "Review of the ARP A speech under
standing project," J. Acoust. Soc. Am., Vol. 62, 
Dec. 1977, pp. 1345-1366. 
J. T. Kuehn, H. J. Siegel, and P. D. Hallenbeck, 
"Design and simulation of an MC68000-based mul
timicroprocessor system," 1982 Int. Conf. Parallel 
Processing, Aug. 1982, pp. 353-362. 
W. A. Lea, ed., Trends m Speech Recognition, 
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980. 
Motorola, "68343 fast floating point source/object 
for MC68000," M68KFFP specification sheet, Nov. 
1981. 

[23] 

[24] 

[25] 

[26) 

[27] 

[28] 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

[36] 

280 

Motorola, MC68000 16-,bit Microprocessor User's 
Manual, third edition, Prentice-Hall, Inc., Engle
wood Cliffs, NJ, 1982. 
M. C. Pease, "The indirect binary n-cube microprcr 
cessor array,'' IEEE Trans. Comp., Vol. C-26, May 
1977, pp. 458-473. 
D. R. Reddy, "Speech recognition by machine: a re
view," Proc. IEEE, Vol. 64, Apr. 1976, pp. 501-531. 
A. J. Roberts, A Statistical Linguistic Analysis of 
American English, Mouton & Co., The Hague, 1965. 
R. Schwartz and J. Makhoul, "Where the phonemes 
are: dealing with ambiguity in acoustic-phonetic · 
recognition," IEEE Trans. Ac oust., Speech, Signal 
Processing, Vol. ASSP-23, Feb. 1975, pp. 50-53. 
J. E. Shoup, "Phonological aspects of speech recog
nition," in Trends in Speech Recognition, W. A. 
Lea, ed., Prentice-Hall, Inc., Englewood Cliffs, NJ, 
1980, pp. 125-138. 
H. J. Siegel, et al., "PASM: A partitionable 
SIMD/MIMD system for image processing and pat
tern recognition," IEEE Trans. Comp., Vol. C-30, 
Dec. 1981, pp. 934-947. 
H. F. Silverman and N. R. Dixon, "A comparison of 
several speech-spectra classification methods," IEEE 
Trans. Acoust., Speech, Signal Processing, Vol. 
ASSP-24, Aug. 1976, pp. 289-295. 
A. R. Smith and L. D. Erman, "Noah - a bottom
up word hypothesizer for large-vocabulary speech 
understanding systems," IEEE Trans. Pattern Anal. 
Machine Intel/., Vol. PAMl-3, Jan. 1981, pp. 41-51. 
A. R. Smith and M. R. Sambur, "Hypothesizing 
and verifying words for speech recognition," in 
Trends in Speech Recognition, Prentice-Hall, Inc., 
Englewood Cliffs, NJ, 1980, pp. 139-165. 
Vo tr ax, "SC-01 speech synthesizer data sheet," 
1980. 
W. A. Woods, et al., Speech Understanding Systems 
- Final Technical Progress Report, Report No. 3438, 
Bolt Beranek and Newman, Inc., Cambridge, MA, 
1976. 
W. A. Woods and V. W. Zue, "Dictionary expan
sion via phonological rules for a speech understand
ing system," 1976 IEEE Int. Conf. Acoust. Speech, 
Signal Processing, Apr. 1976, pp. 561-564. 
V. W. Zue and R. M. Schwartz, "Acoustic process
ing and phonetic analysis," m Trends in Speech 
Recognition, Prentice-Hall, Inc., Englewood Cliffs, 
NJ, 1980, pp. 101-124. 



ON THE ALGEBRAIC SPECIFICATION 

OF CONCURRENCY AND COMMUNICATION 

FINANCE J.P. & OUERGHI M.S. 

C.R.I.N. Campus Scientifique B.P 239 

54506 - VANDOEUVRE-LES-NANCY Cedex FRANCE 

ABSTRACT The absence of well 
suited tools for defining semantics of 
parallelism in programming languages is 
one reason of this study. 
We suggest using, in this framework, 
the algebraic abstract data type tech
niques, due to the advantages they of
fer and which have been justified in 
several papers. 
A simple and deterministic language 
with certains features of parallelism 
is presented. And an abstract data type 
associated with it is defined to make 
its semantics precise. 

KEYWORDS Concurrency, communi-
cation-;-algebraic abstract data type, 
semantics, serial time. 

1. INTRODUCTION 
Abstract data types are suggested by 
several authors ((SJ, [71 [12] , .. ) 
to be a flexible, uniform, powerfull 
and abstract tool for specifying formal
ly data structures, processed by pro
gramming languages. 
Applying the same technique, especially 
the algebraic methods, to sequential 
applicative and procedural languages 
had been already done to define the 
semantics of program variables and as
signements £ 9] , procedures [ 4] , or 
recursive functions [11 • 
In this approach, a programming langua
ge can be described by an abstract 
(data) type, as described for example 
in [1] , for which the meaning is gene
rally explained by particular models 
such as initial or terminals ones, or 
the set of all possible models (which 
may be described by sets of congruences 
of the term algebra). Thus it would 
be possible to have several semantic 
models to programs according to the 
choice of the model associated with the 
abstract type. 
The object of the present paper is to 
apply and extend the techniques of al
gebraic semantics (for more explicative 
notions see [8] ) to describe paralle
lism, using a simple and deterministic 
language, named CSPD, emboding explicit 
forms of concurrency and communication. 

0190-3918/83/0000/0281$01.00 © 1983 IEEE 281 

2. CSPD : SYNTAX AND INFORMAL 
MEANING 

The main features of this language 
are 
- Processes are disjoint, don't have 

any shared variables. They only in
teract by means of communication. 
Communication is achieved by means of 
send and receive operations which are 
primitives of the language. Besides 
passing messages, communication may 
play a role of synchronisation. 
RECEIVE x FROM P.(in Pi) is an input 
command, expresslng an input request 
of the process P. from the process P. 
and assignment of the input value toJ 
the (local) variable x. 
SEND y TO P. (in P.) is an output 
--- - ' 1 
command, meaning a request of P. to 
output the value of y to ~ .. 

- Processes are deterministif and con
currency between them is explicit by 
a parallel operator. 

The other components of the language 
are the nop and abort constructions, 
the sequential composition (stmt1; st
mt2), the assignement (variable := expres
sion), the conditional (IF boolexp 

THEN stmt1 ELSE stmt2FI), the while 
loop (WHILEJ;()Qlexp DO-Stmt OD) and ty
ped declarations (variable type). 
An example of CSPD programs is the 
following : 
PROGRAM Toy; 

PROCESS Div ; 
VAR x, y, quot, rem : INTEGER; 
BEGIN 
~~-RECEIVE x FROM User; RECEIVE y FROM User; 

quot := O; rem := x ; 

END; 

WHILE rem ~ y DO 
rem:= rem-y; quot := quot+1; 

OD; 
SEND quot TO User; SEND rem TO User; 

PROCESS User; 
VAR a,b,q,r 
BEGIN 

INTEGER; 

--IF a > 0 AND b > 0 



THEN 

ELSE 
FI 

END; 
PARBEGIN 

SEND a TO Div;SEND b TO 
RECEIVE-q FROM Div; 
RECEIVE r FROM div 
NOP 

... Div//User PAREND. 

Div; 

The language, if summarized, corres
ponds to the following syntax, where 
id, procid, declarations, var, exp and 
boolexp are non terminals to which we 
give no syntax rule and which represent 
respectively the program identifier, a 
process identifier, a local declara
tions, a variable, an expression and a 
boolean expression, 

program-> PROGRAM id;{proces~; 

PARBEGIN procid { //procid} PAREND • 
process-> PROCESS procid; declara

tions; BEGIN stmt END 
stmt -> NO°PTABORrJ-var := exp ! 

iF boolexp THEN stm1 ELSE stmt2 FI I 
- WHILE boolexp DO stmt OD I 

stmt1;stmt2 I SEND exp----ro procid I 
RECEIVE var FROM procid 

3. FORMALIZATION OF THE SEMANTICS 
OF CSPD. 

3.1. CSPD abstract type the hypo-
thesis . """-------~~--

We suppose 
- defined in a formal manner the con

text conditions of CSPD. From now on, 
we deal only with legal programs de
signed in CSPD (no static semantics 
are given). 

- defined the basic (primitive) types 
that occurs in CSPD. 
We have 
VALUE 

EXP 

in particular 
the type of value sorts, in
cluding the sort of identi
fiers(*) and the <lata sort Data, 
for which equality operations are 
predefined. 

The type of expressions with 
a general sort Exp (including 
in particular t~sort of boo
lean expressions Bexp) for 
which a substitute --operation 
is given. 

According [s] , to define the semantics 
of a programming language, a method con
sists of extending the semantics, sup
posed to be known, of the primitive ob
jects to the other abjects, that is the 
constructs of the language. The hierar
chical construction of the type is gi
ven below. 
(*) The sort Ident maps variable identifiers 

Varid and process identifiers Procid. 

282 

3.2. CSPD abstract type the sys-
tematic hierarchical descrip
tion 

To make explicit the definition of 
CSPD other types are required, in par
ticular those concerning the language 
phrases and (the interpretor) states. 
Thus we have 

STATE The type of states with a sort 
State generated by 
::--a-fiull operation 

init : -> State 
- a two aries operation connec

ting states and the language 
phrases 
apply : Modif x State -> State 

To evaluate expressions~o a value, 
we introduce an operation expressing 
this requirement 

eval Exp x State +Data 

MOD IF The type corresponding to phra
ses (statements and deciara
tions) occuring in the langua
ge, with a general sort Modif 
generated by the following ope
rations(*), to which we give a 
notation convention on the left 
hand side of the operations 
profile. 

nop, abort : -> Mod if :nop, abort 
to explicit the meaning , 
of empty and abortion sta~ 
temen ts, 

seq : Modif x Modif 
-> Mo<lif 

to explicit the definition of 
the sequential composition, 

if : Bexp x Modif x 
Modif ->Mo~ 

to define explicitly the con
ditional statement, 

while : Bexp x Modif 
-> Modi_f_ ---

to define explicitly the 
•vhi le loop statement, 

Send : Procid x Procid 
x Exp -> Modif 

to explicit the meaning of a 
send statement between a re
ceiver and a sender, two con
current processes, 

receive : Procid·x Procid 
x varid -> Modif 

to explicit the meaning of a 
receive statement between a 
sender end a receiver, two 
concurrent processes. 

s2 

: if b then s 1 
:·else SZfi 

I 

'while b , __ _ 
:do s od ,-
' I 
' 
:P.Q!e 
: 

' 
JP.Q?v 
I 

(*) We concentrate our attention only on state
ments forgetting object declarations. 



AGENT The type corresponding ;P: :S 
to a process defini- 1 
tion, with a sort Agent1 
generated by ---: 

declagent Procid x Modif 1 
____,.Agent 

PROGR The type corresponding 
to a CSPD program des
cription, with a sort 1 
Progr generated by put-: 
~together processes1 
in a concurrent way 

parall: Agent x Agent 
~ Progr 

3.3. Remarks 

I 
I 

Ip 1 : : S 1 

: 11 

: P2:: S2 

(1) Defining the abstract data type 
for CSPD, semantical descriptions 
remains to be explicited. They will 
be certain terms of this abstract ty
pe. For instance, the term correspon
ding to an expression is of the sort 
Exp and the term corresponding to a 
statement is of the sort Modif. The 
mapping of concrete programs into 
terms is specified using semantic 
(conditional) equations. 

(2) To be more explicit, the hierarchi
cal construction of the type can be 
schematized as follow. 

Modifications 
sort 

Sort 

Expressions Sorts 

value 

(3) For the CSPD type the following 
basic equalities are required 

, s ; nop = s 
• aborG s = abort 

~s2) s3 = s1 (s2 s3) 

While b do s od = if b then s 
while b do s od else nop fi 

where a. is 
:L 

of the form Pi :si (i = 1 .. 2) 

With the help of this equalities eve
ry CSPD-term of sort Modif can be 
brought into the normaifOrm : s 1 ; s 2 , 
where s 1 is either nop, assign, send, 
receive or if operation. 
Every term of sort Progr is equivalent 
to a term of the f o~ 

X::x1; x2ll ••·II Y::y1; Y2 

283 

Where x 1 , .. ,y corresponds to an ele
mentary or conditional instruction. In 
our study we consider only the systems 
which are designed by two CSPD proces
ses, a generalisation with n processes 
remaind to treat. 

(4) Following the nature of modifica
tions we consider them in a stratified 
manner. We note at least two kinds of 
modifications 

- Elementary modifications, including 
. The basic modifications which cor
respond to the nop, abort and assigne
ment constructions. We characterize 
them by the predicate 

bstm? : Modif -> Bool 

. The input/output modifications which 
correspond to the send and receive com
mands. We characterize them by the pre
dicate 

iostm? Modif -> Bool 

- Composed modifications which corres
pond to the sequential composition, 
conditional and while loop construc
tions. We characterize them by the pre
dicate 

c stm? Modif -> Bool 

From now on, we preserve this decompo
sition (and go on with), because it 
will help us to clarify some difficult 
notions in parallel programming theory 
and to master the complexity origina
ted from a large number of functions 
and axioms. 

3.4. CSPD abstract type 
specification 

a formal 

3 .4. 1 

3. 4. 1. 1 

A specification framework 

The problem position 

To specify (i.e, give semantics for) 
the full type two attitudes are possi
ble 

(1). Consider that couples generated 
by the function 

config : Modif x State~Conf 
can be reduced by-a-semantic function 

reduce Conf ~ Conf 
This is an approach of--;;perational se
mantics of systems, in the form of 
transitions systems. For more explana-
tions see [2] [11] 

(2) Consider that a statement trans
forms the state by the "apply" opera
tion, which we specify its properties 
by using conditional axioms and substi
tutions on the formulas. 
To deal with this approach, 



- At first, if we are not interested by the 
communication features, a single process (ta
ken out of a set of communicating processes) 
is regarded by itself to be a semantically 
meaningful entity (3] . 
- Therefore, a binding operator is introduced 
to combine a set of all separate "a priori" 
meanings of all separate processes to a joint 
meaning of the system designed by them in a 
parallel composition, and to settle communi
cation features. This definition uses the im
portant notion of (execution) time introduced 
below. 

3.4.1.2. States and temporal specification 

A state of a given system designed in CSPD can 
be viewed as a tuple of processes state (the 
processes are these composing the system). Re
call that the processes state are disjoints 
because of the lack of global variables in the 
language and that each one can be viewed as a 
(linear) computation from initial state at an 
initial date (say t ). If we are interested in 
describing, at a gi~en date t, the general 
state of such a system (say Z at t), two pos
sibilities can take place : t 

- z is perfect : the processes finish at the 
sam~ time t the execution of their current 
instruction. 
- Z is imperfect : at least one process fini
she~ at the time t the execution of its cur
rent instruction, while the other not. 
To consider similar situations, we introduce 
the predicate : 

perfect? : State ~> Bool. 
To any particular process, one wish to attach 
a date (involving on the other hand all exe
cution sequences which a program generates on 
the general state) and a modification. From 
now on, a state is considered as a tuple : 
<memory, data, modification> 
The perfectness of a process state is thus gi
ven by : 

perfect? : (<cr,t,s>) = ifs = nop then true 
else false fi 

We suppose that the initial states (at initial 
date t ) are perfect. 
To coo~ up the time notions, we suppose as 
known the primitive type DATE with the sort 
Date, ranged over by t, and give below profi
les and informal meanings of the needed ope
rations 

(1) dateof : State~> Date 
defines the second projection of a state seen 
as a tuple of the form <cr,t,m> where a is a 
process memory of the sort Memory and t is the 
associated date of the sort Date. 

(2) datend : State ~> Date 
defines the date at which the current modifi
cation, submitted to a state, takes off. The 
state at that date is complete. The computa
tion of that date depends in particular on the 
duration of the (current) statement execution. 

284 

Note that this operation cannot be applicable 
to the input/output modifications. 

(3) precedes : Date x Date ~> Bool 
defines a total order on Da~ 

Remark : 
The "dateof" and "datend" operations can ex
press, to a given state, equal dates. The rela
tive equations can be written as follow : 

dateof (<cr,t,s>) t 

datend (<a,t,s>) = if perfect? (<cr,t,s>) 
then t 

elRe dateof (apply (s, 
<a,t, !!£E>)) fi 

3.4.2. The "a priori semantics" equations 

In this section we want to focus our interest 
in defining the equations which correspond to 
the "apply" operation, connecting a process 
state and its modifications, which are of the 
profile : Modif x State ~> State. 
Notice that nothing will be said about the com
munication operations, treated in the 
following section. 
The computation of a sequential process P 
starts at an initial perfect state, say z0 
< a0 (P), t 0 , nop> where t 0 is the initial date., 

11 fail1;1retn"• which record an erroneous com
putation ; 
"abortiontn" which record an abortion ; 

Z = <a 
n n 

the date 

(P), tn' nop> otherwise Ctn being 

of the computation end). 

(1) Suppose to be known at time t the perfe'Ct 
state Zt =<at (P), t, nop> of the process P. 

The following are the equations, induced on 
the syntax, of the apply operation. 

apply (~, zt) = zt 

apply (abort, Z ) = abortion 
~~- t t 

apply (v:=e, Zt) = <Z't• t', nop> 

such that Z't = subst (val (eval (v, 

Zt)), eval (e,Zt)) and precedes (t,t') 

apply (s 1;s 2,Zt) = 

apply (s 2 , apply Cs 1, Zt)) 

apply (if b then s 1 else s 2 fi, Zt) 

if eval (b, Et) = true then 

apply Cs 1 , Zt) 

elsif eval (b, Zt) = false then 
apply Cs 2 , Et) 

else failuret fi 

(2) Suppose now that the given state of the 
process P, at that time t, is an imperfect one. 
In a such state, an elementary modification is 
being executed. 
This fact can be described elegantly by intro-



ducing the operation 
in : Modif x State -> State (*) 

To that imperfect state no modification can be 
applied (and no expression can be evaluated in
to it) until knowning its perfect state. 
So, we have 

apply (s 2 , in (s 1 , Ltl))= 

apply (s 2 , apply (s 1 , Ltl)) 

eval (e, in (s 1 , Lt 1)) = 

eval (e, apply (s 1 , Lt 1)) 

Where L 1 is the perfect required state on 
which the modification s 1 was submitted. The 
computation of the modification s 1 halts at a 
perfect state apply Cs 1, L 1), which we can des-
cribe by an operation t 

statend : State -> State 
with the equatic;n:s---

statend (apply(s 1 , Ltl)) =apply (s 1 , Et 1) 

statend (in(s 1 , Lt 1)) =apply (s 1, Ltl). 

3. 4.3. The "binding-operator" equations 

3.4.3.1. Communication axiomatisation 

In the above section no equations was given to 
define the "send" and the "receive" operations 
(ie modifications predicated by the "iostm?" 
hidden operation). This is due to the approach 
adopted and to the fact that the communication 
type [10] requested by the language still inten
tionally unknown. So different CSPD can be taken 
into account, according to the choice of the 
communication type (which may be synchrone, 
asynchrone, deterministic, nondeterministic and 
so on) ; and it seems possible to give a com
munication axiomatisation by means of the same 
convenient too 1. 
To be succintly, we treat below two communica
tion types : 
- a deterministic and synchronised communica
tion like it occurs in [6] : the rendez-vous 
protocol oblige the process reaching a communi
cation command (in other words, able to commu
nicate) to wait for the corresponding comple
mentary command in its interlocutor. 
- a nondeterministic and asynchronised communi
cation, where the producer and the consumer 
are totally independent. 

Remarks : 
(I) No equations can be given to axiomatize the 
communication synchronised by a rendez-vous pro
tocol because it depends on the processes capa
bilities. 
(2) A communication of the second type can be 
seen as a basic modification on a predefined 
identifiers attached to the processes to hold 
messages. 

(*) Notice that we have the following equality 
in (s',<cr,t,s>) =ifs= nop then <o,t,s> 

else in (s', 
statend (<cr,t,s>)) fi 

285 

apply (P.Q!e, <o (P) ,t,m>) = <L' ,t 1 ,nap> 
t t --

let E <o (P),t,m> st precedes (t,t') 
t t 

and L1 = <subst (val (eval (11 ,L ), 
t p t 

eval (e,l:t))> 

apply (P.Q?v, <crt (P), t,m>) 

apply (v:= TI , <o (P),t,m>) 
q t 

Where 11 and 11 

Hers aEtacher3 
P and Q states. 
(11 and 11 type 
ty~e. It ~an be 
buffer with one 

are those predefined identi
respectivelly to the processes 

depends on the communication 
a queue, an infinite queue, a 
element, and so on). 

In the above equation TI is a copy of 11 deli
vered by the producer t8 the consumer :qthat 
will permit handling a totally independent 
production and consommation. We suppose that 
to be brief in describing the concurrency 
axiomatisation. 

3.4.3.2. Concurrency axiomatisation 

The computation of a system designed by the 
communicating processes X and Y starts in a ini:
tial general (and perfect) state LO=< Z: 0 (X), 
z: 0(Y)> and may produce a set of such couples 
as final state. We also include as possible 
final state : "failure " and "abortion " 
which record respectiv~~ly an erroneoustgompu
tation and an abortion in one component. 
This computation is described by transforma
tions of the general state. To tackle the 
semantic equational definition of this parallel 
computation an (binding) operation is introdu
ced (at the interpretation level of the hie
rarchical construction of the CSPD type) : 

exec : Progr x State -> State 
Knowning at time t the general state l: compo
sed at t by L (X) and l: (Y) the statestof the 
disjoints proEesses X ahd Y, we want to descri
be formally 

exec (X :: x 1 ; x2 [[ Y :: Y1 ; Y2, 

<l: (X) , Lt (Y) >) 
This formaliz~tion depends on the form of the 
term x. and y. (i = 1 ..• 2) and on L (X) and 
l: (Y)iwhich Ean be perfect or not ~erfect. 

t 
Before tackling this formalization, we want to 
point out the fact that it is a little cumber
some. It is the reason why we induce it on the 
structure of modification terms. 

let 

st 

in 

l:tE State ; d 1 ,d2 ,d3,d4e Date 

L <l: (X), l: (Y)>, 
t t t 

di datend (apply (x1 , 

d2 datend (apply (x2 , 

d3 datend (l:t(X)) 

d4 datend (Lt(Y)) 



(1) ~~~iE_~~~i!iE~!i~~ 
bstm? (x1)A bstm? (y1) =l> 

exec (X :: x1 ; x2 l\Y :: y1 ; y2, Et) 

exec (X : : x I \ Y : : y , l: 1 t) 

st ease 
perfect? (l:t(X)) ""perfect? (l:t(Y)) =l> 

X = x2 

y = Y2 

if precedes (d1, d2)then E\=(apply 

(x1, l:t(X)), .in (y1,Et(Y))> 

elsif precedes (d2, d1) then l:'t <in 

(x1, l: (X)), apply (y,l: (Y))> 
t 1 t 

else l:' t = apply (x1, l:t (X)), apply (y (• 

l:t (Y) )> fi; 

perfect? (l:t(X))-" 1 perfect? (l:t(Y)) =l> 

X = x 2 

y = Y1 ; Y2 

if precedes (di, d4) then l:'t = 

<apply (x1, l:t(X)), l:t(Y)> 

elsif precedes (d4, d1) then l:'t 

<in(x1, l:t(X)), statend (l:t(Y))> 

else E' ·=<apply (x1,E (X)), 
t t 

statend (L:t(Y))> fi 

lperfect? (l:t(X)) /\perfect? (l:t(Y)) 

x = x 1; x 2 

y = Y2 

if precedes (d3,d2) then l:'t = <l:t(X), 

apply (y1, l:t(Y))> 

elsif precedes (d2,d3) then E't= <statend 

(tt(X)), in (y1, l:t(Y))> 

else E't = <stol\tend (l:t(X)), apply (y 1, 

l':t(Y))> fi • 

esae ; 

(2) ~~!!!!!!~giE~!i~g-~~~i!iE~!i~~ 
(2. 1) Case of deterministic and synchronous 

communication 

iostm?(x1) A bstm?(y1) =l> 

exec (X :: x1 ; x2 \I Y :: Y1 ; y2, Et) 

exec(X .• x1 ; x2 11 Y :: y, l:'t) 

st ease 

perfect? (l:t(X))"' perfect? (l:t(Y))> =l> 

y = Y2 

l:'t = <Et(X), apply (y1, l:t(Y))> 

286 

perfect? (l:t(X))Alperfect?(l:t(Y)) =l> 

• y = y1; Y2 

• E't= <l:t(X), statend (l:t(Y))> 

1perfect? (l: t (X)) /' perfect? (l: t (Y)) =l> 

y = Y2 

esae 

if precedes (d3,d2) then l:'t = <statend 

(l:t(X)), in (y1,Et(X))> 

elsy precedes (d2,d3) then E't = <l:t(X), 
apply (y1,Et(Y))> 

then E't = <statend (l:t(X)), apply (y1, 

l:t (Y) )> fi ; 

% bstm ? (x1) /\ iostm? (y 1) =l> Simular to the 
preceding equation, due to the communicati
vity of the "parall" operation % 

iostm? (x1) .A iostm? (y 1) =l> 

exec(X :: x1 ; x2l I y :: Y1 ; Y2· <Et(X), 

(Y)>) = E 
t 

if perfect? (Et (X)) "' perfect? (Et (Y)) then 

if x1 = X. Y! e 1 A. yl = Y.X?v2 
then exec (X :: x2 \ IY :: y2, <Et (X), 

apply (v2 := e1, l:t(Y))>) 

elsif x1 = X.Y?v1-"' y1 = Y.X!e2 
then exec (X:: x2 I I Y :: y2 , 

<apply (v1 := e2, Et(X)), Et(Y)>) 

elsif x1 = X.X!e1v x1 = X.X?v1 V 

y1 = Y.Y!e2Y y1 = Y.Y?v2 
then failuret 

f i 
then abortiont 

else if perfect? (Et(X)) 

f i 
f i 

then exec (X : : x1 x2 I I Y : : Y 1 

<l:t(X), statend (Et(Y))>) 

else % perfect? (l:t(Y)) % 

exec (X : : x1 ; x2 11 Y : : Y 1 

<statend (l:t(X)), Et(Y)>) 

(2.2) Case of nondeteniiinistic and asynchro
nous communication 

iostm? (x1) /\ bstm? (y 1) =l> 

exec (X :: x1; x2 \I Y :: Y1; y2 , Et)= 

if x1 X.X!e V x1 = X.X?v then failuret 

else exec (X :: x JI Y :: Y ,E't) fi 



st case perfect? (I (X)) => 
t 

csac ; 

if x 1 = X.Y!e then 

else % x 1 = X.Y?v % 

y = Y1 

I' t =It; 

perfect? (It(Y)) => 

x = x 1 ; x 2 

y = Y2 

x =(nx:= e; x2) 

x =(v := :;; 
y 

if precedes (d3,d2) then Z't = <statend 

(l:t(X)), in (y 1 , It(Y))> 

elsif precedes (d2,d3) then z'~ <It(X), 

apply (y1 ,zt(Y))> 

else I't=<statend (It(X)), apply (y 1 , 

l:t(Y))> fi 

% bstm? (x1) /\ iostm? (y 1) =9 similar to the 
preceding equation % 

iostm? (x1) A iostm? (y 1) =9 

exec (X : : x 1 ; x2 11 Y : : Y1 ; Y2 , l:t) 

ifx1 = X.X!e 1 V x 1 X.X?v 1v y1 = Y.Y!e 2 
V y 1 = Y. Y?v2 

then failuret else 

exec (X ::x; x 2 11Y ::y; y2 , l:t) fi 

st case perfect? (l:t(X))Aperfect? (It(Y))=9 

. if x1 = X.Y!e 1 then x =(nx ·= e 1) else 

esac ; 

% x 1 = X.Y?v 1 % x =(v 1 ·= ify)fi 

if y1 = Y.X!e 2 then y=(n := e 2 )else 
y -

%y 1 = Y.X?v2 % y = (v2 := 'IT x) f'i 
perfect? (Z (X)) /\ 1 perfect? (I (Y)) =9 

t t 

if x1 = X.Y!e then x= nx := e 1else 

% x1 = X.Y?v 1% x = v 1 := ~y fi 

y = Y1 

lperfect? (It (X)) A perfect? (It (Y)F.> 

x x1 

if y1 = Y.X!e 2 then y~~ := e 2) else 
y -

% y1 = Y.X?v2% y =Cv 2 .- nx)fi 

(3) Conditional modification 

cstm? Cx 1) ~ perfect?(It(X)) =9 

exec (X : : x 1 ; x2 11 Y : : Y1 ; Y2, 

<l:t(X), t(Y)>) = 

let x 1 = if b then s 1 else s 2 fi 

in 

if eval (b, It(X)) true 

287 

fi 

then exec (X : : s 1 ; x2 I I Y · · Y 1 Y 2 • 

<l:t(X), It(Y)>) 

elsif eval (b, l:t(X)) =false 

then exec (X : : s 2 ; x 2 11 Y · · Y 1 ; Y 2 • 

<It(X), It(Y)>) 

else failure 
t 

% cstm? (y 1) -"'perfect? (l: (Y)) =9 similar to 
the preceding one. t 

cstm? (x 1) -" l perfect (l::t (X)) =;:> not given 
here to shorten the paper. 
This equation depends on the form of y 1• 

cstm? (y 1)-" lperfect? (I (Y)) =;:>similar to 
the preceding one % t 

3.4.3.3. General remarks : 

(1) The formalization is involved in three 
kinds of equations (analoguous one are also 
written) depending on the form of the modifi
cation considered. 

(2) The evaluation of boolean expression re
sults in some cases undefined values. This is 
necessary for describing loops within a sin
gle process. 

(3) Successful termination of the system desi
gned by two processes is noted by a couple 
of complete states different from "failure" 
and "abortion". 

(4) Deadlock arise when the processes are in
volved in some cyclic deterministic and syn
chronuous communication. 

(5) The definitions above presuppose that exec 
will never be supplied with a pair of states 
<I (X), l: (Y) > both of which are imperfect. The 
paftial ffinction can easily be extended to co
ver the missing case : 

This 

lperfect (It(X))-"lperfect? (l:t(Y)) =;:> 

exec (X : : x 11 Y : : y, <l:t(X), l:t(Y)>) 

if precedes (datend (l:t(X)), 

datend (I 
t 

(Y))) 

then exec (X : : x 11 y : : y' 

(stat end (It(X)), l:t (Y)>) 

else exec (X : : x 11 y .. y, 

<l:t(X), stat end (l: (Y) )>) fi t 
would hold for all forms of x and y. 

4. CONCLUSION 

Switching on to concurrency and communication, 
some inherent computational complexity arises 
and makes necessary the introduction of time 
notion. 



Commonly this notion is considered as an imple
mentation tool, we regard it to be a high abs
traction level in specifying parallel programs 
and formalizing its semantics (similarly to 
the sequence notion introduced to formalize 
semantics of sequential programming). 

Defining the meaning of systems of communica
ting processes in a "mathematical" way, the 
main problem is to find appropriate domains 
for the semantical models. 

To avoid these crucial problems, purely alge
braic methods are used. The presented abstract 
type takes together into account the phrases 
of the language and elements allowing to ex
press their meaning, like states, "eval", 
"apply" and "exec" operations. 

Remark that if the type is relatively complex, 
the description of phrases are more simple 
(language level of the hierarchical construc
tion, the other levels being used to write 
axioms). In addition, different communication 
types can be easily handled in an elegant and 
a simple manner. 

Extending the method to treat more complex 
constructs, es~ecially those inducing non
determinism and showing its complementarity 
with axiomatic methods (proof rules), remains 
to developp. 

[sj 

References 

M. BROY & M. WIRSING, "Programming lan
guages as abstract data types", 5th CAAP, 
Lille 1980. 

M. BROY & M. WIRSING, "On the algebraic 
specification of finitary infinite commu
nicating sequential processes", IFIP-TC2, 
Garmish-Partenkirchen 1982, pp 135-162. 

N. FRANCEZ & al, "Semantics of non deter
minism, concurrency and communication,-,, 
JCSS 19, 1980, pp 203-308. 

M.C. GAUDEL, "Generation et preuve de 
compilateurs basees sur une semantique 
formeUe des langages de programmation", 
These d'etat INPL, Nancy, 1980. 

J.V. GUTTAG, "Notes on data abstraction", 
LNCS69, 1979, pp 593-615. 

C.A.R. HOA.IZE, "Communicating sequent1:al 
processes", CACM 20,1978, pp 666-677. 

B. LISKOV & al, "Abstraction mechan-ism in 
CLV", CACM 20, 1977, pp 546-576. 

c. PAIR, "Abstract data types and alge
braic semantics of programming languages", 
TCS 1, 1982, pp 1-38. 

P. PEPPER, "A study on transformational 
semantics", LNCS 69, 1979, pp 382-405. 

288 

G. R. PERRIN, "Specification and verifi
cation of communication of processes", 
CRIN 82-R-020, Nancy 1982. 

G.D.PLOTKIN, "An operational semantics 
of CSP", IFIP-TC2, Garmish-Partenkirchen 
1982, pp 185-208. 

S.N. ZILLES, "A look at algebraic speci
fications", IBM San Jose Research Labo
ratory, U.S.A. 1981. 



Introduction to the Poker Parallel Programming Environment 

Lawrence Snyder 

Department of Computer Sciences 
Purdue University 

West Lafayette, Indiana 47907 

ABSTRAC1' 

The Poker Parallel Programming Environ
ment is a graphics-based, interactive system for 
programming the Configurable, Highly Parallel 
(CHiP) Computer. Designed to support nearly 
all aspects of parallel programming in one 
integrated system, Poker has been implemented 
as a (.-35,000 line) C program on the VAX 
11/780 under UNIX. It provides a number of 
novel features including graphics programming 
of parallel processor communication. 

Although much sequential programming can be 
accomplished with only the support of a programming 
language ~OmJ?iler, loader and run-time system, parallel 
programmmg 1s too complex to be done with such rudi
mentary facilities alone. The Poker System is an interac
tive programming environment to support the 
Configurable, Highly Parallel (CHiP) Computer [1]. The 
~o~er ~ystem is not itself a parallel program, but rather 
1t 1s a front end", implemented on the V AX/780 under 
UNIX. It is a front end to a preprototype version of the 
CHiP hardware, called the Pringle, which is a 64 proces
sor parallel computer emulating the CHiP [2]. In addi
tion, Poker is a front end for a complete software emu
lator for the Pringle. 

The Poker System enables the programmer to 
define a large family of CHiP architectures with 4 to 
4096 processors. Programs can be written and emulated 
for any family member. Facilities are provided to define 
processor interconnection structures graphically, to pro
gram the processing elements, to compile, coordinate [3], 
and load, to perform single and multistep execution, and 
to peek and poke (whence the name) at the memory of 
the architectures. 

CHIP Programming is Something Else 
The programming environment provided by Poker 

is somewhat unconventional due partly to novel proper
t!es of the CHiP <?omputer and partly to novel proper
ties of the system itself. To increase the accessibility of 
subsequent sections, we discuss here the activity of CHiP 
programming and the role Poker plays. 

Programming, of course, is the conversion of an 
(abstract) algorithm that is "machine independent" into a 
form suitabl~ for execution on a particular computer. 
Thus, to begin programming a CHiP machine, we need 
to have a parallel algorithm in mind. The algorithm is 
presumed to have the form of a graph whose vertices are 
processes and whose edges specify the communication 
paths among the processes. 

This work is part of the Blue CHiP Project. It is supported in 
part by the Office of Naval Research Contracts N00014-80.K-
0816 and N00014-81-K-0360. The latter is Task SR0-100. 

0190-3918/83/0000/0289$01.00 © 1983 IEEE 289 

For example, Figure 1 gives an algorithm that uses a 
binary tree as the communication graph. The algorithm 
finds the maximum of a set of numbers (stored one per 
process in a local variable called "val") and then multi
plies each number by the maximum. The maximum is 
found by "floating" the largest value in each subtree to 
the root of that subtree. Then the global maximum is 
broadcast back through the tree where each process 
multiplies it times its local "val." Notice that although 
there are fifteen processes in the tree, there are only 
three types of processes used. 

The conversion of this algorithm to run on a CHiP 
computer, i.e., the programming, is straight fo:ward.• It 
involves 

(a) embedding the communication graph into the 
switch lattice, 

(b) programming the process types in a sequential 
programming language, 

(c) assigning one of the process types to each pro
cessor, 

(d) naming the data path ports, and 
(e) compiling, assembling, coordinating, and load

ing the program. 

We consider each of these activities in turn. 
Embedding the communication graph into the 

switch lattice requires that we program the switches of 
the lattice so that the processors have a topology that 
matches (or is a super set of) the topology of the com
munication graph. This embedding operation is done 
graphically (rather than symbolically) in the Poker 
System using the Switch Setting5 mode. Figure 2 illus
trates a particular embedding of the fifteen node binary 
tree into the lattice. Processor (1,2) is the root of the 
processor tree, processor (1,1) is a leaf, and processor 
(1,3) is unused. 

Next we program the three process types in a 
sequential language, XX. Each process is viewed as a 
procedure with (optional) parameters and local vari
ables. In addition to the usual declarations we must 
specify the port names. symbolic names used by a process 
to refer to other processes with which it communicates. 
Figure 3 shows the XX code for the three process types. 
In the programs the symbol '< -' is used for 
input/output; assigning to a port name, e.g., PARENT 
< - val, causes output, and assigning from a port name, 
e.g., max<- PARENT, causes input. 

The construction of the processor tree in the switch 
lattice to match the communications graph gives an 
iI_llplicit association between the processes of the algo
rithm and the processors. We make this relationship 

•Assuming familiarity with the CHiP Computer (1]. 



explicit by assigning process names to the appropriate 
processors using the Code Names mode of the Poker 
System. Figure 4 gives the result. 

Next, the port names mentioned in each process 
must be associated with a specific data path. Each pro
cessor bas eight ports corresponding to the compass 
points. Only those connected by an active data path to 
another PE need be named. This activity is performed 
using the Port Names mode of Poker. Figure 5 shows 
the result of naming the ports. 

The algorithm is now programmed. Next, each pro
cess type mentioned in the Code Names specification is 
compiled into assembly code. The assembly code is then 
"coordinated," i.e., modified so that the CHiP Computer 
can run it synchronously. The coordinated programs are 
assembled to produce processor object code. The inter
connection structure is Hcompiled" to produce switch 
object code. The object codes are loaded into the 
machine and executed. 

Description or the Poker Environment 
In the last section we used the Poker Programming 

Environment to embed graphs, to define processes, to 
assign processes to processors, and to declare port 
names. The discussion implied the existence of certain 
facilities in the Poker System. Now we give a more com
plete description of those facilities. 

The Poker System is an interactive programming 
environment that uses two displays: The primary display 
is a high resolution (1024 x 768 pixel) bit-mapped 
display, and the secondary display is a conventional 
character display. The two displays are used to increase 
the amount of information available to the programmer. 
Most activity takes place on the primary display; XX 
programming is usually done on the secondary display. 

The primary display has the form illustrated in Fig
ures 2-5. The bottom square region, called the field, is 
where most of the programming activity takes place. 
The field always displays some schematic representation 
of the two dimensional array of processors being pro
grammed. The exact form of the representation changes 
depending on whether the programmer is performing a 
graph embedding, a process assignment, a port declara
tion, etc. Since the field is not always large enough to 
show the whole schematic representation, a map of that 
portion being displayed is given in the upper left-hand 
corner. Status information, diagnostics and miscellane
ous data are given in the upper right region of the 
display, called the chalkboard. The bottom line of the 
chalkboard is the command line, used for specifying the 
few textual commands* required by Poker, such as read
ing library files. 

The logical structure of the Poker Environment is 
shown in Figure 6. It provides an integrated set of facil
ities to 

• define architecture characteristics (CHiP 
Parameter), 

• embed communication graphs {Switch Set
tings), 

• program process code segments (XX 
language), 

"Poker is completely interactive; most actions arc given as a single 
key stroke and have immediate effect. 

290 

• assign processes to processors (Code Nam
ing), 

• declare port names (Port Naming), 
• compile, coordinate, assemble and load 

{Command Request), 
• execute, trace, peek and poke (Trace 

Values). 

We now describe each of these facilities in detail. 
Architectural definition. Because Poker is intended to be 
a laboratory tool for studying CHiP programming, it bas 
been designed to support a number of CHiP family 
architectures. Programs can be written for logical CHiP 
machines with from 4 to 4096 processors. All of these 
logical machines can be emulated using a software emu
lator, and one family member, the 64 processor version, 
will be able to be run on a hardware emulator, the Prin
gle [2], when it is completed. Consequently, the pro
grammer begins using Poker by specifying the charac
teristics of the underlying logical architecture. These 
include the number of processing elements and the 
amount of routing capability needed for the lattice (cor
ridor width [1]). The default parameters are those that 
match the machine defined in the previous session, or, if 
there was none, then the parameters of the Pringle 
hardware. 

Graph embedding. The field of the primary display 
shows the lattice of the current architecture, as illus
trated in Figure 1. The activity is largely that previously 
described; the programmer connects the processors 
(represented as boxes) with line segments to define 
edges. Graphics primitives based on cursor keys permit 
edges to be drawn and erased. Facilities are available 
for following graph edges, managing the display (e.g., 
centering), saving embeddings, reading in library embed
dings, etc. 

Programming the process code segment. The XX 
(Dos Equis) sequential programming language is a sim
ple scalar language for defining processes. The language 
has four data types (Boolean, character, integer and 
real), the common control structures (while, for, if
then-else, etc.), vectors and the usual supply of scalar 
arithmetic and logical operators. In addition to data 
type declarations, one can also declare scalar variables to 
be port names, procedure parameters, or variables to be 
traced. Input/output is performed by assigning from or 
to a port name. The semantics are "data-driven:" writes 
occur immediately and reads wait on the arrival of data, 
if necessary .. XX process codes are generally developed 
on the secondary display using a standard editor. 

Process assignment. The processors are assigned 
processes using a field display on the primary terminal 
like those in Figure 4. The programmer enters the name 
of the process procedure on the first line of the proces
sor box. If the procedure has formal parameters, then 
values for the actual parameters can be entered on the 
following {four) lines. Facilities are provided for 
buffering the contents of a box and then automatically 
depositing the contents of the buffer into processors in 
whole regions of the processor array. In this way the 
programmer is saved from manually entering repeated 
information when the algorithm exhibits uniformity. 

Port declarations. The field of the primary display 
bas the form illustrated in Figure 5. Each processor has 
up to eight incident edges as a result of the graph 
embedding, and it has been assigned a process which 
refers to up to eight port names. These are matched 



using the port declaration. The processor box is divided 
into eight windows: 

home 

noort ~ - --1 ne port 
nw port - - t 

· e por 
w port __ --- t 

sw port~ ~:e~:: 
The programmer enters the names used by the assigned 
process code into the window for that edge. The names 
are clipped to the first five characters. Facilities are pro
vided for displaying unclipped names in the chalkboard, 
and like the process assignment, it is possible to buffer 
port assignments and deposit them automatically in 
whole regions of the processor array. 

Program translation. The preceding facilities pro
vide a means of specifying the elements of a Poker pro
gram. They are then converted into executable form. 
The XX compiler converts each process to assembly 
code. The coordinator (3] then attempts to convert the 
process assigned to each processor into a form that per
mits the entire program to run with synchronous (i.e., 
not data-driven) execution. [This step can be by-passed 
and the processes can be run in data-driven form.] If 
coordination is successful, the processors may all have 
different assembly codes associated with them. In any 
event the assembly converts the assembler code to object 
form. The connector "compiles• the graphical represen
tation of the communication graph into an object form. 
The object code and the object graph as well as the 
actual parameter values are loaded into the emulator (or 
the Pringle). 

Execution. The resulting program is executed and 
the traced variables are displayed; the field is similar to 
that used for process assignment. The execution can 
proceed for a given number of steps, or until a displayed 
value changes. When the execution is suspended, any of 
the displayed values can be changed. When execution 
resumes these new values are poked back into the pro
cessor memory. 

Further detail about the Poker Environment can be 
fc•.md in the references (4,5]. 

References 
(1] Lawrence Snyder 

Introduction to the Configurable, Highly Parallel 
Computer 

Computer, 15(1): 47-56, January 1982 
(2] J. Timothy Field, Alejandro A. Kapauan, and 

(3] 

(4] 

Lawrence Snyder 
Pringle: A Parallel Processor to Emulate CHiP 

Computers 
Technical Report CSD-TR-433, Purdue Univer

sity, 1983 
Janice E. Cuny and Lawrence Snyder 
Compilation of Data-driven Programs for Syn

chronous Execution 
Proceedings of the 10th Symposium on the Principles 

of Programming Languages, ACM, pp. 197-
202, 1983 

Lawrence Snyder 
Parallel Programming and the Poker Environment 
Technical Report CSD-TR-443, Purdue Univer

sity, 1983 

291 

(5] Lawrence Snyder, Steven S. Albert, Carl W. 
Amport, Brian G. Beuning, Alan J. Ches
ter, John P. Guaragno, Christopher A. 
Kent, John Thomas Love, Eugene J. Shek
ita, Carleton A. Smith 

The Poker Programming Environment and its 
Implementation 

Technical Report CSD-TR-410, Purdue Univer
sity, 1982 

leaf process: ancestor process: 
write val to parent; 
read max from parent; 
val ... val · max; 

root process: 
read x from left child; 
ready from right child; 
max - max (x ,y , val); 
write max to left child; 
write max to right child; 
val - val · max; 

read x from left child; 
read y from right child; 
write max (x ,y, val) to parent; 
read max from parent; 
write max to left child; 
write max to right child; 
val - val · mu:; 

Figure 1. An algorithm; each leaf is an instance of 
the leaf process, the root is an instance of 
the root process and all other nodes are in
stances of the ancestor process. 

D D D D Wed=.:.~~ ~., .. LA:;·~;, ~·~'" ··~~;g .~I 

DODD 
DODD 

DOD,__ ___ _ 

00000 
0 

0 0 
0 0 
0 0 
0 0 

0 0 
000000000 

Figure 2. An embedding of the 15 node binary tree. 



code leaf (val); 
ports PARENT; 
begin 
Int max, PARENT; 
PARENT<- val; 
max<- PARENT; 
val:=val •max; 
end. 

code root (val); 
ports LCHILD, RCHILD; 
begin 
int x,y, max, val, 

LCHILD, RCHILD; 
x <- LCHILD; 
y <-RCHILD; 
If x> y then max:=x 

else max:=y; 
if val> max then max:=val; 
LCHILD < - max; 
RCHILD < - max; 
val:=val • max; 
end. 

code ancestor (val); 
ports PARENT,LCHILD,RCHILD; 
begin 
int x~y, max, val, 

PARENT, LCHILD, RCHILD; 
x <-LCHILD; 
y <-RCHILD; 
If x> y then max:=x 

else max:=y; 
If val> max then max:=val; 
PARENT< - max; 
max<- PARENT; 
LCHILD < - max; 
RCHILD < - max; 
val:=val •max; 
end. 

Figure 3. Code for the three process types. 

D D D D 1-"_""_"'_•_'"_10_•_38 __ "°_"_'_• _c_°"_'_ .. _._,._-_'_"'_'_"_o"_"_'c_' __ 1 PHASE; 1 LAST PE: 3 3 SAVED PE: NONE 

DODD 
DODD 
DD D Di----------1 

Figure 4. Assignment of process names to processors; 
note that the name "ancestor" has been 
clipped to five characters. 

292 

D D D D' _""'_ .. _•_'_"_'_'._._'_"_"_"'_•_Po_'_'_""_"_'_' _-_'_"_''_'_co_""_'_c' __ t- PHASE: 1 LAST PE: 1 4 SAVED PE: NONE 

DODD 
DODD 
DODD 

Figure 5. The specification of the port names; note 
that the names have been clipped to the 
first five characters. 

I Initialization 
-1--------~1 

\------'• Architecture Def.: L.,.____..__I ___ 1 CHiP Parameters _ 

_i 
r:odo \:lecl 

Graph Embedding: 
Switch Settings 

Process Set Def.: 
XX Programming Lang. 

Process Assiqnment: 
Code Names 

Port Declarations: 
Port Names 

Program Translation: 
Command Reguest 

• 
Execution ~ 
·t•racl' Vc:.lues __J-----~ 

Figure 6. The logical structure of the Poker Environment. 



A High Level Analysis Tool 

For Concurrent Programs 

Paolo Mancarella and Franco Turini 
Dipartimento di Informatica, Universita di Pisa 

C.so Italia,40, I-56100 Pisa 

ABSTRACT 
The design of a tool which analyzes Concurrent 
Sequential Processes-like programs is presented. 
The purpose of the analyzer is to favor the 
understanding of a concurrent program via its 
simplification with respect to constraints 
interactively provided by the user. Constraints 
can be either on the input data or on possible 
synchronizations. The analyzer is based on 
parallelism removal techniques and symbolic 

evaluation techniques. 

1. INTRODUCTION 

Much research effort has been recently 
devoted to the design of languages for parallel 
processing and to the study of their formal 
semantics /5, 6, 11/. Several basic principles, 
like message passing and separation of 
workspaces are now widely accepted. It is then 
time to begin the design of suitable programming 
environments for such a class of languages. 
Among the tools one would like to have there are 

the so called static analyzers, i.e. programs 
able to favor the discovery of properties of the 
run-time behavior of parallel programs. 
The paper reports on the design of a tool for 
analyzing concurrent programs written in a CSP
like language. The basic idea is to apply the 
technique of symbolic evaluation, which has been 
successfully applied to sequential programs, to 
parallel ones. The process of symbolically 
evaluating a program is based on the ability of 
executing it on partially specified input data. 
Such an ability can be exploited to several 
purposes:, 

(1) To obtain symbolic statements, i.e. 
logical assertions involving the variables 
of the program, about the run-time 

behavior /1,3/. 

(2) To prove the correctness 
when it is annotated 

assertions /7/. 

of a program, 

by suitable 

(3) To partially compile a program in order 

either to obtain a more efficient one on a 
subset of possible input data or to get a 
better understanding of the behavior of 

the program /4,13/. 

Our approach intends to exploit symbolic 

evaluation techniques to obtain a better 
understanding of the behavior of parallel 
programs under explicit hypotheses on the 

behavior of its environment. Such hypotheses 

include restrictions on inputs received from 

outside. 
Basically, the system accepts a parallel 

program and transforms 

It tries to 
parallelism by 

it in two respects: 
resolve part of 

substituting it 
sequential nondeterministic code. 

the 
with 

It annotates control points of the 

resulting program with assertions about 
the state at those points. 

The transformations are interactively 
guided by the user, who, acting as the external 
environment, can force the behavior of the 

program either providing restrictions on the 
input data or forcing certain process 
synchronizations instead of others. 

The attempt of eliminating paral:;.elism is 

motivated by the desire of obtainig a better 
understanding of the program. In fact, on one 
hand we expect that sequential reasoning is 
easier than parallel reasoning, on the other 

hand putting together two parallel modules 
allows to move symbolic information from one 

process to the other, possibly leading to the 
simplification of both. The design of 
parallelism removal has been deeply influenced 
by several approaches to the semantics of CSP
like languages. Indeed, several authors /5,11/ 

This work was partly supported by CNR-PFI under propose to reduce the notion of paralleism to 

contract No. 81.02053.97. the notion of sequentiality plus nondeterminism, 

0190-3918/83/0000/0293$01.00 © 1983 IEEE 293 



ultimately denoting a parallel program by a 
multi-valued function. 

Our analysis tool is organized in three 
steps: 

First of all, a process is analyzed in 
isolation in order to annotate it with 
assertions about its local symbolic 
states. 
Second of all, processes are iteratively 
matched two by two in order to eliminate 
parallelism. 
Finally program transformation techniques 

are applied to the resulting program. 

The paper is organized as follows: section 
1 describes the parallel language we are dealing 
with. Section 2 describes the tool in some 
detail, while section 3 contains an example 
which puts in focus the characteristics and the 
possible use of the tool. 

2. THE LANGUAGE CSP-L 

The language is a slight modification of 
Communicating Sequential Processes /6/, The 
differences do not concern the basic features of 
the language, i.e. message passing, 
nondeterminism and static configuration of the 
program. 

The syntax of CSP-L is described in a BNF
like form, where {x}* denotes 'n' occurrences of 
'x', n?;(), and {x} denotes at most one occurrence 
of x. 

<system> : : = <process> { [ \ process} * 
<process> : : = < name> : : [ < command> ] 
<command> : := skip\< assignment> \ < input> \ 

< output> \ < composite_ command> \ 
< alternation> \ < repetition> 

< assignment> : : = < variable> : = < expression> 
<input>::=< channel_id> ? <variable> 
<output>::=< channel_id > ! <expression> 
< composite_command> : :=<command>; <command> 
<alternation> : := [<guarded command> 

m < guarded - command> } * ] 
< guarded_ command > : : = < guard > + <command> 
<guard> : := <boolean_expression > 
<repetition>::= *[<do_guard_command> 

{ D <do _guard_ command>} *] 
<do guard command> : := <guard> + <do body> 
<do= body ; : : = <command> \ { < command> ; }-EXIT 

The most important differences between CSP and 
CSP-L are the use of channels for communication 
and the definition of alternative and repetitive 
commands. In fact, the former does not deal with 
input guards and the latter has an explicit exit 

294 

condition. Some motivations for similar 
modifications can be found in /12/. 

3. THE ANALYSIS TOOL 

The input of the analysis tool is the 
abstract syntax tree of the program. Each step 
performs some kind of tree transformation. The 
transformations come in two categories: 

annotating the arcs of the trees with 
assertions. 
transforming the trees by merging two of 
them together, by eliminating subtrees and 
so on. 

Before tackling a description of the phases 
of the analyzer it is necessary to spend some 
words about what we mean by symbolic constants 
and symbolic states. By symbolic constants we 
mean a subset of a data domain. Symbolic 
constants are represented by predicates. If 

p : D + Bool 
is a predicate on the data domain D, "p" 
represent the symbolic constant 

A = { x I p(x) = true}. 
Applying a basic operation to 
constant is then a predicate 
operation. For example, let 

A={x/x>lO}; 

a symbolic 
. transforming 

then "A + l" must result into the predicate 
A = { x I x > 11 }. 

An important issue in designing a symbolic 
evaluator along these lines is then to provide a 
"predicate transformer semantics" to each 
primitive operation of the data types allowed by 
the language. This issue will not be considered 
further in this paper and it is dealt with in 
full in /13/. 
A symbolic state is a set of bindings among 
identifiers and symbolic constants. 

From now on by symbolically evaluating a 
(sequential) program we intend the ability of 
computing the symbolic state associated to every 
control point of the program by propagating the 
initial symbolic constants through the control 
paths. 

The three phases of the tool are named Al, 
A2, 'A3 respectively. 

3.1. First Phase : Al 
The purpose of Al is to simplify a tree 

eliminating assignments and sequentialization 
nodes. Assignment nodes are eliminated by 
annotating the arcs of the tree with symbolic 
states which keep track of their effects. 
Sequentialization nodes are eliminated by 
embedding the control flow into the structure of 



the tree. 

For example the fragment of process 
... c?x; x := f(x); y := g(x); d!y .•• 

where "c" and "d" are channel names and "f" and 

"g" are elementary operations, is transformed by 

Al into the subtree: 

fig. 1 

where "f x" and "g J!.' are the symbolic constants 
resulting from the computation of "f" and "g" 

respectively. 
The elimination of assignments nodes is 
particularly important because it reduces the 

necessity of interleaving the independent 

actions of two processes during their merging. 

During this phase the symbolic evaluation 

of the process is performed locally. This is to 

say that Al is unable to propagate symbolic 

constants beyond certain points of control 

because of the lack of information. First of 

all, input nodes are considered by Al points 

after which the evaluation is restarted with an 

undefined symbolic state (i.e. the symbolic 
value associated to each variable of the program 

is a predicate representing the whole data 

domain). Al just assumes that the communication 

will effectively take place, but it has no 

information about the value assigned to the 

input variable by the communication. 

The choice of making the whole state of the 

computation undefined may appear a bit too 

extreme. Indeed Al could propagate the part of 

the symbolic state which is not affected by the 
communication. On the other hand, A3 will 

recompute symbolically the whole program to get 

advantage of the information gained by A2, hence 

the full symbolic evaluation is deferred to A3. 

Secondly, loops in the process induce another 

class of cut-points for obvious reasons. The 
subtree representing a loop, produced by Al is 

of the kind: 

fig. 2 

where "s" is the symbolic state valid before 

entering the loop and "1" is the undefined 

295 

symbolic state. 
It is worth noting that at this point it does 

not make any sense trying to apply techniques 

for synthesizing loop invariants, since the 

control structure of the program obtained by 

merging several processes may be radically 

different. 
In summary the tree resulting from the 

application of Al has paths of the kind: 

f l 

!. 

2 

2.. 

fig. 3 

where the symbolic states "Si" are independent. 

For example "s2" retains the effect of the 

possible assignm~nts between "Nl" and "N2" but 

no information derived from "sl". 

3.2. Second phase : A2 

A2 is designed to merge together two 

symbolic trees, yielding a new one: the idea is 

to apply A2, step by step, to pairs of symbolic 

trees constructed by Al or by previous 

applications of A2 itself, in order to obtain a 

symbolic tree describing the control structure 
of the whole program. Given two symbolic trees 

Tl and T2, the result of evaluating A2[Tl;T2] is 
a symbolic tree T embedding the control 

structure of the compound process Pll IP2. 
The purpose of A2 is to solve the internal 

communications of two processes, keeping track 

of them in the symbolic states of the new tree. 

In some sense A2 simulates the parallel 

execution of the two processes in that it 

maintains and updates two continuation points in 

the two processes and produces new nodes of the 
final tree, depending upon the currently 

examined nodes of the input trees. 

A2 is recursively defined by cases and we show 

here the most important ones. As before, a 
graphical representation of trees is used. 

Let Tl and T2 trees like: 

fig. 4 

- case i) 

let Nl, N2 be two matching I/O nodes, i.e. they 

name the same internal channel. Assume, for 

example, that Nl corresponds to the input 

command "c?x" and N2 to the output command 

"c ! exp". The result is simply to modify the 



current symbolic state to take into account the 
"assignment" 

x := exp 
and recursively apply A2 on Tl' and T2' without 
generating any new node for the resulting tree. 
In all the other cases A2 does not modify 
symbolic states. In other words, the symbolic 
evaluation is performed locally also by A2. 

- case ii) 
Let Nl be an I/O internal node (i.e. it names a 
channel common to the two processes) and N2 an 
external I/O node (i.e. it names a channel 
unknown to the other process). The only way the 
system of the two processes can proceed is that 
the communication named in N2 occurs. As a 
consequence A2 assumes the occurrence of such a 
communication re-applying to Tl and T2' and 
creating a copy of N2 for the resulting tree. 
Graphically: 

fig. 5 

- case iii) 
Let Nl, N2 be internal unmatching nodes. Nl and 
N2 may not match either because the processes 
name different channels or because the 
communication requests are not complementary. 
This can be classified as a deadlock situation. 
The aim of our analyzer, at least in the present 
design, is to point out the behavior of the 
program in the absence of deadlock conditions. 
Hence A2 is designed to abort the execution 
path. The reason for this design decision is 
that the deadlock situations detected by A2 may 
be only apparent, i.e. such events will never 
occur in an actual execution, but they are 
generated by the order of application of A2. In 
other words, deadlock detection can be performed 
only by global reasoning on the whole program. 
Indeed, such a design choice guarantees the 
associativity of A2 /10/. 

- case iv) 
Let Nl and N2 be external I/O nodes (i.e. they 
name channels connecting the two processes to 
other processes or to the external world). In 
this situation no assumptions can be made about 
the order of the two communications. 
Consequently A2 generates a nondeterministic 
branch in the resulting tree as follows: 

296 

where T' 
T" 

- other cases 

fig. 6 

A2 [ Tl I i T2 J 
A2 [ Tl i T2 I ]. 

The behavior of A2 in the other cases is much 
simpler and will be made evident by the example. 

- termination conditions 
It is instead very important to discuss the 
termination of A2, i.e. the reasons why A2 is 
able to yield a finite tree. 
Obviously, A2 halts when it 
of two paths of the input 
termination of execution 

encounters the end 
trees, i.e. the 

paths for the two 
processes. 
Furthermore, A2 reaches a termination point when 
it detects a deadlock condition, as pointed out 
earlier. 
Finally, A2 halts when it is considering two 
subtrees which have already been merged. In this 
case a re-entring arc to the subtree previously 
generated is added to the resulting tree, 
creating a cyclic path (i.e. a loop). Note that 
the presence of such paths implies that we are 
actually dealing with graphs. 

3.3. Third phase : A3 
When A2 has been iteratively run on pairs 

of processes to· obtain a single symbolic tree, 
A3 is run to simplify it. 
A3 is the phase which embeds most of the power 
of symbolic evaluation. Indeed it tries to 
propagate symbolic information through the whole 
tree and, furthermore, it tries to find simple 
invariants of loops. The symbolic information is 
also used to simplify the tree dropping the 
paths which can be taken by no actual execution. 
The two tasks of A3, i.e. tree simplification 
and finding invariants, reflect into two 
differents modes of working: forcing and non
forcing mode. 

- FORCING MODE 
When working in forcing mode, A3 propagates 

symbolic states and tries to drop paths; in this 
case the application of A3 to a boolean node can 
result into different actions: 



i) 

ii) 

The current symbolic state implies that 
the guard is always true. The path is 
simplified eliminating the node. 
The current symbolic state implies that 
the guard is always false. The path is 
eliminated from the tree. 

iii) None of the above implications is true. 
The only consequence is that the symbolic 
state propagated by A3 incorporates the 
guard (see the example). 

The application of A3 to an input node 
results into establishing an interaction with 
the user. The user is requested to simulate the 
external environment and to provide an input to 
the system. The input must be a symbolic 
constant which will be propagated by A3 through 
the program. It is worth recalling that a 
concrete value is a special kind of symbolic 
constant. 

- NON FORCING MODE 
When A3 encounters the initial node of a 

loop (which has been marked by A2 on creating a 
re-entering arc), it switches to non-forcing 
mode in the attempt of finding simple invariants 
for it. All the paths exiting from the node are 
walked through, starting with the current 
symbolic state and propagating states around the 
loop without affecting the tree ( i • e. without 
forcing boolean guards or eliminating paths). 
Whenever a re-entring arc is found, A3 
associates the current symbolic state to the 
loop node. In this way, when all the cyclic 
paths have been traversed the loop node mantains 
all the final states obtained by symbolically 
executing the loop starting with the symbolic 
state immediately preceding it (taken as an 
"attempt" state). At this point A3 intersects 
these states in order to find possible 
invariants for the loop. Finally A3 switches to 
"forcing" mode and restarts the analysis from 
the loop node, taking as c11rrent symbolic state 
the invariant one. 

Some other details about Al, A2 and A3 and their 
formal description in a LISP-like formalism can 
be found in /10/. 

4. AN EXAMPLE 

The previous sections have somewhat vaguely 
described the design of the analyzer. This 
section tries to complete the description 
showing how the analyzer works on a concrete 
example. In this example the user is not 
supposed to provide any constraint on the 
external environment. However, the example is 

297 

interesting because, also in this case, the 
process provide a better insight of the run-time 
behavior of the program. 
Let P the CSP-L program: 
p : : [ Pl I I P2] 
where Pl and P2 are described as follows: 

Pl ::[ guard:= true 
rl ? Il; 
* [ guard + 

c ! min(Il) 
d ? x 
[ x s min(Il) + guard:= false 
D x :<: min(Il) + 

Il :=ins (x; del(Il; min(Il)))] 
0 ~guard + EXIT] ] 

P2 : : [ test := true 
r2 ? !2 
* [ test + 

c ? y ; 

d ! max(I2) 
[ y ;:: max(I2) + test := false 
Dy s max(I2) + 

I2 :=ins (y; del(I2; max(I2)))] 
O~test + EXIT] ] 

Intuitively the program P is designed to 
transform two sets of numbers, say Sl and S2, 
into two new sets, say Sl' and S2', such that: 

Sl U S2 = Sl' U S2' 
and 

¥ x,y ( x E Sl' and y E S2') + x :<: y 

At the very beginning of the computation Pl and 
P2 read the initial sets on the external 
channels "rl" and "r2". Then they exchange 
elements on the internal channels "c" and "d". 
Let tl and t2 be the syntactic trees of Pl and 
P2 respectively. 

The symbolic tree shown in fig. 7 is the 
result of Al[tl]. The structure of Al[t2] is 
quite similar. The effect of assignment 
statements is embedded into the symbolic states 
associated with some arcs: they are the only 
relevant states in the tree (we choose to use a 
notation for symbolic expressions similar to the 
syntactic one for simplicity reasons: an 
effective implementation of our tool must deal 
with some concrete representation for symbolic 
constants, as in /13/). 

Let now be 
Tl = Al [ tl] 

T2 = Al [ t2] ; 
the next step of the analysis is the merging 



phase, yielding the symbolic tree for the whole 
program; in other words we compute 

T = A2 [ Tl ; T2 ] • 
The initial nodes of Tl and T2 are two external 
communicating nodes: in this case A2 generates a 
nondeterministic branch and the resulting 
partial tree is pictured in fig.8. 
The subtrees T' and T" are very similar because 
the symmetry between Tl and T2: Therefore we 
will consider only the structure of T'. 

During the analysis A2 reaches a point such 
that the intermediate tree has the structure 
shown in fig.9. 
The path labeled ( *) corresponds to the 
situation in which A2 tries to visit the 
remaining path of T2, while a terminal node of 
Tl has already been reached. Just after the 
construction of the node ( *), A2 visits the 
internal communication node of T2 

c ? y. 
This is obviously a deadlock situation. Hence A2 
aborts the path yielding the tree pictured in 
fig.10. 

The final tree computed by A2 is shown in 
fig.11. 
It is worth noting that T has one re-entering 
node and that the subtree T" is very similar to 
the other one. The subtrees T3, T4, T5, T6, T7 
and T8 have been omitted because they will be 
suppressed by the third phase. 

First A3 works in forcing mode trying to 
simplify the tree constructed by A2. When it 
reaches the situation pictured in fig .12, the 
current symbolic state for the paths labeled (1) 
and (2) is: 

s = < guard . true ; 
test true> 

It is worth noting that "s" implies the truth of 
the boolean guard 

and, 
guard 

pl = 'guard' 
conversely, the falseness of the boolean 

p2 = •~guard' • 
Consequently A3 deletes the path corresponding 
to "p2" (which will never be traversed in an 
actual execution) and simplifies the other path, 
obtaining the tree shown in fig.13. 

Let us now explain the behavior of A3 when 
the loop node is detected: the current symbolic 
state is: 

sl <test true ; 
guard true ; 

y min (Il) 
x max (I2) 

I1 l. 

I2 l. > 

298 

which is bound to the loop node. At this point 
the remaining subtree is the one shown in 
fig.14. 
A3 works now in non_forcing mode in the attempt 
of finding invariant assertions for the loop. 
The path with boolean guard 

Gl = ( y::o: max(I2) A x::o: min(Il)) 
is not explored because the current symbolic 
state is such that 

S ->- ~Gl. 

Analogous arguments are valid for the guard 
G2 = ( y < max(I2) Ax > min(Il). 

The path starting with the boolean node 
G3 = (y ;:o: max(I2) A x ~ min(Il) 

is explored but it leads A3 to a terminal node 
(i.e. it is an exit path). On the other hand, on 
visiting the remaining path, A3 binds another 
symbolic state, say S4, to the loop node. The 
contents of S4 are the following: 

S4 = < guard true; 
test true; 

y min(Il); 
x max(I2); 

I1 ins(x; del(Il; min(Il))); 
I2 ins(y; del(I2; max(I2)))> 

At this point of the computation A3 gets 
the invariant state 

S5 = Sl n S4 
<guard true; 

test true; 
y min( I1); 
x max(I2)> 

and restarts visiting the loop with the symbolic 
state S5 in forcing mode. Finally, note that the 
information provided by S5 leads to delete some 
paths in the symbolic tree: in particular those 
starting with the boolean guards Gl, G2, G5 
which are always false. 

The final tree resulting from the analysis 
is pictured in fig.15. The symbolic states are 
the following: 

Sl = < guard 
test 

S2 = < guard 
test 

x 
y 

S3 <guard 
test 

y 
x 

true; 
true> 

true; 
true; 
max(I2); 
min(Il) > 
false; 
false; 
min(Il); 
max(I2)> 



S4 <guard true; 

test true; 

I1 ins(x'; del(Il; min( Il))); 

I2 ins(y'; del(I2; max(I2))); 

y min(Il); 

x max(I2) > 

Note that the symbolic expressions in state S3 

must represent in some way the relationship 

min(Il) ~ max(I2). 

Furthermore, by x' and y' we mean the symbolic 

values hold by variables x and y before the 

symbolic execution of the matching 

communications 
c ! min(Il) ---7> c ? y 

d ! max(I2) ---7> d ? x. 
The analyzer has solved the internal 

communications and the final tree contains I/O 
nodes naming external channels only. This fact 

has allowed to move symbolic information from 

one process to the other and then to the 
resolution of some boolean guard during the 

forcing mode analysis of A3. 

5. CONCLUSIONS 

This paper reports on a two people paper 

project. The project is a small and "advanced" 
part of a larger one, whose aim is to build an 

integrated software environment for developing 

ADA programs in a distributed computing 

environment /9/. The data structures and 

algorithms for an implementation of the analyzer 
are described in full in /10/ along with other 

examples. A simplified CSP-like language has 

been chosen instead of ADA for simplicity 
reasons. Indeed the principal goal of the 

authors was to demonstrate that high level 
analysis based on the paradigm of symbolic 

evaluation is of some use also in a parallel 

programming framework. Planned developments of 

the project are: 

An experimental implementation in Lisp. 
The reasons for choosing Lisp are its 

orientation to tree manipulation and, more 
importantly, the availability of a 

simplifier already written for a symbolic 

interpreter. 

Refinements of the design including 

improving the analysis of loops following 

ideas published in /1/, designing a 

friendly interface to make the user able 
to display and inspect the symbolic trees 

299 

1. 

2. 

3. 

4. 

5. 

6. 

produced by the analyzer and adding to the 

system other composition operators besides 

the symmetric composition. It seems 

interesting, for example, to merge an user 

process and a server process from the 

viewpoint of the user, in order to gain 

information about the behavior of the user 
process when it gets the service without 

having to consider the other parts of the 

server. 

References 

Asirelli,P., Degano,P., Levi,G., Martelli, 

A., Montanari, U., Pacini,G., Sirovich,F. 

and F. Turini." A flexible environment for 

program development based on a symbolic 

interpreter". Proc. 4th Int. Conf. of Soft. 

Eng. (1979), pp. 251-263. 

Cheatham, T. , Holloway,G. 

"Symbolic evaluation and 

programs". IEEE Trans. 

Vol.SE-5,no. 4 (1979). 

and J.Townley. 

the analysis of 

on Soft. Eng., 

Darringer,J. and J .King." Applications of 
symbolic execution to program testing". IEEE 

Trans. on Soft. Eng., Vol SE-4, no.4 (1978). 

Ershov,A. "On a partial compilation 

principle". Inf.Proc. Letters 6,2 (1977). 
Francez,N., Hoare,C.A.R., Lehmann, D.J. and 

\l/.P.DeRoever. "Semantics of Nondeterminism, 

Concurrency and Communication". 

(1979). 
JCSS 19,3 

Hoare, C.A.R. "Communicating Sequential 
Processes". CACM 21,8 (1978). 

7. King,J. and S.Hantler. "An introduction to 

proving the correctness of programs". Comp. 

Surveys 8,3 (1976). 

8. King,J. Program reduction using symbolic 
execution. IBM Res. Rep. RJ-3051 (1981). 

9. Lijtmaer,N. Cnet: proposta di ricerca 1981. 

(in Italian) Collana Cnet 16 (1981). 

10. Mancarella,P. Uno strumento per l'analisi di 

programmi concorrenti. (in Italian) Tesi di 
Laurea ISI, Universita' di Pisa (1982). 

11. Milner,R. A Calculus of Communicating 

Systems. LNCS 92, Springer-Verlag (1980). 

12. Queille,J.P. The CESAR System: an 

design and certification system 

distributed applications. RR 264, 
Grenoble (1980). 

aided 

for 
IMAG, 

13. Turini,F., Ambriola,V., Giannotti,F., and D. 

Pedreschi. Symbolic semantics and 

transformations of applicative programs. 

Res. Rep. Dipartimento di Informatica, Univ. 
di Pisa (1983). 



fig. 9 

<Il.ins(x;del(Il;min(Il)))) 

fig. 7 

fig. 8 fig. 10 

300 



s4 

sl < guard . true 
test . true > 

s2 < x . max(l2) 
y . min(Il) > 

s3 < 11 . ins(x; del(ll; min(Il))) 
12 . ins(y; del(I2; max(I2))) > 

s4 <x max(l2) 
y . min(Il) > 

fig. 11 

(1) 

301 

s 

s 

s 

(2) 

fig. 12 

s s 

fig. 13 



x.max(I2) 
y.min(Il) 

fig. 14 

s=<guard.false 
test .false> 

fig. 15 

302 



A STREAM DEFINITlON FOR VON NEUMANN MULTIPROCESSORS 
S. J. Allan and R. R. Oldehoeft 

Computer Science Department 
Colorado State University 

Fort Collins, CO 80523 

Abstract 

Streams are data structures proposed for 
inclusion in several research programming 
Languages, including VAL, to promote parallel 
execution and to implement input-output in appli
cative systems. To avoid paying a Large overhead 
cost in near-term multiprocessor systems, we pro
pose a special version of streams whose implemen
tution efficiency potential does not impair their 
usefulness in typical applications. Special 
streams require no dynamic storage management 
during element production and consumption. They 
are part of a VAL implementation effort for the 
Denelcor HEP multiprocessor system. 

Introduction 

A stream is a data structure containing an 
ordered sequence of values. ft. stream differs 
from e vector because elements are accessible 
only in the given order. It differs from a List 
in that some Leading elements may be missing 
(having bean consumed) and some trailing elements 
can be absent (not having yet been produced). In 
its general definition a stream also differs from 
a queue because each consumer of a stream obtains 
a complete stream cf all the produced values. 
The distinguished value "end of stream" appears 
after the Last ordinary stream element. Streams 
are important for introducing general pipelined 
computations as well as input-output capabilities 
in parallel applicative or data flow Languages 
[2, 3, 4, 7, 10]. 

Our interest in streams results from an 
ongoing project to implement a version of the VAL 
data flow Language [1, 6] on the Denelcor HEP 
multiprocessor system [9]. The addition of 
streams to VAL provides for general pipelined 
computation yielding the potential for great Ly 
increased parallel ism and more effective perfor
mance on the HEP architecture, as well as forming 
the basis for defining input-output facilities. 

In this report we wi LL describe the archi
tecture that forms the hardware base for the pro
ject, outline general streams as defined in the 
VAL proposals, and define special streams that 
show promise for efficient implementation and 
high speed performance in near-term multiproces
sor systems. 

This research is supported by ARO Contract 
DAAG29-82-K-0108. 

0190-3918/83/0000/0303$01.00 © 1983 IEEE 303 

~HEP Multiprocessor System 

Denelcor, Inc. produces the Heterogeneous 
Element Processor CHEP), a shared-resource MIMD 
multiprocessor system. A HEP computer consists 
of one or more process execution modules (PEMs) 
connected by a packet-switched network to data 
memory modules and a high speed input-output 
cache. Data memory contains up to 1024K of 64-
bit words. Each data word has, in addition to a 
value, an empty-full state that may serve to pro
vide proaucer-consumer synchronization among 
processes sharing data memory. A PEM includes 
program memory (executable code), constant memory 
(read-only values), and register memory (general 
purpose fast storage, also with the empty-ful L 
prcperty). ALL memories are allocatable via base 
and bounds registers to "tasks," groups of 
cooperating processes. A process is embodied as 
a process state word (PSW) in a queue containing 
up to 128 entries as part of PEM hardware. Each 
100 nanoseconds a PEM examines the PSW for a pro
cess in an "active" task, examines its next 
instruction and tests the statE of the source and 
destination registers. If source registers are 
full and the destination is empty, then one of 
several eight-staqe pipelined function units ini
tiates the operation and the PEM increments the 
instruction address in the PSW. If not, the PS~J 

rejoins the tai L of the queue for retry Later. 
Note that in the presence of an ample quantity of 
work, this results in a "not very busy wait" 
solution to the process synchronization problem. 
A Load or store instruction initiates interaction 
with data memory via the switch network. Because 
of the Length of pipelined function units, a PEM 
must be executing instructions for at Least eight 
processes to take advantage of the potential 10 
MIPS instruction execution rate. Although PEM 
hardware current Ly supports 56 user processes, 
parallel processing speedup does not increase 
Linearly up to this value because the number of 
independently executable function units in a PEM 
is much smaller. The remainder of the PSW queue 
slots hold PSWs for supervisor processes managing 
each user process, or are reserved for worst-case 
situations when hardware process creations are 
still in progress. 

In data flow architectures, an operator unit 
executes to produce a result as soon as all 
operands are present, and the result is broadcast 
to all other operator units that use this value. 
Data dependencies are easy to find in VAL pro
grams t Lack of side effects, single assignment) 
and a trans Lat or can produce data f Low graphs 
effectively. A translator could produce HEP 
processes that perform atomic arithmetic or Logi
ca L operations sharing data or register memory 
cells for input and output but the overhead would 



preclude satisfactory parallel execution. 
Instead, we intend to implement two forms of con
currency at a higher Level. First, a VAL func
tion invocation wi LL initiate a HEP process that 
executes in parallel with the invoking function 
and with functions that it calls in turn. 
Second, some parallel Loops will have their 
bodies executed simultaneously by several 
processes. This Level of process granularity 
will, for sizable programs, use the entire capa
bi L ity for parallel operation in a single PEM 
machine. It wi LL be easy to adjust this granu
larity if appropriate. Since a HEP PEM supports 
56 processes maximally, some Limitations and 
refinements to this intent are required. (Solv
ing the process management problem is the subject 
of another report.) In the next section we wi LL 
describe how general streams are defined, pro
duced, and consumed. 

General Streams 

VAL functions in which parallel or seouen
tial Loop control structures yield individual 
stream elements produce values of type stream. 
The same control structures use up stream values 
element by element. In addition, they consume 
input fi Le values and produce output fi Le 
st reams. 

The operations associate with general 
streams in VAL are either implicit in the 
Language semantics or explicitly represented in 
operators of the Language. Implicit operations 
are the creation and deletion of streams, append
ing the end-of-stream value, and the production 
of copies of entire streams for new consumers. 
We will discuss the Last operation Later. The 
invocation of a producer function (process) 
instantiates a stream. VAL does not admit the 
possibi L ity of more than one producer for a par
ticular stream. Stream deletion results when all 
consumers have terminated and future existence of 
additional consumers is not possible. Producer 
termination causes the implicit appending of the 
end-of-stream value. 

Explicit stream operations inc Lude copying 
the front stream element, "first," replicating 

the: strea except for the first element, "rest," 
testing tor end of stream, "empty," and adding an 
element to the end of a stream, "returns stream 
of." 

Some simple examples of stream usage follow. 
The syntax is that for a revision of VAL 
described in [8J. 

C1) A function that produces the odd positive 
integers up to a given Limit in a stream 
(uses the sequential "for" Loop)--

(2) 

(3) 

(4) 

304 

type IS = stream[ integer J; 
function INTSC LMT: integer returns IS ) 
for I := 1 
while I<= LMT 
repeat 

I := old I + 2. 
returns stream of I 

end for 
end function 

A function that produces the negation of the 
contents of an integer stream--

function NEGATE( S: IS returns IS ) 
for I in S 

returns stream of -I 
end for 

end function 

A function that accepts a stream of integers 
and emits a stream whose elements come from 
the input stream, excepting those that are 
mul tip Les of another integer parameter 
(includes the phrase "unless boolean expres
sion" to exemplify conditional stream ele
ment production)--

function FILTER( S: IS; P: integer 
returns IS ) 

for I in S do 
returns stream of I 

unless modCI,P) D 
end for 

end function 

A function to merge two ordered streams into 
a single output stream (uses "first" and 
"rest" to consume streams)--

function MERGE( SA, SB: IS returns IS 
for TA. := SA; TB := SB 
while not (empty( TA) and empty( TB)) 
repeat 
TA, TB := 
if empty( old TA ) then 
old TA, rest( old TB) 

elseif empty( old TB ) then 
rest( old TA ), old TB 

elseif first( old TA ) <= 
first( old TB) then 
rest( old TA ), old TB 

else old TA, rest( old TB 
end if 

returns stream of 
if empty( TA ) then first( TB ) 
elseif empty( TB ) then first( TA 
elseif first( TA ) <= 
first( TB ) then first( TA) 

else first( TB) 
end if 

end for 
end tune ti on 

A function that accepts an 
parameter and produces an 
whose N-th element is the sum 
values in the input stream--

integer stream 
output st ream 
of the first N 



function COMPOUND( S: IS returns IS ) 
for T := S; V := 0 
while not e~pty( T) 
repeat 
V := old V + first( old T >; 
T := rest( old T ) 

end for 
end function 

(6) A function that produces both the sum and 
the product of the elements of its integer 
st re2m argument (each "for" Loop consumes 
the entire stream)--

function SUMPROD( S: IS 
returns integer, integer ) 

for I in S 
returns value of plus I 

end for, 
for I in S 

returns value of times I 
end for 

end function 

(7) A function that accepts a stream of integers 
and an integer value K, and emits the origi
nal stream with each element multiplied by 
the K-th element of the input stream <the 
unwritten auxiliary function KTH consumes 
through the K-th value, then the "for" Loop 
consumes the entire stream to produce the 
output stream)--

function MAGNIFY< S: IS; K: integer 
returns IS > 

let V := KTH( S, K ) 
in 
for I in S 

returns stream of V * I 
end for 

end Let 
end function 

Observe that in each of these examples the 
function operates asynchronous Ly as a "pump" to 
take in stream values or to push out computed 
values on an output stream. This is reminiscent 
of "systolic architectures" [SJ and has the same 
potential for Large-scale parallel execution. 
However, on the HEP system, software processes 
(instead of fixed hardware components with static 
interconnections) will implement stream producers 
and consumers. 

The Last two examples show the effect of the 
implicit "copy an entire stream" operation. In 
spite of the existence of a consumer using up 
stream elements, another consumer must be able to 
access all elements generated by the producer. 
This means that the decision about when a stream 
element is discardable, and when an entire stream 
can be deleted, is a difficult run-time issue. 
In near-term, von Neumann architectures, it seems 
that general stream implementations wi LL require 
dynamic storage management for Linked Lists of 
stream values and the capacity to store arbitrary 
numbers of unconsumed stream elements. The cost 
of such management stands in opposition to our 
goal of promoting high speed parallel execution. 

305 

In the next section we restrict our defini
tion to "special streams" whose implementation 
may al Low high speed processing on the kinds of 
architectures available now and in the near 
future. 

Special Streams 

These definitions of operations on streams 
are meant to promote a more efficient implementa
tion than is possible for general streams in 
near-term von Neumann multiprocessor systems. In 
particular we propose changes in the semantics of 
general streams to avoid dynamic storage manage
ment during the Lifetime of a stream. Programs 
use the explicit operations "first," "rest," 
"empty," and "returns stream of" as for general 
streams. The implicit (automatic in Language 
semantics) operations for stream creation, 
appending the end-of-stream .value, and deletion 
are unchanged. Implicitly copying an entire 
stream is no Longer possible: the use of the 
same st ream name by mu Lt i p Le consumer Loops in a 
function results in each consumer Loop obtaining 
a disjoint subsequence of the st ream of va Lues. 
(There can be programs in which this is a desired 
effect.) If more than one consumer must share the 
entire stream, then an explicit preceding assign
ment to another stream value is necessary. We 
define passing a stream as a parameter to another 
function as another form of the explicit stream 
copy operation. 

The stream copying via assignment or parame
ter passing may be actual: a new stream structure 
receives a copy of the current stream contents. 
Then the stream producer emits a new value to the 
tai L of each copy of the stream it produces <or 
blocks if at Least one of the stream data struc
tures is full>, and appends the end-of-stream 
value to each when it terminates. Each consumer 
works via "first," "rest," and "empty" operations 
on its own private data structure. When a consu
mer terminates, deletion of the associated stream 
copy occurs. On the other hand, the stream copy
; ng can be rea Li zed by associating a reference 
count with each stream buffer (holding a single 
stream element). The producer adds a reference 
count (initialized to the current number of con
sumers of the st ream) to each emitted st ream 
value. Each consumer works on the same data 
structure, and so must maintain its own pointer 
to the first value. The "rest" operation decre
ments the reference count of the first value, and 
moves the first pointer. The producer may fill a 
buffer when its reference count is zero, and must 
block if there is no empty (zero reference count) 
buffer. A stream copying operation via assign
ment or parameter passing increments the current 
number of consumers and the reference counts of 
each nonempty stream buffer. Consumer termina
tion decrements the current number of consumers 
and the reference counts on unconsumed elements. 
A stream is deletable when the current number of 
consumers reduces to zero. No advantage accrues 
to the first approach, and since the second 
requires Less copying of information, we will use 
it. 



These spec i a L st reams of course behave di f
ferent Ly than general streams, and some programs 
using streams differ from those using previously 
defined versions. We believe that special 
strea-s are as useful as general streams in most 
applications. The Last two program examples 
above using the implicit stream copying operation 
cannot work in that form. The former can be 
rewritten with an auxiliary assignment: 

function SUMPROD( S: IS 
returns integer, integer ) 

Let T := S 
in 
for I in S 
returns value of plus I 

end for, 
for I in T 
returns value of times I 

end for 
end Let 

end function 

The Latter presents a difficulty for special 
streams. No matter how we implement special 
streams to avoid dynamic storage management 
(copying for each consumer or reference counts on 
values), the "first" pointers for all the consu-

mers must be within a contiguous substream. The 
size of this subst ream carinot exceed the number 
of buffers in the st ream data structure because 
the producer cannot get more than that number of 
elements ahead of the slowest consumer. No per
formance problems should arise in the expected 
kinds of of "systolic" stream applications when 
the executing program has ample work to keep the 
components of a multiprocessor system active. In 
MAGNIFY, if K is greater than the number of 
buffers available, the subsequent "for" Loop will 
not be able to consume some prefix stream values, 
and the function value wi LL differ from that for 
general streams. Problems such as this may arise 
in real programs, but such occurrences may sug
gest that randomly accessible structures (arr·ays) 
are more appropriate. 

Summary 

Streams have been recognized by several 
researchers to be useful for promoting parallel 
computation. There is, however, no experience in 
production systems with general streams. Our 
purpose is to implement a version of the parallel 
Language system VAL including streams on a 
current Ly available multi processor system. Spe
cial streams as described here seem to be a valu
able compromise preserving the potential for 
parallel execution while enhancing the possibi l
ity of efficient implementation. 

306 

References 

[1J William B. Ackerman and Jack B. Dennis, 
VAL--A Va Lue-Oriented A Lgorithmi c Language: 
Preliminary-Reference Manual (1978), Labora
tory for Computer Science, MIT. 

[2] William B. Ackerman and Jack B. Dennis, Vim

Val: The Base Language for a Value-Oriented 
computer-system: Change51:o-the VAL Prelim
inary Reterenee Manual (198~ Laboratory 
for Computer Science, MIT. 

[3] Arvind, Kim P. Gostelow and Wil Plouffe,~ 
Asynchronous Programming Language and Com
puting Machine <1978), Department of Infor
mation and Computer Science TR114a, Univer
sity of California at Irvine. 

[4J Gill es Kahn and David B. MacQueen, "Co rou
tines and Networks of Parallel Processes," 
Proc. IFIP 1977, <B. Gilchrist, ed.), 
North-Holland,~ 993-998. 

[5] H. T. Kung, "Why Systolic Architectures?" 
IEEE Computer, 15, No. 1 (1982), pp. 37-46. 

[6] James R. Jl'icGraw, "The VAL Language: 
Description and Analysis," Arn Trans. on 
Programming Languages and Systems,~o.-:r 
(1982), pp. 44-82. -

[7] James R. McGraw and Steven K. Skedzielewski, 
"Streams and Iteration in VAL," Int. Conf. 
on Distributed Processing <1982). 

[8] James R. McGraw, et. al., SAL: 
Assignment Language, Language 
Manual Version 1.0 (1983). 

A Single 
Reference 

[9] Burton J. Smith, "A Pipelined, Shared
Resource MIMD Computer," Proc. Int. Conf. 
~Parallel Processing, (1978) pP:-6-8.--

[10] K. Weng, Stream-Oriented Computations in 
Recursive Data Flow Schemes, M.S. thesiS"; 
Laboratory tor Computer Science, MIT (1975). 



A DATABASE .llACJDNE 
FOR VERY LARGE RELATIONAL DATABASES 

G. Z. Qadah and K. B. Irani 
Computing Research Laboratory 

Th.e University of Michigan 
Ann Arbor, Ml. 48109 

ABSTRACT -- In this paper, we present an architectural 
design for a Back-End Database Machine (DBM) suitable 
for supporting concurrent, on-line, very large relational 
database systems. This machine is called Michigan Rela
tional Database Machine (MIRDM). In designing such a 
machine, a structured approach has been followed. 
First, the DBMs proposed so far have been reviewed 
using a novel classification scheme. Next, this review, 
the very large relational database system requirements 
and the restrictions imposed by the current and near 
future state of technology has been used to formulate a 
set of design guidelines. Consequently, an architecture 
for a cost-effective DBM that meets the latter set of 
guidelines has been synthesized. 

1. Introduction 

The collection of data ir1 the form of an integrated 
database is a sound approaeh to data management. The 
conventional implementation of the database system
that is, the augmentation of a large general purpose 
conventional von Neumann computer with a large com
plex software system, the Database Management System 
(DBMS)- suffers from several disadvant;:i.ges. These 
disadvantages are: 

(1) Low reliability due to the large complex software 
system, 

(2) Poor performance due to the fact that the underly
ing hardware is a general purpose von Neumann 
procr,ssor with insufficisnt processing power, little 
parallelism, and 

(3) Inability to meet the demands for increased pro
cessing power u.nd throughput to fulfill the c1irrent 
and anticipated large increases in database size 
and usage. 

The limitations of the conventional date.base sys
tems, the continuous advancements in memory
processor technology, and the continuous reduction in 
its fabrication cost have inspired a new approach to the 
database system implementation. This approach 
replaces the gsncral purpose von Neumann processor 
with a dedicated machine, the Database }lachine (DBM), 
tailored to the data processing environment. Mostly .it 
utilizes parallel pcocessa1g to support some or all the 
functions of the DBMS. This approach improves the 
system's reliability through software complexity reduc
tion and improves the system's performance through 
specialization, increased parallelism and increased pro
cessing power. 

Most of the DI3Ms proposed so far have been organ
ized as "back-end" machines to one or more generai 
purpose computer(s), called the Host(s). While the host 
is responsible for interfacing the ilSers to the DBM, the 
DBM itself is responsible for the database access and 
control. The "back-end" design concept for the DBM was 
first introduced in [ 1]. 

0190-3918/83/0000/0307$01.00 © 1983 IEEE 307 

The general objective of this work is the design of a 
back-end DBM suitable for supporting the concurrent 
on-line, very large relational database systems. This 
machine will be called the Michigan Relational Database 
Machine (MIRDM). The design of MIRDM is done in two 
steps. In the first step, the DBMs proposed so far are 
reviewed. This review is based on a novel scheme for 
classifying these machines. The new scheme helps us 
understand the previous organizations of the DBMs as 
well as their design trade offs. It also provides us with a 
systematic way to qualitatively a:lalyze and compare 
such organizations. 

In the second step, the above analysis coupled with 
the requirements of the very large relational database 
systems as well as the current and near future "1tate of 
the hardware technology is used to arrive at. a set of 
guidelines along which our DBM must be designed. Con
sequently, an architecture for a cost-effective DHM that 
meets the latter set of guidelines i" synthesized. 

This paper is divided into five sections. Section 2 
qualitatively reviews, analyzes and compares the various 
previously proposed designs for the relational DBMs. 
Section 3 formulates a set of guidelines based en Lhe 
qualitative analysis of section 2, the current and near 
future state of technology and the very large relational 
database systems l'."equirements. ll also outlines a new 
DBM, callP.d MIRDM, synthesL~ed along the latter guide
lines, and it presents a brief introduction to the algo
rithms that implement the primitives of this machine. 
Section 4 provides qualitative comparisons between 
MIRDM and some other DBMs already proposed. Finally, 
Section 5 gives some concluding remarks. 

2. Review of the Previously Proposed DBMs 

During the past decade, a large number of DBMs 
have been proposed. Some of them lrn.ve also been 
implemented. Others have been commercialized. All of 
these ma<'hines have been designed to partially or 
totally support the relational database or to support the 
relati.onal database together with the other database 
types, na1nely. the network and the hierarchical. In the 
following, a novel scheme for classifying the set of the 
DBMs proposed so far will be presented. This scheme 
will next be used to quaiitatively evaluate and compare 
the respective DB.Ms. 

2.1. A Classification Scheme for the Previously Pro
posed DHMs 

The new scheme vie\'tS the DBMs as points in a three 
dimensional space, the DBM space. The coordinates of 
this space are the indexing level, the query processing 
place and the processor-memory Organization. 

The most fundamental and important operations 
the DBMs were designed to support are the selection 
(from a permanent relation) and the modification opera
tions. In the early designs of the DBMs these operations 



qualification expressions), however, they perform poorly 
in executing more complex database operations that 
require many disk revolutions (the '(9.-J oin and the pro
jection operations, for example). This was evident in the 
performance evaluation of RAP[ 5]. 

Recall that a query CC\n be thought of as a tree 
whose nodes represent a set of database operations [3]. 
The leaves of the tree reference only permanent rela
tions of the database. Jn a real database environment, 
the leaf nodes are mostly of the selection and update 
types. A hybrid DBM processes the leaf selection opera
tions and, in some machines, the update operations on 
the disk. The resulting relations( referred to as t.he 
temporary relations) are then mo•:ed to a fast 
processor-memory complex where the rest of the query 
operations (if any) are executed. Jn most cases, execu
tion of the leaf selection and update operations on the 
disk largely reduces the volume of data needed to be 
moved to the fast processor-memory complex. 

The above discussion indicates that the perfor
mance of the DBMs of the Hybrid-DB design approach is 
superior to that of both the On-Disk-DB and the Off
Disk-DB DBMs. However, the Hybrid-DB design approach 
compounds the cost problem because it combines two 
very expensive technologies, namely, the logic-per-track 
disks and the associative memories. 

In general, the number of tuples which are 
selected/modified as a result of executing a typical 
selection/modification operation is a small fraction of 
the number of tuples of the database. In the light of the 
current processor-memory technology and the vast 
amount of data in the very large databases, it is clear 
that the need to scan the whole database, at. least once, 
for carrying out these operations is very cost
ineffective. The design approach which provides the 
DBM with a mechanism that eliminates this need is 
highly desirable. 

In the context of the DBMs, an index table defined 
for the permanent database has been used as a mechan
ism to reduce the amount of data to be processed for a 
given selection or modification operation. For every 
relation of the database the index table defined for a 
DBM of the DBMs-relation category store the set of 
addresses of Lhe minimum access units(MACUs) which 
store the corresponding relation. Although the size of 
the index table (relative to that of the database) is a 
function of the number of relaLions in the database and 
the size of the MACU, nevertheless, it is very small. Its 
maintena11ce, storage cost and access time are negligi
ble relative to that of the database. To execute a 
selection/modification operation on an Dn-Disk
Relation/Hybrid-Relatior, DBM, only the data units which 
stor2 the relation referenced by the operation are 
searched/modified. For those machines which use a 
logic-per-track disk as a storage media, only the tracks 
which correspond to these uniLs are processed. On the 
other hand, to execute these operations on an off-disk
relation DBM, only the data units which store tt1e rela
tion referenced by the operation need be moved to the 
processor-memory complex for processir,g. 

The above argument suggests that the DBMs which 
support only a relation leve.l index table perform dif
ferently for different types of databases. Jn the case of 
databases dominated by relations of small size, indexing 
on the relation level substantially improves the DBM 
cost-effectiveness. For the on-disk/hybrid organized 
DBMs. the logic-per-track disk can be replaced by a less 
expensive mass storage media. For the Off-Disk DBMs, a 
less expensive I/D charmel can be utilized. On tbe other 
hand, in the case of the databases dominated by rela
tions of relatively large size, indexing on the relation 

level does not improve the DBM cost-effectiveness. It is 
very clear that such DBMs suffer from the same prob
lems as the DBMs-DB type. 

The index tables supported by the DBMs which 
belong to the DBMs-Page category are defined for the 
set of the most frequently referenced attributes of the 
database. For every value of each of these attributes, 
the index table stores the set of addresses of all the 
pages which contain tuples having that value. Although 
the size of the index table (relative to that of the data
base) is a function of the size of the page itself, 
nevertheless it, as well as its storage maintenance cost, 
is substantial. A clustering mecLanism has to be used 
[6] in conjunction with the page index Lable. This 
mechanism is used to store the set of luples which are 
frequently referenced together in as few pages as possi
ble. Jn general, the use of the page indexing coupled 
with an efficient clustering mechanism improves the 
performance of the selection and possibly the r:aodifica
tion operations. On the other hand, the index search 
introduces some overhead for executing these opera
tions as well as the insertion and deletion operations. 

308 

In the case of the very large database systems. the 
use of small size pages results in a relatively large page 
index table which requires a huge amount of storage, 
large access time and high maintenance and update 
cost. The improvement in the execution time for the 
selection and modification operations does not justify 
this overhead and the additional sto:·age cost. On the 
other hand, lhe use of large size pages, in conjunction 
with a DBM, results in a relatively small page index (-1% 
of the total database size [6]). Thus its storage cost, 
access time and maintenance cost are substantially 
lower. Moreover, the performance of the selection and 
the modification are enhanced especially if a page is 
processed by a number of processors in parallel. Using 
the page index.large size pages and efficient clustering 
mechanism heve allowed designers to replace the 
expensive logic-per-track disk with the relatively cheap 
moving-head-disk (or a slightly modified version of it) as 
a unit for the mass storage. 

In the scheme, presented earlier, the previously 
proposed DBMs have been organized as SISD, SIMD and 
MIMD machines. In general, the execution of the data
base operations, on a DBM of the first/second group, are 
done ser·ially. That is, one operation (possibly two for 
the Hybrid DBMs) is the maximum number of operations 
that a DBM of these types can execute at any given time. 
While a database operation is executed by one processor 
on the SJSD DBMs, it is executed by more than one pro
cessor on the SIMD DBMs. The MIMD DBMs, on the other 
hand, execute one or more database operations simul
taneously. The operation itself also gets executed by 
more than one processor. 

Because of the relatively low cost of the processor 
and memory devices, the use of parallel processing for 
very large databases enhances the effectiveness of the 
DBMs. Alt.hough the Sl1"D organization of the DBMs 
redu<;es the execution time of a database operation, it 
doe3 not offer a real solution to the concurrent user 
problem. The MJlvlD organization is more effective in 
supporting databases where fast concurrent accesses to 
the databases is a basic requirement. Thi.s is due to the 
fact that the MIMD organization has the ability not only 
to execute a database operation in parallel but also to 
execute more than one operation (from same or dif
ferent queries) simultaneously and in parallel. 

One 1mportant drawback in the MIMD organization 
i.s thE1 associated overhead, namely, the large amount of 
precessing needed for controlling the simultaneous exe·· 
cution of different operations and the management of 



were carried out using an entirely associative approach. 
That is, the whole database (a set of permanent rela
tions) was scanned and the data items which satisfied 
the selection/modification criteria were 
retrieved/modified. Soon, researchers in the DBMs field 
came to realize that such an approach is not a cost
effective one since it requires that the whole database 
be scanned, at least once, for every selection or modifi
cation operation regardless of the size of the operation's 
response set. 

To achieve a more cost-effective DBM's design, a 
new approach for performing the selection and the 
modification operations has been followed. It is called 
the quasi associative approach. In this approach only a 
relatively small portion of the database need to be pro
cessed for every operation (rather than all). To support 
such an approach, the database is divided into a set of 
data units. In order to perform the selection operation, 
for example, the machine first maps the corresponding 
select10n qualification expression to the set of data units 
which contain the data which satisfy the qualification 
expression. Then each data unit of the latter set is 
searched and the data items which satisfy the selection 
qualification expression are extracted. 

In most of the DBMs proposed so far the structure 
used to map the qualification expression of the selection 
or the modification operation, to the corresponding data 
units of the permanent database, is the index tables [2]. 
These tables are defined for the database and need to be 
stored and maintained. The data unit, the smallest 
addressable unit of data, can be logical (i.e., the data
base, no indexing, or a relation) or physical (i.e., a set of 
tracks, a track or part of a track of a moving-/fixed
head-disk). The physical data unit is called a page. 

The first coordinate in the proposed scheme is the 
indexing level defined for the permanent database and 
supported by the particular DBM. Along this coordinate, 
the DBMs can be grouped into three categories, namely, 
the DBMs with database indexing level (DBMs-DB), DBMs 
with relation indexing level (DBMs-Relation) and DBMs 
with page indexing level (DBMs-Page). The first category 
mcludes. all the DBMs which support only the entirely 
assoc1at1ve approach. The DBMs of the second category 
support the quasi-associative approach. The index tables 
of the machines in this category are defined with the 
permanent relations as the minimum addres5able 
units.• The DBMs of the third category also support the 
quasi associative search approach. However, in addition 
to supporting the relation level index tables, they also 
support index tables defined for pages (containing 
tuples from the permanent relations) as the minimum 
addressable units. 

The second coordinate in the proposed scheme is 
the query processing place. Along this coordinate, the 
DBMs can be grouped into three categories, namely, the 
Off-Disk,** the On-Disk and the Hybrid categories. The 
DBMs of the first category process the database quer·y 
off t!:ie disk where the database is stored. Jn doing that 
the DBMs of this category need to move the data which 
Are relevant to the query from the disk to a separate 

•To facilitate th~ paralld pYoccssing as well as the data move
ment, some DBMs of _the first/second category store the corresponding 
nmumum addressable unit of data (DB/relation) on a set of physical 
muts, the mm1murn access units (MACUs). Each could be moved 
separately. However when a data item TIP.eds to be retrieved, all the 
MACUs containing the DB /relation are processed. In ~he DBMs of the 
third category, the page (the mmimum addressable unit) is contained 
in one MACU. 

•tThe disk here implies a n1oving-head-disk, a fixtd-head-disk or 
an electronic disk such as the rnagnetic bubble mern0ry (MBM) or the 
charge coupled devices memory (CCD). The disk(s) stores tJ1e data
base. 

309 

processor-memory complex where the query processing 
takes place. 

The DBMs of the second category execute the data
base query on the disk. The machines of this category 
need not move data from the disk to a different memory 
for processing. The disk is provided with logic units and 
the query processing is done directly on the disk where 
the database is stored. 

The DBMs of the third category execute part of the 
query the selection operations and, in some machines, 
the update operations on the disk, and move the result
ing data to a separate processor-memory complex 
where the rest of the query execution (if any) takes 
piace. 

The third coordinate in the proposed scheme is the 
processor-memory organization. This coordinate 
characterizes the hardware of the DBMs. For the On
Disk/Off-Disk machines, this coordinate characterizes 
the way the processor-disk/processor-memory complex 
executes the database operations. For the hybrid 
machines, this coordinate characterizes the way both 
the processor-disk and the processor-memory execute 
the database operations. Along the third coordinate, 
the DBMs can be grouped into three categories: 1) the 
single instruction stream-single data stream (SISD), 2) 
the single instruction stream-multiple data stream 
(SIMD), and 3) the multiple instruction stream-multiple 
data stream (MIMD) categories. 

2.2. A Critical Look at the Previously Proposed DBMs. 

Figures 2.1 through 2.3 show most of the previously 
proposed DBMs grouped according to the classification 
scheme presented earlier. For more information about 
these machines one can refer to [3] and to the refer
ences presented i.n the latter figures. 

Historically speakmg, the first DBMs to be propmied 
wern organized as Off-Disk machines and were provided 
w:ith only the associative access to the database (Off
Disk-DB DBMs). In general, these machines suffer from 
many drawbacks. in particular, their ineffectivenes~ in 
handling the very large database systems. A DBM of this 
type has to move all of the database from the slow disks, 
where it is stored, to a fast (associative) memory where 
the execution of thP selectioa or the update operations 
take place. In a large database system environment, 
the I/O channels easily become a system bottleneck as 
a result of the mass data movement. 

The On-Disk-DB design eliminates Lhe data move
ment problem. This design approil.ch avoids that prob
lem by processing the database operations on the mass 
storage device where the database resides. The most 
important drawback of this approach is the fact that it 
stores the database on a set of logic-per-track disks. 
Using this disk as a mass storage device is very costly, 
in fact orders of magnitude more expensive than the 
moving-head-disk The high cost of the logic-per-track 
disk is attributed mainly to the high cost of its two basic 
components, namely, the storage component, the fixed 
head-per-track disk and the processing units attached 
to each head of the head-per-track disk. The antici
pated trends in the mass storage technology [ 4] show 
that the logic-per-track disk or its electronic counter 
part will not challenge the speed/cost level of the 
moving-head-disk for at least the near future. 

Another important problem in the DBMs w)J.ich 
adopt the On-Disk-DB design approach is the fact that 
they perform relalively well in executing the simple 
database operations which require few disk revolutions 
(the selection and update operations with simple 



the various system components. In most MIMD DBMs. 
such overhead puts an upper limit on the number of 
queries that can be executed and on the resources that 
can be simultaneously active in the system. Therefore, 
controlling and minimizing such overhead must be a 
basic objective for the MIMD DBM designer. 

3. The Architecture of the New System 

The most important characteristics of the contem
porary and anticipated very large scale relutional data
base systems are the vast amount of data in such sys
tems and the large number of users requiring simul
taneous access to this data. These basic characteristics 
impose two important requirements on any design for a 
relational DBM, namely: 

1. Availability of large capacity store, 

2. Ability to handle the on-line concurrent access to 
the database with adequate response time and 
throughput. 

Based on the above requirements as well as the 
state of the current and anticipated mass storage tech
nology and in the light of our study for the previously 
proposed DBMs, a set of guidelines along which a DBM 
should be designed, have been formulated. These guide
lines are: 

(1) The mass store is to consist of moving-head-disks 
This disk type has been selected for its ability to provide 
a vast amount of on-line storage at a relatively \ow cost 
and moderate performance. Currently the magnetic 
fixed head-per-track disk is considered obsolete as a 
mass storage device. The electronic disk (the MBM and 
the CCD memory devices) technology is at least one 
order of magmtude more expensive than that of the 
moving-head-disk. A look at the future directions in the 
mass storage technology shows that lhe electronic disk 
will not challenge the speed/cost level of the moving
head-disk for at least the near fllture [ 4]. 

(2) Support the page level indexing. This type of index
ing greatly improves the execution time of the selection 
and the modification operations. On the other hand, it 
introduces some overhead in executing these opera
tions, in the form of index table access delay and 
maintenance, and increases the execution time of the 
other update operations. To minimize the drop in per
formance due to this overhead, the page must be 
selected to have a large size (multiple tracks of the 
moving-head-disk) and be processed in parallel, by a 
number of processors. Also, the access to the page level 
index table should be supported at the hardware level. 

(3) Organize the DBM as an off-disk type. Although this 
organization introduces some increases in the execution 
time of the database operations ( due to the movement 
of data to the processor-memory complex), it neverthe
less avoids providing the moving-head-disk with a high 
speed, speciall7 rlesigned logic units capable of process
ing data "on the fly", thus keeping the mass storage cost 
at its minimum. The amount of data to be moved can be 
reduced by taking advantage of the local and sequential 
references in the database. The processor-memory 
complex should be designed to effectively support not 
only the relational algebra operations, such as the selec
tion, the projection, and the 1'-Join, but also the primi
tives that manipulate the page level index. 

(4) Organize the DBM as an MIMD type. This is very 
important for providing the machine with the capability 
of handling concurrent access to. the database. The pro
posed design must be able to handle, at the hardware 
level, the excessive overhead associated with the MIMD 
organization. 

A DBM which follows the above guidelines has been 
designed. This machine is called Michigan Relational 
Database Machine (MIRDM). However, before presenting 
its organization, the way the data is organized in MIRDM 
will be next outlined and discussed. 

3.1. The Data Organization 
In general MIRDM stores two types of data, namely: 

1. The Database 
The database is organized as a collection of time 

varying relations. The database is divided into a set of 
large data units. Each, called a page (or the minimum 
addressable unit** (MAU)), represents the smallest 
addressable unit of data. The only tuples which are 
allowed in the ;same MAU are those that belong to the 
same relation. 

2. The Database Directory 
The database directory contains the information 

needed to map a "data name" to the set of MAU 
addresseR which store the named data. In the proposed 
machine, data is named at two levels, namely, the rela
tion level (relation-name) and the tuple level (tuple
name: <relation name, attribute name, value>). The 
tuple-name may not be m1ique. 

The database directory consists of two indices, 
namely the relation index and the MAU index. The rela
tion index maps the "relation-name" to a set of MAU 
addresses. These MAUs contain all the tuples of the 
relation whose name is "relation-name". The relation 
index contains eritri"'s for all the relations in the data
base. 

310 

The MAU index maps a "tuple-name" to a set of MAU 
addresses. Each of these MAUs contains at least one 
tuple which has the "tuple-name" as its name. The MAU 
index is organized as a three level index. The first level 
is the MAU master index, the second level is the attri
bute index and the third level is the index-term index. 
The index-term index is a collection of index terms, 
each of which is an ordered quadruple of the form: 

< relation name, attribute name, value, MAUA > 

where MADA is an MAU address which contains at least 
one tuple with the name "< relation name, attribute 
name, value >". 

In general, the index terms are only defined for 
those relations and attributes which are frequently 
referecced by U8ers. The index terms in the proposed 
system are gro1.1ped and stored in units equal in size to 
an MAU, called the index MAU (IMAU). Although the 
!MAU can contain index terms defined for different attri
butes of different relation:, a clustering mechani8m is 
used to cluster, into the same IMAU, those index terms 
which are defined for the attributes of the same rela
tion. This improves the storage cost and the precessing 
efficiency of the index terms. 

The MAU master index and the attribute index have 
been introduced in order to reduce the number of IMAUs 
which need to be processed for a selection/modification 
opE:ration. The MAU master index maps a "relation
name" to its attributes. The attribute index maps an 
attribute name to a set of IMAU addresses. The IMAUs 
contain the set of index terms which are defined for the 
corresponding attribute. 

Before leaving this section, an important operator, 
the index-select, which performs the retrieval operation 

UAs is seen later, the MAU occupies one minimum access unit 
(MACU). 



on the index term Index. must be mentioned The 
index-select operator is executed in conjunctio:i with 
the relational algebra operatwn selection and the modif
ication operation. lt retrieves the addresses of those 
MAUs which contain at least one tuple that satisfies the 
corresponding qualification expre~sion (QE). 

3.2. The Michigan Relational Database Machine Organi
zation 

The proposed Micliigan Relational Database Machine 
(MIRDM), shown in figure 3 1, consists of four com
ponents, namely, Lhe master back-end controller (MBC). 
the processing cluster subsystem (PCS), the mass 
storage subsystem (MSS) and the interconnection net
work subsystem (INS). Jn the following the organizations 
of these components wi.ll be outlined. 

3.2.1. The Master Back-End Controller 
In cooperation with the front-end computer 

system(s), the master back-end contcollcr (MBC) inter
faces the users to the database system, translates the 
user queries to the primitives of MIRDM. schedules and 
monitors the query execution, manages and controls the 
diffei ent components of MIRDM, stores and maintains 
the system's dictionary, stores, maintains, and manipu
lates part of the database directory (the relation, the 
MAU master and the attributes ir,dices) and provides for 
security checking, iritsgnty maintenance and users 
views. 

The implementation of the MBC is strongly depen
dent on the way the above stated functions are part.i
t10ned between lhe front-end computer sysLem and the 
MBC. Based on this partition, the lvIBC can be implP.
mented using a powerful mini/micro computer. 

3.2.2. The Mass Storage Subsystem 
The mass storage subsystem (MSS). sh0wn in figure 

3.1, is th"' reposi.tory of the database and its index-term 
index. The MSS ts organized as a two-level memory, 
namely, the mass memory (MM) and the parallel buffer 
(PB). While the MM helps MIRDM to Pleet the large capa
city storage requirement, the PB helps it to take adv:m
tage of the local and sequential references to the data
base. In the followir,g, the architecture of both levels 
will be outlined. 

The Mass Memory 

The mass memory is organized as a set of moving
head-disks, controlled and managed by the mass 
st0rage ce>ntrollor (MSC). Each disk is provided with the 
capabllity of reading/writing fro'.IJ./to mo.re tha.n on:i 
track in parallel. Tracks which can be read/written in 
parallel. from one disk, form what is called the 
mmimum access unit (MACU). The tuples within this 
'.."i.it are laid out on a moving-head-disk's track in a "bit 
seri a.1-word serial" fashion. The MACU is the smallest 
accessible unit of data as well as the unit of data 
tr;msforable between the M.M. the PB and the PCS. The 
VACU in J';!JRDM stores only one MAC. \Ve expect the 
MACU to have the size of a moving-head-disk cylinder. 

In addition to the database relations. the MM stores 
another type of data, namely, the index terms ln ;;en
eral. t[,e il"ldex terms which are Qef\ned on altri.butes oi 
different relations can reside in the same IMAU. In 
or<ier to improve their retrieval cost. the index terms 
arc clustered together according to their relation and 
attribute names. 

311 

An IMAU is stored in one MACU. Every track, within 
the latter unit, contains a set of blocks of suitable sizes 
( ~ 2 - 4 K bytes). Each block contains index terms 
defined for the same relation and attribute. For storage 
as well as processing efficiency, the <relation name, 
attribute name> common to all the index terms of the 
block is stored once, at the beginning of the block. The 
rest of the block stores only the <value, MADA> part of 
the corresponding index terms. 

The Parallel Buffer 

The parallel buffer (PB), shown in figure 3.1, is 
organized as a set of blocks, each of size equal to that of 
an MACU. A block is further partitioned into a set of 
subblocks. Each subblo~k can buffer one track of a 
moving-head-disk. The PB is managed by the mass 
memory controller. 

The PB implementation can take advantage of the 
technologies of both the magnetic bubble memory and 
the charge coupled device memory. Both technologies 
currently have off-the-shelf memory chips which can 
buffer an entire disk track. 

3.2.3. The Processing Clusters Subsystem 

The proC'essing clusters subsystem (PCS) is organ
ized as a multiple single instruction stream-multiple 
data stream (MSIMD) system. The PCS (figure 3.1) con
sists of a set of processing clusters (PCs) which share a 
common buffer, the parallel buffer. A PC, shown in. fig
ure 3 2, has a single instruction steam-multiple data 
stream (SIMD) organization. A PC consists of a set of tri
plets, each of the form: 

<I!O controller (JOC). triplet processor (TP), 
local memory unit (LMU)> 

The set of triplets within a PC is controlled and managed 
by the cluster master processor (CMP). The latter 
accesses its triplets through a broadcast bus, the mas
ter bus (MBUS). The MDUS permits the CMP to write the 
same data to all the LMUs of its cluster triplets simul
taneously. On the other hand, the ~IBUS permits the 
CMP to sequent.Lally read data from any one of ii s tri
plets' LMUs. 

Within a PC, the data is moved between its triplets 
via a bus, the triplets b~s (TBUS), controlled by a high 
speed DMA controller, the data mover (D'vl). l'ndPr 
instructions from the CMP, the DM moves data items 
between the LMUs of the cluster's triplets. Tb.e TBUS is 
provided with both point-to-point as weii as broadcast 
capabilities. 

In general. the i 1"' LMU, in "· PC. ts accessi.ble 
directly by the CMV through the MBUS, by the DM. 
through the TBUS, and by both Lhe ith TP and lCC. We 
expect the LMU of a tri.plet to have a relatively large 
capacity (multiple of the size of a moving-head-disk 
track) aEd to be implemented using RAM technology. It 
is suggested that the lOC of a tripiet be implPmented as 
a high speed DMA controller and that a TP be an off-the
shelf microprocessor. 

3.2.4. Th.e Interconnection Network Subsystem 

The i11tcrconnection network subsystem (INS) is 
designed to fulfill two basic requirements, namely, the 
ability lo allow any two PCs or two moving-b.ead-d1sks to 
read/wril;c from/to any bvo blocks of the PB simult?.ne
ously and cnabie two or more PCs to ~ead Ircrn the same 
PB block. The latter requirement is needed to. provide 
the proposed machine with the capability of hantlling 
simultaneous processing of the database operations. 

The INS, shown in figure 3.1. is a modified version of 
an interconnection network proposed by Dewitt [7]. The 



network consists of a set of buses, each associated with 
one subblock and having one bit width. The subblock 
continuously broadcasts its contents over the 
corresponding bus. Only one triplet in each PC tts well 
as one head of each moving-head-disk, in the MM, is con
nected to the same bus(subblock). Thus the complexity 
of the logic at the triplet, disk head or subblock inter
face is ( 1 I number of triplets in a PC) that of the one 
proposed by Dewitt. Whenever a PC(s) /(MM disk) needs 
to read a given PB block, its IOCs(disk heads) need only 
switch themselves to the appropriate 3et of data buses. 
If the parallel buffer block contains a data MAU, then 
the IOCs(disk heads) can begin to read at a tuple boun
dary. However, for an index MAU, the IOCs(disk heads) 
proceed to read it at an index block boundary. When
ever a PC(MM disk) needs to write to a given parallel 
buffer block, its IOCs(disk heads) need only switch 
themselves to the appropriate set of data buses. The 
writing then follows immediately. Notice that the MSC 
(figure 3. i) is responsible for preventing any two PCs, or 
disks, or a PC and a disk from writing to the same paral
lel buffer block. 

3.3. .Algorithms for the Relational .Algebra and Index 
Retrieval Operators 

The newly proposed MIRDM supports the Parallel 
processing of the most important relational database 
operators- namely, select, project and 19--join- as well as 
the index retrieval operator index-select. In most 
retrieval queries, the operator project follows the select 
operator. For this as well as for reasons of performance 
improvement, the newly proposed machine combines 
the two operators, select and project, to form a new 
operator (the select-project Operator). The latter 
operator is processed as a non-decomposable operator. 

In MIRDM, one or more PCs are used to execute the 
select-project and the 'l9--join operators. On the other 
hand, only one PC is used to execute the operator 
index-select. In general, the number of PCs assigned to 
execute a select-project or a '19--join operator is an MBC 
decision. This decision is based on many factors. such 
as the operator type, the size(s) of input relation(s), the 
expected size of the output relation, the number of 
available PCs and the priority class to which the 
operator's query belongs. By accessing the appropriate 
directory, possibly with the help of a PC, the MBC deter
mines the set of all MAUs relevant to a given operator. 

The flexibility and generality of MIRDM architecture 
permits the implementation of a powerful set of algo
rithms for the above operators. These algorithms are 
presented in [3]. 

4. Discussion 

In the previous section, we have presented an archi
tecture for a back-end database machine which is capa
ble of supporting the on-line, concurrent, very large 
relational database systems. Our approach rests on a 
set of fundamental design principles. This set includes 
two principle::. followed by previously designed DBMs, 
namely, the MIMD organization of DIRECT [7] and the 
"page level indexing" of DBC [6]. While the MIMD organi
zation is very valuable in handling the concurrent user 
environment, the "page level indexing" is equally impor
tant in .supporting the very large database environment 
as well as in the reduction of the system data volume 
needed to be moved for the delection/modifice.tion 
operation. In contrast to the DBC, MIRDM stores the 
database structure information on the relatively 

inexpensive mass storage devices ( on rrioving-head
disks rather than the much more expensive electronic 
ones), manipulates this structure information using the 
same units (the processing cluo:ters) which manipulate 
the database (thus distributing the systems workload 
uniformly among its various components) and provides 
the machine with the M:IMD capability as well as lhe 
additional parallelism and processing power which are 
essential for meeting the requirements of the contem
porary and anticipated database systems. Finally, our 
proposed architecture removes the restriction imposed 
by the DBC on processing the '19--join operation [B], 
namely, that both the source and target relations of the 
'19--join operation must fit in the local memory of a 
processor-memory complex, designed specifically to 
carry out the 19--join operation. The newly proposed 
machim~ has. the capability of joining relations of any 
sizes. 

In contrast to DIRECT, MIRDM groups the processing 
elements into a set of clusters, each cluster with its own 
controlling processor. The data transfer, in the new 
machine, is done in relatively large units (the MACUs). 
This organization not only improves the management 
and control of the processing elements and distributes 
the overhead caused by the proce;;sing of requests for 
the movement of the data units (this overhead is caus
ing a system bottleneck in DIRECT), but it. also reduces 
the complexity of the interconnection network. Provid
ing the newly proposed machine with "page level index" 
as well as supporting its primitive operations, at the 
hardware level, helps to improve the performance of the 
selection operation. The latter operation is performed 
poorly, on DIRECT, relative to other DBMs [9]. In the 
case of very large databases, our machine permits the 
implementation of a set of algorithms for the equi-join 
operation, more powerful than the one implemented in 
DIRECT. To demonstrate that fact, we have compared 
[ 10) the performance of the equi-join algorithms recom
mended for the newly proposed machine with that 
adopted by DIRECT. These algorithms have been 
selected l3] from a large set of algorithms, based pri
marily on the behavior of one performance measure, the 
equi-join "total execution time". This comparison shows 
that in a typical very large databased environment 
MIRDM, is (1.5 - 5) times faster in executing the equi-join 
operation than DIRECT. 

5. Conclusion 
In this paper. we have proposed a back-end data

base machine suilabie for supporting the conc:urrent, 
on-line, very large relational database systems. The new 
machine is designed to satisfy a set of guidelines. These 
guidelines have been formulated based on reviewing the 
previously proposed DBMs, the current and the near 
future state of technology and the requirements of the 
concurrent very large relational database systems. The 
previously proposed DBMs were reviewed using a novel 
schP.me for their classification. 

At the present, our research activities are centered 
around prototyping the new machine. Currently a pro
cessing cluster with 8 triplets is being implemented at 
the Computing Research Laboratory of the University of 
Michigan, Ann Arbor. · 

References 

312 

[1] R. H. Canaday, et al., "A Backend Computer for 
Database Mangement," CACM, Oct. 1974, Vol. 17, No. 
Hl. 



[2] J. Martin, "Computer Database Organization," Pren
ticA Hall, 197?. 

[3] G. Z. Qadah, "A Relational Database Machine: 
Analysis and Design," Ph.D. Thesis, 1983. The 
Electrical and Computer Engineering Department, 
the University of Michigan, Ann Arbor. 

[ 4] D. K. Hsiao, "Data Base Computers." Advances in 
Computers, Vol. 19, June 1981 

[5] A. Ozkarahan, S. A. Schuster and K. C. Sevcik, "Per
formance Evaluation of a Relational Associative Pro
cessor," ACM Trans. on Database Systems, Vol. 2, 
No. 2, June 1977, pp. 175-195. 

[6] J. Banerjee, D. Hsiao and K. Kannan, "DBC-A Data
base Computer for Very Large Databases," IEF.E 
Transaction on Computers, Vol. C-28, No. 6. June 
1979, pp. 4Vr-429. 

[7] D. J. Dewitt, "DIRECT-A Multiprocessor Organization 
for Supporting Relational Database Management 
Systems," IEEE Trans. on Computers, Vol. C-28, No. 
6, June 1979, pp.395-408. 

[8] M. J. Menon and D. K. Hsiao, "Design and Analysis of 
a Relational Join Operation for VLSI." Proceedings 
VLDBS, 1981, pp. 44-55. 

[9] P. Fl. Hawthorn and D. Dewitt, "Performance 
Analysis of Alternative Database Machine ArchiteC'
tures," IEEE Trans. on Software Engineering, Vol. 
SE.8, No. 1, Jun. 1981, pp. 61-75. 

[10] G. Z. Qadah and K. B. Irani, "A Database Machine for 
Very Large Relational Databases,"to be Submitted 
for Publication to the IEEE Transaction on Comput
ers. 

(11] C. Defiore and P. B. Berra, "A Data Mangement Sys
tem Utilizing an Associative Memory." AFIPS Confer
ence Proceedings, Vol. 4·2, June 1973, pp. 181-185. 

[12] R. Moulder, "An Implementation of a Data Manage
ment System on Associative Processor," AFIPS 
Conference Proceeding, Vol. 42, 1973, pp. 171-179. 

[13] R. Linde, R. Gates and T. Peng, "Associative Proces
sor Application to Real-Time Data Jv1angement," 
AFIPS Conforence Proceeding, Vol. 42, 19'73, pp. 
187-:i.95. 

[14] D. Shaw, "Knowledge-Based Retrieval on a Relati.onal 
Database Machine," Ph.D. Thesis, Aug. ! 980, Dept. of 
Computer Science, Stanford University. 

[15) D. L. Slotnick, "Logic Per Track Devices," Advances 
in Computers, Academic Press, 1970, pp. 291-296. 

[16] J. L. Parker, "A Logic per Truck Retrieval System," 
Proceeding IFIP Congress 1971. pp. T.A4-146 to TA-
4-150. 

[17] B. Parhami, "A Highly Parallel Computing System 
for Information Retrieval," AFIPS Conference 
Proceedings, Vol. 41, Part II, 1972, pp. 681-690. 

(18] G. J. Liposki, "Architectural Feature of CASSM: A 
Context Segment Sequential Memory," Fifth Annual 
Symp. Computer Architecture Proceedings, Palo 
Alto, CA, April 1978, pp. 31-38. 

[ 19] E. A. Ozkarnhan, S. A. Schisler and K. C Smith, 
"RAP-An Associative Processor for Database Mange
ment," AFIPS Proceedings, Vol. 45, 1975, pp. 379-
387. 

[20] C. S. Lin, C. P. Smith and J. M. Smith, "The Design of 
a Rotating Associative Memory for Relational Data
base System," ACM Trans. Database Systems, Vol. 1, 
March 1976, pp. 53-65. 

[21] E. Babb, "Implementing a Relational Database by 
Means of Specialized Hardware," ACM Trans. Data
base System, Vol. 4, No. 1(March1979), pp. 1-29. 

[22] F. Bancihon and M. Scholl, "Design of a Backend 
Processor for a Database Machine," Proc. of the 
ACM SIGMOD, 1980, International Conference of 
Mangement of Data, (May 1980). 

[23] S. A. Schuster, H. B. Nguyen, E. A. Ozkarahan and K. 
C. Smith, "RAP.2- An Associative Processor for 
Database and its Applications," IEEE Trans. on Com
puters, June 1979, Vol. C-28, No. 6. 

[24] E. Oliver, "RELACS, An Associative Computer Archi
tecture to Support a Relational Data Model," Doc
toral Dissertation, Syracuse University. 1979. 

[25] H. Bora!, "On the Use of Data-Flow Techniques In 
Database Machines," Ph.D. Thesis, 1981. The Com
puter Sciences Department, University of Wiscon
sm, Madison. 

[26] R. Epstein and P. Hawthorn, "Design Decisions for 
the Intelligent Database Machine," Proceedings of 
NCC 49, AFPS, 1980. 

[27] J. R. Goodman, "An Investigation of Multiprocessor 
Structures and Algorithms for Database Mange
ment," Memo No. UCB/ERLM81 /33 (May 1981), 
Electronic Research Lab., College of Engineering, 
University of California/Berkeley. 

[28] S. E. Madnick, "INFOPLEX - Hierarchical Decomposi
tion of a Large Information Management System 
Using a Microprocessor Comp~_,,x," Proceeding of 
the NCC, 1975, pp. 581-580. 

313 



Off··Disk 

Hybird 

On-Disk 

Off-Disk 

Hybrid 

On-Disk 

Off-Disk 

Hybrid 

On-Disk 

Query Processing Place 

IFAM[ll] 
Moulder[l2] 
ACPS[l3] 

Shaw[14] 

Slotnick(l5) 
Parker[l6] 
Parhami(l7] 
CASSM(l7] 
IW'[l9J 
RERES(20] 

SISD SIMD MIMD 
Processor-Memory 
Organization 

Figure 2.1 The DBMs with DB Indexing Level 

Query Processing Place 

IDM[26] 

DBC[6] 
HYPER TREE 
[27] 

SISD SIMD 

LEX[28] INFOP 

MIMD 
Processor-Memory 
Organization 

Figure 2. J The DBMs with Page Indexing Level 

Query Processing Place 

CAFS[21] 

VERS0[22] 

SISD SIMD 

RAP.2 
RELAC 
DIREC 

BORAL 

MIMD 

[23] 
5[24] 
T[7] 

[25] 

Processor
Memory 
Organization 

FIGURE 2. 2 The DBMs with Relation Indexing Level 

Interconnection 
Network 
Subsyste111 (INS) 

Parallel 
luff er 

Computer 
Syetems (lloat11) 

------ ---- -- -----·-·-·1 

:-~---''--~--'---~-~-------~-------~------~---~-, 

' ' I PBB1 PBB2 

' ' ' ' L ____ --- _ --· ______ ---- ------ __ -~!_&_s_!o!:.a!e_a~~ll!S_!e!' ____ .J 

Figure l.l The organhation of MillDM 

r-- - --- ---------, 
I ' 

314 

CHP I 
I 
I 

- - - - - - _ _J 

TBOS MBt'S 

Fi9ure J.2 'l'he Processing Cluster Organization 



EFFICIENT COMPUTING OF RELATIONAL JOIN OPERATIONS 
BY MEANS OF SPECIALIZED HARDWARE(a) 

Yang-Chang Hong 
Department of Mathematics 
University of California 

Riverside, CA. 92521 

Abstract -- A hardware architecture is presen
ted which can provide powerful join capabilities to 
associative processing (AP) systems. The main fea
ture of the hardware is a bit- and word-addressable 
store which can rapidly remember or recall data. 
The data might be the values or tuples selected 
from one relation, in which case the store helps to 
perform the joining of these values or tuples with 
the tuples in the second relation. For general 
case of the join, the store can help in dividing 
the tuples of the relations being joined intoblocks, 
according to their join column values. The conca
tenation of tuples in the corresponding blocks is 
then done by an array of servers. This hardware 
design emphasizes parallelism in the cross referenc
ing between tuples of the relations being joined, 
giving considerable performance improvement over 
existing AP systems. The paper finally gives an 
analysis of the results of hardware performance un
der different applications. 

Introduction 

Limitations of AP Systems 

Previous designs of associative processing 
hardware [1,2,3,5,6,8,9,11] for relational data
bases have concentrated on searching through data 
contained within a table. The search involving 
more than one table has been focused on extensive
ly. This form, called the "implicit" join [1,3,8, 
9,11], does not create a derived relation; instead, 
values selected from one relation are transferred 
to select the tuples in the second (or original) 
relation that have the same values in their join 
columns (i.e., columns on which the joining is 
based). The joining of tuples of relations (re
ferred to as the explicit join) is, however, carried 
out primarily by the MFC, to which the AP system is 
a backend. It will not be very effective if the 
number of tuples to be joined is large. 

The AP systems were based on the parallel pro
cessing of a segmented sequential search. While 
the join operation generally requires a great deal 
of corss checking between tuples of the relations 
being joined (which in turn results in a breakdown 
of parallelism) it is not, in itself, sufficient to 
make a high performance database machine, especially 
when a join-dominated database application is in
volved. Separate hardware which can perform a 

(a)The work was in part supported by the National 
Science Council, Taipei, Grant #NSC70-0404-E001-
02. The author is currently visiting the Depart
ment of Electrical Engrg. & Computer Science, 
Univ. of Santa Clara, Santa Clara, CA 95053. 

0190-3918/83/0000/0315$01.00 © 1983 IEEE 315 

large amount of cross referencing in parallel must 
be sought. It is the purpose of this paper to aug
ment an AP system with hardware that will aid in 
the join operation. 

Approach 

The main feature of the hardware seems to be 
a bit- and word-addressable store which can rapid
ly remember or recall data. The data might be the 
values or tuples selected from the first relation 
being joined. They are then used to select the 
tuples in the second relation. For the general 
case of join, the store can help to divide the 
tuples of the relations being joined into blocks 
of tuples according to their join column values. 
The concatenation of tuples in the corresponding 
blocks is then done by an array of servers. The 
approach emphasizes parallelism in the cross re
ferencing between tuples of the relations being 
joined, providing a considerable performance im
provement over existing AP systems. A hardware 
simulator was developed on the PDP-11/70 computer 
for determining hardware parameters - the number 
of servers and their associated queue length. It 
also had the ability, given a fixed number of ser
vers, to tell the performance of the hardware un
der different applications. 

Organization of the paper 

The body of the paper is divided into three 
parts: In this. first part the hardware archi tec
ture is described. The second part is concerned 
with the computing of relational joins on the pro
posed architecture. The third part is concerned 
with the performance analysis of the architecture, 
which is followed by a summary and conclusion. 

Hardware Architecture 

The architecture depicted in Figure 1 suggests 
t~at the selection of column values or tuples in a 
relation is done by the AP, while the joining of 
the tuples is performed by the extended hardware. 
The command and control processor (CCP) receives 
data requests from the MFC, translates them into 
commands, distributes those commands to the AP and 
extended hardware for execution, receives and for-
mats the resulting data, and outputs the formatted 
data to the MFC. Like CASSM and RAP [9,11], we 
assume that data in the AP are stored in encoded 
form and that the encoding and decoding processes 
are done by the CCP (i.e., E.D.U.). 

The extended hardware consists of five major 
parts: IP, MB, RAM, S and CP. They are described 
as follows: 

(1) IP is an input processor which serves as 



a buffer between AP and extended hardware. It ac-
cepts the column values or tuples selected from the 
AP and stores them into queue Q. The registers H 
and T are used to hold the locations of the first 
and last entries of Q, respectively. The flag FQ, 
when set to 1, indicates Q is full. The IP starts 
its operation whenever Q is not empty. 

(2) MB is a memory bank for storing the tuples 
of the first relation being joined. It is divided 
into P modules, designated as M(i), 0 < i < p-1. 
Each module has q words. P and q are design para
meters. 

(3) RAM consists of single bit array stores 
(rA, rB, etc.) and an array r of words. The bits 
of the store and r-words are addressed by encoded 
values. The addressed bit can be set to 1 or 0 
and can be tested for being 1 or 0. The addressed 
r-word can hold an encoded value or a pointer point
ing to a particular word of a particular module, or 
its contents can be fetched for various joining pur
poses. 

( 4) S is a set of servers which formsnew tuples 
of the join. Associated with each server Si is a 
queue Qi, 0 .'.:_ i .'.:_ p-1, for holding tuples of the 
second relation being joined. Like queue Q, each 
Qi has two registers, Ti and Hi, and a flag Fi. 
Each Si is designed to form new tuples from Qi and 
M(i), without any memory conflicts. Thus, there 
are as many Si's as M(i)'s. A buffer is provided 
for each server to hold the new tuples it produces. 
The new tuples can then be either output to the MFC 
or stored back to the AP for further processing. 
This is accomplished by the output mechanism. 

(5) CP is a central processor which reads data 
stored in Q, addresses the RAM using encoded values 
as indices, allocates the storage space in MB for 
the tuples of the first relation being joined, and 
deposits the tuples of the second relation into the 
appropriate server queues. Registers D, T, and 
BR(i), 0 < i < p-1, are provided for allocating 
storage space-for storing the tuples of the first 
relation being joined. 

Computing of Join 0perations 

This section describes the implementation al
gorithms on the extended hardware. As suggested 
above, the joining of relational tuples is done by 
the extended hardware. In our implementation, im
plicit and explicit joins are treated in different 
ways. We will first discuss the implementation of 
implicit joins and then discuss the explicit joins. 

Queries Involving the Implicit Joins 

We use an example to illustrate how the single 
bit array store is used to implement implicit joins. 

Example 1. Print all the green items sold by the Dl 
department. 

To answer this query, a simplified database 
with tables SALES and TYPE is assumed in Figure 2. 
The query can be implemented in various ways. One 
way is to apply the selection process to SALES to 
select the items sold by Dl. The selected items 
are then used as a disjunctive condition to match 
the TYPE tuples. The green items of the matched 

316 

•, 

tuples are output to the MFC. The procedure imple
mented by the single bit array store rA is outlined 
below: 

(1) Reset rA. 

(2) Scan table SALES by the AP and output the 
items sold by Dl to the extended hardware, specifi
cally to the queue Q of the IP. The items are 
fetched and used as indices to set the appropriate 
rA bits to 1. After this step, all the items sold 
by DI are recorded in rA, each having one corres
ponding set bit in rA. 

(3) Scan table TYPE and output all the green 
items to Q. These items are then checked against 
items sold by Dl. This is done by using the items 
in Q as indices to address the corresponding rA 
bits and outputting the items whose corresponding 
rA bits are set to 1. (We neglect the encoding and 
decoding processes here.) 

The discussion above assumes that all the en
coded ITEM values are within the address space of 
rA. If not, the procedure is repeatedly applied. 
The ith (i>l) repetition is arplied to the value 
range hetween 2t+i-l and (2t+1_1) , where t is the 
number of bits required for the address space rA. 

If the values selected from the second rela-
tion are again transferred to match tuples in the 
third relation, another single bit array store is 
required. In general, two stores are sufficient, 
which can be alternatively used for a query involv-
ing a chain of implicit joins. 

Implementation of Explicit Joins 

There have been proposed several different 
approaches to this type of join [4,7,10,12]. One 
way is to sort the tuples of each relation being 
joined into blocks of tuples based on the join 
column values. The tuples in a block have the same 
join column value. Each tuple in one block is then 
concatenated with the tuples in the corresponding 
block of the second relation. The concatenation is 
rather straightforward. 

Our approach is very similar to this approach. 
However, it does not actually perform the sorting. 
Instead, tuples in one relation are first divided 
into blocks of tuples, according to their Join 
column values, and then are stored in the MB (see 
Figure 3). No block is allowed to be stored in 
more than one module. The information about the 
location of each block of tuples is stored in RAM. 
In Figure 3, a block of 3 tuples with join column 
value Bl is stored at the location 100 of module 0, 
i.e., M(O). The location information of this block 
is stored in an r-word addressed by Bl (assume Bl 
is encoded as 1). The setting of the corresponding 
rA bit to 1 indicates that there is a block of 
tuples with join column value Bl in the first rela-
tion. 

After the first relation is stored in MB and 
the location information is entered into RAM, the 
AP system starts outputting the tuples of the sec
ond relation to the CP. The join column value of 
each incoming tuple of the second relation is ex-
tracted and used as an index to address the RAM. If 
the addressed rA bit is 0, then the tuple is dis
carded because there is no match. If set, the mod
ule number of the addressed r-word determines the 



queue in which the incoming tuple will be deposi
ted. It is concatenated to the location number of 
the addressed r-word so that, when the tuple is 
processed, the server ~ould know the location of 
the block the tuple will be concatenated to. The 
arrangement described above permits the array of 
servers to produce the concatenated tuples of the 
join from their queues and the corresponding mod
ules, without any memory addressing contention. 

The algorithm assumes that MB is large enough 
to hold an entire relation to be joined and the 
block size is less than or equal to the module 
size. If not, additional effort is needed. 

Analysis 

The analysis has concentrated on how the num-
ber of servers and the length of the server queues 
affect the hardware performance in computing the 
explicit join operation. It is divided into two 
aspects: one is to, given an application, determine 
the number of servers required and the length of 
their associated queues so that tuples deposited 
to the array of servers will not be blocked (theo
retically). The application can be characterized 
in terms of many factors. In our analysis, it is 
defined by the ratio of the number of tuples in a 
relation to the number of distinct join column 
values and will be referred to as the "multipli-
city". 

The analysis is based on a hardware simulator 
developed on the PDP-11/70 which simulates the 
functions of the proposed hardware. The applica
tions are generated using a random number genera
tor. 

Our analysis results are stated below. The 
number of servers required for each application 

N = (multiplicity) 1 · 5 . If each application runs 
o~ its required number of servers, the analysis 
indicates that only a few uni ts of tuple are re-
quired for each server queue to achieve good per
formance. If the number of servers is fixed, then 
the performance logorithmically degrades if the 
multiplicity of an application is greater than that 
of the application running on that number of servers. 

Summary and Conclusion 

A hardware architecture which can efficiently 
compute the relational join operation has been 
described. The main feature of this architecture 
is a RAM which can rapidly remember or recall data 
for computing implicit joins. It can help dividing 
the tuples of the relations into blocks of tuples 
for computing explicit joins. The analysis results 
show that the number of servers required for a tuple 
deposited to the array without being blocked (theo
retically) is a function of multiplicity, indepen
dent of the cardinality of the resulting relation. 

This hardware provides powerful join capabili
ties to AP systems, especially when applied to join
dominated database applications. We believe that 
it can be adapted to the current VLSI technology. 

317 

References 

[ l] Bobb, E., "Implementing a Relational Database 
by Means of Specialized Hardware," ACM TODS, 
Vol.4, 1, March 1979, pp. 1--29. 

[2] Banerjee, J., and Hsiao, D.K., "DBC - A Data
base Computer for Very Large Databases," IEEE 
Trans. on Computers, Vol.C-28, 3, 1979. --

[3] Chang, H., "On Bubble Memories and Relational 
Data Base," Proc. 4th Int' 1. Conf. on VLDB, 
West Berlin, 1978, pp. 207-229. 

[4] Dewitt, D.J., "Direct - A Multiprocessor Or
ganization for Supporting Relational Database 
Management System," IEEE Trans. Comp., C-28. 
June 1979. --

[5] Hong, Y.C., and Su. S.Y.W., "Associative Hard
ware and Software Techniques for Integrity 
Control," ACM TODS, Vol.6, 3, Sept. 1981, pp. 
416-440. --

[6] Hong, Y.C., and Su, S.Y.w.·, "A Mechanism for 
Database Protection in Cellar-Logic Devices, 
IEEE Trans. Software Engineering, Nov. 1982. 

[7] Menon, M.J., and Hsiao, D.K., "Design and Ana
lysis of a Relational Join Operation for VLSI," 
Proc. 7th VLDB, Paris, France, 1981, pp. 44-55. 

[8] Lin, C.S., Smith, D.C.P., and Smith, J.M., 
"The Design of a Rotating Associative Memory 
for Relational Database Applications," ACM 
TODS, Vol.I, 1, March 1976, pp. 53-65. --

[9] Ozkarahan, E.A., Schuster, S.A., and Smith, 
K.C., "RAP - An Associative Processor for Data
base Management," Proc. 1975 NCC, Vol.44, AFIPS 
Press, Montvale, N.J., pp. 379-387-.---

[10] Shaw, D., ''A Relational Database Machine Arch
itecture," Proc. 5th Annual Workshop on Com
puter Architecture ·for Non--Numeric Processing, 
Pacific Grove, CA, March 1980. 

[11] Su, S.Y.W., and Lipovski, G.J., "CASSM: A Cell
ular System for Very Large Databases," Proc. 
Int'l. Conf. on VLDB, Sept. 1975, pp. 456-472. 

[12] Tanaka, Y., Nozaka, Y., and Masuyama, A., 
"Pipeline Searching and Sorting Modules as 
Components of a Data Flow Database Computer," 
Proceedings of IFIP Congress 80, pp. 427-432. 



A sequence of 

encoded values. 

rA rB 

•• 1 

2 ' 

~ • • • ~ r • . . . . . . . . . . . . 
m-1 

IP Input 

Processor Central 

To 1'/C or 
stored back 

to AP 

module 

module 

outl)UI 

Mee hon is rn 

Figure 1. Hardware Architecture 

SALES TYPE 

DEPT IT EM IT EM COLOR PR ICE 

<Dl > <CAM> <BOLT > <GREEN> <Sp> 

<Dl> <GEAR> 
<CAM> <RED> <2p> 

<OS> <CAM> <COG> <RED> <4p> 

<OS> <NUT> <GEAR> <GREEN> <4p> 

<08> <CAM> <NUT> <13LACK> <Sp> 

<010> <NUT> 
<SCREW> <YELLOW> <7p> 

Figure 2. A Simplified Database with Two Tables SALES 
and TYPE Linked by ITEM 

rA rB r MB 
M (p-1) 

0 
l--+--+~~~~~--1 

1 0 •100 

2 l--+-+---'----1 

tuple t of 2nd CP 
relation with Bl 

Figure 3. Implementation of Explicit Joins 

318 



A VLSI MODULAR ARCHITECTURE METHODOLOGY 
FOR REALTIME SIGNAL PROCESSING APPLICATIONS 

Hungwen Li 
RCA Advanced Technology Laboratories 

Camden, NJ 08102 

Abstract - computer system architecture is cur
rently under development for realtime processing ap
plications having widely varying throughput require
ments. Modularity at the VLSI chip level is there
fore the highest priority attribute in the design 
process. In support of this modularity concept, two 
VLSI primitives -one for computing, the other for 
interconnecting - were defined for use as "build
ing blocks" to customize the amount of hardware 
required. To maximize VLSI modularity, hardware 
system architecture was established incorporating 
the two VLSI primitives mentioned above and an 
existing microprocessor for two groupings of hier
archies, cluster and system. The software system 
architecture adheres to the dataflow concept. Syn
chronized at the functional level, the signal 
processing operations that constitute the software 
are data-driven and data-independent. The soft
ware architecture was developed orthogonal to the 
hardware system architecture to ensure independence 
and transportability. In addition, the orthogon
ality between the hardware and software system 
architectures provides the flexibility to adjust 
the hardware/software mixture as required to the 
application without major redesign of the system 
components. A system architecture simulator, to 
evaluate various candidate system architectures in 
response to a set of system parameters and con
straints, is being implemented to aid in the trade
off of the hardware/software mixture. 

Introduction 

The development of computer system organiza
tion (system architecture) for future realtime 
signal processing applications including radar, 
sonar, telecommunications, and speech [l) is under
way. Modularity at the VLSI chip level is the 
chief criterion and the hierarchical use of two 
VLSI modules in the system architecture appears 
highly effective logistically. 

The higher-level attributes of the signal 
processing system vary from application to applica
tion. Obviously, the system requirements of a 
radar system to simultaneously track 400 targets 
are far removed from the specifications of a 
speech terminal providing secure voice transmission; 
the algorithm for detecting a target via sonar 
signal processing bears no resemblance to the modu
lation algorithm of the telecommunication signal 
processing. 

However, the lower-level attributes of such 
systems, upon which the higher-level attributes are 
built, are functionally similar over a wide range 
of applications and are well defined. On this 
basis, a set of VLSI primitives and a unified 
system architecture can be defined for a host of 
applications, each with differing performance 
requirements. Such primitives and architecture 

0190-3918/83/0000/0319$01.00 © 1983 IEEE 319 

will provide a sound foundation on lower-level 
attributes and allow the system designer to focus 
on the design of the higher-level layer effi
ciently. 

Two VLSI primitives were identified to 
facilitate the developing of lower-level attri
butes. The first, a Programmable Signal Processor 
(PSP) [2), supports versatile vector operations 
which provide a structure for various higher-level 
algorithms. The second, a Signal Processor 
Interconnection Switch (SPIS) [3), offers a full 
connection among participating multiple PSPs, 
allowing algorithms to be synthesized for applica
tions having different performance requirements. 
The architecture and characteristics of the VLSI 
primitives will be discussed in the next section. 

The hardware system architecture relies heavily 
on the SPIS interconnection mechanism. Using the 
SPIS according to the cluster and system hierarchy, 
which is described under the Hardware System 
Architecture section, maximizes the VLSI modularity. 
The software system architecture follows the data 
flow concept [4,5) at the functional level and was 
developed separately from the hardware system 
architecture to ensure independence and transporta
bility. Orthogonality between the hardware and 
software system architectures additionally provides 
the flexibility to adjust the hardware/software 
mixtue as required by the applications without 
major redesign of the system primitives. To aid 
the tradeoff of hardware/software mixture, a 
system architecture simulator (SARSIM) is being 
implemented to evaluate various candidate system 
architctures in response to various system param
eters and constraints. 

VLSI Primitives 

To fulfill the computational requirements of 
signal processing on an incremental basis, a high 
throughput programmable signal processor with mod
ularity at the VLSI chip level is essential; fur
thermore, a unified interconnection mechanism that 
constructs a multiprocessor system and can be 
implemented preserving VLSI modularity is very 
desirable. This concept identified and defined 
two VLSI primitives, the PSP and SPIS. 

Programmable Signal Processor (PSP) 

The PSP is a two-chip device consisting of the 
controller and the Register Arithmetic Logic Unit 
(RALU). It is designed for the 132-pin package and 
1.25 µm CMOS/SOS technology. A clock rate higher 
than 50 MHz, operating at 5 volts, is required. 
Figure 1 illustrates the major PSP components 
and their interfaces to the program memory, the 
data memory, and the control unit which will be 
described in the section on system architecture. 



I 
\ 

' 

CONTROL 
UNIT 
INTERFACE 

,_ 

CONTROLLER\ 
I 

SPIS 
INTERFACE 

DATA 
MEMORY 

Fig. 1. Block Diagram of Programmable Signal 
Processor. 

RALU. The RALU has a horizontally microprogram
mable, pipelined architecture which performs com
putation-intensive signal processing functions. 
As shown in Fig. 1, the data path of RALU is or
ganized as a multiplier/dual-adder structure to 
optimize the Fast Fourier Transform (FFT) compu
tation as well as popular signal processing al
gorithms such as filtering and convolution. 

Major components of the RALU include eight 
16-bit registers, a 16-bit-by-16-bit multiplier, 
and two ALUs. Separate input and output lines 
support simultaneous memory read and write. Con
trolled by a 16-bit µ-instruction, all activities 
in these components occur concurrently yielding 
a throughput of more than 100 million operations 
per second (MOPS). 

A list of operations directly supported by 
RALU are given in Table 1. These operations are 
supported in 16-bit integer, 32-bit complex, 16-
bit block floating point, and 32-bit complex 
block floating point formats. 

TABLE 1. FUNCTIONS SUPPORTED BY PSP 

Function 

FFT CONVOLUTION 
MULTIPLY/ACCUM INTEGRATE 

ADD/SUB POLYNOMINAL 
DIVIDE POISSON 

SQUARE ROOT GAUSSIAN 
LOGICAL MIN 

CONJUGATE MAX 
FILTERING THRESHOLD 

CLIP SUM OF ABSOLUTE 
LIMIT AMDF 

320 

The VLSI modularity is further enhanced by 
the RALU. For example, one RALU can execute the 
FFT butterfly in 4 clock cycles. However, two 
RALUs can be arranged side-by-side to execute a 
2-cycle butterfly; more significantly, four RALUs 
can be arranged in parallel to accomplish a 1-
cycle butterfly for applications requiring a very 
high throughput. 

Controller. The PSP controller supports all 
the control mechanisms required by the RALU. It 
handles the program sequencing, the data memory 
address generating and control, and the interface 
to the control unit. 

The controller contains three components: 
The SEQuencer (SEQ), two Data Address Generators 
(DAGs), and the system control. The sequencer 
generates one program address per cycle to pre-
f etch one instruction for controlling the DAGs, 
the RALU, and the remainder of the system. The 
sequencer also handles the command buffer, the 
interface to the control unit for passing the 
signal processing descriptors (described in the 
system architecture section). The DAG generates 
one data memory address per cycle to read or write 
memory data. Along with the address, the timing 
and the control signals are generated on-chip to 
simplify the system interface circuit. 

The sequencer supports immediate, register, 
and relative addressing modes and convenient 
branching functions such as IF and CASE desired 
by the program control. Two stacks, the itera
tion stack and the 
tively achieve FOR 
described in Ada. 

program counter stack, coopera
and WHILE looping actions 
Special LOOP action allows a 

program to operate continuously without resetting 
th iteration count. This feature is particularly 
useful in a clock-driven, high data-rate environ
ment. 

Flexible addressing modes and a wraparound 
mechanism provided by DAG handle wraparound for 
circular buffers and corner-turning of two
dimensional memories. In this way a wide spectrum 
of data memory accessing patterns (such as bit 
reversal of FFT and window movement) generic to 
the signal processing applications can be managed .. 

Signal Processor Interconnection Switch (SPIS) 

The most challenging problem faced in imple
menting VLSI modularity when a large number of 
PSPs are interconnected is overcoming the pin 
limitation of the package. Recognizing this, the 
SPIS separates the passing of data from the con
trols so that the data path can be bit-sliced, 
which allows more PSPs to be connected in one 
module. 

Figure 2 depicts the data path of SPIS. Each 
signal processor is equipped with a lccal memory 
and is allowed to have its own port attached to 
the shared mrmory via SPIS. The shared memory is 
organized as a B-word-wide memory with word size 
W (where B is the block size and is the smallest 
addressable unit of the shared memory). The block 



w 

SPIS#1 "'"'w 

PORT::1 PORT#2 PORT#N 

Fig. 2. Schematic Diagram of SPIS Data Path. 

size B is programmable and is subject to the num
ber of ports (N) and the relative speed between 
the shared memory and the local memory accessing. 

A control unit (not shown) is dedicated to 
control the SPIS operation via a control bus 
(CBUS) to which every signal processor attaches 
and sends commands. The control unit accepts 
commands in a round-robin fashion, with a fixed 
time slot allocated to each signal processor. 
During each time slot, the control unit may 
perform one of the three operations as summarized 
in Table 2. These operations are performed by 
sending control signals from the control unit to 
the shared memory unit, SPIS chips, and each sig
nal processor. 

In any operation, a parallel transfer (B 
words) occurs at the shared memory end while 
serial transfer (one word) occurs at the local 
memory end. This requires one bit storage per 
crosspoint and one vertical connection per column 
(Fig. 2), which enhances the crossbar switch and 
increases the complexity of SPIS accordingly. A 
first-cut logic design indicated that a 32 x 32 
SPIS chip is at the complexity of about 60K trans
istors. 

TABLE 2. BASIC COMMAND TYPES 

Operation 
Source Destination Iteration 

Operand Operand Count 

READ SMU- PORT ii ii OF 
BLOCK ii BLOCKS 

WRITE PORT ii SMU-BLOCK ii ii OF 
BLOCKS 

COPY PORT ii PORT ii ii OF 
BLOCKS 

321 

The bit-sliced SPIS architecture overcame the 
pin limitation of the VLSI package and made it 
feasible that at least a 32 x 32 configuration 
can be supported with today's technology (<lOOK 
transistors and 132-pin package). With a large 
number of interconnect"ions supported per chip, 
off-chip switching delay is reduced. This 
leads to a higher data-transfer rate, which con
tributes significantly to the performance of the 
data flow software architecture (discussed in the 
next section). In addition to the above-mentioned 
advantages, the bit architecture matches ideally to 
the bit-organized memory, leading to easier imple
mentation of error-correcting codes which ensures 
higher reliability. 

The major drawback of the SPIS architecture 
is that any crosspoint failure will potentially 
affect the overall system because of its bit
sliced structure and full connectivity. This, 
however, can be easily corrected by having redund
ant SPISs for each bit path. 

System Architecture 

The system architecture development is divided 
into hardware and software architecture both of 
which are developed orthogonally to pro~ide not 
only independence and transportability, but also 
the flexibility to adjust the hardware support as 
required by the application or as restricted by the 
physical or cost constraints. 

Software System Architecture 

The software system architecture follows the 
concept of data flow because signal processing 
functions are basically data-driven and data-inde
pendent. Unlike the propos,ed data flow concept [4], 
which synchronizes the operations at the arithmetic 
level, the data flow advocated here for signal 
processing synchronizes the operations at the 
functional level. This was chosen because most 
signal processing .functions operate on vectors of 
reasonably iarge size. Consequently, functional
level data flow reduces the overhead of passing 
both the data and the descriptors. 

A detailed software system architecture has 
been defined [6]. Due to its complexity, only the 
portions sufficient to address the methodology are 
presented here. Similar work [7] has been pre
sented recently. 

Data Flow Model. As shown in Fig. 3, ~ signal 
processing function is represented by a node and 
its Input-object (I-object)and Output-object (0-
object). These objects are represented by the 
direct links going in and out of the node. The 
Input-objects and Output-objects can be data or 
controls. A node is initially in the "wait" state 
and can be converted into the "executable" state 
only when all its associated data I-objects have 
arrived and control I-objects are in a "true" state. 



O·OBJECT #1 
I-OBJECT #1 

0-0BJECT #2. 

I-OBJECT #N 
0-0BJECT #foll 

LINK 

Fig. 3. Data Flow Model. 

Data Flow Graph (DFG). Based on the flow 
model, an algorithm or application can be typified 
by a data flow graph consisting of a set of nodes 
representing the processing elements of the graph, 
a set of links or queues representing the directed 
information flow through the graph, and a command 
program carrying out control functions. Graph 
input queues provide a means of transporting 
data into the graph; graph output queues provide 
a means of transporting data out of the graph; 
and command programs interface to the data process
ing subsystem. 

Each node in the graph represents a specific 
signal processing operation called the underlying 
operation of the node. The underlying operation 
may be either a subgraph or a predefined primi
tive operation (macro). Subgraphs allow hier
archical structuring in graph definition. The 
expansion is complete when a graph contains only 
nodes with macros. 

A node has a set of input data queues supply
ing data to the node. Associated with each data 
input queue are: 

a) A threshold value representing the mini
mum number of data elements that must be 
present on the corresponding queue before 
the macro can be executed. 

b) A read amount representing the number of 
data points that the macro will use as 
input data. 

c) A consume amount representing the actual 
number of data points to be removed from 
the queue after the macro has been 
executed. 

These queue parameters are managed by a data flow 
schedule algorithm to maintain the DFG execution. 

A link or queue of a DFG represents the 
directed flow of information from node to node 
within a graph or from a node to another graph. 
There are two types of queues - data queues 

322 

carrying data and control queues for synchro
nization. A command program, which carries 
out control functions in an application and 
serves as the interface between signal and 
data processing, can be associated with a graph. 

Automatic application partitioning into a 
DFG is a difficult issue and is currently under 
study. Even with the aid of some partitioning 
programs, it is believed that manual partition
ing will still play the most important role in 
constructing a DFG. 

Object Database, Data Flow Schedule Algorithm, 
and Synchronization. The DFG contains two types 
of information: the topology which illustrates the 
input/output relationship between nodes, and the 
descriptor which contains the node name and the 
queue parameters. Both topology and descriptor 
information must be described in Signal Process
ing Language (SPL) [6] and translated into the 
object database for the graph execution. An ex
ample of the object database can be found in 
Fig. 4. 

The descriptor includes the name of the node 
and the queue description for each link. Each 
queue descriptor includes queue type (control or 
data), input/output type, capacity, consume 
amount, produce amount, input/output pointer, etc. 

The schedule algorithm utilizes the object 
database to execute the data flow model. It is 
this mechanism that synchronizes the nodes in a 
DFG. Each node has an indication of its state 
(wait, executable, processing, or finished) in 
the object database. Some hardware entities 
examine these states; change them from "wait" to 
"executable;" and move the descriptor of the 
executable nodes to the PSP for execution. The 
synchronization is automatically established by 
the data flow model and the object database. All 
nodes are executed asynchronously; however, maxi
mum parallelism is allowed when sufficient numbers 
of processes are available. 

1/0 ·OIJECTOATAIASE 

I~ LOGIC,,,,YSICALllNal•G 

~ f=HJ.l•ll·lll·il= 
IODE EllECUTAIUQUEUE 
# l·OIJECT 0-GIJECT 

' INPUT,DP Z,J,4 

' ' .. , 
' .. . ' '" 

COMAIO l.ftOINTER 0-POlllTER 
Fty1 ... FfT " .. 

MULT •.~ .. 
COMP ·I • !,3 ... . u . ..,,_ 

1 • • 
I .. 11 

• '·' " -
" •• OUTPUT 

Fig. 4. Topology and Object Database Generation. 



Deadlock. A deadlock situation is possible 
when there exists a feedback path in a DFG; how
ever, it can be prevented by creating a control 
object along with the feedback path. The feed
back control is initially "true"; it becomes 
"false" after the execution of the node that 
accepts the feedback path. This feedback con
trol object will be triggered to be "true" via 
the execution of the node generating the feed
back. By constructing a logically sound DFG, 
the deadlock can be totally prevented. 

Hardware System Architecture 

Hierarchical approach and modularity are 
the highest priority factors in configuring hard
ware system architectures. Two levels of hier
archy, system and cluster, are established 
as the system architecture (Fig. 5) using 
the same SPIS primitives. 

A cluster consists of one control unit, a set 
of Signal Processor Modules (SPM); and a set of 
Input/Output Processors (IOP). These modules 
are connected by a SPIS network, a CBUS, and a 
SBUS. The cluster control unit is attached to 
the object database and is responsible for execu
ting the data flow schedule algorithm described 
previously. The SPM is responsible for computa
tion and consists of the PSP primitive, the local 
memory, and a local control unit interfacing with 
both CBUS and SBUS. 

The IOP consists of a local memory and a 
local control unit interfacing not only with CBUS 
and SBUS but also with the Cluster CBUS and Clus
ter SBUS. The IOP is responsible for inputting 
data from the sensor, outputting data to the data 
processing subsystem, and transferring data among 
the clusters. The IOP can be implemented with 
existing microprocessors from which the local/ 
cluster/system control unit may also be con
structed without further dedicated VLSI primitives. 

Fig. 5. Hardware System Architecture. 

SYSTEM 
SHARED 
MEMORY 

323 

In the hierarchical approach, several clus
ters grouped together constitute a system. At 
the system level of hierarchy, identical inter
connection methods and modules are adopted, with 
the exception of replacing the SPMs by the clus
ter block in which one or more IOPs may communi
cate via the Cluster SPIS network and Cluster 
CBUS. A Cluster SBUS and a system control unit 
with an object database are also available for 
the execution of the data flow. After signifi
cant data reduction by the signal processing 
front end, data processing is performed. The 
data processor, which also houses the command 
program, is most appropriately connected 
at the system hierarchy. 

In light of the realtime signal processing 
applications, the hierarchical architecture is 
the ideal structure for the two developed VLSI 
primitives. Hierarchical approach groups tightly
coupled nodes into a cluster and several clusters 
into a system, localizing the communication traf
fic and maximizing the utilization of the SPIS. 
This type of grouping is best depicted by several 
channels of identical signal processing and is a 
natural and logical way of mapping the signal 
processing problem to the hardware. Linked to 
the software architecture, the hierarchical hard
ware approach is almost a one-to-one mapping to 
the hierarchical expansion of the subgraph, which 
strongly indicates the high modularity of this 
methodology in both hardware and software dimen
sions. 

The choice of the hierarchical architecture 
is also driven by the physical limitation of the 
packaging. Using standard chassis and printed
circuit boards, about 32 programmable signal 
processors can be assembled in one chassis as a 
cluster. The physical interconnection of clusters 
can be conveniently done in one independent 
chassis. This simplifying approach achieves high 
modularity even at the chassis level. 

Many issues in the hardware system architec
ture (e.g., number of SPMs and IOPs in a cluster, 
the communication bandwidth of CBUS and SBUS, and 
the structure of the object database, etc.) remain 
undetermined. These issues are, more or less, 
application dependent and should not be totally 
predetermined until the application requirements 
are specified. To resolve these issues, a design 
automation tool at the system architecture level 
is needed and will be discussed in the next 
section. 

System Architecture Simulator (SARSIM) 

The system architecture simulator is a tool 
for evaluating the performance of a candidate 
system architecture before building the prototype 
hardware. The idea behind SARSIM is to input the 
parameterized architecture attributes -including 
the hardware system architecture in terms of PMS 
notation [8], the software system architecture in 
terms of the data flow schedule algorithm, and 
the application in terms of DFG -into the simula
tor and to allow the system designers to observe 



and collect the statistics of the interesting 
parameters. SARSIM consists of six software 
modules. The modules' functions are described 
below. 

The graph translater converts the DFG codes 
in SPL to the object database for use by the 
policy handler in the execution of a data flow 
model. 

The topology handler inputs the system con
figuration described in PMS notation and its 
associated parameters (e.g., delay of a bus). The 
handler then builds a network of queues with cor
responding queue disciplines for the manipulation 
of the global clock handler. 

The policy handler module, where the data 
flow schedule algorithm resides, can implement 
.a variety of algorithms following the same model. 
By observing the output of the statistic handler, 
the algorithm performance can be measured to aid 
in choosing the algorithm. 

The task handler mimics the PSP execution, 
generates the appropriate delay information to the 
statistic handler, and transmits execution status 
to the policy handler. 

The statistic handler collects and reports 
the interesting parameters such as the CBUS delay 
caused by the contention, SPIS performance as a 
function of the number of ports, and the impact of 
the object data base structure on performance. 

The global clock han.dler mimics the parallel 
events sequentially and drives the simulator. It 
examines every queue generated by the topology 
handler, services the pending requests in the 
queues, and adjusts the global timing information 
for each queu~ so that the statistic handler can 
perform the statistic calculation. 

Status and Future Sti1dy 

In the aspect of the VLSI primitive, the PSP 
has been defined at the register transfer level 
(RTL) and an RTL simulator has been implemented 
to validate the correctness of the architecture 
and the completeness of the instruction set by 
implementing a set of signal processing macros. 
Furthermore, the logic designs of the RALU and 
the SPIS were completed. 

The definition of the software system archi
tecture and the signal processing language have 
been completed and documented [6], while the de
tailed hardware system architecture needs to be 
investigated. 

324 

The conceptual definition of the system archi
tecture simulator has been finished and its imple
mentation is currently proceeding. After its com
pletion, a series of hardware system architectures, 
data flow schedule algorithms, and different ob
ject database structures will be tested. Expected 
test results are a family of performance curves 
serving as the guidelines of the design space for 
the hardware/software tradeoff. 

The fabrications of PSP and SPIS are planned, 
from which a hardware testbed will be constructed 
as a signal processing system prototype. 

References 

[l] A. Oppenheim, ed., Application of Digital 
Signal Processings, 1978, Prentice Hall, 
Englewood Cliffs, NJ . 

[2] RCA internal report. 

[3] P. Sawker, T. Forquer, E. Schernecke, and 
H. Li, "A Multi-Port Memory Organization for 
Use in Distributed Computing Systems," Proc. 
of 3rd Int'l Conf. on Distributed Computing 
Systems, Miami/Ft. Lauderdale,' FL, Oct. 18-
22, 1982. 

[4] J.B. Dennis and D.P. Misunas, "A Prelimin
ary Architecture for a Basic Data-Flow 
Processor," Proceedings on 2nd International 
Symposium on Computer Architecture, pp. 126-
322., IEEE, New York, 1975. 

[5] J.R. Heath, G.D. Broomell, and A. Hurt, ·~ 

Distributed Computer Architecture for Real
time, Data Driven Applications," Proc. of 
3rd Int'l Conf. on Distributed Computing 
Systems, Miami/Ft. Lauderdale, Florida, Oct. 
1982. 

[6] RCA internal report. 

[7] Y.S. Wu, "A Common Operational Software 
(ACOS) Approach to a Signal Processing 
Development System," Proceedings of ICASSP83, 
Boston, MA, April 1983. 

[8] C. Bell and A. Newell, Computer Structures: 
Readings and Examples, New York, McGraw 
Hill, 1971. 



EMSY85 - The Erlangen Multi-Processor System for a 
Broad Spectrum of Applications. 

G. Fritsch, W. Kleinoeder, C.U. Linster and J. Volkert 

Institute of Computer Science (IMMD) 
University of Erlangen - Nuremberg 

Federal Republic of Germany 

ABSTRACT 

A new Erlangen multiprocessor system, EMSY85, will consist of a 
grid-like array of microprocessors operating asynchronously, each of 
which is coupled via memory with a limited number of its neighbors. 
We intend to demonstrate that for a broad spectrum of applications the 
system's performance can grow nearly in proportion to the number of 
processors in the array. The operating system is based on UNIX*. A 
programming environment for parallel programs makes the system attrac
tive to the users. Many design decisions have been based on the 
results of an existing pilot project. 

1. Introduction and Motivation 

Numerous attempts have been made in 
the past few years to increase computing 
power by means of multiprocessor systems 
with various architectures. Two such 
systems have been implemented in 
Erlangen, SYMPOS [12,15], which is a 
symmetrical system, and EGPA** [5], 
which is hierarchical. 

The experience gained with applica
tions on these two projects led scien
tists at the Computer Science Department 
(IMMD) of the University of Erlangen -
Nuremberg to conceive EMSY85, which will 
be implemented in the next few years. 
EMSY85 consists of a grid-like array of 
microprocessors operating asynchro
nously, each of which is coupled via 
memory with a limited number of its 
neighbors. Because of the large number 
of processors, a symmetrical system 
(each processor has access to each 
memory modul) is unrealistic [6]. On 
the other hand because of the many 
computation-intensive user applications 
with a matrix structure, a processor 
field with a grid structure was chosen. 
Above this array there is a hierarchy of 
processors, whose job it is to supervise 
the array and to transport data between 

* UNIX is a Trademark of Bell Laboratories. 
** EGPA was supported by the Federal 
Ministry for Research and Develop-
ment, F.R.Germany 

0190-3918/83/0000/0325$01.00 © 1983 IEEE 325 

processors that happen not to be neigh
bors. The higher-level processors can 
also perform tasks other than supervi
sion. Thus EMSY85 is also well suited 
for tree-like user applications. In 
addition, results from the pilot project 
EGPA lead us to believe that many user 
applications with a subtask structure 
that is neither grid-like nor tree-like 
can easily be mapped onto, and computed 
efficiently on EMSY85. 

Therefore the project's main goal 
is to show that for a broad spectrum of 
applications, system performance can 
indeed grow nearly in proportion to the 
number of processors in the array. We 
are thus planning to test a large number 
of algorithms from such fields as phy
sics, chemistry, operations research and 
image-processing, many of which have 
already shown large speedups on the 
pilot project. In order to make the 
system attractive to potential users, 
the complexity of programs written for 
the system must not be essentially 
greater than that of programs written 
for a monoprocessor. Not only must the 
system's higher-level language contain 
constructs for asynchronous programming, 
there must be a programming environment 
capable of supporting the development of 



parallel software. 

The paper describes five aspects of 
the EMSY85 project: the hardware, the 
operating system, the programming 
environment, measurement and performance 
aspects and applications. 

2. The EMSY85 - A'rchi tecture 

The Erlangen multi processor system 
EMSY85 will consist of identical 
Processor-Memory Modules (PMMs). Each 
PMM will consist, in turn, of an iAPX 
286/287 microprocessor and a one-half 
megabyte multiport memory. The PMMs are 
arranged hierarchically in four levels 
(A,B,C,D) as shown in Fig. 1. 

GATEWAY TO PUBLIC 
DATA NETWORKS 

O !rocessor - !!emory - .!'.!odule (PMM) of E.MSY 85 

D 

c 

B 

A 

-- symmetric multiport-aemory connection between neighborinq PMMs 

- asymmetric multi port-memory connection between Pr.:.."ts of 
different hierarchical level 

........ I/O communication to eleoentary pyramid, suP?Qrted by 
I/O processor 

Fig. 1: EMSY 85 - Hardware-structure: Four hierarchical levels 
A. B, C, o. Some of the elementary pyramids are hit;hlit;hted .. 

At the topmost level there is only a 
single PMM, for which there will be 
several standby processors to increase 
the system's reliability. At each lower 
level, each PMM is connected to exactly 
four neighbors at the same level, i.e. 
each processor has access to the 
memories of its neighboring PMMs. Thus 
at each level the hardware has a grid 
structure. 

326 

In addition to the horizontal 
accesses, each PMM, except of course the 
very lowest, has access to four PMMs at 
the next lower level. The vertical con
nections are equipped to broadcast data 
downward to all four of the lower PMMs 
simultaneously, say, to transmit code 
segments. On the other hand, though the 
lower PMMs do not have memory-access to 
those at higher levels, they are able to 
interrupt their supervising PMM. These 
substructures, consisting of four pro
cessors and their supervisor, are called 
elementary pyramids c.f. Figure 2. 

connection to other -
elementary pyramid 

,/' 

() Processor - t:i1 Memory - Module (PMM) 

Piq. 2: EMSY 85 - Elementary pyramid 

,/ 

Several of them are highlighted in Fig
ure 1 . Each elementary pyramid has an 
I/O processor with the corresponding I/O 
devices, for the most part, Winchester 
disks. The I/O processor, which has 
access to all of its elementary pyramid 
memories, is controlled by the supervis
ing PMM. 

The overall arrangement of EMSY85's 
PMMs is, as the preceding discussion 
suggests, pyramidal. The topmost PMM is 
connected to a network containing 
several software-development processors 
on which the operating system and appli
cations are in development. 

An EMSY85 pyramid can, of course, 
be extended downward arbitrarily, by 
adding new levels. Such an extension 
increases significantly the computing 
power of the system. 

For many kinds of computations, the 
main computing load will be carried by 
the lowest level, leaving the higher 
levels underutilized. For such applica-



tions it would be reasonable to taper 
the pyramid so that each lower level in 
an elementary pyramid has nine, or even 
sixteen, rather than merely four PMMs. 

Experience with the pilot project, 
EGPA, which was built using five power
ful miniprocessors, has shown however 
that excessive tapering can lead to 
bottlenecks at the higher levels that 
restrict the system's overall perfor
mance. EMSY85 will therefore have two 
manually switchable configurations, one 
more strongly tapered than the other: 

Lowest level PPMs: 8 x 8 

Element. pyramid PPMs: 4 + 

Number of levels 4 

9 x 9 

9 + 

3 

Total PPMs: 64+16+4+1 85 81 +9+1 

2· EMOS - the EMSY85 Operating System 

The operating system, which is 
based on UNIX will be structured in a 
hierarchy analogous to the hardware. 
The operating system consists of more or 
less autonomous subsystems, one per pro
cessor. Each of the subsystems has a 
common kernel, but the subsystems on the 
lowest level are rudimentary and 
increase in power toward the top of the 
pyramid. 

The opinion, often found in the 
literature, that UNIX is unsuited to 
multiprocessor systems can no longer be 
maintained without qualification. The 
multi processor project "SYMPOS An 
Operating System for Homogeneous Mul
tiprocessor Systems" has shown that UNIX 
can be modified with relatively little 
effort and essentially without changing 
its structure. The effort for such a 
modification depends on the complexity 
and homogeneity of the hardware, the 
desired user-friendlyness, and the 
planned spectrum of applications. In 
addition, the question is relevant 
whether the user should have the possi
bility of implementing genuinely con
current processes, or merely quasi
concurrent processes. Considering all 
of these parameters, we estimate a total 
effort of 4 to 16 man-years. 

In order to avoid the phenomenon of 
processor-thrashing in memory-coupled 
multiprocessor systems, we adopted and 
expanded on an idea that found limited 
application in the CMU multiprocessor 
projects [8]. The problem consists of 
relieving the bottleneck involved in 
common memory-access; the solution con
sists of maximizing the amount of code 
and data for local functions loaded into 
local memory. The procedure leads to an 

327 

operating system that consists of a 
number of local subsystems based on a 
common kernel. This approach was imple
mented so successfully in SYMPOS that it 
will be adopted for EMSY85. Subsystems 
of varying power for the different 
hardware levels are easily provided 
since the system is partitioned into 
modules that can be freely combined to 
form a complete system. 

In spite of the fact that EMSY85 is 
not a symmetrical system, similar prob
lems arise since every memory is 
equipped with seven ports, independently 
of the size of the elementary pyramid. 
In view of the number of accessing pro
cessors, measures similar to those in 
SYMPOS will certainly be necessary to 
prevent bottlenecks. 

in it 

D 

c 

B 

A 

pfork 

fork 

F19. JI !HSY 85 .. P:roce1a-Structur1 

UNIX insiders will note the congruence 
between the hardware structure and 
UNIX's process structure. It is thus 
fairly easy to extend the original 
process-management to a distributed sys
tem. We shall use the fork function 
(spawn a process) as an example. 

In the local environment, i.e. on a 
single processor, fork functions as 



usual. There is in addition a distri
buted version, pfork whose effect is 
analogous to its local cousin. The 
difference is merely that for a pfork 
process a new hardware environment is 
initialized. The two processors 
involved must process a common physical 
memory space; in case more than one gen
eration level is involved the memory 
spaces may be disjunct. The hardware to 
which a pfork process is assigned can 
be influenced by parameters such as 
access to non-local data segments, pro
cessor assignment, and so forth. 

Figure 3 shows a typical process 
structure resulting from multiple pfork 
and fork operations. The process iden
tifiers consist of a triple identifying 
hardware level, processor number, and 
local process identifier. 

In addition to the multiprocessor
specific analogues fork, WIB.it, exit, 
alarm, etc. there will be a number of 
completely new functions for the coordi
nation of asynchronous processes and 
management of global files. The new 
coordination functions include mechan
isms such as semaphores, lock/unlock and 
message switching. 

In this section we have discussed 
several aspects of process management in 
the EMSY85 Operating System. Further 
research areas relevant to the project 
include resource management in 
multiprocessor-systems, online reconfi
guration after hardware failures and 
adaptable management strategies, among 
others. 

1· ! Programming Environment for Paral
lel Programs 

The operating-system interface in 
the EMSY85 multiprocessor system permits 
the implementation of a user's algorithm 
as a system of cooperating concurrent 
processes. In order to permit the use 
of such a multiprocessor system by non
specialists, tools are provided in a 
parallelprogramming environment oriented 
to the user's problem rather than to the 
syste·m' s architecture. 

Of course it would be ideal if the 
task could be distributed automatically 
to the various processors. The user 
could then program his application as if 
it were a sequential process. Current 
experience with the EGPA system leaves 
us skeptical about the success of com
pletely automatic analysis of sequential 
into parallel algorithms. 

The parallel programming environ
ment therefore assumes the following 
model: an application consists of 

328 

sequential subtasks and a description of 
their interdependencies, either con
current or sequential. The individual 
subtasks are formulated in a powerful 
higher-level programming language (C, 
because of the use of UNIX). There is a 
programming package that permits easy 
formulation of the required synchroniza
tion by means of such calls as 

"execute subtask x on processor y" 

"wait for the termination of subtask x 
on processor y" 

The programming package implicitly 
includes the generation of the requisite 
system of processes, handles the indivi
dual calls necessary for process commun
ication (e.g. using message~), and ini
tiates the subtasks on their respective 
processors. This approach has been suc
cessfully tested in the pilot project 
[ 1 3]. 

Another approach that is much 
easier to use and which has proved effi
cient as well, has been borrowed from 
data-flow theory. The theory that 
applies to elementary operations such as 
"+" or "*" yields an elegant generaliza
tion to subtasks, viewed as complex 
operations, which we call macro data
flow. The synchronization dependencies 
between subtasks can be expressed in 
analogous fashion. In the EGPA pilot 
project we have shown that these tools 
are especially attractive for applica
tions whose asynchronous structure is 
extremely complex r1ol. 

5. Measurement and Performance Evalua
tion 

The measurement and evaluation sub
project of EMSY85 is intended to support 
the users in optimizing performance, 
whether they be implementing the operat
ing system, the programming environment, 
or applications. Since the simultaneous 
operation of nearly one hundred proces
sors is beyond human comprehension 
without some kind of visual support, 
there is a software-measurement system 
applicable to all levels of the system, 
whose measurement points can be selected 
arbitrarily. A trace of the selected 
events is recorded along with timing 
information. 

Then a direct evaluation ·of this 
information is made possible by an on
line visual-display package. Not only 
can the system's current status be 
displayed, the trace data can be used to 
display the flow of events in slow
motion. 

Since the measurement points are 



chosen using the programming environ
ment, the data can be displayed in the 
user's notation, i.e. with his symbolic 
names, rather than as hexadecimal 
numbers. 

It would, of course, involve exces
sive implementation effort to attempt to 
find an "optimal" version among several 
candidate implementations by measuring 
their performance. However a modeling 
and evaluation procedure for complex 
tasks based on stochastic analysis of 
the measurement data permits a choice 
among interesting variants fgl. The 
task model used to implement this sub
system is based, as are the 
environment's other programming-support 
tools, on the data-flow approach. 

A survey of research on hardware 
and software measurement as well as per
formance evaluation in the EGPA pilot 
project, which constituted the planing 
basis for the measurement and evaluation 
software in EMSY85, can be found in [3]. 

.§_. Applications 

EMSY85 will be capable of imple
menting a broad spectrum of applica
tions. Among them will be tasks that 
require intensive computation, e.g. 
problems from physics, operations 
research and pattern-recognition. 

Such problems can often be reduced, 
either directly or via discretization, 
to problems in linear algebra. An 
important research area is the discovery 
of appropriate asynchronous algorithms, 
especially for the solution of large 
systems of linear equations with either 
sparse matrices (10**6 unknowns), e.g. 
finite elements or systems of differen
tial equations, or dense (10**3 to 10**4 
unknowns). These problems are not dif
ficult to implement on EMSY85 because of 
the close match between the structure of 
the tasks and the system's array. For 
other classes of tasks, the match is not 
as felicitous. For such problems, stra
tegies must be developed for mapping the 
problem onto EMSY85's hardware struc
ture. Not all applications algorithms 
can be adapted without modification, and 
must in fact sometimes be re-developed 
from scratch. Such problematic tasks, 
e.g. from pattern-recognition, non
linear programming (say .for technical 
installations), simulation of compli
cated systems (telephone networks, mul
tiprocessors, VLSI circuits), and so 
forth, are also to be investigated. 
These will require research in the 
decomposition of tasks, the adapting of 
asynchronous algorithms, and the design 
and implementation of parallel programs. 
The computing demands of several of 

329 

these tasks, especially those from 
pattern-recognition, comprise both high 
computation speed and high data-transfer 
rates. 

By means of these applications, we 
intend to show that, for problems of 
sufficient size, the system's perfor
mance improves nearly linearly in the 
number of array-processors (level A). 
Considering the breadth of the applica
tions areas, EMSY85 will have thus pro
ven itself to be a multi-purpose system. 

As a result of experience with the 
pilot-project EGPA (Erlangen General
Purpose Array), we are convinced that we 
shall indeed be able to demonstrate the 
expected improvement. EGPA's hardware 
structure corresponds to a single ele
mentary pyramid in EMSY85, consisting of 
four array PMMs and one supervisory PMM. 
Thus the limiting s~eed-up for an algo
rithm run on EGPA (versus a monoproces
sor) is four-to-one. 

We list below a number of applica
tions actually tested on EGPA along with 
their speed-up factors. 

Subject: 

Linear algebra [7]: 
-Matrix inversion 

( 200 x 200 dense) 
Gauss-Jordan 
column-substitution 

-Matrix multiplication 
(200 x 200) 

-Solving of linear equations 
Gauss-Seidel 

Differential equations [2]: 
-Relaxation 

Speed up: 

3.s 
ca. 4.0 

3.7 

ca. 4.0 

ca. 3. 5 

Image processing and graphics: 
-Topographical representation [10] 3.6 

2.4 
2.9 

-Illumination of the topo-
graphical model 

-Line following 
(vectorizing of a grey-level 
matrix) 

-Distance transformation ca. 
[ 4 J 

Non linear programming [1 ]: 
-Search for minima of a multi

dimensional object function 

ca. 

3.0 - 3.3 

given by an algebraic term ca. 3.2 

Graph theory: 
-network flow with neighborhood 3.5 

support (each idle processor 
helps one of its neighbors) 

Text formating [14]: 2.6 

These encouraging results, which span a 
broad spectrum of applications, were an 



essential factor in the design of 
EMSY85. On the basis of theoretical 
investigations, speedups proportional to 
the number of processors at the lowest 
level can be expected on systems of the 
same type. 

7. Conclusions 

The University's Institute of Com
puter Science is working hand in hand 
with an industrial partner, Siemens' 
Corporate Laboratories for Information 
Technology in Munich. The cooperation 
is in the design, development and pro
duction of the hardware, as well as in 
the development and testing of parallel 
algorithms for computation-intensive 
applications such as the simulation of 
complex systems. 

The EMSY85 project employs about 
fifty scientists at the University from 
the following academic chairs in the 
Computer Science Department: Computer 
Architecture, Performance Evaluation, 
Operating Systems, Programming Languages 
and Pattern Recognition. The German 
Federal Ministry for Research and 
Development is supporting EMSY85. 

~· Acknowledgements 

The authors gratefully acknowledge 
the contributions of all members of the 
Erlarigen Group to this paper. They also 
would like to thank Mrs. L. Lange for 
drawing the figures. 

References 

1. Fritch,G., H. Mueller 
"Parallelization of a Minnimization 

Problem for Multiprocessor Systems" 
CONPAR'81, Lecture Notes in Computer 
Sience No.11 ,453-463,Springer Verlag 
Berlin-Heidelberg-New York 1981 

2. Fromm, H.J. 
"Mul tiprozessor-Rechneranlagen: 

Programmstruktur§ln, Maschinenstruk
turen und Zuordriungsprobleme" 

Arbeitsberichte des IMMD, Univ. 
Erlangen-Nuernberg, Band 15, Nr.5 '82 

3. Fromm, H.J., U. Herksen, U. Herzog, 
K.H. John, R. Klar and 
w. Kleinoeder 
"Experiences with Performance, 
Measurement and Modeling of a 
Processor Array" 

IEEE Transactions on Computers, 
vol. C-32, no. 1, Jan. 1983 

3. Goessmann, M., J. Volkert und 
H. Zischler 
"Image Proc. and Graphics on EGPA" 

EGPA-Int. Paper(to be published) 

330 

5. Haendler, W., F. Hofmann, 
H.J. Schneider 
"A General Purpose Array with a 

Broad Spectrum of Applications" 
Computer Architecture, Workshop of 
the G. I. Erlangen/R.F.Germany, 
May 1975 

6. Haendler,W. 
"Aspects of Parallelism in Computer 
Architecture" 

Parallel Computers - Parallel 
Mathematics Feilmeier, M. (ed) 
North Holland Publishing Company, 
Amsterdam, 1 977 

7. Henning, W., M Vajtersic and 
J. Volkert 
"Matrix Inversion Algorithm for the 
Parallel Computer EGPA" 

EGPA-Int. Paper(to be published) 

8. Jones, A.K. and P. Schwarz 
"Experience Using Multiprocessor 

Systems - A Status Report" 
Computing Surveys, Vol.12, No.2, 
June 1980 

9. Kleinoeder, W. 
"Stochastische Bewertung von 
Aufgabenstrukuren fuer hierarch. 
Mehrrechnersysteme" 

Arbeitsberichte des IMMD Univ. 
Erlangen-Nuernberg Band 1 5 Nr. 11 '82 

1 O. Kneissl, F. 
"Realisierung von Datenflussmech. 
auf hierachische Mehrrechnersysteme" 

Arbeitsberichte des IMMD Univ. 
Erlangen-Nuernberg, Band 15 Nr.12 '82 

11 . Kneissl, F. 
"Macro Data Flow on EGPA Config." 
EGPA-Int. Paper(to be published) 

12. Linster, c.u. 
"SYMPOS/UNIX - Ein Betriebssystem 
fuer homogene Polyprozessorsysteme" 

Arbeitsberichte des IMMD Univ. 
Erlangen-Nuernberg, Band 14 Nr.3 '81 

13. Rathke, M. 
"Benutzung der Parallel-Schnittstelle 
des EGPA-Rechners" 

EGPA-Int. Dokumentation 

14. Rathke, M. 
"SAP: Ein optimistischer Algorithmus 
fuer die parall. Textverarbeitung" 

EGPA-Int. Paper(to be published) 

15. Wurm, F.X. 
"Auftragssystem fuer eine Multipro
zessoranlage" 

Arbeitsberichte des IMMD, Univ. 
Erlangen-Nuernberg, Band 13 Nr.7 '80 



Maximum Pipelining of Array Operations on Static Data Flow Machine* 

Jack B. Dennis 
Gao Guang Rong 

Laboratory for Computer Science 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

Abstract 

Data flow computers are a radical 
departure from conventional computer 
architecture, and new methodologies are 
required for generating efficient· 
machine-level programs from high-level user 
programming languages. In this paper, we show 
that, for certain programs in the Val 
language, it is possible to construct 
machine-level data flow programs that support 
fully pipelined computation. A Val program in 
the class considered consists of blocks of 
code each of which defines a new array value 
either by a forall expression in which each 
element may be computed independently, or by a 
for-itcr expression that defines array elements 
by a first-order recurrence relation. 

1. Introduction 

In this paper we study the translation of 
the program structures used to express array 
computations in the programming language Val 
[1], a functional programming language 
designed for expressing computations to be 
executed by computers capable of highly 
concurrent operation, data flow computers in 
particular. 

The organization of data flow computer 
that appears most attractive to us for high 
performance computation is the static data 
flow supercomputer described in [2] [3]. A 
machine level program fo such a computer, 
regarded as a collection of instruction cells, 
is essentially a directed graph, with nodes 
corresponding to instructions and an arc for 
eaoh instruction destination field. We will 
use such diagrams to present data flow machine 
code structures in the remainder of this 
paper. 

Two constructs in the Val programming 
language are of major importance in expressing 
scientific computations. A forall expression 
can be used to express the construction of an 

• This research was supported by the 
Department of Energy under grant number 
DE-AC02-79ER10473 and the National Science 
Foundation .under grant number MCS-7915255. 

0190-3918/83/0000/0331$01.00 © 1983 IEEE 331 

array where each element of the array is 
specified by the same computational rule and 
all elements may be computed independently. 
Example 1 is a Val forall expression which uses 
values from two arrays B and C to construct a 
new array A. 

A : array[real] • -
forall 

i in [O, m+ 1] % range specificaUon 
P : real : = % definition 

if (i = O)l(i = m+ 1) then C[i] 
else 0.25*(C[i-1]+2.*C[i]+C[i+1]) 
endif; 

construct B[i] * (P • P) % accumulation 
endall 

Example 1. A Val forall Construct 

The for·iter expression in Val is the 
construct used to expres:s iteration-the 
computation of sequences of values in which 
the value produced in one cycle depends on the 
value or partial results produced by the 
proceeding cycle. Example 2 is a for-iter loop 
which constructs an array X. 

X : array [real] : = 
for i : integer := 1; % initialization 

do 
let 

T : array[real] := [O: O.] 

P : real := A[i]*T[i-1]+B[i] % definition 
in if i < m then % body 

iter T :: T[i : P] 
i := i+1 

enditer 
else T 
endif 

end let 
endfor 

Example 2. for·iter Construct 

The Val programs of interest in this 
,)aper are those made up of program blocks, 
each of which is a forall or a for-iter block. 
Each block may be thought of as a producer of an 
array value, and a 'consumer' of other array 
values produced by other blocks. This simple 
structure matches the main body of many 
practical programs of computational physics. 

Definition. A pipe-structured program is a Val 



program in which all array constructions are 
defined by non-nested blocks such that: ( 1) 
each block is either a forall block or a for-iter 
block, (2) the index ranges of the arrays 
generated by the blocks are fixed. 

Pipe-structured programs are attractive 
candidates for implementation as fully 
pipelined machine code structures for data 
flow computers. 

2. Pipelined Mapping of Primitive Expressions 

Pipelined execution of computations is 
very natural on the static data flow computer. 
We first study the pipelined implementation of 
a restricted class of Val expressions. which 
contains no nested forall or for·iter expressions 
and no array constructor operations. 

Definition Let i be an identifier called an 
index variable. Then a primitive expression (PE) on 
i is any Val expression which may be 
constructed using only the following rules: 

(1) A scalar literal constant is a PE. 
(2) An identifier of a scalar value is a 

PE. 
(3) If El and E2 are PEs, then (EI op E2) 

is a PE, where op is an arithmetic or 
relational operator. 

(4) If A is an identifier that denotes an 
array, then A[i+m] is a PE, where m is 
an integer constant. 

(5) Let E be a Val let-in construct 
expressed as Let <definition> in EO endlet. 
If the definition part, contains only 
PEs and EO is also a PE, then E is a 
PE. 

(6) If El, E2, tj are PEs, then if EI then 
E2 else E3 endif is a PE. 

If a primitive expression is formed using 
only rules ( 1), (2), (3), and (5), its 
implementation as an acyclic data flow 
instruction graph is straightforward, and the 
methods developed by Montz [6] may be used to 
balance the instruction graph so that it 
supports fully pipelined computation. For the 
array access operations (rule (4)) Two matters 
must be addressed to make pipelined operation 
work correctly: ( 1) the elements of the 
incoming array not used in the computation 
must be discarded so they do not cause jams; 
(2) buffering must be inserted to introduce 
any skew needed to balance the pipeline. As 
an example, consider the expression 0. 25 * ( 
C[i-1] + 2. * C[i] + C[i+1] ) from the body of 
Example 1 in Section 1. The corresponding 
fully pipelined instruction graph is shown in 
Figure 1 . Here we suppose the array C ii! 
represented by m+2 result packets for the 
index set {O, ... , m+1}. The boolean control 
sequences select just those array elements 
needed for the computation. The two FIFOs 
balance the pipeline by holding values of 
array elements between their arrival at the 

332 

identity instructions and the time when they 
must enter the arithmetic pipeline. 

·C 

n .. :w 

Fig. 1. Pipelining for Array Selection Operations 

The final 
expressions. 
illustrated 
example: 

case is that of conditional 
The general technique is 

in Figure 2 for the following 

c·rn 

if C[i] then (A[i}+B[i]) 
else 5.*(A[i)*B[i]+2.) 
end if 

FIFO (-4) 

Fig. 2. Pipelining for an if-then-else expression 

This instruction graph makes use of 
instruction cells (identity operations in this 
case) in which a boolean operand directs a 
result packet to destinations according to a 
tag (T or F) on the destination arc. The 
control fnput M directs the merge instruction 
to forward one or the other of its data 
operands. Note that to keep the program fully 
pipelined, it may be necessary to add FIFO 
buffers to both the data and the control arms. 

This discussion and examples lead us to 
the following theorem which provides a basis 
for the constructions presented in the next 
two sections. 

Theorem For any primitive expression, a 
fully pipelined data flow instruction graph 
can be constructed. 

3. Pipelined Mapping of forall Constructs 

In this section we will present the pipeline 



scheme where the array elements are generated 
in sequence by implementing the body of the 
forall construct as a pipelined instruction 
graph. 

Definition A primitive forall expression. is a 
forall expression in which: ( 1 )° The index range 
is specified as [p,q] where p and q are 
integer constants. (2) The right hand side of 
the definitions and the expression in the 
accumulation part are all primitive 
expressions in i, where i is the index 
variable of the forall expression. 

The fully pipelined implementation of a 
primitive forall expression (Example 1 in 

c 

FT ... TF 

FIFO 15) 

lF ... FT 

FIFO (7) 

Fig. 3. Pipelining of A Primitive forall Expression 

Section 1) is shown in Figure 3. It is 
essentially the instruction graph obtained by 
cascading the instruction graphs for the 
definition expression and the accumulation 
expression. We suppose the input arrays B and 
C are fed to the instruction graph element by 
element for the index set {O, ••• , m+ 1}. The 
identity instructions select from the input 
arrays those elements needed for the 
computation, and the merge instruction 
combines results computed by different rules 
into the sequence of values that represent the 
constructed array. Further details of this 
implementation scheme can be found in [4]. As 
a result we have 

Theorem 2 For any primitive forall expression, a 
corresponding fully pipelined data flow 
instruction graph can be constructed. 

4. Pipelined Mapping of for·iter Construct 

To study the pipelined implementation of 
iterative programs we first define a class of 
for-iter constructs which are built on primitive 
expressions. 

333 

Definition A primitive for·iter construct is a for·iter 
expression with two loop variables-let them 
be i and X-such that: (1) Loop variable i 
takes on successive integer values p, p+1,; •• , 
q for successive evaluations of the for·iter 
bpcly, and the loop terminates after i = q. 
(2) The loop variable X is initialized to the 
empty array or by X : = [ r: E ] for ·some 
integer r and some primitive scalar expression 
E. Each iteration appends to the array by X := 
X [ i: E ]. (3) The result expression on loop 
termination is X which will be the array 
constructed by the for·itcr expression. 

One scheme for implementation the for·itcr 
construct is to introduce feedback in. data 
flow instruction graphs [7]. Due to the 
presence of cycles, the instruction graph 
corresponding to such a scheme can not, in 
general, be fully pipelined. 

The most common problems involving for·iter 
array operations are recurrences. Example 2 
shows the general form of a first order 
recurrence function expressed in Val. In 
fact, it is exactly the Val code for the 
following mathematical notation, 

xi = Aixi·l + Bi 
= F(a;, X; .. J) (2) 

where ai is the ordered pair (Ai, Bi), and the 
function F is composed of add and multiply. 
Based on a solution first proposed in [5], we 
note that (2) can easily be transformed into 

xi ;= F(ci, xi·J) 

r-----
1 I 

I I 
I 

AP)'• r------, 
.-,ij~~~++ codefor / 

I 
,-cod-el-or---, I 

c,12l r.,---~ 
~----' 

I I 
I I ------' 

initial values 

T ... TFFF 

dashed box la 

companion pipeline 

Fig. 4. Pipeling of A Simple for-iter Expression 

where the pair ci is computed from the a's by 

ci( 1) = AiAi-JAi-2 
c;(2) = A;A;.1B;-2 + A;Bi-1 + Bi 



This transformation is useful to us 
because xi now depends on xi-J instead of xi-I• 
and we note that the function F has an 
execution delay of 3. Therefore we can 
compute F by using an auxiliary pipeline that 
computes ci from ai using the scheme shown .in 
Figure 4. This added pipeline (see the 
dashed-line block in Figure 4) will be named 
the companion pipeline in the rest of this paper. 
Also the function computed by the companion 
pipeline is named the companion function of the 
recurrence function. By constructing the 
companion pipeline properly, it is possible to 
keep the whole pipeline running at maximum 
throughput. 

The previous related work on the use of 
companion functions [5 ]' has been on 
conventional architecture, where the pipeline 
configuration is wired into hardware. It is 
impractical, however, to construct a separate 
hardware companion pipeline for each possible 
recurrence relation ·in the computation. In 
contrast, the pipeline for a data flow machine 
is software implemented. It is more flexible 
to introduce a piece of data flow program 
which acts as a particular companion pipeline. 
Hence, it is much more attractive to apply 
this scheme on a data flow machine_. Now let 
us return to the problem of classifying Val 
for-itcr constructs which have good mapping 
schemes. 

Definition A simple for·itcr expression is a 
primitive for·itcr expression such that ( 1) the 
recurrence function it denotes has a companion 
function and (2) the Val expression which 
computes the companion function is a PE. 

Using the scheme presented above, we have 
theorem : 

Theorem 3 A simple for·iter expression can be 
mapped into a fully pipelined instruction 
graph. 

Some other techniques for pipelined 
implementation of iteration expressions are 
known, generally involving trading off delay 
in exchange for achievement 6f computatitm at 
the maximum rate. 

5. Fully Pipelined Pipe-Structured Programs 

A pipe-structured program in which each 
forall expression is primitive and each for·iter 
expression is simple has an elegant structure; 
each component is a consumer and producer of 
array values and has an implementation as a 
f'ully pipelined data flow instruction graph. 

Due to the applicative nature of the Val 

334 

programming language, the data dependencies 
among the forall and for·itcr expressions define an 
acyclic directed graph in which each edge 
represents a path over which an array value is 
sent from producer to consumer. Since the 
component instruction graphs are fully 
pipelined, the balancing algorithm [4] may be 
applied to the acyclic interconnection to 
produce a fully pipelined instruction graph 
for the complete pipe-structured program. 

Theorem 4 For any pipe-structured program in 
which each forall expression is primitive and 
each for·itcr expression is simple, a fully 
pipelined data flow instruction graph can be 
constructed. 

6. Conclusion 

We have developed a formal model of 
pipe-structured programs for use in studying 
algorithms for balancing and optimizing 
corresponding data flow instruction graphs for 
fully pipelined operation. Interested readers 
will find a rigorous formulation and analysis 
in [4]. Investigation of the design of a 
compiler that will automatically construct 
fully pipelined code for a large class of Val 
programs are subjects for further study. 

References 
[1] Ackerman, W. B. and J. B. Dennis. Val 

-- A Value-Oriented Algorithmic Language 
Preliminary Reference Manual.'' 
Technical Report 218, LCS, MIT, 
Cambridge, MA, 13 June 1979. 

[2] Dennis, J. B. Data Flow 

[3] 

[4] 

[5] 

[6] 

[7] 

Supercomputers'' IEEE, Computer, Nov. 
1980. 

Dennis, J. B., Gao, G. R., and Todd, K. 
A Data Flow Supercomputer'' Computation 
Structure Group Memo 213, LCS, MIT, 
Cambridge, MA, Jan 1982. 

Gao, G. R. An Implementation Scheme 
for Array Operations in Static Data Flow 
Computer 11 MS Thesis, LCS, MIT, 
Cambridge, MA, June 1982. 

Kogge, P. M. A parallel Algorithm for 
Efficient Solution of a General Class of 
Recurrence Equations.'' IEEE Trans. 
Comput., Vol. c-22, no. 8, Aug. 1973, 

Montz, L. B. Safety and Optimization 
Transformations for Data Flow Programs.'' 
Technical Report 240, LCS, MIT, 
Cambridge, MA, January 1980. 

Todd, K. W. 
in A Static 
~262, 
1981. 

High Level Val Constructs 
Data Flow Machine'' Technical 
LCS, MIT, Cambridge, MA, June 



A DIRECT JIAPPING OF ALGORITHMS ONTO VLSI PROC!3:DNG ARRAYS 
BASED ON THE DATA nD1r APPROACH 

ABSTRACT 

Israel Koren 

Computer Science Division 
University of California 

Berkeley, CA 94 720 
on leave from the 

Dept. of Electrical Engineering 
Technion - Haifa 32000, Israel 

A new approach to the utilization of VLSJ processing 
arrays by means of the algorithms running on them is 
presented. The idea is to represent algorithms as data 
flow graphs, and then map these graphs onto the array. 
This approach obviates the need to develop new con
current algorithms to utilize the parallelism inherent in 
the array, while offering a general environment for the 
realization of algorithms on semi-custom VLSI. 

1. INTRODUCTION 
The approach taken in this research to achieve paral

lelism within a special purpose VLSI chip, without develop
ing new concurrent algorithms, is the data ft.ow approach 
[3-5]. In it, concurrency of activities is achieved at the 
lowest possible level by treating each machine instruction 
as an independent activity. This enables "tine grain paral
lelism" [3], not achievable when scheduling and synchron
ization of concurrent activities are controlled by software. 

However, we do not propose to use one of the known 
general-purpose architectures of data fl.ow machines [3-
5 ]. Instead, we suggest to map the data fl.ow graph which 
describes the problem in hand, on a regular array imple
mented in VLSI. These regular arrays of identical cells 
take considerably less time to design and manufacture 
[1,2]. Also, the mapping should not be fixed but change
able, enabling the user to map various data fl.ow graphs 
(algorithms) on the same chip. Regularity and flexibility 
are thus obtained, increasing the number of potential 
applications for the chip and thereby making it more 
appealing to the semiconductor industry. 

In the following we consider the hexagonal array as a 
basis for illustrating our approach. This array has a flexi
ble structure [1,6], simplifying the task of mappillf\: In 
addition, fault-tolerance may be introduced into it L6,7] 
allowing it to recover from errors by reconfiguration. We 
then propose an architecture for the processing element 
(PE) which constitutes the basic cell in the array. Also 
presented is an outline of the general graph-to-array 
mapping process. 

2. PRELillINARIES 
In contrast to control flow computers, data flow com

puters have no program counter. In the latter, an instruc- · 
tion is ready for execution when all its operands have 
arrived. Consequently, all such instructions may be exe
cuted in parallel If the processing capabilities of the data 
tlow computer are sufiicient, the highest degree of paral
lelism may be achieved. 

The program is represented by a data fl.ow graph The 
vertices correspond to operators, and data tokens move 
along the arcs. Parts of the graph may have to be exe
cuted iteratively. This might cause tokens to accumulate 
on certain arcs and result in the presence of tokens 
belonging to different iteration steps at the input arcs of 
an operator. This problem may be solved by either label
ing (coloring) the tokens [ 4] or by preventing the accu
mulation altogether [3]. The latter is achieved by prevent
ing an operator from producing a new output token until 
the previous one bas been consumed [3,8]. This approach 
still enables pipelining through the data tlow graph. 

0190-3918/83/0000/0335$01.00 © 1983 IEEE 335 

Gabriel M. Silberman 

Dept. of Computer Science 
Technion 

Israel Jnstitute of Technology 
Haifa 32000, Israel 

Maximum pipelining is not however, always possible. 
Bottlenecks may appear in parallel segments of the graph 
[B] (e.g., paths of a conditional expression), thus severly 
limiting the amount of concurrency. To eliminate these 
bottlenecks an optimization technique has been sug
gested in [B], inserting buffers (delay operators) in some 
of the parallel paths. However, these buffers may result in 
either an increase in the overall delay through the pipe
line or a reduction in the throughput [B]. 

In the architecture suggested here dynamic length 
FIFO queues are employed. Jn this way, the level of con
currency is increased without the penalty of an increase 
in the overall delay. The labeling scheme as presented in 
[ 4] might be inappropriate for our purposes due to the 
additional hardware complexity. 

3. PE ARCHITECTURE AND PRINCIPLES OF OPERATION 
The basic PE, shown in Figure 1, is connected to its 

six immediate neighbors by dedicated busses, in an hex
agonal processor array. The PE contains six registers 

:i:0, :i: 1, ·· · , :i:5 which are connected to the six commun
ication busses. Each of these registers can either receive 
or transmit tokens and will accordingly be defined either 
as a primary input register or a primary output register. 

Each basic PE contains in addition, an arithmetic and 
logic unit (ALU) and a Pseudo .Associative Memory unit 
(PAM). Each location within the PAM contains a key and a 
data element. The PAM has therefore, two input registers 
A:1 (key-in) and cl,: {data-in), and two output registers k 0 

and ti.a {Figure 1). 
The ALU is capable of performing the basic arith

metic and logic operations. Its inputs may be connected 
to any primary input register, or to the PAM data-out 
register d,,. The ALU result is routed to either a primary 
output register or the PAM data-in register cl,:. 

The overall function of the PE is specified by the 
designation of each of the :i:, registers as primary input or 
output register, by the internal connections of these 
registers to the ALU and the PAM unit registers, and by 
the operation performed by the ALU. Thus, the operation 
of a PE may be defined by a set of statements like 

{ a. := :i:. + %1 .:i:. := d,, 
PE : .:i:s := .:i:1 %5 := .:i:2 

The PAM unit has two modes of operation, Ji'i:rst.Jjn 
F'i.rst~ {FIFO) mode and .Associative mode. Jn the FIFO 
mode the PAM unit serves as an input or output bufier for 
token accumulation. In the associative mode the PAM 
serves as a queue in which a key is attached to each data 
element. This mode of operation is useful when imple
menting recursion and in it data elements are accessed 
by using keys instead of addresses. However, a fully asso
ciative memory is not necessary. Instead, a sequential 
access memory unit with added logic can be employed, 
using shift registers, CCD's, or magnetic bubbles. 

In the FIFO mode of operation the PAM unit may 
serve as a queue for accumulating either incoming or out
going tokens. The purpose of this FlFO queue is to dynami
cally equalize the length of parallel paths in the graph in 
order to achieve maximum pipelining. The fixed capacity 



of the PAM might limit the maximum length of the FIFO 
queue. However, the PAM units in two or more neighboring 
PEs may be chained and used for accumulating tokens 
from a single source. 

For the sake of brevity, the exact principles of opera
tion of the proposed PAM unit are not detailed here. 

4; DIPLEllENTING BASIC DATA:FLOW Sl'RUCTlJRI:> 

This section shows how to use an array of PEs in the 
implementation of data-flow structures. We begin by exa
mining the basic data-flow elements, which can be 
directly mapped onto a single PE. These are the Arith
metic and. Logical Opera.tors (like addition. negation, And, 
complement, etc), and the Cond:i.tional (:flera.tors (like 
arithmetic comparisons, test for zero, etc). Also requir
ing only a single PE are the Flow Control Opera.tors. They 
do not affect the contents of the token. but rather its pro
gress and/or destination. 
The simplest such operator is Copy (denoted by C). It 
makes two identical copies of its input token. 
Jlerge (M} operator is used when a data token may come 
from two different sources (paths), and it is to be merged 
into a single path for further processing. This operator is 
also capable of producing a Boolean token whose value 
depends on the input path which supplied the token for 
the output. 
The Router (R) operator receives two inputs, a data token 
and a logical value. The data token is copied into exactly 
one of two output registers, depending on the value of the 
logical input. This is analogous lo "distribute" in [9]. 
The QJ.te (G) operator transfers the incoming token to an 
output register if a second token is present at another 
input register. The G and M operators may be used to 
implement the "Select" operation [9]. 
Self-Iterating Opera.tor {L) is used in those cases where 
the result produced by the PE is immediately used as 
argument to the next operation. This saves the need to 
create "external" loop structures (e.g., [10]}. 

Figure 2 depicts a data flow graph which calculates 
the factorial function, using C, M, R and L operators. 
Notice the labeling of the outputs of the R operator by T 
and F. This is used to specify which output path 
corresponds to each logical value. The L operator 
receives two inputs, one being the initial value for the 
iteration (in this case n), and the other a Boolean value 
which determines, for each iteration, whether to load a 
new initial value, or use the one from the latest iteration. 

Having defined the basic data-flow elements, we now 
show how these may be combined lo yield the basic data
flow structures. 

4.1. Conditional (if-then-else) - This construct, has the 
general formal: 

iL <condition> Yl!!.!L <expressionl> 
WL <expression2>. 

and is evaluated as <expressionl> or <expression2>, 
depending on the logical value of <condition>. The above 
statement may be implemented in general as shown in 
Figure 3. 

Notice that when a certain branch of the conditional 
is taken, the tokens corresponding lo the other branch 
are not produced at all. This is achieved by using an R 
operator with only one output; this way tokens 
corresponding to different computations are not mixed. 

We also deal here with the problem of keeping in 
correct sequence the results being produced by a condi
tional construct. The ordering is achieved by using an 
extra R and two Gs as shown in Figure 3. The initial token 
present at the R input is routed to the G in the appropri
ate branch of the conditional, thus allowing only its result 
to flow through. When a result arrives at the :M, a token 

336 

(its value is immaterial) is recirculated to the R to enable 
further output tokens. 

Nole that conditional constructs may result in token 
accumulation, because of different path lengths between 
the two branches. Here we can benefit from the PE's 
capability of dynamically adjusting lo token traffic, by 
using the FIFO mode of the PAM. 

4.2. Iterative (Do-While, Repeat-Until) - Iterative data
tlow constructs make use of conditionals much in the 
same way traditional programming languages do. In gen
eral, we have the two iterative constructs, do-while and 
repea.t"'U'l'l.til, depending on whether the test for loop 
repetition is placed before or after the loop body, respec
tively. Figure 4 shows how a repeat-until loop is used to 
approximate the square root of a (positive) value c, using 
Newton's iterative method. 

4.3. RecW'llion - This construct is by far the most 
involved in the data-flow context. Actually, most current 
data-flow architectures do not handle recursion at all. 
However, recursion is generally recognized as a good pro
gramming technique. When used, it leads in many cases to 
simpler and shorter algorithms which are easier to under
stand and to prove correct. 

For the sake of brevity we do not present here the 
way recursion is implemented, we would like however to 
indicate that any possible implementation of the recur
sion construct will be substantially more complex than all 
previous ones. The benefits of its use should therefore, be 
carefully examined before incorporating it. 

5. DATA FIDW GRAPH MAPPING ALGORITHll 
In the following, we show a simple (by no means 

optimal) scheme for mapping complele data flow graphs 
onto an hexagonally connected PE array. The mapping 
algorithm presented is executed externally by some host, 
and the results are then fed into the array for distribu
tion. The graph mapping process is clearly dependent on 
the array topology. Therefore, different such topologies 
result in different mapping algorithms. Nevertheless, they 
all must tackle the same problem, namely, the non
planarity of the graph, arising from bolh ordering of 
operands and iterative constructs (loops). 

We begin by assigni~ levels to the vertices (opera
tors}, where an operator lmapped on a PE) is al level i if 
all its operands come from operators at level i-1 or 
above. Clearly, our objective is to find minimal levels for 
all operators. In the case of loops, we do not consider the 
target of the loop to be a descendant of the source. 

A second pass is now made to insure that no two 
operators which are either a loop source or target, are at 
the same level. If this is the case, the level is split until 
the condition no longer exists. The reason for this is to 
enable the use of the horizontal busses between PEs for 
connecting the source to the target. 

In the next step of the mapping we connect the 
operators in the various levels. The outputs of level i have 
to be ordered so as to fit the inputs to level i+ 1. 

After ordering the operands, (possibly by introducing 
extra levels which exchange operands), we connect the 
loop source with its target by using the horizontal connec
tions between PEs. We tlrst route the operand from the 
source to the boundary of the current graph. Then, we 
route it to the level of the loop targel. Finally, we use 
again the horizontal connections to reenter the graph up 
to the target operator. 

An example of the mapping of the factorial function 
from Figure 3 is shown in Figure 5(a). After the mapping 
process, has been completed, reduction techniques may 
be applied to reduce the size of the final mapping. For 
example, two levels may be collapsed into one, laking 
advantage of unused horizontal connections. Such a 



reduction procedure, when applied to the example in Fig
ure 5(a), results in the mapping shown in Figure 5(b). 

The mapping algorithm described above is by no 
means optimal and the only purpose it serves is to show 
the feasibility of mapping arbitrary data flow graphs onto 
hexagonal arrays. More efficient mapping algorithms for 
hexagonal arrays as well as for other array topologies are 
clearly needed. 

Once the mapping algorithm is completed, we have to 
convey its results toward every relevant PE in the array. 
A simple way of doing this is lo input a "configuration 
string", each component of which is addressed to a 
specific PE, and contains the setup information for it. 
Another possibility that is being investigated, is to exe
cute the mapping algorithm within the array itself in a 
distributive fashion.. This may enable a dynamic mapping, 
allowing PEs which have completed their current process
ing task, go into a conflguring phase, change their func
tion and execute another part of the data flow graph. 
Such a dynamic mechanism may allow the mapping of 
larger data flow graphs on a given VLSI chip. It will also 
facilitate the handling of faulty PEs and/or connections. 

8. CONCLUSIONS 
The idea of directly mapping an arbitrary algorithm 

on a VLSI array bas been shown to be feasible. However, 
further research has to be carried out before the 
effectiveness and practicality of this approach are esta
blished. 

Clearly, not all algorithms that can be mapped on a 
array will use it effectively. Some algorithms may require 
a too large chip area, other may not execute fast enough. 
Consequently, methods have to be developed for estimat
ing the chip area that will be used by a given algorithm, 
and its execution time. 

[2] 

C.Mead and L.Conway, Jntrod:uction to VLSI Systems, 
Addison-Wesley, Reading, MA. 1960. 
M.J.Foster and H.T.Kung. "Design of Special-Purpose 
VLSI Chips: Examples and Opinions,'' Proc. o/ the 7th 
Symp. on Comp . .Arch., April 1960, pp.300-307. 

[3] J.B.Dennis,''Data Flow Supercomputers,'' Computer 
Vol.13, Nov.1960, pp.46-56. 

[4] I.Watson and J.R.Gurd,"A Practical Data Flow Com
puter," Computer, Vol.15, Feb.1962, pp.51-57. 

[5] A.L.Davis,"The Architecture and System Methodology 
of DDMl," Proc. 6th Syrnp. Comp . .Arch., April 1976, 
pp.210-215. 

[6] D.Gordon, I.Koren, and G.M.Silberman,"Embedding 
Tree Structures in Fault-Tolerant VLSI Hexagonal 
Arrays," submitted for publication. 

[7] I.Koren, "A Reconfigurable and Fault-tolerant VLSI 
Multiprocessor Array," Proc. o/ the 8th Symp. on 
Comp. Arch., May 1961, pp.300-307. 

[BJ J.D.Brock and L.B.Montz,"Translation and Optimiza
tion of Data Flow Programs,''· Proc. o/ the 1979 /nt'l 
Con/. on .Pa:rol.lel Processing, Aug.1979, pp.46-54. 

[9] A.L.Davis and R.M.Keller,"Data Flow Program Graphs" 
Computer, Vol.15, Feb.1962, pp.26-41. 

[10] Arvind and K.P.Gostelow,"The U-Interpreter" Com
puter, Vol.15, Feb.1982, pp.42-49. 

repeal Z..+1 = t< Z,. + :.. ) 

until lz..+1 - z..I < 6 

Fig. 1: The basic processing element. Fig. 3: Conditional construct. Fig. 4: The Newton method. 

T 

n! 

Fig. 2: The data flow graph for the 

factorial function. 

F 

F n 

n! 

(b) {a) 

Fig. 5: Initial and reduced mappings of the factorial func
tion. 

337 

n! 



An Algorithm For Proces~or Allocation 
In A Dataflow Multiprocessing Environment 

Lawrence Y. Ho and Keki B. Irani 
Computing Research Laboratory 

The University of Michigan 
Ann Arbor, Mi. 48109 

ABSTRACT: This paper deals with the problem of associ
ating the operations of a program with the processors in 
a distributed dataflow environment. The objective is to 
develop an algorithm which will partition a given 
dataflow program and map the blocks of the partition 
onto the processing elements of a general dataflow mul
tiprocessing system. System performance is measured 
by the total processing time of the program. 

INTRODUCTION 

The total execution time of a program can be bro
ken down into the actual computation time and the time 
for interprocessor data communication. When a pro
gram is partitioned among the processors of a dataflow 
system, the communication time is dependent on 
several factors such as the interprocessor connection 
network and the allocation scheme which maps the pro
gram operations onto the processing element. 

Different restricted versions of program decompo
sition and processor allocation schemes for dataflow 
programs have been proposed, [2], [3], [4], [5]. These 
proposed algorithms, however, are all limited in several 
respects which make them inapplicable to an actual 
dataflow system. These defficiencies are attributable to 
one or more assumptions or restrictions, such as: 

(a) The communication cost negligible or constant, 

(b) A uniform computation time for all operations, 

(c) A limited set of common language constructs, 

(d) Unlimited system resources such as the number of 
processors, and the memory sizes, and 

(e) Suppressing concurrency at lower levels. 

Our research attempts to deve!Op a· mapping 
scheme which provides a reasonably good solution to the 
main problem, and at the same time avoids the above 
mentioned restrictions. Our eventual goal is to establish 
algorithms which are implementable for a large class of 
realistic dataflow machines. 

THE PROCC3SOR ALLOCATION PROBLEM AND 
SOLUTION STRATEGIES 

The general architecture studied is that of a 
machine consisting of a large number of small asynchro
nously operating processing elements which can com
municate with one another. Each processor in lhe sys
tem is capable of accepting a task generated by the pro
gram, performing the indicated operations, producing 
partial results, and transmitting these results to the 
other processing elements in the system. Figure 1 and 
2 show the general architecture of the dataflow mul
tiprocessor system. 

Dataflow programs are directly translatable into 
directed graphs because these simple structures are 
intuitively simple to understand and directly convey the 
program semantics. Such a program is partitioned into 
parts which are distributed to and stored in the process
ing elements. The intermediate results of these parti
tions of the program are retained in the local memory. 
Since the amount of communication may vary 

0190-3918/83/0000/0338$01.00 © 1983 IEEE 338 

INTERPROCESSOR 
COMMUNICATION 

NETWORK 

Fig, 1 Architecture of Dataflow Multiprocessing System 

COMMUNICATION NETWORK I 

PROCESSOR 

INSTRUCTION 
QUEUE 

LOCAL 
MEMORY 

I 
I 

L--·-·-·-·-·---·-·-·-·--~ 
Fig. 2 A Processing Element 

considerably from one pair of nodes to another, the way 
in which the nodes of the dataflow graph are allocated to 
processors can change the overall processing time of 
the program dramatically. 

Minimizing the interprocessor communication time 
and balancing processor loads are the two factors that 
influence the program partition strategy for optimal 
system performance. It is clear that they are also two 
conflicting factors. While the total execution time can 
be minimized by distributing the dataflow nodes on all 
the available processors, the total communication time 
is minimized by concentrating the nodes in as few pro
cessors as possible. 

The algo'rithm we propose maps the program nodes 
onto the processing elements by simulating a run time 
allocation environment during the compile phase. There 
are many criteria which may be used to decide how a 
node is to be aliocated to a processor. Some of these 
are:.le_ngth of time an enabled node has been waiting for 
a processor; the number of output edges of the node; 
tQ.e length of time required for the primitive operation 
represented by the node; the position of the node in the 
graph ( as represented, for example, by the length of its 
longest output path ); the amount of data generated by 
the node ( which is directly related to the communica
tion cost ), or the number of data items at the input of 
the node. Besides these, there are other more complex 
criteria which may lead to more accurate estimation of 
the execution priority of each node. We have not 



considered them because we want the algorithm to have 
reasonable complexity. 

SUMMARY OF THE ALGORITHM 
The dataflow program to be partitioned is 

translated into a dataflow graph whose nodes represent 
the operators and edges correspond to the data depen
dencies among the instructions. Every edge is regarded 
as a channel through which data items carrying values 
from the output of a node lo an input of another node. 
in order that an instruction be enabled as soon as its 
operands are available, the data dependencies of a 
dataflow graph must always be exactly the same as the 
sequencing constraints. Hence, applicative languages 
that obey the single assignment rule have been the basis 
of most of the proposed dataflow languages, (l]. In this 
paper, we too are assuming the use of such a language. 
Since the algorithm attempts to simulate a run-time 
status of the program, any node that is enabled for exe
cution is also enabled for allocation. The following infor
mation is required by the algorithm and hence must be 
known in advance: 
(1) The number of available processing elements, and 

the processor type of each. 
(2) A table of interprocessor communication (!PC) 

times. This is necessary in order to take the cost of 
communication between processors into considera
tion. The !PC reflects the topology of the interpro
cessor communication network. 

(3) The expected execution time of each instruction. 
Each of these values is a constant throughout the 
program execution. The only exception may be the 
II 0 operations which are non-deterministic in 
nature. The execution time of an 1/0 operation is 
modelled by a probability distribution function. 

(4) Each individual procedure, iterative loop, and block 
structure has a unique code block name which is 
associated with every node within it so that nodes 
belonging to the same code block can be identified. 

The mapping of the nodes of a dataflow graph onto 
the memories of the processing elements is accom
plished in a single pass through the program graph. The 
algorithm maintains several pieces of data: 
'.1) For each node n.;. there is a token counter, TC, 

which indicates the number of tokens still needed 
before the node is enabled. Initially, TC(n;,) is set 
equal to the indegree of n;. This TC is decremented 
every time a token is supplied to the node through 
an edge that has no token on it. 

(2) For each node ni, there is an enabled time t. (n; ). 
When the node is put in the set of firable nodes, this 
time is used to determine the order in which a node 
can be allocated to a processor. When the node is 
not yet in the set of firable nodes, the t. (n;) is 
updated each time TC(ni) is decremented to a 
value equal to the time a token is supplied to the 
node. Initially, t, (n;) = 0. 

'.3) There i.s a set of firable nodes, F, whose elements 
are ordered pairs (n;,t.(n;,)). A node is inserted in 
this set if and only if its corresponding TC has a 
value of 0. 

( 4) For each processor, there is a ready time, tr. The 
value of tr (P;) indicates the time at which the pro
cessor p 1 will be idle next. Initially, tr(p;) = 0. 
The algorithm can be analyzed by considering the 

information available at each node as it is enabled for 
allocation. Since each code block has its name, nodes 
within the block can be uniquely identified. The algo
rithm starts by traversing the graph from its outermost 

block. As soon as a node (say, n;, ) is enabled, which will 
be indicated by its token counter TC(n;,) going to zero, 
that node is assigned to the "best suited" processor. 
The question being asked at this point is: which proces
sor can start the execution of the node n;, earliest if it 
wer13 to be allocated to this processor? The answer 
involves checking the next ready time tr, of each pro
cessor while taking into consideration the communica
tion time between the target processor and the proces
sors to which the predecessor nodes of n; have been 
assigned. This allocation step is completed by updating 
the system status change caused by the allocation. 

When a node with a different code block name is 
encountered, the algorithm is applied recursively to 
allocate this inner block. This recursive step eventually 
ends in the innermost block and completes the alloca
tion as described above. The resulting schedule is 
passed back to the embedding block. Processors are 
then assigned to these schedules while preserving their 
relative start times. 

In order to handle control structures such as a pro
cedure call. a conditional construct or an iterative con
struct, special procedures are developed to reflect the 
effects of these various structures. These procedures, as 
well as the criteria used for tie-breaking situation when 
more than one node are available for allocation are sum
marized as follows: 

339 

No ta 1: Iterative constructs: the loop body is allo
cated as described above to a set of processors. The 
resulting schedule of each of these processor is treated 
as if it were the schedule of a "single" node. The start
ing time of these "nodes" are compared to obtain the 
earliest starting time among themselves. Similarly, the 
latest finishing time can be determined. The difference 
between these two time values is used as the execution 
time of each of these "nodes" and is multiplied by the 
expected number of iterations. This parameter is the 
final schedule for these processors. In the case when 
the number of iterations is a run time variable, a value 
is obtained from a probability distribution function. 
Nata 2: Conditional constructs: After the allocation 
of each block that corresponds to a condition, and for 
each processor which has been utilized in more than one 
of these blocks, the schedules of each block for this pro
cessor are compared and the one representing the 
"worst case" execution time is used. This step is neces
sary in order to guarantee that sufficient processing 
time is reserved regardless of the condition selected 
during run time. 
Note 3: Procedure Call: The procedure, which is 
essentially a dataflow graph itself, is allocated as a code 
block. The algorithm maps the variables used and 
created in the procedure to those passed and returned 
in the procedure call. 
Nate 4: The tie-breaking criteria used when more 
than one node are simultaneously enabled for allocation 
is the Length of the Longest Output Path, {LLOP). Each 
node contributes a value of 1 to the length of the path in 
which it occurs except for the procedure node which 
contributes a value equal to the length of the longest 
path in the graph of the procedure called by the node. 
Clearly, since the program graph allows iterative con
structs, which may be executed a number of times, the 
length of the longest output path is :riot well defined. In 
this case, the longest output path obtained by travers
ing the loop once is multiplied by the expected numeber 
of iterations of the loop. Another criteria which has 
been considered is the largest outdegree of the succes
sors of a node, (LOD). It is used as a guidline because a 
node with a larger outdegree has a greater potential for 



enabling the firing of other nodes. As we shall discussed 
in the next section, results obtained by simulation indi
cate that LLOP yields a better performance than LOD in 
most cases. Therefore, perference is given to LLOP as 
the tie-breaking criteria in our algorithm. 

RESULTS AND COMPARISONS 

In order to evaluate the performance of the algo
rithm, simulation runs were made on data consisting of 
randomly generated program graphs. Programs with 10 
to 100 nodes, 1 to 5 levels of code blocks in a 3 to 8 pro
cessor system were simulated. The number of nodes in 
the graphs, the interprocessor communication costs, 
the individual node execution costs, and the number of 
active processors were all generated from uniform ran
dom distribution. The table below shows the distribution 
of the ratio R of execution time for the algorithm using 
two different "tie-breaking" measures (LLOP and LOD) to 
the optimal execution time. 

Summa.ru oLsimu.lation results 

I R=l l<R<ll/ 10 11/ 10<R<5/4 R>5/4 
LLOP T 74% 18% 8% 0% 

LOD I 65% 19% 11% 5% 

The most important property of the algorithm is its 
effect on the execution time of the program graph. A 
good algorithm will attempt to minimize the execution 
time regardless of the number of available processors. 
Figure 3 and 4 show the total execution time of 2 dif
ferent dataflow programs as a function of the number of 
processors for our algorithm and for the ones reported 
in [ 4]. The two programs chosen are a trapezoidal qua
drature program and a matrix multiplication program. 
The two appraoches of the algorithm in [ 4] are identified 
as MLCl and MLC2. The two versions of our algorithm are 
identified as LLOP and LOD. The best result is obtained 
using the LLOP version of the proposed algorithm in 
both the programs. While the algorithm MLC2 gives a 
shorter execution time than the LOD version of our algo
rithm when there is a small number of processors 
increases. 

Exec .. Cycle 

310 

300 

-- LLOP 
290 -·-LOO 

-----MI.Cl 
•··•••··· MLC2 

280 

270 

260 

250 

240 

230 

220 

210 

200 

t of Processor 

Fig. 3 Algorithm Performance with the Trapezoidal Program 

340 

Exec. Cycle 

200 

190 \ 

180 --LLOD 
-·-LOO 

170 
-----HLCl 
········· MLC2 

160 

150 

140 

130 

120 

110 

100 

90 

t of Processors 

Fig. 4 Algorithm Performance with the Matrix 
Multiplication Program 

The effect is even more pronounced in the matrix 
multiplication program. The reason for this can be 
attributed to the fact that each node in both MLCl and 
MLC2 algorithms represents a complete statement and 
hence the inherent parallelism of the statement· is not 
taken advantage of. 

CONCLUSION 

The problem of decomposing and mapping a 
dataflow program graph onto a set of processing ele
ments is discussed. An algorithm has been developed 
for achieving efficient program execution while main
taining a high degree of concurrency. It is summarized 
in this paper. Research is proceeding for the investiga
tion of the effect on the algorithm of putting limiataions 
on several system resources. These include a finite 
memory size for each processing element, a communi
cation network that is not totally connected, and a set of 
nonhomogeneous processors each of which is character
ized by the functions it performs. 

REFERENCES 

[1] Ackerman, W.B .. "Dataflow Languages", AFIPS Conf. 
Proc., Vol. 48, 1979 NCC, New York, p.1087-1095. 
June 1979. 

[2] Arvind, "Decomposing a Program for Multiple Pro
cessors System", Proc. Int'!. Conf. on Parallel Pro
cessing, p.7-14, 1980. 

[3] Davis, A.L., "A Dataflow Evaluation System based on 
the Concept of Recursive Locality". Proc. AFIPS 
NCC, Vol. 48, p. 1079-1086, 1979. 

[ 4] Mundell, K.J., Linder,M.W. and Conry, S.E .. "Proces
sor Allocation in Data-Driven Systems -- Two 
Approaches", Proc. Int'L Conf. on Parallel Process
ing, p.156-157, 1981. . 

[5] Nelson, E.C., "Resource Allocation for Free Running 
and Resource Limited Program Graph", Ph.D. 
Thesis, Department of Computer Science, StanforC. 
Unviersity, CA., 1973. 



A Sman, High-Speed Dataflow Processor 

Wm Leier 
Department of Cor11>uter Science 

University of North Carolina 
Chapel Hill, North Carolina 27514 

Abstract 

Dataflow processors show much promise for high-speed computation 
at reasonable cost, but they are not without problems. This short 
paper will discuss a processor design which combines ideas from 
dynamic dataflow architecture with those from reduced instruction set 
computers and proven large computers with parallel internal 
structures. The resulting processor includes a number of innovations, 
including operand destinations, killer tokens, 110 streams and closed
loop complllation, which result in a small, relatively inexpensive 
processor capable of high-speed computation. The expected 
application areas of the processor include interactive computer 
graphics, signal processing, and artificial intelligence. 

1. Introduction 

Many new architectural proposals seem to aDUJDe the need for a new 
architecture. As a result, these designs md up as "solutions in search 
of a problem." This design started from the opposite viewpoint. We 
already had a problem -- the need for quick, easy to program 
interactive graphics. Its characteristics are common: the demand for 
fast computation at reasonable cost; use of algorithms that not only 
ofier high degrees of parallelism, but are diffiailt to code 
sequentially; and a good fit into a message passing paradigm. The 
solution will involve some sort of parallel processor. 

Note that the expected application area was used to guide the design 
decisions, not to cripple the machine into special purpose oblivion. 
An example of this sort of decision is the need to keep the processor 
as simple as possible; most graphics applications simply cannot afiord 
a large, expensive processor. Another design decision was to avoid 
global bottlenecks such as cmtralized scbedulers. As the design 
progressed it was decided to ignore questions of purity; issues such as 
whether it is possible to construct indeterminate graphs are best dealt 
with at the language level. 

2. Dynamic datanow 

The architecture chosen was the dynamic dataflow architecture (Tr82] 
first proposed by Arvind. The dataflow machine running at 
Manchester is an example of this type of architecture, however, there 
are still a number of problems to be solved [ Ga82]. These problems 
can be broken down into three classes: problems with all parallel. 
computers; problems with dataflow computers; and problems with 
cwrent dynamic dataflow designs. 

An example of the first type of problem is processor scheduling. On 
any multiple processor machine individual instructions must be 
sdieduled to specific prooeaing elements for c:xecution. If this 
sclrednling is done at any time other than run time there is a danger 
that some elements will be idle while .othas are swamped. Jn order 
to solve this problem the sdJednting must be done at run time, but 
this requires global knowledge of the dynamic state of the system .. 
Any global resource sclredulcr, however, will become a bottk::ireck on.. 
a multiple processor machine. 

An example of the second type of problem is the handling of data 
structures. The data storage of a conventional computer is arranged 
as a large array, so arrays have become the dominant data structure 
used in computer science. Jn order to implement randomly updatable 
arrays on a dataflow machine, either the entire array must be paued 
around as the value of a token (i.e., array copying), or else it must. 
be stored as a tree with the accompanying overhead on access. 
Dataflow machines are able to handle alternative data structures such 
as streams. It may be that our heavy dependence on arrays is an 
artifact of current practice, and other data structures might also be 
sufficiently powerful and efficient. 

Any new type of computer will have the third type of problem. For 
example, early von Neumann computers did not have index registers. 
This meant that address manipulation had to be done with self 
modifying code and other tricks, until someone thought up a better 
way to do it. Most of the design innovations in this paper are aimed 
at the third class of problem, but the first two types of problems will 
also be addressed. These problems include the following: 

• Conditional instructions affect data flow and not control flow. All 
values cirailating in a loop, even loop constants, must pass through 
branch instructions. This degrades execution time as well as code 
density. 

• A further problem with dynamic dataflow designs is that ail values 
circulating in a loop must have their tags updated. 

• Conventional processors can take advantage of program locality by 
holding data and status in registers. The tradeoH is that this 
information must be saved during a context switch. Dataflow 
processors have no overhead on context switches, but as a result 
have difficulty utilizing program locality. 

• Functional architectures such as dataflow have conceptual problems 
with nondeterminate and history sensitive operations, especially UO 
operations. 

• Jn many parallel processor designs there is much duplication of 
hardware, or hardware that cannot be utilized concurrently. 

• Most proposed parallel processors perform poorly under low 
degrees of parallelism. One of the strengths of the Cray-1 was that 
it performed scalar operations reasonably well, not just vector 
computations. 

• Some parallel processors depend upon massive amounts of 
parailelism, in the thousands or even millions, to reali7.e their full 
performance. By studying the flow graphs from optimizing 
compilers we can see that most programs tmd to have a parallelism 
of between 30 and 100 (TISO] (F182]. Impressive exceptions do 
exist, but they too will have bottlenecks where the parailelism is not 
quite as impressive. It is not even clear whether a computer with 
millions or even thousands of processing elements could be built. 
Certainly it would be difficult to keep such a system. running for 
any length of time. 

• Jn a parallel. processor, if one procea is producing values to be 
consumed by another procea, the producer can get far ahead of 
the consumer and fill up the interprocessor queues unless some sort 
of handshaking is used between the processes or processors. 

• As discussed earlier, there are problems with instruction scheduling 
and data structures. 

0190-3918/83/0000/0341$01.00 © 1983 IEEE 341 



3. Processor Structure 

The processor is divided into a number of separate processing 
clemmts comiected through a network. Jn order to avoid the 
duplication of hardware, and to keep the processing elements simple, 
diffcrent elements of the processor may have different instruction 
Bets. Cummt1y there are five types of processing elements (see 
below), although more could be added at any time. A processor· can 
contain as many as 32 elements, but there must be at least one of 
each type. 

Instructions can take either one or two operands, and those that take 
two require a matching buffer. These buffers are expensive, so on 
this processor the processing elements are divided iii.to those whose 
instructions take one operand, and those that take two. This allows 
the matching buffers to be eliminated on elements that only execute 
monadic instructions, as well as the field in a token that indicates the 
number of operands required by its instruction. 

Each processing element then consists of two or three stages: an 
optional matching buffer, an instruction fetch stage, and an execution 
unit. The instruction fetch section fetches the appropriate instruction 
from a conventional mrmory, and the execution unit performs the 
desired operation, and updates the output tokens. 

4. Tokens 

32 14 5 12 1 
DATA IADDR !rreRI INVN IPI 

Tokens consist of a DATA field and a tag, both of which are 32 bits 
long. The tag field is further divided into several fields: the IADDR 
field gives the address of the destination instruction; the ITER field is 
used to keep up to 32 active iterations of a loop separate; the INVN 
field is used to specify which invocation of a subroutine this token is 
from; and the P (or PORT) field tells two operand instructions 
whether this is the left or right argument, or for one operand 
instructions it can indicate the end of a stream. Matching buffers 
match tokens on all bits of the tag except for the PORT bit. 

A unique feature of this processor is the use of killer tolcena to 
remove tokens from the matching buffers. Killer tokens can be used 
to increase parallelism in loops, perform elementary stream 
operations, and form the basis for non-determinate oomputation. 
For all this utility they are mremely easy to implement. A killer 
token is a token that has the same tag as the token it is to kill, and 
can be created by any instruction. If two tokens match in a matching 
buffer and their PORT bits are the same, then both are discarded. 
This situation corresponds to the illegal condition of having, say, two 
right operands for the same instruction, and so does not require any 
extra bits. Even so, it is very general, since killer tokens can arrive 
before the token to be killed, and killer tokens can even kill other 
killer tokens. The uses of killer tokens will be discussed later. 

s. Instructions 

An instruction consists of a 32 bit operation phrase (opcode plus 
literals) followed by one or more 32 bit destination phrases. The 
ability to have an arbitrary number of destinations eliminates the 
need for explicit copy instructions, as well as the waste when space is 
provided for a fixed number of destinations and fewer are needed. 

Destination phrases on this processor are different from those in other 
dataflow designs in that they include fields to control data branching, 
token relabeling, output data source, and token priority, in addition 
to the fields rontaining routing information for the new token. A 
destination. phrase consists of the foDowing fields: 

field bits content& 

LAST 1 Snee thae can be an arbitrary number af dmtination 
phrases, the last destination has this bit set, otherwise 
it is cleared. 

SOURCE 

SENSE 

INCR 

sMODE 

PE 
IADDR 
PORT 
PRIO 

2 The source af the DATA field for the outgoing token 
can be either af up to two results af an operation 
(i.e., low order or high order product for 
multiplication), or either of the operands. For single 
operand instructions, the data source can be the 
single operand, or one af up to three results. 

2 An operation may have a condition associated with 
it. This field tells the processing element whether to 
send this token out: regardless af the condition; only 
if the condition is true; only if the condition is false; 
or only if the processor is in debug mode. 

5 Tells how much to increment the ITER field af the 
token before sending it out. This is used to send 
values from one iteration af a loop to another. 

1 If this bit is clear, the addition to the ITER field by 
the INCR field is done modulo 32. If set, overflow 
af the ITER field increments the INVN field. 

5 Processing element number to send this token to. 
14 New destination instruction address. 
1 New PORT bit. Invert for a killer token. 
1 If set, then this token has priority in the 

communication network. 

6. The Processing Elements 

6.1 Arithmetic Processing Element. The arithmetic processing 
element does simple arithmetic and logical operations such as adds, 
exclusive ors, comparisons, and shifts. Combined with the SENSE
:field these instructions can be fancy loop closers in that arithmetic, 
test, and branch operations are combined in the same instruction. 

6.2 Multiply and Divide Processing Element. This processing 
element is based on some monolithic multiplication chip, with a 
standard iterative algorithm used for division. 

6.3 Constant Element. Constants too big to fit in the operation 
phrase af the arithmetic element, as well as constants for other 
operations must be generated explicitly by this monadic processing 
element. It also has the ability to do lookups into tables af constants, 
which can be used for sine and cosine tables, for example. This 
element can also be used to watch for the last token of a stream. 

6.4 Context Element. The c:ontext element executes instructions; 
which manipulate the INVN field of a token. It is thus used for 
subroutine calls and returns, but, unlike conventional machines, 
instructions are not associated with any control flow, they are. 
associated only with the parameters passed and returned. 

6.5 Input/Output Element. The interface between the history 
sensitive outside world and this applieative proceaor is done by the 
VO element using streams. The VO processor contains a block of 
random access mrmory called the buffer mrmory. This buffer 
mrmory is mapped into the address space of the host, or if there is no 
host, it can be used as VO buffers for DMA VO devices such as disks, 
tapes, or frame buffers. Streams of data are written into and read 
out af the buffer mrmory. 

7. Operand Destinations and Conditions 

This processor uses the SOURCE and INCR fields to avoid passing 
values circulating in a loop through branch or tag update instructions .. 
The INCR field updates the ITER :field to send its destination to the 
next iteration af a loop. Loop constants can be specified as operand 
destinations using the SOURCE field to automatically send the 
constant to the next iteration. UnfOrtuna.tely, this constant will be 
sent to the next iteration regardless of whether that iteration will ever 
occur, so there will be a token left over. A loop must have at least 
one branch instruction, and it can be used to generate a killer token· 
for the h:ftover constant. As a result, only a single branch instruction 
is needed for any loop, just as in conventional architectures. Using• 
the SENSE field very compact loops can result. For example, an 
iterative factorial program on this processor is two instructions, a 
multiply and a decraneot and branch. 

342 

\ 
I 



8. Streams 

One of the more popular features of the UNIX operating system 
[Ri78] is the ability to make a connection between the input and 
output of two concurrently running processes using a mechanism 
called a pipe. lbis allows concurrent computation, although on a 
uniprocessor the concurrency is simulated using an J/O buffer and 
multiprogramming. Streams on this processor perform a similar 
function, but since there is no extra overhead associated with process 
switching processes can be made much smaller, and streams become 
much more pervasive. Even loops can be considered as processes 
operating on streams of data, and so streams become the major data 
structuring facility of this processor. 

Streams can also be used to do J/O concurrently with processing. In 
order to keep read operations from generating too many tokens and 
overflowing the ITER field, all operations are done on a closed-loop 
basis. Write operations generate a dummy result token that can be 
sent to a read operation to enable the next read. lbis scheme works 
in much the same way as acknowledgement tokens on static dataflow 
processors, except that they are explicit in the program, and are used 
around entire computations, not for every instruction. 

Large arrays of data, such as pixel arrays in a frame buffer, can be 
read and written using streams. To do reads from a frame buffer, a 
stream of pixel addresses is sent to the frame buffer, and a stream of 
pixel values is returned. If read and write operations to the frame 
buffer are mixed then it is up to the user (or the compiler) to insure 
that there are explicit data dependencies to keep proper order to the 
operations. Since all operations are done on a closed-loop basis, this 
is fairly easy to guarantee. lbis method can be used for any array of 
data, not just pixels, using the buffer memory in the I/O processor. 

9. Resource Control 

Functional architectures usually have problems with history sensitive 
and non-determinate computations. Most history sensitive 
computations can be handled using streams. For example, if a 
resource is being requested by a stream of incoming requests, but 
only one of them is allowed access at a time, the requests can be 
made to queue up in a ma~ching buffer of a two operand element. 
When the present request is finished using the resource, the requisite 
matching token for the next request is sent to the matching buffer. 

1bis mechanism is not always enough; consider the situation where a 
request for a resource has been made, but the process requesting the 
resource changes its mind and wants to abort the request. lbis is 
done using killer tokens. The process sends two tokens containing 
null requests to the resource request queue. ff the request has already 
been granted access to the resource, then the two tokens will act as 
killer tokens and kill each other. If not, the first token to arrive will 
act as a killer token for the original request, and the second will wait 
for the request acknowledgement token, and then perform the null 
operation. In either case, the resource will correctly enable the next 
request, and will send back some result (either the original one or a 
null), which the requesting process can ignore. 

10. Program Locality and Parallelism 

The PRIO bit in a destination is used to indicate computations that, 
are on the critical path. 1bis is used to give a token priority in the 
communications network. The matching buffers also contain a small 
ICt of high-speed registers, much like registers on a conventional 
proc:cisor. The PRIO bit is used to indicate tokens which are given 
priority in these registers. ff a token enters the matching buffer stage 
of a processing element and the instruction fetch section is free, then 
an instruction prefetch can be initiated using the IADDR field of the 
incoming token. ff the match succeeds, then the instruction is 
available immediately. These features improve performance under a 
low degree of parallelism, and allow the processor to take advantage 
of program locality. 1bis results in a processor which does not 
depend on large amounts of parallelism for impressive performance. 

11. Supervisory Functions 

INVN value zero is reserved for supervisory functions such as loading, 
the instruction memories (there is also an J/O instruction to do this), 
clearing the matching buffers, and monitoring processing element 
load and utili7.ation of matching buffer space. By monitoring system 
load, the operating system can shift instructions around when 
imbalances occur, while avoiding the global bottleneck of an 
instruction scheduler. The debug mode of the SENSE field can be 
used to count the number of times an instruction or loop is executed, 
print intermediate values, and other functions useful in debugging. 

12. Conclusions and Status 

1bis paper presents a dataflow design that has been evolving over the 
last several years [Le81). It offers new solutions to many of the 
problems associated with dataflow processors. The design is currently 
running on a simulator which has been used to verify that the 
schemes proposed here actually work and can be used in small 
programs. To the best of my knowledge, the following features are 
unique to this processor: 

• Non-homogeneity of the prOCC&'IO!. Increases modularity, 
eliminates matching buffers in some elements, ALU's in others, 
simplifies control and instruction decoding. 

• Operand destinations with automatic token relabeling. FJiminates 
extra branch and relabeling instructions. Only explicit relabeling 
instructions are for parameters passed to subroutines. 

• Killer tokens. Oean up after operand destinations, perform stream 
operations, help non-determinate computations. 

• Loop closing instructions for fast execution. 
• Ability to take advantage of program locality and give priority to 

computations on the critical path. 
• Instruction prefetching and matching buffer registers. Improves 

performance when parallelism is low. 
• Arbitrary number of destinations per instruction. FJiminates need 

for copy instructions. 
• Elimination of explicit branch instructions by associating a 

condition with most operations. 
• Ability to stream I/O directly from peripheral devices such as disks 

and tapes with no host intervention. 
• Computations are done on a closed-loop basis, which keeps 

producer processes from racing too far ahead of their consumers. 

In my opinion, the problems plaguing current dataflow designs will 
turn out to be no more severe than the problems that plagued early 
von Neumann computers. lbis paper proposed solutions to some of 
these problems, and solutions to other problems will undoubtably be 
discovered as more dataflow processors are built and experience with 
them is gained. One way to help make sure that dataflow processors 
will be built is to design them for application areas where traditional 
architectures are weak. 1bis processor is aimed at such areas. 

13. References 

(Fl82] Personal communications with J. Asher, 1982; alSO A. Nicolau and 
J. Fisher, "Using an Oracle to Measure Potential ParalleHsm In 
Single Instruction Stream Programs," Micro 81, pp. 171-182. 

[Ga82] D. Gajskl, D. Padua, D. Kuck and R. Kuhn, "A Second Opinion on 
Dataflow Machines and Languages; IEEE Computer, (Feb. 1982), 
pp. 58-69. 

(Le81] W. Leier, A High-Speed Dataflow Architecture, Department of 
Computer Science, University of North Carolna at Chapel HUI, 
(Dec. 1981) 26 pp. 

(Rl78] D. Ritchie and K. Thompson, "The UNIX Time-Sharing System," 
Bell System Technical Joumel, (July-August 1978, part 2). 

[TISO] Research done at Texas lnstrumen!s on the ASC Compiler; also 
as reported In course Oats. Flow Concepts In Computer Language 
and Architecture, MIT, (June 1980). 

[Tr82] P. Treleaven, D. Brownbrldge and R. Hopkins, "Data-Driven and 
Demand-Driven Computer Architeclures," Computing Surveys, 
(March 1982), pp. 93-143. 

343 



PROGRAMMABLE MODULAR SIGNAL PROCESSOR-A DATA FLOW COMPUTER SYSTEM FOR REAL TIME 
SIGNAL PROCESSING 

Prashant S. Sawkar, Timothy J. Forquer, and Richard P. Perry 
RCA Government Systems Division 

Moorestown, New Jersey 08057 

Abstract 

Classical signal processor design techniques are very expensive, 
time consuming, and result in a custom hardware and software 
that may not be capable of meeting the wide ranging require
ments of signal processing applications other than the one for 
which it was intended. 

This paper presents an organization of a Programmable Modular 
Signal Processor. A data flow concept of control is advocated in 
order to take advantage of the run-time parallelism inherent in 
most applications. The attractive features of the system are that 
it is capable of being realized with a small number of hardware 
functional units, and it allows the hardware to be independent of 
the signal processing application. The system is organized to sup
port a high-level graph-oriented signal processing application de
scription capability in order to simplify the user interface. 

INTRODUCTION 

Many areas of scientific computation - aerodynamic simulation, 
weather forecasting, real-time radar signal processing - have 
immense computational requirements with instruction execution 
rates greater than 2 x 109 operations per second. Conventional 
computer structures are unable to meet the demand because they 
cannot exploit the high degree of parallelism exhibited by most 
applications. 

Considerable research has been done in parallel computer 
'!tructures and their suitability for applications exhibiting high 
degree of concurrency. The two basic structures are parallel 
array and the pipeline. The parallel arrays (array processors, 
such as ILLIAC IV, and multiprocessors, such as C.mmp) have 
various problems such as job partitioning and memory con
flicts. There is overwhelming evidence that only a fraction of 
their potential can be realized for a broad spectrum of applica
tions [1,2,3]. The pipeline structures (IBM 360/91, CDC-STAR, 
CRA Yl), although capable of high performance, are prone to 
extremely low performance when the pipeline flow is disrupted 
by branching, non-availability of data, or interdependence be
tween stages. 

The data flow concept promotes a fundamentally different way of 
executing instructions - an alternative to sequential program 
execution in conventional computer structures. In a data flow 
machine, an instruction is ready for execution when its operands 
are available. No control flow is indicated either implicitly or 
explicitly and there are no program counters. The concept of data
activated instruction execution allows multiple instructions in a 
data flow program to be executed concurrently. This expression of 
parallelism in terms of data dependencies, rather than in spite of 
them, leads to a far more natural and flexible picture of parallel 
program execution [4]. 

In view of the nature of the parallel hardware structures and the 
practical difficulties encountered in running them at full speed, it 
seems likely that the data flow architectures, with their 
fundamentally different approach to instruction execution, have 
a better chance of exploiting the high degree of parallelism inher
ent in most applications. 

0190-3918/83/0000/0344$01.00 © 1983 IEEE 344 

In this paper a data flow architecture for a Programmable Modu
lar Signal Processor (PMSP) machine is presented. The PMSP 
system is being designed for solving a broad range of real-time 
signal processing applications, with particular emphasis to radar 
signal processing. The architecture is developed by repeated use 
of a small number of basic building blocks, which are: 

1. A Multiport Memory System (MMS) that features concur
rent access to memory at its multiple data ports, high 
throughput per port, and a programmable interconnection 
mechanism. 

2. A General Processing Element (GPE) that has scalar/ vector 
arithmetic processing capability, matrix arithmetic, trans
forms, and function generation capability. 

3. An Input/Output Processing Element (!OPE) to support all 
the input/output interfaces. 

These building blocks can support multiprocessor systems that 
have very high throughput and which are reliable and dynami
cally reconfigurable. The MMS, GPE and !OPE are coupled with 
a data flow control mechanism to provide the PMSP architecture 
with characteristics needed to support real-time radar signal 
processing applications. 

DATA FLOW ARCHITECTURES AND PMSP SYSTEM 
ORGANIZATION 

The objective of this section is to introduce the basic data flow 
architecture and identify the modifications meeded to support a 
wide range of real-time signal processing applications. 

A number of data flow architectures have been proposed [5-9). We 
have chosen the Manchester data flow model proposed by Gurd 
and Watson [8] to illustrate the approach and the modifications 
needed. The Manchester data flow machine has five units inter
connected (see Figure 1). The node store contains node descrip
tions, which specify the operation to be performed, and the node 
store address to which the results of the node execution must be 
directed. Data values circulate around the ring as tokens that 
consist of a data value and the address in the node store. When a 
token or a pair of tokens arrive at the node store, the correspond
ing instruction (node description) is fetched from the node store. 
The node description (instruction) when coupled with its tokens 
(operands) becomes an executable instruction that is routed to the 
processing subsystem. 

The matching store is an associative storage mechanism in which 
tokens directed to the same node are grouped together; The token 
queue is a buffer between the switch and the matching unit for 
equalizing disparities in the rate of production and consumption 
of tokens. The switch provides a means for communicating with 
the external world. 

The data flow mechanism may be viewed as a circular pipeline 
that carries tokens. The degree of concurrency possible is limited 
by two factors: 1) the number of processing elements in tlie proc
essor subsystem and the degree of pipelining within each unit,: 



TOKEN 
QUEUE 

OUTPUT 

MATCH· 
ING 
UNIT 

TOKEN 

TOKEN 
OR 
TOKEN 
PAIR 

NODE 
STORE 

INPUT 

EXECUTABLE 
INSTRUCTION 

PROCESSING 
SUBSYSTEM 

RESULT 
TOKENS 

Figure 1. Basic Manchester Data-flow Architecture 

and 2) the capacity of the data paths connecting various subsys
tems in the ring. 

The suitability of a data flow model for radar signal processing 
applications has been studied [10). The benefits of simultaneity in 
an irregular, and run-time dependent data flow situation, and 
also the software engineering benefits when several complex 
functions are to be executed in parallel are very attractive [11]. A 
radar signal processing application is typified by very high data 
arrival rates, high computational rates on large volumes of data, 
high reliability, and fault tolerance. In order to accommodate 
radar signal processing applications in data flow, a number of 
modifications are necessary. 

The first modification proposed is a higher level of data flow 
(macro data flow), which would synchronize operations at the 
functional level. The functions may be complex tasks on large 
vectors of data. The data flow concept described earlier, in con
trast, synchronizes operations at the arithmetic level. This modi
fication can minimize the token flow traffic on the circular pipe
line of the data flow machine. 

Second, the tokens in the macro data flow model would consist of 
a pointer to a value or set of values and also an address of the 
node store, instead of the conventional tokens, which carry a 
label, a value, and the address of the node store. By making this 
change, it would be possible to avoid saturating the data paths 
with data tokens (operands) intended for a single instruction. The 
time taken to route an instruction from node store to a processor 
in the processing subsystem would be quite small in comparison. 
Hence, the unused capacity of the data paths could be used to 
route more instructions to improve the concurrency to a level 
acceptable for real-time applications. 

Finally, the processing elements in the processing subsystem 
should be capable of executing a variety of complex tasks. The 
architecture of these processing elements, however, need not be 
data-flow oriented. Any of the conventional parallel structures -
array, pipeline, or hybrid, for example - can be chosen in order to 
efficiently execute the tasks because the concurrency achieved by 
data flow at this level is offset by communications and control 
overhead. A complete discussion of data flow performance under 
various conditions is available in Reference (10). 

PMSP Data Flow Processor (PDFP) Architecture 

The PMSP Data Flow Processor consists of five subsystems (see 
Figure 2): a Task Data Base, a Task Dispatcher, a Processor 
Subsystem, an Input/Output Subsystem, and a· Task Scheduler. 

345 

The five subsystems are interconnected in a ring; the 1/0 Subsys
tem and the Processor Subsystem also interact with a multiport 
memory system. 

The task data base provides a central storage media for various 
tables describing graph nodes, node tasks, and the interconnec
tivity of the nodes. The data base also maintains status and capa
bility lists of the various resources in the Processing and 1/0 
Subsystems. A Task Ready List indicating the order in which the 
tasks became ready to execute is also maintained in the task data 
base. 

The run-time function of the task dispatcher is to select the next 
task to be run from the Task Ready List, to select a processor from 
the 1/0 Subsystem or the Processor Subsystem upon which to 
execute the task, and to dispatch the corresponding task packet to 
the selected processor. The packet consists of a task identification 
followed by parameter, input, and output parameter information. 
The task dispatcher broadcasts the task packet on the Dispatcher 
Bus (DBUS). The task dispatcher also interfaces with the host, for 
purposes of statically loading the task data base with an applica
tion, and runtime control of the database by the host. 

The Processor Subsystem consists of a number of General Proc
essing Elements (GPEs), as shown in Figure 2b. The Dispatcher 
may select one of the GPEs to receive a task packet over the 
DBUS. The GPE retrieves the input operands from the Multiport 
Memory System (MMS) from the locations indicated by the task 
packet, performs the specified operation, and returns the data 
(output operands) generated to the MMS. (The GPE may have one 
or more ports to the MMS.) The GPE also generates a result 
packet consisting of a GPE-ldentification, Task, and Task-status. 
The result packet is available to the Task Scheduler on the 
Scheduler Bus (SBUS), which is time multiplexed. The task 
scheduler generates the address of the next device that may place 
its result packet on the SBUS. 

Each GPE is capable of executing a number of most commonly 
used signal processing algorithms or primitives, for example, 
FFT, MTI, and CROSS-ADD. A library of these packages exists at 
each GPE; there is no run-time loading of packages. It is possible 
to have each GPE execute every signal processing primitive or to 
have GPEs with different primitive execution capabilities. A ca
pability list of each GPE is maintained in the task data base. 

The Input/Output Subsystem consists of several 1/0 Processing 
Elements (IOPE), each of which has at least two 1/0 ports, one for 
communicating with the multiport memory system and the other 
for communicating with devices external to the PDFP. A variety 
of external devices, such as ADCs, DACs, IOPE of another PDFP, 
may be attached to an IOPE. The dispatcher may select one of the 
IOPEs to receive a 110 task packet over the DBUS. The selected 
IOPE decodes the task and performs the specified data transfer 
operation between the MMS and the external devices attached to 
the IOPE. Upon completion of the 1/0 task, the IOPE generates a 
result package consisting of an IOPE identification, Task, and 
Task-status. The result packet is available to the task scheduler 
on the SBUS. Upon initialization of the PDFP, some of the IOPEs 
are dedicated to bringing in external data and starting the data 
flow application resident in the task data base. 

The task scheduler receives the result packets from the GPEs and 
IOPEs in a time-multiplexed fashion. From the result packet and 
the application graph tables residing in the task data base, the 
scheduler determines which nodes are ready for execution and 
places them at the back of the Task Ready List. 



HOST 
INTERFACE 

TASK 
DIS
PATCHER 

TASK 
DATA 
BASE 

TASK 
SCHE
DULER 

TASK 
PACKET 

TO/FROM 
EXTERNAL DEVICES (ADC, DAC, IOPE ... ETC.) 

••• 
INPUT/ 
OUTPUT 
SUBSYSTEM 

PROCESSING 
SUBSYSTEM 

RESULT 
PACKET 

OPERAND 
1/0 
PACKETS 

MULTIPORT 
MEMORY 
SYSTEM 
(OPERAND 
STORE) 

Figure 2a. PMSP Data Flow Processor Organization 

EXTERNAL DEVICES (ADC, DAC, IOPE ... ETC.) 

~P;O-;;- S~;S;S~E~ l 
OPERAND I I 

I J l 1/0 

GPE0 J I -l I I 
I I 

~ I • I f 
TASK 

TASK 
I • PACKET • I --- DISPATCH- I J ER I J l 
I 

GPEm l I 
t : -l ... 

L ______ J 
~~~bl~~RT ~ 
SYSTEM r-------1

Ij L (OPERAND
IOPE0 [I STORE)

TASK l DATA
l J I

BASE I • I ~
I I • I

I • I

i _J
IOPEn 1 I ..L ...

+ 1 I
I.... r ~

I

L~o _:u~s~s:::~ J
TASK

SCHEDULER --0 "' RESULT (') c;; :c
PACKET ~ m

0
c:l c

r :c m m ,, ,,
"' "' c c "' "' in 0 "' "' c

c !!!

Figure 2b. PMSP Data Flow Processor Organizational Details

346

The Multiport Memory System supports contention-free parallel
access to the bulk memory at its multiple ports. The MMS pro
vides a programmable interconnection mechanism by supporting
a set of high-level VO commands at each port (see Table I) to
interconnect bulk memory and an external device or any two
external devices. The high speeds attainable at each port and
programmable interconnection capability make MMS a useful
tool in building reliable and adaptive multiprocessing systems for
real-time applications.

The bulk memory used in MMS is block oriented: the smallest
unit of data transferred between the MMS and an external device
attached to it is one block. A block is transferred word-serially.
The block size varies linearly with the MMS configuration; that
is, an MMS with 16 ports has a block size of 16 words. The block
size is not considered a limitation because the class of applica
tions being solved by the PDFP require large volumes of data;
therefore, an optimized block transfer approach, such as the one
used by MMS, is preferred over other approaches. Details ofMMS
operation are beyond the scope of this paper and are a~ailable
elsewhere [12]. ·

TABLE I. MSS COMMAND SET

OPERATION DEVICE-ADDR BLOCK-COUNT REMARKS

READ BULK- #BLOCKS READ SPECIFIED
MEMORY #OF BLOCKS
ADDRESS FROM BULK

MEMORY AND
TRANSFER TO
EXTERNAL DEVICE

WRITE BULK- #BLOCKS WRITE SPECIFIED
MEMORY #OF BLOCKS
ADDRESS TO BULK-MEMORY.

THE SOURCE
OF THESE BLOCKS IS
THE EXTERNAL
DEVICE

SEND PORT- #BLOCKS
ADDRESS INTERPROCESSOR

COMMUNICATION
COMMANDS

RECEIVE PORT- #BLOCKS
ADDRESS

PMSP Data Flow Multiprocessor (PDFMP) Organization

The level of concurrency exploited by the PDFP may be increased
enormously by connecting several PDFPs to form a multiproces
sor system. The organization of a PMSP Data Flow Multiproces
sor is illustrated in Figure 3. The PDFPs communicate with each
other by way of their respective IOPs. The interconnection of the
PDFPs may be made independent of application by using an
MMS. For a small number of PDFPs, a direct interconnection of
their respective IOPEs may be preferred.

The PDFPs are connected to the host by means of a host bus
(HBUS). The user may use the graph description capabilities ex
isting on the host to describe the various subgraphs that make up
the application. The host assigns one subgraph to each PDFP and
exercises overall control of the PDFPs.

PROGRAMMING SUPPORT AND OPERATING SYSTEM
REQUIREMENTS

An application that can run on PDFP or PDFMP may be de
scribed as a data flow graph (see Figure 4). The nodes are the
operators and the arcs are data queues. Operators may be large
tasks, such as 1024 point FFT or matrix operation. The data
queues are FIFO queues maintained in the Multiport Memory
System. Each queue has a read amount (RA), a consume amount

347

HOST

HOST BUS (HBUS)

• ••

INTERCONNECTION MECHANISM

• USE MMS-FOR APPLICATION INDEPENDENCE
• CUSTOM INTERCONNECTION FOR SMALL SYSTEMS

Figure 3. PMSP Data Flow Multiprocessor Organization

PA=1

RA =1
CA =1

RA=1
CA =1

OUTPUT QUEUE (00)

PA=1

WHERE

RA - READ AMOUNT
CA - CONSUME AMOUNT
PA - PRODUCE AMOUNT

Figure 4. Example of Graphical Description of Application

(CA), and a produce amount (PA). The produce amount deter
mines the amount of data a node produces and places on its out
put queue. The read amount determines the amount of data
needed from the queue for a node to start execution. The consume
amount determines the exact amount of data consumed by the
node. When a node has multiple input queues, it can start execu
tion only when all the input queues have enough data on them to
equal or exceed their corresponding read amounts.

The host system implements a PCOS interpreter [13], which ac
cepts graph descriptions as a set of directives and generates an
object graph. An object graph is simply a collection of data sets
indicating the various nodes in the graph and their connectivity
as well as various queues in the graph and their characteristics
(see Figure 5).

Each GPE in the processing subsystem has an executive capable
of decoding the task packet, fetching the input operands, and
invoking the appropriate primitive routine to execute the task.
Upon completion of the task it returns the output operands to the
operand store and posts the result to the task scheduler. The most
commonly encountered primitives may be coded and stored lo
cally in its program memory.

In addition, it is possible to specify a combination of these primi
tives as a single task. For example, in the implementation of a
radar MTI Process (Figure 6), a number of primitives (nodes) are
interconnected as a subgraph to be executed by a GPE. Only the
data produced by the peripheral nodes is transferred to the Multi
port Memory System, and the data produced by the intermediate
nodes is retained in the GPE for use as inputs by the subsequent
nodes in the subgraph. This technique significantly reduces VO,
promotes better GPE performance, and reduces the data queue

NOOE#

j

QUEUE#

j

PRIMITIVE
INPUT OUTPUT CONTROL
QUEUE QUEUE VARIABLE

IOENT. POINTER LIST POINTER LIST POINTER LIST

al NODE LIST

QUEUE QUEUE READ PRODUCE
IDENT. DATA AMOUNT AMOUNT

TYPE

bl QUEUE LIST

PRIMITIVE # ---Ji--

YES YES NO

NO YES
.
.

di GPE CAPABILITY LIST

CONSUME BULK

AMOUNT MEMORY
POINTERS

NODE#

QUEUE#
PREDECES·

SOR
NODE#

SUCCESSOR
NODE#

cl CONNECTIVITY LIST

PRIMITiVE !NPIJT OUTPUT

IDENT. QUEUE QUEUE
INFORMATION INFORMATION

el NODE READY LIST

Figure 5. Object Graph and Architecture Control Data

MTI SEARCH MODE (OPEN LOOP MTI)

Figure 6. Subgraph of Radar MTI Process

348

A

build-ups in the Multiport Memory System. With these capabili
ties, most of the complex tasks encountered in radar signal proc
essing can probably be specified directly by the user in the data
flow graph, thus avoiding conventional software development.

The task dispatcher has access to the object graph data sets (see
Figure 5) and the task ready list from which it selects the task as
well as the processor best suited to perform the task. The task
scheduler accesses the object graph data sets to determine which
nodes are ready to execute, and places them on the task ready list.

CONCLUSIONS

In this paper, the organization of a Programmable Modular Sig
nal processor that utilizes a data flow concept of control was pre
sented. Data flow architecture was chosen to take advantage of
the parallelism inherent in most real-time applications. The at
tractive features of this approach include:

a) Hardware that is independent of signal processing applica
tions

b) Development of a relatively small number of hardware func
tional units

c) Isolation of signal processing algorithm development from
software development

d) A mechanism for the development of a signal processing
application comprised of a configurable set of standard hard
ware functional units

e) A mechanism for merging data processing control functions
written in a HOL at the host, and signal processing func
tions expressed in graph notation.

The modifications to the conventional data flow architectures en
ables very high performance data flow machines to be developed.
Having eliminated the data token traffic from the circular pipe
line, the dispatcher can dispatch the task packets to the proces
sors faster than normally possible. The scheduler can also per
form faster because it does not have to deal with large number of
data tokens. Performance can be further improved by segmenting
the dispatching and scheduling operations and pipelining them.

Preliminary analysis of the architecture gives a strong indication
that it is suitable for real-time signal processing applications.
Detailed simulation modelling and performance evaluation un
der various conditions for a variety of applications is in progress.

349

REFERENCES

1. Minsky, M. and S. Papert, On Some Associative, Parallel and
Analog Computations, Associative Information Techniques (E.J.
Jacks, ed.), Elsevier, 1971.

2. Flynn, M.J., "Some Computer Organizations and their Effec
tiveness," IEEE Transactions on Computers, Vol. C-21, No-9,
Sept. 1972, p. 948.

3. Enslow, P.H., "Multiprocessor Organization -A Survey," ACM
Computing Surveys, Vol. 9, No. 1, March 1977, p.103.

4. Watson, I. and Gurd, J., "A Prototype Data Flow Computer
with Token Labelling," National Computer Conference Proceed
ings, 1979, pp. 623-628.

5. Watson, I., and Gurd, J., "Data Driven System for High Speed
Parallel Computing - Part 1: Structuring Software for Parallel
Execution," Computer Design, June 1980, pp. 91-100.

6. Watson, I., and Gurd, J., "Data Driven System for High Speed
Parallel Computing - Part 2: Hardware Design," Computer De
sign, July 1980, pp. 97-106.

7. Dennis, J.B., "Data Flow Supercomputers," IEEE Computer,
Nov. 1980, pp. 48-56.

8. Watson, I., and Gurd, J., "A Practical Data Flow Computer,"
IEEE Computer, Feb. 1982, pp. 51-57.

9. Davis, A.L., "A Data Driven Machine Architecture Suitable for
VLSI Implementation," Caltech Conference on VLSI, January,
1979, pp. 479-494.

10. Perry, R.P., Private Communication.

11. Gajski, D.D., et al., "A Second Opinion on Data Flow Ma
chines and Languages," IEEE Computer, Feb. 1982, pp. 58-69.

12. Sawkar, P.S. et al, "A Multiport Memory Organization for
Use in Distributed Computing Systems," IEEE 3d Int'!. Confer
ence on Distributed Computing Systems, Oct. 1982, pp. 56-61.

13. Schemecke, E.J., Private Communication.

A SIMULATOR FOR MIMD PERFORMANCE PREDICTION-
APPLICATION TO THE S-1 MkIIa MULTIPROCESSOR(a)

T. s. Axelrod, P. F. Dubois, P. G. Eltgroth
Theoretical Physics Division

Mathematics and Statistics Division
Lawrence Livermore National Laboratory

Livermore, California 94550

Abstract -- We describe a MIMD multiprocessor
simulator and application of that simulator to a
multiprocessor of current interest, the S-1
MkIIa. The simulator runs on the Cray-1 and is
designed so that computational physics benchmarks
are actually run and produce results. Simulator
output from this run are fed into a second level
(hardware) simulator which calculates the behavior
of the multiprocessor. The simulator can simulate
multiprocessors whose basic architecture is that
of a few, large processors with or without data
caches, sharing global memory through an
interconnection switch. The simulator is applied
to investigate the behavior of SIMPLE, a benchmark
physics code.

I. Introduction

Our purpose in this paper is twofold. We
begin by describing a simulator we have created
for predicting the performance of realistic physics
calculations performed on multiprocessors. We then
describe the physics code SIMPLE and present
simulator results for its performance on a multi
processor of current interest, the S-1 MkIIa
[S-179). The simulator is available for use on
Cray-1 computers under the CTSS operating system,
and a user's manual has been previously published
[Axe82).

II. Simulation Methodology

1. Goals of the Simulator

Simulation of computer systems is performed
for a great variety of purposes. Among these are
gate level simulations to verify logical
correctness of a design, register level simulations
which allow the effects of instruction sequences
to be determined, and queuing models, which are
most commonly employed to predict performance of
computer systems under timesharing loads. The
simulations described here fall in a less common
category. Our goal is to predict the performance
of an MIMD computer in solving large computational
physics problems by some specified algorithm.

Our simulation has an additional goal of
nearly equal importance. Since usable and
accessible MIMD machines are still very rare,
computational physicists, numerical analysts, and
programmers have little or no experience with the
"parallel world". Not only is a new set of
performance related issues present, but there are
new issues of logical correctness and choice of

(a) Work performed under the auspices of the
u. s. Department of Energy by the Lawrence
Livermore National Laboratory under contract
No. W-7405-ENG-48.

0190-3918/83/0000/0350$01.00 © 1983 IEEE 350

language constructs. Our simulator, called MPSIM,
provides a readily available tool for gaining at
least some of this experience. One crucial feature
of the simulator is that the algorithm being
investigated is actually run in all its detail so
that its numerical behavior (e.g., stability,
correctness of answers) can be observed. Among
other things, this allows many bugs related to
multiprocessing to be found.

2. The Trace-driven Two Level Methodology

Simulation under MPSIM occurs at two levels
(MPSIM-1 and MPSIM-2). These two levels represent
the software and hardware, respectively, of the
integrated system being modelled. This two level
structure was inspired by the work of L. Cox
[Cox78) • At the first level of simulation we deal
with autonomous instruction streams referred to as
processes, without reference to any physical
implementation, while at the second level we deal
with physical processors. At present we assume
that there is a one-to-one mapping between
processes and processors, but this assumption is
unnecessary, and affects only MPSIM-2. Thus
extension of the simulator to include machines
such as the Denelcor HEP [Smi78), which has
multiple processes per processor, is at least in
principle straightforward.

The two levels of the simulation (which can
be run independently) are used for different
purposes. At the first level of simulation, we
are concerned primarily with the correct logical
operation of a program, and the details of a
particular multiprocessor implementation (such as
the relative speeds of private and shared memory,
the speeds of various synchronization operations,
and so on) may be mostly ignored. On the other
hand, the performance of a multiprocessor program
may depend critically on the details of the
implementation, and the second level of the
simulation, which is driven by output.from the
first level, is intended to predict this
performance. In general, performance information
will dictate changes in the program, which are
incorporated by returning to the first level.

MPSIM-1 is an extended version of a
simulator written by L. Sloan. It runs on the
Cray-1 under CTSS and consists principally of a
process scheduler and the machinery and data
structures to save and restore process state
information. The simulator provides the FORTRAN
user with a number ·of subroutines which allow the
creation and destruction of processes and implement
a variety of synchronization operations. A brief
summary of the available functions is given in
Table 1. A complete description is available in
[Axe82).

Table 1.
Name
MPINIT
TRCINIT
FORK
FORKOFF
SYNCAL
PSEM
VSEM
PAWS
JOINAL
PRCEND
TRCFIN
MPFINI

Summary of MPSIM-1 Subroutines.
Purpose

Initialize MPSIM-1
Begin trace output for MPSIM-2
Star~ an additional process
Start multiple additional processes
Global synchronization barrier
P operation on a semaphore
V operation on a semaphore
Wake up the MPSIM-1 scheduler
Terminate all but 1 process
Terminate a process
Terminate trace output for MPSIM-2
Terminate MPSIM-1 operation

In operation the Level 1 simula_tor is a
timesharing system in miniature. A single Cray-1
is multiplexed among the currently runnable
processes and a simulated wall-clock is
maintained. The level 1 simulator is in fact a
simulation of a particular MIMD machine--a highly
idealized multiple Cray-1 with both shared and
local memory.

Clearly most of the characteristics of a
parallel algorithm which will determine its
performance on a real MIMD machine are contained
in the details of its behavior on this idealized
MIMD machine. Not only is the pattern of process
creation, destruction, and communication present,
but quite complete information is also available
on the actual computation performed by each
process, much of which is hardware independent.
The linkage between the level 1 and level 2
simulator consists of abstracting the performance
related information from the level 1 behavior and
transferring it to level 2 where it may be
interpreted in the context of a more realistic
(and possibly quite different) MIMD machine.

What should actually be included in the
information transmitted to level 2? One extreme
approach would be to include the complete state of
the simulated MP-Cray on every clock cycle. There
are two serious problems with this, however. The
quantity of information is several orders of
magnitude too large to permit the behavior of a
complete physics algorithm to be practically stored
or processed. Even more serious, perhaps, is the
fact that most of the information generated has no
obvious relevance to machines other than a Cray-1
or a very close relative.

At the opposite extreme, one might simply
count arithmetic operations performed by each
process. This information is so incomplete,

however, that the hardware model contained in
Level 2 must of necessity be quite simple. In
particular, details of interprocessor interactions
which arise from memory conflicts and cache
coherence problems cannot be modeled.

In general the choice of which information
should be abstracted from the Level 1 behavior is
partially subjective and must be based on a
careful assessment of the characteristics of the
system being modelled, and the size of the
computational resources available for the
simulation. The nature of the choice we have made
for modelling the S-1 MkIIa is discussed in
Section III. For the moment we merely note that
it falls between the two extremes, preserving the
details of each process' data referencing patterns

351

and the arithmetic operations it performs, while
neglecting many details of address calculations
and instruction referencing patterns.

During the operation of MPSIM-1 the
information needed by MPSIM-2 is gathered by
machine instructions which have been automatically
inserted into the user's object code. These
instructions cause control to be temporarily
transferred to simulator routines which write the
desired machine state information to disc files,
one for each process. This information gathering
process is invisible to the user except for
increased CPU charges.

MPSIM-2 views the events contained in each
process' trace stream as requests for hardware
services by a running process. Typically the
services required are arithmetic operations and
transfers of operands. Each request is satisfied
as soon as possible within the constraints of the
hardware model. We note that this may result in a
time ordering for events in separate process
streams that differs from that of MPSIM-1. Event
ordering within a single process stream is
preserved (unless the MPSIM-2 hardware model
allows out-of-order execution), as are the
interprocess orderings enforced by synchronization.

The output of MPSIM-2 is a detailed record of
event histories for each of the simulated
processors, which in practice are usually viewed
in the form of graphical plots.

III. THE S-1 MkIIa Hardware Model

As the first application of our simulation
techniques we chose to investigate the S-1 MkIIa
multiprocessor. This machine is of great interest
due to its inuninent availability and supercomputer
performance potential. Additionally, its design
explores for the first time the use of cache
memory in high speed multiprocessors.

In this section we describe the hardware
model we have incorporated in SISIM-2 to model the
S-1 MkIIa multiprocessor. When we created the
model, the S-1 MkIIa implementation was far from
complete, and a number of details were uncertain.
This was particularly the case for the main
memory, crossbar switch, and w.icrocode used for
interprocessor communication. Since hardware
documentation was generally unavailable we have
relied on conversation with S-1 project members
[Far82] to fill in the gaps where possible. How
successful we have been in modelling the S-1 MkIIa
as it is finally implemented will not be known
until the machine is available for testing. We
nonetheless are presenting the model and the
results from it in the hope that it will be a
generally useful contribution to performance
assessment of MIMD machines.

1. Summary of S-1 hardware

The S-1 MkIIa multiprocessor
[S-179,FarBO,FarBl] consists of up to 16
processors connected to a similar number of memory
banks by a crossbar switch. Each processor is
extensively pipelined and microcoded and possesses
the following major resources:

1. Instruction cache (4k words).
2. Data cacpe (16k words).

3. Address arithmetic unit.
4. Floating point adder.
5. Floating point multiplier.
6. 16 general purpose register files with 32

words each.
7. Local memory (lM word class).
The S-1 pipeline is partitioned into two

major units. The IBOX fetches and decodes
instructions and handles all tasks associated with
the fetching and storing of operands, including
management of the cache, mapping of virtual to
physical addresses, and memory protection. The
ABOX is responsible for the remaining steps in
instruction execution and calculates all results
which will be stored in the register files or
memory.

The processors are implemented with ECL lOK
and lOOK integrated circuits, while the local and
global memories are implemented with 64kb MOS
chips. The design cycle time of the processor is
50 ns for the instruction fetch and decode unit
(IBOX) and 25 ns for the arithmetic unit (ABOX).
The word size is 36 bits.

The ABOX adder and multiplier are innovative
in several respects [Far81]. They have been
designed for low latency and are partitionable to
allow calculation with operands of 18, 36, and 72
bits. Special attention has been devoted to
achieving high speed on FFT's and other
mathematical functions. In part for this reason
the adder produces both the sum and difference of
its operands simultaneously.

The instruction set is extensive, providing a
·wide variety of addressing modes, dyadic and
triadic vector operations, and evaluation of
mathematical functions among its most notable
features.

Since the MPSIM-2 hardware model is driven by
a trace stream obtained from a Cray-1, it is
appropriate to contrast the S-1 MkIIa design with
that of the Cray-1 [Cra76]. The most important
differences include the following:

1. The design of the memory hierarchies
differ greatly. The S-1 is a virtual address
machine which utilizes a combination of fast ECL
data and instruction caches, very large MOS main
memory, and disk for demand paging. The Cray-1 is
much simpler, relying on ECL technology for both
its registers and 16 interleaved banks of main
memory.

2. The S-1 has fewer functional units. All
instructions must pass through either the adder or
multiplier in the ABOX. On the Cray-1 there are
thirteen functional units (including memory) which
may execute instructions.

3. Vector operands on the S-1 are obtained
directly from memory, while on the Cray-1 they are
held in vector registers for use by the vector
functional units. The vector stride must be 1 for
the S-1, while it may be any value on the Cray.

4. The S-1 instruction set is more powerful
than that of the Cray, so that multiple Cray
instructions can often be replaced by a single S-1
instruction. The most common occurrence of this
is in operand address computation;·· but there are
many examples.

5. On the S-1, results are produced strictly
in the order implied by the instruction order. On
the Cray-1, although instructions are always

352

issued in order, results may be produced out of
order and by any of the functional units.

Both the number of instructions and the
number of machine cycles devoted to address
arithmetic are likely to differ greatly between
the two machines. In favorable cases, however,
the time taken to perform these operations is
completely "hidden" through overlap with floating
point operations and memory references. The same
situation holds for conditional branches. Both
machines are able to issue instructions at a
maximum rate of one per cycle (12.5 ns Cray-1,
50 ns S-1 MkIIa). How closely this goal is
approached is very sensitive to the optimization
techniques employed by the compiler.

As sketched above, the S-1 MkIIa processor is
highly complex: Our simulation models a small
carefully chosen subset of its features. In most
cases the model assumes that omitted features
(e.g., prediction of conditional branches) work
perfectly, so that the simulation results form an
upper bound on performance, but there are
exceptions.

In selecting the hardware features to be
included in the model we began by recognizing that
the effectiveness of the data cache will be a
major determinant of performance. Occurrence of a
data cache miss stops the IBOX pipeline until the
required data can be obtained. Since main memo!y
is much slower than the IBOX cycle time, data
cache misses can easily impose a limit on
performance. This is especially the case when
processors share data so that cache coherence
problems arise. The model must therefore be able
to determine the contents of the data cache of

each processor at every stage of the computation.
On the other hand, we expect the

effectiveness of the instruction cache to be
generally high and of less importance in
determining performance. This arises from both
the generally much smaller size of total program
instructions relative to cache size, and from the
generally much higher localities observed for
program instruction references compared to data
references. This is most fortunate, since the
instruction cache hit rate could not be modelled
accurately without actual s-1 instruction streams
for the computation. These will not be usefully
available until a vectorizing compiler for the
machine is completed.

Our model of the ABOX is quite simplified,
since it ignores delays which result from data
dependencies between operations. If all required
operands are in cache the simulated ABOX is ready
to execute a new instruction a fixed time
(Tissue> after beginning the previous
instruction. We have chosen Tissue to be the
shortest possible--those obtained in the absence
of data dependencies. This is not a necessary
restriction on the model, since all data
dependencies are in fact available in the trace
stream. Again, our results are expected to form
an upper bound on performance.

Most of the complexity of the S-1 processor
arises from the need to keep arithmetic function
units at the end of a long complex pipeline
supplied with operands at a continuously high
rate. (See [Kog81] and [Lor72] for good
discussions of pipelined processors.) To achieve

this, a variety of techniques is employed,
including the partial decoupling of the !BOX and
ABOX with an operand queue, the prediction of
conditional branches, and the prediction of values
needed in address computations [Far81].

Our model assumes that in the absence of data
cache misses, all of these techniques work
perfectly, so that the functional units perform
work at the maximum possible rate. Clearly this
may be seriously in error for some computations.
A Monte Carlo computation with a large number of
quasi-random conditional branches is likely to run
more slowly than our model would predict, for
example, due to reduced effectiveness of the
hardware conditional branch prediction strategy.

The model makes an additional simplifying
assumption: the cost of address arithmetic
instructions is ignored. As discussed above, this
is equivalent to assuming that address arithmetic
calculations are fully overlapped with other
computations. Although the address arithmetic
instructions themselves are filtered out, the
memory reference instructions needed to fetch
their operands are retained. This is necessary to
include their effect on the data cache hit ratio
(typically small).

The effect of the simplifications we have
discussed so far is exclusively in the direction
of predicting performance which is too high. The
performance results for the Monte Carlo algorithm
discussed in Section IV probably show these
effects to a significant degree. The model,
however, contains additional assumptions which
work in the other direction. The most important
of these is ignoring the chaining of vector
operations on the S-1. Chaining allows triadic
vector instructions to make simultaneous use of
the adder and multiplier in the ABOX. This can
increase the MFLOP rate by up to a factor of 2.
Measurements on the Cray-1, which has a more
general chaining capability, show the effect to be
somewhat less than this in most cases.

Of less importance is the fact that the model
does not reflect the ability of the S-1 to
calculate special functions (e.g., sin, log, exp)
nearly as fast as a single multiplication.
Measurements on the Cray-1, which calculates these
functions slowly relative to multiplications
(120 ns vs 12 ns per result in vector mode), shows
that even physics simulation codes which make
intensive use (by current standards) of special
functions very rarely spend more than 10% of their
time performing them. It is quite possible,
however, that algorithms will evolve which exploit
the S-l's ability to evaluate special functions
inexpensively.

IV. SIMPLE

SIMPLE [Cro78] is a widely distributed code
which models the hydrodynamic and thermal behavior
of fluids in two dimensions. The hydrodynamics is
a standard Lagrangian formulation using an
artificial viscosity. Heat transfer is performed
in the diffusion approximation using a single ADI
iteration on a five point implicit difference
operator. Thermodynamic properties.of the fluid
are obtained by table lookup and biquadratic
interpolation between table entries.

353

After an initialization phase the calculation
consists of a sequence of timesteps each of which
advances the solution by a time increment DT in
the following manner:

1. Calculate the pressure in each zone given
the temperature and density.

2. Compute the acceleration, new velocity
and new position of each zone.

3. Compute new zone volumes.
4. Compute the artificial viscosity and

Courant timestep limit for each zone.
5. Calculate new zone internal energy after

hydrodynamic work. To maintain sufficient
accuracy the new energy is first predicted using
old thermodynamic quantities. The predicted
energy is then used to calculate more accurate
thermodynamic quantities which are used for the
final calculation of the new internal energy.

6. Calculate new temperature after
hydrodynamics from new density and internal energy.

7. Calculate heat diffusion coefficient for
each zone.

8. Calculate the coupling constants for the
column direction (one per zone).

9. Calculate an intermediate temperature by
solving a tridiagonal linear system which couples
zones in the same column and has the temperature
from step 7 as a right hand side.

10. Calculate the coupling constants for the
row direction (one per zone).

11. Calculate the new temperature by solving
a tridiagonal linear system which couples zones in
the same row and has the temperature from step 9
as a right hand side.

12. Calculate a heat diffusion DT for each
zone from the rate of change of its temperature.

13. Calculate new zone internal energy from
new temperature.

14. Calculate whole problem sums (kinetic
and internal energy and heat flow across problem
boundaries) and next DT by finding the minimum
over the entire mesh of the zonal Courant and heat
diffusion DT's.

Although space does not permit a complete
discussion of these calculational steps, some
comments are in order. Steps 1 through 6
constitute the hydrodynamics portion of the
timestep. The method is explicit, and the ~ew
values for a zone depend only on the previous
values of that zone and its six nearest
neighbors. Steps 7 through 13 constitute the heat
conduction portion of the timestep. The method is
implicit, and the new temperature of a zone
depends on the previous values of all zones in the
mesh. This difference is quite important for a
multiprocessor. It is also important to note that
boundary zones require special treatment for both
hydrodynamics and heat conduction and require more
calculations than interior zones.

We began with a version of SIMPLE which is
almost completely vectorized by the CFT or CIVIC
compilers for the Cray-1. This program was
modified for a multiprocessor in a straightforward
manner. Each processor is assigned a fixed
contiguous group of mesh columns for which it is
responsible at each stage of the calculation.
With the exception of the heat conduction row
sweep (discussed below) all calculations are
vectorized along columns. All arrays are stored

columnwise, so this results in vector operations
with unit stride, which is ideal for the S-1.
Synchronization barriers were emplaced between
calculation stages when required to ensure the
proper data dependencies. Fourteen such barriers
are required within the timestep loop. The program
contains a single critical section implemented
with semaphores which is used for updating scalars
which depend on the global mesh (step 14).

With the exception of a single processor
which is given the additional duty of performing
output to the edit file, all. processors execute
identical code. In addition to the main data
structures of the problem, which are in shared
memory, each processor is supplied with local data
structures which are stored in processor private
memory. A few of these, such as loop indices,
must be supplied to ensure logically correct
operation. The majority of them, however, are
made local to increase performance. These include
the material property tables, arrays holding the
coupling coefficients for heat conduction, and
scratchpad arrays used for holding temporary
results. Local scalars are used to hold each
processor's contribution to global mesh quantities
such as total kinetic energy and minimum timestep
(step 14).

As mentioned above, the heat conduction
calculation contains an exception to the column
group partitioning used in the remainder of the
code. The heat conduction step in fact raises
some interesting partitioning issues, and deserves
special discussion. Since the value of a zone
temperature after the heat conduction step depends
on the previous temperatures of all mesh zones, it
is inevitable that this calculation on a multi
processor will involve substantial interprocessor
communication. There are at least two different
ways of organizing the calculation.

1. Straightforward partitioning. During the
column sweep each processor is given a group of
columns, while during the row sweep each processor
is given a group of rows. All interP"ocessor
communication is handled invisibly by the cache
coherence algorithm in the hardware.

2. Wavefront with row blocking. Each
processor works with a group of columns for both
the row and column sweep. During the row sweep
processor i+l cannot begin on its portion of a row
until processor i is finished with its portion of
that row.

The second method, which is advocated by
Gilbert [Gil79] attempts to reduce interprocessor
communication demands at the expense of reduced
parallelism and increased program complexity. The
idea is that each processor "owns" the data
associated with a column group. During the row
sweep a processor continues to work with this
local data except at the boundaries of its column
group, where interprocessor communication is
required. For large column groups the relative
cost of this communication becomes small.

This strategy is effective only if the data
associated with a column group remains local to a
processor throughout the calculation. On the S-1
MkIIa there are two kinds of local data - that
which is contained in the data cache and that
which is contained in processor private memory
external to the cache. Data which is in cache

354

remains there only until it is removed by the
replacement algorithm to make way for other data.
This kind of locality is transient and for large
column groups is destroyed during the column
sweep. For the wavefront algorithm to work as
intended, therefore, the column group data must be
held in processor local memory. Processors
utilize the crossbar switch only to send data
packets directly to other processors.

The wavefront approach therefore is a form of
°'distributed computing" and as such requires quite
different programming constructs than employed in
uniprocessor scientific programs. In particular,
the extended version of FORTRAN we are using has
no convenient facilities to distinguish local from
shared data or for the sending and receiving of
interprocessor messages. The first approach,
however, allows the heat conduction part of SIMPLE
to be programmed in the same style as the rest of
the code.

For the simulations reported here we have
chosen to use the straightforward partitioning
appropriate to a tightly coupled approach to
multiprocessing. It is interesting to note that
for large problems the overhead directly
attributable to interprocessor communication still
becomes small. It is of course true that each
processor writes out many cache lines to main
memory which are later read by other processors.
The point is that the vast majority of these reads
and writes are performed by the normal cache
replacement algorithm, and would occur even in the
absence of other processors. The penalty of the
shared memory approach is then paid mainly in bank
conflicts.

The simulator output includes a large number
of performance diagnostic quantities. In our
discussion below, we have used the following
definitions: The cache hit ratio is the ratio of
the number of memory references originally finding
a datum in cache divided by the total number of
memory references. Efficiency is the ratio of the
time one processor needs for a calculation divided
by P times the time it takes P processors to
finish the same calculation. Traffic ratio is the
ratio of the number of bits transferred between
cache and other memory to the total number of bits
which flow between cache memory and its CPU.

Speed is measured in megaflops (MFLOPS),
millions of floating point operations performed
per second. Speedup is the ratio of the time it
takes one processor to perform a calculation
divided by the time it takes a specified number of
processors to complete the calculation.

It is important to notice that direct
comparison of MFLOPS on a parallel machine versus
a sequential machine may be misleading since many
parallel algorithms perform significantly more
arithmetic operations than their sequential
analogs. For SIMPLE, however, such redundant
operations are completely negligible.

We have run problems varying in size from
20C,20R to 90C,40R (where C denotes number of
columns and R number of rows) and utilizing from 1
to 16 processors. Most of these have been run in
single precision mode, although a few double
precision runs have also been made. The results
we report here are for a single execution of steps
1--14 of the timestep advance. Runs with

multiple cycles have been performed, and show that
the transient effects from starting with an empty
cache are quite small. Table 2 summarizes our
results for a 90C,20R problem run in single
precision with varying numbers of processors.

Table 2. Simulated performance of SIMPLE.

~-~----fo!!_FL~Ps _______ ~~~ed~~------_!~~~ci~~cy

1 9.04 1.00 1.00
2 16.00 1. 77 0.89

4 26.45 2.93 0.73
6 32.17 3.56 0.59
8 34. 7 3.84 0.48

The efficiency drops rapidly for P > 4 and
there is clearly little to be gained by running
this problem on more than eight processors.

Figures 1 through 5 show detailed simulator
results for a single run, a 90C,20R single
precision problem run with four processors. As is
evident, each phase of the calculation exhibits
its own pattern of machine activity, so that the
behavior during the timestep is quite complex.
This pattern is recognizably similar for all
multiprocessor SIMPLE runs we have performed,
regardless of size or number of processors.

26

24

22

20

~
18

c.
16 0

"' f 14

t 12
~

10

"'
.~

N'

• ~· " .,, c. c.
~ ell ell

ai :: ::?

"' , .. : ~· N' ;:!
c. c. c. c. c.

ell ell ell ell ell
~~~.~-----~--~ 

~ !£ ) 
El If 't 
'~ ~ ' 

r II I 

(~ 

0.10 0.20 0.30 

'I ., 
' 

11 

111 
fv-/\ rf l \ \\ 

0.40 0.50 0.60 0.70 0.80 0.90 

Time (106 cycles) 

~ 

1.00 

Figure 1. Simulated performance of four processor 
S-1 MkIIa in single precision mode on SIMPLE. The 
problem size is 90C, 20R. The upper portion of the 
figure shows the arrival times of the individual 
processors at the algorithm's synchronization 
points. All processors are restarted after the 
synchronization at the points marked "X". The step 
numbers refer to the calculational steps defined in 
the text. The lower portion of the figure shows the 
average per-processor megaflops vs time measured in 
25 ns ABOX cycles. 

355 

0.90 

0.80 

0.70 

u~ ·~ 
0.60 

u 

i 0.50 

i I 
<.: 0.40 

'\ 

0.30 \ 

~ 0.20 

0.10 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

Time (106 cycles) 

Figure 2. Simulated performance of four processor 
S-1 MkIIa in single precision mode on SIMPLE. The 
problem size is 90C, 20R. The figure plots the 
average fraction of time spent servicing data 
cache misses vs time in 25 ns ABOX cycles. 

--,----

0.50 (1 ! , 
I ' 

~ t I ~ 0.40 
0 
E 

J~ ~ 
] 
0 

°' 0.30 

! 
0.20 

0.10 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

Time ( 106 cycles) 

Figure 3. Simulated performance of four processor 
S-1 MkIIa in single precision mode on SIMPLE. The 
problem size is 90C, 20R. The figure plots the 
average global memory load as a fraction of total 
available bandwidth vs time in 25 ns ABOX cycles. 



0.300 

0.250 

j 
~ 0.200 

~ 
] 0.150 

J 
0.100 

0.050 ( 
0 J.L_~JLL--l..U->...L.L~~L-~..L:'---'---'----'-!~~L-~'-L-~-'--' 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

Time {106 cycles) 

Figure 4. Simulated performance of four processor 
S-1 MkIIa in single precision mode on SIMPLE. The 
problem size is 90C, 20R. The figure plots the 
average local memory load as a fraction of total 
available bandwidth vs time in 25 ns ABOX cycles. 

0.60 

0.50 

] 
u 0.40 

] 
g 
m 0.30 

I 
0.20 ·-

0.10 

0 ll..-~...!L~.lll..W..~.L...~-'-~~'--~-'-~....L..J.L.-~-'--~--"~~..L-~ 
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

Time (1o" cyclesl 

Figure 5. Simulated performance of four processor 
S-1 MkIIa in single precision mode on SIMPLE. The 
problem size is 90C, 20R. The figure plots the 
average fraction of time spent servicing 
interprocessor cache line transfers vs time in 
25 ns ABOX cycles. 

It is interesting to compare the machine 
activity during the heat conduction row sweep with 
that of the column sweep. The row sweep shows high 
cross traffic loads and takes about 2.75 times as 
long as the column sweep. Both column and row 
sweeps show extensive use of processor local 
memory, inainly due to the local storage of 
coupling coefficients. In the light of the 
discussion above we expect this picture to change 
substantially for sufficiently large problems, 

356 

which should show a less pronounced performance 
difference between column and row sweeps. 

We can easily calculate the problem size for 
which this transition should occur. For the 
90C,20R problem, each processor requires roughly 
5*90*20/4 = 2250 distinct operands from the point 
it begins to access the shared temperature array 
during the column sweep until the column sweep is 
finished. This is substantially smaller than the 
cache size of 16384 words, so that each processor's 
entire column group is present in cache at the end 
of the column sweep. The subsequent row sweep 
then triggers the observed burst of cross traffic. 
For problems larger by a factor of roughly 8 
(16000 zones), however, this situation will change 
and each processor at the end of the column sweep 
will already have started writing back to shared 
memory the first temperature elements it accessed. 

In spite of its dramatic appearance, the row 
sweep is not the only cause of the inefficiency 
shown in Table 2. Analysis of the simulator runs 
allows us to assign the inefficiency to three 
major causes, as shown below. 

p = 4 p = 8 
Waiting at synchronization 0 .03 0 .06 

barriers: 
Global memory conflicts: 0 .15 0.25 
Interprocessor line transfer: 0.06 0.12 

Total: 0.24 0 .43 

It is perhaps more useful to express these 
same numbers as "lost CPU's" by multiplying the 
fractional performance loss by P. 

p = 4 p = 8 
Waiting at synchronization 0.12 0.48 

barriers: 
Global memory conflicts: 0 .60 2.00 
Interprocessor line transfer: 0 .24 0.96 

Total: 0.96 3.44 

We clearly must consider how this picture 
will change when the mesh size is greatly 
increased. As argued above, the fractional cost 
of both synchronization waiting and interprocessor 
line transfer should drop steadily with increasing 
mesh size, leaving global memory conflicts as the 
principal cost of multiprocessing. Simple models 
of multiprocessor memories [Yen82) predict that 
crossbar systems with equal numbers of processors 
and memories show an inefficiency due to conflicts 
that is nearly independent of P when P is greater 
than about 8. These facts taken together imply 
that efficiencies for sufficiently large problems 
should be fairly high (about 0.7) even for large 
numbers of processors. 

This is not the end of the story, however. 
We must note that high efficiency does not 
necessarily imply high performance~ It merely 
means that performance continues to grow linearly 
as processors are added. On a cache based 
machine, such as the S-1, the performance of each 
uniprocessor drops as problem size is increased. 
Table 3 shows the effect of varying the mesh size 
for SIMPLE in the single processor case. 



Table 3. One processor, varied problem size. 
c R C*R MFLOPS Hit ratio Tfc ratio 
10 20 200 13.61 0.9956 0.078 
15 20 300 12.68 0.9952 0.087 
30 20 600 11.05 0.9943 0.108 
60 20 1200 9.89 0.9934 0.128 
90 20 1800 9.02 0.9925 0.145 

One may expect that this decline will continue as 
problem size is further increased. The asymptotic 
value is difficult to predict without detailed 
analysis of the algorithm. The issue of 
performance scaling with problem size therefore 
becomes complex. As problem size increases 
performance tends to also increase, due to the 
decreasing relative cost of synchronization 
waiting and interprocessor communication. At the 
same time, however, performance is negatively 
affected by the decreasing effectiveness of cache 
as the data set size increases. 

V. Conclusion 

The simulations we have reported on were 
undertaken with the goals of investigating the 
performance issues raised by MIMD machines and 
gaining experience with the programming techniques 
required to utilize them. As yet we have explored 
only a limited set of algorithms and a single 

simulated machine. As discussed earlier, we have 
taken existing uniprocessor algorithms and 
extended them to a shared memory multiprocessor 

with minimal changes. Clearly future algorithms 
may depart radically from this approach. Our 
simulations are also deficient in that real 
problems run on fast multiprocessors will in 
general have many more zones than those we have 
been able to treat. 

In view of all these limitations, what have 
we actually learned? Our experience to date with 
the simulator allows us to draw three tentative 
conclusions about the use of MIMD machines for 
solving large scientific problems: 

1. The S-1 (and other similar machines) can 
be used as a multiprocessor in two relatively 
distinct modes. These are a shared memory, or 
tightly coupled, approach in which problem data is 
primarily stored in shared memory; and a 
distributed processing, or loosely coupled, 
approach in which problem data is primarily stored 
in private memory and conmunication takes place 
when required through the interprocessor message 
network. The shared memory approach, which we 
have used here, is relatively simple to program 
using a few extensions to FORTRAN. The 
distributed computing approach appears to offer 
higher performance for many algorithms. However, 
substantial programming effort and significant 
language extensions would be required to realize 
this potential. 

2. Extrapolation of our simulator results to 
much larger problems indicates that many of the 
factors which limited our speedups in the 4 < P 
< 16 range will be greatly reduced in importance. 
This is particularly true for: 

a. Overhead operations which result from 
partitioning the algorithm. These include process 
management operations and communication between 
processes. 

357 

b. Synchronization penalty that results 
from speed variation between processes. 
On the other hand, conflicts between processors in 
obtaining access to shared resources (usually 
memory banks and communication paths) will 
continue to be important. In considering the 
scaling issue, the effect of cache memory may 
outweigh all of these factors, however, which 
brings us to our final point. 

3. The usefulness of a traditional data 
cache for scientific problems with large data sets 
appears questionable. In the cases we have 
studied, performance drops rapidly with increasing 
problem size. Clearly this performance drop can 
be delayed with algorithms which optimize cache 
hit rates. It does not appear feasible to do this 
by hand, however, except for simple cases. 
Compilers clearly must perform this task if it is 
to be done at all. The problem is difficult since 
the optimization approach must be dependent on 
data set size. 

In the future we plan to further increase our 
understanding of MIMD machines and algorithms by 
pursuing the comparison of our simulator results 
with actual measurements on the S-1 MkIIa 
multiprocessor, when it becomes available. 
Additionally, we feel that improved analytic 
models for MIMD performance can be constructed 
which will be quite useful. The work of Briggs 
[Bri80], Dubois [Dub82a,b], Yen et al. [Yen82], and 
Gilbert [Gil79], among others, provide an 
excellent foundation on which to build them. 

References 

[Axe82] Axelrod, T. s., Chase, L., Eltgroth, 

P. G., and Sloan, L. s., Multiprocessor 
Simulator user's Manual, Lawrence 

·Livermore Laboratory, UCID-19594 (1982). 

[Bri80] Briggs, F. A. and Dubois, M., "Modeling 
of Synchronized Iterative Algorithms for 
Multiprocessors,• Proceedings of the 18th 
Annual Allerton conference (1980). 

[Cox78] Cox, L. A., Performance Prediction of 
Computer Architectures Operating on 
Linear Mathematical Models, Lawrence 
Livermore. National Laboratory, UCRL-52582 
(1978). 

[Cra76] CRAY-1 Computer System Reference Manual, 
Cray Research Inc. Publication 2240004 · 
(1976). 

[Cro78] Crowley, w. P., Hendrikson, c. P., and 
Rudy, T. E., Lawrence Livermore National 
Laboratory, UCID-17715 (1978). 

[Dub82a] Dubois, M., and Briggs, F. A., 
"Performance of Synchronized Iterative 
Processes in Multiprocessor systems,• 
IEEE Trans. Software Eng., Vol. SE-8, No. 
4 (1982), pp.419-431. 



[Dub82b) Dubois, M., and Griggs, F. A., "Effects 
of Cache coherency in Multiprocessors,• 
IEEE Trans. computers, Vol. C-31 (1982), 
p.1083. 

[Far80) Farmwald, P. M., Bryson, w., and 
Manferdelli, J. L., •signal Processing 
Aspects of the S-1 Multiprocessor 
Project,• Proc. Soc. Photo-Opt. Instrum. 
Eng., vol. 241 ( 1980), p. 224. 

[Far81) Farmwald, P. M., On the Design of High 
Performance Digital Arithmetic Units, 
ph;D. thesis; Stanford university (1981). 

[Far82) Farmwald, P. M., private communication, 
s-1 Project, Lawrence Livermore National 
Laboratory (1982). 

[Gil79) Gilbert, E. J., "Investigation of the 
Partitioning of Algorithms Across an MIMD 
computing system,• s-1 Project 1979 
Annual Report, Lawrence Livermore 

358 

National Laboratory, UCID-18619, Vol 1 
(1979). 

[Kog81) Kogge, P. M., The Architecture of 
Pipelined Computers, McGraw-Hill (1981). 

[Lor72) Lorin, H., Parallelism in Hardware and 
Software, Prentice-Hall, Inc. (1972). 

[S-179) Wood, L. L., ed., S-1 Project 1979 Annual 
Report, Lawrence Livermore National 
Laboratory, UCID-18619 (3 vols), (1979). 

[Smi78) Smith, B. J., "A Pipelined, Shared 
Resource MIMD Computer," Proc. 1978 
Int'l. Conf. Parallel Processing, 
Bellaire, MI (1978), p.6. 

[Yen82) Yen, D. w., Patel, J. H., and Davidson, 
E. s., "Memory Interference in Synchronous 
Multiprocessor Systems," IEEE Trans. 
Computers, Vol. C-31 (1982), p.1116. 



VECTORIZATION OF DISCRETE EVENT SIMULATION 
Avinash Chandak* · 

and 
J.C. Browne 

Dept. of Computer Science and the Computation Center 
The University of Texas at Austin 

Austin, Texas 78712 

~ 
This paper establishes a simulation model in which vectorizable 

discrete event models can be defined. It gives an algorithm for 
exposing the vectorizable structure in a given model. It applies this 
algorithm to a Monte Carlo particle transport problem known to be 
vectorizable and demonstrates why this problem is vectorizable. A 
few implications or vectorization for definition or models to be 
simulated and for implementation or simulation systems are given. 

* Avinash Chandak is currently employed at the World Bank in 
Washington, D.C. 

The~~ Vectorization of 
Discrete Event Simulations 

It is an item of folklore in computer science that discrete event 
simulations cannot· be effectively vectorized because of the random 
nature of event generation. This supposed limitation is a non
trivial problem since the utility of simulations may depend on levels 
of accuracy which are obtainable only by very long runs on the 
fastest of today's scalar computers. This paper establishes the 
conditions under which discrete event simulation can be vectorized. 
The use of the framework which is given here may lead to the 
selection of model representations which are more vectorizable than 
equivalent alternative representations. 

Application of the procedure is illustrated by consideration of the 
structure of a model for Monte Carlo particle transport process. 
Brown, Callahan and Martin [2] showed by analysis of the actual 
code that it is almost entirely vectorizable. The analysis given 
herein shows why this is the case. 

The conditions for vectorizability are very similar to those 
established by Georgiadis, Papazoglou and Maritsas [3] for MIMD 
parallel structuring of SIMULA programs. 

There ·are three levels of approach to vectorization. The first is 
to look at existing code to determine what can be vectorized. The 
second level is to look for algorithms which can be effectively 
vectorized. The third level is for structural formulations of a 
problem directly in terms of vectors. This study began at level 2 
and, in particular, examined vectorization of time axis or event list 
processing. This portion of the project was successful in the sense 
that a vector formulation of time axis management produced a 
major (factor of two) improvement in run times for cases where 
ti~e axis management was a major factor in total run time II]. 
This factor of two was actually demonstrated in evaluations of 
model systems defined in the simulation system described following 
on a CDC CYBER 205. Further improvement at the algorithm 
level seemed unlikely so we turned attention to the basic structure 
of discrete event problems as expressed in the rather simple 
simulation modeling system developed tor the level 2 studies. This 
approach leads to the results given herein. 

Definition ~ fu Simulation Modeling System 

The modeling capability of this simulation system consists of the 
following major constructs and some system provided routines. 

1. Transactions. These are entities which consist of data only. 
They may have some (or no) user defined parameters. Several 
different transaction types may be defined. The system maintains 
space for transactions. 

2. Transaction Generators. These are user defined routines 
which generate transactions. A transaction generator has a 
transaction type associated with it. 

0190-3918/83/0000/0359$01.00 © 1983 IEEE 359 

3. Facilities. These are user defined routines which service the 
transactions. They manipulate the user defined transaction 
parameters. Each facility services some queue(s). They specify the 
service time needed by using the system routine SIMWAIT. 

4. Queues. These are used to hold transactions which are 
waiting to get service at a facility. A queue is serviced by one 
facility, or a group of facilities. 

S. Common Variables. These are variables used by transaction 
generators and facilities to hold data between activations and to 
pass information between entities in the model. 

The system maintains some status on transactions by type, on 
facilities and on queues. These are available to the user at the 
completion of the simulation. 

The system routines whose use affects vectorizability are 
described following. 

I. The •SEND• routine. This is used by facilities and 
transaction generators to insert transactions into queues. Multiple 
executions will result in multiple copies of the transaction being 
created. 

2. The •COLLECT• routine. This is used to reduce the number 
of copies of the transaction by one, or if there is only one copy it 
has the same effect as the •SEND" routine. This routine functi<;>ns 
by searching all of the storage area for a given transaction type. 

3. The •START" routine. This is used by transaction generators 
and facilities to enable (activate) transaction generators and 
facilities. If the affected routine is already active, it has no effect. 

4. The •STOP• routine. This is the inverse of the •START" 
routine. 

The following two constructs limit vectorizability when used in 
the definition of a model system to be simulated. 

Any routine (facility or transaction generator) which •SEND•s a 
transaction to the front of a queue. Only those queueing disciplines 
which yield fixed ordering in queues lead to vectorizable code. 

We also need the restriction that the "COLLECT" routine only 
searches the queues served by the facility doing the •COLLECT". 
II this restriction is not obeyed then all facilities servicing 
transaction types which have some facility in the simulation doing 
a "COLLECT• on transactions of that type lose vectorizability. 

It should be pointed out that some of the operations in the 
simulation model are not vectorizable. At the simulation system 
level the non-vectorizable operations include those that maintain 
statistics for the various queues. This is because the statistics for 
the (n)th transaction are a function of the numbers for the (n-l)th 
transaction. The pipeline used tor vector computations accepts a 
new set of operands before the results from the previous set are 
available. Therefore any operation which uses the (n-l)th result to 
determine the (n)th result is not vectorizable. An example is the 
waiting time in a queue. It is determined by the departure and 
service times of the previous transaction. There are other such 
instances and these must be handled in scalar mode. 

Analysis for Vectorizability: !!_ Graph Algorithm 

The algorithm for determining the vectorizability for simulation 
evaluation of a given model is given following. It results in the 
construction of a graph. The input is the user description of the 
simulation. 



1. Draw a node for ,each or the queues, transaction generators, 
facilities and common variables and mark each node •facility•, 
•queue•, •transaction generator• or •common variable• as 
appropriate. 

2. For a set of facilities in a facility group, draw an arc from a 
facility which has no outgoing arc to another which has no 
incoming arc. This' should result in a cycle connecting all the 
facilities in a facility group. 

3. For all facilities and transaction generators, draw an arc to 
each queue to which it •SEND•s transactions. 

4. For all queues, draw an arc to each facility that services the 
queue. 

o. For each common variable, draw an arc to a facility or 
transaction generator if it is used to: (i) change a local variable, (ii) 
change a different common variable, (iii) change a transaction 
variable, (iv) affect the now or control inside the facility or 
transaction generator (e.g., in an IF statement), or (v) affect the 
now of a transaction inside the simulation (e.g., in a "SEND•). 

6. For each facility and transaction generator, draw an arc to 
each common variable whose value is changed at some point inside 
the facility or transaction generator. 

7. For every •START• or •STOP• operation, create a new node. 
Draw an arc from the facility or transaction generator doing the 
•START• or •STOP• to the new node and from the new node to 
the facility or transaction generator being •ST ART•ed or 
•STOP•ped. Mark the new node with a •START• or •STOP•. 

8. For every facility which specifies a service time or zero, merge 
ihe · nodes·-for- ihe--queues·i;IITT-iug- ihe· f~iy-;uio- ihe· f'at'iliiy. 
Delete any arcs forming a self loop for such facilities. 

9. For every facility which does a •COLLECT•, create a new 
node, mark it "COLLECT•, draw an arc from the facility to the 
new node and draw an arc from the new node to the facility. 

The algorithm given above can be implemented as part of the 
preprocessor described in Ill. The conditions precluding 
vectorizability are: 

1. Any node (representing a facility or transaction generator) 
with more than one arc entering it cannot be vectorized. 

2. Ir there exists a cycle in the graph then the operation or any 
node in that cycle cannot be vectorized. 

3. For any path in the graph containing a •START• or •STOP• 
node, any node in that path cannot be vectorized. 

The arcs in the graph represent information now in the 
simulation. Information from various sources can interact at the 
nodes representing facilities and transaction generators. This 
means that a node with multiple arcs entering it must synchronize 
the information from the different sources, and, in general, cannot 
operate in the vector mode. It may be possible to vectorize part of 
the operation at that node, but it cannot be totally vectorized. A 
cycle means that all the nodes in the cycle must be synchronized, 
and none of them can be vectorized. A path containing a 
•START• or "STOP• node means that both the routine doing the 
•START• or •STOP• and the routine being affected must be 
synchronized and that both must know the correct simulation time. 
In a vectorized simulation, various routines can be operating at 
diff<:rent simulation times, as long as their operations do not 
interact. 

It is possible that the graph is not connected. This means that 
the information and now represented by the different pieces or the 
graph do not interact at all, and can be implemented as different 
problems. 

The original model represented the simulation as a set of 
operations on single transactions. The default unit of information 
in the vectorized model is a vector of transactions. All operations 
are carried out on vectors. Where needed, operations can be 
carried out on a single entry in a vector. 

360 

Each common variable will be represented as two vectors, one 
containing the value and another containing the corresponding 
simulation time. If we have the situation shown in Figure 1, then a 
scalar procedure is needed to convert the vector, because the length 
and times or the vector produced by the facility writing the 
common variable need not be the same as the length and times of 
the vector needed by the facility reading the common variable. 

Figure 1: 

A Structure Requiring Scalar Conversions 

The unlabelled nodes are facilities or transaction generators. 

For the situation shown in Figure 2, a scalar procedure is needed 
to merge the transaction vectors into one vector. The resulting 
vector is then passed to the facility for processing. 

facility 

Figure 2: 
Another Structure Requiring Scalar Conversions 

The algorithm for vectorization actually points out situations in 
the simulation which cannot be vectorized. It assumes that 
vectorization is possible unless something prevents it. 

The amount or vectorization strongly depends on the model 
representation of the system being simulated. An examination of 
the graph might suggest changes to the simulation that enhance 
vectorizability. In general, real time in the problem being 
simulated is mapped onto simulation time. If this leads to a 
complex model, then a simulation where real time is not mapped 
onto simulation time should be considered. This alternative is 
possible when the problem does not have queueing and competition 
for resources. 

Monte Carlo Particle Transport: 
!!_Completely Vectorizable Problem 

Monte Carlo solution or particle transport problems lol can be 
cast as a discrete event simulation problem. Brown, Callahan and 
Martin 121 showed from examination of an actual code that it could 
be almost completely vectorized. This section applies the 
algorithm developed in the last section to this problem to illustrate 
analysis for vectorizability. 

If real time is mapped onto simulation time for the particle 
transport problem, then we have a very complex simulation. We 
represent particles as transactions and run the simulation so that 
the particles undergo collisions, absorption or splitting at different 
times. Because simulation time and real time correspond, a queue 
in which insertion at an arbitrary point is possible is needed. This 
is done in the simulation model of Ill by means of a number or 
queues of different priority classes. This scheme would require a 
very large number or queues. 

There is no competition for resources in this problem and hence 
there is no need for queues in the simulation. Consider a 
simulation model in which a transaction generator produces 
particles at random simulation times. In this model real time is not 
mapped onto simulation time but is represented as a transaction 
parameter. A facility processes each particle through all its events 
until it and all particles it creates (by splitting) are absorbed. It 
does this in zero simulation time. The particles are represented by 
x, y and z coordinates and x, y and z velocity components and 
time. The environment is represented by a set or constant global 
variables. The algorithm is applied to 'this model and the resulting 
graph is shown at each step. The resulting graphs of Figure 3 show 



that this form ot the particle transport problem can be 'vectorized. 

transaction 
generator 

~ 
Figure 3.a: The Graph 

after Step l 

Figure J.c: The Graph 
after Step 4 

Figure 3.e: The Graph 
after Step 6 

transaction 
generator 

Figure 3.g: The Graph 
after Step 8 

Figure J.b: The Graph 
after Step 3 

Fiqure 3.d: The Graph 
after Step 5 

transaction 
generator 

Figure 3.f: The Graph 
after Step 7 

The resulting graph indicates that the problem is not totally 
vectorizable. It needs a scalar routine to convert the common 
variable into a vector ot the appropriate length. Note however 
that the common variable node has no incoming arcs. If ~ commo~ 
variable has no incoming arcs, it means that variable is set up 
during initialization and never changed after that. It can be 
treated as a constant. 

This means that in the graph we can delete all arcs going out 
from common variable nodes which have no incoming arcs. 

The graph resulting after that transformation is given below and 
it indicates that the particle transport problem is t~tally 
vectorizable. 

361 

transaction 
enerator 

facility 

Figure 4: The Graph Structure 
for the Particle Transport Problem 

Implementation Considerations 

A simulation program structured to take advantage or 
vectorizability present in a given model may look very different 
from a conventionally structured simulation program. Each 
transaction generator action will produce a vector of transactions. 
Each activation of a facility will process a vector of transaction 
steps and each SEND execution will move vectors of transactions 
between facilities and queues or facilities and facilities. In addition 
to the speed-up which will derive directly from vectorization, there 
will also be a major saving in execution time from the deletion of 
the large number of subroutine calls normally required to generate 
and process a transaction. There will be only a single subroutine 
call to process an entire vector of transaction steps instead of a call 
per transaction step. 

There will, however, be an additional storage cost. The vectors 
of transactions will have to have storage at each queue and facility 
or else sharing will have to be designed into the code structures. 

Acknowledgements 

This work was sponsored by grants by the Control Data 
Corporation and by the Department ot Energy under Grant 
Number DE-AS05-81ER10987 and by the National Science 
Foundation under Grant Number MCS-8116099. 

References 

Ill Avinash R. Chandak, "A Study of the Application of Vector 
Instructions to Simulation•, Master's Report, Department of 
Computer Sciences, The University ot Texas at Austin, May 1983. 

121 Forrest B. Brown, Donald A. Callahan and William 
R. Martin, •Investigation or Vectorized Monte Carlo Algorithms•, 
Working Paper, Department ot Electrical and Computer 
Engineering, Department ot Nuclear Engineering, The University ot 
Michigan, 1981. (A Working Paper presented at the Conference on 
High Speed Computing, Gleneden Beach, Oregon, March 30-April 
3, 1981.) 

131 P. I. Georgiadis, M. P. Papazoglou, D. G. Maritsas, 
•Towards a Parallel SIMULA Machine•, in Conference Proceedings, 
the fil.!!. Annual Symposium fill. Computer Architecture, pages 
263-278. IEEE Computer Society and the ACM, 1981. 



ANALYSIS OF BACKWARD ERROR RECOVERY FOR CONCURRENT PROCESSES 
WITH RECOVERY BLOCKS 

Kang G. Shin and Yann-Hang Lee 

Computing Research Laboratory 
Department of Electrical and Computer Engineering 

The University of Michigan 
Ann Arbor, Michigan 481 O 9 

ABSTRACT 

Although backward error recovery with recovery blocks 
(RB's) has received considerable attention from many 
researchers, no attempt has been made to structure its 
Implementation alternatives and then to evaluate/ analyze 
their effectiveness. In this paper we categorize three dif
ferent methods of implementing RB's. These are the asyn
chronous, synchronous, and the pseudo recovery point (PRP) 
implementations. We have developed probabilistic models 
for estimating (i) the interval between two successive 
recovery lines for asynchronous RB's, (ii) mean loss in com
putation power for the synchronous method, and (iii) addi
tional overhead and rollback distance in case PRP's are 
used. 

1, INTRODUCTION 

The best known technique of backward error recovery, 
the recovery block (RB), was proposed by Horning [1] and 
Randell [2]. It is a sequential program structure that con
sists of an acceptance test (AT), a recovery point (RP), and 
alternative processes for a given process. In case an error 
is detected or the AT fails, the process rolls back to an old 
states saved at the previous RP and executes one of the 
other alternatives. Unfortunately, for cooperating con
cu"ent processes the rollback of a process may cause 
other processes to roll back (this phenomenon is called roll
back propagation ) because of process interactions and 
imperfect checking of global correctness. This rollback pro
pagation continues until it reaches a recovery line [3] at 
which a globally consistent state does exist. In the worst 
case, an avalanche of rollback propagation (called the dom
ino effect ) can push the processes back to their begin
nings. The interval between the restart point and the time 
point at which an error is detected, called the rollback dis
tance, can be used to represent the computation loss in 
rollback recovery. 

The domino effect and rollback propagation are the 
major obstacles in implementing the recovery block scheme 
for concurrent processes. Furthermore, decision on rollback 
propagation and determination of recovery lines will become 
more complex though they can be made in a centralized [4] 
or decentralized manner [5,6]. 

Several refinements have been proposed to overcome 
the drawbacks in this recovery block scheme. One approach 
Is to put concurrent processes into a controlled scope, i.e., 
to synchronize the occurrence of acceptance tests. Randell 
[2] has suggested the conversation scheme which 
requests every cooperating concu"ent process to leave its 
acceptance test at the same moment (called test li:ne ). 

The worl< reported here Is supported In part by National Aeronautics 
and Space Admlnlstrllt/on Grant No. NAG 1-296. Any opinions, findings, and 
conclusions or recommendations Jn this pub/feat/on are those of the authors 
and do not necessarily reflect the view of NASA. 

0190-3918/83/0000/0362$01.00 © 1983 IEEE 362 

Other mechanizations of the conversation scheme on the 
basis of the same concept but with more flexibility have 
been devised by Kim [7]. Synchronized rollback recovery 
schemes for transactions using a two-phase commitment 
protocol or transaction ordering are also studied in [8,9]. 
Another approach is to save additional states based on the 
occurrence of interactions; for example, the branch 
recovery points [ 10 J and the sy:;tem defined checkpoints 
(SDCP) [11]. 

In this paper we propose to employ pseudo 
recovery points 1 (PRP's) to alleviate the rollback propaga
tion problem by allowing a process to restart at a PRP in 
case the process is forced to roll back by others as a 
result of rollback propagation. Therefore, we can classify 
these refinements into two categories, synr.hronized 
recovery blocks and pseudo recovery points, providing a 
contrast with the third category called asynchronous 
recaver-y blocks. To implement the roHback recovery 
schemes, we have to consider various trade-offs between 
these three categories and the characteristics of con
current processes. It is necessary to perform quantitative 
analyses for estimating the mean amount of computation 
undone in case processes roll back, the optim.al interval 
between two successive synchronizations, the mean size of 
memory space required to save states, etc. 

In the following section, several assumptions are dis
cussed and then a model for asynchronous recovery blocks 
is introduced. Using this model, we employ simulations to 
present the probability distribution of the interval between 
two successive recovery lines. In Sections 3 and 4, the 
synchronization method and tile implantation of pseudo 
recovery points are evaluated respsctively. The paper con
cludes with Section 5. 

2. EVALUATION OF ASYNCHRONOUS RECOVERY BLOCKS 

Let us consider the history diagram in Figure 1 to illus
trate the activities of cooperating concurrent processes P., 
i=l,2,. .. n. Let set Acp,. . .,nl, i.e. a subset of the indices 
of concurrent processes and let RPj be the j-th r~covery 
point of P,. Then one may find a combination of RP] for all 
i EA, which forms a recovery line for set A, denoted as RL# 
for the rth recovery line. For simplicity superscripts in 
representing recovery lines will be omitted in the sequel as 
long as that does not result in ambiguity. The interval 
between two successive recovery lines RL,. and R4+1 in 
process Pt, iEA is a random variable and denoted by J4. 
Since a recovery line provides globally consistent states to 
all members of process set A, it is reasonable to assume 
that X: is stochastically identical for all iEA. Thus, Xr is 
used to represent the interval between the r-th and 
(r + 1)-th recovery lines. 

1 We ea/I It a pseudo recovery point (PRP) since there /s no accep
tance lest before the saving of process state at a PRP. The states recorded 
#It PRP's may hwe been conta.m/ nated and thus can not be used to reeollf!lr 8 
fa//ed process. 



P, 

timel 

"··r 
X/ 

,,,J 
RPJ 

RPJ 

ATl 

Pi rans at Ari 

---· 

--, 

P2 P, 

RPf 
/ 
~--- ---., 

rrT 
"·,,1!PP 

Xi' x~ 
x, 

UJ \_~~-~ .----
I 

~ 
interaction 

Figure 1. A History Diagram of Occurrence of 
lnteractions and Recovery Points 

2.1 . Modeling Assumptions 

We make the following assumptions in our subseciuent 
analyses. 

1. Auto:-w7nous Processes: Cooperative autonomy is 
regarded as the most important requirement in distributed 
processing. Each process should be executed according 
to its own program and environment, almost as if there 
were no processes to interfere with. Thus, processes 
will transmit messages or establish their recovery points 
independently of other processes. 

2. Perfect Acceptance Test: Acceptance tests should 
detect all errors within the local process during the exe
cution of recovery blocks and thus ensure the correct
ness of local execution. At least, the computation 
results that have passed the acceptance test should be 
"acceptable"[3]. However, the local acceptance test 
may or may not detect external errors or erroneous mes
sages since a local process is not aware of the global 
system and other processes. 

3. Probability Distribution of Interactions: Usually, pro
cess behavior is modeled as an ordered sequence which 
In turn is specified by the program and dependent on 
execution conditions. Even if the processing sequence is 
given, the interval between two successive interactions 
is variable due to conditional branches. Locking and 
waiting at shared resources make it even more uncertain. 
Nontheless, for both tractability and simplicity we have 
adopted here constant reference rates in the multipro
cessor and exponentially distributed intervals between 
two successive message transmissions in the computer 
network. The interval for two successive interactions 
between Pi and Pi is thus assumed to be exponentially 
distributed with mean 11 A;J and A;; =)...ii for all 
i,j=1,2, .. .,n and it'j. 

4. Consistent Co7nmunicatians: Let two messages =a and 
mb be sent from P; to P1 . Consistent communications 
should satisfy : (i) every message sent from P; to P; will 
be received eventually by P;, and (ii) = .. and 7nb are 

363 

received by P; in the same logical order as that they are 
sent. 

5. Distribution of Recovery Points: Because of process 
independence and the uncertainty of execution 
conditions, the appearances of recovery points are r'l.n
dom and difficult to model. To avoid complexity, estab
lishment of recovery points in a process is assumed to be 
an independent Poisson process with parameter µ,.; for 
process P,. 

2.2. A Model for Asynchronous Recovery Blocks 

Since individual recovery points by themselves may not 
be sufficient in rollback recovery, we consider only the for
mation of recovery lines tor asynchronous recovery blocks. 
The requirements of a recovery line for processes P; for 
i=1,2, ... n can be stated as follows: 

1. Eoich recovery line has to include one recovery point 
RPJ for every process P,. 

2. Let the moment of establishment of the jth recovery 
point in process Pi be t(RPj) and iet t~" be the mo
ment of the qth interaction from P; to P;·· For every 
pair (RPj , RPf) in a recover>.' line, there does, not 
exist an integer k such that t~' E:[t (RP~). t (RP})] if 
t(RP}),,,:; t(RPj:} (t~i'rc.[t(RP}), t(RPj~] otherwise). 

The basic idea underlying the model is to trace the 
occurrence of both recovery points and interactions. Based 
on the assumptions in Section 2.1, random variable Xr can 
be modeled by a continuous-time Markov process starting 
from a recovery line (R4) and ending at the next recovery 
line (RLn 1). For a set of processes, OA;lPi li=l,2, ... ,nl, 
two types of states are defined: 

(a). End states S~ and Sr+i' transitions start from Sr 
where all processes have formed the rth recovery 
line, and end at Sr+I upon establishment of the 
( r + l)th recovery line. 

(b). Intermediate states S = (x 1 , x 2 , , xn), where 
xi= 0 If the previous action of Pi was an interaction, 
and xi= 1 if it was establishment of a recovery point. 

Occurrences of interactions and recovery points in a 
proces:: make the system go through these states. Note 
that both S,. and S'r+J are equivalent to state ( 1, 1, ... , 1). We 
can establish the following transition rules: 

R1. The system goes to state (x 1 , ... ,xi_ 1 ,1.xiH•"•xn) 
from state (x,, .. ,x;-1.0,xii-1 ,. ,xn) with rate µ,.; upon 
establishment of a recovery point in Pi. 

R2. The system leaves state 
(x1o ... xi-1•1,x;+ 1 ... ,x1-1.l.x.i•I· .. xn) and enters state 

entry 

~ ... 
•to state (0,0.0) 

Figure 2. The Model of Asynchronous RB's for 3 Processes 



(x 1, .. ,xi-l·O,xi+i ... Xj·- 1.0,xjq, . .,xn) with rate Aij if 
there is an interaction between P; and Pi. 

R3. The system arrives at state (x 1 , .. ,x;_1 ,0,x;+ 1,..,xn) 
from state (x 1,..,x;-1 ,l,xi+i.···xn) with transition rate 
~ A;i where Bt=U i x1=0, j?'i andjE:AJ. 

jE.81 
R4. The system can transfer directly from state Sr to 

n 
state Sr+i with transition rate ~ µ1c. 

. k=I 

Under these transition rules a Markov model is 
developed for three processes P 1, P 2 and P 3, and 
presented in Fig. 2. The single-arrow lines are unidirectional 
transitions. The double-arrow lines are bidirectional transi
tions in which left-hand side parameters represent leftward 
transition rates and right-hand side parameters rightward 
transition rates. 

When µ..=µj=µ and A;j=A for all i, j E: A, the model 
can be simplified since all intermediate states 
S=(x 1,x 2• . .• xn) containing exactly u 1 's in 
(x 1,x2, . , xn) can be replaced by a single state Su· A 
simplified model is obtained under the following transition 
rules and presented in Fig. 3. 

R1'. For u = 0,1, ... ,n-1 , the system will move to state 
Su+! from state S,. with transition rate (n -u )µwhen 
a new recovery point is formed. 

R2'. For all u ;:;,. 2, the system is able to leave state S.., 
for state fi., _2 with rate Au ( u -1) I 2. 

R3'. For all u ;:;,. 1, there is a transition from state Su to 
state Su-I with rate Au(n-u). 

R4'. The system can transfer directly from the entry state 
Sr to the terminal state S,, 1 with transition rate n fl. 

~-~~-~~----Sn-o 2(::2)' 

-------~>---- ----~~-~(n-l)(n-2)A 

Figure 3. The Simplified Model or Asynchronous 
RB's for n Processes 

2.3. The Analysis of Asynchronous Recovery Blocks 

When the occurrences of interprocess communication 
and recovery point are exponenti9.lly distributed, X7 for all r 
becomes stochastically identical. let X denote a random 
variable representing the interval between two successive 
recovery lines. The probability distribution of X is derived 
below. 

Let the state space ~=)O,l,2, ... ,ml where m=2n be 
the set of states of the foregoing continuous-time Markov 
process with the following convention for numbering states: 

(a). Sr--> state 0, 
(b). an intermediate state (xi.x 2 , .. , Xn) -->state 

cf;xi2i-l +1), and 

(c). Sr+! --> state m. 

Then, the Chapman-Kolmogorov equation becomes 

:t rr( t) = 1r( t )H 

where His the (mxm) transition matrix [h(u,v)] in which 
the ( u, 11) element is the transition rate from state u to 
state v, and 1r(t) Is a vector whose kth element is the pro-

bability that the system is in state k at time t. The initial 
condition is 1r(O)=[l,O,O ... ,O]. The interval between two 
successive recovery lines, X, is equal to the time needed 
for transition from state 0 to state m. Therefore, the den
sity function of X, namely f ~ (t), is equal to d ( Trm (t ))/ dt. 

Suppose process Pi detects an error or fails tne 
acceptance test at one of its recovery points RPJ, where 
j=l,2, . . ,L,. The rollback of P; may propagate to k 
processes in the process set, OA = !Pt J l E:A j where 
A=ll,2, ... ,nj. Let Df be the roll.back distance associated 
with the k processes and RPJ for j=l,2, .. ,L;. Then, X 
represents the supremum of these random variables, i.e., 
DE . In figure 5, the mean values of X are plotted as a 
tdction of n. It shows that X increases drastically when 
there is an increase in the number of processes involved in 
the rollback recovery. The density function of X, .f,,(t), is 
plotted in Figure 6. For a!I the three cases in Fig. 6, there is 
a sharp pulse near t =0, which is due to direct transitions 
between Sr and Sr+! and a longer transition time needed 
once the system enters intermediate states. 

364 

p=l.2 

p=O.B 

p=0.5 

"+----~·--~-~--~--~-
=i.oo 2·00 NUMstR0 OF PRoc'!:i0sES (n) s.oo 6.00 

p=d'; f: >.;;)l(f;µ,) 
t:1j"'l.i !• k=l 

At1=Atoralli,j a.ndµ 1=µ2 = ... =µ=1.0 

Figure 4. Mean value of X vs. the number of processes 

case 1: (µ 1,µ2,J.Ls)=(l.0,1.0,1.0), 
(A,,,A,,.A.,)=(1.0.1 0.1.0) 

case 2: ('.'•·1'2.l'<J)=(O 6.0.45.0.45). 
(/'\12. \2s.A1s)=( 0.5, 0.5,0.5) 

case 3: (µ1,µ2.J..l:l)=(0.6,0.45,0.45), 
(An?.>..23,A 1a)= (0. 75,0. 75, 0.75) 

Figure 5. The Density Function of X, f., (t) 

3. SYNCHRONIZED RECOVERY BLOCKS 

The simplest way of avoiding unbounded rollback pro
pagations is to synchronize the establishment of recovery 
points during process execution. In this method, interac
tions are inhibited between any pair of processes during 
their establishment of recovery points. There are three con
ceivable strategies in deciding when a synchronization 



request is to be issued: (1) at a constant interval; (2) when 
the time elapsed since the previous recovery line exceeds a 
specified value; or (3) when the number of states saved 
after the previous recovery line is larger than a prespeci
fied number. The impiementation of the first strategy is sim
ple since the synchronization request is issued without any 
knowledge of the state of exer.ution. Nevertheless, this 
strategy may become very inefficient since it is possible to 
make synchronization requests immediately after the forma
tion of a recovery line. For the second and third strategies, 
rollback distance and the number of saved states are 
preventGd from becoming too large. However, in this case 
each process must be aware of the occurrence of a 
recovery iine whenever it is established. 

Upon receipt of a synchronization request, every pro
cess has tc.. prepare for P.stablishing a recovery line and also 
has to wait for the commitment (for establishing a recovery 
line) from other processes before it executes an accep
tance test. Thus, all cooperating processes perform their 
acceptance tests at ti1e same instant up<Jn receiving the 
commitments from all other processes. Let Pi.j-ready, for 
j=l,2,. .. ,n, be the flags in process Pi to indicate commit
ments from Pi. The steps for synchronization in each pro
cess P; are '.:lesc;ribed as follows: 

S 1. execute "its own normal process'' until "acceptance 
test"; 

S2. set P,; -reariy := ON and then broadcast P;; -ready; 
S3. while not (all Ptj -ready =ON) do 

receive messages; 
if a message is Pii -ready then 
set Pti -ready := ON 
else record the message 

84. reset Pii-ready ::. OFF, for j=l,2,. ,n and 
do "acceptance test" and record process states. 

Establishment of recovery lines upon synchronization 
requests is shown in Figure 6. Synchronization causes the 
computation power to be diminished because processes 
have to wait for the commitment (as in S3). Let y, be the 
interval between the receiving of a synchronization request 
and the moment that process Pi reaches its next accep
tance test (in S 1 ). Then, accord:ng to the assumptions in 
Section 2 1, y1 is an exponentially distributed random vari
able with parameter~· Let Z=maxly 1, y 2 , ·Ynl· The 

n 
total loss in computation power is CL= I; ( Z -1;; ). The mean 
loss becomes i=1 

CL= nf(l-Fz(t))dt 
0 

.p, 1 
2., -
i=l/J'i 

where Fz(t) is the distribution function of Z, and equals 

fi:(1-e-µ,it). 
i=l 

4. IMPLANTATION OF PSEUDO RECOVERY POINTS 

In the construction of a recovery block, usua!ly, an 
acceptance test is a number of executable assessments 
provided by the programmer and then followed by a state 
saving. Note that precess states can also be recorded upon 
any ether requests if they are considered useful in the roll
back recovery. A pseudo recovery point (PRP) is defined 
as a recovery point that is established without a preceding 
acceptance test and is proposed here as an alternative for 
avoiding the domino effect in a set of cooperating con
current processes. With a monitor as the interprocess com
munication means, Kim [1 O] and Kant and Silberschatz [11] 
discussed methods for implanting recovery points in a cen
tralized manner. Similarly, we consider a method for implant
ing PRP's in the set of cooperating concurrent processes in 
a decentralized manner. 

365 

P, 

synchronlzal"o"n i ~ 1 request 
P 11 -ready P 3s-ready 

P 22 -ready 
' ' 

llime 

Figure 6. Establishment of Recovery Lines upon 
Synchronization Requests 

To make every recovery point RPj in Pi maximally use
ful for rollback error recovery, there should be corresponding 
recover; points in the other processes that have to roll 
back as a result of the rollback propagation from Pi· If such 
recovery points do not actually exist, a pseudo recovery 
point, PRPf, has to be inserted in process '"'i· ~or a given 
RPJ in process P,. Further, in order to avoid the need of 
tracing recovery points at that particular moment, a PRP is 
established in each of the other processes involved with 
RPJ. An algorithm for implanting PRP's is given below. 

( 1 ). When Pi establishes a recovery point RPJ, it broad
casts a PRP implantation request to other processes. 

(2). If Pi' receives the implantation request, it records its 
state as PRP}" upon completion of the current in
struction without an acceptance test. Then Pi' broad
casts its commitment C;·· 

(3). Every process executes its own normal task after it 
establishes RPJ or PRPji'. However, the messages 
sent to other processes by Pi' prior to Ci' have to be 
retained in the state saved. 

Assume that process P; detects an error before estab
lishing RPJ+ 1 and that this error is local to.P,. The recovery 
line (called a.,pseudo recovery line, I'RLJ) formed by RPJ 
and all PRPJ' 's is able to recover these processes even if 
tile error has already propagated to other processes. How
ever, when the error detected in P; is due to error propaga
tion from another process, P1 (and therefore not local to 
P), the contents of PRPJ1 may have already been contam
inated if this error occurred prior to establishing PRPf. The 
restart from .~he pseudo recovery line formed by both RPJ 
and all PRPJ' 's may just reproduce the same error. There
fore, rollback propagation may continue until every process 
involved has rolled back to a pseudo recovery line past at 
least one of its recovery points. Consequently, the pseudo 
recovery line allows the processes to have the shortest roll
back distance for backward error recovery without syn
chronization. Note that the pseudo recovery line is now 
guaranteed to contain correct states of all concerned 
processes. An algorithm of rollback recovery with these 
rseudo recovery points is given by: 

( 1 ). If an error is found in process P;, set p : = i where p 
is a rollback pointer. 

(2). P~ roils back to its previous recovery point RPj. All 
processes Pi' affected by the rollback of Pp roll 
back to their respective pseudo recovery points 
PRPf'· 



(3). for every affected processes P;, if the rollback has 
not passed its most recent recovery point, then set 
p := i' and go back to step 2. 

In Figure 7, the establishment of PRP's in processes 
P 1, P 2 , and P 3 is illustrated. When P 3 fails its acceptance 
test AT&, all processes have to restart from the pseudo 
recovery line formed by (RP{, PRP{2 , PRP{3) if P 1 and P 2 
are affected by the rollback of P 3 . 

In the above algorithm, we can find that every process 
needs to preserve a recovery point for restart in case it 
fails. Also ( n -1) pseudo recovery points are needed for a 
process to form pseudo recovery lines with oti1er processes 
where n is the total number of concurrent processes. The 
old RP's and PRP's except those in the pseudo recovery 
lines !PRLfli=l, . .,n, and RP] is the most recent RP in Pd 
can be purged when a new recovery point is established, 
thereby reducing storage requirements for each process. 
Note that rollback distance is bounded by the supremum of 
ly 1,y 2 , , Yn l where Yi is the interval between two suc
cessive recovery points of process Pi- The additional time 
overhead for every recovery point is (n-l)tr where tr is 
the time needed to record the process state. These over
heads should be assessed against the gain of process 
autonomy and avoidance of unbounded rollback propaga
tions. 

time 1 

implantation 
request 

PRP,21 

PRPp 1 

RPi 

PRP?' 

P, 

restart line with 
respect to the 
failure of P3 at AT~ 

PRPi' 

RP? 

Arf 

= : Recovery Point (RP) = : Pseudo Recovery Point (PRP) 

Note: all occurrences of interactions are omitted 

Figure 7. Establishment of Pseudo Recovery Points 
for Rollback Error Recovery 

5. CONCLUSION 

We have quantitatively evaluated three different 
recovery blocks employed in backward error recovery for 
concurrent processir>g and have estimated the overhead 
required to avoid the domino effect when recovery or 
pseudo recovery points are employed. For both the syn
chronization method and the implantation of pseudo recovery 
points, the overheads are largely related to the construction 
of synchronization, and PRP's. They would become an 
unacceptable burden when synchronizations and pseudo 
recovery points are constructed frequently but interprocess 
communications do rarely occur. At the other extreme, i.e. 
asynchronous recovery blocks, it may result in a longer roll
back distance due to unlimited rollback propagations. 

366 

To select a suitable strategy or a combination of these 
three methods, we have to first examine the properties of 
concurrent processes such as the amount of interprocess 
communications and the distribution of recovery points. 
Then, we weigh the trade-off between the loss of computa
tion power durir.g normal operation and the ir.crease in 
response time due to rollback recovery. in general, if more 
knowledge of the execution state in concurrent processes 
can be obtained, a better strategy for implementing 
recovPry b;ocks can be derived. 

REFERENCES 

[1]. 

[2]. 

[3]. 

[4]. 

J. Horning, et al., "A program structure for error detec
tion and recovery," Lecture Notes in Computer Sci
ence, Vol. 16. Springer-Verlag, 1974, pp. 171-187. 

B. Randell, "System structure for software fault toler
ance," IEEE 1'rans. on Software Eng., Vol. SE-1, No. 
2, June 1975, pp. 220-232. 

B. P.andell, P. A. Lee and P. C. Treleaven, "ReliA.bility 
issues in computing system design," Computing Sur
veys, Vol. 10, No. 2, June 1978, pp. 123-165. 

Y. H. Lee and K. G. Shin, "Rollback propagation detec
tion and performance evaluation of FTMR 2 M - a 
fault-tolerant multiprocessor," Proc. of Int 'l Symp. 
on Computer Architecture, 1982, pp. 1 71-180. 

[5]. W. G. Wood, "A decentralized recovery control proto
col," FTCS-11. 1981, pp. 159-164. 

[6]. 

[7]. 

[8]. 

[9]. 

K. Tsuruoka, A. Kaneko and Y. Nishihara, "Dynamic 
recovery schemes for distributed processes," Proc. of 
Reliability in Distributed Software ar.d Database 
Systems, 1 981, pp. 1 24-1 30. 

K. H. Kim, "Approaches to mechanizations of the 
conversation scheme based on monitors," IEEE 
Trans. on Software Eng., Vol. SE-8, No.3, May 1982, 
pp. 189-197. 

J. N. Gray, "Notes on database operating systems, " 
Operating Systems: A advanced course, edited by R. 
Bayer, et al., Springer-Verlag, 1979, pp.393-481. 

W. H. Kohler, "A survey of techniques for synchroniza
tion and recovery in decentralized computer systems," 
Computing Surveys, Vol. 1 3, No. 2, June 1 981, pp. 
149-183. 

[1 O]. K. H. Kim, "An approach to programmer-transparent 
coordination of recovering parallel processes and its 
efficient implementation rules," Proc. of Int 'l Conj. 
on Parallel Processing, 1978, pp. 58-68. 

[11]. ~- Kant and A. Silberschatz, "Error recovery in con
current processes," Proc. of COM PSAC, 1980, pp. 
608-614. 



IMPROVED MULTIPROCESSOR GARBAGE COLLECTION ALGORITHMS 

Newman I.A., Stallard R.P., Woodward M.C. 
Department of Computer Studies 

Loughborough University of Technology 
Loughborough, Leicestershire, U.K. 

Abstract -- This paper outlines the results 
of an investigation of existing multiprocessor 
garbage collection algorithms and introduces two 
new algorithms which significantly improve some 
aspects of the performance of their predecessors. 
The two algorithms arise from different starting 
assumptions. One considers the case where the 
algorithm will terminate successfully whatever 
list structure is being processed and assumes 
that the extra data space should be minimised. 
The other seeks a very fast garbage collection 
time for list structures that do not contain loops. 
Results of both theoretical and experimental 
investigations are given to demonstrate the 
efficacy of the algorithms. 

Introduction 

A number of previous papers have considered 
the problems of reclaiming space in a list 
processing system, dynamically, while processing 
(by 'mutators') continues [2,3,4,6,7]. Most 
papers have studied an environment in which one 
process, the garbage collector, works alongside a 
second process, the mutator, with the processes 
normally executing on different processors. 
However, some algorithms allow extensions in which 
several garbage collector processes can be active 
simultaneously. The garbage collector process 
generally has three phases 'set-up', 'marking' and 
'collection'. In the first, all nodes are marked 
as'garbage', by setting a mark bit (or bits) 
appropriately (referred to as 'colouring' the node 
'white'). In the second all nodes that can be 
reached from the roots of the list structure are 
marked as accessible (coloured 'black'). This 
marking may have several stages in which the mark 
state (colour) of the node changes which 
necessitates more than one mark bit. Finally, all 
the unmarked (white) nodes are added to the free 
list in the third phase. The set-up phase is 
typically executed as a by-product of the 
collection phase. A possible fourth phase, in 
which all accessible nodes are compacted into the 
minimum physical space, is not generally 
considered. 

Background 

The performance of various garbage collection 
algorithms has been studied as part of an ongoing 
investigation into applications of multiprocessor 
systems in which each processor has its own 
private memory and, in addition, memory and 
possibly other resources are shared. A previous 
paper [4] reported the results of simulation 
studies on two algorithms (referred to as 'Lamport' 
and 'Chaining'). A more detailed theoretical and 
experimental analysis of these algorithms together 
with a third ('stacking' [7]) has been carried out 
[5]. The collection phase is identical for all 

0190-3918/83/0000/0367$01.00 © 1983 IEEE 367 

three algorithms and can be efficiently multi
programmed by partitioning the node space. The 
investigation has, therefore, centered on the 
marking phase. Each algorithm was implemented as 
part of a simple list processor executing on a 
system comprising four TI 990/10 computers [l] 
Results were taken for several types of list 
structures in a node space in which all nodes 
were of the same size and were compared with a 
theoretical analysis of the expected performance 
of each algorithm. 

Analysis 

Both the Lamport and Stacking algorithms will 
guarantee to mark any structure. The former 
requires a two bit field in each node to permit 
marking while the latter requires only one bit in 
the node but also a stack potentially capable of 
taking pointers to all the nodes in the structure 
except for one (the original root). The operation 
of these two algorithms with multiple markers is 
quite different. The Lamport algorithm 
effectively requires each marker to access a 
physically separate portion of the node space. 
Each marker examines nodes in its own node space 
until one finds and marks an accessible ('shaded') 
node and shades its successors. All markers then 
'reset', restarting the search of their node 
space. Thus, with most list structures, only one 
marker does any useful work between resets. By 
contrast, markers under the Stacking algorithm 
traverse the logical structure by taking a 
pointer to a node from the shared stack, marking 
the node and placing its successors on the stack. 
This normally requires only one visit to each 
node. A highly interconnected list structure 
slightly modifies the behaviour of both algorithms 
in that several markers can stack pointers to the 
same node or can find grey nodes simultaneously. 

Although Stacking is a fast algorithm for a 
single marker it does not work well for multiple 
markers as a marker must have exclusive access to 
the shared stack while adding or removing a 
pointer to a node and this causes substantial 
delays. By contract, Chaining works efficiently 
in this case provided the average number of 
successors of each node is small (either a linear 
list or a 'curtain' in which root nodes have 
several successors but subsequent nodes have only 
one). One controlling parameter on the perform
ance of the Chaining algorithm is the size of the 
shared sub-root list. If this is large and each 
marker refills the list whenever it is not full 
then the Chaining and Stacking algorithms are 
closely related. 

Revised Algorithms 

A substantially improved version of the 



Lamport algorithm is obtained simply by allowing 
each marker to complete its sequential pass 
through its section of the node space before re
setting instead of resetting as soon as one marker 
has found and coloured a node. This has two 
advantages. Firstly, several markers may find 
'shaded' nodes on each pass, be able to mark them 
and shade their successors. Secondly, the 
successors to a node which is marked may them
selves be marked in the same pass through the node 
space. 

The introduction of a local stack for each 
marker with a smaller shared stack (analogous to 
the subroot list of the Chaining algorithm) 
enables the Stacking algorithm to utilise multiple 
markers effectively. Each marker refills the 
shared stack if it is not full and if no other 
marker is doing so, otherwise it uses its local 
stack. This minimises the time spent waiting for 
access to the shared stack while ensuring that 
markers always have work available. However, the 
space taken by the stacks can be quite large. 

Results 

Type of Structure Linear Inter-
List 

Curtain Connected 
% of occupied 
nodes Low High High 

Number of markers 1 4 1 4 1 4 

Algorithm 

Lamport 2 .50 1.50 54.00 18.40 53.80 12.30 
Modified 

Lamport 0.86 0.41 2.28 0.92 2.57 0.90 
Chaining 0.08 0.06 0.98 0.26 6.24 1.63 
Stacking 0.09 0.10 1.22 0.88 1.62 2.40 
Modified 

Stacking 0.07 0.05 0. 70 0.23 1.60 0.42 

All algorithms were run on node spaces in 
which the successors have a random spatial 
distribution and the results obtained are in 
seconds of elapsed time. The single marker 
unmodified Stacking algorithm times are high 
because of the overhead of entering and exiting 
a protected region which is provided for the 
multiple marker case. The speed up of more than 
four for the Lamport algorithm for highly inter
connected structures is due to several nodes 
being marked 'simultaneously' reducing the number 
of passes required. 

The times given above were with no mutators 
active. Both revised algorithms, however, have 
been shown to be reliable in conjunction with 
mutators, with the effect on the time taken to 
mark depending upon the actions being performed by 
the mutators. 

Further Work 

.Two further aspects of multiprocessor 
garbage collection are currently being studied. 
The first is the efficacy of adding a compaction 
phase to the garbage collection process. The 

368 

second is a comparison of the marking algorithms 
with algorithms in which the number of pointers 
to a node is recorded in the node itself 
(reference count scheme). 

References 

[l] R.H. Barlow et al, "A Guide to Using the 
Neptune Parallel Processing System", 
Dept. of Computer Studies, Loughborough 
University of Technology, Loughborough, 
Leics., U.K. (1981). 

[2] E.W. Dijkstra et al, "On the Fly Garbage 
Collection: An Exercise in Cooperation", 
CACM, Vol. 21, No. 11 (1978), pp.966-975. 

[3] L. Lamport, "Garbage Collection with Multiple 
Processors: An Exercise in Parallelism", 
Proceedings of the International Conference 
on Parallel Processing, Walden Woods (1976), 
pp.50-54. 

[4] 

[5] 

[6] 

[7] 

I.A. Newman, M.C. Woodward, "Alternative 
Approaches to Multiprocessor Garbage 
Collection", Proceedings of the International 
Conference on Parallel Processing, IEEE 
Computer Society (1982), pp.205-210. 

I.A. Newman, R.P. Stallard, Woodward M.C., 
"Performance of Parallel Garbage Collection 
Algorithms", Report No .166, Dept. of Computer 
Studies, Loughborough University of 
Technology, Loughborough, Leics., U.K.(1982). 

G.L. Steele, "Multiprocessing Compactifying 
Garbage Collection", CACM, Vol. 18, No. 9, 
(1975)' pp.495-508. --

P.L. Wadler, "Analysis of an Algorithm for 
Real-Time Garbage Collection", CACM, Vol. 19, 
No. 9, (1976), pp.491-500. 



EFFICIENCY OF FEATURE DEPENDENT ALGORITHMS 
FOR THE 

PARALLEL PROCESSING OF IMAGES 

by 

T. N. Mudge and T. Abdel-Rahman 

Computing Research Laboratory 
Department of Electrical and Computer Engineering 

University of Michigan 
Ann Arbor, Ml 48109 

Abstract--ln this paper the concept of feature 
(in)dependent image processing algorithms is defined. A 
large class of image processing computers characterized 
by multiple processor-memory subsystems is efficient 
when dealing with feature independent algorithms but 
less efficient when dealing with feature dependent algo
rithms. Typically such machines are required to perform 
both types of algorithms. This paper is a preliminary 
attempt to provide a framework within which to model 
feature dependent algorithms, and to, for example, quan
tify the inefficiency that can occur when they are exe
cuted on the above type of parallel image processors. 

Keywords--feature dependent algorithms, image pro
cessing, parallel processing. 

1. Introduction 

The economics of modern digital integrated circuit 
technology no longer restricts the designers of digital 
systems to the classical serial interpreter typified by 
the von Neumann uniprocessor architecture. This trend 
away from conventional machines is particularly well 
developed in the field of image processing where the 
large data sets (64K bytes to 4M bytes per image) and 
the high processing rates (near term predictions of 1 to 
100 billion operations per second have been made in 
[1 ]) make special purpose machines an economic neces
sity [2]. A number of people have proposed/constructed 
special purpose machines for image processing. These 
are surveyed in [3-5]. 

An architectural characteristic of most of these 
special purpose image processors is a large number of 
processors working in parallel. Parallel processing is a 
natural strategy for dealing with the large data sets and 
high processing rates encountered in image processing 
applications; furthermore, the nature of the data and the 
nature of many of the algorithms make parallel 

This work was supported In part by AFOSR grant F49620-82-C-0089. 

0190-3918/83/0000/0369$01.00 © 1983 IEEE 369 

processing particularly attractive. The data is usually a 
large two dimensional array, and many of the low level 
image processing algorithms can be decomposed into a 
large number of concurrent neighborhood operations. 
Examples include: various filtering algorithms such as 
smoothing to reduce high frequency noise and median 
filtering to reduce salt-and-pepper noise; edge detec
tion algorithms that use operators such as the Sobel 
operator and the Hueckel operator; and various coding 
algorithms such as block truncation coding and cosine 
transform coding. 

A natural architecture for the above class of image 
processing algorithms is a multiprocessor in which equal 
subimages are assigned to separate processors for pro
cessing. For the purpose of this discussion we will clas
sify such processors as multiple subimage processors 
(MSP's). As might be expected, a large number of the 
proposed/constructed special purpose image processors 
can be viewed as MSP's. Figure 1 shows a block 
diagram of a generic MSP. Subimage i is handled by its 
own processor-memory subsystem, processing element i 
(PE;). The PE's can communicate through some form of 
interconnection network (ICN). Specific examples of 
MSP's include: the proposed PASM architecture [6], 
which plans to employ multi-path routing-networks to 
connect a set of 1024 PE's; CLIP4 [7], a 96 x 96 array 
of simple bit-processors, each with a 32 bit RAM and an 
ICN that connects nearest neighbors in the array; the 
Distributed Array Processor [8], a 64 x 64 array of pro
cessors with 4K-bit storage per processor and an ICN 
that connects nearest neighbors in the array and pro
vides a bus per row and column; the Massively Parallel 
Processor [9], a 128 x 128 array of processors with 
1 K-bit storage per processor and an ICN that connects 
nearest neighbors; and the Adaptive Array Processor 
[1 O], whose building block is a single chip 8 x 8 array 
with 96 bits of storage per processor. 

In general, MSP's are highly efficient at performing 
neighborhood operations such as those listed above. 
These types of operations are an important subclass of 
what we will term feature independent image processing 
algorithms. Feature independent algorithms are charac
terized by equal processing per pixel. In other words, 
each pixel receives the same amount of processing 



---, 

B PE1 I PE3 . . PE 

I 
m 

I I 
ICN 

(Interconnection 

Network) 

Figure 1. Generic MSP. 

regardless of whether or not it is part of a feature of 
Interest such as a line segment. As well as many neigh~ 
borhood operations there are other algorithms such as 
hlstogramming and the Fourier transform which are 
feature independent. Unlike neighborhood operations 
these algorithms require significant amounts of data to 
be moved between processors. The effectiveness of 
MSP's at performing them is dependent on the bandwidth 
of the ICN shown in Figure 1. A multiprocessor like PASM 
with a high bandwidth ICN can perform such algorithms 
relatively easily [11-13]. Therefore, the concept of a 
multiprocessor in which equal subimages are assigned to 
separate processors for processing is also a natural way 
of handling the complete range of feature independent 
algorithms, provided the ICN is appropriate for the types 
of feature independent algorithms anticipated. 

Although the above concept is natural for feature 
dependent algorithms, it becomes less attractive for 
feat.ure dependent image processing algorithms. Feature 
dependent algorithms are characterized by unequal 
amounts of processing per pixel. This might arise when a 
pixel is part of a feature of interest and because of that 
requires separate treatment. A simple examp.le of a 
feature dependent algorithm is contour tracing; only 
edge pixels are involved in the algorithm. In an image 
processing application the initial sequence of algorithms 
Involves mostly feature independent algorithms because 
they are concerned with general image enhancement and 
potential feature location. The subsequent sequence of 
algorithms is much more likely to involve feature depen
dent algorithms because specific features are sought 
from the set of potential locations. 

Consider processing an N-pixel image on an MSP 
machine having m PE's. In nonnal MSP operation the 
Image is divided into NI m sublmages of equal size, and 
each subimage is processed by a single PE. However, In 
the case of feature dependent algorithms the image 
should be divided into subimages of equal interest, i.e., 
subimages having equal numbers of pixels of interest. If, 
In the case of feature dependent algorithms images are 
divided into subimages of equal size, some PE's will 

370 

receive fewer pixels of interest. This uneven distribu· 
tion of work will result in some PE's being idle during part 
of the algorithm. Dividing the image into subimages of 
equal interest requires that the distribution of pixels of 
interest over the image can be calculated. This is not 
always possible. On the other hand, it may be possible, 
but the calculation and the redistribution on the basis of 
interest may involve more computation than that lost 
through the inefficiency of havirig some PE's idle during 
part of the algorithm. 

This paper is a preliminary attempt to provide a 
framework within which to model feature dependent 
algorithms, and to, for example, quantify the above inef
ficiency to assist in decisions about image distribution 
among PE's. 

The following section develops a mathematical 
model of feature dependent algorithms. Section 3 tests 
It using some real image data with edge pixels as the 
pixels of interest. Section 4 concludes the discussion. 

2. Mathematical Model of Feature Dependent Algo
rithms 

Consider an N-pixel image and an m-PE MSP sys
tem. Assume that the pixels of interest occur randomly 
In the image and that the probability of a pixel being of 
interest is p regardless of its position. Assume that the 
MSP system is executing an image processing algorithm 
on the image. Let the time to complete the algorithm be 
a function, f, of the number of pixels of interest in the 
image, i.e., the algorithm is a feature dependent one. 

For the single PE case (m=1) the expected value 
of the execution time, T 1. is given by: 

T1 = f(Np) (1) 

For the m-PE case assume that the image is divided 
among the m PE's on an equal size basis. Each PE holds 
an n =NI m pixel subimage. Let X1 to be the random 
variable describing the number of pixels of interest in 
subimage i, i=1,2, ..• ,m. From the above assumption that 
the probability of a pixel being of interest is p regardless 
of its position, it follows that the Xi's are identically 
independently distributed (i.i.d) random variables· with a 
binomial distribution (see Figure 2). 

Let T max be the expected value of the maximum 
execution time among all PE's. Since the algorithm is not 
finished until all the m PE's have completed the work in 
their subimage, it follows that: 

Tm = f(E[XmaxD (2) 

Where: 

(3) 

To evaluate Tm consider the following. Let PJ be the 
probability of exactly j pixels of interest occurring in 
subimage i: 

Pr !X; = j l = PJ = ul pi (1 -p)n-J (4) 

Let q1 be the probability of greater than j pixels of 
Interest occurring in subimage i: 



i-th subimage of n 
pixels with X. of 
interest J. 

image of N pixel:...------
partitioned into 
subimages of n 
pixels 

Figure 2. A subimage and its associatec;I random variable. 

Then: 

n 
Pr !X1>j l = Q; = 2:: Pr 

r=j+1 

Qj = f; ~) p' ( 1 -p)n-r 
r=J+1 

(5) 

(6) 

Let P(z) be the generating function for the sequence PJ• 
}=0,1, .. .,n: 

P(z) = Po+P1Z+ ....... +pnzn (7) 

Let Q(z) be the generating function for the sequence q1, 
j=0,1, ... ,n: 

Q(z) = Qo+Q1Z+ ......• +qnzn 

From (7) and (8) it follows that: 

Q(z) = 1 - P(z) 
1- z 

(8) 

(9) 

Equation (9) can be verified by equating the z coeffi
cients on both sides of the equation: 

1 - P(z) = (1 - z)Q(z) (qn = O) (1 O) 

See [14]. 
Differentiating P(z) with respect to z yields: 

P'(z) = P1 +2pzz+ ••..... +npnzn-i (11) 

Evaluating p'(z) at z= 1 yields: 

P'(1) = p1+2pz+ •...... +npn (12) 

The right hand side of the above equation is simply 
E[Xi]. Thus: 

371 

Differentiating both sides of (10) yields: 

- p'(z) = - Q(z) + ( 1 - z)Q'(z) 

Evaluating (14) at z=1 yields: 

p'(1) = Q(1) 

Comparing to ( 1 3) gives: 

E[Xi] = Q(1) 

Next consider Prl Xmax ,,;; j !: 
Pr! Xmax ,,;; j ! = Pr! X1 ,;;j and Xz,;;2 

• · · and Xm,;;Jj 

Since the X;' s are i.i.d, ( 1 7) reduces to: 

Pr! Xmax ,,;; j ! = [Pr! X; ,,;; j l r 
For any i. 
Using the relation: 

Pr! Xmax > j ! = 1 - Pr! Xmax ,,;; J ! 

Gives: 

But from ( 16): 

E[Xmaxl = QmaxC1) 

And, by definition: 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

Qmax (z) = Pr! Xmax > 1 l + Prl Xmax > 2 ! (22) 

+ ... + Pr! Xmax > m l 

Therefore, substituting (20) into (22) gives: 

rm= 'lt 1-ri x,,,;; I< ir] (23) 

Where Prl X; ,,;; I< ! is given by: 

Pr! X1 S /< j = t. ~] p'( 1 -p)n-r 
r=O 

(24) 

Notice tha the value of Tmax is Independent of i because 
the Xi's are i.i.d. 

Following the usual arguments (see [15]) the effi
ciency E can be defined in terms of T 1 and Tm by: 

E= ~ (25) 
mTm 

Thus the efficiency of executing feature dependent 
algorithms can be determined from (1 ), (23), (24) and f, 
the function that describes the time to complete the 
algorithm. 



3. Experimental Results 

In an attempt to test the above results the tollow
~ng experiment was carried out on a set of images of 
industrial parts. These images were obtained from the 
General Motors database for the industrial bin of parts 
problem [1 7]. The names of the ones used are listed in 
Table 1. 

The Sobel edge operator was applied to the above 
lm~ges. A pixel was defined to be of interest if and only 
If it was on an edge. The resulting image was thres
holded and the number of edge points (number of pixels 
of interest) was computed. The threshold value was 
chosen to give a "good" edge image. All the images are 
256x256 with 256 gray levels. The number of pixels of 
~nterest in each image and the value of p are also shown 
1n Table 1. The value of p was estimated as the number 
of pixels of interest divided by the total number of pix
els in the image. 

. The images were divided into subimages of equal 
s~zes and the expected value of the maximum number of 
pixels was obtained experimentally. The experimental 
valu~ obtained was compared with its theoretical value 
obtained from equation (23) with f= 1, for various values 
of m. Those results are shown in Graph 2. It can be 
seen that there is a fairly good agreement between the 
theoretical results and the experimental results when 
the the features are edge pixels. The lower of the two 
curves is the theoretical one. This error is due the our 
~ssumpti?n that the probability of a pixel being of 
interest 1s not related to Its position. In the case of 
edge pi_xels this is clearly not so as they cluster in lines. 
Clustering moves the experimental line higher. 

. In the case of specific features better results 
might be obtained if a more accurate stochastic model of 
the features distribution can be developed. For exam
ple, more accurate models of edge pixel distributions 
have been developed [18], however they apply only to 
edges and computing T max for them appears to be a 
problem. 

Image Name No. of Edge Pixels p 

bin1.piv 7732 .118 
bln1.piw 12205 .186 
bin3.piv 9831 .150 
bin5.piz 8032 .123 
bin8.piv 5600 .089 
yoke1.pit 4421 .064 
yoke2.pit 5241 .080 
yoke3.plt 8018 .122 
rod1 .pit 8768 .134 
bin1~w 15822 .241 

Table 1. 

372 

Graph 1 shows the variation of the efficiency, E, as 
a function of the ratio N/ m for p = 0.2, 0.4, 0.6, 0.8 .• 
The graph was plotted by assuming f to be linear. A more 
realistic function would depend on the specific feature 
dependent algorithm being considered. However, linear 
does appear to be a reasonable assumption for a large 
class of algorithms. For example, a relatively compli
cated feature dependent algorithm such as the General
ized Hough transform [16] is approximately linear: for 
each pixel of interest no more than a fixed number of 
accumulators have to be updated. 

If care is taken Tm can be evaluated in O(n) time. 
The term from (24) should not be evaluated from scratch 
for each value of k. Also, for large values of n the terms 
on the right hand side of (24) can be approximated by a 
Poisson distribution whose terms can in turn be 
evaluated using Stirling's formula and logarithms. 

Several points can be deduced from Graph 1. The 
efficiency tends to p as NI m goes to 1. This agrees 
with intuition: if there were as many PE's as pixels, p 
would be the fraction likely to contain an interesting 
pixel, and only this fraction would have any work. For 
very low values of p ( <<0.2) the efficiency can drop 
drastically for MSP's processing images that have less 
than an order of magnitude more pixels than they have 
PE's. For example, PASM with 1 024 PE's will operate at 
less than 40% efficiency on images of 64 x 64 pixels if 
p=0.4. On the other hand if the images are 256 x 256 
the efficiency jumps to over 80% for the same value of 
p. Clearly, for l]igh efficiency the image should contain 
several orders of magnitude more pixels than the MSP 
has PE's. 

l·OO 

. .... 
,,.,. 

... ... , 
~ 

~ .. . ... g .. 
;: ,,,., 

.... 
,,.., 

o.oo 
\7 .. .. .. '"' lal 

Graph 1. E versus N/m 



~ 

~ 
~ 

a. 
'o 
0 
c: 

x 
"' s 

0 
-:> 

"" 

t,7.0 

t'37·6-

tta,1 

..... 
79,'50 

bol),t'J 

'+0-~ 

21.39 

to ta 

Nunb•• or PE's ( log ~ l 

Graph 2. 

•• 

4. Conclusions 

This paper has presented a preliminary attempt to 
provide a framework within which to model feature 
dependent algorithms, and to, for example, quantify the 
Inefficiency that can occur in MSP's when subimages of 
equal size are distributed among the PE's. 

The mathematical model was simple enough to allow 
key terms such as T max to be efficiently computed 
without compromising the accuracy of the result. Future 
work might examine how E can be determined if more 
complex, say Markov, models were used for the features 
of an image. 

5. References 

[1] 

[2] 

[3] 

R. Reddy and R. W. Hon, "Computer architectures for 
vision," in Computer and Sensor-Based Robots, G. G. 
Dodd and L. Rossel (Eds.), Plenum Press, New York, 
1979, pp. 169-186. 

T. N. Mudge and E. J. Delp, "Special purpose archi
tectures for computer vision," Proc. of the 15-th 
Hawaii International Conf. on Systems Science, Jan. 
1982, pp. 378-387. 

P. E. Danielsson and S. Levialdi, "Computer architec
tures for pictorial information systems," Computer, 
vol. 14, no. 11, Nov. 1981, pp. 53-67. 

373 

[ 4] K. Preston, "Cellular logic computers for pattern 
recognition," Computer, vol. 16, no. 1, Jan. 1983, 
pp. 36-47. 

[5] R. A. Rutenbar, T. N. Mudge and D. E. Atkins, "A class 
of cellular architectures to support physical design 
automation," Computing Research Lab. Tech. Report 
CRL-TR-10-83, Univ. Michigan, Feb. 1983 . 

[6] H.J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller 
Jr., H. E. Smalley Jr. and S. D. Smith, "PASM: A parti
tionable SIMD/MIMD system for image processing 
and pattern recognition," IEEE Trans. on Computers, 
vol. C-30, no. 12, Dec. 1981, pp. 934-94 7. 

[7] M. J. B. Duff, "Review of the CLIP image processing 
system," Proc. National Computer Conf., 1978, pp. 
1055-1060. 

[8] J. K. Iliffe, Advanced Computer Design, London: 
Prentice Hall, Chap. 12, 1982. 

[9] K. E. Batcher, "Architecture of a massively parallel 
processor," Proc. 7th Annual Symp. on Computer 
Architecture, 1980, pp. 168-17 4. 

[1 O] M. Aoki et al., "An LSI adaptive array processor," 
Proc. ISSCC, Feb. 1982, pp. 122-123. 

[11] H. J. Siegel, L. J. Siegel, R. J. McMillan, P. T. Mueller 
Jr., S. D. Smith, "An SIMD/MIMD multimicroprocessor 
system for image processing and pattern recogni
tion," Proc. IEEE Computer Society Conf. on Pattern 
Recognition and Image Processing, Aug. 1979. 

[12] P. T. Mueller Jr., L. J. Siegel and H.J. Siegel, "Parallel 
algorithms for the two-dimensional FFT," Proc. 5-th 
Int. Conf. on Pattern Recognition, Dec. 1980. 

(13] E. J. Delp, T. N. Mudge, L. J. Siegel and H. J. Siegel, 
"Parallel processing for computer vision," Proc. of 
SPIE-The Int. Society for Optical Engineering, vol. 
336 (Robot Vision), May 1982, pp. 161-167. 

[14] W. Feller, An Introduction to Probability Theory and 
Its Application, vol. 1 (3rd edition, revised printing), 
New York: John Wiley, 1 970. 

[1 5] D. J. Kuck, The Structure of Computers and Computa
tions, vol. 1, New York: John Wiley, 1978. 

[16] D. H. Ballard and C. M. Brown, Computer Vision, New 
Jersey: Prentice-Hall, 1982. 

[1 7] M. L. Baird, "A computer database for the 'Industrial 
bin of parts problem'," General Motors Research Lab. 
Tech. Report GMR-2502, Aug. 1977. 

[18] J. W. Modestine and R. W. Fries, "Construction and 
properties of a useful two-dimensional random 
field," IEEE Trans. on Information Theory, vol. IT-26, 
no. 1, Jan. 1980, pp. 44-50. 



MATCHING PARALLEL ALGORITHM AND ARCHITECTURE* 

Yetung P. Chiang 
Electrical Engineering Department 

Washington State University 
Pullman, WA 99164-2210 

Abstract 

An attributed directed graph model which is a com
binat~on of hig;h-level Petri ~ets and AND/OR graphs is 
described. This model provides a method for matching 
parallel algorithm to architecture or vice versa. The 
analysis of parallel computation using this model is 
described. Examples are given to demonstrate the 
descriptive power of this model and how it helps us to 
match an algorithm and an architecture. 

1. Introduction 

It is well known that parallelism is an efficient 
method to increase the speed of computation in both 
hardware and software systems. Despite the achieve
~ents in designing parallel computers and parallel algo
rithms there has been very little attention paid to study 
the relat_ionship between them. As a result, some paral
lel algorithms may be more effective when executed on 
o~e parallel computer than the other. Wirsching and 
Kishi [l] reported their five projects in investigating the 
efficiency of highly parallel and highly concurrent com
puting systems for different problems. They concluded 
tha~ the effi?iency of solving one particular problem 
vanes from different parallel computers. After extensive 
testing experiments, Deminet [2) pointed out that when 
the structure of an algorithm corresponds well to the 
structure of the computer. a close-to-linear speedup may 
be achieved. Hon and Reddy [3) formulated several 
valua?le principles which outlined the type of algorithm 
that is more efficient on an architecture with certain 
specified features. Now the question arises as based on 
what informr.tion should we make the decision that 
chooses the most efficient computer system for a particu
lar parallel algorithm or vice versa. 

Kung [4J classified parallel algorithms in terms of 
three dimensions: concurrency control, module granular
ity, and communication geometry. Jones and Schwarz 
[?J also pointed out three spaces for parallel computa
tion;_ th~y are, the computation unit (granularity), com
mumcation patterns, and patterns of reference to data. 
Both papers [4, 5] informally classified parallel 
algorithms/ architectures in terms of their characteristics. 
Cantoni and Levialdi [6) tried to match tasks in image 
processing to a parallel architecture. They defined 
"match" as the degree of exploitation of the system 
resources (including time) to obtain a specific solution. 
However, the term "degree" is not defined. Instead, they 
selected several coefficients for system resources and 
problem requirements. From these coefficients Cantoni 
and Levialdi derived the equation for execution time 
provided the task and architecture are specified. They 
claimed that execution time is useful in determining a 
matching value. Their work is a good start of formal 
analysis in matching an algorithm to an architecture. 
Nevertheless, we believe that system resources should 
not be the only parameter for measuring th'e degree of 
matching. Control flow, system layout, data movement, 

*This work was supported by the NSF Grant ECS 80-16580. 

0190-3918/83/0000/0374$01.00 © 1983 IEEE 

and King-Sun Fu 

374 

School of Electrical Engineering 
Purdue University 

West Lafayette, IN 47907 

etc. are also responsible for the overall system perfor
mance. In this paper, we intend to study parallel com
putation .and the relationship between parallel algorithm 
and architecture. We first propose a graph model which 
is suitable for modeling both algorithms and architec
tures. Then the analysis of parallel computation is 
p~esented based on this. ~ode!. Finally, examples are 
given to show the descriptive power of this model and 
how it helps to make decisions on the type of architec
ture we should use for a particular algorithm. 

2. Graph Model 

A number of models f01: parallel computation have 
been proposed [7-12, 19]. Among them the directed 
graph model has shown its capability in modeling both 
parallel algorithms and parallel architectures. It is 
advantageous to use the same model for both hardware 
and software since it simplifies the study of relationships 
between algorithm and architecture. As Peterson 
c~aimed in his paper. [7] the Petri nets, a special type of 
directed graph, are ideal for modeling systems of distri
buted control with multiple processes occurring con
currently. Another major feature of Petri nets is their 
asynchronous nature and the nondeterminism in Petri 
net execution. Figure 1 [7) shows a Petri net model for a 
producer-consumer problem with one producer (places Pi 
and P2) and two consumers (places P 4, P 5, and P 6, P 7). 
The items produced by the producer are passed to the 
consumers. This is modeled by place P 3 and the tokens 
"produced" by transition t2 and "consumed" by transi
tions t3 and ts. Tokens are moved by the firing of the 
transitions in the net. A transition must be enabled (all 
of its input places have a token in them) in order to fire. 
A transition fires by removing one token from each of its 
input places :1;nd generating one token to all of its output 
places. In Figure 1, for example, the transition t 2 is 
enabled while t3 and ts are not. If t2 fires, the marked 
Petri net of Figure 2 results. In Figure 2, three transi
tions are enabled, tl> t3, and t5• Note that the place P 3 
is the same input place for both transitions t3 and t5; 
therefore the firing of either t3 or t5 disables the other. 
Consequently, these two transitions are said to be in 
conflict. This conflicting situation leads to a nondeter
minism in Petri net execution. That is, the choice as to 
which transition fires is made in a nondeterministic 
manner which in turn is not modeled. The nondetermin
ism is a good feature from a model's point of view, but it 
should not be used when modeling a deterministic algo
rithm. In other words, we need a deterministic graph 
model. 

In [12, 131 the authors introduce control nodes into 
the graph model in order to achieve determinism. For 
example, Figure 3 shows the Petri net of Figure 2 with 
two extra control nodes ct, c2. If ct and c2 are mutually 
exclusive, i.e., one of them has a token but not both of 
them, they can· solve the conflict between t3 and t5. This 
arrangement has two disadvantages: Firstly, the control 
nodes will increase the complexity of the graph model. 
Secondly, the implementation of control nodes consti-



tutes another step in the design process. We believe that 
the major cause of nondeterminism in the Petri net is 
that every transition and place in it cannot perform "dis
joint" operation. In fact, the disjoint concept is totally 
ignored in the Petri net model. There is another type of 
graph which can explicitly distinguish "joint" and "dis
joint" operations. This type of graph is called AND/OR 
graph [14]. Figure 4 illustrates the ability of AND/OR 
graph notation to solve the conflict in Figure 2. Note 
that in this figure, the token in P 3 can either go to t3 or 
t5 but not both. Nevertheless, in order to choose the 
appropriate destination a decision policy has to be 
imposed on P 3. 

The Petri nets which carry extra information on 
their places and transitiions have been discussed in [11, 
15, 16]. According to Genrich and Lautenbach [11] this 
type of high-level Petri nets adds a new dimension to the 
modeling power and complexity of Petri nets, namely 
the formal treatment of individuals and their changing 
properties and relations. Unfortunately, the high-level 
Petri nets do not cover the joint and disjoint conditions, 
but they do allow to associate expressions with places 
and transitions. In the following section, we present a 
new model which takes advantage of both high-level 
Petri nets and AND/OR graphs. 

3. Attributed Directed Graph (ADG) 

In the proposed attributed directed graph model 
there are two types of node, namely, operation node (0-
node) and data node (d-node). These two types of node 
are equivalent to the transition and place in a Petri net, 
respectively. The extra information associated with the 
nodes is expressed in terms of attributes. This explains 
the nomenclature. The two basic nodes are defined as 
follows: 

Definition 1 - An operation node (0-node) is defined 
as the expression of a subtask. The subtask, depending 
on the given problem, may be as simple as an ADD 
operation or as complicated as calculating the distance 
between two strings. Each 0-node has its attributes 
(OPR, OP, WM). OPR is the number 9f operands. OP 
is the operation or subtask assigned to this 0-node, and 
WM is the working memory space required by the opera
tion. 

The attributes of an 0-node explicitly reveal the 
characteristics of the 0-node and its relationships with 
others. To be more specific, OPR not only shows the 
number of operands required by the 0-node but also indi
cates that there must be connections between this 0-node 
and other nodes in order to obtain operands. OP 
represents the computation complexity of the 0-node and 
implies whether the operands are required by the opera
tion simultaneously or in a sequential fashion. WM 
reveals the complexity of memory space. 

Definition 2 - A data node (d-node) is defined as the 
place which holds the conditions of an 0-node or stores 
the consequences after an 0-node. In other words, it is 
the place where the operation stores/fetches data 
to/from. The attributes associated with a d-node are 
represented as (ID, ORD). ID represents the number of 
various data that reside in this node and ORD specifies 
the order that this d-node is referenced which may be in 
either parallel or sequential fashion. 

The connection between two nodes is called an edge. 
Similar to SF-nets, an edge can only connect nodes of 
different types [9]. An edge also possesses attributes. Its 
attributes (V, MD) have the following meaning. Vis the 

number of variables transmitted via this edge, and MD is 
the mode of transmission which may either be sequential 
or parallel. According to the AND/OR graph notation 
the joint and disjoint situations are reflected through 
edges as defined below. 

Definition 3 - An edge is called AND case edge 
when there exists an arc connecting this edge with other 
edges. An OR case edge does not have any connecting 
arc. An AND case edge requires that the information 
transmitted through them must be in parallel. An OR 
case edge, on the other hand, requires mutually exclusive 
transmission. The exact order of transmission through 
an OR case edge follows the direction of connected 0-
node or d-node. 

Definition 4 - An attributed directed graph (ADG) 
is a four tuple (D,O,A,M0 ) 

where ~l~ D is a finite set of cl-nodes, 
2 0 is a finite set of 0-nodes, 
3 A ~ (DxO) U (OxD) is a finite set of 

AND /OR case edges, 
and (4) M0 is the initial marking of the ADG model. 

This marking is expressed by tokens (black 
dots). The movement of a token is governed 
by the firing rules which are defined below. 

Definition 5 - The firing rules [9]: 
(1) An 0-node is enabled if all of its input d-nodes hold 

at least one token and its output d-nodes are 
empty. 

(2) Any enabled 0-node remains enable and may be 
fired at any time according to the operations of the 
0-node. 

(3) An 0-node is fired by removing one token from each 
member of the input d-nodes and add one token to 
each of the output cl-nodes. At this point, the 0-
node execution is complete. 

4. Attributes in Parallel Computation 

As mentioned earlier, many important features 
should be considered in a parallel computing environ
ment, such as control interconnection, routing, memory 
conflict, scheduling, synchronization, etc. In order to 
understand the nature of parallel computing, it would be 
better to start from its special features. In this section 
we choose five features as the attributes of a parallel 
computation. They are described in the following. 

4.1 Data Movement 

Every computing system could be considered as a 
data manipulator. That is, it receives data and after 
certain operations produces resulting data. Every algo
rithm is a straightforward procedure which controls the 
computing system and hence the data movement within 
it. In more detail, there are many subtasks in an algo
rithm and each of them requires input data and produces 
output data. For instance, an ADD operation requires 
two operands and produces the sum; a string distance 
calculation takes in two input strings and gives the dis
tance between them as the result. Usually, the data 
movement required by the subtasks is embedded in the 
algorithm. For instance, the previous two examples may 
appear in an algorithm like S = a+ b and P = distance 
(x,y), where S and P are sum and distance, respectively. 
The algorithm tells what data we should use, but it 
never shows us where they come from. At the imple
mentation stage different architectures have different 
effects on obtaining data. For example, data may be 
broadcasted through a central control unit or exchanged 

375 



in the shared memory; it may also be delivered by data 
busses or by some direct data line connections. When 
executing an algorithm, the data movement is the other 
important part besides the direct calculations. We will 
describe data movement as regular or irregular, which 
refers to the connections between subtasks; and variant 
or invariant, which indicates whether or not the connec
tions change with time. 

4.2 Module Granularity 

Every subtask (or task module) decomposed from a 
given task requires some execution time. We call this 
elapsed time the module granularity (MG). In an algo
rithm, the MG is not as important as the overall com
plexity analysis, but it does affect the analysis indirectly. 
In a real execution, MG is an important factor for the 
problem of synchronization, memory contention, etc. It 
sometimes forces a designer to choose a different archi
tecture or to use a different control scheme. For 
instance, suppose that we have subtasks X and Y needed 
to be completed before we go on to subtask Z. X and Y 
require different execution time. A synchronizer is 
needed before subtask Z starts. On the other hand, if X 
and Y execute the same operation and they happen to 
fetch the same data at the same time, then the memory 
contention problem arises. 

In the above situations, we have to take the module 
granularity into consideration before we decide the par~ 
ticular system to use or the type of hardware/software 
conflict resolver to implement. Here we classify module 
granularity as uniform or nonuniform, which indicates 
whether or not all the processes have the same computa
tion. We also call a MG either "large," "small," or "con
stant." This is not a well-defined term; rather, it tells us 
the relative size of the module granularity when com
pared with each other. 

4.3 Communication Geometry 

When the task modules of a parallel algorithm are 
connected to represent their inter-module communica
tion, the geometric layout of the resulting network is 
referred to as the communication geometry. This 
geometric layout does not have to be identical to the 
data movement. The data movement identifies the 
source and destination in a data transaction. The same 
data transaction can be achieved on different inter
module connections as long as we provide proper routing 
paths. With routing ability, a rather simple communica
tion geometry can be obtained and henceforth reduces 
the complexity of the implementing hardware. Com
munication geometry is closely related to control over
head. That is, for a specific data communication, the 
direct connection network may require no or less control 
while the simple indirect connection network may need 
routing algorithm to manage the data movement. Since 
we are only interested in the relation between algorithms 
and architectures, routing is not discussed here. We 
classify communication geometry according to its 
geometric layout as irregular and regular. Among regu
lar it is further divided into interconnection switch 
(crossbar, perfect shufHe, etc.) and array network (1-D, 
2-D, etc.). 

4.4 Memory Space 

In algorithm analysis [17j, both time and memory 
space are important factors in judging the efficiency of 
an algorithm. In terms of hardware, memory access is 
always slow and memory space occupies a large portion 
of area even with today's IC technology. Although the 

376 

speed and dimension of a memory element have been 
improved drastically, it is still the most time-consuming 
and expensive part in any system. The common 
phenomenon with memory space is that if one prefers to 
put memory on the same chip with the arithmetic logic 
unit, he certainly can enjoy a fast memory access in the 
sacrifice of small memory space. On the other hand, by 
supplying secondary memory, one can increase memory 
space but suffers longer access time. Besides, in a system 
with large memory database, the management policy is 
another important factor in deciding the efficiency of a 
system. For the purpose of this paper, we classify 
memory space as local or global, which refers to its local
ity; and constant or nonconstant, which indicates 
whether or not the required memory space depends on 
the input data. We sometimes call the size of memory 
space small or large. This is not quantitatively defined; 
instead, it is a comparative term. 

4.5 Concurrency Control 

Control information is usually only implicitly shown 
in an algorithm, but it is essential to a hardware system. 
The control directs the computation sequence and 
assures the correctness. There are various ways to con
trol a parallel computing system. It can be a stored seg
ment of microcodes, system clock, special control logic, 
etc. Control is closely related to other attributes. In 
this paper, we only classify concurrency control as cen
tralized or distributed. Detailed control techniques are 
not considered at this point. 

The attributes mentioned above are by no means a 
complete description of parallel computing. The simple 
classifications of each attribute are only for the conveni
ence of this study, that is, to reveal the relationship 
between an algorithm and an architecture. These five 
attributes can easily be extracted from the proposed 
ADG model. In other words, the ADG model is capable 
of describing parallel computations. Figure 5 outlines 
the relation between ADG model and the attributes of 
parallel computation. For example, the structure of an 
edge defines the communication geometry; memory space 
is determined by the WM in an 0-node and the ID in a 
d-node; concurrency control is covered in the ORD of d
node and the OP of 0-node; module granularity is 
decided based on the OP of 0-node; and data movement 
is directed by the OPR in an 0-node and the edge. 
These relations are further elaborated in the following 
examples. 

5. Illustrative Examples 

Example 1 - In a general SIMD computer all of its pro
cessmg elements (PEs) execute the same instructions 
which are sent from the control unit (CU). These PEs 
may exchange their data with each other through a com
munication network. The ADG model for SIMD com
puter systems is shown in Figure 6. From this model we 
can determine the nature of parallel c~mputation in a 
SIMD system. 

The communication geometry (CG) is directly 
reflected by the hardware connections. It is easy to 
understand that in this case the CG is regular and it is a 
switching network type. The data movement is bounded 
by CG and hence is also regular. In fact, the data move
ment may be either variant or invariant depending on 
applications. This variation of data movement can be 
seen in the OPR of Inter-PEs' 0-node. The module 
granularity (MG) depends entirely on the complexity of 
0-node. Speaking of the whole system, its MG is nonuni-



form because of the existence of CU and Inter-PE. But 
if we only consider PEs, they have uniform MG. 

In Figure 6, the complexity of 0-node is not 
specified since the associated operations vary from 
different applications. In general the operations of CU 
and Inter-PE are far more complicated than those of 
PEs. The CU not only controls PEs and Inter-PE, but 
also communicates with the external world. The Inter
PE communication network takes commands from CU 
and exchanges information between PEs accordingly. 
All the PEs execute the instructions which are broad
casted from CU one at a time. Therefore the operation 
of PE is considered to be a straightforward sin_gie step. 
Judging from the number of edges pointing toward 0-
node and the operations associated with 0-node, we con
clude that, relatively speaking, the MG of PEs is small 
while the MGs of CU and Inter-PE are large. 

The memory space (MS) is closely related to d-node 
and 0-node. From the number of incoming edges, we 
can decide whether the memory space is local (no greater 
than two incoming edges) or global (more than two 
incoming edges). Based on this criterion, all the memory 
spaces (d-nodes) are local in this case. The size of MS 
can be roughly determined from the number of variables 
on the incoming edges. In Figure 6, edge 1 conveys 
instruction, data and CU's control program, such as 
masking, routing, etc.; edge 2 transmits instruction and 
data; edge 3 transmits instruction, while edge 4 only 
transmits data. Therefore, a reasonable conclusion is 
that the CU memory is large and the PE memory is 
small. The concurrency control is centralized as clearly 
expressed in Figure 6. The control overhead is not 
severe, since all the PEs are under the same control 
instruction (AND case), only the Inter-PE requires addi
tional control effort (OR case), and the ORD in the d
node of a PE is also simple. 

The summary of Example 1 and the analysis results 
for MIMD system and VLSI systolic array are listed in 
Figure 7. 

Example 2 - A parallel Barley's parsing algorithm [18] is 
recorded below. 

Algorithm A. 
for 1 - 1 to n do in parallel 

t(i-1,i) = Y X* { aJ 
for j = 2 to n do 

for i = 0 to n-j do in parallel 
begin 
[Scanner:] 

t(i,i +j) = t(i,i +j-1) X* {ai+j} 
[Completer:] · 

fork = 1 to j-1 do in parallel 
t(i,i+j) = t(i,i+j) U t(i,i+k) X* t(k+k,i+j) 

end 

This algorithm constructs an upper-triangular shape 
parsing matrix with each element denoted as t(i,j). 
Algorithm A is executed in a pipeline fashion, and if we 
define subtask P(i,j) as calculating 

t(i,j) = t(i,j-1) ~*{aj} 
and for k=l to J-l 
t(i,j) = t(i,j) U t(i,k) X*t(k,j), 

we can represent Algorithm A by the ADG model as 
shown in Figure 8. It is easy to see that the data move
ment, as shown by the edges, is very complicated. Note 
that many of the edges are OR case edges, which means 
that the results of those subtasks do not have to be sent 
to all the destinations at the same time. For instance, 
t(O,l) is needed by subtasks P(0,2), P(0,3), and P(0,4). 

377 

These subtasks are activated one at each stage, which 
indicates that a single data path moving t(O,l) through 
these subtasks is capable of doing the job. However, a 
special arrangement has to be made for this simple con
nection in order to have a correct execution. This 
arrangement is described in [18]. A simplification of con
nections changes Figure 8 to Figure 9 which describes a 
regular connected network. In Figure 9 each subtask 
simply executes 

t(i,j) = t(i,j-1) X* {a1} 
and t(i,j) = t(i,j)U t(i,k) X* t(k,j). 

As described in [18], this subtask can be implemented on 
a special hardware and executed in a small constant 
time. The control of this special hardware is simple and 
local (distributed). From the analysis above and the 
characteristics of different systems shown in Figure 7 we 
conclude that Algorithm A is suitable for VLSI systolic 
array implementation. 

6. Concluding Remarks 

In this paper, we describe the attributed directed 
graph model. This model is more powerful in modeling 
concurrent hardware and/or software systems. Further
more, this ADG model is a deterministic graph model 
which includes the control information in its attributes. 
We also study the features of parallel computation and 
express them in terms of the ADG model. Finally we 
use two examples to demonstrate the descriptive power 
of the ADG model and how this model can aid a 
designer to choose the proper algorithm for the proper 
architecture or vice versa. 

[l] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

References 

Wirsching, J. E. and T. Kishi, "Matching Machines 
and Problems," in High Speed Computer and Algo
rithm Organization, D. J. Kuck, D. H. Lawrie and 
A.H. Sameh Eds., Academic Press, 1977. 

Deminet, J. "Experience with Multiprocessor Algo
rithms," IEEE Trans. Comp., Vol. C-31, No. 4, 
April 1982. 

Hon, R. W. and D. R. Reddy, "The Effect of Com
puter Architecture on Algorithm Decomposition and 
Performance," in High Speed Computer and Algo
rithm Organization, D. J. Kuck, D. H. Lawrie and 
A. H. Sameh Eds., Academic Press, 1977. 

Kung, H. T., "The Structure of Parallel Algo
rithms," in Advances in Computers, Vol. 19, M. C. 
Yovits Eds., Academic Press, 1980. 

Jones, A. K. and P. Schwarz, "Experience Using 
Multiprocessor Systems - A Status Report," Com
puting Surveys, Vol. 12, No. 2, June 1980. 

Cantoni, V. and S. Levialdi, "Matching the Task to 
an Image Processing Architecture," Proc. 6th Int'! 
Conf. Patt. Recog., Munich, Germany, Oct. 1982. 

Peterson, J. L., "Petri Nets," Comp. Surveys, Vol. 9, 
No. 3, Sept. 1977, 223-252. 

Miller, R. E., "A Comparison of Some Theoretical 
Models of Parallel Computation," IEEE Trans. 
Comp., Vol. C-22, No. 8, Aug. 1973, 710-717. 

Foo, S. Y. and G. Musgrave, "Comparison of Graph 
Models for Parallel Computation and Their Exten
sion," Proc. 1975 Int'! Symp. Comp. Hardware 
Description Languages and Their Applications, New 



York, NY, Sept. 1975, 16-21. 

[10] Mattheyses, R. M. and S. E. Conry, "Models for 
Specification and Analysis of Parallel Computing 
Systems," Conf. of Simulation, Measurement and 
Modeling of Computer Systems, Boulder Colorado, 
Aug. 1979, 215-224. 

[ll] Genrich, H. J. and K. Lautenbach, "System Model
ling with High-Level Petri Nets," Theoretical Com
puter Science, Vol. 13, 1981, 109-136. 

[12] 

[13] 

Bradshaw, F. T., "Directed Graph Models for 
Hardware/Software Design," Proc. 1975 Int'l Symp. 
Comp. Hardware Description Languages and Their 
Applications, New York, NY, Sept. 1975, 7-15. 

Wojtkowiak, H., "Deterministic Systems Design 
from Functional Specifications," Proc. 18th Design 
Automation Conf., Nashville, Tenn., June 29 - July 
1, 1981, 98-104. 

[14] Nilsson, N. J., Problem Solving Methods in Artificial 
Intelligence, McGraw-Hill, New York, 1971. 

Figure 1. A marked Petri net. 

Figure 2. The resulting Petri net from Figure l. 

[15] Jensen, K., M. Kyng and 0. L. Madsen, *("A Petri 
Net Definition of a System Description Language," 
in G. Kahn, Ed., Semantics of Concurrent Computa
tion, Lecture Notes in Computer Science 70, 
Springer, Berlin, 1979, 348-368. 

[16] Jensen, K., "Coloured Petri Nets and the Invariant
Method," Theoretical domputer Science, Vol. 14, 
1981, 317-336. 

[17] Aho, A. V., J. E. Hopcroft and J. D. Ullman, The 
Design and Analysis of Computer Algorithms, 
Addison-Wesley, 197 4. 

[18] Chiang, Y. P. and K. S. Fu, "Parallel Processing 
and VLSI Architectures for Syntactic Pattern 
Recognition and Image Analysis," Tech. Rpt. TR
EE83-4, School of Electrical Engineering, Purdue 
University, Jan. 1983. 

[19] Treleaven, P. C., "Parallel Models of Computation," 
in Parallel Processing Systems, D. J. Evans Ed., 
Cambridge University Press, Cambridge, 1982. 

Figure 3. Petri net with control nodes. 

Figure 4. Petri net with AND/OR notation. 

378 



DAI'A 

MOVEMENI' 

MODULE 
GRANULARirY 

C OMMUNICAI'ION 

GEOMETRY 

MEMORY 

SPACE 

CONCURRENCY 

CONTROL 

Figure 5. 

0 0-node 

D D-node 

Cu: 

0-node 2, 

D-NODE 0-NODE EDGE 

OPR V,MD 

OP 

SI'RUC I'URE 

ID OPR,WM 

ORD OP 

The relation between ADG and the attri
butes of parallel computation. 

OP, 

1/0 

MVM 

large) 

edge 3 

Inter-PE: 

0-node OPR, OP, large) 

D-node N+2, ORD) edge 1 }, MD) 
PE: edge 2 2, s) 

0-node 2, OP, small) edge J 1, s) 

D-node 2' ORD) edge 4 1, s) 

Figure 6. ADG representationof SIMD system. 

379 



I~ 
Data 1\llodul e CDm1n~1 n i Memory Concur-
Movem0nt Granu- cation Space rency 

larity Gcomc? try Control 
-

' 

te 
regular, small regular, small, central, 
variant constant, inter- local simple 

or small communi- or 
invari- or cation complex 

SIMD ant large switch, . 

irregula1 large local, 
variant large irregular global complex 

or 
MIMD simple 

VLSI regular, small regular small, central 
invari- constant net work local or 

Systolic ant local, 
Array simple 

I 

Figure 7. Characteristics of parallel computing systems. 

Sta?':.~.•••••• 

Sta?';.~ •.• ,., •• ,,., 

Sta?';.~ •.•. , .. ,.,,, •. ,., .• ,,.,,, 

Figure 8. ADG representation of Algorithm A. 

380 

Stag;,~,,., .. ,.,, 

Stag!°,~ .. ,• .• ,,,,,• 

Stag;,~.,.,,,.,,, ••.....• , •. , .. , .. , 

Figure 9. Reduced ADG representation of Algo
rithm A. 



COHERENT FLOW OF INFORMATION 
IN PARALLEL SYSTEMS 

Bruce P. Lester 
Department of Computer Science 

Maharishi International University 
Fairfield, Iowa 52556 

Abstract -- Proper functioning of any parallel 
system depends on balance in the flow of informa
tion. A specific flow graph model for systems is 
presented using linear inequalities to characterize 
the terminal behavior of individual components of 
the system. These inequalities are combined into 
a homogeneous system of linear equations, whose 
solution reveals some of the global information 
flow properties of the parallel system. Several 
theorems are stated regarding characteristics of 
this global information flow in deadlock-free 
systems. 

Introduction 

There is a new interdisciplinary field called 
the Science of Creative Intelligence, which studies 
universal principles of orderliness and intelligence 
in human beings and in natural systems (1). Accor
ding to Maharishi Mahesh Yogi, the founder of the 
Science of Creative Intelligence, any system which 
expresses intelligence must have a coherent rela
tionship between the individual parts of the system 
(2). Maharishi's theory states that the level of 
intelligence depends on the degree of coherence and 
integrated functioning within the system (3). In 
the field of computer science, the individual com
ponents of any information processing system must 
function in a manner which produces a global coher
ence and balance throughout the entire system. This 
is especially true of systems with a high degree of 
parallelism, in which there are typically a large 
number of individual components, each having a high 
degree of independence. 

Flow Graphs 

For the sake of brevity and readability, this 
paper is rather informal in presentation. The ap
proach used in this research is similar in style to 
much of the work on properties of parallel control 
structures such as Petri-Net theory (4) and data 
flow schemas (5,6). For a more complete and formal 
analysis of the theory, the reader is referred to 
Lester (7). An information flow graph is defined 
as a directed graph, each of whose nodes contains 
an information processing module. The modules are 
of two types: Fixed modules and Union modules. 
Information packets flow along th~s between 
modules, and each 1ll0dule has an internal state 
which determines its terminal behavior with respect 
to input and output of information packets. 

Our focus in this paper is not so much on the 
detailed structure or data values contained in each 
information packet, but on the total number of 
packets sent and received via a g·iven arc. For 
that reason, the packets are treated a indistin
guishable, unitary entities. The total number of 
packets which have been sent along a give arc b of 
the flow graph is called the count on that arc and 

0190-3918/83/0000/0381$01.00 © 1983 IEEE 381 

is denoted JbJ. The arcs have no capacity for in
ternal storage and serve only as channels for pack
ets to flow between modules. The modules operate 
independently and interact with neighboring modules 
by sending or receiving packets along the connec
ting arcs (or terminals). Intuitively, a fixed 
module is one which maintains a fixed ratio for 
the counts on its connecting arcs. That is, if we 
look at the counts on the terminals of a fixed mo
dule over time, the ratios of the counts on differ
ent terminals will converge to a constant. More 
formally, for each pair of terminals (a,b) of a 
fixed module, there exists positive rational con
stants C,K,R such that 

-c 2. J b I - R J a I 2. K 
There are many different types of typical system 
components which can be modelled as fixed modules. 
Some examples are shown in Fig. 1. 

Fixed modules are defined above as having a 
fixed ratio for the counts at every pair of termi
nals. The other type of module is the union module 
which has a sum property with respect to its ter
minals: the sum of the input counts is equal to 
the sum of the output counts. More formally, for 
any union module with input terminal set A and out
put terminal set B, there are positive integers C 
and K such that 

-c < E JbJ - L Jal 2. K 
bE:B aE:A 

Intuitively, a union module is a storage facility 
information packets with some finite maximum capa
city. Some examples of typical components or para
llel systems, which can be modelled as union mod
ules are shown in Fig. 2. An arc in a flow graph 
is defined as dead if no further information 
packets can flow through it. A graph is deadlock
free if there is no reachable state with a dead arc. 

Current Law Equations 

Union modules and fixed modules together have 
a broad range of modelling power, as illustrated 
by the examples. Now we will present a simple but 
useful mathematical technique for analyzing the in
formation flow properties of any flow graph consis
ting of fixed modules and union modules. With each 
arc b of the flow graph, let us associate a current 
variable ib. Now define the following current laws 
for the modules: 
1. Union modules -

sum of input currents = sum of output currents 
2. Fixed modules - for each pair of terminals 

(a,b) with fixed ratio R, ib = Ria 

Intuitively, we may think of the currents as a 
measure of the information flow along the arcs. 
Current law 1 for union modules is just the famil
iar Kirchhoff's Current Law of electrical network 
theory. Knuth (8) and Dea (9) have noted the use
fulness of KCL for analyzing the properties of 



normal sequential flow charts. However, current 
law 2 is a new law that is necessary for more com~ 
plex parallel systems. For any information flow 
graph with n terminals, the current laws define a 
homogeneous system of linear equations A.!_ = Q_ , 
where i (i1,i2,···•inl and A is an m by n matrix. 

Theorem 1 - For any deadlock-free information flow 
graph, the current law equations have a positive 
integral solution. 

The proof method for Theorem 1 is to notice that 
the current laws for fixed and union modules are 
taken directly from the linear inequalities that 
define the modules .. From these linear inequalities, 
we know -C < Ax < K , where x is the vector of 
counts at the terminals. Si;;ce the flow graph is 
deadlock-free, the counts can grow arbitrarily 
large, so A must be noninvertible and Ai=O has a 
solution. For an example of a simple flo; chart 
computation, whose current law equations have no 
solution, see Fig. 3. From Theor·em 1, we know the 
flowchart must contain a deadlock, which is clearly 
seen by inspection. 

Independent Currents 

In the case that the current law equations do 
have a solution, a great deal may be learned about 
the global information flow in the graph from the 
properties of the solution. From standard tech-· 
niques of linear algebra, the homogeneous system 
of linear equations Ai = 0 has a general solution 
.!_ = B'i1 ,i2 , •.. ,ik), ;her; k = n - rank A and (i1 , 
i2, •.• ik) are arbitrary constants, which we call 
the independent currents. All of the terminal cur
rents of the flow graph may then be expressed as a 
linear combination of these k independent currents. 
For example, the computation of Fig. 4 involves 
communication between processes using mailboxes and 
Send-Receive primitives. There are 5 union modules 
and 5 fixed modules. The curren~ law equations 
result in a solution with two independent currents 
i 1 and i2 as shown. 

From the independent current solutions for 
Fig. 4, it is seen that the T branch of each Deci
der has the same current. This means that in order 
for the whole computation to be deadlock-free, both 
Deciders must make the same percentage of T choices 
(subject to fixed deviations depending on the ini
tial contents and capacity of the mailboxes). If 
each Decider is assumed to be independently making 
arbitrary free choices, then a communications dead
lock may result. In order to make it easier to 
analyze properties of porgram flow graphs, it is 
common in the theory of program schemas to consi
der Deciders as free to make independent choices. 
A specific assignment of choices for each Decider 
is usually called an interpretation. 

Theorem 2 - If an information flow graph is 
deadlock-free (for all interpretations), then 
no. of independent currents < no. of Deciders. 

The proof of this theorem is too complex to be in
cluded here, but c~n be found in Lester (7). How
ever, the substance of the result is quite simple 
and intuitive. If a Decider is free to make 

382 

independent choices, then there must be one degree 
of freedom in the overall flow of control to accom
odate that Decider. The_ number of independent cur
rents in the solution to the current law equations 
represents the total number of degrees of freedom 
in the global flow of information. If the system 
is to be deadlock-free, these degrees of freedom 
must exceed the number of Deciders. In Fig. 4, 
there are only two independent currents (i1 and i 2 ) 
for two Deciders; thus, by Theorem 2, the overall 
computation will have a deadlock for some interpre
tation of the Deciders. 

Conclusions 

In this paper, we have presented a simple 
mathematical technique for analyzing the global 
information flow properties of parallel systems. 
The technique relies on the standard procedures of 
linear algebra for solving a homogeneous system of 
linear equations. Thus, this analysis procedure 
could easily be automated into a compiler for para
llel programs or into any parallel system design 
tool. If a parallel system does not meet the con
ditions specified by Theorems 1 and 2, then it has 
a potential deadlock. 

References 

(1) International Syn1posium on the Science of 
Creative Intelligence, University of Mass., 
Amherst and Humbolt State College, Calif., MIU 
Press, Seelisberg, Switzerland, (1971). 

(2) Maharishi Mahesh Yogi, The Science of Creative 
Intelligence, (A Thirty-Three Lesson Videotape 
course), Age of Enlightenment Press, Livingston 
Manor, N.Y. (1972). 

(3) Education for Enlightenment, An Introduction 
to Maharishi International University, MIU 
Press, Fairfield, Iowa (1981), pp. 23-41. 

(4) J.L. Peterson, petri-Net Theory and the Model
ing of Systems, Prentice-Hall, N.J.,(1981). 

(5) J.B. Dennis, J.B. Fosseen, J.P. Linderman, 
Data Flow Schemas, in "International Symposium 
on Theoretical Programming", Lecture Notes in 
Computer Science 5, Springer-Verlag, Berlin 
(1974), pp. 187-216. 

(6) J.M. Jaffe, "The Equivalence of R.E. Program 
Schemes and Data Flow Schemes,"Journal of Com
puter and System Sciences, ~' (1980), pp. 92-
109. 

(7) B.P. Lester, The Balance Property of Parallel 
Computations, Dept. of Electrical Engineering, 
Massachusetts Institute of Tech., PhD Thesis, 
Cambridge, Mass. (1974). 

(8) D.E. Knuth, The Art of Computer Programming, 
Vol. 1 - Fundamental Algorithms, Addison-Wesley 
Reading, Mass. (1973), pp. 362-368. 

(9) N. Deo, Graph Theory with Applications to Engi
neering artd Computer Science, Prentice-Hall, 
Englewood Cliffs, N.J. (1974), pp. 439-444. 



9. 
a 

·I Mailbox 

Capacity=lO 
Initial Contents=3 

-1 < le\ - \a'. < 0 

-1 < /b I - la I < 0 
-7.::. lb I - I a I .::. 3 

-1 < \b\ - \a\ < 0 Figure 1 - Examples of Fixed Modules 

T F 

b 
b c 

a 

Decider 

c -1 < IS\ + \el -la/ < o 

flowchart merge 

-1 .::. I e I - ( I a I + \b I < o 

InputASH==:?~ _ _..... 
.=:==:l_Mailbox t----. 

Capacity=30 
Initial Contents=20 

-10 .::_ L \b/ - L \a\ < 20 

Output Set 
B 

i2 

b 
)lo c -----+ 

(3 messages) 

-1 < lb/ - la/ < 0 

-3 < /cl - 3lal < 0 

il i2 + i3 

i3 i2 i4 

i3 i4 is 

il is 

Figure 2 - Examples of Union Modules Figure 3 - No Solution to Current Equations 

il il -- .... 
...... .... ...... g---.... .... -

x T ~ 

i2 / ' iz 

/ ' 
i1-i2 //i2 i~' il-i2 

SEND 

---~---C:J--- -.-- --
il ~ 11 .................... 

Figure 4 - Independent Currents 

383 



Virtual Time 

by 

David Jefferson 

Department of Computer Science 
University of Southern California 
Los Angeles, California 90089 

Abstract 

VirtuaZ time is a broad, new paradigm for 
organizing and synchronizing distributed systems, 
subsuming such heretofore distantly related pro
blems as distributed discrete event simulation and 
distributed database concurrency control. It is 
an abstraction of real time in much the same way 
that virtual memory is an abstraction of real 
memory, and it reorganizes the concepts of con
currency and synchronization in a manner similar 
to the way virtual memory reorganized the subject 
of memory management. Virtual time systems can 
be implemented using the Time Warp mechanism, a 
distributed synchronization mechanism that is dis
tinguished by its wholesale commitment to Zook
ahead-roZZback as its primary synchronization tool, 
but its implementation of rollback through anti
messages, and by its global coordination through 
the concept of gZobaZ virtuaZ time. 

1. Introduction 

This paper is a short introduction to a new 
theoretical paradigm for distributed computation 
called virtuaZ time, and to its implementation, 
the Time Warp mechanism. The virtual time para
digm is a method of coordinating distributed 
systems by imposing on them a temporal coordinate 
system more computationally meaningful than reaZ 
time, and defining all notions of synchronization 
and timing in terms of it. The virtual time 
scale need not be closely related to real time, 
but it is still "temporal" because virtual time 
increases as the computation progresses, because 
events at the same vitual time act as parts of a 
single action atomic with respect to actions at 
other virtual times, and because one can reason 
correctly about vitual time relations such as 
"before" and "after" by using ordinary "Newtonian" 
intuition. The more difficult "relativistic" 
reasoning [Lamport 78] required to understand the 
·real time relations "before" and "after" in dis
tributed systems is unnecessary. 

The Time Warp mechanism is a distributed pro-. 
cess control regime that implements virtual time, 
in the same way that paging or segmentation 
mechanisms implement virtual memory. Its distin
guishing feature is its wholesale commitment to 
process lookahead and rollback as the fundamental 
synchronization mechanism. Although relying on 
rollback may unorthodox step, it is also liberat
ing. Many synchronization mechanism issues be
come much simpler once the possibility of roll
back is considered. Of course at first glance 

0190-3918/83/0000/0384$01.00 © 1983 IEEE 384 

rollback seems more expensive both in space and 
time than other synchronization mechanisms such 
as process blocking, so it is essential to 
argue for each use either that rollback will be 
rare or that any other synchronization mechanism 
would incur similar overhead anyway. Such argu
ments can be made on the basis of temporal local
ity assumptions about the dynamic behavior of 
programs analogous to the spatial locality 
assumptions underlying paging systems but these 
assumptions have yet to be tested. 

These two notions, the virtual time paradigm 
and the Time Warp mechanism, offer new ways to 
think about distributed computation. In particu
lar the following results derive from them, 
although the justifications can only be outlined 
in this paper. 

-Discrete event simulation can be viewed as 
an application of the virtual time paradigm. 
The Time Warp mechanism provides a new 
method for high-concurrency discrete event 
simulation that is transparent to the pro
grammer and free of deadlock and starvation 
[Jefferson 82),[Jefferson 83a). 

-Distributed database systems can also be 
viewed as virtual time systems, in which 
case the Time Warp mechanism is a con
currency control and crash recovery mecha
nism, again yielding high concurrency with
out starvation or deadlock [Jefferson 83b). 

-The Time Warp mechanism suggests a rethink
ing of synchronization in distributed 
systems. Most synchronization is based 
on the ability to block a process and 
restart it later, sometimes augmented 
with the ability to abort an action in 
progress. But the Time Warp mechanism 
seems to offer the first wholesale use 
of process rollback as the basis of 
synchronization, making new protocols 
and strategies possible. 

In the next section we will describe the concept 
of virtual time and the semantics of virtual 
time systems. In Section 3 we will compare our 
views to those of other theorists in the field of 
distributed systems. Section 4 we will describe 
the Time Warp mechanism, both its local and its 
global parts. In Section 5 we will give three 
examples of paradigms that become unified when 
viewed as virtual time systems. Section 6 gives 
the extended comparison between virtual time and 
virtual memory that has been a central focus of 



this research. Finally, Section 7 offers some 
future directions. 

2. Virtual time 

A virtual time system is a distributed system 
th~t executes in coordination with an imaginary 
global virtual clock that ticks virtual time. 
Virtual time is a temporal coordinate system used 
to measure computational progress and define syn··· 
chronization. Viewed abstractly a virtual clock 
always progresses forward (or at least never back
ward) at a pace that may either be closely bound 
to real time or completely independent of it. We 
assume that virtual times are real values (and 
oo ), totally ordered as usual by the relation<. 

We envision systems of hundreds or thousands 
of processes all executing concurrently on a net
work of many processors. It is useful to con
sider ~ach process as occupying a "point" in 
virtual space, and its unique name as its spatial 
coordinate. Every primitive action executed by a 
system can thus be assigned both a virtual time 
and a virtual space coordinate, and the set of 
all actions that take place at the same virtual 
place x and virtual time t are collectively re
ferred to as the event at (x,t). 

Processes communicate by exchanging messages 
stamped with the name of the sender, the virtual 
send time, the receiver, and the virtual receive 
time. The virtual send time is the virtual time 
at the moment the message is sent; and likewise 
the virtual receive time is the virtual time when 
the message must be received. We can also say, 
equivalently, that a message is stamped with the 
coordinates of both the sending and receiving 
events. A message is simply the transfer of 
information from one "point" in virtual space-. 
time to another (like a photon in physics). 

The interaction of processes, messages and 
virtual time is subject to two semantic rules: 

Rule 1: The virtual send time of a 
message must be less than or equal to 
its virtual receive time. 

Rule 2: All messages directed to a 
particular process must be processed 
in nondecreasing virtual receive time 
order. 

These restrictions, similar to Lamport's Clock 
Conditions [Lamport 78], embody our desire that 
the arrow of causality be pointed in the direction 
of increasing virtual time. For convenience we 
adopt two further rules in this paper: 

Rule 3: No two messages directed to the same 
process have the same virtual receive time. 

Rule 4: Events not involving the 
receipt of a message are null, 
i.e., no-ops. 

Rule 3 has the effect of changing the work "non
decreasing" to "increasing" in Rule 2. Rule 4 
removes from consideration spontaneous state 
changes and message sending that are not prompted 
by receipt of a message. The system must there
fore be driven (or at least initiated) by mes-

385 

sage(s) from an "outside" process. Many interest
ing issues arise when these latter two rules are 
relaxed, as is usually necessary, but they would 
unduly complicate our discussion. 

A non-null event at (x,t) consists of the 
following three actions executed sequentially: 

1. Process x receives the message stamped 
with receiver x and virtual receive 
time t. 

2. It updates its state accordingly. 

3. It sends zero or more messages stamped 
with sender x and virtual send time 
t. 

The semantics of virtual time are extremely 
simple. 

If an event A has a virtual time less than 
that of event B, then the execution of A and 
B must be scheduled so that A appears to be 
completed before B starts. 

Even though A is earlier in virtual time than B, 
an implementation need not actually perform A 
before B. It may achieve better performance 
by scheduling A concurrently with B or even after 
it, as long as this fact is not detectable by any 
tests within the virtual time system. 

A consequence of this semantic rule is that if 
A and B have exactly the same virtual time (even 

if they occur at different places) they appear to 
be components of a single atomic operation that 
is indivisible with respect to events at other 
virtual times, because all events at earlier 
virtual times must appear to have been completed 
before either A or B starts, and all events at 
later virtual times must appear not to have start
ed until A and B are complete. Note that if A 
and B do have the same virtual time coordinate 
there are no restrictions on their scheduling. 

There are several degrees of freedom in the 
design of virtual time systems. The virtual time 
scale may be discrete or continuous (although here 
we assume continuous). It may be partially or 
totally ordered (we assume totally). It may be 
derived from real time or be independent of it (we 
will give examples of both). Virtual times may be 
visible to programmers to be manipulated as values, 
or they may be hidden from them and manipulated 
implicitly (exactly as with their spatial counter
parts, virtual addresses.) The virtual times 
associated with events may be explicitly calculated 
by user programs or assigned by fixed default rules 
(again, we give examples of both). And, there are 
many conventions that may be established to relax 
the restrictions of Rules 3 and 4. Each set of 
choices defines a different kind of virtual time 
systems, but all are similar enough that a unified 
approach to the theory and implementation is appro
priate. 

3. Comparison to other work involving artificial 
time scales 

Recently there have been a number of proposals 
published for synchronizing distributed systems 
using artificial time scales. We now briefly con
trast three of them with the virtual time paradigm 



and the Time Warp mechanism. 

3.1 Lamport's work 

Lamport [Lamport 78] seems to have been among 
the .first to recognize that our understanding of 
real-time temporal order, simultaneity and causal 
relations between events in a distributed system 
bears a strong resemblance to our understanding 
of the same concepts in special relativity. In 
particular he showed that the temporal relation
ships that are operationally definable within a 
distributed system form only a partial order in
stead of a total order, and that "concurrent" 
events are incomparable under that partial order. 
He further showed that it is always possible 
effectively to extend this partial order to a 
total order by defining a system of artificial 
clocks, one clock for each process, that label 
each event with a value from a totally ordered 
set in a manner consistent with the partial order. 

We can describe Lamport's work as starting 
from a particular execution of a distributed system 
and ending with an assignment of totally ordered 
clock values to the events of that execution. 
With virtual time we are doing the exact reverse. 
We assume that every event is labelled with a 
clock value from a totally ordered set (the vir
tual time scale) in a manner obeying Lamport's 
Clock Conditions. The problem addressed by the 
Time Warp mechanism is to find an execution that 
is both consistent with this labelling and that 
exhibits high concurrency. 

3.2 Reed's work 

In his study of distributed systems Reed 
invented the notion of pseudotime, which bears 
a strong superficial resemblance to virtual time 
but which has a very different motivation and 
implementation. Reed is primarily interested in 
implementing distributed atomic actions, and his 
work has been used as the basis for the design of 
multiversion timestamp order mechanisms for trans
action concurrency control in distributed data
bases. Virtual time, by contrast, has as its 
goal the creation of a temporal coordinate system 
in which distributed computation is embedded •. 
It was inspired by analogies to physical space 
and time and to virtual memory, Atomicity is not 
a goal per se, but it is a synchronization effect 
that can be arranged trivially within virtual time, 

Two actions occuring at different pseudo-
times may be committed in either order.. Reed's 
mechanism "attempts" to manage execution so that 
the action with the earlier pseudotime will be 
committed earlier, but this is only a heuristic. 
With bad luck or timing the action with the ear
lier pseudotime may have to be aborted and re
tried later with a later pseudotime after the 
other action is complete. But with virtual time 
there is no abortion and no retry with a new time
stamp; synchronization is done by rollback and 
actions .must be executed in virtual time order. 
One cannot specify in which order two atomic 
actions with different pseudotimes are to be 
executed; but one is forced to specify that order 
for different virtual times. One last difference 
is.worth noting. Because Reed's mechanism uses 
abortion and retry for synchronization, and there 

386 

is no limit to the number of times an action may 
have to be retried, starvation is a potentially 
serious problem. There is no corresponding hazard 
with virtual time and the Time Warp mechanism. 

3.3. Schneider's work 

Schneider has done a more general study of 
synchronization [Schneider 82], in which he pre
sents a general mechanism for implementing essen
tially any synchronization protocol in a distri
buted environment. His technique is based on 
broadcasting all synchronization-related messages 
("phase-transition messages") to every process in 
the system, with every process in turn braodcast
ing its acknowledgement to all other processes, 
thus making tham all aware of every synchroniza
tion in the system. All such messages and acknowl
edgements are timestamped with values from a valid 
clock system such as Lamport's so that all pro
cesses agree both on what synchronization messages 
have been broadcast, and on the logical order in 
which they were broadcast. Broadcasting all 
synchronization messages and acknowledgements is 
apparently logically equivalent to keeping syn
chronization information in a globally accessible 
shared memory. 

Under the assumption of reliable, order
preserving message delivery Schneider also shows 
that each process may make synchronization deci
sions (such as whether to proceed or stay blocked) 
locally, based on the set of "fully acknowledged" 
messages it has received. A message is considered 
full acknowledged at process P if P has received 
it as well as copies of the acknowledgements to 
it from every other process in the system. The 
importance of recognizing when a message m is 
fully acknowledged is that the receiver is then 
guaranteed that it will never again receive a 
message or acknowledgement with a timestamp ear
lier than that of m. 

Schneider's mechanism can be compared to 
virtual time in that it does assign temporal 
coordinates to some of the actions in a distri
buted system, namely the synchronization actions. 
But where the Time Warp mechanism is extremely 
"liberal", making synchronization decisions on a 
provisional basis and rolling back when they turn 
out to be wrong, Schneider's mechanism is extreme
ly "conservative", waiting to make such decisions 
until such time as it can be proved that they can
not be wrongl. One disadvantage of Schneider's 
mechanism is that it seems to be limited to systems 
with only a few processes; it does not scale up
ward smoothly to thousands of processes because 
of the prohibitive amount of message and acknowl
edgement processing inherent in mechanisms rely
ing on broadcast. The Time Warp mechanism seems 
to have no such barrier to indefinite scale-up. 

4. The Time Warp mechanism 

The Time Warp mechanism is defined without 
referenc~ to any underlying computer architecture 
and can run efficiently on many multiple processor 
systems, from a tightly coupled multiprocessor 
such as C.mmp[Wulf 81] or Cm*[Swam 77], to a local 
area network connected by Ethernet[Metcalfe 76]. 

1 This observation is due to J.C. Br-0wn. 



We assume that message communication is reliable, 
but we do not assume that messages are delivered 
in the order sent; in fact such a protocol would 
be wasteful because messages are not generally 
processed exactly in sending order. 

For correct implementation of virtual time 
in accordance with Rules 1-4, it is necessary and 
sufficient that at each process messages are ac
cepted in virtual receive time order and events 
are executed in virtual time order. It is un
necessary, and generally undesirable, for an im
plementation to require that all processes progress 
through virtual time at the same rate with re
spect to real time, or to require that at each 
instant of real time all processes must be ex
ecuting events of the same virtual time. In 
general, some processes may be ahead in virtual 
time and others may lag behind. It is not obvious 
how this criterion can be met in an efficient im
plementation because messages will not generally 
arrive at their destinations in virtual receive 
time order. Furthermore it is impossible for a 
process, on the basis of local information alone, 
to block and wait for the message with the "next" 
virtual receive time because, since we assume 
virtual times to be real numbers, no matter which 
one is presumed to be next it is always possible 
that another message with an earlier virtual 
receive time will arrive later. This is the 
central implementation problem that the Time Warp 
mechanism addresses. 

The Time Warp mechanism has two major parts, 
the local control mecha:nism, concerned with mak
ing sure that events are executed and messages 
received in correct order (providing a "weakly 
correct" implementation of virtual time), and the 
global control mechanism, concerned with global 
issues such as space management, flow control, 
I/O, error handling and termination detection 
(contributing to its "strong correctness"). We 
discuss these in turn. 

4.1. The local control mechanism 

Under the Time Warp mechanism the world is 
viewed as a collection of processes that communi
cate with one another via messages. Although 
abstractly there is a single global standard of 
virtual time, there is no global virtual clock 
variable in the implementation that is accessible 
to processes; instead each process has its own 
local virtual clock variable that it may read. 
At any moment some local virtual clocks will be 
ahead of others, but this fact is invisible to 
the processes themselves because they can read 
only their own virtual clock. The virtual send 
time of a message is always copied from the 
sender's virtual clock. The virtual receive 
time may be assigned by any one of a variety of 
conventions • All interactions between pro
cesses are by message, including such things 
as input/output and process creation. 

Because· it is impossible to wait for the 
"next" message each process executes continuously, 
processing those messages that have already 
arrived in increasing virtual receive time order 
as long as it has any messages left, All of its 

387 

execution is provisional, however, as it is con
stantly gambling that no message will every arrive 
with a virtual time stamp less than the one stamp
ed on the message it is now processing. As long 
as it wins this bet execution proceeds smoothly. 
The novelty of the Time Warp mechanism is that 
whenever the bet is lost the process must pay by 
rolling back. We might describe the situation 
differently by saying that each process is con
stantly doing a "lookahead" in its input message 
queue, and in any kind of lookahead scheme there 
are certain comparatively infrequent contingen
cies that require the undoing of some work al
ready accomplished. Lookahead is successful how
ever, when the overhead of occasional undoing is 
outweighed by increased performance the rest of 
the time.2 

In most practical situations there will be 
more processes than processors, so only a subset 
of the processes can run at any one moment. The 
natural scheduling rule is to always run those 
processes whose local virtual clocks are farthest 
behind, On a multiprocessor this means always 
running the n farthest behing processes, where n 
is the number of processors available. On a net
work it means always running, on each processor, 
the farthest behing process residing on that pro
cessor. 

A process has a single input queue in which 
all arriving messages are stored in order of in
creasing virtual receive time. Ideally the ex
ecution of a process is simply a cycle in which it 
executes its events in increasing virtual time 
order. An event consists fo the following three 
actions executed sequentially. 

1. A process receives the message from the 
input queue whose virtual receive time 
is the same as the time in its local 
virtual clock. 

2. It performs the actions appropriate in 
response to the message, 

3. It updates its local virtual clock to 
the time of the next message in the in
put queue (or to + infinity if there 
is none). 

4. and repeats (or "terminates" if the 
virtual clock reads oo). 

Whenever there is no next message a process ter
minates, but its state is not destroyed because 
it may later roll back and unteY'171inate. This 
ideal scenario applies as long as no message ever 
arrives so "late" that the receiver's virtual 
clock has a value greater than the virtual receive 
time stamped on the message, i.e. arrives with a 
virtual receive time in the "past". But this is 
bound to happen occasionally for any of several 
reasons, e.g. because the sender's virtual clock 
has not advanced as far as the receiver's or be
cause of transmission delays in the network trans
port mechanism. While the incidence of late mes
sages may be low (and can be made as low as desir-

2 I am indebted to Tim Standish at Irvine for 
this characterization. 



ed by introducing artificial delays), it cannot 
be reduced to zero because it is fundamentally de
pendent on the vagueries of computation speeds and 
transmission delays. 

Whatever the reasons for the late arrival of 
a message, the semantics of virtual time demands 
that messages be received by each process strictly 
in virtual receive time order, and the only way 
to accomplish this is for the receiver to roll 
back to an earlier virtual time, cancelling all 
intermediate side-effects, and begin to execute 
forward again, this time receiving the late 
message in its proper sequence. 

Rollback in a distributed environment is 
complicated by the fact that the process in ques
tion may have sent any number of messages to other 
processes, causing side effects in them and lead
ing them to send still more messages to still more 
processes, and so on. Some of those messages may 
have requested output or some other irreversible 
action (dispense money, launch missile). Some of 
them may be physically in transit and therefore 
out of the system's control for finite but arbi
trary durations. The paths followed by these 
direct and indirect messages from process to pro
cess may not form a tree, but may converge or 
even contain cycles, leading to worries about 
infinite loops or deadlock in any rollback mechan
ism. Nevertheless, all such messages, direct or 
indirect, in transit or not, causing output or 
not, must be effectively "unsent" and their in
direct side effects, if any reversed. The Time 
Warp rollback mechanism is able to accomplish all 
this quite efficiently, and without stopping any 
part of the system. 

4.2 Antimessages and the rollback mechanism 

The name "Time Warp" derives from the fact 
that the virtual clocks of different processes 
need not agree, and the fact that they go both 
forward and backward in time. Over a lengthy 
computation each process may roll back many times 
while generally progressing forward, The fact that 
virtual clocks are sometimes set back does not 
violate our intention that "abstractly a virtual 
clock always progresses forward (or at least never 
backward)" because rollback is completely trans
parent to the process being rolled back. Pro
grammers can write software without paying any 
attention to the possibility of messages arriving 
late, and even without any knowledge of the issue 
at all, just as they can write without any atten
tion to, or knowledge of, the possibility of page 
faults in a virtual memory system. 

To understand the rollback mechanism we must 
understand the nature of processes, messages and 
antimessages. In Fig. 4.1 we see the structure 
of a process named A. The blank fields in the 
figures are fields whose values are irrelevant in 
this description. A process is composed of~ 

1. 

2. 

a process name (virtual space coordinate), 
which must be unique in the system. 

a local virtual clock, which in the fig
ure reads 181, indicating that the mes
sage with receive time 181 is being pro
cessed. 

388 

Process Name {Virtual Space Coordinate) 

Virtual Clock (Virtual Time Coordinate) 

._I _ _. _ __. __ ._...JI .CUrnnt State 

State Queue 

~ __ 9_5_11--1-0_1_,l--1_21 __ t_1_4_2_,l--1_s_4-l'virtual time 

1-.L'-'''-'-' _....._, .._,_,,u.._.,_., ..... ,_. ....... , .......... • ,.. _ _.,......,,_.,_._old state 

Input Queue 

107 121 142 154 181 195 virtual receive ti.lie 

A A A A A A receiver 

virtual send time 

sender 

p p p ~ ~ ~ sign 

aessage text 

Output Queue 

virtual receive time 

receiver 

107 142 142 154 virtual send time 

A A A A sender 

P" i=:J ~ ~ sign 

message text 

Figure 4-1: Process A with input queue, output 
queue and state queue. 

Process - (Virtual lpace Coariiute) 

Virt. .. I Cloct. (Virtual TiM Coarif.aote) 

Cllrrent State 

:"itat.e Queue 

1-1-.-•:-.+l-1_
1 
o-~-.-1-.-1:_1_1 -11 :::-~ u-

l11Put Queue 

107 121 135 1M 111 115 Yirt.ual roceive tla 
1-----+----+----+----+----+----+----t 

A A A A A A receiver 
1-----t-----t-----+----+-----t----t-----1 

A 

virtual send tbte 
1-----t---t-----+----+-----t----t-----1 

• 

Output Queue 

107 142 1'2 

A A A 

IM 

A 

sen4ei-

sip 

Tirtual receive t.be 

receiver 

Yi:rtual - time 

sender 

p p 1-:J sip 

Figure 4-2: 

•••aa:e text 

Alltlasaqes 

Process A rolls back to time 135 
and sends antimessages. 



3. a state which in general is the entire 
data space of the process, including 
its execution stack, its own variables, 
and its program counter. We show here 
only a few own variables to represent 
the whole state. 

4. a state queue, containing saved copies 
of the process's recent states. As we 
shall see when we discuss the global 
control mechanism, it is not necessary 
to have states saved all the way back to 
the beginning of virtual time, but there 
must be at least one state saved that is 
older than global virtual time (GVT). 
In this figure GVT is assumed to be 100. 

5. an input queue containing all recent 
incoming messages sorted in order of 
virtual receive time. Some of these 
messages have already been received 
because their virtual receive times are 
less than 181. Nevertheless they are not 
deleted from the queue because it may 
be necessary to roll back and reprocess 
them. Other messages with virtual re
ceive times greater than 181 have not 
yet been received, or else they have been 
received and "unreceived" and equal number 
of times. Only incoming messages whose 
virtual send time is greater than or equal 
to GVT must be saved. 

6. an output queue containing copies of the 
messages it has recently sent, kept in 
virtual send time order. They are needed 
in case of rollback, for it will then be 
necessary to know which messages have 
been sent and must be "unsent". Only 
messages whose virtual send time is 
greater than or equal to GVT need be 
saved. 

Consider now the situation that arises if a 
message with virtual receive time 135 arrives, as 
in Fig. 4.2. It is apparent that all of the work 
that was done by this process since virtual time 
135 (in fact, since 121, the latest event earlier 
than 135) must be undone by rollback. The first 
step in the rollback mechanism is simply to search 
the state queue for the last state A was in before 
time 135 and restore it. We also restore 135 as 
the value in A's local virtual clock. After this 
we can discard from the state queue all states 
saved at or after time 135 and start A executing 
forward again. However, we still must correct 
for the fact that between time 135 and 181 A sent 
several messages to other processes that must now 
be "unsent". We accomplish this through an ex
tremely simple device: antimessages. 

Every message has an antimessage that is ex
actly like it in format and content except in one 
field, called its sign. Two messages identical 
except for opposite signs are called antimessages 
of one another. All messages sent by user pro
grams have a positive (+) sign; their antimes
sages have a negative (-) sign and are only 
created during rollback. Negative messages are 
manipulated exactly as positive messages are. 
When a negative message is sent it is enqueued 

389 

in the output queue of the sender according to its 
virtual send time, and a copy is delivered to the 
destination process and enqueued in its input 
queue according to its virtual receive time. A 
negative message causes a rollback at its destin
ation if its virtual time is less than or equal 
to the receiver's virtual clock time, just as a 
positive message would. 

What makes antimessages so useful is the 
pecular queueing discipline they follow. When
ever a message (positive or negative) and its 
antimessage occur in the same queue, they immedi
ately annihilate one another. Thus, the result 
of enqueueing a message in the output or input 
queue of a process can be to shorten it by one 
rather than lengthen it. It does not matter which 
message, negative or positive, arrives at the 
queue first; if and when the second one arrives 
the annihilation takes place. It is perhaps 
unnecessary to point out that the behavior of 
messages and antimessages is reminiscent of the 
behavior of particles and antiparticles in 
physics (except for the fortunate lack of gamma 
rays). 

The rollback of process A is completed simply 
by sending antimessages for all of those messages 
that it sent between times 135 and 181. In each 
case a copy of the negative message is first en
queued in the output queue of A, causing annihila
tion of the positive copy that was there. The 
result is that the A now has no record that those 
messages, positive or negative, ever existed, and 
it is truly in the state it would have been if 
the message with virtual receive time 135 had 
arrived in its proper order. Antimessages are 
also delivered to their desintations with the 
following possible effects. (a) if the original 
(positive) message has arrived but has not yet 
been processed, then the negative message, having 
the same virtual receive time, will also be in 
the virtual future of the destination and will 
not cause a rollback. It will, however, cause 
an annihilation, leaving the system with no record 
that either message ever existed, exactly as we 
would want if the message were to be truly "un
sent". (b) Another possibility is that the origi
nal positive message has a virtual receive time 
that is now in the past with respect to the re
ceiver's virtual clock, meaning that it and 
possibly others with later virtual receive times 
have already been processed, causing side effects 
on the receiver's state, and causing the sending 
of more messages to a third level of processes. 
In this circumstance the negative message, having 
the same virtual receive time as the positive 
one, will also arrive in the receiver's virtual 
past and will cause it to roll back to the vir
tual time when the positive one was received. 
It will also annihilate with the positive one, 
so that when the receiver starts executing for
ward again the situation will again be as though 
neither message had ever existed. As part of this 
secondary rollback more antimessages will be sent 
to the third level of processes, and the same 
actions we have been describing will proceed re
cursively. (c) There is a third case as well, 
namely that the negative mess'age arrives at the 
destination before the positiv0 one. In this case 



it is enqueued as usual, and will eventually be 
annihilated when the positive message finally 
arrives. If the negative message is actually re
ceived by the destination process before it is 
annihilated by the positive message, the receiver 
may take any action at all, e.g. a no-op. Any 
such action will eventually be rolled back when 
the positive message arrives. 

This recursive antimessage/rollback protocol 
is extremely robust, and works correctly under all 
possible circumstances. The levels of indirection 
may be to any depth, and there may even be cir
cularity in the graph of antimessage paths with 
no ill effects. The rollback process need not be 
atomic, and indeed many interacting rollbacks may 
be going on simultaneously with no special syn~ 
chronization. There is no possibility of dead
lock, and the system does not have to be stopped. 
The worst case is that all processes in the system 
roll back to the same virtual time as the original 
one did, and then proceed forward again, 

Obviously the rollback mechanism can be ex
tremely costly in the worst case, but here are a 
number of arguments suggesting that in a realistic 
system it is not nearly as costly on the average 
as one might imagine, First, most systems operate 
in a pattern where each event involves one input 
message and one output message. Hence, the number 
of antimessages directly sent by any one rollback 
is approximately the number of events rolled-back 
over. There is reason to believe that most pro
grams obey the terrrporal locality principle, namely 
that most messages arrive in the future according 
to the local virtual clock at their destination, 
thus not causing any rollback at all, and those 
that arrive in the virtual past tend strongly to 
arrive in the recent past so that few events are 
rolled back. Even where a rollback causes several 
antimessages to be sent we can expect that most 
of them will not ~ause secondary rollbacks 
simply because they each have virtual receive 
times greater than or equal to that of the 
message that caused the origina1 rollback,. and 
generally the higher the virtual receive time of 
a message, the less likely it is to cause roll
back. The extent to which the temporal locality 
principle applies is obviously application--Oepen~ 
dent and can only be verified empirically. One 
final argument is important: the "cost" of this 
king of synchronization is only the cost of the 
rollback and antimessage overhead; the time it 
took to perform the computation being rolled back 
is not part of the cost, because the only alter
native would have been to be blocked for the same 
length of time anyway. 

It is important in virtual time systems that 
process creation and input/output be done by 
message so that they may be undone by antimessages 
just as any other side effects. The Time Warp 
mechanism is thus able to uncreate, unterminate, 
unerr, uninput and unoutput. We will return to 
these subjects in the next section. 

4.3 The global control mechanism 

The local control part of the Time Warp 
mechanism leaves a number of critical issues un-. 
resolved. How can we be sure that amidst all of 
the rollback activity the system makes progress 

390 

globally? How can global termination be detect
ed? How can errors and I/O be handled in the 
face of rollback? How can we avoid running out 
of memory when the local control mechanism calls 
for saving two copies of all messages and several 
copies of processes•·states? The global control 
mechanism resolves all of these issues and 
several others. 

The central concept of the global control 
mechanism is global virtual time (GVT). Global 
virtual time is a property of an instantaneous 
snapshot of a virtual time system, and is de
fined to be the greatest lower bound of the set 
of all virtual times shown by all virtual clocks 
in this or any possible future shapshot. (See 
[Jefferson 83a] for detailed discussion of this 
definition, and for proof that GVT is well-de
fined in the case of infinite computations.) 

GVT serves as a floor for the virtual times 
to which any process can ever again roll back. 
It can be proved [Jefferson 83a) that the theo
retical definition of GVT for an instantaneous 
snapshot can be characterized operationally as 
the minimum of (a) all virtual times in all local 
virtual clocks in the snapshot, (b) all virtual 
send times in unreceived messages in the input 
queues of the snapshot, and (c) all virtual send 
times in messages that have been sent but not yet 
acknowledged (and may therefore be in transit 
at the moment of the snapshot). This character
ization leads to a fast, distributed GVT-estima
tion algorithm [Jefferson 83a) that takes O(d) 
time, where d is the delay required for one 
broadcast to all processors in the system. The 
GVT algorithm runs concurrently with the main 
computation and returns a value that is between 
GVT at the time of the start of the algorithm 
and GVT at the time of its completion. It thus 
gives a slightly out-of-date value for GVT, which 
is fundamentally the best one can do without 
stopping the entire system. 

It is a simple consequence of the' definition 
that GVT never decreases, because any quantity 
defined to be the minimum of all future values 
of another quantity must be nondecreasing. In 
fact, we can prove that if every event terminates 
(and if a few other conditions hold [Jefferson 
83a]) then GVT eventually increases because the 
scheduling rule gives priority to the farthest 
behind processes. This nondecreasing property 
makes it appropriate to consider GVT as the 
virtual time for the system as a whole, and to 
use it as the measure of system progress. It 
measures how much of the system's activity is 
final and complete. Since GVT is a global pro
perty of an instantaneous snapshot there can be 
no way for a process to have access to its "cur
rent" value, but it has no logical need for that 
information because its own progress is measured 
by the value in its local virtual clock. 

During the execution of a virtual time sys
tem the Time Warp mechanism must calculate GVT 
every so often, The actual frequency is a trade
off: high frequency produces faster response time 
and better space utilization (because of more 
frequent storage reclamation, to be discussed 
later) but also lower processor utilization and 



slower progress (measured for example in units of 
virtual time per second of real time). Except for 
the space savings this is exactly the same trade
off we are familiar with in time-slicing operating 
systems when we adjust the length of the time 
quantum. 

The next few sections describe the uses of 
GVT to control virtual time systems. 

4.3.l. Normal termination detection 

Termination detection in distributed systems 
has been an active field of research for some 
time now, with numerous papers published on the 
subject, e.g. [Dijkstra 80]. With the Time Warp 
mechanism, however, the detection of termination 
of virtual time systems is just one of several 
global problems defined by and solved in terms 
of GVT. Because we have assumed the processes 
do not spontaneously send messages we know that 
when a process runs out of messages it terminates 
normally and its local virtual clock is set to 

When GVT reaches 00 it means that all local 
virtual clocks read 00 and no messages are in tran
sit, so no process can ever again "unterminate" 
by rolling back to a finite virtual time. Thus, 
whenever the periodic GVT calculation returns 
00 , the Time Warp mechanism signals termination. 

4.3.2. Memory management and flow control 

One of the features of the Time Warp mechan
ism is that it is possible to give simple, natural 
algorithms for managing memory. In addition to 
the memory used by the code and current data of 
processes (which the programmer is responsible 
for managing) there are four kinds of memory 
overhead to be managed. 

1. Old states in the state queues. 

2. Messages stored in output queues. 

3. "Past" messages (in input queues) 
that have already been processed. 

4. "Future" messages (in input queues) 
that have not yet been received. 

The first three classes of storage, used only to 
support rollback, are all managed similarly. Any 
message, input or output, whose virtual receive 
time is less than GVT can be discarded, as it is 
impossible to roll back to a virtual time when 
it might be either re-received or cancelled. 
Similarly, for each process all but one saved 
state older than GVT can be discarded. This 
recycling of outdated memory is called fossil 
collection. 

Managing the fourth class of storage, that 
containing unreceived messages, is essentially 
the flow control problem common to all distributed 
systems. But because we assume every message is 
stamped with the virtual coordinates of the send
ing and receiving events, and because rollback is 
possible, the flow control problem has more struc
ture than it usually does and a new approach is 
warranted. In most environments, where the only 
synchronization tool is process blocking, flow 
control protocols act as a valve to limit the flow 
of messages from sender to receiver. The receiver 

391 

must be careful never to accept too many messages, 
because every message it accepts responsibility 
for it must buffer. But under the Time Warp 
mechanism, if a receiver's memory is full of input 
messages he can always make space by sending back 
an unreceived message. The original sender must 
then roll back to the state it was in when it sent 
the message, and it will resend the message as it 
executes forward again. The natural message to 
send back is the unreceived message having the 
latest virtual send time (regardless of where it 
came from). 

Returning a message to the sender is the 
message-analog of process rollback; they are 
obverse and reverse of the same coin. We do not 
have space here to give more detailed arguments 
in favor of this protocol, but it seems to offer 
very efficient and simple flow control for virtual 
time systems. Of course this hypothesis also 
needs empirical verification. 

4.3.3. Error detection 

When a process commits a run-time error its 
state must be marked ERROR. This should not 
necessarily cause termination of the entire com
putation because the erring process might roll 
back and "unerr", sending an antimessage for the 
message containing the error indication. An 
error is only "permanent" if it is impossible for 
the process to roll back to a virtual time ear
lier than that of the error. 

A process in an ERROR state keeps executing, 
but all successive states are also ERROR states. 
If and when an ERROR state is fossil-collected 
(because its virtual time is older than GVT) then 
no rollback will ever undo the error. It should 
then be reported to some error policy software 
and/or to the user. 

4.3.4. Input and output 

When a process sends a command to an output 
device or any other agent external to the Time 
Warp mechanism it is important that the physical 
output activity not be committed immediately 
because the sending process may roll back and 
cancel the output. The criterion for deciding 
when a command to an output process can actually 
be performed is that GVT must exceed the virtual 
receive time of the message containing the com
mand. After that point no antimessage for the 
command can ever be generated, and the output can 
be physically committed. 

This policy is implemented in the Time Warp 
mechanism by designating certain processes as 
output processes. Such processes have null bodies 
and act primarily as input queues. If a message 
to an output process is not annihilated by an 
antimessage it will remain there until it is 
fossil-collected, at which point it is known that 
no rollback can ever occur to cancel the output. 
Fossil collection then, in addition to recovering 
memory and detecting errors, must also physically 
commit all output action. Similar considerations 
hold for input. 

4.3.5. Snapshots and crash recovery 

The problem of taking a consistent, global 



snapshot that is useful for continuation in the 
event of a crash arises with all distributed sys
tems [Russell 80]. A snapshot at a single instant 
of real time is, of course, theoretically impos
sible to implement because we cannot have perfect
ly synchronized real time clocks [Lamport 78]. 
In a virtual time system a snapshot of all pro
cesses and the relevant messages at a particular 
virtual time (which must be taken at different 
real times for different processes) forms a 
natural and meaningful snapshot of the system that 
is easily implementable. A full (nonincremental) 
snapshot of the system at virtual time t can be 
constructed by a procedure in which each process 
snapshots itself as it passes virtual time t in 
the forward direction, and "unshapshots" itself 
whenever it rolls back over virtual time t. Whe;1-
ever GVT exceeds t the snapshot is complete and 
valid. A variation on this procedure can provide 
an incremental snapshot facility. Because of 
space limitations further details must be post
poned to a future paper. 
5. Examples of virtual time systems 

A wide variety of distributed systems can be 
viewed as virtual time systems. In the next three 
subsections we give examples to illustrate the 
range of the concept, and in particular, we show 
how both the distributed discrete event simula
tion problem and the distributed database con
currency control problem are instances of the 
virtual time paradigm. 

5.1. Example 1: Distributed discrete event 
simulation 

The most extensively studied virtual time 
system is distributed discrete event simulation, 
in which every process represents an object in 
the simulation and virtual time is identified 
with simulation time. The fundamental operation 
in discrete event simulation is for one process 
to schedule an event for execution by another at 
a later simulation time. In a virtual time sys
tem we emulate this action simply by having the 
first process send an event message to the second 
process with its virtual receive time equal to 
the event's scheduled simulation time. The re
quirement that each process must receive messages 
in virtual receive time order is equivalent to the 
fundamental semantic requirement of simulation 
that events be executed in simulation time order. 
Simulation is clearly one of the most "general" 
applications of the virtual time paradigm because 
the virtual times (simulation times) of events 
are completely under the control of the user, 
and because it makes use of almost all of the 
degrees of freedom allowed in the definition of 
a virtual time system. Any mechanism for general 
distributed discrete event simulation can be used 
as an implementation of virtual time. Chandy and 
Misra in [Chandy 81] give a simulation method 
based on blocking and distributed deadlock detec
tion. See [Jefferson 82] for a detailed comparison. 

5.2. Example 2: Distributed database concurrency 
control 

In a distributed database the fundamental 
synchronization problem is to make distributed 
transactions appear to be atomic with respect 
to other transactions. To accomplish this effect 
in a virtual time system it is only necessary to 

392 

do two things. First, the entire database system, 
including all transaction software, management 
software, and even the data, must be cast as a 
collection of processes communicating by message. 
In particular, data items must be viewed as 
stunted processes that respond primarily read and 
write messages. Second, the system must ensure 
that each transaction must execute within a band 
of virtual time that does not overlap with the 
bands allocated to other processes. This can be 
done simply by using the real time of a trans
action's initiation as the high order bits of the 
virtual time band allocated to it (with the 
place of intiation as middle-order bits to break 
ties). The apparent indivisibility execution 
of transactions follows directly. A full de
scription of virtual time as the basis of data
base concurrency control can be found in 
[Jefferson 83b]. 

This assignment of virtual time bands to 
transactions guarantees not only that they are 
atomic, but that they are apparently executed 
(committed) strictly in virtual time order, i.e., 
in the order of their initiation. This is a 
stronger scheduling constraint than the usual 
serializability criterion. Of course, although 
the transactions appear to be executed sequen
tially in virtual time order, they are actually 
executed by the Time Warp mechanism concurrently, 
or in any convenient order. 

Virtual time used for database concurrency 
control is quite different from that used for 
distributed simulation. First, virtual time 
is derived from real time in the database example, 
whereas it is completely independent of real time 
in the simulation case. Second, virtual time 
values in simulation are actually manipulated by 
user software as ordinary data. In databases 
the behavior of the system is time-independent 
and the virtual times are presumably "hidden" 
from most levels of DBMS software. 

In many respects the Time Warp mechanism 
applied to database concurrency control is simi
lar to multiple-version concurrency control 
mechanisms [Papadimitriou 82] in that it main
tains several successive versions of each data 
item and it has the ability to achieve serial
izability in spite of transaction collisions 
because it can satisfy a read request that is 
time-stamped earlier than the "current" version 
of the data by simply accessing a saved earlier 
version, But when a multiple-version mechanism 
is faced with a write request that is time
stamped earlier than the current version of the 
data there is no choice but to abort the entire 
transaction that the write request is part of 
(and possibly some other transactions in progress 
as well), and to restart it with a later time 
stamp. In situations where there is a high pro
bability of transaction collision this leads to 
alot of wasted computation and to the possibility 
of starvation. The Time Warp mechanism, however, 
never aborts a transaction. It may roll back 
parts of several transactions when a collision 
occurs, but the amount of the computation un
wound during a collision is limited to that part 
that would be causally affected if requests were 
handled out of time stamp order • 



Other parts of the colliding transactions that are 
not functionally dependent on the data involved 
in the collision are not rolled back. 

5.3. Example 3: Virtual circuit communication 

One of the main functions of a network com
munication protocol is to provide a virtual cir
cuit facility, a buffering and synchronization 
mechanism that, for each sender-receiver pair, 
delivers messages to the receiver in the same 
order they were sent. This effect can be accom
plished automatically in a virtual time system 
if the virtual receive time of a message is de
fined to be the real time of its sending. The 
requirement that messages be processed in virtual 
receive time order is then the same as requir-. 
ing them to be processed in sending order. Im
plementing virtual circuit communication as a 
virtual time system does not confer any particular 
speed or concurrency benefits over other (simpler) 
implementations, but it does show something of the 
breadth of the virtual time concept. There may, 
however, be important practical benefits in en
vironments where the ability to checkpoint a dis
tributed system is required. 

6. Extended analogy to virtual memory 

Now that we have presented the outlines to 
the theory we can explain the use of the term 
"virtual time". I see virtual time as the natural 
temporal analog of virtual memory, and have been 
consciously guided by the lessons of virtual 
memory systems from the beginning of this work. 
There is a compelling extended analogy between the 
two which may lend some credibility to this other
wise unorthodox approach to distributed computa
tion. Because of space limitations we will pre
sent the comparison as a sequence of parallel con
cepts in which space and time play almost sym
metric roles. 

- A page is analogous to an event. The 
virtual address of a page is its spatial 
coordinate;· the virtual time of an event 
is its temporal coordinate. 

- A page in memory at time t is analogous 
to an event in the future of process x; 
a page out of memory at time t is analo
gous to an event in the present or past 
of process x. 

Accessing a page in memory is comparatively 
inexpensive, but accessing a page out of 
memory causes a very expensive page fault. 
Analogously, sending a message into the 
virtual future of a process is comparative
ly inexpensive, while sending a message 
into its virtual past causes a very ex
pensive time fault, i.e., rollback. 

- In view of this it is only cost-effective 
to execute programs under a virtual memory 
system that obey the spatial locality 
principle, i.e., that most memory accesses 
are to pages already resident in memory 
so that page faults are rare. Likewise, 
it is only cost-effective to run programs 
under a virtual time system that obey the 
temporal locality principle, i.e., that 
most messages arrive in the virtual future 

393 

of the destination processes so that time 
faults are rare. 

- Memory mapping converts virtual addresses to 
real addresses at different times. Time 
mapping (also known as scheduling!)maps 
virtual times to real times; the same virtual 
time may be scheduled at different real times 
in different processes. 

- The only acceptable memory maps are the one
to-one functions because they preserve dis
tinctness, i.e., map distinct virtual 
addresses to distinct real addresses. The 
only acceptable time maps are the strictly 
increasing functions because they preserve 
distinctness and order, i.e., map distinct 
virtual times into distinct real times, 
earlier virtual times into earlier real 
times, and later virtual times into later 
real times. 

The analogy between virtual time and virtual 
memory can be greatly extended (working set, 
thrashing, pointer, data structure) and it is 
very thought-provoking to do so. It suggests 
that the concept of virtual time can provide the 
same kind of clean, efficiently implementable 
abstraction of the time resource in a distributed 
environment that virtual memory has provided for 
space resources, 

7. Future work 

There is still a tremendous amount of work 
to be done to follow up on this research. For 
example, there is very little empirical or analy
tical work published on the performance of systems 
incorporating rollback; this is the most important 
immediate issue. In the longer term, a program
ming language for concurrent systems with virtual 
time as its semantic basis seem reasonab1e. It 
should also be possible to incorporate virtual 
time into specification languages designed for 
specifying and verifying the synchronization re
quirements of concurrent systems. Finally, it 
seems natural to suppose that a generalization 
of both virtual memory and virtual time--virtual 
spacetime--should be "out there", waiting to be 
explicated. The field seems wide open. 

8. Acknowledgements 

I would like to thank Henry Sowizral for 
many hours of discussion during our co-invention 
of the Time Warp mechanism, and the Rand Corpor
ation for providing the initial impetus to study 
the distributed simulation problem, which even
tually led to this work. 

9. References 

[Bernstein 81] Bernstein, Philip A. and Goodman, 
Nathan, "Concurrency Control in Distributed 
Databases Systems," Computing Surverys 13, 
June 1981. 

[Bernstein 82] Bernstein, Philip A. and Goodman, 
Nathan, "A Sophisticate's Introduction to 
Distributed Database Concurrency Control," 
in Proceedings of the Eight International 
Conference on Very Large Databases (VLDB), 
September 1982. 



[Chandy 81] Chandy, K.M. and Misra, J., "Asyn
chronous Distributed Simulation via a Sequence 
of Parallel Computations," CACM 24 (11), April 
1981, 198-206. 

[Dijkstra 80] Dijkstra, Edsger W. and Scholten, 
C.S., "Termination Detection for Diffusing 
Computations," Information Processing Letters 
11, (1), August 1980. 

[Jefferson 82] Jefferson, David R. and Sowizral, 
Henry A., Fast Concurrent Sirrrulation Using 
the Time WaPp Mechanism, Part I: Local Contra~ 
The Rand Corporation, Santa Monica, Cal., 
Technical Report, December 1982. 

[Jefferson 83a] Jefferson, David R. and Sowizral, 
Henry A., Fast Concurrent Sirrrulation Using 
the Time WaPp Mechanism, Part II: Global 
Control, The Rand Corporation, Santa Monica, 
California, Technical Report, August 1983. 

[Jefferson 83b] Jefferson, D. and Motro,A., The 
Time WaPp Mechanism for Database Concurrency 
Control, University of Southern California, 
1983. 

[Lamport 78] Lamport, Leslie, "Time, Clocks, and 
the Ordering of Events in a Distributed Sys
tem," CACM 21, (7), July 1978, 558-565. 

[Metcalfe 76] Metcalfe, R.M. and Boggs, D.R., 
"Ethernet: Distributed Packet Switching for 
Local Computer Networks," CACM 19, (?), 
July 1976, 395-404. 

[Papadimitriou 82] Papadimitriou, Christos H. and 
Kanellakis, Paris C., "On Concurrency Control 
by Multiple Versions," in Conference on 
Principles of Database Systems (PODS), ACM, 
1982. 

[Russell 80] Russell, David L., "State Restoration 
in Systems of Communicating Processes," 
IEEE Transactions on Software Engineering 
SE-6, (2),March 1980, 183-194. 

[Schneider 82] Schneider, Fred B., "Synchroniza
tion in Distributed Programs,"" ACM Trans
actions on Programming Languages and Systems 
4, (2) April 1982, 179-195. 

[Swan 77] Swan, R., Fuller, S.H. and Siewiorek, 
D., "CM*--A modular, multimicrocomputer," 
in Proceedings 19?? National Computer Con
ference, pp. 637-644, AFIPS Press, Baltimore, 
MD, 1977. 

[Wulf 81] Wulf, W.A., Levin, R. and Harbison, 
S.P., HYDRA/C.mmp: An Experimental Computer 
System, McGraw-Hill, New York, NY, 1981. 

394 



PROCESS MANAGEMENT OVERHEAD IN A SPEEDUP-ORIENTED MIMD SYSTEM 

Ruknet Cezzar 
The City of New York 

Human Resources Administration 

Abstract -- The effects of Process Management 
Software (PMS) on the throughput of ar, MDt,D machine 
are studied. Queueing-theoretic models are used 
to predict the effective throughput where only the 
running of PMS is taken into account. Performance 
problems with Centralized PMS, a method of decen
tralization through multiple ready lists, and the 
required extent of decentralization are discussed 
and analyzed. 

As a way of avoiding centralized mechanisms 
and the resulting performance bottleneck condi·
tions, a policy is studied where i) multiple ready 
lists are used, ii) processors access the ready 
lists randomly and uniformly. The effective 
throughput for this policy is obtained by an approx
imate solution to a highly complex closed queueing 
system. This randomized-·access policy is shown to 
achieve effective throughputs almost linear in n, 
for an n-processor MIMD system. The policy is also 
shown to achieve speed up factors very close to n, 
regardless of how large n is. 

l. Introduction 

An MIMD machine is a tightly-coupled system 
in which a large number of processors share primary 
memory, and perform parallel computations in a 
cooperatively-tasked manner. If contention for 
shared computing resources and the processing over-· 
head associated with the management of concurrency 
are minimized, high computational speeds can be 
achieved. 

This paper deals with the performance of 
Process llanagement Software (PMS) for achieving 
high throughput on the assumption that performance 
issues at the architectural level have been re
solved. PM3 overhead and its minimization are dis
cussed and analyzed. Assuming that the only 
performance overhead is the running of PMS; 
parallelization of PMS to achieve nearly constant 
processor utilization, (i.e., speedun factors very 
close to n for an n-processor system) is also 
studied. 

The architectural features of an MIMD machine 
which are relevant to the analyses in this paper are: 

- Identical processors, 

Uniform access to common memory, where no 
processor is favored over the others; 

Uniform sharing of peripherals and secondary 
storage, in a way similar to the sharing of 
primary memory. 

2. The Process Management Software 

The PMS of an MIMD machine has the following 
functions: 

0190-3918/83/0000/0395$01.00 © 1983 IEEE 395 

David Klappholz 
Polytechnic Institute of New York 

Computer Science Division 

- Creating riroceoses, 

- Putting processes to sleep, 

- Waking processes up, 

- Assigning processes to processors, 

- Destroying processes. 

The PMS will consist of executive code and 
the system tables referenced by that code. The 
system tables are: i) Ready List(s) which con
tain the state vectors of processes ready for 
processor assignment; ii) Blocked Lists which 
contain the state vectors of processes blocked 
for shared resources. 

In a centralized PMS there is one global 
ready list, and its use by the processors requires 
mutual exclusion. 

In such a PMS, there is a degradation of 
effective throughput as the number of processors 
becomes large. In what follows we will study the 
extent of this degradation as well as the per
formance of PMS when it is decentralized through 
the use of multiple ready lists. 

3. The Throughput Models 

In queueing-analytic models, the processors 
are treated as active elements sharing the ready 
lists as resources. The throughput is measured in 
number of user-level instructions per unit time. 
This is the "effective" throughput which indicates 
the work done by the processors while not engaged 
in ready list access. System-software overhead, 
other than those associated with ready list 
accesses, is not taken into account. The effec
tive throughput results may be interpreted accord
ingly. 

The queueing models yield the average (expect
ed) number of processors in normal execution (user
state). Multiplying this by the rated speed, same 
for all processors, gives the effective throughput. 
The relationship of this to other common perform
ance measures for multiple-processor systems is 
given below. Let: 

s = Rated speed of each processor. 

Avg. number of processors in user-state 
in an n-processor MIMD system. 

Finishing time of a computation, when 
run on an n-processor MIMD system. 

Finishing time of the same computation, 
when run on a 1-processor system. 



a = 1 - K1 Percent of time a uniprocessor would 
spend in ready list access, with no con
tention from other processors. 

In terms above, the performance measures for 
an n-processor system: 

T = sK n n Effective Throughput. (1) 

T K F \ 

Sn n - __!!... or Sn -1. Speedup Factor. (2) 
Tl - 1-a Fn 
s Kn 

Rn ~= Relative Utilization Rate. (3) 
n (1-a)n 

En 
1 Relative Efficiency. (4) 

Rn 

4. Centralized PMS Model 

Suppose there is a single copy of the ready 
list, residing in common memory, and accessible to 
all processors. For this queueing model and for 
subsequent models, the following general assump
tions are made: 

- No processor is favored over the others in 
accessing the ready list(s); 

- Processors are independent, and interact only 
with respect to ready list accesses. 

In addition to n, and m = 1 (single ready 
list), we define the following input parameters: 

l/A: Actual (mean) time between ready list 
accesses, per processor. 

l/µ: Actual (mean) time inside the ready 
list, per ready list. 

The parameters which are derived from the above 
and referred frequently are: 

P = A/µ: Ready list access traffic intensity 
per processor. 

a= A/(A+µ): The PMS overhead for a 1-processor 
system as defined earlier. 

These parameters are related as p = a/ ( 1-a) and 
Ci= p/(l+p). 

As the target parameters, we define the follow
ing random variables, and their expectations: 

K: Number of processors in normal execution, 
running user-level processes. 

N: Number of processors engaged in ready list 
access, attempting to gain its lock or 
inside it. 

Q: Number of processors attempting to gain 
access to the ready list, but not inside 
it. These processors are idled. 

The results are obtained under two sets of 
assumptions: 

l. Deterministic Case: The rate of ready list 
accesses and time spent inside the ready 
list_are both constant. The model is solved 
for K = Average number of processors in 
normal execution. 

2. Probabilistic Case: The rate of ready list 
- accesses and time spent inside the ready list 

vary according to Poisson-exponential law. 
The aim is to find E(K) =Expected number of 
processors in normal execution. 

4.1 Deterministic Case 

The parameters A and µ stand for the actual, 
rather than the mean, arrival and service rates. 
The purpose of deterministic assumptions is to un
cover the best possible throughput with respect to 
ready list access and service patterns. Otherwise, 
these assumptions, especially with respect to the 
arrival rate are not very realistic. 

This case can be analyzed as a closed queueing 
system where K stands for the (average) number of 
processors in normal execution. The transient be
havior of the system depends on how initially 
processors access the ready list, and ther~ are an 
infinite number of possible solutions for K. On 
the other hand, because of the sequential server, 
even if all processors access the ready list at 
the same time initially, they would line up after a 
number of cycles. In other words, after each 
processor completes one cycle of normal execution 
and ready list access, the accesses to the ready 
lists must be at least l/µ time units apart. Depend
ing on the value of p, this self-regulation places 
a limit on the maximum queue length. Keeping this 
self-regulation in mind, the steady state solution 
for K can be obtained by analyzing the following 
work-balance equation: 

396 

= Fraction of time no 
processors are engaged 
in ready list access. 

(5) 

Through a close analysis of a typical cycle of 
length A-1 + µ-1, first Po is determined for the two 
distinct ranges p < (n-1)-l and p 2:_ (n-1)-1 . Then, 
the solution, as discussed in (1): 

K = 
r(p+l)-1n = (1-a)n 

tp-1 = (a-l-1) 

for 

for 

0 < p < (n-1)-1 . 

(n-1)-l .'.:_P «», 
(6) 

According to this, Q = 0 in the first range, 
and Q = (p+l)-1 - p-l in the second range. This 
means that the idled processors can grow at most 
linearly with n. As shown later, the growth is 
more rapid for stochastic systems. 

4.2 The Probabilistic Case 

The birth-death assumptions for this case were 
intended to simplify the analysis, and to find a 



conservative (i.e., nearly worst-case) throughput 
behavior with respect to ready list access and 
service patterns. Since one can conceive hyper
exponential interarrival or service times, these 
assumptions do not necessarily correspond to the 
worst-case. However, since the closed queueing 
system is self-regulating, how far the worst-case 
can be from the birth-death case is an interesting 
and open question. 

For this model, one way to find E(K) is to 
look up the solution for E(N), and then evaluate 
E(K) n - E(N). The solution for E(N) corresponds 
to the Finite Population - Single Server Queue dis
cussed in (10) and elsewhere: 

E(N) 
n I ·p i n! 

i=O i oP (n-i)! 

where P0 Pi n! =no processors are J-1 Probability that 

(n-i)! engaged in ready 
list access. 

(7) 

From (7) above, the effective throughput of a 
1-processor system is (1-a)s. To find the effec
tive throughput for n > 1, first Po and then n - E(N) 

need to be evaluated. This could be time consuming 
for n > 10, which is likely to be the case for the 
MIMD system under study. As discussed in (1), if 
we solve directly for E(K), using the complementary 
birth-death formulation, simpler and more revealing 
·results are obtained. According to this: 

n-1 
(1-P)k I k! 

E(K) ! k=O (8) p n (1-P)k I 
k=O k! 

The expression for E(K) above is free of P0 , 
and can further be simplified as: 

E(K) ! F(n-1) 
p F(n) 

The expected number of 
processors in normal 
execution. 

(8') 

where F(·) is the cumulative d.f. for Poisson 
with mean l/p. 

The expected number of idled processors are: 

E(Q) = n _ ! F(n-1) 
a F(n) 

(9) 

The result in (9) is the same as E(idle) found 
in (7), except that it is in more convenient form 
for evaluation. Consider the numerical example 
discussed in (7) where p = .05 and a= .0476. For a 
14-processor system, we can look up F(l3) and:F(l4) 
from Poisson tables and obtain: 

1 . 0661 
E(Q) = 14 - .0476 .1049 = .747 

397 

This agrees with the results in (7) where the 
authors mention that "14-processor system has the 
effective power of 13.25 processors." 

Figure-2 shows the results for a = . 04 76 and 
a= .1. The shaded areas provide a plausible per
formance range with Centralized PMS. The solu
tions to all hypoexponential interarrival/service 
times would lie in the shaded regions. For 
example, a highly realistic case of Poisson 
arrival rate and constant service times would lie 
in between deterministic and birth-death curves. 

4.3 Conclusions for the Centralize!i....I'MS_ 

As implied by the results of the two specific 
cases analyzed (deterministic, birth-death), there 
is an upper limit on the effective throughput. 
Since the average number of processors in normal 

~xecution can at most be p-1, this upper limit is 

sp-1 and does not depend on n. This result can 
be generalized to the case where no assumptions 
are made about ready list access and service rates, 
since the following work-balance equation holds: 

(10) 

where P0 is the fraction of time the server is 

idle, or the probabilij;y that all_processors are 
in normal execution. Kn denotes K or E(K) for an 
n-processor system. From (10) above, it follows 
that: 

K 
n 

(11) 

Since l-P0 is at most 1, Kn is at most p-l and 

the upper limit on the effective throughput is 

sp-1, where s is the rated speed of each processor. 

For example, if p = . 05, on the average, there 
can at most be 20 processors in normal execution; 
even if the MIMD system employs 256 processors. 

Notice that this result holds true even if 
interarrival or service times are probabilistically 
dependent (i.e., ready list requests are serially 
correlated, etc.). For the work-balance equation 
in (10) to hold, the only requirement is that the 
services are independent of the arrival process. 
For this MIMD system, there is no reason to the 
contrary. This result has further been generalized 
in (1), where the mean traffic intensities (pi for 

processor i) are not necessarily equal. In that 
case, the upper limit on the effective throughput 

is sp~~n , where pmin is the minimum mean traffic 
intensity. 

This result can more formally be stated as 
follows: 

Rule #1: 

For the type of n-processor MIMD system with 
Centralized PMS, there is an upper limit on the 
effective throughput. Since this upper limit does 
not depend on n, as n becomes large, the marginal 
contribution of additional processors to the 



effective throughput diminishes. If and when this 
upper limit is reached, the marginal contribution 
of additional processors to the effective through
put is nil. 

Proof: 

As was already shown, the effective through

put Tn = sp-1 at most. As a restatement of the 

above, we must show that the relative utilization 
rate (i.e., relative to a 1-processor system) de
creases as n increases, and tends to zero as n 
grows very large. From (3), by definition, the 
relative utilization rate is: 

K 
n 

(1-a)n 
£Sing the value for 
Kn in (11). 

Since 1-Po can at most be 1, it is obvious 
that for n > a-1, Rn decreases as n increases. 
Furthermore: 

Similar arguments can be carried out for the 
case where pi's are not· the same for allprocessors. 

In that case, a will be replaced by amin' where 

amin = Pmin/(l+pmin). 

5. Decentralized PMS Model 

The results of the previous section point to 
the need for decentralization of PMS. Consider the 
deterministic case with a single ready list. This 
gives the best-case throughput for any given value 

of P, and the upper limit is reached when n = a-1 . 
For example where a = .0476, the upper limit is 
reduced when there are 21 processors in the MIMD 
configuration. If the MIMD system employs more 
than 21 processors, and if we cannot adjust the 
values of s and p by some other means, there is a 
need for decentralization of PMS. 

The MIMD machine under study, being speedup
oriented, may be employing the fastest processors 
available. In that case, we cannot further in
crease the rated speed s, or run the PMS on a 
faster processor. The ready list access traffic p 
would depend on the parallel algorithm and the de
gree of interprocess communication, where a new 
process gets the processor when another processor 
is put to sleep. This parameter cannot always be 
adjusted to the desired value. Therefore, the PMS 
itself should be parallelized to run concurrently 
on multiple processors. 

As the first step, we can use the decentrali
zation scheme discussed earlier, where multiple 
ready lists are used. Then, there is the problem 
of how the processors should be accessing these 
ready lists, without any need for some other 
centralized mechanism. 

The ready lists, each accessible to any one of 
the processors, may reside anywhere in common memory; 

398 

preferably, in different memory banks to minimize 
memory conflict. To find the effective throughput 
when m (>l) ready lists are used, we can analyze 
the multiserver extension of the previous model. 
This is shown in Figure-1. 

We again look at the deterministic and birth
death cases, and assume that: 

1. The time spent inside a ready list does 
not depend on the number of ready lists used; 

2. A processor always accesses a ready list 
which is currently available (unlocked). 
If none is available, it waits in idle 
state until one becomes available. 

The first assumption above implies that the 
size of a ready list, in terms of the average number 
of activation records stored in it, does not have 
any effect on the time to enter or remove activation 
records. If the ready list is implemented as First 
In - First Out linked list of activation records, 
this assumption is highly realistic. 

The second assumption implies that the pro
cessors know, without additional processing over
head, which ready lists are currently available. 
This additional overhead may be significant for 
the MIMD system considered, and is discussed in 
the next section. The purpose of this assumption 
is to find the minimum number of ready lists which, 
subject to the minimization or elimination of the 
additional overhead mentioned, will make it pos
sible to achieve the desired throughputs. 

5.1 The Multiserver Model Results 

With mathematical arguments detailed in (1), 
the solution to the multiserver extension of the 
deterministic case is given as: 

K = 
for 

for 

0 < p < m(n-m)-1 . 

m(n-m)-l ..'.:_P < "'· 

As an interesting example, we can choose 

(12) 

m = an ready lists. For a = .1, Figure-3(a) com
pares this to the centralized case (m=l) and to 
the fully-decentralized case (m=n). The case where 
m > n is the same as the case m=n. 

As intuitively expected, for constant ready 
list access and service rates, providing m = an 
ready lists can achieve effective throughputs which 
grow linearly with n. As will be shown shortly, 
this is not necessarily the case for stochastic 
ready list access or service rates. 

The solution to the multiserver extension of 
the probabilistic case, despite simplifying birth
death assumptions, is highly complex in the range 
1 < m < n. For this range, a highly concise solu
tion for E(N) can be found in (11): 

jp [n) i for i = 0 to m-1. 

Pr(N=i) = Po(~·)Pi~ (17) 
o i P m!mi-m for i m to n. 



~~~ 
n ~ -1

where p [~]pi + I [~]pi i !

0 i :;::rn m!rni-m

n
E(Q) I (i-m)Pr(N=i) Expected number of (18)

i=m idled processors.

m-1 +m~ -

m-1
Pr(N=ii] E(N) = I iPr(N=i) + E(Q) I (19)

i=m i=O

From E(N), we can obtain E(K) = n - E(N) and
find the effective throughput. However, the ex
pressions are quite complex and require evaluation
of P0 . By solving the complementary birth-death

formulation directly for E(K), we can obtain a
simpler and more revealing expression for E(K).
Accordingly:

where

P~(n)
E(K) = _!!! , for 1 < m < n

P P0 (n-l)

rr
~=O

k
~+

k!

n

I
k=n-m+l

(13)

In effect, the solution to the most difficult
case of 1 < m < n is found in terms of:

Probability that no processor is in
normal execution in an n-by-m system;

Probability that no processor is in
normal execution in an (n-1)-by-m
system.

Note that E(K) still needs to be evaluated.
The evaluation is simpler, since the same procedure
can be used for P~(n) and P~(n-1). For the fully-

decentralized case where m > n, the solution is
simpler:

E(K) = (p+l)- 1n = (1-a)n for m > n.

Clearly, for the case of m > n, E(Q) = O;
since a customer will always find an available
server.

(13')

The interesting case of m = an ready lists is
shown in Figure-4(b), where m = 1 (centralized) and
m = n (fully-decentralized) cases are also shown
for comparison. The portion of m = an curve up to
10 processors are shown as a visual aid. It cor
responds to the anomaly, where presumably less than
one ready list is used.

From Figure-3(b), we see that, under birth
death assumptions, employing m = an ready lists
does not yield effective throughputs which grow
linearly with n. This counter-intuitive result
will be formalized later.

399

5.2 Conclusions for the Decentralized PMS

About the required number of ready lists, we
can assert and prove the following statements.

Rule #2:

If a fixed number m (<n) ready lists are
used, the effective throughput is still bounded

above by msp-l Therefore, as n exceeds ma-l and
gets larger, the relative utilization rates
diminish. As n grows very large, the contribution
of additional processors to the effective through
put becomes nil.

Proof:

Since K ~ E(K), we only need to look at the
deterministic case. As n becomes sufficiently

large and exceeds ma-1 , the second part of the

solution in (12) applies, where K = mp-l at most.

The effective throughput can therefore be at most

msp-l In this case, the relative utilization is:

Rule #3:

R
n

m
an

and Limit Rn
n-+«>

0.

Under deterministic assumptions, if we employ

m =en ready lists for some constant c > n-1, con
stant utilization rate can be achieved.

Proof:

For n sufficiently large, the second part of
solution for deterministic case (11) applies. If
we replace m by en in (11), we get:

K = 1-a (en) and R K ~ A constant.
Cl n (1-a)n - Cl

As a corollary to this rule, since by defi-
nition, the speedup factor:

The ideal speedup factor of n can be achieved
if c > a.

Rule #4:

Under stochastic assumptions, where there is
a finite probability of having all processors en
gaged in ready list access (i.e., P n > 0), we must

employ at least m = n ready lists in order to
achieve constant utilization rates. This means
that, if we employ m = en ready lists for some

constant c, where c is in the range 1- < c< n-l
n n

constant utilization rates are not achieved.

Proof:

First note that for most common (and non
contrived) stochastic systems Pn > O, as is the

case with the birth-death assumptions. For the
above claim, we provide a proof by contradiction.

Suppose
rate, where

we do achieve constant utilization
Rn = 1 - c, for some constant c in

1
range n < c <

utilization:

n-1
!l" By definition of relative

E(K)
(1-a)n

1 - c .

the

(14)

Also, for any stochastic system, the following
work-balance equation must hold:

µ[n-E(K)-E(Q)] = AE(K). (15)

Solving (14) for E(K), and then, solving (15)
for E(Q); we obtain:

E(Q) = en, under the original assumption (16)
of Rn = 1-c.

Suppose Pi is the probability that i processors

are engaged in ready list access. Then, by defi
nition:

n
E(Q) = l (i-m)Pi

i=m+l

If we choose the best possible·;alue form,
namely m = n-1, from above, we obtain E(Q) = Pn.

On the other hand, we obtained E(Q) = en earlier.
What this means is that:

en if we assume that Rn = 1 - c

(i.e., constant utilization).

(17)

Since Pn is the finite probability mentioned

earlier, the equation in (17) would make sense only
for the following trivial cases:

i) Pn O. This violates the condition where

Pn > O, and essentially corresponds to the

deterministic case. For the deterministic
systems, the serialization of ready list
accesses does not permit having all n
processors engaged in ready list access.

ii) n = 1. In this case, m = n-1 = O,
meaning no ready lists.

iii) c _::_ n-1 . This violates the condition

where c > n-1 . This case corresponds to
the anomaly of using less than 1 ready
list. Refer to them= an curve for
n < 10, in Figure-4(b).

As a corollary to this rule, if constant
utilization cannot be achieved when m < n and
Pn > O; the ideal speedup factors also cannot be

achieved.

The foregoing rules indicate that we should
provide at least m = n ready lists to make constant
utilization (or possibly the ideal speedup factor)
achievable.

400

6. Proposed Ready List Access Policy

Even if we provide m = n ready lists, the over
head associated with processors accessing the
available ready lists should be taken into account.
If we provide a global index which indicates which
ready lists are currently available, this global
index will also be serially reusable. In much the
same way as the single ready list, this global
index will place an upper limit on the effective
throughput. Suppose the time to check this global
index isl/µ'. In this case, by analysis of the
determinis~ic case not discussed here, the upper
limit for K turns out to be

L K = >. at most, and for n > 1 + r:::-~ - 1n-l;a

For the earlier example where p = .05, let
>. = .05 and µ = 1. If the time to check the
global index is only half of the time inside a
ready list, then u' = 2, and:

- 2.0
K = -:155 = 40 at most, for n .'.'._ 43.

Obviously, if the time to check thl_s global
index increases with n, the result for K is worse.
It is clear that, providing a centralized global
index is unacceptable for the type of MIMD system.
Other possible approaches and their shortcoming
have been discussed in (1).

As a way of avoiding centralized mechanisms,
we propose the following ready list access policy:

- Processors choose to access the ready lists
randomly and uniformly (with equal proba
bilities). If the chosen ready list is
currently locked, the processor waits in idle
state until the lock is removed.

6.1 The Random-Routing Model

The analytical model for predicting the effec
tive throughput for the proposed ready list access
policy is shown in Figure-5.

These types of models with uniform and random
routing of arrivals to servers received consider
able attention in literature; primarily with re
spect to memory interference. Works done in (8,9)
correspond to the deterministic case where t.-1 = 0

and µ-l = 0. A review and comparison of various
approximate solutions to these types of models can
be found in (12). The exact solution to these
types of models are difficult or computationally
intractable, even when the underlying stochastic
process is Markovian. The analysis is more tract
able for infinite number of customers (processors)
or servers (ready lists). However, we are pri
marily interested in specific -and finite- values
of n and m.

First note that, for any given set of param
eters n, m, and p; the worst-case corresponds to
the Centralized PMS Model results with m = 1.
Similarly, the best-case E(K) corresponds to the
Decentralized Model results.

For the deterministic case, K is obtained
through a simulation program described in (1). The
results of this simulation for a= .0476 and a= .1
are given in Table-1. Notice that the program was
validated by running the case of m=l for which the
solution is known.

NUMBER OF
PROCESSORS

(N)

5
10
15
20
25
30
35
40

Run ,n: p

5
10
15
20
25
30
35
40

Run #2: p =

NUMBER OF EXPECTED NUMB
READY OF PROCESSORS
LISTS

(M)

5
10
15
20
25
30
35
40

ENGAGED
E(N)

0.24
o.48
0.73
0.98
1.23
1.47
1. 73
1.97

time uni ts in

EXPECTED NUMB
OF PROCESSORS
IN NORM-EXEC.

E(K)

4.76
9.52

14.27
19.02
23. 77
28.53
33.27
38.03

normal execution.
1/20 {2~ time unit inside a ready list.

5 0.50 4.50
10 1.00 9.00
15 1. 54 13.46
20 2.07 17.93
25 2.61 22.39
30 3.12 26.88
35 3.64 31.36
40 4.17 35.83

1/9 {i time units in normal execution.
time unit inside a ready list.

*Program's output when m = 1 is used as input, to
compare with the analytical results of the deter
ministic single ready list model:

a=.10 n N __ K_

5 .5005 4.4995
10 1.0047 8.9953
15 5.9957 9.0043

Table-1: Throughput Results for the Proposed Ready
List Access Policy Under Deterministic
Assumptions.

Under birth-death assumptions, the exact solu
tion exists. As outlined in (10) the solution
method involves analysis of a queueing network with
m+l nodes. This solution requires _enormous compu
tational effort even for moderate values of n and m.

Instead, we can demonstrate the effectiveness
of the random-access policy by obtaining an approxi
mate solution for E(K), and making sure that it is
not overestimated. This approach is based on the
analyses of local queues found in front of the
ready lists.

Since the overall Poisson arrival rate is
randomly split into m, the arrival rate to a local
queue is also Poisson, with mean A/m per processor.
The self-regulation is more'complex. To simplify
matt'ers, we assume that:

401

A processor accesses a particular ready list
at rate A/m, regardless whether it is queued
for some other ready list.

This means that the processors engaged in
ready list access rejoin local queues with proba-

bility m-1 and at mean intervals A-1. This does
not present any difficulty with respect to the de
centralization scheme, or the implementation of
ready list accesses. With this assumption, the
birth-death formulation for the local queue (X.
for ready list j, j = 1 to m) is as follows): J

Ax= A(n-x)(l/m) for x=O ton. Discouraged
Arrivals.

for x 0,
Steady Service.

for x = 1 to n.

where x denotes the number of processors engaged
in accessing Lj.

This birth-death formulation does not account
for all the self regulation. If i is the total
number of processors queued for all the ready
lists, then the overall discouraged arrival rate
for this formulation is:

m
l (n-xj)(A/m) =

j=l
[n -~ I x·] = A(n-i/m).

j=l J

which is greater than the "true" overall dis
couraged arrival rate of A(n-i). For this reason,
the approximation based on the above birth-death
formulation slightly overestimates E(N), and
underestimates E(K) = n - E(N). In other words,
the assumption where the processors rejoin local
queues at mean intervals l/A guarantees that the
throughput results based on this approximatio_n are
not overly optimistic.

Carrying out the single-server analysis, we
first obtain the mean local queue:

G(n-1) where G(·) is d.f. for
E(Xj) = n - (}(Ilf"" Poisson with mean m/p.

The approximation for E(K) is then:

E(K)
m
l

j=l
E(X.) =m2 G(n-1) - (m-l)n.

J P G(n)
n -

where G(·) is the cumulative d.f. for
Poisson with mean m/p.

(18)

The results of Random-Routing Model for proba~
bilistic case are shown in Figure-4, and compared
with best-case and worst-case results for E(K).
It is clear that, even for a heavy ready list
access traffic (a=.l), the results of the random
access policy is remarkably close to the best-case
which corresponds to the ideai speedup factor. In
(1), three results have been compared to the
approximation with "mean think time" suggested in
(8) and found to be very close.

6.2 Concluding Comments on Proposed Policy

When we employ m = n ready lists, with random
access policy' speedup factors very close to n are
achievable. If a is very high and the results are
not very close to best-case, we can employ a larger
number (m > n) ready lists to bring the throughput
results closer to the best-case. Table-2 shows
this for a = .25. It must be kept in mind that
the approximation is guaranteed not to overestimate
E(K), as mentioned earlier.

'The random-access policy is a viable method
for avoiding centralized mechanisms and the resul-t
ing performance bottleneck conditions. For the
MIMD system where the number of processors may be
very large, avoidance of bottleneck conditions is
an important performance issue.

E(K) =Expected Number of Processors
Number of in Normal Execution With Best-
Processors Randomized-Access Policy Case

(n) m=n m=n+5 m=n+lO ~

5 3.56 3.66 3.69 3. 75
10 6.93 7.13 7.23 7.50
15 10.27 10.55 10.71 11.25
20 13.61 13.94 14.14 15.00
25 16.95 17.31 17.55 18.75
30 20.28 20.67 20.94 22.50

Table-2: Throughput Results for the Proposed Policy
(m>n, a= .25).

On the other hand, the Random-Routing Model
takes into account only the ready list accesses.
Other PMS system tables are not in the decentrali
zation scheme. Other factors, such as what happens
when a ready list is found empty, are not considered.
A simulation model which takes these factors into
account and uses the proposed ready list access
policy is discussed in (1). The results of that
simulation is also very encouraging about the pro
posed randomized-access policy.

References

(1) Cezzar, R. "Effects of Process Management
System Software on the Throughput of a
Parallel MIMD Machine," Ph.D. Thesis, Poly
technic Institute of New York, Brooklyn,
New York. (June 1982).

(2) Klappholz, D. "Stochastically Conflict-Free
Data-Base Memory Systems," Proceedings of
1980 International Conference on Parallel
Processing.

(3) Klappholz, D. "The Symbolic, High-Level
Language Programming of An MIMD Machine,"
Technical Manuscript, Polytechnic Institute
of New York, Brooklyn, New York.

(4) Sullivan, H. , Bashkow, T. R. , and Klappholz, D.
"The Node Kernel: Resource Management in
Self-Organizing Parallel Processors,"
Proceedings of 1977 International Conference
on Parallel Processing.

402

(5) Klappholz, D. "Stochastically Conflict-Free
Memory/Interconnection System," Technical
Report, Polytechnic Institute of New York,
Brooklyn, New York.

(6) Klappholz, D. "An Improved Design for
Stochastically Conflict-Free Memory/Inter
connection System," Proc. 14th Asilomar
Conf. on Circuits, Systems and Computers.
(November 1982).

(7) Madnick, S. E., Donovan, J. J. Operating
Systems, McGraw-Hill, Inc., New York,
c. 1974.

(8) Baskett, F. and Smith, A. J., "Interference
in Multiprocessor Computer Systems with
Interleaved Memory," Comm. ACM, Vol. 19,
No. 6. (June 1976).

(9) Rau, B. R. "Interleaved Memory Bandwidth in
A Model of A Multiprocessor Computer System,"
IEEE Trans. on Computers, Vol. C-28, No. 9,
(September 1979), pp. 678-681.

(10) Kleinrock, L. Queueing Systems - Volume I:
Theory, John Wiley and Sons, Inc., New York,
c. 1975.

(11) Hillier, F. J. and Lieberman, G. J. Intro
duction to Operations Research, Holden-Day,
Inc., San Francisco, Calif., c. 1967.

(12) Ulema, M. and Smith, E. J. "Throughput
Calculations for Multiprocessor Systems,"
Proc. of Computer Networking Symposium,
(December 1979), Gaithersburg, Maryland.

Processors:

Common I.:emory

- Queue

T'
Next Available Server

.----;:?' i-----5JGJ··· 5J·· ... cg
m Ready L1 sts

Figure-1: Decentralized PMS Model Description.

i
~30

a) CC..= 0 0476

10 15 25 30 35 40

NUliDER OF PROCESSORS IN Tl-IE HIMD CONFIGURATION (n).

oo·

15 b) OI..= .1

10 .C::~~!.1!_s_:,1c _!':_"fle !~..!-~~-~eJ.:. _____ _ _
~- - Prob•bili&tic Sincle Ready List Model. ,---

10 15 30 35
rnn.mER OF PROCESSORS IN '11iE MIMD CONFIGURATION { n).

Figure-2: Effective Throughput Results for
Centralized PMS Model.

a) J:eterministic Case.

ts10

~ .
" 5 / Centralized {in-1) PMS M:ldel

10 15 30 35 40
n .. NUJ.lBER OF PROCESSORS IN THE MI?ID CONFIGURATION.

35
~
;;
~30
~ b)
~

Probabilistic Case.

::;2s oc.. - .10.

!
~ 20

~

~ lS

~

110
Centra.J.iaed (-1} PJll8 Model . . 5

10 15 20 25 30 40
n • NUJ.!IJER OF PROCESSORS IN '1'HE MIXD CQNFIGU'tATion.

Figure-3: Effective Throughput Results for De
centralized PMS Model.

403

l
~ 30

§
~
~

25

"
~ 20

~
~

i 15

i 10

. . 5 .

~ 30

~

! 25

~

~ 20

8
~

~ 15

i
~
~
•
¥

"'

Figure-4:

a)

10 15 ·20 25 30 .. 40

n .. NlJ)mER OF PROCESSORS IN DIE MIMD COHFIGURATlON •

10 15 20 25 30 35 40

n • Nt.11'01BER OF PROCESSORS IN '1HE MDI) COlfF'IGURATION.

Effective Throughput Results of
Approximate Solution to Random-Routing
Model Under Birth-Death Assumptions.

Processors: Ready Lists:

Figure-5: Finite-Population Multiple-Server
Queueing Model With Random Routing of
Customers to Servers.

ASSIGNING PROCESSES TO PROCESSORS IN DISTRIBUTED SYSTEMS

Elizabeth Williams
Department of Computer Science
The University of Texas at Austin

Austin, Tx 78712

Abstract A message-based approach to interprocess
communication is widely accepted for distributed computing. We
present objectives necessary for assigning processes to processors in
a distributed environment. Two objectives have previously been
identified, neither has considered actual message delays. We give
two new objectives and show how all four objectives are related to
actual message delays. The importance of these objectives is
illustrated by a realistic example from numerical analysis. This
example was run on a testbed, consisting of a compiler and
simulator used to run CSP-like programs on user specified
architectures.

1. Introduction
When the processes of a distributed program are assigned to

processors in a distributed environment, heuristic algorithms have
traditionally only considered minimizing the communication among
processors and balancing the load over the processors [2, 3, 5, 6, 8].
We have found two new objectives for the assignment problem, and
shown how all four conflicting objectives are interrelated. Our
studies have shown that actual message delay is an important
consideration. We have developed a heuristic algorithm for
assigning processes to processors which incorporates these
objectives; this algorithm is presented in [9]. For this paper we
motivate why these four objectives are important and present an
example to illustrate the varying importance of these objectives.

We assume that the processes of a distributed program can
usually execute at the same time. The objectives are for a set of
processes where there is minimal ordering on the processes. Thus
in a program where the processes are strongly ordered, the
objectives may be applied to each subset of processes where the
processes in each subset can usually execute at the same time.

2. Message Delay in a Distributed
Environment

We first describe our distributed system of processors. We
include the physical characteristics of the distributed architecture
by considering processors with different speeds, and lines with
different capacities and lengths that connect the processors. We
assume that any processor can communicate with any other
processor by routing messages through intermediate processors over
fixed paths. We define virtual line time for a message between
two processors connected directly by a line as a function of lower
level protocols, message length in message units, number of bits per
message unit, line capacity, and line length. Virtual line time does
not include the time a message waits to use the communication
subnet. Virtual line time for a message between two processors is
the sum of the virtual line times for the lines on the route.
Currently in local area networks, lower level protocols executing in
the processors usually reduce the physical line capacity by at least
a factor or ten for any message [1]. Virtual line time reflects this
effective line capacity.

0190-3918/83/0000/0404$01.00 © 1983 IEEE 404

The message delay of a process for a blocking communication
as in CSP [7] is a function of virtual line time, queueing at the port
queues on the route in a store and forward network, and the
processing, waiting, and queueing time of the corresponding process
at its processor. Message delays can be very large compared to a
process's processing time between communications.

The following limiting conditions generally hold when trying to
minimize the total time a program requires.

1. As all message delays -> 0, the optimal assignment is
to cluster and assign processes such that the load is
balanced over all processors.

2. As all message delays -> infinity, the optimal
assignment is to assign all processes to the fastest
available processor.

When message delay is considered it is important to realize that it
may not be advisable to use all the processors.

To illustrate we give a simple example. Consider two processors
of equal speed connected by a line, and two communicating
processes where each executes for time t and then sends a message
to the other. We must determine for what message delay range
both processes must be assigned to one processor and for what
message delay range each must be assigned to separate processors.
If both processes are on one processor the total time is 2*t. If there
is a process on each processor then the total time is t+d, where d is
the time for a message to go from one processor to the other.
Thus, when t>d it is better to assign each process to a different
processor; when t<d it is better to assign both processes to one
processor. Note that the relationship of t to d determines the
number of processors used.

3. Objectives
Minimizing the total time a program runs on a distributed

architecture is very much dependent on how the processes are
assigned to processors. Objectives are given for assigning processes
to processors to reduce the total time a program runs.

3.1. Mlnlmlzlng Interprocessor Communication

It has been established that it is important to minimize the
communication among processors by effectively partitioning the
processes of a distributed program and assigning the partitions to
the processors [2, 3, 5, 6, 8]. There are actually two minimization
problems in this statement. We can minimize the interprocessor
communication (1) using a fixed number of processors or (2) letting
the number of processors vary. In case (2) the minimum is
obtained by assigning all the processes to a single processor.

We assume interprocess communication is independent of the
assignment. To reduce interprocessor communication, processes
which communicate the most are grouped (clustered) into one
partition. We call each partition of processes a cluster.

3.1.1. Minimizing Communication on n Proce1111ora

We assume that if there are n processors, n clusters are formed,
and each cluster is assigned to a different processor. We consider
the following two functions to minimize: (a) the sum or the
communication between each pair of clusters, and (b) the maximum
communication between each pair of clusters. In a bus or
broadcast network, interprocessor communication is reduced by
minimizing (a). In a fully connected network with identical lines,
interprocessor communication is reduced by minimizing (a) and (b).
In a store and forward network with fixed paths through
intermediate processors, interprocessor communication is reduced
by considering the minimization of both (a) and (b), and the paths
in the network. The fixed paths need to be considered if a line is
included in the paths between several different pairs of processors;
that line can become a bottleneck.

3.1.2. Minimizing Communication on Variable Number of
ProceBBors

AB fewer processors are used it may be the case in a store and
forward network with fixed paths that there is less total
communication on all lines but more communication on some line.
For large message delays, queueing delays at the corresponding
ports can get large. Thus in a store and forward network, fewer
processors are used only if the communication on any line does not
increase.

3.2. Load Balancing

Load balancing has also been established as an objective [2, 3J.
Load balancing over all the processors is only important when all
message delays are small. As message delays go to zero,
communicating processes can be modeled as noncommunicating
processes. We know that for noncommunicating processes total
time is minimized if the load is balanced over all processors.
This assumes that all processors can stay busy for the entire time.
At zero virtual line time the delay for a process waiting on a
message depends on the processing, queueing, and waiting times of
the corresponding process at its processor. For this reason it may
not be possible to keep each processor busy. However, load
balancing over all processors for small message delays is a
reasonable goal.

3.3. Minimum Proce1111lng Requirement

AB message delays get large, there must be enough processing
available at a processor so that when one process blocks for a
message, other processes can execute until the desired message
arrives. This reduces idle periods at a processor caused when all
assigned processes are blocked waiting for messages. Thus, a
processor must be assigned a minimum amount of processing, and
this processing requirement depends on the message delays. Only
after there is the minimum amount of processing at each processor
can loads be balanced. As message delays get large, fewer
processors are used. This objective establishes in part how many
processors will be used; this is illustrated by the example given in
the last paragraph of Section 2. We are not directly minimizing
interprocessor communication by reducing the number of
processors. To use this objective both the message delay and
available processing at a processor before it becomes idle must be
estimated.

3.4. Clo•eat Proce1111or

In a store and forward network with fixed paths, virtual line time

405

varies between pairs of processors. Clusters with largest
intercluster communication are placed on processors connected by
smallest virtual line time for a message unit. In a broadcast
network or a fully connected network with identical lines,
processors are equally close and thus this objective is not necessary.

4. Example
An example is now presented to illustrate the objectives given

above. We solve Laplace's partial differential equation, PDE,
uxx+uyy=O on a grid with the outer edges of the grid given as
boundary conditions. This example was run on a testbed consisting
of a compiler and simulator. It runs a CSP-like program on a
distributed architecture specified by the user and includes the
characteristics described in Section 2 [9J. The testbed was
validated extensively using commercial analytical and simulation
packages. The testbed provides confidence interval estimates at
the 90% level with relative widths less than .05 for various
performance measures. We have reported only the midpoint of the
confidence interval for the measure, total time.

4.1. Algorithm for Example

The iterative method used is Gauss-Seidel. The grid is
partitioned into subgrids where each subgrid is some number of
contiguous rows. Each subgrid is solved by a process in the same
way a sequential program would solve the entire grid. A grid value
is computed as the average of its four adjacent neighbors; thus, to
compute a row of values, the two adjacent rows are required.
Hence, a process must request the two rows contiguous to its
subgrid from its two neighboring processes.

The usual way of executing the n processes is in pipeline fashion
where if process n is on the kth step, process I is on the k+n-1 step.
However, in our algorithm all processes begin at the same time and
assume the requested rows are zero initially. In our algorithm each
process is computing in the ith or i+ 1st process iteration at any
given time. The algorithm converges because the Gauss-Seidel
method converges for any set of starting values; the first j-1
iterations for process j compute a better set of starting values for
its subgrid.

The entire grid must be calculated at each iteration as long as at
least one grid value has not met the convergence criteria. The
communication structure is linear; thus, convergence over the entire
grid is easy to detect and termination of all processes is easy to
ensure.

4.2. Analysis of Example

The above algorithm was run on the testbed. Figure 6-1 shows
the communication structure of the algorithm with each process
represented by a circle (the process number in the circle), the total
processing time requirement per process below each circle, and the
amount of communication exchanged between two communicating
processes above each line. Values for communication and
processing time are obtained by running the program on the
testbed with any assignment and architecture; for this program
these quantities are independent of the architecture and
assignment.

The distributed architecture is three fully connected processors.
Each processor has the same speed and each line is identical. The
queueing discipline at each processor is preemptive priority with

highest priority given to those processes which communicate across
a line for the given assignment. We found that as message delays
increased it was important to use the preemptive priority discipline
and give priority to those processes which had to communicate
over a physical line l9J.

We studied eight different assignments. The assignments with
the total processing requirement at each processor and the
communication on each line are given in Table 6-1. The total
processing requirement at a processor is the sum of the processing
requirement of each process assigned to the processor. Assignments
RR, AO, and Al use all three processors; assignments A2, A3, A4,
and AS use two processors; and assignment A6 uses only one
processor. Assignment AO has minimum variance of the total
processing requirement at the three processors, and thus better load
balancing than the other assignments.

Table 6-2 gives the total time for the PDE program to complete
execution for each assignment with several virtual line times for a
message unit. The notation (1,2,3/4,5,6,7 /x) denotes that processes
1, 2, and 3 are assigned to processor l; processes 4 through 7 are
assigned to processor 2; and no processes are on processor 3.

We now show how the objectives vary as message delays (virtual
line time) increase. At virtual line time 57 .9, the better load
balanced assignments, AO and Al, have minimum total time.
Minimizing interprocessor communication is not important. At
virtual line time 592.2, the two processor assignments A3 and A4
are better assignments than any one or three processor assignment.
This illustrates that there must be a minimum amount of
processing at a processor since they are preferable to any three
processor assignment. At this virtual line time A2 compared to the
other two processor assignments demonstrates that it is important
to minimize the communication between the processors. At virtual
line time 1388.6 it is better to put all processes on one processor;
this is demonstrated by a performance improvement of greater
than a factor of three when RR and A6 are compared. Looking at
the entire Table 6-2, the trend to use fewer processors as message
delays increase is shown by a * which marks the best assignment
for each virtual line time.

5. Conclusion
In this paper we have presented four important objectives to

consider when assigning processes to processors in a distributed
environment. Two objectives are new. We have shown how all
four objectives are affected by actual message delays. We have
presented the results for one distributed program on architectures
with various virtual line times; these results were obtained from a
testbed for distributed computing.

6. Acknowledgments
The author wishes to thank Professor K. Mani Chandy for

suggesting this problem and providing valuable guidance during
this research, and Gael Buckley for her many editorial comments
on this paper. This research was supported in part by Air Force
Office of Scientific Research under grant AFOSR 81-0205.

6249 11429

Figure G-1:

7309 11774 7309 11774 6249

Communication Structure and Processing Time
Requirement of each Process of PDE Program

406

processor number
assignment 2 3

exchanges
on lines

--
RR: processes 1,4,7 2,5 3,6 80,80,80

load 23272 18738 19083

AO: processes 1,2.7 3,4 5,6 40,40,40
load 22927 19083 19083

Al: processes 1,2,3 4,5 6,7 40,40,0
load 23987 19083 18023

A2: processes 4,5,6 1,2,3,7 empty 80,0,0
load 30857 30236 0

A3: processes 1,2.3 4,5,6,7 empty 40,0,0
load 23987 37106 0

A4: processes 6,7 1,2,3,4,5 empty 40,0,0
load 18023 43070 0

A5: processes 1 2,3,4,5,6,7 empty 40,0,0
load 5249 55844 0

A6: precesses 1,2,3,4 empty empty o.o.o
5,6,7

load 61093 0 0

Table G-1: Assignments, Resulting Load at each Processor,
and Message Exchanges per Line for PDE

assignment virtual line time

57.9

RR(l,4,7/2,5/3,6)
AO(l,2,7/3,4/5,6) 24836
A1(1,2.3/4,5/6,7) : 24650*+
A2(4,5,6/1.2,3,7/x) :.33271
A3(1.2,3/4,6,6,7/x): 38357
A4(6,7/1,2,3,4,5/x): 45032
A5(1/2,3,4,5,6,7/x): 59069
A6(all on 1 pr.) 63636

592.2

99726
61297
55738
82869
47990*
51085+
58951
63636

+ assignment generated by heuristic
* assignment with minimum total time

871.7

84156
72119

107460
65405
66916
60613*
63636+

1388.6

215993
126548
102185
155273

97960
98358
92485
63636*+

Table G-2: Total Execution Times for Each Assignment
for PDE

References

1. E. E. Balkovich, Digital Equipment Corporation; David Wood,
Mitre Corporation; Dieter Baum, Hahn-Meitner-Institute, Germany.

Private Communications

2. W.W. Chu, L. J. Holloway, M. T. Lan, and K. Efe. "Task
Allocation in Distributed Data Processing.• Computer (November
Hl80), 57-69.

3. K. Efe. "Heuristic Models of Task Assignment Scheduling in
Distributed Systems.• Computer (June 1982), 50-56.

5. V. B. Gylys and J, A. Edwards. •optimal Partitioning of
Workload for Distributed Systems.• Compcon (Fall 1976),
353-357.

G. K. Haessig and C. J. Jenny. "Partitioning and Allocating
Computational Objects in Distributed Computing Systems.• IFIPS
Congress (1980), 593-598.

7. C.A.R. Hoare. •Communicating Sequential Processes.• Comm.
ACM (August 1978), 666-677.

8. H. S. Stone and S. H. Bokhari. •Control of Distributed
Processes.• Computer (July 1978), 97-106.

9. E. A. Williams. Design, Analysis, and Implementation of
Distributed Systems from a Performance Perspective. Ph.D. Th.,
The University of Texas at Austin, 1983.

PRELOADING SCHEMES FOR THE PASM
PARALLEL MEMORY SYSTEM

David Lee Tuomenoksat
Howard Jay Siegel

Purdue University
School of Electrical Engineering
West Lafayette, Indiana 47Q07

Abstract -- Parallel processing systems, such as
P ASM, employ a large number of primary memory
modules. A memory system organization using parallel
secondary storage devices and double-buffered primary
memories has been devised for PASM in order to prevent
primary /secondary memory transfers from becoming a
bottleneck. To efficiently use the memory system, it is
desirable to overlap the operation of the parallel secon
dary storage devices with computations being performed
by the processors. Due to the dynamically reconfigurable
architecture of PASM, the processors which will execute
a new task will not be selected until they are ready to
execute the task. That is, to make effective use of
double-buffering, a task must be preloaded prior to the
final selection of the processors on which it will execute.
Two schemes which allow for the parallel secondary
storage devices to preload input data and programs into
the primary memories so that system performance can
be improved are presented and compared. Results show
that both methods are effective techniques.

I. Introduction
In large-scale reconfigurable parallel processing sys

tems the transfer of data and programs between the pri
mary memories of the processors and the secondary
storage can become a bottleneck. There are several
types of reconfigurable parallel processing systems. A
partitionable SIMD/ MIMD system can be dynamically
reconfigured to operate as one or more independent
SIMD (single instruction stream-multiple data stream) [4]
and/or MIMD (multiple instruction stream-multiple data
stream) [4] machines (e.g., PASM [18J, TRAC [8,16]). A
multiple-SIMD system is a parallel processing system
which can be dynamically reconfigured to form one or
more independent SIMD machines of varying sizes (e.g.,
MAP ,11,121). When a partitionable SIMD/MIMD or
multip e-SIMb system is forming an SIMD machine, data
must be loaded into the processors' primary memories.
When a partitionable SIMD/MIMD system is forming an
MIMD machine, in addition to data, a program must be
loaded into the primary memory of each processor which
is executing the task.

P ASM is a partition ab le SIMD /MIMD multimicro
computer system being designed at Purdue University
for image processing and pattern reco~nition applications
[18J. In order to prevent the primary/secondary memory
transfers from becoming a bottleneck in P ASM, a
memory system employing parallel secondary storage
devices and double-buffered primary memories has been
devised [18]. To improve processor utilization by taking
advantage of the double-buffering, it is necessary to over-

This research was supported by the Air Force Office of
Scientific Research, Air Force Systems Command, USAF, under
grant number AFOSR-78-3581, and by a Purdue University Gradu
ate Fellowship. The United States Government is authorized to
reproduce and distribute reprints for Governmental purposes not
withstanding any copyright notation hereon.

t D. L. Tuomenoksa is now with American Bell, Holmdel, New
Jersey 07733.

0190-3918/83/0000/0407$01.00 © 1983 IEEE 407

lap the operation of the parallel secondary storage dev
ices with computations being performed by the proces
sors. This overlap can be obtained by preloading the
programs and data for the next task, while the previous
task is being executed, and then by overlapping the
unloading of output data with execution of the next
task.

Since P ASM is to be used in a research environment
for parallel algorithm development (in some cases
interactively), it is undesirable to require the user to
specify the maximum allowable execution time of a task
before it can be executed. The first-fit multiple-queue
(FFMQ) scheduling algorithm, which has been described
in [20], does not put this requirement on the user. If the
FFMQ scheduling algorithm is used, due to the dynami
cally reconfigurable architecture of PASM, it is not
known a priori which task a given group of processors
will execute. Since tasks must be preloaded prior to the
final selection of processors, it appears that the system
would be unable to preload tasks when using the FFMQ
scheduling algorithm. The problem considered is how to
determine where the data and programs for tasks can be
preloaded while using the FFMQ scheduling algorithm so
that the performance of the memory system can be
improved. Without such a preloading scheme, the full
potential of the double-buffered memory modules will
not be realiz·ed.

This paper presents pre/oading schemes which can
be used in conjunction with the FFMQ scheduling algo
rithm. Two schemes which solve the preloading problem
by determining which task's or tasks' programs and
input data should be preloaded into a given set of pro
cessor memories are presented. The first scheme uses the
scheduling algorithm to preschedule the task(s) which
will follow the current task. The second scheme uses the
scheduling algorithm to predict which task(s) may follow
a given task. The performance of these preloading
schemes as applied to P ASM is demonstrated and con
trasted through simulation studies. The preloading
schemes described can be adapted to other multiple
SIMD and partitionable SIMD/MIMD systems.

II. P ASM Background
PASM, a P.!rtitionable SIMD /MIMD machine, is a

large-scale dynamically reconligurabTe parallel processing
system J18J (see Fig. 1). The System Control Unit is a
convent10nal machine, such as a PDP-11, and is responsi
ble for the overall coordination of the activities of the
other components of PASM. The Parallel Computation
Unit (PCU) contains N = 2° processors, N memory
modules, and an interconnection network (see Fig. 2).
The PCU processors are microprocessors that perform
the actual SIMD and MIMD computations. The PCU
memory modules are used by the PCU processors for
data storage in SIMD mode and both data and instruc
tion storage in MIMD mode. A pair of memory units is
used for each PCU memory module so that data can be
moved between one memory unit and secondary storage

Fig. 1. Block,diag~am overview of PASM.

1-- - - - - - - - -1
I PROCESSING ELEMENT 0 I
I MEM.OA I
I MEM.OB I i
I PROCESSING ELEMENT 1 I g

!:!::
1----H E--

ROC.1 ~

MICRO
PROc.1-------H

0
0
!:!::
0

~

Fig. 2. P ASM Parallel Computation Unit {PCU).

while the PCU processor operates on data in the other
memory unit (double-buffering). A processor ~nd its
associated memory module form a PCU processing ele
ment (PE). The PEs are physically addressed from 0 to
N-1. The pair of memory units forming the ith PCU
memory module are labeled iA and iB {see Fig. 2). ~he
interconnection network provides a means of communtca
tion among the PEs. P ASM will use either a Cube type
[l] or ADM type [10] of multistage network.

The Micro Controllers {MCs) are a set of micropro
cessors which act as the control units for ·the PEs in
SIMD mode and orchestrate the activities of the PEs in
MIMD mode. There are Q = 2q MCs, addressed from 0
to Q-1. Like the PEs, the MC memory modules are
double-buffered. Each MC controls N/Q PEs, where
possible values of N and Qare 1024 and 16, respectively.
An MC-group is composed of an MC processor, its
memory module, and the N/Q PEs which are controlled
by the MC. The N/Q PEs connected to MC i a.re those
whose addresses have the value i in their low-order q bit
positions (see Fig. 3). Control Storage contains the pro
grams for the MCs.

A virtual machine of size RN/Q, where R = 2r and
1 ~ r ~ q, is obtained by combining. ~he. efforts of R
MC-groups. According to the part1tionmg rule for

408

PEI

PEii

PElO

PE 14 t-t-t-~

PEl

PE6

PE9

PE 18 t-t-t-~

PEll

PET

PE11

PE 16 r----o

Fig. 3. Organization of the Memory Storage System for
N = 16 and Q = 4.

PASM [18), the physical addresses of these MCs must
have the same low-order q-r bits so that all of the PEs
in the partition have the same low-order q-r physical
address bits. For example, for Q = 16, allowable MC
partitions include: {6), {14), {2,10}, {0,4,8,12), and
(l,3,5,7,9,ll,13,15). Q is therefore. the mll;Ximum number
of partitions allowable, and N/Q is the size of the smal
lest partition. The reason for using this particular parti
tioning rule is because it allows multistage networks like
the multistage Cube and the ADM, which are being con
sidered for P ASM, to be partitioned into independent
subnetworks [17]. This rule is also valid for multistage
Omega [9), shufHe-exchange [13), and indirect binary n
cube [15] networks, as well as other data manipulator [3)
type networks such as the Gamma [14J network [17).

The designator of a virtual machme composed of an
allowable partition is the smallest physical address of the
MCs in the virtual machine. This designator
corresponds to the low-order q-r bits of the physical
address of each MC in the virtual machine. For the par
titions in the above example, the designators are: 6, 14,
2, O, and 1, respectively.

The approach of permanently assigning a fixed
number of PCU processors to each MC has the advan
tages that the operating system need only schedule Q
MCs, rather than N PCU processors, and that it
simplifies the MC/PE interaction, from both a hardware
and software point of view, when a virtual machine is
being formed. In addition, this fixed assignment scheme
is exploited in the design of the Memory Storage System
in order to allow the effective use of parallel secondary
storage devices (18).

The FFMQ scheduling a~orithm, which is being
considered for use with PASM 20), makes use of q + 1
first-in first-out task queues, Q0,TQ1, ... ,TQq; .. A task
which requires 2k MC-groups is put into TQk. whenever
there are free MC-groups, the FFMQ algorithm selects
the first job in TQk, where k is the largest integer such
that a virtual machine of size 2k MCs is available for
execution. If TQk is empty, then the first task from
TQk-l is selected. This process is continued until all

available MCs have been assigned or until k = 0. The
FFMQ algorithm assigns the task to the free virtual
machine with the low~st designator. This is a
nonpreemptive scheduling policy since all tasks run until
completion and a multiple-queue scheduling. The
FFMQ algorithm is a centralized scheduling algorithm [7]
since the System Control Unit, which is executing the
FFMQ algorithm, has complete accurate information
regarding the states of all tasks in the system.

When P ASM is forming a virtual machine which is
to execute an SIMD task, data must be loaded into the
PCU memory units and a program must be loaded into
the MC memory units. When forming a virtual machine
which is to execute an MIMD task, both data and pro
grams must be loaded into each of the PCU memory
units. In this paper the loading/unloading of data for
SIMD tasks from the PCU memory units is considered.
The loading of the SIMD program into the MC memory
units is not considered since it can be overlapped with
the loading of the data, following the same preloading
scheme. The analysis in this paper can easily be
extended to MIMD tasks; instead of loading just data,
both programs and data would be loaded.

The Memory Storage System, which provides secon
dary storage space for the PCU memory modules, con
sists of N/Q independent Memory Storage Units (MSUs).
It is controlled by the Memory Management System.
The MSUs are numbered from 0 to (N/Q)-1. Each is
connected to Q PCU memory modules, as shown in Fig.
3. For 0 5 i < N/Q, MSU i is connected to those PCU
memory modules whose physical addresses are of the
form (Q * i) + k, 0 $ k < Q. For 0 $ k < Q, MC
group k contains those PCU processors whose physical
addresses are of the form (Q * i) + k, 0 $ i < N/Q.
Thus, MSU i is connected to the ith PE of each MC
group.

The two main advantages of this approach for a
partition of size N/Q (i.e., one MC-group) are that (1) all
of the PCU memory modules can be loaded in parallel
and (2) the data is directly available no matter which
partition (MC-group) is chosen. This is done by storing
the data for a task which is to be loaded into the ith logi
cal PE of the virtual machine in MSU i, 0 $ i < N/Q.
Thus, no matter which MC-group is chosen, the data
from the ith MSU can be loaded into the ith PCU
memory module of the virtual machine, for all i,
0 $ i < N/Q, simultaneously.

Thus, for virtual machines of size N/Q, this secon
dary storage scheme allows all N/Q PCU memory
modules to be loaded in one parallel block transfer.
Consider the situation where a virtual machine of size
RN/Q is desired, 1 $ R $ Q. Only R parallel block
loads are required if the data for the PCU memory
module whose high-order n-q logical address bits equal i
is loaded into MSU i. This is true no matter which parti
tion of R MCs (which agree in the low-order q-r address
bits) is chosen jl8].

A memory frame is the amount of space used in the
PCU memory units for storage of data from secondary
storage for a particular task. It is possible that a task
may need to process more than one memory frame.
Besides being used for preloading, the double-buffered
PCU memory modules can also be used to overlap task
execution on one memory frame with the loading or
unloading of another memory frame.

m. Memory System Model
In this section the model for the Memory System

used for the analysis in this paper is described. A

memory unit set is the set of PCU memory units within
a single MC-group which have the same label (e.g., A,
see Fig. 2). A data block consists of all the data to be
loaded for one memory unit set. For a particular task
which requires R MC-groups, there are R data blocks in
a memory frame.

When a task is assigned to an MC-group, one of the
memory units of each PCU memory module within the
MC-group is used by the task. Without loss of general
ity for SIMD tasks, it is assumed that all of the memory
units within an MC-group which are used by a given
task are in the same memory unit set. Hence, all of the
memory units within a memory unit set will always be
assigned to the same task and will have the same status.
Since all memory units within a memory unit set always
have the same status, in this model it is also assumed
that the loading/unloading of data for a memory unit set
is done simultaneously and is considered as one action.
In general, this is also true for MIMD tasks. (However,
it is possible that for MIMD tasks in which the PEs have
differing secondary memory system requirements that
these assumption may not hold.)

All requests which are made to the Memory
Management System and serviced by the Memory
Storage System are for one data block. This results from
the fact that the Memory Storage System can only
load/unload one memory unit set at a time. There are
three types of requests: load, preload, and unload. A load
request is a request for input data for a task which has
been assigned to its MC-group(s) (i.e., the MC-groups are
ready to execute the task). A preload request is a
request for input data for a task which has not been
assigned to its MC-group(s) (i.e., the MC-groups are not
ready to execute the task). An unload request is a
request to unload output data for a completed task.

Load requests have the highest priority since the
MC-group which is associated with the request has
already been assigned to the task and is idle waiting for
its input data. Unload requests have the second highest
priority since they are for tasks which have already com
pleted execution and the user is waiting for the output
data. Preload requests have the lowest priority since the
MC-group which is associated with the request is not idle
waiting for the input data to be loaded. The Memory
Storage System services requests from three request
queues, one for each type of request.

IV. Preloading Schemes
Preloading enables the Memory Storage System to

preload the data into the PCU memory units of a given
virtual machine while the PCU processors of that virtual
machine are still executing the previous task. In this
section two task preloading schemes for use with the
FFMQ scheduling algorithm are presented. These
schemes make use of the double-buffered PCU memory
modules. While a task is being executed using one of
the memory unit sets of a given MC-group (e.g., the A
memory units), the next task to be executed can be
preloaded into the other memory unit set (e.g., the B
memory units). Since there are only two memory units
associated with each PCU processor, each processor can
have at most two tasks associated with it. Hence, only
single task look-ahead preloading is considered. In gen"
eral, there will be more than one task preloaded into the
system since different MC-groups can have different
tasks preloaded.

Preloading is Jriven by the size of a currently exe
cuting task. When a task of size 2k MCs, 0 5 k < q,
begins to execute, the preloading of tasks of size 2"(or

409

smaller) .is considered for that set of MCs. Thus, a task
of siz~ 2' MCs can be preloaded only if there are tasks of
size 2' or greater currently executing. The two preload
ing schemes to be presented are prescheduling and pred
iction.

?rescheduling. When prescheduling is used, the task
manager attempts to schedule tasks in advance of when
they would normally be scheduled. Whenever a task
starts executing on a virtual machine, the prescheduler
determines which tasks (if any) will follow the execution
of the given task. If there are any tasks, the tasks are
preassigned to the appropriate MCs to be their next task
executed. The prescheduling algorithm uses the FFMQ
scheduling algorithm 120]; but, instead' of attempting to
schedule tasks for the entire machine, the prescheduling
algorithm attempts only to schedule the virtual machine
(or MC-groups) which is executing the given task. When
a task completes execution, if no tasks have been
prescheduled to follow the completing task, the regular
FFMQ scheduling algorithm is called. It is noted that
task prescheduling supplements task scheduling, it does
not replace it.

The following example will illustrate the use of
prescheduling on a PASM with four MC-groups (i.e.,
Q = 4). The status of the system is given as a function
of time in Fig. 4. The status of the task queues are given
whenever there is a change. At time 10.0 the system
completes execution of tasks a, which required four
MC-groups. Task (3 has already been preloaded, so it
begins executing immediately. The prescheduling algo
rithm is called by the task manager to preschedule the
task or tasks which will follow task (3. The FFMQ algo
rithm determines that tasks 7 and 6 (which each require
two MC-groups) will follow (3. Tasks 7 and {j are
removed from TQ1 and are preassigned to the appropri
ate MCs. The task manager then requests that the data
for tasks 7 and 6 be preloaded. The Memory Storage
System unloads the output. data from task a and
preloads the data for 7 and 6. Recall that the Memory
Storage System is only able to transfer the data for one
MC-group at a time. Hence it takes four transfers to
unload task a, two to preload 7, and two to preload 6.
At time 10.8 task (3 is executing and tasks 7 and 6 are
preloaded and ready to be e~ecuted. At time 12.0 task (3
completes executing and tasks 7 and 6 start executing.

TIME-

10.0 11.0

As indicated in Fig. 4, task £, which requires two
MC-groups, was prescheduled to follow task 7. So no
matter when task 7 completes execution, task £ will fol
low it. As a result, even though task £ arrived to the
system before task lj, the MC-groups did not start exe
cuting it until 5.5 seconds after task 'i· As a result, the
response time for task £ is much greater than that of
task 'i· This is an example of how the prescheduling
scheme alters the order which task are executed.

Prediction. As with prescheduling, the prediction
preloading algorithm is invoked each time a task starts
executing. When prediction is used, the task manager
predicts which task or tasks may follow the task which
started executing. Unlike the prescheduling scheme, the
task(s) are not removed from the task queue. The pred
iction scheme uses the FFMQ scheduling algorithm to
predict which tasks may follow a given task. The
predicted task or tasks are then preloaded by the
Memory Storage System into their predicted memory
units. The same enqueued task may be predicted and
preloaded to follow each currently executing task whose
size is equal to or greater than that of the enqueued
task. The FFMQ scheduling algorithm is executed
whenever a task completes execution (i.e., when MCs
become free) and whenever a new task arrives to be
scheduled [20]. When a task is scheduled for execution
by the FFMQ scheduling algorithm, the assignment of
tasks to MC-groups is made as if no preloading had
taken place. When a task is assigned, the task manager
sends requests to the Memory Management System indi
cating that the Memory Storage System should load the
data. Recall that one data block is sent to each MC
group and that the task manager sends a separate
request for each data block. After the Memory
Management System receives the data block requests, it
voids any requests for data blocks which have been
preloaded. Doing data requests on a block by block
basis allows the system to take advantage of and to
account for partial preloading. Having the task manager
requests all data blocks (regardless of whether they have
been preloaded) removes the burden of keeping track of
preloaded data from the task manager (which executes
on the System Control Unit).

The following example will illustrate the use of
prediction on a PASM with four MC-groups (i.e.,

u.6 11.0 Ul.O

~
~t--f"-'"""-~ "'"-~---,r1--1-..,,.,.,,--~---..,.,,_---,,,_-.---=-___,,,.--1r--,,.,.,,-...,..~1r-__......._~--t

ii----t~-""'"'-'.:-::-~'--~-1~~+-~--,,~~-=-.mr-J.f---r--:::--:--ff---r-,,;"1in:>r-J.f---L ""---f
~

Fig. 4. An example of the use of the prescheduling scheme for determining where input data
should be preloaded. The status of a PASM with four MC-groups (Q = 4) is shown.
Status of the eight (2Q) memory unit sets, the three (q + 1) task queues (for schedul
ing), and the Memory Storage System are given. Shaded area indicates when a memory
unit set is being accessed i either by loading, unloading, or preloading) by the Memory
Storage System. "L," "P, and "U" indicate that the Memory Storage System is load
ing input data, preloading input data, and unloading output data, respectively.

410

TIME-

u.o U.6 14.6 10.0

~
~1---+<~-:--"""''--~---.fl-+--i,.,,....;.----.,~~~7r.---=----::-~"'"177..,~~-7r--i-:--;;---::-~f~......_~~-1

~l----lf--~:,<1--...,..-""-4-~~~--1~......:.......,,.,,.,..:,,,,.,-~7V----t~--::-~,,-~r-,,...,.r-1?""'1~~~"T":"---,,,,---...,..~7V--'--""""'-~~-T
~

Fig. 5. An example of the use of the prediction scheme for determining where input data
should be preloaded. Notation is the same as used in Fig. 4.

Q = 4). The status of the system is given as a function
of time in Fig. 5. The status of the task queues are
given whenever there is a change. At time 10.0 the sys
tem completes execution of tasks a, which required four
MC-groups. The scheduler determines that task f3 will
he executed next by the system. Since task f3 has been
preloaded, execution begins immediately. The prediction
algorithm is called by the task manager to predict which
task or tasks may follow task {3. The FFMQ algorithm
determines that tasks "t and 6 (which each require two
MC-groups) may follow /3. The task manager then
requests that the data for tasks "t and 6 be preloaded.
Note that tasks "t and 6 are not removed from the
scheduler task queues as they were for the prescheduling
scheme. The Memory Storage System unloads the out
put data from task a and preloads the input data for "t
and 6. Recall that it takes four transfers to unload task
o, two to preload "(, and two to preload 6. At time 10.8
task f3 is executing and tasks "t and 6 are preloaded and
ready to be executed. At time 12.0 task f3 completes
execution. Since there are free MC-groups, the scheduler
is called by the task manager. The scheduler then
selects tasks "t and 6 to be assigned to the free MC
groups. The tasks are then assigned and begin execution
immediately since they have both been preloaded. Up to
this point, the results of prescheduling and prediction are
the same.

As indicated in Fig. 5, task l was predicted to follow
either task "t or 6. Therefore, it was preloaded into the
MC-groups forming the virtual machines for both tasks.
In this way, task £ can be executed by the virtual
machine which becomes available first, preserving the
FFMQ ordering. Thus, the normal scheduling policy is
maintained with prediction and task £ does not experi
ence the excessive delays that it did with prescheduling.
Also note that in this particular example the structure of
the Memory Storage System allows £ to be loaded into
both MC-groups simultaneously. Since task 6 was com
pleted first, task £ was scheduled to follow it, and a new
task was predicted to follow tasks "t and (.

Summary. With the prediction scheme, the task
manager predicts where the enqueued task might execute
and preloads the data into the appropriate PCU memory
units. The enqueued task may be loaded to follow more
than one currently executing task. Independently of the
preloading which has occurred, the scheduler selects
which task will be executed next and to which MC
group(s) the task will be assigned. Thus, prediction does
not alter the natural order in which tasks would have
been scheduled without preloading. In contrast, the
prescheduling scheme has the disadvantage that it alters

411

the order which the tasks are executed from the natural
order resulting from the use of the FFMQ scheduling
algorithm. For example, when prescheduling was used,
task ~was executed before task £ even though task £ was
first in the task queue. As a result, prescheduling greatly
increased the response time for task £.

The prescheduling scheme has the advantage that it
does not do any unnecessary loading of tasks which may
not be used, i.e., with prescheduling a task is preloaded
(or loaded) only one time. However, with prediction, a
task may be preloaded one or more times. For example
in Fig. 6, the two MC-group task 6 was predicted and
preloaded to follow task "I· Since both tasks o and f3
completed execution before "(, task 6 did not follow task
"(. Hence, unnecessary loading of task 6 occurred.

To demonstrate how it is not clear which preloading
algorithm will yield better performance, consider the
simple examples given in Figs. 7 and 8. In the example
in Fig. 7, the system variation using the prescheduling
scheme completes all of the tasks first. On the other
hand, in the example in Fig. 8, the system variation
using the prediction scheme completes all of the tasks
first. Both preloading schemes have advantages and
disadvantages. In order to evaluate and quantify their
relative performance, simulation studies were conducted.
These studies are described in Section V.

The preloading schemes can use any scheduling
algorithm, they are not limited to the FFMQ scheduling
algorithm. Since the preloading schemes use the proces-

TIME-

10.0

"' 0 A E-<
~ o B .,
~
;:,
>-
I>:

2 A 0
::ii 2 B
~
::ii

3 A 0
::ii 3 B

10.6

-- o Executing- -

p
6

11.0 11.6 12.0

- - - 6 Executing -

0
0
0

L L U U
6 6 Q fl

Fig. 6. Status of a PASM with four MC-groups, with
notation as defined in Fig. 4. Illustrates
unnecessary preloading which can occur from
using prediction scheme.

"' • "' • "O . ..
~
"' ~

• ,s
.~

1
"' 6

~~ 0
001 0 :ii.,

~~
~p

r:Y 0 .. 1

"' "' :ii

~~ 0
0 01 0 :ii.,

~~ 1
~p 1

r:Y ,_

"' "')il

A
B

U L U
OI 5 p

Fig. 7. Status of a PASM with t.wo MC-groups, with
notation as defined in Fig. 4. Example of case
where the (a) prescheduling scheme yields better
performance than the (b) prediction scheme.

~~ 0
001 0

"' ::i!<ll • ~~ "' A • "O ~p B . ..
~
f r:Y

"' ..
'.!:

"' "' :ii

~rt} 0 A

~~ 0 B

• ~!:: • 9 A l oZ
"O ::i!p B

f

"' r:Y 0 3

6
.. 1 0

"' Opera-

"' tlon)il Task

L
p

1
0

L L
a p

p
'1

p
"f

0
0

u
p

u
'1

OI

u

"

Fig. 8. Status of a P ASM with two MC-groups, with
notation as defined in Fig. 4. Example of case
where the (b) prediction scheme yields better
performance than the (a) prescheduling scheme.

sors currently assigned to a given task, they do not have
to have a fixed MC-group structure. Hence, these
hardware/software schemes can be adapted for use in
other muitiple-SIMD and partitionable SIMD /MIMD sys
tems.

V. Perrormance Analysis
A PASM with 16 MCs (Q = 16) and 1024 PEs

(N = 1024) was simulated using the PASM Of,erating
System simulator, a discrete event simulator [5 , under
four variations in the control strategy used by the
memory system (details of the simulations are given in
[21]).
1. A PASM without double-buffered PCU memory

modules was considered, i.e., only one memory unit
per PE. This allowed for no overlapped loading or
unloading of data, and is examined to demonstrate
the need for the double-buffered PCU memory
modules.

2. A PASM with double-buffered PCU memory modules
was considered, i.e., two memory units per PE. With
this variation the second memory unit was used for
doing overlapped unloading of the output data from
the previous task, but no preloading of the input data
for the next task, i.e., there is no preloading scheme
employed.

3. A P ASM with double-buffered PCU memory modules
was considered, using the prescheduling scheme for
determining where to preload input data.

4. A P ASM with double-buffered PCU memory modules
was considered, using the prediction scheme for
determining where to preload input data .

Performance measures to be considered are MC util
ization, average load delay time, and average response
time. The MC utilization is the fraction of time that the
MCs are active during the simulation, specifically, the
total MC active time, divided by Q and by the total
simulation time. MC utilization has been selected since
the utilization of the MCs reflects the utilization of the
PEs.

The average load delay time is the average delay
time to load the memory frame for a task (see Fig. 9).
The load delay time for a given task is the delay
between the time when the MC-group(s) are ready to
execute the task and the time when the task starts exe
cuting. This is of interest since it directly shows the
decrease in the time the processors are idle waiting for
data to be loaded.

The response time for a task is the delay between
the time when the task arrives at the system and the
time when the task completes execution on the system
(see Fig. 9). The average response time is calculated by
accumulating the response time for each task executed
and dividing it by the number of task completions. The
response time is being considered since a decrease in
response time has the greatest direct effect on the user .
Response time is a significant measure since it is
expected that P ASM will often be used interactively.
Interactive users might be experimenting with different
sequences of image processing algorithms on large
images. It is desirable to be able to very parameters for
the algorithms and see the results in a reasonable
amount of time (i.e., short response times).

The system throughput is the number of tasks com
pleted per second by the system. It is not considered in
detail since it is not an accurate performance measure
for this type of analysis. The system throughput does
not take into account the number of MC-groups the
tasks required. For example, for two system variation,
the throughput could be the same, but for one variation,
the system could be completing all 16 MC-group tasks
and for the other the system could be completing all one
MC-group tasks. Hence, for the system throughput to
be of use, it is necessary to weigh it with the task size,
which is equivalent to looking at the MC utilization.

TASK
ARRIVES

TASK
ASSIGNED

TASK
EXECUTION

BEGINS

TASK
EXECUTION

ENDS

TASK
RESULTS

UNLOADED

412

1-Lo~~LAY+Ex~~oN--[I
--------RESPONSE TIME--------+!•

Fig. 9. Time-line which illustrates the definitions of load
delay time and response time.

Since each memory unit set is preloaded indepen
dently, it is possible for a task to be partially preloaded
when the previous task completes execution. Therefore,
when the new task is assigned, it is only necessary to
load the memory units sets which were not preloaded.
The simulator is able to account for partial preloading.

The value of N (the number of PEs) is not varied
since it would not effect the performance of the system.
For example, if N were doubled, there would still be 16
MC-groups, but each MC-group would have twice as
many PEs. Since there would also be twice as many
MSUs (since there are N/Q MSUs), all of the memory
units within one memory unit set could still be loaded in
one parallel block transfer. Hence, the results of the
simulations would not be effected.

On the other hand, if the value of Q was doubled,
there would 32 MC-groups and only 32 MSUs. This
change enables the system to execute tasks which require
32 PEs, in addition to the other possible task sizes.
Since there are half as many MSUs, it would take twice
as many parallel block transfers to load the PCU
memory units for a task. Hence, doubling the value of Q
would have a similar effect to doubling the time to
load/unload a data block for an MC-group, as done in
Experiment 2.

"In computer systems, the arrival of individuals at a
card reader, the failure of circuits in a central processor,
and requests from terminals in a time-sharing system are
processes that are essentially Poisson in nature." [5]
Since P ASM serves requests from terminals (as does a
time-sharing system), task arrivals are generated with a
Poisson process. The mean task interarrival time was
seiecie<l to be 20 simulation seconds. A uniform distri
bution is used for determining the number of MC-groups
a task requires. Each simulation run was for 20,000
"P ASM seconds" and had approximately 1000 tasks exe
cuted. The performance analysis has been divided into
two experiments.

Experiment 1. In this experiment the distribution
for the task execution time was chosen to be exponen
tial. The mean execution time was varied from five to
50 simulation seconds. The time to load/unload a data
block for an MC-group has been selected to be 0.090
simulation seconds. This load time is based on the time
to load 64 kilobytes of data into a memory unit assum
ing that each MSU was a CDC BK7XX Storage Drive
Module (disk) [2]. This time accounts for the seek and
latency times of the disk which can be overlapped with
the time to set the Memory Storage System busses.
However, it does not account for any overhead from file
system actions which should be insignificant when com
pared to the seek and latency times.

The average response time is given for the four vari
ations in control strategy as a function of the average
task execution time in Tab. 1. In [19] it has been deter
mined both analytically and by simulation that the aver
age number of tasks being executed by the system for a
uniform distribution of task sizes is 2:58 times the MC
utilization. Hence, if the system is to be 100 percent
utilized, the mean task execution time must be at least
51.6 seconds (if the mean interarrival time is 20 seconds).
Therefore, when the average execution time is small (less
than 20 seconds), the system (or MC) utilization is low
(less than 40 percent, see Tab. 2). With the utilization
so low, there are usually free MC-groups and tasks can
normally be scheduled immediately upon arrival. If
tasks are scheduled immediately upon arrival, there is no
time period in which tasks can be preloaded and as a
result no preloading of input data occurs. Hence, for

413

Tab. 1. Average response time (in simulation seconds) is
given for the four variations in control strategy
as a function of the average task execution time
(in simulation seconds).

5.0
10.0
15.0
20.0
25.0
30.0
40.0
50.0

6.728
13.650
22.275
33.495
49.681
76.854
233.00
1105.l

Tab. 2. MC utilization is given for the four variations
in control strategy as a function of the average
task execution time (in simulation seconds).

5.0
10.0
15.0
20.0
25.0
30.0
40.0
50.0

re 1ct
0.098
0.196
0.294
0.392
0.487
0.585
0.775
0.894

small average execution times (less than 20 seconds), the
response time for all variations in control strategy is
about the same.

The prescheduling scheme alters the order in which
tasks are scheduled from the normal scheme since the
tasks are scheduled in advance. The use of the
prescheduling sometimes results in bad scheduling deci
sions (or miss-scheduling). For example, consider a
PASM with two MC-groups (Q = 2) which is executing
tasks a and /3, each requiring one MC-group (see Fig.
8a). Task "/ has been prescheduled to follow a. Task /3
completes execution before task a. Now MC-group 1 is
idle and task 'I is waiting to be executed on MC-group 0.
Hence, task 'I has been miss-scheduled resulting in
increased response time for task "I· These bad decisions
will have little effect when the average task execution
time is small. However, when the average task execution
time becomes large (i.e., greater than 25 seconds), the
bad decisions have greater effect. This effect is illus
trated by the average response time for the preschedul
ing scheme becoming greater than the average response
time for the prediction scheme for large execution times
(see Tab. 1).

The MC utilization for the four system variations in
control strategy is given in Tab. 2. For execution times
of less than 40 seconds, the system is able to service all
of the arriving tasks (task arrival rate equals
throughput) under each variation in control strategy. As
a result, for small execution times the MC utilization is
the same for all control strategies since the same set of
tasks is being executed. As the average execution time
increases, the throughput of tasks requiring 16 MC
groups decreases for the single and double variations.
Since the system is executing fewer 16 MC-group tasks,
the MC utilization is lower for the variations without
preloading. When the average execution time is 50
seconds, the 16 MC-group task throughput is less for
prescheduling than prediction, resulting in the difference

in MC utilization. This occurs since the prescheduling
scheme can only preschedule tasks which require the
same number or fewer MC-groups than a currently run
ning task. Therefore, a 16 MC-group task can only be
prescheduled, if there is a 16 MC-group task running.
Hence, the prescheduling scheme tends to favor tasks
which do not require 16 MC-groups. As the demand on
the system increases (e.g., longer average task execution
times), the MC utilization becomes limited with the sin
gle and double variations since the processors cannot be
utilized while they are waiting for data and programs to
be loaded and unloaded. Hence, the maximum allowable
system load (utilization) is higher when the preloading
schemes are used.

In Tab. 3 the average task load delay time is given
as a function of the average task execution time for the
four variations in control strategy. This is given to show

Tab. 3. Average load delay time (in simulation seconds)
is given for the four variations in control stra
tegy as a function of the average task execution
time (in simulation seconds).

5.0
10.0
15.0
20.0
25.0
30.0
40.0
50.0

0.551
0.535
0.505
0.472
0.434
0.389
0.262
0.157

how the preloading schemes reduce the load delay times
for tasks. Consider the single-buffered variation. As the
average task execution time increases the system utiliza
tion approaches one (see Tab. 2). When a task is
scheduled it is usually being executed by MC-groups
which have just completed executing aRother task. As a
result, the new task must wait for the output data from
the previous task to be unloaded and its input data to be
loaded. Hence, the load delay time increases with
increased utilization for the single-buffered variation.
However, with the prediction and prescheduling schemes,
longer task execution times allow more time for task
preloading. Therefore, for large task execution times,
the average load delay time approaches zero for both
preloading schemes (see Tab. 3). The average load delay
time will never reach zero since there are constraints on
when preloading is possible (e.g., cannot preload tasks
which require more MCs than any given currently exe
cuting task) which will always prevent some tasks from
being preloaded. The average load delay time for the
prediction scheme does not approach zero as rapidly as it
does for the prescheduling scheme since some tasks are
not executed by the virtual machine in which they were
preloaded (e.g., task c of example in Fig. 6).

In summary, for small execution times (less than 20
seconds) the system performs the same for all variations
in control strategy. For large execution times (greater
then 20 seconds) the prediction scheme performs best.
For a given task, the load delay time is a component of
the response time (see Fig. 9). As a result, load delay
time does not indicate the direct effect on the user, as
does the average response time. Hence, the lower aver-

414

Tab. 4. Average response time (in simulation seconds) is
given for the four variations in control strategy
as a function or the time to load/unload one
data block (in simulation seconds).

0.0
0.045
0.090
0.135
0.180
0.225
0.270
0.315

47.317
48.499
49.681
51.438
52.362
53.830
55.305
57.005

age response times {for larger executing times) provided
by the prediction scheme are more significant than the
lower average load delay times provided by the
prescheduling scheme. Therefore, this experiment indi
cates that the prediction scheme is the method of choice.

Experiment 2. In this experiment the distribution
for the task execution time is exponential with mean
task execution time of 25 simulation seconds. The time
to load/unload a data block for an MC-group is varied
from 0 to 0.315 simulation seconds. Varying the time to
load/unload a data block could result from varying the
size of the data block (which would result from varying
the size of the PCU memory units) or from changing the
type or speed of the secondary storage device used by
the MSUs. For example, the time to load 64 kilobytes of
data from a disk which employs "Winchester" technol
ogy can range from 0.2 to 0.4 seconds, depending on the
particular manufacturer (e.g., for the Hewlett-Packard
Model 7910, the average load time is 0.236 seconds [6]).

The average response time is given for the four vari
ations in control strategy as a function of the time to
load/unload a data block in Tab. 4. Note that in Tab. 1
the average response time was given as a function of the
average task execution time, while in Tab. 4 it is given
as a function of the time to load/unload a data block. If
the load/unload time is zero, the average response time
for the single, double, and prediction variations is the
same since loading and unloading a task requires no
time. The response time for the prescheduling variation
is greater than the other variations when the
load/unload time is zero since with the prescheduling
variation, the system is still prescheduling tasks, result
ing in some miss-scheduling. Hence, the zero
load/unload time case directly illustrates the increase in
response time resulting from the use of prescheduling.

As the load/unload time increases, the average
response times for the single-buffered variation increase
at a greater rate since the load and unload time for a
task must be added to the execution time of every task.
For all load/unload times, the prediction scheme yields
the lowest response times. For load/unload times or
greater than 0.045 simulation seconds, the prescheduling
scheme yields lower average response times than the
single-buffered variation, and for load/unload times of
greater than 0.180 the prescheduling scheme yields lower
average response times than the double-buffered
variation without preloading. These cross-overs in the
average response time occur since the benefit of the
preloading (from the use of prescheduling) becomes more
significant with greater load/unload times (and over
comes the increase resulting from miss-scheduling).

VI. Conclusion
Two schemes which can be used with the FFMQ

scheduling algorithm for preloading input data into the
PCU memory modules have been presented. The two
schemes (prescheduling and prediction) make use of the
double-buffered PCU memory modules. Since both
schemes have advantages and disadvantages, in order to
evaluate and quantify their relative performance, it was
necessary to conduct simulation studies. The perfor
mance of the system has been evaluated with four varia
tions in control strategy. It has been shown that the use
of the double-buffered memory modules for overlapping
the unloading of the output data from the previous task
with the execution of the next task results in a
significant decrease in average response time. Further
more, it has been shown that the average response time
can be decreased more significantly by using the double
buffered memories for input data preloading (along with
overlapped unloading). When the system becomes
heavily loaded, the system performs better with the
prediction scheme than with the prescheduling scheme
since the prescheduling scheme alters the natural order
ing of the tasks which results from using the scheduling
algorithm. However, the prescheduling scheme has the
advantage that it does not do any unnecessary loading of
input data which may not be used. The prediction
scheme also has the advantage that in the worst case the
resulting system performance will never be worse than
that of the overlapped unloading case since the same
scheduling order is maintained and all preloading is done
with lower priority. This claim cannot be made for the
prescheduling scheme since it alters the scheduling order.

In summary, the "prediction" preloading scheme
makes good use of the Memory Storage System architec
ture and the double-buffered PCU memory modules. It
overcomes the problem of how to determine where the
system can preload tasks prior to final processor selec
tion. Thus, the double-buffered primary memory - paral
lel secondary storage device organization can be
exploited for overlapped loading of tasks as well as over
lapped unloading. The preloading schemes can use any
scheduling algorithm and can be adapted for use in other
multiple-SIMD and partitionable SIMD/MIMD systems.

References

[1] G. B. Adams III and H. J. Siegel, "The extra stage
cube: a fault-tolerant interconnection network for
supersystems," IEEE Trans. Comput., vol. C-31, pp.
443-454, May 1982.

[2] Control Data Corporation, CDC Storage Module
Drive BK7XX Hardware Reference Manual, Control
Data Corporation, Minneapolis, MN, 1979.

[3] T. Feng, "Data manipulating functions in parallel
processors and their implementations," IEEE Trans.
Comput., vol. C-23, pp. 309-318, Mar. 1974.

[4] M. J. Flynn, "Very high-speed computer systems,"
Proc. IEEE, vol. 54, pp. 1901-1909, Dec. 1966.

[5] S. H. Fuller, "Performance evaluation," in Introduc
tion to Computer Architecture, 2nd edition, edited
by H. S. Stone, SRA, Inc., Chicago, 1980, pp. 527-
590.

415

[6] Hewlett-Packard, Electronic Instruments and Sys
tems 1982, Hewlett-Packard, Palo Alto, CA, 1982.

[7] R. Y. Kain, A. A. Raie, and M. G. Gouda, "Multi
ple processor scheduling policies," 1st Int 'l. Con/.
Distributed Computing Systems, Oct. 1979, pp. 660-
668.

[8] R. N. Kapur, U. V. Premkumar, and G. J. Lipovski,
"Organization of the TRAC processor-memory sub
system," AF/PS 1980 Nat. Comput. Con/., May
1980, pp. 623-629.

[9] D. H. Lawrie, "Access and alignment of data in an
array processor," IEEE Trans. Comput., vol. C-24,
pp. 1145-1155, Dec. 1975.

[10] R. J. McMillen and H. J. Siegel, "Routing schemes
for the augmented data manipulator network in an
MIMD system," IEEE Trans. Comput., vol. C-31,
pp. 1202-1214, Dec. 1982.

[11] G. J. Nutt, "Microprocessor implementation of a
parallel processor," 4th Symp. Comput. Architecture,
Mar. 1977, pp. 147-152.

[12] G. J. Nutt, "A parallel processor operating system
comparison," IEEE Trans. Software Engr., vol. SE-
3, pp. 467-475, Nov. 1977.

[13] D. S. Parker, "Notes on shuffle/exchange-type
switching networks," IEEE Trans. Comput., vol.
C-29, pp. 213-222, Mar. 1980.

[14] D. S. Parker and C. S. Raghavendra, "The gamma
network: a multiprocessor interconnection network
with redundant paths," 9th Symp. Comput. Archi
tecture, Apr. 1982, pp. 73-80.

[15] M. Pease, "The indirect binary n-cube microproces
sor array," IEEE Trans. Comput., vol. C-26, pp.
458-473, May 1977.

[16] M. C. Sejnowski, E. T. Upchurch, R. N. Kapur, D.
P. S. Charlu, and G. J. Lipovski, "An overview of
the Texas reconfigurable array computer," AFIPS
1980 Nat. Comput. Con/., May 1980, pp. 631-641.

[17] H. J. Siegel, "The theory underlying the partitioning
of permutation networks," IEEE Trans. Comput.,
vol. C-29, pp. 791-801, Sept. 1980.

[18] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T.
Mueller, Jr., H. E. Smalley, Jr., and S. D. Smith,
"PASM: a partitionable SIMD/MIMD system for
image processing and pattern recognition," IEEE
Trans. Comput., vol. C-30, pp. 934-947, Dec. 1981.

[19] D. L. Tuomenoksa and H. J. Siegel, "Analysis of the
PASM control system memory hierarchy,'' 1982
Int 'l. Con/. Parallel Processing, Aug. 1982, pp. 363-
370.

[20] D. L. Tuomenoksa and H. J. Siegel, "Analysis of
multiple-queue task scheduling algorithms for
multiple-SIMD machines," Srd Int'l. Con/. Distri
buted Computing Systems, Oct. 1982, pp. 114-121.

[21] D. L. Tuomenoksa and H. J. Siegel, Design of the
Operating System for the PASM Parallel Processing
System, TR-EE 83-14, School of Electrical Engineer
ing, Purdue Univ., May 1983.

CONSTRUCTING A PARALLEL IMPLEMENTATION FROM HIGH-LEVEL
SPECIFICATIONS: A CASE STUDY USING RESOURCE EXPRESSIONS

Bharadwaj J ayaraman
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27514

Abstract -- Resource expressions are high-level
specifications of the coordination of concurrent
requests to access a shared resource. This paper
presents an operational semantics for resource
expressions and shows how it is used to systematically
construct an implementation for resource expressions.
The operational semantics defines the necessary
conditions to be tested and the actions to be taken
when a condition holds. To simplify the definition of its
semantics, resource expressions are represented in an
intermediate form consisting of a set of condition
action pairs. The implementation of resource
expressions represented in this intermediate form is a
parallel program constructed from a set of queueing
primitives and primitives for arbitration and parallel
execution. This implementation is presented here by
showing informally how the semantics of conditions and
actions are realized by the primitives.

1. Introduction
The protection and sharing of resources are

central to the construction of parallel programs. A
resource is assumed here to be any data object
together with a set of coordinated operations on this
object. Coordination of these operations is necessary
in order to maintain the consistency of the data object,
or to optimize the amount of parallel execution of
these operations. Resource expressions are a high
level language extension for specifying constraints,
such as mutual exclusion, priority of operations, etc.
Although their initial development was in the context of
a functional language [9], they can be used in
conventional languages as well. They are closely related
to path expressions [3] in their basic approach to
specification, but there are important semantic
differences between the two languages. We use the
term resource expression, rather than path
expression, in recognition of the differences in their
semantics. The reader is referred to [9] for a broader
overview of our approach.

Resource expressions are basically regular
expressions [10] extended with conditions and
constructs for concurrent operations. For example,
the resource expression

((write)*+ [read]}*

specifies a simple version of the readers-and-writers
constraint of [5]. The operators "*" and "[]" specify
zero or more sequential and parallel iterations of their
respective bodies. Thus the subexpression (write)*
specifies sequential execution of write requests, and
the subexpression [read] specifies parallel execution of
read requests. The ,operator '1+" denotes selection of
one of its operands, hence all read requests ,execute in

0190-3918/83/0000/0416$01.00 © 1983 IEEE 416

mutual exclusion of all write requests. Since the
selection of one of the operands of "+", and actual
number of iterations performed by "*" and "[]" can be
time-dependent, these operators are nondeterministic
operators.

To exercise greater control over the selection of
alternatives, we specify conditions that must hold
before any alternative is selected. The conditions used
are often thresholds on the number of requests
present for any operation. We use $x to refer to the
number of requests present for operation x. For
example, the resource expression

({write)* + ($write=O and $read>O) [read])*

specifies priority for write requests, because [read]
can be selected only when there are no write requests
present. However, once a read request is being
executed, further read requests may be executed even
if a write request should then become present.

The expression

((write)*+ [($write=O and $read>O)read])*

on the other hand, specifies stronger priority ,for write
requests than the previous expression, because the
absence of a write request is tested before every read
request is executed.

Another basic primitive is sequencing, and is
denoted by ".". For example, (f.g)* specifies that
requests for operations f and g are to be executed in
strict alternation. The expression f.g + h.k specifies a
selection of only one of these two sequences, f.g or h.k,,
depending upon which sequence is ready to be selected
first. There are three possible criteria for the. selection
of f.g {and similarly h.k):

1. Without testing for a request for either f or g;
2. As soon as a request for f is present;
3. Only when a request for both f and g are present.

We adopt the first criterion here, since the other
two can be specified by means of explicit conditions
before a sequence. For example, the second criterion
can be stated as

($f>O)f.g

and the third criterion by

($f>O and $g>O)f.g

This reflects the view that the conditions upon which
actions are taken in a resource controller should be
explicitly stated by the programmer. Although the
specifications tend to become longer, the resulting
programs become more self-documenting.

The syntax of resource expressions, for the
purpose of discussion in this paper, is given by the
following grammar. We use H to denote zero or more
repetitions of the enclosed rule.

RE --> RF l+ RFj
RF --> RG I (COND) RG
RG --> RH !· RHl
RH --> op I (RE)* I [RE2]

RE2 --> RF2 l+ RF2j
RF2 --> RG2 I (COND) RG2
RG2 --> op

COND --> REL !and RELj
REL --> ($op= 0) I ($op > NATNO)
NATNO --> 0 I 1 I 2 I ...

where op is the name of an access operation.

We have omitted discussion of the operators "ll" and
"#" of [9] in the presentation here due to shortage of
space.

2. Operational Semantics

In order to simplify the presentation of the
definition of its semantics, a resource expression is
converted into an intermediate form, which consists of
a set of condition-action pairs, similar to Dijkstra's
guarded commands [6]. The general form of these
condition-action pairs is

where
(ci a;) is a condition-action pair, one for each term

separated by"+", where
c; is of the form (r 1 and r 2 and ... and rk)
a; is of the form (x1 x2 ... xi)
where

r; is either ($op;>n;) or ($opi=O),
where op1 ... opm are operations of the
resource and n; is a natural number,

X; is an operation or (STAR I) or (BRACKET I)
where I is ((cu ail) ... (C;n a;n)) and STAR
and BRACKET are functions for "*" and
"[]" respectively (explained later).

The intermediate form may be thought of as a
different syntactic form of the given resource
expression, in which conditions and actions are stated
in a more uniform, but perhaps less readable, manner.
The translation to the intermediate form is quite
straightforward and is omitted here. For example, the
intermediate form of the resource expression

(($x>O) (($x>1) x)*.x + ($y>O) [($y>O) y])•

is of the form

(ca)
where
c =true, a = ((STAR ((cl al) (c2 a2))))
where
cl= ($x>0), al= ((STAR (ell all)) x)

where ell = ($x>1), all = (x)

c2 = ($y>O), a2 = ((BRACKET (c21 c22)))
where c21 = ($y>O), c22 = (y)

417

The operational semantics of resourca expressions
expressed in the above form is defined by showing the
necessary conditions to be tested and the action to be
taken once a condition holds. We define

eval(I, R)

which "evaluates" a resource expression I in the
environrnent of a set of requests R. i.e. executes
requests present in set R that satisfy the constraints of
I. It is assumed that the content of set R can change,
either because requests are added to it from outside
the resource or because requests are removed from it
in the course of evaluation of the resource expression.

We take some syntactic liberties in the language
used in defining the semantics. For example, if the
structure of the argument to a function f is (c a), we
may write the definition off as f((c a)) = ... and use c
and a directly in the body of f. We may also test the
structure of the argument x of a function f(x) by a
predicate such as x = (c a), and then use c and a within
the scope of the predicate.

We present the semantics by first presenting the
definitions, followed by a brief informal explanation of
them. At the top level, we have

eval(I, R) = evalaction(evalcond(I.R),R)

where evalcond and evalaction specify the semantics of
conditions and actions respectively.

Semantics of conditions

evalcond(I.R) =
IF I = ((c a)) THEN testuntil(R)(first(I)) ELSE
insert(choose, applytoall(testuntil(R), I))

where
testuntil(H)((ca)) = WHEN present(c, R) THEN a

The testing of conditions is defined by evalcond
which returns the action corresponding to the
condition that is detected to be true earliest. insert(f,
1) and applytoall(f, 1) are primitive operations, whose
meanings can be understood by considering the above
definition of evalcond for the case when I is of the form
((c 1 a 1)(c2 a 2) · · · (cnan)), for n > 1:

evalcond(I. R)
= insert(choose, applytoall(testuntil(R), I)),
= choose(testuntil(R) ((c 1 a 1)),

choose(testuntil(R) ((c 2 a2)),

choose(testuntil(R) ((Cn-1 an-1)),
testuntil(R) ((en an)),
) ...))

which effectively chooses the condition c; that is
detected to be true earliest. choose is a primitive
operation which nondeterministiclly selects of one of
its arguments, depending upon which is evaluated
earlier. (It is possible to have a more "balanced"
testing of conditions than the one shown above using
insert, but we do not consider it here.)

testuntil takes as input the set of requests R and
produces a new operation which takes a condition
action pair (c a} as input and returns action a only
when condition c is satisfied by the input requests in R.
It is should be noted here that the input R can change
by the arrival of new requests, hence a condition c that
is not true for some set of inputs R may become true

when R has more requests.

Semantics of actions

evalaction(a, R) =
FOR EACH x IN a DO evaltype(x, R)

where
evaltype(x, R) =
IF operation{x) THEN execute{remove(x, R)) ELSE
IF x = {STAR I) THEN evalstar{l, R) ELSE
IF x = {BRACKET I) THEN evalbracket(I, R)
where

evalstar(I, R) =
WHILE insert(or, applytoall(test{R), I))

DO evalplus(I, R)

evalbracket(I, R) =
IF insert(or, applytoall{test(R), I))

THEN !a <-- evalcond(l, R);
req <-- remove(first(a), R);
(execute(req) /[evalbracket(l, R))l

ELSE;

test(R)((c a)) = present(c, R)

evalaction defines sequential execution of the
terms (x1 x2 ... xi) in an action a. evaltype treats the
different types of x: If x is a resource operation, a
request for x is removea from R and executed;
otherwise, x is of the form {STAR I) or (BRACKET I),
whose semantics are defined by evalstar and
evalbracke t respectively. (STAR I) and (BRACKET I)
represent "*" and "[]" respectively, whose semantics
differ primarily in that "*" specifies sequential
iteration, whereas "[]" specifies parallel iteration. The
iterations of "*" and "[]" continue only as long as some
condition in their body is true. This testing of this
condition is specified in the semantic definition by the
expression

insert(or, applytoall(test(R), I)),

where or is the primitive boolean operation and
test{R){(c a)) returns a boolean value indicating if
condition c is satisfied by the requests present in R.

The primitive operator "[[" evaluates both its
arguments in parallel. It should be noted that the
testing of conditions and removal of requests a~ross
successive iterations of "[]" take place sequentially.
whereas the execution of requests across successive
iterations of "[]" take place in parallel. If the testing of
conditions and removal of requests were to take place
in parallel, it is possible to detect conditions
erroneously.

3. Implementation
The operational semantics of resource expressions

may be viewed as defining an abstract interpreter for
the language. However, our goal is to implemei:it
resource expressions by generating target code m
terms of a set of synchronization primitives. We use a
set of queueing primitives and primitives for
arbitration and parallel execution to synchronize and
schedule the execution of requests. These primitives
were first defined in [B], and are given in the appendix.

The set of input requests R can be represented by
a set of queues, one queue for each distinct type of
operation. The addition of requests to R from outside
the resource is achieved by P.nqueueing t.hem to the

418

appropriate queues. The removal of requests from R
during the evaluation of a resource expression is
achieved by dequeueing them from the appropriate
queues.

We first show the top-level structure of the target
program constructed for an intermediate form, and
then show the target programs for conditions and
actions separately. In each case, we first present the
tc>.rget program, followed by a brief explanation of the
relation between the target program and the defined
semantics. The entire construction is illustrated by an
example.

Top-ievelstructilre
Assuming I is an intermediate form

({c 1 a 1)(c2 a 2) ... (cnan)), then the top-level translated
program is

LET t 1 = arbit(targetprogram(c1),t2)
t 2 = arbit(targetprogram(c2).t3)

tn-l ·,;,; arbit(targetprogram{cn_1),
targetprogram(cn})

RESULT
IF t 1 THEN targetprogram{a1) ELSE
IF t 2 THEN targetprogram{a2} ELSE

IF t~~·1 THEN targetprogram(~_ 1) ELSE
targetprogram(an)

where targetprogram{c;) and targetprogram(a1) are
defined in the next two subsections.

The abbreviations t 1, t 2, etc., are equated to
expressions that are evaluated only once. The above
program fragment realizes the semantics of ev~c?"!'d.
The semantics of choose is realized by the pnm1llve
operator arbit, which evaluates both its arguments in
parallel and returns a boolean value indic~ting whic.h
argument was evaluated earlier. The cham of arb1t
operations realizes the semantics of the definition of
evalcond for the case when n> 1. When n= 1 no
arbitration is needed, and targetprogram{cl) is used
directly instead of tl.

Conditions
Assuming c is a condition of the form

{r1 and r 2 • • • and rk), where each r1 can be either
{$op1>n1) or {$op1=0), then

targetprogram(c) = spar{w1. W2, .. ., wk)
where

w1 = waitq(qop1, 1 +n;). if r1 is {$op;>n;). and
w1 = waitq(qop1,0), if r 1 is ($op1=0)
where

qop; is the queue for operation op1,
spar and waitq are defined in the appendix

The conjunction of the test for equalities or inequalities
is expressed by the primitive operator spar. The above
program fragment realizes the semantics of testuntif.
Unlike the semantic definition of testuntil,
targetprogram{c) does not return (c a}, but. inste~d
returns true when c becomes true; the act10n a 1s
selected by the top-level program.

Actions
The semantics of actions is specified by evalaction

and is realized as follows: Assuming a is an action of the
form (x1 x2 ... xi), then

targetprogram(a) = !targetprogram{x1);

targetprogram(x2);

targetprogram(xi) l
where
targetprogram(x;)
= evalq(qop;). if X; is an operation name op;. and qop; is
the queue for operation X;.

= star{ queues-for-I), if X; = (STAR I)
= bracket{ queues-for-I), if x; = (BRACKET I}

where star and Qi-acket are procedures that
realize the semantics of evalstar and
evalbracket

The above program fragment realizes the semantics of
evalaction and evaltype. Since evalaction sequentially
evaluates each X;, targetprogram(a) is obtained by
sequencing the program fragments for each x;. The
target program for X; depends upon its type: If it is a
simple operation name, then a request of this
operation type is dequeued and executed by evalq;
otherwise it must be of the form (STAR I) or (BRACE I).
Since these two cases are similar, we present only the
latter.

Parallel repetition

Assuming I = ({c 1 a1){c2 a2) ... {en an)), and
queues-for-I denotes the set of queues for the distinct
operations in I,

brace(queues-for-1) =
LET t 1 = targetprogram{c 1)

t2 = targetprogram{c2)

tn-J = target program{ cn_1)

tn = targetprogram(cn)
RESULT

IF or(t 1, t 2, ... tn)
IF t 1 THEN targetprgram(a1) ELSE
IF t 2 THEN targetprogram(a2) ELSE

IF tn-l THEN targetprogram(an- 1)

ELSE targetprogram{an)

Assuming c; is of the form (r1 and rz and ... rk)
where r; is either {$op;>n;} or (op;=O}, then

targetprogram(c) = and(m 1, m 2, ... mk),
where

m; = nonempty(qop;, l+n;). if r; is (op;>n;). and

m; = nonempty(qop;,0), if r 1 is {op;=O)

Since a1 must be of the form (op)
targetprogram{ai} =

!res <-- deq(qop);
spar(execute{ res), brace{ queues-fo;-I}) j

The recursive call on evalplus from evalbrace in thi
semantic definition is realized above by a sequence o
JF-THEN-ELSEs. The above program tends to bias the
selection of alternatives towards t 1• This can be
avoided by replacing the IF-THEN-ELSEs by a program
fragment similar to that of the top-level structure. If

419

all t1 are trivially satisfied, then the condition of the
first IF !:'tatement is replaced by arbit{true, false},
which nondeterministically decides the termination of
brace.

Ji:ample
We illustrate our implementation by showing the

ynthesized program for the resource expression

(($write>O) write + ($write=0)[{$read>O) read])*

whose intermediate form is

true (STAR (($write>O) (write})
(($write=O) ((BRACKET (($read>O) (read}))))

))
'he complete translated program is

•ound(writeq, readq} = .
LET tl = arbit(waitq(writeq, 1),

waitq(writeq,O))
,-tESULT

WHILE true DO
IF t1 THEN evalq(writeq)

ELSE bracket(readq)

bracket(readq) =

/* ($write>O) * /
/* ($write=O) * /

/*write*/
/* [($read>O) read] * /

!LET tl = nonempty(readq, l) /* ($read>O) * /
RESULT

IF t1 THEN !res <-- deq(readq}; /*read * /
spar(execute(res), bracket(readq))j

4. Conclusions and related work
We have presented the systematic construction of

the implementation of resource expressions starting
from its operational semantics. F'rom the example, it
is easy to see that the structure of the target program
preserves that of the original resource expression--
there is one procedure for each of the repetitive
operators, "*" and "[]", and one procedure at the
topmost level, if "*" or "[]" does not occur at the
topmost level. Conditions and actions are translated
s~parately, and the resulting program fragments are
assembled together.

The work on the semantics and implementation of
path expressions is related. The meaning of path
expressions has been defined using Petri nets [11],
denotational and axiomatic methods [2], and guarded
commands [1]. The implementation of path
expressions has been based on semaphores [3, 4] and
finite state machines [7, 1]. However, to the best of
our knowledge, there has not been a systematic
derivation of an implementation from the semantics of
path expressions.

The semantics and implementation of resource
expressions differ from those of path expressions. The
semantics of our sequencing operator "." differs from
that of path expressions, which base the condition for a
sequence on criterion 2 described in the first section.
Our implementation based on queues is radically
different from the implementations for path
expressions. The advantage of our approach is that the
structure of the target program corresponds closely to '
the structure of the original expression, hence the
correctness of the translation becomes more evident.
Our explicit use of conditions, however, give rise to
longer specifications than equivalent path expressions.

The conditions used in this paper are more restrictive
than those found in [1], where conditions can test the
state of the resource, the number of operations in
execution, etc.

There are some differences between resource
expresssions presented here and our earlier paper [9].
Here we propose the use of conditions as a more
primitive concept than the commit operator "/", which
restricts the selection of a sequence to be based upon
the presence of requests for operations only in some
prefix of it. Furthermore, it is possible to simulate "/"
using conditions, although the resulting specifications
tend to be longer. In this paper, we have restricted the
forms of expressions inside "[]" to be simple
operations, with possibly some condition before it. This
simplifies the definition of the semantics as well as
implementation.

We are examining extensions to resource
expressions that will enhance its expressiveness. One
way is to allow more general forms of conditions than
merely tests on the status of the input requests.
Another is to allow· the actual parameter:; of the
invoked operations to determine the conditions under
which they are selected. The semantics and
implementation of these features are being
investigated. Also being investigated are optimizations

that will enhance the efficiency of the translated
programs.

References
[1] Andler, S. Predicate Path Expressions. In Proo.

Sixth ACM Symp. on Prinoiples of Programming
Languages. pp. 226-236, 1979.

[2] Berzins, V. and Kapur, D. Denot'ltional and
Axiomatia Definitions for Path Expressions.
Computation Structures Group Memo 153-1,
Laboratory for Computer Science, M.I.T.,
November 1977.

[3] Campbell, R.H. and Habermann, A.N. The
specification of process synchronization by path
expressions. In Gelenbe and Kaiser (editors),
Operating Systems, pages 89-102. Springer, 1974.

[4] Campbell, R.H. and Kolstad, R.B. A praatical
implementation of Path Expressions. Technical
Report TR UIUCDCS-R-80-1008, University of
Illinois at Urbana-Champaign, June, 1980 ..

[5] Courtois, P.J., Heymans, R. and Parnas, D.L.
Concurrent control with readers and writers.
Communiaations of the ACM 14(10):667-668,
October 1971.

[6] Dijkstra, E.W. Guarded commands, non-
determinacy, and a calculus for the derivation of
programs. Communications of the ACM
18(8):453-457, August 1975.

[7] Habermann, A.N. Path Expressions. Tech. Rept.,
Dept. of Computer Science, Carnegie-Mellon
University, July, 1975.

[8] Jayaraman, B. and Keller, R.M. Resource control in
a demand-driven data-flow model. In Proc.
International Conferenoe on Parallel Prooessing,
pp. 118-127. 1980.

[9] Jayaraman, B. and Keller, R.M. Resource
expressions for applicative languages. In Proo.
International Conferenoe on Parallel Prooessing,
PP· 160-167, August 1982.

420

[10] Kleene, S.C. Representation of events in nerve
nets. Princeton University Press, 1956, 'pages 3-
40.

[11] Lauer, P.E. and Campbell, R.H. Formal semantics
of a class of high-level primitive8 for coordinating
concurrent processes. Ac:ta Informatica. 5:297-
332, 1975.

Appendix
The primitive operators used in this paper are

summarized below:
queue() creates an empty queue.

enq(q,exp)

deq{q)

execute{req)

evalq(q)

waitq(q,n)

synchronizes the evaluation of exp using
q by enqueueing a request for exp in q.

removes the first request from q without
executing it.

executes a request req; the result of
execution is returned to the enq
operation that placed req on the queue.

combines deq and execute; and is same as
execute(deq(q))

tests and waits until q has at least n
requests and then returns true; if n=O
then waitq waits until q becomes empty.

nonempty(q,n) returns true if q has at least n requests,
false otherwise; if n=O then nonempty
returns true if q is empty and false
otherwise; no waiting is involved.

spar(a1, ... ,an) evaluates the expressions a1 ,an in
parallel; the result is an, but is
returned after all ai., an have
been evaluated.

arbit(a1,a2) evaluates a 1 and az in parallel; the result
is false if a 2 is evaluated before a 1,

otherwise true.

QUEUEING NETWORK MODELS FOR PARALLEL PROCESSING OF TASK SYSTEMS

Alexander Thomasian
Performance Modeling Center

Burroughs Corp.
Santa Ana, CA 90704

Abstract -- The paper deals with a procedure
to determine the mean completion time and
related performance measures for a task
system: a set of tasks with precedence
relationships in their execution sequence. The
tasks, which are processed by a multiprogrammed
multiprocessor system, are specified by their
expected total loadings on the units of the
computer system. A straightforward application
of a queueing network (QN) solver to the problem
is not possible due to va ri at i ans in the state
of the system (composition of tasks in
execution). An approximate solution method is
presented for this purpose based on the concept
of hierarchical decomposition. At the higher
level, an efficient procedure generates the
Markov chain corresponding to the transitions
among the system states and computes state
probabilities and other parameters as each state
is created. At the lower level, the transition
rates among the states are computed using a QN
solver, which determines the throughput of the
computer system for each system state.
Numerical results are presented to justify the
decomposition method and validated through
simulation. The approach is applicable to
performance evaluation of programs with internal
concurrency.

1. Introduction

An efficient procedure is developed in this
paper to compute the performance measures for
computations exhibiting parallelism in both
centralized and distributed systems. The
computation is specified by a task system (a set
of tasks related by a deterministic precedence
graph). Tasks are characterized by their
expected total loadings at the devices of a
given computer system, centralized or
distributed. The potential for parallel
processing occurs in numerous systems such as
CPU: I/0 overlap or inherent concurrency
exploited by multi-tasking in centralized
systems [4,5,7], real-time distributed computer
systems [2], query processing in distributed
databases [1], etc. The technique presented in
this paper can be used to determine the key
performance measure for such systems, the mean
completion time.

Queueing network
extensively used in

(QN) models have been
performance modelling of

0190-3918/83/0000/0421$01.00 © 1983 IEEE 421

Pau 1 Bay
T.R.W. Defense Systems Group

One Space Park
Redondo Beach, CA 90278

centralized/distributed computer systems [6].
However, such models assume that a program
consists of a single process (task) which
obtains service in a serial fashion from the
devices in the QN model. Specifically, this
implies that programs cannot hold more than one
device at a time, and as such does not provide
an accurate model for parallel processing. In
addition closed QN models also assume a fixed
workload, that is, when a job completes
execution it is immediately replaced by an
identical job. This is not the case in task
systems where a completed task may be replaced
by a set of tasks with different job types.

Recently, QN's were used to model programs
with internal concurrency by Heidelberger and
Trivedi [4, 5]. These two papers al so review
previous work in this area, which is omitted
here for the sake of brevity. In [4] a system
where jobs are subdivided into two or more
secondary tasks during their execution is
considered. No synchronization among the tasks
and the (primary) job is considered, however.
In [5] a parent task spawns two or more
concurrent tasks and has to wait until all such
tasks are completed before it can proceed. Only
very simple task systems can be handled by their
approach. We consider much more complicated
task systems than considered in [5], but allow
only one instance of the task system at a
time. The task system may correspond to the
computations in a real-time system, in which
case the task system is executed repeatedly, or
the execution of a single instance of a program
with internal concurrency.

The paper will be organized as follows. In
Section 2 we first describe the task system
model required for analysis. Also described is
the computer system model used in our simulation
for validation of results. In Section 3 we show
that the model of a task system with two
concurrent tasks is nearly completely
decomposable and based upon this observation
present a decomposition method for obtaining an
approximate solution. Exact results obtained by
solving the set of linear equations describing
the system and results using the decomposition
method are then presented. In Section 4 we
derive expressions to compute the key
performance measures for a task system and give
a procedure for efficiently computing these
measures for general task systems. A task

system is solved and validated using
simulation. Lastly, we conclude the paper with
a summary.

2. Task System and Computer System Models

In Sect ion 2.1 we define a basic task system
model which is required for analysis by the
procedure in Section 4. In Secti'on 2.2 a more
detailed description of the task processing
system is given for simulation purposes.

2.1 Task System Model

The set of tasks is to be executed on a
computer system with K devices. Taking a QN
modelling viewpoint only the expected total
loadings (loadings for short) of each task at
each device, which is the product of the mean
number of requests a task makes to a device and
the mean service time at that device per
request, are required for computing the usual
performance characteri sties of the system when

·the QN has a product-form [6]. In summary, a
task system is specified by a 3-tuple (T,[<•],
[Xik]) as follows:

1. T = (TJ,T2! ... ,T1) is a set of tasks to
be execute • lhe initial or final tasks can
be dummy tasks with no processing
requirements (loadings equal to zero).

2. [<•] is a partial order defined on T
specifying deterministic precedence
constraints, i.e., Ti <• T· means that T.
must be completed before Tj tan begin. Onl}
directed acyclic grapns (dags) are
considered.

3. [Xik] is an I x K matrix, such that Xik
is the loading of task i at device k. At
this point, only active system resources
such as the CPU and I/0 devices are
considered. Passive system resources, such
as memory requirements, can be incorporated
easily into the model, but will be ignored
in our discussions for the sake of b~evity.

The concise speci fi cation of a task system
as given above is required for a procedure given
in Section 4 to compute the performance
parameters of interest for task systems. These
parameters, which are defined in Section 3.2 are
the mean completion time of the task system, the
mean initiation and completion time of each
task, and its mean execution time. These
parameters are of course dependent on the task
scheduler. For the sake of simplicity, we
consider a single-processor (CPU) system and
assume that all tasks are executed as soon as
the precedence constraints are satisfied. The
procedure in Section 4 can be easily extended to
take into account passive resources and to
incorporate a more sophisticated task scheduling
discipline.

422

2.2 Processing of Tasks in the Computer System

The computer system processes different
combinations of tasks according to precedence
constraints until al 1 tasks are completed (in
the case of a real-time system this cycle is
then repeated). The tasks generally have
different processing requirements at the
computer system. In other words, for each task
combination in progress at the computer system,
we have a closed QN with multiple job types. To
simplify discussion, the QN model postulated by
us has a product-form solution. Under this
assumption only the task loadings need be
specified to compute the usual performance
measures using efficient algorithms such as
convolution or mean-value analysis [6].
Postulating a non-product form QN would require
the use of approximate solution methods to solve
the closed QN for each task combination [6].
Regardless of which method is used for solution
of the closed QN, the decomposition procedure
presented in this paper would remain valid.

The computer system model used is a
generalization of the well known central-server
model to multiple job types, called a
centralized server model in. Shown in Figure 1
is the centralized model with two job types
(with one task in each job type) consisting of a
CPU and a disk. The queueing discipline at the
CPU is Processor Sharing (PS) and the disk has a
FCFS discipline. The previous assumptions
assure a product-form QN. Unlike conventional
closed QN's, a completed task is not immediately
replaced by a new task with similar
characteristics, but the precedence graph is
checked to determine if any new task can be
activated under precedence constraints.

3. Solving Concurrent Task Systems
Using a Decomposition Approach

In this section we illustrate the
decomposition method , by applying it to
concurrent task systems, which is defined as a
set of tasks which can be executed concurrently
such as the two-task system shown in Figure 2.
The tasks are executed on the multiprogrammed
computer system given in Figure 1. The
subscripts c and d are USE;!d to denote the CPU
and the disk, respectively. Loadings for task 1
and 2 are given as (120, 200) and (220,400),
respectively. The time units are in
mi 11 i seconds. Both tasks have the same mean
service ti mes at the CPU (1/µc = 20 msec.) and
the disk (l/JJd = 40 msec.).

In Section 3.1 we justify the use of the
decomposition method by building a Markov chain
to solve the above task system exactly for its
state probabilities, and also show that it is
nearly completely decomposable [3]. In Section
3.2 we present the decomposition approximation
method, use it to solve the same task system,
and compare decomposition results to the exact
solution.

3.1 Markov Chain Model

In this section we build a Markov chain for
the solution of the two-task system defined in
Figure 2 and executing on the computer system in
Figure 1. In order to reduce the number of
states in the Markov chain we assume that the
queueing discipline at the disk is also PS.
Therefore we do not need to specify the ordering
of the tasks at the disk, which would be
required in the case of a FCFS discipline. This
is possible since the steady state probabilities
obtained under the PS assumption at the disks
will equal those obtained with the FCFS
discipline (after appropriate state aggregation
at the disks in the FCFS case). The state of
the closed QN can be specified by the
composition of jobs in execution. The number of
states for the detailed state representation
when a subset J of tasks is active is given by

[g]: 1T (nj+K-1).
jEJ n j

Needless to say, the

number of states in the system increases rapidly
with the number of concurrent tasks.

Figure 3 gives the transition rate matrix Q
for the system at hand. Denoting the steady
state probability vector by p we have pQ = O.
In addition, we have the normalizing condition
that state probabilities sum to one. After
computing p by solving the linear equations, we
can obtain-the performance measures of the task
system.

At this point it is interesting to note that
the transition rate matrix Q can be decomposed
into three sub-matrices, indicated in Figure 3
by dashed lines. For very small Pclcl and
Pc2c2• the six transition rate terms lying
oufs1de the dashed areas of the Q matrix are
negligible, in which case we can say that the
system is nearly completely decomposable [3].
Informally, it can be said that the system is
decomposable when it reaches equilibrium between
task completion instants. The latter is true
when the occurrence of micro-events in the
system (completions of tasks at devices) is much
more frequent than macro-events (job
completions). This is true in our system. The
three groups of states into which the Q matrix

Figure l . De ta i 1 ed Centra 1 i zed-Server

Model of a Two-Task. System

Figure 2. Task System

with Two Concurrent 1 y

Processing Tasks.

423

is decomposed correspond to the following
aggregated states: (i) (1,2) - task 1 and task
2concurrently executing, (ii) (1) -task 1 only
executing, and (iii) (2) task 2 only
executing. We use this observation as the
motivation for solving parallel processing task
sys terns using a decomposition method. Such an
approach is particularly useful for systems with
a large number of states, in which case it is
not computationally feasible to solve the system
exactly.

AGGREGATE STATES @ Q 0 _..__ --- _..__

..
- - - e - -- -

(1, l ;0,0)
-----------,
-pc i- Pcldl i- Pc2d2 O I ~Pezez O ~ Pclc1

I
(0, 1; 1,0)

(1,0;0, 1} }Jd

(0,0; l, 1) ft ft -µd I

(1,0;0,0}
------------;-----,

Pc Pclcl O O O I -J.Jc /Jc Pcld\ O

I
o I ,,, ..,, I o o

L. ____ J ____ _ (O,O;l ,0)

(O,l;0,0) /Jc Pc2c2 O 0 : -I.Jc JJcPc2d2

o I pd -.ud
I_-----

(0,0;0, l)

Figure 3. Transition Rate Matrix Q .for Two-Task System.

3.2 Decomposition Method

Using decomposition, an approximate but
highly accurate solution to our model can be
obtained. The hierarchical decomposition method
applicable in this case uses two modelling
levels. In the higher level model the system
state is specified by the combination of tasks
in execution (aggregation of states of Section
3.1). The transitions among these states are
governed by a Markov chain model. The
transition rates among the states of the Markov
chain are determined by the mean throughputs of
the computer system in processing various task
combinations and are computed at the lower level
of the model. This computation can be carried
out efficiently, since the system was assumed to
have a product-form solution for each execution
state (see Section 2). Otherwise, the
throughputs could be computed by solving the set
of linear equations specified by each sub-matrix
corresponding to each aggregate state.
Alternately, an approximate solution method
could be used at this point to obtain the system
throughput.

Figure 4 is the Markov chain respresenting
the transitions among the aggregate states of
the task system in Figure 2 (higher level
model}. Both tasks initially execute
concurrently in state (1,2) until task 1 or 2 is
completed, resulting in a transition to state
(2) and (1) respectively. Task completions in
each of these states lead to a transition to
state (1,2), which indicates that the execution
of the task system is complete, that is, another
instance of the task system can be initiated.
The states in the Markov chain are drawn at
different levels, where the levels indicate the
progression of the computation of the task
system. Level one corresponds to the initial
execution state, level two corresponds to the
states which are feasible after a task is
completed at the first level, and so on. The
number of levels is equal to the number of
tasks.

The state probabilities P(l} and P(2) can be
expressed as a function of P(l,2) by solving the
corresponding balance equations,

{
P(l) = P(l,2) x T2(1,2) I Tl(l)

P(2) = P(l,2} x T1(1,2} I T2(2}

(3.1}

Setting P(l,2) = 1, we can obtain numerical
values for P(l) and P(2). A normalization
constant NC = P(l,2). + P(l) + P(2) is then used
to insure that the probabilities sum to one.
This simple scheme to compute the steady state
probabilities is of importance when dealing with
large task systems.

We define the mean completion (or cycle)
time of the task system (C} as the average
amount of time required to execute the task
system on the given computer system. The mean

LEVEL 2

Figure 4. Markov Ch1tn for Decomposition Method,

Deco•posttton Exact S Error

P{l,2) 0.3851 0.3662 5.13

P{l) 0.1293 0.1404 -7.90

P{2) 0.4856 0.4934 -1.58

Tl(l,2) 2.034 2.094 -2.86

T2{1,2) 1.050 1.118 -6.08

TI (I) 3.125 2.911 7.35

T2(2) 1.613 1.554 3.79 ,, 0.433 0.431 o.o
'2 0.733 0. 732 0.14

0.842 0.851 -1.06

hbh 1. Cnparhon of Euct ~nd Oeco.pcsition Method Results

for Two-Tut S1stem hHph. T1 (•) tn tuts/sec.

424

execution time (Ei} of Ti is the average amount
of time Ti is in execution. Also of interest is
the mean initiation time (Ii) and completion
time (Ci) for task Ti. Note that Ei =Ci - Ii.

The average rate at which the task system
can be executed is given by the rate at which
the initial state of the Markov chain (for the
higher level model} is exited:

P(l,2) x [T1(1,2) + T2(1,2}]

or the rate of exiting states (1) and (2):

for our example. It can be shown that the
values of these two expressions are equal. The
mean system completion time is the inverse of
this rate,

C = [P(l,2) x [T1(1,2) + T2(1,2}]]-1 (3.2)

Alterqately, if we let M(l,2) = [T1(1,2) +
T2(1,2}]- , where M(l,2) is the mean time spent
in state (1,2), then C can be expressed as,

C = M(l,2) I P(l,2) (3.3}

The mean execution time of each task is the
·fraction of time a task is active in a cycle
times the cycle time. It follows,

[P(l,2) + P(l)]

[P(l,2) + P(2}]

(3.4)

Finally, it shou 1 d be noted that the
branching probability that task i completes
first in execution state (1,2), bi (1,2}, is
given as the ratio of the throughput resulting
in the completion of the task and the sum of the
throughputs [8],

bi(l,2) = Ti(l,2) I [T1(1,2) + T2(1,2}]

i=l,2 (3.5}

The expressions obtained above are very
useful in that they can be easily generalized to
task systems with arbitrary precedence
relationships.

3.3 Validation Results

Table 1 shows a comparison of values
obtained for state probabilities, mean
throughputs, mean completion time and mean
execution time using the decomposition method
and the exact method. In order to make the
comparison meaningful, a careful interpretation
of the probability vector p and the transition
rate matrix Q of the Markovchain model must be
made such that results equivalent to the
aggregated state model of the decomposition
approach are obtained. Computat i ans for

obtaining the equivalent aggregated state values
(in Table 1) from the Markov chain model are
given in Appendix I.

Table 1 shows that results obtained using
the dee ompos it ion met hod a re in c 1 ose agreement
with exact values. It is worthwhile to mention
that the mean completion time for the task
system is different from the mean completion
time for the larger of the two tasks.

4. Procedure for General Task Systems

In Section 4.1 we present an overview of our
procedure for solving general task systems using
the decomposition approach and in Section 4.2 we
give a formal statement of our procedure. In
Section 4.3 we solve an example and compare
decomposition results against simulation
results.

4.1 Procedure Overview

We are interested in obtaining the mean
completion (cycle) time of a task system, as
shown in Figure 5, as well as the mean
initiation time, completion time, and execution
time for each task in the system.

One of the key problems in dealing with task
systems is the large number of states in the
Markov chain at the higher level of the
decomposition model. The number of states
depends on the number of tasks and the
precedence relationships among them. It is
clear that the cost of solving a large set of
linear equations (pQ = 0) can be significant for
larger task systems.

Fortunately, an efficient scheme is
available due to the fact that the task systems
which we are interested in are directed acyclic
graphs. As such, the corresponding Markov chain
is also acyclic (with the exception of
transitions to the initial state). Based on the
observation made regarding (3.1) in Section 3.2,
we can therefore express al 1 probabilities as a
function of the initial probability.
Furthermore, such unnormalized probabilities can
be used in computing the required performance
parameters (such parameters will have to be re
adjusted by a normalization constant). Finally,
to save memory space, the Markov chain can be
generated one level at a time. Once an entry
corresponding to a state at one level has been
used to gene rate the entries at the fo 11 owing
level, it can be deleted to save space. The
number of states at each 1 evel is usually much
smaller compared to N (the total number of
states).

In the case of concurrent task systems, all
tasks are initiated at time zero and the mean
execution time for task i (Ei) equals the mean
completion time for that task (Ci).

425

For a
execution

general task system,
time for task i is

< i < I

the mean
given by

(4. 1)

Y:Jhere Ii is the mean initiation time for task
i. Ii is computed by considering al 1 possible
paths (in the Markov chain), which lead to the
initiation of the task. Given that there are K
paths leading to the initiation of task i we
have,

Ii = t ([TT b j J x L M(S)) bk (4. 2)
k=l j€Lk SESk

In the above expression, Lk is the set of
links (branches) along path k leading to the
state which immediately precedes the initiating
state of task i. Sk is the set of states along
path k and bk is the branching probabi 1 i ty from
the last state in path k to the state in which
task i is initiated. This computation can also
be carried out a level at a time by updating a
vector of entries for task initiation times.
The details appear in the procedure presented in
Section 4.2.

Individual task completion times and more
importantly the completion time of the task
system can be computed using arguments similar
to those used in deriving mean initiation
times. We use this latter approach (rather than
an approach based on equation (3.2)) to compute
the mean system completion time.

We point out that the computational cost of
solving the product-form QN models to obtain
throughputs is relatively smal 1, since there is
only one task in each job type. The
computational cost to compute the normalization
constant for the convolution algorithm when
there are N tasks in a computer system

consisting of K devices is: 2N+lKN [9].
Additional savings in computational cost can be
achieved by making note of state dominance,
i.e., the successor states of a state (for one
or more l eve 1 s) have a subset of the tasks of
the parent state in their composition (unless a
precedence relationship is satisified and new
tasks are initiated). The throughputs of these
successor states can be obtained as a by-product
of the computations of the parent state.

4.2 Statement of Procedure

The notation and some of the formulas used
in the procedure are as follows:

L number of levels in Markov chain
number of tasks in task system (I)

set of states at level l

current state (state under consideration)

Is I set of tasks in state S

R = successor state to current state

s+ =set of all successor states to current
state, R E s+

P(S) =steady state probability of S

Ti(S) =throughput at S due to
completion of task i E Isl

T(S) = total throughput at S = E Ti (S)
i€S

M(S) = mean residence time in S,
= l/T(S)

bR(S) =probability of branching from S
to a new state R due to completion of
task i, bR(S) = Ti (S)/T(S)

p(R) path probability to reach R

E p(S) bR(S) where R- is the
S€R-
set of the predecessor states of

R. Note that E p(S) = 1

S€S£

D(R) = mean delay along path up to and
including R

= L [D(S) * bR(S) + M(R) * p(R)]
ail pa..th6

Each entry in the Markov chain can be
represented by the following record:

[P(S); p(S); D(S); Ti(s), i E Isl;
T(S); M(S); bR(S), R € s+]

PROCEDURE: Perfonnance Evaluation of a
Task System

Step O. Input parameters:

I (number of tasks)

[<•] (precedence re 1 at ions hips among
tasks)

K (number of devices in computer
system)

Xi k , 1 < i i I , 1 ~ k i K, (task
loadingsj

Initialize dummy state Q at level
zero (SB= Q): P(Q) = 0, P(Q) = 1,
D(Q) = •

426

Step 1. Generate Markov chain:

for levels £ = Oto L-1 do

for states S E S.f. do

Determine all successor states to S: s+
(taking into consideration precedence) and
create new entries for these states at level
£+1 and initialize them (unless previously
created). St+l = S£+1 U s+

Compute branching probabilities from S
to R € s+:

{ ii (S)/T(S)
£ = 0
£ > 0

where i € I SI and completion of Ti leads
from S to R.

for states R € s+ do

end
end

end

Compute throughput Ti (R) for i € IRI

Compute total throughput T(R)

= L Ti(R)
i € IRI

Compute mean time in state,
M(R) = 1 I T(R)

Compute (partial) path probability,
p'(R) = p(S) bR(S)

Compute mean path delay D(R) =
D(R) + D(S) * bR(S) + M(R) * p'(R)

Update total path probabi 1 ity to state
R, p(R) = p(R) + p I (R)

Compute (partial) state probability of
new state,

p I (R) = { 1
Ti (S) P(S) I T(R)

Update total state probability
P(R) = P(R) + P'(R)

l 0
l > 0

Update initiation time of tasks newly
activated in R,

Update completion time of task which
executed in S but is no 1 anger
executing in R

Ci = Ci + D(S) * bR(S)

Update normalization constant NC= NC+
p I (R)

Step 2. Compute final results:

Compute task system completion time (C),
for s € SL do

C = C + D(S)

Compute task
for i = 1 to

Ei Ci

execution time (Ei)
do

Ii

Normalize state probabilities
for all P(S) do

P(S) = P(S)/NC

End of Procedure.

It should be noted that the mean completion
time (C) and individual task execution time (Ej)
could also be computed using the alternate
formulas and techniques in Section 3.2.

4.3 Numerical Example and Validation

The above procedure was used to solve the
task system of Figure 5 whose corresponding
Markov chain is given in Figure 6. The inner
model is a centralized server QN consisting of a
CPU (l/flc = 20 msec.) and two identical disks
(1/µd = 40 msec.). Task loadings are specified
in Table 2.

Results obtained from the decomposition
method are compared against simulation results
in Table 3. The simulation was run for 8000
replications and 95% confidence intervals were
obtained with interval hal fwidths of less than

ft911r1 5. Genenl THk SJ'st•.

TASK CPU DIS1t1 DJSl2

1 420
2 420
3 620 ""' ""' • 620 ""' ""' • 420 400 400

• 420 400 400

Return to S(124)
Tab11 2. Expected Tot1I loadings (•1111seconds)

for ffture 5 T.st:. S,rst•.

427

3% of the estimated mean value for all values
presented. As can be seen, values obtained
using decomposition compare very favorably to
simulation results.

5. Conclusions

The paper deals with the issue of analyzing
the execution of task systems to determine the
mean completion time and the mean initiation
time of tasks. The only parameters required for
this computation are the loadings of the tasks
at the various units of the computer system. An
approximation approach based on hierarchical
decomposition was developed to analyze the
system. The computational procedure discussed
in this paper can compute performance parameters
while generating all possible (execution) states
for the task system. The efficiency of this
procedure is of essence for the feasibility of
the method due to the large number of system
states. Work is in progress in generalizing the
procedure to handle the effect of scheduling,
probabilistic task systems, etc.

(seconds) Deco•posttton St•ul11t1on I Error

6.081 6.147 -1.07

,, 1.830 1.792 2. IZ

,, 1.830 1.819 1.17

£3 2.178 2.179 -0.00

" 2.443 2.469 -1.07

'• 1.698 1.679 1.15

'• 1.698 l. 721 -1.33

1,. '2· '•
13 2,627 2.615 1.20

'•· '• 2.U3 2.169 -1.07

Tabh 3. Co.partson of Deco•posttton Method Results 1nd

St•uhtlon Results for 1 Sh-Tuk System,

,,... S(3), S(5), S(6)

LElELl

LEW:L 6

Figure 6, Mlrkow Chdn for Figure 5 Tut SystM.

(NDte: Only 1 representath1 ut of throughputs shown.)

REFERENCES

1. P.A. Bernstein, et al. "Query processing in
a sys tern for distributed databases (SDD-1),"
ACM Trans. Database Systems 6, 4(Dec. 1981),
602-625.

2

3.

4.

5.

6.

7.

8.

W.W. Chu, et al. "Task al location in
distributed data processing," IEEE Computer
11· ll(Nov. 1980), 57-69.

P.J. Courtois, "Decomposability: Queueing
and Computer System Applications, Academic
Press, 1977.

P. Heidelberger, and K.S. Trivedi, "Queueing
network models for parallel processing with
asynchronous tasks," IEEE Trans. Computers
1.!• ll(Nov. 1982), 1099-1109.

P. Heidelberger, and K. S. Trivedi , "Analytic
queueing models for programs with internal
con cu r re n c y , " .,;.I.=,E ,;;,E E;:..-....:T..:.r....:a ;..;.n s;;.:•:__....:C..:.om""p'""u;;.:t....:e.;..rs.:..._-'3=2 ,
l(Jan. 1983), 73-82.

S. S Lavenberg (ed.) Computer Performance
Modelling Handbook, Academic Press, 1983.

D. Towsley, K.M. Chandy, and J.C. Browne,
"Models for parallel processing within
programs: App·lication to CPU:I/0 and
I/O:I/0 Overlap," Comm. ACM 21, lO(Sept.
1978), 821-830.

K.S. Trivedi, Probability and Statistics
with Reliability, Queueing, and Computer
Science Applications, Prentice-Hall, 1982.

9. J. Zoharjan, "The approximate solution of
large queueing network models," Ph.D.
thesis, Technical Report CSRG-122, Computer
Systems Research Group, Univ. of Toronto,
August 1980.

Computing
Markov chain
Solving ..P.0
probabilities

Appendix I

aggregated state values from the
model are performed as follows.

O for the steady state
gives,

..P. = [0.0764 0.0519 0.0538 0.1841 0.0491 0.0913
0.01687 0.3247]

428

From these state probabilities, the
aggregated state probabilities can be obtained,

p(l,2) = p(l,1;0,0) + p(0,1;1,0) +
p(l,0;1,0) + p(0,0;1,1)

= 0.3662

p(l) = p(l,0;0,0) + p(0,0;1,0) 0.1404

p(2) = p(0,1;0,0) + p{0,0;0,1) 0.4934

Mean completion time of the task system is
computed by first obtaining the mean rate at
which the task system completes. This is given
by the total mean throughput from aggregated
state S(l) and S(2) to aggregated state S{l,2)
(see Figure 4). Taking the inverse of the total
mean throughput gives the task system mean
completion time in seconds,

C = [p(l,0;0,0) x Pc x Pclcl +

p(0,1;0,0) x Pc x Pc2c2]-l

0.850

The throughputs between aggregated states
(in jobs/second) are computed by obtaining the
mean total transition rate between each source
and destination aggregated state, conditioned by
the probability of being in the source
aggregated state. This gives the following set
of equations (see Figure 4),

T1[1,2] = [p(l,1;0,0) x 0.5 x µc x Pclcl

+ p(0,1;1,0) x Pc x PclclJ I p(l,2)

2.209

T2[1,2] [p(l,1;0,0) x 0.5 x µc x Pc2c2

+ p(l,0;0,1) x µc x Pclcl] I p(l,2)

1.050

T1[1] = p(l,0;0,0) x Pc x Pclcl I p(l) 3.125

T2[2] = p(0,1;0,0) x Pc x Pc2c2 I p(2) 1.554

where p(l,2), p(l) and p(2) are computed above.

Lastly, task 1 and task 2 mean execution
times, E1 and E2 respectively, are computed
using equation (3.3) in Section 3.2 and the
above values.

On the Performance of Interleaved Memories
with Non-uniform Access Probabilities*

H.C. Du
Department of Computer Science

University of Minnesota
Minneapolis, Minnesota 55455

and

J.L. Baer
Department of Computer Science

Universitv of Washington
Seattle: Washington 98195

ABSTRACT-- System structure and program
behavior are two major factors that influence the per
formance of a tightly-coupled multiprocessor. The latter
has been usually ignored in most of the previous stu
dies. In this paper, we study the performance of .a
tightly-coupled multiprocessor in which a crossbar is
employed to interconnect p processors to m memory
modules. A set of non-uniformly distributed probab1ll
ties is also employed to illustrate the program behavior,
but no distinction is made between processors. An
inverse relation between the average request ~omple
tion time and the effective memory bandwidth ts
obtained and three approximation methods are pro
posed. Their solutions are compared with the.exact solu
tion. Among them the Repetitive Augmentmg Method
which based on the idea of aggregation generates the
best result.

1. Introduction
There is a well known mismatch between processor

and memory speeds in computer systems. Memory
speed is about one order of magnitude slower than pro
cessor speed. One technique being widely employed to
solve this problem is to provide some parallelrnm for
memory accessing by partitioning the memory mto a
number of modules, this is the so called interleaved
memory scheme.

In a tightly-coupled multiprocessor system, an m
way interleaved memory is shared by p processors. A
processor can access each memory m.odule Via some
processor-memory switch (interconnection network). In
the past, a crossbar switch has been widely used to
interconnect various combinations of computer subsys
tems including processors to ni.emories. A crossbar
switch allows a processor to access any memory module
as long as it is the only one trying to access the memory
module. Therefore, several requests can be satisfied if
they access different memory modules, but only one of
these requests to a given memory module can be
satisfied.

However a crossbar switch suffers from the fact
that it requi~es O(m.p) switching components to inter
connect p processors to m memory modules. The
hardware cost can be enormous for large m and p. For
this reason, a whole range of ingenious interconnection
networks have been proposed that include the following
: Banyan network, Omega network, Delta network, Base
line network, Data Manipulator network and Augmented
Data Manipulator network. By no means, is the above
list exhaustive. For a good survey, see [7] and (16].

While most of the recently proposed interconnec
tion networks require only O(n log n) switching com
ponents to interconnect n processors to n memory
modules, they do not preserve the bandwidth of a

0190-3918/83/0000/0429$01.00 © 1983 IEEE 429

crossbar switch (11]. Mudge and Makrucki [10] pointed
out that, in the context of VLSI technology, reduced
component complexity may be no longer an advantage
within a single IC. For example, they compared the lay
outs of a Delta network and a bit-slice crossbar and
found that the reduced component complexity does not
appear to translate into more efficient space utilization
in an IC layout [9].

Several investigators have studied the perfor
mance of a crossbar switch for tightly-coupled multipro
cessors ([2], [3]; [4], [12] [13] <1nd [14]). The results
reported by these investigators were obtained by apply
ing either a simplified approx1mat1on mathematical
model or some Markov Chain model to derive the
effective memory bandwidth, that is the average
number of requests that can be satisfied in one memory
cycle time.

The effective memory bandwidth does not only
depend on the systen1 structm·e but is also. highly
dependent on the distribution of all requests which are
outstanding at a given time. This transient distribution
for requests represents the program behavior, Most
studies in the past have ignored this rnajor factor by
assuming all modules have an equal probability of being
accessed by any given request. In [12] a trace driven
simulation technique was used to take program
behavior into consideration, In the same paper Rau has
also shown that the commonly used uniform access dis
tribution is not valid. Some modules are indeed refer
enced more often than others.

Even though it is true, that in the long term, the
probabilities of a request accessing different modules
are uniformly distributed (as assumed by most models),
the memory bandwidth at a given time is determined by
all outstanding requests at that time. Thus, if we parti
tion the whole observation period into several sub
periods and are able to determine the program
behavior in each subperiod, a more precise memory
bandwidth can be obtained by averaging the effective
memory bandwidths in all subperiods.

For the above reasons, in this paper we study the
perform<1nce of a tightly-coupled multiprocessor using a
crossbar to interconnect p processors to m memory
modules and assuming a set of non-uniformly distri
buted probabilities to illustrate program behavior. Let
P(i) denote the probability that a request is directed to
the ith module. It is assumed that P(i) is not necessarily
equal to P(j) for i1'-j. From the memory bandwidth
viewpoint, the program behavior of a multiprocessing
system can be characterized by a set of P(i)'s. In this
study, no distinction is made between processors.

In the following sections, a simple model for a mul
tiprocessor system is first described. Then one exact
solution and three approximation solutions for finding
the performance of the proposed model are presented.

An inverse relation between the average request com
pletion time and the average memory bandwidth is also
obtained.

2. System Model

In this paper, all analyses are based on a model
which is similar to the one proposed by Rau [13] but
which has a set of probabilities with non-uniform distri
butions to illustrate the program behavior. The model
is shown in figure 2.1. The following assumptions are
made:
1) There are p independent processors (labeled as P 1,

P2 , .. ., Pp) and an m-way interleaved memory (labeled
as M1. M2, .. ., Mm) in the system, where pis not neces
sarily equal to m.
2) The p processors and m memory modules are con
nected by either a cross-bar switch (hence each proces
sor can access any of the m modules) or a switch sys
tem which guarantees that a memory request issued by
a processor can be satisfied if it is the only request
directed to the desired memory module.
3) The m memory modules are synchronized, i.e., they
start a memory cycle at the same time and have an
identical memory cycle time.
4) At the beginning of each memory cycle, each proces
sor generates a request. If a processor's previous
request has not been satisfied, the processor will gen
erate the same request again.
5) Each memory module can serve one and only one
request during a memory cycle time even though there
may be other requests directed to it.
6) There is a memory conflict resolution method which
chooses one request to service by following some rule if
more than one request references the same memory
module.
7) Requests made by each processor have P(i) probabil
ity to access the ith memory module.

P(1) P(2) P(m)

' ...

Sethi and Deo have studied the performance of a
multiprocessor system with non-uniform access proba
bilities [15]. However, they assumed that the memory
in a multiprocessor system is partitioned into modules
by the higher order .bits of the address and the program
behavior is illustrated by a processor having probability
a to access the same memorv module as its previous
request and probability (l-a)/(m-1) to access a
different module. Since no distinction is made between

430

processors and the program behavior is illustrated by a
set of probabilities, our model fits the cases where
several processors execute the same programs on some
shared data and the memory is partitioned into memory
modules by the lower order bits of the address. One
such example was presented in [1] : in the batch binary
search in a multiprocessing environment of p proces
sors and m interleaved memory modules. An ordered
table of n elements is stored in memory in such a way
that element Xi is stored in module Mi with j = (i mod
m)+l. Each processor, when free, talces a request from
a queue, i.e., a key K. and performs a binary search
algorithm on the table. Since some elements are refer
enced more often than others (for example, every query
needs to access the "middle" element), the probabilities
of accessing the various memory modules are different.
The above example can be generalized to that of a
directory of some file (or database) stored on a common
interleaved memory. Each user, associated with a pro
cessor, searches the directory to respond to a given
query. Since no distinction is made between the types
of queries asked by all users, there is no distinction
between processors.

3. Exact Solution

In this section we adapt the analysis of [2] and [3]
for the uniform case to the non-uniform probability
model. The complete set. of states of the model
described above can be defined as an m-tuple (k i. k 2,

.. .,km), where kt is the number of requests directed to
the ith module at a given time. Since there are p pro
cessors in the system and each holds one request at a
time, k 1+k2+ ... +km=p. The number of such states
K=(k 1,k2 , km) is the number of ways to partition p
processors into m memory modules : C(p+m-1, m-1) [6]
(C(i,j) is the number of ways to choose j elements from a
pool with i elements). The number (NZ(K)) of non-zero
integers in k 1,k2 ,... km is the number of requests
currently being serviced at the state K=(k 1,k2 , km).
This model results in a Markov Chain as shown in figure
3.1, since the choice of the next state is only affected
by the current state. Each memory module has its own
queue and each request has a probability P(i) to be
directed to the ith memory module. Tf more than one
request references the same memory module, one of
them is chosen for service by some memory conflict
resolution method and all others remain in the queue
(regenerated at the next. memory cycle) for future
memory cycles.

P(111

, .. _. ______ l
~ , ... G

I
I

It is assumed that each P(i) #o 0 for lsi,;;m., since in
the cases where P(i)=O for some i, there is no request to
reference the ith module and this can be viewed as if
there were only m-1 memory modules in the system. It
was pointed out in [2] that in addition to being a Markov
Chain, the system is aperiodic, since a transition from
any state to itself is possible in one step, and the system
is irreducible, since any state can reach any other state
in a finite number of steps. Let fiKK denote the proba
bility of taking i transitions for the system to first
return to its initial state K. It is not hard to see that all

states in the system are ergodic, since L; f' KK= 1 for
i::::l

any state K. Thus, there exists a unique stationary dis
tribution for all states of the system [B]. This means
that there exists a unique solution for all Prob(K)'s
where Prob(K) is the probability of the system being in
state K.

We also define a temporary state K' as (k 1', kz',
km'), where k;' = k;-1 if k;;:,,1 or ki = k, if k,:=O. The
temporary state K' represents the state of the system
at the end of the current memory cycle and before each
"satisfied" processor generates a new request. By
definition, it is easy to see that k 1+k 2 +···+km = k 1' +
k 2'+ ... + km' + NZ(K) = p and lsNZ(K)sm.. It is also
true that NZ(K);:,, NZ(K'), since ki sk; for lsism.

Let K'= (k 1', k 2 ', ... km') be the uniquely deter-
mined temporary state of state K=(k 1,k 2 , .. ,km). At
the beginning of the very next memory cycle, there are
NZ(K) free processors and each generates a new
request. There are C(NZ(K)+m-l,m-1) ways to partition
NZ(K) new requests into m memory modules. Let
(d 1,d2, ... , rJ,.,.) be one such possible result, where
NZ(K) = d 1+dz+ ... +rJ,.,. and d; is the number of new
requests referencing the ith memory module. Let N=
(k 1'+d 1, k2'+dz, ... , km'+rJ,.,.) and P(K-> N) be the proba-

. bility of having the system transfer from state K to state
Nin one step (one memory cycle). Then

P(K->N)= C(NZ(K),d 1).P(1/1. C(NZ(K)-d 1,d2) P(2/·2 · ·

· P(m)ri,,,,

=(NZ(K)!/ (d1'd2 1 •• rJ,.,.!)).P(d'.P(2).i 2 .• P(m).im

(where n! = n.(n-1) ... 2.1).

Thus we can compute the probabihty P(K _, N) for
each possible state N which can be reached from state K
in one step (there are C(NZ(K)+m-1, m-1) such states).

Let Prob(N) be the probability of the system being
in state N. Then the following two conditions are
satisfied [BJ :
1) For each state N, prob(N) =L,Prob(K).P(K->N).

2) L; Prob(N) = 1.
K

N
Since there are C(p+m-1,m-1)+1 equations which

satisfy either conditions (1) or (2) and C(p+m-1,m-1)
unknowns, these equations can be solved. Gauss elimi
nation is one possible way to do so, although there are
better programming methods as shown in [3].

Once all the Prob(K)'s are known, several important
performance factors can be calculated as follows :
1) the average memory bandwidth B
= L; Prob(K).NZ(K),

K
2) the utilization factor of module i (lft), i.e., the proba
bility of the ith module being busy
= ~ Prob(K=(k 1,k2, ... ,km)),

Kwith k;>O

3) the average number of requests, including the one
currently being serviced, which are queued in the ith
memory module (L,;)
:;: L; Prob(K=(k 1,k2, ... , k,,.)). le;,.

K

431

Although the number of possible states C(p+m
l,m-1) = p+l in the case where m=2, the number of pos
sible states in general is very large. For instance,
C(p+m-l,m-1) = 6,435 for m=p=B and 300,540, 195 for
m=p= 16. Haskett and ::imith pointed out in [2] that
C(p+m-l,m-1) grows as fast as 4P for p=m. Therefore,
the procedure to find out the exact solution for a sys
tem is very time consuming and this method is unrealis
tic for a system with medium to large p and m. There
fore we need to explore some approximation solutions.

4. Memory Bandwidth and Request Completion T1me

A request generated by a processor takes one
memory cycle time to be serviced and spends zero or
more cycle times waiting for service. Let us call the
total time that a request is staying in the system (sum
of the service time and waiting time) as the request
completion time. It is obvious that the request comple
tion time is an important metric of the system perfor
mance. Let T; denote the request completion time for a
request directed to the ith memory module and L; be
the average number of requests queued in the ith
memory module, including the one being serviced if
any. It is easy to see that L 1 + L2+ ... + Lm =p. Let

T= ~ P(i). T; be the average request completion time.
i=l

By the definition of memory bandvvidth, there are
on the average B (memory bandwidth) requests being
satisfied during one memory cycle. That is, on the aver
age B new requests are issued at the beginning of each
memory cycle. Therefore, the arrival rate for memory
module M; is B.P(i).
By Little's Law, the number of requests in queue
= (arrival rate) X (the average time that a customer
stayed enqueued).
A£plying Little':;,.taw to our model yields

L; BP(i). T; = 2: L; = p and
\=! i=l

m
B=p!(L;P(i).T,)=pl T (1)

t=I

By equation (1), there is an inverse relation
between memory bandwidth and request completion
time. Two approximation methods are proposed in the
next section. One of them is derived from this inverse
relation.

5. Two Simple Approximation Methods

We first consider an approximation method which is
a generalization of the approximation method presented
in previous papers ([2], [4] and [17]}. In our model,
each processor with its previous request unsatisfied will
regenerate the same request at the next memory cycle.
Thus, at the beginning of the next memory cycle, the
number of newly generated requests may be less than p.
If it is assumed that each processor, independently of
whether its previous request is satisfied or not, gen
erates a new request at each memory cycle, it can be
shown [18] that the average memory bandwidth B is
given by:

B=rn-~(1-P(i))P (2)
i=l

Since 1-P(i) is the probability for one request not to
access the i-th memory module and (1-P(i))P is the
probability for all p requests not to access the i-th

memory module, m- ~ (l-P(i))P is the expected
i=I

number of busy memory modules (i.e., at least one

request among p possible ones directs to it). When
P(i)= l/m for l~i~=. B = m-m(l- 1/m)P. This is con
sistent with the result presented in [2], [4] and [17]. It
is not hard to see that equation (2) has a maximum m
m.(1- 1/Tn)P occurring at P(1)=P(2)= ... =P(m)= 1/m,
and a minimum 1 at P(j)=l for some j and P(i)=O for all
other i oFj.

Since the queueing behavior of unsatisfied requests
is ignored, the above result is optimistic, i.e., will yield
larger B's than the exact solution. In the rest of this
section, we derive another approximation method by
utilizing the inverse relation (as shovm in equation (1) of
section 4) between the average memory bandwidth and
the average request completion time.

In our second approximation method we isolate a
processor whose request has not been satisfied. Let us
assume that its request was for the ith memory module.
Then at the next memory cycle it will again access Mi
while the remaining (p-1) processors generate new
independent requests. A memory conflict resolution
method, which randomly chooses anyone of the
requests directed to a given module, is also assumed.
Note that different conflict resolution methods may
cause little difference in the overall performance [4].

Let Qi denote the probability for a request directed
to the ith module of not being satisfied at a given
memory cycle.
The probability of havl.ng j-1 (j;=;,1) other requests
directed to the same (ith) module is :

C(p-1,j-1). (P(i))i-I. (1-P(i))P-i

Thus, Qi= f; ((j-1) /j). C(p-l ,j-l).(P(i))i-1 . (1-P(i))P-i,
jct

where the factor (j-1)/j indicates that one out of j
requests will be satisfied. Thus, the probability of a
request directed to the ith module being satisfied at a
given memory cycle is:

1-Q., = f; (1/ j). C(p-1,j -1).(P(i))i-I. (1-(P(i))P-i
i=I

=(1/ (p.P(i)). f; C(p,j).(P(i))i (1-P(i))P-i
j=l

=(1/ (p.P(i)).(1-(1-P(i))P)

The average completion time for a request directed to
the ith module Ti is

f: k. (1-Qi)· Q.ik- 1=(1-QJ. f: k. Q/•-l=(i-QJ. ii (1-Q;)2
.t=l k=I

= 1/ (1-Q.,)=p.P(i)/ (1-(1-P(i)}P)

The average request completion time Tis then:
~ m
I:i.Ti= =p. 2:P(i)2/(1-(1-P(i)}P)
i=l i=l

m
By equation (1), B=p/ T=11(2:P(i)2/(1-(1-P(i))P))

i=l
(3)

This result is in general still optimistic but more
accurate than the previous one as shown in Tables 5.1,
5.2 and 5.3 (see below). It could still be improved if we
could find a more precise way to compute T;.

For convenience, in the following discussion, the
two approximation methods to compute the avera!!e
memory bandwidth according to equations (2) and (3)
are called Approximation Method 1 and 2 respectively
(AM1 and AM2). Tables 5.1, 5.2 and 5.3 compare the
exact solution of the average memory bandwidth
(EXACT) and the two approximation solutions (AMl and
AM2) calculated by equations (2) and (3) when m=p=2, 4
and 6 respectively. There are 15 cases in each table and

(I)
(2)
(l)
(4)
! 5 I
I 6 I
(7)

(0 I
(o I

each row represents a case being considered. RDi, for
1=1 or 2, is the relative difference between EXACT and
AMi and is defined to be 100.IEXACT-AMil/EXACT. Since
it takes an unbearable time to compute the exact solu
tion for large m and p, we did the comparisons only for
small m and p.

By comparing the results shown in Tables 5.1, 5.2
and 5.3, we can observe that :
1) In all cases, both AM1 and AM2 are optimistic. How
ever, AM2 is closer to EXACT thanAMl.
2) For a fixed m and p, both AMl and AM2 are closer to
EX.A.CT (with smf:l_ller RD,) when the probability distribu
tion is more uniform (case (B) in Table 5.1, 5.2 and 5.3).
3) As m and p increase, in some cases RDi may get
fairly large. For instance, RD1=50. 11 and RD2=32.50 in
case (2) of Table 5.3

Because of the disturbing feature of the last point,
a new approximation method which takes polynomial
time and yields better results when the exact solution is
not feasible is proposed in the next section.

Table 5. l

PI l) P(:?) EXACT 1\Ml RDl 1'~2 'RD2

(1) 0.89 0. ll l.1217 l.1q5g 6. 61 1.1528 3.66
(2) 0.75 0.25 l. 3000 l. 3750 5.77 l. 345 2 3.55
()l 0.68 0.32 l.38S4 l.4352 3.60 1.4172 2.30
(4) 0.63 0.37 l.4357] • 4662 2.05 l.4560 1. 34
(5) 0.59 0. 41 l.4586 1. 4838 1. 03 l.4785 0.58
(5) 0.54 0.46 1.4935 1. 4968 0.21 1.4957 0.14
(7) 0.45 0.55 1. 4901 l.4950 0.33 l.4934 0.22
(8) 0.50 0.50 1. 5000 1. 5000 o.oo 1.5000 0.00
(9) 0.43 0. 57 1. 4808 1. 4 90 2 0.63 l. 4870 0.42
(10) 0.35 0.65 1.4174 l.4550 2.65 1.4417 1. 71
(11) 0.29 0.71 1.3501 J.. 4118 4.57 l. 3889 2.87
(12 I 0.26 o. 74 1.3127 1. 3848 5.49 l.3574 3.41
(13) 0. 17 0.83 1. 1966 l. 2822 7. l 5 1. 2454 4.16
(14) 0.14 0.85 l.1586 1.2408 7.09 1. 2053 4.03
(l 5) 0.98 0.02 l.0204 1. 0397 1. 84 l . 0300 0. '?14

~~an<lwidlh::; D2riv8d Frorn E}:c.ct T-i,-;:; _·.p:xcxim,'ltion
fvi" n::::i>=2.

'fable 5.2

P (l I p (2) p (3) p (4) F.XAC'f Alo\ l ROI AM2 n112

(1) 0. 00 0.04 0.04 0.04 l. 1364 l.4510 27. 75 l.7400 9. 12
! 2 I 0. 67 0.16 0. 11 0.05 1.4921 7. 0021 39.54 1.8045 20.94
(l) 0. 54 0. 17 0.13 0.15 1.8420 2.4099 30. 8 3 2.2182 20. 42
(4 I 0.46 0.24 0 .18 0.12 2.llll 2.5295 19.07 2.4124 14. 75
(5) O.JJ 0.41 o. 06 0. 20 2.2003 2. 4 870 l 2. ~2 2. 4 28 2 9.90
(6) 0.3\ 0.2) 0.20 0.18 2.5416 2.7009 6. 27 2,,868 (). 7 l
(7) 0. 20 0.15 0.35 0.22 2.4498 2. fi 606 8. 60 2.6299 7.) 5
IO I 0.25 0.25 0.25 (]. 25 2.5270 2.7141 L09 2. 7 -~ i1 l'l 4. 09
(9 I 0.22 0 .19 o. lJ 0.46 2.1154 2.5411 2 0. 14 2.4327 1 S. 00
(10) 0. lA 0. 22 0.30 0.30 2.5345 2. 6q75 ~. 4 3 2.6820 5. 8 2
(11) 0 .16 0. 29 0. 40 0.15 2.2965 2.5164 13. 06 2.5140 l 0. J 4
(12) 0. 13 0.21 0.15 0. 51 1.9398 2.4579 2 6. 71 2.2q94 l 8. 54
(13) 0.08 O.JB 0 .15 0.38 2.2055 2.4902 12. 8 6 2.4247 9.89
(14) 0.06 0. 24 0.57 0.13 1. 7457 2.2785 30. 52 2.0884 1 q. 6 l
(\ 5) 0.05 0. 35 0.45 O.lS 2.0705 2.3938 l 'i. 61 2.3118 11.65

8c1i-id1·.i,rllhs Derived from Exa_ct Solution
fo•· r:1;::;;p:::t1

'l'ab?e 5.3

p (1) p (2) p (3) p (4) p (5) P(6) EXAr.T AMl RD! A'12 R02

0. 19 0.30 0 .12 0.13 0 .15 0.11 3 .1892 3 .8278 20.02 l. 71 54 lh. 47
0.47 0. 04 0.02 0 .10 0.19 0.) 8 2.1260 3. J 914 'iO .1\ 2,8170 32. 50
0. 16 0. 21 0.15 0 .11 0.09 0.28 3.2950 3.8243 16. 06 J.7150)) . l 5
0.26 0. 13 0. 21 0. 14 0 .19 0.01 3.3874 3. 82'i 1 12.9?. 3. 7 58) 10. 94
0.09 0. 11 0. 20 0.25 o. 22 O. I J 3.4079 l.BJl\2 12. 'i 7 l. 70A6 1 0. 58
0 .11 0. 14 0. 09 0. 18 0. 28 0.20 3.3000 l. 8 2 I l 11. q) 1. 7171 11.)',
0. 21 0. 07 0. 11 0.15 0. 32 0 .14 3.0207 3.7324 2 l. 5 0 l.5818 I 8. 71
0. 16 0. 17 0. l 6 0. 17 0. 17 0. I 7 1. 7781 1.98% 'i. h0 J.9R01 ". IR 0.27 0.\9 D.13 O.JD 0.14 0 .17 3. 3886 3.86q7 J 4. 20 l.7987 12. 10

(I Di 0. l D 0. 11 0 .13 D .17 0. l 9 D.10 3.JA09 3. 81 oq 1 9. 81 1. 6 q 71 16. 71
(J JI 0. 21 0. l 4 0. 2 3 0. \ l 0.25 0.06 3.) 51 l 3. 7791 12. 77 3. 7078 10.H !l 2) 0. l l 0.15 0. 22 0. 14 o. 17 0. 19 3.6552 1.9501 8.07 1.921R 7.40
(I l I 0. 3 I 0. 3) 0. 11 D. I 1 0.08 0. 04 2.7677 1. 4B1 9 21.80 1.;))f.!I') 18. 47
(14 I 0. l D 0. 21 0.) 3 0. 12 0.18 0. 26 3. 4096 l.859/ I l. 19 3. 191 l 11. !(J
(] 5) D. J 6 0. 12 0.15 0.12 0.13 0.32 3.0521 3. 81 0 J 24. 8 3 1.560? 70. OB

Dern cd From Exact ;.;ri:~·T·::o /1.p;iroximati.on Sotutions

432

6. Repetitive Augmenting Approximation Method
(RAAM:)

The next approximation method is based on the
idea of aggregation. A system of i memory modules can
be viewed as the union of two subsystems as shown in
figure 6.1. One subsystem consists of only one memory
module (say the ith module) and the other consists of
all the remaining memory modules. For convenience,
we denote the subsystem with the single memory
module i as subsystem (a) and the other consisting of
modules 1,2, ... ,i-1 as subsystem (b). Assume that we
know how to derive the performance behavior of the
aggregated system if the performance behavior of sub
system (b) is known (the detail will be shown later).
Given a system of m memory modules and p processors,
the algorithm for the Repetitive Augmenting Approxima
tion Method proceeds by starting with a subsystem of 1
memory module (say module 1) and then repetiEvely
augmenting the number of memory modules being con
sidered in the sequence 2,3, ... ,m.

P(i l /Si
·····-.

...
suhsystem {a)

suhsystem (b)

In this paper, we shall assume that the behavior of
a subsystem can be approximately represented by the
probabilities PRO(q,n,s). PRO(q,n,s) denotes the
probability for the subsystem of having s requests
satisfied at one memory cycle while at the beginning of
that memory cycle there were n new requests directed
to it and q requests originally queued in it. Note that
q+n is the total number of requests in the subsystem.
In the following, we will first discuss how to initialize
those PRO(q,n,s)'s for a subsystem of 1 memory module.
Then show how to derive the performance behavior of a
system with i memory modules if those PRO(q,n,s)'s for
a subsystem of i-1 modules are known.

In a subsystem of one memory module, the proba
bility of having one request satisfied (s=l) while at least
one processor was in it (i.e., q+n;;.,, 1) is 1. Thus, we ini
tialize all PRO(q,n,s) with q+n ;;,,1 and s=l to be 1 and all
others to be 0.

A system of i memory modules and p processors, as
shown in figure 6.1, can be viewed as the union of sub
systems (a) and (b), where subsystem (a) consists of
one memory module and subsystem (b) consists of i-1
memory modules. Let P(i) denote the probabilitl for a

request to access memory module i and S1c = 'E P(j).
j=l

Then for each request, the probability (P ..) of accessing
subsystem (a) is P(i)/Si and that (Pb) of subsystem (b)
is S.;,-1/ S;. .

433

Assume that all PRO(q,n,s)'s for subsystem (b) are
known, where q+n=j and l~s~ min(i-1,j) (i-1 and j are
the numbers of memory modules and processors in sub
system (b) and j can be an integer ranging from 1 top
the total number of processors in the whole system).
The set of possible states for the aggregated system is
defined as the set of 3-tuples N=(n0,na ,nb), where n 0 is
the number of requests currently being serviced, and
n., and nb are the numbers of requests queued in sub
systems (a) and (b) respectively. For a possible state
N=(no.n.. .~), no+na +nb =j and n0~i are necessary but
not sufficient conditions. (For instance, N=(l.na,nb)
with na,nb;;,,1 and 1 +na +nb =j is not a possible state but
satisfies these two conditions.) Therefore, the number
(NS) of possible states is bounded by C(j+2,2)=
(j+2).(j+1)/2 (the number of ways to partition j ele
ments into 3 sets).

Let Prob(N=(n0 ,n..,nb)) be the probability of the
aggregated system being in state N and let PRN(q,n,s)
denote the probability of the aggregated system having
s requests satisfied at one memory cycle while at the
beginning of that memory cycle there are n new
requests directed to it and q requests queued in it ...
Since the states and associated probabilities for subsys
tem (b) are assumed to be known (i.e., all the probabili
ties PRO(q,n,s) for l~s~i-1 and l~q+n=j~p), all pro
babilities Prob(N=(n0.n..,nb)) for the aggregated system
can be computed. Once all the probabilities Prob(N) for
the aggregated system and all the probabilities
PRO(q,n,s) for subsystem (b) are known, we can com
pute all the probabilities PRN(q,n,s) for the aggregated
system. The PRN(q,n,s) then can be used for further
aggregation. When all m modules have been considered
the memory bandwidth B can be calculated by the
equation:

B= l;no.Prob(N=(no. n.,.~).
N

In the following, we will show how to compute
Prob(N)'s and PRN(q,n,s)'s. In the procedure
DISTRIBUTION(i,j) we compute the probability of being in
a "legal" state N =(n0,n.,,nb) for the current system of i
memory modules and j processors. Assume that among
the no requests currently being serviced, d,. and di, will
be directed to subsystem (a) and (b), respectively, at
the beginning of the next memory cycle (d,. +db =n0).
Let N'= (O,n.,+d,..~+d.i,) denote the temporary state
which describes the number of requests which will be in
subsystems (a) and (b) for the next memory cycle. The
probability of the subsystem transferring from state N
to state N' (P(N ->N)) is (n0!/ (d,. !db!). P,,, "a .Pb rlt (recall
that Pa and Pb are the probabilities for a request to
reference subsystems (a) and (b) respectively). Assume
that k requests (k must be less than or equal to the
number of memory modules, i.e., i-1), among the nb +db
requests which stayed in subsystem (b), are satisfied.
The next state will become the state N 2=(n' 0,n'a· n'b),
where n'c=k+l, n'a=n..+d,.-1 and n'b=~+db-k if
n,.+d,.;::,,1 or n'o=k,n'a=O and n'b=nb+d.i,-k if n.,+d,. = 0.
The probability of transferring from state N' to state N2

,P(N ... N 2) , is PRO(q =~, n =db, s=k) as applied to sub
system (b) and P(N1->N2)= 'L,P(N 1->N).P(N ->N2).

N

Once all the one-step transition probabilities
between each pair of states are known, the probabilities
for the system to be in state N (Prob(N)) for all possible
3-tuples N can be computed by the same procedure as
the one for finding the exact solution (cf. section 3).
Details of the procedure DISTRIBUTION(i,j) can be found
in [5].

In the procedure FINDPRN(i,j) we compute the
PRN(q,n,s)'s, i.e., the probabilities for the current sys
tem of i memory modules and j processors of having s

requests satisfied while there were q requests enqueued
and n new requests generated. After the PRN(q,n,s)'s
have been obtained, we assign them to corresponding
PRO(q,n,s)'s for future computations. Assume that the
system is in state N 1=(n0 .n...nb) and there are da and
d0 requests, among the n 0 currently being satisfied,
being directed to subsystems (a) and (b) respectively.
Let us also assume that there are k requests, among all
requests in subsystem (b), being satisfied. Let
N=(D.na+d,..n,,+di,) be the temporary state and
N 2=(n'o.n',.,n'b), where n' 0=k+1. n'a=n,.+d,.-1 and
n'b=n,,+db-k if n .. +d,.;;,,1 or n'o=k,n'.,=Q and
n'b =n,, +db -k if n.. +d,. =O. Then accordi~ to the previ-
ous discussion P(N1->N2)=j,;,(n0!/ (d .. !db!)

fl,.. ~ N
P,. .Pb .PRO(n,,,db,k). This also means that
P(N1->N2) is the probability for the system in state N 1

of having n' 0 requests satisfied while there were na +n,,
requests enqueued and n 0 new requests generated. Let
SP(q,n) be the sum of all Prob(N 1=(n 0.na.nb)). where
q=na +nb and n=n0. Then it is not hard to see that
PRN(q,n,s)= ~ P(N 1=(n0.na .nb)->

N1,N2

N 2=(n' o.n',.,n'b)).Prob (N 1)1 SP(q ,n), where
q=na +nb ,n =no and s=n' O· Since no is always greater
than 0 in every possible state N=(n0,n,. ,nb), the way of
deriving PRN(q,O,s) is somewhat awkward. It is basically
assumed that all n 0 requests are directed to somewhere
outside of the current system. Details can be found in
[5].

In RAAM. we start with a subsystem of one memory
module and then the number of memory modules being
considered (i) will be incremented by one until i=m-1.
In the system of i memory modules, the procedures
DISTRIBUTION(i,j) and FINDPRN(i,j) are executed for j
ranging from 1 top because of their need in future com
putations.

After executing FINDPRN(m-1,p), all the probabili
ties PRO(q,n,s) for the system of m-1 modules are
known. The probabilities Prob(N) for the whole system
(with m memory modules and p processors) can be
computed by DISTRIBUTION(m,p). Then the memory
bandwidth B for the whole system is derived from those
Prob(N).

It is obvious that the insertion sequence of the
memory modules into the system will affect the derived
result. One suggested criterion is to label the m
memory modules in such a way that
P(l),o;;P(2),;; · · · ,.;;p(m), since the later a memory
module is put into consideration, the more accurate
and influential it will be. The memory module with the
largest probability being referenced should therefore be
"aggregated" last. This has been validated as shown in
Table 6.1. In all cases where the probabilities were in
ascending order the Repetitive Augmenting Approxima
tion Method had a better result (closer to exact solu
tion) than that of a descending or random order. Note
that not orJy the average memory bandwidth for the
whole system (with p processors and m memory
modules) can be computed by RAAM, but also that of a
sequence or subsystems.

With regard to the complexity of the algorithm, the
following observation.'! can be made :
1) In a system currently of i memory modules and j pro
cessors the number (NS) of possible states is less than
C(j+2,2)=(j+2). (j+ 1) /2.
2) For a given state N=(n0,n.,.,n'f>). there are
n 0+ 1,.;;min (i ,j) + 1 temporary states
N=(D,n..+d,..~+di,). where d,.+db=n0 . Each temporary
state N=(O,n,.+d.,..~+di,) can transfer to at most
min(i.~+di,+l)~m:i:n(i,j)+l states in one step.
3) Once all the one step transition probabilities are

434

known, Gauss elimination can be used to solve the NS
equations. It takes O(NS3) time to do so. Therefore, the
t.ime complexities for Procedures DISTRIBUTION(i,j) and
FINDPRN(i,j) are no more than O(NS.min(i,j)2+NS3)
and O(NS.min(i,j)2) respectively.
4) In addition to computing DISTRIBUTION(m,p), the
complete algorithm necessitates computing
DISTRIBUTION(i,j) and FINDPRN(i,j) for i=2 to m-1 and
j=l top. It therefore takes only polynomial time to find
the average memory bandwidth.

Tables 6.2 and 6.3 compare the exact solution with
all three approximation solutions. RAAM is the approxi
mation solution computed by the Repetitive Augmenting
Approximation Method and RDnA is the relative
difference between E'AACT and RAAM.
The following conclusions can be reached :
1) Among all three approximation methods, RAAM has
the best result and AM2 is next.
2) In all cases, AMl and A1vI2 are optimistic. However,
RAAM is more conservative.
3) Contrary to AMl and AM2, RAAM has its worst case
when all reference probabilities are uniformly distri
buted.

pill PI 2 I p (3 l p (4) p (5) P (6 I Ex;..c'::' RAAM RDKA

(RI 0.31 0.23 0. 2 8 0 .18 2. 5416 2.30~0 9.35
(DI o. 31 0. 2 8 0.23 0 .18 2.5415 2.2680 10.76
(Al 0.18 0.23 0. 2 B 0. 31 2. 5·116 2.4182 4. 86

(RI 0. 2 8 0 .15 0.35 0.22 2.4498 2.3162 5.45
(DI 0. 35 0. 2 3 0.22 0. 15 2.4498 2.3162 10.95
(Al 0.15 0.22 0.28 0. 35 2. 4..; 9 8 2.3709 3.22

(RI 0.22 0.19 0.13 0.46 2.1154 2.0770 1. 82
(DI 0.46 0.22 0.19 0.13 2.1154 1. 9531 7.67
(Al 0.13 0 .19 0.22 0. 4 6 2.1154 2.0952 0.95

(RI 0. 30 0.22 0.30 0.18 2.5345 2.3152 8.65
(DI 0. 30 0. 30 0.22 0.13 2.5345 2.2571 10.94
(Al 0.18 0. 22 0.30 0. 30 2.53~5 2.4148 4. 72

(R) 0 .16 0.29 0.40 0.15 2.2965 2.1836 4.92
(Dl 0.40 0.29 0.16 0.15 2.2965 2.0573 10.42
(A) a .15 0.16 0.29 0.40 2.2965 2.2607 l. 56

(Rl 0.21 0.14 0.23 0.11 0. 25 0.06 3.3511 2. 87 9 2 14. 0 8
(Dl 0.25 0.23 0.21 0 .14 0.11 0. 06 3.3511 2.6135 22.01
(A) 0. 0 6 0.11 0.14 0.21 0. 23 0.25 3. 3511 3.2443 3.19

(Rl 0.13 O.lS 0.22 0.14 0.17 0.19 3.6552 3. 17 83 13.05
(Dl 0.22 0.19 0.17 0. 15 0.14 0.13 3.6552 2. 8721 21. 42
(A) 0.13 o.u 0.15 0 .17 o. J.9 0.22 J. nss 2 3. 30 ·16 9.59

(R) 0.31 O.ll 0.33 0.13 0. 0 3 0. Q.t 2. 76'71 2.432q 12.10
(Dl 0.33 0.31 0.13 0.11 0. 0 8 0. Ot\ 2.7677 2.24q4 18. 73
(l\) 0. 0 4 o. o a 0.11 0.13 0.31 0.33 2.7677 2.7512 O.GO

(RI 0. 10 0.21 0.13 0. l.2 0. 13 o. 26 3. 40? I) 3.0602 10.25
(DI 0.?6 0. 21 o. la 0. l 3 0. 1:2 0.10 3. 1\ 0 ~l 6 2.6510 22.25
(Al 0. 10 0.12 0.13 0. l B 0. 21 O. 2G 3. ·109G 3.2539 ·I. 59

rn1 o. l G 0. 12 0.15 0.12 0. lJ 0. J 2 3.0523 2. 0::'.0 3 4. 3]
(DI 0. 3 2 0. lG 0.15 0. 13 0.)_ ~ 0. l 2 3. 0 s :: J 2. 'i 10 G 1 7. 7 5
(,".I 0.: 2 0. : 2 0. 13 0. ls G. ~ .; 0. 12 3. 0::.: J 2. 97 l.l 2. r;::;

(l:) r,,~_dr.;:1 r-r'
(ll) :!::,;t:;:~,r..!1;,;; r rC.t;:
(-\) ibCr '. 1'- i ~ ,_.. - ,_;:'t"

T .. b::' 3: l'cr.1p:.ri ,\,;,:cn1;i;•,.;. ;: ,_,,lo:n a11:; i: .. =-'t" r,din; Ord~r;;
for 111:::p:::-' .. r:d

Table 6.2

[' (1) P(' I r (3 I P(4 I EX1\CT AMl RDl AM2 RD2 Rl\AM RDRA

(o. ;j:j ',},;).; 0 .O·l 0 .88 l. 1364 l .4518 27. 75 1. 2400 9 .12 1.1364 0 .00
(Ll. JG ;J.11 (.1,},) a. 67 1 .4921 2.8821 39 .54 1. 8045 20. 9·1 \. 4919 0 .01
(~) . l 3 ~I , l !.1 0. l 7 :).5-l l .8 120 2.4099 30 .83 2. 2182 20. 42 1. 8365 0. 30
(iJ. l 2 0. l ;i ~. 2·t D. 46 2. l 111 2.5295 19. 82 2 .1)224 l ·I· 75 2. 0939 0 .81
(J .1iO l).:'..J 0. 3 3 0 .. :1 2.:?.083 2. 4870 12. 62 2 .'12B2 9.% 2. 1908 0. 79
(C ti' l ~ ;J.:?.3 u. :?.3 0. 31 2. 5-116 2. 7009 6. 27 2.6868 5. 71 2. 4182 4. 86
(7 0 .1 5 u. '.;2 iJ • 2 ~l (_'.. 3 5 2. ·1·198 2. 6606 8 .60 2. 6299 7. 35 2.3709 3. 22
(d c. 2 ') D. ~ 5 0. 25 0' 25 2. 6270 2. 7 34.i 4.09 2.7344 4 .09 2. 4014 8: 59
(" 0. l 3 u. l) 0. 22 o. 16 2 .11 S•i. 2.5415 20.14 2.4327 15. 00 2 .0952 0. 95
(l.l) 0' l J ~\. 2 2 0. JJ a. 30 2.5345 2.6975 6. 43 2.6820 5. 82 2.414B 4.72
(ll) e. is c.:c 0. 2) 0.40 2. 29G5 2. 5 764 13 .06 2. 5310 10. 311 2.2607 1. 56
(12) r.:.1·3 ::; . 1 s 0. 21 u. 51 l. 9398 2 .4579 26.71 2. 2 994 18. 5-1 l.9322 0. 39
(13) 0. OJ J .1...) a. 3C 0. 38 2. 2J65 2. 4902 12 .86 2.4247 9. 89 2. 1878 0. 85
(l·ll ,J . t; '~ \;.13 l). 2..; 0. 5 7 1. 7457 2.2785 30. 52 2. 08B4 19.63 l. 74•! 7 0 .06
(15 I 0. ;.i-1 ',l. J s ll. 35 0 .•15 2.0705 2 .3938 15.61 2.3118 11. 65 ·2 .0648 0.28

).'(·t .. ::ir:i Dc•rived From Exu.ct Solul1on unrl T!il·,:c /<p;)t·ty,:1!1,d1Gn
;;,/;"'' J.1=1··=·~

Table 6. 3

1'(1) i' (2) P(3 I p (4) P(5) P(6) EXACT AMl RDl AM2 RD2 Ri\l\M RORA

(I) 0. 11 0. 12 a .13 0 .15 a .19 0.30 3 .1892 3 .8278 20 .02 3. 7154 16.47 3. 0862 3.23
(OJ 0. \~ ~ 0. :J-; o .1 a 0. 18 a. 19 0.47 2 .1260 3 .1914 50.11 2 .81 70 32. 5el 2 .1260 0.00
(3) 'J . ~) •) J. 11 :.J. 1 5 0. 1 G [J. 21 (J. 28 3. 2950 3.8243 lG.06 3.7350 13. 35 3 .1065 3. 29
(;) 0. Ci7 J. 13 0 .1-i a. 19 a. 21 0.26 3. 3874 3.8251 12 .92 3.7581 10.9·1 3.2525 3.98
(SI CJ. 0 J J. 11 a. 13 0. 20 a. 22 0. 25 3.4079 3 .8362 12.57 3. 7686 10. 58 ·3.2674 4.68
(Ci) :J.:J:J :J.ll 0. l·l a. 18 a.20 a. 28 3. 3000 3.8251 15. 91 3. 7373 13. 25 3. 1924 3. 26
(7) J. J7 u. 11 a .14 a. 15 0.21 a. 32 3.0207 3-7324 23. 50 3.5858 18. 71 2.9752 . \. 51
(RI 0. 1 G ~j • 1 u a .1 7 a. 1 7 0 .17 0 .1 7 3. 7781 3. 9896 5. 60 3 .9891 5. 58 3 .1903 1 5. 56
(o I u. 1(} :l.13 0. 14 a. I 7 a .19 0.27 3. 3886 3. 8697 l•l. 20 3.7937 12.10 3. 2246 4 .84
(l c I (j. l u [.j .11 0. 1 3 a .1 7 0.19 0.30 3 .1809 3 .8109 19 .81 3.6971 16. 23 3. 0954 2. 69
(ll) 0. CG a. 11 0. 1-t 0. 21 0. 23 a. 25 3. 3 511 3. 7791 12.77 3. 7078 10.64 3. 2443 3. 19
(12 I 0. 13 0. 1-l 0. ! 5 0 .17 0 .19 a. 22 3.6552 3.9501 8.07 3 .9278 7 .46 3. 3046 9. 59
(1') 0. D l a. DJ 0. 11 0. 13 0. 31 0. 33 2. 76 77 3 .4819 25 .80 3. 2 790 18 ,4 7 2. 7512 0.60
(l·l) G. l J r;.12 0. 13 Ci.18 0.21 0. 26 3. 4096 3.8592 13 .19 3. 7913 11.19 3.2539 4. 59
(ls I 0 .12 \L 12 a .13 Q.15 0 .16 0. 32 3. 0523 3 .8103 24 .83 3 .6652 20. 08 2.9713 2. 65

}.:emery Ea!"ldwidths Derived From Exact Solution a'1d Three Approxi:nalion Solutions
fo: rn=p=6

7. Conclusion
The system structure and . program behavior are

two major factors which influence the performance of
interleaved memories. The latter has usually been
ignored in most previous studies. A simple model for a
multiprocessor system with p processors and m
memory modules was presented. In this model, a set of
non-uniformly distributed probabilities P{i) is employed
to illustrate the program behavior, but no- distinction is
made between processors.

One exact solution and three approximation solu
tions were proposed in order to evaluate the perfor
mance of interleaved memory. Since it may take an
unbearable time to compute the exact solution for
medium to large m and p, there is a definite need to
explore some approximation methods. Among all three
approximation methods, RAAM gives the best result and
AM2 is next. The approximation solutions computed by
AMl and AM2 are always optimistic. The results of
RAAM, on the other hand, are always more conservative.
An inverse relation between average memory bandwidth
and average request completion time was also obtained.
AM2 is derived from this inverse relation and the result
of AM2 could be improved if a more precise way to cal
culate the average completion time could be found.

ACKNOWLEDGllENT
The authors are indebted to R.E. Ladner for several

useM discussions at the early stage of this study. This
work was supported in part. by NSF Grants MCS76-09839
A02 and MCS- 8025616.

435

[1] Baer, J.L., Du, H.C., and Ladner, R.E., "Binary
Search in a Multiprocessing Environment," to
appear in IEEE Trans. Computers.

[2] Baskett, F and Smith, A.J., "Interference in Mul
tiprocessor Computer Systems with Interleaved
Memory," Comm. ACM, vol. 19, no. 6, June 1976, pp.
327-334.

[3] Bhandarkar, D.P., "Analysis of Memory Interference
in Multiprocessors," IEEE Trans. Computers, vol. C-
24, no. 9, Sept. 1975, pp. 897-908.

[4] Chang, D.Y., Kuck, D.J., and Lawrie, D.H., "Effective
Bandwidth of Parallel Memories," IEEE Trans. Com
puters, May 1977, pp. 480-490.

[5] Du, H.C. and Baer, J.L., "On the Performance of
Interleaved Memories with Non-uniform Access Pro
babilities," Dept. of Computer Science. University
of Minnesota, TR-82-6.

[6] Feller, W., An fntroductwn ta Probability Theory
and. Its Application, vol. 1, Wiley, New York, 1968.

[7] Feng, T.Y., "A Survey of Interconnection Networks,"
IEEE Computer, vol. 14, no. 12, Dec. 1981, pp. 12-27.

[8] Kobayashi, H., Modeling and Analysis: an Introduc
tion to System Performance lfualuatwn Methodnl
ogy, IBM Corporation, 1978.

[9] Makrucki, B.A. and Mudge, T.N., ''VLSI Design of a
Crossbar Switch," SEL report no. 149, Dept. of
Electrical and Computer Engineering, University of
Michigan, Jan. 1981.

[10] Mudge, T.N. and Makrucki, B.A., "Probabilistic
Analysis of a Crossbar Switch," Proc. of Interna
tional Symposium on Computer Architecture, 1982,
pp, 311-320.

[11] Patel, J.H,, "Processor-Memory Interconnection for
Multiprocessors," Proc. of International Symposium
on Computer Architecture, 1979, pp. 166-177.

[12] Rau, B.R, "Program Behavior and the Performance
of Interleaved Memories," IEEE Trans. Computers,
vol. C-28, no. 3, March 1979, pp. 191-199.

[13] Rau, B.R., "Interleaved Memory Bandwidth in a
Model of a Multiprocessor Computer System," IEEE
Trans. Computers, voL C-28, no. 9, Sept. 1979, pp.
678-681.

[14] Ravi, C.V., " On the Bandwidth and Interference in
Interleaved Memory System," IEEE Trans. Comput
ers, vol. C-21, Aug. 1972, pp. 899-901.

[15] Stehi, A.S. and Deo, N., "Interference in Multipro
cessor SysLems wiLh Locali~ed Memory Access Pro
babilities," IEEE Trans. Computers, vol. c-28, no. 2,
Feb. 1979, pp. 157-163.

[16] Siegel, H.J. (Ed.), Proc. of the Workshop on Inter
connection Networks, Purdue University, April 21-
22, 1980.

[17] Strecker, W., "An Analysis of the Instruction Execu
tion Rate in Certain Computer Structures," Ph.D.
Diss., Carnegie-Mellon Univ., 1970.

[18] Du, H.C., "Some Design and Analysis Problems for
Parallel Processing," Dept. of Computer Science,
University of Washington, Tech. Report no. 81-08-03,
1981.

436

A MARKOVIAN QUEUEING NETWORK MODEL
FOR PERFORMANCE EVALUATION OF BUS-DEF1CIENT

MULTIPROCESSOR SYSTEMS

IBRAHIM H. ONYUKSEL and KEKI B IRANI

Computing Research Laboratory
The University of Michigan
Ann Arbor, Michigan 48109

ABSTRACT: A Markovian queueing network model is
developed for the performance analysis of multiproces
sor systems with multiple time-shared-bus interconnec
tion networks. The effect of memory and bus conten
tions is investigated, and the comparative results from a
unibus to a crossbar system are presented. The results
show that decreasing the number of busses in a
crossbar switch by factor of two produces a negligible
degradation on the system performance in most cases.
We have obtained exact results by devising an algo
rithmic method to convert the Markov chain of the
queueing model to a simple birth-death process.

L INTRODUCTION

Before starting to design and implement a real sys
tem, it is necessary for a designer to estimate the per
formance of a proposed system for given values of input
parameters by applying analytic or simulation methods
to the mathematical model of the system. Analytic
models are very useful for a designer because they allow
one to explore the effects of variations of system design
parameters quickly and rather economically compared
with simulation models.

Our study is concerned with devising an exact ana
lytic model for the performance evaluation of a typical
multiprocessor system (Fig.1), where each processor
has its local memory unit and the allocation of common
resources is controlled by the controller unit. The
dynamic structure of the Interconnection Network(IN)
enables the system to reconfigure the links between
processors and the common memory. One way to realize
this is to use multiple time- shared busses. When a pro
cessor requests access to the common memory, it sig
nals the controller for a connection to the referenced
module. Requests for connections are assumed to be
independent from one processor to another, and more
than one processor can request access simultaneously.

Since both the common memory and data paths are
shared, contentions may arise, causing processors to
queue for a resource which is currently in use. If every
processor can be connected to a free memory module
without blocking, the only cause of contention would be
the common memory. If the referenced module is busy
at the time of a request, then the controller puts the
processor's request in a FCFS queue which is assigned to
the referenced module. We call this type of systems
Bus-Sufficient(BS) multiprocessor systems. The IN of BS
system can be implemented by a full crossbar switch
network. If IN is a blocking network, then a processor
may have to wait for a free bus to access the common
memory ev>en if the referenced module is free at the
time of the request. We call this type of systems Bus-
Deficient(BD) multiprocessor systems. ·

We are concerned with determining the effects of
the following two factors on degradation of the system
performance:

1) Several processors may simultaneously request
access to the same memory module, or a

0190-3918/83/0000/0437$01.00 © 1983 IEEE 437

processing
elements

Controller

" a:
0
:;:.
>
w
z

z
0
>-
0
w
z
z
0
0
a:
w
>
z

memory
modules

'-------iinput/output

Figure 1
Basic block structure of a typical multiprocessor system

referenced module might be busy at the time of a
request, so that some processors remain idle for
several memory cycles. This is called memory con
tention.

2) If a blocking occurs in the JN, then some processors
remain idle for several memory cycles until free
busses become available for access to the common
memory. This is called bus contention.

Skinner and Asher [6] were the first to use Markov
Chain(MC) models to analyze multiprocessor systems.
Unfortunately, their method can be applied only to
small- scale systems. To analyze larger scale multipro
cessor systems, some approximate and algorithmic
methods have been proposed [1,2, 7].

II. ASSUMPTIONS AND PERFORMANCE MEASURES

We have made the following assumptions for the
mathematical model of multiprocessor systems with
multiple time-shared busses.

1) When a processor requests access to the common
tnemory, a connection is immediately established
between the processor and the referenced module,
provided that the referenced mod11le is not being
accessed by another processor and a bus is avail
able for the connection.

2) A processor cannot have another memory request if
its present request has not been granted yet.

3) The duration between the completion of a request
and the issue of the next one to the common
memory is an independent, exponentially distri
buted random variable with the same mean
value, 1 IA, for all processors.

4) The duration of an access by a processor to the
common memory is an independent, exponentially
distributed random variable with the same mean
value, l/µ,, for all memory modules.

5) The request for access from a processor to the
common memory is uniformly distributed for all
memory modules with probability 1 /m.
If a queueing model satisfies the assumption (5),

then it is called a Uniform Reference M:odel(URM). We
use the traditional Markovian queueing network theory
[4] approach for analyzing the multiprocessor systems
with the assumptions stated above.

To overcome the computational complexity of the
exact queueing model for the performance analysis of
multiprocessor systems with multiple time-shared
busses, several approximate models have been proposed
by some researchers [3,5]. However, we have obtained
exact results by devising an algorithmic method to con
vert the MC of the queueing model to a simple birth
death process, which is equivalent to the original MC.

The goal of the analysis of the queueing network
model is to derive values of some performance meas
ures of multiprocessor systems. The expected value of
percentage of active processors is known as Processing
Efficiency(PE) of a multiprocessor system. Let PE1 and
PE2 be processing efficiencies of two different systems
such that they have the same parameters as the original
system except the former is a unibus system and the
latter is a crossbar system. It is clear that
PE 1~ PE ~PE2. In fact, PE 1 and PE2 are the lower and
upper bounds for the processing efficiencies of a family
of multiprocessor systems such that the number of
busses in the IN is the design parameter for this family.
We denote the bus effect factor by t and define it as fol
low: t = (PE2-PE)/PE2 .

ill. EVALUATION
The configuration of a multiple bus multiprocessor

system is usually denoted by a 3-tuple (pxmxb), where
p,m,b are the number of processors, number of memory
modules, and the number of busses, respectively. If
b;;.:min(p,m) then the system is a BS system because a
bus is available whenever a processor requests access to
a free memory module. If b<min(p,m) then the system
is a BD system because a processor may have to wait for
a bus to access the referenced memory module even
though the module may be free at the time of the
request. If all the busses are occupied when a processor
requests access to a free memory module, then the con
troller unit puts the processor in a wait state until a bus
is available.

Each state Q of the continuous-time MC of the
queueing model is represented by an m-tuple
Q=(k1,. .. ,km), where lk;I indicates total number of pro
cessors queueing for memory module j. If k; >0 then jth
memory module is busy, but if ks <0 then there is no
available bus to access this module. If total number of
active processors is p-n for a state, then we call it a level
n state. Let u(x) be a binary variable such that u(x)=l

m
for x<O and u(x)=O for x;;.:o. If ~u(k;)=t for a state,

l=l
then we call it a type-t state. A type-0 state is also
called a BS state and a type-t state for ~1 is called a BD
state. If all states at level n of the MC are BS states,
then we call least one BS state Q0 =(n,O,. . .,O).

To distinguish the probabilities of states at a given
level of the MC, we attach weights to the states. The
weight of a state Q is defined by

W[Q] = Pr(Q)/Pr(Q0) (1),

where Q0 is a BS state at the same level with Q. Let <l>(n)
denote the set of states at level n of the MC and
L(n)=Pr!QjQe:<l>(n)j. then by definition of weight of a
state we have shown that

L(n) = (A,._ 1/ µ,) [1C(n)/ IC(n-1)] L(n-1) or

µ,,L(n) = ~-1L(n-1) with (2),

~-1 = An-1/ IC(n-1) and P,,. = µ,/ 1C(n) for n=l,. . .,p

where 1C(n) = ~ W[Q] is defined as the weight of level n
Qe:t(n)

and A,.=(p-n)/m. The above equations suggest that we
can replace the MC of the queueing model by a simple
birth-death process with parameters A,. and µ,,. for state
n, which corresponds to level n of the original MC.

By analyzing the birth-death process and by defini
tion of PE, we have obtained

PE = [~IC(n)(p-1),. (!)" l [.to IC(n)(p)n (!)" r (3),

where p=AI µ, (utilization factor for a single-processor
single-memory system) and (p),. =p(p-1) ... (p-n+ 1) with
(P)o=l.

We like to reduce the size of the MC by partitioning
the states into equivalence classes and generating a
lumped MC for the system. If Q=(k1,..,km) is a state of
the MC, then the states C=!(k11,k;m)l(it,;m)e:Pml
form an equivalence class of Q, where P,,. is the set of all
permutations of integers 1,. ... m. Let ~(n) denote the set
of equivalence classes at level n of the MC. Since the
weights of states of an equivalence class all have the
same value, we can define the weight of an equivalence
class as

W[C] = N[C] x W[Q) with Qe:C (4),

where N[C] is the number of states in C. This equation
implies that 1C(n) = ~ W[C). To determine the weights

Ce:i'(n)
of levels of the MC, we devise the following algorithm.

The Algorithm.

438

1. Initialize n=O and set the weight of level 0: IC(0)<-1

2.n<-n+l
3. V(n)<-set of equivalence classes at level n; IC(n)<-0

4. C<-an element of v(n)
5. Q<-the representative state of C; I •Q=(k1,k,,.)•I

N[C]<-the number of elements of C

6. v(n)<-v(n) - !C!
m

7. p ... ~(k;¢0)
l=l

8. if p~b then W[Q]<-1

9. else do

a. j+-1; W[Q)<-0

b. c;<-(Jk;j>1) OR (k;=l)
c. if c; =O then goto 9g

d. lk; 1 <-1 kJ l-1; sign(k;)<-sign(k;)
e. Qi <-(k1,. • .,k; km)
f. W(Q)o-W[Q] + W[Qi]

g.j<-j+l

h. if j~m then goto 9b
i. W[Qj ... w[Q]/b; end

10. W(C] ... N[C] x W[Q]

11. ic(n) ... ic(n} + W[C]

12. if .V{n);-><¢ then goto 4

13. if n<p then goto 2; end

N. NUMERICAL RESULTS

We have implemented our algorithm in PLC for the
MTS(Michigan Terminal System) and the program was
run for several pxmxb configurations. We have seen
that execution time increases rapidly with p and by the
factor of p-b for a fixed value of p. Therefore, we can
say that the proposed algorithmic method is not very
suitable for very large-scale multiprocessor sy3tems.

We can compute the PE of a pxmxb multiprocessor
system by applying equation (3). For p,m,b=
1,2,4,8,12,16 andp=[0,1], PE vs p values are depicted in
Fig.2: Fig.2a shows the effect of number of processors
for m=8 and b=4. Fig.2b shows the effect of number of
memory modules for p=8 and b=4. Fig.2c shows the
effect of number of busses for p=m=16 on the system
performance. The numerical values of ~ vs p are tabu
lated in Table 1 for 16x16xb family, where b=l6
corresponds to a BS system. We see that decreasing the
number of busses to b=8 makes a difference of only 0. 73
in-the PE(p=l). Thus, 16X16X16 system can be replaced
by a 16x 16x8 system without any significant degrada
tion of the system performance.

.Jl.. b= 8 b= 4 b= 2 b=.l
0.1 - 0.08 4.35 32.22 j
0.2 - 1.37 25.20 ai.40 I
0.3 - 5.43 42.77 71.33 '
0.4 I 0.02 11.68 52.26 76.13 I
0.5 i 0.06 18.16 57.78 78.89 i
0.6 I 0.13 23.65 61.33 80.66
0.7

I
0.24 27.96 63.78 81.89

0.8 0.37 31.28 65.55 82.78
0.9 0.53 33.86 66.89 83.44

_l.O i 0.70 35.90 Ji.7.93 83.96
Table 1

'3us effect factors f{3) for 16X!6Xb iamily of multiprocessor systems

PE('I.)

a.z OA o_e ... 1.0

P..gure 2a

439

PE(%)

••

40

20

0.4 o.a 0.8 1.0

PE('I.)

100

... 1.0

Figures 2b and 2c

REFERENCES

[1] Baskett, F.S. and Smith, A.J., "Interference in Mul
tiprocessor Computer Systems with Interleaved
Memory", CACM, Vol.19, pp.327-334, Jun.1976.

[2] Bhandarkar, D.P., "Analysis of Memory Interference
in Multiprocessors", IEEE T. Comp., Vol.C-24.
pp.897-908, Sept. 1975.

[3] Jacobson, P.A. and Lazowska, E.D., "Analyzing
Queueing Networks with Simultaneous Resource
Possession", CACM, Vol.25, pp.142-151, Feb. 1982.

[4] Kleinrock, L., Queueing Systems I, John Wiley, 1975.
[5] Marsan, M.A. and Gerla, M., "Markov Models .for Mul

tiple Bus Multiprocessor Systems", IEEE T. Comp.,
Vol.C-31, pp.239-248, Mar. 1982.

[6] Skinner, C.E. and Asher, J.R., "Effects of Storage
Contention on System Performance", IBM Syst. J.,
Vol.8, pp.319-333, 1969.

[7] Yen, D.W.L., Patel, J.H., and Davidson, E.S., "Memory
Interference in Synchronous Multiprocessor Sys
tems", IEEE T. Comp., Vol.C-31, pp.1116-21, Nov.82.

ON MAPPING HOMOGENEOUS GRAPHS ON
A LINEAR ARRAY-PROCESSOR MODEL(a)

I.V. Ramakrlehnanlb)
D.S. Fu11ell

A. Sllberecbats

Department of Computer Sclencee
The Unlverelt;y of Texas at Auetln

Auetln, TX 78711

Abstract

This paper presents a formal model of linear array processors
suitable tor VLSI implementation as well as graph representation
or programs suitable for execution on such a model. A
distinction is made between correct mapping and correct
execution of such graphs on this model. A complete
characterization or the structure or a class of correctly mappable
graphs is obtained. The formalism developed is used to synthesize
algorithms for this model.

1. Introduction

In 13, 6] specialized array processors were proposed as a means
or handling compute-bound problems in a cost-effective and
efficient manner. These array processors generally consist or a
regular array or simple, identical processing elements which
operate in synchrony. A host computer drives the array as a
peripheral. The array can be of many forms, for instance a linear
array, a rectangular mesh, a hexagonal mesh, .etc. Simplicity and
regularity of these array processors render them suitable for VLSI
implementation. High performance is achieved by extensive use
or pipelining and multiprocessing.

A variety of algorithms have been designed for such arrays 11,
4, 9]. An algorithm executing on such arrays is comprised of
several data streams. A data stream is unidirectional, i.e., it does
not change directions as it passes through processors in the array.
Elements in distinct data streams move at different velocities
(processors / cycle) while all elements in a given data stream
move at the same velocity. Every processor in the array regularly
receives data from each of the data streams, performs some short
computation, and pumps the data out. The array communicates
with the host through certain input/output ports designated as
external input/output ports and elements in distinct data streams
are pumped in through distinct external input/output ports. We
will henceforth refer to such algorithms as •array algorithms•.

A few methodologies have been proposed for synthesizing array
algorithms from program specifications 12, 5, 12]. However in all
these methodologies the synthesis problem was not studied in a
formal framework. Also these methodologies shed insufficient
insight into the synthesis problem for lack of a more intuitive
representation or programs.

In this paper we study the synthesis of array algorithms in a
more rigorous framework using a more intuitive representation of
programs, namely' data-flow descriptions or programs. In
particular we will be studying the synthesis of algorithms for a
linear array. The array is comprised or identical processors, that
is, they all execute the same set of instructions in every
instruction cycle, and they are all simple, that is, they do not
have any addressable local memory and cannot perform
branching. The linear array is driven either by a single-phase or
two-phase global clock 17]. In a two-phase clocking scheme the
two phases are nonoverlapping and adjacent processors are
activated by the opposite phases of the clock.

(a)This research was supported in part by the National Science
Foundation under Grants MCS-8104017 and ONR Contract NOOOH-80-
k-0087

(b)Current Address: Department or Computer Science, University or
Maryland, College Park, MD 20H2

0190-3918/83/0000/0440$01.00 © 1983 IEEE 440

Two reasons motivate our study of such a model. Firstly, this
model has been used for most of the published array algorithms.
Secondly, and more importantly, linear arrays requ~re a fixed 1/0
bandwidth. Hence they can be attached as a peripheral to the
I/O bus of any existing host without requiring any change to the
host's I/O bandwidth.

We formalize this linear-array model and then define the
program graphs that are appropriate for execution on them. A
program graph is a directed acyclic graph representing a
computation. The edges represent values and the nodes represent
computation of a function whose arguments are the values
represented by the incoming edges. We distinguish between
correct mapping and correct execution of such program graphs
on the linear array model. We provide a complete syntactic
characterization for a class of program graphs (i.e., identify
structural properties) that are correctly mappable and briefly
mention the importance of using some semantic knowledge (i.e.,
some property) of the function represented by the nodes in the
graph to correctly execute the graph.

This paper is organized as follows • in section 2 and section 3
we introduce the linear array and program graph models
respectively. In section 4 we formalize the notion of correct
execution of program graphs on linear arrays and in section 5 we
examine the structural properties of correctly mappable program
graphs. We illustrate the formalisms developed by synthesizing
some linear-array algorithms. For brevity, the proofs of most or
the Theorems in this paper have been omitted. They can
however be found in llO].

l!. Linear Array Model

In this section we define the linear array processor that
formally captures the intuitive linear array described in the
previous section. A linear array is a 3-tuple Ar=<N,LAr•.,Ar>
as follows.

1. N is a sequence of identical processors with indices
ranging from 1 to IN!.

2. LAr={ll, 12, .. , lk} is a set or labels.
3. Every processor in the array has k input ports and k

output ports, with each input port and output port
assigned a unique label lj from LAr· Each processor in
N is connected to its neighbors in the sequence
through its I/O ports. In addition the first and last
processors may have input and output ports
connected to the host environment.

4. The array is driven either by a single-phase or a two
phase global clock. A phase can be viewed as the
instruction cycle or a processor. In a single-phase
clocking scheme all processors are activated in every
phase and every processor computes a k-ary function
'1 Ar" In a two-phase clocking scheme adjacent
processors are activated during opposite phases of the
clock and every processor computes '1 Ar in the phase
it is active.

The runction I/I Ar computed by a processor is a straight-line
program. This restriction is imposed since we have assumed that
a processor does not have any branching ability. We will
henceforth rerer to a processor in the array by its index in the
sequence N. Let s be the index or a processor. Let

si1= <si:,si~, .. ,si~? denote the k-tuple input to processor s at
time t where s~ is the value at the input port labelled lj of

processor s at time t. Let so1=<so:,so~, .. ,sot> denote the k
tuple output computed by processor s at time t, i.e.,

I/I Ar(si1)=sot.

For any label lj in L Ar• let Pij be the neighborhood·, relation
imposed by label lj on processors in N. Let <s,r> be any· pair of
processors in N.

Definltlon Z.1: We shall say that processor s is related to
processor r by label lj denoted as s p r, iff the output port
labelled lj or s is connected to the input port labelled lj of r.

We will refer to a path of uniform labels through the array as a
data stream. The linear array has the following communication
features.

1. A processor in the linear array can only communicate
with up to two neighbors. All data streams are
unidirectional. Hence for any label lj in L Ar• if Pcj is
not an empty relation, then a neighborhood constant
Dr is associated with lj such that the output port
labelled lj of any processor s is connected to the input
port labelled lj of s+n1j where n1j is one of {1, -1, O}.

2. The elements in a data stream move at a constant
velocity, and hence a non-zero positive delay constant
d1j is associated with e:very label lj in L Ar such that
for any processor s, if so1 is the output computed by s

at time t then sol appears at the input port labelled lj

of processor s+n1j at t+dcj·
3. External communication takes place through certain

designated input/output ports namely,

a. if Pij is empty then the input port and output
port labelled lj of every processor communicate
with the host,

b. if n1j=l then the input port labelled lj of
processor 1 and the output port labelled lj of
processor INI communicate with the host,

c. if n1j=-l then the input port labelled lj or
processor INI and the output port labelled lj of
processor 1 communicate with the host,

d. if n1j=O then a register in every processor
serves as the input/output port labelled lj. No
input/output port labelled lj communicates
with the host. A value is preloaded into this
register before starting the computation and the
result value (the preloaded value may be
updated as computation progresses) is retrieved
from this register after the computation
terminates.

We will call the input/output ports that communicate with the
host~ input/output ports.

The delay dlj can be implemented as a queue using a shift
register or length d1r 1 if single-phase clocking is used and of

441

length (d1rl)/2 if two-phase clocking is used. At any time t, then,
an activated processor s in the array performs the following
sequence of operations:

1. Compute l/IA,(si1)=so1 where si1=<si:. si:, .. ,sit>

and S01=<so:. sor •.. ,so~>.
2. For every label lj, dequeue the element at the head of

the queue associated with lj and place it at the
output port labelled lj or s.

3. For every label lj, place soi at the tail of the queue.

Figure 2.1 illustrates a linear array with n11=1, n12=-1, n13=0.
The neighborhood relation p14 imposed by label 14 is empty.
Iu/011 , I12/012, I13/013 and 114/014 are the external input/output
ports associated with labels 11, 12, 13 and 14 respectively.

Figure 2·1

Henceforth, 'linear array (arrays)• used in the rest of this
paper will refer to the model defined above.

3. Homogeneous Graphs

The linear array is comprised of identical processors all of
which compute the same function (or execute the same
instruction) in every cycle. All the processors in the array
cooperate in executing a single program. As all the processors in
the array are identical, the straight-line programs they execute
must also be identical. This motivates the following
formalization of programs appropriate for execution on linear
arrays.

A homogeneous program graph G=<V,E,La> is a labelled
DAG where:

1. V=VaUSOaUSia, and Va, SOa and SIG are three
disjoint sets or vertices with SOG the set of source
vertices, Sia the set of sink vertices and VG the set of
remaining vertices, which we shall call computation
vertices,

2. La is a set or labels. Let !La l=k, and
3. every vertex in VG has k incident edges and k

outgoing edges, where each incident, and outgoing
edge is assigned a unique label from La.

Input edges and output edges in G are those edges that are
directed out or and into source and sink vertices respectively.

In any execution of G on a linear array, every computation
vertex in G is a single instance of a function evaluation that is
performed in a cycle by a processor in the array. Hence the
function represented by v x then, must be a straight-line program
and we can view the k incoming edges and the k outgoing edges
of a vertex v x as representing the k-tuple input value and k-tuple

output value computed by the processor that evaluates v x· A
source vertex then, represents an input value and a sink vertex
represents an output value. As every computation vertex
represents the same function, we refer to these program graphs
as Homogeneous Graphs.

Figure 3.1 illustrates a homogeneous graph. The solid and
dashed horizontal edges are labelled 11 and 12 respectively. The
vertical and oblique edges are labelled 13 and 14 respectively.

Figure 3·1

In Figure 3.1 and in all the other graphs illustrated in this paper
we will be using '•' to represent computation vertices and 'x' to
denote source and sink vertices.

Although homogeneous graphs are a more limited class of
program graphs than, for instance, general dataflow graphs, it
does allow the representation of quite a number of interesting
programs which are potentially suitable for execution on the
linear array model. As we shall see, not even all homogeneous
graph programs can be executed on the simple computing engines
we have defined.

Henceforth we will assume the following:

1. G is a homogeneous graph.
2. The label of a source (sink) vertex is the same as that

or the input (output) edge directed out of the source
(directed into the sink) vertex.

3. Input (output) value will always refer to the value
represented by a source (sink) vertex.

4. Mapping Homogeneous Graph•

We now give a precise formulation of correct mapping and
correct execution of homogeneous graphs on linear arrays.
Intuitively mapping of G onto a linear array Ar assigns' each
computation vertex of G to a processor in Ar at a particular time
step and also fixes the delay and neighborhood constant for every
label in L0 . Assuming discrete time steps, let T={0,1,2, .. } be
the sequence or natural numbers representing the progress or
computation from its start at time 0. ·

Deftnltlon 4.1: A mapping or G onto a linear array Ar is a
4-tuple <PA,TA,NA,DA> where:

1. PA:V0 ->N and TA:V0 ->T are many-one
functions mapping computation vertices onto
processors and time steps respectively.

2. Let I+ be a set of positive non-zero integers.

NA:L0 ->{1,-l,O} and DA:L0 ->I+ are many-one
functions assigning neighborhood constants and
delays to labels respectively.

[Note: NA(lj)==n1j and DA(lj)==d1jl

442

We next formalize a correct mapping.

Deftnltlon 4.211 A mapping is syntactically correct iCf

1. VljELAr and for any pair of computation vertices, vx
and v Y' if there is an edge labelled lj directed Crom v x
to v1 , then PA(v1)=PA(vxJ+n1j and
TA(v1)=TA(vxJ+d,., and

2. no two inputfoutput values can appear
simultaneously at the same input port of a processor.

Let i be the input value represented by the source vertex of a
computation vertex, say, v x· Similarly, let o be the output value
represented by the sink vertex of another computation vertex,
say, v 1 . Without loss of generality, let the labels of the source
and sink vertices be Ii. Now i is fed into the array and o is
retrieved from the array through the external input port and
external output port respectively associated with label lj. Let
TA(vx)=t1 and TA(v1)=t2•

Deftnltlon 4.3: Entry Time for i and Exit Time for o is the
time at which i is fed into and o is retrieved from the array
respectively. Consumption Time of i and Production Time of o is
t1 and t2+dlj respectively.

We are now in a position introduce the notion of correct
execution of homogeneous graphs. ---

Definition 4.4: G is correctly executed on a linear array iff

1. the µiapping is syntactically correct, and
2. for every input value its value at entry and

consumption times must be the same and for every
output value its value at production and exit times
must be the same.

Intuitively condition (2) means that we may be required to
maintain a value input (o~tputted) to (by) the array constant as
it passes through some number of processors inorder that it
arrive unchanged at a processor (external output port) that will
use it (from which it will be retrieved).

5. Syntactic Characterization

Our aim is to identify the structure of homogeneous graphs for
which there exist syntactically correct mappings. We begin by
identifying the relevant structural elements of a homogeneous
graph G.

Definition 5.1: For any label lj in G, a major path labelled lj
is a directed path Crom a source vertex v" to a sink vertex v Y

such that the label of v x• v Y and all the edges in the path is lj.

The path label of a major path is the label of the edges in the
path.

Definition 5.21: Two major paths are identical iff, ignoring the
source and sink vertices in them, the two directed paths are the
same.

For any label lj, let Elj=={major paths having the same path
label Ii}. Not every E1j is relevant for a syntactic
characterization of homogeneous graphs. Consequently, we divide
the labels of G into three claases:

1. L1 = { lj [there exists a pair of computation vertices
vx and v1 and a directed edge e==<vx,vy> whose
label is lj. Besides for any Ii and lj in L1 there exists

a major path in Elj that is not identical to any major
path in Eli.} The major paths with these labels are
relevant for structural characterization or correctly
mappable graphs.

2. Let L2={ lj I there exists a pair of computation

vertices and a directed edge e=<vx, vy> whose
label is lj. Besides, if lj is in L2 then there exists an Ii

in L1 such that for every major path in E1; there is an
identical major path in Eli.} Given the major paths
associated· with the labels in LI' the major paths
associated with those in this class are redundant for
structural characterization.

3. L3={1j I there exists no pair of computation vertices

v x and v Y such that there is a directed edge
e=<vx,vy> whose label is lj }.

Consider the homogeneous graph in Figure 3.1 again. The solid
and dashed horizontal edges are labelled ll and 12 respectively.
The vertical and oblique edges are labelled 13 and 14 respectively.
L1={ll, 13}, L2={12} and L3={14}.

Henceforth, throughout the rest of this paper, labels will be
assumed to be in L1 unless explicitly mentioned otherwise.

We are are now in a position to define the class e of program
graphs that we will be examining in this paper. If there exists a
connected subgraph SG in G whose label set Lsa={lµ,lv}~L1
and whose vertex set V SG contains VG• i.e., V G~V SG• then G is
in fJ. Existence of SG signifies that there is an undirected path
between any pair of computation vertices in G through edges
that are labelled either lµ or lv. e is a large class that includes
homogeneous program graphs for important computational
problems like sorting, convolution, vector multiplication of band
matrices, pattern matching, priority queue, etc. lµ and lv will
refer to the two labels of SG.

The structure imposed on SG by any correct mapping is
elegantly formalized below.

Deftnltlon 5.3: Let 11 and 12 be two sequenc1:s of integers such
that the sequences in 11 and 12 range from 0 to b1 and O to b2
respecti".ely and let B~I ~ I. Then, SG is a Mesh Graph iff
there exists a one-one funct10n F:V a->B such that the following

property bolds. Let F1,. and F1v be the projection functions of F,

i.e., for any vx in VG, if F(vx)=<rn,n> then F1,.(vx)=m and

F1v(v J=n. For any v x and v Y in VG• there exists a directed path
from v x to v Y in a major path whose path label is lµ such that
the distance from v x to v Y in this directed path is d iff

F,,.(vy)=F1,.(vx)+d and F1v(vy)=F1v(vx). A similar condition
bolds for a major path whose path label is lv.

Henceforth we will denote F1,.(v x) and F1v(v xl as x1,. and x1v
respectively.

Figure S.l is an example of a Mesh Graph wherein the
horizontal and vertical major paths are labelled lµ and lv
respectively.

<O,O> <1,0>

Figure 5·1
<O,l <1,1> <2,l>

<0,2>

443

We next relate the structure of SG to the existence of a
syntactically correct mapping in the following Theorem.

Theorem 5.1: If there exists a syntactically correct
mapping for G then SG must be a Mesh Graph.

When G is finally mapped onto a linear array the computation
vertices in G may be partitioned into sets that comprise vertices
which are mapped onto the same physical processor. As we will
see later on this is useful in expressing the structure of correctly
mappable graphs in a simple way. To formalize this partitioning
it is useful to define a Diagonalization of the Mesh Graph SG as
follows.

Deftnltlon 5.4: Let w=<wl'w2>E{<l,1>, <1,-1>,
<1,0>, <O,l> }. A Diagonalization or SG is a pair <D,w>
with the following properties.

1. D={D1,D2, . .,Dk} is a family of ordered sets of

computation vertices and D1UD2U .. UDk=V a·
2. For any DP in D, if vx and vy are in DP then

wlxl,. +w2X1v=W1Y1,.+W2Y1v·
3. Let T 0 denote the indexing function associated with

the ordered set D. For any pair of DP and Dq in D, if

vx and vy are in DP and Dq respectively then r0(Dp)

< To(Dq) iff w1x1,. +w2xlv < W1Y1,. +w2Y1v·

Henceforth, we will refer to D as the set of Main Diagonals and
to w as the Main Diagonalization Factor. We will assume that
the indices assigned to the diagonals in D range from 1 to IDI and
if DP is a diagonal in D then T0 (Dp)=p, i.e., the index of DP in
the ordering is p. We use the ordering of the diagonals in D to
define an adjacency relation imposed on them by labelled edges.

Deftnltlon 5.5: Let DP and Dq be in D. DP a1j Dq (read 'DP
is related by a1j to Dq') iff there exists a computation vertex vx in

DP and another computation vertex vy in Dq and a directed edge

e=<vx,vy> whose label is lj.

Deftnltlon 5.6: a1j is consistent with respect to T0 iff 3 a

constant m1j such that \fDPED and \fDqED, if DP a1; Dq then
T0 (Dq)=T0 (Dp)+rn1j.

We will call rn1j the consistency constant of a1j. Let S0 ={a1j I
ljEL1 and a1j is the adjacency relation on D imposed by edges
labelled lj } .

It is useful to define the set De of Complementary Diagonals
that is obtained by diagonalizing SG by its Co,lementary
Diagonalization Factor we where w c w and

weE{ <1,1>,<1,-1>,<1,0>,<0,l> }.

Let T De denote the indexing function associated with De and

S0e={blj I 1jEL1 and b1j is the adjacency relation on De imposed
by edges labelled lj } . Herein also we will assume that the index
of the complementary diagonals in De ranges from 1 to !Del and
if Dcp is a complementary diagonal in De then its index is

p. Consistency of b1j with respect to Toe is defined similar to a1j.

Let c1j denote the consistency constant of bcj·

Consider Figure S.1 again. Let w=<l,-1> and we=<0,1>.
Then the set or main digonals D={Dl' D2, D3, D4} is comprised
of four diagonals where D1={v6}, D2={v3}, D3={v1, v4} and
D4={v2, v5}. The set of complementary diagonals Dc={Dcl'
Dc2, Dc3 } is comprised of three diagonals where Dc1-{v1, v2},

Dc2={v3 , v4, v5} and Dc3={v6}.

Let v x and v Y be two vertices in the main diagonals DP and D q
respectively and complementary diagonals Dc8 and De,
respectively. Then we will denote the difference in indices of D q
and DP which is q-p as .t.0 (vx,vy)· We will also denote the
difference in indices of De, and Dc8 which is r-s as .60 c(v x•v y)·

We next define two classes of graphs e1ce and e2ce where:

8 1={GE8 I SG is a mesh graph and the main diagonalization
factor w of SG is one of { <1,-1>, <O,l>, <l,O>}} and

8 2={GE8 I SG is a mesh graph and the main diagonalization
factor w of SG is <1,1> }.

We provide a complete syntactic characterization of program
graphs in el which have syntactically correct mappings in the
following Theorem. Before doing so we introduce the notion of
transitive edges which is needed in the proof sketch of the
Theorem.

Definition 5.7: Let e=<vx,vy> be a directed edge from
vertex v x to vertex v y· Then e is a transitive edge iff there exists
a vertex vz and edges em=<vx,vz> and en=<v.,vy>·

Theorem 5.2: Let GE81. There exists a syntactically correct
mapping for G if and only if there exists a pair <D,Dc> such
that each of the following conditions is satisfied:

1. Every relation a1jES0 is consistent with respect to T0

and its consistency constant m1j is one of {1,-1,0}.
2. Every relation b1jESoc is consistent with respect to

Toe·
3. Let v x and v Y be any two computation vertices. For

any label lj if c1jA0 (vx,vy)=m1jti.Dc(vx,vy) then there
must be a major path labelled lj passing through v x
and vy.

Intuitively, condition (1) ensures that a data stream is
unidirectional and communication takes place only between
adjacent processors while condition (2) ensures that a data
stream moves at constant velocity and condition (3) ensures that
no two values appear simultaneously at the input port of any
processor.

We sketch only the sufficiency proof. The proof is constructive
and we will be using this constructive procedure to illustrate
synthesis of linear-array algorithms later on.

Proof: (Only If): See !10] for details.

(If Part): Let D={Dl' D2, •• , Dn} be the set of main diagonals
where i denotes the index of any D;ED. Construct a linear array
LAr with INl=n. Now construct a mapping through the
following steps.

1. Choose two-phase clocking if there exists a transitive
edge labelled !j such that m1j=O or else choose a
single-phase clocking scheme.

2. Let D q be any diagonal in D and let v x be any
computation vertex in Dq. Then, let PA(vx)=q. This
assigns computation vertices to processors.

3. Next fix the neighborhood constant n1j and delay
constant d1j for every label lj in L1. Let nlJ=mij· Let
da and db be two constants which we will be using in
the construction of the delays for the labels in Lt. Ir

444

the main diagonalization factor w is <1,-1> or there
exists a transitive edge labelled lj such that mlj=O
then let da=2 else let da=l. Let cmin be the
minimum of all consistency constants among all the
relations in Soc· If cmin>O then set db=l else set
db=l+lcminlda. Let d1j=m1jdb+c1jda.

4. Next construct the neighborhood and delay constant
for the labels in L2. By definition of L2, if there
exists a label lj in L2 then there must exist some label
Ii in Lt such that for every major path in E1j there is
an id.entical major path in Eli. Hence let n1j=n1; and

dr=dli.
5. F~r every lj in L3, let tbe neighborhood relation

imposed by label !j on processors in N be empty and
hence no processor's output port labelled lj is
connected to the input port labelled lj of any
processor.

6. Construct the function TA which assigns computation
vertices to time steps. Let v 8 be the computation
vertex which is in DtED and Dc1EDc. Let
T A(v 8)=t0. Let v x be any computation vertex in
OPED and DcqEDc. Then, let
TA(v xl=t0+(q-l)da +(p-l)db.

Step 1 to step 6 described above completes the construction of
a correct mapping. Refer 110] to verify that the mapping is
correct.

D

The three conditions of Theorem 5.2 are necessary but not
sufficient for the existence of syntactically correct mappings for
graphs in 8 2. However in the next corollary we show that in
certain cases it is both necessary and sufficient. Let GE82 and let
C={c1)-{c111, c11,}.

Corollary 5.1: Vc1jEC, if c1j>O or Vc1jEC, if c1j<O then
there exists a syntactically correct mapping for G if and only if
the three conditions in Theorem 5.2 are satisfied.

Proof: Similar to Theorem 5.2 except in the construction of
the expressions for the delays. If c1j>O then set da=2, db=l,
d111=1 and d1.,=3. If c1j<O then set da=-2, db=3, d111=3 and
d1.,=l. In 1101 it is shown that this construction yields d1j>O.

D

The sufficiency proof of Theorem 5.2 provides a methodology
to synthesize linear-array algorithms for graphs in e. The
construction used in the Theorem maps a program graph
correctly. However, very often, to ensure its correct execution we
need to use some property of the function represented by the
computation vertices in the graph. The structure of graphs that
can be executed without using such knowledge is characterized in
[10].

We now apply the results described in this paper to synthesize
linear-array algorithms for computing the vector multiplication
of band matrices and convolution.

Example 5.1: Consider multiplication of a Band Matrix A by
a Vector X as shown in Figure 5.2. Y is the result vector. The
computation of this multiplication can be represented by the
program graph in Figure 5.3 wherein vij denotes a computation
vertex. The horizontal, vertical and oblique edges are labelled 11,
12 and 13 respectively. Let ~ denote the function represented by
any computation vertex in the graph. ~ is a 3-ary function such

that for any a, band c, tP<a,b,c>=<a+bc,b,c>. Let tP1, tPv tP3
be the three projections of tP, i.e., tP1 <a,b,c>=a+bc,
tP2<a,b,c>=b and tP3<a,b,c>=c. If a, b and c are the input
values represented by the horizontal, vertical and oblique input
edges of vij then the output values represented by the outgoing
horozontal, vertical and oblique edges of v ij are tP1 < a,b,c >,
tP2<a,b,c> and tP3<a,b,c> respectively. The input value
represented by every horizontal source ~ertex is initialized to O.

Y1 •n .. 12

Y2 •21 •22 •23

Figura 5·2
Y3 •31 •32 •33 :
Y4 •42 H43
Y5 •53
Y6

Figure 5.3

' '
' ' ' ' ' '

' ' ' ' ' " ' ' ' '
" '

r-:,

' ' ' ' ' -- - --
' ' ' ' Oc5 - - - _ '

" I '\.
5.4 0 ' 6- - - -

figure

•34
•44 •45

•54 •55
.64 .65

l'
'

' '

' ' '
'

' '

•1
•2

•3
•4

•5

"0 l

445

Let E11 ={horizontal major paths}, E12={vertical major paths}
and E13={oblique major paths}. It can be seen that L1={ll,!2},
L2={¢} and L3={!3}.

Let SG be the connected subgraph shown in Figure 5.4 that is
obtained by removing all the edges that are labelled !3. For
porposes of clarity SG has been drawn without the source and
sink vertices. It can be easily verified that the program graph in
Figure 5.3 is in e. Now diagonalize SG with w=< 1,-1> to
form the set of main diagonals D. It can be verified that
D={D1,D2,D8,D4} is comprised of four diagonals where

0 1={v31'v 42'v 53'v 64}, D2={v21•v 32•v 43•v 54,v 65},
D3={vu,v22•Vaa•v 44.v55} and D4={v12•v23•V34.v 45}·

Next diagonalize SG with wc=<O,l> to form the set De of
complementary diagonals. It can be verified that
Dc={Dcl'Dc2,Dc3,Dc4,Dc5,Dc6} is comprised of six diagonals
where - Dc1={v11 ,v 12}, Dc2={v21'v2vv23},

Dc3={v31'v a2•V33,V34}, Dc4={v 42'v 43.v H•v 45},
Dc5={v 53,v 54,v 55} and Dc6={v 64 ,v 65}.

In Figure 5.4 all the computation vertices belonging to the
same diagonal in D lie on the same dashed line. Similarly all the
computation vertices belonging to the same diagonal in De lie on
one horizontal major path.

Now S0 ={a1l'a12}, S0 c={b11 ,b12} and m11 =1, m12=-1, c11=0

and c12=1. It can be seen that this graph satisfies Theorem 5.2.

Next, using the construction in Theorem 5.2 we synthesize the
linear-array algorithm in [4]. !D\=4 and hence the linear array
bas 4 processors indexed from 1 to 4. m11~0 and m12~0 and
hence use single-phase clocking. Each processor is comprised of 3
pairs of input/output ports labelled ll, !2 and !3 respectively.
The neighborhood relation p13 is empty.

Let si:, sir and si~ denote the inputs at the input ports labelled

ll, !2 and !3 respectively of processor s at time t and let so:' sor

and so: denote the outputs computed by s at time t. Then

so:=si:+sirsi~, sor=sir and so~~si~.

The computation vertices in D1,D2,D3 and D4 are mapped onto
processors 1,2,3 and 4 respectively. From the construction of
Theorem 5.2, we obtain n11=1,n12=-1,d11 =1 and d12=1. The
resulting mapped graph is shown in Figure 5.5. The time at
which a computation vertex is mapped is indicated by the side of
the vertex in Figure 5.5. For instance, the computation vertex on
D3 and Dc2 is mapped at time t+2. For correctness of execution
we must ensure the invariance of the two input values ih1 and ih2
at their consumption and entry times and the invariance of the
two output values oh5 and oh6 at their exit and production
times. The consumption times for ih1 and ih2 are t and t+l
respectively. Table 5.1 gives the times at which ih1 appears at
the input port labelled l1 of processors 1 and 2 and ih2 appears at
the input port labelled l1 of processor 1. Any element pumped
into 111 or 112 travels at the rate of 1 processor/cycle as
l/d11 =1/d1 =1. Consider some row or Table 5.1, say 2. The
entry in column 1 indicates that ih2 appears at the input port
labelled l1 or processor 1 at time t. Now tP1 is such that for any
b, 11'1 <a,b,O>=a+bO=a and hence by pumping 0 into the input
port labelled !3 of processor 1 at t invariance of ih2 at its entry
and consumption time can be maintained. Similarly by pumping
0 into the input ports labelled 13 or processor l at t-2 and
processor 2 at t-1 invariance of ih1 at its entry and consumption
times can be maintained.

oc, - -· - --

Figure 5.5

o I
4

The production times for oh5 and oh6 are t+9 and t+ 10

respectively. Table 5.2 gives the times at which oh5 appears at

the input port labelled ll or processor 4 and oh4 appears at the
input ports labelled l1 of processors 3 and 4. The entries in
Table 5.2 aw interpreted in the same way as the entries in Table
5.1. From Table 5.2 it is seen that by pumping 0 into the input
port labelled 13 of processor 3 at t+ 10 and processor 4 at t+9
and t+ 11 invariance of oh5 and oh6 at their production and exit
times can be maintained.

Lastly, as '1'2<a,b,c>=b for any a and any c, the input value
iv 1 and output value ov 1 do not change as they travel through
processors in the array.

Table 5-1

Table 5.2

446

Example 5.2:
follows:

Consider the convolution problem defined as

Given the sequence of weights {w1, w2' .. , wk} and the input
sequence {x1, x2, .. , xn} compute the output sequence {Yp y2, .. ,

k
Yn+l-k} defined by yi= .E wJ.xi+j-t·

J=l
We illustrate the convolution problem on n=5 and k=3. The

computation of the convolution problem for n=5 and k=3 is
represented by the following program graph:

In Figure 5.6, Vi and Vj l1:5i,j:53, vij represents a computation
vertex. The horizontal, vertical and oblique edges are labelled ll,
12 and 13 respectively.

Figure 5.5

Let t/f denote the function represented by any computation vertex
in Figure 5.6. 11' is a 3-ary function such that for any a, b and c,
ll'<a,b,c>=<a+bc,b,c>. Let t/11, t/12, t/13 be the three
projections of t/f, i.e., t/11<a,b,c>=a+bc, '1'2<a,b,c>=b and
tJi3<a,b,c>=c. If a, b and c are the input values represented by
the horizontal, vertical and oblique input edges of v ij then the
output values represented by the outgoing horozontal, vertical
and oblique edges of vij are t/11<a,b,c>, tJi2<a,b,c> and
tJi3<a,b,c> respectively. Vp I 1:5p:55, Vq I 1:5q:53 and
Vr I 1:5r:53, let the input values represented by isp, ivq and ihr
be xp, w q and 0 respectively. It can then be verified that the

3
output values represented by ohr is E wqxr+q-I·

q=l
Let E11 ={horizontal major paths}, E12={vertical major paths}

and E13={oblique major paths}. It can be seen that

L1={11,12,13}, L2={</>} and L3={</>}.

Let SG be the connected subgraph shown in Figure 5.7 that is
obtained by removing all the edges t.hat are labelled 13. It can be
seen that the program graph in Figure 5.6 is in 9.

Now diagonalize SG with w=<l,O> to form the set D of main
diagonals. It can be verified that D={D1,D2,D3} is comprised of
three diagonals where D1={v1l'v21 ,v31 }, D2={v12,v22,v32} and

Da={v 1a•V23•v 33}·

Next diagonalize SG with wc=<O,l> to form the set De of
complementary diagonals. It can be verified that

Dc={Dc1,Dc2,Dc3 } is also comprised of three diagonals where

Dc,={v ll'v 12'v 13}, Dc2={v21•V22•V23}, Dc3={v 31'v 32•v 33}·

In Figure 5. 7 all the computation vertices belonging to a single
diagonal in D lie on the eame vertical major path. Similarly, all
the vertices belonging to a single diagonal in De lie on the same
horizontal major path.

Oc2 • • • -----------------+ . _
v~ ~2 ~3

DC3··~~-----4~-------+-·
IV31 ,v32 :V33
I

Now S0 ={ a11 ,a12,a13},

m13=·l, Cu=O, C12=l
Theorem 5.2 is satisfied.

Figure 5.7

s0.={b11 ,b12,b13} and m11=1, m12=0,
and c13=1. It can be verified that

We next synthesize the linear-array algorithm in 161. IDl=3 and
hence the linear array has 3 processors indexed from 1 to 3.
m12=0 and there exist transitive edges labelled 12. Hence use
two-phase clocking. Each processor is comprised of 3 pairs of
input/output ports labelled ll,12 and 13 respectively.

Let sit, si~ and si: denote the inputs at the input ports labelled

ll, 12 and 13 respectively of processor s at time t and let so:, so~

and so: denote the outputs computed by s at time t. Then,

so:=si:+sirxsi:, so~=sir and so:=si:.

Using the construction in Theorem 5.2, we obtain n11=-l,
n12=0 and n13=1. We also obtain d11=1, d12=2 and d13=1. The
computation vertices in D1, D2 and D3 are mapped onto
processors 1,2 and 3 respectively. The resulting mapped graph is
shown in Figure 5.8.

01:

2
~ rr--L_:;:__j-j--1t3

1!.:e1 f2 label (3
Figure 5·8

Lastly, we must some semantic properties of ti' for correctness of
execution. 1#'2 and 1#'3 are such that for any a,b and c,
t1'2<a,b,c>==b and tl'3<a,b,c>=c. Hence, the input/output
value represented by the source/sink vertices of any vertical or
oblique major paths does not change as it travels through
processors in the linear array. In Figure 5.8 it is seen that the
entry and consumJ>tion (production and exit) times for every
input (output) value represented by every horizontal source (sink)
vertex are the same.

Let t8 be the time when the computation begins. Clearly t8$t.

447

Since n12=0 a register in each processor serves as the
input/output port labelled 12. Let r1, r2 and r3 denote such a
register in processors 1, 2 and 3 respectively. Then the input
values or iv1, iv2 and iv3 which are wl' w2 and w3 respectively
are preloaded into r 1, r 2 and r 3 respectively before t8 •

II. Conclualona

We presented a formal model of linear arrays, and
introduced homogeneous graphs which are a natural
representation or programs potentially executable on such arrays.
For a large class or homogeneous graphs, a set of necessary and
sufficient conditions on the structure of such graphs for the
existence of a s ntacticall correct ma in were established.
We then used our c aracterization to derive a systematic method
for synthesizing algorithms for a class of program graphs. In 18,
11 I extensions to the class or graphs examined in this paper can
be found.

References

Ill L.J. Guibas, and F.M. Liang, •Systolic Stacks, Queues and
Counters,• Proc. MIT Conf. on Advanced Research in
Yb§!, (January, 1982), pp. 155-164. --- -

121 L. Johnsson, and D. Cohen, "A Mathematical Approach to
Modelling the Flow of Data and Control in Computational
Networks,' VLSI Systems and Computations, H.T. Kung,
R.F. Sproull, and G.L. Steele, Jr., (editors), Computer
Science Press, (1981), pp. 213-225.

131 H.T. Kung, "Let's Design Algorithms for VLSI Systems,•
E!.2s ~ 2!!!!.!: !?!!. Very Large ~ Integration:
Architecture, Design, Fabrication, (January, 1979), pp.
65-90.

141 H.T. Kung, and C.E. Leiserson, •Systolic Arrays (for
VLSI),• Sparse Matrix Proceedings 1978, l.S. Duff, and
G.W. Stewart, (editors), SIAM, (1979), pp. 256-282.

151 S.Y. Kung, "VLSI Array Processor for Signal Processing,•
Proc. MIT Conf. !?!!. Advanced Research !!!. Integrated
Circuits, (January, 1980).

161 H.T. Kung, •Why Systolic Architectures,• IEEE Computer
.!M!), (January, 1982), pp. 37-46.

171 C. Mead, and L. Conway, Introduction ~ Yb§! Systems,
Addison-Wesley, (1980). •

l8J 1.V. Ramakrishnan, "A Theory of Mapping Program
Graphs onto Linear Arrays,• PhD Thesis, University of
Texas at Austin, (May, 1983). -- ---

l9J I.V. Ramakrishnan, D.S. Fussell, and A. Silberschatz,
•Systolic Matrix Multiplication on a Linear Array,•
Twentieth Annual Allerton Cont. !?!!. Computing, ~
and Communication, (October, 1982).

llOl I.V. Ramakrishnan, Mapping homogeneous Graphs onto
~ Arrays, Department of Computer Sciences,
University of Texas at Austin, TR-232, (April, 1983).

1111 I.V. Ramakrishnan, D.S. Fussell, and A. Silberschatz, •on
Mapping Cube Graphs onto Linear Systolic Arrays,•
Seventeenth Annual Coor. on Information Sciences and
Systems, The Johns Hopkins University, (March, 1983). -

1121 U. Weiser, and A. Davis, "A Wavefront Notation Tool for
VLSI Array Design,• VLSI Systems and Computations,
H.T. Kung, R.F. Sproull, and G.L. Steele, Jr., (editors),
Computer Science Press, (1981), pp. 226-234.

Unifying VLSI Array Designs with Geometric Transformations

Peter R. Ca.ppello t a:nd Kenneth Steiglitz*

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N. J. 08544

ABSTRACT
A geometric representation of array computations is
presented. Well known "systolic" designs for computing
polynomial product are related to one another by affine
transformations of a three-dimensional vector space.
Much previous work on convolver designs is unified thus.
Designs for linear transform and matrix product are
unified similarly. New designs are geometrically derived
for these computations that are asymptotically optimal
under the VLSI complexity measure a.rea xperiod2, an
appropriate measure for high throughput applications.

1. Introduction
There has been considerable research recently into
array designs (see [Kung82] for a sampling of this
work). Leiserson and Saxe [LeSaBl] provide a general
methodology for eliminating broadcasting from a syn
chronous circuit without changing its communication
structure. Johnsson and Cohen [JoCo81] and Weiser and
Davis [WeDaBl],[JWCDBl] investigate ways of formally
representing computational designs. Their respective
goals are similar: To be able to formally synthesize and
analyze computational designs taking into account
important design properties, such as correctness, area,
time, communication topology, and the presence or
absence of broadcasting/pipelining. Their strategies,
which are also similar, center around the explicit
representation of time in arithmetic expressions via a
dela.y operator.

In this paper we present a geometric representation of
array designs. Our goals are similar in spirit to those of
Johnsson, Cohen, Weiser, and Davis. We seek a unified
framework in which to represent array designs so that
different array designs for the same computation are
related in a formal way. Where they use a delay opera
tor, we use an affine transformation. Since affine
transformations are closed under composition (and in
fact form a group), a single affine transformation can
describe intuitively simple space/time rearrangements
that may be difficult to describe as succinctly with
other notations. A good representation, moreover,
enhances a designer's intuition, and the geometric
representation presented here may be helpful in this
respect, too. It is easy to "see" for example how to
transform an array design that uses broadcasting into
one that does not.

Throughout this paper we use the terms bit I word and
seria.l/pa:ra.llel, la.tency, cycle tU-ne, period, and
completely-pipeli:ned as defined in [CaStB3]. The
model of computation used in this paper is the synchro
nous model of VLSI [Thom80, BrKu81, BPP81]. We deal
with classes of functions and circuits that are
parameterized by a vector, 1T. For example, when we
consider the linear transformation of a vector of
1.enf1th K, and word.size B, the parameter vector is
1T = (K, B). Asymptotic ·complexity will be measured

t Peter R. Cappello is now with the Department of Computer Science,
University of California, Santa Barbara, CA 93106.
* This work was supported in part by the National Science Foundation
under Grant ECS-7l'JJ6292, and in part by the U.S. Army Research
01fice, Durham, NC, under Grant DAAG29-79-C-0024.

0190-3918/83/0000/0448$01.00 © 1983 IEEE 448

with respect to a parameter vector, 1T, throughout this
paper.
The remainder of the paper is organized as follows. In
section 2 we introduce and apply the geometric
representation to the problem of linear transform. In
section 3 and 4, we apply it to convolution and matrix
product. We finish with a discussion of other applica
tions and some conclusions. The full version of this
paper is [CaStB3f].

2. Ii.near Transform
In this section we introduce a geometric representation
of array designs by way of example. Consider the com
putation of linear transform: y <- A·x. It can be written
as follows: y, <- I;a.1 ·xi

i '
To make the example more concrete we write out these
expressions for a 3 x 3 matrix.

Yi <- a.11·X1 + a.12·X2 + a.13·X3

Y2 <- a.21·X1 + a.22·.x2 + a.2a·xa

Ya <- aa1·x1 + a.a2·x2 + a.aa·xa

(2.1)

We may think of the above set of expressions as consti
tuting an a.lgorithm for transforming x into y. That is,
the expressions indicate that each output y, can be
obtained by computing certain specified products and
adding them together. Considerable freedom remains
as to how this algorithm can be implemented. For
example, the above notation does not dictate a particu
lar association for the additions; any will do. The follow
ing recurrence relation fixes a particular association:

Yio = 0 (2.2)

Y>i <- Yii-1 + Cl;.j'X;;

Yi = Ytn

where n is the size of the vector x.
Now, to make this algorithm more specific, we adjoin an
index representing time toy:

Yi;t <- Yi 1-1 t + ~i ·x; , fort =0. (2.3)

We take time to be discrete, and measure it in cycles"t-.
In our example, we set this time index, t, to zero. Thus
as presently formulated, this whole computation occurs
in one cycle: cycle 0 . (The mea:ni:ng of this time index is
further explained shortly.) The algorithm is not yet
completely specified; we have not indicated a particular
method for performing addition and multiplication. One
must have some primitive notions.
Definition: A computation is prU-nitive if it is assumed
that it can be done in constant area and with constant
latency. We leave unspecified the algorithm for carry
ing out a prU-nitive computation.
In order to give this recurrence relation a geometric
interpretation we take the symbol "<-" to represent the
location of its prim.it"i:ue compu.ta.tion.

* This notion of time does not exclude asynchronous array computa-
tions, however. '

Definition: The prim.itwe computation represented by
<- is what occurs on its right-hand side.

In this case the computation is an inner-product-step.
Definition: The location represented by <- is the index
values of the left-hand side interpreted as coordinates.
Figure 2.a, illustrates the example. To properly inter
pret the figures please note that the meaning of a
recurrence relation is unaffected by adding a constant
to all occurrences of an index (e.g., Y;,; <- Y;.;-1
represents the same computation as Y;.-1;-1 <- Y;.-1;-2).
Equivalently, in the geometric representation a compu
tation is unaffected by translation. The reader is cau
tioned that axes in the figures are intended merely to
associate dimensions with indices: For ease of viewing,
the geometric representations are translated to the
nonnegative orthant. Figure 2.a is interpreted as fol
lows. At location (1, 1,0) the computation
Yuo <- Y100 + a 11 ·x1 occurs. This means that the value
of x 1 and a 11 must "be" at location (1,1,0) (i.e., at spa
tial coordinates (1,1) at time coordinate 0). The solid
lines indicate the path of a particular value of x. We
refer to them as x-value contours. The dashed lines
represent summation paths. They denote a particular
addition association. These lines, or contours, are

· intended to make interpretation of the figures more
intuitive. Movement of data, both input data distribu
tion and output accumulation paths, also can be deter
mined unambiguously from the recurrences themselves
by using an ordering rule. In this paper the ordering
rule is simply the lexicographic order of the spatial
indices within time. So for example, if an output value
is accumulated at more than one location with the same
time index value, then it is accumulated at these loca
tions according to the lexicographic order of their spa
tial coordinates. We will call Eq. 2.3 the canonical
design of the algorithm denoted by Eq. 2.2, and denote
its geometrical representation by r. This representa
tion of the computation illustrates an important aspect
of time as we represent it. If two computations, c;.;1 and
c4Js are located at distinct points in time, (i.e., t < s),
then c occurs before d. Again however, if t =s, then c
and d take place during the same cycle, but not neces
sarily "simultaneously." In fact, we have no notion of
"simultaneity" in our interpretation of time.
Interpreting Figure 2.a we see that the computation
occurs in nine distinct locations in space, and at one
location in time.

Definition: When input information is at distinct loca
tions in space while at the same location in time, we say
it is broadcast to those locations. (Again, no notion of
simultaneity is implied.)

Together, a geometric representation and an ordering
rule indicate what data moves, where it moves to, and
when it moves. The number of physically distinct com
putational elements is simply the number of computa
tional locations whose spatial coordinates are distinct.
The topology of these elements emerges as well when we
project out the time dimension. Thus the geometric
representation associates a particular schedule of com
putation (an algorithm) with a particular network of
computational elements. We speak of the association of
an algorithm with a computational structure as a
dssi1]n. In what follows we apply various geometric
transformations to the canonical design. The transfor
mations, then, relate distinct designs in a formal way.
THE KUNG AND LEISERSON DESIGN
The canonical design is not well suited to implementa
tion because the nine processing elements of the array
are idle most of the time. Leiserson and Kung [LeKuBO]

449

present an array design for linear transfer~ that is
better. Their design, denoted A. is illustrated m Figure
2.b. The communication structure is simply a linearly
connected array of processors. Each processor per
forms an inner-product-step computation. Briefiy, the
design works as follows. X values move to the right
through the array, while output values are accumulated
as they move to the left. The transform coefficients
move down through the array as indicated by Figure
2.b. More detail is given in [LeKuBO].
We now represent this design geometrically by obtaining
it from transformations on the canorucal design. We
first apply R,a rotation-like transformation. We_ then
"interchange" a space dimension with the time dimen
sion. That is, we select a dimension that represents
space and interpret it as time. Since there can be only
one time dimension, we must now interpret the old one
as space. A permutation transformation, T is used to
effect this semantic interchange t. The result is
depicted in Figure 2.c. It is a geometric representation
of the Leiserson and Kung design. To see this, one
needs to interpret the representation. Since we inter
changed one of the two space dimensions with the time
dimension, the resulting design has only one
non -trivial spatial dimension: (Recall that the initial
time coordinates values of the computation were all 0.
Those coordinate values now represent a spatial dimen
sion. That spatial dimension is unused: it is trivial.) Thus
the communication structure is a linearly-connected
array. The x values move right in space over time, the
outputs move left in space over time, as m the Le1serson
and Kung design. The transform coefficients, x values,
and y values move through the linear array with the
same schedule as the Leiserson and Kung design. We

::e ;er~~~ the::~:~; :o[~m~1 rgplre::ta~i:n[gf ?: 61
' 001 100

Notice that A uses 2n-1 cycles and 2n-1 inner
product-step processing elements. We now present a
new linear transform design that uses 2n-1 cycles but
uses only n inner-product-step processing elements. It
is illustrated in Figure 2.d. We first apply a transforma
tion, S, which skews the canonical representation, r.
The time-space interchange transformation, T, is then
applied as before. We interpret the result as follow_s.
Due to the time-space interchange the array ag~m
extends in only one dimension in space. But now its
image in space is a linearly-connected array of n pro
cessing elements, not 2n-1. X vectors, whose com
ponents are skewed in time, are piped through the
array while the transformed vector's components_ are
accumulated in distinct processors, also over time.
There is no fill-up and drainage period with this design:
New x-vectors and transform coefficients can follow on
the "heels" of the preceding ones. The design, denoted
by +. is related to the canonical design by the transfor
mations T and S:

+ = T · S (f) , where S = f 6 i 8] la o 1

This formal derivation of a new design illustrates the
utility of the geometric transform approach. Both
designs A and + have period O(n), (i.e .. are not
completely-pipelined). We next descnbe a new design
that has period 0(1) (i.e., is completely-p1pelmed).

t This is an emmple of what Johnsson and Cohen refer to as "mapping
space into time." In this geometric representation data control infor
mation is implicit.

Furthermore, it is asymptotically optimal with respect
to the complexity measure AP2.

AN AREA x PERIOD 2 OPTIMAL DESIGN

Period rather than latency (delay) is a good measure in
applications where high throughput (rather than short

latency) is of interest. Before presenting our AF2
optimal design, a few terms and facts are noted. With
these we argue that linear transform is computationally
a more interesting problem when the transform is
/i:r:ed so that the input size of the problem is n (words},
rather than n ·n (words} where the transform is multi
plication by an nxn matrix.
Vuillemin has shown [VuilBD] that 1) linear transform,
convolution, and matrix product are transitive func
tions, and 2) any circuit computing a transitive function
at data rate D must have wire area A..,;;;,, a.,,,.D2 • for
some technology-dependent constant a.,,,.
Vuillemin's lower bound for linear transform is not valid
for every linear transform. The Identity transform, for
example, clearly requires wire area only linear in the
data rate. The bound, however, is an existence bound:
It says there exist some linear transforms whose area is
O(D2). Many important transformations such as the
Discrete Fourier Transform (DFT), however, are among
those for which the quadratic bound holds [VuilBO]. We
note that since the period P=n/ D where n is the
number of input bits and D is the rate at which they are
read in, we have that for transitive functions (such as
the DFT} AP2(n) = O(n2).

We now explain how the AP2 complexity of linear
transform can be dominated by 1/0.

Definition: The aspect ratio, a, of a layout is WI L
where W and L are its width and length, respectively.

Most families of structures, such as complete binary
trees, have a set of parameters (e.g., the number of
leaves in the tree} that characterize any member of the
family. A layout for a family of structures can in gen
eral have its length, width, and hence aspect ratio be a
function of those parameters. Layouts that do not have
constant aspect ratios are often considered undesirable
because they result in layouts that are long and thin as
n gets large. Lipton and Sedgewick [LiSeBl] prove
(where T denotes latency) that AT2(n) = O(n2) for con
stant aspect ratio layouts whose n inputs are con
strained to be at the boundary of the layout. We gen
eralize this result with the following.

Theorem: Let C be a circuit that computes/ (n) with
period P. Let L be a constant aspect ratio layout of C
with area A and perimeter p . The portion of L's perim
eter used for input ports is denoted by Pb. L, moreover,
may have 0(1) convex input ports in its interior. These
interior ports may accommodate more than 0(1) input
bits per unit time: the area of an interior port may be
more than 0(1). Then AP2(n) = O(n 2). (See [CaSt83f]
for proof.)
This strengthens Lipton and Sedgewick's result because
the bound is retained even if a constant number of
(large) interior ports exist, and because P,.:;; T.

Thus when an nxn coefficient matrix is part of a
circuit's input, and the circuit has a constant aspect
ratio layout, then AP2(n2) = O(n4}. However when the
nxn coefficient matrix is fixed, there is a design that
has AP2 (n) = 9(n2) as we will now show. This design
achieves Vuillemin's lower bound and so is asymptoti
cally optimal. It also shows that the previous case is 110

450

bound: boundary placement of 1/0 pads dominate the
layout area.
We now describe a design that achieves the AP2 lower
bound for fixed linear transform. First the canonical
design is skewed as before. But now instead of inter
changing the (trivial) time dimension with a space
dimension, we pipeline this communication structure
(which is a two-dimensional mesh of processing ele
ments). A rotation-like transform, N, accomplishes this
(see Figure 2.e). We denote the resulting design by fl,
where

6. = N·S(f) . where N = [a ? 8]
1 0 0

As one can see from Figure 2.e, inputs are piped
through the mesh. Input vectors have their com
ponents skewed in the time dimension. Output vector
components are similarly skewed. For this design,
P = 0(1). Since the linear transform is fixed, we can
assume that the a.;,;'s are encoded into their proper
inner product step computation. (Again, the inner
product-step is taken as primitive. That this assump
tion is reasonable will become clearer when we give an
AP2 optimal convolution design in section 3; the inner
product-step can be viewed as a bit-level variant of con
volution.) The area is O(n 2). Thus AP~(n) = 0(n2),

which is asymptotically optimal. For designs r. A, and
-Ir, the coefficient matrix is part of the input: The input
is of size n 2 . By the aspect ratio theorem, f. A. and -Ir
have AP2 (n2) = O(n4). That is, these designs are dom
inated by pin-in. When the input matrix is fixed, these
designs are not optimal with respect to the measure
AP2.

3. Convolution
Consider the computation of convolution.

w,; <- L;xi · Yi-j (3.1)
j

This one operation can represent an FIR filter. a
Discrete Fourier Transform [RdGd75J, or (when " · "
is interpreted as a bit product and carry propagation is
included) multiplication. Also, Foster and Kung
[FoKuBO] have noted that convolution describes string
pattern matching when " · " is interpreted as strin.g
compare and"+" is interpreted as boolean and. For the
purposes of this paper Eq. 3.1 can represent any com
putation where X, Y, and W are (not necessarily dis
tinct) sets, "'is a map from XxY to W, and (W, +)is a
monoid (Le .. an associative binary composition with
identity). In this section we apply our geometric
representation to this computation.
In a recent article H. T. Kung [Kung82] enumerated
seven known designs for convolution. We relate six of
them to one another by geometric transforms. In this
way we unify much of the work on convolution designs.
Then we transform these to new AP2 asymptotically
optimal designs. First we establish a geometric
representation of this computation. It is very similar to
linear transform. Writing out an example convolution
for x and y signals of length three, we obtain:

Wo <- Xo·Yo

W1 <- Xo·Y1 + X1·Ya

W2 <-- xa·y2 + X1·Y1 + X2·Ya

W3 <-- XJ'Y2 + X2·Y1

W4 <- X2·Y2

(3.2)

We reformulate these using a recurrence relation:

w,o = 0 (3.3)

W;j "''Wi;-1 + X;'Yi-j;

W;n = W;

where n is the signal size. We let "<-" represent an
inner-product-step computation located in space and
time as before. To do this we again adjoin a time coordi
nate (see Figure 3.a):

W;.;1 'Wi;-11 + x;·Y•-;; , for t=O (3.4)

We take this to be the canonical design of the algorithm
expressed by Eq 3.3, and denote its geometric represen
tation by r as before. We now proceed to derive some
known designs by geometrically transforming r to them.
Table 3.a summarizes the seven designs that H. T. Kung
noted in his article. Figure 3.b illustrates design Bl in a
conventional way. Bl is a design especially close to the
canonical design. By applying the time-space inter
change transformation T to r, Bl is derived (illustrated
in Figure 3.c): B 1 = T(r) We interpret that figure as fol
lows. The same x value appears at processors that are
spatially but not temporally distinct: x values are
broad.cast to their processors. Similarly, y values
(weights) appear at processors that are temporally but
not spatially distinct: y values "stay". And w values
(results) appear at processors that are distinct in both
space and time: they "move".

Name
Bl
B2
F

Rl
R2

Wl
W2

Move
Stay
Fan-in
Stay
Stay

Wei hts
Broadcast Stay
Broadcast Move
Move Stay
Move in opposite directions
Move in same direction
at diflerent speeds

Move in opposite directions Stay
Move is same direction Stay
at diflerent speeds

Table 3.a Convolution designs enumerated in [Kung82].

We summarize the other derivations in Table 3.b. The
transforms used are as follows (T, R, and N are as
already defined).

fl 0 OJ
S1 = 11 1 0 '

[O 0 1

Ss J6 ~ 8J, la o 1

f2 1 OJ S2=11 1 0 ,
0 0 1

~2 1 OJ S 4 = 0 1 0 ,
0 0 1

Name Transform from r
AP2 optimal
counter art

Bl
B2
Rl
R2
Wl
W2

T
T·S1
T·R
T·S2
T·S4
T·S3

N
N·S1

N·R
N·S2
N·S4

N·S3

Table 3.b Geometric design definitions for the word
serial convolvers and their word-parallel AP2 optimal
counterparts

451

Figure 3.c illustrates the geometrical representations of
the six designs. The reader is invited to compare
interpretations of the geometric representations with
the verbal ones in Table 3.a. Design F is not related to
the others because "fan-in" is usually implemented with
an add tree and the addition association of such a tree
is diflerent from that indicated by Eq. 3.3.
Nonetheless, this algorithm does admit other designs.
We now present some AP2 asymptotically optimal
designs. Like their word-serial counterparts, these
designs have different data movement characteristics.
Such qualities are important in practice; a design (for,
say, integer multiplication) may have data movement
constraints deriving from the larger application in
which it is embedded. For each of the six designs we
have described geometrically, there is a corresponding
AP2 optimal design. As in Lmea:r transform, we
transform the these six convolution designs to AP2
optimal designs by pipelining them. In fact, the same
transform is used. We replace the T transform in Table
3. b with the N transform. Consider design R2, for
example. Its AP2 optimal counterpart is illustrated in
Figure 3.d. Spatially it is a hex-connected mesh of pro
cessors. X signal components, skewed in time, move
along their contours (the solid lines), y signal com
ponents, skewed in time, move along their contours (the
dashed lines), while output signal components are accu
mulated along the dotted lines. An input and output sig
nal can be accepted every cycle of the processor assem
bla~e. Thus the period is 0(1), the area is O(n2), and
APE(n) = O(n2). As in Section 2, Vuillemin [VuilBO]
shows that convolution is a transitive function:
A(n) = O(D2). Thus AP2(n) = D(n2), and these new
designs are asymptotically optimal. The word-serial
designs displayed in the left column of Table 3.b all have
P(n) = O(n) and A(n) = O(n): none are AP2 optimal.
Finally, we note that all the designs presented have
AP(n) = O(n2). Put another way, designs implementing
the same algorithm all have the same switchmg energy,
E""' (see [MeCoBO] for a definition of this quantity); this
energy is just distributed differently in space and time.
Clearly, one-to-one transformations (such as affine
transformations) conserve Esw·

4. Matrix product
In this section we examine the matrix product computa
tion. After placing it in a geometric setting, we proceed
to derive and relate the band matrix product designs of
Leiserson and Kung [MeCoBO] and Weiser and Davis
[WeDaBl]. Finally we present an AP2 asymptotically
optimal design for computing matrix product.
Given two matrices A and B, we can denote their pro
duct C <-A · B. A more algorithmic description of
matrix product is

c;,; <- ~a.;.i, ·bi.;, for l'5,i,j,k'5,n (4.1) ,.
where A, B, and Caren x n matrices. We have written
Eq. 4. 1 for n = 2:

cu<- a.11 ·bu+ a.12 · b21

c 12 ... a.11 ' b 12 + a.12 . b22

C21 <- U.21 ' b 11 + a.22 ' b21

C22 <- a.21 ' b 12 + a.22 ' b22

(4.2)

Again we reformulate using a recurrence relation:

C;,;o = 0 (4.3)

cijk +- c, i 1:-t + !J.;.t · b1;; ;

C;,; = C;,;n

In order to let "<-" represent an inner-product-step
computation located in space and time we adjoin a
fourth coordinate, time (see Figure 4.a):

Cijit:t +- C\jl:-lt + r:1.;i; • bk:j; (4.4)

We again call this the canonical design of the algorithm
expressed by Eq. 4.3, and denote its geometric
representation by r.
Band matrix product, an important special case of
matrix product, is illustrated conventionally by the
matrix expression in Figure 4.b whereas Figure 4.c illus
trates a geometric representation of the computation.

fan a12 0 [tb 11 b 12 0
C = [a21 a22 a23 b21 b22 b23

0 as2 a3s 0 bs2 b35

Figure 4.b Band matrix product

Figure 4.d displays a summary (and conventional
representation) of the systolic design to do this compu
tation that was devised by Leiserson and Kung. The
reference [MeCoBO] provides more detail. Their design,
which we denote by A, is based on the same algorithm as
the canonical design: Eq. 4.3. We now present a
geometric representation of the Leiserson and Kung
design. To obtain it one can take the staircase-like
structure of the canonical design and situate it verti
cally using two rotation-(like) transforms. The A design,
illustrated in Figure 4.e, emerges when the vertical
space dimension is interchanged with the (previously
unshown) time dimension (i.e., interpret the vertical
dimension as time). The reader is invited to verify this
informally The K matrix is a transformation that com
bines the three transformations just described:

r 1 a -1 1]
A = K(r) , where K = l~l g 6 i

1 1 0 0

In A. approximately one third of the processing ele
ments are active on any given cycle. Weiser and Davis
present [WeDaBl] a design that improves A in this
respect. Their design, which we denote by v, is dep
icted conventionally in Figure 4.f. Like A., it uses a hex
connected array. In -Ir, however, the A band matrix
ftows through a row at a time, and the B band matrix, a
column at a time, producing the C product band matrix
a column at a time. (There is, of course, a dual design
producing a row at a time.) -Ir, obtained from r by an
affine transformation, is: '1t = D(r) where D is defined
as follows:

1 -1 o al
D = ~1 g ~ 6

1 -1 1 0

In v, all processing elements are working every cycle.
Its throughput rate is three times that of A..

A:s in convolution, other designs are possible. For exam
ple, Preparata and Vuillemin [PrVuBO] present a matrix
product design that is AP2 asymptotically optimal; r, A.,
and '1t are riot. It is a recursive design: matrix product
is computed by summing sub-matrix products. We now
present a new matrix product design that is also AP2
asymptotically optimal. The idea is to take the spatial

452

restriction of r, the three-dimensional mesh, and pro
ject it onto two dimensions so that each processing ele
ment has a unique image. (This. transformation is not
affine and not one-to-one.) We skew this intermediate
design in order to obtain a pipelined design (i.e., elim
inate input broadcasting and skew output accumulation
in time}. The resulting design, denoted by b. is illus
trated geometrically in Figure 4.g.

b. = T(r) , where T = i2ng-l ~ i 8]
1 n 1 0

It has period 0(1) because it is pipelined and has area
O(n4). Thus APl(n2) = O(n4}, which matches its lower
bound. As before, the lower bound derives from the fact
that it is a transitive function (see section 2 and
[YuilBO]).
It perhaps is worth noting that the projection of the
three-dimensional mesh onto a two-dimensional space,
resulting in some O(n) wire lengths, is necessary
because VLSI is presently a two-dimensional medium.
In three-dimensional VLSl, the three-dimensional mesh
skewed in time produces a W 3 (n2) = O(n3) design.

5. Other applications
This technique can be applied to a wide variety of com
putations formulated as recurrence relations such as
the systolic designs given in [LeKuBO] for LU decomposi
tion and the solving of triangular linear systems. These
designs involve arrays of more than one kind of process
ing element. an important generalization. Geometric
representations can be applied in an even more general
setting, however. They are suited to represent any n
dimensional cellular automata [Burk70] in an n + 1-
dimensional space. A wealth of computation designs,
thus, can be explored using geometric transformations.
Indeed, viewed in this way it is easy to see that /or every
computable function f, there is, in fact, a completely
pipelined (P1 = 0(1)) hexagonally-{:onnected cellular
a:utomaton (i.e., a cell simple, systolic structure) that
computes f. (See [CaStB3f] for details.)

6. Conclusions
We have presented a technique for placing array designs
in a geometric framework and we have used this formal
framework to relate different array designs. New
designs were given for the functions discussed, and
these too were related to other designs by transforma~
tions. Design properties such as broadcasting and pipe
lining can be formally defined and their presence or
absence in a particular design can be ascertained
readily. A design's communication topology can be dis
closed likewise by projecting out the time dimension of
the representation.
Algorithms are traditionally designed for a random
access machine (RAM). VLSI has precipitated a general
ization of the algorithm designer's task: a particular
algorithm may be implemented via a wealth of different
communication structures, each with different proper
ties. In the context of VLSI it has become necessary to
distinguish between an algorithm and an implementing
structure. We have used the noun design to designate a
coupling of a particular algorithm with a particular
communication structure. Recurrence relations such
as those discussed in this paper lead to highly regular
(array) designs and so are a convenient starting point
for a more general investigation. On the other hand, a
wide variety of functions can be formulated as such
recurrence relations, so this approach has merit in its
own right.

7. References
[BPP81]Bilardi, G., M. Pracchi, and F. P. Preparata, "A

Critique and an Appraisal of VLSI Models of Compu
tation," VLSI Systems and Computations, Edited by
H. T. Kung, Bob Sproull. and Guy Steele, Computer
Science Press, Rockville, Maryland, 1981.

[BrKu81]Brent, R P. and H. T. Kung, "The Area-Time
Complexity of Binary Multiplication," JACM Vol. 28
No. 3, July 1981.

[Burk70]Burks, A. W , Editor, Essays on Cellular Auto
mata. Univ. of Illinois Press, Urbana, IL, 1970.

[CaSt83]Cappello, P. R. and K. Steiglitz, "A VLSI Layout
for a Pipelined Dadda Multiplier," ACM Trans. on
Computer Systems, Vol. l, No. 2, May 1983, Pages
157-1?4.

[CaSt83f]Cappello, P. R and K. Steiglitz, "Unifying VLSI
Array Design with Geometric Transformations,"
University of California, Santa Barbara, Computer
Science Dept. Tech. Rept. Santa Barbara, CA
93106.

[FoKu80]Foster, M. J. and H. T. Kung, "Toward a Theory
of Systolic Algorithms for VLSI," (Abstract), Proc.
Advanced Research in Integrated Circuits,
M.l.T.,Cambridge, MA. Jan. 1980.

[JoCo81]Johnsson, L. and D. Cohen, "A Mathematical
Approach to Modeling the Flow of Data and Control
in Computational Networks," VI.SI Systems and
Computations, Edited by H. T. Kung, Bob Sproull,
and Guy Steele, Computer Science Press, Rockville,
Mary land, 1 981.

[JWCD81]Johnsson, L. U. Weiser, D. Cohen, and A. L.
Davis, "Towards a Formal Treatment of VLSI
Arrays," 2nd Caltech Conf. on VLSI, pp. 375-398,
1981.

L

J

J\gure 2.a Geometric representation of the canonical
linear transform design.

[Kung82]Kung, H. T., "Why Systolic Architectures,"
Carnegie-Mellon Univ., Dept. of Computer Science,
CMU-CS-81-148, Nov. 1981.

[LeKuBO]Leiserson, C. E. and H. T. Kung, "Algorithms for
VLSI Processor Arrays," as Section 8.3 of Introduc
tion to VLSI Systems, Carver Mead and Lynn Con
way, Addison-Wesley Publishing Co. Menlo Park, Ca.,
1980.

[LeSa81]Leiserson, C and J. Saxe, "Optimizing Synchro
nous Systems," Proc. 22nd Annual Symp. Founda
tions of Computer Science, IEEE Computer Society,
Oct. 1981.

[LiSe81]Lipton, R J. and R. Sedgewick, "Lower Bounds
for VLSI," Proc. 13th Annual Sym. on the Theory of
Computing, May, 1981.

[MeCo80]Mead, C. and Lynn Conway, Introd:uction to
VLSI Systems, Addison-Wesley Publishing Co. Menlo
Park, Ca. 1980.

[PrVu80]Preparata, F. and J. Vuillemin, "Area-Time
Optimal VLSI Networks for Parallel Matrix Multipli
cation," Proc. of the 1980 Conf. on Information
Science and Systems, Princeton, NJ, March 1980.

[RdGd75]Rabiner, Lawrence R and Bernard Gold,
Theory and application of digital signal processing,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

[Thom80]Thomson, C. D., "Area-Time Complexity for
VLSI," Proc. 11th Annual Sym. on the Theory of
Computing April, 1979.

[VuilBO]Vuillemin, J , "A Combinatorial Limit to the Com
puting Power of VLSI Circuits," Proc. IEEE 21st
Annual Symposium of Foundations of Computer
Science. Syracuse, N.Y., 1980.

[WeDa81]Weiser, U. and A. Davis, "A Wavefront Notation
Tool for VLSI Array Design," VLSI Systems and Com
putations, Edited by H. T. Kung, Bob Sproull, and
Guy Steele, Computer Science Press, Rockville,
Mary land, 1981.

453

!

Figure 2.b Conventional representation of the Leiserson
and Kung linear transform design.

.
~

1igure 2.c Geometric representation of the Leiserson
and Kung linear transform design .

.
j

Co_,~ 'f)

1igure 2.d Geometric representation of the design it.

:ftgure 2.e Geometric representation of an AP2 opt~al
design b.. Dotted lines trace a projection of computation
locations onto the i - time plane.

454

j

L:;~~: [__ _

. .

:Hgure 3.a Geometric representation of the canonical
convolution design. In all convolution figures, x con
tours are represented by solid lines, y contours are
represented by dashed lines, w accumulation paths are
represented by dotted lines.

:Hgure 3.b Conventional representation of design 81.

.
j

'

..
' '

'

Geometric representation of design 81.

/
/

/ Figure 3.c Geometric representations of the designs
enumerated by Kung.

/
/ . .

/ /

/ /

/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /

/

/
/

/
/

Geometric representation of design B2.

Geometric representation of design Rl.

Geometric representation of design Wl.

455

Geometric representation of design R2.

Geometric representation of design W2.

, ,
, 'A " ,

~>
, ,

Figure 3.d Geometric representation of design R2's AP2
optimal counterpart OR2. Dots below are the projection
of the computation onto the i - time plane.

~-

l

//
//

J

Geometric representation of A

matrix contours in the canonical
matrix product design.

l

·- - - - .

J

Geometric representation of B
matrix contours in the canonical
matrix product design.

J

Geometric representation of C
matrix accumulation in the canonical
matrix product design.

456

J

;

/- -7--:
~_._ __

: /--7: -
~- -- -

figure 4.a Geometric representation
of the canonical matrix product
design. Time, the fourth dimension, is
not shown in Figure 4.a.

Z--7----. .
- - - - --
- _: __

Z---7---. .
-- ----

2 - -- -

l

~ure 4.c Geometric representation of the band
matrix product of Figure 4.b. To obtain a geometric
representation of the Leiserson and Kung design 1)
rotate the canonical representation such that a line·
connecting computations labeled 1 and 5 would be
parallel to the k axis, and computations labeled 2, 3,
and 4 all would have the same k coordinate value; 2)
interchange the k and t dimensions (i.e., interpret the
k axis as time). See Figure 4.e.

...

. .,

. .•

~ 'A/ ' . ' .

~"/\' : / b,,
/' . . / .

/ . . /' .
/ . /' . . .

. / : /

/

c ..

c,, i
c,.

c,,

/
/

/

. '
/

c,.

c.,

•••

Figure 4.d Conventional representation of the Leiserson
and Kung design for band matrix product.

Figure 4.e Geometric representation of the Leiserson
and Kung design for band matrix product.

457

l

0

C\u. ~
I

~
I • I • I '
I • I • I "\,_

0 r:J---{}-D ~ c
>

Figure 4.f Conventional representation of the Weiser
and Davis design for band matrix product.

/---7--...
/_ ~-~- - - .

.· /--y.:--
;(_ ___ _

Figure 4.g Geometric representation of an AP2 optimal
matrix product design. Dots below are the projection of
the computatio~ onto the i-time plane.

Design of R:>bust Systolic Algori tlms <a)

Peter J. Vannan
Donald s. IN.ssell

'I\"e University of Texas at Austin
Austin, Texas 78712

1\bstract
A prnnary reason for the susceptibility of

systolic algorithns to faults is their strong
deperrlence on the interconnection bet111een the
processors in a systolic array. A te::hnique to
transfonn any linear systolic algorithn into an
equivalent pi pe1 inal algori thn that executes on
arbitrary trees is presented.

1. Introou::tion
In this paper 111e present an approach to

obtaini03 special-puqX>se systolic devices that
are robust in the face of produ::tion fla\\S [l).
Due to the close coupling bet111een ccmnunication
req.iirenents arrl the processor interconnection
in systolic algorithns [2], any alteration in
the interconnection will cause these algori thns
to fail. A techniql.E to transfonn the class of
linear systolic algorithns [3) into equivalent
pipelinal algorithns that execute efficiently on
an arbitrary tree of processors is describal.
Any connectal set of fault-free processors may
then be used to execute these redesigned
systolic algorithns.

2. canputation f'tdel
Let T be a rooted tree of (nt-1) vertices

arrl La finite set of labels. Constroct a graph
G to serve as· the tree ma:::hine as follov.s (Fig.
1) • Consider scme j (L arrl repla:::e each edge
in T by a pair of edges with label 'j' bet111een
the vertices joined by that edge. Repeat the
constroction for all lciPels belonging to
L. Consider the sub;Jraph GJ consisting of all
the v~tices in G arrl all algei;; labellal I j' •
I.et pJ be an Elller circuit in GJ with the root
as the initial. arrl final vertex on the circuit.
Traversal of pJ irrlu::es a direction on each erlge
in the path: an edge traversal fran vertex u to
vertex w is directed into w. Partition the 2n
alges in pJ into t...o equally-si:zsd sets of solid
arrl dotted edges as folloW>. For every vertex u
in G? except the root, exa:::tly one of the alges
of pJ that is directed into u is solid; the rest
of the edges are dottal. Irrlex toe vertex into
\\tlich the i th soiid erlge in pJ (ht) is directed
as v.; irrlex the root v0 • For every other label
k (1 L, the edges in the corresporrling Elller
circui~ pk are simi].arly partitionoo so that if
the it edge in pJ is a solid (dotted) ~
betv.een ~~ t...o vertices in G, then the i
ooge in pK is aloo a oolid (dott:el) alge bet111een
those vertices.

(a) This research was support:el in part by the
National S:ience Eburrlation urrler NSF Grant
lllmber M:S-8104017 an:1 by OOR Contract
N00014-80-k--0987

0190-3918/83/0000/0458$01.00 © 1983 IEEE 458

A to ken is a mi t of data that passes bet111een
vertices by traversal of the edges in G. F.ach
token has a label fran the label set L arrl a
token with label 'j' (calloo a j-token)
traverses only ooges with label 'j' in G. An
execution path for a token is an ordered
secpence of edges in G that the token traverses.
For notational comenience 111e shall often drop
the supers:ript on an ooge that irrlicates its
label, with the urrlerstarrling that a token of
the corresporrl ing label ...ould traverse that
edge. ~ consider the case when the execution
path for a token is the Ebler circuit P arrl
distinguish t...o ~ of execution paths based
on the direction in W:l.ich P is traversed. 1ln
execution path P is said to be of ~ if (hl'
h 2, ••• , %> is a sthsequence of P;
corresporrlingly, P is of~ if <h,.,, ••••• ,
h2 , h1l is a subsecpence of P. A token that
folloW> a type-1 (type-2) execution path will be
referral to as a type-1 (type-2) token. If a
token is available at sane vertex then it
traverses the next edge on its execution path
arrl becanes available at the vertex at the other
errl of the edge traversal. A token is correctly
available at vertex vi if it is available at vi
arrl either (1) if it is of type-1 then the last
edge traversal is the solid edge hi or (2) if it
is of type-2 then the next edge to be traversed
is the ool id alge hi.

A clock cycle is the basic time unit. Each
edge in G has a delay associatal with it, \\tlich
is the nunber of cycles required by a token to
traverse that edge. Thf:'l delay for all solid
edges of label 'j' is dhJ arrl all dottal edges
of label 'j' is dcJ. If 't' is the cycle at
\\tlich a j-token is available at sane vertex, it
is available at the vertex at the other errl of
the edge at cyde t+ahJ if the edge is solid, or
at cycle t+dcJ if the edge is dottel. All tokens
bEJJin their execution path at v0 at the start
time of the token. N:>te that tokens m01Te
continoously along the edges aoo are not delayed
at any vertex.

As illustration, consider the linear &:ray
sh:>Wl in Figure 2, where v 0 is the h:>st for the
array arrl vertices v1 to v 4 are proces.sors,
connected by the Euler circuit P. A token is
availcble at any vertex vi twice. dudng its
traversal of P. A type-1 token will be correctly
available at vi after traversing {hl' •• ,h;).
Similarly, P' is a type-2 execution path, am a
type-2 token 1'Duld be correctly available at vi
after traversal of the edges
(cl' • .,c4 ,h4 , •• ,hi+l). P arrl P' corresporrl

naturally to the tv.o v.ays of pip;!lining data
throlJ3h a linear array.

At e;ery cycle ea::::h vertex has a set of
tokens (one of each label) that are correctly
available at that vertex. A canputation by a
vertex consists of a transformation of the
values of the tokens as they pass throlJ3h the
vertex onto the next edge of their resp;!ctive
execution paths. '!he set of tokens 'Y.hich are
correctly available at a vertex at any cycle are
said to meet at that vertex.

OJ.r notion of correctness of a canJ?<ltation is
motivated by considering a:Jain the 1 inear array
of Fig. 2. I.et dh and de be the delays along the
solid arrl dotted edges respectively. Consider a
type-1 token that Starts fran the OOSt VO at
cycle 't'. It 110uld be correctly available (and
hence used for canputation) at vertex vi at
cycle t+dh*i. Whene;er the token is correctly
available at a vertex it meets other tokens
'Y.hich are also correctly available at that
vertex. 'Ihe simultaneous arrival of these
tokens at that vertex results in their values
being correctly updated. Q1 an arbitrary tree,
the execution paths v.ould be sane other
femlutation of solid and dotted edges. ve wish
to ensure that all tokens 'Y.hich meet at sane
vertex in the linear array alro meet at the same
vertex in an arbitrary tree.

3. O>nditions for O>rrect Execution
In this section we present the corrli tions

under v.hich the correctness criterion discussed
abwe can be met. There are tv.o cases to be
considered: (a) II.hen all tokens are of type-1
and (b) when sane tokens are of type-1 arrl the
others are of type-2. ('These correspond to the
notion of one arrl tv.o v.ay pipelining as in [3] .)
'Ihe condition for the first case is stated in
the following theorem.

Theorem 1: If tv.o type-1 tokens With labels 'j'
and 'k' resp;!ctively meet at vertex vi in a
1 inear array, then . they meet at vi in an
arbitrary tree iff dcJ = dck.

W:! illustrate the application of the
theorem by designing a robust version of
algorithn W2 in [J] for the convolution of tv.o
vectors.

Convolution Problem: Given a sequence of weights
(w1 ,w2, ••• ,Wi<) arrl an input sequence
(x1 ,x 2 , ••• ,xn) , canJ?<lte the ..jutput sequence
(Y11Y2,.••1Yn-k+1l II.here Yi = _1 ws * xi+s+l'
i=I, •• ,n-k+l. s- .
Solution: Consider k=5 and let the tree ma::::hrne
be G m Fig. 1. '!he weights wl' • .,w5 are
preloa:led into vertices v 1, .. ,v 5 respectively.
'lbkens of the input sequence are labelled 'x'
and tho re for the output sequence ' y' • All
tokens are t~l arrl the delays for the solid
erlges are db =l arrl dhY=2. '!he start time of
token x·, is 'i' and of token Yi is 'i-1'. 'Ihe
algoritfu above is just solution W2 put in the

459

notation of our mo:lel. 'lb ensure that this
algori thn Ofer ates correctly. on any a~bi trar*
tree in particular that of Fig. 1, requires de
= dcY, arrl we cooore the minimun p:issible delay
equal to 1. It can be verified that requirErl
pairs of inJ?<lt arrl output tokens meeet at. the
appropriate processors to canpute the desired
values of Yi.

In a linear array of si :ze k, if both errls of
the array are accessible, then the latency of
the pipeline is k*dhY. By traversing a closed
path arourrl the tree ba::::k to the oost' the
latency is increased to k* (dhi' + dcY) • However,
this is a constant irrespective of the tree arrl
the thro1l3hput is exa::::tly the same as that of a
linear systolic array.

The secorrl case to consider is that of two
way pip;!lining - i.e one token is of type-1 anj
the other is of type-2. In this case the
corrlition for correct canputation on arbitrary
trees requires that the delays along the dotted
edges be rero, which is impractical. However,
we can simulate the effect of tv.o \'ay pipelining
as follow:;. Firstly, constrain the nunbering of
vertices in the tree T so that it corresp:irrls to
that obtained by some depth-first traversal [4]
of T starting fran the root (Fig.3). Secorrlly
m<rl ify the type-1 execution path so that a
type-1 token now follows the soortest path
betl'.een v0 and the vertex vi , for all i=l, •• ~n.
This is accanplished by allowing multiple copies
of the token to be simultaneously present at
different vertices in the tree. When a token
becanes avail able at sane vertex, it is used for
canJ?<ltation by that vertex, arrl copies of it are
trananitted to all adjacent vertices in the
tree, except the vertex fran v.hich the token v.as
received. 'This mo:lified type-1 execution path
corresporrls to the token being broa:lcast fran
the root to e;ery vertex in the tree by a series
of local broa:lcast steps. Fig. 3 shoW3 a
mooified type-1 execution path; note that all
edges are s:>lio, arrl the delay alorg any edge in
the r:ath is dhl for a j-token. ~ now state the
corrlitions for correct execution of a tv.o \'ay
pip;!lined algorithn on an arbitrary tree.

'rt'leorem 2 I.et a type-1 token with label 'k' arrl
a type-2 token with label ' j' meet at some
vertex vi in a 1 inear array. '!hen a sufficient
corrl ition for the tv.o tokens to meet at vi in an
arbitrary tree T is: (1) The vertices of T be
nunbered by sane depth-first traversal of T
starting fran the root, (2) The t~l ex~ution
path be m<rlified as above and (3) dcJ = dh •

'Ve illustrate this result with a robust
version of algorithn Wl in [3] that employs tv.o
\'aY pipelining, for the Convolution problem
defined i;reviously.

Consider the tree ma::::hine of Fig. 4 where the
vertices are nunbered by a depth-first orderirg.
'l1le weight wi is preloa:led into vertex v G-i.

OJtput tokens are of type-2 arrl follow the
exe:::ution i:ath Pi sh::>W'l. Input tokens follow the
mo:1 ified type-1 exe:::ution i:ath - i .e they are
locally broadcast fran the root v0 to all the
vertices of T. As in Wl, the delays d!1Y arrl dhx
are both equal to 1. 'n1e start time of each of
the tokens X· and Yi is 2(i-l). By 'Iheoren 2,
the delay dcY must equal the delay dhx: hence
dcY=i.

y1 starts fran v0 at c~le 0, arrl is used for
canputation by vertices v 5 throU::Jh v1 at c:t:les
3, 5, 6,8 and 9 respectively. Consider x2 which
starts fr an v 0 at c:t:le 2. It traverses the
three e::lges betv.een v0 and v4 in 3 c~les, arrl
thereby meets y1 at c~le 5 as require::l.
Another copy of x2 will simultaneously be
present at v 5 arrl will be up:'latirg y2 , which
startro at c:t:le 2, arrl is hence corre:::tly
available at v5 at c~le 5.

This method of simulating a tw W3.Y pip:l ine::l
algori thn on an arbitrary tree may not be
possible if the type-1 token changes its value
as it i:asses throU::Jh the array. lbwe11er, for a
large class of algorithns (for exanple see [5])
this methcrl is dire:::tly applicable • There is
no increase in either the latency or the
throU::Jhput in exe:::utirg the algori thn on an
arbitrary tree rather than a linear array.

4. Discussion
The teclniques discussed in this i:ap:r can

be use:! to convert any linear systolic algorithn
into an eq.iivalent one that exe:::utes on an
arbitrary tree of processors. Fran the viewpoint
of v.efer scale integration this is desirable
since a tree can alvays be constru::tro on any
connected set of fault-free processors that are
obtainro by discaroirg the faultY ones. The
method can also be seen a teclnique in
convertirg algorithns designro for a particular
interconnection stru::ture into an equivalent
algorithn on a different interconne:::tion
stru::ture.

References
1. c. Meed and L. Convay, Introou::tion to VLSI
Systens, 1\ddison-wasley, (1980) •
2. H.T. I<Ung and C.E. Leiserson, "S'ystolic
Arrays (for VLSI)," Sparse M:ltrix Proceroirgs
1978, r.s ruff arrl G.W. Stevart, (roitors),
SIAM, (1979), pp. 256-282.
3. H.T. Kurg, "Wly Systolic Archite:::ture," IEEE
COmputer 15(1), (January, 1982), pp. 37-46. --
4. A.V. Ah:>, J.E. lbi;x:roft and J.D. Ullman,
Design and Analysis of Chnputer Algorithns,
1\ddison-wasley, Rea:lirg, M:issachusetts, 1976,
pp.176-195.
5. P.J. Varman, I.V. R3makrishnan arrl D.S.
Fussell, R:>bust M:ltrix- Multiplication
Algorithns for VLSI, oei:artment of Chnputer
S::iences, U'liver:sity of Texas at Austin, TR-221,
March 1983.

460

Tree T

r:i---. .:_-
L_J- --

Euler Circuit P

:Solid edge label j
: so 1 id edge 1 ab el k
: Dotted edge 1 abel-J
:Dotted edge labelk

Fig.l: Construction of G
for two 1 ab els.

Fi9. 2 Linear Array

:14

V50- V3

~ ~
V0 v1 v2

F;g. 3 Modified Type- I Path.

Fig. 4 Corwlution

STRUCTURED MEMORY ACCESS ARCHITECTURE

A. R. Pleszkun
Department of Computer Science

University of Wisconsin
1210 W. Dayton St.
Madison, WI 53706

ABSTRACT

Conventional von Neumann architectures gen
erate addresses for referencing memory by transfer
ring addressing information from the memory to the
CPU, by performing computations on addressing
information, and by fetching and executing address
bookkeeping instructions. Memory wait time is
increased by computing operand addresses just
before executing instructions which use those
operands. These phenomena result in the von Neu
mann bottleneck at the CPU-memory interface. This
work investigates one method of reducing the von
Neumann bottleneck.

Program referencing behavior is determined by
analyzing dynamic address traces. The Structured
Memory Access (SMA) architecture developed in this
work uses a computation processor (CP) and a decou
pled memory access processor (MAP) with special
hardware for efficient accessing of program and
data structures and for effective branch and loop
management.

Prototypical SMA machines are compared to con
ventional VAX-like machines. For a set of bench
mark programs, the SMA machine reduces the number
of memory references to between 1/5 and 2/5 of
those required by a VAX. Actual performance is
very sensitive to memory bandwidth and the amount
of unoverlapped computation; however, SMA machines
perform significantly better than conventional
machines with the same parameter values. The SMA
architecture reduces addressing overhead and
improves system performance by (1) efficiently gen
erating operand requests, (2) making fewer memory
references, and (3) maximizing computation and
access process overlap.

1 • INTRODUCTION

This paper concerns the interactions between
the central processing unit (CPU) and the memory of
a computer system, modeled as shown in figure 1
[Hamm77]. Work performed by the CPU is partitioned
into an access process and a computation process.
The access process generates a stream of addresses
for read and write requests to be serviced by the
memory. Write data can originate from either pro
cess. The memory responds to read requests by gen
erating a stream of data and instructions which
returns to the CPU. Some portions of these data
and instructions, returned to the access process,

This work was supported by Navelex under con
tract N00039-80-C-0556: Reliable, High-Performance
VHSIC Systems.

0190-3918/83/0000/0461$01.00 © 1983 IEEE 461

I

E. S. Davidson
Coordinated Science Laboratory

University of Illinois
1101 W. Springfield Ave.

Urbana, IL 61801

Data and Instructions

CPU

'
Computation

Process

Data Memory
Access

Process
Referencing

- - -- J
Stream

Figure 1. CPU-memory model

contain information for generating more references;
the remaining portion is used by the computation
process to produce its output data. In our view,
the computation process performs the desired work
of the system, while the work done by the access
process represents overhead which should be
reduced.

In conventional von Neumann architectures, the
CPU interacts with only 1 memory, over 1 bus, and
receives only 1 word per memory access. The compu
tation and access processes compete for access to
the memory over this single, narrow path, the so
called "von Neumann bottleneck."

A great deal of computing is performed solely
for the generation of addresses. Hammerstrom
[Hamm77] calculated the addressing overhead and the
entropy of the stream of computation referenc~s by
analyzing the address traces of several programs
executed on an IBM 360. By measuring addressing
overhead in bits input to the access process per
computation process reference, he found that for a
Gaussian elimination program and an eigenvalue
finding program, the addressing overhead was,
respectively, 17.2 and 17.0 bits per computation
reference. For a symbol manipulation program, the
addressing overhead was 24.1 bits per computation
process instruction fetch or memory data reference.
These results l"E!present a large percentage of the
total number of bits input to the CPU from the
memory.

The inefficiency of the conventional access
process is exposed further when the addressing
overhead is compared to the entropy of the stream
of computation references. The entropy of the com
putation reference stream is likewise measured in
bits per computation reference and is interpreted
as the average number of bits needed to select
among the possible successor references, i.e., to
choose the particular next reference address given
the current reference address. If the current and
the possible successor reference addresses are

known, Hammerstrom found that for the programs he
analyzed, between .845 and 1.86 bits of information
per computation reference are needed to select
among the possible successor reference addresses.
These values can be treated as lower bounds on the
number of bits which would be needed to specify a
successor reference. Comparing these values to the
addressing overhead, we find that they differ by at
least an order of magnitude. Thus significantly
more bits than necessary are being transferred
between the memory and the access process during
the execution of a program.

This access overhead and hence the von Neumann
bottleneck can be reduced if the activities of the
access process can be (1) modified to reduce the
number of times the memory is accessed and (2)
overlapped with those of the computation process.
This paper introduces a Structured~~
(SMA) machine organization which includes mechan
isms to take explicit advantage, of a program's
structure and of the regular patterns in which data
structures are referenced. A more detailed presen
tation of the SMA architecture is found in
[Ples82]. This architecture shares some goals and
implementation characteristics with Smith's decou
pled access/execute (DAE) architecture [Smit82],
notably the decoupling of and separate processors
for access and execution. The SMA, however, has
explicit mechanisms for reducing the bookkeeping
overhead for data and program structure references.
SMA executes a single instruction stream, whereas
DAE requires two.

The SMA naccess mechanismsn eliminate most of
the accessing overhead for well-structured computa
tions. Previous attempts with conventional archi
tectures, i.e., adding new address modes and
including vector data types, have less effect. Use
of cache memory actually increases accessing over
head both in time and in costly cache management
hardware. Cache memory must be fast enough, and
hence expensive, to overcome this overhead and pro
vide improvement. By adding just one additional
VLSI processor chip to run the access process, SMA
achieves high performance with conventional slow
memory. Effective access prediction tolerates slow
memory if adequate interleaving is provided; elim
inating overhead references can allow SMA to out
perform a conventional processor with fast cache
memory.

The SMA also includes a n1oop moden which
eliminates the need to refetch instructions for
each iteration of short loops. Finally, by physi
cally separating the two processes into a memory
access processor (MAP) and a computation processor
(CP) and allowing them to be loosely coupled,
memory wait time is reduced and significant process
overlap is achieved. Compilation of SMA programs
is straightforward and well suited to the capabili
ties of conventional compilers.

Little use is made of program structure to
reduce addressing overhead in conventional
machines. Our preliminary studies [Ples81] have
indicated that a substantial amount of structure
can be ascertained directly from a mechanical
analysis of a program's address stream. Knowing,
or at least accurately predicting, possible succes
sor memory references is very important in achiev-

462

ing an efficient access process and can signifi
cantly reduce the addressing overhead of a program.
Additionally, exploiting this predictability leads
to a more nearly autonomous operation of the access
process and the computation process, thus permit
ting an overlapped execution of the two processes
and a reduction of memory wait time.

2. STRUCTURED MEMORY ACCESS MACHINE (SMA)
ARCHITECTURE

From the analysis of program address traces,
it is possible to determine the control and data
structures of a program and the mechanisms by which
data structures are accessed. Instructions can be
divided into ~ such that blocks are entered
only at the first instruction and execution always
proceeds sequentially to the last instruction. A
block may have one, two, or more successor blocks.
The control structure of a program is well identi
fied by a graph in which nodes are blocks and arcs
point to successor blocks. This control structure
can be found by mechanically analyzing the dynamic
address trace of a program. Furthermore, if an
instruction in a static listing always references
the same memory location for its operand, e.g.,
with a direct addressing mode, that reference is
called a~~ reference; if more than one
location is referenced by that operand reference as
it recurs in a dynamic address trace, e.g., by
using an index mode where the index value varies,
the reference is called a ~ structure reference.
This behavioral definition of scalar and structure
tends to correspond in practice to common defini
tions. A sequential pattern of accessing through a
data structure, as required for successive execu
tions of a data structure reference, e.g., a row
major scan of the upper triangle of a matrix, is
called an ~ mechanism. Scalar data, data
structures, and access mechanisms can likewise be
found mechanically from trace analysis.

The Structured Memory Access (SMA) architec
ture uses this structural information to reduce
access process overhead. Access process overhead
exists in two forms. Address specification ~
head refers to the increasing number of address
bits needed to address a memory location as the
address space becomes large. Most of these bits
are redundant, given knowledge about possible
address sequences. The second and more costly form
of overhead, address calculation overhead, refers
to address calculations explicitly performed by the
CPU. Address calculation overhead involves some
combination of extra instructions, parts of
instructions, registers, memory accesses, and com
putation time. Both types of overhead are greatly
reduced by the SMA architecture. Consider, for
example, branch target addresses and operand refer
ences.

In the SMA machine, the complete branch target
address is specified in a branch instruction. How
ever, since the SMA machine provides instruction
buffers to capture repeatedly executed instruction
blocks, the number of times the branch instruction
and its target address are accessed is reduced.
The instruction buffer effectively limits the
number of bits fetched from memory to specify
branch target addresses.

To reference scalars, the SHA machine provides
a base register. A scalar reference specification
is simply an offset to be summed with the contents
of the base register to form an entire scalar
address. Traces we have analyzed reference few
distinct scalars for the computation process and a
few bits are sufficient for the offset.

The referencing of data structures is the
prime cause of address calculation overhead. Con
ventional machines use bookkeeping scalars and
instructions to manage iterative sequencing through
data structures. To reduce this overhead, the SHA
architecture uses special hardware to generate data
structure references with minimal input to the
access process from the memory.

The SHA machine implements the function of
index registers by using a hardware stack. This
stack tracks the active indices of inner loops dur
ing program execution, and all data structure
references are made by using a subset of these
index values. To reduce access process input,
tables in the SMA processor are used to store the
base address of each data structure and other
information necessary to generate an entire address
from indices. These tables must be loaded before
any instruction which uses them is executed.
Depending on the amount of hardware allocated for
the tables, the number of data structures, and
their access mechanisms, the tables may only have
to be loaded once at the beginning of program exe
cution. The tables may also be loaded during the
execution of the program. A data structure refer
ence specification is thus a set of pointers to
table entries. Such a scheme provides the neces
sary flexibility for generating access mechanisms
while maximizing the rate of address generation
through the use of pipelining techniques.

Generally, the value of an index only needs to
be associated with the access process. Thus, the
stack containing indices, the tables for generating
data structure references, and the address genera-·
tion portion of the CPU may be separated from the
computation-oriented portions of the CPU. This
partition divides the computer system into two pro
cessors: a computation processor (CP) and a .lllalD.Qr.X
~processor (MAP). The CP is used strictly
for the computation process, i.e., the useful com
putations of the system; while the MAP is responsi
ble for the access process, i.e., generating all
addresses for data and instructions. The index
stack and the associated access tables mentioned
above are kept in the MAP. Since only the MAP gen
erates addresses, it controls all transactions with
the memory.

There is no address bus between the CP and the
memory since all memory requests are generated and
controlled by the MAP. Also, since the CP is not
responsible for addressing, the instructions sent
to the CP contain no addressing information. Thus,
the instructions are short and contain little more
than opcodes and register tags. The CP is strictly
devoted to performing computations and contains the
ALU of the system; instructions and data are
streamed into the CP by the MAP. The CP may
receive entire blocks of instructions which it then
holds in an internal instruction buffer. The CP
may execute in loop mode by iterating over one or

463

more blocks
ref etching.
holding the
The internal
are provided
accessing and
MAP.

of instructions in its buffer without
The CP also has a set of registers for
scalars used by an instruction block.

instruction buffer and the registers
to eliminate some repeated memory

its associated time and load on the

The MAP, as shown in figure 2, has an internal
Operand-Instruction ~ (OIB) to hold its
instructions and the operand specifications of CP
instructions. The MAP can also operate in a loop
mode fashion. Operation of the MAP is, to a great
extent, independent of the CP. When the MAP begins
receiving instructions, it forwards the MAP
instructions and the operand specification portions
of CP instructions to its OIB. The opcode and
register tag portions of CP instructions are for
warded to the CP instruction buffer. The MAP
immediately begins generation of operand addresses.
The operand addresses are then placed on the read
or write queue of outstanding memory requests.
Write data is produced in the same order as
corresponding write addresses. Thus when write
data is produced, it is paired with the appropriate
queued write address. As soon as a read request is
serviced, the operand returned by that request is
forwarded to the CP or to the MAP tables. With
such a scheme, reads are performed early, writes
are done late, the CP concentrates on the useful
calculations of a program, and the MAP is left with
the important, but overhead-related, generation of
addresses.

The MAP accesses instruction blocks, scalars,
and data structures with special hardware. Special
instructions initialize and control the access
mechanisms used for address generation. An SMA
program thus contains a mixture of MAP and CP
instructions. The data type of each operand is
explicitly specified in each instruction. This
extra information found in SMA instructions
requires that the compiler must be capable of dis
tinquishing loop control (index) branching from
data dependent branching, and scalars from data
structures.

Super computers and vector machines also con
tain special hardware for array referencing; how
ever, the programming of these machines quite often
requires rearranging of an algorithm to suit the
hardware, and program compilation is difficult.
Furthermore, their structured data access mechan
isms are usually limited to a single vector of the
structure at a time, i.e., "a constant stride" or
constant step-size access mechanism with one index.
Also, the same operation must be executed on each
element of the vector, few vectors can be active at
once, and access mechanisms are not easily
suspended and resumed when more complex program
loops are executed. The TI-ASC offers somewhat
more flexibility by providing both inner and outer
loop control for stepping though a matrix, i.e.,
two active indices.

The SHA machine provides more flexibility in
the accessing of matrices since it offers more
index levels by providing a stack on which to store
indices. In our observations, even a 2-dimensional
structure can require 3 levels of loop nesting for
controlled rescan. Extra levels of nesting are
also useful for providing nonconstant strides.

CP instructions Instruction
Preprocessor

Operand Specifications
and MAP instructions

018

Instruction
Fetcher
(PC)

Address
Generator

(IS)
(AIT)
(APT)

Branch
Targets

Read Addresses

Read Data

Instructions

Addresses

Memory

Memory
Requests

Controller t<,------;?

Data to CP Table Data

Write Addresses
Data from CP

Write Addresses and Data

Figure 2. MAP internal organization

In vector machines, the vector access mechan
isms are explicitly coded into instructions and
then recognized and set up during execution time.
The SMA architecture is designed so that data
structure access mechanisms are recognized as early
as possible. Some accesses mechanisms can be set
up as early as compile time or load time. This
early recognition can lead to reduced run-time
overhead.

In conventional systems, the ALU makes branch
decisions. In the SMA, two types of branch deci
sions are distinguished: decisions based on pro
gram data, which are made by the CP, and those
based on indices used for referencing data, which
are made by the MAP.

The SMA thus reduces the serial dependence
which exists between the access process and the
computation process. Since the MAP makes branch
decisions based on index values during the execu
tion of a loop, the MAP can generate memory
requests for operands before the CP is ready to
execute the instructions requiring those operands.
In fact, the MAP should normally stay ahead of the
CP so as to minimize the amount of time that the CP
waits for data from memory. The MAP must wait for
the CP when the MAP•s read data queue is full or
when the CP must resolve a computation-dependent
branch. The CP must wait for the MAP when the
MAP•s write data queue is full, when the read data
queue is empty, or when the CP instruction buffer
does not contain the next instruction.

The SMA organization described above is used
to reduce the addressing overhead primarily by
improving the accessing of data structures through
efficient access mechanisms and prefetching. The
process of accessing instructions can likewise be
improved if information concerning the instruction
block structure of a program, which is apparent in
high-level source code, is kept with the program as
it is translated down to machine level. Retaining
the block structure of a program can be used advan
tageously to cause the CP to enter and leave loops.

464

In conventional machines, loop mode control is
generated dynamically during execution. Upon
recognizing a short backwards branch, it is assumed
that the second iteration of a loop is about to
begin. The instructions of the loop are refetched
and trapped in the loop buffer where they remain
for repeated execution until the loop ending branch
is unsuccessful.

The loop buffers in the CP and the MAP also
trap loop instructions. However, loop mode control
is set up at compile time. Loop structures are
quite explicit and obvious in the high-level
language source code available ~t compile time. If
the instruction blocks which form the body of a
loop are sufficiently short, they may all be stored
in the instruction buffer. at the same time. The
processors thus are able to trap the body of a loop
the first time the loop is executed. The loop
buffers eliminate the need for repeated memory
accesses for the same instructions during the exe
cution of a loop. In any case, repetition requires
no data-dependent branch and no wait time. Execu
tion continuation after the loop is also efficient
when the successor block is known, since it can be
prefetched by the MAP during loop execution.

This structured prefetching by the MAP from a
conventional slow memory with small processor
buffers and without overhead references is felt to
be superior to the unstructured use of a costly
cache memory with attendant miss penalties, super
fluity problems, and access overhead reference
cycles.

3. AN SMA IMPLEMENTATION

3.. • .1. .D.a1a. ~

In this implementation, the SMA distinguishes
among four types of operands: (1) immediate
operands, (2) scalar operands, (3) data structure
operands, and (4) index operands. Immediate
operands are data whose values are embedded in an

instruction. Scalar and data structure operands
are defined as above. An index operand is one of
the current indices found on the index stack. The
index operand is used only to read a current index
value from the index stack and transfer its value
to the CP. An index operand differs from a scalar
operand primarily in that the index operand ori
ginates from the MAP while the scalar operand ori
ginates from the memory. The operand type may be
specified in a subfield of an instruction's operand
field or it may be implicitly associated with a
particular instruction. Additionally, an indirect
addressing mode is provided specifically for use in
the calling of subroutines and in the accessing of
data items from structures such as linked lists.
As with operand type specification, indirect
addressing may be specified in a variety of ways.

At some time it may be desirable to distin
guish explicitly among several types of data struc
tures. Instead of having a data structure operand,
one may wish to have an array operand, a linked
list operand, a binary tree operand, etc. For each
operand type, some special accessing mechanisms
would be provided to improve the speed with which
an operand address is generated. Accessing mechan
isms as implemented allow the instruction code to
reference structured data simply by pointing to the
mechanism, which then references the next data in
the established pattern.

3_ • .2_. ~ .l2ata.

Scalar data is treated in the manner of a vec
tor rather than as a set of disassociated items.
The specification for a scalar operand includes a
specification of a MAP base register and a dis
placement into a scalar data area in memory. The
MAP can have more than one scalar base register to
aid in the accessing of local and global variables,
such as during subroutine calls. Such a base
register can be used as the argument pointer set
during a subroutine call. For the programs we stu
died, the number of simultaneously active scalars
is relatively small, particularly in an SHA pro
gram.

3_.J.. .!nde.x. Operations

The SMA•s memory access processor has special
mechanisms to track indices for data structure com
putations. These indices are used to generate the
addresses for specific items of the data structure
to be referenced. An index is specified by its
current value, final value, step-size and indexing
level. When the index is first established, the
current value is equal to its initial value. At
any time, several indices may be active; and the
level, or nesting, of these indices is dictated by
the time at which they were instantiated, or set
up. In the SHA, the current value, final value,
and step-size of an index are kept on a LIFO stack
structure known as the ~ .a.tack (IS). Each
stack position is numbered sequentially, with the
bottom of the stack numbered level 1. This conven
tion provides a convenient way of referring to the
current value of any active index because the bot
tom of stack entry corresponds to the outermost
level of nesting, i.e., level 1. Stack continua
tion in memory can be provided for overflow.

465

When a "setup index" instruction is executed
by the MAP, the initial value, final value, and
step-size are pushed onto the stack. To change the
current value of an index, an "increment index"
instruction is used. This instruction must specify
three items: the level of the index which is being
incremented, and two initial addresses of blocks
which are the targets of a branch outcome. If the
current value of the index is less than the final
value, control is transferred to the first block
which is specified. If, on the other hand, the
current value equals or exceeds the final value,
control is transferred to the second specified
block.

By checking the index value early, during each
increment index instruction, and by having the
branching information available, the next instruc
tion can start being accessed while the CP is still
performing the final computations of a loop.
Furthermore, no guess is made about which direction
an index-based branch will take, thus no time is
wasted in fetching potentially unnecessary blocks
of instructions from the main memory.

When the current value of the index has
reached its final value, that index should be at
the top-of-stack and it is removed (popped) from
the stack. Two other methods of removing indices
from the stack are (1) the "remove index" instruc
tion which removes the highest level current index
from the top of the stack and (2) a "clear all
indices" instruction which removes all indices from
the stack.

To save loading of index instruction parame
ters from memory, The MAP is loaded with a set of
templates for these values at the start of program
execution. A template is a specification of the
values needed to initialize an index on the index
stack. Templates are loaded into an ~ template
.t.a.hl.a. When an index is set up in the IS, the IS
is loaded directly from the index template table.
For a particular program, the number of distinct
templates could be fairly small. For example,
analysis of a Gaussian elimination program shows
that 995 dynamic index setups are required,
representing 16 static index setups, but only 8
templates are needed. Each index activated with a
particular initial specification can use the same
entry from the index template table. Even if the
number of templates exceeds the table size, judi
cious reloading limits overhead.

3_ • .!l. .J2ata. Structure Access~ Dif

To access data structures in the SHA, one must
combine index values to form a data address. In
the SHA, information for forming proper combina
tions is stored in two data tables within the MAP.
As with some of the other repeatedly used informa
tion, the contents of the tables may be loaded when
the program begins execution. The two tables are
the .ac..c..ea.a pattern .t.a.hl.a (APT), which indicates the
index levels to be used, and the .ac..c..ea.a information
.t.a.hl.a (AIT), which contains information about data
structures.

Each line of the APT is divided into several
dimension fields. Each dimension field is divided
into 2 subfields. The index level subfield indi
cates which level of the index stack (IS) is asso-

ciated with that dimension field. The offset sub
field contains the value of a small positive or
negative offset to be added to the index before the
index is used. This feature is useful since quite
often the index of a data structure access is an
existing presently active index, plus or minus a
small constant. An entry in the APT may be used by
more than one data structure since the information
is not altered during execution and does not depend
on accessing a specific data structure.

For each data structure currently being used
by the program, there is an entry in the AIT. If
the number of data structures in a program is suf
ficiently small, the AIT need only be loaded at the
beginning of program execution. Each entry of the
AIT is composed of three types of values: (1) the
base address of the data structure, (2) a displace
ment for each dimension of the data structure, and
(3) an upper bound for each dimension of the data
structure.

A data structure reference may be made by
specifying an entry in the APT and an entry in the
AIT. A data structure address is generated by sum
ming the base address in the AIT entry and the
index terms for each dimension. Each term is
formed by adding the offset in the APT entry to the
index value identified by the level in the APT
entry and multiplying by the displacement in the
AIT entry. Bounds checking can be performed by
comparing the index terms with the bound in the AIT
entry.

While this computation may be tedious to per
form for each data structure access, hardware must
be present in the MAP to perform this computation
at least occasionally. Once the hardware is
present, it can be pipelined at little additional
cost to allow the straightforward solution of per
forming this computation for every data structure
reference. Pipelining allows a high rate of
address generation; effective prediction overcomes
the pipeline delay and allows the MAP to remain
ahead of the CP.

3_ • .5_. Control l.::uuJ..e.a

The instruction fetcher in the MAP is respon
sible for generating instruction requests. The
instruction fetcher sends the instructions it
receives from the memory to the instruction prepro
cessor. The instruction preprocessor forwards por
tions of instructions to the CP with operand
specifications replaced by buffer tags. MAP
instructions and operand specifications are placed
in the Operand-Instruction Buffer (OIB). The
address generation unit steps through the MAP
instructions and operand specifications found in
the OIB, executes MAP instructions, generates
operand addresses, and forwards each operand
address to the read or write queue. When the
memory returns the data associated with addresses
in the read queue, that data is sent to a FIFO
buffer in the CP. The CP sends data to the MAP for
the write queue. Addresses in the write queue
which have received their associated data are ser
viced by the memory.

The CP has an instruction buffer to hold the
instructions it receives from the MAP. An execu
tion unit in the CP steps through the instructio~

buffer, executing instructions one by one. If an
instruction needs a data item from memory, that
data is found at the head of the FIFO buffer. If
the buffer is empty, execution is suspended until a
data item is received from the MAP. Along with
each data item, the CP receives an additional bit
from the MAP which is used as an .eru:l.-.Qf-.lla.t.a. sig
nal. Assertion of the end-of-data signal in loop
mode indicates that execution of the current
instruction loop is to terminate and that the CP
should begin execution of another block found in
its instruction buffer, or wait until a new
instruction block arrives from the MAP. The CP
generates write data and signals the MAP regarding
success or failure of CP tests for data-dependent
branches performed in the MAP.

A program begins execution by having the moni
tor or operating system jump to the beginning of
the program; that is, the operating system sets the
program counter (PC) to the starting address of the
program. In the SMA machine, the PC is located in
the instruction fetcher of the MAP. When the PC is
set to the beginning of the program, the instruc
tion fetcher generates requests for instructions
from the memory. Instruction requests are gen
erated until the end of a block is encountered. If
the instruction at the end of a block is a branch
instruction, the instruction fetcher suspends
operation until the branch is resolved. An .eru:l.
.Qf-.b.1!2l::k. bit, attached to each instruction, indi
cates the last instruction of each block. The
starting address of each block, as found in the PC,
is saved to be used later when checking whether a
block loops upon itself or branches to some other
block in the OIB (and in the CP instruction
buffer).

With the information stored in the OIB, the
address generation unit can generate all the data
requests required by a program. As the OIB is
loaded, the address generator can begin executing
MAP instructions and generating operand addresses
by stepping through the entries of the OIB with its
own internal program counter.

466

The addresses in the read and write queues are
kept in the order that they were generated so that
the CP receives read operands in the expected order
and the MAP receives write data in the proper
order. If write data is soon read back from
memory, it is possible that the address of that
data item will appear in both queues at the same
time. Each time- a read address is placed on the
read queue, the write queue must be checked for an
outstanding write to that address in order to
prevent the reading of invalid data, If a match
occurs, the read must not be permitted to occur
before the write; otherwise, reads have priority
over writes.

3_ • ..Q.. Branching

When the instruction fetcher of the MAP
reaches the end of a block and the instruction is a
branch, the instruction fetcher suspends further
sequential instruction requests. If the branch
depends on a condition in the CP, a signal must be
received from the CP before the instruction fetcher
and the address generator can resume operation.
This signal indicates the success or failure of the

branch. If the branch, however, depends on the
value of an index in the index stack, the branch is
resolved in the MAP. Thus, if the result of an
index-dependent branch requires executing a new
block of instructions, the instruction fetcher can
begin fetching the instructions of the new block
while the CP is performing calculations on the data
for a previous block. The address generator can
even begin making data requests for the new block
while the previous block is still executing in the
CP.

At any one time, the CP•s instruction buffer
may contain the CP instructions for more than one
instruction block. The OIB in the MAP must, at the
same time, be capable of holding the accessing
information and MAP instructions corresponding to
the instruction blocks in the CP buffer. The CP•s
instruction buffer and the MAP•s OIB, while they
hold information for the same number of blocks, are
not necessarily the same size since corresponding
CP and MAP blocks themselves differ in size. Moni
toring the amount of information held by both the
buffers is the responsibility of the instruction
preprocessor since the instruction preprocessor
fills the OIB and forwards CP instructions to the
CP.

When a branch is resolved, there is a chance
that the target block of the branch is already
resident in the OIB and the CP•s instruction
buffer. The address generator checks for this
situation by comparing the branch target address
against the saved first address of each block
currently found in the OIB. If there is a match,
the address generator can immediately begin genera
tion of data addresses for the new block. If, on
the other hand, the information for the block is
not in the OIB, the instruction fetcher is signaled
by the address generator that a new block must be
fetched. In such a case, the address generator
must wait until new MAP instructions arrive in the
OIB. When a branch is resolved, the MAP must sig
nal the CP which one of the follow~ng three branch
options the CP should take: (1) continue repeated
execution of the currently executing block, (2)
execute some other block found in the CP•s instruc
tion buffer, or (3) expect to receive a new
instruction block from the MAP. When an entire
block does not fit in the instruction buffer, it
may be streamed through, but loop mode is not pos
sible.

Normally, the CP is in a loop mode type of
operation and expects a stream of data from the
MAP. That is, if the end of the currently execut
ing block is not a branch which depends on data in
the CP, the execution unit of the CP will re
execute the currently executing block as long as
the CP receives data from the MAP and the end-of
data signal is not set. This mode of operation is
especially well-suited for executing an instruction
block which operates on an array. Since the number
of times such a loop is executed depends on the
size of the array and the value of indices in the
IS, branches will occur in the MAP based on values
in the IS. The only effect these branches have on
the CP is that data continues to be supplied to the
CP until the loop terminates.

If the MAP determines that branch options 2 or
3 are to be followed, an active end-of-data flag is

467

sent to the CP on the read data queue after the
last data item associated with the currently exe
cuting block. The value of the data word sent with
an active end-of-data signal informs the CP whether
option 2 or option 3 is followed. One data value
is reserved to indicate that the CP should expect a
new block from the MAP (option 3). Any other data
value is a pointer to a block in the CP•s instruc
tion buffer (option 2). Thus, program execution in
the CP is controlled through the read data stream
and the CP checks for the end-of-data signal on
each read data queue access.

When the CP performs the test for a data
dependent branch, the MAP ceases prefetching data
until the branch is resolved. This wait time
incurred by the MAP is undesirable when such a test
is executed frequently and a particular outcome is
expected. Instead, the wait time could be used to
prefetch the data for the likely branch target.
The end-of-data signal provides a convenient way of
disposing of data wrongly prefetched by the MAP. A
reserved data value, sent with the end-of-data sig
nal, could signal the CP to purge all buffered and
incoming data until the next end-of-data signal.
Such a reserved value would be written by the MAP
into its read buffer whenever the MAP continued
prefetching data and received a wrong-way branch
indication from the CP. This signaling capability
would be allowed only by special CP branch instruc
tions whose opcodes would instruct the CP to purge
data upon a wrong-way branch. All data in the CP
read buffer is then purged up to the "purge" end
of-data signal and all following data is purged up
to the next end-of-data signal. Prefetching
instructions in such a case has no purge problem
since the next end-of-data signal after the "purge"
end-of-data signal indicates which instruction
block to execute next.

The methods for communication between the MAP
and the CP are designed to limit the number of
interruptions in execution due to branching.
Branches which depend on data in the MAP may occur
many times without interrupting the operation of
the CP; therefore, once the CP has a block of
instructions in its buffer, the MAP can keep a
stream of data flowing into the CP.

.1.1. Subroutine .Qa.l.l.s_

The SMA uses a control stack for handling sub
routine calls. A stack pointer, frame pointer, and
an argument pointer are used as in the Digital
Equipment VAX system. These pointers are main
tained in the MAP, and MAP instructions are pro
vided to access the pointers and to push and pop
the SP.

4. SMA EVALUATION

The effectiveness of the SMA machine in reduc
ing addressing overhead has been evaluated by com
paring an SMA machine's performance to that of a
VAX-like machine, primarily with respect to the
execution of a Gaussian elimination algorithm
(GAUSS). Some other evaluations are mentioned
briefly. GAUSS, written in FORTRAN, is taken from
[SSPP68]. From the high-level program source, the
program is compiled into assembly language for a
VAX running the UNIX operating system and for the

example SMA machine. To compile the program into
SMA assembly language, the VAX assembly listing is
modified only with respect to the way data
referencing occurs. That is, when a matrix is
being accessed, SMA instructions are added to setup
the indices for the matrix and to increment these
indices. These SMA instructions, however, elim
inate the need for some of the variables used and
calculations performed by the VAX. Care is taken
not to give either machine any special advantages.
Thus, the code produced for the SMA by this
transformation of VAX machine code is not hand
optimized to any extent.

.!i_ • .1. Numl:l.e.1:..Qf. ~References Generated

A program's instruction blocks can be identi
fied from the high-level source. Figure 3 is a
diagram of the control flow for GAUSS in terms of
instruction blocks. For GAUSS, only two of the
branches are probabilistic in the sense that they
are truly data dependent. Each of the other
branches in the program are determined by the value
of an index. These and the unconditional branches
are handled very well by the MAP of the SMA
machine.

The results of a static analysis of GAUSS are
shown in Table 1. In the SMA version, GAUSS
requires fewer than half the instructions needed in

[A] [XJ 1 = [BJ nx1 , solve for X
nxn nx

a

b'

c

d

e

s

g'

h

m

n

i'

j'

0

Figure 3.

Initialize

Row Reduction (b' -> o)

Pivoting (c -> I)
probabilistic branch

Singularity Check (e,f)

probabilistic branch

p

q

k'

r

Back
Substitution

(p -> r)

Instruction blocks for Gaussian elimina
tion

Table 1. Statistics from a static analysis of
GAUSS, EIGEN, and QSORT.

468

GAUSS EIGEN QSORT
Number of

VAX SMA VAX SMA VAX SMA

instruction blocks 19 19 61 61 14 18
distinct scalars 16 6 36 23 8 8
distinct data

structures 2 2 3 3 1 1
access patterns 11 11 19 19 1 1
instructions 123 50 534 251 68 59
data references 84 40 446 319 61 62

scalar 62 13 386 251 54 53
data structure 22 22 60 60 7 7
index 0 3 0 8 0 2

the VAX version. When counting the SMA instruc
tions, MAP instructions are also included in the
total number of instructions. The difference in
the number of data references is as dramatic as the
difference in the number of instructions. Since
the VAX and the SMA versions of GAUSS make the same
number of data structure references, the difference
in data referencing is due to the scalar refer
ences. The SMA programs have fewer distinct
scalars than the VAX programs due to overhead
reduction; thus, the VAX program not only has more
scalars but also performs overhead instructions to
operate on these scalars.

The static differences between the VAX and the
SMA versions of GAUSS translate directly into sub
stantial differences in the dynamic count of the
number of memory references for each program. To
obtain this dynamic count for GAUSS, the number of
memory references generated by each block is calcu
lated as a function of n, the matrix size. For
data dependent branches, successors are chosen to
produce a path with the largest number of instruc
tions and data references. Thus in GAUSS, pivoting
is always done and a singular matrix is not encoun
tered. Therefore, this is a worst case dynamic
memory reference analysis.

In this analysis, it is also desirable to see
what effects loop mode has on the number of data
references. Thus for each machine there are two
cases: one with loop mode and one without loop
mode. For GAUSS, blocks (n, i', j'), blocks
(q, k', r), and blocks (c, d, 1) are considered
inner loops for loop mode execution. To hold each
set of these blocks in a loop buffer, a hypotheti
cal VAX with loop mode added would need to provide
a buffer of 24 instructions, while the SMA needs a
buffer of only 8 instructions.

Figure 4 shows a plot of the dynamic count of
the total number of memory references required by
the GAUSS program for a VAX and an SMA machine with
and without loop mode as a function of n. The SMA
machine always makes fewer memory references than
the VAX, even if the VAX has a loop mode. The
number of memory references needed by an SMA
machine running the GAUSS program on a 100 x 100
matrix is only 20% of the number of memory refer
ences made by the VAX without loop mode. Thus the
SMA with slow memory can easily outperform a VAX
with a 1 clock cache cycle.

" " 0 c 7

" L

" <+-

" L

>
L
0
E

" E 5

<+-
0

L

" .a
E
:l
c

" .r: 3
+'

<+-
0

IS)

10 20 30 40 50

VAX no loop mode

-A- VAX 1 oop buffer = 24

-e-- SMA no loop mode

-B- SMA loop buffer = 8

60 70 80 90 100

Matrix stze - n

Figure 4. Log of the number of memory references

for GAUSS for

A similar analysis was performed on an
eigenvalue-finding algorithm (EIGEN), and a quick
sort algorithm (QSORT). EIGEN is written in FOR
TRAN and is the HQR routine from the Eispack sub
routine package [Smit74]. QSORT is a recursive
program written in PASCAL and based on an algorithm
from Horowitz and Sahni [Horo76].

In a static count, the SMA version of EIGEN
requires fewer than half the instructions and only
approximately 75% of the data references of the VAX
version. A dynamic analysis indicates the SMA
machine without loop mode generates approximately
the same number of memory references as the VAX
with loop mode. For the EIGEN program operating on
a 100 x 100 matrix, the SMA with and without loop
mode makes only 30.5% and 47.2%, respectively, of
the references made by the VAX without loop mode.
In this analysis an ninstructionn represents an
opcode or a memory reference. Thus a VAX instruc
tion with two memory reference operands would count
as three of these simple instructions.

A static analysis of QSORT reveals little
difference between the VAX and SMA versions.
Nevertheless, the SMA machine reduces dynamic
memory references for QSORT approximately as much
as for EIGEN.

!l.2.. An Estimate SJ.! Relative Performance

A program's execution time can be partitioned
into 1) time spent accessing memory and 2) time
spent computing. The execution time is reduced by
overlapping these two quantities. Generally, it is
not possible to overlap all of the computation time
with memory referencing activity. We call unover
lapped computation time the computational overhead.
By allocating a portion of this computational over
head to each memory reference, the execution time
of a program can be expressed as:

T = M (1/v + c)

an nxn matrix

469

where M is the number of memory references, c is
computational overhead, and the term 1/v is the
effective amount of time needed per memory access.
The variable v is the memory bandwidth and is
included as a parameter so that comparisons can be
made between machines whose memory speeds differ.
A larger v represents a faster memory and, there
fore, a reduced memory access time. If the memory
is interleaved, v takes the interleaving factor
into account. The same algorithm executed on dif
ferent machines will yield a different execution
time because the term M will vary from machine to
machine, as will the term c.

The computational overhead, c, is difficult to
measure. It varies from one program to another and
also from one machine to another. Due to machine
dependencies, diff.erent models of even the same
ma.chine will have different values of c. The value
of c is also a function of the memory bandwidth v.
As memory access time decreases (increasing v),
less computation time can be overlapped with memory
accesses, causing c to increase. Due to these
dependencies, c is treated as a parameter in our
comparison of performance.

The performance of a machine is given by the
inverse of the execution time. We calculated the
performance of conventional machines and an SMA
machine for c ranging from 0 to 2 and for v taking
on values of 1, 2, 4, and 8. The computational
overhead is in units of standard memory cycle times
per memory reference, as is the term 1/v. The fac
tor M is taken from the dynamic analysis of GAUSS
run on a 100 x 100 matrix. To aid in comparing one
machine with another, performance is normalized to
the performance of a conventional machine with no
computational overhead (c:O) and a memory bandwidth
of one (v= 1) •

The normalized performance for GAUSS is shown
in figure 5. Machines with and without loop mode
are treated separately because the presence of loop"
mode affects the number of memory accesses required

,_, I
c=1

c=2

Figure

50
40

30

20

10

5

0.5

5.

,kI1111l~ 111~1\11~ v
no loop w/ loop no loop w/ loop

conv. machine SMA machine

Normalized performance for GAUSS (v =
memory bandwidth, c computational
overhead, T = run time)

by the program. Once
memory requests for
are not needed.

loop mode is established,
the instructions of the loop

Each vertical line of the graph represents the
relative performance of a machine with a particular
memory bandwidth and with the computational over
head ranging from 0 to 2. A conventional machine
with no loop mode, v=1, and c=1 would require
approximately twice as much time to run a Gaussian
eiimination program on a 100 x 100 matrix as the
machine with c=O. At the other extreme, a c=O SMA
machine with loop mode and a memory bandwidth of 8
would perform approximately 42 times better than
the base machine: conventional, no loop, v=1, and
c:O.

The performance of the base machine was also
compared to an SMA machine running EIGEN and QSORT.
In this comparison, there is a great improvement in
performance when an SMA machine is used; however,
the improvement is not as dramatic as for GAUSS.

For all of the three programs and a given
memory bandwidth, a conventional machine with loop
mode and ,an SMA machine without loop mode perform
almost equally. Furthermore, performance is sensi
tive to changes in computational overhead, espe
cially when c varies from Oto 1. Different
machines should not simply be compared with the
same value for c.

5. CONCLUSIONS

5..J.. Summary .Qf. Results

Due to the von Neumann bottleneck, inefficien
cies exist in the way address generation is per
formed in most conventional machines. The research

470

presented here has studied the access process to
discover where the access inefficiencies lie and
how they can be reduced.

From a detailed analysis of program address
traces [Ples82] we determined the types of features
that should be included in a machine designed to
generate memory references efficiently. The pro
posed Structured Memory Access (SMA) machine con
tains these features. The SMA machine is divided
into a computation processor (CP) and a memory
access processor (MAP). As their names imply, the
CP is responsible for the desired computations of
the system, while the MAP generates all the memory
references for a program. The SMA machine reduces
addressing overhead by providing special access
mechanisms in the MAP to generate references effi
ciently for blocks of instructions and several data
types. The storing of bounds information permits
bounds checking to occur automatically in hardware
when data structures are accessed. Because of the
system's organization, the CP and MAP can operate
relatively independently of one another. In par
ticular, prefetching of instructions and data, and
index-dependent loop control are inherent features
of the SMA machine.

The operation of the MAP and its interactions
with the CP were discussed as were the types of
access mechanisms which reside in the MAP. The
machine's ability to reduce addressing overhead was
then evaluated. A comparison was made between a
hypothetical SMA machine and a VAX-like machine
with respect to the number of memory references
generated by a set of programs. Depending on the
program, the SMA machine reduces the number of
memory references to between 1/5 and 2/5 of those
required by a conventional VAX.

The performance of the SMA machine was then
evaluated. A machine's performance was parameter
ized by the memory bandwidth and the computational
overhead. It was found that performance is very
sensitive to these parameters; however, an SMA
machine performs significantly better than a con
ventional machine with the same parameters. Now
that the SMA concept has been justified, more
detailed performance evaluation and design modifi
cations are being carried out in our continuing
research.

[Hamm77a]

[Hamm77b]

[Horo76]

REFERENCES

D. W. Hammerstrom and E. S. Davidson,
ninformation Content of CPU Memory
Referencing Behavior," ~ Ann!1al
Symposium .o.n Computer Architecture,
March 1977, pp. 184-192.

D. W. Hammerstrom, "Analysis of
Addressing Architecture," Tech.
R-777, Coordinated Science Lab.,
of Illinois, Urbana, IL July 1977.

Memory
Report
Univ.

E. Horowitz and S. Sahni, .Ibil. Fundamen
.tala. .Qf.]2ata. Structures, Computer Sci
ence Press, Inc., 1976, p. 347.

[Ples81]

[Ples82]

[Smit74]

[Smit82]

[SSPP68]

A. R. Pleszkun, B. R. Rau, and E. S.
Davidson, "An Address Prediction Mechan
ism for Reducing Processor-Memory
Address Bandwidth," ~ . ..l..9..8.1 ~
Workshop ..an Computer Architecture .fo.r.
Pattern Analysis .and. ~ Database
Management, Nov. 11, 1981, pp. 141-148.

A. R. Pleszkun, "A Structured
Access Architecture", Computer
Group Report CSG-10, Coordinated
Lab., Univ. of Illinois, Urbana,
1982.

Memory
Systems
Science
IL Oct.

B. J. Smith, J. M. Boyle, B. S. Garbow,
Y. Ikebe, V. C. Klema, and C. B. Moler,
Lecture ~ .in Computer Science,
.!lo.lume..6.: ~ Eigensystem Routines -
EISPACK ~. Springer-Verlag, 1974.

J. E. Smith, "Decoupled Access/Execute
Computer Architectures, n 1ilnt.h .Annl1al.
~· .en Computer Architecture, April
1982, pp. 112-119.

.l.1.1Q_ Scientific Subroutine Package
Programmer•.a Manual., International Busi
ness Machines Corp., 1968, p. 115.

471

A SIMPLE ARCHITECTURE FOR LOW LEVEL PARALLELISM

Charles E. McDowell

Electrical Engineering and Computer Science
University of California at San Diego

La Jolla, California 92093

Abstract -- This report describes
SIMAC, a new Simple Multiple Alu Com
puter for exploiting low level parallel
ism. The main feature of SIMAC is that
all scheduling of operations to be exe
cuted in parallel is done at compile
time. This results in much simpler
hardware. Performance is increased
because the overhead of scheduling is
done only once and not repeated each
time the program is executed. Prelim
inary results indicate that significant
speedups are possible on both conven
tional sequential programs and on numer
ical array processing problems.

Introduction

Given a sequential program for a
particular algorithm on a computer,
there are three general approaches that
can be taken to speed up the execution
of the program. The execution speed of
individual operations can be increased
by using faster hardware, the program
can be broken into two or more indepen
dent tasks which are run simultaneously
on more than one processor (high level
parallelism), or more than one simple
operation can be performed simultane
ously (low level parallelism).

In recent years there have been
several studies investigating how much
low level parallelism exists in algo
rithms expressed as computer programs.
The results of the studies have varied
considerably. Tjaden and Flynn[l4]
among others have measured the parallel
ism available within basic blocks. (A
basic block is a sequence of instruc
tions without any conditional jumps.)
These studies have found a speedup of 2
to 3, where speedup is defined to be the
sequential execution time divided by the
parallel execution time. In a more
recent study Nicolau and Fisher[9]
report that by exploiting global paral
lelism, speedups approaching 1000 are
possible, and factors of 10 or more were

0190-3918/83/0000/0472$01.00 © 1983 IEEE 472

found in most programs tested. The
speedups reported by Fisher assumed
unlimited hardware, but they still point
out that there is a substantial amount
of parallelism in typical programs that
is currently not being exploited.

Pipelining is one method that is
used widely today to exploit a small
amount of the potential low level paral
lel ism within a program. Except on
large machines like the CDC 6600 or CRAY
I, or special purpose vector processors
like the IBM 3838, pipelined computers
only exploit parallelism by overlapping
the separate phases of the instruction
fetch-decode-execute cycle. The pipe
lines of these large or special purpose
machines are capable of pipelining the
execution of various numerical computa
tions. In general, pipelining is only
used for the overlap of repeated execu
tions of the same operation on different
data. There is much more low level
parallelism that is not handled by trad
itional pipelining techniques, and is
only touched on slightly by some very
large machines. SIMAC allows exploita
tion of more of this low level parallel
ism on a simple computer.

Another common form of low level
parallelism found today is the parallel
ism found in horizontally micropro
grammed computers. Unfortunately this
cannot be easily used since it is in
general below the level accessible by
the user. Some work is being done in
compiling high level languages directly
to microcode[l2] and in migrating common
high level operations into micro
code [6, 10] to attain speed improvements.

Data flow computers are another
attempt to exploit low level parallel
ism. In general, data flow computers
require very complex hardware to control
the parallel operation of the multiple
processing elements[lS]. This is an
active area of research.

There is a group of researchers
today advocating simple or reduced
instruction set computers[ll,5). This
is in contrast to the more traditional
trend toward more complex instruction
set computers as can be seen in the DEC
VAXll or INTEL'S iapx432. The develop
ment time for a new computer is directly
proportional to the complexity of the
architecture. In order to make maximum
use of today's rapidly changing hardware
technology, it is important to keep the
development time short. RISC architec
tures are simpler and can therefore be
implemented very rapidly using the
latest in hardware technology. Another
important factor in favor of RISC archi
tectures is the large difference in com
munication speeds between VLSI chips
versus the speeds within VLSI chips.
With a RISC architecture it is possible
to put one or more entire processors on
a single chip greatly reducing the
amount of communication off of the chip.

Multiprocessor systems are being
developed that exploit high level paral
lelism by running separate tasks in
parallel, each on a different uniproces
sor. This still leaves open the oppor
tunity for exploiting more low level
parallelism in the uniprocessors that
make up the multiprocessor systems.

SIMAC is a computer system which
uses simple hardware and sophisticated
compiler techniques to exploit the low
level parallelism which exists in a wide
range of programs. SIMAC is a single
instruction stream multiple data stream
computer. The processing elements (PEs)
are identical and communicate through a
shared memory and a set of shared regis
ters. Each PE contains a simple ALU plus
logic to issue reads and writes to
memory. The PEs are controlled by a
master control processor (CP) which
fetches instructions from memory and
issues instructions to the PEs. SIMAC
differs from existing machines with low
level parallelism (eg. CDC 6600/7600) in
that all scheduling is done at compile
time.

SIMAC Architecture

Low level operations are statically
scheduled for each PE by software at
compile time. These statically
scheduled parallel instructions allow
for parallel execution of low level
operations on each processor. By moving
the scheduling task into the software
the hardware has been kept simple.
Although hardware costs may be dropping,
this does not necessarily imply that the

473

hardware should be more complex, only
that there should be more hardware. By
keeping the architecture of SIMAC sim
ple, the cost of the processor will be
low and therefore many SIMAC processors
could be combined into a larger mul
tiprocessing system.

System Architecture

The SIMAC architecture is indepen
dent of the number of PEs. The number
of PEs is limited only by the use of the
registers and the bandwidth of the
memory. There is nothing in any of the
instructions that depends on the number
of PEs. This is not the same as the
ability to simply add PEs to the system
at any time. For any particular imple
mentation the number of PEs will be
fixed. The implementation of the memory
controller, register switch and CP all
depend upon the number of PEs. A block
diagram of the processor is shown in
figure 1.

MEMORY

REGISTER

ARRAY

SWITCH

CONTROLLER

MEMORY (PE - Processing Element)
(CP - Control Processor)

Figure 1. Block Diagram of SIMAC.

Each PE in SIMAC is a load/store
RISC[ll) style processor. Each PE is
capable of executing a small set of sim
ple operations (arithmetic, logical and
shift, and test). All branching opera
tions are processed by the CP. All MOPs
(machine operations) are encoded in 32
bits and operate only on registers with
the exception of load and store.

SIMAC has only one program counter
(PC) maintained by the CP hence a single
instruction stream (istream). However
each instruction (PI or parallel
instruction) may consist of up to n (the
number of PEs) unrelated machine opera
tions. Another way of viewing the

multiple instruction capability is to
think of this as a microprogrammed
machine which i~ capable of accepting
varying width horizontal instructions.
The instruction width can be any multi
ple of 32 bits up to the maximum size
determined by the number of PEs. The
instruction width is controlled by a bit
in each MOP.

The PEs have no local registers.
There are 32 general purpose 32-bit
registers that are shared by all PEs.
Each register may be read by any or all
PE's each cycle. Also each PE may write
one register per cycle. It is the
responsibility of the software to insure
that there are no resource conflicts
when more than one PE is active.

SIMAC is similar to a variable
width, horizontally microprogrammed
machine. With 1 PE active, SIMAC simply
processes a single 32 bit MOP every
cycle. With n>l PEs active, SIMAC exe
cutes a single 32 bit MOP on each of the
n PEs. Each PE gets a different 32 bit
MOP. PE0 gets its MOP from M(PC), PEl
gets its MOP from M(PC+l), PE2 gets its
MOP from M(PC+2) etc., and the PC is
incremented by n. In this way n dis
tinct parallel istreams are being exe
cuted with the non-trivial restriction
that all n istreams must branch
together. This is insured by the
software which only allows one of the n
MOPs for a single PI to contain a branch
type MOP.

Each PE in SIMAC has two bits, T
(test) and V (valid) that are used for
branching. Whenever a PE executes a
test instruction (eg. tlss, test less
than and teq, test equal), the V bit in
that PE is set. In addition the T bit
is set if the test is true and cleared
if false. The actual conditional branch
is then executed by the CP when it
encounters a branch instruction. There
are two types of conditional branch
instructions, BAND (branch anding) and
BOR (branch oring) . BAND and BOR
instructions clear all V bits whether or
not the branch is taken. A BAND branch
is taken if the logical "and" of all
test instructions executed since the
last branch is true. A BOR branch is
taken if the logical "or" of all test
instructions executed since the last
branch is true. More formally a BAND
branch is taken if the following is
true:

(Tl or -v1) and (T2 or -v2) and •••

A BOR branch is taken if the following

474

is true:

(Tl and Vl) or (T2 and V2) or •••

This allows for rapid, parallel evalua
tion of high level branches such as:

IF (A > B and C <= D) then

Assuming A, B, c, and D are registers,
then the above could be executed by the
following two parallel instructions:

Pil:
PI2:

tgtr A,B I tleq C,D I ...
band label I

By using boolean algebra, tests can be
transformed into a sequence of comparis
ons "ored" together or a sequence of
comparisons "anded" together.

Control Processor Architecture

The Control Processor (CP) contains
the program counter and executes all
branching type operations. The CP is
also responsible for requesting the
instructions from the memory controller
and dispatching the MOPs to the PEs.
The Control Processor (CP) is responsi
ble for the following tasks:

Maintain the program counter.

Perform branch operations using the
T and V bits from each PE.

Fetch instructions from memory.

Issue non-branch MOPs to the PEs.

Processing Element Architecture

Each PE is an extended ALU capable
of doing register to register arithmetic
and doing simple memory accesses. The
instructions are sent to the PE from the
CP.

The instructions are broken into
five groups, simple register to register
instructions (eg. add, shift), complex
register to register instructions (ie.
multiply, divide), load/store instruc
tions, test, and miscellaneous. The
miscellaneous, test, and simple register
to register instructions all execute in
one cycle, the number of cycles for the
others will vary.

Bit 31 of each MOP, called the P
bit, is used to pack MOPs into parallel
instructions (Pis). All MOPs within a
single PI are executed in parallel. The
assignment of MOPs to PEs is determined
by the position in the PI. The leftmost

MOP is executed by PE0 the next by PEl
etc. The last MOP of each PI may be a
branch operation which is executed by
the control processor. The P bit of the
last MOP in each PI will be clear and
the rest will be set. For example a
128-bit PI would look something like:

127
1

95
1

Register switch

63
1

31 --- 0
0

The register switch provides simul
taneous read access to all registers by
all PEs and allows more than one PE to
reference the same register. This can
be implemented as a large selector
switch. For a fixed number of registers
the number of transistors for the switch
grows linearly with the number of PEs.
This would require approximately 12,000
transistors per PE. Assuming VLSI chips
with 250,000 transistors, the selector
circuit for 4 PEs would utilize less
than 20% of the chip area.

Memory controller

The memory controller accepts data
read/write requests from all PEs and
instruction read requests from the CP.
This is a potentially critical section
of the overall system design due to the
possibility that the memory bandwidth
will be a bottleneck in the system. For
this study we will assume that this is
not a problem, and that with sufficient
hardware a memory system can be built to
supply the necessary bandwidth (eg.
interleaved memory) •

Compaction and Scheduling

Code generation for SIMAC can be
divided into 3 components (not neces
sarily done in 3 separate phases), gen
eration of sequential MOPs, compaction
of MOPs into Pis, and ordering of MOPs
within a PI. The need for the first 2
components should be clear. The third
component is required to allow the exe
cution of two Pis containing different
length MOPs (eg. addition and multipli
cation) to overlap using only simple
hardware controls (figure 2).

All MOPs within a single parallel
instruction (PI) must begin execution in
the same cycle, but they may end at dif
ferent times. A simple mechanism is pro
vided to allow for overlapping the exe
cution of 2 Pis assuming both Pis do not

475

use all PEs. A new PI will be issued by
the CP as soon as all PEs for which the
new PI contains an MOP are ready. This
makes it possible for the software to
schedule long MOPs on high numbered PEs
and continue using the lower numbered
PEs for short MOPs. As shown in the
following example, by properly schedul
ing the MOPs into PEs, the two additions
can overlap the execution of the multi
ply.

program segment
x=a•b
y=a+b+c

sequential code
Rl <- R2 • R3 ; MOPl
R4 <- R2 + R3 ; MOP2
R4 <- R4 + R5 ; MOP3

compacted code
Pil: R1 <- R2 • R3 I R4 <- R2 + R3
PI2: R4 <- R4 + R5

Figure 2. Scheduling example.

Software Scheduling of MOPs into
Pis is an instance of the processor
scheduling problem. The problem can be
described as follows: given a set of
tasks tl,t2, ••• ,tn and a partial order
on those tasks which specifies that if
task ti<tj, then ti must complete before
tj may begin. Each task takes some
length of time Ti to be processed and
there are m identical processors,
pl,p2, ••• ,pm on which to process these
tasks. A schedule is an assignment of
the tasks to ~iscrete time units such
that:

1. No more than m tasks are assigned
to any time unit (one for each pro
cessor) •

2. If ti<tj, then ti is assigned to a
time unit at least Ti time units
before tj.

The problem is to find the schedule
which completes all tasks in the shor
test number of time units. This problem
is NP-complete. The question then
becomes, can a good approximation be
found? Fortunately much work has been
done in this area. Various "list
scheduling" algorithms were compared in

a report by Adam, Chandy and Dickson[l].
They found that HLFET (highest levels
first, estimated times) was the best
of those tested, and in many cases actu
ally achieved the best known lower
bound, that of Fernandez-Bussel[3].
Most cases tested came within 0.2 per
cent of the lower bound. In this method
tasks are assigned priorities equal to
the length of the longest chain from the
task to the end. Tasks are then
scheduled into time units from a list of
data ready tasks with the highest prior
ity data ready task being scheduled
first.

Preliminary results

The portable C compiler[?] has been
modified to generate sequential code for
SIMAC. The output of the compiler is
then compacted (scheduled) into parallel
instructions. The optimization and com
paction is done in a post pass and is
currently 3000 lines of C. The dynamic
performance of the sequential code is
then compared with the parallel code
using a simulator. The simulator is
currently 1600 lines of C.

Tables 1 and 2 present the results
of simulations run on several bench
marks. All times are reported in terms
of speedup relative to the optimized
sequential output of the portable C com
piler.

Table 1 lists the speedups achieved
using 4 processing elements. For these
tests, it is assumed that memory reads
and writes require 2 cycles, multiply
and divide require 4 cycles and all
other MOPs require only 1 cycle. The
first two columns show speedups for
local compaction and local plus global
compaction. Column three shows speedups
assuming that Pis with different length
MOPs (figure 2) are not allowed to over
lap. The last column shows the speedups
assuming that all MOPs take only one
cycle to execute.

Table 2 lists the speedups achieved
using various numbers of processing ele
ments. For all of the speedups in table
2, both global and local compaction were
performed as well as overlapping Pis
with different length MOPs.

476

u~ 4 Proc~ Elements.
Program Local Global No PI Equal

Motion Motion Over Um_ MOPs
quicksort 1.6 1.9 1.6 1.9
bubblesort 1.6 2.4 1.9 2.4
testio 1.7 1.7 1.3 1.6
factorial. 1.9 1.9 1.6 2.2
prime 1.3 1.4 1.4 1.7
puzzle 1.4 1.7 1.4 2.2
search 1.4 1.5 1.4 1.6
acker 2.3 2.4 2.0 2.6
LLL 2.2 2.2 1.4 2.6
matrix 2.6 2.6 1.6 3.0
arrq 2.1 2.2 2.4 1.9
MEAN 1.6 2.0 1.6 2.2

Table 1. Speedup with 4 PEs.

PrQ.Uam 2PF..s 3PEs 4PEs 6PEs 8PEs
quicksort 1.5 1.7 1.9 2.0 2.1
bubble sort 1.7 2.2 2.4 2.4 2.4
testio 1.6 1.7 1.7 1.8 1.6
factorial 1.6 1.7 1.9 2.0 2.0
prime 1.4 1.4 1.4 1.5 1.5
puzzle 1.5 1.7 1.7 1.7 1.7
search 1.4 1.4 1.5 1.5 1.5
acker 1.9 2.4 2.4 2.9 2.9
LLL 1.9 2.2 2.2 2.2 2.2
matrix 1.9 2.4 2.6 2.8 2.6
·arr~ 1.6 2.1 2.2 2.2 2.3
MEAN 1.6 1.9 2.0 2.0 2.1

Speedup with different numbers of PEs.
Table 2.

Conclusion

A new architecture for exploiting
low level parallelism has been
presented. The principle of parallel or
horizontal control has proven itself to
be very effective in the microprogrammed
control of hardware. SIMAC is an innova
tive and useful extension of this prin
ciple to a higher level. SIMAC has
increased the amount of parallelism that
can be exploited in general-purpose pro
grams using relatively simple hardware.

SIMAC moves the burden of schedul
ing from the hardware at execute time,
to the software at compile time, which
has resulted in greatly simplified
hardware design, and reduced execution
time, when compared to other machines
with low level parallelism.

Due to the limited number of PEs,
SIMAC will never be able to fully
exploit the massive parallelism of vec
tor operations, as is being done by some
highly parallel array processors[2,4].
However SIMAC is capable of exploiting
the parallelism in non-vector calcula
tions, which has previously been done
only on data flow machines and to a lim
ited degree in the pipelines of some
machines[l3,8].

Acknowledgment

I would like to thank my advisor at
UCSD, Professor Bill Appelbe, for his
constant help. I would also like to
thank Professor Dave Patterson of UC
Berkeley for his help and comments.

References

1.

2.

3.

4.

5.

Adam, T. L., Chandy, K. M., and
Dickson, J. R., "A comparison of
list schedules for parallel pro
cessing systems," Comm. ACM, Vol.
17, (12) pp. 685-690 (December
197 4) .

Batcher, K. E., "Design of a Mas
sively Parallel Processor," IEEE
Transactions on Computers, pp.---r=9
(September 1980).

Fernandez, E. B. and Bussel, B.,
"Bounds on the number of processors
and time for multiprocessor optimal
schedule," IEEE Trans. Comp. , Vol.
c22, (8) pp-:---745-751 (August 1973).

Haynes, L. s • I Lau, R. L. I

Siewiorek, D. p • I and Mizell, D.
W •I "A Survey of Highly Parallel
Computing," Computer, Vol. 15,
(1) pp. 9-24 (January 1982).

Hennessy, J., Jouppi, N., Przybyl
ski, S., Rowen, C., Gross, T.,
Baskett, F., and Gill, J., "MIPS: A
Microprocessor Architecture," Micro
l:_2, pp. 17-22 (October 1982) .---

477

6.

7.

8.

9.

Holtkamp, B. and Kaestner, H., "A
Firmware Monitor to Support Verti
cal Migration Decisions in the UNIX
Operating System," 15th Annual
Microprogramming WorkSfiQP, pp.
153-162 (October 1982).

Johnson, s. c., "A Portable Com
piler: Theory and Practice," Proc.
5th ACM Syrop. on Principles of Pro
gramming--Languages, pp. 97-Hl4
(January 1978).

Kogge, P. M., The Architecture of
Pipelined Computers, McGraw-HiTI
(1981).

Nicolau, A. and Fisher, J. A.,
"Using an Oracle to Measure Poten
tial Parallelism in Single Instruc
tion Stream Programs," 14th Annual
Microprogramming WorkshOjJ";"" pp.
171-182 (October 1981).

10. Olbert, A. G., "Crossing the
Machine Interface," 15th Annual
Microprogramming WorkSfiOP, pp.
163-170 (October 1982).

11. Patterson, D. A. and Sequin, C. H.,
"RISC I: A Reduced Instruction Set
VLSI Computer," Eighth Annual Sym
posium on Computer Architect~

12.

pp. 443-457 (May 1981).

Sint, M., "A Survey of
Microprogramming
Microl4, pp. 141-153
1980).

High Level
Languages,"

(November

13. Thornton, J. E., Design of a Com
puter The Control Data- 6600,
Scott, Foresman and Co.,--c;fenview,
Ill. (1970).

14. Tjaden, G. s. and Flynn, M. J.,
"Detection and Parallel Execution
of Independent Instructions," IEEE
Trans. Comp., Vol. 19, (10)--PP:-
889-895 (October 1970).

15. Watson, I. and Gurd, J., "A Practi
cal Data Flow Computer," Computer,
pp. 51-57 (February 1982).

HIERARCHICAL MICRO-ARCHITECTURES OF A TWO-LEVEL MICROPROGRAMMED
MULTIPROCESSOR COMPUTER

Takanobu Baba*, Katsuhiro Yamazaki, Nobuyuki Hashimoto,
Hiroyuki Kanai, Kenzo Okuda, and Kazuhiko Hashimoto**

Department of Information Science
Utsunomiya University
Utsunomiya 321, Japan

Abstract -- Hierarchical micro-architectures have
been designed and developed for a two-level
microprogrammed multiprocessor computer, MUNAP.
In the MUNAP, a 28-bit microinstruction simultane
ously drives several nanoprogram streams of 40-bit
nanoinstructions in four 16-bit processor units.

On the basic microinstruction and nanoinstruc
tion sets, the mic re-assembly language level
(Level 1) architecture has been defined to allow
the user to describe frequently used micro-nano
combinations and mic reprogram level SIMD opera
tions in one statement. Experimental results show
that the description of parallel processing is
divided into (i) 33.3 % micro-nano combined state
ments, (ii) 41.9 % parallel nanostatements for the
SIMD operations, and (iii) 24.8 % different nano
statements for the MIMD operations.

The system description language level (Level 2)
architecture is defined on the Level 1 primitives.
This level has many features common to other sys
tem description languages on such items as data
types, operators, and functions, and some MUNAP
dependent features. The experimental results show
that the average processor utilization for each
machine cycle varies from 1.1 to 3.8 within 4 pro
cessor units depending up on the content of pro
cessing.

1. Introduction

A significant trend in computing system
design is the implementation of a computer that
can operate on a wide variety of problems with
high efficiency (5, 9]. We have developed a
research-oriented multiprocessor computer, MUNAP
(MUlti-NAnoProgram machine), as a vehicle for
solving a wide range of nonnumeric and associated
problems [l, 4]. The design objectives of the
MUNAP system are: l) the system should support
basic functions for a wide range of nonnumeric
processing through firmware and hardware; and 2)
as a research vehicle, the system should provide a
powerful, yet flexible, architecture. In order to
attain these objectives, we have designed a new,
multiprocessor computer architecture, controlled
via a two-level microprogramming scheme. Archi
tecture comparisons of MUNAP with other possible
architectures, such as single-level versus two
level controls, and multiprocessor versus unipro
cessor, verified the advantages of MUNAP for such

*Visiting at the College of Business and Manage
ment, University of Maryland, College Park, MD 20742
**Hitachi Software Engineering, Japan

0190-3918/83/0000/0478$01.00 © 1983 IEEE 478

parameters as control storage requirements, execu
tion steps, and multiprocessor unit parallelism
[4].

The key for utilizing such an innovative
machine efficiently is to provide the users with
good architectural views [9]. The difficulty is
that we must define an architecture which not only
aids the programming process but also utilizes the
basic hardware features, such as a parallelism
among multiple processors, a two-level micropro
grammed control, and nonnumeric processing units.
The higher we define the architecture, the more
difficult it is for the user to use the hardware
features efficiently. The lower we define it, the
more difficult the programming process is because
of its innovative hardware organization. In ordi
nary machines, the machine language is defined as
an interface between software and firmware (or
hardware). This makes it difficult to utilize the
micro-architecture level parallelism, because the
level of machine language architecture is too low
and too rigid to utilize such parallelism. To
solve the problem, we have designed and developed
hierarchical micro-architectures; the micro
assembly language level architecture (2] and the
system description language level architecture.
In the former architecture, the user can describe
concurrent operations in one statement. The
operations include the micro-nano combined opera
tion and the micro-level SIMD operation. In the
latter architecture, the macro functions are
directly implemented in the micro-assembly
language to provide a relatively high-level archi
tecture that implicitly contains parallelism of
multiple processors and nonnumeric processing
functions. These hierarchical architectures have
been provided in MUNAP for users who have various
system requirements. Several experiments have
been made to clarify the effect of the hierarchi
cal micro~architectures.

In this paper, we will describe each archi
tecture on such items as design objectives,
language features, processing, and experimental
results. Based on the results, we consider the
effect of multiple micro-architectures for provid
ing the user "easy to use" and "efficient" inter
faces, based on a multiprocessor computer with
innovative hardware organization. The experimen
tal results also show how many processors are
active on average when we apply multiple proces
sors to ordinary (not parallel) problems.

2. Basic Concepts
~rchi~res

of Hierarchical

2.1 Hierarchical micro-architectures

Micro-

At the initial stage of hardware development
for MUNAP, we were required to do hand-coding for
checking the hardware by running test micropro
grams. The experience taught us that it is very
difficult to describe a microprogram with multiple
nanoprograms. The nanoprogram level MIMD
feature makes the process more complicated. At
times, we had to write 28-bit microinstruction
with 4 40-bit (i.e. 160-bit) nanoinstructions to
specify the control for one machine cycle. Based
on the experience, we decided to develop an archi
tecture that is not only easy-to-use but effi
cient. To satisfy these contradictory require
ments, the hierarchical micro-architectures have
been developed.

Figure 1 shows the basic idea of hierarchical
micro-architectures. At the lowest level, the
multiple nanoinstruction sets are defined for mul
tiple processors. The meaning of a microinstruc
tion is partially determined by the nanoprograms.
The microinstruction set is defined on the nano
level architecture. This micro-level instruction
set, combined with the nanoinstruction sets,
represents the visible micro-architecture of the
machine (Level 0). On the Level 0 architecture,
we define a higher level, enhanced view of the
machine to make it easier to develop microprograms
by utilizing symbolic expressions for arithmetic
operations and sequencing, and providing the user
a facility for describing the combined micro-nano
operations in one statement (Level 1). The key
for defining the Level 1 architecture is that it
should not lose the flexibility for specifying
micro-nano combinations and the parallelism among
multiple processors. When we met a decision point
for designing the language, that ·is, easy-to-use
or efficient, we chose efficiency or prepared two
types of expressions, one for efficiency and the
other for ease of use for the same operation
(examples are in later section 3.2). At the next
level, a higher view is defined as a system
description language level (Level 2). This level
provides problem solving capabilities by including

Level 3
High-Level Language

System Description Language Level 2

Micro-assembly Language Level 1

Microinstruction Set

Level 0

I -Mii1t:;:Nanoiiistriiction -set - - I
I

DODD:
L- - - - - - - - - - - - - - - -'

Ji&• 1 Basic concepts of hierarchical micro-architectures.

479

I-bus

!-------- MPM

-z:.i_ MSTK x f'
'1I

l_ REG x 6 JI

s E N

1----
A M

MM x 8l1l·
_pr

--,

PU x 4

~ u
F

D-bus KB o u} S-bus

(16-bit)

K D cu}

~
~

t== H: FL R}1

+-
-{IP R 1 l--joPRl_

Fig. 2 MUN AP hardware organization.

0-bus
(64-bit)

I

' I

l

~!<-f---

several data types, operators, and functions, as
in usual system description languages [6].
Further, the tagged architecture is defined to aid
the user's debugging process and realizing dynamic
data type transformation. An additional layer to
be considered is derived from the varieties of
user specialties that may surround the system
(Level 3). By using the Level 2 facilities, we
can describe a high level language processor, such
as the PASCAL compiler for Level 3.

2.2 Hardware organization

The basic hardware organization of MUNAP,
that supports the above architecture, is outlined
here along with the basic micro-nano interaction
mechanism, and some software and hardware support
systems, developed on the console processor of
MUNAP. Figure 2 outlines the data flow of MUNAP.
There are one mJcroprogram memory (MPM) and four
nanoprogram memories (NPM) within four identically
constructed processor units (PU). A 28-bit
microinstruction ('11) simultaneously drives
several nanoprogram streams in the four 16-bit

processor units. A 40-bit nanoinstruction (nI)
has a 1-bit field to specify the end of a nanopro
gram at each execution step. When all the
nanoprograms end, the next microinstruction is
activated. Since the nanoprogram memory is also
reloadable as the microprogram memory, this allows
the user to specify any combination of nanoin
structions in multiprocessor units.

Several hardware units are distributed among
the microprogram level and nanoprogram level. The
microprogram-controlled units are the four levels
of 16-number, 4-bit segment shuffle exchange net
work (SEN) with exchange and broadcast cells for
interconnection between processors and main
memories and for data permutation (7, 8], and the
8 banks of main memory modules (MM) with address
modifier (AM) for variable length word access and
two dimensional table access. The nanoprogram
controlled units are arithmetic and logic unit
(ALU), bit operation unit (BOU) for bit count, bit
test and priority encode, and field division and
concatenation unit (DCU). The other units include
the micro stacks (MSTK) and general registers
(REG) at the micro level, and the register file
(RF), scratchpad memory (SPM), counter (C), flag
register (FLR), and port registers (IPR and OPR)
at the multi-nano level.

The ECLIPSE S/130 minicomputer is attached to
MUNAP as a console processor. It allows the user
to read/write the content of MUNAP facilities and
start/stop the microprograms. The loader of two
level microprograms and the evaluater for getting
the run-time data are also available on the
ECLIPSE. MUNAP has been designed and constructed
with about 2500 !C's at our laboratory. For the
detail of MUNAP organization, see [4].

In the following sections, we will concen
trate our discussion on the design objectives and
the language processing for Levels 1 and 2. The
experimental results are also shown to verify the
effectiveness of the design.

~· Micro-assembly Language Level Architecture

3.1 Design objectives

In order to obtain an efficient microprogram,
allowing the user to utilize the hardware
features, the register-transfer-level language has
been designed and implemented [3]. (The later
Figure 5(b) shows a sample description.) The
language features are summarized in the following
two types:

(!) Description of two-level microprograms: Basi
cally, the user can describe any combination of a
microinstruction and multinanoprogram, activated
by the microinstruction, in order to efficiently
make use of the flexibility of two-level micropro
grams. The microprogram and nanoprograms are
described in a sequence and distinguished by
indentation. At this level, the hardware func
tions are uniform and frequently used functions
may be described in one statement without being
aware of the operations of elementary micro- and
nano-instructions. The following Examples 1 and 2

illustrate the uniformity and
description, respectively.

one statement

480

(Example 1) *IF POS2 = 1 THEN GOTO LO;

At the Level O, there is no flag that indi
cates the data is positive. This is to avoid
the redundancy of hardware that has test
functions for zero and negative data. How
ever, this causes inconvenience for the user.
The virtual flag, named POS, is defined at
the Level 1 to make the test functions uni
form.

(Example 2) SPM 0,1(5) :=RF 2,3(6);

The contents of register file RF(6) are read
in parallel from processor units 2 and 3, and
sent to SPM in processors 0 and 1 through the
shuffle exchange network (SEN). This
statement is decomposed into 1 microinstruc
tion and 4 nanoinstructions as described
later.

(2) Description of parallel processing: The
parallel processing-Of MUNAP is divided into three
categories: (i) microinstruction and multiple
nanoinstructions are tightly coupled to perform a
single task; (ii) SIMD operation, in which multi
ple PU's do the same operation; and (iii) MIMD
operation. Example 2 is an example of (i).
Although the MIMD operation should be described in
several statements, the SIMD operation may be
described in one statement. Examples 3 and 4 show
the examples for MIMD and SIMD operations, respec
tively.

(Example 3) SPMO(A) := RFO(B) <+> l;
SPMl(A) := RFl(B) (+) 2;
SPM2(A) := RF2(B) (+) 3;

The statements represent the different (i.e.,
MIMD) operations in PU O, 1, and 2.

(Example 4) SPM O,l,2(A) :=RF O,l,2(B) <+> 4;

This statement implies parallel additions in
the PU O, 1, and 2 by three nanoinstructions.

3.2 Decomposition into two-level microprograms

The language processor has been developed in
PL/I consisting of 6200 statements. The major
features of the translation are the following.

1) divide a micro-nano combined statement into a
microinstruction and nanoinstructions, and
assign the nanoinstructions to appropriate
PU's;

2) extend a statement for multiple PU's to
several statements and assign them to
appropriate PU's; and

3) optimize the two-level mic reprograms.

We will illustrate about 1) and 2) by using the
sample translations. The optimization conditions
and its implementation issue are found in [3].

(Example 5) Translation of the Example
statement as an example of feature 1).

To explain the translation process, the
mechanism for reflecting the parallel test
results in multiple processors to the micro
level sequencing is shown in Figure 3. In
each PU, a nanoinstruction selects 2 flags
from the 32-bit flag register (FLR), does
logical operations (fO) on the 2 flags, and
sets the result to the TEST flag for each PU.
Another microinstruction does logical opera
tions (fl) on the 4-bit TEST flag, and the
result is used for a branch condition at the
microprogram level. Thus, the IF statement
of Example 1 is decomposed as follows:

m: IF TEST2
n2: IF NEG2

THEN GOTO LO;
NOR DZ2 = 1 THEN SET TEST2;

Notice that m represents microinstruction and
ni represents nanoinstruction of PUi. We
show the contents of each object micro- or
nano-instruction not in a bit pattern format
but in the statement format to aid the reada
bility. Notice also that n2 is executed
before m according to the timing constraints
[4]. Thus, the "negative or" operation (NOR)
for the negative flag (NEG) and zero flag
(DZ) of PU2 realizes the virtual positive
flag (POS).

(Example 6) Translation of the Example 2
statement as an example of features 1) and
2).

The statement is decomposed as follows.

m: OPR -> (32-bit shift by the SEN) -> IPR

n2: RF2(6) -> OPR2
n3: RF3(6) -> OPR3

nO: !PRO -> SPMO(S)
nl: IPRl -> SPMl(S)

The IPRi, OPRj represent the port registers
for input to PUi and output from PUj, respec
tively (see Figure 2). The nanoinstructions
n2 and n3 read out data from the register
file to the OPR of PU's 2 and 3. The
mkroinstruction m controls transfer from the
OPR 2,3 to the IPR 0,1, through the SEN. The
nO and nl write the data on the IPR 0,1 into
the scratchpad memory.

Notice that the system allows the user to use not
only the simple, one statement description, such
as Example 1, but also the direct description of
Level 0 operations, such as Example S. These
options are the answer to the contradictory
requirements of "ease of use"' and "efficiency" for
language design, as described in 2.1.

3. 3 Experimental results

We performed an experiment in order to evalu
ate the effectiveness of the Level 1 architecture
on such items as (1) the way in which the two
level microprograms are described by using micro
nano combined statements, (2) the way in which the
parallel operations are described by using micro
nano combined statements and parallel nanostate-

481

Micro
instruction
control

Nano-
ins true ti on
control

Branch condition

pu#o PU#! PU#2 PU#3

Parallel test by multiple processors.

ments, and what the degree of parallelism is, and
(3) the effectiveness of translation process for
supporting high-level description. Ten problems
were given to the members of our laboratory who
were knowledgable about the micro-assembly
language and support system on the console proces
sor. The results are shown in Table 1. Notice
that the capital letter in paranthesis in the fol
lowing description corresponds to an item in Table
1.

(.!._) Description of ~-level microprograms:
Microinstructions are described in micro
statements(B), which do not include nano-level
operations, and micro-nano statements(D). The
micro-nano statements(D) account for 33.1 % of the
total microinstructions(B+D) used in the micropro
grams. This significant usage demonstrates the
effectiveness of the micro-nano combined state
ments for describing tightly coupled micro-nano
operations.

(2) Description of parallel operations: The
description of parallel processing is 27.0 % of
total descriptions. (This percentage came from
the careful reading of all the object micropro
grams and not expricitly shown in Table 1.)

Table 1 Experiment results at micro-assembly language level

Microprogram Number

Number of Statements (A)

Micro l p - 0 n (B)

Nano 0 µ - 1 n
0 J1 - 2 D

0)l - 3 D

0 J1 - 4 D

Micro- l p - 1 n
Nano 1 p - 2 n

1 J1 - 3 D

lp-4n

(C)

(D)

Number of Nanoinstruc
tions after Decomposition

2 3 4 5 6 8 9 10

106 138 179 134 144 61 145 187 159 95

35 35 76 38 51 20 35 64 33 23

33 79 61 55 32 30 37 78 102 59
0 0 0 4 12 0 0 6 3 6

0 0 0 0 3 l 5 2 0 0
18 0 4 7 30 0 37 21 6 3

9
0
0
7

5 11 19 13
4 0 11 0
0 0 0 0
3 27 4 9

l 6 9 2
0 6 1 0
2 0 0
4 11 12 16

2
0
0
8

63 7 93 87 54 35 88 75 53 30 PUO
PUl
PU2
PU3

(E) 31 77 34 18 58 7 68 60 56 31

Total

28 41 34 17 55 7 69 4 7 43 23
28 3 35 20 54 10 51 45 40 21

(F) 150 128 196 142 221 59 276 227 192 105

p: microinstruction
n: nanoinstruction

According to the classification of 3.1 (2), we can
classify them into three categories: (i) micro
nano combined statements (33.3 %), (ii) parallel
nano statements (41.9 %), and (iii) different nano
statements (24.8 %). The item (i) corresponds to
(D) and items (ii) and (iii) are included in (C).
These results show the effectiveness of our
approach for describing parallel processing by the
micro-nano combined statements and the parallel
nano statements for the SIMD operations. The
items (i) and (ii) are further divided according
to the number of PUs used. In item (i), the ratio
between 1 micro - 2 nano (i.e., 1 microinstruction
activates 2 PUs at the same time), 1 micro 3
nano, and 1 micro - 4 nano is 7:1:34 (see (D)).
In item (ii), the ratio between 2 nano, 3 nano,
and 4 nano is 3:1:10. These results show that 4
PUs are effectively utilized for various problems.

(3) Translation of two-level microprograms: The
nUmber of nanoinstructions(F) after decomposition
is 2.3 times that of explicitly described
nanoinstructions(C). This is due to (i) the
implicit description in the micro-nano combined
statements, and (ii) the parallel nano statements
that allow the user to describe parallel opera
tions in one statement. These results show the
effect of high-level description at Level 1. The
item (E), the number of nanoinstructions for each
PU after decomposition, shows the locality of mul
tiple processor usage. In some problems, for
example, microprograms 2, 3, 4, and 6, the local
ity is evident.

~· System Description Language Level Architecture

4.1 Design objectives and language features

The micro-assembly language has provided the
relatively high-level micro-architecture to the
user. However, it is still difficult to describe
large, utility programs or application programs in
such a language.

The
designing
(MSDL):

following objectives are defined for
the MUNAP System Description Language

(1) Definition of high-level architecture: On
the Level 1 architecture, we defined a rich set of
data types, operators, and functions. Included
are, in particular, data types of two dimensional
array and structure, control statements of IF,
WHILE, FOR, and SWITCH, opeartors of data exchange
and concatenate, and functions for bit and string
operations.

(~) Utilization of hardware features: To utilize
the hardware features of MUNAP, we represent some
of them in the language. Examples are string
functions for nonnumeric function units such as
BOU and DCU, and shift and exchange operators for
the SEN. Some of the data types, such as flag,
are also represented. This is a compromise
between the high-level, problem-oriented architec
ture and low level hardware organizations.

(1) Tagged architecture: The goals of an effec
tive computer architecture are not only the

482

efficient processing of large amounts of data but
also the enhancement of the debugging process and
the enhancement of reliability of the computing
system [S, 9]. Higher processing capability,
obtained by the parallel processing, should be
applied not only for processing large amounts of
data at high speed but also for improving the user
interface by semantic checking during program exe
cution. To implement these concepts at the system
description level, we designed the tagged archi
tecture. This architecture is expected to provide
the facilities for (i) detecting several kinds of
errors at run time such as refering to an unas
signed data value, and (ii) automatically
transforming the data types of operands. These
two items aid the development process of programs.

4.2 Parallel processing of MUNAP System Descrip
tion Language (MSDL)

Basically, the source program written in MSDL is
translated into an intermediate form by the host
processor ECLIPSE, and then interpretively exe
cuted by MUNAP. In order to make u~e of the MUNAP
micro-architecture features, the intermediate
language has one to one correspondence with the
MSDL source statement. The translator and the
interpreter are described in the ECLIPSE assembly
language and the MUNAP micro-assembly language
(i.e.,the Level 1 language), respectively. The
interpreter consists of 3.2 K microinstructions
and 7.6 K (1.9 K for each PU) nanoinstructions.

We will concentrate our discussions on the
processing features supported by the parallelism
and nonnumeric functions of MUNAP. For the detail
of intermediate language formats and the process
ing, see [10].

(!) Parallel processing for operators: The arith
metic and logical operations are executed in
parallel in the four PUs for each operator of
MSDL. The type check for operands and, if neces
sary, the translation to an appropriate type are
also done dynamically. The information about the
result is stored in the tag field, as described
later.

As an example of parallel processing, we show the
outline of the shift operator microroutine that
does a N-bit circular shift on the 64-bit data.
As 4 bits are the smallest unit of the SEN opera
tion, the SEN shifts the data 4 x D4 (D4 = N div
4) bits in one machine cycle. Then, the ALU
shifts it M4 (M4 = N mod 4) bits, one bit by one
bit. The use of the SEN reduces the number of
machine cycles from 31.S to 2.5 on the average.
This example shows not only the enhancement of
processing by parallelism but also the provision
of a uniform function (in this case, shift) to the
user. If we use the function at the micro
assembly language level, we must directly control
the SEN and the ALU shifter to get appropriate
results.

(2) Parallel processing of string functions: The
string functions are executed by using the bit
count and priority encode functions of the bit
operat'ion unit (BOU), field extraction and embed-

ding functions of the divide and concatenate unit
(DCU) in the four processor units, and the shift
and broadcast functions of the SEN. For example,
a bit string extraction function BSUBST(BIT, POS,
N) extracts N-bit data from the bit position of
POS-bit of 64-bit variable BIT. To do this opera
tion, this routine first gets the data from 8
banks of MM to register file (RF) in 4 PUs in
parallel. Then, the data is shifted (POS 1)
bits by using the SEN and the ALU shifter. After
computing i (= N div 16) and j (= N mod 16), the
data is concatenated with 0 at the (j+l)-bit at
PUi, and is stored into 8 banks of MM in parallel.

This example shows the difficulty and tediousness
of handling the multiple processing units, espe
cially if they have some specific features, such
as nonnumeric processing functions. These func
tions provide the user a high-level but efficient
interface by doing tedious and, sometimes, tricky
operations for utilizing the parallelism of the
micro-architectures instead of the user.

(3) Implementation of tagged architecture: Each
variable in MSDL haS-26-bit tag field as shown in
Figure 4. The check points are divided into two
major parts: (a) checks at the fetch and operand
access phase, and (b) checks in the execution
phase. The checks for item (a) include: (i) sys
tem variable error (check the range of system
variables such as intermediate language instruc
tion counter), (ii) parameter error (check the
number, attribute, and order of formal parameters
for procedure call instruction), and (iii) access
error (check if the MM and SPM addresses point to
the user variable area, the operand value is
defined, and the index of array is within the
correct range). The checks for item (b) depend on
the content of processing. In the arithmetic
operations, for example, overflow, underflow, and
division by 0 are checked. In both (a) and (b),
the BOU and DCU functions ease the reference to
the tag, which is divided into several fields.

These checks may seem to be redundant. However,
it not only enhances the user interface but also
checks erroneous actions caused by incorrect input
data. Further, the tagged architecture is made
feasible by fast parallel processing of multiple
processors.

4.3 Experimental results

To evaluate the effectiveness of the system
description language level architecture, we per
formed an experiment. Table 2 shows the static
information about the MSDL interpreter. That is,
for each function, the number of microstatements
(M), the number of nanostatements (N), the number
of micro-nano combined statements (MN) in micro-

• 4 8 10

Attribute Capacity Overflow/ Define/ Number of
Underflow Refer references

* bit length

Fig. 4 Tagged data structure.

483

Table Static data from interpreter

Function of Micro Nano Micro- Active
Module (M) (N) Nano (MN) PUs

Control

Main 2 3 1.80
In! t ial ize 1 20 7 3. 77
Fetch Instr. 2 13 21 2. 66
New Code 10 19 41 !. 79
Operand Access 15.25 21 22 .25 1.64
Decode 24. 75 1.50 2.50 J.13

Operators

Arithmetic 6 .07 8.93 15. 66 2.09
Logical 2 5 4 2. 56
Shift 13 20 .16 45 .23 1.92
Exchange 10 11 15 2 .23

Express ion 32 6.33 18. 67 J.95

Statements

Procedure 16 14.50 25.50 J.69
IF 2 1.30 3.33 I.SO
GOTO 6 16 6 1.58
FOR 6.25 12 10.6Q 2 .19
WHILE 4 7 .67 10.33 1.86

String Fune.

Bit 12 JO 43. 75 J.90

Character 9.75 10 37 .25 2.21

Subroutines 5.54 4 .67 9 .29 2 .12

Average 9.05 8. 7J 16. 66 2.00

Table 3 Processing time ratio for tag processing

Type Type Tag Result

Check Transform Create Set

Integer 28.24 46.56 14. so JO. 69

Real 31.71 40.65 16 .26 11.38

unit: %

assembly
activated
following

language, and the average PU numbers
in each machine cycle are given. The
features are observed.

(1) The numbers M, N, and MN represent the
numbers of statements required for realizing
the system description language level (Level
2) by using the assembly level language
(Level 1).

(2) From 1.13 to 3.77 PUs are used for each
machine cycle in microprogram modules. The
average number of active PUs for all the
micro-routines in the interpreter is 2.00.
Further, as a result of optimization, we have
improved it to 2.19. The numbers for the
control part varies greatly. However, in the
routines for operators and functions, the
number of active PUs are around 2 •

Further, the results of dynamic data are summar
ized as follows: (detailed data is found in [10].)

(3) The ratio of micro (M), nano (N), and micro
nano combined (MN) are 19:23:58. This shows
the effective use of Level 1 micro-nano com
bined statements at Level 2.

(4) The average number of dynamically active PUs
is 2.14.

(5) The overhead caused by error checks and
related operations is classified into 4
categories as shown in Table 3. Type check
and type transformation are major parts.

Items (2) and (4) provide a guideline of how many
processors are active on average when we apply
multiple processors to ordinary problems (not spe
cial parallel problems, such as array processing).

5. Effects of Architecture Hierarchies

The effects of architecture hierarchies are
illustrated in Figure 5, where a sample bit count
function is described at three levels. At the
lowest level, we must describe the microprograms
in bit pattern format for multiple processors
(Figure 5(c)). At the highest, system description
language level, it may be written as a single
function call(Figure 5(a)). At the middle level,
the microprogram is written in register transfer
language (Figure 5(b)).

To make the difference clear, we summarize it
in Table 4. The following items are observed from
the table.

(1) The higher the level of language is, the
richer the facility is. This can be general
ized to all the aspects of language, such as
the data structure, arithmetic and logical
operators, and control functions.

(2) At the lowest level of Level 0, the user must
take care of the parallelism and two-level
control scheme of the bare machine. At Level
1, the frequently used micro-nano combina
tions, and the instructions with the SIMD
feature, may be described in one statement.
But these features do not completely hide the
hardware features, such as parallelism among
multiple processors and two-levels of con
trol, from the user. At Level 2, such
hardware features are almost hidden from the
user, and problem-oriented functions are pro
vided.

(3) The utilization of multiple processor paral
lelism does not change between Levels 0 and
1, because they have the same description
capability. However, it slightly decreases
from Level 1 to Level 2, in exchange for
independence of parallelism recognition by
the user.

(4) The error check function is only provided at
Level 2 to aid the programming process and
enhance the system reliability.

(5) The extensibility of the language differs
from Levels 1 and 2. The extensibility at
Level 1 corresponds to the extensibility of
hardware such as the addition of a new
microinstruction field or micro-order. The
Level 2 extension is the addition of new
functional modules.

484

BCT(BIT, 1)

(a) Level 2

ST-NO. STATEMENT

1 MICRO MAIN BIT COUNT (100);
2 EXT NEXT (2);
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Ll:

END;

*;
RF(2) := 0;
CXO := O;

AM MODE MB (X,H) PU(3-0);
OPRO := RFO(l) <+> CXO;

SPM(lO) := MM;
RF(3) := (BCT,l) SPM(lO);
RF(2) := RF(2) (+) RF(3) CXO+l;

*IF CXO MOD4 () 0 THEN GOTO Ll;
IPR := (SRL16) QPR;

OPRO := RF0(2);
OPRl := RF! (2) <+> IPRl;
OPR2 := RF2 (2) (+> IPR2;
RF3(4) := RF3(2) <+> IPR3;

GOTO NEXT;

(b) Level i*

Micro
Address

100
101
102

105

* see [41 for comments

28-bit microinstructions

Nano
Address

50
51

57

'-
-4-0--b_i_t_n_a_n_o_in_s_t_r_u_c-...... I PU 11111 PU 11211 PU 1131 tions for PUllO

(c) Level 0

Fig. 5 Sample bit count programs at Levels 2, 1, and 0.

The above comparison shows that we have defined a
reasonable interface as a compromise between the
user's requirements and the multiprocessor system
throughput.

6. Concluding Remarks

We have developed hierarchical micro
architectures for a two-level microprogrammed mul
tiprocessor computer. The results from the
development of language processors and some exper
iments show the effectiveness of such architec
tures. These results will be especially useful
for defining a "easy to use" but "efficient to
implement" architecture on a machine with innova
tive hardware organization. As the hardware cost
decreases it becomes feasible to construct such
machines in many application areas. Thus, the need
for defining a good architecture on the machine
will increase.

The experimental results also show the impor
tant guideline that about 2 of 4 multiple proces-

Table 4 Comparison among three microarchitecture levels

Data Structure

Ari thmet 1c Ops.•
and Test

Control

Extensibil lty

Architectural Features

Parallelism

Two-Level
Microprograms

Unifomlty

Facilities for
Program Test

Level 0

Integer (16) 1 Character,
Boolean

Functions of bare
hardware

Branch, Branch on
condition

Equals that of hardware

Direct descrip. by users

Direct descrip. by users

Limited by avoidance of
hardware redundancy

Debugger to run and
monitor microprograms

Level 1

Integer (16), Character
Boolean

Level 0 plus combined ops.
for transfer and test

IF, GOTO, CASE that correspond
to the LO functions.

New microinstr., Micro instr.
field 1 Micro-order

Single statement for the SIMD
ops.

Single st. for the tightly
coupled micro-nano ops.

Uniformity for some test ops.

Debugger to run and monitor
m le roprog rams

Level 2

Integer (16,32,64), Real (32,64),
Character, Boolean

Problem-oriented operators and
functions

IF, WHILE, FOR, SWITCH in
problem-oriented format

New microprogram module

User independent feature

User independent feature

Uniformity for all the functions

Tagged arc hi tee ture

*ops.: opeartions

sor units are activated on an average, even if the
system is applied to ordinary (not parallel) prob
lems. This means that in most machine cycles mul
tiple (i.e., from 2 to 4) processors are activated
in parallel. The experienced microprogrammer
efforts for exploiting inherent parallelism within
the problems yield such results.

Our future problem is to develop the applica
tion programs, such as a database system, in the
system description language and verify the effec
tiveness of the architecture from the viewpoints
of 1) parallelism utilization of multiple proces
sors and nonnumeric units distributed under two
levels of control and 2) effectiveness of the
tagged architecture for software development.

Acknowledgment:
appreciation to
for their helpful

We would like to express our
Alan R. Hevner and the reviewers
comments.

REFERENCES

[l] Baba, T, Ishikawa, K., Okuda, K., and
Kobayashi, H.: "MUNAP - A Two-Level Micropro
grammed Multiprocessor Architecture for Non
numeric Processing," Proc. IFIP Congress 80,
(Oct. 1980), pp. 169-1~

[2] Baba, T., and Hagiwara, H.: "The MPG System:
A Machine-Independent Efficient Microprogram
Generator," IEEE Trans. Comput., (June 1981),
pp.373-395. -- --- ----

[3] Baba, T., H~shimoto, N., Yamazaki, K, and

485

Okuda, K.: "Microprogramming Support System
for a Two-Level Microprogrammed Computer
MUNAP," Trans. IECE Japan, (Oct. 1982), pp.
1265-1272-.--

[4] Baba, T., Ishikawa, K., and Okuda, K.: "A
Two-Level Microprogrammed Multiprocessor Com
puter with Nonnumeric Functions," IEEE Trans.
Comput., (Dec. 1982), pp. 1142-115~ --

[5] Denning, P. J.: "Why Not Innovations in Com
puter Architecture?," Computer Architecture
News, (April 1980), pp. 4-7.

[6] Kernigham, B. W. and Ritchie, D. M.: The C
Programming Language, Prent ice-Hall, Inc.,

[7]

(1978).

Lang, T. and Stone, H. S.: "A Shuffle
Exchange Network with Simplified Control,"
IEEE Trans. Comput., (Jan. 1976), pp. 55-65.

[8] Lawrie, D. H.: "Access and Alignment of Data
in an Array Processor, " IEEE Trans, Comput.,
(Dec. 1975), pp. 1145-115-.S:- --

[9] Myers, G. J.: Advances in Computer Architec
ture, New York: Wiley, (1978).

[10] Yamazaki, K., Hashimoto, N., Kanai, H., Baba,
T., Okuda, K., and Hashimoto, K.: A System
Description Language for a Two-Level
Microprogrmmed Computer MUNAP: MSDL, Tech.
Rep. of IECE Japan, EC82-60, (Dec. 1982).

ALTERNATIVE DATA S11lUCTURES FOR LISTS
IN ASSOCIATIVE DEVICES

J. L. Potter
Department of Mathematical Sciences

Kent State University
Kent, Ohio 44242

Abstract - If the full power of parallel
associative devices are to be utilized,
alternative implementations of standard logical
data structures must be developed. This paper
presents three methods for implementing lists
suitable for associative memories and processors.

The associative tree technique is based on
the logical tree structure implementation of a
list. Its main advantage is that storage
allocation and release are straight forward and
garbage collection avoided. The CDAR encoding
technique stores the tokens of the list with a
code that encodes their position. This technique
supports sublist matching since it allows sny CDAR
code range to be searched for in constant time.
The EPS method is similar to the CDAR code method.
The main difference is that the position
information is more efficiently encoded allowing
more compact storage of long lists but requiring
slightly more complex searching. All three of
these techniques appear well suited for
implementing list based languages such as LISP and
PROLOG on associative processors with the
potential of substantially improving program
execution speeds.

Introduction

The Symbolic or S-expression is a
parenthesised list of atomic symbols which forms
the basic data structure for many AI oriented
languages such as PROLOG and LISP. In
conventional computers, the lists are logically
implemented as tree structures which in turn are
normally physically implemented with linked lists.
The use of lists in AI programming research is
popular because it supports symbolic manipulation
which allows complex algorithms to be programmed
relatively easily. Unfortunately, programs
written using lists for data and program storage
tend to result in slow program execution when
processing data bases of non-trivial sizes. If
LISP, PROLOG and other high level languages using
lists are to be used in practical applications
with large data bases, new faster alternative data
structures must be developed.

Several approaches are possible to address
the problem of slow execution of list based
languages such as LISP and PROLOG. One approach
is to optimize the code of a conventional computer
for list functions [2],[S]. Another is to
optimize the linked list structure [3]. Both of
these approaches speed up execution but still
suffer from the inherent drawback of linked list
memory allocation - garbage collection. The time
for garbage collection can be dramatically reduced

0190-3918/83/0000/0486$01.00 © 1983 IEEE 486

by using Sth generation type devices such as
associative processors and memories to implement
conventional linked list storage [4]. However,
this approach does not fully take advantage of the
parallel search capability of these devices.

This paper discusses three alternative
approaches to conventional linked list structures
suitable for list implementation in parallel
associative memories and computers.

Traditional Storage

The binary tree representation of the list (A
(B C) D) is shown in Figure 2-1. Figure 2-2 shows

1------1
I A I • I
1-----\I

\
1---1
I . I . I
11---\I
I \

1------1 1-------1
I B I • I I D lnill
1-----\I 1-----1

\
1------1
I c lnnl
1------1

Figure 2-1 Tree Representation of (A (B C) D)

1--1
I .---1-------- I A I
1------1 1-1
I .---1-1
-------- I

----1---. I<-
I 1------1
I 1-1---. I
I I -------- 1-1
I l>I .---1--------1 D I
I 1-----1 1-1
I I nu I
I -------- 1--1
1-->I .---1-------->I B I

1------1 1-1
1-1---. I
I ------ 1--1
l>I .---1-------->I c I

1------1 1--1
I nil I

Figure 2-2 Link List Implementation of (A (B C) D)

a typical linked list implementation. Many texts
have been written explaining LISP and its S
expression implementations [7]. This section will
simply review concepts important to the following
discussion. Readers acquainted with LISP and list
processing concepts may wish to skip this section.

In LISP the two basic functions CAR and CDR
allow the programmer to traverse binary trees or
equivalently to generate sublists from lists.
Basicly a CAR is an instruction to traverse to the
left subtree from a node while a CDR causes a
traverse to the right subtree. The equivalent
actions in list notation for a CAR is the sublist
obtained by extracting the left most element of
the list. The CDR is the sublist composed of the
remainder of the list after the first element has
been extracted. Thus the CAR of the list (A (B C)
D) is A. While the CDR is ((BC) D). CAR and CDR
functions are frequently chained together. The
chaining is abbreviated by writing simply A or D
in sequence to represent CAR or CDR and then
adding a single C and R as in CADDAR. The order
of application is from right to left (inner most
function call to outer most).

CONS is
(construction)
inserts a new
list. Thus
(BC) D).

another list manipulation function
and is used to build lists. It

element at the beginning of a
the CONS of A and ((BC) D) is (A

Associative Program Design Language (APDL)

In the following sections, APDL will be used
for algorithm descriptions implemented in
associative memories. APDL reflects the fact that
loop information is vital in a sequential computer
program, but in an associative memory, it is
redundant and consequently not needed. Thus the
statement:

FIELDj(*) := FIELDj(*)+CONSTANT

is used in place of a loop. The • indicates that
the statement is executed in parallel on every
enabled word in the associative memory [6].

The responses to a parallel search can be
processed sequentially by using the NEXT (get next
responder index) and EOR (end of responders)
functions and a - index variable notation. If
there are no responders, i.e. all elements of the
variable are false, EOR(RESPOND(*)) will be true
and RESPOND(•)- will be undefined. If
EOR(RESPOND(*)) is false, then NEXT(RESPOND(*))
will assign the internal memory index of the next
true word recorded by RESPOND(•) to RESPOND(•)
and sets the value for that word to false.
RESPOND(•)- can be used as an 'index' variable in
place of • in any associative field reference.

In general, any field can be restricted to
the responders of a parallel search within the
scope of an IF statement. For example,

IF FIELDi(*) = 'NAJIE' 1HFN FIELDj(•) := 'value'

modifies only those elements of FIELDj whose
corresponding elements of FIELDi equal NAME.

In an associative memory, storage allocation
is easily handled by defining one of the fields to
be a STATUS field. Thus if a new word is needed,
its index is obtained by the code:

AVAIL(*) := STATUS(*) = 'IDLE'
NEXT(AVAIL(*))
INDEX := AVAIL(*)
STATUS(INDEX) := 'BUSY'

Conversely, when a word is no longer needed, it is
returned to the available storage category simply
by writing IDLE in its STATUS field.

In the following sections, associative code
will be used for algorithm descriptions
implemented in associative memories. All
associative statements are easily understood if it
is kept in mind that a • index is equivalent in a
sequential computer to a loop through all words in
the memory.

Associative Structures

Associative Trees

Figure 4-1 illustrates a straight forward
implementation of the traditional tree
representation of a list in an associative memory.
The primary difference in this implementation is
that pointers are replaced by a node name or ID.
Each link record contains its own ID and as such
is 'relocatable.' That is, any node record can be
stored in any memory location (word). In figure
4-1, the data is sorted on the ID field for ease
of presentation and understanding. In an actual
associative memory, the 9 records shown could be
in any order in any of the memory's words. The
actual configuration would be a function of the
values in the Status Field at the time the entries
were made.

In this associative memory implementation of
a tree data structure, a list or sublist is
designated by the ID of the root node of the
logical tree structure. Thus the list (A (B C) D)
is designated by ID #1.

The implementation shown stores a pointer to
the atom in the left cell instead of the atom
itself, thus the CAR function is simply
implemented by chaining on the left child node ID.
The CAR of ID #1 is ID #6 which is the storage
node for atom 'A'. The·CDR of ID #1 is ID #2
which is the node ID that designates the list ((B
C) D). List construction (CONS) is accomplished
by generating a new entry in any available word of
memory (i.e. idle status) with the appropriate
node IDs. Thus CONS of A, node ID #6, and ((BC)
D), node ID #2 would generate the following and
return node ID #m.

487

l---1----1------1----1---1
IBlml NI 6 I 2 I
1-------------------~-------~-I

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

n+O

n+l

n+2

n+3

n+4

n+5

n+6

n+7

n+8

STATUS ID ENTRY
FIELD FIELD TYPE

FIELD

NAME
FIELD

l------l~----1----1---------------1
I I I ATOM I LEFT I RIGHT I
I I 1----1 CHILD I CHILD I
I I INODEI I I
l------l--~--1----1---------------1
I B I 1 I NI 6 I 2 I
l------1------1----1-------1---~~I
I B I 2 I NI 3 I 4 I
1------1------1----1---~--l---~--I
I BI 3 I NI 7 I 5 I
l------l----~1-~-1-------1-------1
I B I 4 I N I s I nil I
1------1------1~1---~~l-------I
I B I 5 I N I 9 I nil I
1------1------1----1--~---l-------I
I B I 6 I A I A I
1------1------1----1-------------~I
I B I 7 I A I B I
1------1------1----1-------~----~I
I B I 8 I A I D I
1------1------1----1-----~--------I
I B I 9 I A I c I
1------1------1----1-----------~--I

Figure 4-1 AssociL:t:.ive Linked List

Note that with this type of memory
organization, the CAR, CDR and CONS functions are
as easy to implement as with conventional linked
lists. The primary difference is that this
organization is best suited for associative
memories since the data is accessed via a key
(node ID in this case) and not by a memory
address. Since associative memories can access
the entire memory in the same amount of time as
one word, the data does not have to be organized
(i.e. sorted) to achieve retrieval efficiency.
When records (i.e. node entries) are no longer
needed, the status field of the word is simply
marked idle and is thus available for reuse by the
next memory access seeking an idle word. Complex
garbage collection is not needed.

The associative tree organiz.ation uses
associative memories but still requires that
chains of CAR and CDR functions (henceforth
abbreviated CDAR functions) be executed
sequentially. Another data representation shown
in Figure 5-1 allows any sublist which can be
defined by ~ CDAR function to be searched for
directly and in parallel. Thus with this
representation, an· CDAR functions can be executed
in a constant amount of time.

This storage technique uses a CDAR code
illustrated in Figure 5-1 desJgned so that numeric
range searches can be used to search for sublists.
Thus if the list ((AB (CD) (~(E) F))) G) is to
be processed by the function CDDAR, the function
string is first converted into the CDAR code 011.
Then, the lower bound of the search is obtained by
adding zero fill, the upper bound by adding one
fill. Thus in this example, the CDDAR of the list

Let O=CAR, l=CDR, left justify with 1 fill
(order of ·application is left to right)

then LIST= ((AB (CD) (((E) F))) G) is

LIST CDAR
NAME CODE ATOM

LIST 0011111111111111 A
LIST 0101111111111111 B
LIST 0110011111111111 c
LIST 0110101111111111 D
LIST 0111000011111111 E
LIST 0111001011111111 F
LIST 1011111111111111 G

Figure 5-1 CDAR Encoding

shown in Figure 5-1 is obtained by selecting all
elements greater than or equal to 011000000000000
and less than or equal to 0111111111111111. These
elements, C, D, E, and F, form the sublist ((CD)
(((E)F))).

Figure 5-2 gives the algorithm for generating
the CDAR code for a list from list input. For
simplicity, it is assumed that the input string
has been scanned and the items have been broken
out and stored in the associative memory field
ITEM in a manner such that index I will reference
them in the proper order.

Basically, the algorithm contains a scan and
a generate procedure. The scan procedure
identifies the next item in the list. If the
item is a left parenthesis, the level of the tree
is incremented by one and the number of nodes on
that level is initialized to zero. If the item is
an atom, the appropriate CDAR code is generated
and associated with the atom. After the code and
atom have been associated, the count of nodes for
the current level is incremented. If the item is
a right parenthesis, the appropriate CADR code is
generated and associated with a 'nil' symbol (This
marks the end of a substring). The level of the
tree is decremented and the number of nodes on the
lower level is incremented.

The CDAR code generation function simply
generates a string of code for each level. The
code consists of 1 one for each node on a level
terminated on the right with a zero. The codes
from the levels are concatenated from right to
left (highest level to lowest) with one fill on
the right.

488

The CAR and CDR functions are of course,
special cases of the more general CDAR function;
The CONS function is equally easy to implement
with the CDAR code approach. If the list l.l
(C (D) E), stored in memory as shown in Figure 5-
3a, is to be CONSed to the list (AB), Figure 5-
3b, the process is simply one of appending a zero
to the front (left) of the CDAR code for L2 = (A
B), appending a 1 to the front of the codes for
l.l; and changing the list name of l.l to L2 (See
Figure 5-3c). If a new list is being generated,
the elements of l.l and L2 would be copied before
modification and both list names would be changed.

PROCEDURE SCAN
TYPE

VAR

CDARRECORD = RECORD
CDARCODE: CODETYPE
ATOM: ATOMTYPE
LISlNAME: NAMETYPE
mm

CDARMEMORY: ARRAY[l •. m] OF CDARRECORD
NODECT: ARRAY[!. .n] OF INTF.GER
FUNCTION GENERATE
CONST

ACODE = 0
DCODE = 1

BF.GIN (• GENERATE •)
GENERATE := -1 (• SET TO ALL ONES •)
FOR K := LEVEL TO 1 DO

BF.GIN
GENERATE := RIGHTSHIFT(ACODE,GENERATE)

(• RIGHTSHIFT SHIFTS 'IRE SECOND ARGUMENT RIGHT
ONE BIT AND SHIFTS 'IRE FIRST ARGUMENT INTO
lHE LEFT MOST BIT •)

FOR L := NODECT(K) TO 1 DO
GENERATE := RIGHTSHIFT(DCODE,GENERATE)

END
END (* GENERATE •)
BF.GIN (• SCAN •)
LEVEL := 0
:r := 1
FOR I = 1 TO END! DO

CASE ITEM(!) OF
LEFTP:

BEGIN
LEVEL := LEVEL + 1
NODECT(LEVEL) ·= 0
END

ATOM:
BEGIN
CDARCODE(J) := GENERATE
ATOM(J) := ITEM(I)
LISlNAME(J) := NAME
:r := :r + 1
NODECT(LEVEL) := NODECT(LEVEL) + 1
END

RIGHTP:
BEGIN
CDARCODE(J) := GENERATE
ATOM(;J) := NIL
:r := :r + 1

END
END.

LEVEL : = LEVEL - 1
NODECT(LEVEL) := NODECT(LEVEL) + 1
END

Figure 5-2 CDAR Code Generation Algorithm

NAME CODE ATOM NAME CODE ATOM NAME CODE ATOM

L1 01111 c
L1 10011 D
L1 11011 E

a - List
(C (D) E)

L2 01111
L2 10111

b - List
(A B)

A
B

L2 00111
L2 01011
L2 10111
L2 11001
L2 11101

c - List
((A Bl C (D)

Figure 5-3 List Concatenation

A
B
c
D
E

E)

489

Explicit Parenthesis Storage

The Explicit Parenthesis Storage (EPS)
technique associates the list structure with the
atoms by explicitly saving the left and right
parenthesis. Figure 6-1 shows a typical EPS
associative record. The record contains the name
of the list, the name of the atom, the number of
left parenthesis in the list preceding the atom,
the number of right parenthesis preceding and
immediately following the atom and the position of
the atom in this list.

NUM NUM
LIST LEFT RIGHT POSITION
NAME ATOM PARAN PARAN NUMBER
FIELD FIELD FIELD FIELD FIELD
1~---l---~1~---1~---1--------1
I I I I I I
1-----1-----1-----1-----1--~----I

Figure 6-1 An EPS Record Format

The algorithm for generating an EPS
representation of a list is shown in Figure 6-2.
The algorithm is quite similar to the CDAR code
generation algorithm (Figure 5-2) except that the
left and right parenthesis counts (NLP and NRP
respectively) are saved as part of the data
directly. The algorithm is straight forward and
simply counts left and right parentheses as they
are encountered. However, since the right
parentheses count of an atom in position n
includes the right parentheses up to the atom in
position n+l, the calculation of the NRP values
lag behind one iteration. Thus the NRP value for
the last atom is stored after the entire list has
been processed. Figure 6-3 shows a list and its
EPS representation.

In this representation of a list, the list or
sublist of interest is delineated by specifying
the lowest and highest position number in the
list. Figure 6-4 and 6-5 give the algorithms for
the CAR and CDR functions respectively. These
algorithms assume that the global variables LOWEST
and HIGHEST delineate the list position numbers on
entry and they update the variables and adjust the
NLP and NRP values accordingly. The CAR is found
by setting the HIGHEST variable to the left most
atom (i.e. lowest position number) with sufficient
right parenthesis to balance the first atom in the
list. The CAR is obtained by finding the same
atom, but setting the LOWEST variable to the next
highest value. The remaining statements adjust
the NLP and NRP counters accordingly.

The CONS function is accomplished by adding
one to the left parentheses count of the elements
of the first argument and then adding the total
number of NLP, NRP and POSN of the first argument
to the NLP, NRP and POSN of the elements of the
second argument. Figure 6-6a, b and c give an
example. Figure 6-7 gives the algorithm.

LPCNT := 0
RPCNT := 0
J := 1
K := 1
FOR I := 1 TO ENDI DO
CASE ITEM(!) OF

LEFTP: LPCNT := LPCNT + 1
ATOM:

BEGIN
LISTNAME(J) := NAMEOFLIST
ATOM(J) := ITEM(!)
NLP(J) := LPCNT
(*DEFINE RANGE OF RP TO INCLUDE 0 *)
NRP(J-1) := RPCNT
POSN(J) := K
K := K + 1
J := J + 1
END

RIGHTP: RPCNT := RPCNT +l
END

END
NRP(J-1) · := RPCNT

Figure 6-2 List to BPS Transformation Algorithm

NUM NUM
LIST LEFT RIGHT POSITION

Figure

NAME ATOM PARAN PARAN NUMBER
FIELD FIELD FIELD FIELD FIELD

(NLP) (NRP) (POSN)

LISTC c 2 0 1
LISTC D 2 1 2
LISTC A 2 1 3
LISTC B 3 2 4
LISTC E 3 3 s

6-3 BPS Representation of ((C D)

BEGIN (* CAR *)

A (B) El

IF LOWEST <= POSN(*) AND POSN(*) <= HIGHEST THEN
HIGHEST := MINIMUM(POSN(*),NLP(*)-l<=NRP(*))

IF LOWEST = HIGHEST THEN
NRP(HIGHEST) :=NRP(HIGHEST) - 1

IF LOWEST <= POSN(*) AND POSN(*) <= HIGHEST THEN
NLP(*) := NLP(*) - 1

END (* CAR *)

Figure 6-4 CAR Algorithm for BPS

BEGIN (* CDR *)
LPCNT := NLP(LOWEST) - 1
IF LOWEST <= POSN(*) AND POSN(*) <= HIGHEST THEN

LOWEST := MINIMUM(POSN(*),NLP(*l-l<=NRP(*))
RPCNT := NRP(LOWEST)
LOWEST := LOWEST + 1
IF LOWEST <= POSN(*) AND POSN(*) >= HIGHEST THEN

BEGIN
NLP(*) := NLP(*) - LPCNT
NRP(*) := NRP(*) - RPCNT
END

END. (* CDR *)

Figure 6-5 CDR Algorithm for BPS

490

NUM NUM
LIST LEFT RIGHT POSITION
NAME ATOM PARAN PARAN NUMBER
FIELD FIELD FIELD FIELD FIELD

(NLP) (NRP) (POSN)

LIS TB c 1 0 1
LIS TB D 1 1 2

Figure 6-6a The BPS Representation of LISTB

NUM NUM
LIST LEFT RIGHT POSITION
NAME ATOM PARAN PARAN NUMBER
FIELD FIELD FIELD FIELD FIELD

(NLP) (NRP) (POSN)

LISTA A 1 0 1
LISTA B 2 1 2
LISTA E 2 2 3

Figure 6-6b The BPS Representation of LISTA

NUM NUM
LIST LEFT RIGHT POSITION
NAME ATOM PARAN PARAN NUMBER
FIELD FIELD FIELD FIELD FIELD

(NLP) (NRP) (POSN)

LISTC C
LISTC D
LISTC A
LISTC B
LISTC E

2
2
2
3
3

0
1
1
2
3

1
2
3
4
s

Figure 6-6c The BPS Representation
of (CONS LISTB LISTA)

PROCEDURE CONS(LOWESTB,HIGHESTB,LOWESTA,HIGHESTA)
BEGIN (* CONS *)
IF LOWESTB <= POSN(*) AND POSN(*)(=HIGHESTB THEN

NLP(*) := NLP(*)+l
IF LOWESTA <= POSN(*) AND POSN(*) <= HIGHESTA THEN

BEGIN
NLP(*) := NLP(*) + NLP(HIGHESTB)
NRP(*) := NRP(*) + NRP(HIGHESTB)
POSN(*):= POSN(*) + POSN(HIGHESTB)
END

END (* CONS *)

Figure 6-7 CONS Algorithm

Conclusion

Three different techniques of storing logical
list structures in associative devices for
efficient processing are described. Preliminary
analysis indicates considerable speed up in
pattern matching can be achieved if conventional
LISP and PROLOG implementations were to be
implemented. While this avenue should be
explored, it would appear that even greater speeds
are possible by implementing the searching
functions inherent in these languages at a more
direct level.

References

[1]. Aho, A. V. and M. J. Corasick, 'Efficient
String Matching: An Aid to Bibliographic
Search,' COMMUNICATIONS OF TIIE ACM, 18, 1975,
pp. 333-340.

[2]. Baker, Henry G.,'List Processing in Real Time
on a Serial Computer,' COMMUNICATIONS OF THE
ACM, April, 1978, pp. 280-294.

[3]. Bobrow, Daniel G. and Douglas W. Clark,
'Compact Encodings of List Structure,' ACM
TRANSACTIONS ON PROGRAMMING LANGUAGES AND
SYSTEMS, October, 1979, pp. 266-703.

491

[4]. Bonar, Jeffrey G. and Steven P. Levitan,
Real-time LISP Using Content Addressable
Memory,' IEEE, 1981, pp. 112-117.

[5]. Greenblat, R., LISP MACHINE PROGRESS REPORT,
AI Lab., M.I.T., Cambridge, Mass. memo 444,
August, 1977.

[6]. Potter, J. L., 'MPP Architecture
Programming' in MULTI-COMPUTERS AND
PROCESSING, K. Preston and L. Uhr,
Academic Press, 1982, pp.275-290.

and
IMAGE
eds.,

[7]. Weissman, C., LISP 1.5 PRIMER, Dickenson
Publishing Company, Inc., Belmont, California

DETERMINATION OF THE ROTATIONAL AND TRANSLATIONAL COMPONENTS OF A

FLOW FIELD USING A CONTENT ADDRESSABLE PARALLEL PROCESSOR

M. E. Steenstrup, D. T. Lawton, C. Weems

Department of Computer and Information Sciencel
University of Massachusetts at Amherst

Abstract

The realization of motion perception in artificial
systems will require highly parallel architectures. Here
we demonstrate the use of a Content Addressable Parallel
Processor (CA.PF) [1,2) as an effective means of quickly
and accurately decomposing a flow field into its rotational
and translational components [3] to recover the parameten
of sensor motion.

Organization of the CAPP

The CAPP is a VLSI-based Single Instmction Multiple
Data (SIMD) machine designed at the University of
Massachusetts [4]. It consists of a parallel pr~r
containing 512x512 cells and a central controller. The
central controller issues instructions to the parallel
processor, controls loading and unloading of data in the
parallel processor, and serves as an interface to the host
computer and to secondary storage devices. It broadcasts
data to the parallel processor bit serially, and the entire
memory may be bulk-loaded in one video frame time
(l/30 second). The central controller contains a set of
micro-coded subroutines in ROM for performing high-level
CAPP routines and a writeable control store for adding
microcode.

The parallel processor consists of an 8x8 array of
processing circuit boards and a set of boards which
control CAPP edge treatment. Each processor board, in
tum, consists of an 8x8 array of special purpose CAPP
IC chips plus random buffer logic. Each chip then
contains 64 cells, an instruction decoder, and some
miscellaneous logic. There are eight basic instruction
types recognized by the chip, each performed in parallel
by the constituent cells. Most instructions take one minor
cycle time (100 nanoseconds) to execute. Inter-cell
communication is bit serial and is accomplished by a
four-way (N, S, E, W) cell interconnect network, allowing
for three types of edge treatments: dead-edging, circular
wrap, and zig-zag wrap.

1. This research was supported by DARPA under Grant
N00014-82-K-0464.

0190-3918/83/0000/0492$01.00 © 1983 IEEE 492

Each unit cell consists of 64 bits of fully static
memory, four one-bit static "tag" registers A, B, X, and
Y, a static carry bit register Z, and an ALU which
continuously generates X NANO Y, X NOR Y, and X
+ Y + Z. Also, each cell contains logic for selecting a
data source (a register (excluding Z), memory, an ALU
function, broadcast data, or a neighboring cell (N, S, E,
or W)), possibly inverting the selected signal, and storing
it in a destination (a register or memory). The X
register is the main tag register. Its output is connected
to Some/None logic, indicating cell response, and to the
neighbor communication network. The A register controls
whether or not a cell is active. An inactive cell ignores
all but a small set of instructions broadcast by the central
controller. The Y register provides a secondary store for
tag bits, while the B register provides a secondary store
for activity bits.

Flow Field Decomposition Procedure

Our algorithm is an exhaustive search procedure which
uses a set of rotational and translational flow field
templates to find a component pair which can account
for the motion depicted in a given flow field. Currently,
1000 rotational templates and 200 translational templates
are used. These are generated from 100 axes which are
uniformly distributed with respect to a unit hemisphere,
and all pass through the origin of the sensor coordinate
system. Each flow field consists of 16x16 vectors and is
stored on a 2x2 square of chips consisting of 256 cells.
The 2x2 chip arrangement facilitates flow field addressing.
Each cell contains the horizontal and vertical components
of a flow \•ector, each specified with 10 bits of precision.

The algorithm consists of four basic steps.

(0) The rotational templates are loaded into the CAPP,
one template for each flow field location. Each flow
field location corresponds to one of the squares in the
CAPP diagrams shown in Figures 2a, 2b, and 2c. The
rotational templates need only be loaded once since they
are used in determining any flow field decomposition.

(1) A copy of the input flow field is loaded into each
flow field location in the CAPP. Figure la and lb show
two sample input fields, both produced by the same
motion and environment, except that Figure lb was
produced by adding random spike noise to Figure la.

(2) A set of difference fields is formed by subtracting
each rotational template from the copy of the input flow
field stored with it. For each resulting difference field,
the slope of each difference vector is computed by
dividing the vertical component by the horizontal
component. These subtraction and division procedures are
performed in parallel across all flow fields represented in
the CAPP.

(3) The similarity between the difference fields and
each of the translational templates is evaluated,
proceeding sequentially through all the translational
templates. For a given translational template, this
comparison is done in parallel with all difference fields
stored in the CAPP and consists of the following steps:

(3a) The slope of each component vector of the
translational template is loaded into the corresponding
vector location of each difference field. The sign of the
slope of each difference vector is compared with the sign
of the slope of the corresponding translational template
vector. H the signs agree, the absolute value of the
difference between the slope of the difference vector and
the slope of the translational template vector is computed,
and then scaled according to the absolute value of both
slopes. H the scaled slope difference does not exceed a
predetermined maximum error value, then a vector match
is designated at that position. The quantity of error
permitted here allows the algorithm to be resistant to
uniformly distributed Gaussian noise of low variance
present in the original flow field.

{3b) For each difference field the number of vector
slope matches is counted. H this sum exceeds a
predetermined minimum number of matches (in our
implementation, 75% of the field size), then the associated
rotational and translational templates become a candidate
pair for the flow field decomposition. Utilization of a
minimum number of required matches ensures that only
templates which are reasonably close to the actual motion
will be chosen and permits rome resistance to random
spike noise. Figure 2a shows, for difference fields
resulting from the input field in Figure la, the CAPP
response to the translational template which is closest to
the actual translational motion. Each black dot within a
square represents a position in a difference field at which
the slope of the difference vector matches the slope of
the translational template. Figure 2b shows, for
difference fields resulting from the input field in Figure
lb, the CAPP response to the translational template
which is closest to the actllal translational motion. Figure
2c shows the CAPP response to a translational template
which is not close to the actual translational motion.
This translational template is shown in Figure 3.

(3c) For all difference fields yielding at least the
required minimum number of matches, the variance of
the scaled slope difference is computed, and the
difference field with the minimum variance is determined.
This value is compared to the minimum variance found
from processing the preceding translational templates. H
this value is less than the preceding minimum, it becomes
the new global minimum, and the rotational template
associated with the difference field together with the

493

current translational template become the current best
candidate pair for the flow field decomposition.

Steps 3a, 3b, and 3c are performed for each
translational template.

(4) The flow field decomposition considered to be the
best is the rotational and translational template pair
resulting in the difference field yielding at least the
required minimum number of matches and the least slope
difference variance. Utilizing minimum variance instead
of the maximum number of matches, the algorithm has
achieved better results, particularly for motions whose
component parts lie between sets of templates. Figures
4a and 4b show the rotational and translational templates
selected by the algorithm in the presence of and in the
absence of noise, for the input fields in Figures la and
lb. These templates are the closest ones to the actual
motions. Figures Sa and Sb show the difference fields
resulting from subtracting the rotational motion in 4a
from the original fields in Figures la and lb respectively.

Experiments
Experiments have been performed with a CAPP

simulator on a VAX 11rT80 using a wide variety of
motions and simulated environments. In all cases
examined, the translational template closest to the actual
translational motion was selected. The rotational template
was always close to the actual rotational motion, but was
sometimes not the closest template. The procedure
proved to be resistant to limited Gaussian noise as well
as to limited random spike noise in the original flow
field. Applying motion to points at random depths
produced results similar to those obtained in the noise
experiments. The algorithm's performance degraded
slightly if each flow vector component was specified by
eight bits of precision instead of by ten.

The CAPP timing calculations revealed that the
algorithm could perform the rotational-translational
decomposition in slightly more than 1/4 second. If two
CAPPs are used in parallel, then the time can be
reduced to less than 1/5 second, since only half of the
translational templates need be tested on each CAPP.
Given fabrication techniques available in the immediate
future, we expect execution times to be significantly
improved. We also suspect that performance will improve
by increasing both the number and size of the rotational
and translational templates. This amounts to utilizing
more CAPPs in parallel.

References

[1] Foster, Caxton C. Content Addressable Parallel
Processors. Van Nostrand Reinhold, New York, 1976.

[2] Lawton, D.T., Steenstrup, M.E., Weems, C.
"Determination of Rotational and Translational
Components of a Flow Field using a Content Addressable
Parallel Processor", COINS Technical Report, Computer
and Information Science Department, University of
Massachusetts, February, 1983.

Figure 2c

~~"'-'~~~--..-~vvv~~
~~"'-~~~~---~~vv~v
~~~~~~~---~~Y~V~ 
~~~~~~~~--~~~~~~ 

~~~~~~----~~~~~~ 

~~~~------~~ 
~~~~---+--~~~ 
~~~~---~~+-~~ 

~~~~------~~ 
~~~~~------~~~ 
~~~~~~----~~~~~~ 
~~~~~~~~--~~~~~~ 

_'f.- __ .._~'f--.<tf-.-.

VV<Y~~~-- ~-- ~~~
~~~vvv~-::~~~~"'-~ 
~~~vv.,,-..-.-

Figure 4a

Figure Sa

494

' . ' ..,. ... - - - - <t:--+--,._,,._......,,__
. - - - -- - - +- +- <€--·<---+--<-+-

.... - ... - - - of--~+--·<-<-~
, . " ~----,.:..._~~~
I , \ '..,___ ...,_-._.__'f--_~~~~

t ' ' '\ ' ' ' ~ '~~~<f--~'f--
r 1 \ ' " ' ' ' ' "'- "-~ ~ ~~'f-......

t 1' '\ '\ "'''"''''"''""' T 1 1 '\ '\ '\'\"-'-"'-"-"'-"'-"'-'"'---

i i' \ \ \ \ '\ '\ """'''"'""-~
ii'\\\\'\'\'""''"'""-"""
iii'\'\\\'\'\'\'\'-""'-""--""--'
iii'\'\\\'\'\'\'\""'-""'-""--""--~

tl~~~~~~~~~~~
Figure 3

llllllllllllllll
llllllllllllllll
lllll!l!/'l/'l/'!/'!
/' /' /' /' /' /' /' /' /' /' /' /' /' l /' l
/' l /' l /' l /' l l l l l /' l l l
llllllllllllllll
l l l I l l /' I /' I /' l /' I /' I
I I I l l I l I /' /' /' /' l I /' I
/'l/'!/'lll/'/'/'/'/'l/'l
I I /' /' /' I l /' /' I /' I l I I I
/'l/'l/'/'/'/'/'/'ll/'l/'l
/'l/'/'/'lll/'/'/'/'/'l/'l
I' /' /' /' /' l /' /' /' /' /' /' /' /' /' /'
/'l/'lll!!!!!lllll
/' l l l l l l l l /' l /' /' /' /' /'
/' l /' l l ! ! l /' ! ! /' l I /' I

Figure 4b

Figure Sb

[3} Prazdny, K. "Determining the Instantaneous Direction
of Motion from Optical Flow Generated by a
Curvilinearly Moving Observer." Proc. of the Pattern
Recognition and Image Processing Conference. Dallas,
Texas, August 1981, pp. 109-114.

[4} Weems, C., Levitan, S., and Foster, C. "Titanic: A
Content Addressable Parallel Array Proccsor for Image
Processing." IEEE International Conference on Circuits
and Computers. New York, September 1982.

' ~f'1'1l!!TTr1, !. (_ l ! 1 1 1 i 1 \

1' ~ ~ 11 ! ! t i i i \
!. !. I. 1 l r i i 1 \
lllll!tiii\

1'~~lllllti1\\
I. I. /. l l l l i i i \

~ ,jjjjj~jf~i1~
\Iii 111'11~'1~~[
I i i i i l 1 1,,.. 11 ~ ~ !I. \ i i i / l 1 I /_ /_

\ 1 i i 7 l l 1 (_ !.
\iiill!lll~~ t
\ 1T17flll1 l1 Lf
,;111111

Figure la

r[~.

Gil ...

~
1'il

171
!:

~

fl'!

ill ,..

Figure 2a

Figure lb

...
~" , '

a

"" SB 0]

-·~.-

Figure 2b

495

DYNAMIC RELlABILlTY MODELING AND ANALYSIS OF

COMPUTER NETWORKS*

Sri.Divas V. Makam

UCLA Computer Science Deparlrrlent
University of California
Los Angeles, CA 90024

ABSTRACT

The reliability analysis of computer communi
cation networks is generally based on Boolean alge
bra and elementary probability theory. Several in
teresting reliability problems of computer networks
include terminal-pair connectivity, tree connectivi
ty, and multi-terminal connectivity. Traditionally,
attempts were made to compute only the point and
average reliabilities for networks because of the
computational complexity involved. In this paper,
an attempt is made to perform the dynamic
analysis of reliability problems of computer net
works. Time-dependent expressions for reliability
measures are derived assuming Markovian behavior
for failures and repairs. The advantages of the pro
posed methods are: the provision for incorporation
of different distributions for failure and recovery
times, computation of task and mission related
measures such as Mean Time to First Failure (MTFF)
and Mean Time Between Failures (MTBF), and net
work design based on the dynamic behavior. The
advantages of dynamic reliability analysis is illus
trated by a detailed study of the bridge network.

1. INTRODUCTION

With the increased interest in resource shar
ing, computer networking and distributed process
ing is becoming increasingly popular [ROBE 70].
Computer networks are being employed in many
different applications such as distributed process
control, electronic banking, defense systems, etc.
Since such applications usually demand very reli
able operation, redundant computers and commun
ication links are incorporated in the design of the
computer networks. Reliability modeling and
analysis of such computer communication networks
has drawn the attention of many researchers for a
number of years [HANS 72, FRAT 73, GRNA 79].

• This resea,rch was supported by the ONR Contract No.
N00014-79-C-OB66 (Research in Distributed Processing).

0190-3918/83/0000/0496$01.00 © 1983 IEEE 496

C. S. Raghavendra

Electrical Engineering-Systems
University of Southern California

Los Angeles, CA 90089

The reliability models used for computer
communication networks were based on only one of
the following techniques: the discrete-state Markov
chains, Boolean algebra or simple probability theory
[FRAT 73, GRNA 80aJ. Most of the studies were con
cerned with computation of only the point ancl
steady state reliabilities for networks because of
the computational complexity involved [BALL 80]
There seems to be no analytic methods reported in
the literature for studying the dynamic behavior of
reliability problems of computer networks.

Consider the computer communication net
work shown in Figure 1. In such a computer net
work, there are several reliability problems. The
probabilistic events of interest are:

•Terminal-pair connectivity
•Tree (broadcast) connectivity
•Multi-terminal connectivity

These reliability problems depend on the network
topology, distribution of resources, operating en
vironment, and the probability of failures of com·
puling nodes and communication links. The compu
tation of the reliability measures for these events
require the enumeration of all the paths between
the chosen set of nodes. The complexity of these
problems, therefore, increases very rapidly with
network size and topological connectivity.

Terminal-pair connectivity is useful because
most applications of computer networks require
connection between two nodes over a period of
time; for example, in remote interactive computing.
Several methods have been proposed in the litera
ture to analyze reliability of terminal-pair connec
tivity [FRAT 73, FRAT 76, FRAT 78, GRNA 79, GRNA
80a, HANS 72, HANS 74]. The tree connectivity
problem has not been dealt with in the literature,
and is useful in studying the reliability of successful
broadcasting of information by a central controller
to a set of nodes in the network.

In a distributed processing system where
resources such as files and programs are distribut
ed among many computers, the successful comple
tion of a task generally requires that several sites
should be up, and communicating with each other.
Execution of a task may require access to several
files residing at different sites and communication
paths between several node pairs. The probability
of successful execution of a task is therefore more
complex and useful than the terminal-pair connec
tivity in a distributed communications network. To
handle this problem, we are interested in the event
multi-terminal connectivity which was introduced
in [GRNA 81]. The multi-terminal connectivttv
reflects fairly accurately the survivability of distri
buted systems with redundant j:lrocessor, data base
and communication resources [HILB 80, MERW 80,
GRNA 81].

In this paper, an attempt is made to study
dynamic or time-dependent analysis of the various
connectivity problems of computer networks. We
consider two different operating environments for
computer networks, namely, closed or non
repairable, and repairable. The advantages of
dynamic reliability analysis are: the provision for in
corporation of different distributions for failure and
recovery times, computation of task and mission re
lated measures such as mean time to first failure
(MTFF) and mean time between failures (MTBF), and
network design based on the dynamic behavior.

In section 2 we explain the reliability prob
lems of interest, define useful reliability measures,
and summarize results of previous work Section 3
deals with detailed description of the methodology
proposed for analyzing dynamic behavior of com
puter networks. In section 4 we illustrate the
methodology of dynamic reliability analysis by a de
tailed study of the bridge network

2. DYNAMIC RELIABILITY ANALYSIS

For reliability analysis, a computer network
or a distributed processing system is usually
represented by a graph G(V,E) where V and E are
respectively, the set of nodes (representing the
computers} and the set of directed or undirected
arcs representing the communication links. The
number of nodes is N=IVI and the number of links is
L=IEI. The links and nodes are labeled as x,;'s and
Zi+L 's respectively. The component set of the net
work is given as C=!x 1, · · ·, X£,XL+I• · · ·, xL+Nl· In
the static reliability analysis, the processing nodes
and the communication links are associated with
reliabilities, i.e., probabilities of being operational.
The reliability of i-th element is given by,

p;, = Pr (i th element is worlcing)

q;, = 1 - Pi

It is generally assumed that there is no correlation
between failures of different links and nodes, i.e.,
the probability of failures of the elements are sta
tistically independent. Further, it is assumed that
the characterization of individual element failure
behavior is sufficient to perform reliability analysis.

497

Most researchers performing computer net
work reliability analysis assume that the component
(link or node) reliabilities p;. are constant during the
time interval in which the reliability of the network
is being examined. Additionally, no distinctions are
made between the reliability and availability of net
works under di.fi'erent operating environments. For
example, in [FRAT 73], an average network
terminal-pair reliability is defined and computed
for a repairable network in which the individual
components are assumed to be undergoing failure
and subsequent repair· (or recovery). The expres
sion derived for this measure in actuality
represents a Steady-state terminal-pair availability.

In this section, we will attempt to clarify the
terminology used in the network reliability prob
lems by giving precise definitions Of the measures.
The events whose probability of success is of in
terest in a network are: terminal-pair connectivity,
broadcast connectivity, multi-terminal connectivity,
etc. Occasionally, these events are also required to
satisfy some performance constraints specified by
the user. The most common constraints include de
lay (time delay or hop length), fl.ow (capacity or
throughput), and survivability of distributed pro
grams and data.

The network may be operated as a closed sys
tem, i.e., no repair of failed elements (nodes and.
links) is possible during the time interval of in
terest. If the failed network elements are repaired
and made operational while the rest of the network
may be still providing acceptable level of service,
we are interested in the gain in the probability of
successful completion of the events defined above.

We can define two representative states taken
by each component and a1so by the system (i.e., the
network): operating and failed. The component
failure behavior is simple to understand. The sys
tem is said to be failed if at any time instant it can
not maintain a specified level of service (an event
under some constraints). The dynamic reliability
measures which are found very useful in the design
and evaluation of computer networks and distribut
ed systems are defined below (these measures are
defined for computer systems in books on reliabili
ty) [SIEW 82].

Reliability: Given that the network was fully opera
tional (all the components operating) at time t=O,
the reliability of the system (R(t)) is the probability
that it continues to provide the specified level of
service at time t=T. There may be many failures of
components, but the network remains operational
throughout the interval [O,T].

Mean Time to First Failure: The MTFF of the net
work is the average time it takes for the network to
enter the failed state (i.e., failure to satisfy the
specified service request) for the first time, given
that it was fully operational at time t=O. In the con
text of computer networks, an example of service
for which MTFF is of interest is file transfer between
a source node and a destination node.

Note that definitions of R(t) and MTFF apply to both
closed and repairable networks.

Availability: Given that the network was initially (at
time t=O) working in full configuration, the availa
bility (A(t)) is the probability that the network is
successful in providing the specified level of service
(completing an event under a constraint) at any
time instant t=T. The network might have under
gone one or more failures during the interval (O,T),
but it was made operational again by repairing or·
replacing the failed elements.

Mean Time Between Failures: For repairable net
works, MTBF is the average time between two sys
tem level failures. MTBF for the network will Lie
higher than that of a single component.

Steady State Availability: The equilibrium or steady
state availability (SA) of a network gives the long
term probability of maintaining the specified level
of service given that the repair is provided on
demand throughout the lifetime of the network. it
is a measure of the fraction of time the communica
tion system is able to exchange information
between a set of nodes.

Figure 1. A Typical Computer Network

Several methods are reported in the litera
ture for terminal reliability analysis and computa
tion using a Boolean algebraic approach [FRAT 73,
FRAT 76, FRAT 78, GRNA 79]. These methods start
by considering all the simple paths between a given
pair of nodes, and then performing some Boolean
operations to arrive at the Boolean expression for
the probabilistic event of interest. This expression
is then used to obtain a terminal reliability expres
sion by using the corresponding network element
reliabilities. As an example, in the computer net
work shown in Figure 1, there exists three different
paths between the source S and the destination T.
We assume that the nodes are perfectly reliable and
write the paths in terms of the links. The paths are:
1) .:i:1.:i::aZ3, 2) .:i:~:;:i: 6 , and 3) :r: 1:r:.,.:i:6 . The terminal reli
ability between S and T is given by the probability of
the event

P(path 1 up) + P(path 1 down)*P(path 2 up)
+ P(paths 1 & 2 down)•P(path 3 up)

The Boolean expression for this event is given by,

Z1%:aZ3 + Z1%2Z3 Z~:;Zo + ZaZ3 .:i:~o Z1X5Z7

498

A highly efficient algorithm for terminal relia
bility analysis has been proposed by Grnarov et al.,
[GRNA 79, GRNA 80a]. This algorithm for symbolic
reliability analysis is based on the representation of
simple paths by "cubes" (instead of prime impli...:
cants). The algorithm introduces a new operation
for manipulating the cubes, and the interpretation
of resulting cubes in such a way that Boolean and
arithmetic reduction are combined. The details of
the derivation of the algorithm can be found in
[GRNA80a]. The symbolic terminal reliability ex
pression for the above example can be obtained as:

R(S-oT) =piP2'Jls + (1-PiP2Ps)P4PGPa

+ (l-P2Ps)(l-p4115)PiPaP7 (1)
where S-oT represents S-T connectivity.

In a distributed processing system with
redundant resources, we will be interested in
multi-terminal connectivity, which is needed when
running a program at a site that requires files resid
in~ at different sites [HILB 80, MERW 80, GRNA 81].
In LGRNA 81] an efficient algorithm was proposed for
multi-terminal reliability analysis and is based on
the derivation of a Boolean function for multi
terminal connectivity. This algorithm is an exten
sion of the algorithm presented in [GRNA 80a, GRNA
80b] to handle both reliability computation and
symbolic reliability analysis.

Another reliability measure of interest in
studying computer networks is tree connectivity.
The probabilistic event of interest is that there ex
ists at least one path from a particular node to a set
of nodes. This is useful in studying the reliability of
broadcasting of information from a given node to a
set of nodes. For example, referring to Figure 1, we
might like to evaluate the reliability of connection
from node 8 to nodes 11, 12, and 13 at the same
time. The evaluation is more than a simple multipli
cation of terminal reliabilities, since there are some
dependencies. Actually, we can perform a Boolean
AND operation on the set of paths for' each node
pair and obtain the Boolean expression for the tree
connectivity. The source S can successfully broad
cast information to nodes 11, 12, and 13 if all of the
following events are true: 1) .:i: 1z 2, 2) z 1.:i:7 + z~5• and
3) X1Z2Z3 + Z1Z7Z9 + Z~:;Z6·

We first perform the Boolean AND operation on
these three set of paths:

(z1z2)(z1X7 + Z~5)(z1ZaZ3 + Z1Z7Za + Z~:;Za)

After simplifying the Boolean expression becomes:

X1XaX:JZ7 + Z1%2ZeZ7 + Z1%aZ:JZ~~ + X1Z2Z~:;Zs
The corresponding reliability expression can then
be obtained by using Grnarov's algorithm as:

R(S-.~11,12,13!) = 'PiP2'P:!P7 + (1-Ps)'PiP2'PaP7

(2)

In the next section, we show the method of
deriving the time-dependent reliability and availa
bility expressions by the extension of the Boolean
approaches discussed above. This method of
dynamic analysis will be shown to be equivalent to
the analysis of the Markov modeling approach used
to study fault-tolerant computers.

3. DESCRIPTION OF THE METHODOLOGY

The following notions are important to keep in
mind when performing the dynamic reliability
analysis. First, the network reliability measures
should always be qualified with i) the probabilistic
event for which the measures are evaluated, ii) per
formance constraints, and iii) the time interval.
For example, the reliability and availability are
denoted as:

R(event, constraint, time)
A(event, constraint, time)

The first argument should always be explicit. The
second argument may be absent if no performance
constraints are specified by the user. The third ar
gument is not needed for the following measures.

MTFF(event, constraint)
MTBF(event, constraint)

SA(event, constraint)

For example, we may be interested in finding time T
for which the availability of terminal-pair connec
tivity is greater than, say, A0 . To include perfor
mance constraint, we may want to find the
terminal-pair reliability R(t) such that the message
delay between source and destinaltion is less than
d.o.

The second notion is to describe more realist
ically, the reliability behavior of the individual net
work elements. A single probability of success Pi
for the i-th element is inadequate. In addition to the
topological parameters such as the connection ma
trix for the network, we need the failure rates and
repair rates for the nodes and links. Under the Pois
son assumptions for the arrivals of failures and ex
ponential distribution for the repair times, the reli
ability and availability of i-th element can be ex
pressed as

R(x.,t) = e -~i

J-4. A.i -C~+JJ.i)t
A(xi,t) = ~+J.L;, + ~+J.L;, e

where ~ and J-4. are the constant failure rate and
repair rate (Mean Time To Repair, MTTR, is 1.-j µ,
respectively of the i-th element. The expressions
for MTFF, MTBF, and SA are simple functions of ~
andJ.L;..

499

-
MTFF(xi) = f R(xi,t)dt

0

1

~

SA(xi) = A(xi, 00) = (A.i~/Li)

MTTR =------
MTFF + MTTR

MTBF(xi) = MTFF + MTTR = -1-+ _l_
~ J.L;.

If the element failures and repairs are described by
general probability distribution functions, we have
to resort to Laplace transform techniques to solve
for the reliability measures of network elements.

The decomposed reliability model of a net
work obtained by applying the Boolean algebra rules
on the path sets for a given event can now be
transformed into a time-dependent model by sub
stituting Pi· with R(x, ,t) for a non-repairable net
work, or with A(xi.t) for a repairable network.
Therefore, for the non-repairable network of Figure
1, referring to equation 1, the lime-dependent relia
bility can be written as:
R(S->T,t) = e-(.\1+.\2+~)1 + (1-e -(.\1+"2+.\3)t)e -(A,+.>.,;+As)I

+ (1-e-(.\a+A3't)(1-e -(.\4H.i;)t)e -(.\1+A5+"7)I

= e -(.\1 +.\a+"3)t + e -("4 +"6+"8)1 + e -(.\1 +As+"7)1

5
-<E~>1

- e <•t

7
-CEJo.i)t

+ e !•1 (3)

Figure 2. Markov State Transition-Rate Diagram

It can be shown that the above equation is exact and
that the analysis is equivalent to the Markov relia
bility analysis technique. A Markov state
transition-rate diagram shown in Figure 2 can be
developed for the network of Figure 1. Figure 2
shows the states in which the network satisfies the
S-T connection and one failure state (state #8). The
transitions between the states represent failure of
links. One interesting point to be noted here is that
the failure of certain links eliminate some links in
series (eg., x 2 eliminates x 3). The failed elements do
not contribute to either the reliability or unreliabili
ty of the network. The network reliability is given
as the sum of the operational state probabilities.
The state probabilities are obtained by solving the
following set of linear differential equations.

E(t) = Q E(t) (4)

where Q is the state transition-rate matrix and
E = (P1.Pz,P3,P4.P 5 ,P6 ,P7). The state probabilities for
each of the operational states in Figure 2 can be ob
tained by solving Equation 4 using Laplace
transforms.

1 P;(s) = --7--

•
•
•

•
•
•

(s+ ~~)

•
•
•

i=l

1 [(>..4+A5)P;(s) P;(s) = ------ --~-~-"-_;...__; __
(s +A.1+A.e+A.7) (s +A.1 +"'4+A.s+A.e+A.7)

("2+f...~)P; (s) + -~-=--""--..:...:._--'---,:-l
(s +A.1+"2+"3+:\e+i\7)

R(S T,t) = P1(t) + P2(t) + P3(t) + P 4 (t)

+ Ps(t) + Pe(t) + P 7(t)

8 ?
-("E 1'j)t -("E 1'j)l

_ 0 •=1 + 0 l=t (5)

For complex networks, clearly, the Markov
modeling approach becomes very difficult and
time-consuming because of the state space explo
sion. For each probabilistic event considered, the
number of states in the Markov model is directly
proportional to the branching factor (for example,
x 1 and x 4), existence of cross links (for example, x7),

and the depth of the network (for example, x 1, x 2 , x 3

). When availability is needed, we have to expand
the state diagram to account for the non
homogeneity when the repair rates are different for
different elements. In view of this drawback of the
Markov modeling approach, the Boolean algebraic
approach provides an attractive means to achieve
both efficiency and functionality. The Boolean
method can be applied to all the reliability prob
lems except when the reliability and MTFF are need
ed for repairable networks. The. reason is that the
element reliabilities are not dependent on the
repair rates whereas the system reliability does. In
general, for the same event and the same con
straint,

500

Rcws•rl. (t) < Rropairabte (t) ,,; A,..pairabl• (t).

It is interesting to note that the number of
terms in the reliability polynomial (Equation 5) is
the same as the number of operational states in the
Markov state diagram (Figure 2). Therefore, we can
extract the state information by fully expanding the
time-dependent reliability expression after substi
tuting R(i, t) for p, in the symbolic expression (Equa
tion 1). The number of operational states does not
increase exponentially with the number of elements
because of the dependencies caused by series ele
ments.

4. ANALYSIS OF THE BRIDGE NETWORK

In this section, we perform a detailed dynam
ic reliability analysis of the bridge network shown in
Figure 3. This network has five links marked
x 1 x 2 , .. ., x 5 which are bidirectional, and four nodes
marked x 6 , x 7, x 8, x 9 . This network is one of the stan
dard networks analyzed by many researchers. We
first use the efficient Boolean technique explained
in the previous section to obtain a reliability ex
pression for the event of interest and then translate
it to a time-dependent expression by using the
corresponding element reliability or availability. We
assume that the i-th link has a constant failure rate
.>.. and a constant repair rate J.1-1..

xl//

.. /
6

Figure 3. The Bridge Network

We first analyze terminal pair connectivity
between S and T. The terminal reliability expres
sion for this event using the Boolean algebraic ap
proach [GRNA Boa] is:

R(S T) = PIP2 + P3P4(l-PIP2) + pJJ15p4(l-p2)(l-p3)

+ P3P:iP2(l-p1)(l-p4)

Now the time-dependent terminal pair reliability ex
pression when no repair is possible is given by,
R(S-> T) = e -(l\1+"2)t + e -(1':i+l\4)t + e -(l\1+X4+A5)t

+ e -(l\a+1':i+A5)t - e -(X1 +"2+X4 +Xs)t

Assuming that all links have the same failure rate >--.
terminal reliability between S and T becomes:

R (S-> T) = 2e -2l\t + 2e -Sl\t - 5e - 4xt + 2e -B,\t

We can calculate the mean time to first
failure as a function of failure rates using the
definition of Section 2 as:

) 1 1 ~~1----:-___
MTFF(S->T = (Xi+A2) + (Xs+'-4) + (X1+>..+X5)

(\1 +>-2+\s+"'4)

1 + 2
..,.(X_1_+_>-_s+_"'4_+_>--o~):- (>--1 + >--2+ As+ "'4 + A5)

1 1
(71.1 +71.2+~+,\;) (71.s+A.s+>.. +,\;)

When all links have the same failure rate we have:
2 1 2

MTFF(S->T) = 3);""""- 4>- + 571.

MTFF(S-> T) = :71.

It is interesting to observe that MTFF for the S-T
connection is less than that of a simplex link for
which MTFF is ~. This is due to the fact that the in
creased hardware complexity of the links involved
in the communication causes the average time-to
failure to reduce.

We compute the availability for the event of
terminal pair connectivity between S and T with the
assumption that all links have the same failure rate
X and same repair rate µ. The time dependent
terminal-pair availability expression can be ob
tained from the reliability expression given above
by substituting the following expression for xi.

%· = --1!:._+ _71._l!-(l\+µ)t
• >..+µ 71.+µ

A much simplified expression can be obtained for
steady state availability by substituting a = "!--for
x. in the reliability expression. That is, +µ

SA(S->T) = 2a2 + 2a3 - 5a4 + 2a5

501

The mean time between failures is given by the
same expression with a = ~ + ~.

Next we consider a tree connectivity event,
which is simultaneous connection between S and A,
and Sand B. The paths in Boolean terms is:

S->A = X1 + X3X5 + XaX~2
S->B = X3 + X1X:i + X1X:iX4

We take the logical AND of these two to obtain Boole
an terms for the tree connectivity as:

From this we obtain the reliability expression for
this event as,

R(S->!A,Bl) = PiPs + (1-ps)PIP:i + (1-pi)PaP:i

+ (l-p3)(l-p5)pJ.P2P4 + (1-p1)(l-p5)pgp:JP4

With the assumption that all links have the same
failure rate >.., the time dependent expression for
this event is:

R(S->fA.Bj.t) = s11-2M - 4e--4M + 2e-Cll\I

The mean time to first failure is then,

- 3 1 2 MTFF(S->!A.BJ) - -- -+ -271.)\ 5;\.

which simplifies to:

MTFF(S-4!A,Bj) = l~X

When repair is available, the steady state
availability for this tree connectivity event is given
by:

SA(S->!A.Bl) = 3a2 - 4a4 + 2a 5

·where a= --1!:..._ >--+µ·

The mean time between failures is given by the
same expression with a = ~ + ~.

5.SUMMARY

Dynamic reliability modeling and analysis of
computer networks and distributed processing sys
tems were presented. A systematic method of ob
taining time-dependent reliability expressions for
various events such as terminal-pair connectivity,
tree connectivity, and multi-terminal connectivity
were discussed. The approach uses well known
Boolean technique to obtain reliability expressions
and then transforming it to the corresponding
time-dependent expressions. Other important reli
ability measures such as availability, MTFF, and
MTBF were also studied. A detailed analysis of the
bridge network was also presented. Further work
involves in studying these reliability problems of
computer networks under different performance
constraints such as delay, throughput, and resource
allocation.

ACKNOWLEDGMENTS

The authors wish to thank Prof. A. Avizienis
for his encouragement and support during this
research and Ms. Mildred Covin for her help in the
preparation of the :final manuscript.

[BALL 80]

[FRAT 73]

[FRAT 76]

[FRAT 78]

[GRNA 79]

[GRNABOa]

REFERENCES

M. 0. Ball, "Complexity of Network
Reliability Computations," Networks,
Vol. 10, 1980, pp. 153-165.

L. Fratta, U. G. Montanari, "A Boolean
Algebra Method for Computing the
Terminal Reliability in a Communica
tion Network", IEEE Trans. on Circuit
Theory, Vol. CT-20, No. 3, May 1973,
pp 203-211.

L. Fratta, U. G. Montanari, "Synthesis
of Available Networks", IEEE Transac
tions on Reliability, Vol. R-25, No. 2,
June 1976, pp 81-86.

L. Fratta, U. G. Montanari, "A Recur
sive Method Based on Case Analysis
for Computing Network Terminal Re
liability, IEEE Transactions on Com
munications, Vol. COM-26, No. B, Au
gust 1978, pp 1166-1177.

A. Grnarov, L. Kleinrock, M. Gerla, "A
New Algorithm for Network Reliabili
ty Computation", Computer Network
ing Symposium, Gaithersburg, Mary
land, December 1979, pp 17-20.

A. Grnarov, L. Kleinrock, M. Gerla, "A
New Algorithm for Symbolic reliabili
ty Analysis of Computer Communica
tion Networks", Pacific Telecommun
ications Conference, January 1980.

[GRNABOb]

[GRNA 81]

[HANS 72]

[HANS 74]

[HILB 80]

[MERW BO]

[ROBE 70]

[SIEW 82]

502

A. Grnarov, L. Kleinrock, M. Gerla, "A
New Algorithm for Reliability
Analysis of Computer Communica
tion Networks", UCLA Computer Sci
ence Quarterly, Spring 1980.

A. Grnarov, M. Gerla, "Multiterminal
Reliability Analysis of Distributed
Processing Systems", Proc. of the
1981 International Conference on
Parallel Processing, August 1981, pp
79-86.

E. Ransler, "A Fast Recursive Algo
rithm to Calculate the Reliability of a
Communication Network, IEEE Tran
sactions on Communications, Vol.
COM-20, No. 3, June 1972.

E. Hansler, G. K. McAuliffe, R. S. Wil
kov, "Exact Calculation of Computer
Network Reliability", Networks, 4,
(1974), pp 95-112.

G. Hilborn, "Measures for Distributed
Processing Network Survivability",
Proc. of the 1980 National Computer
Conference, May 1980, pp 157-163.

R. E. Merwin, M. Mirhakak, "Deriva
tion and Use of a Survivability Cri
terion for DDP Systems", Proc. of the
1980 National Computer Conference,
May 1980, pp 139-146.

L. G. Roberts, B. D. Wessler, "Com
puter Network Development to
Achieve Resource Sharing", AFIPS
Conference Proceedings, SJCC, New
Jersey 1970.

D. P. Siewiorek, R. S. Swarz, "The
Theory and Practice of Reliable Sys
tem Design" Digital Press, 1982.

FUNCTIONAL SPECIFICATION OF DISTRIRUTED SYSTEMS

Gruia-Catalin Roman and Robert K. Israel
Department Of Computer Science

Washington University
Saint Louis, Missouri 63130

Abstract -- A formal Distributed Systems
Design Language (DSDL) is proposed. The language
design places a very strong emphasis on the
systematic application of the principle of
separation of concerns. In DSDL, systems are
described as nets of communicating processes. The
language allows designers to define arbitrary
communication protocols and provides a means for
protocol encapsulation. DSDL is illustrated by
means of a highly simplified annotated example
representative of the nature of the language.

Acknowledgements -- This work was partially
supported by Rome Air Development Center and by
the Defense Mapping Agency under contract
F30602-80-C-0284. The contribution of J. T. Love
to the initial work on DSDL is also acknowledged.

Introduction

This paper reports on one effort to develop a
formal Distributed Systems Design Language (DSDL).
In DSDL, systems are described as nets of
communicating processes. Each process in the net
has its own local data over which it has sole
control and procedures that specify primitive and
indivisible operations over the data. The process
also has the ability to exchange messages with
other processes in the net. The behavior of the
process specifies the order in which its
procedures are invoked. Sequences of procedures
are allowed to execute concurrently within the
process.

Several considerations have influenced
heavily the nature of the DSDL: an emphasis on
formality, a desire to promote the principle of
separation of concerns, a need to support
hierarchical specifications, and an aim toward
generality. Formality is achieved through the use
of set theoretical models for data representation
and by employing predicate calculus in defining
the procedures (using input/output assertions).
The principle of separation of concerns is
reflected by the manner in which the definitions
of the net and of the process are structured;
they are meant to enhance the designer's ability
to describe the system in terms of clean
abstractions. Hierarchical descriptions of the
system are enabled by the fact that processes may
be refined into nets. Finally, the generality of
the language is enhanced by its capacity to
describe a variety of communication structures and
protocols.

DSDL is described below by presenting the
formal mode.I of distributed systems on which it is
based and a small example of its use.

0190-3918/83/0000/0503$01.00 © 1983 IEEE 503

Language Definition

Process Definition

The process is the basic functional unit of
DSDL, and is similar to the guardian [1] and the
monitor [2] (except that internal parallelism is
allowed). It serves to encapsulate data as in the
abstract data type [3,4], and has sole access to
its own data. In addition, a process is able to
receive and send information via messages as in
[5]. A set of procedures are defined for the
process which perform indivisible operations on
data or communicate with the environment. The
behavior of a process is then defined as the set
of allowable sequences of procedure invocations
within the process.

A process p is defined as a five-tuple
p = (Dp, Tp, Rp , Sp , Bp)
where
Dp = (Qp, Hp, Ip)

Dp - process data definition
Qp - set of data entities
Hp - data invariant assertion
Ip - initial value assertion

Tp {z z = (Ain(Dp), Aout(Dp, Dp'))}
Tp - transformational procedures
Ain - input assertion
Aout - output assertion

Rp {z z = ('true', Aout(Dp))}
Rp - message receiving procedures

Sp {z z = (Ain(Dp), 'true')}
Sp - message sending procedures

Bp SUBSET.OF (Tp U Rp U Sp)*
Bp - process behavior, given as a set

of procedure invocation sequences

Data. The first element in the 5-tuple
representing the process p is the data Dp which
belongs to that process. This in turn is defined
as a triple (Qp, Hp, Ip). Qp is a set of data
entities controlled by p and whose elements may be
accessed only by procedures within p. Hp is the
data invariant, which is a predicate describing
the properties which must be possessed by the
elements of Qp both before and after all data
transformations The last element, Ip, is a
predicate defining the initial values for each
data entity in Qp.

The data controlled by a process appears in
the "DATA" section of the process definition.
Both variables and constants may be declared using
statements whose syntax resembles Pascal. The
variable declarations are placed side by side with
predicates that are taken to be parts of the
invariant Hp (e.g., VAR n: INTEGER; n>O;). Both
variables and constants are either sets or

elements of sets. Some sets are assumed to be
built-in (e.g., INTEGER) while others are
constructed by enumeration (e.g., S:{1,2,3}), by
providing an intensional definition (e.g.,
S={z: O<z<4 AND INTEGER(z)}), or by means of
standard set operations (e.g., union,
intersection, etc.). In addition to sets, a
notation for functions and relations is also
available.

Procedures. Process activities, data
transformations, and message exchanges are defined
by the procedures it controls. Transformational
procedures, given in terms of input and output
assertions, describe the state changes which occur
during process execution. Message exchanges are
carried out by two built-in procedures (SEND and
GET) whose semantics are stated in the
communication section of the net definition.

The use of nonprocedural specifications in
defining the meaning of the transformational
procedures enhances the understandability of the
process specification. Furthermore, by treating
procedure invocations as primitive operations over
the data, the need for synchronization within a
process is avoided in the same way as it is done
in the monitor concept of concurrent Pascal [6]
(but without prohibiting concurrency from
occurring in the process).

Syntactically, the definition of
transformational procedures is straightforward.
Pairs of input ("IN:") and output ("OUT:")
assertions are used to cover distinct cases. When
an input assertion is followed by several output
assertions a conjunction between them is implied.
An exception (11 EXPT:") assertion may be provided
to indicate the action to be taken in case all
input assertions fail (e.g., NIL, RESTART, ABORT,
etc.). Standard predicate calculus is used in
constructing the assertions (AND, OR, XOR, NOT,
IF-THEN-ELSE, i.e., implication), and a name
followed by a single quote within an assertion
denotes the value of a data item after the
completion of the procedure.

Behavior. The behavior of a process is
defined as the set of all allowable sequences of
events within a process, where an event is defined
as an invocation of a procedure. Constructs
available for the behavior specification include
event sequence (BEGIN - END), concurrent event
sequences (PARBEGIN - PAREND), conditional (IF -
THEN - ELSE), nondeterministic selection (CASE),
and repetition (WHILE, DOUNTIL, LOOP).

Net Definition

In order to specify a distributed system, the
concept of a net is included in DSDL. A net is
defined as a set of independent, concurrent
processes which communicate among themselves by
means of messages [2,7,8]. Messages are sent over
abstract communications paths called links. The
behavior of these links, along with the behavior
of each process, determines the behavior of the
net as a whole.

504

A net n is defined as a four-tuple

n = (P, P', L, C)
where
P = { p : p is a process }
P' SUBSET.OF P

P' contains those processes considered
to be part of the environment.

L = { 1 : 1 SUBSET.OF P }
where a link l is defined by the set of
processes that may use it.

C : L --> POWERSET.OF ((UNION OVER ALL p OF
(Sp UNION Rp))*)

with
C(l) SUBSET.OF (UNION OVER ALL p

MEMBER.OF 1 OF (Sp UNION Rp))*
i.e., C(l) establishes the link behavior
which determines the set of allowable
sequences of send and receive events over
the link.

Processes. The first two elements in the
4-tuple describing the net are the set of
processes P and a set P' such that P' SUBSET.OF P.
P' contains those processes in P which are
considered to be part of the environment. In
DSDL, these processes are declared with an
"EXTERNAL" attribute. Whenever the environment
plays only a marginal role in the specification of
the system, however, the external processes and
the links that connect them to the system may be
declared to be undefined.

Processes at one level of the specification
may represent abstractions of entire nets to be
identified later. DSDL allows one to state this
fact through the use of the attribute
"REFINEMENT.OF" as in the example below:

NET netname; REFINEMENT.OF pname.

END-NET net.name.
where the net "netname" is identified to be a
refinement of the process "pname". Furthermore,
any entity in the net may be declared to be a
refinement of some entity in the process as long
as consistency is preserved.

Links. The last two elements in the net
definition are the set of links L and the
communications protocol C. The links represent
the available paths of communication within the
net. For each link 1 a set C(l) of allowable
sequences of send and receive type events in the
processes that it connects is defined. This set
describes the communications protocol on the link,
and is referred to as the link behavior. The link
behavior is specified in the same way as the
process behavior.

In DSDL, each link is defined by a unique
name, the processes connected by it, and a
description of its behavior given in the section
on communication. More than two processes may
have access to the same link and the same two
processes may have more than one link in common.
The motivation for this approach is to be found in
the desire to enable the description of arbitrary
interconnection structures. Furthermore, a link

may be later refined as a net that implements the
behavior of the link. A packet switching net, for
instance, may be described first as a link between
all the nodes it services and may be subsequently
refined to include the switching nodes. and their
protocols.

For every link in the net, a behavior
description has to be included in the
communication definition section. The link
behavior defines the communication protocol
associated with the link, i.e., the semantics of
the GET and SEND commands. In defining the link
behavior, the designer may use the same means of
specification as in the description of a process
behavior except that the set of events that may be
involved is restricted to the invocation of
receiving procedures, the invocation of sending
procedures, and the resumption of processing after
the invocation of sending or receiving procedures
in processes associated with the link. The
resumption of an event sequence in a process is
specified by the event "pname:GO" in the link
behavior.

Conclusions

DSDL has been exercised on several small
problems. These exercises were useful in
demonstrating the language's power of expression.
Nevertheless, there are many unresolved issues.
First of all, a meaningful evaluation of the
language demands its use on a real-life project of
adequate complexity. Second, future advances in
the study of the formal aspect of the language
must be carried out in preparation for potential
incorporation of DSDL in a computer-aided design
system. As of now, a definition for consistency
between levels has been proposed but proof
strategies need to be developed. Finally, a
complete system specification language ought to
include the capability to define processors and
their characteristics, the rules for allocating
processes among processors, and performance
specifications. Research in these areas is
currently under way and the results will he
reported elsewhere.

Re fer enc es

[1] Liskov, B., and Berzins, V., "An Appraisal of
Program Specifications," Research Directions
in Software Technology, P. Wegner, editor,
MIT Press, pp. 276-301, 1979.

[2] Riddle, W. E., et al, "Behavior Modeling
During Software Design," IEEE Trans. on Soft.
~ SE-4, No. 4, pp. 671-678, July 1978.

[3] Guttag, J., "Abstract Data Types and the
Development of Data Structures," CACM 20,
No.6, pp. 396-404, June 1977. --

[4] Wulf, W. A., London, R. I., and Shaw, M., "An
Introduction to the Construction and
Verification of Alphard Programs," IEEE
Trans. on Soft. ~ SE-2, No. 4,
pp. 243-265, December 1976.

505

[5] Hoare, C. A. R. , "Communicating Sequential
Processes," CACM 21, No. 8, pp. 666-677,
August 1978.~~

[6] Hansen, B., The Architecture of Concurrent
Programs, Prentice-Hall, 1977-;-

[7] Bell, T. E., Bixler, D. C. and Dyer, M. E.,
"An Extendable Approach to Computer-Aided
Software Requirements Engineering," IEEE
Trans. on Soft. Eng. SE-3, No. 1, pp~-60,
January19~ --

[8] Feldman, J. A., "High Level Programming for
Distributed Computing," CACM 22, No. 6,
pp. 353-368, June 1979.

Example

NET consumer_producer.

PROCESS producer.
DATA.

VAR count : INTEGER; count> O;
INITIALIZATION.

count = 1;
PROCEDURE w := prepare.

IN: count = n AND n > O;
OUT: w' = (n,t) AND CHARSTRING(t) AND

count'= n + 1;
EXPT: NIL;

BEHAVIOR.
LOOP {w := prepare;

SEND w TO consumer ON channel;}
END-PROCESS producer.

PROCESS consumer.
VAR count : INTEGER; count > O;

INITIALIZATION.
UNDEFINED.

PROCEDURE use(w);
IN: w = (n, t) AND n MEMBER.OF INTEGER

AND n > 0 AND CHARSTRING(t);
OUT: count' = n;
EXPT: NIL;

BEHAVIOR.
LOOP {GET(w) FROM producer ON channel;

use(w);J
END-PROCESS consumer.

LINKS.
channel: (producer, consumer);

COMMUNICATION.
channel:
LOOP {

producer:SEND(z) TO consumer;
consumer:GET(z) FROM producer;
{producer:GO; // consumer:GO;}

END-NET producer_consumer.

MO PAC
A PARTITIONABLE AND RECONFIGURABLE MULTICOMPUTER ARRAY

Wong-Hua Lee and Miroslaw Malek

Deµartment of Electrical Engineering
University of Texas at Austin

Austin, Texas 78712

Abstract

The design of a VLSI compatible,
reconfigurable, partitionable multicomputer array
is presented in this !?aper. The resources of the
system can be d1v1ded into arbitrary size
rectangular partitions, and various computational
structures can be configured on each partition by
distributed con figuration process.

A scheme to provide each partition with a
private bus is introduced. This bus is essential
for instruction broadcast and also au&ments the
communication capability of each partition.

Design of a special purpose hardware unit
responsible for the process of partition
allocation is described. This unit assures that
the allocation process will not degrade the entire
system performance.

I. Introduction

Due to the recent advances in VLSI
technology, parallel processing systems which
consist of thousands of processors have become
feasible [1]. To reduce design turn around time
for such enormous systems and to achieve high
densities in VLSI, simple and regular
interconnection schemes are highly de sir able [2].
out of the many multicomputer interconnection
structures that have been proposed, the mesh type
net\..Orks such as those employed in ILLIAC IV[3]
and systolic arrays [2] are especially appealing
because they possess the property of simplicity,
regularity, modularity, linear cost growth, and
ease of routing. All these merits make the mesh
type networks suitable for VLSI impl emen tat ion of
large scale computer systems.

In this paper, the system design of the Mesh
Organized Partitionable Array Computer (MOPAC), a
partitionable SIMD/MIMD (PSM)[4] multicomputer
system with an architecture based on the t\..O
dimensional mesh type interconnection network, is
described. Some of the features of MOPAC are:

. The processors in the mesh network can be
partitioned into rectangular submeshes
(partitions). Each user's job can be
executed on one or more of these partitions.
Each partition can work in either the SIMD or

.the MIMD mode.
• A single user's partitions can communicate
with one another and different users'
partitions are isolated from one another.

This research was supported in part by the
National Science Foundation Grant MCS-8116099.

0190-3918/83/0000/0506$01.00 © 1983 IEEE 506

• The size of a rectangular partition can be
arbitrary. There is no limitation on the
size of the smallest partition that needs to
be allocated, therefore high resource
utilization is possible.
• The processors in each partition can be
configured into various computational
str uc tur es. Distributed algorithms are
designed to carry out the configuration
process.

Since each partition may have to operate in
the SIMD mode, it must be provided with a
communication medium for the broadcasting and
receiving of common instructions and operands.
i'breover, these media among different partitions
should not interfere with one another. In MOPAC,
a scheme called the Partitionable fussing System
has been developed to equip each partition with a
private bus. In addition to being used for
broadcasting, this bus al so allows nonadjacent
processors in a partition to exchange information
directly, therefore enhances the general
communication and synchronization capability of
the partition.

One of the most time consuming operations for
the control unit of MOPAC is the allocation of
partitions from the mesh net\..Ork according to each
job's demand. The speed of this process
profoundly affects the entire system performance.
Due to the lowering hardware costs and speed
improvements, it has become natural for system
designers to incorporate many of the repetitious
operating system functions into hardware modules.
In MOPAC, a special purpose hardware mechanism
called the Partition Allocation Unit is designed
to administer the allocation process. This unit
reduces the overhead incurred by allocation to the
minimum.

In Section II the overall organization and
operation of MOPAC is described. Section III
presents the Partitionable fussing System, and in
Section IV the operation of the Partition
Allocation Unit is discussed. The conclusion
follows in Section V.

II. System CX'ganization and ~eration

Each processing element (PE) in MOPAC
consists of three components: an appl ic at ion
processor (AP), a memory unit, and a communication
processor(GP). The application processor is
responsible for the execution of users' prograns,
which are stored in the memory unit along with
data. The communication processor is responsible
for communicating with other PE' s and the lb st.

All communication processors in the system are
organized as an nxn tw:> dimensional mesh, with
corresponding pairs of edge processors connected
to form the topology equivalent to a torus
(Fig.1).

Each communication processor is al so
connected to segments of the Partitionable Bussing
System (PBS). When a particular structure on a
partition is formed, the PBS bus segments of the
individual PE's in this structure will be tied
together as a single bus.

The !bst is the unit which coordinates the
activities at the system level. Its
re spon sib il i ties include user program d ev elo pment,
input and output handling, determining the proper
size of the partition(s) required for a user's
job, allocation of the partitions from the mesh
network, and generation of the initial structure
configuration messages.

Al 1 CP' s and the lb st are connected to the
System Bus (SB). It is through this bus that the
!bst canCOinmunicate with each PE when required.
The principal uses of the System Bus are:

.After a partition is formed, the lbst will
use SB to transfer initial configuration
messages to a proper cell (cal led the Initial
Cell) in the par tit ion to start the structure
configuration process.
• When a job in a partition finishes
execution, the Initial Cell will report this
status to the !bst through SB .
• If a user's job has two or more partitions
executed in parallel, these partitions can
exchange information through SB.
. For fault diagnosis and fault tolerance
purposes, x copies of a single job may run on
x partitions simultaneously. The partitions
may use the SB to communicate with each other
and verify the results.

The partitioning philosophy of MOPAC is as
follows. For a large class of numerical problems,
image processing probl ems[5], and systolic
algorithms[2], the tw:> dimensional mesh is one of
the most appropriate interconnection structure.
It is also observed [6][7] that many other STI4D or
MTI4D type of computation structures, such as
linear array, pipeline, binary tree, and ring, can
be embedded in rectangular mesh. In addition, to
partition a mesh network, the simplest and most
natural way is to partition it into sub-meshes.
Considering the above, MOPAC will allocate
rectangular partitions of the mesh for each user's
job.

The allocation process of MOPAC is outlined
below. After the !bst has compiled a user's
program and determined the dimensions of the
rectangular partition(s) needed[7J, the lb st will
have to allocate the partitions from the available
PE' s on the mesh. Since there might have other
user's jobs (i.e. other partitions) which occupy
part or all of the PE' s in the mesh network
(Fig.2), it becomes quite difficult for the !bst
to search for a partition of the required size.

507

This searching process is aided by the Partition
Allocation Unit (PAU). If PAU cannot find the
desired partition, the job will have to wait in a
queue, until some of the jobs on the mesh finish
processing and release their partitions. If the
partition is found, the configuration process for
the particular job structure may start.

The organization of the communication
processor and the distributed configuration
process are similar to those as given in [6 J.
There are five registers defined in the
communication processor:
ID Register: Contains the address (row and column
ind ices) of the cell.
M::Jde Register(MR): Indicates the mode of
operation of each cell. Each cell can be either a
processing cell (PC) participating in the
processing ~a given structure or a connecting
cell (CC) whose role is to transfer data in
different directions without performing any kind
of processing.
Configuration Register (CR): Contains information
about the present structure, and the logic address
of the cell within the structure.
Predecessor Register: A four bit register which
stores the directions of the predecessor cells in
each structure. Each bit corresponds to an
element of {W,S,N,E}, the four directions on a
can pass.
Successor Register: Similar to the Predecessor
Register except it stores the directions of the
successor cells in each structure.

The configuration process starts when the
!bst sends a configuration message to the Initial
Cell in the partition. The general form of the
configuration message is:

MC structure type, size of the structure, size of
the partition p and q, level within a structure,
direction)

The structure type is the code name for the
current structure that is being configured, such
as LA stands for linear array. Size of the
structure indicates the size of the current
structure. For example if the configuration is a
linear array with k elements, size of the
structure will be k. Size of the partitionp and
q indicates the row---ai1d-column widtn of the
current partition that the job got allocated.
This part of the message is vital because by
knowing this information, the CP's will not try to
construct a structure outside its own partition,
therefore preserve independence among different
partitions. Level within a structure indicates
the level within a structure that the next
processing cell should assume. For example the
first element in a linear array structure usually
assumes level O, the second element level 1, etc.
This level number may also be viewed as the
logical address of the cell in a structure.
Direction d is a parameter which directs the
transmission direction of future configuration
messages. One of the functions defined on d is
op(d), which is the 180-degree opposite direction
tod. For instanceop(S)=N,op(E)=W, etc.

After the Initial Cell receives the initial
configuration message, it will exanine the
contents of the message, modify the values of some
of the parameters, and pass the message to proper
neighboring eel 1 s in a similar format. The
neighbors will repeat the sane procedure, until
the whole structure is configured on the
partition. Since the configuration is done in
such a distributed manner, the burden that would
have been put on the lbst and System Bus if the

configuration is done in a centralized way is
el iminated •

For illustration, the distributed algorithm
to configure a linear array of size k on a pxq
(pq> k) partition is shown below. The position of
the - Initial Cell is at the northwestern corner of
the partition, and the initial configuration
message generated by the lbst is M(LA,k,q,O,q,E).

For each cell :
Receive M(LA,k,q,l,c,d) from predecessor;
Begin

GR:=LA,l; (*configure to the 1th element
of the 1 inear array*)

if l<>k-1

End.

then (*configuration process not
canplete*)

if c=1
then(*come to the edge of

partition*)
transmit M(LA, k ,q ,1+1, q ,op(d)) to

S-neighbor
else

transmit M(LA,k,q,1+1,c-1,d) to
ct-neighbor

else (*l=k-1*)
configuration process complete

The message transmission pattern is shown in
Fig. 3.

The c parameter in the message is used as a
counter to detect if the message has reached a GP
on the edge of the partiton. At the beginning of
each row in the transmission path, c is set to q,
the column width of the partition. As the message
is passing fran GP to GP, c is decremented by 1
each time, until when the processor at the edge of
the partition sees c=1. At this point, the edge
processor will reset the value of c to q, reverse
the direction paraneter, and pass the message to
the S-neighbor.

Configuration algorithms for structures such
as square array, ring, and tree can be found in
[6][7].

The private bus for the partition is also
formed during the configuration process (Section
III). When the process is finished, the last GP
will broadcast "configuration canplete" signal to
other GP's in the partition through the private
bus, and the execution of the job can begin.

III. The Partitionable atssing System

As shown in Fig. 4, Each GP has four PBS bus

508

segments. For GP(i,j), the E-segment is connected
to the W-segment of GP(i,j+1), the N-segment is
connected to the S-segment of GP(i-1,j), etc.
Intervening between a pair of segments is a
switch, whose state wil 1 determine if the two
segments are connected.

The state of the switch is controlled by the
setting of the bits in the Successor Register.
When the configuration message for a particular
structure is transferred fran a cell to its
ct-neighbor (dE{W ,S, N, E}), the ct-bit in the
Successor Register of this cell is set. Since
this bit al so controls the state of the
corresponding switch, the bus segmentsbetween
this cell and the ct-neighbor can now communicate
via the turned on switch.

As the configuration messages are being
transferred fr an GP to GP, the switches bet ween
predecessor cells and successor cells are turned
on accordingly. After the configuration process
is completed, the bus segments belonging to the
cells of the same structure are all connected, and
they together serve as one single bus for the
partition. Since the configuration message for a
job is designed to run in its own partition only,
switches anong GP' s in different partitions will
not be activated, so the bussing system anong
different partitions will be isolated fran one
another.

After a job finishes execution, each GP in
the partition will clear its individual Successor
Register, and the PBS segments are disconnected
from one another. The released resources in this
partition are now ready to participate in new
partitions.

Providing an additional bus for the
canputational structure configured on a partition
augments the communication capability of the
structure. It was shown in [8] how the canplexity
of finding the maximum element on a square array
structure is reduced by using the global bus.
Another exanple is the binary tree structure.
Though it is expected that most conrnunications
would occur locally between parent and child
nodes, for the occasional situation that remote
leaf nodes need to communicate, the global bus can
be used without having to relay the messages up
and down the entire tree.

IV. The Partition Al location Unit

The core of PAU (Fig.5) is an associative
memory, where searching for a particular bit
pattern can be conducted by each word in parallel.
The bit pattern is stored in the Comparison
Register, and for those bits that do not
participate in a certain search, they can be
masked out by setting corresponding bits in the
Mask Register to logic O. If the search is
successful in a memory word' the corresponding bit
in the Match Register will be set to 1, otherwise
it will be set to O.

The size of the associative memory (AM) is
nxn, the sane as that of the mesh network. The

contents of each cell in AM is set to if the
corresponding processor in the mesh is free, or to
0 if the processor is busy. After each allocation
for a new partition, and after the completion of
the job on an existing partition, the state of the
corresponding cells in AM will be updated
accordingly. All faulty processors will also be
marked as busy. In other words, the AM serves as
a hardwired bit map which keeps the status of all
processors in the mesh network.

For the purpose of PAU operation, all the
bits in the Comparison Register are set to 1, and
use only the Mask Register (which is connected as
a circular shift register) to control the
searching process. When a job demands a
rectangular partition of size pxq, the 1-bst will
issue a search command to the control unit of PAU.
The search process star ts by set ting the fir st q
bits in the Mask Register to 1 and the initiation
of the AM operation. All words in AM will examine
in parallel whether their first q bits are 1, and
if so, the corresponding flags in the Match
Register are set.

The result of the above process actually
tells the av ail ability of any partition with a
column width of q in the first q columns of the
mesh. The remaining task of selecting the
partition with row width plies in examining the
contents of the Match Register. If there are p
consecutive bits in the Mo.itch Register that are
set, a partition of the desired size is found.
The AND Network following the Match Register is
designed to provide this function.

There are n stages in the AND Network, and
each stage has n outputs. Let the kth bit of the
Match Register be denoted by MR(k), and the output

of the jth AND gate in stage i (if[1,n],je[O,n-1])
be denoted by OUT(i ,j), then

j+i-1(mod n)
OUT (i ,j) = /L /Jilt (k)

where n denotes the AND operation

In words, the state of OUT(i,j) tells whether
there are i consecutive 1 's star ting with the jth
bit in the Match Register. If the desired
dimension of partition is pxq, then the function

n-1
FOUND= j~O OUT(p,j)

where u denotes the OR operation, would reveal if
at least one such partition exists.

To know if a partition exists is not enough.
If it does, the fbst must al so know the 1 ocation
of the partition. This is the function of the
priority encoder shown below the AND Network in
Fig .5. The connection between the outputs of each
stage of the AND Network and the inputs to the
priority encoder is controlled by a set of n
OUT-CONTROL (OC) signals. When OC(p) is set, only
the outputs from stage p, i.e. OUT(p,j), O<j<n-1,
will be fed into the priority encoder. If there
is only one OUT(p,j) true, j will appear at the
output of the priority encoder, which is marked as
ROW-ADDRESS in Fig .5. If there are more than one
j's such that OUT(p,j) is true, then only the
smallest of such j will be selected as RCW-ADDRESS

509

by the priority encoder.

The above procedure constitutes one cycle of
operation of PAU. At the end of the first cycle,
if control unit sees that FOUND is false, this
indicates that there is no partition of size pxq
exists in the first q columns of the mesh. To
determine if such partition exists in the second q
columns, the control unit will shift the Mask
Register right by 1 bit, and a second search cycle
begins. This process continues until at a certain
cycle when FOUND turns out to be true, or until
after n cycles, when FOUND is false in every
cycle, then the control unit can tell that there
is no partition of size pxq exists. If FOUND is
true in cycle c (cE[O,n-1]), the row address of
the cell in the northwestern corner of the
partition is shown at the output of the priority
encoder, RON-ADDRESS. The column address is c.

The PAU is amenable to be implemented on a
special purpose VLSI chip. The structure of the
associative memory and the AND network are
regular, therefore the design of elementary cells
and the layout of them are straightforward. In
addition the circuit complexity of PAU is
proportional to N, the number of PE's in the mesh,
while the number of pins required is proportional
to log JN. This high circuit complexity to pin
ratio makes PAU ideal for single chip
implementations.

V. Conclusion

As the design cost and design cycle time seem
to be two major obstacles in the development of
large scale VLSI systems, a highly regular and
reconfigurable architecture such as the MOPAC
system becomes especially valuable. Since MOPAC
is regular, the initial design man-year effort is
significantly reduced. Since MOPAC is
reconfi~urable, it can provide a wide range of
capabilities and the custom design cost for
individual applications is eliminated. In
addition, the independent bus within each
partition combined with direct interprocessor
connections provide an excellent environment for
jobs exhibiting strong locality of shared
resources. Thus it is concluded that MOPAC can be
truly considered as one of the viable VLSI
architectures.

References

[1] LS.Haynes, R.L.Lau, D.P.Siewiorek,
D, W.Mi zell, " A Survey of Highly Parallel
Computing, " Computer, Jan. 1 982. pp. 9-24.

[2] C. A .Mead , L.A. COnwa y, In trod uc tion to VLSI
iiy~. Reading, MA. Addison- Wesley,
19T30:-- Section 8. 3.

[3] W.J.Bouknight, S.A.!RnenbergL D.E. Mcintyre,
J.M.Randall, A.H.Sameh, D •• Slotnick," The
ILLIAC IV System," Proc. IEEE, April 1972.
pp. 369-379.

[4] H.J.Siegel, R.J.McMillen, P.T. Mueller, "A
Survey of Interconnection Methods for
Reconfigurable Parallel Processing Systems, "

..£LQc_. ..AEI..BS.. ..19.1!1 lKC.., June 1 9 7 9 •
pp. 529-5 42.

[5] A .Rosenfeld, " Parallel Image Processing
Using Cellular Arrays," Computer, Jan.
1983. pp. 14-20.

[6]1.Koren, "A Reconfigurable and Fault
Tolerant VLSI Multiprocessor Array," Proc.
.cl ~ filh.. -1\nruJfil Sym ~ si um .QJ1 Computer
Architecture, ~ pp. 25-442.

[7] W .H. Lee and M.Malek, " Design of a
Partitionable and Reconfigurable
Multicomputer Array, " Technical Report,
!Rpt. of Electrical Engineering, Univ. of

Texas at Austin. Dec. 1982.

[8] S.H.fukhari," Max, An Algorithm for Finding
MaximU'll in an Array Processor With a Global
Bus , 11 JX..ac.. .o.f .t.be. In t em a t i on a J
Conference .Q.1J. Parallel Processing, 1981.
pp. 302-303.

to (n-1,0) to (n-1,n-l)

to (O,O)

~
available

PE's

---------;''

to
~n-1,
n-1)

' I :

Vi-neighbor

' '
' I

,' /

/

to (O,n-1)

to PBS segments

E-neighbor

to System Bus

:
:

' ' ,

to
(n-1,0)

Fig.2 An instance of partial
allocation on the mesh

PBS

mesh conncc-
ti on

Sy stem Bus

1 Initial
Cell

:m n

l
l

r----- q -->f

!'--- n

Fig. 1 Inter connection structure for communication
processors

Fig. 3 Transmission pattern for a linear
array structure on a pxq partition

To CP(i+l,j)

Fig. 4 Organization of PBS segments for one
cell and the interconnection to its
four neighbors

match
register

~~~~~~ .--~~~~~ 

C I I I I I Ii h 
mask regis er 

I II I I I II I 
comparison. 
register 

AND 
network 

priority 
encoder 

JW-ADDRESS FOUND 
p 
q 

FOUND 
ROW-ADDRESS 

COLUMN
ADDRESS 
request 

or 
free 

control 
unit 
of 
PAU 

J OC(i) 

shift mask. 
register 

Fig. 5 Block diagram of the Partition Allocation 
Unit 

510 



Hans-Joerg Brundiers, Richard E. Buehrer, member, IEEE, 
Hansmartin Friess and Milan Tadian, member, IEEE 

Swiss Federal Institute of Technology, ETH 
CH-8092 Zurich, Switzerland 

Abstract. This study describes preliminary 
results of general interest based on first 
utilization of the multiprocessor EMPRESS of 
the ETH Zurich. To carry out the study, a 
electrical-engineering reference problem was 
solved in the parallel mode using the 
parallelized version of the program PSCSP 
(which numerically simulates continuous 
systems using the integration method of Taylor 
series). 

Results are presented for the following 
asynchronous parallelization concepts: 

single-stage parallelization 
- double-stage parallelization 

improved single-stage parallelization using 
a new parallel algorithm for Taylor series 
and a partially distributed control of the 
parallel processes, 
double-stage parallelization, simulation of 
optimal hardware by scaling the instruction 
timing. 

Two further parallelization methods are 
proposed to be tested on EMPRESS: 

nearly completely distributed control of 
parallel processes and 
complete prescheduling and synchronous 
operation. 

Introduction 

Multiprocessor Hardware 

The multiprocessor EMPRESS is a model computer of 
the MIMD type assembled at the ETH Zurich. The 
system comprises 16 LSI-11 processors (called 
execute processors=EP) and one PDP-11/34 (called 
supervisor). The newly developed· communication 
hardware consist of two networks (for a detailed 
description see [1]): 

the intercommunication memory 'intercom' is 
organized as a quadratic matrix of 17xl7 RAM 
segments. It allows simultaneous and delayless 
exchange of data. 
in the process distribution system, a hard wired 
'job controller' monitors the 16 EP's via a fast 
parallel bus. 

The hardware supports two stages of 
parallelization. In the first stage the supervisor 
distributes processes among the EP's. In the 
second stage a 'master' EP can form a logically 
contiguous group together with other 'slave' EP's 
and distribute sub-processes among the latter. 

Application Software 

As first application, a parallel algorithm using 
Taylor series for the numerical integration of 
differential equations [2] was tested. The basic 
concept of this method is the piecewise 
approximation of the solutions by expansion into 
Taylor series. Higher terms of the series are 
calculated recursively from previously calculated 
terms. The algorithm provides a decomposition of 
arithmetic expressions within the differential 
equations into single preprogrammed recursion 
formulae. 

0190-3918/83/0000/0511$01.00 © 1983 IEEE 511 

Parallelism is exploited on the level of 
arithmetic expressions as well as on the level of 
recursion formulae. For nonlinear recursions the 
formulae contain typically summations of the 
following form (where the inherent parallelism 
depends on the order n): 

m(n) 
R La *P *Q 

n A=k A m-A A 

The algorithm is realized (in sequential form) in 
the program PSCSP [3] for the numerical simulation 
of continuous systems developed at the ETH. A 
restricted version of this package has been 
adapted to the multiprocessor. Its main parts are 
mentioned briefly (see also [1]): 

The separate precompiler accepts the user
provided definitions of the differential 
equations and produces a Fortran program 
containing calls to recursion formula. 
The code generator does a symbolic execution of 
this program accounting for run time values of 
parameters. Thus it generates an optimized 
branchless code sequence for the calls. 

- The scheduling routine establishes a tabular 
process dependency graph corresponding to the 
code sequence. 
The process controller guides the asynchronous 
parallel execution of the processes by 
interpreting the dependency graph. (These parts 
run in the supervisor) 

- The library of recursion formulae preprogrammed 
to run in the EP's in 2 versions: 
- evaluation of a formula is one process in one 

EP 
- formulae are sub-parallelized; sub-processes 

run simultaneously on various processors. 

This hardware and software system offers several 
possibilities for performance measurements and for 
testing other parallelization methods. 

The next paragraph introduces the refence problem 
used for perfomance tests followed by the results 
obtained using the basic system. Section IV 
describes ·results obtained using a improved 
software. In section V we present results 
obtained by simulating optimal hardware. In the 
final section we mention two other parallelization 
concepts to be tested on EMPRESS. 

II Reference Problem 

As reference problem, we chose the following 
system of differential equations describing the 
dynamics of an electrical synchronous machine [4]. 

h! ~-l • Y(J,o,s), 

f(s), hs = g(!) 

! designates a vector of S currents, L a SxS 
coefficient matrix, Y a vector of S ~oltage 
functions, s the load angle and o the slip. 



This problem has an adequate degree of parallelism 
(seven integrators), nonlinearity (which means 
subparallelism in recursion formulae) and coupling 
(which means complexity in the dependency graph). 
Fig. 1 shows the dependency graph pertaining to 
th'is problem and a certain set of parameters. The 
numbers correspond to processes (=evaluation of 
recursion formulae) to be executed in the EP's. 
The bold typed numbers indicate recursive processes 
whose internal parallelism and time behaviour 
depend on n. To get the n'th term in the series 
axpansion, this graph has to be processed for the 
order n, where n goes from 0 to 15. 

Fig. 1 

Dependency 
Graph 

19 "'-.. /.34;;'35--37--38 
7 "'. 33/_ 36/ 
2 "--. 20 24 25---21--28 
3---.4-----.5---.6~9---10 23 26/' 

1 ~o 41-;t43--44 
21 39 42/ 
22.---1------~ 
s:--+---~ 

15 30--... 
11::113~14->16->17--.18 29--+31~32 
12'-+51'-. \\46--... 
52------+53-+54-+55~56 '-.45-47.-..48 
49-+50 

III Basic System 

The operation of the multiprocessor in the single
stage mode is illustrated in the process flow 
diagram in fig.2a, for a pass through the graph 
with n=9. At the beginning, the supervisor signals 
to the job controller that the 'root processes', 
like 19, 7, ..• are ready to be started. After 
finishing a process, the EP sends a process 
identification to the supervisor, which in turn 
transfers the results to the common data region of 
the intercom and checks whether any follower 
process is ready to be started, until the last 
'leaf process' terminates. 

In this mode the recursive processes lead to a 
delay, as expected. Further delays (e.g. 4 which 
follows 3) are due to overloads in the supervisor 
process controller. The mean speed-up is 3.4. The 
graph shows a mean parallelism of 5.6, defined as 
(total number of processes)/(number of processes on 
critical path). 

Fig.2c shows how the system works in the double
stage mode. The recursive processes are now split 
into a master process and several slave processes. 
There is only a small gain in the mean speed-up, 
due to overhead in the administration of sub
processes and non optimal choice of the number of 
sub-processes. 

IV Improved Software 

In ref.[5] another parallel algorithm for the 
recursive calculation of Taylor series is proposed. 
This algorithm has been installed in the basic 
system: Let j• be a recursive process in the graph, 
like 14, used to calculate the following sum: 

R = n 

This sum is no longer split into sub-processes at 
the time jn is processed, but two new processes 
j~_'1 and j~.. are prescheduled to do the partial 
sums depending on terms of the order n-2 and n-1 
respectively. When processing the graph for n-1, 
j" is started as a root process, and j' as follower 
of j. j'' and j' are no longer on the critical 
path, as shown. in fig.2b (for j=52 j'' and j' could 
be taken together because j finished before j''). 

A process control routine was installed in the 
EP's in order to distribute partially the process 
control load. This routine has direct read-only 
access to the dependency table stored in the 
common data region. Having completed a process, 
the EP undertakes the next awaiting follower 
process, if any. The supervisor remains engaged 
in communicating data to other followers and 
starting them. Fig.2b demonstrates the effect of 
both improvements. 

V Simulation of Optimal Hardware 

In ref.[6] hardware improvements 
multiprocessor are proposed including: 

for the 

- EP's with registers and instructions dedicated 
to the process distribution hardware 
intercom with access time same as for local 
memory and automatic wait before reading results 
from other processes 
faster process distribution bus 
dedicated process distribution hardware in the 
supervisor. 

Such hardware were simulated in the basic system 
by delaying instructions for process control and 
execution in the supervisor and EP's in such a way 
that non optimizable instructions are delayed by a 
factor of 10 and others by an estimated value <10. 
Fig.2d indicates a significantly higher speed-up. 

VI Conclusions 

The speed-up can be summarized as follows: 

n=O n=15 <n> 
1-stage parallelization, basic 2.9 3.9 3.4 
1-stage parallelization, improved 3.7 7.5 5.4 
2-stage parallelization, basic 2.7 4.8 3.5 
2-stage optimal hardware (xlO) 5.4 8.6 7.1 

Encouraged by the improvements obtained so far, we 
plan to test two more parallelization methods: 
- Using the 2nd stage, hardware process control 

can be distributed completely: if an EP finishes 
a process with more than one follower, the EP 
can assign rema1n1ng followers to slave EP's 
(except in deadlock situations). 
It is possible to resolve a sequence of 
recursion formulae (as well as other 
expressions) into operations of similar length, 
which can be prescheduled by assigning a logical 
processor number and time slot to each 
operation [5]. Such a problem can run 
synchronously on EMPRESS: One master EP 
synchronizes the rema1n1ng slave EP's in 
processing the parallel operations. 

A future object in view would be a 
operating system' for EMPRESS supporting 
processing of more general applications. 

'parallel 
parallel 

512 

References 

[1] R. E. Buehrer, H. J. Brundiers, H. Benz, 
B. Bron, H. Friess, W. Haelg, H. J. Halin, 
A. Isacson, M. Tadian, ''The ETH-
Mul tiprocessor EMPRESS: A Dynamically 
Configurable MIMD System'', IEEE Transactions 
on Computers, Vol C-31, pp 1035-1044, 
Nov. 1982. 

[2] H. J. Halin, R. Buehrer, W. Haelg, H. Benz, 
B. Bron, H. J. Brundiers, A. Isacson and 
M. Tadian, ''The ETH Multiprocessor Project: 
Parallel Simulation of Continuous Systems'', 
Simulation, pp 109-123, Oct. 1980. 



[3] H.J . Balin, ''The Applicability of Taylor 
Series Methods in Simulation'', Proc. 1983 
Summer Comp. Simul. Conf., Vancouver, B.C . 

[4] P. Wegmann, H. NourEldin, P. Wehrli, ''Digital 
Simulation of a Synchronous Machine with Motion 
Equation'', AIE-Report No. 78-06, Institut fuer 
Automatik und industrielle Elektronik der ETH, 
Zurich, Switzerland, 1978 

[S] M. Tadian, R. E. Buehrer, W. Haelg, ''Parallel 
Simulation by Means of a Prescheduled MIMD 
System Featuring Synchronous Pipeline 
Processors'', in Proc. 1982 Int. Conf. 
Parallel Processing, M. T. Liu and 
J. Rothstein, Eds., 1982. 

[6] R. Buehrer, Hardware eines dynamisch konfigu
rierbaren Multiprozessors, Ph.D.dissertation 
6930, Swiss Federal Inst. Technol., Zurich, 
Switzerland, 1981 

"""m:-tfro<r_r-::'.1::::1==='~2 i==='=3 =r-<tf 4H"G""""~t'( SH~--r.f 6:':Q)<=f1IT'-<f 7'Il'>?'.~~f 8'::.?:'l')<~fr'"9_ time (ms) LSI o <I 51 <S3 <S4 < SS> <S6> < 9> <-10) <23) <2S) < 27) <28> 
LSI 1 <-2 <SO> <-4 [------·5.-----1 <-6> <29) <-33> <32) <37> 
LSI 2 <-3> <-30) [-----1------1<16> <17> (18) (-4S) (47) (3S) (44) 
LSI 43 [-----·7 1 <-39><41> <-43) (38> 
LSI [------11------1 (31> <48> 
LSI S <11) <-46-) (34) 
LSI 6 (12 (26> <-40-> 
LSI 7 (lS) <-36> 
LSI 8 <19> (42) 
LSI 9 (21> (20 (24> 
LSI 10 (22> <13 
LSI 11 <49 
LSI 12 [------~52------

lo f 1 12 f3 14 Is 
LSI 0 49 <SO> 36 <45 47 <48 
LSI 1 (22 30 24 [-14-1 37 <38 
LSI 2 21 <24 40 33 3S 
LSI 3 (19 20 <24 39 41 43 <44> 
LSI 4 [-71 42 
LSI S [81 46 
LSI 6 2 [-----51-----
LSI 7 15 [----~1-----
LSI 8 [-521 
LSI 9 1 [--1~1 
LSI 10 12 [-Sl-1 S3 S4 SS <S6 
LSI 11 3 4 [-S-1 6 (9)10 23 25 27(28 
LSI 12 <11> <13 [-14-1 16 (17 18 (29 31 <32 
LSI 13 [ 7 1 
LSI 14 [ 8 1 
LSI 15 [ 52----

lo f 1 f 2 (3 (4 ls f 6 

Fig. 2a 
Sin~le-stage parallelization, 
basic system 

Fig. 2b 
Single-stage parallelization, 
improved system 

f 7 f 8 19 
LSI 0 (-1 [-7-1 (521 (511 (-51 [141 <-6> <16> <17> (18> (29) (31) <48> 
LSI 1 (-2> [-71 (-52-1 <26> [-S-1 <54 (-9) (10) 
LSI 2 <-3) (-7-1 (521 [-51-1 <40> (-55) <56> 
LSI 3 (--7--1 (-4> (13) (53) 
LSI 4 [ 1 <42> [-·-1~1 
LSI 5 (11) [-52-1 [ S-1 
LSI 6 (12 [-81 <SO> <20 (-51 (-141 
LSI 7 <IS> [521 
LSI 8 <19> l-511 f-S--1 

1-81 (30) -51- <34> l141 
LSI 9 (21) -&-1 511 (-51 -14-1 
LSI 10 (22) -IH <46> -511 -51 
LSI 11 <49 [-81 [--51--1 (-141 
LSI 12 [ 52 1 (-14-1 
LSI 13 (-71 (-81 (-52-1 <36) <-24) 
LSI 14 (-7-1 (-521 (511 [-S-1 [141 
LSI 15 (-7-1 [521 (51] [-51 [-14--1 

f 0 f 10 (20 (30 f40 time(ms) 
LSI 0 1 [71 52 51 24 54 55 56 9 10 23 25 27 28 
LSI 1 (2 52 42 (5 16 17 18 29 31 32 38 
LSI 2 <3 52 51 34 [51 <6 45 47 48 44 
LSI 3 (-7-1 30 26 (-14--] 33 35 37 
LSI 4 [--8--1 40 5 39 41 43 
LSI 5 11 5 20 14 [51 
LSI 6 12 (7 [81 S1 4 [14 
LSI 7 15 52 (51 14 5 
LSI 8 19 8 52 36 (141 
LSI 9 21 (-81 51 14 [5 
LSI 10 22 8 50 46 [14 
LSI 11 49 (-71 52 51 14 5 
LSI 12 [--52--1 14 
LSI 13 ~7 [81 51 13 [-5-1 
LSI 14 -7 52 51 53 
LSI 15 7 [8 [-Sl-1 (5 

Figure 2 Process flow diagrams 

513 

<-33-> (35> <-43> 
(23) <25) <27> (28) 
(-39) <45) <47> 

(41) <38) 
<37) <-32) 

<44) 

Fig. 2c 
Double-stage parallelization, 
basic system 

Fig. 2d 
Double-stage parallization, 
simulating optimal hardware 



PERFORMANCE C£ A MODULAR INTERACTIVE DAT A ANALYSIS SYSTEM (MIDAS)* 

Creve Maples, Daniel Weaver, Douglas Logan, and William Rathbun 
Lawrence Berkeley Laboratory, University of California 

Berkeley, California 94720 

Abstract -- A processor cluster, part of a multi
processor system named MIDAS (Modular Interactive 
Data Analysis System), has been constructed and 
tested. The architecture permits considerable 
flexibility in organizing the processing elements for 
different applications. The current tests involved 8 
general CPUs from commercial computers, 2 special 
purpose pipelined processors and a specially designed 
communications system. Results on a variety of 
programs indicated that the cluster performs from 8 
to 16 times faster than a standard computer with an 
identical CPU. The range represents the effect of 
differing CPU and I/O requirements - ranging from 
CPU intensive to I/O intensive. A benchmark test 
indicated that the cluster performed at approximately 
85% the speed of the CDC 7600. Plans for further 
cluster enhancements and multi-cluster operation are 
discussed. 

Background and Objective 

MIDAS, a Modular Interactive Data Analysis 
System being developed at the University of 
California Lawrence Berkeley Laboratory, is based on 
the concurrent operation of multiple asynchronous 
processors. The architecture is designed to provide a 
highly-interactive, graphics-oriented, multi-user envi
ronment that permits programs to dynamically utilize 
multiple processors in a manner appropriate for the 
calculation. The system was specifically oriented 
towards handling scientific calculations, particularly 
those involving data analysis. This criteria necessi
tates that the facility be able to accomodate data 
bases on the order of 200 to 3000 Mbytes per user. 

The basic project objectives were to achieve high 
processing speeds, optimized 1/0 handling, modular 
hardware and software structure, flexible architec
ture, and a fault-tolerant environment. Initially the 
system should be capable of achieving processing 
speeds approximately equivalent to that of a CDC 
7600 per problem. The design is expandable, 
however, and ultimately should be able to provide 
between 10 and 100 times this performance. In order 
to efficiently handle potentially large volumes of 
information, the architecture permits information 
transfers to be optimized to minimize the effects of 
such operations on calculations. A high degree of 
modularity is required to support system expansion, to 
allow future utilization of different CPUs and mass 
storage devices, and to facilitate a fault-tolerant 
structure. 

The effective utilization of multiple processing 
elements in a wide variety of applications requires a 
high degree of architectural flexibility. Programs 
must be permitted to organize and control processors 
and communication in a manner appropriate to the 

*This work supported by the Director, Office of 
Energy Research, Division of Nuclear Physics, 
Office of High Energy and Nuclear Physics and 
Nuclear Science of the Basic Energy Science 
Program, U.S. Dept. of Energy, Contract No. 
DE-A03-76SF0098 

0190-3918/83/0000/0514$01.00 © 1983 IEEE 514 

particular problem. Erri:lr rei;pvery and human 
engineering are important ccncerns in any computer 
system and particularly so in a multiprocessor 
environment. The design criteria requires that the 
system be able to identify and isolate failures at the 
module level and, in most cases, circumvent the 
failure by employing alternate modules (with, how
ever, a possible degradation in throughput). Similarly, 
diagnostic tools are required that allow users to 
easily debug code in a real-time environment of 
multiple asynchronous processors. 

Architecture 

Essentially the MIDAS design organizes multiple 
processing elements into clusters. Each cluster 
combines a number of central processing units from 
commercial computers with independently developed 
specialized processors and a specially designed 
communications system [1,2,3]. The basic 
architectural structure is a three-level hierarchy of 
computer processors, organized in a general tree
structure and integrated with independent 
'intelligent' mass storage and interactive systems. 
The three processing levels consist of a Primary 
Computer, Secondary Computers, and Multiple 
Processor Arrays. 

A. Multi-Processor Arrays 

For the purpose of control, MIDAS organizes 
groups of processors into clusters called Multiple 
Processor Arrays. A simplified version of such an 
array, containing ten active processors, is shown in 
Figure 1. Two of these processors, the Input and 
Output Formatter, are specialized pipelined devices 
designed to handle information flow into and out of 
the cluster. They operate independently at a 200 ns 
clock cycle on two separate external 20 Mbytes/sec. 
I/O busses (32-bit data, 8-bit control). These proc
essors may, depending on their programming, select 
or reject information (filtering); expand or compress 
data (format); manipulate data (mask, shift, etc.); or 
route specified information as required by other 
processors in the cluster. 

OUTPUT 
PROCESSOR 

MEMORY MODULES 

INPUT 

PROCESSOR 

DATA IN 

Figure 1. A single Multiple Processor Array 



The eight general purpose CPUs, illustrated in 
Figure 1, are referred to as Programmable Arithmetic 
Modules (PAMs). They are standard commercial 
CPUs with dedicated memory, able to handle 
scientific calculations in general, and floating point 
operations and Fortran codes in particular. For the 
initial development the ModComp 7870 CPUs were 
selected. These processors support 64-bit floating
point hardware, pipelined operation, and up to ti 

Mbytes of memory. The CPUs are, for comparison, 
roughly 15% slower than the DEC VAX 11/780. 

8. Communication 

As previously discussed, data flow into and out 
of a cluster is handled by two independent, 20 
Mbytes/second busses. Within a cluster, however, 
interprocessor communication may be handled either 
by controlling access to independent memory units or 
via global shared memory. Each of the sixteen 
independent memory modules, illustrated in Figure 1, 
has a dedicated memory bus and may contain up to 
256 KB of memory. A 5 x 16 cross bar switch 
allows any memory module to be dynamically 
attached to any of the five processor busses shown. 
Since information transfer between a memory module 
and a CPU (PAM) is considerably faster than the 
cycle time of the CPU, it was possible to time
multiplex 8 independent memory-CPU. connections on 
the same bus with essentially no degradation of 
access time. Time-multiplexing these connections 
was an implementation, not an architectural, decision. 
Functionally the communication access operates as a 
12 x 16 cross bar switch. 

Any memory module may thus be attached to 
any processor at any time. Switching a memory 
module between available processors requires about 50 
ns. This use of bank-switched memory units for 
multiprocessor communication is similar to the Sl 
Multiprocessor architecture under development at 
Lawrence Livermore Laboratory [4]. One major 
difference in implementation, however, is that MIDAS 
currently prohibits a memory modu.le from being 
simultaneously accessed by more than one processor. 
When a processor is attached to a module, it has 
exclusive access to that memory until it relinquishes 
it (or until the supervisory CPU forces a relinquish). 
Each memory module is also equipped with auto
zeroing hardware and a current destination directory. 
Thus, when a module is released by a processor the 
directory pointer is incremented and the memory is 
attached to the next class of processor specified. If 
all processors of the specified class are busy, the 
memory will remain unattached until one becomes 
available. Once a processor-memory connection 

CLASS 

1. Dedicated 

2. Switchable 

3. Shared 

4. Storage 

TABLE 1 

DISTRIBUTED SUBSYSTEM 

Functional Memory Classification 

MEMORY 

TYPE ACCESS AVAILABILITY 

Program/Data Fixed Always 

Program/Data All Request 

Program/Data CPU's Always -Queued 

Data All Always - Indirect 

515 

Distributed Subsystem 
MULTI

PROCESSOR 
ARRAY 

Figure 2. A Distributed Subsystem. 

occurs, there is no functional distinction between the 
switched memory and the processor's local dedicated 
memory. The memory module is accessed by 
standard load and store instructions, rather than by 
1/0 commands. Thus from a programmer's point of 
view, the switched memory is simply a particular 
common block. 

General communication between processors may 
also occur by means of a global shared-memory unit. 
Access to this memory is· given on the basis of a 
demand queue. For store operations, a processor may 
lock out other processors until all memory updates 
are .completed. Since frequent accesses of the global 
shared memory could slow the parallel operation of 
the processors, its use should be minimized. Each 
processor may also communicate directly with the 
supervisory computer described in the next section. 

An independent bulk memory unit, with a 32 
Mbyte capacity, is also available for data storage. 
CPU (PAM) access to this unit is indirect in that 
information must be transferred via the switchable 
memory modules. This mode of accessing bulk mem
ory is quite efficient with respect to CPU utilization 
since a PAM continues operation immediately after 
releasing a memory module, and does not wait until 
the data transfer to bulk memory is complete. The 
bulk memory has dual ports which can be utilized 
either in a standard OMA transfer or in an address 
incrementing (+l) mode. Table 1 summarizes the 
classes of memory available within cluster, and the 
attributes of each. 

C. Control 

Each multiprocessor cluster is controlled and 
monitored by a standard commercial mini-computer, 
called a Secondary CPU. For simplicity of operation, 
this computer should be compatible with the CPUs 
utilized in the Multiple Processor Array. This two
level structure, illustrated in Figure 2, is called a 
Distributed Subsystem, and forms the basic processing 
unit of the MIDAS structure. The function of a 
subsystem is to receive specific problems (from the 
Primary Computer, the highest control level in the 
system) and to break the problem .into components 



(e.g., input, output, initialization, computational 
stages, etc.) which can be carried out in parallel. It 
then establishes the corresponding processor sequence 
and communication paths in the Multiple Processor 
Array, and loads the appropriate code into each 
processing element. During execution the Secondary 
monitors and, if necessary, controls the operation of 
the Multiple Processor Array, and maintains contact 
with its supervisor, the Primary Computer. 

In order to perform these operations the 
Secondary has its own dedicated disc drive, and runs 
an essentially st.andard operating system. It therefore 
can, for example, compile, assemble, and link pro
grams. The console-control functions of all the 
standard CPUs (in the MPA) are interfaced into the 
Secondary, which therefore has complete control and 
monitor capability. It can run, halt, resume, or 
single-step each PAM independently or collectively 
and can monitor or modify selected registers or 
memory locations. The Secondary is, however, too 
slow to directly control the high-speed, asynchronous 
memory switching potentially required in the MPA. 
The actual switching of memory modules and inter
processor communication is handled by a special 
hardware device termed the Conductor. The 
Conductor is functionally controlled by the Secondary 
and can supply the Secondary with detailed 
information on system activity when requested. 

The distributed subsystem has four communication 
channels to the external environment: the two I/O 
busses associated with the Multiple Processor Array; 
an independent bus attached to the Secondary; and a 
direct communication channel with the Primary Com
puter. The first three busses are under the control 
of the Primary and may be switched to whatever 
external devices (or processors) that are appropriate. 

The function of the Primary Computer is to 
handle all user interaction and to allocate and 
manage all the resources of the system. In this 
regard it oversees the operation of the multiple sub
systems and controls all intersubsystem connections. 
Further, at the request of users, it will supply on a 
real-time basis, status information on interim results 
of executing problems. 

A fundamental objective for MIDAS was the 
support of a highly interactive computing environ
ment. The monitoring capabilities of the Secondary 
Computers were explicitly designed to support such 
operation. Within its cluster and without perturbing 
the actual calculations, a Secondary can examine data 
and obtain detailed information (e.g., status, partial 
results, etc.) from the bulk memory unit (via a 
separate memory port) or from any PAM. This 
information, when requested, would be transmitted to 
the Primary Computer for presentation to the user. 

Performance 

Development of the "MIDAS project was planned 
in three phases: prototype construction of a simplified 
distributed subsystem (to test the basic switching, 
communication, and control concept); development of 
11 cornplete model of a fully operational subsystem 
under control of a Primary (to test performance); and 
then implementation of a full MIDAS architecture 
with multiple subsystems. The proj~ct was begun in 
the fall of 1979 and the prototype was operational in 
January 1982. It consisted of 8 memory modules, 

516 

Table 2 

Results of Benchmark Tests on MIDAS Prototype 
System 

Single 
Computer 

MIDAS (3)* 

MIDAS (4)* 

Running Time in Seconds (Ratio) 

1/0 
Limited 

272 (6.3) 

49 (1.1) 

<43> (1) 

Average 
Mix 

612 (5.5) 

159 (1.4) 

112 (1) 

2314 (4.9) 

673 (1.4) 

472 (1) 

CPU 
Limited 

c-4> 
(1.4) 

(1) 

*Indicates number of parallel CPUs 

input and output processors, a bulk memory unit, 4 
CPUs, and the high-speed switching hardware 
(Conductor). 

Based on the results of software simulations, the 
performance of the system was expected to be de
pendent on the relative l/0 versus CPU requirements 
of each problem. This is to be expected since the 
system was designed to minimize I/O impact on 
calculations. Benchmark testing therefpre utilized 
various existing programs with different calculational 
conditions. These programs were written in three 
different languages, with Fortran being most common. 
In order to operate in a parallel environment some 
modifications of the original programs were required. 
The required modifications were not major, and 
considerable effort was made to minimize such 
changes in order to permit accurate benchmark 
testing. The program structures were, therefore, 
deliberately not optimized to take full advantage of 
the architecture. 

Table 2 compares the time required to run four 
different problems on a standard ModComp computer 
and on MIDAS, utilizing 3 and 4 ModComp CPUs, 
respectively. The speed increases observed in the 
CPU-limited problem (specifically a Monte Carlo 
fission simulation program) tracked exactly with the 
number of CPUs used, as was expected. The I/0-
intensive problem, however, ran over six times faster 
on MIDAS (with 4 CPUs) than on the standard 
computer. This relative performance increase is 
attributable both to the existence of independent l/0 
processors within MIDAS and the more efficient 
handling of information transfer (the problem required 
the examination and analysis of approximately 10 
Mbytes of information). The value of 43 seconds, 
obtained with the 4-CPU MIDAS prototype, was sub
sequently determined to be an artificial limitation 
imposed by a problem in an external commercial disc 
controller. It was unable to supply the continuous 
high-speed data rate MIDAS was capable of 
accepting. The accuracy of calculational results were 
independently verified in all cases. 

The second phase of development, the 
construction of a complete subsystem, was completed 
in February 1983. The layout of this model is shown 
in Figure 3. Performance · of the system was again 
tested with a similar mix of programs and the results 
of these tests are shown in Figure 4. The observed 
speed enhancement (with respect to a single 
computer) is plotted versus the number of CPUs 
involved. If processor contention is negligible and 



each processor is able to contribute its complete 
capability towards the solution of the problem, the 
relative performance would simply equal the number 
of CPUs employed. For the CPU-bound problems 
investigated, the lower curve indicates that this was 
indeed the case. The middle line represents a more 
typical problem (with modest I/O requirements) and 
exhibits a speed enhancement approximately 50% 
greater than would be expected from the addition of 
single processors. The upper curve, which is a highly 
I/O intensive program, exhibits an even greater 
increase in relative speed. 

The Multiple Processor Array used in this Phase 
2 test can, as shown in Figure 3, receive external 
data from either the Primary Computer or a special
ize,d disc system supervised by a Multiported 
Programmable Controller (MPC). This high-speed 
controller is part of the intelligent mass storage 
system scheduled for operation in the next phase of 
the project. Since development of this controller is 
not complete, data required by the test programs 
were supplied from disc drives on the Primary 
Computer. The maximum steady· state data rate 
which the commercial disc controller package could 
sustain was approximately 650 KB/sec. In the I/O 
intensive test results shown in Figure 4, five CPUs 

,,-"-O_AT_A~S~T-':OR~A«!~Ql~§.-.,.. 

,' 300 MB ( 
MHO \ 

--~~''----~ 

DATA 

MULTIPLE PROCESSOR ARRAY 

~ . 
g 

Figure 3. MIDAS Phase 2 system (single cluster) 

517 

w 
~ 
<t: 
~ 

~ 
IJ.. a: 
w 
(L 

w 
> 
j::: 
<t: 
_J 
UJ a: 

10 

8 

6 

4 

2 

MIDAS Performance 
(Focused on single problems) 

110 Intensive 

• Prototype 

o Model 

2 4 6 8 

Fiqure 4. Test results for MIDAS, Phase 2 

were more than sufficient to handle the analysis of 
this continuous data stream. The further addition of 
CPUs therefore resulted in no improvement in the 
processing speeds. This temporary restriction in 
handling highly I/O intensive problems will be 
alleviated when the new MPC system is operational. 
A single such controller will feature 3 independent 
channels of look-ahead dual-track buffering and will 
be expected to handle sustained speeds of 
approximately 1.2 Mbytes/sec. 

It should be emphasized that although the Phase 
2 model shown in Figure 3 could run eight different 
programs simultaneously, the test results shown in 
Figure 4 require that the processors work coopera
tively on a single problem. Due to problems of com
munication, control and memory conflicts, commercial 
multiprocessor computer systems are not able to 
deliver one-to-one or even linear speed increases with 
an increasing number of processors. This is true 
even when the CPUs are operating on totally inde
pendent problems. For purposes -of comparison the 
relative performance of a DEC VAX 11/782 (contain
ing two 11/780 CPUs) is also shown in Figure 4. 
According to DEC's published measurements, the 
addition of a second CPU results in a 60-80% 
increase in performance. Two new systems, the 
ELXSI and Denelcor 's HEP, are specifically designed 
to reduce multiprocessor conflicts. 

Table 3 shows timing comparisons for a program 
running on both the CDC 7600 and the MIDAS Phase 
2 model. The CDC value reflects only the actual 
processing time and excludes both system overhead 
and I/O time. The MIDAS values are total processing 



times, including I/O. The MIDAS results, labeled 
'standard code' in Table 3, were obtained by 
utilizing as close a representation of the original 
CDC program as possible. Although the program 
heavily utilizes floating point calculations, it also 
requires the 1/0 transfer of about 560 Kbytes of 
information during execution. After the initial 
comparison tests, the standard code was modified 
slightly to explicitly take advantage of some of the 
parallel aspects of the architecture. These minor 
changes resulted in a 20% increase in MIDAS 
processing speed, as shown in the last column of 
Table 3. Further investigation suggests that addition
al MIDAS-specific modifications to the program may 
effectively double the performance of the program. 
Additional information on programming MIDAS in 
general, and this problem in particular, is contained 
in Reference [51. 

Future Directions 

Figure 5 illustrates a potential layout for the 
next, or third phase of the MIDAS project. In this 
example, the Primary Computer is controlling five 
processing clusters. Such a structure would contain 
between 55 and 145 processors, depending on the 
implementation plan adopted. The control and com
munication between processor clusters adds a new di
mension to the operation of the facility. The 
Primary Computer may utilize multiple clusters on 
single problems in an analogous fashion to the way 
the Secondary controls multiple processors. The 
Phase 3 effort will, in addition, require the develop
ment of a mu! ti-bussed, parallel-processor mass stor
age environment and a high-speed, interactive system. 

Subsequent development will also continue to 
increase the processing capability within a cluster. 
As illustrated in Figure 1, the existing Multiprocessor 
Array has two unused busses on the switch 
(Conductor). The number of CPUs within a cluster 
could, therefore, be tripled by duplicating the current 
8-CPU, time-multiplexed handler on each of these 
additional memory busses (the number of memory 
modules would also have to be increased). 
Alternatively the addition of multiplt' vector (array) 
processors to one bus is being investigated. Such 

Table 3 

MIDAS Performance Relative to CDC 7600 

(Execution Time in Seconds) 

MIDAS 

II CPUs CDC 76001 
"Stand~d" 

Code 
Enhan~d 

Code 

1 38.5 447 355. 
2 223 176. 
3 147 117. 
4 111 87.3 
5 89 70.1 
6 74 58.8 
7 63 50.2 
8 55 44.3 

1) CPU seconds only 
2) Essentially identical to the original CDC code 
3) Code modified to utilize some specific MIDAS 

capabilities 

518 

MASS STORAGE SYSTEM 

INTERACTIVE SYSTEM 
GRAPHICS TERMINALS MATRIX PRINTER/PLOTTERS 

Figure 5. Potential layout of a Phase 3 MIDAS sys-
tem, containing 5 multi-processor clusters. 

units would operate in parallel with all other 
elements of the system. They would be independent
ly programmable and, like other processors, could 
receive and transmit information by means. of 
switchable memory blocks. Communication, frequent
ly a bottleneck in standard CPU-array processor 
configurations, would effectively occur at memory 
speeds with both processors free to continue 
concurrent pperation. The Array Processors could 
thus be used to augment the standard processors for 
those portions of a problem amenable to the vector 
approach. 

Another area of active study will be the dynamic 
utilization of special purpose processors. Such 
processors could perform in hardware specific 
calculations, or algorithms, which are not. amenable 
to parallel approaches (either vector or 
mu! tiprocessor). These hardware modules (ultimately 
VLSI processors) could be incorporated on a vacant 
memory bus (Figure 1) and accessed from code in a 
manner analogous to a hardware subroutine. To 
further increase the processing power of a cluster, 
the Phase 3 development will also replace existing 
CPUs with new commercial processors at least 3 to 4 
times as fast. The performance of a number of new 
(or planned) CPUs, including micro-processors, are 
therefore being investigated. 

The main software thrust has been to permit 
existing programs to operate in a parallel environ
ment with minimum code changes. MIDAS is, of 
course, different from standard computers and is 
capable of handling· problems in ways not possible on 
other machines. As was indicted previously, even 
small structural changes in code can significantly 
increase the execution speed on MIDAS [5]. For this 
reason considerable effort is underway to investigate 
different computational approaches to important 
problems and to develop tools and language constructs 
which permit users to exploit the full, and currently 
untapped, potential of this system. 



Summary 

Computers continue to assume an increasingly 
important role in scientific research. Tradition al 
serial computers are, however, approaching the 
theoretical limits imposed by heat dissipation and the 
speed of signal propagation. In the decade of the 
60 's computing speeds increased by a factor of about 
100 while during the 70's, however, only a factor of 
10 increase in speed was realized. In order to 
achieve significant improvements in future computer 
processing, it is necessary to explore new parallel 
architectures. Until recently effort in this direction 
has focussed primarily on parallel instruction 
execution (SIMO architectures), as in vector machines 
(e.g., Cyber 205 or CRAY-1). While such 
architectures can provide substantial processing 
capability for 'vectorizable' programs, many 
problems, particularly those dominated by conditional 
testing and branching, do not appear amenable to this 
approach. 

The MIDAS project represents research in 
advanced computer architectures and their specific 
application in a scienti fie environment. The 
performance of the Phase 2 mu! ti processor cluster 
was tested on a variety of programs havinq total 
sustained I/O requirements spanninq over 2 orders of 
magnitude (5 to 1000 KBytes/sec.). for periods of 15-
20 minutes. In the worst case, the cluster performed 
n-times faster for n-CPUs. The maximum 
performance realized was approximately twice n. 
The tests were performed using existing programs and 
real data. A CPU-intensive problem run on both the 
CDC 7600 and MIDAS indicated that the current 
Phase 2 cluster was the equivalent of at least 85% 
of the 7600. The Phase 2 cluster required 
approximately $360K to develop and about 18 man
years of effort. 

519 

The utilization of multiple processors operating 
concurrently, such as employed in the MIDAS 
architecture, provides an al tern a ti ve to achieve 
necessary high-speed computation in the future. The 
MIDAS Project is designed to fill a specific need 
within the scienti fie com mun it y. Experience at other 
research institutions and examination of current 
computer performance suggest that this need cannot 
reasonably be filled by currently available computers 
in any cost-effective manner. 

References 

rn Creve Maples, William Rathbun, Daniel Weaver, 
and John Meng, "The Design of MIDAS A 
Modular Interactive Data Analysis System", IEEE 
Transactions on Nuclear Science, (October 1981), 
pp. 3746-3753. 

f2] Creve Maples, Daniel Weaver, William Rathbun, 
and John Meng, "The Utilization of Parallel 
Processors in a Data Analysis Environment", IEEE 
Transactions on Nuclear Science, (October 1981), 
pp. 3880-3888. 

[31 W. Rathbun, C. Maples, J. Meng, and 0. 
Weaver, "A Fast Time-Sliced Multiple Data Bus 
Structure For Overlapping I/O and CPU 
Operations," IEEE Transactions on Nuclear 
Science, (October 19'81), pp. 3875-3879. 

[4] Ronald D. Levine, "Supercomputers," Scientific 
American, (January 1982), pp. 118-135. 

[5] Douglas Logan, Daniel Weaver, Creve Maples, and 
William Rathbun, "Application Programming for 
MIDAS, a Multiprocessor System," IEEE 
Transactions on Nuclear Science, (October 1983), 
in press 



THE HOMOGENEOUS MULTIPROCESSOR ARCHITECTURE - STRUCTURE 
AND PERFORMANCE ANALYSIS 

Nikitas Dimopoulos 
Electrical Engineering Department 

Concordia University 
Montreal, Quebec, Canada H3G 1M8 

Abstract ~ In this work, we present the structure 
of the Homogeneous Multiprocessor. The 
Homogeneous Multiprocessor is a tightly coupled 
MIMD architecture composed of two parts. The 
multiprocessor proper where each processing ele
ment communicates directly with either one of its 
two immediate neighbors through a distributively 
controlled switching network, and the H-Network 
which is a high speed (7 Mbytes/sec) local area 
network. 

A performance analysis of the two components 
of the architecture as well as possible applica
tions of the Multip1ocessor are also presented. 

I. Introduction 

In recent years multiprocessors have become 
important in solving problems where a large amount 
of computation is needed. Several multiprocessors 
have been proposed and built. 

A major architectural issue involved in the 
design of such machines is the availability of 
information paths that would enable the exchange 
of information between processors. Most of the 
existing MIMD designs have opted for a complete 
graph solution incorporating crossbar switching or 
microprogrammed controllers rendering the system 
either expensive or slow. 

The Homogeneous Multiprocessor discussed in 
this work resulted from the realization that in 
many applications (relaxation processes [61; neu
ral network simulation [4]) the complete graph 
solution is not a necessary attribute of the 
design, since such problems can be formulated in 
such a way so that each computational subtask 
would require information from only its neighbor
ing subtasks to complete the computation. More
over, such problems would benefit from architec
tures that limit the scope of interprocessor com
munication, but make the limited communication 
paths fast. 

In this work we will describe one such multi
processor architecture, the Homogeneous Multipro
cessor. 

II. Structure 

The Homogeneous Multiprocessor system, shown 
in Fig. 1, is a tightly coupled MIMD structure, 
and it is composed of two parts. The Homogeneous 
Multiprocessor proper and the H-Network. 

The Homogeneous Multiprocessor proper con
sists of k processors, k memory modules and k 

This research is supported by the Natural Sciences 
and Engineering Research Council, Canada under 
grant #Al337 and by Fonds F.C.A.C. pour l 1aide et 
la soutien a la recherche under grant #EQ2007. 

0190-3918/83/0000/0520$01.00 © 1983 IEEE 

local buses used by each processor to access its 
local memory module. Interbus switches, normally 
open, isolate the processor-memory complexes from 
each other allowing thus maximum throughput. Also 
the interbus switches provide the means of commun
ication between neighboring processors. Upon a 
request from either one of its two neighboring 
processors a switch may close connecting thus two 
neighboring local buses to form an extended bus. 
An extended bus is then utilized by the requesting 
processor to access the memory module of its 
neighbor and this in turn provides for 
interprocessor communications. As it may be seen 
in Fig. 1, there is no central controller to 
control the switches. Rather, associated with 
each one of the switches, there exists a switch 
controller which decides on the next state of the 
switch based on the status of the two neighboring 
switches and the presence of a request for the 
switch to close. 

Thus a switch si can only exist in one of 
three states and it receives requests for service 
from its two adjacent processors Pi and Pi+l• The 
next state transition is based on the current 
state of the switches si-l• si and si+l and it is 
computed according to Algorithm 1.2. 

The three states a switch can exist at, are 
as follows: 
- OPEN: Denoted by O. This state signifies 

that no requests exist or if a request 
exists it will not be honoured in the 
immediate future. 

- GRAY: Denoted by G. This signifies that a 
request has been acknowledged and ser
vice (i.e. switch closure) will be 
granted in the immediate future. 

- CLOSED: Denoted by c. This state signifies 
that conditions are compatible for 
establishing an "extended bus". 

The operational Algorithm 1.2 that decides 
the next transition is as follows: 

Algorithm 1. 2 

520 

For the switch si 
1. If no requests exist it becomes Open; 

if a request exists then: 
2. If Open it becomes Gray provided that the 

switch to its left (si_1 ) is Open. Otherwise 
it remains Gray. 

3. If Gray it becomes Closed provided that the 
switch to its right (si+l) is Open. Other
wise it remains Gray. 

4. If Closed it remains Closed. 
5. Switches s0 and sk+l are always open. 

A Pascal description of the above Algorithm 
1.2 is given in Fig. 2. It has been proven [3] 
that this algorithm provides for safeness (i.e. no 



two neighboring switches will close at the same 
time) and liveness (i.e. if a switch is requested 
to close, it will do so in the near future). 

The second component of the architecture is 
the H-Network [2]. This is a high speed base-band 
local area network with a structure which resem
bles that of the Ethernet [5], yet it utilizes 
separate pathways for data transmission, network 
acquisition, and collision detection. These sepa
rate pathways allow the processes of data trans
mission and collision detection to proceed in 
parallel while the network acquisition interval is 
reduced to less than 100 ns. This short network 
acquisition interval increases the probability 
that only one station will become master of the 
network at any given time which results to an 
increased network utilization. 

As shown in Figs. 1 and 3, the H-network 
consists of four pathways plus Network Stations 
which interface the network to each processor of 
the Homogeneous Multiprocessor proper. The path
ways are: 
(a) The H-bus. This is the data highway which 

consists, in the present implementation, of 
16 data lines. Each Network Station inter
faces with the H-bus via an input and an 
output buffer which are implemented by using 
fast FIFO's (128 words x 16 bits/word). 
These buffers are used to capture an incoming 
packet and to hold an out-going packet until 
the station controller achieves mastership of 
the H-Network. 

(b) The Access Line. This is a control line and 
it is used to ensure the mastership of the 
network by a single station with high proba
bility. A fast test and set module is used 
by the station controllers so that they can 
test and set the condition of the Access line 
in a very short interval of time (~ 100 ns). 

(c) The ID line is used to detect possible colli
sions. A station controller while master of 
the network, transmits, and at the same time 
listens, its unique identification code over 
the ID line. If more than one station has 
gained mastership of the network their codes 
collide on the ID line. Such a collision can 
be detected by the transmitting stations and 
the transmission aborted. 

(d) Timing and control. This group of lines 
facilitates the actual transmission of data 
through the H-bus. The data transmission 
protocol adopted is an asynchronous one with 
handshaking. Such a protocol is immune to 
varying signal delays imposed by the physical 
placement of the modules or by the technology 
used for their implementation. 

The basic unit of information transmitted 
over the H-bus is the packet. As it can be seen 
in Fig. 4 each packet consists of three parts, 
namely the header, the body and a checksum. The 
total length of the packet may not exceed, in this 
implementation, 128 words. This length coincides 
with the depth of the FIFO's used in the network 
stations. Three words have been reserved for the 
header. 

The first word carries the origin and desti
nation of the packet. The first word of the 
header is captured by the Temporary Register of 

521 

the network stations. This event happens before 
the commencement of the transmission of the 
remaining of the packet. Thus, the origin and the 
destination of any packet are made available to 
all the network stations prior to the packet 
transmission. Based on this information, the 
stations decide whether to capture the incoming 
packet, and communicate their decision (through 
the timing and control lines) to the transmitting 
station which releases the packet to the H-bus at 
high data rates ( ~ 7 Mbytes/ sec). Packets with a 
destination of 00 are accepted by all the sta
tions. Such packets are used for network control 
and management. 

The second word of the header contains the 
length of the packet plus control information such 
as type of packet and retransmission number. 
Finally, the third word of the header has been 
reserved for use by the higher layers of the net
work protocol. 

III. Performance 

The two components of the architecture have 
been analyzed separately. 

The Homogeneous Multiprocessor proper has 
been simulated and the average memory access time 
A for neighboring memory modules is given as a 
function of the average interarrival intervals ~ 

of requests. This function, for a multiprocessor 
composed of 20 processor-memory complexes with a 
memory access time of 600 nsec, is given in Fig. 
s. 

For the H-Network we have assumed a 1-persis
tent CSMA-CD, where • is the packet transmission 
interval, 6 is the collision detection interval 
( 6=10 µsec) and a is the window of vulnerability, 
during which one or more H-stations may acquire 
the network (a~lOO nsec). We have also assumed N 
network stations, each one of which attempts to 
gain mastership of the network with a period T 
(T~3 µsec). 

The network acquisition, packet transmission 
and collision detection cycles are outlined in 
Fig. 6. 

The N stations, which are continuously vying 
for the acquisition of the network, are modeled as 
a Poisson process with parameter GN = li. There-

T 
fore,_the utilization factor is calculated as 

s = _u_, where U is the average period of success-
B+I 

ful transmission, B is the average busy period 
icollision or successful transmission) and 

I is the average id~e £eriod: 

The quantities U, B and I are calculated as 
follows: 

U ' • P(successfull transmission) = 
• • P(no requests in interval a) 

- .!i a 

u 'e T 

B = a + • P(successful) + 6(1 - P(successful)) 

B 

- ~a 
T + 6(1 - e 

N --a 
T 



and finally, I .L = 1., 
GN N 

- .N a 
T 

Therefore, s 
N. a - N. a 

a+ ' e 
T + 0(1 - e T 

A plot of S as a function of N for various 
,;(in µsec) is given in Fig. 7. 

IV. Discussion 

+ 1. 
N 

The two components of the Architecture, (i.e. 
the Homogeneous Multiprocessor proper and the H
Network) play a different role in the function of 
the Multiprocessor. 

The Homogeneous Multiprocessor proper is 
particularly suited for problems that can be 
modeled by a set of parallel processes operating 
independently of each other and occasionally 
exchanging information or control with their imme
diate neighbors. 

In general, the solution for such problems is 
calculated as: 

where 

is the solution and, 

is the operator describing the problem. Examples 
of such applications may be drawn from image pro
cessing through relaxation [6], digital filtering 
[l) and neural networks [4]. 

The H-Network will serve primarily as the 
main communications link of the Homogeneous Multi
processor proper and its environment. It will 
carry user and file traffic in cooperation with 
Front End and Back End processors. 

Also, the H-Network makes it possible for 
distant processors in the Multiprocessor proper to 

figure 1. The H0m09eneous 1\ul ti processor 

H: Memoi-y P: Processor S: Bus Switch 
FE: Front End BE: Sack End SC: Switch Controller 
T: Terminal b: Local bus HS: Network. station 
MS: Hass storage R/G: Bus request/grant 

522 

communicate directly without resorting to time 
consuming hops of intermediate processors. 

In order to enhance reliability and to pro
vide for overall control of the structure, one of 
the processors of the multiprocessor proper 
together with its two immediate neighbors will 
serve as master of the structure. The master will 
share its data base with its neighbors. The mas
ter and its neighbors will repeatedly check for 
integrity of the structure. In the event that 
the master malfunctions, then one of the neighbors 
will take over. This becomes possible since the 
data base of the master is shared by its two 
neighbors. 

The designation of the master comes about 
through the H-Network. Upon power up or reset the 
processor whose network station first achieves 
mastership of the H-Network becomes master of the 
structure. 

REFERENCES 

[l) M.O. Ahmad et. al., "Ladder Realization of a 
Class of Two-dimensional Analog Voltage 
Transfer Functions with Application to Wave 
Digital Filters", Archiv fur Electronik und 
Ubertrangungstechnik, Vol. 33, #2, (1979), 
PP• 81-85. 

[2) N. Dimopoulos and D. Kehayes, "The H-Network
A High Speed Distributed Packet Switching 
Local Computer Network" to be presented at 
"MELECON '83 - Mediterranean Electrotechnical 
Conference" Athens, Greece, May 24-26, 1983. 

[3] N. Dimopoulos, "On the Structure of the 
Homogeneous Multiprocessor", under review for 
the IEEE Trans. on Computers. 

[4] N. Dimopoulos, "Organization and Stability of 
a Neural Network Class and the Structure of a 
Multiprocessor System", Ph.D. thesis, 
University of Maryland (1980). 

[SJ R.M. Metcalfe et. al. "Ethernet: Distributed 
Packet Switching for Local Computer 
Networks", Comm. ACM, July 1976, pp. 395-
404. 

[6] s.w. Zucker et. al., "An Application of 
Relaxation Labelling to Line and Curve 
Enhancement", IEEE Trans. on Computers, 
Vol. C-26, (1977), pp. 394-403 and 922-929. 

,. 
H-bus 

----1-L--lW-------r----Hf--~~cess line 

o• 

Figure 3: A. Network Station 

OB: Output buffer tB: Input Buffer 
HC: Station controller IO: Collision detection 
TR: Temporar-y Register T&S: Test and set 

Ti1dng & Control 



A(") 

I 

{Synchronization Algorithm 1.2 for the network of switches. 
k is the number of switches in the network.) 

program Algorithm; 

~ states=fopen,gray,closedJ; 
state: array[O .. kil] of states; 
nxtstote;-array[1 .. kJ~f states; 
request: array[l .. kJ ~~Boolean; 

(array o( the switch states) 
{next_state array) 

procedure newstate f~ i: integer); 
if lreqvest[i]=falsel then nxtstate[i]:=open else 

begin ~-
case state[i] of 
;p;;\: iflstateEi-1J=openl then nxtstate[i]:=gray else nxtstate(i]:=open; 
gray: i]f state[i+l]=openl then nxtstate[i]:=closed else nxtstate[i]:=gray; 
closed: nxtstate[i]:=closed; 
fill! {case) 

end 
end0newstate} 

begin 
state[OJ:=open; state[k+1]:=open; 

wh i le t rve do 
begin -

parbegin 
newstatef 1 J; 
newstatef 21; 

newstate{kl; 
parend; 

parbegin 
state[1J:•nxtstate[1]; 
state[2J:=nxtstote[2J; 

state[k]:•nxtstote[kJ; 
parend; 

end {while) 
end. <Algorithm) 

Figure 

The Synchronization Algorithm l.2 

for the Network of the s S><i tchcs 

Header body 

Packet 
Transmission )~coll is ion 

2. 0 

1.8 

1.6 

1.4 

S: Source 
C: Contra 1 

Figure 4. 

0: Destination 
R: Reserved 

L: Length 
CS: Checksum 

1.6 

Figure S ·-~ .l.(~s) 

2.4 

Average memory acceH time for neighboring memory modules A {in 11 s) vs. 
the average interarrival intervals of the requests 1 {in 11 s). 

523 

cycle cycle 

Figure 6. H-Network acquisition, transmission and collision 
detection cycles. 

J.2 50 100 

Figure 7. Network Utilization Factor 



Cedar-A Large Scale Multiprocessor 

Daniel Gajski, David Kuck, Duncan Lawrie, and Ahmed Sameh 

Laboratory for Advanced Supercomputers 
Department of Computer Science 

University of Illinois at Urbana-Champaign 

Abstract 

This paper presents an overview of Cedar, a large 
scale multiprocessor being designed at the University of 
Illinois. This machine is designed to accommodate 
several thousand high performance processors which are 
capable of working together on a single job, or they can 
be partitioned into groups of processors where each 
group of one or more processors can work on separate 
jobs. Various aspects of the machine are described 
including the control methodology, communication net
work, optimizing compiler, and plans for construction. 

1. Motivation 

The primary goal of the Cedar project is to demon
strate that supercomputers of the future can exhibit 
general-purpose behavior and be easy to use. The Cedar 
project is based on five key developments which have 
reached fruition in the past year and taken together offer 
a comprehensive solution to these problems. 

(1) The development of VLSI components makes 
large memories and small, fast processors 
available at low cost. Thus, highly parallel (e.g., 
1024 processors) systems are not ruled out by cost 
or physical volume considerations as they have been 
in the past. Particularly important are the 32-bit 
2:5 megaflop chips or chip-sets developed in the past 
year [W aMc82]. Thus, basic hardware building 
blocks will be available off-the-shelf in the next few 
years. 

(2) Given the hardware components for a highly paral
lel system, accessing a parallel shared memory and 
moving data between memories and processors has 
been a traditional architectural stumbling block. 
Many systems have been built that have severe con
straints in the memory (e.g., access to columns only) 

This work was supported in part by the National Science Founda
tion under Grants No. US NSF MCSSl-00512 and 
US NSF MCS80-01561, the US Department of Energy under Con
tract No. US DOE DE AC02-81ER 10822, and by the Department 
of Computer Science at the University of Illinois 

0190-3918/83/0000/0524$01.00 © 1983 IEEE 524 

or interconnection network (e.g., nearest neighbors 
only). Based on many years of work, it is pos
sible to have a shared memory and switch 
desi.gn which will provide high bandwidth 
over a wide range of computations and appli
cations areas. 

(3) Compilation for parallel, pipeline, and multiproces
sor systems has been another serious traditional 
problem. The Parafrase project has 
demonstrated that by restructuring ordinary 
programs these supercomputer architectures 
can be exploited effectively. It has also. been 
shown that Parafrase can restructure programs to 
effectively exploit various levels of a memory hierar
chy. An important consequence is that a compiler 
can be used to manage caches in a multiprocessor 
and thus avoid cache coherency problems. 

(4) The control of a highly parallel system is another 
problem of long-standing concern and controversy. 
It is probably the most controversial of the five 
topics listed here, mainly because it seems to be the 
least amenable to rigorous analysis. From an 
abstract viewpoint, the traditional dataflow 
approach seems best because control is distributed 
out to the level of operations on scalar operands. In 
practice, it seems that dealing with this low level of 
granularity has many weaknesses. By using a 
hierarchy of control, we have found that 
dataflow principles can be used at a high level 
(macro-dataflow), thus avoiding some of the 
problems with traditional dataflow methods. 
We have also demonstrated that a compiler can res
tructure programs written in ordinary programming 
languages to run well on such a system. 

(5) Algorithms for systems with concurrency have been 
studied for a number of years. Many successes have 
been achieved in exploiting the array parallelism of 
various pipeline and parallel machines. But there 
have been a number of difficulties as well. It has 
long been realized that some of these difficulties 
should be surmountable using a multiprocessor 
because the parallelism in such a machine is not as 
rigid as in array-type machines. Recent work in 



numerical algorithms seems to indicate great 
promise in exploiting multiprocessors without 
the penalty of high synchronization overheads 
which has proved fatal in some earlier studies. 
Furthermore, nonnumerical algorithms have been 
developed at a rapidly increasing rate in the past 
few years. These can generally use a multiprocessor 
more efficiently than a vector machine, particularly 
in cases where the data is less well structured. Our 
group has been active in developing both numerical 
and nonnumerical algorithms. 

To reach the goal stated in the opening paragraph, we 
believe that a two-phase approach is necessary. The first 
phase is to demonstrate a working prototype system, 
complete with software and algorithms. The second 
phase would include the participation of an industrial 
partner (one or more) to produce a large scale version of 
the prototype system called the production system. 
Thus, the prototype design must include details of scal
ing the prototype up to a larger, faster production sys
tem. 

Our goal for the prototype is to achieve Cray-1 
speeds for programs written in high level languages and 
automatically restructured via a preprocessing compiler. 
We would expect to achieve ten to twenty megaflops for 
a much wider class of computations than can be handled 
by the Cray-I or Cyber 205. This assumes a four clus
ter, 32-processor prototype where each processor delivers 
2.5 megaflops. 

The production system will use processors that 
deliver over 10 megaflops, so a 1024 processor system 
should realistically deliver (through a compiler) several 
gigaflops by the late 1980s. Actual speeds might be 
higher if {as we expect) our ideas scale up to more pro
cessors, if higher speed VLSI technology is available, and 
if better algorithms and compilers emerge to exploit the 
system. 

An integral part of the design for the prototype and 
final system is to allow multiprogramming. Thus, the 
machine may be subdivided and used to run a number of 
jobs, with clusters of eight processors, or even a single 
processor being used for the smallest jobs. 

2. The Cedar Architecture 

In order to integrate the discussion, we show in Fig. 
1 an overall system diagram. More details of our prelim
inary view of the system are discussed in [GLPV83J. 

2.1. Processor Cluster. A Processor Cluster (PC) is 
the smallest execution unit in the Cedar machine. A 
chunk of program called a Compound Function can be 
assigned to one or more PCs. 

A PC consists of n processors, n local memories, and 
a high speed switching network that allows each proces
sor access to any of the local memories. Each processor 

525 

GLOBAL MEMORY (GM) 

GLOBAL NETWORK (GN) 

-,-~t--~-1---11--~t--++-.--~-+--+-+-rl~i~ 

LM ---LOCAL MEMORY 
ccu---CLUSTER CONTROL UNIT 
P --- PROCESSOR 
CP ---COMMUNICATION PROCESSOR 
DC ---orsc CONTROLLER 
HM ---HOST MINICOMPUTER 

Figure 1. Overall system diagram. 

0 NI 
8 TT 

AR 
L 0 

(GCU) 

can also access its own local memory directly without 
going through the switch. In this way, extra delay is 
incurred only when the data is not in its own local 
memory. Furthermore, each processor can directly 
access global memory for data that is not in local 
memory. Our compiler is targeted at exploiting this 
hierarchy of memory access speeds. 

Each processor consists of a floating-point arith
metic unit, address generation unit, and Processor Con
trol Unit (PCU), with program memory. There are no 
programmer accessible data registers in the processor. 
However, the local memory is dynamically partitionable 
into pseudo-vector registers of different sizes, and so it 
serves really as a large set of general-purpose registers. 
There are two reasons for this type of cluster organiza
tion. Firstly, it simplifies the compiler design. Secondly, 
there is no need for general-purpose registers since off
the-shelf floating-point arithmetic is an order of magni
tude slower than medium size static memories (500 ns vs. 
50 ns). Each local memory has its own global memory 
access unit that allows movement of data between global 
and local memories to proceed concurrently with the 
computation. 

The entire PC is controlled by the Cluster Control 
Unit (CCU), which mostly serves as a synchronization 
unit that starts all processors when the data is moved 
from global memory to local memory and signals the 
Global Control Unit (GCU) when a compound function 
ex ecu ti on is finished. 

In this paper we discuss two different machine sizes: 
the prototype and production machine. The prototype 
machine is a 4 cluster (8 processors per cluster) machine 
built for the purpose of debugging architectural and 
software concepts and justifying performance estimates 
for a broadly chosen set of applications. An architectur
ally and technologically upward scalable production 
machine is a 64-128 cluster (8-16 processors per cluster) 



high performance supercomputer. 

To obtain short design time, we will use for the pro
totype machine off-the-shelf components, standard 
memory chips, and gate arrays, while the production 
machine will use custom VLSI parts and high density 
packaging technology. 

Communication between disks, etc., and global 
memory will be through a special 1/0 cluster. An 1/0 
cluster is equivalent to a PC except for the processors 
themselves. Instead of the usual processors, the 1/0 
cluster will have communication processors. These in 
turn will connect to Extended Storage (solid state disks) 
which serves as a buffer between Cedar and the support 
machines (e.g., VAX) which will provide access to disks, 
terminals, etc. 

2.2. Global Network 

Large scale multiprocessors require access to a 
shared memory system and convenient interprocessor 
communication. Early parallel computers tended to be 
mesh-connected-that is, access to neighboring proces
sors and memories was fast, but more global 
communication/ access took proportionally more time. 
Vast amounts of manpower were expended devising spe
cial algorithms which could execute in this type of 
environment. (Pipeline processors are not immune to 
this problem-the performance degradation due to non
unit vector strides or irregular addressing patterns are 
generally recognized problems.) 

Our network is based on an extension of the omega 
network [Lawr75J and is similar in concept to the omega 
network designed for the Burroughs FMP machine 
(Burr79], [BaLu81J. That network was nominally 
1024x 1024, and was a circuit-switching network where 
the data path at each node was 11 bits wide. They 
estimated that the minimum time required to set up a 
connection would be 120 ns. 

Our initial design differs in several respects from 
the FMP design. It is based on the use of 8x8 switches 
located on 160 pin boards, rather than 2x2 switches. 
Taking into account expected delays due to conflicts, 
time multiplexing of 120-bit packets, memory access, 
and return transmission, we estimate an expected delay 
time of less than 2 µs/1024 words between processor and 
memory. (Using the same techniques we can design net
works to provide average global memory access in as lit
tle as 500 ns, but these designs would require as many as 
8 boards per processor.) 

An example of one of these networks connecting 16 
processors to 8 memories is shown in Fig. 2. This exam
ple uses 4x4 switches, but illustrates the principles we 
will use in constructing the 1024 port global network. 
We have discovered ways to add redundancy in larger 
networks that allow us to use this redundancy both for 
conflict avoidance and fault tolerance (Padm83J. Notice 
that unlike the omega network, this network allows more 
than one path between any processor port and any out
put port. This path redundancy provides both fault 

526 

Processors <------- Global Switch -------> Memories 

Figure 2. Example of a global network connecting 
16 processors with eight memories. Notice the 

redundant paths from processor 4 to memory 5. 

tolerance and conflict avoidance. Thus, from every 
switch (except the last) there are at least two valid 
paths. If either of these is either blocked by another 
message or by a failure, a connection can still be made 
via an alternate path. (A total blockage can exist if all 
alternate paths are blocked by conflicts with other mes
sages and/ or faults. However, analytic and simulation 
results indicate that the probability of conflicts is 
significantly lower with the redundant paths than 
without them, and that the probability of there being 
enough faults to block a message is so small that the 
mean time between fault-blocked-messages is on the 
order of one year even for the production machine.) The 
control logic which allows this conflict/fault avoidance is 
distributed throughout the network and is not very 
different from the classical omega control algorithm. 

2.3. Memory System 

The overall memory system has a great deal of 
structure to it, but the user need not concern himself 
with anything but the global shared memory. However, 
the fast local memories present in the design can be used 
to mask the approximately 2 /ts access time to global 
memory. Each cluster of eight processors contains eight, 
16K local memories A given processor can access its own 
local memory module directly, or any local memory in its 
cluster through the cluster network. 

User transparent access to these local memories will 
be provided in several ways. First, program code can be 
moved from global to local memories in large blocks by 
the cluster and global control units. Time required for 
these transfers will be masked by computation. Second, 
the optimizing compiler will generate code to cause 
movement of blocks of certain data between global and 
local memory. Third, automatic caching hardware 



(using the local memories) will be available for certain 
data where the compiler cannot determine a priori the 
details of the access patterns but where freedom from 
cache coherency problems can be certified. 

All levels of memory include operand level syn
chronization facilities (similar to the full/ empty bit of 
the Denelcor HEP [Smit82]), and the global shared 
memory includes the (programmer) option of virtual 
memory. 

Figure 3 shows a programmers' view of the memory 
system. Both the cluster and local memories include 
cache space (which is physically implemented in the 
local 16K memories) for global memory accesses. This 
cache is different from most cache memory schemes in 
that not all global memory accesses are cached--only 
those predetermined by the programmer or compiler. In 
this way, we avoid the cache consistency problems which 
plague most multiprocessor cache designs. Thus, only 
read-only data (or data that is determined by the com
piler to be read-only during a short phase of a program) 
or data that is only written by a single processor (private 
data) is cached. 

Thus a user need only be concerned with a single 
uniform globally shared memory, and he could quickly 
design a program to execute from this memory. When 
he is satisfied with his results, he can use the optimizing 
compiler to improve his performance by making better 
use of the entire memory hierarchy and by utilizing more 

GLOBAL GLOBAL CLUSTER CLUSTER LOCAL LOCAL 

SHARED SHARED SHARED SHARED MEMORY CACHE 

MEMORY VIRTUAL MEMORY CACHE 

MEMORY 

Figure 3. Programmers' view of the memory system. 

parallelism. 

2.4. Global Control Unit. The execution of a pro
gram is limited by the parallelism exhibited by the con
trol mechanism. In a von Neumann machine, the paral
lelism is limited by a serial control mechanism in which 
each statement is executed separately in the order 
specified by the program. 

The execution speed can be increased by using 
parallel control flow or dataflow mechanisms [TrBH82]. 
Each of these mechanisms tries to execute all indepen
dent operations in parallel, where the operation is a typi
cal arithmetic operation (e.g., addition, multiplication, 
etc.) or control operation (e.g., decision). However, the 
number of resources (e.g., operational units) in the 
machine is limited and sometimes not all independent 

527 

operations can be executed in parallel. Therefore, the 
resources must be allocated and deallocated in the order 
specified by the computation. The price paid for paral
lelism is in the form of extra time or hardware needed to 
allocate operational units to instructions and keeping 
track of the execution order, the process we call schedul
ing. Proposed dataflow architectures are very inefficient 
on regular structures because of this fine granularity of 
their operations. When data is structured (vectors, 
matrices, records), the control and dataflow is very regu
lar aud predictable and there is no need to pay high 
overhead for scheduling. 

In our systrm, we adapt to the granularity of the 
data structure. We treat large structures (arrays) as one 
object. We reduce scheduling overhead by combining 
together as many scalar operations as possible, and exe
cuting them as one object[Corn81]. In our machine, each 
Processor Cluster (PC) can be considered as an execution 
unit of a macro-dataflow machine. Each PC executes a 
chunk of the original program called a compound func
tion (CF). 

From the GCU point of view, a program is a 
directed graph called a flow graph. The nodes of this 
graph are compound functions and the arcs define the 
execution order for the compound functions of a pro
gram. 

The nodes in our graph can be divided into two 
groups: Computational (CPF) and Control (CTF). All 
CTFs are executed in the GCU, and all the CPFs are 
done by clusters. All CPFs have one predecessor and 
one successor. CTFs are used to specify multiple control 
paths, conditional or unconditional. 

The compound function graph is executed by the 
GCU. Each node requires two different types of action: 

(I) Computation of the original part of the program 
specified in the CF which may be done by the GCU 
itself or allocated to PCs. The latter case is for 
CPFs, and it requires their scheduling and prepara
tion. The CTFs either do not have this part at all, 
or perform computation related to control. 

(2) Graph update after the executable part of a node is 
done (if it had one). Successors of each node are 
updated and checked for readiness. The updating 
consists of recording that the predecessor node was 
executed. A node is ready when all its predecessors 
in the graph are done. When a node is finished, the 
predecessor information is reinitialized for the next 
execution of the node (if it is a cycle, for instance). 

The second problem of datafiow architectures is 
storage allocation, deallocation and movement of data, 
resulting in slow data access. In our machine, data is 
stored permanently in global memory and it can be 
shared there by all PCs. The data is moved into the 
assigned PC before the execution of a CF and later 
stored back to global memory. In this way, the move
ment of data is minimized while the order and locality of 
data is preserved. Thus, the macro-dataflow archi
tecture combines the control mechanism of 



dataflow architectures and storage management 
of the von Neumann machine. 

3. Software 

The primary language for Cedar will be Fortran 
(although we expect several other languages to become 
available as well). In Fortran, users will have a choice of 
writing programs directly in an extended Fortran (based 
on the ANSI 8X standard), or of using their old pro
grams as is. The powerful restructuring capabilities of 
Parafrase [KuPa79] will usually be brought to bear on 
programs written in serial Fortran and may also (though 
not necessarily) be applied to programs written in 
extended (parallel) Fortran. Since the Parafrase system 
operates in a source-to-source manner, the user who used 
Parafrase can then choose to maintain his original code 
or the new, restructured version (thus obviating the need 
for further restructuring. [KPSW82]) 

The compiler will provide the Cedar system 
with code that may be regarded as a dependence 
graph containing several types of nodes called 
compound functions (CFs). This macro-dataflow 
graph is presented to the global control unit (GCU) 
which oversees its execution. Some CFs are control 
functions executed in the GCU itself, while other nodes 
are computational and are passed down to clusters of 
processors [GaKP81]. 

Four important kinds of parallelism may be dis
tinguished in the Cedar macro-dataflow code. The first 
is parallelism between CFs themselves. This includes 
executing some CFs on the GCU and some in processor 
clusters, as well as executing several CFs at once in 
different processor clusters. 

The second kind of parallelism is in the loop control 
of the computational CFs. For example, all iterations of 
a loop may be executable at once and so each iteration 
can be assigned to a different processor. Of course, the 
GCU may fold a computation onto a limited number of 
processors and each processor will then do a number of 
iterations ([KuPa79J, [PaKL80]). 

Third, is a kind of pipelining effect achieved by 
moving data from global to local memories before it is 
needed for the computation of a CF. We can prefetch 
data for iteration i+l while computing iteration i, for 
example, or we can prefetch larger blocks. Experimental 
evidence shows that this approach will be effective in 
exploiting the local memories in clusters. This software 
cache management only works effectively for data that 
can be guaranteed (by the compiler) to be written at 
most once in a given phase of a computation. Other
wise, cache coherency problems can develop, and our 
solution to this is to force any nonsafe code to execute 
directly from the global shared memory. This will cause 
some speed decrease (by a constant factor) and should be 
a rather rare event in any case. The global memory has 
of course only one copy of the data, and hardware will 
ensure that the correct value is stored. 

528 

The fourth kind of parallelism will be exploited 
mainly for phases of computations in which there is less 
parallelism than processors. This involves spreading 
expressions across more than one processor for execution. 
For example, if a loop of 50 iterations could be run as 50 
independent iterations, but our machine had 100 proces
sors available, two processors could be used for each 
iteration. This code spreading is entirely within indivi
dual compound functions and may involve executing 
independent assignment statements in distinct processors 
or even spreading single expressions over two or more 
processors. Experiments to date show that spreading 
can be very effective in some cases but it is not a first 
priority technique. 

Some standard operating system functions will be 
handled by our hardware, e.g., task scheduling in the 
GCU. The 1/0 clusters will handle some of the activities 
that are traditionally at the interface between the com
piler, OS, and I/O channels. In particular, we plan to 
have the I/O clusters execute I/O statements and do for
mat conversions. They will also handle page faults 
between the global memory and disk system. We also 
plan to attach front-end processors to the I/O clusters. 

A front-end processor will provide various user ser
vices. We would expect it to be a network node in any 
installation and in the Department of Computer Science 
at the University of Illinois we will attach it to a 
VAX/Ethernet network within the department. The 
point is that users should be able to access the system 
through an interface with which they are familiar and 
happy (VMS, Uf\ilX, NOS, or whatever). Thus, a user 
would submit a job through a front-end processor which 
sends it to an I/O cluster, which in turn can initiate I/O 
directly or begin execution through the GCU. Results 
will be returned through the I/O cluster to the front-end 
processor for output, graphics display, etc. In this way, 
we hope to make the architectural details of the Cedar 
system as invisible to the user as possible. 

4. Summary 

The Cedar architecture nicely integrates the five 
key developments sketched in the introduction. We 
believe that the Cedar system will deliver high perfor
mance over a much wider range of applications and algo
rithms than today's supercomputers can handle. 
Because the Cedar clock speed is slow relative to such 
systems, the complexities of building and manufacturing 
this system are substantially reduced. Due to the ever
decreasing costs of integrated circuits and the relative 
ease with which the Cedar design can be partitioned, we 
feel that the monetary cost per megaflop will be much 
lower than could be achieved by attempting to push 
today's pipelined supercomputers to higher speeds. 



REFERENCES 

[BaLu81] G. H. Barnes and S. T. Lundstrom, "Design 
and Validation of a Connection Network for 
Many-Processor Multiprocessor Systems," 
IEEE Computer, Vol. 14, No. 12, pp. 31-41, 
Dec., 1981. 

[Burr79] Burroughs Corporation, "Numerical Aero
dynamic Simulation Facility Feasibility 
Study," Mar., 1979. 

[Corn81] Cornish, M., "Lecture Notes in Datafiow 
Computer A.rchitecture," MIT, 1981. 

[GaKP81] D. D. Gajski, D. J. Kuck, and D. A. Padua, 
"Dependence Driven Computation," Proc. of 
the COMPCON 81 Spring Computer Con/., 
San Francisco, CA, pp. 168-172, Feb., 1981. 

[GLPV83j D. D. Gajski, D. H. Lawrie, J-K. Peir, A. 
Veidenbaum, and P-C. Yew, "Second Prelim
inary Specification of Cedar," Cedar docu
ment no. 8, Univ. of Ill. at Urb.-Champ., 
Dept. of Comput. Sci., Feb., 1983. 

[KPSW82] D. Kuck, D. Padua, A. Sameh, and M. Wolfe, 
"Languages and High-Performance Computa
tions," Invited paper, Proc. of the IFIP 
Working Conf. on The Relationship Between 
Numerical Computation and Programming 
Languages, Boulder, CO, pp. 205-221, Aug., 
1982 (North-Holland). 

[KuPa79J D. J. Kuck and D. A. Padua, "High-Speed 

529 

Multiprocessors and Their Compilers," Proc. 
of the 1979 Int 'l. Con/. on Parallel Processing, 
pp. 5-16, Aug., 1979. 

[Lawr75] D. H. Lawrie, "Access and Alignment of Data 
in an Array Processor," IEEE Trans. on 
Computers, Vol. C-24, No. 12, pp. 1145-1155, 
Dec., 1975. 

[Padm83] K. Padmanabhan, PhD Thesis, University of 
Illinois, in preparation, 1983. 

[PaKL80] D. A. Padua, D. J. Kuck, and D. H. Lawrie, 
"High-Speed Multiprocessors and Compila
tion Techniques," IEEE Trans. on Comput
ers, Vol. C-W, No. 9, pp. 763-776, Sept., 
1980. 

[Smit82] B. S. Smith, "Architecture and Applications 
of the HEP Multiprocessor Computer Sys
tem," Proc. of the International Society for 
Optical Engineering, Vol. 298, pp. 241-248, 
1982. 

[TrBH82] P. C. Treleaven, D. R. Brownbridge, and R. 
P. Hopkins, "Data-Driven and Demand
Driven Computer Architectures," Comput. 
Surveys, Vol. 14, No. 1, pp. 93-143, Mar., 
1982. 

[WaMc82] F. Ware and W. McAllister, "C-MOS Chip 
Set Streamlines Floating-Point Processing," 
Electronics, pp. 149-152, Feb. 10, 1982. 



VECTOR OPTIMIZATION ON THE CYBER 205 

CLIFFORD N. ARNOLD 
SOFTWARE RESEARCH 

CONTROL DATA CORPORATION 
ARDEN HILLS, MINNESOTA 

ABSTRACT. Vector optimization is defined as 
generating the best object code for a given 
vector computation for a given machine. In this 
paper an analytical performance model is 
developed for both scalar and vector source code 
as executed on the Control Data CYBER 205. The 
accuracy of these models is typically within 30% 
for scalar code and within 10% for vector code. 
If the compiler can generate more than one 
version of code for a given parallel 
computation, then performance estimates from 
these models can be used to choose which version 
should be executed. Sixteen FORTRAN kernels 
with two or more versions of source code were 
used as a benchmark to test this method. 
Thirteen kernels were "vector optimized" 
correctly. The three kernels not properly 
optimized had an average performance penalty of 
17%. Using the set of kernels as a benchmark, 
vector optimization improved its performance by 
more than a factor of four, and obtained 98% of 
the improvement possible had all kernels been 
correctly optimized. 

I. INTRODUCTION 

Automatic vectorization is the process by which 
a serial or scalar version of source code is 
analyzed by a piece of software to discover the 
code's inherent parallelism. The result is a 
transformation of the original code which 
expresses the parallelism discovered by the 
analysis. This can take many forms, for example 
rewritten source code using a parallel dialect, 
machine dependent object code, and many 
expressions in a variety of languages in 
between. A lot of work has gone into automatic 
vectorization software, both in the computer 
industry and in academia. Performance analysis 
of three such software packages is reviewed in 
[ l]. There the concept of vector optimization 
was introduced; "The goal of vector optimization 
is to generate the best object code for a given 
vector computation (for a given computer)." 
Little study has been done in this area, which 
is unfortunate. As users of vector computers in 
the field know all too well, code vectorization 
to a higher level of parallelism can in some 
cases slow the computation down. 

This paper addresses the following question. As 
information pertaining to the vectorizability of 
a kernel is increased, will a kernel always run 
at least at the same speed as before with the 

0190-3918/83/0000/0530$01.00 © 1983 IEEE 530 

possibility of being sped up many times? 
Clearly the scalar (original) version of the 
code can be used, thus guaranteeing the same 
execution speed as before vectorization. To 
make vectorization analysis worth the trouble, a 
vector optimization tool needs to determine 
correctly when to choose the scalar version of 
the code and when to choose the vector version. 
In many cases more than one vector version is 
possible, and in such cases a decision among 
these versions also needs to be made. Figure l 
below illustrates the issue. Three different 
possible code solutions are depicted with their 
performance assumed to be a function of some 
data dependent parameter set. 

w 
u 
z 

" 2 
0: 

~ 
~ 

/ -·-.:;p;-·-· 
!iii? 

DATA DEPENDENT PARAMETER SET 
(E.G., VECTOR LENGTH, STORE DENSITY) 

SOLUTION @ (. .. ) 

SOLUTION @ I- - -) 

SOLUTION (j) I- · -) 
(ORIGINAL SCALAR) 

FIGURE 1. Performance Profile of Three Code 
Versions of the Same Kernel 

Vector optimization would hopefully choose the 
bold face line. If it did not successfully do 
that, it would successfully avoid the shaded 
areas. 

I have applied a simple but surprisingly 
successful model to estimate the timings of 
different solutions based on their respective 
source code versions alone. These estimates are 
then used to make the optimization decisions. 
In this paper I describe the timing model for 
vector performance (Section II) and scalar 
perfomance (Section Ill) for the CYBER 205. 
Validation of the model against 16 kernels from 
the Livermore Loops (3) as run through several 
vectorizers (see [l]) is described in Section 
IV. Results are discussed in Section V. 



II. MODELING VECTOR PERFORMANCE OF THE CYBER 
205 

Assume the time to execute a vector operation is 
a linear function of the vector length n: 

time S + R * n 

Equation (1) is rewritten by Hockney and 
Jesshope [2] as: 

t (n + n[ 1/2] )/r[ oo] 

(1) 

( 2) 

where r [ oo ] is the asymptotic performance 
(MFLOPS) at infinite vector length and n[l/2] 
is the vector length required to achieve half 
the asymptotic performance. Note that t is then 
in microseconds. The coefficients in Equation 
(1) are defined in terms of q oo] and n[l/2] 
as noted below: 

R 

s 

l/q oo] (microsec/result) 

n[l/2]fr[oo] (microsec) 
( 3) 

R and S were measured for 34 vector instructions 
using vector lengths ranging from 2 to 8192 in 
powers of 2. The timings proved to- follow the 
model of Equation (l) very well. The results 
are listed in Table 1. The data for R is 
significant to two digits and for S to three 
digits, with a few exceptions shown in the 
list. Typical values for R range from 0.01 to 
0.03 microsec/result, and for S range from l to 
3 microsec (n[l/2]-100). 

Test kernels with several vector operations had 
timings entirely consistent with the timings of 
the individual vector operations added 
together. This is predicted by the linear model. 

III. MODELING SCALAR PERl'ORMANCE OF THE CYBER 
205 

Initially Equation (1) was also applied to 
scalar loops where n was the trip count of the 
loop. Over a hundred short test kernels were 
timed. Though the resulting timings were 
linear, it was found that R was not constant for 
a given instruction in different loop contexts. 
This should not be surprising. For example, if 
loads and stores for an add operation can be 
overlapped by a multiply operation in the same 
loop, the rate is clearly different than if no 
overlap can be scheduled. R for an add 
operation was found to range from 0.42 
microsec/result to 0.08 microsec/result 
depending on the context of the loop. Figure 2 
shows the dependence of R on the number of 
operations (I) in the loop. For adds and 
multiplies this can be fitted we.11 by: 

R 0.08 * exp(l.61/I) (4) 

t(scalar loop) = S + R * n * I (4a) 

531 

For divide and square root, R is constant: 

j: 
...J 
::i 
(/) 
w 
a: 
u 
w 
(/) 

"-
a: 

R 

111 

1.1 microsec/result (5) 

··--·- +- ---+ 

• 

• !i. 

- - - DIVIDE AND SOIH 

··ADDS AND MULTIPLIES AND 
A CONTHOLLING IF 

+++++ ADDS AND MlJL TIPLIES 

•••••·••••ANALYTICAL FUNCTION 
0 08 EXP 11 Gl/11 

•+ 
'.+ •· ··t.+ . . • 

-.::;i:z++ . . . . . . • 
.... :.::.:.:.s.:.:.:.:.:.'!j:.:.:.:.:.:::::.:.: 

... 
I~ 

.~~~~~~~~fr---

10 1 ~) 30 

NUMHEH OF OPEHATIONS 
IN THE LOOP ill 

FIGURE 2. R in Scalar Loops 

More testing showed R to also be a function of 
whether the operands were in memory or in the 
scalar register file ( 256 registers). All 
dimensioned variables (indexed operands) are in 
memory whereas as many scalar variables as 
possible are in the register file, for which 
operations are significantly quicke·r. Thus 
Equation (4) was fitted to include register to 
register operations: 

R[scalar] = (0.08 - 0.03*(J/(J+K))) 
* exp (l.61/I) (6) 

where J is the number of scalar references and K 
is the number of indexed references in the 
loop. (Note: I - J+K). 

The behavior of S and R is surprisingly simple 
for scalar loops. S is always less than 1. 0 
microsec, and usually about 0.25 microsec. Each 
IF statement in the loop (assuming no nested 
IFs) adds 0.7/I microsec/result to Rand has no 
effect on s. For nested structures, like nested 
Do Loops, simply evaluate the inner most loop 
first and then have it act as an in-line routine 
with its characteristic I, J, K and S added to 
the other statements in the next level of the 
nest structure. 

Initially it seemed unlikely that the scalar 
unit could be timed as simply as noted above. 
The FORTRAN compiler's scalar optimizer and the 
hardware were essentially being treated as a 
black box. It is interesting and curious to 
suggest that it can be timed empirically without 
knowledge of its detailed operation. 
Investigators might want to try this for other 
machines. 



Operation 

ASSIGNMENT 

ADD (Floating Pt.) 

MULTIPLY (Floating Pt.) 

DIVIDE (Floating Pt.) 

ADD (Integer) 

MULTIPLY (Integer) 

DIVIDE (Integer) 

Q8VINTL 

Q8VGATHR (Index List) 

COMPARE (Floating Pt.) 

Q8SSUM 

Q8VSCATR (Index List) 

* Q8SDOT 

Q8VMASK 

Q8VCMPRS 

Q8VEXPND 

Q8VGATHP (Periodic) 

Q8VSCATP (Periodic) 

Q8SMAX 

VSQRT 

*LINK ([S(+)V](+)V) 

*LINK ([V(+)V](+)S) 

VIFIX 

VFLOAT 

Q8VMKO(Z) 

BIT COMPARE 

WHERE (Logical) 

WHERE (Expression) 

STACKLIB TRIADS 

STACKLIB DIADS 

Q8VMERG 

VEXP 

(REAL)**REAL 

VSIN 

Q8VCTRL 

TABLE 1. INSTRUCTION TIMING 
MODEL FOR C205 VECTOR OPERATIONS 

S (mi crosec) 

1.00 

1.00 

1.04 

1.60 

1.04 

3. 72 

2.50 

0.95 

1. 50 

1.35 

2.50 

1.38 

2.65 

1.90 

1. 38 

1.45 

0.83 

1.50 

1.50 

1.55 

2.84 

2 .60 

1.05 

1.05 

1.04 

1.22 

0.20 

1.00 

5. -16. 

2.- 4. 

1.50 

24. 

24. 

19. 

1.10 

R (microsec/result) 

0.010 

0.010 

0.010 

0.031 

0.010 

0.040 

0.041 

0.020 

O. 027 to 0.081 

0.010 

0.020 

0.025 to 0.081 

0.020 

0.010 

0.010 

0.010 

0.029 

0.024 

0.020 

0.030 

0.010 

0.010 

0.010 

0.010 

o. 0013 

0.00125 

o.o # 

o.o # 

0.144 

0.113 to 0.128 

0.010 

0.5 to 0.6 

0.05 to 0.06 

0.28 to o.42 

0.010 

* Each result takes two (2) floating point operations. 

n[l/2]= S/R 

100 

100 

104 

52 

104 

93 

61 

48 

53 

135 

125 

55 

133 

190 

138 

145 

29 

125 

75 

52 

284 

260 

105 

105 

800 

976 

35 

18 

150 

to 

to 

40 to 

400 to 

45 to 

110 

111 

35 

48 

480 

68 

if The WHERE statement only has start-up time. The time per result is zero. If there is an 
expression in the WHERE statement its timing must be calculated separately and then the WHERE 
statement start-up added to it. 

(+) This signifies either the multipication or addition operator in the Link instruction. In a 
given Link on the Cyber 205 there can not be more than one add or multiply. There are other 
types of operators which can be Linked, but these were not timed. 

532 



IV. PERFORMANCE MODEL VALIDATION 

A test base of 18 FORTRAN kernels from the 
Lawrence Livermore Laboratory [3] were used just 
as in [ l]. For each loop there were at least 
two different source code versions, scalar and 
vector, and for loops 2, 4, and 18 there were 
two or more vector versions. Kernels 16 and 17 
were discarded because the unknown data 
dependent branching probabilities made these 
loops impossible to time. Note that the same 
was not true of Loop 15 which has many IF 
statements in the original code. 

Using Equations (1), (4a), (5), and (6) and 
Table 1, the test base kernels were timed using 
the source code versions alone. Scalar times 
converted to MFLOPS are listed in Table 2. 
These are compared to the actual timings with 
the relative error noted. On the average the 
predicted performance is 15% too high. More 
interesting is the spread in the relative 
error. In statisics this is called the "sample 
varience" or "standard deviation," and is 
annotated as "sigma." For this sample the 
scalar timings have a sigma of about 31%. Thus, 
over a performance range of 1. 7 to 22.4 MFLOPS, 
scalar timings can be predicted repeatedly to 
within +31% using a very simple three parameter 
equation (S, J, and I). Figure 3 shows the 
distribution of errors in a histogram format. 

Vector timings, converted to MFLOPS are listed 
in Table 3. The triple entries represent three 
different vector lengths where typically the 
second length is twice the first, and the third 
vector length is twice the second (see [l]). 
Note that performance is well predicted over a 
large -·span of vector lengths and over a 

w 
CJ z 
w 
a: 
a: 
::> 
CJ 
CJ 
0 ... 
0 ,. 
CJ 
z 
w 
::> 
0 
w 
fl: 

-l.O -.5 0 .5 1.0 

RELATIVE ERROR 

FIGURE 3. Histogram of Relative Error for 
Scalar Loop Timing Predictions 

533 

performance range of 3.4 to 168 MFLOPS. Loops 
2a, 4, 8, 13, 14, 15, 18 are examples of kernels 
that are tricky timing exercises requiring index 
list gathers and scatters, partial 
vectorization, bit vector operations, WHERE 
blocks, multiple nested loops, and up to 73 
timing equations (Loop 15). 

Figure 4 shows in a histogram format the 
distribution of errors for this test base in 
vector mode. Loop 13 is a statistical "outlier" 
at more than the 3 sigma level, implying that it 
is not a statistical anomaly but a technical one 
not satisfied by the model. Therefore it should 
not be used in the sample for calculating the 
sample mean or variance. With that loop 
eliminated, Loop 14 is a statistical outlier at 
the 2 sigma level, suggestive, but not a 
compelling reason to delete it from the sample. 
Ignoring Loop 13, the average predicted 
performance is about 5% too high. The spread in 
the relative error (sigma) is less than 10%. 

Loops 13 and 14 both involve random indexing 
through memory. My timings for Q8VGATHR and 
Q8VSCATR assumed a "well behaved list," and they 
likely are not that well behaved. More tests 
showed the performance could degrade by a factor 
of 3 in R in the worst case. Thus a range in R 
is shown in Table 1. These ranges more than 
make up for the error in the predictions of 
Loops 13 and 14. A good working value of R for 
these two instructions is 0.035 
microsec/result. Making this correction to the 
performance predictions of these loops brings 
these estimates into line with their actual 
performance. 

w 
CJ 

iii 
a: 
a: 
::> 
CJ g 
... 
0 ,. 
CJ 

iii 
::> 
~ 
ff: 

10 

-1.0 -.5 .5 1.0 

RELATIVE ERROR 

FIGURE 4. Histogram of Relative Errors for 
Vector Code Timing Predictions 



TABLE 2. C205 PERFORMANCE MODEL - Scalar Code 

Kernel No. Predicted (MFLOPS) Actual (MFLOPS) Relative Error 

1 ll. l 9.6 15.6% 
2 11.0 12.3 -10.6% 
3 6.4 5.9 8.5% 
4 5.4 3.3 73.6% 
5 9.6 7.9 21.5% 
6 8.5 5.2 62.5% 
7 15.1 17.0 -11.2% 
8 15.2 22.4 -32.1% 
9 13.6 13.0 4.6% 

10 11. 7 8.6 36.0% 
11 2.5 1.7 47.0% 
12 2.5 2.9 -13.8% 
13 4.7 3.1 51.6% 
14 4.7 5.5 -14.5% 
15 3.8 3.4 11.8% 
18 7.3 8.3 -12.0% 

14.9 ± 31.3% 

TABLE 3. C205 PERFORMANCE MODEL - Vector Code 

Kernel No. Relative Error Predicted (MFLOPS) Actual (MFLOPS) 

4a 

4b 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

18a 

18b 

18c 

89.7, 116.6, 137.2 

12.3, 16.9, 20.8 

65.4, 79.1, 88.3 

65.4, 79.1, 88.3 

13.5, 22.9, 30.0 

9.5, 16.1, 21.1 

5.8, 6.2, 6.5 

6.1, 6.5, 6.7 

93.6, 127.6, 155.8 

3.2, 18.1, 18.9 

52.0, 79.6, 108.5 

22.4, 30.5, 37.1 

7.6, 7.9, 8.1 

71.4, 83.3, 90.9 

7.7, 8.8, 9.4 

6.2, 6.5, 6.6 

21.4, 29.2, 35.7 

44.1, 54.4, 61.6 

38.3, 47.4, 53.8 

4.2, 4.2, 4.2 

All 16 Kernels 

All 16 Kernels except #13 

534 

94.4, 122, 138.9 

12.5, 16.2, 19.8 

64.6, 76.9, 87.2 

64.6, 76.9, 87.2 

12.2, 21.5, 29.1 

8.7. 15.3, 20.4 

5.1, 5.7, 5,9 

5.4, 6.1, 6.4 

113, 146, 168 

3.4, 15.9, 16.6 

54.4, 81, llO 

22.7, 30.0, 36.l 

8.0, 8.5, 8.6 

62, 75, 83 

3.9, 4.4, 4.5 

5.o, 5.3, s.2 

18.4, 25.6, 30.3 

42.3, 50.4, 55.6 

35.0, 42.4, 47.3 

4.2, 4.2, 4.2 

4.8% 

6.0% 

10.9% 

8.1% 
-12. 3% . 

7 ,3% + 11.4% 

-2.5% 

1.0% + 2.1% 

-6.0% 

11.9% 

102% 

24.5% 

16.1% 

7.7% 

11. 7% 

0% 

9.7% + 23.2% 

4.8% + 8.4% 



V. RESULTS 

For 9 of the 16 kernels in this test base 
(kernels 1, 2, 3, 7, 9, 10, 11, 12, and 15), 
vector optimization clearly discriminates among 
the possible source code choices. The 
likelihood of an error being made in any of 
these choices is quite small. The differences 
in their respective scalar and vector 
performance predictions far exceeds the sum of 
their expected errors, in all cases by more than 
2 sigma and in most by more than 3 sigma. Of 
these 9 kernels, kernels 2, and 15 were subtle 
timing exercises (Section IV). 

Making the proper choice of source code for 
kernels 4, 5, 6, 8, 13, 14 and 18 i.s not so 
straightforward. Figure 5 shows the probability 
of making an error in code choice for a kernel 
as a function of the separation of the 
performance estimates. An error is made when 
the code version with the faster time estimate 
turns out to be the slower running version. In 
Figure 5, Ml and M2 are the respective 
performance estimates of two choices of source 
code for the same kernel. Kernels 2a, 4ab, 5, 
6, 8, 13, 14 and 18ab are noted on the figure as 
examples. The average overestimation of vector 
performance (5%) and scalar performance (15%) 
has been factored out in these cases. The 
standard errors, Sl and S2, for scalar and 
vector estimates are 31% and 10% of their 
respective estimates (Mv and Sv for the vector 
estimate and Ms and Ss for the scalar one). Out 
of these 8 examples, it is expected that one 
(rounding to the nearest integer) will be 
wrong. In fact, three of them are (kernels 6, 
8, and 14). The slower versions are 15%, 29%, 
and 4% slower than their faster estimates not 
chosen. It should be noted that the scalar 
speed of kernel 8 is unusually fast (rumor has 
it that the compiler was tuned on this 
particular piece of code). 

Given an incorrect choice of the version of 
source code, statistics predicts how much error 
will likely cost in performance. Where Figure 5 
shows the probability of making an error, Figure 
6 shows the probability of the size of the 
penalty as a function of the separation of the 
estimates. This assumes that the error has been 
made. Kernels 6, 8, and 14 are included as 
examples. This "penalty" function is fairly 
flat with the average penalty for a large sample 
of incorrect choices typically in the range of 
5% to 20%. The top curve represents the 90% 
confidence interval of the penalty. Therefore 
the probability that the penalty lies below that 
line is 90%, 

535 

.5 

a: 
0 .4 a: 
:li 
"-
0 .3 
> ,_ 
:::; 
o; 

.2 < 
"' 0 
a: .. 

.1 

.0 

KERNEL 6 

/ KERNEL 8 

/ KERNEL 5 & 18ab ,,,., 

s, = 0.3 MscALAR 

s, = 0.1 MVECTOR 

SEPARATION OF THE ESTIMATES 

FIGURE 5, Probability of Choosing the Wrong 
Source Code Version 

50% S5 = 0.3 MSCALAR 
w 

,_!,1 8v = 0. 1 MVECTOR ,_o 
-'" 40% 
<CJ 

KERNEL 8 Zz 
W-

\ .. 
~f§ 30% 90% CONFIDENCE 

z"' 
x / INTERVAL 

<"' ::;W 
a:z 
o< 20% 
"-z °'w ~> 

§ 10% 

SEPARATION OF THE ESTIMATES 

FIGURE 6. Performance Penalty when the Wrong 
Code Version is Choosen 



VI, Conclusions 

The analytical timing model presented in this 
paper estimates the performance of scalar 
kernels with a standard deviation of 30%. The 
performance of vector kernels is more accurately 
predicted with standard deviation being 10%, In 
many cases these errors are insignificant 
compared to the difference in predicted timings 
for two coded versions (e.g. scalar versus 
vector) of the same kernel. In such cases 
vector optimization is eminently safe and 
useful. One class of kernels that will 
repeatedly fall into this category on the CYBER 
205 are the kernels whose vector performance is 
predicted to exceed 25 MFLOPS, The test base 
showed some slower kernels for which vector 
optimization also clearly discriminated the 
faster version. 

When vector optimization chooses between two 
versions of a kernel whose performance 
difference is comparable to the expected errors, 
the probability of making an error in choice is 
no longer negligible. When choosing between 
scalar and vector code, the chance of error is 
8% when the performance difference is 40% of the 
average estimate. The chance of error grows to 
42% when the performance difference is 10%. 
When choosing between two vector versions, the 
probability of error is 0,5% at a performance 
difference of 40% of the average estimate, and 
22% at a performance difference of 10%, When an 
error is made the typical performance penalty 
incurred ranges from 5 to 20%. Rarely (less 
than 10% of the time) would the penalty exceed 
50%, These conclusions assume that the errors 
in timing predictions obey Normal Distribution 
statistics. This assumption looks correct for 
the vector timing predictions, but is suspect 
for the scalar ones. This code sample implies 
that high performance scalar code is selectively 
underestimated, while the slow performance 
scalar code is selectively overestimated. 
Perhaps the analytical timing model for scalar 
performance needs a nonlinear term to better 
match the high and low performance extremes. I 

536 

think this last point forces more interpretation 
than is really in the data. The model needs to 
be tested on more code, preferably real 
applications, and I intend doing this in the 
future. 

The bottom line for this experiment is that out 
of 16 kernels, 9 have clear vector optimization 
choices from among two or more choices. Of the 
remaining 7 harder to discriminate versions 3 
are chosen incorrectly for an average penalty of 
17%. Weighting all 16 kernels equally, the mean 
scalar performance is 8.1 MFLOPS while the mean 
vector performance is 32,1 MFLOPS (for the 
shortest vector lengths), 41,6 MFLOPS (for the 
middle vector length), and 48.3 MFLOPS (for the 
longest vector lengths), Vector optimization 
yields a mean performance of 37.7, 47,2, 54.7 
MFLOPS respectively for these vector lengths. 
If scalar code is chosen in all cases except 
where the best vector performance estimate 
exceeds the scalar one by 40% (less than 8% 
chance of slowing the code by choosing vector) 
then such a vector optimization algorithm would 
yield an average performance of 37,7, 48.0, 55.1 
MFLOPS. If the vector optimization decisions 
had been all correct (that is, best effort), the 
mean performance for this test base would have 
been 37,7, 48.1, and 55.2 MFLOPS. 

The vector optimization algorithm presented here 
should be easy to implement in a compiler or 
other automatic vectorization software. 

VII, References 

[l] C. N, Arnold, Performance Evaluation of 
Three Automatic Vectorizer Packages, 
International Conference for Parallel Processing 
1982, Bellaire, Michigan, August 1982, 

[2] R, W, Hockney, C, R. Jesshope, Parallel 
Computers, Adam Hilger Ltd, Bristol, UK, 1981. 

[3] F. McMahon, 1972, Unpublished. (Available 
from C. N. Arnold on request) 



* PIPELINED EVALUATION OF FIRST-ORDER RECURRENCE SYSTEMS 

Lionel M. Ni 

Department of Computer Science 
Michigan State University 

East Lansing, MI 48824 

Abstract -- A first-order recurrence is a 
sequence of evaluations in which the value of the 
latest term depends on the previously computed 
term. Due to the sequential nature, it presents a 
special problem for parallel processing. For most 
scientific applications, only the final term is 
desired. This paper presents various strategies 
to evaluate the final value of first-order 
recurrence using pipeline. Two methods, symmetric 
reduction and asymmetric reduction, are proposed 
and compared in a static pipeline environment. 
The pipeline utilization can be further improved 
when multiple recurrence systems are evaluated. 

I. Introduction 

A first-order recurrence is a sequence of 
evaluations in which the value of the latest term 
in the sequence depends on the previously comput
ed term. For most scientific applications, only 
the final term is desired, such as the inner 
product of two vectors, which forms the basis for 
most matrix manipulations. The inner product can 
be evaluated as a linear first-order recurrence. 
The evaluation of a recurrence presents a special 
problem for a parallel processing system because 
the definition itself is given in terms of sequen
tial evaluation [3]. 

A general class of first-order recurrence 
equations can be expressed in the following form 
[7]: 

Z[ 1] = B[ 1] 
Z[i] = h(B[i],g(A[i],Z[i-1])) 2sisN (1) 

where A[i] and B[i] are external inputs and h and 
g are index independent functions that satisfy 
the following restrictions: 1) h is associative; 
2) g distributes over h; and 3) g is semiassoci
ative. The external inputs are essentially two 
vectors with N elements. In this study, we are 
interested in the final scalar result Z[NJ which 
is reduced from the vector inputs. Thus, the 
basic primitive operation which requires sequen
tial processing in the evaluation of the first
order recurrence is vector reduction. Vector 
reduction accepts vector input and produces a 
single scalar output [5,8]. Perhaps the most 
common such vector reduction operation is the 

* This research was supported in part by the U.S. 
Engineering Foundation under grant RI-A-82-11 
at Michigan State University and in part by the 
U.S. National Science Foundation under grant 
ECS-80-16580 at Purdue University. 

0190-3918/83/0000/0537$01.00 © 1983 IEEE 537 

Kai Hwang 

School of Electrical Engineering 
Purdue University 

West Lafayette, IN 47go7 

vector summation, which takes one input vector 
.i.nd produces a single output equal to the sum. of 
the elements of the input. Other vector reduction 
operations can be found in [12]. 

In a sequential processor, the evaluation of 
the first-order recurrence involves a DO loop 
operating on one element from each vector, A[i] 
and B[i], at a time as defined in Eq.(l). Figure 
l(a) shows a sequential organization for the 
evaluation of the first-order recurrence. Two 
functional units, g and f, are connected serially 
with output of h feeding the input of g. A 
simplified diagram which combines the functions h 
and g is shown in Fig. l(b), where f=hg. We may 
combine the external input sources, A[i] and 
B[i], into one external input source X[i], as in 
the further simplified diagram shown in Figure 
l(c). This is the model that we will use in this 
paper. f is also called a vector reduction 
operator because it reduces the vector input to 
a scalar output. Figure l(d) shows the functional 
organization for performing inner product S=8•.!i· 
The vector reduction operator, "+", is indicated 
by the dash-line box. 

A[ i] B[ iJ 
l[ i-1 J 

Z•Z(N] 

(a) The functional organizatton 
for performing first-order 
recurrence eQUat ion 

X[i] 
Z( 1-ll 

(c) A non-pipelined model of 
vector reduction unit 

A[ i} B( i] 
Z[ i-1] 

f=hg 

Z•Z(N] 

(b) Two functional units h and g 
are combined into one functional 
unit f 

A(i] B[ i] 

S• ~A( ll*B( i l 

(d) The functional organization for 
performing vector inner product 

Fig.l. Evaluation of first-order recurrence 



Parallelism and pipelining are two major 
techniques in achieving high performance process
or unit design. Evaluation of a recurrence system 
in an array processor ha.s been extensively stud i -
ed by many researchers [1,7]. An interconnection 
network is required in an array processor to pro
vide the necessary routing paths for the purpose 
of cyclic vector reduction. An array processor 
which is capable of evaluating multiple recurr
ence systems has been studied by [6,10]. 

This paper deals with pipelined evaluation 
of the first-order recurrence. Pipelining 
generally takes the approach of splitting the 
function to be performed into small pieces and 
al locating separate hardware to each piece, 
termed a segment. Usually, the rate of data 
flow through the pipeline is independent of the 
number of segments and dependent on the rate at 
which new data may be fed into the pipeline. If a 
function is capable of being partitioned into K 
segments, then a pipeline designed to execute the 
same function repeatedly can perform the function 
K times faster, at most. This peak performance 
can be achieved only if the input elements are 
mutually independent and the input string is very 
long. However, due to the recurrence relation, 
peak performance may not be easily achieved. 

The pipelined design of a vector reduction 
unit needs a feedback path from the output to the 
input of the pipeline. Here only the static pipe
line is considered. The existence of feedback 
implies a certain sequentialism to the function 
being evaluated. Since each output of the pipe
line depends on previous outputs, pipelining does 
not help in the direct implementation of Eq. (1), 
Improper or inefficient control of such feedback 
around a pipeline can destroy its efficiency and 
decrease its throughput. This paper studies the 
construction and scheduling of pipelined reduc
tion units while maintaining a high throughput 
rate. 

Vector suITTTiation or inner product instruc
tions have been implemented in many vector pro
cessors, for example, IBM 3838, TI-ASC, STAR-100, 
CRAY-I [4] and ESL systolic processor [10]. This 
paper provides a generalized model for the pipe-
1 i ned evaluation of first-order recurrence under 
different scheduling strategies. Both single 
vector input and multiple vector inputs are 
considered for an environment consisting of one 
pipelined reduction unit. 

In section II, a traditional recursive reduc
tion method is briefly described. A symmetric 
reduction method is then introduced. A more 
faster asymmetric reduction method is proposed in 
Section I I I. The above methods are al so compared 
in terms of control complexity, processing speed, 
and the buffer requirements. Section IV discusses 
the situation in which multiple vector inputs 
request to perform the same recurrence operation 
in a single pipeline unit. An interleaved schedul
ing of multiple vector inputs sharing a single 
pipeline is proposed. Finally, an example is demo
nstrated with mixed single and multiple vector 
processing by chaining several pipeline units. 

538 

II. Syrnmetdc Single Vector Reduction 

A first-order recurrence system has a single 
vector input. It is assumed that a static pipe
line with K segments is used in evaluating a 
vector input of N elements, where N and K are 
arbitrary integer values. Further, each memory or 
buffer can supply one element per pipeline cycle 
time. 

In order to evaluate the final scalar re
sult, a recursive reduction method has been pro
posed by Kuck [9] with N being an integer power 
of 2. The N elements are divided into two halves. 
N/2 pairs of elements are processed in the first 
iteration through the pipeline. The intermediate 
result vector of N/2 elements is then again divid
ed into two halves, N/4 elements each, in the 
second iteration. After log2N iterations, the 

final scalar result is obtained. 
A genera 1 i zed procedure based on the recur

sive reduction of a vector with an arbitrary 
value of N was specified in [12]. In addition to 
storing the input vector or the intermediate 
result in the memory, two extra buffers are 
needed to hold the divided subvectors. When N is 
large, the buffer will significantly increase the 
hardware cost and time delays. Let T(N,K) denote 
the number of cycles required to evaluate an 
input vector with N elements in a pipeline with K 
segments. The following result was obtained [12]. 

Theorem 1: 
The recursive reduction method requires 

TRR(N,K) cycles, where 

TRR(N,K)=(K-1) fiog 2Nl+3(N-l) (2) 

The excessive buffer can be eliminated by 
using a feedback path from the output to the 
input of the pipeline as shown in Fig. 2. B(t) is 
the feedback input at the t-th pipeline cycle and 
C is a constant. The feedback input will be latch
ed if e=l. B(t-j) indicates the feedback input at 
the (t-j)-th cycle. 

X(I) 

B(t) 
e 

c 

cl MUX eO 

-------~ -------· 
1 r 

..._ __ -.-__ __, K 

Z =Z[N) 

cl eO INPUTPAIR 
0 0 c ,X(I) 
0 1 c 'B(t-J) 
1 0 B(t) ,X[i) 
1 1 B(t) 'B(t-J) 

Fig.2. The hardware organization of a pipelined 
processor with K segments 



The reduction operator, f, is commutative. 
For ease of explanation, we assume N;::K. The N 
elements can be partitioned into K groups. 

Z = Z[ NJ = f ( P (1), P ( 2), .•• , P ( K)) ( 3) 

where 

P( i) f(X[N-i+l], X[N-K-i+l], X[N-2K-i+l], 
..• ) for l<i<K (4) 

If (N mod K)=O then P(i) is the reduction 
result of N/K elements for all i; otherwise, P(i) 
is the reduction result of rN/Kl elements for 
l~i:S'..(N mod K) and of LN/Kj elements for (N mod K) 
<i~K. T(N,K) can be divided into four phases. 

T(N,K)=Ti(N,K)+Tp(N,K)+Tm(N,K)+Td(N,K) (5) 

where T. is the ti me needed to fi 11 up the 
pipeline: TP is the time needed to partition 

the N elements into K groups, T is the time 
required to merge K groups into ~ne group, and 
Td is the time required to drain the pipeline. 

Since the input elements X[i]' s are supplied at 
the rate of one element per cycle, the fol lowing 
results are obtained. 

Ti(N,K) Min{N,K} 

Tp(N,K) Max{O,N-K} 

(6) 

(7) 

In total, Ti and TP add to N cycles. The 

input elements may come from local memory or 
from the output of another pipeline. The control 
inputs will be (cl,cO,e)=(0,0,0) and (cl,cO,e) = 
(1,0,0) for the evaluation of Eqs.(6) and (7), 
respectively. The constant input C is chosen so 
as to make f(C,X)=X. In the case of vector summa
tion, C wi 11 be 0. After N cycles, the external 
input, X, to the pipeline will be set to the same 
value as C. 

A pipeline segment is productive for a 
given clock period if the segment is actively 
involved in the computation during that period; 
otherwise, the segment is called unproductive. 
This implies that the result generated by an 
unproductive segment will be ignored. After N 
cycles (if N.2K), all K segments are productive 
and the i -th segment will be operating on PC i). 
The merging of K groups is done by combining two 
groups at a time. The number of groups is reduced 
by half after each iteration. Thus, n og2Kl 

iterations wi 11 result in a single group. Two 
methods are proposed for the group-merging phase. 
The symmetric reduction method is described 
first. The asymmetric reduction method will be 
discussed in the subsequent section. 

Once all groups are merged into one group, K 
cycles are needed to drain the pipeline in the 
last phase. The drain delay is equal to 

(8) 

In the symmetric reduction (SR) method, two 
consecutive productive segments are merged at one 
time as depicted in Fig. 3. Figure 3 shows the 

539 

Segments 

S1 S, Sa S4 S~ 81 S7 S8 S1 8 10 

Ke= 10 

K 1 =5 0 

~=3 

Ka= 2 

~=I 

(The number of 
productive 
segments) 

The 
first 

0 iteration 
The 
second 

0 iteration 
The 
third 

0 iteration 
The 
fourth 

o o 0 0 0 0 iteration 

- Pipeline ftow 
• productive segment 
o unproductive segment 

Fig.3. The pattern of productive segments before 
and after each iteration for the symmetric 
reduction in a pipeline with K=lO segments 

pattern of productive segments in each iteration 
for a pipeline of 10 segments, where Ki denotes 

the number of productive segments after the i-th 
iteration and K0=K. When Ki is odd, the group 

in the first segment wi 11 be merged with a dummy 
group. Note that the group in the first segment 
always includes the original group P(l) at the 
beginning and end of each iteration. Thus, the 
time required for each iteration is the time 
needed to route the group in the first segment, 
possibly merged with another group, back to the 
first segment. The distance between two consecu-

tive productive segments is always 2i after the 
i-th iteration. The control sequence is illustrat
ed below for merging K' groups in a pipeline with 
K'i:K. The function, E(x), is defined to be 1 if 
the integer x is odd. If xis even, then E(x)=O. 

ALGORITHM-SGM: Symmetric Group-Merging 
Input: K' productive segments (K'i:K). 
Output: (1) The control sequence (cl,cO,e), and 
~~- (2) The group-merging time Tm(SR)(K') of 

of merging K' groups into one group. 
Procedure: 
Begin 

t=O; 
for i=l to /log{ 'l do begin 

if K' < K then {for t=t+l to t=t+K-K', set 
Ccl,cO,e)=(0,0,0)}; 

if (K'-l)mod(2i-l) > 0 then {for t=t+l to 
i-1 t=t+(K'-l)mod(2 ), (cl,cO,e)=(0,0,0)}; 

G=O; (* G is a boolean variable *) 

D=E(rK'/2i-lll (*Dis a boolean variable*) 

for j=l to rK'/2i-ll - D do begin 
for t=t+l, set (cl,cO,e)=(G,G,G'); 

if i>l then {for t=t+l to t=t+2i-l_l, 
set (cl,cO,e)=(0,0,0)}; 

G=G'; 
end; (* end for *) 
for t=t+l do (cl,cO,e)=(D,1,0); 

end; (* end for *) 
Tm(SR)(K' )=t; 

End. 



If N<K, then K'=N; otherwise, K'=K. The 
above algorithm can be applied to an arbitrary 
value of N and Tm(SR)(N,K)=Tm(SR)(K'). The 
number of cycles required for each iteration wi 11 
be the time required to go through the whole 
pipeline once, i.e., K cycles, plus a certain 
amount of delay cycles in the latch if the number 
of productive segments is odd. Table l(a) shows 
the contents of pipeline segments and the latch 
during the merging of six groups in each cycle 
using the SR method. The following lemmas are 
used in evaluating the time required in the 
group-merging phase. Lemma 1 can be proved by 
induction. 

Lemma 1: 
The number of productive segments after the 

i-th iteration equals 

(9) 

Lemma 2: 
If K is not an integer power of 2, then 
fi og2Kl -l 

L. 2iE(Ki) 2rlogtl-K (10) 
i=O 

Proof: Eq. (10) can be proved by 
Howev~the following equation must 
first. 
llog2Kl - l l'fog2(K+l)l - l 

L 2iE(Kil r:. 2\ccK+1i.> 
l 

i=O i=O 

induction. 
be proved 

1 ( 11) 

Since K is not an integer power of 2, K can 

be written as 
number. Thus, 

Then we want 

K=2md, where m<;:O and d is an odd 
E(K. )=0 for i<m and E(K )=l. 

1 m 
to show that E((K+l)i)=l for i<m 

and E( (K+l)m)=O. 

If K is odd, then m=O and K+l is even. Thus, 
E(K0)=1, and E((K+1) 0)=1. 

If K is even, then K+l is odd and 

(K+l) 0=2md+l. (K+l)i can be expressed as 

(K+l)i = f2m-id+2-il = 2m-id+l for i<m 

Thus, E( (K+l) i )=1 for i<m. Since d is odd and 

(K+l) =\d+2-ml=d+l, we have E(K+l) )=0 and m m 
(K+l)m+l= \(d+l) /21= \d/2l=Km+l • From Lemma 1, 

we have Ki=(K+l)i for i>m. 

Since K is not an integer power of 2, this 
implies that nog2Kl=flog2(K+l)l. Eq.(11) 

thus can be proved. By induction, Eq.(10) can be 
easily derived. 

Q. E.D. 

Theorem 2: 
In the group-merging phase of the symmetric 

reduction method, the total time delay equals 

540 

if N>K 
{ 

g(K) 
T -
m(SR)- g(N)+(K-N) riog 2Nl if N<K 

(12) 

where g(M)=Mrlog 2Ml+2riog2Ml_M. 

Proof of the Theorem 2 follows directly from 
the Lemma 2. Note that if Ki-l is even then K 

cycles are needed in the i-th iteration; other

wise, it takes an extra 2i-l cycles to merge 
with a dummy segment as stated in the Algorithm. 
If N<K, we may consider a pipeline having N 
segments and K-N dummy segments. Thus, each 
iteration will required (K-N) extra cycles due to 
the delay in durn:ny segments. Since it takes 
flog 2Nl iterations, Eq. (12) is achieved. 

III. Asymmetric Single Vector Reduction 

The symmetric reduction method is good for 
microprogrammed control because the generation of 
control sequence has a regular pattern. However, 
it takes more cycles as shown in Table l(a). In 
the second iteration, four cycles later, three 
groups have been merged into two groups. But it 
takes four more cycles to make the first pipeline 
segment containing P(l). The asymmetric reduc
tion (AR) method can eliminate unnecessary 
delays as illustrated in Table l(b). However, the 
control sequence is no longer a regular pattern 
because it is very difficult to express the dis
tance between productive segments mathematically. 
A hardwired control can be easily implemented to 
generate the control sequence. 

With the AR method, the pipeline processor 
needs to record the state of each segment as well 
as the latch. Denote the state of the latch as 
s0 and the states of pipeline segments as Sl' 

s2, •.• , SK. Si=l indicates that the i-th 

segment is productive; otherwise, it is 0. The 
state of the pipeline is expressed by a K+l tuple 
cs0 ,sl'····\). Initially, we have s0=0 

Table 1. Contents of pipel1ne segments (K=6) of 
each cycle during group-merging phase 

i•l i=l --- --- --- --- --- --- --- --- ------ --- --- --- --- --- --- --- --- --- --- ---
1 l 6 4 2 5-6 5-6 1-2 1-2 l-6 l-6 3-6 3-6 

5-6 3-4 1-2 3-6 1-2 1-6 

2 l ,_, l-4 l-2 ,_, 1-2 

3 2 I 5-6 J-4 1-2 3-6 1-2 

4 3 2 I 5-6 3-4 1-2 3-6 1-2 

5 4 J 2 l 5-6 3-4 1-2 3-6 1-2 

' 5 4 3 2 l ,_, 3-4 1-2 3-6 1-2 

(a) S)fmletric Reduction (SR) method 

i•l ,., l=l 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

1 L 6 4 2 5-6 5-6 1-2 1-2 1-2 1-2 

5-6 3-4 1-2 3-6 1-6 

2 l 5-6 3-4 1-2 ,_, 
3 2 l 5-6 3-4 1-2 3-6 

4 3 2 l 5-6 3-4 1-2 3-6 

' 4 3 2 l 5-6 3-4 1-2 3-6 

' 5 ' 3 2 l 5-6 3-4 1-2 ,_, 
(b) Asyinmetric Reduction (AR) method 



and S1=s2= •.. =SK=l, if K~N, and 

= ••• =SN=l and SN+l= •.• =SK=O, if K>N. 
group-Merging oper~t1on is terminated if 
and s2= ..• =SK=O. 

The control signals are primarily determined 
by the current states of s0, Sl' and SK. 

The latch is enabled if s0=0 and SK=l. If 

the latch is occupied and the last segment is 
productive, these two groups will be merged in 
the next cycle. The control outputs can be expres
sed as fo 11 ows: 

( 13) 
e = s0sK 

A state transition table can be easily 
derived. The first segment becomes productive if 
two groups from the lat ch and the 1 ast segment 
are merged. The next state is expressed by the 
present state as follows: 

(14) 

2<i<K 

The above equations can be easily modified 
to cover three other phases. Theorem 3 states the 
total number of cycles required for the group
merging phase in the AR method. 

Theorem 3: 
In the group-merging phase of the asymmetric 

reduction method, the total time delay equals 

{ 
h(K) 

T -
m(AR)- h(N)+(K-N) flog 2Nl 

if N>K 
(15) 

if N<K 

where h(M)=Mnog2Ml-l10g2Ml+M. 

Proof: Using the AR, the number of produc
tive segments in each iteration is same as with 
the SR method. However, the distance between any 
two consecutive productive segments is no longer 
a constant. But the distance between the first 
and the second occupied segment is still 2i-l 

. before the i-th iteration. If the number of pro
ductive segments, Ki-l' is odd before the i-th 
iteration, the last merge wi 11 be on the 2nd and 
the 3rd productive segments. The first productive 
segment does not have to go through the pipeline. 

Thus, if Ki-l is odd, it takes K-2i-l cycles 

for the i-th iteration; otherwise, it takes K 
cycles. Eq. (15) thus can be achieved by applying 
Lemma 2. 

Q.E.D. 

Tab 1 e 2 shows the total number of eye l es 
required for group-merging for K=l to 16 and for 
the SR and the AR methods, respectively. It also 
shows the number of cycles required and the 

541 

Table 2. Number of cycles required in each itera
tion of the group-merging phase for 
different size of pipeline segments 

' 
l 

2 

J 

• 
s 

• 
7 

' 
' 

10 

11 

12 

ll 

14 

15 

16 

'"' 
,., l•l _[ 

PS .. .. PS SR .. PS SR .. 
l 2 2 

2 4 2 l J J 

2 4 4 l • 4 

J • 4 2 7 J l 5 5 

J • • 2 8 • l 6 6 

4 8 6 2 7 7 l 1 7 

4 8 8 2 ' 8 l 8 8 

5 10 8 J 11 7 2 ll 5 

5 10 10 J 12 8 2 14 • 
• 12 10 J 11 11 2 l5 1 

6 12 12 J 12 12 2 16 8 

7 14 l2 4 15 11 2 ll ll 

7 14 14 4 16 l2 2 14 14 

8 16 14 4 l5 15 2 l5 15 

' 16 16 4 l6 16 2 16 16 

PS: Producthe segments after the i-th iteration 
SR: S)nllletric reduction method 
AR: As}'llllletric reduct ton method 

... g(K) h(k) 

PS .. .. .. .. 
0 0 

t-;-1 t-;-...,.., fs 
1-e' ta 

"" '12 
tzo1 '16 

tzo r-;;-

"' 
..,.... 

l ' ' 4J " 
l 10 10 .. .. 
l 11 11 .. 39 

l 12 l2 52 .. 
l ll ll 55 .. 
l 14 14 58 54 

l l5 15 61 59 

l l6 l6 64 64 

number of productive segments in each iteration. 
Note that the number of cycles required for the 
SR method is at least K for each iteration, 
whereas it is at most K for the AR method. 

Precisely, the SR method requires 

2(2ri 0 9fl_K) more cycles than the AR method, if 

NLK. If K=2k for some k, the total processing 
time wi 11 be the same for both methods. In the 

worst case of K=2k+l, the SR methods requires 
2(K-2) more cycles than the AR method. The number 
of pipeline segments, K, in a typical vector 
processor is in the range (2,15) [2]. Thus, when 
N is much greater than K, the difference in 
processing time between the SR method and the AR 
method is at most 2(K-2), which is insignificant. 
Table 3 lists the total vector reduction time for 
some typical values of N and K under three 
different reduction methods. In general, if N is 
much greater than K, the saving in vector 
reduction time in these two proposed methods is 
2N+O(K(log2N-log2K)) cycles over the recur-

sive reduction method. Furthermore, the extra 
buffer space is eliminated. 

Table 3. Comparison of three different methods 
in terms of the total processing time 
for some typical values of N and K 

N = 10 
T(N,K) 

RR SR AR 

K• 3 35 24 14 

K= 5 43 33 27 

K• 8 55 42 42 

K=l5 83 66 54 

RR: Recursive Reduction 
SR: S.)llllmetric Reduction 
AR: Asyrrrnetric Reduction 

RR 

311 

325 

346 

395 

N = 100 N = 1000 

SR AR RR SR AR 

110 108 3017 1010 1008 

123 117 3037 1023 1017 

132 132 3067 1032 1032 

176 174 3137 1076 1074 



IV. Interleaved Multiple Vector Reduction 

A set of independent recurrence systems with 
the same function may .request to evaluate their 
final values. For example, a matrix and vector 
multiplication involves many independent vector 
inner product operations. The scheduling of multi
ple vector inputs in a single pipeline processor 
is studied below. Assuming M independent vectors 
of N elements each, the scalar result for the 
j-th vector is defined by 

Y[j]=f(X[j,l], X[j,2], .•• , X[j,N]) 1~~ (16) 

The memory is assumed to supply one element 
per pipeline cycle. The simplest approach to 
evaluate Eq.(16) is to process one vector at a 
time. The total processing time wi 11 be M·T(N,K). 
With careful control, draining the pipeline of 
the last vector input can overlap with filling up 
the pipeline of the next vector input. Thus, the 
total processing time can be reduced to 
M•T(N,K)-K(M-1). Even with this overlapping opera
tions between vectors, the pipeline is still not 
fully utilized during the group-merging phase. A 
Riore efficient scheduling approach is to inter
leave the processing of multiple vector inputs. 

Consider the case of M=K first. For inter
leaved processing, the memory will supply X[l,lJ, 
X[2,1J, •.• ,X[M,1J for the first M cycles, X[l,2], 
X[2,2J, .•. , X[M,2] for the next M cycles, and so 
on. After the first M cycles, the i-th pipeline 
segment will be operating on X[M+l-i,1] for 
l~i~. Another M cycles later, the i-th pipeline 
segment will be operating on X[M+l-i,lJ and 
X[M+l-i,2]. After M·N cycles, the i-th pipeline 
segment will be operating on X[M+l-i,1], 
X[M+l-i,2], ... , and X[M+l-i,N]. At the end, K=M 
more cycles are needed to drain the pipeline. The 
total processing time will be K(N+l). 

Obviously, this approach is considerably 
faster than processing each vector sequentially 
because no merging phase is involved. Pipeline 
segments are unproductive only at the initial 
filling up phase and at the last draining phase. 
The idea of interleaved processing is to al low 
all pipeline segments to be shared by as many 
vectors as possible. It can be considered to have 
M virtual nonpipelined processors as shown in 
Fig.l(c). Each virtual processor is dedicated to 
one vector input with one input element per K 
cycles. 

If M>K, not al 1 M vectors can be allocated 
with pipeline segments. In order to save the 
intermediate results of the rema1n1ng M-K 
vectors, M-K dummy segments are introduced as 
shown in Fig. 4. Since the number of input 
vectors may vary, the length of the dummy segment 
buffer, D, is adjustable by program control. 
There are virtually M nonpipelined processors. 
Each virtual processor has a vector input with 
one element per M cycles. Physically, each vector 
input is assigned with one pipeline segment. With 
D dummy segments inserted, the pipe 1 i ne can be 
viewed as an M-segment pipe. The total processing 
time will be M(N+l). 

If M<K, some vectors may be allocated with 
more than one segment, and different vectors may 

542 

have a different number of segments. In this 
case, the contro 1 of the pipeline will be very 
difficult because the procedure of merging groups 
for each vector will be input-dependent. Since K 
is not always an integer multiple of M, one way 
to allocate vectors with an equal number of 
segments is to leave some segments idle which 
results in low pipeline utilization. With the 
help of a dummy segment buffer, the pipeline can 
be fully utilized by choosing o=rK/MlM-K. 

Let Q= rK/M°J=(D+K)/M be the number of seg
ments allocated to each vector including dummy 
segments. By feeding the elements into the pipe
line in an interleaved fashion as before, MN 
cycles later, all D+K segments will be occupied 
by groups of vectors. Each vector has Q groups in 
Q segments. Since Q>l, a group-merging phase is 
required. In Fig. 2, a latch was used to hold the 
group to be merged with the next group. For multi
ple vector inputs, each vector needs its own 
latch. A FIFO latch buffer is provided in Fig.4 
for this purpose. Again, the system can be con
sidered to have M virtual processors. Each proces
sor is a pipeline organization with Q segments 
and each segment takes M cycles. 

Either the SR method or the AR method can be 
used during the group-merging phase. However, the 
contro 1 sequence needs to be modified. The con
tro 1 sequence for each vector is the same as that 
of single vector reduction. The number of itera
tions will be r1og2dl during the group-merging 

phase. Since M vectors are processed in an inter
leaved fashion, each control output must be 
repeated M times, one for each input vector. The 
size of the FIFO buffer is obviously chosen to be 
K-1 because M<K. The total processing time in 
this case will be M·N+Q·Tm(N,Q)+K. The quantity 

Tm(N,Q) depends on the reduction method to be 

used. This was evaluated in Theorem 2 and Theorem 
3 for the SR and the AR methods, respectively. 

x 

S~~Tt:::===::l-..J 
BUFFER 1------1 D 

--...---.i.. '---....---'K 

Fig.4. The hardware organization of a pipelined 
processor for interleaved multiple vector 
reduction 



If the number of input vectors is too large, 
the dummy segment buffer may not be able to 
provide enough dummy segments. In this case, the 
vector inputs must be partitioned such that one 
block of input vectors is processed at a time 
according to the above procedures. In multiple 
vector processing, the low pipeline utilization 
due to group-merging can be essentially eliminat
ed. The following example may further demons
trate the usage of a pipeline processor with a 
direct feedback path. 

Example: 
Let A be an NxN matrix and B be an Nxl 

vector. .C.. is an Nxl vector obtained by performing 
matrix-vector multiplication of fl and Jl.. Given fl 
and _a, we want to find the maximum element in 
vector (. 

Three pipeline processors multiplier, 
adder, and comparator - are chained together as 
shown in Fig. 5 with Km, Ka, and Kc seg-
ments, respectively. For simplicity, N is assumed 
to be equal to nKa. fl and .a are stored in two 

independent memory modules. The fl matrix is parti
tioned into n blocks. Each block is a K by N 
submatrix. a 

The pipeline adder is needed to perform mult
iple vector reduction of N input .vectors and to 
result in N elements of the (vector, whereas the 
pipeline comparator is used to perform single vec
tor reduction and to produce the desired seal ar 
output. To allow for overlapping of two blocks of 
data in a single pipeline processor, the feedback 
i~put either comes from the output of the pipe
line or is supplied with a dummy input. The 
switching in the output of the pipeline can be 
easily controlled by a counter of value KN. 

In the first N*N cycles, two input glements, 
one from the A matrix and one from the a vector 
wi 11 be fetched from the memory modules and fed 
into the pipeline multiplier. At the c-th cycle, 

l~c~N 2 , elements aij and bk are fetched, 
where O_:;_i,j,k_S_N-1 and 

i=Ka U c-1) /KaNj + L< ( c-l)mod (K aN)) /fij 

j=((c-l)mod(K N)) mod N 
a 

k= LU c-l)mod(KaN) )/KaJ 

(17) 

The input pattern of matrix A and vector ..B. 
is also shown in Fig.5. The matrix Ji is fetched 
block by block. Each block is fetched in column
major and takes KaN cycles. Corresponding to 

the input of one block of matrix fl, the vector ] 
wi 11 provide N elements and each element wi 11 be 
repeatedly used Ka cycles. 

The external input to the adder comes from 
the output of the multiplier. The first input to 
the adder occurs when c=Km+l. The adder will 

produce Ka outputs, which are inputs of the 

comparator, every KaN cycles. The comparator 

will be fed with K consecutive elements from 
the output of the pi8eline adder and wi 11 be fed 

543 

~ r . 
A matrix B vector 

Fig.5. Three pipeline units and two memory 
modules are organized to perform the 
operation described in the example. 

with dummy input for the next Ka(N-1) cycles. 

This process will be repeated n times. The C 
vector wi 11 be merged into Kc groups after 

Km +N 2+K a eye l es. If the AR method is used, 

h(Kc) cycles are needed to merge these Kc 

group. K more eye l es are 
the pi6eline. In total, 

groups into one 
needed to drain 

K +N 2+K +h(K )+K 
m a c c cycles are required 

to obtain the final result. When N is very large, 
the total processing time is dominated by the 
one-pass fetch of the A matrix. 

By partitioning the matrix inputs, schedul
ing the input elements, and employing more 
pipeline units, the above method can be extended 
to evaluate many other matrix operations. This 
method has been successfuly applied in designing 
a VLSI systolic architecture for the purpose of 
pattern clustering [13]. 

V. Conclusion 

New scheduling methods which can efficiently 
evaluate the first-order recurrence system in a 
pipeline processor have been demonstrated. It has 
been shown that the asymmetric reduction method 
is faster while the symmetric reduction method is 
good for microprogrammed control. When the number 
of segments is an integer power of two, the 
symmetric reduction method behaves the same as 
the asymmetric reduction method. If the length of 
the input vector is very long, the difference of 
their processing times are not significant. Both 
of these methods are better than the conventional 
recursive reduction method for reducing proces
sing time and eliminating temporary buffer. 

To evaluate multiple first-order recurrence 
systems in a single pipeline, the pipeline utili
zation can be further increased by interleaving 
multiple vector inputs. A physical pipeline 



shared by many vector inputs can be viewed as 
having many virtual reduction processors, in 
which each virtual processor is dedicated to one 
vector reduction operation. The pipeline utili
zation is further increased by totally or partial
ly eliminating the group-merging phase. 

Several pipeline units can be chained toge
ther and the vector inputs can be partitioned to 
facilitate interleaved processing as indicated in 
the example shown in Section IV. The design is 
actually a two- level pipelined architecture. Due 
to the feedback loop involved, scheduling of the 
external inputs and connecting of different pipe-
1 ine units must be carefully considered to avoid 
conflict. A system including multiple pipeline 
units and parallel memory modules can provide a 
more efficient systolic architecture for evalua
ting various matrix manipulations and is suitable 
for VLSI implementation. 

REFERENCES 

[l] Chen, S.C. and Kuck, D.J., "Time and parall
el processing bounds for linear recurrence 
systems," IEEE Trans. on Computers, Vol .C-
24, July 1975, pp.701-717. 

[2] Cray Research Inc., Cray-1 Computer System 
Hardware Reference Manual, Pub.No.2240004, 
Minnesota, 1977. 

[3] Hockney, R.W. and Jesshope, C.R., Parallel 
Computers, Adam Hilger Ltd, Bristol, 1981. 

[4] Hwang, K. and Briggs, F.A., Parallel Compu
ter Architecture, McGraw-Hill Book Co., New 
York (in press to appear). 

[5] Hwang, K., Su, S.P. and Ni, L.M., "Vector 
computer architecture and processing tech
niques," Advances in Computers, Vol .20, M. 
Yovits (Ed.), Academic Press, Inc., 1981, 
pp .115-197. 

544 

[6] Hwang, K. and Ni, L.M., "Resource optimiza
tion of a parallel computer for multiple 
vector processing," IEEE Trans. on Compu
ters, No.9, Sept. 1980, pp.831-836. 

[7] Kogge, P.M. and Stone, H.S., "A parallel 
algorithm for the efficient solution of a 
general class of recurrence equations," 
IEEE Trans. on Computers, Vol .C-22, August 
1973, pp.786-793. 

[8] Kogge, P.M. The architecture of Pipelined 
Computers, McGraw-Hill Book Co., 1981. 

[9] Kuck, D.J., The Structure of Computers and 
Computations, Vol .l, John Wiley & Sons, 
Inc., 1978. 

[10] Kulkarni, A.V. and Yen, D.W.L., "Systolic 
processing and an implementation for signal 
and image processing," IEEE Trans. on Compu
ters, Vol.C-31, October 1982, pp.1000-1009. 

[llJ Ni, L.M. and Hwang, K., "Performance model
ing of shared-resource array processors," 
IEEE Trans. on Software Engineering, Vol. 
SE-7, July l98l, pp.386-394. 

[12] Ni, L.M. and Hwang, K., "Vector reduction 
methods for arithmetic pipelines," Proc. of 
the 6th Int' l Sym. on Computer Arithmetic, 
Aarhus, Denmark, June 20-22, 1983. 

[13] Ni, L.M. and Jain, A.K., "A systolic archi
tecture for pattern clustering," Technical 
Report, Dept. of Computer Science, Michigan 
State University, June 1983. 



THE SOLUTION OF LINEAR RECURRENCE RELATIONS ON PIPELINED PROCESSORS 

W.Oed O.Lange 
Zentralinstitut fuer Angewandte Mathematik (ZAM) 

Kernforschungsanlage Juelich GmbH 
Allgemeine Elektrotechnik und Datenverarbeitungssysteme 

Rheinisch-Westfaelische Technische Hochschule Aachen 
5160 Juelich West Germany 

Abstract Recurrence relations are frequently to 
be solved i tera ti vely on a computer. Since the 
computation of the i-th value usually depends on 
the (i-1)-th value, pipelined processors cannot be 
used to their full potential. A transformation 
method for obtaining an equivalent recurrence rel
ation not depending on the previous value together 
with some stability considerations concerning 
equivalent transformations are presented. 

Introduction 

Various aspects of the efficient solution of 
linear recurrence relations on parallel or pipe
lined processors have been investigated; 
e.g.[1]-[4]. We focus on the solution of linear 
recurrence relations on architectures where float
ing-point addition and floating-point multiplica
tion are performed by pipelined functional units. 

Our aim is to speed up recurrence relations on 
pipelined processors, where the speedup S is 
defined as the ratio of the straight forward, in a 
sense 'sequential' output latency 18 over any 
optimized output latency 10 

( 1) 

For a pipelined processor the stage utilization 
indicates for each stage how often on the average 
that stage processes data within a regarded inter
val [6]. The length of the interval is the latency 
18 for the sequential case, and 10 for the optim
ized case respectively. The stage utilization for 
the j-th stage in the sequential case is given by 

1 
Usj = _! f qij 5_ 1 (2) 

lg i=1 
with qij=O if stage j is idle, qij=1 if stage j is 
busy at cycle i. If Usm is the maximum value of 
Usj• j=1,2, ••• ,k, then the optimized output 
latency will be 

(3) 

Linear Recurrence Relations and Pipelining 

First we will investigate an m-th order linear 
homogeneous recurrence relation with constant 
coefficients of the type 

ui-am-1ui-1-am-2ui-2-···-aoui-m = 0 (4) 

with given initial values uo, u 1 , ••• , Um-1 and real 
coefficients am_1 ,am_2 , ••• ,ao. 

Consider a second order recurrence relation 
with given initial ·~values u0. and u 1 

ui = a1ui,_1+loui-2 • . (5) 

As an example, a computer is taken with one 
pipelined floating-point multiplier and one pipe
lined floating-'point· addez:o. L!!t kMUL be the number 
of stages for the.multiplier, and kADD the number 
of stages for the adde·r.. F1gure 1 depicts in a 
reservation table the timing for this recurrence, 

0190-3918/83/0000/0544$01.00 © 1983 IEEE 
545 

5100 Aachen West Germany 

with kMuL=3 and kAoo=2; (these are for instance 
the characteristics of the FPS-164 processor). As 
can be seen, every k time-units with 

k = kMuL+kADD = ls 

a new ui is computed, once the computation has 
been set up. Note that some overlap is taking 
place even in the 'sequential' case, since a 0ui_ 1 
can be computed already before ui becomes availa
ble. However, with Usm=2/5, we do not have an 
optimal computation. 

In an m-th order recurrence relation 
m multiplications and (m-1) additions are to be 
performed. This implies 10 :m to be the optimal 
output latency in the case of one multiplier and 
one adder thus yielding a speedup of 

S = 18 /10 = k/m . 

Equivalent Transformation of Recurrence Relations 

In order to achieve the desired speedup, the 
recurrence relation has to be transformed in such 
a way that the computation of a ui does not depend 
on the immediate predecessor. For improving 18 

(6) 

cycles can be gained per interval by 
'backstepping' as we will call it. The resulting 
recurrence relation should be of the type 

vi-Cm-1vi-~-cm-2vi-p-···-covi-j' = o (7) 
with °',JS, .•. •f' natural numbers and the property 
l~«<~<···</'• where 

1 = 1+1b = 1+r1g1ml CBl 

with lb=rlg/ml the number of 'backsteps•. 
The new recurrence relation is called an equiv

alent transformation if ui =vi for all i. Since 
the transformed recurrence relation is of higher 
order, more initial values are needed. They are to 
be computed from the original recurrence relation. 

One method for obtaining an equivalent trans
formation would be repeated substitution. Con
sider the second order linear recurrence relation 
(eq.(5)) which also can be written as 

ui-1 = a1ui-2+aoui-3 
By substituting ui_ 1 in eq. ( 5) 
be computed without depending 
results in 

(9) 

by eq. (9), ui can 
upon ui_ 1, which 

(10) 

thus achieving a backstep of one. By further sub
stitution the desired lb backsteps may be achieved 
in this fashion. However this procedure is rather 
awkward and may cause stability problems as will 
be shown later. 

Another method for obtaining an equivalent 
transformation uses some results regarding condi
tional recurrence sequences [7]. In a conditional 



recurrence sequence the values ui are obtained by 
a set of different recurrence relations, from 
which the recurrence relation for calculating the 
next ui is chosen upon a certain condition. Con
sider for example a sequence with initial values 
u0 and u1 where the values are generated by the 
alternate application of three different recur
rence relations 

ui-a1ui-1-a0ui-2 0 

ui-aiui-1-aQui-2 = 0 

ui-a1ui_ 1-aQui_2 = 0 

for 0 

for 

for 2 

A shift-operator z is defined as 

zui = ui-1 

and in general 

z(zj-1ui) = zjui = ui-j · 

(i mod 3) 

(i mod 3) 

(i mod 3) 

( 11) 

( 12) 

With this shift operator eq.(11) can be written as 

(1-a1z-aoz2)ui = f(z)ui 0 for O=(i mod 3) 

(1-aiz-a0z2)ui g(z)ui o 
(1-aiz-a0z2)ui h(z)ui = o 
where f(z) ,g(z) ,h(z) are 

for 1=(i mod 3) (13) 

for 2=(i mod 3) 

polynomials applied to 
ui. 

In general a conditional recurrence sequence is 
generated by means of a set P={f(z),g(z), •.. } of 
r m-th order polynomials and a decision function 
Q(i) by which a polynomial is selected from P for 
application to ui. In our example we have r=3 and 
Q(i)=(i mod 3). 

The theory describes a method which constructs 
from r polynomials of set P a single polynomial 
F(z), which is a polynomial in zr. When f(z) is 
applied unconditionally to ui the same recurrence 
sequence is generated. 

The procedure is demonstrated for the polynomi
als of eq.(13). First f(z),g(z),h(z) each are 
split into polynomials of powers of zr, in our 
example z3, where 

f(z) = f 0 (z3)+zf1(z3)+z2f2(z3) 

with 

for f(z) as it is given in eq.(13); g(z) and h(z) 
are· treated correspondingly. Eq.(13) can then be 
written as 

[fo(z3)+zf1(z3)+z2f2(z3)]u3j = O 
[g0 (z3)+zg1(z3)+z2g2(z3)]u3j+1 = o 
[ho(z3)+zh 1(z3)+z2h2(z3)]u3j+2 = O 

(14) 

with j=0,1, .•. ,n/3. Using the shift operator 
(eq.(12)), the system (14) may then be written in 
matrix form 

(
f 0(z3) z3f2(z3) z3f1(z3)) (u 3j ) 
g1(z3) g0 (z3) z3g2(z3) u3j+1 = 0. (15) 
h2(z3) h1(z3) ho(z3) U3j+2 

It is proved in [7] that the same recurrence 
sequence is obtained if eq.(15) is written as 

F(z)ui = 0 

with F(z) the value of the determinant 

I fo(z3) z3fz(z3) z3f1 (z3)1 
F(z) = g1(z3) g0(z3) z3g2(z3) 

h2(z3) h1(z3) ho(z3) • 
(16) 

546 

Multiplication of the j-th row by zj and division 
of the j-th column by zj does not change the value 
of the determinant (16) and finally 

I fo(z3) z2f2(z3) zf1(z3§ I 
F(z) = z~ 1 (z3) g0(z3) z2g2(z ) 

z h2(z3) zh 1(z3) ho(z3) 

is produced, which is a polynomial in z3. 
This theory also holds for the special case 

that all polynomials are identical, i.e. 
f(z)=g(z)=h(z); an important notion for our pur-
pose. Recall that in order to achieve an optimal 
speedup at least lb backsteps are required. There
fore all we have to do is to replicate the polyno
mial f(z) lb+1=1 times (eq.(8)) into the set 
P={f(z),f(z), ... ,f(z)} thus artificially creating 
a 'conditional' recurrence sequence. It will 
become again unconditional after the transforma
tion has been carried through. The resulting 
polynomial F(z1) applied to the original 
m-th order recurrence relation (eq.(4)) will yield 

ui-cm-1ui-l-cm-2ui-21-···-coui-ml = O • (17) 
As an example take a look at eq.(5), whose sequen
tial calculation is depicted in figure 1. With 
Usm=2/5 a speedup of S:5/2 should be gained. With 
eq.(6) and eq.(8) we find lb=2 and consequently 
1=3. Therefore the set P={f(z),f(z),f(z)} with 

f(z) = 1-a1z-a0z2 

will be used to achieve 

-z2ao -za1 I 
-za 1 1 -z2a0 = 1-c1z3-c0z6 
-z2a0 -za 1 1 

with c 1:3a0a 1+a 13 and c0=a03. The equivalent 
recurrence relation to (10) will then be 

ui = c1ui_3+coui-6 • 

The optimized case is illustrated in figure 2 with 
an optimal output latency of 10 =2. 

Some Stability Considerations 

Two criteria for stability of linear homogene
ous recurrence relations are [8]: 
- absolute stability, if for all roots ti of the 

characteristic polynomial 

for i = 1,2, ... ,m 

- relative stability, if 

td = tmax 
with 

tmax = max { I ti I } for i = 1,2, ••• ,m 

the root with maximal absolute value and 

for i = 1 , 2, ••• , m 

the dominant root, i.e. the maximal absolute root 
with a coefficient ci*O in the general solution. 

We will assume that the original recurrence 
relation is stable. However by its transformation 
instability might be introduced, because the 
transformed relation is of higher order with addi
tional roots in the general solution. 

An example will demonstrate what might happen 
by using the substitution procedure (eq.(10)), and 
it also will be shown that the transformation 



described above does not introduce instability. 
Consider eq.(5) with a 1=7/6 and ao=-1/3, which 

is absolutely stable, since the characteristic 
polynomial 

t 2 -lt + .1. = (t - l)(t - ..f.) 
6 3 2 3 

has tmax=2/3 as the maximal root. By the substitu
tion procedure the recurrence relation will become 

u. = -37u. 2 - --1u· 3 i 36 i- 18 i-

with the characteristic polynomial 

t3 - 37t - --1 = (t _J..)(t -1.)(t +1.) 
36 18 2 3 6 

which no longer is absolutely stable, since 
tmax=7/6>1 does not fulfil the stability cri te
rion. Note that the dominant root is td=2/3 since 
the same sequence is to be generated. 

Applying the transformation as discussed above, 
any m-th order linear recurrence relation with the 
characteristic polynomial 

tm-am-1tm-1_am-2tm-2_ ... -ao 
= (t-t1)(t-t2)(t-t3 ) .. (t-tm) (18) 

will be transformed to a recurrence relation of 
the type (17), with the characteristic polynomial 

tml_cm-1tCm-1)l_cm-2t<m-2)1_ •.. -co • (19) 

Substituting t 1 by y the polynomiai (19) can be 
written as 

ym-cm-1Ym-1_cm-2Ym-2_ ..• -co 
(y-y1)(Y-Y2) .•. (y-yf) 
(tl-y1)(tl-y2) .•• (t -ym) 
(t-t11)(t-t12) •.. (t-t11)(t-t21) •.. (t-tm1 ). (20) 

For each of the roots Yr, r=1,2, •.• ,m we obtain by 
factorization 

1 i 2n: ij'·'r 
trj =lfYrle ( 21) 

with j = 1 , 2, •.• , 1. Since the new recurrence rela
tion is equivalent to the original recurrence rel
ation, the roots t 1,t2 , ••• ,tm of ·the original 
polynomial ( eq. ( 18)) are included in the set of 
roots t11,t 12•···•tml and the 1 different roots 
t j for each r differ only in the angle, while the 
absolute values are the same. Therefore it is 
assured that the equivalent transformation of a 

Figures 

Ro·Uo RI •U1 Ro·U1 R1•Uz 

Ro·Uo R1 • UJ Ro·U1 

Ro·Uo R1•U1 

A0Uo+A1 Ut 

A0Uo•R1U1 

Uz 

recurrence relation as described above, does not 
change the stability behaviour of the original 
recurrence relation. 

Conclusion 

Since the speedup potential of a recurrence 
relation can be predicted for a given machine 
architecture, the transformation presented can be 
performed automatically. In particular low order 
recurrence relations, which are the most common 
ones can be speeded up considerably. 

Acknowledgements We would like to thank 
Dr.F.Hossfeld, W.Meyer, Dr.R.von Seggern, and 
Dr.B.Steffen for valuable hints and discussions. 

References 

[1] Kogge P.M., Stone H.S. 
"A Parallel Algorithm for the Efficient 
Solution of a General Class of Recurrence 
Equations" IEEE Trans. on Comp. vol.C-22 
no.8 Aug.1973 pp786-792 

[2] Kogge P.M. 
"Maximal Rate Pipelined Solutions to 
Recurrence Problems" Proc. 1st Ann.Conf. on 
Comp.Arch. Dec.1973 pp71-eo--

[3] Chen S.C., Kuck D.J. 
"Time and Parallel Processor Bounds for 
Linear Recurrence Systems" IEEE Trans. on 
temp. vol.C-24 no.7 July 1975 pp701-717 

[4] Hyafil L., Kung H.T. 
"The Complexity of Parallel Evaluation of 
Linear Recurrences" 
J.ACM vol.24 no.3 July 1977 pp513-521 

[5] Kuck D.J. 
"The Structures of Computers and 
Computations - vol.1" John Wiley&Sons 1978 

[6] Kogge P.M. 
"The Architecture of Pipelined Computers" 
McGraw-Hill 1981 

[7] Simons J.L. 
"Conditional Recurring Sequences" 
PhD thesis, Technical University Delft 1976 

[8] Cash J.R. 

R1•Uz 

Ro·U1 

"Stable Recursions" 
Academic Press 1979 

Ro•Uz 

R1•U2 

AoUt •At U2 

RoU1 •At Uz 

R1 • U3 

Ro·Uz 

figure 1. sequential computation of a second order linear recurrence 

Co·Uo Ct• U3 Co•U1 C1• U4 Co· Uz C 1• U5 Co•U3 Ct• U5 Co•U4 C1• U7 Co•U5 C1 • Ue 

Co•Uo CI• U3 Co•UJ CI •U4 Co·Uz Ct• U5 Co•U3 C1• U5 Co•U4 
-r 

CJ• U7 Co·U5 

Co·Uo Cl"U3 Co•U1 Ct_• U4 Co·Uz Ct• U5 Co• U3 C1• U5 Co· U4 CJ• U7 

CoUo•C 1 U3 CoUJ •C1U4 CoUz•C I U5 CoU3•C I U5 

CoUo•C l U3 CoU·1+C1 U4 ' CoUz•C I U5 CoU3•C I U5 

figure 2. overlapped computation of a second order linear recurrence 

547 



DATA-STATIONARY INSTRUCTIONS AS A WAY TO MINIMIZE LONG DISTANCE COMMUNICATIONS IN VLSI 

John Robert Burger* 
School of Engineering 

University of the Pacific 
Stockton, California 95211 

Abstract 

Long lines on a chip cause problems. There 
are unavoidable performance degradations. For ex
ample, capacitance either causes delays, or neces
sitates space and power consuming drivers. More
over, inexpensive chips are essentially 2-dimen
sional, so there simply is no space for long con
trol lines, especially if they must overlap. One 
alternative is to allow instructions to move in 
step with the operands. This necessitates a spec
ial system controller, and extra instruction buf
fers. The advantage is high throughput for pro
grams which can be reduced to straightforward pro
cedures. Floating point addition, e.g., is a pro
cedure which requires up to 2N segments in a pipe
line, N being the number of bits in the fractional 
part. In comparison, signed floating point multi
cation (or division) uses only about N segments. 
CORDIC, the most complex routine considered here, 
needs roughly 16N segments. The execution of data
stationary instructions has been simulated at the 
bit level using Fortran. Such simulations help 
establish the necessary size and shape of the chip 
surface to execute given instructions, and provide 
detail for design. Overall, the computer archi
tecture presented below should be relatively easy 
to implement. 

I. Introduction 

Data-stationary instructions in a pipeline 
have the major advantage of being natural to VLSI, 
which needs maximum local communications [1,2] • 
Architectures based on fan out to parallel proces
sors usually cannot be used if the components have 
to be hardwired. Hardwiring implies the use of 3-
dimensions, while chips are largely 2-dimensional. 
Examples of 3-dimensional systems, and other types 
of parallel processors may be found in a recent 
excellent survey [3] . 

It is awkward to program a pipeline for cer
tain instructions, e.g., conditional branches. 
Never-the-less, general purpose programming clear
ly is possible if certain design features are used 
[4]. The features include universal programmable 
segments, variable numbers of segments depending 
on the instruction, and the possibility of (non
local) communication between segments and main mem
ory. Kogge focused on data stationary instruct
ions, showing that they are easier to microprogram, 
and to optimize, that complex time-stationary pro
grams become shorter, that pipelines naturally fill 
and empty [S, 6 l ~ 

A new computer system based on data-stationary 
instructions hopefully would be able to run con-

*This work is sponsored in part by an engineering 
research initiation grant from the Engineering 
Foundation and the I.E.E.E. 

0190-3918/83/0000/0547$01.00 © 1983 IEEE 

ventional code; this prevents existing software 
from being outdated. Moreover, the resultant 
system has to be efficient in array processing, 
this being a bottleneck in present inexpensive 
computers. 

548 

Memory 

L-1 

Memory 
Manager 

(tL4 II 

i I 
I I 
' I 
i 1L3 I 

I I I 
:1 
I 1<-2 
I 
I 
I 
I 
I 
I 

/ 
/ 

/ 
I 

).(Path I 
I 

L Instruction 
~ Buffers 

Floating Point 
Processor Segments 

Figure 1. 

An Architecture for Data-stationary Instructions 

II, System Considerations 

Figure 1 shows a typical design. Instruction 
codes shift left as they execute, and flow down 
along with the operands in the processor segments. 
Each instruction is allowed to use a variable num
ber of processor segments to complete execution; 
data in the pipeline is not latched until each 
segment is ready. Preliminary questions to be an
swered are, what is a convenient value for L, the 
number of processor segments, and how many words 
of memory are needed for the instruction buffers? 
The shape of the necessary area for instruction 
buffers depends on the type of instructions being 
executed. Path 1 in Figure 1 is the endpoint of a 
row of instructions which execute at roughly a uni
form rate, instructions such as add, subtract, mul
tiply, and divide. Array operations such as inner 
product also use a buff er area roughly the shape 
of an upsidedown right triangle. If the number of 
words in the base of the triangle is specified as 
W, the instruction buffers use up to about WL/2 



words. 

Longer procedures such as CORDIC prevent a 
uniform flow of instructions: CORDIC followed by 
shorter instructions may cause the last instruct
ion in a row to follow Path 2. Path 2 breaks as 
soon as the CORDIC instruction is done. Shorter 
instructions followed by CORDIC may cause the 
CORDIC instruction to follow Path 3, or Path 4. A 
stream of instructions which follow Path 4 would 
free the vast majority of buffers. 

The Memory Manager (MM) in Figure 1 must keep 
track of the types of instructions which are load
ed. Overflow beyond L segments should be prevent
ed; otherwise recycling will be necessary. In
struction recycling is undesirable, since unlucky 
instructions may be waiting for operands from main 
memory which must be generated by the recycled in
structions. Note that each processor segment is 
connected to main memory via a bus. 

Reading or writing in the system of Figure 1 
may involve timing difficulties when sequential 
code is being run. Instructions which must not 
execute ahead of time are: a) a system must not 
load from a register in memory which has not yet 
received the proper data due to an unexecuted 
store to the register. b) a system must not store 
to a register whose data has not yet been used due 
to an unexecuted load from the register. Clearly, 
the nature of the code is important, since it may 
avoid using the same addresses for temporary stor
age. Data flow concepts apparently reduce the 
need for addressable memory; but languages and 
compilers are needed to support the data flow con
cept [7] • 

One function of the MM is to check instruct
ions and addresses for those which must not be 
loaded into the instruction buffers due to poor 
timing. The MM may instead insert NO OPS until 
the next instruction can be loaded, or it may in
terrupt the program and run another. An interrupt 
involves storing recovery information in a stack. 
Interrupts are efficient when many structured sub
programs are waiting to be run. It may happen 
that the programming is such that mainly the first 
processor in the pipeline is active, the others 
being idle. This is, in effect, an automatic re
version to a single processor computer, something 
which is considered acceptable by the author. As 
long as arrays run efficiently, a typical program 
would execute at a fairly steady rate from the 
user's point of view. Again we stress that faster 
execution occurs via better coding. 

The M M also identifies and regulates bran
ches, e.g., the IF ( ) THEN ( ) ELSE ( ). There 
are 2 options: (a) interrupt, running something 
else until the condition which determines branch 
direction is calculated. (b) run as much code as 
possible in both branches, deleting the unneeded 
results after the branch condition is calculated. 
Code can minimize conditional branches, e.g., by 
using fixed numbers of iterations in loops. The 
number of instructions in a loop may be used to 
determine the method of implementation. Loops 
with only a few instructions and a fixed number of 

549 

iterations may be loaded by the MM as one long 
sequence of code. Longer loops can also be 
straightened for the pipeline, but may need a way 
to exit under given conditions. The MM can de
tect the condition and stop feeding replicated 
code. Hence, a LOOP UNTIL ( ) is possible using 
the STATUS line in Figure 1. 

III. The Matrix Processing Feature 

Matrix processing is implemented in a quite 
ordinary way; vector operands and partial products 
move in the same direction; array operands go 
diagonally. In comparison, Kung's systolic pro
cessing may have operands and partial products 
going to opposite directions; array operands move 
in at right angles [l, 8] • The instruction buf
fers may be loaded with data, or addresses to be 
processed in parallel. The options are: A) data 
can be put immediately into the buffers; B) ad
dresses can be put into the buffers in any order 
for direct or extended addressing; C) the addres
ses can be stepped one unit at a time from an in
dex placed in the buffer. A useful feature used 
in array processing is the End of Data (EOD) mark 
in the data stream to bring the system out of the 
array processing mode. 

Figure 2 illustrates the data flow for a 
simple inner product (c =ab). 

Time 0 I al I bl ja2jb2ja3jb3ja4 b4 
1 
2 0 I a2jb21a31b31a41b41 

3 0 la3jb31a4jb41 I I 
4 0 I a41 b41 I I I I 

Figure 2. 
The Data Flow for an Inner Product (c=ab) 

Each block for c represents roughly N segments, 
within which it is possible to execute a floating 
point multiply-add operation. Notice that proces
sor usage is complete, and that the data buffer 
space really has a triangular shape. Values are 
shifted left and down. The operands, e.g., a 1 , b1, 
must be stacked together as shown. 

In a !-dimensional pipeline, Matrix-vector 
multiplication (c = Ab) involves keeping the b 
vector in the first row until the matrix is fully 
loaded (see Figure 3). Although processor usage is 
complete, portions of b are repeated in the buffer 
space. The important thing is that a version of 
array processing indeed meshes with data-station
ary instruction processing. If 2-dimensional pipe
lines were allowed, 1 layer would suffice to load 
a matrix-matrix multiplication (C=AB), as illus
trated in Figure 4. 

A11 , for example, is transmitted to the right 
column.of C, i.e., c11 , c12 , c13 , and c14 • B11 is 
transmitted to the first row of C, i.e., c11 , c21 , 
C31 and C41. The 4 x 4 matrix-matrix multiplicat
ion is completed after 4 time frames· (not all 
shown). Note in the figure that arrays are in 



Time 

1 

2 

3 

4 

c4 

c3 

c2 

cl 

a31 [~J a32~:~,,f:. a33~~ a34;\,~fr:: 
a22 b2 a23 b3 a24 b4 

al3 b3 al4 b4 

al4 b4 

Figure 3. 
The Data Flow For a Matrix-Vector Multiplication 

(c = Ab) 

Time 

1 

2 

Figure 4. 
Matrix-Matrix Multiplication (C AB) in 

a 2-dimensional Pipeline 

standard form when viewed from the bottom. The 
processors are used completely. Each layer does a 
matrix-matrix multiplication, so a sequence of 
layers could do certain tensor operations. The 
problem is that today's VLSI is mostly 2-dimension
al. When 3-dimensional technologies become popular, 
3-dimensional pipelines may conveniently perform 
sophisticated iterations, recursions, and picture 
reconstructions. Meanwhile, this paper will be 
concerned with only 2-dimensions. 

IV. The Design of a Segment 

A standard method starts with a list of de-
s ired machine instructions, and ends with a timed 
logic circuit [9]. Standard methods are systemat
ic, but iterative. Especially interesting is the 

microprogramming for data-stationary instructions; 
the microprogram must proceed in space and time 
from segment to segment along with the instructiorn. 
Each segment is self-timed, and is organized for 
floating point (FLP) arithmetic as is usually re
quired in a general computer. 

The Control Logic 

Unclocked combinational logic is located be
tween the latches of the pipeline as in Figure 5. 

FROM 
MEMORY 

TO 

Clock Data Latch i+ I 

Instruction Buffer i 

ControlLogic fo~ 
_Shift /transfer _J 

Instruction Buffer i +I 

Figure 5. 

The General Plan for a Processing Segment 

Figure 6 shows the overall structure for 
the circuitry between the instruction buffers.This 
circuitry serves to shift, and to transfer in
structions or numerical data. An instruction which 
has been shifted into the leftmost part of the 
buffer will activate control lines and begin to 
execute. The signals in the control lines are se
quenced by counts stored in the registers SeqO, 
seql, Seq2. These counters can be incremented (or 
set to O) by INCO, INCl, and INC2. The control 
circuits are nested finite state machines. Future 
counts occur in subsequent segments. The PLAs de
code the instruction and the count; microprograms 
in the PLAs must be replicated for each segment. 
The Address Bus Control places addresses on the 
address bus to memory (dashed line) for reading or 
writing data. The address field associated with 
an instruction is assumed to vary from 0 to 8 
bytes; the instruction itself is allowed 1 byte. 
The Shift Left block in Figure 6 may need to shift 
up to 9 bytes. There is an option in the Shift 
Left block to shift addresses or data, but not the 
instruction. This option is used for inner pro
ducts. 

550 

The MM prevents reading and writing which 
would result in numerical error in sequential 
code, as mentioned above. Permissible load and 
store commands may have to wait a short time to 
use the bus. The pipeline is held back until each 
load and store is accomplished; an inhibit line is 
included in the data bus. 

Load/Save logic in each segment generates 
read and write signals, and helps manage the bus 
traffic. Outputs waiting to be saved are serviced 
before input data is read, since outputs depend on 
the values in the input latches. The writes to 
memory are done one at a time, each processor hav
ing a status which the central memory manager can 
poll. 

Inputs to be read from memory may also have 
to wait a short time to use the bus. Reads can be 



Processor~ 
Control PLA 
Lines 2 

~ MEMORY ADDRESS BUS 

Addresses (or Data) 4 Max, I or 2 bytes ea. 

Load/ 
Save 
Logic 

Address Bus Control 
: 

Cond itiona I 
Branch 
Logic 

Shift Left (from 0 to 9 bytes) 

FiRure 6. The Control Section of a Segment 

4 Shifter 1--
l 

Shift Rt 

Full 
Adders 

TO MEMORY--4--~ 'WM 

'BYA 

Latch 

D D D D D ....______. ~---100_1 ----- Latch i +I 

RM = Read Memory Control Signal 
WM = Write Memory Control Signal 

BYA = Bypass A-Register Processing 
BYS= Bypass 8- Register Processing 

Figure 7. The Processing Section of a Segment. 

551 



implemented by controlling the clock to the seg
ment. Segments with a load command usually would 
latch the input data which is read. Microcode has 
to allow for this method of reading memory. The 
reads are done one at a time, after the writes to 
memory. The bus management is fairly standard. 
The Conditional Branch Logic causes startup addres
ses to be moved from the interrupt stack kept by 
the MM. 

The Floating Point Processors 

The FLP processor segments have to be simple 
adders with a few gates to direct data. The pro
cessors should be simpler than most currently 
available microprocessors since there is a need to 
save space. Algorithms which use adding and shift
ing are easily pipelined (10 - 15 ]. Iterations 
are accomplished in successive segments rather 
than by looping. Figure 7 shows a typical design. 
Fewer components might give perhaps only 1 gate 
delay per segment for higher throughput, but would 
increase the complexity of the microprogramming. 
Referring to Figure 7, the fractional parts of 
numbers are kept in latches A and B in signed 2s 
complement form; exponentials of the same form are 
in a and b. B' is for storage of operands, counts, 
and constants; b; receives the rightmost bit in Bo 
after a shift right. Various status bits are de
fined in the figure. 

The Microprogramming 

The machine instructions may be broken into 
microinstructions complete with sequencing infor
mation. Unfortunately, the microprograms cannot 
be published here due to limited space. The overall 
features are at least summarized: The Floating 
Point Addition (FLP ADD) takes 7 lines of micro
programming (not shown). The align exponents 
section may take up to N segments; likewise for 
postnormalization, where N is the precision. The 
total is about 2N segments for FLP ADD. Further 
information about floating point systems may be 
found in Reference 10, Chapter 9. 

FLP SUB is very similar; FLP MUL based on 
Booth's pairs needs 6 lines of microprogramming 
(not shown). It needs about N segments. FLP DIV 
based on a modification of Guild's method needs 8 
lines for signed division. About N segments are 
required. 

FLP CORDIC 

The nested finite state machines permit sever
al methods for function evaluation, but CORDIC is 
most interesting as an example (15]. It evaluates 
more than one function at once, if desired; and it 
may be used for plane matrix rotations (16}. To 
simplify, the easily implemented pre-normalizations 
and post-normalizations are omitted from this dis
cussion. CORDIC needs 9 lines of microprogramming, 
and also parts of the FLP ADD routine. Each addit
ion is assumed to take 1 segment to prenormalize, 
1 to add (or subtract), and 1 to postnormalize. N 
bits of precision are generated in N mathematical 
iterations; it is estimated that 16N s.egments are 
needed in a CORDIC evaluation. 

552 

FLP IP (Inner Product) 

FLP IP is little more than FLP MUL; register 
B,b accumulates the inner product. The ITERO 
command keeps adding partial products until an EOD 
mark in the data stream is detected by circuitry. 
The DONE is then enabled, feeding the next in
struction, with the option to store the inner 
product in memory. Three lines of microprogram
ming are needed, and also parts of the FLP MUL 
routine. 

V. Fortran Simulation 

Ordinary Fortran using integer arrays filled 
with ones and zeros is useful for digital simula
tions. The author's simulations used a 'PLA' sub
routine to set control lines, and a main 'SEGSIM' 
program to call for various register transfers, 
e.g., APB, which adds B to A in binary. The 
reasoning behind the above microprogramming was 
thus verified. Simulations at the bit level bring 
one closer to the necessary detail for VLSI design 
where trial and error methods can be extremely ex
pensive. 

VI. Summary and Conclusions 

A designer has several particular trade·offs: 
1) Only one bus is proposed to conserve space and 
to minimize non-local communications within the 
chip. An alternative is to load all addresses and 
data into the head of the pipeline, and to receive 
information only from the foot, where results are 
written to memory. This would eliminate non-local 
communications and may be a good thing in some 
applications. It is not clear that conventional 
sequential code would run well without a bus, par
ticularly when conditional branching is necessary. 
2) Conditional branches are handled by waiting un
til the branch condition is decided before loading 
more code. The option is to load and run as much 
code as possible, selecting the desired results 
after the branch condition is calculated. Running 
more than one branch direction would complicate 
the Conditional Branch logic. 3) Feedback in the 
pipeline is avoided to reduce non-local connections 
on the chip. Simple accumulators and more complex 
pipelines with feedback are not used in this arch
itecture, although feedback has certain advantages 
[SJ. 4) Loops are implemented by loading the code 
within the loop repeatedly as it is being run. 
Loops are straightened; true loops are not used in 
this design. The option is to use feedback and 
microprogram loops; unfortunately, the pipeline 
would then be stopped until individual loops are 
satisfied. 5) CORDIC is proposed without the help 
of extra local registers; this simplifies the cir
cuitry and the microprogramming, but function eval
uation depends heavily on the memory bus. If 
CORDIC had to be called frequently, local registers 
for the 3 variables, and for the constants would be 
well worthwhile. 

The architecture presented for data-stationary 
instructions minimizes long distance communications 
on a chip; the approach is reasonably programmable. 
Assuming a modest floating point system with a pre
c is ion (N) equal to 8, a pipeline with L = 128 seg
ments should be quite useful. VLSI with hundreds 



of thousands of gates could support the pipelined 
structure; there would even be space for a small 
memory. Interfacing serially, 1 word per clock 
pulse, is within reason, allowing video to be pro
cessed for T.V., for example. Currently, a data
stationary architecture appears to be a good com
promise for VLSI, plus it is relatively easy to 
implement. 

Acknowledgments 

The helpful comments of the reviewers are 
gratefully acknowledged. 

References 

1. C.Mead a11d L. Conway, Introduction to VLSI 
Systems. Reading, Mass. Addison-Wesley, 1980. 

2. D.G. Fairbairn, "VLSI: A New Frontier for 
Systems Designers," IEEE Computer, Vol. 15, 
pp 87-96, Jan. 1982. 

3. L.S. Haynes, R.L. Law, D.P. Siewiorek, and D.W. 
Mizell, "A Survey of Highly Parallel Computing," 
IEEE Computer, Vol. 15, pp 9-24, Jan. 1982. 

4. C.R. Vick, S.P. Kartashev, and S.I. Kartashev, 
"Adaptable Architecture for Super systems," IEEE 
Computer, Vol. 13, pp 17-25, Nov. 1980. 

5. P.M. Kogge, "The Microprogramming of Pipelined 
Processors," Symposium on Computer Archit'ecture 
Proceedings, Fourth Annual, IEEE/ACM, pp 63 -
69, March, 1977. 

6. P.M. Kogge, The Architecture of Pipelined Com
puters. N.Y., N.Y. McGraw-Hill, 1981. 

7. D.D. Gajski, D.A. Padua, D.J. Kuch, and R.H. 
Kuhn, "A Second Opinion on Data Flow Machines 
and Languages," IEEE Computer, Vol. 15, pp 58 -
69, Feb. 1982. 

8. H.T. Kung, "Why Systolic ArchitectureEJ," IEEE 
Computer, Vol. 15, pp 37-46, Jan. 1982. 

9. M.M. Mano, Digital Logic and Computer Design. 
N.J.: Prentice-Hall, 1979. 

10. K. Hwang, Computer Arithmetic: Principles, 
Architecture, and Design. N.J.: J. Wiley, 1979. 

11. A.K. Kamal, et al., "A Generalized Pipeline 
Array," IEEE Trans. Comput., Vol. C-23, pp 533-
536, May 1974. 

12. A. D. Boo1ch, "A Signed Binary Multiplication 
Techniqut:," Quart. Journ. Mech. and Applied 
Math., Vcl. IV, Pt. 2, pp 236 - 240, 1951. 

13. H.H. Guild, "Some Cellular Logic Arrays for 
Nonrestoring Binary Division," The Radio and 
Elec. Engr., Vol. 39, pp 345 - 348, June 1970. 

14. E.E. Swartzlander, Jr., "Arithmetic for Ultra
high-speed Tomography," IEEE Trans. Comput., 
Vol. C-.29, pp 341 - 353, May 1980. 

15. J.S. Walther, "A Unified Algorithm for Elemen
tary Functions," Spring Joint Computer Confer
ence, 1971, pp 379 - 385. 

16. H. M. Ahmed, J. Delosme, and M. Morb, ''Highly 
Concurrent Computing Structures for Matrix 
Arithmetic and Signal Process;i.ng," IEEE C6m
puter Magazine, Vol. 15, pp 65 - 82, Jan. 1982. 

5'53 








